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A Poisson random variable, X, plays a fundamental role in Probability theory. It is charac-
terized by a parameter λ > 0, and its mean value and variance are both equal to λ. As 
As  the typical values of X get larger and larger, and their spread also gets wider. 
One can assume that  behaves similarly (i.e., it’s mean value and variance grow to 
infinity). However, it is quite intriguing to discover that  actually approaches a 
constant, ¼, which means its spread remains fixed. Dr. Nicolai Chernov found the this to 
be an interesting phenomenon, and I have built upon what other UAB Math Fast-Track 
students have done to prove this, both indirectly (through computer simulations) and di-
rectly. With Dr. Chernov’s guidance, a proof has been developed that illustrates why this 
strange event occurs. 

A Poisson distribution is a specific type of probability dis-
tribution whose mean, E(X), (denoted as λ in the following 
calculations) is equal to the variance, where X is a Poisson 

random variable. The probability P(X=k) = for some       
k > 0 and λ > 0. The variance, Var(X), can be found using the 
following formula: .
Thus, using the equation above, the  can be expressed 
as .

The fixed value of the   was first encountered in an 
application of the Poisson distribution to other fields in the 
sciences1. Even though this was an interesting phenomenon, it 
was unknown in probability theory2,3. Thus, the purpose of the 
project was to provide a proof that explains why the   
becomes fixed at ¼ as its parameter λ, which equals the mean 
and variance, approaches infinity.   

Using the equation above, the mean, E(X), is already known to 
be λ, so once  is found,  can be calculated. Given 
that

	            
 
it would be difficult to calculate the summation, due to the  
term. Therefore, an indirect approach, such as a Taylor 
approximation, has to be used to solve this problem, since 
the typical values of k lie in the range of λ ± . 

The Taylor approximation for any real number  is: 

                    (*)
   , 

where R(k) is the remainder term, n! denotes the factorial of n, 
and f(n)(λ) is the nth derivative of a function, f(x)= (for this 
case), evaluated at a point a = λ.                   
              

The following are the values calculated for the first 3 values 
of n: 

These values can then be substituted into the summation to 
make the proof easier to calculate. In order to do this, we first 
need to create an upper bound of the remainder for all values 
of k.
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For small values of k, the remainder can be calculated using 
the Lagrange form:

R(k) =
  

where   λ < <k 

Since this remainder is evaluated at some unknown point , 
we can create an upper bound on R(k) for small values 
(and eventually for all values) of k.

In this case, for R(k), the bound can be  for 

some constant C > .
  

The remainder of large values of k can be calculated by the 
following:

Given that
  ,                                 

 

                   

In this term, the k3 term is dominant, so the equation of 
R(k) will act like a cubic for large values of k. In order to create 
an upper bound for this function, we will need to choose a 
quartic equation because it grows faster than a cubic function 
for large values of k. Therefore, we can select a large constant, 
C2, for the quartic function such that it grows faster than the 
cubic function at a point we desire. In this situation, since we 
already have an upper bound for small values of k, if we choose 
C2 such that for all values of k excluding the small values of k, 
the quartic function grows faster than the cubic function, then 
we can establish an upper bound for the remainder term that 
can be used to evaluate the error term for the Taylor polyno-
mial.

Therefore, it can be stated that a bound for R(k) exists such 
that |R(k)| <

    
for a large value of C2 that satisfies

the above condition. Thus, substituting the value of the Taylor 

approximation of  into , we have

where |R(k)| < 
 

for some C3 larger than C and C2.

Multiplying and separating out the terms, we have the follow-
ing:

 

(**) 

Many of these summations are very difficult to solve. With the 
help of Moment Generating Functions, however, the complex 
summations can be evaluated.

A Moment Generating Function, in probability, generates the 
moments of a probability distribution. The moments can be 
generated using M(t) = E(eXt), the expectation value of eXt. 

Thus, using M(t) =   , the different moments can be 
calculated by taking derivatives of the function. This function 
can be evaluated at time t = 0 to generate the following values:

Similarly, if further derivatives are taken, the following mo-
ments are generated:

M(4)(0) = λ4 + 6λ3 + 7λ2 + λ (Figure 1)

Figure 1.
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Thus, with substitution into (**), the following is obtained: 

for some C4 larger than C3

Thus,

Finally, because as

Remark:  By using more terms in the Taylor expression 
(*), we can obtain more accurate asymptotical formulas 
for              .  In particular, we can show that                 
                                                                                     
                              K and compute the values of b1, b2,  
etc.
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