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CANONICAL LAMINATIONS FOR FIXED POINT PORTRAITS

MD. ABDUL AZIZ

APPLIED MATHEMATICS

ABSTRACT

Laminations are a combinatorial and topological model for studying the Julia sets

of complex polynomials. Every complex polynomial of degree d has d fixed points

counted with multiplicity. From the point of view of laminations, exactly d−1 of these

fixed points are peripheral (approachable from outside the Julia set of the polynomial).

Hence, at least one of the d fixed points is “hidden” from the laminational point

of view. The purpose of this thesis is to identify, classify and count the possible

fixed point portraits for any lamination of degree d. We will identify the “simplest”

lamination for a given fixed point portrait and will show that there are polynomials

that have these simplest laminations. We extend σd to D as a branched covering map.

In future work with others, we want to apply Thurston’s criterion to show there exists

a complex polynomial whose lamination this is.
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1. INTRODUCTION

Thurston [14] introduced invariant lamination to study polynomials and their

parameter space. His idea was to use laminiations as a tool to model the polynomial

dynamics as a combinatorial or as a topological object. He discussed how to associate

a lamination to a polynomial P of degree d with a locally connected Julia set.

In the paper [12], Goldberg and Milnor introduced the concept of fixed point

portraits from the polynomial point of view. This served as motivation for our

laminational study.

A natural question arises, can we reverse the process? Is it possible to realize a

polynomial whose Julia set has a given lamination? To answer these questions, we

need a branched covering map on the closed disk D. In Section 3 we extend the angle

d-tupling map on the circle to a branched covering map of the unit disk. This sets the

stage for applying Thurston’s criterion to show the existence of a polynomial whose

Julia set has this lamination.

In Section 4 we introduced the concept of fixed point portraits for laminations and

count the number of fixed point portraits of a given degree d (Theorem 4.6).

In Section 5 we discuss the simplest lamination for a given fixed point portrait,

which we call the canonical lamination for this fixed point portrait. To do this we

discuss the critical portraits that are compatible with the given fixed point portrait

(Theorems 5.4 and 5.5). We also show a canonical fixed point portrait has certain

fundamental properties (Theorem 5.7). The angle d-tupling map has only d− 1 fixed

points. We also show that every complementary region of a fixed point portrait has a

unique internal fixed point (Theorem 5.9).

In the final section, we discuss our ongoing and future work and provide some

examples of Julia sets from the ongoing work.

I want to thank the UAB laminations seminar for helping me to understand the

relationship between laminations and complex polynomials. In particular, I would like
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to thank Dr. John Mayer, Dr. Nikita Selinger, Dr. Lex Oversteegen, Dr. Alexander

Blokh, Brittany Burdette, Adam Carty and Thomas Sirna.

2. PRELIMINARIES

Basic definitions in this section have been adapted from [2] and [3]. We measure

angles on the unit circle S1 in revolutions rather than radians. Thus, the circle will be

coordinatized by [0, 1).

Definition 2.1 (Angle d-tupling map). Let d ∈ N. The angle d-tupling map

σd : S1 → S1 is defined by σd(t) = dt (mod 1).

Definition 2.2 (Lamination). A lamination L is a collection of chords of the

closed unit disk D, which we call leaves, with the property that any two leaves meet,

if at all, in a point of the boundary S1 of the disk and L∗ := S1 ∪ {∪L}.

Definition 2.3 (Rotational Set). Consider σd: S1 → S1 for a particular n ≥ 2.

Let P = {xi|0 < x1 < x2 < x3 < ... < xk < 1} be a finite set in consecutive order

in S1. We say that P is a rotational set (for σd) if and only if

(1) σd(P ) = P , and

(2) For 1 ≤ j ≤ k, if σd(xj) = xi, set i(j) = i. Then for all j, j − i(j)(mod k) is

the same.

If (2) holds (but possibly not (1)), we say σd is circular order-preserving on P . We

call a rotational set which is a single periodic orbit, a rotational orbit.

Definition 2.4 (Rotation Number). To each rotational set, we can assign a

rotation number, a rational number 0 ≤ p

q
< 1 in the lowest terms.

Let O = {x1 < x2 < x3... < xq} be a rotational periodic orbit. Suppose that

σd(x1) = xj. Set p = j − 1. The rotation number of O is
p

q
. Our notation is

ρ(O) = ρ(x1) = ρ(xi) =
p

q
.
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Definition 2.5 (Critical Chord). A chord under σd is called critical if, and only if,

both of its endpoints (and so the whole chord) map to a single point on the circle S1.

Definition 2.6 (Critical Portrait). A maximal collection C of critical chords

for σd, meeting at most at endpoints, is called a critical portrait. The closure of a

component of D\∪C that meets S1 in arcs is called a critical sector. A polygon entirely

composed of critical chords is called an all critical polygon.

Definition 2.7 (Sibling Invariant Lamination). A lamination L is said to be

sibling d-invariant (or simply invariant if no confusion will result) provided that the

following three statements hold:

(1) (Forward Invariant) For every ℓ ∈ L, σd(ℓ) ∈ L.

(2) (Backward Invariant) For every non-degenerate ℓ′ ∈ L, there is a leaf ℓ ∈ L

such that σd(ℓ) = ℓ′.

(3) (Sibling Invariant) For every ℓ1 ∈ L with σd(ℓ1) = ℓ′, a non-degenerate leaf,

there is a full sibling collection {ℓ1, ℓ2, . . . , ℓd} ⊂ L such that σd(ℓi) = ℓ′.

A sibling d-invariant lamination induces an equivalence relation. Two points on

S1 are equivalent if they are joined by a finite concatenation of leaves. We consider

laminations for which this results in a closed equivalence relation. Thus, the sibling

invariant laminations we will be considering have a fourth condition from [3] not listed

in the definition:

(4) L has finite equivalence classes, and all leaves are boundary chords of the

convex hulls of equivalence classes.

Definition 2.8 (Gap). A gap in a lamination L is the closure of a component of

D \ L∗. A gap is critical if and only if two points in its boundary map to the same

point. A gap with finitely many leaves in its boundary is usually called a polygon.

The leaves bounding a finite gap are called the sides of the polygon.
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Definition 2.9 (Fatou gap). A Fatou gap in lamination is a gap whose boundary

intersected with S1 contains a Cantor set.

Definition 2.10 (Hyperbolic Lamination). A d-invariant lamination is said to

be hyperbolic if and only if all compatible critical chords are interior to periodic or

pre-periodic Fatou gaps.

Theorem 2.11. For σd, in a hyperbolic lamination, an invariant gap is either a

rotational polygon or a critical Fatou gap.

Proof. In a hyperbolic lamination, all criticality is inside Fatou gaps. We know,

if A is a compact set invariant under σd such that σd is one-to-one on A, then A

is finite [10]. Therefore, if σd is one-to-one, then the invariant gap is a rotational

polygon. If it is not one-to-one, then the invariant gap is a critical Fatou gap. □

Theorem 2.12 ( Uniqueness of Rotation Number [9]). An invariant set in a given

critical sector has a unique rotation number.

The consequences of this theorem are:

• There can not be a fixed point and a rotational set with a nonzero rotation

number in the same critical sector.

• Two rotational critical sectors can not be adjacent.

Definition 2.13 (Branches of the Inverse [6]). Let C be a critical portrait. Every

critical sector S in D defined by C will have a function τ : S1 → S ∩ S1 that is one to

one, and σd ◦ τ is the identity on S1.

Combining the previous definitions we can now define a pullback scheme.

Definition 2.14 (Pullback Scheme [6]). Let C be a critical portrait and F a

compatible forward invariant set. The corresponding collection PB(F,C) of the

branches of the inverse determined by C as in Definition 2.13 gives us a pullback

scheme for F .

4



There can be multiple critical portraits compatible with F that define the pullback

scheme differently. There are some critical portraits that are compatible with F , but

the related pullback lamination does not satisfy condition (4) of Definition 2.7. The

following theorem is well known.

Theorem 2.15 (Pullback [6]). Let F be a periodic forward invariant set under σd,

C a compatible critical portrait, and the pullback scheme PB(F,C) = {τ1, τ2, . . . , τd}.

Let F0 = F, and F1 = F0 ∪ τ1(F0) ∪ τ2(F0) ∪ · · · ∪ τd(F0). In general, for any given

stage n of the pull back Fn = Fn−1 ∪ τ1(Fn−1) ∪ · · · ∪ τd(Fn−1). Let F∞ =
⋃∞

n=0 Fn,

and let L = F∞. Then, L is a sibling d-invariant lamination.

Definition 2.16 (Covering Map [13]). A covering map is a surjective open map

f : X → Y that is locally a homeomorphism, meaning that each point in X has a

neighborhood that is the same after mapping f in Y .

Definition 2.17 (Branched Covering Map [15]). In topology, a map is a branched

covering if it is a covering map everywhere except for a nowhere-dense set known as

the branch set.

3. EXTENDING σd TO THE DISC D AS A BRANCHED COVERING

MAP

Theorem 3.1. Let L be a hyperbolic lamination. Then there is a branched covering

map σ#
d , a continuous extension of σd, from D to D that maps L to L.

We will construct the branched covering map by extending the map σd in several

steps.

Step 1: In this step, we will extend σd from S1 to L∗ as defined in 2.2.

We define action of σd on L (see 2.2) by

σd(ab) = σd(a)σd(b),∀ab ∈ L

5



We parametrize each leaf ab by [0, 1], i.e., each point on ab lies on the line segment

(1− t) ∗ a+ t ∗ b for t ∈ [0, 1]. By (1− t) ∗ a+ t ∗ b, we mean the point on the leaf ab,

t part of the distance from a to b in the Euclidean plane.

We define the extension of σd on L∗ by

σ∗
d((1− t) ∗ a+ t ∗ b) = (1− t) ∗ σd(a) + t ∗ σd(b)

Using the limit definition of continuity, we will show that σ∗
d is continuous on L∗.

(i) It is continuous from one leaf to its image.

Proof. Let (pi)i∈N be a sequence of points on a leaf ab ∈ L converges to a

point p on ab. We need to show σ∗
d(pi) converges to σ∗

d(p) on σd(a)σd(b). Let

pi = (1 − ti) ∗ a + ti ∗ b and p = (1 − t) ∗ a + t ∗ b, where, ti, t ∈ [0, 1]. Since

(pi)i∈N converges to p, the ti associated with pi converge to t associated with p on ab.

Therefore, ti associated with σ∗
d(pi) converge to t associated with σ∗

d(p) on σd(a)σd(b).

Thus, σ∗
d(pi) converge to σ∗

d(p) on σd(a)σd(b). Hence, σ
∗
d is continuous from one leaf

to its image. □

(ii) It is continuous on L∗.

Proof. Let (pi)i∈N be a sequence of points on L∗ converges to a point p on L∗.

We need to show σ∗
d(pi) converges to σ∗

d(p).

Let each point pi of the sequence (pi)i∈N lies on some leaf aibi on L∗.

Case I: Suppose there are infinitely many points lie on the same leaf that contains p.

We consider these points (pi)i∈N as a co-final sub-sequence (pni
)ni∈N. Thus (pni

)ni∈N is

an infinite subsequence of (pi)i∈N. Since (pi)i∈N converges to p, (pni
)ni∈N also converges

to p. Since σ∗
d is continuous from one leaf to its image, σ∗

d(pni
) converges to σ∗

d(p).

Therefore, σ∗
d(pi) converges to σ∗

d(p). Hence, σ
∗
d is continuous on L∗.

6



Case II: The leaf on L∗ that contains p, contains only finitely many points of (pi)i∈N.

First, we construct a co-final sub-sequence (pni
)ni∈N out of the points of (pi)i∈N that

lie on different leaves of L∗. To do this, we consider p1 as pn1 . Now, if p2 lies on the

same leaf as p1, we do not include p2 in (pni
)ni∈N, instead we move to the point p3. If

p3 lies on the different leaf as p1, then we consider p3 as pn2 , and so on. This way we

take exactly one point from each leaf. Now, since (pni
)ni∈N is co-final, the sequence of

the endpoints (ani
) and (bni

) of the leaf that contains (pni
) are also co-final. Therefore,

the sequences (ani
) and (bni

) converges to the endpoints a and b respectively of the

leaf that contains p. Thus, for every ϵ > 0, there exists a neighborhood Nϵ(ab) that

contains all but finitely many points (ani
) and (bni

). Since the leaves never cross

each other and are straight lines, all but finitely many leaves lie inside Nϵ(ab). As

a result, pni
= (1 − tni

) ∗ ani
+ tni

∗ bni
converges to p = (1 − t) ∗ a + t ∗ b. Again,

since pni
converges to p, there is a Nδ(p) ⊂ Nϵ(ab) that contains all but finitely many

points of (pni
). Now, as δ gets smaller (pni

) get closer to p. We have the point

p = (1− t) ∗ a+ t ∗ b lies on t part of the distance from a to b in the Euclidean plane,

and the point pni
= (1− tni

)∗ani
+ tni

∗ bni
lies on the tni

part of the distance from ani

to bni
in the Euclidean plane. As a result, whenever pni

gets closer to p, we have tni

gets closer to t. Therefore, every neighborhood of t contains finitely many tni
. Thus,

tni
associated with (pni

) on ani
bni

converges to t associated with p on ab. Now, since σ∗
d

is continuous from one leaf to its image, (tni
) associated with σ∗

d(pni
) on σ∗

d(ani
)σ∗

d(bni
)

converges to t associated with σ∗
d(p) on σ∗

d(a)σ
∗
d(b). So, σ∗

d(pni
) converges to σ∗

d(p).

Therefore, σ∗
d is continuous on L∗ in this case.

Case III: The point lies on the circle S1.

Sub-case I: Infinitely many of the leaves ani
bni

that contain points of (pni
)ni∈N go over

p. In this case, as the leaves get nearer to p, their lengths shorten, and both ani
and

bni
converge to p. Since σd is continuous on S1, σd(ani

) and σd(bni
) also converge to

7



σd(p) on S1. Therefore, σ∗
d is continuous.

Sub-case II: Infinitely many of the leaves ani
bni

that contain points of (pni
)ni∈N go

over p, and only the (ani
) or (bni

) converges to p. In this case, (tni
) converges to 0 or

1 respectively. But the parametrization is a homomorphism from [0,1] to the segment

of the leaves. Therefore, convergence in the domain and convergence in the range is

equivalent. Hence, σ∗
d is continuous.

Sub-case III: Infinitely many of the leaves ani
bni

that contain (pni
)ni∈N lie on one side

of p. In this case, as the leaves get nearer to p, their lengths shorten. Therefore, the

image of parametrization [0,1] goes to 0. Hence, both (ani
) and (bni

) converge to p.

Now, since σd is continuous on S1, σd(ani
) and σd(bni

) also converge to σd(p) on S1.

Therefore, σ∗
d is continuous in this case.

□

Hence, σ∗
d is continuous on L∗.

Step 2: In this step we want to extend σ∗
d from L∗ to D. So, we need to extend the

map to the gaps.

Lemma 3.2. The area of gaps goes to 0 for any infinite sequence of disjoint gaps.

Proof. We know the total area of gaps is bounded by the area of the unit circle

which is finite. By the way of contradiction, let every gap has an area some ϵ > 0.

Then the total area of gaps for any infinite sequence of disjoint gaps is ∞.ϵ = ∞, which

is a contradiction. Therefore, The area of gaps goes to 0 for any infinite sequence of

disjoint gaps. □

Lemma 3.3. Given any infinite sequence of disjoint gaps, either: (a) Their diame-

ters converge to 0. In this case, the gaps converge to points on the circle. Because the

vertices of the gaps lie on the circle, all of them meet at a point on S1.

8



Figure 3.1. Coordination of center and other points inside a gap with
two longest sides

Or, (b) All but finitely many gaps have two longest sides and other sides converging to

length 0. In this case, the gaps converge to leaves of L.

Definition 3.4 (Center of a gap). Let ab and cd be two longest sides of a gap

G. As we have parametrized each leaf of L by [0, 1], suppose the midpoint of ab is

M1 =
1
2
(a + b) and the midpoint of cd is M2 =

1
2
(c + d). We define the midpoint c

of M1M2 as the center of the gap G (see Figure 3.1). If G does not have two longest

sides or sibling to a critical gap, let c denote its barycenter (see Figure 3.2).

Sub-step 1: First, we want to extend σ∗
d to the centers of gaps.

Let C = {c ∈ D : c is the center of a gap}. Let c1 and c2 be the centers of gaps

G1 and G2 respectively, where σ∗
d(G1) = G2.

We define the extension of σ∗
d on C by σ#

d (c1) = c2.

We will show that σ#
d is continuous in this case, i.e., σ#

d : L∗ ∪ C → L∗ ∪ C is

continuous.

Let (ci)i∈N be a sequence of centers of the gaps that converges to some point p ∈ L∗∪C.

Case I: p is on S1.

9



Proof. Since p is on S1 and (ci)i∈N converges to p, the diameters of the gaps Gi

containing ci converge to 0. Consequently, the gaps entirely converge to p. Now since

p lies on S1, σ#
d (p) also lies on S1; and the gaps σ#

d (Gi) entirely converge to σ#
d (p).

Consequently, σ#
d (ci) converges to σ#

d (p). Therefore, σ
#
d is continuous in this case. □

Case II: p is on some leaf ab.

Proof. Since the longest two sides of each gap converge to the leaf ab and t

are preserved on the leaves, every point on the line segment joining the midpoints

converges to the midpoint of ab. Thus, p is the midpoint of ab.

Let M1i and M2i be the midpoints of the two longest sides of the gaps Gi. Now,

since (ci)i∈N converges to p, (M1i)i∈N and (M2i)i∈N converge to p. We know σ∗
d is

continuous on L∗. Thus, σ∗
d(M1i) and σ∗

d(M2i) converge to σ∗
d(p). Consequently, every

point on the line segment σ∗
d(M1i)σ

∗
d(M2i) converge to σ∗

d(p). Therefore, the images of

the centers σ#
d (ci) converge to σ∗

d(p) i.e., to σ#
d (p). Hence, σ#

d is continuous in this

case. □

Sub-step II: Second, we want to extend σ∗
d inside a gap, and to prove that σ#

d is

continuous from one gap to its image.

Definition 3.5 (Coordinate of a point inside a gap). Let p be a point inside a

gap G, and let c be the center of G.

• Fill-up construction: If the gap has two longest sides and is not a sibling

of a critical gap, then we do the fill-up construction. Let ab and cd be the

two longest sides of this gap G. As we have parametrized each leaf of L by

[0, 1], suppose the midpoint of ab is M1 =
1
2
(a+ b) and the midpoint of cd is

M2 =
1
2
(c+ d). We connect M1 and M2 by the line segment M1M2. Let p be

any point inside G. We draw a unique line segment MtNt through p where

Mt and Nt have the same t parameter on lines ab and cd respectively (see

Figure 3.1). We denote the coordinate of p as (1− s) ∗Mt + s ∗Nt.

10



Figure 3.2. Coordination of center and other points inside a critical
gap

We define the extension of σ∗
d in G as

σ#
d ((1− s) ∗Mt + s ∗Nt) = (1− s) ∗ σ∗

d(Mt) + s ∗ σ∗
d(Nt).

This covers the part of the gap bounded by M0N0 and M1N1. For the

remaining part, we could do a “horizontal” foliation as shown in Figure 3.1.

Since the regions that are bounded by M0N0 and the part of the arc of ∂G

between a and c will be shown to converge to a point on a leaf, we omit the

details of this foliation.

• Coning construction: On the remaining gaps we do the barycentric construc-

tion. Let the barycenter c be the coning point for this kind of gap G. Again

let p be any point in G. We connect c and p by a line segment and extend it

to the boundary of G. Let the line segment touches the boundary of G at q

(see Figure 3.2). We denote the coordinate of p as (1− s) ∗ c+ s ∗ q. This

coordination is unique since the line segment joining c and q is unique. We

define the extension of σ∗ in G as

σ#
d ((1− s) ∗ c+ s ∗ q) = (1− s) ∗ σ#

d (c) + s ∗ σ∗
d(q).

11



Let (pi)i∈N be sequence of points inside a gap G converges to a point p inside G.

Case I: The gap G has fill-up construction.

Proof. We draw the line segments MtiNti through the points pi connecting the

points on the longest two sides of G with the same ti values. Similarly, we draw

the line segment MtNt through p. Since pi converges to p, MtiNti converges to

MtNt. Again since σ#
d is continuous on L∗, σ#

d (MtiNti) converges to σ#
d (MtNt). Let

pi = (1− si) ∗Mti + si ∗Nti and p = (1− s) ∗Mt + s ∗Nt, where, si, s ∈ [0, 1]. Since

(pi)i∈N converges to p, the si associated with pi converges to s associated with p on

MtNt. Therefore, si associated with σ#
d (pi) converge to s associated with σ#

d (p) on

σ#
d (Mt)σ

#
d (Nt). Thus, σ#

d (pi) converge to σ#
d (p) on σ#

d (Mt)σ
#
d (Nt). Hence, σ#

d is

continuous.

Also, let infinitely many points of pi and p lie on the regions of “horizontal” folia-

tion of G. Then since M0N0 and M1N1 map to σ#
d (M0)σ

#
d (N0) and σ#

d (M1)σ
#
d (N1)

respectively, the points σ#
d (pi) and σ#

d (p) lie on the “horizontal” foliation of σ#
d (G).

Therefore, the continuity of σ#
d follows from the facts that σ#

d (pi) is continuous on L∗

and on “vertical” foliation from one gap to its image.

Hence, σ#
d is continuous from G to its image. □

Case II: The gap G has coning construction.

Proof. Let c be the center of G. We draw line segments from c to pi and extend

them till they intersect sides of G. Let the intersection points be qi. Also, we draw a

line segment from c to p and extend it till it intersects a side of G. Let the intersection

point be q. Since pi converges to p, qi converges to q. Again since σ#
d is continuous

on L∗, σ#
d (qi) converges to σ#

d (q). Therefore, the line segments σ#
d (c)σ

#
d (qi) converge

to the line segment σ#
d (c)σ

#
d (q). Thus, σ

#
d (pi) on σ#

d (c)σ
#
d (qi) converge to σ#

d (p) on

σ#
d (c)σ

#
d (q). Hence, σ

#
d is continuous. □

Sub-step III: Third, we want to prove that σ#
d is continuous on D.

12



Let (pi)i∈N be sequence of points on D converges to a point p on D. Also, let

(pi)i∈N on different gaps (Gi)i∈N.

Case I: p is on S1 and not on a leaf.

Proof. Since p is on S1 and (pi)i∈N converges to p, the diameters of the gaps Gi

containing pi converge to 0. Consequently, the gaps entirely converge to p. Now, since

p lies on S1, σ#
d (p) also lies on S1; and the gaps σ#

d (Gi) entirely converge to σ#
d (p).

Consequently, σ#
d (pi) converges to σ#

d (p). Therefore, σ
#
d is continuous. □

Case II: p is on some leaf ab.

Sub-case I: The gaps (Gi)i∈N have fill-up construction.

Proof. We draw the line segments MtiNti through the points pi connecting the

points on the longest two sides of Gi with the same ti values. Since pi converges

to p, ti associated with MtiNti converges to t associated with p on ab. Thus, every

point on MtiNti converge to p. Again since σ#
d is continuous on L∗, ti associated with

σ#
d (MtiNti) converges to t associated with σ#

d (p) on σ#
d (a)σ

#
d (b). Therefore, every

point on σ#
d (MtiNti) converge to σ#

d (p). Consequently, σ#
d (pi) converge to σ#

d (p).

Hence, σ#
d is continuous.

Also, if infinitely many points of pi lie on the regions of “horizontal” foliation of Gi,

then they converge to one of the endpoints of ab for M0iN0i converge to a and M1iN1i

converge to b. Since σ#
d is continuous on S1, the images σ#

d (pi) of pi converge to the

corresponding endpoint of σ#
d (a)σ

#
d (b). Hence, σ

#
d is continuous. □

Sub-case II: The gaps (Gi)i∈N have coning construction.

Proof. Let ci be the centers of the gaps Gi. We draw line segments from ci to

pi on a gap Gi and extend them till they intersect sides of Gi. Let the intersection

points be qi. Since pi converges to p, the longest two sides of Gi converge to the

leaf. Therefore, the midpoints of the longest two sides of Gi converge to the midpoint

1
2
(a+ b) of ab. Consequently, the centers ci of Gi converge to 1

2
(a+ b). Again since

13



σ#
d is continuous on L∗, σ#

d (qi) converges to σ#
d (q). Therefore, the line segments

σ#
d (c)σ

#
d (qi) converge to the line segment σ#

d (c)σ
#
d (q). Thus, σ

#
d (pi) on σ#

d (c)σ
#
d (qi)

converge to σ#
d (p) on σ#

d (c)σ
#
d (q). Hence, σ

#
d is continuous. □

Sub-case III: Infinitely many points of pi lie in gaps that have fill-up construction and

infinitely many points of pi lie in gaps that have coning construction.

Proof. The continuity of σ#
d follows from applying the arguments of sub-case I

and sub-case II on these gaps. □

Step 3: In this step we want to show that σ#
d is a branched covering map. We will

show that in four sub-steps.

Sub-step I: There are finitely many branch points.

Proof. Centers of critical gaps are branch points. Since there are finitely many

critical gaps, there are finitely many branch points. □

Sub-step II: On non-branch value points the map σ#
d is d to 1.

Proof. Let (xn)n∈N → x ∈ D, and let us consider that x is not an image of a

branch point.

Case-I: x lies on the circle S1. By the virtue of σd, we know that every point on S1

has exactly d pre-images. Thus, σ#
d is d to 1.

Case-II: x ∈ L/S1.

Lemma 3.6. Let L a q-lamination with all criticality inside Fatou gaps (Hyperbolic

lamination). Let ℓ ∈ L be a non-degenerate leaf. Also, let σ#
d (ℓ1) = ℓ. Then there exists

exactly one full sibling collection {ℓ1, ℓ2, . . . , ℓd} such that σ#
d (ℓi) = ℓ ∀i ∈ {1, 2, . . . , d}.

Proof. Let ab = ℓ ∈ L be a leaf on the lamination L. Then we have d pre-images

for both the endpoints a and b of ab. Let a1, a2, . . . , ad be the pre-images of a and

14



b1, b2, . . . , bd be the pre-images of b. Also, let aibi, i = 1, 2, . . . , d be the pre-image

leaves of ab.

By the way of contradiction, suppose there is another leaf a1b2. Then the equivalence

class of a1 is the same as the equivalence class of b2. This means a1, a2, b1, b2 are all

in the same equivalence class. Thus, a1 and a2 map to the same point, which means

the class is critical. This is a contradiction because according to the hypothesis, all

criticality is inside Fatou gaps. □

As a consequence of Lemma 3.6, we have exactly d disjoint pre-images of the leaf

ab. Hence, x has exactly d pre-images, one at every leaf.

Case III: x is in a gap.

Sub-case I: x is in a regular gap.

In this case, every gap has exactly d pre-image gaps, because each leaf of the gap has

exactly d disjoint pre-images. Therefore, x has d pre-images, one at every gap.

Sub-case II: x is in an image of a critical gap.

Let x is in the gap G which is an image of a critical gap Gd, and let Gd maps to G by

k to 1. Also, Let c and cd be the centers of the gaps G and Gd respectively. We draw

the arc from c through x till it intersects with a side of G. Then we have k similar

arcs from cd to the boundary of Gd. Each of the k arcs contains a pre-image of x.

Thus, we have k pre-images of x for k to 1. Ultimately, we have d to 1 map. □

Sub-step III: σ#
d is an open map.

Lemma 3.7. If x is not a critical point, then there exists a neighbourhood of x that

maps locally one-to-one on a sufficiently small neighbourhood of σ#
d (x).

Proof. Let σ#
d (x) not be an image of a critical value point.
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Case-I: x is in the interior of a gap.

In this case, every gap has d pre-images which map one-to-one if all the pre-image gaps

are regular. Thus, we can always find a small neighbourhood of x inside every pre-

image gap that maps one-to-one to a small neighborhood of σ#
d (x) inside the image gap.

Case-II: x is on a leaf. On one side we have a gap and on the other side, we have a

limit of leaves.

In this case, if the gap is a regular gap, then we have a one-to-one mapping between

the gap and its image.

If the gap is critical, we consider the neighborhood which has a boundary arc from the

critical point to the boundary and hits the boundary before x, and another side of the

neighborhood hits the boundary of the gap after x but before the next sibling of the

first arc. Then this neighborhood maps one-to-one forward. On the other side of the

gap, there is a sequence of leaves converging to the leaf containing x. We know, σd is

one-to-one on laves. Also, the gaps between the leaves map one-to-one because their

boundaries do so. Therefore, every neighborhood around x maps forward one-to-one

on this side.

Hence, in every case, there exists a neighbourhood of x that maps locally one-to-

one. □

Theorem 3.8. Let f : X → Y be a subjective function. Then f is open if and

only if ∀{yi}i∈N → y ∈ Y , ∀x ∈ f−1(y), there exists a sequence {xi}i∈N in X such that

{xi}i∈N → x ∈ X and f(xi) = yi.

Proof. Well known. □
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We will use Lemma 3.7 and Theorem 3.8 to prove σ#
d is an open map.

Case I: yn,∀n ∈ N belong to the adjacent gap of the leaf that contains y.

Proof. Since y is not an image of a critical point, from the Lemma 3.7 we

know that ∀x ∈ f−1(y) there exists a neighbourhood of x that maps locally one-

to-one on a sufficiently small neighbourhood of y. Thus, if ∀{yi}i∈N → y in image

gaps, ∀x ∈ (σ#
d )

−1(y), there exists a sequence {xi}i∈N in pre-image gaps such that

{xi}i∈N → x in pre-image gaps and σ#
d (xi) = yi. Hence, σ

#
d is open (Theorem 3.8). □

Case II: yn,∀n ∈ N belong to different gaps.

Proof. Let y lies on the leaf ab and yn lies on the gap that has two longest

sides an−1bn−1 and anbn. Since yn → y, we have an → a and bn → b. Also, let

{x1, x2, . . . , xd} be the pre-images of y under σ#
d . Suppose one of the pre-images xd of

y lies on the leaf adbd, and pre-images of anbn are a′
nb

′
n. Since σ#

d is continuous and

anbn converge to ab, we have a′
nb

′
n converges to adbd. If possible let a′

nb
′
n converges to

adbd from one side, i.e., a
′
n → ad but b

′
n → b

′
∞. In this case, we have the leaf adb

′
∞.

This means we have a finite gap with an even number of sides whose two points map

to the same point. This a contradiction, because all criticality is inside Fatou gap.

Therefore, we must have a
′
n → ad and b

′
n → bd. Now since σ#

d is continuous and yn

converges to y, then the pre-images of yn, xn converges to xd. Thus, if ∀{yi}i∈N → y

in image gaps, ∀x ∈ (σ#
d )

−1(y), there exists a sequence {xi}i∈N in pre-image gaps such

that {xi}i∈N → x in pre-image gaps and σ#
d (xi) = yi. Hence, σ#

d is open (Theorem

3.8). □

Sub-step IV: σ#
d is evenly covering mapping.

Proof. Let y ∈ D, and y is not a critical value point. Then by Lemma 3.6, y has

d pre-images. Let the pre-images be {x1, x2, . . . , xd}. Since σ#
d is open for every open

Ui around xi,∀i ∈ {1, 2, . . . , d}, there exists an open set σ#
d (Ui) around y. From the

Lemma 3.7, we have σ#
d

∣∣∣
Ui

is one-to-one. Also, let Uy =
⋂d

i=1 σ
#
d (Ui). This is an open
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set containing y. Again let By ⊂ Uy be an open ball around y inside Uy. Now, we pull

back By inside each Ui. We call Vi = (σ#
d )

−1(By). Then Vi’s are disjoint and maps

one-to-one to By. Therefore, (σ
#
d )

−1(By) =
⋃d

i=1 Vi, which means Vy is evenly covered.

Hence, σ#
d is evenly covering mapping. □

Therefore, σ#
d is an open map which is locally homeomorphism except at finite branch

points. Hence, it is a branched covering map on D.

4. FIXED POINT PORTRAITS

Definition 4.1 (Fixed Point). We say a point x is fixed by a map f , if and only

if, f(x) = x.

Proposition 4.2. For the map σd on the circle, the fixed points are i
d−1

, where

0 ≤ i < d− 1, for i ∈ Z+.

4.1. Counting the Number of Fixed Point Portraits. Recall that we defined

the map σd in Definition 2.1. Also, recall that Proposition 4.2 states that there are

d− 1 fixed points on the boundary of S1 for σd.

Definition 4.3 (Fixed Point Portrait(FPP)). We call a partition of S1, obtained

by connecting any number of fixed points with leaves in a manner that two leaves only

meet at a fixed point, a fixed point portrait.

Example 4.4. Each of the following is a fixed point portrait for σ6. (see Figure

4.1)

Definition 4.5. We call a sector of D bounded by fixed leaves and arcs of S1 a

fixed sector and a polygon inside D bounded by fixed leaves a fixed region.

Theorem 4.6 (Counting Theorem). The number of fixed point portraits for σd

are the Catalan numbers (2n)!
(n+1)!(n)!

, where n = d− 1, the number of fixed points of σd.
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Figure 4.1. Examples of fixed point portraits for σ6

Proof. Let d ≥ 2. By Proposition 4.2, the map σd has d − 1 fixed points

{0, 1, . . . , n− 1}. We will show the number of fixed point portraits satisfies the

recurrence relation of Catalan numbers.

The Catalan numbers are defined by the recurrence

C0 = 1

and

Cn+1 =
n∑

i=0

CiCn−i

for n ≥ 0.

By way of induction, let f(n) be the number of fixed point portraits for σd using

the fixed points {0, 1, . . . , n− 1}. We need to show f(n) satisfies the above recurrence

relation.

We define, f(0) = 1.

Now, consider a portrait for σd+1 using fixed points {0, 1, . . . , n} that contains n.

Also, let k be the least fixed point in this portrait, i.e., k and n are connected and

no fixed points of {0, 1, . . . , k − 1} is connected with any fixed points of {k, . . . , n}.

Therefore, {0, 1, . . . , k − 1} can form portraits on their own and from the induction

hypothesis, there are f(k) such portraits. Also, there are (n− k+1) fixed points from

k to n. All of these fixed points lie on the arc of the circle that is bounded by the

chord kn. Therefore, any portraits among {k, . . . , n} will not cross the the chord kn.

Furthermore, since k and n are already connected there are (n− k) fixed points to
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form portraits from k to n. See Figure 4.2. Hence, by the induction hypothesis, there

are f(n− k) portraits.

Figure 4.2. A fixed point portrait for σ6 that partitions D into two
lower degree fixed point portraits.

Now, the set {0, . . . , n} has (n+ 1) fixed points and k ranges ranges from 0 to n.

Thus we have,

f(n+ 1) =
n∑

k=0

f(k)f(n− k)

Therefore, by induction, we can conclude that the number of fixed point portraits of

σd satisfies the recurrence relation of the Catalan numbers. □

5. CANONICAL LAMINATIONS FOR FIXED POINT PORTRAITS

5.1. Critical Portraits for Fixed Point Portraits.

Definition 5.1 (Degree of a fixed region). The degree of a fixed region is the

cardinality of the maximal number of disjoint critical chords that is compatible with

the region.

Theorem 5.2. The degree of a fixed region is the number of arcs of the circle S1

between the adjacent fixed points in the boundary of that region.

Proof. Each arc between two adjacent fixed points can contain only one critical

chord. □
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Definition 5.3 (Canonical Critical Portrait for Fixed Point Portrait). Let P

be a fixed point portrait. For each fixed sector in P a maximal all-critical polygon

that touches a fixed point in the boundary of that sector is called a canonical critical

portrait.

In the next theorem, we will show that it does not matter which fixed point in a

given fixed sector the all-critical polygon touches.

Theorem 5.4. There are infinitely many critical portraits compatible with the

initial data of leaves connecting fixed points but there are finitely many critical portraits

that are canonical, i.e., touch the fixed points.

Proof. For a d-tupling map there are d − 1 fixed points on S1, and the fixed

points are i
d−1

where, 0 ≤ i ≤ d− 1, and the length of each critical chord is i
d
where,

1 ≤ i ≤ d
2
. First, we consider a critical sector bounded by a fixed leaf connecting two

consecutive fixed points. Here, the distance between two successive fixed points is

1
d−1

. On the other hand, the length of the critical chord in this sector is 1
d
. Thus, the

maximum distance between a fixed point and the endpoint of the critical chord is

1
d−1

− 1
d
= 1

d(d−1)
, so that the critical chord doesn’t leave the sector. But since [0, 1) is

complete, there are infinitely many points in this distance (see Figure 5.1). Therefore,

we have infinitely many choices for the endpoints of the critical chord, and different

endpoints correspond to different critical chords.

Now, we consider a critical sector bounded by a fixed leaf connecting two fixed

points leaving a fixed point in the middle. Then the distance between the end-fixed

points is 2
d−1

. This sector can contain a critical triangle whose longest side is 2
d
. Thus,

the maximum distance between an end-fixed point and the next vertex point of the

critical triangle is 2
d−1

− 2
d
= 2

d(d−1)
, so that the all-critical triangle doesn’t leave the

sector. Similarly, if a critical sector can contain an n-sided all-critical polygon then

the maximum distance between an end-fixed point and the next vertex point of the

all-critical polygon is n−1
d(d−1)

. Therefore, according to the previous argument we have
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Figure 5.1. Finitely many canonical portraits

infinitely many choices for the vertices of the all-critical polygon. Hence, there are

infinitely many critical portraits compatible with a given fixed point portrait.

However, if we restrict an all-critical polygon must touch any of the fixed points in

its sector then we have a finite number of choices for the vertices of the all-critical

polygon because for a finite d we have a finite number of fixed points. Therefore,

every critical sector of a fixed point portrait has a finite number of the all-critical

polygon. Hence, we will get finitely many canonical portraits for a given fixed point

portrait. □

Theorem 5.5. Canonical critical portraits compatible with a given fixed point

portrait result in the same sibling portrait in the first pullback.

Proof. Suppose for a fixed d, we are given a fixed point portrait. We shall show

that every canonical critical portrait compatible with this given fixed point portrait

results in the same sibling portrait in the first pullback. By Proposition 4.2, the map

σd has d− 1 fixed points on S1 and their pre-images as points are invariant. Also, each

of the d− 1 fixed points pullbacks to d pre-images separated evenly on S1, one of them

the fixed point itself. Since fixed points on S1 are separated evenly and pre-images of

individual fixed points are also separated evenly on S1, between any two consecutive

pre-images of a fixed point there is exactly one pre-image of all other fixed points.

22



First, we consider a simple case where the fixed point portrait is just a leaf connect-

ing any two consecutive fixed points. Then the canonical critical portrait compatible

with this fixed point portrait will consist of a critical chord and an all-critical (d− 1)-

gon. The chord lies in the smaller critical sector of S1 bounded by the fixed leaf, and

one of its ends touches one of the two fixed points (see Figure 5.2). Therefore, the

critical chord will connect the fixed endpoint and the adjacent pre-image of that fixed

point in this sector in the first pullback. The (d − 1)-gon lies on the other critical

sector of S1 and one of its vertices touches one of the (d − 1) fixed points in this

sector. Therefore, the sides of the (d− 1)-gon will connect the adjacent pre-images

of the vertex fixed point starting from the vertex fixed point itself. We call these

segments of S1 bounded by the critical chord and by the sides of the (d− 1)-gon as

critical intervals. As we have seen earlier every critical interval contains pre-images

of each fixed point exactly once except for the touching fixed point, which has two

pre-images in every interval. Now, in the critical interval bounded by the critical

Figure 5.2. First pullback lamination results in the same sibling
portrait

chord, the pullback of the fixed leaf will connect the pre-image of the fixed point

where one end of the critical chord touches, which is basically the other end of the

critical chord, with the pre-image of the non-touching fixed point in this interval.

We can observe that this is the only option to pullback the fixed leaf in this sector
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of S1. Thus, if we change the touching fixed point of the critical chord, it wouldn’t

affect the pullback leaf and the leaf will remain the same. In the critical intervals

bounded by the sides of the (d− 1)-gon, since we have exactly one pre-image of each

fixed point except for the touching fixed point, which has two pre-images, we have

exactly one option to pullback the fixed leaf in every interval if neither of the fixed

points of the pullback leaf is the touching fixed point of the critical d-gon. If one

of the fixed points is the touching fixed point then we have two pre-images of that

fixed point to pullback the fixed leaf. In this case, the critical interval where the

(d− 1)-gon touches the fixed point connecting the fixed leaf, there is only one option

to pullback the fixed leaf because the pullbacks are disjoint. One fixed point cannot

be used for two pullbacks. Consequently, every other interval will have exactly one

option to pullback the fixed leaf. Now in a critical interval, the distance between

two endpoints is 1
d
. And since our fixed leaf connects two adjacent fixed points the

length of the pullback leaf will be 1
d(d−1)

. Also, the maximum distance between two

pre-images of two different fixed points in a critical sector is 1
d
− 1

d(d−1)
. We have,

1
d
= 1

d
− 1

d(d−1)
+ 1

d(d−1)
. Thus, if we change the touching fixed point of the critical

(d−1)-gon the fixed points of the pullback leaves will remain on the same critical inter-

val. Moreover, since the pullback leaves are unique in every interval, the change will not

affect the pullback leaves and they will remain the same. Therefore, we can conclude

that we will have the same sibling irrespective of the choices of the touching fixed point.

Now, since we have the same sibling portrait in the first pullback and the branches

of inverse are also fixed, we will have the same sibling portrait in every pullback.

Therefore, the lamination is canonical. □

Algorithm for counting the number of canonical critical portraits compatible with

some fixed point portrait for a given d.

To count the number of canonical critical portraits compatible with some fixed

point portrait we need to find the number of fixed points in every critical sector
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described by the fixed point portrait. If a given sector has n fixed points, then the

component of the canonical critical portrait will be an n-gon in that sector. This n-gon

can touch any of the n fixed points in that sector, and the touching of different fixed

points corresponds to components of different canonical portraits. Also, components

of critical portraits in each sector are independent of components of critical portraits

in other sectors. Now, every canonical critical portrait has exactly one component

in each critical sector, so the total number of critical portraits is the combination

of components from each critical sector. Since each sector is independent, the total

number of critical portraits is the product of the number of components from each

sector.

5.2. Canonical Laminations for Fixed Point Portraits.

Definition 5.6 (Canonical Laminations for Fixed Point Portrait). Let P be a

fixed point portrait. Choose for each fixed sector in P a maximal all-critical polygon

touching a fixed point in the boundary of that sector. Then the pullback lamination

L with respect to the chosen critical portrait is the canonical lamination for P (see

Figure 5.3).

It follows from Theorems 2.15 and 5.5 that Definition 5.6 is well-defined. That is

it does not matter which canonical critical portrait is used in the pullback scheme.

See Figure 5.2.

Figure 5.3. Canonical lamination for σ5 with two fixed leaves.
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Theorem 5.7 (Properties of Canonical Fixed Point Lamination). Let P be a fixed

point portrait and L be its canonical pullback lamination. Then L has the following

properties:

(1) Every pullback leaf is a preimage of a leaf of P.

(2) Pullback leaves converge to points of S1.

(3) There are no limit leaves.

(4) Every fixed sector contains a unique invariant critical Fatou gap whose center

is a fixed point.

(5) The boundary leaves of the Fatou gap are preimages of boundary leaves of that

fixed sector.

Proof. (1) Every point on S1 for the pullback lamination L is a pre-image of the

endpoints of the leaves of P . So in L, if we connect two pre-images of two endpoints

of a leaf of P by a leaf, then this leaf in L maps forward to the corresponding leaf of

P . Therefore, every pullback leaf is a pre-image of a leaf of P .

(2) Let L′
be a canonical lamination of the fixed point portrait P, i.e., L′

touches

some fixed points of P. We know, for a d-tupling map there are d − 1 fixed points

with lengths i
d−1

where, 0 ≤ i ≤ d − 1, and the length of each critical chord is i
d

where, 1 ≤ i ≤ d
2
. Each of the critical sectors maps one-to-one onto S1. Thus, the

first pullback lamination L contains pre-images of every fixed leaf in every critical

sector. Since the pre-image leaves map forward under σd to a fixed leaf of length 1
d
,

the length of the pullback leaves become 1
d(d−1)

. Similarly, the second pullback leaves

map forward to the first pullback leaves. So the length of the second pullback leaves

becomes 1
d2(d−1)

. Consequently, after n pullbacks, the length becomes 1
dn(d−1)

. Since

d > 1, the length converges to 0. Hence, pullback leaves converge to points of S1.

(3) Since from (2) we have pullback leaves converge to points, there are no limit leaves.
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(4) Existence: Let F be a fixed sector for P. Let the degree of the sector F be n.

Then, there is an all-critical n-gon, touching one of the fixed points on the boundary

of F , which is compatible with F . Now, the chords of the all-critical polygon describe

critical sectors on F . So, when we pull back each of the critical sectors has a pre-image

of every fixed point inside it, because the critical sectors map one-to-one onto S1

except at the endpoints. If we connect pre-images of the fixed points by leaves in

accordance with the initial fixed leaves of P , without crossing the lamination, we will

get a pre-image of every fixed leaf inside F in the first pullback. Since the pullback of

the fixed points preserves counterclockwise circular order, the other leaves that are

not boundary leaves of F will be subtended by the boundary leaves of F . The arcs of

S1 subtended by these leaves map outside of F . In the second pullback, we will get

pre-images of the first pullback leaves on the remaining part of F . Again the arcs of

S1 subtended by these leaves maps outside of F . If we go on infinitely, we will have

an infinite gap in F that is invariant which is by 2.11 a Fatou gap.

Uniqueness: Suppose there are two invariant Fatou gaps G and H. Since the gaps

are invariant, they have to have fixed leaves or fixed points in their boundary. If the

two gaps share a common fixed leaf, then it contradicts the fact that they are both

in the same fixed sector F . If they share a common fixed point, the point is either

a vertex of a fixed region between the two gaps, which again contradicts the fact

that they are in the same fixed sector F . And if the fixed point is just a point then

G andH are the same invariant Fatou gap. Thus, we have only one invariant Fatou gap.

(5) From (4) we have seen that in the first pullback inside F , the pullback leaves

that are not the boundary leaves of F are subtended by the boundary leaves of F .

Again, since pre-images of the fixed points preserve circular order in every pullback

and we connect the pre-images at each stage of pullback to draw leaves the same
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thing happens at every pullback. Therefore, the boundary leaves of the Fatou gap are

pre-images of the boundary leaves of that fixed sector. □

5.3. Fixed Points in a Lamination. Every lamination of degree d is supposed

to correspond to a polynomial of degree d. Every polynomial of degree d has d fixed

points. But on the boundary of S1 we have exactly d − 1 fixed points. If in the

lamination two fixed points are joined by a leaf, then in the corresponding Julia set

this will be a multiple fixed point. In Figure 6.1 four peripheral fixed points in the

lamination have become two multiple fixed points in the Julia set. But there is an

attractive fixed point in each invariant Fatou gap as in Theorem 5.7. In this subsection,

we will show that there exists a unique fixed point in the interior of every fixed sector

using the Brouwer fixed point theorem.

Proposition 5.8. Let G be an invariant Fatou gap in a hyperbolic lamination.

Then G is critical.

Proof. Since in a hyperbolic lamination, a Fatou gap is infinite, This follows

immediately from 2.11. □

Figure 5.4. Left to right cases I, II and III of Theorem 5.9

Theorem 5.9. Let L be a hyperbolic lamination containing a particular FPP P.

In each fixed sector of P there is a fixed object of one of the following types:

(1) The fixed point is the center of an invariant Fatou gap.
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(2) The fixed object is a rotational polygon.

Moreover, the canonical fixed point lamination for P is a sub-lamination of L.

Proof. Let F be a fixed sector P .

Case I: No fixed point or fixed leaf of F is subtended by the leaves of the lamination

(see leftmost picture of Figure 5.4).

Existence: In this case, every fixed object is on the boundary of a fixed critical gap.

As we have defined σ#
d , the center of this invariant critical Fatou gap is fixed.

Uniqueness: Since every fixed object is on the boundary of an invariant Fatou gap,

the lamination in F is canonical as in 5.6. Therefore, sector F contains a unique fixed

point.

Therefore, we have a fixed point in the fixed object F , which is the center of an

invariant Fatou gap.

Case II: Every fixed object of F is subtended by leaves of the lamination (see middle

picture of Figure 5.4).

Existence: For each fixed object, we pick a sufficiently close leaf l of the lamination

L. So that l is repelled from the fixed object, but the image of l remains in the fixed

sector F . Let D̃ ⊂ F be the disk with our chosen leaves and the portions of S1 that

are not subtended by these leaves as the boundary of it. Now, we slide every point of

D/D̃ to the nearest point of the boundary of D̃ by a retraction mapping r. Therefore,

D̃ is a retract of D, and we have, r(σ#
d (D̃)) ⊂ D̃. We can observe that D̃ does not

contain any fixed point under σ#
d . But since D̃ ⊂ D, σ#

d must be continuous on from

D̃ to D̃. Therefore, Brouwer’s fixed point theorem shows at least one fixed point exists

on D̃. However, these fixed points can not occur on D̃ ∩ S1, so they must occur inside
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F as D̃ ⊂ F .

Uniqueness: In a lamination, each invariant object, not a point on S1, is either a leaf

or a gap. Also, if it is a gap, then by Theorem 2.11 either it is a polygon or a critical

Fatou gap. In this case, all of the fixed objects are subtended by the leaves of the

lamination. So, there is no invariant Fatou gap. Thus, the fixed objects are either in a

leaf or in a polygon. Now, if we have two or more rotational objects, a combination of

leaf and/or polygon, they must be separated by some critical sector of L with rotation

number zero by Theorem 2.12. Therefore, they do not lie on a single fixed sector F .

Hence, the fixed object in F is unique.

Case III: Some fixed objects of F are subtended by leaves of the lamination, and

some are not (see rightmost picture of Figure 5.4). As in case I, the fixed objects not

subtended by the leaves of the lamination are on the boundary of an invariant critical

gap. As we have defined σ#
d , the center of this invariant critical Fatou gap is fixed.

Uniqueness: Suppose there are two invariant Fatou gaps G and H. Since the gaps

are invariant, they have to have fixed leaves or fixed points in their boundary. If the

two gaps share a common fixed leaf then it contradicts the fact that they are both

in the same fixed sector F . If they share a common fixed point, the point is either

a vertex of a fixed region between the two gaps, which again contradicts the fact

that they are in the same fixed sector F , or the fixed point is just a point then G

andH are the same invariant Fatou gap. Thus, we have only one invariant Fatou gapG.

If there were another fixed object, it is either a rotational polygon or a leaf. But it

can not be on the boundary of G, because G is invariant. Then it has to be in a

different critical sector other than G. So, there is another critical gap say G
′
between

G and the rotational object that shares boundaries with the rotational object and
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with the invariant gap G. Since it shares a boundary with the rotational object, it is

not invariant. Again since it shares a boundary with G, it contradicts the invariance

of G. Therefore, there can not be another fixed object other than G.

From Theorem 5.7, we have the fixed leaves of the fixed point portraits and their

pullbacks are in the lamination, and they converge only to points of S1. Therefore,

fixed leaves, their pullbacks and S1 are a closed sub-lamination of L. □

6. CONTINUING AND FUTURE WORK

We can extend our work to realize canonical fixed point portrait laminations as

polynomial Julia sets. The step of extending σd to the disk D is a step in that direction

of getting a topological polynomial to which we can apply Thurston’s criterion for the

existence of polynomial with our lamination, and therefore the existence of Julia sets

corresponding to that polynomial. For example, the followings are some of the fixed

point portraits for σ5 and their corresponding Julia sets.

Figure 6.1. This is the fixed point portrait with two fixed leaves, one
from 0 to 1 and another from 2 to 3 and the corresponding Julia set
[1].

In the paper [6], the authors studied the correspondence between unicritical and

maximally critical rotational sets. Combining that with the fixed point portrait we

are working on [1] to study the relationship between locally unicritical and maximally

locally critical rotational sets.
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Figure 6.2. This is the fixed point portrait with a fixed triangle
connecting 1, 2, and 3 and the corresponding Julia set [1].

If we want to explore further, we can study how fixed point portraits help us to

understand the structure of the parameter space for degree d polynomials.
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