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ADOLESCENT ALCOHOL, TOBACCO, AND MARIJUANA USE AND DNA 

METHYLATION IN YOUNG ADULTHOOD 
 

KRISTINA BROOKE MCMAHAN 

MEDICAL/CLINICAL PSYCHOLOGY 

ABSTRACT 

 Substance use, including the use of tobacco, alcohol, marijuana, and other drugs, 

is most likely to begin during adolescence or emerging adulthood. Substance use during 

these developmental periods has been linked with a number of negative physical, mental, 

and cognitive health outcomes. Some of these long-term negative effects of substance use 

during adolescence and emerging adulthood may be explained by epigenetic changes 

through a process called DNA methylation. However, much of the research on substance 

use and DNA methylation has focused on prenatal drug exposure and its relationship to 

differential methylation profiles during childhood and young adulthood. By contrast, little 

is known about the epigenetic impact of substance use during adolescence. The present 

study examined the associations between DNA methylation and alcohol, tobacco, and 

marijuana use during early adolescence and young adulthood. The analyses focused on 

three genes, AHRR, NR2B, and COMT, because their methylation has been implicated 

with substance use. Participants included 290 young adults from the Birmingham Youth 

Violence Study who also provided data in early adolescence (Mage = 13.1), late 

adolescence (Mage = 17.6), and young adulthood (Mage = 27.4). Analyses included 60% 

females, 82% minorities primarily consisting of African Americans, and 18% European 

Americans. Substance use was self-reported at each developmental period. DNA 

methylation beta values were measured with salivary DNA in young adulthood and 

averaged for each gene. The relationships between alcohol, tobacco, and marijuana use 
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and DNA methylation were tested using multivariate regressions, adjusting for sex, 

ethnicity, smoking history during late adolescence and early adulthood, and age in young 

adulthood. The delta R2 values when the alcohol, tobacco, or marijuana use were added in 

the model ranged from 0.00 to 0.02, all p > 0.05. Moreover, in the combined substance 

use models, the combination of tobacco, alcohol, and marijuana use did not significantly 

affect R2 in any model (p < 0.05). 
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Introduction 

 Substance use, including the use of tobacco, alcohol, marijuana, and other drugs, 

is most likely to begin during adolescence or emerging adulthood (Johnston et al., 2013; 

Poudel & Gautam, 2017). Substance use during these developmental periods has been 

linked with a number of negative physical, mental, and cognitive health outcomes, 

including substance use disorders, memory impairment, reduced pulmonary function, 

increased rate of obesity, general impairment of the Central Nervous System, and 

increased risk of psychosis (Doherty et al., 2009; Lubman et al., 2015; Tomas-Roig et al., 

2017). Some of these long-term negative effects of substance use during adolescence and 

emerging adulthood may be explained by epigenetic changes through a process called 

DNA methylation, which may lead to changes in DNA expression (Prince et al., 2019; 

Sakharkar et al., 2019;). However, much of the research on substance use and DNA 

methylation has focused on prenatal drug exposure and its relationship to differential 

methylation profiles during childhood and young adulthood (Cecil et al., 2016; Knopik et 

al., 2012; Lee et al., 2015). By contrast, little is known about the epigenetic impact of 

substance use during adolescence. The present study examined the associations of 

alcohol, tobacco, and marijuana use during early adolescence and DNA methylation in 

young adulthood. The analyses focused on three genes, AHRR, NR2B, and COMT, 

because their methylation has been implicated with substance use (Gitik et al., 2018; 

Philibert et al., 2013; Ruggeri et al., 2015 Schrott et al., 2020).  
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Adolescent Substance Use 

 Adolescent substance use is very common in the United States, with reports 

estimating that up to 60% of adolescents aged 12-17 have tried tobacco, alcohol, or illicit 

drugs (SAMHSA, 2018; YBRS, 2018). Lifetime prevalence rates of tobacco, alcohol, and 

illicit substance use in adolescents are estimated at 29%, 60%, and 36%, respectively 

(Merikangas et al., 2010; YBRS, 2018). Evidence also suggests that adolescents often use 

multiple substances concurrently (Purcell et al., 2021; Tomcyzk et al., 2016). Substance 

use during adolescence is linked to multiple sociodemographic factors, including age, 

sex, race, and socioeconomic status (SES). Specifically, males demonstrate higher rates 

of use and substance use disorders compared to females (Chen & Jacobson, 2012; Lipari, 

2013; NSDUH, 2013). Regarding racial/ethnic differences, Hispanic youth have higher 

rates of alcohol and marijuana use in early adolescence, whereas Caucasian youth have 

higher rates of substance use in middle and late adolescence compared to Hispanic and 

African American youth (Benner & Wang, 2015; Chen & Jacobson, 2012; Ensiminger et 

al., 2016). Finally, adolescents from higher SES backgrounds are more likely to engage 

in alcohol and illicit substance use, whereas adolescents from lower SES backgrounds are 

more likely to smoke (Andrabi et al., 2017; Leventha et al., 2015).  

Substance Use and DNA Methylation 

The use of addictive substances may induce epigenetic modifications in the brain, 

leading to changes in reward behavior, psychomotor ambulation, and drug craving 

(Nielson et al., 2012). Epigenetics is defined as the modification of gene expression in 

response to environmental influences without altering the underlying DNA sequence 

(Busslinger & Tarakhovsky, 2014; Ecker et al., 2018; Pinel et al, 2018; Wen et al., 2016). 
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Epigenetic modification can result from multiple mechanisms, including DNA 

methylation, acetylation, phosphorylation, micro RNAs, histone modification, and 

chromatin accessibility (Duncan et al., 2014). The most studied form of epigenetics is 

DNA methylation, which broadly involves the insertion or elimination of a methyl group 

(CH3), typically where consecutive cytosine bases are present (Seong et al., 2011). DNA 

methylation is part of central regulatory functions to ensure normal cellular processes, 

contributing to overall conventional development and variation of cell tissues (Gertz et 

al., 2012; Herb et al., 2012). DNA methylation begins with the DNA methyltransferase 

group (DNMT-1, -3a and -3b) moving a methyl group from the S-adenosylmethionine 

(SAM) to unmethylated cytosine-phosphate-guanine (CpG) sites (Jones et al., 2012). 

These alterations can occur in different parts of genes, including promoters, exons, and 

introns (Jones et al., 2012). The DNMT family are key enzymes in DNA methylation that 

block the splicing process from RNA polymerase II and transcription factors (Maunakea 

et al., 2013). Specifically, DNMT-1 copies methylation patterns from a parent strand of 

DNA, which helps retain the DNA methylation pattern throughout replication of daughter 

cells (Unternaehrer et al., 2015). Furthermore, DNMT-3a and -3b work together to 

generate new DNA methylation marks by methylating unmethylated CpG sites 

(Unternaehrer et al., 2015).   

Animals who are given drugs such as alcohol, tobacco, and marijuana at various 

developmental periods demonstrate differences in DNA methylation (Cecil et al., 2015). 

Experimental animal studies have shown that prenatal substance use causes alterations in 

DNA methylation of the hypothalamic pituitary axis (Gangisetty et al., 2014; Govorko et 

al., 2012). For example, male rodents given alcohol prenatally showed hypomethylation 



4 
 

within the ventral tegmental area in the Dlk1 gene, hypomethylation of the hypothalamic 

proopiomelanocortin gene (Pomc), and decreased DNA methylation along the promoter 

of the BNDF gene in their germ cells (Bekdash et al., 2013; Finegersh & Homanics, 

2014). In turn, these alcohol-induced alterations in DNA methylation can affect gene 

expression within reward seeking regions of the brain (e.g., hypothalamus), as well as 

memory consolidation regions (e.g., hippocampus), which can lead to long-term neural 

changes underlying onset and perseverance of learning disabilities, addiction, and 

perpetuation of the hypothalamic-pituitary-adrenal (HPA) axis dysfunction (Gangisetty et 

al., 2014; Itzhak et al., 2014; Moore et al., 2012; Nestler, 2014).  

In humans, the use of drugs such as alcohol, tobacco, marijuana, and opioids 

during multiple developmental periods is also associated with differential patterns of 

DNA methylation (Bick et al., 2012; Cadet, 2016; Cecil et al., 2015; Harlaar & 

Hutchinson, 2013). Specifically, some studies have found hypermethylation in the 

leukocyte cells of former opioid users and individuals using alcohol in a specific protein 

coding gene (OPRM1), known for mediating drug-produced stimulation of reward 

pathways related to opioid use (Doehring et al., 2013; Zhang et al., 2012). Much of past 

research on substance use and epigenetic modifications has focused on the effects of 

alcohol and tobacco use during prenatal development and adolescence, with minimal 

attention to marijuana use (Gartstein & Skinner, 2018; Hamilton & Nestler, 2019; Suter 

et al., 2011). It is important to identify specific epigenetic modifications related to each 

substance, including marijuana. In particular, epigenetic changes may help explain the 

development of cognitive deficits associated with marijuana use, including poorer 

performance on verbal intelligence, response inhibition, and spatial working memory 
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tasks (Grant et al., 2012; Nader et al., 2018; Pope Jr et al., 2002; Pope Jr et al., 2003). 

Long-term marijuana use during adolescence appears to result in reduced Gamma 

Aminobutyric Acid (GABA) levels in adulthood, increased risk of psychosis, deficits in 

memory, and increased social withdrawal (Anglin et al., 2012; Zamberletti et al., 2014). 

Thus, the following sections review existing research on the relationships between the 

use of alcohol, tobacco, and marijuana across various developmental periods and DNA 

methylation in both animals and humans. 

Alcohol 

 Alcohol is the most widely studied substance regarding DNA methylation, with 

most epigenome-wide examinations finding alterations in several genes in relation to 

alcohol use or exposure during prenatal, adolescent, and adult stages of development 

(Cecil et al., 2015). Epigenetic changes are found as early as in prenatal exposure to 

alcohol, with some animal studies suggesting that prenatal alcohol exposure leads to 

altered methylation and gene expression throughout oxidative stress pathways within the 

hippocampus that last into adulthood (Chater-Diehl et al., 2016; Chen et al., 2013; 

Kleiber et al., 2013; Popva et al., 2017). Other animal studies found that prenatal alcohol 

exposure results in greater Pomc methylation in a rodent hypothalamus, which is 

hypothesized to decrease gene expression (Bekdash et al., 2013; Govorko et al, 2012). 

Although little research has focused on prenatal alcohol exposure and DNA methylation 

in humans, several studies have shown increased methylation in protocadherin genes, 

specifically PCDHB18, in children who were prenatally exposed to alcohol (Laufer et al., 

2015; Laufer et al., 2017). 
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Alcohol use in adolescence can also lead to lasting epigenetic changes (Chater-

Diehl et al., 2016). Many animal studies have demonstrated that alcohol use during the 

adolescent period can lead to alterations in DNA methylation within the amygdala and 

hippocampus (Sakharkar et al., 2019). For example, adolescent rats who were given 

alcohol showed a decrease in mRNA and protein levels of lysine demethylase (Lsd1) in 

specific structures within the amygdala (Kyzar et al., 2017). It is theorized that these 

changes may increase behavioral anxiety phenotypes and alcohol use in adulthood 

(Sakharkar et al., 2019). Binge-like exposure to alcohol in rats during adolescence was 

also associated with hypermethylation of the catechol-O-methyltransferase (COMT) 

promoter, disrupting dopaminergic and GABAergic transmission in the medial prefrontal 

cortex during adulthood (Trantham-Davidson et al., 2016). 

Moderate and excessive alcohol use in adulthood among humans and animals has 

been linked with differential DNA methylation in the glutamate receptor gene (NR2B), 

sodium transporter gene (SLC5A6), and TLR-pathway genes in the liver (Khachatoorian 

et al., 2013; Qiang et al., 2015; Srinivasan et al., 2014). Studies with adult rats who were 

fed alcohol showed a global DNA hypomethylation and reduced methylation in the C-

myc gene, which has been linked with the development of hepatocellular carcinoma 

(Hamid et al., 2009; Lu et al., 2000; Similie et al., 1994). Among both human and animal 

adults, excessive alcohol use causes global hypomethylation of DNA due to alcohol’s 

ability to inhibit DNA methyltransferases (DNMTs), and these changes are linked to 

alcoholic liver disease (Medici & Halsted, 2013; Zakhari, 2013). Furthermore, collection 

of human cells revealed that alcohol consumption in adults is related to epigenetic 

changes similar to those observed in mice with glioblastoma cancer, specifically 
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hypomethylation of the Dnmt1 gene (Hegi et al., 2005; Hervouet et al., 2010; Holland et 

al., 2000).  

Tobacco 

 Tobacco use and exposure throughout different developmental periods, ranging 

from prenatal to adolescence and adulthood, is related to changes in methylation 

throughout the body but especially in the respiratory system (Breitlin, 2013; Gao et al., 

2016; Wu et al., 2019). Animal studies found that prenatal tobacco exposure leads to 

hypomethylation in genetic loci such as the Cyp1a1, which plays a role in lung 

inflammation (Chen et al., 2017; Suter et al., 2010). Human prenatal exposure to maternal 

smoking is associated with higher levels of DNA methylation in the brain-derived 

neurotropic factor (BDNF) gene, specifically the BDNF-6 exon, during adolescence, 

potentially leading to long-term alterations in brain development and plasticity (Toledo-

Rodriguez et al., 2010).   

Rodent studies revealed that tobacco use in adolescence led to disruption of 

typical DNA methylation of the Smarca2 and Bahcc1 genes (Gitik et al., 2018). In 

humans, adolescent tobacco use was linked with increased DNA methylation at the aryl 

hydrocarbon receptor repressor (AHRR) and growth factor independent 1 transcriptional 

repressor genes (GFI1) (Philibert et al., 2012; Prince et al., 2019). Additionally, current 

adolescent smokers showed a decrease in DNA methylation at various CpG sites 

compared to adolescents classified as non-smokers (Han et al., 2019). Finally, 

longitudinal studies found an association between tobacco smoking in early adolescence 

and greater methylation of the RASSF1A gene in adulthood, which increases the risk of 

lung cancer (Marsit et al., 2005; Reuben et al., 2020). Furthermore, smokers who began 
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smoking before they were 19 years old were approximately four times more likely to 

exhibit hypermethylation of the RASSF1A gene compared to smokers who started 

smoking after age 19 (Kim et al., 2003).  

Tobacco use in early to mid-adulthood also appears to lead to lasting DNA 

methylation effects that persist for the remainder of the lifespan (Anderson et al., 2021). 

Studies with mice revealed that nicotine use in adulthood induces methylation in the 

following genes, Ash2l, Chsy3, Zcchc11, Cep192, Tmem107, and D2 receptor (Jung et al., 

2016; McCarthy et al., 2018). Additionally, tobacco using human adults show 

hypomethylation in some genes, like the AHRR gene known for aiding in tumor 

suppression, compared to non-smoking human adults (Anderson et al., 2021; Gao et al., 

2016). Furthermore, tobacco exposure in adulthood has been linked with lower levels of 

methylation in genes associated with overweight (AVPR1B), development of 

schizophrenia, autism, and depression (CNTNAP2), and development of diabetes 

(KCNQ1) (Alarcón et al., 2008; Enhörning et al., 2016; Gao et al., 2016; Yasuda et al., 

2008). 

Marijuana 

 While research on marijuana use and DNA methylation is limited, studies suggest 

that early use and exposure to marijuana and higher frequency of marijuana use are 

associated with changes in DNA methylation which may result in cognitive deficits 

(Becker et al., 2010; Fontes et al., 2011; Gerra et al., 2018; Meier et al., 2012). Animal 

studies found hypomethylation of the Dlgap2 gene in male rodent sperm following 

marijuana exposure (Schrott et al., 2020). Additionally, prenatal marijuana exposure is 

related to decreased DNA methylation in the dopamine receptor D2 (DRD2) gene in the 
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human ventral striatum (Le Fol et al., 2009), with disrupted methylation of the DRD2 

gene being linked to higher addiction risk (Dinieri et al., 2011).  

Research focused on DNA methylation and marijuana use in adolescence is quite 

limited and requires more investigation. Rodent studies found that marijuana use in 

adolescence resulted in increased DNA methylation in the Glua1 gene in the Prefrontal 

Cortex (PFC) (Rubino et al., 2015). Some research with human adolescents suggested an 

association between marijuana smoking status and DNA methylation of the catechol-O-

methyltransferase (COMT) gene, with non-daily marijuana smokers exhibiting higher 

levels of methylation than non-smokers and daily smokers (Caspi et al., 2005; Van Der 

Knaap et al., 2014). Differential methylation of the COMT gene has also been linked with 

alcohol use (Van Der Knaap et al., 2014; Trantham-Davidson et al., 2016), suggesting 

that methylation in some genes may be affected by multiple psychoactive substances. 

 Marijuana use in adulthood has also been linked to DNA methylation of the 

CRN1 gene and cannabinoid receptor genes CB1 and CB2 (Gerra et al., 2018). Marijuana 

use in adult rodents leads to hypermethylation of the Dlgap2, Drd2, and Ncam1 genes, 

which are associated with cancer, substance abuse diagnosis, and other mental health 

diagnoses such as schizophrenia (Gerra et al., 2018; Schrott et al., 2020). Rodents with 

methylated changes in the Dlgap2 gene exhibit socially dysfunctional behaviors, 

including aggression (Jiang-Xie et al., 2014). Moreover, differential methylation of the 

NCAM1 gene affects synaptic plasticity, neurodevelopment, and neurogenesis and has 

been associated with a diagnosis of schizophrenia or bipolar disorder (Atz et al., 2007; 

Sullivan et al., 2007). The DRD2 gene encodes a dopamine receptor related to alcohol 

dependence, which may modulate cognitive processes within the prefrontal cortex 



10 
 

(Rinaldi et al., 2007). Finally, research suggests that adult human marijuana use is related 

to increased DNA methylation in keratin (KRT) 1 and 10 genes, as well as the 

transglutaminase 5 (TGM5) gene (Paradisi et al., 2007; Rotter et al., 2012).  

Present Study 

 As reviewed above, previous research has shown robust associations between 

DNA methylation and substance use across multiple developmental periods in both 

animal models and humans. However, few studies have focused on long-term 

methylation changes resulting from adolescent alcohol, tobacco, or marijuana use in 

humans. Substance use in adolescence appears to produce longstanding cognitive and 

behavioral changes, which may be exacerbated by heightened brain plasticity during this 

developmental period. Additionally, research with humans needs to take into account the 

co-use of multiple types of substances that commonly occurs and may produce biased 

results if ignored. Thus, the present study sought to examine the associations of alcohol, 

tobacco, and marijuana use during adolescence with DNA methylation in young 

adulthood. Based on prior literature on the role of alcohol, tobacco, and marijuana use in 

DNA methylation, the focus was on average methylation in promoter regions of the 

AHRR, NR2B, and COMT genes. A better understanding of associations between specific 

types of substance use during the sensitive adolescent period and epigenetic modification 

in adulthood may aid in the understanding of the long-term effects of substance use. 

Ultimately, this line of research may inform prevention efforts to reduce adolescent 

alcohol, tobacco, and marijuana use and their negative consequences. 
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Method 

Participants and Procedures 

This project included 290 young adults (Mage =27.4, SD =1.2; 60% female; 82% 

Minority Ethnicity, 18% White) who participated in Waves 2, 3, and 4 of the 

Birmingham Youth Violence Study (Mrug et al., 2008). The study originally recruited 

fifth-grade students from 17 public schools in the greater Birmingham, Alabama area 

using a two-stage probability sampling process. In 2003-2004, Wave 1 involved 

individual interviews with 704 children (Mage=11.8 years, SD=0.8) and their primary 

caregivers. Approximately 17 months after Wave 1, 603 children and their primary 

caregivers returned to complete Wave 2 interviews (Mage =13.2 years, SD=0.9). At Wave 

3, 502 adolescents were interviewed (M age= 18.1 years, SD=1.0).  

During Wave 4 (currently ongoing), the young adults provided informed consent, 

completed individual interviews, and provided a saliva sample for DNA analyses. The 

saliva samples were collected using the Oragene DNA Discovery Kit (OG-500). 

Participants were asked to rinse their mouths and abstain from eating or drinking 30 

minutes prior to saliva collection. All study procedures were approved by the Institutional 

Review Board at the University of Alabama at Birmingham. This project included data 

from Waves 2, 3, and 4. 
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Measures 

At each wave, adolescents reported on their substance use using questions adapted 

from national surveys, including Add Health and YRBS (Brener et al., 1995; 2002). 

However, Wave 1 reports of substance use were not utilized in this study due to the 

young age of the youth and corresponding low rates of substance use.  

Alcohol 

 At each wave, adolescents were asked if they had more than a few sips of beer, 

wine, or liquor in the last 12 months (yes/no). Affirmative answers were followed by 

questions about the frequency and quantity of alcohol use in the past 30 days or 12 

months. At Wave 2, adolescents were asked one question about how many days out of 

the past 30 days they had more than a few sips of either beer, wine, or liquor on a 7-point 

scale from 1 (0 days) to 7 (all 30 days). Then, adolescents were asked one question about 

the usual amount of either beer, wine, or liquor drank on a 5-point scale from 1 (less than 

one drink) to 5 (5 or more drinks).  

At Waves 3 and 4, adolescents were asked separate questions about beer, 

wine/wine coolers, and liquor. For each type of alcohol, they specified the frequency of 

use in the past 12 months on an 8-point scale from 1 (a few times) to 8 (every day) and an 

average number of drinks in a given day on a 9-point scale from 1 (1 can or 

bottle/glass/drink per day) to 9 (more than 8 cans or bottles/glasses/drinks per day). To 

make the variables comparable across waves, responses from each type of alcohol were 

used to compute a single Quantity Frequency Index (QFI) representing the average 

amount of alcohol consumed in the last 30 days. 
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Tobacco 

At each wave, adolescents were asked if they had tried cigarette smoking in the 

last 12 months (yes/no). Affirmative answers were followed by questions about the 

frequency and quantity of cigarette use in the past 30 days or 12 months. At Wave 2, 

adolescents were asked how many days out of the past 30 days they smoked cigarettes 

(frequency) on a 7-point scale from 1 (0 days) to 7 (30 days). They were also asked how 

many cigarettes they smoked each day (quantity) on a 6-point scale from 1 (I did not 

smoke in the last 30 days) to 6 (more than 20 cigarettes per day). Waves 3 and 4 followed 

a similar structure to Wave 2, but instead asked about frequency and quantity of cigarette 

smoking in the last 12 months. To make the variables comparable across waves, a single 

variable was computed at each wave indicating the average number of cigarettes smoked 

per month (Ambatipudi et al., 2016; Zeilinger et al., 2013).  

Marijuana 

At Wave 2, adolescents were asked about the frequency of their marijuana use 

over the past 12 months on a 7-point scale from 1 (0 times) to 7 (100 or more times). At 

Waves 3 and 4, adolescents were asked about the frequency of their marijuana use over 

the last 12 months on an 8-point scale from 1 (never) to 8 (every day).  

Covariates  

Primary caregivers reported the adolescents’ race/ethnicity and sex at Waves 1 

and 2. Adolescents’ age was calculated from their date of birth and date of interview at 

each wave. During Waves 1 and 2, parents reported family income (rated on a 13-point 

ordinal scale) and primary caregiver’s education (rated on an 8-point scale). At Wave 4, 
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participants reported on their highest level of education and annual household income. 

An income-to-needs ratio was calculated for Waves 1 and 4 by dividing the reported 

household income in each respective wave by the poverty threshold for that family size 

during the year of data collection. An income-to-needs ratio is frequently used as an 

objective socioeconomic status indicator in longitudinal studies because it incorporates 

household size (Diemer et al., 2013; Dowsett et al., 2008; Roosa, et al., 2005). For 

analyses of alcohol and marijuana use, smoking at Waves 3 and 4 was also used as a 

covariate. Specifically, cigarette smoking within the last 12 months was dichotomized 

(yes = 1, no = 0) and summed across the two waves (Ambatipudi et al., 2016; Zeilinger et 

al., 2013). 

DNA Extraction and Methylation 

 During Wave 4, saliva samples were processed using the PureGene extraction 

method (Qiagen) given manufacturer specifications. Samples were tested for quality 

using resuspension in 100-200μL of Tris-EDTA (10mM Tris-HCL, 50mM EDTA pH 

7.5) and quantified using a revised OD260 technique on a Trinean Dropsense instrument 

with cDrop analysis software (Unchained Labs). Final samples yielded over 2.1 μg of 

high-quality DNA (OD260/280 above .45). The DNA extracted from the saliva 

underwent methylation analysis via Illumina Infinium MethylationEPIC BeadChip. The 

BeadChip includes 850,000 genome-wide methylation sites at single-nucleotide 

resolution selected by methylation experts. The EPIC chip probed >97% of genes, 

focusing on promoter and CpG-island CpGs, 3’ ends, and differentially methylated 

regions. 
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 Quality control (QC) and normalization included probe QC, sample QC, 

background correction, within array-normalization, Type I and II chemistry modification, 

and chip/plate/batch adjustment. These QC tests consisted of checking probes for 

hybridizing and bisulfite conversion, p-value detection to test probe QC, removal of 

specious probes with cross-hybridization to sex chromosomes, and deletion of CpGs 

within or near probe sequence. Background correction, removal of experimental artefacts, 

unnecessary noise, and technical or methodical variation to normalize probes were 

performed. Normalization focused on between- and within-array normalization (Type I 

and Type II chemistry scaling) (Maksimovic et al., 2012). For this study, quantile 

preprocessing procedures (one sample at a time) and ssNoob (normalization of all 

samples) were used (Byun et al., 2009; Fortin et al., 2017). QC workflow was performed 

using the R package minfi, which includes complete QC to statistical testing for CpGs 

and differentially methylated regions (Aryee et al., 2014). 

 Adjustment for cellular heterogeneity was used given that saliva contains a 

heterogeneous mixture of leukocytes and epithelia cells with proportions that vary across 

individuals (Smith et al., 2015). Heterogeneous cells in a sample can lead to inter-

individual variation of salivary DNA methylation profiles, which can bias the results of 

epigenetic analyses. Without accounting for heterogeneity, differential methylation at 

specific loci could reflect varying proportions of cell types instead of trait specific 

association (Jaffe & Irizarry, 2014; Schneider et al., 2010). The reference-based 

deconvolution method was used to correct methylation data for differences in cell 

composition (Houseman et al., 2012). Although originally developed for blood, this 

method has been applied to saliva (Langie et al., 2017; Smith et al., 2015).  
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Methylation Beta-values follow the beta-distribution given that they are computed 

as proportions. The Rank-Based Inverse Normal transformation were used to transform 

the methylation values (Zhang et al., 2019). In line with prior research (Zhang et al., 

2015), average methylation of CpG sites were calculated within the promotor region for 

each gene - AHRR, NR2B, and COMT.   CD8T cells, CD4T cells, natural kill (NK) cells, 

B cells, and monocytes were calculated using quantile-normalized data to infer saliva cell 

proportions. To control for cell mixture effects, the estimated cell proportions were used 

as covariates in methylation analyses. 

Statistical Analysis 

Descriptive statistics were examined for all variables. Attrition analyses were also 

conducted via independent sample t-tests and chi-square analyses comparing participants 

who remained in the study at Wave 4 and those who were lost to follow up. Pearson’s 

correlations were used to examine bivariate associations among the substance use 

variables, average methylation levels in AHRR, COMT, and NR2B genes, and all 

covariates. None of the specific types of substance use (e.g., alcohol use) showed high 

correlations between Waves 2, 3, or 4, supporting their use as separate predictors in the 

main analyses.  

For the main analyses, 18 hierarchical regression analyses in Mplus were used to 

test the relationships between predictors (adolescent alcohol use, tobacco use, or 

marijuana use at Waves 2 or 3), and outcomes (average methylation levels in the 

promoter regions of AHRR, NR2B, and COMT genes at Wave 4), adjusting for 

demographic covariates (age, income-to-needs ratio at Wave 4, sex, race/ethnicity, 

substance use at Wave 4, and income-to-needs ratio at Wave 1 and Wave 4). Averaged 
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methylation values from the AHRR, COMT, and NR2B genes were analyzed separately. 

Smoking history (combined across waves 3 and 4) was also used as covariates for each 

alcohol and marijuana use model.  

Thus, Step 1 of each model included the following covariates: sex, ethnicity, age 

at Wave 4, substance use at Wave 4, income-to-needs-ratios at Waves 1 and 4, cell types, 

and, for alcohol and marijuana models only, smoking history. Step 2 included one type of 

substance use (alcohol, tobacco, or marijuana) at Wave 2 or Wave 3. Finally, a series of 6 

hierarchical regressions included all types of substance use (alcohol, tobacco, and 

marijuana) for either Wave 2 or Wave 3 to examine the unique relationships between 

each type of substance use and average DNA methylation of AHRR, COMT, or NR2B 

genes. Smoking history was omitted from the combined analyses. In all models, Full 

Information Maximum Likelihood (FIML) was utilized to use all available data and 

reduce bias due to data missing at random (Choi et al., 2019). 
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Results 

Preliminary Analyses 

 Of the 704 participants in Wave 1, 290 (41%) were retained in Wave 4 and had 

complete methylation data. This group comprised the analytic sample for this study. 

Participants who remained in the study at Wave 4 were more likely to be African 

American (82% vs. 75%, X2 (1, N = 704) = 5.11, p < 0.05) and female (60% vs. 39%, 

X2 (1, N = 704) = 31.47, p < 0.01) compared to those who were lost to follow up. Chi-

squares and independent t-tests showed that these two groups did not differ in tobacco, 

alcohol, marijuana use at Waves 2 and 3 or income-to-needs ratio at Wave 1 (p > 0.06). 

Of the 290 participants in the analytic sample, 204 (70%) had complete data on all 

variables and 5.5% of data points were missing. Participants who had complete data were 

more likely to be White (28% vs. 14%, X2 (1 N = 290) = 8.27, p < 0.01) and report more 

alcohol use at Wave 3  (M = 7.55 vs, 4.03, t(237) = -1.41, p < 0.05) and tobacco use at 

Wave 4 (M = 18.43 vs. 9.68, t(286) = -1.89, p < 0.01), compared to those who had 

missing data. Chi-squares and independent t-tests showed that these two groups did not 

differ in gender, income-to-needs ratio at Wave 1 or Wave 4, age at Wave 4, tobacco, 

alcohol, or marijuana use at Wave 2, tobacco or marijuana use at Wave 3, and alcohol or 

marijuana use at Wave 4 (all p > 0.13). 

Descriptive analyses for predictors and covariates can be found in Table 1. The 

sample included 60% females, 81% African Americans, and 18% European Americans 
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with an average age of 27 years old. Substance use in the last 12 months was relatively 

low in Wave 2 (Mage = 13.15) with 3% reporting any tobacco use, 11% reporting any 

alcohol use, and 2% reporting any marijuana use. At Wave 3 (Mage = 17.63), 13% 

reported tobacco use, 49% reported alcohol use, and 20% reported marijuana use in the 

last 12 months. Finally, at Wave 4 (Mage = 27.38), 25% reported tobacco use, 68% 

reported alcohol use, and 32% reported marijuana use in the last 12 months. Per the 

income-to-needs ratio, 43% of the sample was below the federal poverty level at Wave 1 

and 25% were below the poverty level at Wave 4. The granulocyte (GRAN) cells (Mean 

proportion = 0.82, SD = 0.12) had the highest average proportion of cell types compared 

to B cells (M = 0.07, SD = 0.04), monocyte cells (M = 0.07, SD = 0.03), CD8 T cells (M 

= 0.01, SD = 0.03), CD4 T cells (M = 0.05, SD = 0.05), and NK cells (M < 0.001, SD = 

0.001). 

 Table 2 shows correlations among outcome variables, predictors, and covariates. 

Substance use variables were weakly to moderately correlated across time. Average 

methylation at the AHRR gene was related to higher methylation at the COMT gene (r = 

0.38) and lower methylation at the NR2B gene (r = -0.43), and the average methylation at 

the COMT gene was related to lower methylation at the NR2B gene (r = -0.29). There 

were no significant correlations between substance use variables and average methylation 

of AHRR, COMT, or NR2B genes. Female gender was related to lower alcohol, tobacco, 

and marijuana use in Wave 4. Smoking at Waves 2, 3, and 4 was related to lower income.  

The monocyte cell type weakly negatively correlated with Wave 3 tobacco use. All other 

cell types did not significantly correlate with demographics or substance use variables.  
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Regression Models 

 Table 3 shows covariates entered in the Steps 1 of the regression models 

accounted for 51% of variance in AHRR methylation, 11% in COMT methylation, and 

37% in NR2B methylation. AHRR methylation was uniquely predicted by African 

American race (β = 0.12), older age (β = 0.10), and lower proportion of CD8T (β = -

1.17), CD4T (β = -0.86), BCELL (β = -0.94), and GRAN (β = -2.27) cell types. 

Similarly, higher NR2B methylation was related to older age (β = 0.15) and lower 

proportions of CD8T (β = -0.66), CD4T (β = -0.88), BCELL (β = -1.18), MONO (β = -

0.61), and GRAN (β = -2.38) cell types. Finally, COMT was associated with male sex (β 

= -0.24) and lower proportion of CD4T cell type (β = -0.78). 

 Steps 2 of the models, which contained individual substance use variables from 

each wave, did not explain additional variance in the methylation outcomes (delta R2 

value ranged from .00 to .02, all p > 0.05). None of the coefficients were statistically 

significant, although Wave 3 tobacco use approached significance for methylation of the 

COMT gene (β = 0.13, p < 0.06) and Wave 4 alcohol use approached significance for 

methylation of the AHRR gene (β = 0.08, p < 0.06). In the combined substance use 

models, the combination of tobacco, alcohol, and marijuana use did not significantly 

increased R2 in any model (p < 0.05; Table 4). 
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Discussion 

 The present study examined alcohol, tobacco, and marijuana use in early and late 

adolescence as predictors of average DNA methylation in young adulthood. Specifically, 

this study focused on average methylation in promoter regions of AHRR, COMT, and 

NR2B genes (Gitik et al., 2018; Philibert et al., 2013; Ruggeri et al., 2015 Schrott et al., 

2020). Contrary to hypotheses, alcohol, tobacco, and marijuana use in adolescence or in 

young adulthood were not significantly correlated with average methylation of the AHRR, 

COMT, or NR2B genes. Similarly, regression analyses revealed that neither alcohol, 

tobacco, or marijuana use at any time point was uniquely related to average DNA 

methylation in each of the genes of interest.  

Alcohol, Tobacco and Marijuana Use and DNA Methylation 

 The results found in the current study contrast with previous research 

documenting effects of alcohol, tobacco, and marijuana use on DNA methylation of the 

AHRR, COMT, or NR2B genes (Gitik et al., 2018; Philibert et al., 2013; Ruggeri et al., 

2015 Schrott et al., 2020). However, very few studies have tested the combined effects of 

adolescent alcohol, tobacco, and marijuana use on methylation of the AHRR, COMT, or 

NR2B genes. Broadly, some research on marijuana and tobacco use suggests differential 

methylation across the AHRR and COMT genes, but research is limited for alcohol use in 

relation to these genes (Osborne et al., 2020). Conversely, a significant amount of 

research reports a relationship between alcohol use and NR2B gene hypomethylation, but 
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little research has studied the effects for tobacco and marijuana use on NR2B methylation 

(Berkel & Pandey, 2017; Chandrasekar, 2013).  

Prior research suggests that DNA methylation of the AHRR gene is a sensitive 

biomarker for smoking tobacco and marijuana, but no previous studies examined 

methylation of this gene in relation to alcohol use (Shenker et al., 2013). This study 

examined this relationship and did not find a significant association between adolescent 

alcohol use and methylation at the AHRR gene. Previous research has focused mainly on 

methylation of the AHRR gene in relation to tobacco use, finding robust patterns of 

demethylation in regular adult and adolescent tobacco smokers (Philibert et al., 2013; 

Prince et al., 2019; Shenker et al., 2013). The current study did not find a relationship 

between tobacco use and methylation at the AHRR gene, which could be due to a smaller 

sample size of 290 (compared to average sample size of 400 in other studies), the use of 

saliva rather than blood samples, and lower levels of tobacco use compared to prior 

studies. Similarly, one study found differential methylation in the AHRR gene based on 

adolescent marijuana use, but these associations did not extend to heavy marijuana users 

(Van der Knaap et al., 2014). The results of the current study did not show a relationship 

between adolescent marijuana use and methylation at the AHRR gene, which could be 

due to low reports of marijuana use or smaller sample size (N = 290 vs 463) in the 

present study. 

Moreover, this study was one of the first to examine the relationship between 

adolescent alcohol use and methylation of the COMT gene, again showing no significant 

relationships which could be due to the limited sample size or the primary focus on 

normative levels of adolescent and adult alcohol use, rather than alcohol abuse or 
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dependence studied in prior work (Köhnke et al., 2003; Samochowiec et al., 2006). While 

methylation of the COMT gene has been associated with adult tobacco use, research is 

limited for adolescent tobacco use (Osborne et al., 2020; Xu et al., 2010). One previous 

study examined the relationship of COMT gene methylation and tobacco use, finding that 

non-daily use was associated with promoter methylation but daily use was not (Van der 

Knaap et al., 2014). The present study showed no significant relationships between 

adolescent tobacco use and COMT gene methylation.  

One study linked high levels of DNA methylation in the COMT gene in 

adolescents with current tobacco use but not lifetime tobacco use (Prince et al., 2019), 

which suggests that a sustained and prolonged smoking history may help explain why 

adolescent tobacco use was not related to COMT gene methylation. Moreover, adult 

tobacco use has been linked to higher COMT gene methylation rates (Van der Knaap et 

al., 2014), further suggesting that older age, continued duration of smoking, and longer 

history of smoking may help explain why adolescent tobacco use was not related to 

COMT gene methylation in this study.  

Finally, the present study showed no significant relationship between methylation 

of the COMT gene and adolescent marijuana use. One other study linked higher COMT 

gene methylation with non-daily marijuana use but not daily marijuana use, suggesting 

that quantity and frequency of marijuana use play a role in methylation (Van der Knaap 

et al., 2014). However, it is unknown if the epigenetic alterations persist after cessation of 

marijuana use (Szutorisz & Hurd, 2016). Lack of persistence in DNA methylation related 

to marijuana use over time may help explain why adolescent marijuana use was not 

related to COMT gene methylation in the present study.  
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Finally, research on adolescent tobacco and marijuana use in relation to 

methylation of the NR2B gene is quite limited. The results of this study suggest no 

significant relationships between NR2B gene methylation and adolescent tobacco or 

marijuana use. Moreover, the results of this study suggest that average methylation of the 

NR2B gene is not associated with adolescent alcohol use. However, the majority of prior 

research in this area has utilized adult rodent models to study the effects of alcohol 

addiction on NR2B gene demethylation at various CpG sites (Berkel & Pandey, 2017; 

Ponomarev, 2013). Adult rodent research has also shown a relationship between 

differential methylation of the NR2B gene and intermittent alcohol vapor exposure 

(Qiang et al., 2015). While rodent research has shown relationships between varying 

frequencies and quantities of alcohol exposure and differential methylation of the NR2B 

gene, the present study results may be explained by differences in age and duration of 

lifetime alcohol consumption in those studies vs. the present investigation. 

Covariates and Methylation 

 In general, average methylation across AHRR, COMT, and NR2B genes showed 

associations with ethnicity and age. Older individuals had higher average methylation of 

the AHRR and NR2B genes, which is consistent with previous literature showing that 

aging is closely linked to epigenetic alterations (Johnson et al., 2012; Sedivy et al., 2008). 

Finally, African Americans had higher average methylation of the AHRR gene compared 

to whites. Previous research has reported that methylation of the AHRR gene may differ 

among ethnicities (Elliot et al., 2014; Philibert et al., 2020), suggesting that observed 

relationships may be driven by genetic variation or environmental exposures that vary by 

race.    
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Limitations 

 The current study has several limitations. The sample size of 290 is relatively 

small compared to other studies that found significant associations between adolescent 

substance use and DNA methylation of the AHRR, COMT, and NR2B genes (N=400-500) 

(Biermann et al., 2009; Van der Knaap et al., 2014; Zeilinger et al., 2013). It is common 

for effect sizes to be small in epigenetic studies, which requires larger sample sizes to 

reach adequate statistical power (Breton et al., 2017). An additional limitation is the 

limited retention rate of 41% from Wave 1 to Wave 4 at the time this study was 

conducted. African Americans and women were more likely to be retained across time, 

thus, the results may be less generalizable to Whites and men.  

 Substance use assessment is often coupled with limitations. For this study, 

substance use was measured with self-report scales which have been shown to have some 

limitations in accuracy (Hadland & Levy, 2016; Williams & Nowatzki, 2005). Self-report 

instruments are some of the most convenient, cost efficient, and widely used forms for 

measuring substance use (Hans et al., 1999), but they are subject to recall and report 

biases (Hadland & Levy, 2016; Ladis et al., 2019; Williams & Nowatzki, 2005). 

Moreover, adolescents may experience heightened discomfort disclosing substance use 

due to being underage for legal use of each substance and concerns about confidentiality 

of disclosing use of illegal substances, such as marijuana (Rosenkranz et al., 2012; 

Williams & Nowatzki, 2005). Furthermore, this study assumed that substance use during 

adolescence would affect DNA methylation across normative levels of use. However, 

substance use levels at Wave 2 were low, requiring dichotomization of Wave 2 tobacco, 

alcohol, and marijuana use. This dichotomization may have attenuated associations 
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between substance use and methylation. Furthermore, tobacco and alcohol use were 

measured on a quantity-frequency interval, whereas marijuana use was measured based 

on frequency only. These differences in measurement may have contributed to lower 

sensitivity to detect any effects of marijuana use on DNA methylation. 

Additionally, DNA methylation research is still in relatively early stages. It 

should be noted that comparing results regarding substance use and DNA methylation 

across studies is complicated due to varying methods of analyzing epigenetic data, 

including large-scale epigenome-wide association studies (EWASs) with specific loci or 

average levels of methylation across a gene of interest (El-Maarri et al., 2007). Many 

studies examining adolescent substance use and DNA methylation utilize multiple testing 

across specific CpG sites in the promoter region of genes rather than average methylation 

across the promoter region as done in the present study. Research that utilized multiple 

CpG site testing tended to analyze 100 or more sites at a time which required a p-value 

correction to contain Type I error (e.g., Bonferroni correction) (Christiansen et al., 2021). 

While these studies may help identify specific CpG sites to focus on in future research, 

the strict Bonferroni corrections remain controversial for being too conservative, 

especially in smaller samples (Levin, 1996; Ranstam, 2016). Hence, the present study 

sought to utilize average DNA methylation across specific CpG promoter regions in each 

gene. The chosen method also has limitations because it is possible that small effects at 

individual sites existed but were not apparent in the averaged methylation values used in 

this study (Hagerty et al., 2020).  

Additionally, it was not possible to assess changes in methylation across time 

because methylation was only measured during Wave 4 of the present study. Further, 
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DNA sequence variation was not used as a covariate in this study. Variations of specific 

genes can influence the levels of methylation and interact with environmental exposures, 

such as substance use (Qiu et al., 2015). For example, systemic lupus erythematosus and 

cigarette smoking were associated with greater methylation on the AHRR CG allele 

compared to the heterozygous CC and GG alleles (Saghaeian et al., 2021). Similarly, 

individuals who excessively consumed alcohol and had a CC genotype had a higher risk 

of differential COMT methylation than drinkers with one T allele (Kakino et al., 2016). 

Although studies show that NR2B variants have no effect on methylation levels of this 

gene (Nielsen et al, 2012; Qiu et al., 2015), the potential impact of genotypic variants and 

their interactions with substance use should be further investigated in future studies.  

Conclusions 

 The results of this longitudinal study advance our understanding of relationships 

between alcohol, tobacco, and marijuana use during adolescence and average DNA 

methylation of AHRR, COMT, and NR2B in young adulthood. This was one of the first 

studies to examine combined substance use as well as individual substance use in 

adolescence in relation to DNA methylation. The current study did not detect significant 

relationships between average methylation in these genes and alcohol, tobacco, and 

marijuana use from adolescence to young adulthood. Future research should utilize larger 

samples with higher levels of substance use, as well as explore the role of polysubstance 

use at different developmental stages in relation to DNA methylation across 

development. Repeated assessments of DNA methylation across different developmental 

periods is essential to understand whether varying levels of substance use relate to 

changes in DNA methylation over more proximal time periods.  
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Table 1 
Descriptives for Predictors and Covariates 
 N % 
Female  290 60.34 
African American 290 80.70 
 M SD 
Age 27.38 1.19 
W2 Tobacco Use 0.03 0.16 
W2 Alcohol Use 0.12 0.32 
W2 Marijuana Use 0.02 0.15 
W3 Tobacco Use 4.07 19.21 
W3 Alcohol Use 4.55 13.70 
W3 Marijuana Use 2.23 5.68 
W4 Tobacco Use 12.24 36.02 
W4 Alcohol Use 18.00 43.97 
W4 Marijuana Use 3.72 7.16 
Income-to-needs ratio W1 1.68 1.40 
Income-to-needs ratio W4 2.24 1.48 
W3 & W4 smoking history 0.37 0.64 
CD8T 0.01 0.03 
CD4T 0.05 0.05 
NK 0.00 0.00 
BCELL 0.07 0.04 
MONO 0.07 0.03 
GRAN 0.82 0.12 
Note. W1 – Wave 1; W2 - Wave 2; W3 - Wave 3; W4 

- Wave 4; N = 239 to 290.  
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Table 2    
Correlations Among All Variables    

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 
1. Female --                 
2. African American .15** --                
3. Age .04 .20** --               
4. W2 Tobacco Use -.01 .01 .05 --              
5. W2 Alcohol Use .06 .10 .05 .23** --             
6. W2 Marijuana Use -.03 .07 .12 .45** .34** --            
7. W3 Tobacco Use -.08 -.05 .12 .07 .27** .10 --           
8. W3 Alcohol Use -.03 .04 -.02 .12 .25** .14* .18** --          
9. W3 Marijuana Use -.10 .16* -.01 .15* .14* .22** .39** .36** --         
10. W4 Tobacco Use -.19** -.07 .05 .17 .17** .08 .41** .12 .22** --        
11. W4 Alcohol Use -.12* -.15* -.16** .06 .08 -.03 -.02 .21** .09 .22** --       
12. W4 Marijuana Use -.24** .12* .00 .05 .12 .08 .16* .28** .26** .28** .33** --      
13. Income-to-needs 
ratio W1 -.09 -.31** -.36** -.14** -.08 -.08 -.18** -.03 -.07 -.14* .15* .06 --     

14. Income-to-needs 
ratio W4 -.14* -.25** -.21** -.08 -.12 -.16* -.20** .01 -.19** -.13* .28** -.03 .39** --    

15. W3 & W4 smoking -.11 -.04 .09 .21** .29** .20** .74** .16* .35** .87** .15* .26** -.18** -.19** --   
16. AHRR methylation .03 .12** .11 -.06 .00 .01 -.04 .09 .00 -.07 -.04 -.01 .00 .09 -.09 --  
17. COMT methylation -.20* .07 .02 -.01 .02 .01 .10 .09 .06 .08 .01 .07 -.03 .07 .10 .38** -- 
18. NR2B methylation -.01 .01 -.27** -.00 -.03 .03 -.06 -.11 .06 -.06 .03 .03 .20** .09 -.09 -.43** -.29** 

Note. *p < .05, **p < .01. W1 – Wave 1; W2 - Wave 2; W3 - Wave 3; W4 - Wave 4; N = 239 to 290.    



 
 

45 
 

 
Table 3 
Hierarchical Regression Models Predicting AHRR, COMT, and NR2B Methylation from 
Covariates and Substance Use 
 AHRR COMT NR2B 
Step 1 β SE β SE β SE 

Female -.08 .05 -.24** .06 -.08 .05 
African American .12* .05 .05 .07 -.07 .06 
Age .10* .05 -.01 .06 .15** .05 
Income-to-needs W1 .01 .05 -.07 .07 -.06 .06 
Income-to-needs W4 .07 .05 .07 .06 -.07 .05 
W3 & W4 smoking history -.07 .05 .12 .07 -.01 .05 
CD8T -1.17** .21 -.53+ .28 -.66** .24 
CD4T -.86** .26 -.78* .35 -.88** .29 
BCELL -.94** .23 -.40 .30 -1.18** .25 
MONO -.16 .19 -.04 .25 -.61** .21 
GRAN -2.27** .65 -1.41 .87 -2.38** .73 
W4 Tobacco Use .00 .06 .05 .08 -.01 .06 
W4 Alcohol Use .08 .04 -.00 .06 .05 .05 
W4 Marijuana Use .01 .05 -.04 .06 -.01 .05 

Step 2a       
W2 Tobacco Use -.04 .04 .00 .06 -.01 .05 

Step 2b       
W2 Alcohol Use .03 .05 -.00 .06 .04 .05 

Step 2c       
W2 Marijuana Use .03 .04 .01 .06 -.01 .05 

Step 2d       
W3 Tobacco Use -.08 .05 .10 .08 -.06 .06 

Step 2e       
W3 Alcohol Use .01 .05 .02 .07 -.08 .06 

Step 2f       
W3 Marijuana Use .03 .05 .04 .07 -.08 .06 

Note. +p≤.06, *p < .05, **p < .01. CD8T, CD4T, BCELL, MONO, and GRAN are cell types 

to control for cell heterogeneity. Smoking history was omitted from tobacco models. W1 – 

Wave 1; W2 - Wave 2; W3 - Wave 3; W4 - Wave 4; N = 290. 
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Table 4 
Hierarchical Regression Models Predicting AHRR, COMT, and NR2B Methylation from 
Covariates and Substance Use Combined 
 AHRR COMT NR2B 
Step 1 β SE β β SE β 

Female -.07 .05 -.26** .06 -.08 .05 
African American .13* .05 .03 .07 -.06 .06 
Age .09* .05 -.00 .06 .15** .05 
Income-to-needs W1 .01 .05 -.08 .07 -.06 .05 
Income-to-needs W4 .09 .05 .04 .06 -.07 .05 
CD8T -1.19** .21 -.50 .28 -.67** .23 
CD4T -.89** .26` -.71* .35 -.88** .29 
BCELL -.93** .23 -.40 .31 -1.18** .25 
MONO -.18 .23 -.02 .25 -.61** .21 
GRAN -2.33** .65 -1.30 .88 -2.38** .73 
W4 Tobacco Use -.04 .05 .08 .06 -.03 .05 
W4 Alcohol Use .08 .04 .00 .06 .05 .05 
W4 Marijuana Use .00 .04 -.03 .06 -.01 .05 

Step 2a       
W2 Tobacco Use -.07 .05 .01 .07 -.01 .05 
W2 Alcohol Use .01 .05 .01 .06 .06 .05 
W2 Marijuana Use .06 .05 .03 .07 -.03 .06 

Step 2b       
W3 Tobacco Use -.08 .05 .08 .08 -.05 .06 
W3 Alcohol Use -.01 .05 .03 .07 -.09 .06 
W3 Marijuana Use .03 .05 .04 .07 -.05 .06 

Note. +p≤.06, *p < .05, **p < .01. CD8T, CD4T, BCELL, MONO, and GRAN are cell types 

to control for cell heterogeneity. W1 – Wave 1; W2 - Wave 2; W3 - Wave 3; W4 - Wave 4; N = 

290. 
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