
Inquiro, the UAB undergraduate Inquiro, the UAB undergraduate

science research journal science research journal

Volume 2009 Number 3 Article 22

2009

Accelerating Lossless Data Compression with Graphics Accelerating Lossless Data Compression with Graphics

Processing Units Processing Units

R. L. Cloud

M. L. Curry

H. L. Ward

A. Skjellum

P. Bangalore

Follow this and additional works at: https://digitalcommons.library.uab.edu/inquiro

 Part of the Higher Education Commons

Recommended Citation Recommended Citation
Cloud, R. L.; Curry, M. L.; Ward, H. L.; Skjellum, A.; and Bangalore, P. (2009) "Accelerating Lossless Data
Compression with Graphics Processing Units," Inquiro, the UAB undergraduate science research journal:
Vol. 2009: No. 3, Article 22.
Available at: https://digitalcommons.library.uab.edu/inquiro/vol2009/iss3/22

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/inquiro
https://digitalcommons.library.uab.edu/inquiro
https://digitalcommons.library.uab.edu/inquiro/vol2009
https://digitalcommons.library.uab.edu/inquiro/vol2009/iss3
https://digitalcommons.library.uab.edu/inquiro/vol2009/iss3/22
https://digitalcommons.library.uab.edu/inquiro?utm_source=digitalcommons.library.uab.edu%2Finquiro%2Fvol2009%2Fiss3%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1245?utm_source=digitalcommons.library.uab.edu%2Finquiro%2Fvol2009%2Fiss3%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/inquiro/vol2009/iss3/22?utm_source=digitalcommons.library.uab.edu%2Finquiro%2Fvol2009%2Fiss3%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

24 • inquiro | no. 3 | 2009

short report
Accelerating Lossless Data Compression with Graphics Processing Units

R.L Cloud, M.L. Curry, H.L. Ward, A. Skjellum, P. Bangalore

Abstract
Huffman compression is a statistical, lossless, data compression
algorithm that compresses data by assigning variable length
codes to symbols, with the more frequently appearing symbols
given shorter codes than the less. The work to be presented is a
modification of the Huffman algorithm which permits data to be
decomposed into independently compressible and decompressible
blocks, permitting concurrent compression or decompression on
multiple processors. We implemented this modified algorithm on
a NVIDIA GPU using the CUDA API as well as on a current
Intel chip and the performance results are compared, showing
higher performance compression and decompression on the GPU.

Introduction
Lossless data compression is important in application domains
and usage environments where bandwidth or storage limitations
may negatively impact application or system performance.
Generally classifiable into statistical or dictionary methods,
lossless data compression algorithms can range widely in
compression speed and efficiency (compression factor).
Certain algorithms, especially the more efficient, can be quite
computationally expensive, and as the data processing needs of
current scientific endeavor continue to scale with more rapidity
than storage or bandwidth, compression becomes increasingly
necessary, but questions remain as to how to accelerate it and how
to do so without consuming a large amount of computational
resources.

The use of graphics processing units (GPUs) for general purpose
computation, i.e. problems outside the graphical domain, is a
relatively recent development. First this was achieved though
third party toolkits, e.g. Stanford's BrookGPU, but even more
recently have GPU manufacturers themselves begun to offer
general purpose tools which give the programmer a lower level
communion with the chip than earlier GPGPU programming
interfaces which are built upon OpenGL and DirectX. One of
these, and currently the most prominent, is the Compute Unified
Device Architecture(CUDA) from the NVIDIA corporation.
The potential benefits of GPUs in general purpose computation
are great, but potential must be emphasized, more so even than
for parallel programming on the x86. To achieve anywhere near
the theoretical maximums in performance on the GPU, the
computation patterns underlying a solution's algorithm must
be very near to the traditional usage of the GPU; a prospective
algorithm's implementation on the GPU should be, in order of
importance to performance, highly data parallelizable, logically
simple, and have relatively many computations to memory
accesses. In essence, to use the GPU to maximum effect, the
abstractable computation patterns underlying a solution should

be co-linear to the GPUs original task, graphics rendering. Our
problem domain, I/O, while it does not perfectly fit these criteria,
has already benefited from GPUs to enhance storage redundancy
[5]; we attempt now their utilization in lossless data compression

One major difficulty here in achieving good speedup with slim
negative side effects is that lossless data compression algorithms
can generally not be, in their unaltered form, thought of as highly
parallelizable. Indeed, if one wishes to express these algorithms in
parallel, one often needs to consider tradeoffs between compression
efficiency and performance. Nevertheless, we hope to effectively
demonstrate that it is possible to come to a reasonable middle
ground with respect to coding acceleration and efficiency loss.

Huffman Encoding
Statistical methods of data compression perform analysis on
the nature of the data to make intelligent decisions about how
it can be represented more efficiently in compressed form. The
Huffman encoding algorithm falls within this genus and operates
by counting the appearance of every distinct symbol in the
uncompressed data, then representing the more frequent with
shorter codes than the less frequent. Every symbol in the data is
replaced with its code, and if the data is non-random, i.e. a few
symbols appear with greater frequency than others, compression
can be achieved. The Huffman compression algorithm is old by
the standards of our science [6], but is still used, and has the
attractive quality of being a primitive of several more modern
and common algorithms, e.g. Deflate [1] and potentially the
algorithm described by Burrows and Wheeler [4].

Parallel Huffman Coding
There is literature on parallel Huffman coding and of varying
goals, ranging from the actual construction of Huffman codes in
parallel [3], [2], to [7] which addresses details of decomposition
for parallel Huffman decoding and demonstrates some moderate
decoding speedups while maintaining optimally encoded data by
making use of the observation that Huffman codes can frequently
synchronize. Because of limitations in our architecture, we must
try to create the simplest encoding routine possible. In doing
this we make a minor modification to the output of the Huffman
algorithm.

A modification is necessary because of the nature of Huffman
codes, i.e. they are of a variable length; an encoded data string is
composed of these codes packed together in a nature where bit
codes can cross byte boundaries. Simple decomposition of the
encoded data stream into blocks of static size would result in the
practical certainty that decoding would take an erroneous path,
which is discussed in some detail in [7]. One counter to

 the university of alabama at birmingham | inquiro • 25

A: B:

C: D:

Figure 1: A: The original ASCII encoded string. B: The binary
tree and encoded representation of the original string. C:
Decomposing the string into three symbol blocks and adding
packing bits to the nearest byte. D: The addition of a length
delimiter at the start of the block. Single bytes are used for the
overhead in the diagrams for simplicity. In our implementation,
we pack the block to four bytes and use a four byte integer to
represent the block length.

this is to pack the blocks to byte boundaries, introducing some
size overhead. One more change is necessary. Because the codes
are of variable lengths, even if we encode a constant number of
symbols in each block, the resulting length of the encoded block
will vary, sometimes dramatically. For this reason, we must encode
an indication of where the block starts and ends. Our approach
is again simple; at the start of the encoded block we give the
length of the block which is known by making an additional
pass over the unencoded block and summing the lengths of the
code representation of the symbols. Our implementation stores
this length as an unencoded four byte integer for simplicity, and
because of this and the requirements of our architecture, we pack
the blocks to four byte boundaries.

The overhead of our modifications range therefore, from between
32 bits and 63 bits per block, with the variation being because if
the size of the encoded block is evenly divisible by four bytes, it is
unnecessary to add packing bits to its tail. This overhead naturally
becomes less significant as the length of the block is increased,
which is indicated in the figure measuring block size against
overhead. The time required for summing the block lengths is
measurable but undramatic and most noticeable when comparing
the runtimes of a sequential block encoder to a sequential
traditional(non-block) encoder.

To parallelize decoding, it is sufficient to build a table of offsets
into the encoded data from these block length delimiters. The
computation threads on the GPU can then index into the
encoded data and decode in parallel, storing decoded data in a
sequential array indexable by thread and block numbers.

Performance Comparisons
Encoding
Acceleration over our sequential
implementation was achieved for
both encoding and decoding. This
comparison is most meaningful in terms
of throughputs, the amount of data which
can be encoded or decoded per second.
Following is the comparison of our
sequential encoder to our parallel GPU
encoder and a parallel CPU encoder
programmed with OpenMP. The GPU
used in these experiments is the NVIDIA
GeForce GTX 285 with 240 cores at
1.5 GHz, and the CPU used is the Intel
Core i7 Extreme Edition 965 with four
cores at 3.2 GHz. Despite the GPU
having 60 times the number of cores as
our CPU, the differences in throughput
between the GPU encoder and the
OpenMP encoder are not dramatic.
This paradox can be largely resolved by
recalling that the architecture of the

Figure 2: The size overhead of using the parallel Huffman algorithm graphed against the block size.
The number of bytes overhead per block remains a constant, so as the block size increases the overhead
becomes less significant. At large block sizes, the overhead per block can be less than one percent.

26 • inquiro | no. 3 | 2009

GPU was developed for the SIMD, single instruction multiple
data, programming model while our CPU was developed with
MIMD, multiple instruction multiple data, in mind.

The processors in the GPU are organized into 30 groups of 8
cores. Each group of cores is known as a multiprocessor and
contains a single control unit and a small amount of high speed
memory shared between the cores in the multiprocessor. The
control unit broadcasts an instruction to all the cores, and optimal
performance can only be achieved when every core can execute
it. If, for example, the instruction is a branching statement, then
there is a likelihood that some cores will not follow the jump, and
in this case, some cores must remain inactive until they either
themselves satisfy the branching instruction or control passes
beyond the branching sections of the code. Therefore, in the
worst case, when only one core can satisfy the jump and the other
seven are left idle, our GPU behaves more like a crippled 30 core
shared memory MIMD machine with a slow clock speed and no
automatic memory caching. Our encoder consists of complicated
branching statements for the bit manipulation which makes

worst case behavior relatively likely. This also illustrates that in
heterogeneous programming environments, one must be very
aware of the strengths and weaknesses of the various architectures
so that programming effort can be directed where benefits are
most likely to be found.

Decoding
Our decoding routine consists of reading bits and traversing
a binary tree repeatedly for each code string. This contains
branching instructions, but markedly fewer than the encoding
routine, and the factor of acceleration on the GPU is greater than
that of the encoding routine. Also interestingly, the measured
increases in throughput from using OpenMP on the CPU,
compared to the sequential implementation, are even better than
linear by number of cores on the CPU. By launching increasing
numbers of threads, we can hide latency by issuing more
memory requests. In this way, we saw continued performance
improvements through increasing thread counts up to 8. Intel's
Hyper-Threading technology assists significantly in this.

Figure 3: We saw superior performance with the GPU based encoder compared to our multi-core CPU encoder and our single threaded
CPU implementation

 the university of alabama at birmingham | inquiro • 27

Conclusions
The data presented here
suggests that the strengths
of the GPU architecture
are robust enough to give
performance benefits to
applications which, while
data parallel, still have
a not insignificant level
of logical complexity.
Optimal use of the GPU's
SIMD cores requires the
complete elimination of
divergence within warps,
which, in practicality,
requires the complete
absence of if statements
from the GPU sub-
routine; however, sub-
optimal performance,
through the emulation
of MIMD, can still be
acceptable. Despite the
large number of divergent
threads in a warp, our
encoder kernel is capable
of throughputs, sans
memory transfer times to and from the GPU, in excess of 4 GB/
sec. Total encoding throughputs using the GPU are weighed
down by the need to transfer data to and from the card; however,
in an online system, or when encoding very large amounts of
data, this could be somewhat ameliorated by using asynchronous
data transfers with the GPU to fully exploit bus resources while
encoding.

Realistically, current performance levels for our GPU encoder and
decoder do not warrant the use of the program as a standalone
encoding system. The Huffman algorithm itself is not the best
choice for such purposes and even the strengths of the GPU
do not make up for the algorithm's deficiencies. However, our
encoding system could be used as an auxiliary process to a GPU
application. Much greater coding performance than that shown
in the above figures could be seen were the data to be encoded
already on the GPU.

References

[1] M. Adler, Deflate algorithm. http://www.gzip.org/algorithm.txt.

[2] M. J. Atallah, S. R. Kosaraju, L. L. Larmore, G. L. Miller, and
S.-H. Teng. Constructing Trees in Parallel. In SPAA ’89:

Proceedings of the first annual ACM symposium on Parallel
algorithms and architectures, pages 421–431, New York,
NY, USA, 1989. ACM.

[3] P. Berman, M. Karpinski, and Y. Nekrich. Approximating
Huffman Codes in Parallel. Journal of Discrete Algorithms,
5(3):479–490, 2007.

[4] M. Burrows and D. J. Wheeler. A block-sorting lossless data
compression algorithm.Technical report, Digital SRC
Research Report, 1994.

[5] M. Curry, A. Skjellum, H. Ward, and R. Brightwell.
Accelerating Reed-Solomon Coding in Raid Systems
with Gpus. IEEE International Symposium on Parallel and
Distributed Processing, pages 1–6, 2008.

[6] D. Huffman. A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the IRE, 40:1098–
1101, 1952.

[7] S. T. Klein and Y. Wiseman. Parallel Huffman Decoding
with Applications to Jpeg Files. The Computer Journal,
46:487–497, 2003.

Figure 4: Again, our GPU based decoder gave better performance than both CPU decoders.

	Accelerating Lossless Data Compression with Graphics Processing Units
	Recommended Citation

	tmp.1678466131.pdf.nMJAW

