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Abstract 
The study of complex dynamics is currently of great interest in 
mathematics and related scientific fields. Invariant 
laminations, invented by William Thurston, are abstract 
mathematical structures which represent the dynamics of 
complex polynomials but are easier to understand. We will 
define a sibling portrait of an invariant lamination which can 
be thought of as a “snap shot” of the dynamical system. We 
will show the existence of a one-to-one correspondence 
between sibling portraits and bicolored trees, mathematical 
objects from graph theory. This immediately provides a count 
for the number of different sibling portraits possible. 
 
Introduction 
Dynamics is the mathematical study of the evolution of 
systems which obey some fixed law. The system could be the 
population of rabbits, the motion of particles in a box, or the 
motion of planets in a solar system. The dynamical law is 
simply a formula which describes the system. Typically, the 
law does not depend on previous states of the system. For 
example, the population of rabbits tomorrow does not depend 
on the population of rabbits yesterday; it only depends on the 
population of rabbits today. However, the law to describe the 
growth of the population should remain the same. Thus to 
study the population, we study the answers. Using this method, 
we can predict long-term behavior of a system. 
 
One simple yet interesting case to study is when the 
dynamical law is a quadratic polynomial of the form 𝑓𝑓 𝑥𝑥 =
𝑎𝑎𝑥𝑥! + 𝑏𝑏𝑥𝑥 + 𝑐𝑐. This formula has three parameters:  𝑎𝑎, 𝑏𝑏  and 
𝑐𝑐. The equation would be easier to analyze if there was only 
one parameter. By letting the variable be a complex number of 
the form 𝑧𝑧 = 𝛼𝛼 + 𝑖𝑖𝛽𝛽   where 𝛼𝛼 and 𝛽𝛽 are real numbers and 
𝑖𝑖 = −1  ( 𝑧𝑧  typically denotes complex numbers while 𝑥𝑥 
denotes real numbers), we can re-write 𝑓𝑓 𝑥𝑥  in terms of one 

parameter. Note that 𝑓𝑓 𝑥𝑥 = 𝑎𝑎(𝑥𝑥 + !
!!
)! + 𝑘𝑘  where 

𝑘𝑘 = 𝑐𝑐 − !!

!!
. We will let 𝑧𝑧! = 𝑎𝑎(𝑥𝑥 + !

!!
)!   which means 

𝑧𝑧 = 𝑎𝑎(𝑥𝑥 + !
!!
).  If 𝑎𝑎 is a negative number, then 𝑧𝑧 is a complex 

number. It follows that 𝑓𝑓 𝑥𝑥 = 𝑓𝑓 𝑧𝑧 = 𝑧𝑧! + 𝑘𝑘 has only one 
parameter  𝑘𝑘. If we think in terms of iterating the formula, we 
may write the dynamical law as 𝑧𝑧!!! = 𝑧𝑧!! + 𝑘𝑘. 
	  
The study of quadratic polynomials still poses some 
challenges. For a given 𝑘𝑘-value and initial value 𝑧𝑧! we would 
like to know how the system evolves under many iterations. 
There are two possibilities. Either the values 𝑧𝑧! grow arbitrarily 
large, in other words 𝑧𝑧! → ∞ as 𝑛𝑛 → ∞, or the values never 
exceed some large number acting as an upper bound, i.e. 
𝑧𝑧! < 𝑀𝑀 for all 𝑛𝑛 where 𝑀𝑀 is the upper bound. Sometimes, the 
accuracy in the initial value 𝑧𝑧! is extremely important. For	  

	  
	  
	  
	  
	  

example, let 𝑘𝑘 = 0  so 𝑧𝑧!!! = 𝑧𝑧!! . If we know |𝑧𝑧!| = 1  with 
some margin of error, we can have very different results 
depending on what the value actually is. If |𝑧𝑧!| = 1   then 
|𝑧𝑧!| = 1 for all  . The magnitude of the numbers never grows 
nor shrinks. However, if |𝑧𝑧!| = 0.999  then |𝑧𝑧!| → 0  as 𝑛𝑛 → ∞ 
since numbers less than 1 shrink when squared. If |𝑧𝑧!| =
1.001    then |𝑧𝑧!| → ∞  as 𝑛𝑛 → ∞ . These are drastically 
different behaviors. This initial value sensitivity is the basis for 
chaos theory and chaotic dynamics. 
	  
A popular choice for 𝑧𝑧! is 𝑧𝑧! = 0. Similar to the above example, 
there are some values of 𝑘𝑘  for which 𝑧𝑧!!! = 𝑧𝑧!! + 𝑘𝑘   tends 
towards ∞ or remains bounded. All the values of 𝑘𝑘 for which 
𝑧𝑧!!! = 𝑧𝑧!! + 𝑘𝑘  remains bounded when 𝑧𝑧! = 0  form the 
Mandelbrot set. This set is essential in understanding the 
dynamics of quadratic polynomials as a whole. It is very 
difficult to understand, however, and there are still important 
open questions about the properties of this set. In the 1980s, 
William Thurston invented invariant laminations (described 
below) as a mathematical tool for understanding the 
Mandelbrot set [1]. Although more abstract, laminations are 
easier to study since they have nice topological and 
combinatorial properties. Just as the Mandelbrot set describes 
properties of quadratic polynomials, the “space of laminations” 
describes properties of invariant laminations. There are many 
similarities between the Mandelbrot set and the space of 
laminations which motivate this research. The invariant 
laminations defined by William Thurston, which we will refer to 
as Thurston invariant laminations, are very well studied in the 
quadratic polynomial case. However, the definition does not 
extend well to polynomials of higher dimensions, such as 
cubic polynomials of degree 3. Recently, Blokh, Mimbs, 
Oversteegen, and Valkenburg have modified Thurston's 
definition to one which is called sibling invariant laminations. 
This definition has demonstrated to be much more powerful in 
describing the cubic case [2]. 
 
This paper introduces sibling invariant laminations including 
definitions for sibling leaves and sibling portraits. We define 
central strips of laminations and prove a central strip exists for 
almost all full sibling families of sibling invariant leaves. We 
will define a bicolored tree, a mathematical object from graph 
theory, and show that there is a one-to-one correspondence 
between sibling portraits and bi-colored trees. This means that 
there are just as many bi-colored trees as sibling portraits. 
Thus we will provide counts for both the number of the 
different possible sibling portraits and consequently the 
number of different central strips. 
 
Preliminaries 
Let ℂ denote the complex plane, 𝕊𝕊 denote the unit circle in the 
complex plane – all the complex numbers 𝑧𝑧 such that 𝑧𝑧 = 1. 
The unit circle 𝕊𝕊  will be labeled from 0 to 1 such that 0 

research paper
Counting Sibling Portraits in Laminations of the Unit Disk

Joseph W. Olson1, Dr. John C. Mayer1, Luka Mernik2

1 Department of Mathematics, University of Alabama at Birmingham
2 Department of Mathematics, California Institute of Technology

 
 
 
 
 
 
Abstract 
The study of complex dynamics is currently of great interest in 
mathematics and related scientific fields. Invariant 
laminations, invented by William Thurston, are abstract 
mathematical structures which represent the dynamics of 
complex polynomials but are easier to understand. We will 
define a sibling portrait of an invariant lamination which can 
be thought of as a “snap shot” of the dynamical system. We 
will show the existence of a one-to-one correspondence 
between sibling portraits and bicolored trees, mathematical 
objects from graph theory. This immediately provides a count 
for the number of different sibling portraits possible. 
 
Introduction 
Dynamics is the mathematical study of the evolution of 
systems which obey some fixed law. The system could be the 
population of rabbits, the motion of particles in a box, or the 
motion of planets in a solar system. The dynamical law is 
simply a formula which describes the system. Typically, the 
law does not depend on previous states of the system. For 
example, the population of rabbits tomorrow does not depend 
on the population of rabbits yesterday; it only depends on the 
population of rabbits today. However, the law to describe the 
growth of the population should remain the same. Thus to 
study the population, we study the answers. Using this method, 
we can predict long-term behavior of a system. 
 
One simple yet interesting case to study is when the 
dynamical law is a quadratic polynomial of the form 𝑓𝑓 𝑥𝑥 =
𝑎𝑎𝑥𝑥! + 𝑏𝑏𝑥𝑥 + 𝑐𝑐. This formula has three parameters:  𝑎𝑎, 𝑏𝑏  and 
𝑐𝑐. The equation would be easier to analyze if there was only 
one parameter. By letting the variable be a complex number of 
the form 𝑧𝑧 = 𝛼𝛼 + 𝑖𝑖𝛽𝛽   where 𝛼𝛼 and 𝛽𝛽 are real numbers and 
𝑖𝑖 = −1  ( 𝑧𝑧  typically denotes complex numbers while 𝑥𝑥 
denotes real numbers), we can re-write 𝑓𝑓 𝑥𝑥  in terms of one 

parameter. Note that 𝑓𝑓 𝑥𝑥 = 𝑎𝑎(𝑥𝑥 + !
!!
)! + 𝑘𝑘  where 

𝑘𝑘 = 𝑐𝑐 − !!

!!
. We will let 𝑧𝑧! = 𝑎𝑎(𝑥𝑥 + !

!!
)!   which means 

𝑧𝑧 = 𝑎𝑎(𝑥𝑥 + !
!!
).  If 𝑎𝑎 is a negative number, then 𝑧𝑧 is a complex 

number. It follows that 𝑓𝑓 𝑥𝑥 = 𝑓𝑓 𝑧𝑧 = 𝑧𝑧! + 𝑘𝑘 has only one 
parameter  𝑘𝑘. If we think in terms of iterating the formula, we 
may write the dynamical law as 𝑧𝑧!!! = 𝑧𝑧!! + 𝑘𝑘. 
	  
The study of quadratic polynomials still poses some 
challenges. For a given 𝑘𝑘-value and initial value 𝑧𝑧! we would 
like to know how the system evolves under many iterations. 
There are two possibilities. Either the values 𝑧𝑧! grow arbitrarily 
large, in other words 𝑧𝑧! → ∞ as 𝑛𝑛 → ∞, or the values never 
exceed some large number acting as an upper bound, i.e. 
𝑧𝑧! < 𝑀𝑀 for all 𝑛𝑛 where 𝑀𝑀 is the upper bound. Sometimes, the 
accuracy in the initial value 𝑧𝑧! is extremely important. For	  

	  
	  
	  
	  
	  

example, let 𝑘𝑘 = 0  so 𝑧𝑧!!! = 𝑧𝑧!! . If we know |𝑧𝑧!| = 1  with 
some margin of error, we can have very different results 
depending on what the value actually is. If |𝑧𝑧!| = 1   then 
|𝑧𝑧!| = 1 for all  . The magnitude of the numbers never grows 
nor shrinks. However, if |𝑧𝑧!| = 0.999  then |𝑧𝑧!| → 0  as 𝑛𝑛 → ∞ 
since numbers less than 1 shrink when squared. If |𝑧𝑧!| =
1.001    then |𝑧𝑧!| → ∞  as 𝑛𝑛 → ∞ . These are drastically 
different behaviors. This initial value sensitivity is the basis for 
chaos theory and chaotic dynamics. 
	  
A popular choice for 𝑧𝑧! is 𝑧𝑧! = 0. Similar to the above example, 
there are some values of 𝑘𝑘  for which 𝑧𝑧!!! = 𝑧𝑧!! + 𝑘𝑘   tends 
towards ∞ or remains bounded. All the values of 𝑘𝑘 for which 
𝑧𝑧!!! = 𝑧𝑧!! + 𝑘𝑘  remains bounded when 𝑧𝑧! = 0  form the 
Mandelbrot set. This set is essential in understanding the 
dynamics of quadratic polynomials as a whole. It is very 
difficult to understand, however, and there are still important 
open questions about the properties of this set. In the 1980s, 
William Thurston invented invariant laminations (described 
below) as a mathematical tool for understanding the 
Mandelbrot set [1]. Although more abstract, laminations are 
easier to study since they have nice topological and 
combinatorial properties. Just as the Mandelbrot set describes 
properties of quadratic polynomials, the “space of laminations” 
describes properties of invariant laminations. There are many 
similarities between the Mandelbrot set and the space of 
laminations which motivate this research. The invariant 
laminations defined by William Thurston, which we will refer to 
as Thurston invariant laminations, are very well studied in the 
quadratic polynomial case. However, the definition does not 
extend well to polynomials of higher dimensions, such as 
cubic polynomials of degree 3. Recently, Blokh, Mimbs, 
Oversteegen, and Valkenburg have modified Thurston's 
definition to one which is called sibling invariant laminations. 
This definition has demonstrated to be much more powerful in 
describing the cubic case [2]. 
 
This paper introduces sibling invariant laminations including 
definitions for sibling leaves and sibling portraits. We define 
central strips of laminations and prove a central strip exists for 
almost all full sibling families of sibling invariant leaves. We 
will define a bicolored tree, a mathematical object from graph 
theory, and show that there is a one-to-one correspondence 
between sibling portraits and bi-colored trees. This means that 
there are just as many bi-colored trees as sibling portraits. 
Thus we will provide counts for both the number of the 
different possible sibling portraits and consequently the 
number of different central strips. 
 
Preliminaries 
Let ℂ denote the complex plane, 𝕊𝕊 denote the unit circle in the 
complex plane – all the complex numbers 𝑧𝑧 such that 𝑧𝑧 = 1. 
The unit circle 𝕊𝕊  will be labeled from 0 to 1 such that 0 



58 • inquiro | no. 6 | 2012

Figure 1. The unit circle re-labeled. Middle: The σ2 map acting on points in the unit circle. Right: A triplet of leaves mapping to 
itself by σ2.
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and 1 corresponds back to the point on 𝕊𝕊 at 0°. Fig. 1 depicts 
this re-labeling. 
 
For 𝑑𝑑 ≥ 2 and 𝑥𝑥 in 𝕊𝕊, 0 ≤ 𝑥𝑥 ≤ 1, define a function  𝜎𝜎!:𝕊𝕊 → 𝕊𝕊  
by 𝜎𝜎! 𝑥𝑥 = 𝑑𝑑×𝑥𝑥  (𝑚𝑚𝑜𝑜𝑑𝑑  1). For example, for 𝑑𝑑 = 2, 𝜎𝜎!   !

!
   = !

!
  , 

𝜎𝜎!   !
!
   = !

!
  , 𝜎𝜎!   !

!
   = !

!
− 1 = !

!
  . This example is depicted in 

Fig. 1. 
 
A lamination ℒ is a collection of chords of the unit circle 𝕊𝕊 with 
the property that no two chords intersect except for possibly at 
their endpoint in the unit circle. A lamination ℒ must also be 
closed, meaning it contains all of its limit points. If a sequence 
of points in the lamination converges to a limit, that limit point 
is also in the lamination. A chord in a lamination which 
satisfies these properties is called a leaf (pl. leaves). 
 
If  ℓ𝓁𝓁 is a leaf in a lamination ℒ, we write ℓ𝓁𝓁 = 𝑎𝑎𝑏𝑏, where 𝑎𝑎 and 𝑏𝑏 
are the endpoints of ℓ𝓁𝓁  in 𝕊𝕊 .  We let 𝜎𝜎! ℓ𝓁𝓁  be the chord 
𝜎𝜎! 𝑎𝑎 𝜎𝜎! 𝑏𝑏 .  For instance, if ℓ𝓁𝓁! =

!
!
!
!
, ℓ𝓁𝓁! =

!
!
!
!
, and ℓ𝓁𝓁! =

!
!
!
!
, 

then 𝜎𝜎!(ℓ𝓁𝓁!) =
!
!
!
!
, 𝜎𝜎!(ℓ𝓁𝓁!) =

!
!
!
!
, and 𝜎𝜎!(ℓ𝓁𝓁!) =

!
!
!
!
.  

 
Fig. 1 depicts these three leaves. If it happens that 𝜎𝜎! 𝑎𝑎 =
𝜎𝜎!(𝑏𝑏), for example 𝜎𝜎! 0 = 𝜎𝜎!

!
!
= 0, then 𝜎𝜎! ℓ𝓁𝓁  is a point, 

called a critical value of ℒ and we say ℓ𝓁𝓁 is a critical leaf. In 
general, as 𝜎𝜎! is applied to ℓ𝓁𝓁 successively, we get iterations of 
ℓ𝓁𝓁. The 𝑖𝑖!! iterate of ℓ𝓁𝓁 is denoted 𝜎𝜎!! (ℓ𝓁𝓁). For example, 𝜎𝜎!! ℓ𝓁𝓁 =
𝜎𝜎!   𝜎𝜎! ℓ𝓁𝓁    . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Leaf Length Function 
Let (𝑎𝑎, 𝑏𝑏) be an arc segment in the unit circle 𝕊𝕊. Define the 
length of (𝑎𝑎, 𝑏𝑏) , denoted |(𝑎𝑎, 𝑏𝑏)| , to be the length of the 
shortest path from 𝑎𝑎  to 𝑏𝑏 . For example,      !

!
, !
!
   = !

!
  while 

     !!
!"
, !
!"
   = !

!"
= !

!
 . For a leaf ℓ𝓁𝓁 = 𝑎𝑎𝑏𝑏, let the length of the 

leaf, denoted |ℓ𝓁𝓁| or |𝑎𝑎𝑏𝑏|, be the length of the arc (𝑎𝑎, 𝑏𝑏). So 
ℓ𝓁𝓁 = |(𝑎𝑎, 𝑏𝑏)|. Notice that the maximum length of a leaf is !

!
 

since we choose the shortest distance between 𝑎𝑎 and 𝑏𝑏 to be 
the length. For a fixed 𝑑𝑑 ≥ 2, a leaf ℓ𝓁𝓁 of length ℓ𝓁𝓁 < !

!!
 will 

grow since 𝜎𝜎! ℓ𝓁𝓁 < 𝑑𝑑× !
!!
= !

!
 . Also note that if two points 𝑎𝑎 

and 𝑏𝑏  map to the same point under 𝜎𝜎! , then they are a 
distance !

!
 apart for some integer 𝑛𝑛 . Say 𝑏𝑏 = 𝑎𝑎 + !

!
 , then 

𝜎𝜎! 𝑏𝑏 = 𝜎𝜎! 𝑎𝑎 + !
!
= 𝑑𝑑× 𝑎𝑎 + !

!
𝑚𝑚𝑜𝑜𝑑𝑑  1 = 𝑑𝑑×𝑎𝑎 +

𝑛𝑛   𝑚𝑚𝑜𝑜𝑑𝑑  1 = 𝑑𝑑×𝑎𝑎   𝑚𝑚𝑜𝑜𝑑𝑑  1 = 𝜎𝜎!(𝑎𝑎) . So all the points which 
map to the same point are spaced evenly around the unit 
circle at !

!
 intervals. 

 
Sibling Invariant Laminations 
Definition 1.1 (Sibling Leaves) 
Let ℓ𝓁𝓁 and ℓ𝓁𝓁! be leaves in a lamination ℒ such that 𝜎𝜎! ℓ𝓁𝓁! = ℓ𝓁𝓁. 
A leaf ℓ𝓁𝓁! is disjoint from ℓ𝓁𝓁! if they do not intersect at all, even 
at endpoints. If ℓ𝓁𝓁! is disjoint from ℓ𝓁𝓁! and 𝜎𝜎! ℓ𝓁𝓁! = 𝜎𝜎! ℓ𝓁𝓁! = ℓ𝓁𝓁 
then ℓ𝓁𝓁! is called a sibling leaf of ℓ𝓁𝓁!. A collection of 𝑑𝑑 pair-wise 
disjoint leaves 𝒮𝒮 = {ℓ𝓁𝓁!, ℓ𝓁𝓁!,… , ℓ𝓁𝓁!} is called a full sibling family 
if for each 𝑖𝑖, 𝜎𝜎! ℓ𝓁𝓁! = ℓ𝓁𝓁. 
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are the endpoints of ℓ𝓁𝓁  in 𝕊𝕊 .  We let 𝜎𝜎! ℓ𝓁𝓁  be the chord 
𝜎𝜎! 𝑎𝑎 𝜎𝜎! 𝑏𝑏 .  For instance, if ℓ𝓁𝓁! =

!
!
!
!
, ℓ𝓁𝓁! =

!
!
!
!
, and ℓ𝓁𝓁! =

!
!
!
!
, 

then 𝜎𝜎!(ℓ𝓁𝓁!) =
!
!
!
!
, 𝜎𝜎!(ℓ𝓁𝓁!) =

!
!
!
!
, and 𝜎𝜎!(ℓ𝓁𝓁!) =

!
!
!
!
.  

 
Fig. 1 depicts these three leaves. If it happens that 𝜎𝜎! 𝑎𝑎 =
𝜎𝜎!(𝑏𝑏), for example 𝜎𝜎! 0 = 𝜎𝜎!

!
!
= 0, then 𝜎𝜎! ℓ𝓁𝓁  is a point, 

called a critical value of ℒ and we say ℓ𝓁𝓁 is a critical leaf. In 
general, as 𝜎𝜎! is applied to ℓ𝓁𝓁 successively, we get iterations of 
ℓ𝓁𝓁. The 𝑖𝑖!! iterate of ℓ𝓁𝓁 is denoted 𝜎𝜎!! (ℓ𝓁𝓁). For example, 𝜎𝜎!! ℓ𝓁𝓁 =
𝜎𝜎!   𝜎𝜎! ℓ𝓁𝓁    . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Leaf Length Function 
Let (𝑎𝑎, 𝑏𝑏) be an arc segment in the unit circle 𝕊𝕊. Define the 
length of (𝑎𝑎, 𝑏𝑏) , denoted |(𝑎𝑎, 𝑏𝑏)| , to be the length of the 
shortest path from 𝑎𝑎  to 𝑏𝑏 . For example,      !

!
, !
!
   = !

!
  while 

     !!
!"
, !
!"
   = !

!"
= !

!
 . For a leaf ℓ𝓁𝓁 = 𝑎𝑎𝑏𝑏, let the length of the 

leaf, denoted |ℓ𝓁𝓁| or |𝑎𝑎𝑏𝑏|, be the length of the arc (𝑎𝑎, 𝑏𝑏). So 
ℓ𝓁𝓁 = |(𝑎𝑎, 𝑏𝑏)|. Notice that the maximum length of a leaf is !

!
 

since we choose the shortest distance between 𝑎𝑎 and 𝑏𝑏 to be 
the length. For a fixed 𝑑𝑑 ≥ 2, a leaf ℓ𝓁𝓁 of length ℓ𝓁𝓁 < !

!!
 will 

grow since 𝜎𝜎! ℓ𝓁𝓁 < 𝑑𝑑× !
!!
= !

!
 . Also note that if two points 𝑎𝑎 

and 𝑏𝑏  map to the same point under 𝜎𝜎! , then they are a 
distance !

!
 apart for some integer 𝑛𝑛 . Say 𝑏𝑏 = 𝑎𝑎 + !

!
 , then 

𝜎𝜎! 𝑏𝑏 = 𝜎𝜎! 𝑎𝑎 + !
!
= 𝑑𝑑× 𝑎𝑎 + !

!
𝑚𝑚𝑜𝑜𝑑𝑑  1 = 𝑑𝑑×𝑎𝑎 +

𝑛𝑛   𝑚𝑚𝑜𝑜𝑑𝑑  1 = 𝑑𝑑×𝑎𝑎   𝑚𝑚𝑜𝑜𝑑𝑑  1 = 𝜎𝜎!(𝑎𝑎) . So all the points which 
map to the same point are spaced evenly around the unit 
circle at !

!
 intervals. 

 
Sibling Invariant Laminations 
Definition 1.1 (Sibling Leaves) 
Let ℓ𝓁𝓁 and ℓ𝓁𝓁! be leaves in a lamination ℒ such that 𝜎𝜎! ℓ𝓁𝓁! = ℓ𝓁𝓁. 
A leaf ℓ𝓁𝓁! is disjoint from ℓ𝓁𝓁! if they do not intersect at all, even 
at endpoints. If ℓ𝓁𝓁! is disjoint from ℓ𝓁𝓁! and 𝜎𝜎! ℓ𝓁𝓁! = 𝜎𝜎! ℓ𝓁𝓁! = ℓ𝓁𝓁 
then ℓ𝓁𝓁! is called a sibling leaf of ℓ𝓁𝓁!. A collection of 𝑑𝑑 pair-wise 
disjoint leaves 𝒮𝒮 = {ℓ𝓁𝓁!, ℓ𝓁𝓁!,… , ℓ𝓁𝓁!} is called a full sibling family 
if for each 𝑖𝑖, 𝜎𝜎! ℓ𝓁𝓁! = ℓ𝓁𝓁. 
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Figure 2. An example of the first few leaves in a degree d=2 sibling invariant lamination.  

For example, in Fig. 2, the leaves ℓ𝓁𝓁! =
!
!
!
!
 and ℓ𝓁𝓁! =

!
!"

!!
!"

  are 
sibling leaves. They are disjoint and map to the same leaf. 
𝜎𝜎! ℓ𝓁𝓁! = !

!
!
!

  and 𝜎𝜎! ℓ𝓁𝓁! = !"
!"

!!
!"
= !

!
!!
!
= !

!
!
!

. Since 𝑑𝑑 = 2 , 
{ℓ𝓁𝓁!, ℓ𝓁𝓁!} is a full sibling family. Notice that there are always 𝑑𝑑 
sibling leaves and their endpoints will be spaced evenly 
around the unit circle 𝕊𝕊. In this case where 𝑑𝑑 = 2, there are 
two sibling leaves and they are on opposite sides of 𝕊𝕊. 
 
Thurston's definition of invariant laminations does not involve 
sibling leaves. His definition is more broad. Blokh, Mimbs, 
Oversteegen, and Valkenburg proved that every sibling 
invariant lamination is also Thurston invariant but not vice-
versa [2]. They also proved that sibling invariance does not 
exclude any of the important laminations. In a sense, sibling 
invariance keeps the appropriate Thurston invariant 
laminations and discards the unnecessary ones. 
 
Definition 1.2 (Sibling Invariance) 
Recall that chords (called leaves) are in a lamination ℒ 
provided that they do not intersect any other leaves except 
possibly at endpoints. A lamination ℒ is said to be sibling d-
invariant provided that: 

(1) (Forward Invariance) For every leaf ℓ𝓁𝓁 in ℒ, 𝜎𝜎!(ℓ𝓁𝓁) is 
a leaf in ℒ. 

(2) (Backward Invariance) For every leaf ℓ𝓁𝓁 in ℒ, there 
is a leaf ℓ𝓁𝓁! in ℒ such that 𝜎𝜎! ℓ𝓁𝓁! = ℓ𝓁𝓁. 

(3) (Sibling Invariance) For every ℓ𝓁𝓁! in ℒ with 𝜎𝜎! ℓ𝓁𝓁! =
ℓ𝓁𝓁 , there is a full sibling family of leaves in ℒ , 
{ℓ𝓁𝓁!, ℓ𝓁𝓁!,… , ℓ𝓁𝓁!} , such that 𝜎𝜎! ℓ𝓁𝓁! = ℓ𝓁𝓁 for all 𝑖𝑖. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 depicts an example of the first few leaves in a degree 2 
sibling invariant lamination. Though chords are straight, we 
sometimes draw them curved to stand out. The construction 
begins with the leaves ℓ𝓁𝓁! =

!
!
!
!
, ℓ𝓁𝓁! =

!
!
!
!
, and ℓ𝓁𝓁! =

!
!
!
!
. See that 

𝜎𝜎! ℓ𝓁𝓁! = ℓ𝓁𝓁!, 𝜎𝜎! ℓ𝓁𝓁! = ℓ𝓁𝓁!, and 𝜎𝜎! ℓ𝓁𝓁! = ℓ𝓁𝓁!. The leaves ℓ𝓁𝓁!, ℓ𝓁𝓁!, 
and ℓ𝓁𝓁!  each need a sibling (only one since 𝑑𝑑 = 2 ). The 
additional leaves ℓ𝓁𝓁! , ℓ𝓁𝓁! , and ℓ𝓁𝓁!  such that 𝜎𝜎! ℓ𝓁𝓁! = ℓ𝓁𝓁! , 

𝜎𝜎! ℓ𝓁𝓁! = ℓ𝓁𝓁! , and 𝜎𝜎! ℓ𝓁𝓁! = ℓ𝓁𝓁!  are ℓ𝓁𝓁! =
!
!"

!!
!"

, ℓ𝓁𝓁! =
!!
!"

!
!"

, and 

ℓ𝓁𝓁! =
!
!"

!
!"

. Continue to construct the lamination by finding 2 
disjoint leaves which map to ℓ𝓁𝓁! , ℓ𝓁𝓁! , and ℓ𝓁𝓁! . Then find 2 
disjoint leaves which map to each of those and so forth. Note 
that this construction method may not produce a unique 
sibling invariant lamination. 
 
Definition 1.3 (Sibling Portrait) 
The sibling portrait 𝒮𝒮 of a full sibling family is the collection of 
regions complementary to the sibling leaves - the spaces 
between the leaves. We call a complementary region a 𝐶𝐶 -
region provided all of the arcs in which the region meets the 
circle are short (length < !

!!
). It will soon be apparent that the 

name 𝐶𝐶 -region alludes to the central strip. We call a 
complementary region an 𝑅𝑅-region if all of the arcs are long 
(length > !

!!
). The 𝑅𝑅 simply alludes to a not-so-special region. 

The degree of a complementary region 𝑇𝑇  (𝑇𝑇  is a dummy 
variable for either 𝐶𝐶  or 𝑅𝑅), denoted deg(𝑇𝑇),  is equal to the 
number of leaves in the boundary of 𝑇𝑇 or, equivalently, the 
number of circular arcs in the boundary of 𝑇𝑇 . 
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Figure 3. An example of a sibling portrait for degree d=6 on the left and its image under σ6 on the right.

Fig. 3 depicts an example a full sibling family of size 6 and the 
corresponding sibling portrait. All the leaves are mapped 
under 𝜎𝜎!  to the same leaf depicted on the right. Note that 
since the 𝐶𝐶-regions intersect the circle with short arcs and 𝑅𝑅-
regions intersect the circle with long arcs, the 𝐶𝐶-regions are 
mapped to the smaller of the two regions depicted on the right. 
 
Definition 1.4 (Graph) 
A graph is defined to be a finite number of points connected 
by lines which do not intersect. The points are called vertices 
and the connecting lines are called edges [3]. The degree of a 
vertex 𝑣𝑣 is the number of edges that share 𝑣𝑣 as a vertex. A 
tree is a graph with no loops of edges in it so that there is only 
one path connecting any two vertices [3]. A tree whose 
vertices are colored with two colors such that no edge 
connects vertices of the same color is said to be bicolored. An 
example of a bicolored tree is provided in Fig. 4. 
 
Definition 1.5 (Dual Graph) 
The dual graph 𝑇𝑇𝒮𝒮 of the sibling portrait 𝒮𝒮 corresponding to a 
full sibling family is defined as follows: put a dot in each region 
of the sibling portrait and connect any twos dots exactly when 
the two regions containing those dots share a leaf in their 
boundaries. See Fig. 4 for an example. 
 
Proposition 1.6 
The dual graph of a sibling portrait under 𝜎𝜎!  is a tree 
consisting of 𝑑𝑑 + 1 vertices (components of the portrait) and 𝑑𝑑 
edges (sibling leaves between components that meet on their 
boundaries). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The proof is left to the reader. However, by referring to Fig. 4 it 
is easy to see that there are 𝑑𝑑 edges in the tree since there 
are 𝑑𝑑 leaves. One can also see that there are 𝑑𝑑 + 1 vertices of 
the tree since 𝑑𝑑 leaves partition the circle into 𝑑𝑑 + 1 regions. 
Since the leaves in the lamination are required to be disjoint, 
the graph contains no loops of edges. Therefore the dual 
graph is indeed a tree. The bicolored property is proven in 
Theorem 2.2. 
 
Recall that the degree of a complementary region 𝑇𝑇  of a 
sibling portrait is defined to be the number of leaves in its 
boundary, and the degree of a vertex in a graph is defined to 
be the number of edges coming out of it. Since leaves 
correspond to edges, the degree of a region 𝑇𝑇 is equal to the 
degree of 𝑇𝑇's corresponding vertex in the dual graph. 
 
In Theorem 2.2 below, we show that if a full sibling family does 
not map to a diameter, then all the complementary regions of 
the sibling portrait are either 𝐶𝐶 -regions or 𝑅𝑅 -regions. If the 
degree of a region is 1, we will refer to it as a terminal region 
since it corresponds to an endpoint of the dual tree. 
 
Central Strips 
During his study of quadratic laminations, Thurston used the 
idea of a “central strip” to classify types of laminations. This 
classification helps give structure to the space of laminations 
which we are trying to correlate to the parameter space for 
polynomials (the Mandelbrot set in the quadratic case). Since 
Thurston only worked with quadratic laminations, a rigorous 
definition for a central strip was not necessary. Below we will 
define a central strip for any degree 𝑑𝑑 ≥ 2. 
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If 𝒮𝒮 is a full sibling family which maps to the leaf ℓ𝓁𝓁 = 𝑥𝑥𝑦𝑦, then 
the endpoints 𝑥𝑥! , 𝑦𝑦!  of the sibling leaves may be labeled 
𝑥𝑥!, 𝑦𝑦!, 𝑥𝑥!, 𝑦𝑦!,… , 𝑥𝑥! , 𝑦𝑦! in a counterclockwise order around the 
unit circle 𝕊𝕊  (see Fig. 4). We do not generally suppose 
ℓ𝓁𝓁! = 𝑥𝑥!𝑦𝑦!  unless so stated. Typically we denote ℓ𝓁𝓁! = 𝑥𝑥!𝑦𝑦!  for 
some 𝑗𝑗.  We can consider the case where the full sibling family 
maps to a leaf which is a diameter of the circle as a special 
case. Therefore, we will assume the sibling leaves map to a 
non-diametrical leaf. 
 
Definition 2.1 (Central Strip) 
Consider the sibling portrait of a full sibling family 𝒮𝒮. Then the 
central strip 𝐶𝐶  corresponding to 𝒮𝒮   is the collection of all 𝐶𝐶 -
regions 𝐶𝐶! with degree at least 2. So in Fig. 4, the central strip 
would consist of two of the three 𝐶𝐶-regions. 
 
Theorem 2.2   
Let 𝒮𝒮 = {ℓ𝓁𝓁!, ℓ𝓁𝓁!,… , ℓ𝓁𝓁!}  be a full sibling family which does not 
map to a diameter. Then the following hold: 

(1) If some leaf in 𝒮𝒮 is of length > !
!!

 , then  there is a 
central strip 𝐶𝐶. 

(2) The dual graph of the sibling portrait 
corresponding to 𝒮𝒮  is a bicolored tree where 𝐶𝐶 -
regions are colored one color and 𝑅𝑅-regions the 
other. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Proof: Refer to Fig. 4. Since the 𝑥𝑥! (and 𝑦𝑦!) are evenly spaced, 
then either the arc (𝑥𝑥! , 𝑦𝑦!)  or (𝑦𝑦! , 𝑥𝑥!!!)  is short. We may 
assume that (𝑥𝑥! , 𝑦𝑦!)  is the short one. Notice that on one side 
of ℓ𝓁𝓁 = 𝑥𝑥!𝑦𝑦! in Fig. 4 there is a 𝐶𝐶-region and on the other an 𝑅𝑅-
region. This is true in general since if the length of arc (𝑥𝑥! , 𝑦𝑦!)  
is short then the length of (𝑦𝑦! , 𝑥𝑥!!!) must be long. Therefore, 
𝐶𝐶-regions are only adjacent to 𝑅𝑅-regions and vice-versa. Since 
the regions correspond to vertices of the dual graph, we 
naturally see that the vertices must be bicolored in relation to 
𝐶𝐶-regions and 𝑅𝑅-regions. Proposition 1.6 already established 
the dual graph is a tree; therefore the dual graph is a 
bicolored tree. 
 
First, note that if the length of ℓ𝓁𝓁!  is !

!!
 then the length of 

𝜎𝜎!(ℓ𝓁𝓁!)  is !
!

 which implies 𝜎𝜎!(ℓ𝓁𝓁!)  is a diameter. Since we 
assumed otherwise, none of the leaves in 𝒮𝒮 may be of length  
!
!!

. Second, if all the leaves in 𝒮𝒮 are short (length < !
!!

) then 
ℓ𝓁𝓁! = 𝑥𝑥!𝑦𝑦! for all 𝑖𝑖. Then each ℓ𝓁𝓁! subtends a 𝐶𝐶-region of degree 
one. The remaining region in the middle is an 𝑅𝑅 -region of 
degree 𝑑𝑑. Since in this case there are no 𝐶𝐶-regions of degree 
greater than or equal to two, there is no central strip. Fig. 5 
depicts this case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Mapping of a sibling portrait to a bicolored tree.
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Figure 5. There is no central strip when all the leaves are short.
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In the third and last case we may assume the length of at 
least one leaf in 𝒮𝒮  is long (length >    !

!!
). Without loss of 

generality, we may assume the length of ℓ𝓁𝓁! is long. We may 
also label the generic leaf ℓ𝓁𝓁!  as the one with endpoint 𝑥𝑥! . 
Since ℓ𝓁𝓁! = 𝑥𝑥!𝑦𝑦! (in Fig. 4, ℓ𝓁𝓁! = 𝑥𝑥!𝑦𝑦!) is assumed to be long 
and (𝑥𝑥! , 𝑦𝑦!) is assumed to be short, then 𝑗𝑗 ≠ 1. Thus there is a 
leaf emanating from 𝑦𝑦!, called ℓ𝓁𝓁! = 𝑦𝑦!𝑥𝑥!  , different from ℓ𝓁𝓁!. 
Then the arc (𝑥𝑥! , 𝑦𝑦!)   is short and there is another leaf 
emanating from 𝑦𝑦! , ℓ𝓁𝓁! = 𝑦𝑦!𝑥𝑥!  . This continues until a leaf 
has endpoint 𝑥𝑥! (𝑥𝑥! in Fig. 4). This leaf completes the 𝐶𝐶-region 
which has ℓ𝓁𝓁! and ℓ𝓁𝓁!  as boundary leaves. Since ℓ𝓁𝓁! ≠ ℓ𝓁𝓁! , this 
𝐶𝐶 -region has degree at least two. Therefore, a central strip 
exists. (End of proof.) 
 
Definition 2.3 (Euler’s totient function) 
Integers 𝑥𝑥 and 𝑦𝑦 are relatively prime if their greatest common 
divisor is 1. Euler’s totient function, 𝜙𝜙(𝑥𝑥), is defined to be the 
number of positive integers less than, and relatively prime to, 
𝑥𝑥 . For example, 𝜙𝜙 2 = 1  since 1 is relatively prime to 2. 
𝜙𝜙 3 = 2  since both 1 and 2 are relatively prime to 3. 
𝜙𝜙 4 = 2 since both 1 and 3 are relatively prime to 4. 2 is not 
relatively prime to 4 since 2 is a divisor of both. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Theorem 2.4 
If ℓ𝓁𝓁 is a non-diametrical leaf then there are 𝑁𝑁(𝑑𝑑) different full 
sibling families which map onto ℓ𝓁𝓁  by 𝜎𝜎! , distinct up to 
rotations, where 

𝑁𝑁 𝑑𝑑 =
1
𝑑𝑑
  

1
𝑑𝑑 + 1

  
2𝑑𝑑
𝑑𝑑

  + 𝜙𝜙     
𝑑𝑑
𝑛𝑛
  

2𝑛𝑛
𝑛𝑛

!|!,!!!

 

and 𝜙𝜙(𝑥𝑥) is Euler's totient function. 
 
Proof: The goal is to show that there are just as many different 
full sibling families (equivalently sibling portraits) which map 
to the same leaf under 𝜎𝜎!  as there are different bicolored 
trees with 𝑑𝑑  edges. The number of bicolored trees with 𝑑𝑑 
edges is known to be 𝑁𝑁(𝑑𝑑)  [4]. Thus we will use this 
correspondence to show there are 𝑁𝑁(𝑑𝑑)  different sibling 
portraits mapping to the same leaf. Refer to Fig. 6 during this 
proof. 
 
The proof of Theorem 2.2 illustrates how to map a sibling 
portrait to a bicolored tree. It is easy to check that if two 
sibling portraits map to the same bicolored tree (up to rotation) 
then those two sibling portraits are the same (up to rotation). 
Therefore, since for every sibling portrait we can find a unique 
bicolored tree, there must be at least as many bicolored trees 
as sibling portraits. 
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Figure 6. Mapping a bicolored tree to a sibling portrait.

Now assume we are given a bicolored tree with 𝑑𝑑 edges like 
the one in Fig. 6. Since each edge corresponds to a leaf in the 
full sibling family and each leaf has two endpoints, we may 
correlate each side of an edge with an endpoint of the leaf. 
Label the sides of the edges in the tree in a counterclockwise 
order 𝑥𝑥!, 𝑦𝑦!, 𝑥𝑥!, 𝑦𝑦!,… , 𝑥𝑥! , 𝑦𝑦! . Since we consider sibling 
portraits to be the same if one is a rotation of the other, then it 
does not matter which edge you choose to label 𝑥𝑥!  with. 
However, since we generally assume (𝑥𝑥! , 𝑦𝑦!) to be a short arc, 
the vertex of the tree between 𝑥𝑥! and 𝑦𝑦! must correspond to a 
𝐶𝐶 -region. Then in the unit circle, connect a leaf between 𝑥𝑥! 
and 𝑦𝑦! if they are two sides of the same edge in the tree. This 
will construct a full sibling family. Similarly, it is easy to check 
that if two bicolored trees map to the same sibling portrait 
then they are the same bicolored tree. Therefore for every 
bicolored tree there is a unique sibling portrait. It then follows 
that there are exactly as many sibling portraits as bicolored 
trees. (End of proof.) 
 
Corollary 2.5 
If ℓ𝓁𝓁  is a non-diametrical leaf then the number of different 
central strips, distinct up to rotational symmetry, whose 
boundary leaves map onto ℓ𝓁𝓁 is 𝑁𝑁 𝑑𝑑 − 1. 
 
This corollary follows immediately from Theorem 2.4 since the 
only time a sibling portrait does not have a central strip is 
when all the boundary leaves are short, as in Fig. 5. 
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