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IMPACTS OF TRANSPORTATION NETWORK COMPANIES ON URBAN 
CONGESTION IN A MEDIUM-SIZED CITY  

 
FURAT SHAKIR SALMAN 

 
CIVIL ENGINEERING 

 
ABSTRACT  

 
The rise of ride-hailing and on-demand transportation services offered by 

Transportation Network Companies (TNCs) (such as Uber and Lyft) has been one of the 

key factors contributing to the growth of shared mobility services in recent years. The 

presence of contradictory findings on the impacts of TNCs necessitates the undertaking 

of an investigation into the shifts in mode choice that occur in the context of TNC 

services and their impacts on urban congestion. As a result of difficulties in gathering 

TNCs field data, it is still not possible to fully assess the impact of these services on 

urban congestion. Moreover, studies that investigated how TNC services affect the 

operational efficiency of the transportation system focused primarily on large-sized cities 

and the impacts of such services in medium-sized cities are still not well understood. In 

an effort to address such gaps, the purpose of this study is to demonstrate the feasibility 

of using simulation modeling to assess the impact of TNC services on urban congestion 

in medium-sized cities, utilizing Birmingham, AL as a case study.  

The study commenced by conducting a comprehensive literature review and 

examining research case studies to identify simulation platforms suitable for modeling 

shared mobility. This process helped to identify the Multi-Agent Transport Simulation 

(MATSim) as the most viable and established platform for simulating TNCs services. 

The study then utilized the MATSim platform to evaluate the impact of various types of 

TNC services on urban congestion. Significant efforts were placed in the development of 
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a comprehensive model of the Birmingham area that realistically represented trips of 

Birmingham travelers using a variety of transportation modes including private 

automobile, transit, walking, and on-demand shared modes (Uber and Lyft). In order to 

model the latter, a survey of Uber drivers was conducted and used in combination with 

population statistics from census data to generate realistic Uber rides for the Birmingham 

agent-based simulation. In this study, two categories of ride requests from a TNC were 

simulated, namely individual ride requests and ride-pooling requests. Two types of ride-

pooling services were considered in the simulation, namely door-to-door (d2d) and stop-

based (sB) services.  

Key findings of the study revealed that the addition of TNC vehicles to the 

network resulted in a significant increase in Vehicle Kilometer Traveled (VKT) for 

TNCs' individual ride requests and a reduction in VKT for both ride-pooling categories 

(d2d and sB). Moreover, the study allowed to identify the optimal TNC fleet size for the 

Birmingham region, which was found to be double the size under the TNC individual 

ride option, compared to the ride-pooling service options.  

Given the limited existing research on the effects of TNCs on traffic congestion in 

medium-sized cities, the findings of this study hold substantial value in terms of bridging 

the gap between the introduction of TNCs and their impact on traffic operations in a 

medium-sized city. This research work provides valuable contributions to the current 

body of knowledge related to multimodal modeling using an open-source large-scale 

agent-based transportation simulation platform. As such, the findings and results of this 

study are anticipated to be beneficial for researchers and practitioners in their planning 

efforts of including TNC services into their planning models. The findings of the case 
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studies reported can also assist transportation decision makers, urban planners, and TNC 

providers in their efforts to optimize their operations and serve the needs of the traveling 

public better in the future. 
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INTRODUCTION 

Background 

Shared mobility is a method of transportation that allows the temporary use of 

various transportation modes by a traveler. Examples include car-sharing, scooter 

sharing, bike sharing, ride-pooling, and micro transit services [1]. The advancements in 

information and communication technologies have allowed a wide range of services to be 

offered to the public in real-time, as well as on-demand [2]. This transportation feature 

allows users to acquire on-demand access to transportation modes including public 

transportation. According to Tu et al. [3], the advent of smartphones, the mobile internet, 

and the use of location-based services has led to a new mode of transportation known as 

the on-demand ridesourcing service [3]. In recent years, companies like Uber and Lyft 

have provided smartphone applications to connect passengers with independent drivers. 

Passengers can request a ride using the mobile application, which transmits their location 

to available drivers via GPS technology [2]. This new framework has been adopted by 

transportation network companies (TNCs) such as Uber and Lyft, with the promise of 

providing an expanded array of transportation options to travelers in their service areas.  

Ride requests can either be for individual rides or for shared rides (also known as 

ride-pooling). Ke et al. [4] defines a ride-pooling service as an on-demand transportation 

option that pairs unrelated passengers in a single vehicle for a shared ride. The process of 

matching up riders in ride-pooling services is determined by the riders’ origin and 

destination locations in a way that ensures that everyone can travel together in the same 
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vehicle while maintaining a reasonable travel and delay time. As a ride-sourcing 

transportation option, ride-pooling has become increasingly popular over the past few 

years, since multiple passenger requests can be fulfilled in one vehicle, therefore reducing 

the number of vehicles on the road [4]. TNCs view ride-pooling services as an 

opportunity to boost their ridership, lower expenses for customers, and broaden the range 

of ridesharing options available [5]. Ride-hailing companies Uber and Lyft offer their 

customers Uber Pool and Lyft Line ride-pooling services in many cities worldwide. 

According to Lo et al. [6], Uber launched its Uber Pool service in 2014 in order to 

facilitate the sharing of trips with other riders who are traveling in the same direction [6]. 

Furthermore, drivers benefit from pooled rides as they are able to reduce their operating 

costs, as well as maximize their income. In an Uber Pool trip as mentioned on the Uber 

[7] website, Uber determines which route is best for picking up multiple riders.  

Even though it is important to understand the true impacts of the use of TNC 

services on the performance of the transportation network, there are few studies that have 

examined and documented such impacts. This is attributed to the lack of TNC trip data 

and the limitations of commercial simulation software with respect to simulating TNC 

trips along with other available transportation modes. There are many claims that shared 

mobility and on-demand ridesourcing services benefit customers and can provide 

congestion relief as users of such services may shift their trips from private automobiles 

to TNCs or transit. However, it remains unclear how the on-demand ridesourcing services 

affect travelers' mode choices and transportation network performance, especially in 

medium-sized cities where TNCs operate. 
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Problem Statement, Objectives, and Significance 

In recent years, researchers and policymakers have debated the impact of 

transportation network companies (TNCs) on urban congestion. Due to the widespread 

use of TNCs, particularly Uber and Lyft, two perspectives have emerged regarding how 

TNC services might affect urban congestion. According to one perspective, TNCs can 

motivate travelers to abandon their personal vehicles, thereby removing those vehicles 

from the network and reducing overall congestion levels. They may also provide last-

mile connections that would make use of transit more attractive and convenient to 

transportation users. Another perspective, however, claims that the advent of TNCs 

actually results in the creation of a new type of TNC users, the TNC drivers, who hover 

over the network in order to pick up riders. There is a potential that this practice results in 

a greater amount of time that TNC vehicles spend on the network and higher VKTs, 

which will increase the level of congestion.  

Several studies have highlighted the convenience and flexibility of TNCs as a 

mode of transportation [2, 8, 9] and others noted the positive effect of TNCs on 

improving access to transportation for people living in areas with limited public 

transportation and who do not own a car [2]. Despite the fact that TNCs are capable of 

reducing the number of vehicles on the road [10], there is also evidence to suggest that 

they may also reduce public transit ridership, [11] and contribute to increased traffic 

congestion [11-15]. 

This study aims to get a clear understanding of the actual impacts on VKT and 

traffic congestion in the presence of TNC services, and overcome the limitations caused 

by the unavailability of TNC trip data and the inadequate capacity of commercial 

simulation software to model TNC trips. To achieve this, the objective of this research is 



4 
 

to quantify/document the operational performance impacts of TNC services operating in 

medium-sized cities using Birmingham, AL as a case study. This is done by (a) collecting 

TNC trip data directly from Uber/Lyft drivers in the study area; (b) developing a multi-

agent transport simulation model that includes individual and ride-pooling TNC trips; (c) 

incorporating survey data into a simulation model of the study area; (d) using the model 

to simulate traffic operations for various TNC fleet sizes and document their impacts on 

traffic network performance; and (e) quantifying the impacts of TNCs on congestion in 

terms of changes in VKT. 

The findings of this study are anticipated to be advantageous for engineers, 

transportation planners, and policymakers in their evaluation of the impacts of TNC 

services. The results may aid in the development of policies and regulations that consider 

the benefits and drawbacks of TNCs for both individuals and communities. 

Dissertation Research 

The primary goal of this dissertation was to investigate the impact of shared 

mobility and on-demand ridesourcing services on urban congestion. The research aimed 

to quantify/document the operational performance impacts of TNC services operating in 

a medium-sized city, with a specific focus on vehicle kilometers traveled (VKT). This 

dissertation research considered two TNC services - individual and pooled rides - to 

understand their impact on traffic congestion.  

Chapter 1 of this dissertation highlights the limited understanding of the 

performance impacts of shared mobility and on-demand ridesourcing services offered by 

transportation network companies (TNCs). To address this knowledge gap, simulation 

modeling techniques can provide insights into the impacts of various levels of market 
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penetration of TNC services, given the challenges in acquiring field data. A detailed 

literature review was conducted and case studies were reviewed in order to identify 

suitable platforms for modeling shared mobility through the use of simulation tools. A 

summary of available simulation tools for simulating TNC services is presented in this 

chapter. Attributes of three simulation platforms, including required skills for users, 

model development time, input data requirements, modeling level, output data, and 

simulated modes, were reviewed and contrasted. The findings from this chapter laid the 

necessary groundwork to develop and conduct the agent-based transport simulation study 

described in Chapter 2. 

In Chapter 2, the primary research objective is to measure the influence of TNC 

services on traffic operations through the utilization of a MATSim simulation platform. 

The focus is specifically on evaluating the impact of on-demand ridesourcing services, 

wherein customers request individual vehicles for each trip request. Travel plans for 

travelers in the network were generated using synthetic populations since obtaining travel 

plans for all travelers is challenging. The daily plans of the study area travelers were 

gathered through an online survey and open-source data, and daily Uber travel plans were 

derived from the travel logs of local Uber drivers who were recruited for this purpose. 

The simulation consisted of a baseline condition and three TNC scenarios, involving 200, 

400, and 800 active TNC vehicles. MATSim’s Taxi Extension was used to incorporate 

Uber trips into the day plans. The simulation outputs were evaluated to define the ideal 

fleet size to meet TNC demands at specific times of day and to evaluate TNC operational 

effects along particular corridors. The evaluation process employed several measures of 

effectiveness, such as the networkwide VKT and hourly averages for speed, travel time, 
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and volume at four specific locations within the network.  

Chapter 3 presents an expanded study described in Chapter 2 to include TNC 

ride-pooling services and assess its impact on urban traffic congestion using the MATSim 

simulation tool. In a ride-pooling service (e.g., Uber Pool and Lyft Line), trip requests 

may be fulfilled simultaneously with a single vehicle (up to 4 passengers in a vehicle). At 

the time of the study, ride-pooling services were not yet available in the Birmingham 

metropolitan area. The inclusion of ride-pooling services in the study aimed to examine 

their potential operational impact if TNCs were to offer the service in the future. 

MATSim's Demand Responsive Transit (DRT) module was used to simulate ride-pooling 

scenarios including 200, 400, and 800 TNC vehicles that were added to the network. The 

study analyzed two types of ride-pooling services: door-to-door (d2d) and stop-based 

(sB), with a maximum acceptable waiting time of 5 minutes. The study developed six 

ride-pooling scenarios, consisting of three d2d and three sB scenarios. The results of 

these scenarios were then compared to the baseline scenario developed in Chapter 2. 

Various measures of effectiveness were utilized in the evaluation process, including 

networkwide VKT, TNC total daily distance traveled, vehicles empty ratio, detour 

distance, and ride request rejection rate.  

The results obtained from this dissertation collectively contribute to a better 

understanding of the potential impacts of TNCs' individual and pooled rides trips and 

their correlation with travel demand, and traffic operations in a medium-sized city, such 

as Birmingham, AL. The knowledge gained from this study can be utilized by TNC 

service providers and local authorities to improve TNC operations and better fulfill the 

needs of passengers in the future. 
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Abstract 

Shared mobility and ridesourcing services (such as Uber and Lyft) are emerging 

transportation options allowing users to gain short-term access to transportation modes on 

an as-needed basis. In recent years, these transportation options have been adopted at a 

rapid pace, due to technological advancements and the public’s willingness to accept and 

support sharing economy. However, the full impact of shared economy services on local 

and regional congestion are not yet understood due to field data acquisition challenges. 

Thus, a need currently exists to evaluate the impacts of shared mobility on the 

performance of urban transportation facilities. To achieve this goal simulation modeling 

should be utilized due to the lack of field data availability. However, traditional traffic 

simulation models lack the ability to simulate shared modes in detail. Thus, some new 

simulation platforms have emerged recently that allow shared mobility simulations.  

Given the limited experience in this area, an extensive review of the literature and 

research case studies took place to identify available platforms for shared mobility 

simulation modeling. This paper documents the findings from a comparative study of 

three such simulation platforms, namely Multi-Agent Transport Simulation (MATSim- 

Version 0.8.1), Auto Desk Mobility Simulator, and the Dynamic Ridesharing (D-Ride- 

Version 1.0) software. The comparison of model capabilities performed in this study 

identified MATSim as the most promising and well-established available platform. Thus, 

the paper further explores the key features and capabilities of MATSim for simulating 

shared modes, along with implementation requirements, limitations, and case studies. 

The findings of this study are expected to be of interest to researchers and 

practitioners in search of reliable simulation tools to model shared mobility modes in 
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future studies. The study also provides transportation agencies the means to plan mobility 

as a service (MaaS) where shared mobility and ridesourcing services are available.  

  Introduction 

Shared mobility is a transportation feature that helps riders to gain short-term 

access to different transportation modes (e.g., car-sharing, scooter sharing, bike-sharing, 

carpooling, and transit services). It enables users to get on-demand access to 

transportation modes, including public transportation and shuttles. Several studies 

reported a reduction in vehicle usage, vehicle ownership, vehicle miles traveled, travel 

cost savings, and social and environmental benefits resulting from the use of different 

transportation shared modes. According to RideScout  (as cited by Miller, Geiselbrecht, 

Moran, and Miller (2016)), mobile technology and transportation data accessibility have 

empowered the advancement of widespread mobile applications that provide real travel 

time information and enable shared mobility options.  

The development of smartphone apps, the explosion of internet use, the 

availability of GPS location services, and routes optimization have lead innovators to 

develop new transportation options in order to increase the accessibility, reduce the 

ownership of vehicles and overall contributed to the advancement of transportation 

shared modes (Shaheen, Cohen, & Zohdy, 2016). As a result of advancements in 

technology, shared mobility has grown rapidly since it first launched in North America in 

1994. As reported in 2012, an estimated 401 ride-matching services were located in the 

United States and 261 were located in Canada (Chan & Shaheen, 2012). 

While there are many assertions about the likely benefits of shared mobility and 

e-hailing services, yet the full impacts of such services on transportation network 
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performance are not fully understood. Due to the limited availability of field data, 

simulation modeling techniques can be employed to quantify such impacts for various 

market penetration levels of car/ride sharing modes.  

This study summarizes the findings from a comparative study of available 

simulation tools that can simulate car/ride sharing modes based on an extensive review of 

the literature and research case studies.   

Methodology 

Recent literature works advocate the use of agent-based simulation models to 

study ridesharing and how it impacts traffic demand (Ciari, Balac, & Axhausen, 

2016);(N. Ronald, R. Thompson, & S. Winter, 2015);(N. Ronald, R. G. Thompson, & S. 

Winter, 2015);(Ronald, Yang, & Thompson, 2016). Accordingly, this study identified 

and compared four simulation tools that can simulate shared mobility modes. These were 

a) the Multi-Agent Transport Simulation (MATSim- Version 0.8.1), b) the Auto Desk 

Mobility Simulator, and c) the Dynamic Ridesharing (D-Ride- Version 1.0). These 

simulation platforms implement agent/activity based modeling, data mining and machine 

learning, and have various advantages and shortcomings for implementation. 

The attributes of each simulation platform were reviewed and documented, 

including the required skills for a user, cost of getting the software, approximate time to 

develop a base model, user-friendliness, required data/files for inputs, modeling level 

(Microscopic, Mesoscopic, Macroscopic), output data, simulated modes, simulation 

architecture, and non-traditional operating conditions.  

The most promising simulation platform for evaluating shared transportation 

modes was identified and explored in greater detail. 



11 
 

Results from Model Comparison 

Attributes of 3 simulation platforms identified above were reviewed and 

summarized in Table 1.  Attention was given to the types of modes that can be simulated 

by each tool, system requirements, model development requirements, user friendliness, 

modeling fidelity, ability to model dynamic events, and cost.  Moreover, input 

requirement and output capabilities were review and contrasted as shown in Tables 2 and 

3 respectively. 

The comparison of simulation model capabilities performed in this study showed 

that the most promising and well-established platform for simulating ridesharing travel 

options is MATSim (Salman, Sisiopiku, & Ramadan, 2017).  

MATSim incorporates time choice, mode choice, and/or destination choice into 

an iterative loop, leading to a stochastic user equilibrium. Through its computationally 

efficient-queue based approach, MATSim holds promise toward accurate modelling of 

technology-based ridesharing modes. Thus, the MATSim model was selected as the best 

available tool for further investigation. 
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Table 1  

Comparison of attributes of shared mobility modeling simulation tools 

 
 

Table 2  

Comparison of input requirements for selected shared mobility modeling simulation tools  
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Table 3  

Comparison of outputs for selected shared mobility modeling simulation tools 

 
   

 
 

Review of MATSim Features 

MATSim is a non-traditional, open source simulation platform implemented as a 

Java application that provides a framework to perform large-scale agent-based 

transportation simulations of various transportation modes, including shared modes. The 

framework consists of several modules which can be combined or used as stand-alone. 

Currently, MATSim offers a framework for demand-modeling, agent-based mobility-

simulation (traffic flow simulation), re-planning, a controller to iteratively run 

simulations as well as methods to analyze the output generated by the modules 

(Sisiopiku, Hadi, McDonald, Steiner, & Ramadan, 2019). 

The platform adopts the activity-based approach to generate agents’ activities.  
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Within the context of MATSim, agents are the individual travelers, and agent behavior 

refers to an individual’s daily activity travel plan and route choice.  

MATSim designs two layers: a) the physical layer, which simulates the physical 

world where the agent (or traveler) moves, and b) the mental layer, in which the agents 

generate strategies, including routes, mode choice, and daily activity plans. MATSim 

runs its activity plan, microsimulation, activity re-plan, microsimulation, and so on, 

iteratively until it reaches a stationary state of the system, where an agent cannot improve 

its score by revising the plan. The MATSim simulation steps are listed below: 

• A set of initial plans is generated. 

• The plan selection mechanism of the agent database chooses one plan per agent for 

execution. 

• The model runs the simulation to execute the plans, produce a new travel time for 

each trip, and re-score the plans. 

• A subset of the agents is chosen to undergo plan adjustment or new plan generation 

by external strategy modules.  

• The model runs external strategy modules, and each agent is updated with a new or 

revised plan. 

• The model runs the mode and route choice module to produce a route for each agent. 

• If the stop criterion is satisfied, then the simulation stops; otherwise, the process 

continues for additional iterations, as needed. 

MATSim Capabilities and Requirements 

The MATSim tool is designed to simulate large-scale scenarios by adopting a 

computationally efficient queue-based approach (Horni, Nagel, & Axhausen, 2016). It 
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incorporates mode/time choice, and/or destination choice into an iterative process loop by 

removing the lowest score plan until the average plans become steady.  

A MATSim run contains a number of replications starting with an initial demand 

that emerged from the travel diaries for travelers in the study area. Activity chains are 

derived from empirical data through sampling or discrete choice modeling to establish the 

initial demand. The initial demand is optimized individually for each traveler during 

iterations. Each traveler selects a plan prior to simulation in each iteration, the selection is 

dependent on plan scores, which are calculated after each mobility simulation (mobsim) 

run based on plan performances. MATSim replanning module is performed to modify 

travel plans by considering four dimensions: departure time, route, mode, and destination 

(Horni et al., 2016).  The MATSim loop is demonstrated in Figure 1 below. 

 

 

Figure 1. MATSim loop 
(Source: MATSim Book 2016, p. 5). 

The Traffic Flow Model in MATSim provides two internal Mobility Simulations 

(mobsims), namely Queue Simulation (QSim) and Java Discrete Event Queue Simulation 

(JDEQSim), Figure 2 below shows the traffic flow model developed by MATSim.  
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Figure 2. MATSim traffic flow model 
(Source: MATSim Book, 2016, p. 6). 

The MATSim traffic flow model works based on two link attributes, namely 

storage and flow capacity. Storage refers to the number of vehicles that can fit onto a 

network so that vehicles can only enter a link when a link is not full. Flow capacity refers 

to the outflow capacity of the section, e.g. number of vehicles that can leave the section 

per time. Accordingly, vehicles can only leave a section of the road when the volume 

does not exceed the outflow capacity.  

MATSim optimization is performed in terms of agents’ plans scoring based on a 

co-evolutionary algorithm (which leads to a stochastic user equilibrium) until reaching an 

equilibrium (Horni et al., 2016). 

Typical Model Input 

MATSim is an open source software that requires its input files to be as 

Extensible Markup Language (XML) files. Minimum input files required to run the 

software are: 

• Configuration file 

• Network file 

• Population/plans file 
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The configuration file builds the connection between MATSim tool and all other 

XML files (e.g. network, population, etc.), and contains a list of settings that influence 

how the simulation behaves. 

MATSim’s network file consists of nodes and links. It is the infrastructure on 

which agents can move around. Nodes are defined by coordinates while the link requires 

the definition of several attributes including the length of the link, capacity, speed, and 

the number of lanes that modes used. 

The population file provides information about travel demand, e.g. a list of agents 

and their travel diaries. The travel demand is described by the daily plans of each agent. 

The population file contains a list of transportation users and their daily plans, activities, 

and legs.  

It should be noted that since it is practically impossible to get detailed activity-

based data for the whole population in any study area, a population synthesis is needed to 

create the population data based on a sample of data (e.g. travel dairy survey data) using 

modeling techniques that mirror the true population.  Hence, modelers opt for population 

syntheses based on travel diary surveys, land use data, and census data. The most 

prominent techniques are iterative proportional fitting (IPF), iterative proportional 

updating (IPU), combinatorial optimization, Markov-based, fitness-based synthesis, and 

other emerging approaches. A critical review of the literature on population synthesis 

options by (Ramadan & Sisiopiku, 2019) provide details regarding this topic. 

MATSim Typical Outputs 

Typical output files from MATSim include the following (Horni et al., 2016): 

• Log File: contains information needed for analyses or debugging 
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• Warnings and Errors Log File: identifies problems in the simulation  

• Score Statistics: shows the average best, worst, executed and overall average of 

all agents’ plans for every iteration 

• Leg Travel Distance Statistics 

• Stopwatch: contains computer time 

• Events: records every action 

• Plans: contains the final iteration plans 

• Leg Histogram: describes the number of agents arriving, departing or en route, per 

time unit 

• Trip Durations 

• Link Stats: contains hourly count values and travel times on every network link 

MATSim Limitations 

Discussing the limitations of the MATSim platform, (Ciari et al., 2016) suggest 

that MATSim’s behavioral model assumes homogeneity in evaluation criteria for 

travelers regarding car-sharing and all other modes, thus, not capturing the individual or 

average preferences (Sisiopiku et al., 2019).   

An additional limitation is the extent to which MATSim is able to differentiate 

between different activities, which may need further refinement to sufficiently model car-

sharing usage. As (Ciari et al., 2016) explain, car-sharing is known to fluctuate 

throughout the week, yet MATSim is limited to only single day simulations. Thus, the 

authors conclude that “the properties of agent-based modeling are particularly suitable to 

assess hypothetical scenarios on which limited previous knowledge is available, yet long-

term effects of car-sharing are beyond the scope of the simulation” (Ciari et al., 2016).  
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Despite its current limitations, MATSim is ideally situated to evaluate future 

circumstances through assumed behavioral changes, although some additional work is 

needed on the behavioral model (Ciari et al., 2016). Even in its current form MATSim 

can help to assess how different operation strategies would work and how demand would 

be modified as a result of shared economy applications. Furthermore, it can already 

account for mode substitution based on supply characteristics (Ciari et al., 2016). 

 Case Studies 

Simulation of shared mobility services is a relatively new concept and only a few 

studies exist in the literature focusing on limited applications and studying their impacts. 

Most of these studies used agent-based simulation platforms such as MATSim for 

modeling and analysis purposes. MATSim dynamic traffic assignment and activity-based 

models were used in Toronto, Canada to simulate the impacts of different policy 

interventions to meet atmosphere changes objectives by 2031. MATSim dynamic traffic 

assignment with activity-based travel demand modeling has likewise been incorporated in 

Dallas-Fort Worth, TX, Tel Aviv, Israel, in Austin, TX, and Los Angeles, CA. MATSim 

is the only dynamic traffic assignment tool used for large-scale and regional simulation 

since it uses detailed travel activities, and spatial queue models (Alemi & Rodier, 2016). 

Many simulation efforts were geared towards understanding congestion issues 

and their ensuing negative externalities. One such example comes from (Bischoff & 

Maciejewski, 2016), who studied congestion impacts of both real-time autonomous taxi 

operation and mixed autonomous/conventional vehicle traffic flow using MATSim 

(Bischoff & Maciejewski, 2016). To provide a comprehensive analysis of impacts from 

autonomous taxi fleets, the authors use various replacement ratios to estimate potential 
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effects for different stages of inception From their simulation results, (Bischoff & 

Maciejewski, 2016) suggest potential positive traffic benefits from large-scale AV taxi 

fleets in cities with one autonomous taxi replacing between 10 and 12 conventional 

vehicles. The authors further found that proximity to the city center shows more 

significant positive benefits than moving further away (Bischoff & Maciejewski, 2016).  

Dubernet, Rieser-Schüssler, and Axhausen (2013) utilized MATSim to simulate 

the feasibility of carpooling in Zurich, Switzerland area. The study found more than 87% 

of trips could be coordinated in a two-riders carpool. The study found more than 47% of 

trips could be coordinated in a two-riders carpool if the trips were individual.   

Fagnant, Kockelman, and Bansal (2015) investigated the potential operational and 

environmental impacts of shared autonomous vehicle (SAV) fleets by simulating shared 

autonomous vehicles in 12-mile by 24-mile region in Austin, Texas.  The study utilized 

the MATSim to evaluate 100,000 trips that were randomly selected out of 4.5 million 

trips in Austin, Texas. The study found that each SAV can replace 9.3 conventional 

vehicles within the 12-mile by 24-mile region. The study also reported that total parking 

demand would be reduced by 8 vehicles for every SAV use, which in return will reduce 

the land use requirements for parking services. The study further reported a reduction in 

cold starts emission by 85% due to replacing conventional vehicles. 

These studies provide examples of the range of applications of the MATSim 

model and its usefulness toward assessing the impacts of the implementation of emerging 

transportation modes on travel demand and urban congestion in the era of share mobility 

and Mobility-as-a Service (MaaS). 
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Discussion and Conclusion 

The literature review identified three simulation platforms that showed promise 

toward simulating of shared mobility options. These platforms, namely MATSim 

(version 0.8.1), Auto Desk Mobility Simulator, and Dynamic Ridesharing (D-Ride) 

(version 1.0), where compared in an effort to assist future users with the platform 

selection task.  

The comparison of model capabilities performed in this study based on features 

and earlier case studies showed that the most promising and well-established platform is 

MATSim. It incorporates time choice, mode choice, and/or destination choice into an 

iterative loop, leading to a stochastic user equilibrium. Through its computationally 

efficient-queue based approach, MATSim promises accurate modelling of technology-

based car/ridesharing modes. While work is still needed to address current limitations, 

case studies that utilized MATSim in the recent years to model shared mobility options 

show great promise. 

 The findings of this study are expected to be of interest to researchers and 

practitioners that are in search of reliable simulation tools to model shared mobility 

options and assess their impacts on transportation network operational performance. 
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Abstract 

In the recent years, TNCs (transportation network companies) and on-demand 

ridesharing services have grown rapidly. Given conflicting reports on TNC impacts, a 

need exists to study mode choice shifts in the presence of TNC services and their effects 

on urban congestion. Using Birmingham, AL (Alabama) as a case study, this paper 

showcases the feasibility of modeling TNC services using the MATSim (Multi-Agent 

Transport Simulation) platform, and evaluating the impact of such services on traffic 

operations. Data used for the study were gathered from Uber drivers and riders through 

surveys, as well as the US Census. The results indicate that when 200, 400, and 800 TNC 

vehicles are added to the network, the VKT (vehicle kilometers traveled) increase by 

22%, 23.6%, and 23.2%, respectively, compared to the baseline scenario (no TNC 

service). Analysis of hourly average speeds, hourly average travel times, and hourly 

volumes along study corridors further indicate that TNC services increase traffic 

congestion, in particular, during the AM/PM peak periods. Moreover, the study shows 

that the optimal TNC fleet size for the Birmingham region is 400 to 500 active TNC 

vehicles per day. Such fleet size minimizes idle time and the number of TNC vehicles 

hovering, which have adverse impacts on TNC drivers, and the environment while 

ensuring TNC service availability and reasonable waiting times for TNC customers. 

Introduction 

The availability of the GPS (global positioning system) and wireless services and 

the increase in the use of smartphones have contributed to the establishment of a new 

shared transportation mode option called on-demand ridesourcing. Within this new 

framework, TNCs (transportation network companies) such as Uber and Lyft promised to 
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offer additional choices to travelers in their service area and even relieve the strain on 

existing transportation networks from automobile use [1]. However, to date, the impact of 

these services on travelers’ mode choices and transportation network performance is not 

clear. 

The proliferation of TNCs, mainly Uber and Lyft, developed two perspectives on 

the potential impact of TNCs on urban congestion. The first perspective argues that TNCs 

motivate travelers to abandon their personal vehicles thus taking off vehicles from the 

network, which can result in lower levels of congestion and a reduction in the total VKTs 

(vehicle kilometers traveled). The second perspective claims that TNCs created a new 

group of transportation network users, the TNC vehicle drivers, who hover the network in 

an effort to pick up riders. This practice has the potential to increase the time that TNC 

vehicles occupy the network and VKTs, which in turn results in higher levels of 

congestion.  

Despite the importance of understanding the true impacts of TNC services on 

transportation network performance, limited studies are available that examined and 

documented such impacts. This is attributed to two main reasons: first, the lack of 

available TNC trip data which TNC operators are reluctant to share citing privacy 

concerns, and second, the lack of commercially available simulation software programs 

that can be used to simulate TNC trips in conjunction with other transportation modes.  

The Birmingham, AL (Alabama) case study presented in this paper addressed 

those limitations by (a) collecting TNC trip data directly from Uber/Lyft drivers in the 

study area, (b) incorporating such data into a comprehensive agent-based simulation 

model of the Birmingham region, and (c) using the model to simulate traffic operations 
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for various TNC fleet sizes and document their impacts on traffic network performance. 

This work builds on our earlier research efforts to develop a prototype agent-based model 

for the city of Birmingham [2] and incorporate public transit and shared mobility options 

in the same network [3-5]. In this study, we introduce innovative methods to extract 

detailed trip information from Uber/Lyft driver trip logs and to generate realistic travel 

plans of the Birmingham MATSim (Multi-Agent Transport Simulation) simulation model 

that incorporated TNC trips along with automobile, public transit, and walking trips. The 

Birmingham MATSim model was then used to simulate scenarios that incorporated 

various TNC fleet sizes. This allowed us to quantify the impacts of expanding TNCs fleet 

sizes on congestion in terms of changes in VKT, average speeds, average travel times, 

and hourly volumes along study corridors and the network as a whole. 

Literature Review 

The literature review identified several research studies that documented (a) 

transportation users’ preferences, attitudes, and practices toward TNC use based on 

questionnaire surveys, and (b) impacts of TNC service presence on traffic operations and 

traffic congestion. Representative studies are discussed next. 

Users’ Mode Choices and Attitudes toward TNCs  

Rayle et al. [6] conducted a study in the San Francisco area to understand 

preferences and use of TNC services in the region. Results from an analysis of 380 

responses to a questionnaire survey revealed that UberX provided the majority of the 

rides (53%), followed by Lyft (30%). With respect to the purpose of the trip, 67% of trips 

were for social reasons, 16% were for work purposes, 4% were rides to/from airports, 3% 
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were for shopping, and 10% were for various other destinations (e.g., medical, to/from 

transit). If TNCs were unavailable, 39% of the people surveyed would take a taxi, 33% 

use transit, 8% walk, 6% would drive their own vehicles, 2% would use bikes, and the 

remaining 12% would use other modes of transportation. The study documented TNC 

users’ choices, but reported that the impact from TNCs on VKT remains uncertain.  

Bekka et al. [7] analyzed survey responses from 1,966 Uber users in order to 

determine the effect that Uber had on car ownership in the Paris metropolitan region. 

According to the survey responses, 17% of households that had used Uber in the last four 

years had eliminated at least one personal vehicle due to TNC service availability. 

Furthermore, an investigation was conducted by Clewlow et al. [8] to examine users’ 

behaviors and attitudes toward the use of shared mobility services. It was reported that 

26% of individuals expressed that they had lowered their driving distance by 10 miles 

every week since they began using ride-hailing services.  

TNC Services’ Impacts on Traffic Operations 

According to Qian et al. [9] there has been a continuous deterioration in traffic 

conditions in NYC (New York City) at different day times and locations based on two 

years of data analyzed linked to the availability of FHVs (for-hire-vehicles). The study 

reported an increase of over 48% in FHVs between 2017 and 2019 coupled with a 22.5% 

reduction in speed recorded in NYC on weekdays during the same time period. This 

conclusion is consistent with findings from Erhardt et al. [10] and Roy et al. [11] who 

examined the correlation between the TNCs advent and congestion increase in San 

Francisco between 2010 and 2016. Erhardt et al. [10] concluded that the presence of TNC 

vehicles on San Francisco’s streets contributed to an increase in delay for automobile 
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users on weekdays by 62% in 2016, compared to 2010. Roy et al. [11] also reported that 

TNCs were responsible for 47% of the increase in VMT (vehicle miles traveled) and that 

they were primarily responsible for nearly half of the congestion increase observed in San 

Francisco during the study period. A study by Henao and Marshall [12] in the Denver 

region also estimated that the presence of TNCs contributed to an increase of 

approximately 83.5% in the number of vehicle miles driven compared to the number of 

VMT without the presence of TNCs. The authors attributed this sharp increase to mode 

replacement and driver deadheading. Tirachini et al. [13] investigated the impact of 

TNCs on VKT by using a Monte Carlo simulation model and inputs from a questionnaire 

survey of 1,600 responders mostly from Santiago, Chile. The results of the study confirm 

that TNC services increased VKT as a result of modal shifts from transit or generation of 

new trips by the TNCs. To avoid increases in VKT, the authors suggest that the average 

occupancy rate of ride-hailing trips should exceed 2.9 persons/veh. Beojone and 

Geroliminis [14] examined the effects of increasing the size of TNC fleets on urban 

congestion using the city of Shenzhen, China, as a case study. As fleet size increased 

from 1,000 to 7,000 vehicles, a reduction in waiting times to pick up riders was observed. 

However, the fleet size increase also intensified congestion, which, in turn, prolonged the 

total travel time. Li et al. [15] proposed two hypotheses: (a) the introduction of Uber 

reduces traffic congestion in urban expanded areas, and (b) the introduction of Uber 

increases traffic congestion in compact areas of metropolitan areas. A difference-in-

differences method using a unique dataset was utilized by the authors to test those 

hypotheses. According to the study findings, rideshare services are significantly 

associated with an increase in traffic congestion in compact areas. Besides, the study 
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found some indications that ridesharing services are related to a decrease in traffic 

congestion in sprawling metropolitan areas.  

It is worth noting that most studies on the impact of TNC services on traffic 

operations were conducted in big cities such as NYC [9], San Francisco [10], Shenzhen 

[14], and suggest that TNC services intensify congestion. However, there is a need to 

examine whether TNC services impacts are similar in moderate-sized cities, as well. The 

aim of this paper is twofold: (a) to develop a mesoscopic agent-based simulation model 

including the TNC module; and (b) to quantify the impacts of TNCs fleet sizes on 

congestion in Birmingham, AL, a medium-sized city where Uber and Lyft services are 

available. 

Methodology 

Study Approach 

Simulation modeling was employed in order to quantify the impacts of TNC 

operations on the performance of the Birmingham transportation network under various 

TNC fleet sizes. First, an appropriate simulation platform had to be selected. Then the 

simulation model had to be developed, tested and refined to allow for the modeling of 

TNC trips. Data had to be collected to properly reflect the study network characteristics, 

and travel demand. Scenarios were developed and used to simulate traffic operations for 

(a) baseline conditions (without TNC operation) and (b) with TNC service availability for 

a variety of TNC fleet sizes (i.e., 200, 400, and 800 TNC vehicles). Finally, the 

simulation outputs were analyzed to determine the optimal Uber/Lyft fleet size to serve 

the TNC needs in the Birmingham region by hour-of-the-day and the impact of Uber trips 
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on traffic operations along selected corridors.  

Simulation Model  

Earlier research by the authors compared various transportation simulation 

options in terms of their features, capabilities, and limitations [16] and concluded that the 

MATSim platform is the most promising and well-established traffic simulation platform 

available for modeling ridesourcing and shared mobility services (such as Uber and Lyft). 

Consequently, the MATSim simulation platform was adopted in this study to simulate the 

impact of TNC services on traffic operations in Birmingham, AL. 

MATSim is an open-source software that requires: (a) a configuration file; (b) a 

network file, and (c) a population/plans file in order to run. The configuration file 

contains a list of settings that influence how the simulation behaves. The network file 

defines the transportation network nodes and links. Coordinates are used to define the 

nodes and attributes are described for each link including the link length, number of 

lanes, capacity, and speed. The population file provides information about travel demand 

which is described in terms of daily plans of each agent (traveler). The population file 

contains a list of transportation users and their daily plans, activities, and legs.  

MATSim simulates the population’s travel plans on an underlying road network. 

MATSim’s simulation job is run in iterations as shown in Fig. 1. In order to start the 

analysis, MATSim requires inputting the initial population demand (also known as 

plans), in the study area. During each iteration, MATSim executes its “mobsim” 

simulation executor and runs the selected plans of the agents on the roadway network. 

Following the execution of each plan, a score is assigned based on the experiences of the 

agent and the performance of the plan. Based on the plan scores in each agent’s plan, a 
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plan is selected for each agent in the replanning step, and this plan may be modified for 

execution in the next iteration. 

At the last iteration, a linkstats file is generated that provides hourly trip counts 

and travel times for every network link at user specified intervals. This feature allows for 

the evaluation of the operational performance of individual links, in addition to the study 

network as a whole. Details about MATSim are available in Horni et al. [17] and online 

at https://www.matsim.org/. 

To speed up the computational performance, and similar to earlier studies that 

used the MATSim platform [5, 18, 19], 10% of the total population was used for the 

simulation. Thus, for the Birmingham MATSim model, plans were executed using a 

population size of 69,826. 

In order to effectively implement the MATSim platform for traffic simulation 

modeling, it is essential to generate a realistic synthetic population and their daily travel 

plans. The authors used a combination of user surveys and public data sources to generate 

realistic day plans for the Birmingham network. Starting with automobile trips first, the 

simulation model was then enhanced to incorporate public transportation trips [2, 20, 21]. 

In this study, the Birmingham MATSim simulation model was further upgraded to 

incorporate Uber trips into the day plans. This was achieved by utilizing the Taxi 

extension in MATSim (org.matsim.contrib.taxi). As available TNC services in 

Birmingham did not offer ride sharing options such as Uber Pool or Lyft Line, the Taxi 

extension was selected over the DRT (demand responsive transport) as it closely modeled 

the local TNC operations. In order to utilize this extension, the authors had to specify the 

number of Uber/Lyft drivers as well as their starting location. More details on this effort 
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are available in [22]. These model upgrades and extensions resulted in a comprehensive 

Birmingham MATSim model capable of generating realistic background automobile 

traffic, TNC trips, as well as transit and walking trips and suitable of meeting the 

modeling needs of this study. 

 

 

Fig. 1  The co-evolutionary algorithm of MATSim [17]. 

Data Collection 

Due to the difficulty in obtaining TNC trip data for the Birmingham region 

directly from Uber and Lyft, the research team recruited local Uber drivers and worked 

with them to extract trip records from their logs. In doing so, a brief questionnaire survey 

was developed and used to: (a) provide information about the study including survey 

purpose, compensation, privacy considerations, and consent for participation, and (b) 

verify eligibility and enroll interested Uber drivers to the study. To be eligible for 

participation, drivers had to have driven Uber/Lyft in the Birmingham metropolitan 

region (Jefferson and Shelby counties) during 2019 and/or 2021, prior and after the surge 

of the COVID pandemic.  

After signing up, drivers met in person with trained study personnel who 

manually captured and stored screenshots of each Uber trip in the Uber app. Each image 

captured provided exact information about the trip date, start and end time of the trip, trip 

duration and approximate location of the trip’s origin and destination. The data collection 
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yielded a total of 4,229 Uber trip records. A spreadsheet was prepared and used to record 

information about the study participants and to document their trip records by year and 

month.  

The data captured required detailed post-processing in order to determine the GPS 

coordinates of the origin and destination (O-D) of each trip based on the trip details and 

map provided in the image. Georeferencer2 was used for easy image-to-map alignment. 

The coordinates of trajectory points were extracted directly from the map after it was 

aligned with the screenshot image with the help of crowdworkers. Detailed crosschecking 

of the information entered ensured that the proper addresses were captured and all data 

were entered accurately in the spreadsheet. A total of 3,922 Uber trip records remained in 

the database after removing trip records that were missing destination information as well 

as canceled rides. 

The study network for Birmingham, AL metro area was obtained using 

OpenStreetMap and then converted into MATSim nodes and links with the help of the 

MATSim plugin in Java OpenStreetMap Editor. Despite the wide use of the WGS84 

(World Geodetic System 84) coordinate system (e.g., GPS data), the complexity of the 

WGS84 makes it unsuitable for MATSim due to the difficulty of calculating the distance 

between points [23, 24]. Earlier studies [24, 25] recommended the UTM (Universal 

Transverse Mercator) coordinate system, which was adopted for this study. Accordingly, 

the Birmingham metro area is located in zone 16 north of the UTM coordinate system.  

The use of synthetic population to generate travel plans for travelers in the 

network is a result of the difficulty in obtaining travel diaries for all travelers in the 

network (population). In this study, we used daily diaries from 451 travelers in the 
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Birmingham metro area to generate the daily plans of travelers along with open-source 

data sources, such as the US Census data, OpenStreetMap, OpenAddresses, and the 

Birmingham Business Alliance. The PDFs (probability density functions), and KDE 

(kernel density estimation) were applied to generate travel plans that utilized these open 

data sets to create a realistic population [20, 21]. The synthetic population process has 

been extended by Khalil et al. [22] to incorporate Uber travel daily plans based on the 

travel logs of local Uber drivers. As a result of the Uber driver survey, valid trajectories 

were used to generate the daily plans for TNC drivers [22].  

Experimental Design 

In spite of the lack of detailed TNC data from the Birmingham region, we 

estimated the TNC ridership to be approximately 3,500 TNC trips/day. Thus, we 

generated 3,200 initial TNC trip plans over the 24-h simulation. In our simulation 

experiments, we varied the number of Uber drivers from 0 to 800. In addition to the 

baseline scenario (i.e., 0 Uber drivers; no TNC service), three scenarios were considered 

in detail with gradually increased Uber fleet size (200, 400, and 800 Uber drivers 

respectively). The simulation of these scenarios allowed for the comparison of outputs, 

which enabled the identification of the optimal TNC fleet size and quantification of the 

impacts of TNC presence on traffic congestion. VKT over the entire study network, along 

with hourly average speeds, hourly average travel times, and hourly volumes at select 

network locations were used as MOEs (measures of effectiveness) for the evaluation of 

the designated scenarios. The results are summarized next. 
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Results 

Impact of Number of Drivers on TNC Service 

Fig. 2 shows Uber ride plans in the presence of 200 and 400 active Uber drivers in 

Birmingham. En route, departing, and arriving Uber rides during each hour of the day are 

clearly marked (green, red, and blue lines, respectively). Each MATSim simulation 

accounts for trips that have taken place during a 24-h period. Thus, during the simulation 

model set up, Uber drivers have been set to stop working after the 24th hour of the day. 

This is reflected in Fig. 2 by the number of en route plans remaining unchanged after the 

end of the 24-h study period (i.e., green curve becomes flat). When a fleet of 200 Uber 

drivers is available on a given day, approximately 500 ride requests cannot be satisfied at 

the end of the day. Thus, in order for all customer ride requests to be accommodated by 

the end of the day, a minimum fleet of 400 Uber drivers should operate per day in 

Birmingham. 

Fig. 3 shows the variation of TNC vehicle status from hour to hour in the presence 

of varying TNC fleet sizes (i.e., 200, 400, and 800 active TNC vehicles). At any point in 

time, a driver may be on an empty drive, occupied drive, picking up, dropping off, or 

idle. When 200 TNC vehicles operate in the network, we see that nearly all TNC vehicles 

are occupied (gray), between 8 AM and 9 PM. Most of the TNC drivers are on idle 

(green) and tend to stay at their last drop-off location outside of those hours. When 400 

TNC vehicles operate in the network, nearly all TNC vehicles are occupied between noon 

and 8 PM, whereas during the morning hours many TNC vehicles are not occupied. A 

similar trend can be seen when 800 TNC vehicles operate in the Birmingham network, 

with a peak that can be seen between 4 PM and 7 PM. In order to strike a balance 
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between reducing the drivers’ idle time and ensuring TNC service availability with 

reasonable waiting times in the region, a fleet of 400 to 500 TNC drivers is deemed 

optimal in Birmingham and medium-sized cities with similar travel demand 

characteristics. 

  

 

 
 

 

Fig. 2 Number and status of Uber rides by hour. 
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Fig. 3 TNC vehicle status statistics. 
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Impact of TNC Service Availability on Modal Choice 

Table 1 summarizes the distribution of trips by mode for the four study scenarios 

(0, 200, 400, and 800 TNC vehicles) considered in the Birmingham study. A total of 

151,834 plans were generated in the baseline scenario that were distributed between 

transit, walk, and private automobile modes. Over 144,000 trips were performed by 

private automobiles (94.85% of total). This is consistent with earlier studies in the 

Greater Birmingham region including a 2016 commuter survey by Sisiopiku et al. [26] 

that reported that over 90% of transportation users travel by private automobile. As Table 

1 shows, the introduction of TNCs led to a shift of trips from private automobiles to other 

modes, including TNC trips. This resulted in a reduction of private automobile trips to 

127,440 (84.08%). However, when adding the TNC trips, which are also vehicle trips, the 

total trips by private automobile and TNC combined reached 139,399 (91.98% of total) 

under the 200 TNC vehicle scenario. This reflects a reduction of 3.2% of the total number 

of car trips (i.e., private automobile and TNC combined) as compared to the baseline. It 

should be noted that as TNC vehicles increase to 400, the TNC trips also increase, 

leading to a total of 143,981 trips by private automobile and TNC combined. This reflects 

a negligible change in the total number of car trips as compared to the baseline. Further 

increase of the TNC fleet size to 800 vehicles resulted in an increase in TNC trips and the 

total trips by private automobile and TNC combined. The simulation results show that the 

increase in TNC trips as the number of TNC drivers increases from 400 to 800 is small 

(from 16,540 to 17,092, or 3%). This indicates that the demand for TNC service has 

almost reached a saturation point below a TNC fleet size of 800 and that adding more 

TNC vehicles to the network would not benefit the TNC provider or the users. One can 
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conclude that the optimal number of TNC vehicles for the Birmingham network is just 

over 400, both in terms of transportation network operation and potential benefits for 

TNC providers. 

Table 1   

Statistics of executed plans-trips by mode. 

Scenario No. of TNC 
vehicles 

Transit 
trips 

Walk 
trips 

Private 
auto 
trips 

TNC 
trips 

Trips by 
private auto 
and TNC 
combined 

Change in 
private auto  
and TNC trips 
(Baseline: TNC) 

% Change total 
private auto  
and TNC trips 
to baseline 

Baseline  
(No TNC) 0 TNC  2,648 5,172 144,014 - 144,014 - - 

TNC 
service 
available 

200 TNC Veh 3,837 8,317 127,440 11,959 139,399 4,615 -3.20% 
400 TNC Veh 2,532 5,124 127,441 16,540 143,981 33 -0.02% 
800 TNC Veh 2,312 4,806 127,432 17,092 144,524 -510 0.35% 

 

Impact of TNC Service Availability on Network-Wide Operations 

VKTs 

Using MATSim network wide outputs and Eq. (1), the total daily VKT was 

calculated for each TNC fleet size scenario. The results are summarized in Table 2. 

𝑉𝑉𝑉𝑉𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 =   ∑  𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 /𝐻𝐻𝐶𝐶𝐶𝐶𝐻𝐻 𝑥𝑥 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ (𝑚𝑚)
1000 𝑚𝑚𝑘𝑘𝑚𝑚

ℎ=23
ℎ=0    (1)  

 
Compared to the baseline scenario, an increase in the total VKT was observed 

when TNC service was available, ranging from 22.0% to 23.6% for 200 to 800 TNC 

vehicles respectively. Further analysis indicated that the total hourly VKT for TNC 

vehicle scenarios peaked during the AM and PM traffic peak periods (7 to 9 AM and 4 to 

6 PM), compared to the baseline scenario (Fig. 4) and the differences in VKT from one 

scenario to another were small.  
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Table 2   

Total daily VKT for each scenario. 

Scenario No. of TNC vehicles Total daily VKT Change in total daily VKT 
(Baseline: TNC) 

VKT % diff. to 
baseline 

Baseline (No. 
TNC) 0 TNC  2,265,716 - - 

TNC service 
available 

200 TNC Veh 2,764,169 -498,453 22.0% 
400 TNC Veh 2,801,092 -535,376 23.6% 
800 TNC Veh 2,790,519 -524,803 23.2% 

 

 

 

Fig. 4 Total VKT by hour of the day. 

Impact of TNC Service Availability on Corridor-Specific Operational Performance 

MATSim simulation outputs were also used to evaluate the operational 

performance of a number of network links under baseline conditions as well as in the 

presence of TNC service. The operational performance was assessed in terms of hourly 

average speeds, hourly average travel times, and hourly volumes. The linkstats file in the 

MATSim output was used to obtain the hourly average travel times and hourly volume 

for all the corridors within the study. The hourly average speeds for each corridor were 
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calculated as a function of the hourly travel time and the link length along each corridor. 

As shown in Fig. 5, a sample of four study corridors was selected for demonstration 

purposes. They are: 

 I-65 (NB; between University Blvd and 1st Ave North) (0.72 miles) 

 University Blvd (WB; between I-65 and US 31) (1.29 miles) 

 20th Street South (SB; between 3rd Ave South and 1st Ave North) (0.35 miles), and 

 3rd Avenue West (US 11/US78) (EB; between Center Street North and Arkadelphia 

Road) (0.74 miles). 

Fig. 6 depicts Hourly Average Speeds (in meters per second) over a 24-h period 

along the four sample study corridors for baseline (no TNC) conditions as well as the 

three TNC service scenarios considered. It can be observed that baseline average speeds 

are just slightly higher than those reported from the TNC scenarios, with the exception of 

peak times (8:00 to 9:00 AM and 5:00 to 7:00 PM) when average speeds in the TNC 

scenarios were noticeably lower than the baseline scenario.  
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Fig. 5 Location of sample study corridors. 

 

    
 

    

Fig. 6 Hourly average speed over 24 h for sample study corridors. 

Fig. 7 illustrates Hourly Average Travel Times (in seconds) along the four sample 
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study corridors for baseline conditions and TNC scenarios. The findings are consistent 

with those reported for Hourly Average Speeds. Specifically, compared to the baseline 

scenario, the hourly average travel times during peak hours are higher in the TNC 

scenarios than the baseline scenario.  

Fig. 8 illustrates the Hourly Average Volume (in vehicles per hour) along the four 

sample study corridors for baseline conditions and TNC scenarios. When TNC vehicles 

are added to the network, the hourly average volume is higher than the baseline scenario 

in the AM/PM peak periods. This finding is in line with the hourly average speed and 

hourly average travel time discussed above, specifically in the peak periods, when the 

hourly average volume increased, the hourly average speed decreased and the hourly 

average travel time increased, indicating increased traffic congestion. 

 

    
 

    

Fig. 7 Hourly average travel time over 24 h for sample study corridors. 
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Fig. 8 Hourly average volume over 24 h for sample study corridors. 

Conclusions and Recommendations 

This paper examined the impact of TNC services on traffic operations in the 

Birmingham, Alabama metro area, a medium sized city in the southeastern US. Using the 

MATSim simulation platform, a baseline scenario (no TNC vehicles) and three TNC 

scenarios were simulated. The latter represented the operation of a TNC fleet of 200, 400, 

and 800 vehicles. The impacts of various TNC fleets on traffic operations were quantified 

using a variety of MOEs including VKT, speed, travel time, and volume. Network wide 

VKTs were obtained from the MATSim’s output for each scenario and used to document 

performance impacts of TNC presence on the Birmingham network for the entire study 

network over a 24-h period. Hourly VKTs were also obtained and used to identify time 

periods during the 24-h study period when TNC impacts on traffic congestion are the 

greatest. Localized impacts of TNC operation on local congestion were also examined by 
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inspection of average hourly speed, travel time, and volume data obtained from the 

MATSim simulation runs for selected study corridors over a 24-h period. 

According to the study results, TNC scenarios increase the network wide VKT by 

up to 23.6% as compared to the baseline scenario. It should be noted that the VKT for the 

800 TNC vehicle scenario is slightly lower (0.4%) than that of the 400 TNC vehicle 

scenario. One possible explanation is that the TNC demand has peaked between 400 and 

800 TNC vehicles, and the stay/idle vehicle percentage is higher in the 800 TNC vehicle 

scenario than in the 400 TNC vehicle scenario, as it is visually evident from Fig. 3. 

Furthermore, the study findings show that TNCs contribute to traffic congestion, 

especially during AM/PM peak periods. It is evident from Fig. 4 that the hourly total 

VKT values increased more sharply between 7-8 AM and 4-7 PM for all TNC scenarios 

considered. The study further revealed that when TNC vehicles are added to the network, 

the hourly average volumes and hourly average travel times increase while the average 

hourly speeds decrease, compared to the baseline scenario, and those changes are more 

pronounced during AM/PM peak times as shown in Figs. 6-8. While results vary from 

location to location as expected, the general trends of the MOEs described above are 

observed at the majority of study corridors. 

In addition to quantifying the impact on TNC services on traffic congestion, the 

study findings indicated that the optimal TNC fleet size for the Birmingham region is 400 

to 500 active TNC vehicles per day. Such fleet size is adequate to serve the current 

demand for ride hailing services in the study area while minimizing idle time and the 

number of TNC vehicles hovering while waiting for TNC customer requests.  

This study considered ride hailing TNC services where each customer reserved 
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one TNC vehicle for their trip. This reflects accurately the TNC service operation in the 

study area, where ride pooling services are not available. In follow up work, the authors 

plan to investigate the effect that ride pooling (such as Uber Pool and Lyft Line) can have 

on traffic operations in Birmingham, Alabama.  

Overall, the study findings provide valuable insights on TNC impacts on traffic 

congestion in the study area and medium sized cities like Birmingham and help local 

authorities and TNC service providers to optimize TNC operations and better serve the 

needs of the traveling public. 
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Abstract 

Transportation Network Companies (TNCs) use online-enabled apps to provide 

on-demand transportation services. TNCs facilitate travelers to connect with drivers that 

can offer them rides for compensation using driver-owned vehicles. The ride requests can 

be for (a) individual or (b) shared rides. The latter, also known as ride-pooling services, 

accommodates requests of unrelated parties with origins and destinations along the same 

route who agree to share the same vehicle, usually at a discounted fare. Uber and Lyft 

offer ride-pooling services in select markets. Compared to individual ride requests, ride-

pooling services hold better promise toward easing urban congestion by reducing the 

number of automobiles on the road. However, their impact on traffic operations is still 

not fully understood. Using Birmingham, AL as a case study, this research evaluated the 

impact that ride-pooling services have on traffic operations using a Multi-Agent 

Transport Simulation (MATSim) model of the Birmingham metro area. Scenarios were 

developed to simulate baseline conditions (no TNC service) and ride-pooling availability 

with two types of ride-pooling services, namely door-to-door (d2d) and stop-based (sB) 

service and three fleet sizes (200, 400, and 800 vehicles). The results indicate that when 

TNC vehicles are added to the network, the Vehicle Kilometers Traveled (VKT) decrease 

by up to 5.78% for the door-to-door (d2d) service, and up to 2.71% for stop-based (sB) 

services, as compared to the baseline scenario (no TNC service). The findings also 

suggest that an increase in the size of the ride-pooling fleet results in a rise in total ride-

pooling service VKT, network-wide total VKT, and detour distance. However, increasing 

the size of the ride-pooling fleet also results in a decrease in the ride request rejection 

rates, thus benefiting the customers and decreasing the vehicle empty ratio which, in turn, 

benefits the TNC drivers. The results further suggest that a fleet of 200 ride-pooling 
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vehicles can meet the current demand for service in the Birmingham region at all times, 

thus it is the optimal ride-pooling TNC fleet size for a medium-sized city such as 

Birmingham. 

Introduction 

A ride-pooling service is an on-demand transportation option wherein unrelated 

users are matched to share a ride in a single vehicle. Trips are matched according to pick-

up and drop-off locations to ensure riders can travel together in the same vehicle while 

maintaining a reasonable travel time and delay time. In recent years, ride-pooling services 

have gained popularity as a ride-sourcing transportation option, as they allow more than 

one passenger’s request to be served in one ride, thus reducing the number of vehicles on 

the network [1]. Transportation Network Companies (TNCs) view ride-pooling services 

as a way to increase ridership, reduce customer cost, and expand ridesharing options [2]. 

Uber and Lyft, the two most popular ride-hailing companies, offer Uber Pool and Lyft 

Line ride-pooling services to their customers in many cities throughout the world. 

According to Lo and Morseman [3], the Uber company launched the Uber Pool service in 

2014 to make it easier for riders to share their trip with other travelers who are traveling 

in the same direction [3]. Drivers also benefit by reducing their operating costs while 

maximizing their revenue from shared rides. As part of an Uber Pool trip, Uber 

determines the best route along which multiple riders are going to be picked up [4]. In 

addition to offering rides at a reduced cost to customers, ride-pooling is viewed by many 

as a great way to reduce urban traffic congestion [1,2,5]. However, there is still a lack of 

clarity regarding the true impact of ride-pooling services on traffic network operations, in 

general, and traffic congestion in particular, due to the limited amount of research 
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conducted on those topics. This is primarily attributed to the lack of readily available 

ride-pooling trip data and the limited ability of commercial simulation software to 

simulate TNC trips, including ride-pooling trips. 

In our previous work [6–9], we addressed some of these limitations by (a) 

collecting TNC trip data from a survey of Uber/Lyft drivers in the Birmingham, AL 

region, and (b) showcasing the feasibility of modeling TNC services using the MATSim 

(Multi-Agent Transport Simulation) platform and the Birmingham, AL transportation 

network. To address the limitation of acquiring TNC trip data, the survey of Uber/Lyft 

drivers in the Birmingham metro area acted as a seed for generating population plans in 

the study area using the synthetic population technique. Uber trips were incorporated into 

the day plans of the Birmingham MATSim model using MATSim’s Taxi extension 

(org.matsim.contrib.taxi). More details on this effort are available in [6]. It should be 

noted that our earlier examination of the impact of ride-hailing TNC services on traffic 

operations was limited to individual ride requests, since ride-pooling services were not 

available in the Birmingham region [7]. However, it is of interest to understand how 

availability of various types of ride-pooling TNC services can affect operations and the 

likely impacts that such services can have on traffic congestion in the service area. 

In earlier studies, researchers [10–12] analyzed two distinct types of DRT 

transportation services, namely door-to-door (d2d) and stop-based (sB) [10–12]. Door-to-

door service involves picking up and dropping off passengers at their preferred location, 

thus providing a highly convenient transportation service similar to a taxi. In contrast, a 

stop-based service operates by providing transportation to/from specific stops where 

passengers can meet and board the vehicle. These stops are typically located at frequently 
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used destinations such as bus stops. A stop-based service may be more affordable for 

riders, compared to door-to-door. It is, however, necessary that passengers get to the 

location where the stop is located in order to meet their ride, which can be challenging 

and inconvenient for many riders, especially for those with mobility impairments.  

This paper reports on a study that investigated and documented operational 

performance impacts of door-to-door and stop-based ride-pooling services operating in 

the Birmingham region. Building on our earlier work, we expanded the Birmingham 

MATSim model to introduce ride-pooling TNC services using the MATSim’s Demand 

Responsive Transit (DRT) module. This allowed us to simulate various fleet sizes of 

TNCs in order to quantify the impact of ride-pooling services on urban congestion. The 

updated Birmingham MATSim simulation model provided an excellent test bed for 

running experiments as it was capable of simulating trips that involved personal vehicles, 

ride-pooling TNC trips, public transit trips, and walking trips, all in the same network.  

Literature Review 

As ride-pooling services became more prevalent over the last few years, some 

researchers attempted to study their impacts on transportation system operations. The 

results are mixed as some studies suggest congestion mitigation as a result of introduction 

of TNC ride-pooling services, whereas others suggest that such services lead to 

exacerbation of urban congestion. For example, a study conducted by Chen et al. [13] 

used ride-sourcing provider data and online surveys to examine ride-pooling impacts in 

Hangzhoo and suggested that such services result in a reduction of VKT by 58,124 VKT 

per day. Zhu and Mo [14] found that ride-pooling with a buffer time of 60 s led to an 

aggregate reduction of VKT of 8.21% in Haikou, China, compared with the traditional 
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ride-hailing operation. Bischoff et al. [15] used a dynamic simulation approach to 

demonstrate that the overall number of VKTs may be reduced by between 15 and 20% in 

Berlin, if taxi rides are shared. Tirachini and Gomez-Lobo [16] conducted a Monte Carlo 

simulation study in Santiago, Chile, and concluded that while ride-hailing applications 

are expected to increase VKT, shared or pooled ride-hailing has the potential to decrease 

VKT. The authors point to the average occupancy rate of ride-hailing trips as a key 

parameter for VKT and suggest that an average occupancy rate of 2.9 passengers or more 

is needed to materialize congestion benefits. 

On the other hand, some scholars argue that ride-pooling services might increase 

traffic congestion. For example, in their study of Demand Responsive Transit (DRT), 

Kagho et al. [17] found that the introduction of such a service was likely to increase 

overall VKT slightly in Wayne County, Michigan. Another study conducted in the same 

area [18] confirmed this finding and concluded that the introduction of DRT can increase 

the VKT by 22%. Furthermore, a study by Wu and MacKenzie [19] used 2017 US 

National Household Travel Survey data to examine the heterogeneous VKT effects on 

ride-sharing across population groups and reported an estimated net increase of 12.55 

million VKT per day in the US due to ridesharing, compared to a case where all NHTS 

2017 respondents are considered to be non-users of ride-sharing services. The authors 

further suggested that the impact of ride-hailing services on transportation network 

operational performance will continue to change dynamically in the future, as TNC 

services themselves and users’ adoption practices continue to evolve over time. 

Some other studies suggest that the impacts of ride-hailing applications on VKT 

and congestion are still inconclusive, including a study in Vancouver, Canada [20], and 
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another one by [21] in San Francisco. Clewlow and Mishra [22] also recognize that VKT 

changes are unknown, and detailed information on the number of trips that ride-hailing 

applications are attracting from other modes (number, type, distance traveled, etc.) is 

needed to quantify such impacts. As Abouelela et al. [23] state, the reduction of VKT 

using ride-pooling services is possible, but it depends on a number of factors such as the 

use of suitable vehicle sizes to accommodate pooling service occupancy needs, the type 

of replaced modes (e.g., automobile versus walking or transit), and modes used to access 

and egress from the service [16,23].  

Some studies investigated the impact of ride-pooling services on average travel 

time. For example, Li et al. [24]; Chau et al. [25]; and Fielbaum and Alonso-Mora [26] 

calculated the differences in travel time and detours between individual ride-hailing and 

ride-pooled rides, while Schwieterman and Smith [27] compared average trip times 

between Uber Pool and transit trips in Chicago. Leich and Bischoff [28] found that the 

average total travel time spent by the passengers from origin to destination was reduced 

by less than 2 min (3.5%) in simulated scenarios of door-to-door demand responsive 

services in Berlin, Germany. A summary of additional studies on ride-pooling impacts on 

VKT and aggregate travel time is available in [14]. 

To date, most studies on the impact of ride-pooling services have been conducted 

in cities/counties larger in population size than Birmingham metro area, which has a 

population of 0.89 million [29]. For instance, studies have been carried out in: Hangzhou, 

China [13] (8.24 million population [30]); Haikou City, China [14] (2.02 million 

population [30]); Berlin, Germany [15] (3.57 million population [30]); Santiago, Chile 

[16] (6.9 million population [30]); and Wayne County, Michigan [17,18] (1.77 million 
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population [31]). Since the population size affects transportation demand, further research 

is needed to investigate how ride-pooling services affect the operational efficiency of the 

transportation system in medium-sized cities (population between 350,000–999,999).  

The purpose of this study is to address this need by examining and documenting 

the impact of ride-pooling services in Birmingham, AL, a medium-sized city in the 

Southeast. Comparisons of measures of traffic performance (e.g., Vehicle Kilometers 

Traveled, travel time, and user waiting time) in the presence of door-to-door and stop-

based ride-pooling services provide valuable insights on their impacts and help identify 

conditions under which such services yield the greatest benefits. Moreover, the study 

considers various fleet sizes and provides guidance on selection of a proper fleet size in 

order to balance the needs of the riders, drivers, and traffic network operators.  

Methodology 

The aim of this study was to quantify the operational performance impacts of 

ride-pooling services (e.g., Uber Pool and Lyft Line) in the Birmingham metro 

transportation network. As of the time of the study, no ride-pooling services were offered 

by Uber and Lyft in Birmingham. Thus, in the absence of field data, we simulated the 

Birmingham transportation network (a) under baseline conditions and (b) assuming the 

presence of ride-pooling services. The simulation outputs allowed us to obtain and 

compare selected performance measures, including trips by mode, VKT, detour distances, 

mean passenger wait- and in-vehicle travel time, among others.  

Study Area 

The study area is located in north central Alabama and covers Jefferson and 
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Shelby counties. Jefferson County encompasses an area of 1119 square miles [32], while 

Shelby County covers 800 square miles [33]. The population density in Jefferson County 

is 592 people per square mile [34], whereas in Shelby County it is 274 individuals per 

square mile [35]. The Birmingham–Jefferson County Transit Authority (BJCTA) 

operates a public transportation system, which includes buses and a paratransit service. 

Around 95% of Birmingham residents commute to work by driving or carpooling [36]. 

This corresponds to the findings of a commuter survey carried out in the Greater 

Birmingham region, which revealed that over 90% of transportation users use private 

automobiles to commute [37]. According to [36], the average individual driving distance 

per day within the Greater Birmingham area is approximately 34.1 miles. 

Simulation Model Selection 

The simulation platform used in this study was MATSim. MATSim is an open-

source agent-based and activity-based microsimulation framework that is implemented as 

a Java application and is capable of simulating large-scale scenarios for various 

transportation options [38]. The model uses daily travel plans of all transportation users 

(population) and executes them on the road network to simulate traffic. Using a scoring 

mechanism and through a re-planning process, agents (transportation users) seek 

possibilities to optimize their plan at each iteration. The iterative process continues as 

long as the overall score of the population continues to increase. A detailed description of 

MATSim features can be found in Horni et al. [39,40]. 

The model selection in this study was based on MATSim’s effectiveness in 

simulating TNC operations as demonstrated in the literature and confirmed by our earlier 

research efforts [7,8,38]. In particular, MATSim’s Demand Responsive Transport (DRT) 
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extension is a key software feature that gave MATSim a unique advantage over other 

available transportation software options considered. This extension enables the 

simulation of on-demand ride-pooling services [11,15,41], and makes MATSim an 

excellent choice for a simulation platform for meeting the objectives of our study.  

Simulation Study Experimental Design 

We developed the ride-pooling scenarios based on consideration of two attributes: 

ride-pooling service type and fleet size. Specifically, we considered two types of ride-

pooling services, namely door-to-door (d2d) and stop-based (sB), and three fleet sizes 

(i.e., 200, 400, and 800 vehicles). The maximum acceptable waiting time was set to 5 

min, as in other literature studies [15,41]. By combining the different options, 6 ride-

pooling scenarios were developed for further analysis. In addition, we considered the 

baseline scenario where we simulated no ride-pooling operations [7] and used it to 

facilitate comparisons.  

Birmingham MATSim Simulation Model 

Every MATSim model is built around a configuration file, a network file, and a 

population file. The configuration file defines the parameters and settings of the model 

that determine how the model behaves and provides access to the settings at runtime. The 

network file describes the details of the nodes and links that compose the transportation 

network and associated attributes (e.g., node coordinates, link length, number of lanes, 

speed, and capacity). The population file provides information about travel demand, i.e., 

lists of agents (travelers) and their day plans (trips). The population file contains the list 

of agents. Each agent has a list of plans, and each plan contains a list of activities and legs 
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that describe each agent’s planned actions.  

Building on our earlier work [6,7], we adopted the Birmingham MATSim 

simulation model and made necessary modifications to the model to meet the needs of the 

current study. More specifically, in our previous research, we utilized MATSim’s Taxi 

extension to simulate individual ride requests using the Birmingham MATSim model. In 

the current study, we adopted MATSim’s Demand Responsive Transport (DRT) 

extension to simulate on-demand ride-pooling services in the Birmingham network. This 

extension provides the ability to fit multiple trip requests within a single TNC vehicle, a 

critical requirement for meeting the objectives of our study.  

MATSim input files for the Birmingham model (e.g., network file, plans file, 

vehicles file, transit schedule file, and transit vehicles file) were adopted from [6] and 

allowed for multi-modal simulation of traffic operations in the Birmingham network 

(including generation of trips by passenger car, transit bus, and walking). We also added 

the stops file for the stop-based (sB) scenario. The stops file was created based on 

existing bus stops in the study area and included a total of 1856 bus stops which were 

geocoded as an XML input file. 

The DRT MATSim extension was used to simulate ride-pooling trips for the 

study door-to-door (d2d) and stop-based (sB) scenarios. The DRT module allows the 

simulation of pooled rides in MATSim with one or several DRT operators, each of them 

having its own characteristics, such as the vehicle fleet, detour, or scoring parameters. 

For the purposes of maintaining a realistic comparison with the baseline scenario in [7], 

the configuration file in our study used identical parameters with those in our earlier work 

[6,7]. The DRT module configuration file, created specifically for this study, defined the 
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DRT operational characteristics and selected reasonable parameter threshold values based 

on recommendations from earlier studies and local considerations. For example, studies 

conducted in Germany [10,11,41,42] used a 30 s stop time duration for pickup and drop 

off of passengers, Bischoff et al. [43] assumed a stop duration of 60 s, and a study 

conducted by [17] in Wayne County, Michigan, set the stop duration to 105 s. In our 

study, we set a stop time duration of 60 s for passengers being picked up and dropped off 

at each stop. The maximum number of passengers per vehicle was set to 4 and the 

maximum detour time in our study was 8 min. 

In order to improve the computational efficiency of the simulation and in 

accordance with earlier studies that used MATSim to simulate city-level transportation 

networks, 10% of the total population in Birmingham was used as input [6,9,40,44]. 

Thus, plans were executed using a population size of 69,826. MATSim generates output 

data that can be used to analyze results, as well as to monitor the simulation setup 

progress. A link stats file containing hourly count values and travel times on every 

network link is produced in each iteration, and network wide measures of effectiveness 

(MOEs) can be obtained. In our study, we evaluated the Birmingham network 

performance under the six study ride-pooling scenarios using vehicle kilometers traveled 

(VKT) and compared with baseline conditions (no TNC presence). We also considered 

mode shifts toward the ride-pooling service and their impacts on network operations. The 

results are summarized next. 
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Results 

Status of Ride-pooling Vehicles 

Figure 1 depicts the number and status of ride-pooling d2d and sB service 

vehicles by hour of day (24-h total) assuming different fleet sizes (200, 400, and 800 

ride-pooling vehicles). In Figure 1 the status of ride-pooling vehicles, i.e., en-route 

(requested but not completed), departing, and arriving, during each hour of the day is 

clearly marked by green, red, and blue lines, respectively. We can observe that the 

number of ride-pooling vehicles en-route to pick up customers increases as the number of 

TNC vehicles increases (from 200 to 400 and 800), and peaks during the a.m. and p.m. 

peak traffic periods. According to Figure 1, there are more vehicles en-route for d2d 

compared to those in the sB scenario when 800 vehicles are added to the network. 

However, this reversal in the trend can be explained by the total number of ride-pooling 

trips, which can be seen in Table 1. When 800 TNC vehicles were added to the network, 

the d2d service had a higher number of ride-pooling trips than sB. In contrast, sB trips 

increased by approximately 7.6%, which indicates that the demand for sB service is 

nearing the saturation point. 

Vehicle Occupancy Profiles 

Figure 2 illustrates vehicle occupancy profiles for d2d and sB ride-pooling 

services under various fleet sizes considered. Color codes indicate whether a TNC 

vehicle is a stay (gray color), carries zero passengers (purple), carries one passenger 

(yellow), or accommodates two passengers (green), three passengers (blue), or four 

passengers (red) as a ride-pool. During the stay period, a vehicle is either parked or idle 
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and waiting for the next trip request to be made. According to Zwick and Axhausen [45], 

if the status of the TNC vehicle is zero passengers, the TNC vehicle is either rebalancing 

or is on its way to pick up a rider.  

  
 (a)                                                                   (b) 

  
   (c)                                                                   (d) 

  
   (e)                                                                   (f) 

Figure 1. Ride-pooling Vehicle Status by Hour of Day for Various Fleet Sizes. (a) ride-
pooling (d2d) 200 TNC Veh; (b) ride-pooling (sB) 200 TNC Veh; (c) ride-pooling (d2d) 
400 TNC Veh; (d) ride-pooling (sB) 400 TNC Veh; (e) ride-pooling (d2d) 800 TNC Veh; 
(f) ride-pooling (sB) 800 TNC Veh. 
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 (a)      (b) 

 (c)       (d)   

 (e)     (f) 

Figure 2. Vehicle Occupancy Profiles for Various Fleet Sizes. (a) ride-pooling (d2d) 200 
TNC Veh; (b) ride-pooling (sB) 200 TNC Veh; (c) ride-pooling (d2d) 400 TNC Veh; (d) 
ride-pooling (sB) 400 TNC Veh; (e) ride-pooling (d2d) 800 TNC Veh; (f) ride-pooling 
(sB) 800 TNC Veh. 
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In all study scenarios, we can observe that ride-pooling vehicles at stay (gray 

color) are overrepresented, meaning that the demand for ride-pooling services in the 

Birmingham region is below the available supply for service. This is the case even during 

the a.m. and p.m. peak periods. The results show that even a fleet of 200 ride-pooling 

vehicles can comfortably meet the current demand for service in the Birmingham region 

at all times. Figure 2 also shows that the vast majority of passenger-carrying TNC 

vehicles are single-passenger rides (yellow) and neither the d2d service nor the sB service 

serve any trip requests from more than three passengers in a single ride. Thus, vehicles 

that can accommodate three passengers meet the service needs of the Birmingham area 

and can be used as ride-pooling vehicles. Although Figure 2 indicates that most car-

pooling trips in our study were single-passenger trips, it can still be concluded that the 

introduction of ride-pooling has a positive impact on the traffic network operation. This is 

due to two main reasons: (a) an observed mode shift from automobile use to transit, 

walking, and ride-pooling, and (b) a reduction in the total number of vehicular trips 

(combining both private auto and ride-pooling) for both d2d and sB ride-pooling services, 

as demonstrated in Table 1.  

Impact of Ride-pooling Service Availability on Modal Choice 

Table 1 summarizes the distribution of trips by mode for the baseline and the six 

ride-pooling service scenarios analyzed in this study, under baseline conditions, at total of 

144,014 vehicle trips were performed (all by a private automobile). However, when 

TNCs were introduced, the total number of vehicle trips (private automobile and ride-

pooling combined) decreased in all ride-pooling scenarios considered. This represents a 

decrease in the range of 5.45% to 2.81% compared to the baseline (or 136,163 to 139,974 
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compared to 144,014 vehicle trips). The results in Table 1 also show that as the TNC fleet 

size increases, the number of ride-pooling trips increases as well. It is worth noting that 

the changes are more pronounced under d2d scenarios versus sB scenarios. Specifically, 

as the TNC fleet size changes from 200 to 400 and 800 vehicles, the number of ride-

pooling trips almost doubles under d2d scenarios, while the number of ride-pooling trips 

under sB scenarios increases at a lower pace. Ride-pooling scenarios also show more 

transit/walk trips than those of the baseline scenario, however, increase in ride-pooling 

fleet sizes reduces the shift toward transit/walking modes. 

Table 1  

Statistics of Executed Plans-Trips by Mode (Max Acceptable Wait Time: 5 min). 

TNC Fleet 
Size 

(Vehicles) 
Scenario 

Transit 
Trips 
(Total 

Ridership) 

Walk 
Trips 

Private 
Auto 
Trips 

Ride-
pooling 
Trips 

 
Vehicle 
Trips 

(Private 
Auto + 
Ride-

pooling) 

Change in 
Vehicle Trips due 
to Ride-pooling 

(Baseline – 
Number of 

Vehicle Trips) 

% Change 
in Vehicle 
Trips due 
to Ride-
pooling 

compared 
to 

Baseline 
0 TNCs Baseline 2,648 5,172 144,014 0 144,014 0 0% 

200 TNCs 
d2d 4,590 8,115 135,156 1,386 136,542 -7,472 -5.19% 
sB 3,649 7,987 136,167 2,909 139,076 -4,938 -3.43% 

400 TNCs 
d2d 4,359 7,693 133,445 2,718 136,163 -7,851 -5.45% 
sB 3,423 7,840 135,914 3,853 139,767 -4,247 -2.95% 

800 TNCs  
d2d 3,919 7,093 131,333 5,420 136,753 -7,261 -5.04% 
sB 3,272 7,851 135,828 4,146 139,974 -4,040 -2.81% 

 

Impact of Ride-pooling Service Availability on Network-wide Operations  

Total Daily Network VKT 

Using Equation (1) below, we calculated the total daily VKT in the Birmingham 

network for each of the six ride-pooling scenarios in our study. The results are 

summarized in Table 2. 
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𝑉𝑉𝑉𝑉𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 =   ∑  𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 /𝐻𝐻𝐶𝐶𝐶𝐶𝐻𝐻 𝑥𝑥 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ (𝑚𝑚)
1000 𝑚𝑚𝑘𝑘𝑚𝑚

ℎ=23
ℎ=0    (1)  

 
It can be observed that ride-pooling services scenarios show a reduction in the 

total VKT, when compared to the baseline scenario. As shown in Table 2, ride-pooling 

d2d scenarios result in a reduction in total daily VKT of up to 5.78% (or up to 131,070 

fewer VKT) in comparison to the baseline scenario, while sB scenarios show more 

moderate improvements (up to 2.71% or 61,424 VKT reduction over the baseline). We 

can also see that under all ride-pooling scenarios, a TNC fleet size of 200 vehicles yields 

the best VKT results and larger fleet sizes result in an increase in the total daily VKT. 

Further analysis indicates that the total hourly VKT in the presence of ride-

pooling services peaked during the a.m. and p.m. traffic peak periods (7 to 8 a.m. and 4 to 

5 p.m.), however, it remained below that of the baseline as illustrated in Figure 3. The 

afternoon peak hours experienced the highest total hourly VKT values reported 

throughout the day. It is worth noting that the difference in VKT among scenarios tends 

to be relatively small, but, overall, smaller fleet sizes result in lower total hourly VKT, an 

observation that is consistent with the total VKT results reported earlier. 

Table 2 

Total Daily VKT under Various Scenarios (Max Acceptable Wait Time: 5 Min). 

TNC Fleet Size 
(Vehicles) Scenario Total Daily VKT 

Change in Total Daily 
VKT  

(Baseline – Ride-
pooling Scenario) 

VKT % Diff. to 
Baseline 

0 TNCs  Baseline 2,265,716 --- --- 

200 TNCs  
d2d 2,134,646 -131,070 -5.78% 

sB 2,204,292 -61,424 -2.71% 

400 TNCs  
d2d 2,157,837 -107,879 -4.76% 

sB 2,209,273 -56,443 -2.49% 

800 TNCs  
d2d 2,193,750 -71,966 -3.18% 

sB 2,212,335 -53,381 -2.36% 
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Ride-Pooling Daily VKT 

Figure 4 illustrates the daily VKT for ride-pooling trips in the Birmingham region 

for two ride-pooling service types (d2d and sB) and for three fleet sizes (200, 400, 800 

available ride-pooling vehicles). As shown in Figure 4, an increase in the size of the TNC 

fleet results in an increase in the ride-pooling total daily VKT for both the d2d and sB 

scenarios. It is also observed that the d2d service generates a greater number of VKT than 

the sB, as the fleet size increases from 200 to 400 and 800 vehicles. This can be attributed 

to the longer mean travel distance associated with d2d compared to sB. Additionally, sB 

service vehicles only pick up and drop off passengers at designated locations within the 

study area, thus covering a shorter range of service. However, d2d service vehicles can 

pick up and drop off passengers from anywhere within the network, and cover service 

requests from across the entire service area. The results confirm that the sB ride-pooling 

service is more desirable from the operators’ perspective, as it results in lower VKT, even 

though it is often less desirable from the perspective of the user that typically favors d2d 

services due to the added convenience. 
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          (a) 

 
                        (b) 

Figure 3. Hourly Distribution of Total VKT under Various Scenarios. (a) ride-pooling 
(d2d); (b) ride-pooling (sB). 

  
                                       (a)                                                                   (b) 
Figure 4. Total VKT for Ride-pooling Trips under Various Scenarios. (a) ride-pooling 
(d2d); (b) ride-pooling (sB). 
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Ride-pooling Vehicle Distance Travelled 

Table 3 reports daily distance traveled by ride-pooling vehicles in the 

Birmingham network under the assumption of max acceptable wait time of 5 min for two 

types of operations (d2d and sB service), and three fleet sizes (200, 400, and 800 

vehicles). The daily distance that the ride-pooling vehicles cover while empty is also 

reported and used to calculate the empty ratio. Empty ratio refers to the ratio of travel 

distance covered by ride-pooling vehicles with no passenger on board over the total travel 

distance covered by TNC vehicles. 

Table 3 

Daily Distance Traveled by Ride-pooling Vehicles (Max Acceptable Wait Time: 5 Min). 

TNC Fleet Size 
(Vehicles) Scenario Total Daily Distance 

Traveled (km) 
Daily Distance Traveled 

while Empty (km) 
Empty 

Ratio (%) 

Total Detour 
Distance 

(km) 

200 TNC Veh 
d2d 26,324 2,145 8.15% 1,395 

sB 29,139 3,248 11.15% 2,974 

400 TNC Veh 
d2d 50,866 4,132 8.12% 2,743 

sB 36,247 3,518 9.71% 3,948 

800 TNC Veh d2d 95,381 7,354 7.71% 5,492 

  sB 38,265 3,455 9.03% 4,250 

 
From Table 3, it is evident that the daily distance traveled while empty increased 

as the TNC fleet size increased in size. Additionally, there was a corresponding decrease 

in the empty ratio as the size of the TNC fleet increased. This trend can be attributed to 

mode shifts that resulted in an increase in ride-pooling demand, which occurs with an 

increase in TNC fleet size. Table 1 indicates that the number of TNC trip demands 

increased as the TNC fleet size increased, while the ride request rejection rate decreased 

as shown in Table 4 below. These findings align with earlier research, which 

demonstrated a decrease in the proportion of empty vehicles on the road when the DRT 
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fleet size increased, resulting in more vehicles distributed in the network [17]. 

Furthermore, the empty ratios were higher under the assumption of sB operations, 

compared to d2d service. The sB service also resulted in higher total detour distance, 

compared to the d2d service for fleet sizes of 200 and 400 TNC vehicles. 

Customer Service Time and Ride Request Rejection Rate   

Table 4 summarizes simulated average customer wait times, in-vehicle travel 

times, mean passenger service times, and ride request rejection rates for all study 

scenarios. Mean passenger service times are calculated as the sum of average customer 

wait times, and average in-vehicle travel times. The results show that the d2d ride-

pooling service led to higher average customer wait times and higher in-vehicle travel 

times, compared to the sB service. As a result, the total customer service time for the d2d 

service was consistently greater than that of the sB service when accounting for fleet size. 

According to the results in Table 4, the average passenger wait time for ride-pooling d2d 

scenarios was up to 3.7 min (3 min for ride-pooling sB scenarios). 

Table 4 

Ride-pooling Customer Service Time and Ride Request Rejection Rate for Various 
Scenarios (Max Acceptable Wait Time: 5 Min). 

TNC Fleet Size 
(Vehicles) Scenario 

Mean 
Passenger 
Wait Time  

(s) 

Mean in-
Vehicle Travel 
Time (IVTT) 

(s) 

Mean 
Passenger 

Service time 
(s) 

Mean 
Travel 

Distance 
(m) 

Ride 
Request 

Rejection 
Rate (%) 

200 TNC Veh 
d2d 219 1,153 1,372 17,486 55% 

sB 182 703 885 9,415 18% 

400 TNC Veh 
d2d 220 1,195 1,415 17,271 47% 

sB 164 669 833 9,050 10% 

800 TNC Veh 
d2d 214 1,132 1,346 16,485 33% 

sB 163 676 839 9,011 8% 
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According to Table 4, as the TNC fleet size increases for both d2d and sB ride-

pooling services, the mean travel distance decreases. This phenomenon can be attributed 

to the increased availability of TNC vehicles, making it more convenient to match 

passengers with nearby drivers. This, in turn, could encourage individuals to utilize the 

TNC service more frequently, particularly for shorter distances. 

The ride request rejection rate was determined by dividing the number of rejected 

trips by the total requested number of pooled rides. The ride request rejection rate for d2d 

ride-pooling scenarios reached up to 55% for TNC fleet size of 200 vehicles, while the 

rejection rate for sB ride-pooling scenarios was considerably lower (up to 18%). The 

results in Table 4 further confirm that an increase in the TNC fleet size results in a 

reduction in ride request rejection rates. For example, when the TNC fleet size increases 

from 200 to 800 vehicles, the rejection rate falls from 55% to 33% for d2d ride-pooling 

services, and from 18% to 8% for sB ride-pooling services. 

Summary and Conclusions 

This study aimed at assessing how ride-pooling services affect traffic operations 

throughout the Birmingham, AL metro area. Using the MATSim simulation platform, a 

baseline scenario (no TNC vehicles) was simulated for the Birmingham network [6,7], 

along with six ride-pooling scenarios that represented two variations in the ride-pooling 

service type (d2d and sB) and three TNC fleet sizes (200, 400, and 800 vehicles). The 

ride-pooling scenarios were simulated using MATSim’s DRT extension and assumed a 

maximum acceptable waiting time of 5 min. Trips for transit, walk, private automobile, 

and ride-pooling travel modes were obtained from each simulated scenario and compared 

to the baseline in order to determine modal shifts in the presence of TNC ride-pooling 
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services. The VKT for each scenario was obtained from the DRT output of MATSim and 

used to quantify the impacts of the ride-pooling service on network operations across the 

Birmingham network over a period of 24 h. In addition, consideration of the TNC vehicle 

status over a 24-h period for each study provided useful information to the TNC operator 

about the operational efficiency of ride-pooling options for various TNC fleet sizes. Last, 

but not least, ride-pooling customer service time and ride request rejection rates were 

evaluated to gain insights on the quality of customer service offered by ride-pooling 

services under various study scenarios. 

Our results showed that the introduction of ride-pooling TNC services in the 

Birmingham region can be beneficial from a network operation perspective, as it has the 

potential to reduce VKT by up to 5.78% for d2d services, and up to 2.71% for sB 

services, compared to the baseline scenario (no TNC service). These results are consistent 

with findings from studies involving larger cities [13–16] that reported that an 8–20% 

reduction in VKT is possible in the presence of ride-pooling services. 

When comparing the simulated VKT from this study to our earlier research 

findings in [7], we can clearly see the effectiveness of ride-pooling services. For the same 

baseline traffic network, similar demand conditions, and for a fleet of 200 TNC vehicles, 

ride-pooling d2d TNC services reduce VKT by 5.78% in the Birmingham network, 

whereas individual ride TNC requests increase VKT by 22% [7], compared to the 

baseline scenario. Similar conclusions can be drawn from the comparison of different 

fleet sizes and the comparison between sB and individual ride TNC services, and are in 

agreement with findings reported by Tirachini and Gomez-Lobo [16] from a simulation 

study in Santiago, Chile. Thus, it is recommended that TNC companies operating in the 
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Birmingham region consider expanding their services to provide car-pooling services, in 

addition to individual TNC rides, given the anticipating benefits to the transportation 

network performance from the operation of ride-pooling TNC services. 

The study concludes that an increase in the TNC fleet size leads to a decrease in 

the vehicle-empty ratio for both d2d and sB ride-pooling services. However, the total 

daily distance traveled by ride-pooling vehicles increases with an increase in the TNC 

fleet size for both d2d and sB services. The most significant increase in the total daily 

stance traveled occurred for d2d, with an increase of up to 93.2% (from 26,324 km to 

50,866 km) when the fleet size increased from 200 to 400 TNC vehicles. Additionally, 

the study found an increase of up to 24.4% (from 29,136 km to 36,247 km) for sB when 

the fleet size increased from 200 to 400 TNC vehicles. The observed trend can be 

explained by the shift in transportation modes from automobile trips to ride-pooling 

services. This shift results in an increase in demand for ride-pooling services, which is 

seen with an increase in the TNC fleet size. 

The study findings also show that customer service time is almost insensitive to 

changes in the size of the TNC fleet for both ride-pooling services considered (i.e., d2d 

and sB). This observation is consistent with earlier studies, including [43], which also 

found that an increase in the TNC fleet size had a minimal or no effect on the in-vehicle 

travel time for both d2d and sB ride-pooling services. When comparing the two service 

options, our results suggest that the sB ride-pooling service was the most effective ride-

pooling option, as it resulted in lower average customer service times when compared to 

the d2d service. 
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The study found that with an increase in the size of the TNC fleet, both d2d and 

sB services experienced a reduction in mean travel distance. The most significant 

decrease in the mean travel distance occurred for d2d, with a reduction of up to 4.55% 

(from 17,271 m to 16,485 m) when the fleet size increased from 400 to 800 TNC 

vehicles. Additionally, the study results showed a decrease of up to 3.88% (from 9415 m 

to 9050 m) for sB when the fleet size increased from 200 to 400 TNC vehicles. 

The study findings further confirm that ride request rejection rates fall as the TNC 

fleet size increases. For instance, for sB service, the ride rejection rate fell from 18% to 

10% (a 44% reduction) when the TNC fleet size increased from 200 to 400 vehicles. A 

further 20% reduction was observed when the fleet size increased from 400 to 800 

vehicles. These findings are consistent with results from a previous study [18], which 

reported that increasing the DRT fleet size from 150 to 250 vehicles resulted in a 36% 

decrease in rejection rates and a 28% reduction in the rejection rate when the DRT fleet 

size was increased from 250 to 350 vehicles [18]. It should be noted that the Birmingham 

simulation study assumed a maximum acceptable wait time of 5 min. This resulted in 

high ride request rejection rates, especially when TNC fleet sizes were low. Higher 

acceptable wait times (e.g., 10 min) are expected to reduce the ride request rejection rates 

and are recommended for consideration in follow-up studies. 

Overall, this study contributes to a better understanding of how ride-pooling 

services impact traffic congestion in medium-sized cities such as Birmingham, AL. 

Moreover, the findings from this study can guide TNC providers and transportation 

authorities in their efforts to enhance TNC operations in medium-sized cities with similar 

characteristics and better serve the needs of transportation users in these regions. 
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Study Limitations 

In this study, we are addressing a critical limitation in the literature, i.e., 

examining impacts of ride-pooling services on traffic operations in a medium-sized city. 

However, given that travel behaviors and local conditions vary from city to city, the 

findings of the study are only generalizable to settings that are similar to the city of 

Birmingham. Additional studies are recommended in other medium-sized metro areas 

across the US in the future to further expand the knowledge and understanding of the 

relationship between TNC service availability and traffic congestion. Due to difficulties 

in obtaining TNC trip data directly from Uber and Lyft for the Birmingham region, the 

study relied on local Uber drivers to extract trip records from their logs, which may not 

be representative of the entire TNC population. Furthermore, the use of a synthetic 

population to generate travel plans for all travelers in the network is a limitation in 

MATSim, as a synthetic population may not accurately reflect the travel behaviors of 

transportation users, including TNC users in their entirety [6,7]. However, this study still 

provided proof of the feasibility of modeling TNC services on the same simulation 

platform with automobile, transit, and walking trips using MATSim, thus confirming its 

superiority over other traffic simulation platforms toward modeling multimodal 

operations, including ride-pooling TNC services. 

A significant amount of knowledge can be gained from the analysis of TNC data, 

such as user behavior and travel patterns. Thus, this study further recommends 

considering such data in the estimation of mode choices and mode shifts. One challenge, 

noted earlier, is the difficulty of obtaining empirical data from TNCs, as such data are 

closely guarded by TNC providers [46]. However, some recent initiatives demonstrate 

promise toward data sharing between TNC providers and public agencies. One notable 
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example is that of the State of California that requires TNC providers to submit Annual 

Reports Data. Such reports are made publicly available by the California Public Utilities 

Commission at a dedicated TNC Data Portal [47] after they have been redacted to remove 

any identifiable information. More wide-spread sharing of data between TNC companies 

and researchers is encouraged in the future and is expected to lead to a better 

representation of TNC trips in transportation modeling, and a more in-depth 

understanding of mode choices and modal shifts in markets where TNCs operate. This, in 

turn, can benefit transportation agencies and TNC providers as well, and assist them to 

better serve the needs of the traveling public. 
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CONCLUSIONS 

The findings reported in this dissertation examined the issue of on-demand 

ridesourcing services' impact on traffic operations in a medium-sized city. The 

comprehensive literature review and research case studies extensively covered shared 

mobility transportation options, including their service types, potential impacts, data 

acquisition limitations, and simulation platforms available. The large-scale simulation 

study of TNC services addressed the potential impacts on networkwide operations and 

the operational performance on specific corridors within the Birmingham metro area. 

Furthermore, the analysis of simulation model results highlighted the significance of 

utilizing simulation modeling approaches to simulate the impact of TNCs due to the 

limited availability of TNC data and challenges in obtaining travelers' diaries in the study 

area. The findings of each of these studies are summarized below. 

The literature review and research case studies in Chapter 1 act as a reference tool 

for researchers and practitioners, allowing them to gain a deeper understanding of the 

simulation models available for simulating shared modes, including their limitations, 

capabilities, simulated modes, input prerequisites, and model outputs. The attributes of 

each simulation model were reviewed and documented. The study found three simulation 

tools that exhibit the potential for simulating shared modes trips. The comparative 

analysis of the three available simulation software revealed that the Multi-Agent 

Transport Simulation (MATSim) tool is a highly promising platform for simulating 

shared mobility trips. The literature review and research case studies exposed the 

advantages and disadvantages associated with each simulation model, which need to be 
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carefully considered before one selects a simulation model to use in a research project. 

Chapter 2 focused on exploring the possible effects of TNCs' individual trip 

requests on traffic operations in the Birmingham, AL metro area. A comprehensive 

model that encompasses Uber/Lyft trips, was developed in order to quantify the impact of 

on-demand ridesourcing services for various sizes of TNC fleets. This study simulated 

four scenarios, including the baseline scenario with no TNC vehicles, as well as scenarios 

with TNC fleet sizes of 200, 400, and 800 vehicles using the MATSim simulation tool. 

Various measures of effectiveness (MOEs), such as VKT, speed, travel time, and volume, 

were employed to evaluate the impact of on-demand ridesourcing trips. The simulation 

study results indicated that, in the three scenarios where TNC vehicles were added to the 

network, TNC services led to an increase in networkwide VKT compared to the baseline 

scenario where no TNC vehicles were included. There was a maximum increase of 

23.6% in the networkwide VKT when compared to the baseline scenario. However, 

increasing the number of TNC vehicles from 400 to 800 only resulted in a 0.4% increase 

in the networkwide VKT, which could be attributed to meeting the demand for service. 

During the AM/PM peak periods, the simulation study results showed that in scenarios 

where TNC vehicles were added to the network, there was an increase in travel time and 

volume, and a decrease in speed at the selected network locations, as compared to the 

baseline scenario. The study's findings revealed that in Birmingham, AL, about 400 to 

500 TNC vehicles per day are enough to fulfill the current demand, which will help to 

reduce vehicle idle time and reduce the number of TNC vehicles circling the network in 

search of trip requests. 

Chapter 3 presented an analysis of the effects of ride-pooling services in 
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Birmingham, AL. The study examined 6 ride-pooling scenarios, with 3 being door-to-

door (d2d) services and 3 being stop-based (sB) services. The analysis involved the 

addition of 200, 400, and 800 TNC vehicles to the network for each of the d2d and sB 

services, and the results are compared to the baseline scenario from Chapter 2, where no 

TNC vehicles are added to the network. The MATSim DRT extension was employed to 

model d2d and sB scenarios, with a maximum acceptable passenger waiting time of 5 

minutes. Based on the results, ride-pooling services have the potential to decrease VKT 

by up to 5.78% for d2d service and up to 2.71% for sB service compared to the baseline 

scenario without TNC service. The study concludes that changes in TNC fleet size for the 

d2d and sB ride-pooling services do not significantly affect passenger service time. When 

comparing the two carpooling options, the study found that sB ride-pooling service is 

more effective than d2d in terms of average passenger service times, as it resulted in 

shorter average passenger service times. The study's results verify that as the TNC fleet 

size increases, the ride request rejection rates decrease. 

As a result of the research carried out for this dissertation and documented in 

Chapters 1 through 3, a valuable understanding has been developed regarding the 

simulation of TNC services in Birmingham, AL. The research demonstrates the 

feasibility of using the MATSim large-scale traffic simulation model and adopting two of 

its extensions in order to accommodate TNCs services as a travel mode option. This 

research addressed the research gap related to the impact of TNC services in a medium-

sized city. Research results indicate that ride-pooling services are more efficient than 

individual rides from TNCs, particularly when it comes to reducing VKT. It is therefore 

recommended that TNCs operating in the Birmingham metro area expand their services 
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to include a ride-pooling option alongside individual TNC rides. The anticipated benefits 

to the transportation network performance from the implementation of TNC ride-pooling 

services make this expansion an important factor to consider. Moreover, the study offers 

valuable recommendations on optimal fleet size for the current demand for TNC services 

in the Birmingham region.  

It is recommended to expand this research by studying the impact of dynamic 

price changes (such as surge/prime time) on TNC services. The pricing strategy of TNCs 

responds to changes in supply and demand, and surge pricing is one way of managing 

high-demand periods. It may, however, encourage drivers to seek out surge areas to boost 

their earnings, leading to traffic congestion and longer wait times for riders. Additionally, 

customers may avoid requesting rides in surge pricing areas due to the higher prices, 

which can lead drivers to hover the network empty in an effort to receive a trip request 

from the inside or outside the surge area. It is, therefore, important to study the impact of 

surge pricing on TNC operations and customer behavior, in order to develop policies and 

practices that promote equitable and sustainable TNC operations. It is also recommended 

that future research examines the potential impact of autonomous vehicles on mode shift, 

vehicle counts, travel time, speed, and vehicle kilometer traveled, in order to gain insights 

into how this emerging technology could impact operational performance in the presence 

of TNC services.  

Moreover, data sharing between TNC companies and researchers is strongly 

encouraged to enable a better representation of actual TNC trips in transportation 

modeling, thus benefiting transportation agencies and TNC providers in meeting the 

travel needs of the public.  
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