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short report
Accelerating Lossless Data Compression with Graphics Processing Units

R.L Cloud, M.L. Curry, H.L. Ward, A. Skjellum, P. Bangalore

Abstract
Huffman compression is a statistical, lossless, data compression 
algorithm that compresses data by assigning variable length 
codes to symbols, with the more frequently appearing symbols 
given shorter codes than the less.  The work to be presented is a 
modification of the Huffman algorithm which permits data to be 
decomposed into independently compressible and decompressible 
blocks, permitting  concurrent compression or decompression on 
multiple processors.  We implemented this modified algorithm on 
a NVIDIA GPU using the CUDA API as well as on a current 
Intel chip and the performance results are compared, showing 
higher performance compression and decompression on the GPU.

Introduction
Lossless data compression is important in application domains 
and usage environments where bandwidth or storage limitations 
may negatively impact application or system performance. 
Generally classifiable into statistical or dictionary methods, 
lossless data compression algorithms can range widely in 
compression speed and efficiency (compression factor). 
Certain algorithms, especially the more efficient, can be quite 
computationally expensive, and as the data processing needs of 
current scientific endeavor continue to scale with more rapidity 
than storage or bandwidth, compression becomes increasingly 
necessary, but questions remain as to how to accelerate it and how 
to do so without consuming a large amount of computational 
resources. 
 
The use of graphics processing units (GPUs) for general purpose 
computation, i.e. problems outside the graphical domain, is a 
relatively recent development. First this was achieved though 
third party toolkits, e.g. Stanford's BrookGPU, but even more 
recently have GPU manufacturers themselves begun to offer 
general purpose tools which give the programmer a lower level 
communion with the chip than earlier GPGPU programming 
interfaces which are built upon OpenGL and DirectX.  One of 
these, and currently the most prominent, is the Compute Unified 
Device Architecture(CUDA) from the NVIDIA corporation. 
The potential benefits of GPUs in general purpose computation 
are great, but potential must be emphasized, more so even than 
for parallel programming on the x86. To achieve anywhere near 
the theoretical maximums in performance  on the GPU, the 
computation patterns underlying a solution's algorithm must 
be very near to the traditional usage of the GPU; a prospective 
algorithm's implementation on the GPU should be, in order of 
importance to performance, highly data parallelizable, logically 
simple, and have relatively many computations to memory 
accesses. In essence, to use the GPU to maximum effect, the 
abstractable computation patterns underlying a solution should 

be co-linear to the GPUs original task, graphics rendering. Our 
problem domain, I/O, while it does not perfectly fit these criteria, 
has already benefited from GPUs to enhance storage redundancy 
[5]; we attempt now their utilization in lossless data compression 
 
One major difficulty here in achieving good speedup with slim 
negative side effects is that lossless data compression algorithms 
can generally not be, in their unaltered form, thought of as highly 
parallelizable. Indeed, if one wishes to express these algorithms in 
parallel, one often needs to consider tradeoffs between compression 
efficiency and performance. Nevertheless, we hope to effectively 
demonstrate that it is possible to come to a reasonable middle 
ground with respect to coding acceleration and efficiency loss. 
 
Huffman Encoding 
Statistical methods of data compression perform analysis on 
the nature of the data to make intelligent decisions about how 
it can be represented more efficiently in compressed form. The 
Huffman encoding algorithm falls within this genus and operates 
by counting the appearance of every distinct symbol in the 
uncompressed data, then representing the more frequent with 
shorter codes than the less frequent. Every symbol in the data is 
replaced with its code, and if the data is non-random, i.e.  a few 
symbols appear with greater frequency than others, compression 
can be achieved. The Huffman compression algorithm is old by 
the standards of our science [6], but is still used, and has the 
attractive quality of being a primitive of several more modern 
and common algorithms, e.g. Deflate [1] and potentially the 
algorithm described by Burrows and Wheeler [4]. 
 
Parallel Huffman Coding 
There is literature on parallel Huffman coding and of varying 
goals, ranging from the actual construction of Huffman codes in 
parallel [3], [2], to [7] which addresses details of decomposition 
for parallel Huffman decoding and demonstrates some moderate 
decoding speedups while maintaining optimally encoded data by 
making use of the observation that Huffman codes can frequently 
synchronize.  Because of limitations in our architecture, we must 
try to create the simplest encoding routine possible.  In doing 
this we make a minor modification to the output of the Huffman 
algorithm. 
 
A modification is necessary because of the nature of Huffman 
codes, i.e. they are of a variable length; an encoded data string is 
composed of these codes packed together in a nature where bit 
codes can cross byte boundaries.  Simple decomposition of the 
encoded data stream into blocks of static size would result in the 
practical certainty that decoding would take an erroneous path, 
which is discussed in some detail in [7]. One counter to  
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A:      B:

   
C:        D:

Figure 1: A: The original ASCII encoded string.  B: The binary 
tree and encoded representation of the original string.  C:  
Decomposing the string into three symbol blocks and adding 
packing bits to the nearest byte.  D: The addition of a length 
delimiter at the start of the block.  Single bytes are used for the 
overhead in the diagrams for simplicity. In our implementation, 
we pack the block to four bytes and use a four byte integer to 
represent the block length.   

this is to pack the blocks to byte boundaries, introducing some 
size overhead. One more change is necessary. Because the codes 
are of variable lengths, even if we encode a constant number of 
symbols in each block, the resulting length of the encoded block 
will vary, sometimes dramatically. For this reason, we must encode 
an indication of where the block starts and ends. Our approach 
is again simple; at the start of the encoded block we give the 
length of the block which is known by making an additional 
pass over the unencoded block and summing the lengths of the 
code representation of the symbols.  Our implementation stores 
this length as an unencoded four byte integer for simplicity, and 
because of this and the requirements of our architecture, we pack 
the blocks to four byte boundaries.      

The overhead of our modifications range therefore, from between 
32 bits and 63 bits per block, with the variation being because if 
the size of the encoded block is evenly divisible by four bytes, it is 
unnecessary to add packing bits to its tail. This overhead naturally 
becomes less significant as the length of the block is increased, 
which is indicated in the figure measuring block size against 
overhead. The time required for summing the block lengths is 
measurable but undramatic and most noticeable when comparing 
the runtimes of a sequential block encoder to a sequential 
traditional(non-block) encoder. 

 
To parallelize decoding, it is sufficient to build a table of offsets 
into the encoded data from these block length delimiters. The 
computation threads on the GPU can then index into the 
encoded data and decode in parallel, storing decoded data in a 
sequential array indexable by thread and block numbers.

Performance Comparisons
Encoding
Acceleration over our sequential 
implementation was achieved for 
both encoding and decoding. This 
comparison is most meaningful in terms 
of throughputs, the amount of data which 
can be encoded or decoded per second.  
Following is the comparison of our 
sequential encoder to our parallel GPU 
encoder and a parallel CPU encoder 
programmed with OpenMP.   The GPU 
used in these experiments is the NVIDIA 
GeForce GTX 285 with 240 cores at 
1.5 GHz, and the CPU used is the Intel 
Core i7 Extreme Edition 965 with four 
cores at 3.2 GHz.  Despite the GPU 
having 60 times the number of cores as 
our CPU, the differences in throughput 
between the GPU encoder and the 
OpenMP encoder are not dramatic.  
This paradox can be largely resolved by 
recalling that the architecture of the 

Figure 2: The size overhead of using the parallel Huffman algorithm graphed against the block size. 
The number of bytes overhead per block remains a constant, so as the block size increases the overhead 
becomes less significant. At large block sizes, the overhead per block can be less than one percent.
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GPU was developed for the SIMD, single instruction multiple 
data, programming model while our CPU was developed with 
MIMD, multiple instruction multiple data, in mind.  

The processors in the GPU are organized into 30 groups of 8 
cores.  Each group of cores is known as a multiprocessor and 
contains a single control unit and a small amount of high speed 
memory shared between the cores in the multiprocessor.  The 
control unit broadcasts an instruction to all the cores, and optimal 
performance can only be achieved when every core can execute 
it.  If, for example, the instruction is a branching statement, then 
there is a likelihood that some cores will not follow the jump, and 
in this case, some cores must remain inactive until they either 
themselves satisfy the branching instruction or control passes 
beyond the branching sections of the code.  Therefore, in the 
worst case, when only one core can satisfy the jump and the other 
seven are left idle, our GPU behaves more like a crippled 30 core 
shared memory MIMD machine with a slow clock speed and no 
automatic memory caching.  Our encoder consists of complicated 
branching statements for the bit manipulation which makes 

worst case behavior relatively likely.  This also illustrates that in 
heterogeneous programming environments, one must be very 
aware of the strengths and weaknesses of the various architectures 
so that programming effort can be directed where benefits are 
most likely to be found.

 
Decoding 
Our decoding routine consists of reading bits and traversing 
a binary tree repeatedly for each code string.  This contains 
branching instructions, but markedly fewer than the encoding 
routine, and the factor of acceleration on the GPU is greater than 
that of the encoding routine.  Also interestingly, the measured 
increases in throughput from using OpenMP on the CPU, 
compared to the sequential implementation, are even better than 
linear by number of cores on the CPU.  By launching increasing 
numbers of threads, we can hide latency by issuing more 
memory requests.  In this way, we saw continued performance 
improvements through increasing thread counts up to 8.  Intel's 
Hyper-Threading technology assists significantly in this.

Figure 3: We saw superior performance with the GPU based encoder compared to our multi-core CPU encoder and our single threaded 
CPU implementation
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Conclusions 
The data presented here 
suggests that the strengths 
of the GPU architecture 
are robust enough to give 
performance benefits to 
applications which, while 
data parallel, still have 
a not insignificant level 
of logical complexity.  
Optimal use of the GPU's 
SIMD cores requires the 
complete elimination of 
divergence within warps, 
which, in practicality, 
requires the complete 
absence of if statements 
from the GPU sub-
routine; however, sub-
optimal performance, 
through the emulation 
of MIMD, can still be 
acceptable.  Despite the 
large number of divergent 
threads in a warp, our 
encoder kernel is capable 
of throughputs, sans 
memory transfer times to and from the GPU, in excess of 4 GB/
sec.  Total encoding throughputs using the GPU are weighed 
down by the need to transfer data to and from the card; however, 
in an online system, or when encoding very large amounts of 
data, this could be somewhat ameliorated by using asynchronous 
data transfers with the GPU to fully exploit bus resources while 
encoding. 
 
Realistically, current performance levels for our GPU encoder and 
decoder do not warrant the use of the program as a standalone 
encoding system.  The Huffman algorithm itself is not the best 
choice for such purposes and even the strengths of the GPU 
do not make up for the algorithm's deficiencies.  However, our 
encoding system could be used as an auxiliary process to a GPU 
application.  Much greater coding performance than that shown 
in the above figures could be seen were the data to be encoded 
already on the GPU.
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Figure 4: Again, our GPU based decoder gave better performance than both CPU decoders.
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