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COMPREHENSIVE CHARACTERIZATION OF STRUCTURAL VARIATIONS 
USING LONG-READ SEQUENCING DATA 

  

 
YU CHEN 

 
GRADUATE BIOMEDICAL SCIENCES, GENETIC, GENOMIC AND 

BIOINFORMATICS THEME 
 

ABSTRACT  
 

Structural variants (SVs) contribute to genomic diversity and play pathogenic 

roles in a wide range of genetic disorders. Accurate characterization of SVs is critical for 

genomic research and studies of disease mechanisms. The rapid development of Third-

Generation Sequencing (TGS) technologies has largely increased sequencing read length 

compared to Next-Generation Sequencing (NGS), bringing both great potentials and 

challenges in SV discovery through alignment-based and assembly-based approaches. In 

order to take full advantage of TGS data, I have developed a suite of bioinformatics tools 

focusing on comprehensive characterization of SVs. 

For the alignment-based SV discovery, I have developed DeBreak to identify SVs 

directly from long-read alignments. With the implanted density-based clustering 

algorithm and breakpoint refinement method, DeBreak can accurately identify SVs with 

precise breakpoint locations in both simulated and real datasets. When compared to the 

assembly-based SV callsets, DeBreak showed highest consistency among the four tested 

alignment-based SV callers. For the assembly-based SV discovery, I have developed 

Inspector to assess and improve the quality of whole-genome de novo assembly results. 

Inspector achieved highest accuracy in reporting both small-scale and larger assembly 

errors among the three tested assembly evaluation tools on simulated datasets. When 

applied on the assemblies of a real human genome, Inspector revealed that both small-
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scale and structural assembly errors are enriched in repetitive regions for most 

assemblers. With its error correction module, Inspector reduced number of assembly 

errors and improved the assembly quality after polishing with long reads. In addition, I 

have developed FusionSeeker to detect gene fusions caused by SVs from long-read 

cancer transcriptome sequencing data. FusionSeeker reports gene fusions in both exonic 

and intronic regions with high accuracy and can reconstruct fused transcript sequences in 

simulated and cancer cell line datasets. These tools will facilitate the SV analysis using 

long-read sequencing data in the community.  
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CHAPTER 1 

INTRODUCTION TO STRUCTURAL VARIANT DETECTION 

Structural Variant in Genetics Studies 

Structural variant (SV) is a type of genetic variant that spans at least 50 bp in 

length. SVs are often classified as different types, including deletion (DEL), insertion 

(INS), duplication (DUP), inversion (INV), translocation (TRA), and copy number 

variation (CNV), according to the rearrangement forms and signatures. SVs contribute 

largely to genetic diversity and species divergence, together with Single Nucleotide 

Variations (SNVs) and indels [1-3]. In the human genome, SVs involve a total of 

approximately 10 million base pairs, which is more than the sum of SNVs (~5Mbp) and 

indels (~3Mbp) [4]. In a long run of evolution, some SVs were beneficial and fixed in a 

specific species or in a population, some were deleterious and purged during the course 

of evolution, and the remaining are neutral and conserved in the populations [5, 6]. 

SVs play important roles in genetic disorders and cancer genomes [7]. For 

example, complex inverted-duplication/triplication rearrangements are proven to be 

associated with both MECP2 duplication syndrome and Pelizaeus-Merzbacher disease 

[8], and deletions in the 22q11 band can lead to DiGeorge syndrome and velocardiofacial 

syndrome [9]. Deleterious SVs within FCGR gene family can lead to increased risk of 

developing systematic lupus erythematosus [10]. SVs are prevalent in numerous cancer 
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types and may define cancer subtypes, such as for ovarian, pancreatic, and breast cancers 

[11-13]. Accurate discovery of SVs in these disease and cancer genomes is critical for 

causal mutation identification and for studies on diagnosis and progression of diseases.  

Like SNVs, SVs are mutations that derived from various mechanisms, including 

DNA recombination-, DNA replication-, and DNA repair-associated processes [14, 15]. 

For both in vitro experiments on human cells and in vivo experiments in model 

organisms, studies on SV mutagenesis mechanisms are based on the analysis of DNA 

sequences flanking SV breakpoints, which requires the precise breakpoint positions to be 

reported during SV discovery [16, 17]. Thus, accurate characterization of SVs is the 

foundation of genomics research on their contribution to genetic diversity, genetic 

disease, and other phenotypic traits. 

 

Next and Third Generation High-throughput Sequencing 

In 1970s, Sanger sequencing was developed for chain-termination DNA 

sequencing, which is known as the first-generation sequencing. Decades later, massive 

parallel sequencing platforms, also known as Next Generation Sequencing (NGS), were 

developed and became commercially available since 2005 [18]. NGS platforms usually 

amplify input DNA with Polymerase Chain Reaction (PCR) and then sequence the order 

of nucleotides during DNA synthesis. Compared to Sanger sequencing, NGS has largely 

improved the sequencing throughput and therefore enlarged the application of DNA 

sequencing in biomedical research. Commonly used NGS platforms include HiSeq and 

MiSeq from Illumina and SOLiD and Ion Proton from Life Technologies. These NGS 
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platforms usually generate single-end sequencing reads or paired-end sequencing reads 

with fixed read length. The base accuracy can be up to 99.9% as the signal-to-noise ratio 

is largely increased by PCR, which makes NGS a great method for smaller genetic 

variant detection including SNVs and indels. However, the read length of NGS platforms 

is often limited to a few hundred base pairs to avoid PCR ambiguity, which provides less 

power in SV detection, de novo assembly, and haplotype phasing.  

In the past decade, Third Generation Sequencing (TGS) platforms have been 

developed to generate long sequencing reads from single DNA molecules. Most 

frequently used TGS platforms include Single-Molecular Real-Time (SMRT) sequencing 

from Pacific Biosciences (PacBio) and Nanopore sequencing from Oxford Nanopore. 

Similar to NGS, PacBio SMRT sequencing also sequences DNA molecules through DNA 

synthesis [19]. However, it can sequence one single DNA molecule without the need for 

PCR amplification, as it increased the signal-to-noise ratio by reducing background 

signals with the design of its zero-mode waveguide. The read length of PacBio SMRT 

sequencing is therefore not limited by PCR and can reach 10-20kbp, depending on the 

life of DNA polymerase. Oxford Nanopore sequencing passes the DNA molecular 

through a nanopore structure and measures the ionic current to predict the order of 

nucleotides according to the different electronic charges carried by four types of 

nucleotides [20]. Read length of Nanopore sequencing ranges between 10-30kbp and can 

reach up to a few million base pairs in the ultra-long platform. Such long read lengths of 

both PacBio and Nanopore sequencing platforms provide greater potential in detecting 

SVs than short-read sequencing, as the longer reads can often span the entire SV regions 

and better cover the repetitive regions in the genome. As both platforms sequence single 
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molecules, the base accuracy of TGS ranges between 75% to 90%, which also brings 

challenges in read alignment and small genetic variant detection. 

Recently, PacBio HiFi platform is available for generating highly accurate long 

reads by converting double-strand DNA fragment into a circular single-strand structure 

and then sequencing the circular DNA fragment in repeated passes to correct potential 

sequencing errors [21]. This HiFi platform allows accurate detection of both SNVs/indels 

and SVs in the same experiment and can further benefit genome assembly, haplotype 

phasing, and even correction for the current reference genomes. The wide application of 

TGS in clinical and genomic research is currently limited by its high sequencing cost, 

which will be further reduced in near future.  

 

Two Classic SV Discovery Approaches 

Typically, there are two approaches for SV discovery from high-throughput 

sequencing data: the alignment-based and assembly-based approach (Fig. 1). The 

alignment-based approach identifies SV candidates from read alignments directly and 

then filters out noise candidates, which is relatively straightforward and consumes fewer 

computational resources. Currently, several alignment-based SV callers are available, 

including PBHoney [22], Sniffles [23], pbsv, and cuteSV [24], and their performance are 

far from optimal, especially in detecting SVs located in repetitive regions. As alignment-

based SV callers detect SVs directly from raw reads, true SV calls are often contaminated 

with the noise signals originated from sequencing errors or alignment errors. Current SV 

callers usually cluster or merge raw signals of the same SV event and then discard 
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candidates supported by fewer reads (Sniffles and cuteSV) or lower fraction of reads 

from that region (pbsv), which makes the clustering/merging methods a decisive step for 

SV discovery accuracy. The clustering/merging methods of current alignment-based SV 

callers are proven to be less effective according to our benchmark [25], especially for 

SVs located in repetitive regions, demonstrating a clear need for SV callers with more 

efficient clustering methods. 

In contrast, the assembly-based approach first performs local or global de novo 

assembly to generate longer and more accurate assembly contigs and then identifies SVs 

from the assembly results. Existing assembly-based SV callers include PAV [26], Dipcall 

[27], and SVIM-asm [28]. Compared to alignment-based approaches, this approach can 

better resolve complex SVs, SVs with ultra-large sizes, and SVs involving repetitive 

sequences. However, it requests much more computational resources for the assembly 

Figure 1 Two SV discovery approaches. General workflow of alignment-based and 
assembly-based SV discovery using high-throughput sequencing data.  
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process. Recently, long-read SV discovery using assembly-based approach is evolving 

quickly, owing to the improvement of whole-genome assembly methods, such as 

Canu[29], Flye [30], and hifiasm[31]. The SV discovery accuracy of this approach 

largely depends on the quality of assembly itself, as the mis-assemblies within assembled 

contigs can be falsely considered as SVs. It is thus critical to ensure the accuracy of 

assemblies before performing assembly-based SV calling. 

 

Gene Fusion in Cancer Transcriptome 

In cancer genome, SVs at DNA level can cause gene fusions at transcript level, 

which leads to disrupted gene regulation and abnormal protein functions. Gene fusions 

are common in many cancer types, including prostate cancer, breast cancer, and ovarian 

cancer [32-34]. For example, TMPRSS2-ERG fusion is observed in approximately 50% 

of prostate cancer patients, causing the over-expression of ERG gene fusion product [35]. 

Gene fusions are sometimes important drivers of tumorigenesis that can serve as 

diagnostic biomarkers and therapeutic targets [36]. For instance, BCR-ABL fusion is 

found in most Chronic Myeloid Leukemia (CML) patients and has been used as the target 

of standard treatment for CML [37, 38]. 

Previously gene fusions were often detected using short-read RNA sequencing 

when a read or a read pair is aligned to two distinct genes [39]. However, short-read data 

provides limited information about the exact fusion junction positions and sequences of 

fused transcripts. Recent development of long-read RNA sequencing with TGS enables 

full-length transcript sequencing, which is more advanced in gene fusion detection and 

transcript sequences reconstruction. Direct RNA sequencing from Oxford Nanopore 
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sequences full-length transcripts with relatively higher error rate, while Iso-Seq platform 

from PacBio generates highly accurate reads with fixed length ranges. Current long-read 

gene fusion callers include JAFFAL [40] and LongGF [41], both of which have limited 

performance in reporting gene fusions located in intronic regions and do not report fused 

transcript sequences. A gene fusion caller for both intronic and exonic regions is needed 

for more comprehensive detection of gene fusions and the downstream functional 

analysis. 

 

Organization of the Dissertation 

In this dissertation, I will introduce three novel bioinformatics tools that I have 

developed to facilitate accurate SV discovery and gene fusion characterization. First, I 

have developed an SV caller, DeBreak, to identify SVs using the alignment-based 

approach. I have benchmarked DeBreak and the other three alignment-based SV callers 

in simulated and real human datasets to assess the SV discovery and genotyping 

accuracy. I have compared the alignment-based and assembly-based SV callsets and 

applied DeBreak on a cancer dataset to demonstrate its clinical utility. Second, I have 

developed an assembly evaluation and correction tool, Inspector, to improve accuracy of 

assembly-based SV discovery by assessing and improving the quality of assembly results. 

Inspector identifies structural and small-scale assembly errors from read-to-contig 

alignment and corrects these reported errors with local de novo assembly. Third, I have 

developed a gene fusion caller, FusionSeeker, to discover gene fusion caused by SVs at 

transcriptome level. FusionSeeker reports gene fusions in both exonic and intronic 
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regions and reconstructs the accurate transcript sequences for the reported gene fusion 

events. Last, I will summarize the completed work and discuss future research directions.  
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ABSTRACT 

Long-read sequencing has demonstrated great potential for characterizing all types of 

structural variations (SVs). However, existing algorithms have insufficient sensitivity and 

precision. To address these limitations, we present DeBreak, a novel method for 

comprehensive and accurate SV discovery. Based on alignment results, DeBreak employs 

a density-based approach for clustering SV candidates together with a local de novo 

assembly approach for reconstructing long insertions. A partial order alignment algorithm 

ensures precise SV breakpoints with single base-pair resolution, and a k-means clustering 

method can report multi-allele SV events. DeBreak outperforms existing tools on both 

simulated and real long-read sequencing data from both PacBio and Nanopore platforms. 

An important application of DeBreak is analyzing cancer genomes for potentially tumor-

driving SVs. DeBreak can also be used for supplementing whole-genome assembly-based 

SV discovery.  
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INTRODUCTION 

Structural variations (SVs), or genomic rearrangements, including insertions, deletions, 

inversions, duplications, translocations, and complex forms of multiple events, contribute 

a large proportion of genetic variations in many species. In humans, SVs affect larger 

genomic regions in size than any other type of variants[1-5] and play a pathogenic role in 

a wide range of genetic disorders[6-10]. SVs are also associated with diverse phenotypes 

in non-human organisms[11-13]. Therefore, comprehensive characterization of all forms 

of SVs is critical for fully understanding their contribution to genetic diversity, species 

divergence, and other phenotypic traits.  

The currently available real-time long-read sequencing platforms, Pacific 

BioSciences (PacBio) and Oxford Nanopore, generate very long reads (>20 kbp on 

average) and have demonstrated superior performance over short reads on SV discovery. 

For example, many rare genetic diseases have been solved using long-read sequencing 

technologies[14-17]. Long-read sequencing can potentially delineate the full landscape of 

SVs in individual genomes. By sequencing and analyzing a haploid human genome 

(CHM1) using single-molecule, real-time (SMRT) DNA sequencing, Chaisson et al.[18] 

resolved the complete sequence of 26,079 euchromatic structural variations, which is a 

sixfold increase when compared with priorwork[3] using short read sequencing, and most 

of these SVs had not been reported previously. Recent work by the Human Genome 

Structural Variation Consortium (HGSVC) resulted in a sevenfold increase in SV number 

using multiple platforms in which the PacBio results contributed the most[4].  
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Although great strides have been made, existing computational tools for SV 

detection using long reads remain few in number and can be further enhanced and 

optimized. These methods usually can only characterize a subset of SVs, and sensitivity 

and precision are not ideal. For example, PBHoney[19] uses BLASR[20] to map the 

PacBio subreads to collect soft-clipped reads and remap clipped tails (>200bp) to 

compose a “piece alignment”. However, PBHoney can only infer simple deletions, 

tandem duplications, inversions, and translocations and does not perform well for 

insertions and other types of SVs. Another alignment-based method, Sniffles[21] uses 

both within-read alignments and split-read alignments from NGMLR aligner. Sniffles can 

analyze both PacBio and Nanopore sequencing data and report some complex forms of 

SVs besides simple SVs. For both PBHoney and Sniffles, the breakpoints inferred from 

clusters of alignments usually are not precise, preventing experimental validation and 

mechanism analysis[22-25] that rely on SV junction sequences. Moreover, both tools are 

deficient in detecting the full spectrum of SVs. For instance, long insertions close to or 

longer than nearby read lengths are often missed. These issues remain a concern with a 

recently published alignment-based method, CuteSV[26].  

Besides alignment-based methods, methods using local de novo assembly of 

mapped reads are also applied to SV discovery[4, 18, 27]. These local assembly-based 

methods utilize reads from haploid genomes or phased reads from diploid genomes and 

perform de novo assembly in a window. The consensus sequences generated can usually 

identify precise breakpoints. However, they only report insertions, deletions, and subsets 

of inversions. During phasing, only about two-thirds of reads in each sample can be 
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haplotype-partitioned. These partitions require different tools applied to the data from 

other platforms, preventing more generic and broader applications of SV analysis.  

Whole genome de novo assembly can be considered the ultimate solution for SV 

characterization. Although researchers have made progress on this front[28-31], whole 

genome de novo assembly with long noisy reads is inherently challenging. It requires 

high-coverage sequencing data, and difficulties remain in dealing with long repetitive 

sequences, tandem repeats, as well as heterozygosity. Moreover, whole genome de novo 

assembly usually requires high-memory computing nodes and long running time, and it is 

difficult to evaluate accuracy.  

Here, we present DeBreak (Deciphering Exact BREAKpoints), a novel algorithm 

for comprehensive and accurate SV discovery from long reads. DeBreak detects SV 

events using two different strategies, depending on whether SVs can be spanned within 

Figure 1 Workflow of DeBreak. The major steps of DeBreak SV discovery include SV 
signal detection, signal clustering, breakpoint refinement, and filtering and genotyping. 
Detailed descriptions of each step can be found in Methods. 
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reads (Fig. 1, Methods). For SVs contained within reads, DeBreak scans all read 

alignments for raw SV signals for each category of SV (Fig. S1) and then clusters these 

signals using a unique density-based clustering algorithm with flexible clustering window 

sizes (Fig. S2). This approach allows for accurate SV candidate identification for SVs 

with varying lengths and local sequence contents. In the next step, the SV breakpoint 

refinement with a partial order alignment (POA)[32] algorithm can accurately infer SV 

breakpoints with single base-pair resolution. With its automatic sequencing depth 

estimation and parameter optimization, DeBreak filters SV candidates and reports a high-

confidence SV callset with genotyping information. For SVs that are too large to be 

spanned within reads, DeBreak first identifies candidate SV breakpoints and then 

performs local de novo assembly to reconstruct SV-containing sequences (Fig. S3). 

DeBreak completes the analysis by integrating all identified SV events together to form a 

final, high-confidence SV callset. 

 

  



  15 

 

 

RESULTS 

1. Benchmark on simulated dataset 

To benchmark the performance of SV discovery, we first compared DeBreak with 

three SV callers, Sniffles, pbsv, and cuteSV, using in silico datasets. A total of 22,200 

SVs were simulated and embedded into the human reference genome (GRCh38), serving 

as the ground truth. The sizes of simulated SVs follow similar distributions to those 

observed in real human samples, with Alu and LINE peaks[33] (Fig. S4a). PacBio-like 

and Nanopore-like reads were simulated based on a modified genome with pbsim[34] and 

Badread[35] and aligned to the human reference genome. To mimic long reads generated 

from different library preparation protocols, simulations were performed using three 

datasets with different insert sizes (Fig. S4b). We applied these SV callers to identify 

SVs and then compared the SV callsets to the ground truth to assess SV discovery 

accuracy for each SV caller. DeBreak achieved the highest F1 scores among the four 

tested SV callers in all five types of simulated SVs in PacBio datasets and similarly 

achieved the highest F1 scores in four SV types in Nanopore datasets (Table 1, Fig. S5a). 

Overall, DeBreak achieved accuracy of 99.23% on simulated PacBio and 98.35% on 

simulated Nanopore data, which was higher than the other three SV callers. Simulated 

read length had minor effect on DeBreak SV discovery accuracy, as DeBreak achieved 

similar F1 score for all types of SVs in all three replicates (Table S1). All evaluated SV 

callers have a critical parameter, “minimum number of supporting reads”, which 

determines the sensitivity of SV detection for these tools. In the PacBio simulation, we 
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manually set the parameter of “minimum number of supporting reads” to a series of 

values for each caller and assessed the sensitivity of SV discovery at different thresholds. 

Although the recall of all SV callers dropped as the number of supporting reads 

increased, DeBreak consistently demonstrated the highest sensitivity at each threshold 

(Fig. S5b).  

 

As SVs tend to emerge around repeats in the genome, we performed additional 

simulation of repeat-associated SVs. Four SV callers were applied to identify SVs and 

benchmarked to assess their abilities in resolving SVs located in repeats. DeBreak 

achieved accuracy of 98.67% and 97.71% using PacBio and Nanopore data respectively, 

which was higher than the other three SV callers (Table S2). In both insertion and 

deletion detection, DeBreak achieved highest F1 score among four tested SV callers 

Table 1 SV discovery accuracy on simulated datasets 

 DeBreak  Sniffles  pbsv  cuteSV 

Type Rec Pre F1  Rec Pre F1  Rec Pre F1  Rec Pre F1 

PacBio                

DEL 99.59 99.50 99.54  95.50 99.83 97.62  97.21 99.58 98.38  96.94 99.82 98.36 

INS 98.51 99.65 99.08  92.35 99.52 95.80  95.38 96.22 95.80  94.58 94.71 94.64 

DUP 98.27 97.04 97.65  90.80 98.63 94.55  44.53 97.11 60.97  44.13 99.03 61.05 

INV 99.10 99.40 99.25  94.57 97.22 95.88  82.67 99.92 90.47  96.53 50.00 65.88 

TRA 99.17 99.67 99.41  97.67 95.60 96.62  97.67 25.04 39.86  99.00 50.30 66.70 

Total 99.02 99.45 99.23  93.85 99.47 96.58  93.36 95.34 94.34  93.50 92.39 92.94 
Nanopore                

DEL 98.08 98.82 98.45  94.83 98.72 96.74  98.65 98.55 98.60  97.87 98.27 98.07 
INS 98.17 99.68 98.92  92.70 99.73 96.09  97.05 95.92 96.48  96.04 94.01 95.01 
DUP 97.00 93.60 95.27  91.97 98.37 95.06  46.03 87.37 60.23  39.67 99.50 56.72 
INV 91.63 98.71 95.04  93.67 95.18 94.41  88.20 99.96 93.71  97.37 50.00 66.07 
TRA 92.83 99.83 96.17  97.17 91.38 94.18  97.83 25.26 40.15  99.17 50.17 66.63 
Total 97.73 98.96 98.35  93.71 98.91 96.24  95.08 94.60 94.84  94.41 91.46 92.91 

The unit for recall, precision, and F1 score is %. The highest recall, precision, and F1 score among four tested SV 
callers are marked in bold. 
Rec, Recall. Pre, Precision. F1, F1 score. 
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using both PacBio and Nanopore data. The SV discovery accuracy for repeat-associated 

SVs was slightly lower than the previous random SVs for both insertions and deletions.  

DeBreak implanted a large-insertion detection module to identify insertions 

longer than sequencing reads with local de novo assembly. To assess the improvement on 

maximal detectable insertion size of the large-insertion detection module, we embedded 

1,000 insertions with size ranging from 5kbp to 100kbp into Chr1 and then simulated 

PacBio-like reads with mean read length of 15kbp. In general, insertion (INS) detection 

recall dropped as the insertion size increased for each SV caller, and DeBreak achieved 

highest recall in each size category (Fig. S6). When the length of insertions exceeded 

sequencing reads (20k-30k), DeBreak identified 70% of homozygous INS and 40% of 

heterozygous INS, while the other three SV callers failed to detect any events. The 

maximal detectable insertion size of DeBreak was approximately twice of the average 

read length, as the recall dropped dramatically when insertions were longer than 30kbp. 

We then investigated the accuracy of detection of SV breakpoints. By refining SV 

breakpoints with the partial order alignment algorithm, DeBreak reconstructed the 

consensus sequences flanking the SVs, which showed much higher base accuracy than 

the raw reads (Fig. S7a). From the accurate consensus sequences, DeBreak can infer 

more precise SV breakpoints than merely from the raw reads (Fig. S7b). DeBreak 

identified 59.81% of SVs with exact breakpoint positions and 81.33% of SVs within 1bp 

of the true SV breakpoint. We then down-sampled the simulated datasets to assess the 

effect of sequencing depth on breakpoint accuracy. Overall, the breakpoint accuracy was 

improved when sequencing depth increased in both PacBio and Nanopore simulations, 

and DeBreak was able to achieve high breakpoint accuracy starting at 20x (Fig. S8). 
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These results demonstrated that DeBreak can detect all five types of SVs in the simulated 

datasets with high accuracy. 

 

2. Benchmark on real human genome 

We next benchmarked SV discovery accuracy on a real human genome, HG002, 

from the Genome in a Bottle (GIAB) Consortium[36]. We aligned PacBio CLR, HiFi, 

and Nanopore reads of HG002 to the human reference genome and applied four SV 

callers, DeBreak, Sniffles, pbsv, and cuteSV, on the three datasets. The GIAB community 

genome provided an SV callset of 4,237 deletions and 5,440 insertions from multiple 

platforms in defined “high-confidence” regions[37]. Thus, we first benchmarked the SV 

discovery accuracy in these high-confidence regions. In all three datasets, DeBreak 

achieved the highest SV discovery accuracy among the four tested SV callers, especially 

for insertions (Table 2). The higher SV discovery accuracy of DeBreak resulted from its 

advanced clustering algorithm, in which clustering window size is adjustable for SVs of 

different types, sizes, and local sequence content. Instead of setting a clustering window 

of fixed size, DeBreak computes the density of raw SV signals and determines the 

boundaries of the clustering window based on density pattern. The clustering window is 

larger for longer SV events and smaller for shorter SV events, improving effectiveness by 

merging raw SV signals into SV candidates while excluding noisy signals nearby (Fig. 

S9). For SVs located in repetitive regions, the clustering window is automatically 

adjusted to tolerate shifts of raw SV signals caused by repeated segments (Fig. S10). We 

then stratified the SVs into different repeat classes in both ground-truth callset and SVs 

reported by four SV callers in HG002 to assess the SV discovery accuracy in each repeat 
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type. Among the nine annotated repeat classes and non-repeat regions, DeBreak achieved 

highest accuracy in 9 classes using CLR data, 5 classes using HiFi data, and 10 classes 

using Nanopore data, suggesting higher accuracy of DeBreak in resolving repeat-

associated SVs (Fig. S11).  

 

Previous work[38] has highlighted the functional importance of multi-allelic copy 

number variations (mCNVs) in gene dosage and gene expression. DeBreak can 

accurately identify multi-allele SVs (mSVs) in individual genomes. After density-based 

clustering, raw SV signals of candidate mSVs are further clustered through a k-means 

clustering algorithm to characterize two non-reference alleles (Fig. S12). We applied this 

method to identify putative mSVs in HG002. In total, we identified 802 multi-allele SVs 

in a single genome. The majority of mSVs (78/87, 89.66% in CLR; 49/53, 92.45% in 

HiFi; 74/90, 82.22% in Nanopore) in high-confidence regions had at least one allele 

matching with the ground-truth SV set. Multiple alternative alleles of the same SV event 

Table 2 SV discovery accuracy on HG002 

 DeBreak  Sniffles  pbsv  cuteSV  PAV 

 Rec Pre F1  Rec Pre F1  Rec Pre F1  Rec Pre F1  Rec Pre F1 

Deletion                    

CLR 97.73 96.48 97.10  95.14 96.69 95.91  95.28 96.21 95.74  97.31 94.18 95.72  - - - 

HiFi 98.16 95.11 96.61  97.45 91.67 94.47  96.74 94.88 95.80  97.71 93.33 95.47  96.60 96.40 96.50 

Nano 98.40 95.07 96.71  96.29 94.62 95.45  97.40 81.08 88.50  98.18 89.27 93.51  - - - 

Insertion                    

CLR 97.15 93.36 95.22  88.38 89.58 88.98  93.22 83.43 88.05  95.40 81.67 88.00  - - - 

HiFi 97.26 92.84 95.00  90.90 87.79 89.32  97.41 80.42 88.10  96.64 89.88 93.14  96.18 91.32 93.69 

Nano 97.46 93.91 95.65  90.57 90.01 90.29  95.07 85.60 90.09  96.99 89.27 92.97  - - - 

The unit for recall, precision, and F1 score is %. The highest recall, precision, and F1 score among four tested SV 
callers are marked in bold. 
Rec, Recall. Pre, Precision. F1, F1 score. Nano, Nanopore. -, Not applicable.  
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were probably merged into one allele in the high-confidence SV callset, while DeBreak 

can report both alleles (Fig. S13).  

We also benchmarked genotyping accuracy of the four tested SV callers with the 

high-confidence SV callset. On the three datasets, DeBreak and cuteSV performed better 

than pbsv and Sniffles (Table S3). DeBreak achieved the highest genotyping accuracy in 

PacBio CLR and Nanopore datasets, while cuteSV achieved slightly higher genotyping 

accuracy in the PacBio HiFi datasets. We performed down-sampling for PacBio CLR, 

HiFi and Nanopore datasets and assessed the genotyping accuracy in depth ranging from 

10x to 100x. Greater sequencing depth of the input dataset increased DeBreak’s 

genotyping accuracy, but data type had only a relatively minor impact on genotyping 

accuracy (Fig. S14). 

We then assessed the SV discovery accuracy for SVs of different sizes. DeBreak 

achieved consistent and high accuracy for small and large SVs, especially for detecting 

insertions (Fig. 2a). Notably, for ultra-large insertions longer than the sequencing reads 

(>10kbp), DeBreak achieved higher accuracy, recall, and precision than the other three 

SV callers (Fig. S15), benefiting from its large-insertion detection module with local de 

novo assembly. In the PacBio HiFi and Nanopore datasets, DeBreak also achieved 

relatively high accuracy for SVs of different sizes (Fig. S16). We next evaluated the 

accuracy of SV breakpoint positions reported by DeBreak. The high sequencing error rate 

of long reads often causes imprecise inference of SV breakpoints. We compared SV 
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callsets from the four tested SV callers to high-confidence benchmark SV callset to 

assess for shifts in breakpoint positions. With the breakpoint refinement module, 

DeBreak identified 59.90% of SVs with exact SV breakpoints and 63.53% of SVs with 

breakpoint shift within 1bp as reported in GIAB, which was higher than pbsv (41.73% 

Figure 2 SV discovery in HG002. a SV discovery accuracy for insertions (positive SV size) and 
deletions (negative SV size) at different size ranges in CLR dataset. Bars indicates the number of SVs 
in each size range, and lines show the SV discovery accuracy for each SV caller. b SV breakpoint 
accuracy for four tested SV callers in CLR dataset. SVs with breakpoint shifting >100bp were included 
in the ±100bp bins. c SV discovery accuracy in downsampled PacBio CLR (left), HiFi (middle), and 
Nanopore (right) datasets. 



  22 

and 47.41%), Sniffles (4.99% and 13.45%), and cuteSV (5.18% and 13.87%) using the 

PacBio CLR dataset (Fig. 2b). For PacBio HiFi and Nanopore datasets, DeBreak also 

achieved the highest SV breakpoint accuracy among the four evaluated SV callers (Fig. 

S17). 

To assess the effect of sequencing depth on SV discovery accuracy, we 

downsampled the PacBio CLR, HiFi, and Nanopore datasets by a series of depths by 

randomly sampling the reads. At each depth, DeBreak and pbsv were applied with the 

default parameters. In contrast, a set of parameters were tested for Sniffles and cuteSV, 

and the SV calls with the highest F1 scores were selected for comparison. Overall, SV 

discovery was more accurate for datasets having higher sequencing depth (Fig. 2c). 

Starting from 20x, DeBreak already achieved accuracy of over 90% for PacBio CLR, 

HiFi, and Nanopore datasets (Fig. S18). For datasets with depth ≥20x, DeBreak 

consistently identified SVs with the highest accuracy among the four tested SV callers. 

Note that DeBreak and pbsv automatically adapted to lower depths using default settings, 

while Sniffles and cuteSV both required extra effort in manually tuning parameters to 

optimize performance. We further benchmarked the SV breakpoint accuracy in 

downsampled datasets. DeBreak reported most SVs with exact breakpoints starting at 20x 

in Pacbio HiFi and Nanopore datasets and at 30x for PacBio CLR data (Fig. S19). Taken 

together, these results highlight that DeBreak can accurately identify insertions and 

deletions, two major types of SVs, with precise breakpoints in real human genomes. 

3. Comparison to assembly-based SV discovery 

Currently, de novo assembly is used to comprehensively characterize genome-

wide SVs[28-31]. To compare alignment-based with assembly-based SV discovery 
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approaches, we applied DeBreak, pbsv, Sniffles, and cuteSV on six samples from the 

Human Genome Structural Variation Consortium (HGSVC). Three of these six samples 

were sequenced with the PacBio CLR platform, and the other three were sequenced with 

the PacBio HiFi platform. For these samples, highly accurate assembly-based SV callsets 

were generated by performing haplotype-resolved de novo assembly with phased 

sequencing reads and subsequent SV discovery from whole-genome assembly with the 

PAV pipeline[28]. Overall, the assembly-based SV approach discovered a slightly higher 

number of SV events (22,897 to 27,187) compared with alignment-based methods. By 

treating these SVs as the “ground truth”, we evaluated the SV discovery accuracy of four 

alignment-based SV callers. DeBreak identified SV with an average F1 score of 80.09% 

in the six samples, which was higher than pbsv (72.68%), Sniffles (71.44%), and cuteSV 

(77.38%) (Table S4, Table S5). In each sample, DeBreak achieved both higher recall 

and precision than the other three callers (Fig. 3a), suggesting a higher consistency with 

the assembly-based SV discovery than the other three alignment-based SV callers. 

Among four tested SV callers, cuteSV showed highest consistency in SV genotyping 

with an assembly-based approach (Table S6). DeBreak detected a total of 3,100 mSVs in 

the three CLR datasets and 3,097 mSVs in the three HiFi datasets, with approximately 

71% of these 6,200 and 6,194 alternative alleles validated by assembly-based approach in 

CLR and HiFi datasets, respectively (Table S7). A total of 23 and 24 mCNVs were 
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identified in the three CLR and HiFi datasets with further annotation of copy number 

variation using k-mer counts (Fig. S20).  

Figure 3 Alignment-based and assembly-based SV discovery. a SV discovery recall and precision of 
alignment-based SV callers when compared with the assembly-based SV callset. b SV breakpoint accuracy 
of DeBreak, pbsv, cuteSV, and Sniffles in PacBio CLR (top) and HiFi (bottom) datasets. c Venn diagram 
showing the overlap among four SV callsets. The number of SV events in each category is labeled within 
each section. d Distribution of PAV-unique and DeBreak-unique SV calls on chromosomes 1-5. Red boxes 
indicate positions of centromeres.  
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As assembly-based SV calls usually have accurate SV breakpoints inferred from 

assembled contigs, we also compared the SV breakpoint accuracy of four SV callers. 

With the breakpoint-refinement module, DeBreak identified 46.83% of SVs with exact 

SV breakpoints and 48.12% of SVs within 1bp shift on the three PacBio CLR datasets, 

while pbsv reported 39.03% and 40.99%, Sniffles reported 3.02% and 6.82%, and cuteSV 

reported 2.75% and 7.69% of SVs with exact breakpoints and within 1bp shift, 

respectively (Fig. 3b). For the three PacBio HiFi datasets, DeBreak also achieved better 

breakpoint accuracy than the other three callers, as 56.98%, 47.41%, 2.99%, and 15.33% 

of SVs were identified with exact SV breakpoints, and 58.09%, 48.85%, 6.41%, and 

35.54% of SVs were identified within 1bp shift by DeBreak, pbsv, Sniffles, and cuteSV, 

respectively. 

Approximately 82% of DeBreak SV calls overlapped with the assembly-based SV 

callset. There are several thousand unique SVs were reported either by DeBreak or by the 

assembly approach. To characterize these SVs, we performed a four-way comparison of 

SV callsets from DeBreak, pbsv, cuteSV, and PAV on the sample HG00096. For the SVs 

identified by PAV but not by DeBreak, 27.1% of deletions and 30.5% of insertions were 

reported by either pbsv or cuteSV (Fig. 3c, Fig. S21). In contrast, 71.9% of deletions and 

71.5% of insertions reported by DeBreak but not PAV were also reported by either pbsv 

or cuteSV. We further characterized the 3,385 SVs only reported by PAV and 1,292 SVs 

only reported by DeBreak in all six samples. Note that DeBreak reported the fewest 

number of unique SVs. By examining the SV locations on the genome, we found that 

there was strong enrichment in telomere regions for PAV-unique SVs (43.5% located 

near telomeres, 5.8% located near centromeres, and 46.4% located in repetitive regions) 
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(Fig. 3d, Fig. S22). While DeBreak-unique SVs were enriched in the telomere and 

centromere regions (31.2% located near telomeres, 27.7% located near centromeres, and 

38.7% located in repetitive regions). Although DeBreak controls read depth and 

minimum number of supporting reads, alignment-based SV discovery may have 

inaccurate read alignment in these regions. However, it is also challenging to assemble 

reads with abnormal coverage and ascertain phasing status of individual reads without 

bias. Additional efforts are needed to validate these SVs.  

We then compared four alignment-based SV callers to assembly-based approach 

in the CHM13 cell line, where a complete telomere-to-telomere assembly is 

available[39]. An assembly-based SV callset was generated using Dipcall[40] on the 

CHM13 assembly. We selected the high-confidence regions of Dipcall as “ground truth”. 

Four alignment-based SV callers were applied on the PacBio CLR (70x), HiFI (57x), and 

Nanopore (126x) read alignment files. For both insertion and deletion detection, DeBreak 

achieved highest consistency with assembly-based SV callset in all three data types 

(Table S8). All SVs in CHM13 should be homozygous, as CHM13 is a haploid cell line. 

We then benchmarked the genotyping accuracy of four alignment-based SV callers, with 

only ‘GT=1/1’ as correct genotype. In CHM13, DeBreak achieved highest genotyping 

accuracy in PacBio HiFi and Nanopore datasets, and cuteSV achieved slightly higher 

genotyping accuracy in PacBio CLR dataset (Table S9).  

 

4. SV discovery in cancer genomes 

SVs play important roles in cancer development and progression[41-43]. Unlike 

germline SVs, cancer genomes may contain more large-scale deletions, duplications, 
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inversions, translocations, and other complex SVs[44-46]. DeBreak includes a “tumor” 

mode to identify “abnormal” SVs and SVs with clustered breakpoints in cancer genomes. 

To assess SV discovery in cancer genomes, we applied the four SV callers to identify 

SVs in a breast cancer cell line, SKBR3. The PacBio CLR dataset (72x, mean read length 

of 9.87kbp) of SKBR3 was downloaded and aligned to the human reference genome. 

Under the “tumor” mode, DeBreak identified 8,249 deletions, 9,226 insertions, 3,129 

duplications, 190 inversions, and 137 translocations. We compared the SV callsets from 

the four SV callers. As expected, large proportions of SVs were identified by all four SV 

callers (Fig. S23). Among the four SV callers, DeBreak reported relatively fewer 

singleton SV calls, especially in insertion/duplication detection, suggesting high precision 

of DeBreak SV callsets. We also compared the SV callset of DeBreak to previously 

reported SV lists from long-read and short-read data[47] (Fig. S24). DeBreak reported 

1,333 deletions, 3,073 insertion/duplications, 51 inversions, and 91 translocations that 

were not previously discovered. To validate potential cancer-related SVs reported only by 

DeBreak, we designed primers flanking breakpoints for 15 randomly selected SVs (6 

deletions, 4 duplications, 3 inversions, and 2 translocations) that spanned more than 

10kbp (Fig. S25). Polymerase chain reaction (PCR) experiments validated 12 out of 15 

DeBreak-novel SVs, with a validation rate of 80% (Supp. file 2).  

We further analyzed SVs in the SKBR3 breast cancer cell line by annotating 

breakpoints and identified 41 putative gene fusions. By cross-validating these gene fusion 

events with Iso-Seq data (Methods), we found 11 gene fusions that can be validated at the 

transcripts level (Supp. file 3). The cross-validation rate was 26.83%, which was higher 

than Sniffles (25/116, 21.55%), pbsv (5/39, 12.82%), and cuteSV (7/58, 12.07%). 6 out 
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of the 11 cross-validated gene fusions identified by DeBreak have been previously 

reported using transcriptomic data[47-50]. Therefore, SV discovery using DNA-seq data 

with DeBreak identified 5 novel gene fusions: WDR82-PBRM1, PDE4D-DEPDC1B, 

CPNE1-PHF20, CSE1L-KCNB1, and CSNK2A1-NCOA3. The fusion of WDR82 and 

PBRM1 was caused by a hemizygous deletion of 392kbp on chromosome 3, with the 

fusion junction located in the intronic region of both genes (Fig. S26). A deletion of 

259kbp on chromosome 20 caused the fusion of CSE1L and KCNB1, where the seventh 

exon of CSE1L was fused with the intron of KCNB1 (Fig. S27). The gene fusion 

junction locations observed in the Iso-Seq reads were highly consistent with SV 

breakpoint positions inferred by DeBreak, suggesting that DeBreak can accurately predict 

SV breakpoint positions in cancer genomes. These results indicate that DeBreak can be 

applied to cancer genomes and identify previously unknown SVs. 

 

5. Runtime and memory usage 

DeBreak and other SV callers were tested on Intel Xeon E5-2680 v3 CPUs with 

12 cores and 2.5GHz of frequency. It took 12.4 hours for DeBreak to identify SVs from a 

human genome (SKBR3 cell line) using the 67x PacBio CLR dataset with peak memory 

of 63 GB (Table S10). Due to the local assembly module and partial order alignments, 

DeBreak consumed more runtime and memory than Sniffles (3.0h, 13GB) and cuteSV 

(1.5h, 3GB). However, DeBreak was much faster and consumed less memory than pbsv 

(45.1h, 72GB).  
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DISCUSSION 

In this work we present DeBreak, a method for efficient and accurate structural variation 

detection from long-read sequencing data. Based on simulation data, real human genome 

data, and cancer cell line data, DeBreak has demonstrated excellent performance when 

compared with several state-of-the-art long-read SV callers. The improved performance 

is due to several innovative design features: 1) the density-based clustering method can 

accurately identify candidate SV events with a variety of sizes; 2) the partial order 

alignments can produce a consensus sequence for accurate breakpoint inference, which is 

helpful for experimental validation and mechanism inference[22-25]; 3) local de novo 

assembly facilitates discovery of long insertion events, which usually cannot be inferred 

within individual reads; 4) k-means approach can accurately identify multi-allele SVs, 

which are functionally important; and 5) multiple functions can be applied to both 

healthy and unhealthy genomes.  

Due to the limited availability of ground-truth SV sets, DeBreak was 

benchmarked for insertion and deletion discovery in HG002 and HGSVC samples, but 

not for duplication, inversion, or translocation. Further validation of SV discovery 

accuracy on these SV types would be desirable and will help improve DeBreak’s 

performance if comprehensive high-confidence truth SV sets become more readily 

available. Although the benchmark was based on human genomes, DeBreak can be 

applied to other diploid or haploid non-human long-read resequencing data. The overall 

workflow may be applied to polyploid genomes as well. Based on our knowledge and 
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experience, SV discovery in polyploid genomes is challenging for any currently available 

tools. More sophisticated benchmarking work is needed. 

Several features of the input sequencing dataset have essential impact on SV 

discovery accuracy. Data type (sequencing platform) affects SV discovery accuracy and 

breakpoint accuracy. Based on our benchmarks and as expected, datasets with lower 

sequencing error rates often lead to better SV discovery accuracy and breakpoint 

accuracy than datasets with higher error rates at similar levels of sequencing depth. 

Sequencing depth also affects accuracy for SV discovery, breakpoint position, and 

genotyping. Sequencing read length can affect maximal size of detectable SVs, especially 

for insertion detection.  

We observed that SV callers reporting more accurate breakpoint positions 

(DeBreak and pbsv) required more computational resource than SV callers with less 

accurate breakpoints (Sniffles and cuteSV). During SV discovery for DeBreak, 

breakpoint refinement and ultra-large insertion detection were the two most time-

consuming steps, accounting for approximately 45% and 32% of total runtime, 

respectively. When we disabled these two features, DeBreak accomplished SV detection 

within 2.8 hours for the same sample, similar to the runtime of Sniffles and cuteSV. The 

extra runtime and memory usage helped improve the quality and accuracy of the 

DeBreak SV callset. In all situations, DeBreak and other alignment-based methods 

consume much less computational resources than assembly-based methods. Although 

comprehensive evaluation and validation between alignment-based and assembly-based 

approaches are needed, alignment-based methods will continue to serve important roles 

in SV analysis. 
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METHODS 

1. DeBreak workflow 

1.1 Overall workflow of DeBreak. DeBreak detects SVs from read-to-reference 

alignments generated by any long-read aligner, such as minimap2, pbmm2, and ngmlr. 

The workflow of DeBreak includes 1) raw SV signal detection, 2) large insertion 

identification, 3) SV signal clustering, 4) multi-allele SV identification, 5) SV breakpoint 

refinement, and 6) SV filtering and genotyping. The output of DeBreak is a standard VCF 

file containing confident SV calls. 

 

1.2 Raw SV signal detection and clustering. Raw SV signals are detected from read-to-

contig alignment. DeBreak scans all read alignments for intra-alignment and inter-

alignment SV signals. Smaller insertions and deletions can be contained within a single 

alignment (Fig. S1a). For larger indels, inversions, duplications, and translocations, 

DeBreak utilizes split-read information and classifies SV type based on orientation and 

clipping location of two segments from the same read (Fig. S1b). Insertions are inferred 

when there are extra sequences in the read between two adjunct alignments. Deletions are 

inferred when a region on reference genome is skipped between two alignments. 

Duplications are inferred when two alignments are overlapped on the reference genome. 

Inversions are inferred when two alignments have distinct orientation. Translocations are 

inferred when read is aligned to two distinct chromosomes with help of “SA” tag in the 

BAM file. As it scans through read alignments, DeBreak also estimates sequencing depth 
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of the input dataset and automatically adjusts parameters used in the following clustering 

and filtering processes. 

Raw SV signals are then clustered into SV candidates using a density-based 

clustering algorithm for insertion, deletions, duplications, and inversions (Fig. S2). All 

signals from the same chromosome with the same SV type are sorted based on 

coordinates. The density of SV raw signals is computed for each position on the 

chromosome. DeBreak scans the chromosome for density peaks above the threshold, 

which is automatically adjusted according to the sequencing depth of the input dataset. 

For each peak, the boundaries of the SV region are defined on both sides of the peak 

summit when the density drops to 10% of the summit height. All raw signals located 

within the SV region are then merged into one SV candidate. For translocation, positions 

of both breakpoints are clustered with fixed window of 400/800bp. The window size is 

determined by the standard variation of breakpoint positions. A 400bp window is used for 

groups of raw signals with smaller standard variation and an 800bp window is used for 

groups of raw signals with larger standard variation.  

For each SV candidate, DeBreak determines whether it is a multi-allele SV based 

on the first quartile (Q1) and third quartile (Q3) of SV size from all raw signals. If Q3 is 

smaller than twice of Q1, all raw signals are merged into a single-allele SV, excluding 

outliers of extremely large or small size. If Q3 is larger than twice Q1, DeBreak separates 

raw SV signals for each allele with k-means clustering (k=2 for diploid genomes) and 

merges signals from each cluster separately as a multi-allele SV candidate. The detection 

and clustering of SV signals are processed separately for each chromosome, allowing 

DeBreak to perform multi-thread SV detection, drastically reducing runtime.  
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1.3 SV breakpoint refinement. After SV signal clustering, DeBreak assigns each SV 

candidate a breakpoint coordinate by computing the mean value of raw signals. Raw 

signals can be highly imprecise due to the high error rate of long-read sequencing and the 

presence of low-complexity regions in the genome. DeBreak implants the POA algorithm 

from wtdbg2[51] to refine breakpoint locations. For each SV candidate, DeBreak collects 

all reads containing raw signals of this SV candidate and performs POA to generate 

accurate consensus sequences. DeBreak then aligns these consensus sequences to the 

reference genome with minimap2 and detects SVs from consensus sequence alignments. 

The breakpoint location detected from consensus sequence is used to refine the 

breakpoint coordinates of SV candidates. If POA fails to generate consensus sequences 

for an SV candidate, or the consensus sequence cannot be properly aligned back to the 

genome, DeBreak will keep the mean value of the raw signals as breakpoint coordinates. 

 

1.4 Depth-based filtering and genotyping. During raw SV signal detection, DeBreak 

records the total length of aligned reads on each chromosome and computes the average 

sequencing depth. Reads containing raw signals of a particular SV event are considered 

as ‘supporting reads’ for this SV. The minimum threshold of supporting reads (𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) is 

determined based on the average sequencing depth: 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝐷𝐷𝐷𝐷𝑠𝑠𝐷𝐷ℎ
10

+ 2. SV candidates 

supported by at least 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 reads are kept for further consideration, and the rest are 

discarded to remove background noise. SVs of low mapping quality are also filtered to 

remove false positives caused by inaccurate read alignment. For multi-allele SVs, 

DeBreak filters each allele independently. If only one allele passes, a single-allele SV 
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will be reported instead. SVs are genotyped based on the ratio of SV supporting reads to 

the local sequencing depth at each SV location.  

 

1.5 Large insertion detection via local assembly. DeBreak utilizes a local de novo 

assembly approach to detect ultra-large insertions that are too long to be spanned within 

single reads. While scanning read alignments for raw SV signals, DeBreak also records 

positions of clipped ends of read alignments. Read alignments with at least 200bp 

unmapped sequences (clipped sequences) on either side are considered as ‘clipped’ 

alignments (Fig. S3a). After scanning through a chromosome, DeBreak identifies 

candidate insertion breakpoint regions with enriched clipped alignment, where at least 

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 reads are clipped on left side of the candidate breakpoint and another 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 reads 

are clipped on right side of the breakpoint. It then collects these clipped reads at each 

candidate breakpoint region and performs local de novo assembly with wtdbg2 to 

reconstruct assembly contigs that contains full-length inserted sequence (Fig. S3b). 

DeBreak aligns assembled contigs to the reference genome with minimap2 and detects 

insertions from these contigs. Detected insertions are filtered out if 1) multiple contigs are 

assembled during local de novo assembly, 2) a detected insertion is located in another 

chromosome or too far away from the candidate insertion breakpoint, or 3) the detected 

insertion is smaller than 1kbp. 

 

1.6 Duplication identification. DeBreak includes an optional duplication-rescuing module 

that distinguishes tandem duplications from insertion calls, as smaller tandem 

duplications are often treated as insertions by aligners. The inserted sequence of tandem 
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duplication shows high similarity with the duplicated region, while insertions usually 

consistent of novel sequence or sequences from distinct regions of the genome. For each 

insertion call, DeBreak collects reads supporting the SV event and extracts inserted 

sequence from each read. It utilizes minimap2 to re-align these inserted sequences back 

to the local region (1kbp flanking the insertion breakpoint) on the reference genome. If 

more than 50% of inserted sequences can be aligned back to the local region, DeBreak 

corrects the SV type to tandem duplication for this insertion call.  

 

2. Benchmark in simulated dataset 

2.1 Simulated dataset generation. Three simulated datasets with ground-truth SVs were 

generated for benchmarking. For each dataset, a total of 22,200 SVs (10,000 deletions, 

10,000 insertions, 1,000 duplications, 1,000 inversions and 200 translocations) were 

randomly simulated on Chr1 to Chr22 and ChrX. The sizes of simulated SVs followed 

the geometric distribution as observed in real human genomes, including peaks at ~350bp 

and ~6000bp. These simulated SVs were assigned as heterozygotes and homozygotes 

with a ratio of 2:1, and heterozygous SVs were randomly assigned to two haplotypes. The 

human reference genome GRCh38 (autosomes and the X chromosome) were modified 

according to the type and size of simulated SVs to generate haplotype 1 and haplotype 2. 

PacBio-like reads were simulated from the modified genome using pbsim (v1.0.3) with 

options “--data-type CLR --model_qc model_qc_clr --depth 25 --accuracy-mean 0.85”. 

Nanopore-like reads were simulated using Badread (v0.2.0) with options “--quantity 25x 

--junk_reads 0 --random_reads 0 --chimeras 0 --glitches 0,0,0”. The depth was set to 25X 

for each haplotype, generating a simulated dataset of 50X when merging all reads from 
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both haplotypes. The average read length was set to 10kbp, 15kbp, and 20kbp for three 

simulated datasets.  

 

2.2 SV discovery in simulated datasets. The simulated reads were aligned to the reference 

genome with minimap2, ngmlr, and pbmm2 under default settings. DeBreak (v1.2) was 

applied to minimap2 alignment results with default settings. pbsv (v2.6.2) was run on 

pbmm2 alignment results with default settings, and Sniffles (v1.0.8) was run on the ngmlr 

alignment results with options “--genotype  -s 4/5/6/7/8/9/10”. A serious of -s (minimum 

number of reads supporting an SV) was tested for Sniffles, and the threshold with best 

accuracy was selected for comparison with other SV callers. cuteSV (v1.0.11) was run on 

minimap2 alignment results with options “--genotype”. All SVs with length ≥45bp were 

selected for benchmark. 

The SV callsets of DeBreak, Sniffles, pbsv, and cuteSV were compared to the 

ground-truth SV set to assess the recall, precision, and F1 score. An SV call (DEL, INS, 

DUP, and INV) is considered as true positive (TP) if all three conditions are met: 

1) TypeG = TypeC 

2) ABS(CorG – CorC ) <= 1kbp 

3) 0.5 * SizeG <= SizeC <= 2 * SizeG  

Where the TypeG, TypeC, CorG, CorC, SizeG, and SizeC are the SV type, start coordinates 

and size of the ground truth SV call and the candidate SV call. For translocations (TRAs), 

the coordinates of both breakpoints on two chromosomes should be within 1kbp flanking 

the ground-truth breakpoints to be determined as TP.  
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2.3 Simulation of repeat-associated SVs. RepeatMasker annotation of human genome was 

downloaded from UCSC Table Browser. 10,000 repeats were randomly selected with 

size ranging from 50bp to 20kbp. Insertions were simulated by adding an additional copy 

of the repeat, and deletions were simulated by removing the repeat. SVs were assigned as 

‘homozygous and ‘heterozygous’ with a ratio of 1:1. PacBio-like and Nanopore-like 

reads were simulated using pbsim (v1.0.3) and Badread (v0.2.0) with sequencing depth of 

50x and average read length of 10kbp, 15kbp, and 20kbp. Sequencing reads were aligned 

to human reference genome with minimap2, ngmlr, and pbmm2. DeBreak (v1.2) and 

pbsv (v2.6.2) were applied on read alignment files with default settings. A series of “-s” 

were provided for Sniffles (v1.0.8) and cuteSV (v1.0.11), and the SV callsets with 

highest accuracy were used for comparison. SV discovery accuracy was benchmarked 

using the same criterial as in section 2.2. 

 

2.4 Simulation of ultra-large insertion. 1,000 insertions were randomly simulated and 

embedded into human Chromosome 1, with insertion size ranging from 5kbp to 100kbp. 

Insertions were assigned as ‘homozygous and ‘heterozygous’ with a ratio of 1:2. 50x 

PacBio-like reads were simulated with average read length of 15kbp and then aligned to 

human reference genome. DeBreak (v1.2), Sniffles (v1.0.8), pbsv (v2.6.2), and cuteSV 

(v1.0.11) were applied on read alignment files to identify SVs with default settings. 

Recall for insertion detection was benchmarked at different size ranges using the same 

criterial as in section 2.2.  
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3. Benchmark in HG002 dataset 

3.1 SV discovery accuracy benchmark. Raw sequencing reads (PacBio CLR, HiFi, and 

Nanopore data) were downloaded and aligned to GRCh37 with minimap2[52], ngmlr, 

and pbmm2 with default settings. DeBreak (v1.2) and cuteSV (v1.0.11) were applied to 

minimap2 alignment with default settings. pbsv (v2.6.2) was applied to pbmm2 

alignment with default settings. Sniffles (v1.0.8) was applied to ngmlr alignment with 

option “--genotype -s 9/9/12” for PacBio CLR, HiFi, and Nanopore dataset, respectively. 

A series of minimal supporting read (-s option) were tested for Sniffles, and the callset 

with best performance was used for evaluation. Coordinates of SVs in the PAV callset 

were converted from hg38 to hg19 using LiftOver. SV callsets of four alignment-based 

SV callers and PAV were benchmarked within the high-confidence regions 

(HG002_SVs_Tier1_v0.6.bed) by comparing to the benchmark SV callset using the same 

criterial as for the simulation benchmark. Repeat types of SVs were classified with 

RepeatMasker (v4.1.2) using sequences of the longest allele. Shifts of SV breakpoints 

were also evaluated with the high-confidence SV benchmark callset. The SV coordinates 

in DeBreak and cuteSV callsets are 1-based, so all the breakpoint positions were 

transformed to 0-based to keep consistent with the benchmark callset. Genotyping 

accuracy of four SV callers was evaluated based on the genotype information in the 

benchmark callset. 

 

3.2 Down-sampling. To evaluate SV callers at varying sequencing depths in HG002, we 

downsampled the PacBio CLR dataset to a series of depth from 10x to 70x, and 

downsampled PacBio HiFi and Nanopore datasets to a series of depth from 10x to 100x. 
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Sequencing reads were randomly selected to generate datasets of desired depth. The 

depth of each down-sampled dataset was validated by the total number of bases in reads 

divided by human genome size (3.1Gbp). Four SV callers were first applied to 

downsampled datasets with default settings. In addition, to achieve the best performance 

of Sniffles and cuteSV, a series of min_supp (-s option) was provided to Sniffles and 

cuteSV at each depth, and the SV callset with the highest accuracy was selected for 

comparison. 

 

4. Comparison with assembly-based SV callset 

4.1 SV discovery in HGSVC samples. Raw PacBio CLR or HiFi reads of sample 

HG00096, HG01505, HG01596, HG02818, HG03486, and NA12878 were downloaded 

and aligned to GRCh38 with minimap2, ngmlr, and pbmm2 under default settings. 

DeBreak (v1.2), pbsv (v2.6.2), Sniffles (v1.0.8), and cuteSV (v1.0.11) were applied to the 

alignment files to identify SVs with default settings. The merged assembly-based SV 

callset was downloaded from HGSVC2 data portal, and SVs of each sample were 

extracted with custom script. The comparison of SV calls was performed for autosomes 

and the X chromosome. SVs located within 5Mbp of both ends of the chromosomes were 

classified as ‘near telomere’. SVs located within 5Mbp of centromere were classified as 

‘near centromere’. Remaining SVs were annotated according to the repeat annotation 

from Table Browser. SV Distribution on the genome was plotted with karyoploteR[53].   

 

4.2 SV benchmark in CHM13 cell line. Dipcall (v0.3) was applied on the Telomere-to-

Telomere assembly of CHM13 with default settings to generate assembly-based callset. 
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SVs with size of at least 50bp were used as ground truth callset. PacBio CLR, HiFi, and 

Nanopore reads were downloaded and aligned to GCh38 with minimap2, ngmlr, and 

pbmm2. DeBreak (v1.2), Sniffles (v1.0.8), pbsv (v2.6.2), and cuteSV (v1.0.11) were 

applied on read alignment files with default settings. SV callsets were benchmarked only 

in the high-confidence regions suggest by Dipcall. Multimatch was allowed when 

comparing alignment-based SV callsets to the ground truth. Genotyping accuracy was 

benckmarked with ‘GT=1/1’ as correct and the remaining as incorrect genotypes. 

 

5. SV validation in SKBR3 cell line 

5.1 PCR validation of novel SVs. PCR validation was performed for SVs identified by 

DeBreak that were not reported previously by Sniffles and short-read SV callers[47]. 

Fifteen putative cancer-related SVs were randomly selected from SVs spanning more 

than 10kbp on the genome. Insertions were not validated due to length limitations of 

PCR. PCR primers were designed for each type of SV with Primer3 (v0.4.0)[54], and the 

specificity was verified with UCSC in-silico PCR (Fig. S25). An SV event was validated 

if the PCR and following gel electrophoresis confirmed PCR product of the predicted 

size.  

 

5.2 Gene fusion annotation and validation with Iso-Seq data. PacBio CLR sequencing 

data of SKBR3 was aligned to GRCh38 for SV discovery with DeBreak. Breakpoints of 

deletions, duplications, inversions, and translocations were annotated based on the 

Ensembl GRCh38 annotation (v104). An SV was considered to cause gene fusion when 

its two breakpoints were located within two different genes. Iso-Seq reads were 
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downloaded from NCBI and aligned to GRCh38. For each gene fusion event, the total 

number of Iso-Seq reads aligned to both genes were counted. Gene fusion events 

supported by at least 3 Iso-Seq reads were considered as validated.  

 

6. Data and code availability 

PacBio CLR, HiFi, and Nanopore HG002 sequences were downloaded from 

GIAB at https://github.com/genome-in-a-bottle/giab_data_indexes, where PacBio 70x 

(CLR), PacBio CCS 15kb_20kb chemistry2 (HiFi), and Oxford Nanopore ultralong were 

used for SV discovery. The Tier1 benchmark SV callset and high-confidence HG002 

region were obtained from https://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/NIST_SVs

_Integration_v0.6/. Sequencing reads and assembly-based SV callsets of HG00096, 

HG01505, HG01596, HG02818, HG03486, and NA12878 were downloaded from the 

HGSVC2 data portal at https://www.internationalgenome.org/data-portal/data-

collection/hgsvc2. T2T assembly and sequencing reads of CHM13 were downloaded 

from https://github.com/marbl/CHM13. The PacBio CLR and Iso-Seq data of SKBR3 

cell line were downloaded from NCBI SRA under BioProject PRJNA476239. SV callsets 

evaluated in the paper are available at https://zenodo.org/record/7214225.  

DeBreak is publicly available at https://github.com/Maggi-Chen/DeBreak under 

the MIT License. We used v1.2 version for SV discovery and benchmark presented in the 

manuscript. Key custom Python scripts used in the manuscript are available at 

https://github.com/Maggi-Chen/DB_code. 

 

https://github.com/genome-in-a-bottle/giab_data_indexes
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/
https://www.internationalgenome.org/data-portal/data-collection/hgsvc2
https://www.internationalgenome.org/data-portal/data-collection/hgsvc2
https://github.com/marbl/CHM13
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA476239/
https://zenodo.org/record/7214225
https://github.com/Maggi-Chen/DeBreak
https://github.com/Maggi-Chen/DB_code
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Figure S1 SV raw signal detection of DeBreak. a Deletion and insertion can be directly inferred 
within a single-read alignment. b Larger deletion and insertion, duplication, inversion, and 
translocation can be inferred from split-read alignments based on the location and orientation of two 
alignment segments. Alignments with distinct colors represent separate alignments of the same 
sequencing read.  
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Figure S2 SV Density-based SV raw signal clustering. a SV raw signals from the same chromosome 
with the same SV type are sorted based on coordinates. b Density of raw signals is calculated for each 
base pair on the reference genome. DeBreak scans through the chromosome for peaks above a defined 
threshold. c For each peak, boundaries of the SV region for a SV event are determined where density 
drops to 10% of the peak summit height. All raw signals located within the SV region are merged into 
one SV candidate.  
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Figure S3 Ultra-large INS detection. a Example of reads with clipped alignment. Enriched “clipped” 
reads are required for both side of the candidate INS breakpoint for following local assembly. b Local 
de novo assembly using “clipped” reads. Reads aligned to both sides of the candidate INS breakpoint 
are collected for local assembly to generate an assembly contig that includes the full-length insertion 
sequence. 
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Figure S4 Characteristics of simulated datasets. a Size distribution of simulated SVs. Peaks at 300-
350bp were simulated to mimic Alu elements, and peaks near 6kbp were simulated to mimic LINE 
mobile elements. b Length distributions of simulated PacBio (left) and Nanopore (right) reads in three 
simulated datasets. 
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Figure S5 SV discovery accuracy in simulated PacBio datasets. a SV discovery accuracy for four 
tested SV callers in three simulated datasets. b Recall for deletion and insertion detection at different 
thresholds of ‘minimal supporting reads’ for the four SV callers in simulated datasets. 
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Table S1 SV discovery accuracy (F1 score) on three replicated simulated datasets 

 DeBreak  Sniffles  pbsv  cuteSV 

Type Rep1 Rep2 Rep3  Rep1 Rep2 Rep3  Rep1 Rep2 Rep3  Rep1 Rep2 Rep3 

PacBio                

DEL 99.54 99.53 99.56  97.56 97.60 97.69  98.07 98.49 98.59  98.19 98.40 98.48 

INS 98.89 99.09 99.16  94.95 96.25 96.20  95.58 96.13 95.69  93.96 94.96 95.01 

DUP 98.40 98.49 98.44  94.11 94.90 94.63  64.52 62.06 56.33  60.54 61.91 60.71 

INV 99.65 99.05 99.85  95.79 95.68 96.16  89.20 91.01 91.21  65.75 65.82 66.06 

TRA 99.50 99.75 98.99  96.55 96.77 96.53  39.63 39.96 40.00  66.67 66.78 66.67 

Total 99.20 99.26 99.34  96.15 96.78 96.81  94.12 94.58 94.32  92.53 93.12 93.16 

Nanopore                

DEL 98.52 98.38 98.45  96.83 98.38 98.45  98.74 98.59 98.47  98.12 98.04 98.06 

INS 99.03 98.85 98.88  96.02 98.85 98.88  96.63 96.45 96.36  94.97 95.13 94.94 

DUP 95.00 95.39 95.42  94.89 95.39 95.42  62.07 57.37 61.25  55.72 57.43 57.00 

INV 94.99 94.57 95.55  95.01 94.57 95.55  93.06 94.29 93.79  66.03 65.99 66.19 

TRA 94.18 98.48 95.83  95.15 98.48 95.83  39.92 40.04 40.50  66.67 66.67 66.55 

Total 98.40 98.29 98.35  96.28 98.29 98.35  94.97 94.77 94.78  92.89 92.97 92.89 

The unit for the F1 score is %. The highest F1 score in each replicate is shown in bold.  
Rep1, replicate 1 (10kbp). Rep2, replicate 2 (15kbp). Rep3, replicate 3 (20kbp). 
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Table S2 SV discovery accuracy of SV involving repeats 

 Deletion  Insertion  Total 

Type Recall Precision F1  Recall Precision F1  Recall Precision F1 

PacBio            

DeBreak 99.03 99.86 99.44  97.69 98.12 97.91  98.36 98.99 98.67 

Sniffles 97.72 99.86 98.78  95.19 97.85 96.49  96.46 98.85 97.64 

Pbsv 98.13 99.97 99.04  88.95 98.26 93.37  93.54 99.15 96.26 

cuteSV 97.97 99.97 98.96  94.77 97.06 95.89  96.37 98.52 97.43 

Nanopore            

DeBreak 98.12 98.51 98.31  97.35 96.89 97.12  97.73 97.69 97.71 

Sniffles 97.65 97.98 97.81  93.01 98.21 95.52  95.33 98.09 96.68 

Pbsv 99.13 97.25 98.18  92.60 97.95 95.20  95.87 97.58 96.72 

cuteSV 98.31 97.95 98.13  93.87 97.60 95.70  96.09 97.78 96.93 

  

Averages for three replicates (10kbp, 15kbp,20kbp). The unit for recall, precision, and F1 score is %. The highest 
recall, precision, and F1 score for each category are shown in bold.  
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Figure S6 Large insertion detection in simulated datasets. Recall of insertion detection at different 
size ranges. The average length of sequencing reads was 15kbp. The maximal detectable insertion size 
is 10kbp for Sniffles, 20kbp for pbsv and cuteSV, and 30kbp for DeBreak.  
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Figure S7 SV breakpoint refinement in simulated datasets. a The identity of reads/consensus 
sequences compared with sequences around simulated SVs for individual SV type. b Shift of SV 
breakpoints inferred from raw reads (left) and from consensus sequences (right) in three simulated 
datasets (top, center, and bottom). SVs with shifts more than 20bp were combined into the first and last 
bins. 
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Figure S8 SV breakpoint accuracy in down-sampled simulated datasets. Number of detected SVs 
with exact breakpoint (solid line) and shift ≤1bp (dashed line) in three PacBio and Nanopore replicates.  
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Figure S9 Adjustable clustering window size. a IGV view of read alignments flanking a small SV 
(left) and a large SV (right). b Raw SV signal density of the two SVs shown in a. Based on the density 
pattern of raw SV signals, the clustering window is smaller for shorter SVs (left) and larger for longer 
SVs (right).  
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Figure S10 Adjustable clustering window for repeat regions. a IGV view of read alignments 
flanking SVs located within a low-complexity region (left) and a non-repeat region (right). Raw SV 
signals have various breakpoint positions in a low-complexity region and relatively consistent 
breakpoint positions in a non-repeat region. b Raw SV signal density of the two SVs shown in a. The 
clustering window size is larger in a low-complexity region when raw signals are diverged (left) and 
smaller in a non-repeat region (right) to exclude potential noise signals nearby. 
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Figure S11 SV discovery accuracy in different repeat types in HG002. F1 score of SV discovery in 
high-confidence regions of HG002 using PacBio CLR, HiFi and Nanopore data. The repeat type was 
annotated with RepeatMasker using sequences of longest allele for each SV. LC, low-complexity.  
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Figure S12 Example of a multi-allele SV in HG002. a IGV view of a multi-allelic SV on 
chromosome 6. Some reads contain ~100bp (shorter) deletion signals, and other reads contain ~300bp 
(longer) deletion signals. b k-means clustering of SV raw signals from the multi-allelic SV region 
shown in a. Based on SV size and position, SV raw signals are clustered into two groups, each 
representing one allele.  
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Figure S13 Example mSV in HG002 high-confidence regions. Two alternative alleles were reported 
by DeBreak (238bp DEL and 68bp DEL) for this mSV, and one of the two alleles matched with the 
truth SV set (272bp DEL). In PacBio CLR, HiFi, and Nanopore datasets, raw signals of both sizes 
(~250bp and ~70bp) are present in read alignments in this region.  
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Table S3 SV genotyping accuracy in HG002 

 PacBio CLR  PacBio HiFi  Nanopore 

 DEL INS Total  DEL INS Total  DEL INS Total 

DeBreak 93.22 84.00 87.98  90.46 84.70 87.21  92.18 86.38 88.92 

Sniffles 47.47 38.51 42.43  52.38 45.77 48.70  61.69 56.08 58.55 

pbsv 92.35 75.09 82.14  93.26 75.19 82.34  80.22 79.81 79.99 

cuteSV 92.53 78.99 84.52  91.95 88.56 90.02  88.05 87.45 87.71 

The genotyping accuracy is calculated as the number of SVs with the correct genotype divided by the 
total number of SVs reported by each SV caller. The highest genotyping accuracy in each group is 
shown in bold. The unit of genotyping accuracy is %. 
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Figure S14 Genotyping accuracy in down-sampled datasets in HG002. The PacBio CLR dataset 
was downsampled from 10x to 70x. The PacBio HiFi and Nanopore datasets were downsampled from 
10x to 100x.  
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Figure S15 SV calling recall and precision for insertions (positive SV size) and deletions (negative SV 
size) for four tested SV callers in HG002 high-confidence regions. The bar plot indicates the number of 
SVs in each size range.  
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Figure S16 SV calling accuracy for insertions (positive SV size) and deletions (negative SV size) for 
four tested SV callers in PacBio HiFi and Nanopore datasets. The bar plot indicates the number of SVs 
in each size range.  
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Figure S17 SV breakpoint accuracy in HG002 HiFi and Nanopore datasets. a SV breakpoint shift 
of four SV callers in the HiFi dataset. 64%, 57%, 5%, and 25% of SVs were identified with exact 
breakpoint position by DeBreak, pbsv, Sniffles, and cuteSV, respectively. b SV breakpoint shift of four 
SV callers in Nanopore dataset. 54%, 49%, 5%, and 7% of SVs were identified with exact breakpoint 
position by DeBreak, pbsv, Sniffles and cuteSV, respectively. 



  67 

  

Figure S18 SV discovery accuracy in down-sampled datasets under default settings. Sniffles and 
cuteSV demonstrate lower accuracy at lower sequencing depths. 
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Figure S19 Breakpoint accuracy in downsampled datasets in HG002. Number of SV detected with 
exact breakpoint and with ≤1bp shift in breakpoints using PacBio CLR, HiFi, and Nanopore data at 
different sequencing depths. PacBio CLR data was downsampled from 10x to 70x. PacBio HiFi and 
Nanopore data were downsampled from 10x to 100x.   
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Table S4 SV discovery accuracy compared to assembly-based SV callsets 

 DeBreak  pbsv  cuteSV  Sniffles 

Sample DEL INS Total  DEL INS Total  DEL INS Total  DEL INS Total 

CLR                

HG00096 80.52 78.59 79.34  76.51 69.85 72.59  78.72 77.73 78.12  78.39 69.54 73.18 

HG01505 80.77 78.72 79.52  76.96 69.51 72.57  79.18 77.51 78.16  78.03 69.00 72.73 

HG01596 80.15 75.83 77.45  75.46 68.72 71.47  78.28 72.10 74.39  76.76 66.80 70.69 

HiFi                

HG02818 81.90 80.57 81.12  78.43 69.05 73.19  78.45 77.08 77.65  77.75 65.73 71.01 

HG03486 82.17 81.58 81.82  78.56 69.30 73.40  79.71 78.65 79.09  79.14 68.22 73.01 

NA12878 80.78 81.66 81.31  77.80 69.17 72.87  77.32 76.54 76.85  73.64 63.88 68.00 

 

SV discovery accuracy was evaluated with the assembly-based SV callset as the ground truth. The 
highest accuracy (F1 score) among four tested alignment-based SV callers is shown in bold in each 
sample. The unit of F1 score is %. 
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Table S5. SV discovery recall and precision compared to assembly-based SV callsets 

 DeBreak  pbsv  cuteSV  Sniffles 

 R-D P-D R-I P-I  R-D P-D R-I P-I  R-D P-D R-I P-I  R-D P-D R-I P-I 

CLR                    

HG00096 79.46 81.62 78.08 79.11  77.24 80.25 75.64 79.94  78.44 74.67 65.40 74.95  75.27 81.29 61.67 80.79 

HG01505 79.40 82.20 76.68 80.87  77.41 81.04 74.47 80.81  78.99 75.03 64.51 75.34  75.04 81.04 59.80 82.42 

HG01596 77.68 82.79 75.63 76.03  76.04 80.66 73.89 70.41  77.44 73.58 63.59 74.75  71.21 84.47 59.53 76.14 

Total 78.85 82.19 76.79 78.64  76.90 80.65 74.66 76.79  78.30 74.43 64.50 75.01  73.86 82.18 60.33 79.71 

HiFi                    

HG02818 81.44 82.36 76.54 85.04  78.40 78.50 73.41 81.13  80.36 76.59 60.19 80.97  75.94 80.18 58.66 87.12 

HG03486 83.14 81.22 79.31 83.98  81.29 78.20 77.26 80.09  81.71 75.64 60.85 80.47  78.20 79.18 60.94 86.54 

NA12878 81.80 79.80 78.58 84.99  75.91 78.78 72.78 80.71  79.19 76.45 59.90 81.81  72.65 78.30 57.98 87.07 

Total 82.15 81.19 78.13 84.65  78.71 78.46 74.57 80.62  80.50 76.21 60.33 81.04  75.79 79.28 59.26 86.90 

SV discovery accuracy was evaluated with the assembly-based SV callset as the ground truth. The highest recall and precision among four tested alignment-based SV 
callers is marked in bold. The unit of recall and precision is %. 
R-D, recall for deletion. P-D, precision for deletion. R-I, recall for insertion. P-I, precision for insertion. 
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Table S6 SV genotyping accuracy in HGSVC samples 

 DeBreak pbsv cuteSV Sniffles 

CLR     

HG00096 72.70 67.81 75.06 45.88 

HG01505 73.18 67.82 75.82 46.13 

HG01596 70.04 65.11 68.75 39.05 

HiFi     

HG02818 72.62 72.91 74.91 45.45 

HG03486 71.75 72.54 74.13 45.25 

NA12878 71.68 70.43 73.52 39.06 

  

SV genotyping accuracy was assessed with the assembly-based SV callset as the ground truth. The 
highest accuracy among four tested alignment-based SV callers is shown in bold for each sample. The 
unit of genotyping accuracy is %. 
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Table S7 DeBreak mSV discovery in HGSVC samples 

 mSV Alternative allele Validation rate mCNV 

CLR     

HG00096 1097 2194 73.38 12 

HG01505 1011 2022 71.96 4 

HG01596 992 1984 70.46 7 

Total 3100 6200 71.98 23 

HiFi     

HG02818 1031 2062 73.81 7 

HG03486 1187 2374 72.11 10 

NA12878 879 1758 67.86 7 

Total 3097 6194 71.47 24 

Alternative alleles that are also reported in assembly-based SV callset were considered as validated. 
mCNV is classified using k-mer counts. The unit of validation rate is %. 
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Figure S20 Example an mCNV event (chr12-1079285-94bp-INS/chr12-1079285-235bp-INS) in 
HG02818. a k-mer occurrence of reference sequences. A peak of k-mer at 9 indicates 9 copies of a 
specific repeat unit in the reference genome. b, c k-mer occurrence of alternative allele 1 (b, INS of 
94bp) and alternative allele 2 (c, INS of 235bp). 11 and 14 copies of the repeat unit are present in the 
two alleles. d Alignment of inserted sequences of two alternative alleles. Both alleles can be fully 
aligned to the reference genome near the mSV breakpoint.  
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Figure S21 SV discovery consistency between alignment-based and assembly-based SV discovery 
approaches. Venn diagrams showing the overlap between alignment-based and assembly-based SV 
callsets. Numbers indicate the number of SVs in each group. 
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Figure S22 PAV-unique and DeBreak-unique SV distribution on the genome. The PAV-unique 
SVs (green) are enriched at the telomere regions. DeBreak-unique SVs (orange) are enriched at the 
centromere and telomere regions. 
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Table S8 SV discovery accuracy in CHM13 

 Deletion  Insertion  Total 

 Recall Precision F1  Recall Precision F1  Recall Precision F1 

CLR            

DeBreak 82.41 88.58 85.38  79.29 87.19 83.05  80.45 87.72 83.93 

Sniffles 78.66 86.01 82.17  63.03 90.42 74.28  68.86 88.49 77.45 

pbsv 81.84 84.76 83.27  70.74 85.52 77.43  74.88 85.21 79.71 

cuteSV 83.84 86.35 85.08  81.44 84.74 83.06  82.33 85.35 83.81 

HiFi            

DeBreak 83.71 86.12 84.90  80.81 89.89 85.11  81.89 88.39 85.02 

Sniffles 79.44 83.84 81.58  60.42 88.75 71.89  67.51 86.50 75.84 

pbsv 80.69 83.18 81.92  65.04 88.26 74.89  70.88 86.01 77.71 

cuteSV 85.93 79.68 82.69  84.03 85.07 84.55  84.74 82.97 83.84 

Nanopore            

DeBreak 85.72 82.83 84.25  83.46 87.70 85.53  84.30 85.76 85.03 

Sniffles 81.87 78.57 80.19  64.49 88.54 74.63  70.97 83.94 76.91 

pbsv 84.44 54.55 66.28  68.12 86.07 76.05  74.21 69.06 71.54 

cuteSV 88.52 71.71 79.23  86.09 83.24 84.64  87.00 78.41 82.48 

  

SV discovery accuracy was evaluated with the assembly-based SV callset as the ground truth. The highest F1 score 
in each SV type are shown in bold. The unit of recall, precision, and F1 score is %. 
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Table S9 SV genotyping accuracy in CHM13 

 CLR HiFi Nanopore 

DeBreak 77.00 86.02 78.74 

Sniffles 32.03 26.19 48.73 

pbsv 62.65 81.31 59.33 

cuteSV 77.33 74.36 61.50 

  

SV genotyping accuracy was evaluated with only ‘GT=1/1’ as correct genotype. The highest genotyping accuracy 
in each data type are shown in bold. The unit of genotyping accuracy is %. 
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Figure S23 SV discovery in SKBR3 cell line. Venn diagrams showing the overlap between SV 
callsets from four SV callers. Insertions and duplications have been merged for comparison, as 
duplications are sometimes considered as insertions. 
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Figure S24 SV discovery in SKBR3 cell line. Venn diagrams showing the overlap between DeBreak 
SV callset and SV calls previously reported from short-read (SURVIVOR) and long-read data 
(Sniffles). Numbers indicate the number of SVs in each category.  
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Figure S25 PCR primer for validation. PCR primer design for deletions (a), duplications (b), 
inversions (c), and translocations (d). For deletions, the PCR product size is much smaller when the SV 
is a true event than for false positive (reference allele). For duplications, inversions, and translocations, 
the PCR product is expected only when SV is a true event.  
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Figure S26 Gene fusion of WDR82 and PBRM1. IGV view of PacBio CLR (a) and Iso-Seq data (b) 
at the gene fusion junction. The ‘DeBreak Call’ panel shows SVs identified from PacBio data with 
DeBreak. Red arrows indicate IsoSeq reads that contain sequences from both WDR82 and PBRM1. 
The purple arrow indicates the gene fusion junction position inferred from IsoSeq reads. 
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Figure S27 Gene fusion of CSE1L and KCNB1. IGV view of PacBio CLR (a) and Iso-Seq data (b) at 
the gene fusion junction. The ‘DeBreak Call’ panel shows SVs identified from PacBio data with 
DeBreak. Red arrows indicate the IsoSeq reads that contain sequences from both CSE1L and KCNB1. 
The purple arrow indicates the gene fusion junction position inferred from IsoSeq reads. 
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Table S10 Runtime and memory usage of SV callers 

 DeBreak Sniffles pbsv cuteSV 

CPU x node 12 x 1 12 x 1 12 x 1 12 x 1 

Wall-clock time 12:22:48 03:02:37 1-21:06:15 01:29:37 

CPU time 1-19:11:22 1-08:28:26 1-22:42:03 08:10:08 
Peak Memory 
(GB) 63.00 12.62 71.84 3.39 
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ABSTRACT 

Long-read de novo genome assembly continues to advance rapidly. However, there are a 

lack of effective tools to accurately evaluate the assembly results, especially for structural 

errors. We present Inspector, a reference-free long-read de novo assembly evaluator 

which faithfully reports types of errors and their precise locations. Notably, Inspector can 

correct the assembly errors based on consensus sequences derived from raw reads 

covering erroneous regions. Based on in silico and long-read assembly results from 

multiple long-read data and assemblers, we demonstrate that in addition to providing 

generic metrics, Inspector can accurately identify both large-scale and small-scale 

assembly errors. 
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INTRODUCTION 

Whole genome de novo assembly is essential for investigating species without reference 

genomes and is critical for characterizing the full spectrum of genetic variants for species 

with a reference genome [1-9]. With the advancement of long-read sequencing 

technologies, long reads are becoming more accurate, much longer, and more affordable 

[10, 11]. Accordingly, numerous long-read whole-genome de novo assemblers [12-20] 

have been developed and are widely applied to small-scale [21-23] and consortium 

projects [4, 5, 24].  

Despite these advancements, it is challenging to achieve high-quality assembly, 

even for long reads. The algorithms of assemblers differ greatly, and each assembler 

typically includes a wide range of parameters. Moreover, the input data may originate 

from individual or multiple platforms with varying read lengths. For long-read 

assemblers, the input may include hybrid reads, long noisy reads (PacBio raw CLR or 

Nanopore), HiFi reads, reads from trio samples, and other types. Additional complexity 

due to ploidy, genetic diversity, heterozygosity, repetitive sequences, as well as 

sequencing depth of sequenced genomes make de novo assembly even more challenging.  

De novo assembly quality assessment is therefore essential both for users to 

obtain optimal assembly results and for developers to improve assembly algorithms. In 

the short-read era, Assemblathon [25, 26] guided best practices for de novo assembly. 

However, there are limited toolsets that can evaluate long-read assemblies. QUAST-LG 

[26, 27], an extension of QUAST [28], is able to evaluate large genome assemblies. It 
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accepts sequencing data from multiple platforms and can generate reports with rich 

assembly metrics as well as plots. However, QUAST-LG relies heavily on existing 

reference genomes, which limits its application in species without a reference genome or 

for samples that differ substantially from reference genomes. In addition, the mis-

assembly evaluation of QUAST-LG is easily affected by the presence of genetic variants. 

Although it accepts raw reads as input, only Illumina data will be used to call structural 

variations (SVs) with GRIDSS [29], while long reads can only be used to report simple 

read statistics. Even if short reads are provided, due to the insufficiency of detecting SVs 

from short reads [4], it is challenging to evaluate assembly errors.  

Merqury [30], inspired by KAT [31], is a reference-free toolkit for evaluating 

assembly quality (QV), completeness, and phasing based on the k-mer spectra. By 

comparing k-mers in assemblies to raw reads, Merqury can estimate base-level accuracy 

and completeness. Nevertheless, Merqury requires high-accuracy reads as input, such as 

Illumina data, which limits its application on long-read-only assembly results. While it 

provides base-level error estimates, Merqury cannot explicitly validate structural errors.  

BUSCO [32] is a rapid and accurate method for assessing genome assembly and 

annotation completeness based on evolutionary ortholog genes. However, BUSCO 

evaluates conserved genomic regions and is not informative on the most divergent 

sequences in the genome.  

Assembly polishing following de novo assembly is a typically used approach for 

improving assembly quality for downstream genomic analysis. Most current polishing 

algorithms correct assembly errors based on read-to-assembly alignment, as used in 

Racon [33], Pilon [34], GCpp [35], and CONSENT [36]. Other algorithms use k-mer 
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based approaches, such as POLCA [37] and ntEdit [38]. Nanopolish [39] and Medaka 

[40] polishing methods have been designed particularly for Oxford Nanopore data. Most 

polishing methods target small-scale errors for correction, while polishing performance 

on a larger scale remains unknown due to a lack of efficient evaluation methods. Another 

limitation is that, these polishing methods often require excessive computational 

resources for large genomes, such as mammal genomes. 

We have developed Inspector to comprehensively evaluate assembly quality and 

identify assembly errors in haploid and diploid genomes. Instead of relying on reference 

genomes, Inspector evaluates assemblies with only third-generation sequencing reads, 

which are the most faithful representations of target genomes. By aligning sequencing 

reads to the contigs with minimap2 [41], Inspector generates read-to-contig alignment 

and performs downstream assembly evaluation (Fig. 1). Statistical analysis is initially 

performed to assess contig continuity and completeness. Structural assembly errors and 

small-scale assembly errors are identified from read-to-contig alignment and 

distinguished from genetic variants based on the ratio of error-containing reads. Inspector 

includes a targeted error-correction module that addresses identified errors to improve 

local assembly quality. The output of Inspector includes an evaluation summary report, 

list of structural errors, list of small-scale errors, read alignment file, and evaluation plots. 
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Figure 1 Inspector workflow for evaluating of de novo assembly results. By mapping the 
long reads to the contigs, besides basic statistic assembly evaluation metrics, Inspector 
calculates and reports precise structural errors and small-scale errors. The identified errors can 
also be corrected by Inspector to generate more accurate contigs. 
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RESULTS 

1. Small-scale assembly errors and structural assembly errors 

We have classified assembly errors into two groups, small-scale errors (<50bp) 

and structural errors (≥50bp). Small-scale errors consist of three types: base substitution, 

small collapse, and small expansion (Additional file 1: Fig. S1). Small-scale errors can 

be directly inferred from the pileup results of read alignments and filtered based on the 

number of error-supporting reads (Methods). We also have defined four types of 

structural assembly errors: expansion, collapse, haplotype switch, and inversion 

(Additional file 1: Fig. S2). Collapse and expansion are reported when part of the target 

genome sequence is incorrectly collapsed or expanded in the assembly. For example, 

collapse and expansion can occur within repetitive regions, as the presence of repeat units 

often forms bifurcated paths on assembly graphs, which are difficult to resolve. 

Haplotype switches occur at heterozygous SV breakpoints, when two haplotypes are 

different. The assembler fails to reconstruct either haplotype but instead generates a 

sequence somewhat between the two haplotypes. In these cases, reads from one 

haplotype will suggest a ‘Collapse’, and reads from the other haplotype will suggest an 

‘Expansion’. Inversions occur when a section of the target genome sequence is inverted 

in the assembly.  
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2. Benchmark with simulation 

To benchmark the accuracy of assembly error detection of assembly evaluators, 

we compared Inspector with two other long-read assembly evaluators, Merqury and 

QUAST-LG, on the simulation dataset. We simulated a human genome from the 

reference genome (GRCh38) and introduced 1,000,000 single nucleotide and 20,000 

structural variants. The SV size spectrum follows a geometric distribution similar to a 

real human genome [1-2] (Additional file 1: Fig. S3). A total of 2,000 structural errors 

and approximately 580,000 small-scale errors (base substitutions and 1bp indels) were 

randomly embedded into the simulated assembly (Additional file 2: Table S1). PacBio 

CLR-like reads and HiFi-like reads were simulated by PBSIM [42] and provided for 

Inspector to identify assembly errors. The reported assembly errors and problematic k-

mers were compared to the ground truth to assess the accuracy of error identification for 

each evaluator.  

Under the default settings, Inspector achieved the highest accuracy (F1 score) for 

assembly error detection in both haploid and diploid genomes (Table 1). For structural 

errors, Inspector correctly identified over 95% of simulated errors with both PacBio CLR 

and HiFi data. It achieved slightly better accuracy when working with HiFi data than 

CLR, as HiFi reads contain fewer sequencing errors. The precision was over 98% in both 

haploid and diploid simulations, although the number of SVs was approximately ten 

times greater than the true structural errors. For small-scale errors, the accuracy of 

Inspector was over 99% when working with HiFi data. The recall for small-scale error 

detection was lower (~ 86%) for CLR data, due to the lower signal-to-noise ratio caused 

by a higher sequencing error rate. In particular, the recall for base-substitution error was  
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higher than for small collapse or expansion, as the latter two subtypes are more 

susceptible to sequencing errors (Additional file 1: Fig. S4). Most false-negative small-

scale errors exhibited a lower ratio of error-supporting reads and were filtered out by 

Inspector for failing to reject the null hypothesis of the binomial test. The precision of 

small-scale error detection was over 96% for both PacBio CLR and HiFi data, benefiting 

from the stringent filter implemented in Inspector. Merqury identified ~71% of the 

assembly errors with a precision of ~91.6% on both CLR and HiFi data. Merqury failed 

to detect more small collapses than base substitution and small expansions, and over 70% 

of Merqury-missed small-scale errors were located in repeat regions (Additional file 1: 

Fig. S5). QUAST-LG had much lower recall and precision than Inspector and Merqury, 

as some misassemblies were indeed caused by SVs (18% in haploid and 36% in diploid).  

In both haploid and diploid simulated assemblies, Inspector detected the structural 

assembly errors and small-scale errors with the highest accuracy among the three  

evaluators. 

Table 1 Assembly error identification accuracy in simulated assembly 

 Haploid  Diploid 

 Recall Precision F1 score  Recall Precision F1 score 

Inspector 
structural – CLR 96.76 100.0 98.35  95.98 98.48 97.21 

Inspector 
structural – HiFi 97.64 100.0 98.80  97.61 98.87 98.23 

Inspector 
small-scale – CLR 86.84 99.53 92.75  86.60 96.99 91.50 

Inspector 
small-scale – HiFi 98.99 99.65 99.32  98.91 99.62 99.26 

Merqury 71.01 91.66 80.03  70.92 91.63 79.95 

QUAST-LG 5.73 5.96 5.84  7.08 8.48 7.72 
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3. Human genome assembly evaluation 

We next performed whole genome de novo assembly on a real human genome 

and evaluated the assembly results. We used an Ashkenazi Jewish sample, HG002, from 

Genome in a Bottle (GIAB) for the analysis. This sample has been sequenced by multiple 

platforms, including PacBio CLR, PacBio HiFi, Oxford Nanopore, and Illumina. There 

are experimentally or multiple-platform validated SNP/indel callset and SV callset at 

high-confidence regions publicly available for this sample [43-45], which enables the 

validation of identified assembly errors. We tested five the-state-of-art assemblers, Canu 

[15], Flye [16], wtdbg2 [17], hifiasm [20], and Shasta [18], on the PacBio CLR (~70X), 

HiFi (~55X), and Nanopore (~60X) dataset, if applicable. Besides Inspector, we have 

applied Merqury and QUAST-LG to evaluate and compare the assembly results (Table 

2). 

Inspector first estimated assembly continuity. Most assemblies contained a total 

of 2.7-3.0 giga base pairs, close to the reference genome, suggesting that these 

assemblers can reconstruct the overall structure of the target genome using long reads. 

Based on the maximal contig length and the N50, the sequence length of the shortest 

contig at 50% of the total contig lengths, Flye achieved the best continuity in the PacBio 

CLR and Nanopore datasets, while hifiasm outperformed the other assemblers in the HiFi 

dataset. Inspector then aligned the sequenced reads to contigs and identified assembly 

errors from read-to-contig alignments. Canu introduced the fewest structural errors as 

well as small-scale errors in CLR and HiFi assemblies. Hifiasm achieved results similar 

to Canu. Nanopore assemblies contained much more structural errors and small-scale 

errors than CLR and HiFi assemblies. This was likely due to the higher error rate of the  
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Table 2 Evaluation summary of HG002 assemblies 

Assembly 
 Contig Continuity  Assembly Error  QUAST-LG  Merqury  Reference-based Mode 
 # Contig Total Max N50  Structural Small-scale QV  Misassembly MM  QV  NA50 MR (%) Coverage (%) 

CLR                    

 Canu  4751 2.91 72.0 7.2  103 39.82 43.63  8341 18.84  38.51  1.32 99.15 89.41 

 Flye  2168 2.82 66.6 12.0  192 30.88 43.38  4005 16.46  38.71  1.47 99.36 88.67 

 Wtdbg2  2947 2.77 48.5 7.0  158 430.00 33.46  8943 29.13  29.42  0.43 97.77 86.17 

HiFi                    

 Canu  1376 3.37 192.2 65.3  5 1.90 54.85  47672 29.17  46.57  2.20 95.95 91.71 

 Flye  2379 2.96 136.6 35.1  256 20.74 43.69  14478 17.34  48.08  2.28 97.82 90.36 

 wtdbg2  1652 2.76 74.8 16.3  251 83.06 39.42  4124 14.65  42.66  1.56 99.38 86.77 

 hifiasm  559 3.07 199.4 111.1  18 3.62 53.62  31143 21.47  45.88  2.53 97.37 92.03 

Nanopore                    

 Canu  745 2.90 101.3 33.1  1432 3845.99 24.05  14926 100.03  22.94  0.27 98.27 88.46 

 Flye  584 2.87 109.9 51.7  481 316.46 34.30  7688 33.94  30.46  1.48 99.32 89.80 

 wtdbg2  7959 2.97 54.2 8.2  2226 2116.76 24.91  23159 65.88  24.49  0.30 93.79 84.91 

 Shasta  1258 2.80 129.3 23.3  2527 2554.72 25.74  9063 70.15  24.76  0.31 99.16 87.71 

The unit of Max, N50, and NA50 is Mbp. The unit of Total is Gbp. The unit of Small-scale and MM is per Mbp. Misassembly of QUAST-LG includes both extensive and 
local misassembly. Mismatch of QUAST-LG includes both mismatches and indels.  
 
Total = total number of bases. Max = length of the longest contig. MM = number of mismatches. MR = mapping ratio of assembled contigs.  
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Nanopore sequencing data. Flye generated the most accurate assembly among the four 

assemblers with Nanopore data. Note that the assemblers were tested using their default 

or recommended parameters. Optimized de novo assembly results by fine-tuning the 

parameters of individual assemblers may render different evaluation results.  

For an overall evaluation of assembly quality, we introduce the Quality Value (QV) 

score. QV score is calculated based on the identified structural and small-scale errors 

scaled by the total base pairs of the assemblies (Methods). In general, PacBio HiFi 

assemblies demonstrated higher QV scores than CLR and Nanopore assemblies. Canu 

achieved the highest QV score in PacBio CLR and HiFi datasets, and Flye outperformed 

other assemblers in Nanopore dataset. We also evaluated all assemblies using Merqury. 

QV scores calculated by Merqury highly   correlated with Inspector’s results (Additional 

file 1: Fig. S6). QUAST-LG was also used to evaluate the assemblies. As the SVs were 

not excluded from the misassembly list, the total number of misassemblies was much 

larger than Inspector’s result in all assemblies.  

When the reference genome is available, Inspector can also assess the assembly 

synteny by aligning contigs to the reference genome. Based on the contig-to-reference 

alignment, Inspector computes NA50 (N50 calculated on the basis of aligned blocks 

instead of contig lengths), contig mapping ratio, and reference genome coverage for each 

assembly, reflecting the completeness of the assembly. Inspector also generates N1-N100 

plots (Additional file 1: Fig. S7) and Dotplot (Additional file 1: Fig. S8) to reflect the 

consistency between the assembly and reference genome. NA50 and reference genome 

coverage in HiFi assemblies were larger than the CLR and Nanopore assemblies, which 

suggests that HiFi assemblies were more complete and more consistent with the reference 
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genome. Because the reference genome is different from the evaluated genome, these 

statistics may be slightly affected by genetic variants. Overall, we found that HiFi 

assemblies were more accurate and complete than CLR and Nanopore assemblies, 

suggesting that better assembly results can be achieved from long and accurate 

sequences. 

 

4. Distinguish assembly errors from genetic variants 

Inspector distinguishes assembly errors from genetic variants mainly from the 

number of reads that support the error. We identify them as “error-supporting” reads. The 

expected ratio of error-supporting reads is higher for assembly errors than genetic 

variants (Additional file 1: Fig. S9, S10). For small-scale errors, Inspector counts the 

number of reads supporting errors and contigs, and then performs binomial test to select 

assembly errors with significant p-values depending on the input data (Methods). For 

structural errors, a stringent filter of assembly errors is designed to sift out SVs based on 

the ratio of error-supporting reads and other features such as read mapping quality. We 

have defined the false discovery rate (FDR) of assembly error in HG002 as the errors that 

are actually genetic variants. We compared the identified assembly errors to the high-

confidence variant callsets and computed the FDRs in each assembly. Inspector 

efficiently distinguished small-scale and structural (collapse and expansion) assembly 

errors from genetic variants, with an average FDR of 2.88% and 1.15%, respectively 

(Table 3). The FDR for Merqury and QUAST-LG were both higher than for Inspector. 

We also evaluated accuracy for haplotype switches and validated that over 90% of the 
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reported events occurred near heterozygous SV breakpoints (Additional file 2: Table 

S2).  

We further characterized the structural errors identified from these assemblies 

(Fig. 2a). The error patterns varied among the assemblers and among different data types. 

For example, Flye consistently showed a predominance of haplotype switches, suggesting 

a possible systematic error when assembling the heterozygous regions. In addition, Canu 

and wtdbg2 showed more collapses in Nanopore assemblies than PacBio CLR and HiFi 

assemblies. This may be due to a higher deletion error rate in Nanopore data, in contrast 

to a higher insertion error in PacBio data. In general, structural errors were dominated by 

relatively small errors, with 84.8% of structural errors shorter than 500bp (Fig. 2b). 

Collapses accounted for 88.9% of structural errors that were larger than 1kbp. Inversion 

errors were much rarer than the other three types and were usually large in size (493 kbp 

Table 3 False discovery rate of assembly errors in HG002 assemblies 

  Inspector  Merqury QUAST-
LG 

  Small-scale Structural    
CLR Canu 3.57 -*  14.36 35.23 
 Flye 5.77 0.00  21.93 51.65 
 wtdbg2 0.94 0.00  15.33 38.37 
HiFi Canu 6.21 -*  3.61 38.96 
 Flye 0.41 0.00  56.13 52.64 
 wtdbg2 0.90 2.38  72.64 64.23 
 hifiasm 8.85 0.00  9.99 51.63 
Nanopore Canu 1.01 0.00  3.89 23.16 

 Flye 1.28 7.69  5.22 52.39 
 wtdbg2 0.72 0.00  6.37 12.32 
 Shasta 1.96 0.32  5.15 46.68 

Mean  2.88 1.15  19.51 42.48 
*Assemblies with no structural error located in the benchmark regions of HG002 are marked with ‘-’. 
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on average). The error pattern of small-scale errors also varied among assemblers but 

showed more consistency within the same data type (Additional file 1: Fig. S11).  

To assess the effect of sequencing depth on Inspector’s evaluation performance, 

we merged three HiFi datasets from GIAB and downsampled to a series of depths 

ranging from 10X to 100X. We evaluated the same assembly with these downsampled 

HiFi datasets. The number of assembly errors reported by Inspector was stabilized when 

the sequencing depth was higher than 30X (Additional file 1: Fig. S12), which suggests 

Figure 2 Characterization of structural assembly errors in HG002 assemblies. a Pie 
charts showing the proportion of four types of structural errors identified in Canu, Flye, 
wtdbg2, hifiasm, and Shasta assemblies with CLR, HiFi, and Nanopore datasets, respectively. 
The number of assembly error is also marked on each sector. b Size distribution of identified 
structural assembly errors in all HG002 assemblies. 
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that the sequencing depth has minor effect on Inspector’s error detection, and a 30X 

dataset is sufficient for accurate assembly evaluation with Inspector. 

 

5. Assembly errors are enriched in repetitive regions 

Inspector reports precise locations of structural and small-scale errors, which 

allows us to further annotate assembly errors from each assembly result. We projected the 

coordinates of identified assembly errors to the reference genome and annotated these 

assembly errors (Methods). To ensure accurate repeat analysis, we used HiFi data to 

identify small-scale errors in all assemblies. We found that both structural errors and 

small-scale errors were enriched in the repetitive sequences (Fig. 3a). Given that 

approximately 55% [46] of the human genome is annotated as repetitive sequences [46], 

we observed a significantly higher proportion of structural (82.09%) and small-scale 

(73.61%) errors located in repetitive regions, suggesting that repeats remain challenging 

for long-read de novo assembly. We further examined the seven types of repetitive 

sequences that each account for more than 1% of the reference genome (Additional file 

1: Fig. S13). We found that both structural and small-scale errors were enriched in simple 

repeats. The average percentage of structural errors located in simple repeats was 45.9%, 

which was a ten-fold enrichment compared to the genome baseline. Small-scale errors 

were also enriched in LINE, SINE, LTR, and DNA repeat elements for these assemblies 

as a whole. We observed an overall lower percentage of errors located in the segmental 

duplication and satellite regions, although some assemblies showed a higher-than-

expected assembly error rate.  
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We next characterized the repeat-associated assembly errors for the five tested 

assemblers. The composition of different types of repeats was relatively consistent for 

small-scale errors among the five assemblers tested (Fig. 3b), with majority of errors 

located in LINE, SINE, simple repeat, and LTR regions. When separating assemblies 

from three different data types, we observed consistent patterns in CLR assemblers and 

Nanopore assemblies (Additional file 1: Fig. S14). In the four HiFi assemblies, there 

was strong enrichment of simple repeats in the Flye assembly, suggesting that Flye may 

have worse base accuracy when resolving simple repeat regions than other genomic 

regions. For the structural errors, both Flye and Shasta (merely appliable to Nanopore 

Figure 3 Enrichment of assembly errors in repetitive regions. a Proportion of assembly errors 
located in repetitive regions in each assembly. Dashed line indicates fraction of human reference 
genome annotated as repeats. P-values were calculated by one-sample t-test to compare the proportion 
of assembly errors with the baseline. b Repeat annotation of structural and small-scale errors for five 
assemblers. 
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data) demonstrated strong enrichment in simple repeats than the other three assemblers 

(Fig. 3b). This enrichment is consistent in PacBio CLR, HiFi and Nanopore assemblies 

for Flye (Additional file 1: Fig. S15). Taken together, Inspector revealed the enrichment 

of assembly errors in repetitive regions and distinct repeat enrichment patterns of 

different assemblers, which provides guidance for further development and improvement 

of assemblers. 

 

6. Assembly error correction 

Equipped with the coordinates of assembly errors, Inspector includes an error-

correction module for improving assembly quality, which facilitates downstream 

analysis. The error-correction module eliminates highly confident assembly errors (Fig. 

4a). Small-scale errors are corrected by replacing mis-assembled bases at reported 

Figure 4 Improved assembly accuracy after error correction. a Methods of assembly error 
correction for small-scale and structural errors. b,c Number of corrected structural (b) and small-scale 
errors (c) in HG002 assembly. Negative values indicate more assembly errors after the polishing 
process. 
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locations. Structural errors are corrected by performing local de novo assembly around 

each error (Methods). Because the local assembly utilizes sequencing reads from only 

this locus (and from only one haplotype for haplotype switches), the newly generated 

contig can reconstruct the target genome more accurately and can therefore fix structural 

assembly errors.  

We evaluated genome polishing performance of the Inspector error-correction 

module and six state-of-the-art alignment-based polishing methods, including Racon, 

Pilon, GCpp, Medaka, Nanopolish, and CONSENT on HG002 assemblies from Canu, 

Flye, wtdbg2, hifiasm, and Shasta. We used one HiFi dataset of HG002 for polishing and 

used another HiFi dataset to evaluate the original and polished assemblies to avoid bias 

(Methods). After polishing with HiFi reads, Inspector corrected most structural errors 

among four tested polishing tools in the CLR and HiFi assemblies, while GCpp corrected 

most structural errors in the Nanopore assemblies (Fig. 4b). Nevertheless, in CLR and 

HiFi assemblies, there were more structural errors after polishing with Racon, Pilon and 

GCpp, suggesting that these polishing methods can correct structural errors in lower-

quality assemblies but may introduce more structural errors in relatively accurate 

assemblies. For small-scale errors, Inspector, Racon, and GCpp achieved higher error-

correction rates than Pilon in most assemblies (Fig. 4c). GCpp introduced more small-

scale errors in the HiFi assemblies. Based on the increased QV score after polishing, 

Inspector outperformed other polishing methods in CLR and HiFi assemblies, while 

Racon achieved the best QV score improvement in Nanopore assemblies (Additional file 

1: Fig. S16a). Estimation of QV score with Merqury also supported that Inspector and 
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Racon achieved the highest assembly quality among the tested polishing methods 

(Additional file 1: Fig. S16b).  

When polishing the assemblies with CLR and Nanopore reads, Racon, 

CONSENT and Medaka introduced new structural errors after polishing the CLR and 

HiFi assemblies (Additional file 1: Fig. S17). The number of small-scale errors in CLR 

and HiFi assemblies was also increased after polishing with noisy reads, especially with 

Nanopore reads. Inspector and Pilon reduced assembly errors or introduced the fewest 

errors when given noisy reads as inputs for polishing. Compared with polishing using 

CLR and Nanopore reads, Inspector achieved the highest error correction rate using HiFi 

reads for both small-scale errors (Additional file 2: Table S3) and structural errors 

(Additional file 2: Table S4), owing to the highest base accuracy of the HiFi dataset.  

We also evaluated short-read polishing on the HG002 assemblies. Although the 

small-scale errors were reduced in all assemblies (Additional file 1: Fig. S18a), the 

number of structural errors increased in most assemblies after short-read polishing with 

Racon or Pilon (Additional file 1: Fig. S18b). QV scores estimated by Inspector and 

Merqury were both increased in CLR and Nanopore assemblies but showed minor or no 

improvement in HiFi assemblies (Additional file 1: Fig. S18c), suggesting that 

additional high-accuracy short-read datasets can only improve the quality of assemblies 

generated from noisy long reads.  

In addition to the human genome, we also tested the Inspector error-correction 

module on the genome of Anna’s hummingbird (Calypte anna) [47]. We performed 

whole-genome assembly with Canu, Flye, and wtdbg2 and corrected identified assembly 

errors using Inspector. The number of structural errors and small-scale errors both 
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dropped after Inspector error correction, with increased QV scores for all assemblies 

(Additional file 1: Fig. S19). We also compared the original and Inspector-corrected 

assemblies to the curated genome to validate that the structural errors in the original 

assemblies were accurately corrected by Inspector (Additional file 1: Fig. S20). Taken 

together, the error-correction module of Inspector can improve assembly quality by 

correcting both structural and small-scale errors and can achieve better error-correction 

efficiency than other polishing methods in more accurate assemblies. 

 

7. Runtime and memory usage 

Inspector and other assembly evaluation and polishing methods were tested on 

Intel Xeon E5-2680 v3 CPUs with 2.5GHz. It took 13.6 hours to evaluate a human 

genome assembly (Canu assembly of HG002) using 50X PacBio HiFi dataset with peak 

memory of 35GB (Additional file 2: Table S5). The error correction of this assembly 

took 26 minutes with peak memory of 17GB (Additional file 2: Table S6).  
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DISCUSSION 

We have developed a reference-free long-read de novo genome assembly evaluator, 

Inspector, which reports exact locations, sizes, and types of assembly errors without 

being affected by genetic variants. In addition, Inspector improves assembly results by 

correcting discovered errors. These features are unique to Inspector and have not been 

achieved by other available assembly evaluators. We also performed detailed error 

analysis on different assemblers applied to different datasets. As expected, errors appear 

predominantly in repetitive regions. However, not all types of repeats are enriched with 

assembly errors. This information is important for the investigation of systematic defects 

in assembler algorithms. Therefore, Inspector can provide guidance for users and 

developers on achieving optimal assembly results. 

Inspector implements multi-thread processing for read alignment, assembly error 

identification, and assembly error correction. For identification and correction of 

assembly errors, Inspector processes one contig per thread, which largely reduces runtime 

and memory usage. The read alignment by minimap2 is the most time-consuming step in 

Inspector evaluation (accounting for approximately 70% of total runtime). Therefore, the 

runtime of Inspector largely depends on the sequencing depth of the input dataset. The 

total runtime for Inspector is longer than for Merqury and QUAST, but it requires much 

less memory (Additional file 2: Table S5). For assembly error correction, the runtime of 

Inspector depends on the number of structural errors present in the assembly, as Inspector 

performs local assembly for each error. Inspector used shorter computing time and less 
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memory than Racon, Pilon, GCpp, and Medaka (Additional file 2: Table S6), benefiting 

from known the error positions from previous evaluation results. Nanopolish and 

CONSENT both required excessive computing resources for whole-genome polishing 

(requiring over 10 days for polishing one human genome) and thus were tested on only 

one contig. 

Detecting assembly errors from read-to-contig alignment is a challenging problem 

similar to detecting genetic variants from read-to-reference alignment. Identification of 

small-scale error is extremely challenging with error-prone reads. The abundance of 

sequencing errors not only introduces ambiguity in read alignment but also reduces signal 

strength during error detection. To ensure high precision of assembly error detection, 

Inspector applies a stringent filter to exclude heterozygous variants, which will lead to a 

lower recall for small-scale errors in the CLR data, as shown in Table 1. In the real 

PacBio datasets, the HiFi data also reported lower QV score and more assembly errors, 

especially small-scale errors, than the CLR data. This is because the accurate HiFi reads 

are more sensitive for detecting errors. Advanced algorithms for better characterization of 

small-scale variants can improve the sensitivity of error detection from noisy sequencing 

data. When available, we will include this enhancement in future Inspector releases. 

In this work, we have described our methods for benchmarking and analysis of 

human and Anna’s hummingbird genomes. Inspector can also be applied to other species 

with monoploid or diploid genomes. The principles of structural error identification and 

binomial testing for small-scale errors are both designed with the assumption that a 

genome is diploid. These principles are also applicable to a haploid genome, which can 

be considered as an extreme case of a diploid genome with only homozygous bases. 
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Evaluation for species with higher ploidy levels may not be as accurate under the current 

version. With further development, we plan to expand the application of Inspector to 

species with polyploid genome in future versions. 

 

CONCLUSIONS 

This paper presents a reference-free evaluation method for de novo assembly. Inspector 

can report the precise locations and sizes for structural and small-scale assembly errors 

and distinguish true assembly errors from genetic variants. With its error-correction 

module, Inspector can improve the assembly quality by correcting the identified assembly 

errors. These functions exceed those achieved by existing assembly evaluators. Inspector 

is an accurate assembly evaluator, which can facilitate future improvement of de novo 

assembly quality. 
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METHODS 
1. Overview of Inspector 

Inspector is a tool for evaluating long-read de novo assembly results.  As shown 

in Fig. 1, inspector consists of the following main functions: 1) standard assembly 

metrics; 2) structural error identification; 3) small-scale error identification; and 4) 

assembly error correction. Inspector also introduces a Quality Value (QV) to estimate the 

overall assembly quality. Given a reference genome, Inspector can assess synteny by 

aligning contigs to the reference genome. The detailed methods and implementation are 

described below. 

 

1.1 Contig continuity and read alignment. Inspector first calculates standard assembly 

statistical metrics and then evaluates contig continuity based on the lengths of all contigs. 

Standard statistical metrics include number of contigs, total bases in the assembly, 

longest and second longest contig lengths, and N50, which reflect continuity of assembly 

results.  

The statistics of read-to-contig alignments are also calculated to assess assembly 

quality, including read mapping rate, read splitting rate, and average alignment depth. 

Read mapping rate indicates the proportion of reads that can be aligned to assembled 

contigs. A higher read mapping rate suggests better completeness of the assembly, while 

a lower mapping rate suggests that parts of the genome have not been reconstructed in the 

assembly. The read splitting rate is the proportion of aligned reads that have split 

alignments. A low read splitting rate indicates better consistency between reads and 

assemblies and fewer large assembly errors. In contrast, a high splitting rate suggests that 
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there are more assembly errors which have caused the divergence between reads and 

assembled contigs. The average alignment depth is calculated as total length of aligned 

reads divided by total contig length. For good assembly, average alignment depth should 

be similar to sequencing depth of input reads.  

 

1.2 Structural assembly errors. Inspector detects structural assembly errors (³50 bp) 

based on disagreement between reads and assembled contigs. The first step is to scan all 

read alignments for raw error signals of expansion (gap in read alignment), collapse 

(extra sequence in read), and inversion (inverted read alignment). Density-based 

clustering is then performed independently for each type of structural error. Instead of 

setting a fixed window size for clustering raw signals, Inspector’s density-based 

clustering utilizes adjustable window size to tolerate larger shifts of raw signal positions 

within repetitive regions while keeping tight window size for clear genomic regions. 

Expansions and collapses are merged to identify haplotype switches, in which expansions 

overlap with collapses. To remove noise caused by sequencing errors or incorrect read 

alignments, Inspector filters out candidates with numbers of supporting reads below a 

threshold value (three by default). 

To remove false-positive candidates caused by genetic variants, Inspector 

includes a filter based on the ratio of error-supporting read, local coverage, and read 

mapping quality. The ratio of error-supporting read is the fundamental criterion and 

computed with the number of error-supporting reads divided by the local coverage. As 

shown in Additional file 1: Fig. S9, read alignments at homozygous variants do not 

show inconsistency with the contig, as both haplotypes are the same as the contig 
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sequence. Heterozygous variant regions show an alternative allele in about 50% of reads 

(from one haplotype). However, at true assembly error regions, both haplotypes are 

different from the contig, including the haplotype switch, leading to a theoretical ratio of 

about 100% for error-supporting reads. The ratio of error-supporting read for assembly 

errors can be lower than 100% in practice due to sequencing errors or inaccurate read 

alignments but are still higher than heterozygous variants, as shown in Additional file 1: 

Fig. S10. The filter also discards candidates with extremely high coverage or poor 

average read mapping quality to ensure the reported assembly errors are confident. By 

default, Inspector reports coordinates on contigs for all assembly errors in BED format, 

which can be easily loaded to visualization tools such as IGV [48]. 

 

1.3 Small-scale assembly errors. Inspector identifies small-scale assembly errors (<50bp) 

to estimate the base accuracy of an assembly. Samtools [49] is used to generate pileup 

information for each contig based on read-to-contig alignments. Inspector then scans 

pileup results for candidate small-scale errors in regions that are enriched with 

mismatches or indels. All bases with less than 20% of reads supporting a small-scale 

error were excluded to remove most noise caused by sequencing errors. Similar to 

structural errors, a true small-scale error is expected to be supported by reads from both 

haplotypes (100% of reads), while mismatches or indels caused by heterozygous variants 

are supported by only one haplotype (50% of reads). For a given position on the 

assembly, each aligned read is treated as an independent experiment, containing either the 

same or a different base (or indel) with the base in the contig. All bases in the reads at 

this position follow a binomial distribution, with n being the number of reads and p being 
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the probability that the base is a different base from the contig. Inspector performs a one-

tailed binomial test for each candidate position to distinguish small-scale errors from 

genetic variants. The null hypothesis of the binomial test is that the probability of a read 

that contains a different base against the contig is 0.5 (genetic variant at this location), 

and the alternative hypothesis is that the probability is higher than 0.5 (small-scale error 

at this location). A significant p-value from the binomial test would reject the null 

hypothesis and support that there is a small-scale error at the tested position. The 

probability of a read to support an error used in binomial test is set to 0.5 for high-

accuracy HiFi data, and set to 0.4 for low-accuracy data (CLR and Nanopore), 

considering the sequencing error rate of 15-20%. Candidates with significant p-values 

(<0.01 for HiFi and <0.05 for CLR and Nanopore data) are reported as small-scale errors. 

Similar to structural errors, small-scale errors are also reported in BED format. 

 

1.4 Assembly quality estimation. Structural and small-scale assembly errors are used to 

estimate the overall accuracy of an assembly result. Given a list of structural errors and 

small-scale errors of the assembly, the total bases of assembly error, 𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸, can be 

calculated as: 

𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑁𝑁𝐸𝐸𝐸𝐸𝑠𝑠 + 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑁𝑁𝐻𝐻𝐷𝐷𝐸𝐸 + 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 + 𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼 

where 𝑁𝑁𝐸𝐸𝐸𝐸𝑠𝑠 , 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶, 𝑁𝑁𝐻𝐻𝐷𝐷𝐸𝐸, and 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 are the total bases affected by expansions, collapses, 

haplotype switches, and small-scale errors, while 𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼 is the total number of inversion 

errors. Since the number of total bases in an assembly, 𝑁𝑁𝑆𝑆𝑠𝑠𝑆𝑆, is usually very large, 𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸 

can be considered as the expectation of incorrect bases. Thus, the estimated error rate, 𝐸𝐸, 

can be defined as: 
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𝐸𝐸 =
𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸
𝑁𝑁𝑆𝑆𝑠𝑠𝑆𝑆

=
𝑁𝑁𝐸𝐸𝐸𝐸𝑠𝑠 + 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑁𝑁𝐻𝐻𝐷𝐷𝐸𝐸 + 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 + 𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼

𝑁𝑁𝑆𝑆𝑠𝑠𝑆𝑆
 

The Phred quality score is computed as 𝑄𝑄𝑄𝑄 = −10𝑙𝑙𝑙𝑙𝑙𝑙10𝐸𝐸. 

 

1.5 Assembly error correction. Inspector includes an error-correction module to address 

identified structural and small-scale assembly errors. For small-scale errors, Inspector 

substitutes problematic bases with bases supported by the majority of reads. For 

structural assembly errors, Inspector collects the error-supporting reads and performs a 

local de novo assembly with Flye (v2.8.3) [16] for each assembly error. In particular, for 

haplotype switches, Inspector only collects reads from one haplotype to perform the local 

assembly. For each structural error, the local assembly uses the reads from the region 

around the error and from the same haplotype, which simplifies the assembly process and 

can therefore generate a more accurate contig than whole genome de novo assembly. For 

structural errors located within repetitive regions, Inspector collects reads only from the 

current repeat unit without interference from other repeat units, increasing the accuracy 

of local assembly at repetitive regions. Inspector aligns the new contigs from local 

assemblies to the original contigs and substitutes the sequences flanking each error with 

new sequences from the local assembly results.  

 

1.6 Reference-based mode. To assess the synteny of an assembly with a known reference 

genome, Inspector includes a reference-based module to evaluate assembly quality. The 

module aligns contigs to the reference genome with minimap2 [41] preset parameter ‘-x 

asm5’. Statistics for contig-to-reference alignment are calculated, including contig 

alignment NA50, contig mapping rate, and reference genome coverage. A Dotplot is 
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generated based on contigs and reference alignment results. In addition, structural errors 

and small-scale errors are detected. Inspector reports coordinates on the reference 

genome and on the contig for all assembly errors. Note that assembly errors detected 

from contig-to-reference alignment also include genetic variants of the sequenced 

genome (including SVs, SNPs, and indels) and substitutions.  

 

2. Simulation benchmark 

To benchmark the evaluation accuracy of Inspector, testing used a simulated 

human whole genome assembly containing both structural and small-scale assembly 

errors. A total of 1,000,000 SNPs and 20,000 SVs (deletions and insertions) were 

introduced into autosomes and X chromosome of human reference genome hg38. 67% of 

all variants were randomly assigned as heterozygotes and 33% as homozygotes. PBSIM 

[42] was used to simulate 50X PacBio CLR-like and HiFi-like reads with options ‘--data-

type CLR --model_qc model_qc_clr --length-mean 15000 --length-sd 3000 --accuracy-

mean 0.85’ and ‘--data-type CCS --model_qc model_qc_ccs --length-mean 15000 --

length-sd 3000 --accuracy-mean 1.00’, respectively. The mean base accuracy was 0.85 

for CLR-like reads and 0.98 for HiFi-like reads according to the log file from PBSIM. 

Assembled contigs were simulated by splitting the simulated human genome at ‘N’ bases. 

Small fragments shorter than 10,000 bp were excluded. A total of 2,000 structural errors 

(900 expansions, 900 collapses, 190 haplotype switches, and 10 inversions) and about 

580,000 small-scale errors (50% base substitution, 25% 1-bp expansion, and 25% 1-bp 

collapse) were spiked in as the ground truth. A haploid human genome was also 

simulated by selecting only haplotype 1 from the diploid simulation. 
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Inspector was applied with default settings. The reported structural and small-

scale errors were compared to the ground truth to calculate recall, precision, and F1 score 

(2∗𝐸𝐸𝐷𝐷𝑟𝑟𝑆𝑆𝐶𝐶𝐶𝐶∗𝑠𝑠𝐸𝐸𝐷𝐷𝑟𝑟𝑝𝑝𝑠𝑠𝑝𝑝𝐶𝐶𝐼𝐼
𝐸𝐸𝐷𝐷𝑟𝑟𝑆𝑆𝐶𝐶𝐶𝐶+𝑠𝑠𝐸𝐸𝐷𝐷𝑟𝑟𝑝𝑝𝑠𝑠𝑝𝑝𝐶𝐶𝐼𝐼

). Human reference genome hg38 was provided to QUAST-LG as the 

reference. Although the minimum length for structural errors was 50bp in simulated 

assemblies, QUAST-LG can only report the coordinates of extensive misassemblies 

longer than 85 bp. These extensive misassemblies were compared with a subset of 

ground-truth structural errors that were longer than 85bp to assess the accuracy of 

QUAST-LG. Since Merqury requires high-accuracy reads as input data, the simulated 

HiFi dataset (with sequencing error rate < 2%) was provided to Merqury to identify 

erroneous k-mers that were only present in the assembly but not in the input reads. A 

series of overlapping k-mers were merged into one single event for the benchmark.  

 

3. Whole genome de novo assembly of HG002 

Whole genome de novo assembly was performed for HG002 with PacBio CLR, 

HiFi (15-20kb), and Nanopore datasets. The expected genome size was set to 3.1G for all 

assemblers. Canu (v2.0) was run with options ‘-pacbio’ for the PacBio CLR and ‘-

pacbio-hifi’ for the PacBio HiFi dataset. The Canu assembly of the Nanopore dataset was 

obtained from a previous publication [18]. Contigs marked with ‘suggestBubble=yes’ 

were removed from evaluation. Flye (v2.8.2) was run with options ‘--pacbio-raw’ for the 

CLR, ‘--pacbio-hifi’ for the HiFi, and ‘--nano-raw’ for the Nanopore dataset, 

respectively. Wtdbg2 (v2.5) was run with options ‘-p 17’ for the CLR and Nanopore 

datasets, and preset ‘-x ccs’ for the HiFi dataset. Hifiasm (v0.13) was only applied to 

PacBio HiFi datasets with the default settings. The Shasta assembly of Nanopore dataset 
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was also obtained from a previous publication [18]. All assemblies were evaluated by 

Inspector with default settings. CLR assemblies were evaluated with the raw CLR 

dataset, HiFi assemblies were evaluated with the HiFi dataset (15-20kb), and Nanopore 

assemblies were evaluated with the raw Nanopore dataset. 

 

4. Other Assembly evaluation tools 

QUAST-LG (v5.0.2), a reference-based approach, and Merqury (v1.1), a k-mer 

based approach, were also used to evaluate assemblies. For QUAST-LG, GRCh38 was 

provided as the reference genome. QUAST-LG was run with command: 

 ‘quast-lg.py contig.fa -o output/ -r hg38.fa -m 10000 -x 86’ 

The number of misassemblies included both extensive and local misassemblies, and 

number of mismatches included both mismatches and indels.  

For Merqury, a meryl database was first generated with approximately 50X 

Illumina paired-end reads with k-mer size of 21bp. Merqury was then run based on the 

Illumina meryl database to evaluate HG002 assemblies with default settings: 

‘meryl k=21 count output read-db.meryl allread.fa’ 

 ‘merqury.sh read-db.meryl  contig.fa  output’ 

The assembly-only k-mers were collected from Merqury’s output and the overlapping k-

mers were merged into a single event.  
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5. Benchmark of assembly error in HG002 

The false discovery rate of assembly errors was calculated by comparing reported 

assembly errors to the genetic variant callset of HG002. Coordinates of assembly errors 

were projected to the human reference genome based on contig-to-reference alignment. 

Matched base pairs between contigs and the reference genome were stored in a hash 

table. The corresponding reference coordinate of an assembly error can be inferred from 

the hash table according to its assembly coordinate. Small-scale errors were compared to 

the small variant callset (v4.2.1) from GIAB. Since the high-confidence SV callset is only 

available in ‘benchmark regions’ of HG002 [44], structural assembly errors located only 

in benchmark regions were compared to the SV callset to calculate FDRs.  

Coordinates of misassemblies reported by QUAST-LG were extracted from 

filtered contig alignment. Misassemblies located within benchmark regions were 

compared to the SV callset for FDR assessment. Assembly-only k-mers from Merqury’s 

output were merged and projected to the reference genome. FDR was computed by 

comparing the locations of k-mers to the merged variant callset (SVs and small variants). 

 

6. Down-sampling of HG002 

To evaluate the robustness of Inspector, three HiFi datasets (11kb, 15kb and 15-

20kb) of HG002 were merged to generate a HiFi dataset with an ultra-high depth. It was 

then downsampled to a series of depths, ranging from 10X to 100X, by randomly 

selecting reads. Depth was determined as total number of base pairs in reads divided by 

the human genome size (3.1Gbp). Inspector was applied to identify assembly errors using 

default settings to validate its robustness in addressing datasets of varying depth. 
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7. Repeat annotation of assembly errors 

Coordinates of assembly errors were projected to the human reference genome. 

Those assembly errors located in unaligned parts of the assembly cannot be projected to 

the reference genome and therefore were excluded from analysis. Repeat annotation of all 

assembly errors was performed by a custom Python script, which compared reference 

coordinates of assembly errors to the genomic repeat annotation downloaded from UCSC 

Genome Browser [50]. 

 

8. Polishing of HG002 assemblies 

Inspector correction and other polishing methods were tested on HG002 

assemblies. The error correction module of Inspector was tested with PacBio CLR (70x), 

PacBio HiFi (15-20kbp, 51x), and Nanopore (53x) datasets with default settings. The 

input datatype was specified for each dataset to enable accurate local assembly in the 

structural error correction process. Racon (v1.4.20) and Pilon (v1.24) were tested with 

PacBio CLR, PacBio HiFi, and Nanopore datasets with default settings. GCpp (v 2.0.2) 

was tested with downsampled raw subreads of PacBio HiFi dataset (70X). Medaka (v 

1.4.3) polished HG002 assemblies with Nanopore datasets with the options “--model 

r941_min_high_g303 --batch 200 --bam_chunk 2000000”. Nanopolish (v0.13.3) was 

tested with Nanopore dataset using default settings. CONSENT (v2.2.2) polished HG002 

assemblies with PacBio CLR datasets with options “--windowSize 50000”. Nanopolish 

and CONSENT were tested on only one contig (10Mbp in length) per assembly due to 

the excessive requirement of computational resources for whole-genome correction. The 

input read alignment files for Racon, Pilon, Medaka, and Nanopolish were aligned by 



 

  118 

minimap2 and sorted by Samtools sort. The read alignment files provided to GCpp were 

aligned by pbmm2 and sorted by Samtools. All polishing tools were tested with only one 

round of the polishing process. We also polished the HG002 assemblies with Illumina 

dataset (downsampled to 50X) to assess the improvement of assembly quality from short 

reads. The original and polished assemblies were evaluated using Inspector with a 

merged HiFi dataset (11kbp and 15kbp, total of 58x) and using Merqury with meryl 

database generated from Illumina dataset. 

 

9. Whole-genome assembly of Anna’s hummingbird sample 

The PacBio CLR (~70X) data of Anna’s hummingbird (Calypte anna) was 

downloaded from the Vertebrate Genomes Project and used to for whole-genome de novo 

assembly with Canu, Flye, and wtdbg2 with genome size of 1.1Gbp. Inspector was run 

with default settings to evaluate and correct errors for the three assemblies. The curated 

assembly was obtained from GenomeArk as the ground truth. The uncorrected and 

corrected assemblies were compared to curated assembly with Mauve [51] to visualize 

structural errors before and after Inspector error correction.  
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Figure S1 IGV views of examples of small-scale assembly errors. There are discrepancies between the 
contig and the majority of reads in base substitution (a), small expansion (b), and small collapse (c).   
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Figure S2 Examples of structural assembly errors. a An insertion-like pattern in read alignment 
representing a collapse error, as this part of sequence is collapsed in the contig. b A deletion-like 
pattern in read alignment representing an expansion error, as these sequences in contig are expanded 
and not present in the reads. c An insertion-like pattern in half of the reads and a deletion-like pattern in 
the other half of the reads representing a haplotype switch, as the contig is different from both 
haplotypes at this heterozygous region. d Inverted alignment within reads representing as an inversion 
error. 
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Figure S3 a Size distribution of structural variants in the simulated genome. The peak at ~350bp and 
~6kbp were induced to mimic SVs caused by Alu and LINE elements. b Size distribution of the 
simulated structural assembly errors.  
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Figure S4 Small-scale error detection in the simulated dataset. a Recall and precision of small-scale 
error detection. The recall was lower for small expansion and collapse in two CLR datasets. b 
Distribution of ratio of error-supporting read of three subtypes of small-scale errors in Diploid-CLR 
evaluation. Missed assembly errors showed lower ratio of error-supporting read, owing to the presence 
of sequencing errors.  
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Figure S5 Small-scale error missed by Merqury but detected by Inspector in the simulated dataset. a 
Three subtypes of small-scale errors detected by Inspector but not by Merqury in haploid (left) and 
diploid (right) simulation. b Composition of Merqury-missed assembly errors located within and 
outside the repetitive regions for haploid (top) and diploid (bottom) simulation.  
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Figure S6 Correlation between QV scores computed by Inspector and Merqury in all HG002 
assemblies.  
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Figure S7 N1-N100 plot of HG002 assemblies. Dashed lines indicate the NA50 and NG50 at 50% of 
total assembly length. NAs were calculated on the basis of aligned blocks instead of the contig lengths. 
NGs were calculated on the basis of known or estimated genome size.  
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Figure S8 Dotplot of HG002 assemblies. Each dot represents the base match between contig and the 
reference genome. Dots from the same contig are marked with the same color.  
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Figure S9 A theoretical interpretation of the difference between an assembly error and genetic variants 
in a diploid genome. Sequences differing from the reference genome are marked in blue. For a 
homozygous variant (left), the contig is consistent with both haplotypes, in which all reads are identical 
with the contig. In this case, there is no assembly error. For a heterozygous variant (middle), reads from 
one haplotype are different from the contig, with a ratio of error-supporting reads around 50%. This 
ratio is close to the frequency of a heterozygote. This is not an assembly error. Only a substantially 
high ratio (close to 100% theoretically) of reads supporting the error will be considered assembly error 
(right). 
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Figure S10 a,b Distribution of ratios of error-supporting reads for small-scale assembly errors and 
SNPs/indels in simulated haploid (a) and diploid (b) datasets. Small-scale errors are more separate from 
genetic variants in HiFi datasets than in CLR datasets. c Distribution of ratios of error-supporting reads 
for structural errors. Structural errors show higher ratios than SVs in both CLR and HiFi datasets. 
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  Figure S11 Pie charts of three types of small-scale errors in HG002 assemblies. The percentage of each 

error type in total errors is also labeled in each section.   
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Figure S12 Inspector evaluation with down-sampled dataset. a,b Number of small-scale errors (a) and 
structural errors (b) reported from datasets with differing sequencing depth. The numbers of structural 
errors were fluctuant at 10-20X and stabilized after 30X. c QV score at different sequencing depth.  
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  Figure S13 Proportion of assembly errors located in each type of repeat. P-value (on each panel, left: 

structural errors, right: small-scale errors) was calculated with one-sample t-test. The dashed line in 
each plot indicates the percentage of reference genome covered by that repeat type. 
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Figure S14 Repeat annotation for small-scale errors in HG002 assemblies. The proportions of sectors 
that are larger than 1% are marked in each plot. 
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Figure S15 Repeat annotation for structural errors in HG002 assemblies. The proportions of sectors 
that are larger than 1% are marked in each plot. 



 

  140 

  

Figure S16 QV score improvement after polishing with PacBio HiFi reads. a QV score of polished 
assemblies estimated by Inspector. Inspector showed highest improvement in CLR and HiFi 
assemblies, and Racon showed highest improvement in Nanopore assembly. b QV score of polished 
assemblies estimated by Merqury. Inspector showed best improvement in HiFi assembly, and Racon 
showed best improvement in HiFi and Nanopore assemblies. 
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  Figure S17 Assembly error correction with CLR and Nanopore data.  a,b Number of corrected 

structural errors after polishing with CLR (a) and Nanopore (b) data. Inspector fixed most structural 
errors among tested polishing methods in 9 and 4 out of 11 assemblies in CLR and Nanopore data, 
respectively. c,d Number of corrected small-scale errors after polishing with CLR (c) and Nanopore (d) 
data.  
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Figure S18 Polishing HG002 assemblies with Illumina dataset. a Number of small-scale errors in the 
original and polished assemblies. The number of small-scale errors was reduced after short-read 
polishing with both Racon and Pilon. b Number of structural errors before and after polishing with 
Illumina data. After short-read polishing, the number of structural errors increased in 9 Racon-polished 
and 8 Pilon-polished assemblies out of 11 total assemblies. c,d Improvement of QV scores after short-
read polishing process estimated by Inspector (c) and Merqury (d). The QV scores of CLR and 
Nanopore assemblies were increased after short-read polishing, while the QV scores of HiFi assemblies 
showed minor improvement from short-read polishing. 
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Figure S19 Inspector error correction in Anna’s Hummingbird genome assemblies. a,b Number of 
structural (a) and small-scale (b) errors in the uncorrected and Inspector-corrected assemblies. Both 
structural and small-scale errors dropped after error correction. c QV score of uncorrected and 
Inspector-corrected assemblies. The QV score was increased in all three assemblies.  
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  Figure S20 Example of structural errors corrected by Inspector error-correction module in Canu (a), 

Flye (b), and wtdbg2 (c) assemblies. The uncorrected contigs (top) showed inconsistency with the 
curated genome (middle), while the same regions in corrected contigs (bottom) were consistent with 
curated genome.  
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ABSTRACT 

Gene fusions are prevalent in a wide array of cancer types with different frequencies. 

Long-read transcriptome sequencing technologies, such as PacBio Iso-Seq and Nanopore 

direct RNA sequencing, provide full-length transcript sequencing reads, therefore 

showing great potentials in gene fusion detection. In this work, we developed a novel 

method, FusionSeeker, to comprehensively characterize gene fusions in long-read cancer 

transcriptome data and reconstruct accurate fused transcripts from raw reads. 

FusionSeeker reports gene fusions occurred in both exonic and intronic regions, allowing 

comprehensive characterization of gene fusions in cancer transcriptomes. It reconstructs 

fused transcript sequences by correcting sequencing errors in the raw reads through 

partial order alignment algorithm. Using these accurate transcript sequences, 

FusionSeeker refines gene fusion breakpoint positions and predicts breakpoints at single 

basepair resolution. Overall, FusionSeeker enables users to discover gene fusions 

accurately using long-read data, which facilitates downstream functional analysis as well 

as diagnosis and targeted therapy.  
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INTRODUCTION 

Gene fusions are recognized as important cancer-driving events for over 30 years [2]. 

They often play critical roles in tumorigenesis and progression and sometimes serve as 

therapeutic targets [3]. A large number of tools have been developed and applied to short-

read cancer transcriptome sequencing data for gene fusion detection. However, it’s 

always challenging to identify chimeric reads or discordant read pairs that represent gene 

fusions from short reads,  especially given the innate splicing structures of isoforms. 

Recent development of long-read RNA sequencing technologies enables full-length 

transcript sequencing and may alleviate these issues, therefore showing great potential in 

gene fusion detection. However, only two tools, JAFFAL [4] and LongGF [5], are 

currently available for long-read gene fusion detection, and their performance is limited 

when detecting gene fusions occurred in intronic regions. Accurate sequences of the 

reported gene fusions also remain unknown, which limits further functional analysis of 

identified gene fusions. 

Here, we present FusionSeeker, a long-read gene fusion caller to accurately 

identify gene fusion events and reconstruct their transcript sequences. FusionSeeker takes 

read alignment file and gene annotation file as input and outputs a list of confident gene 

fusions and their transcript sequences (Fig. 1). It first scans the read alignments for 

candidate fusions when a single read is aligned to two or more genes. Candidate fusions 

are then grouped according to these genes and clustered with the Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) algorithm into gene fusion calls. The 
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gene fusion calls are filtered based on the number of supporting reads to remove noise 

signals caused by sequencing errors and incorrect read alignments. FusionSeeker then 

performs a partial order alignment (POA) using fusion-containing reads to generate a 

consensus transcript sequence for each confident gene fusion.  

Figure 1. Workflow of FusionSeeker. FusionSeeker scans the input file of the read 
alignments for split read alignments and records candidate fusions of gene fusions 
when two segments from one read are aligned to two distinct genes. It then clusters 
the candidate fusions into gene fusion calls and removes noise calls supported by only 
a few reads. For each fusion call, FusionSeeker generates a consensus transcript 
sequence by performing a partial order alignment with fusion-containing reads. The 
final output of FusionSeeker includes a list of confident gene fusion events and 
corresponding transcript sequences. 



 

  149 

 

 

MATERIALS AND METHODS 

1. Gene fusion candidate detection 

FusionSeeker first scans all read alignments for split-read patterns. In order to quickly 

annotate read alignments, FusionSeeker generates a list containing the coordinates of 

each gene and its exons on every chromosome based on the input genome annotation file 

(GTF). Input BAM file is then processed chromosome by chromosome. Reads with only 

one alignment are skipped to reduce computational burden. For reads with multiple 

alignments (with SA tags), FusionSeeker annotates each alignment and records essential 

information, including chromosome, alignment start and end positions, length of clipped 

sequences on both sides, read name, strand, mapping quality, simplified CIGAR tag, etc. 

As candidate fusion detection process is the most time-consuming step, FusionSeeker can 

process each chromosome in parallel to reduce the overall runtime. After all alignments 

are processed, FusionSeeker checks the alignment information from the same read and 

reports a candidate fusion when: 

1) two breakpoints from one read are annotated to two distinct genes (Gene A and 

Gene B), 

2) length of alignment is longer than 100bp on both genes, 

3) Length of overlap between two alignments (the part of read sequences present in 

both alignments) is shorter than 100bp and 50% of the shorter alignment, 

4) Coordinates of Gene A and Gene B do not overlap in the GTF file, 

5) Gene A is not an antisense sequence of Gene B. 
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2. Gene fusion signal clustering and filtering 

Candidate fusions are first grouped based on gene names, for instance, Gene A 

and Gene B. The candidate fusions from the same pair of fused genes are then clustered 

based on the breakpoint positions on the two genes. To achieve this, a density-based 

spatial clustering of applications with noise algorithm (DBSCAN) is adopted to cluster 

the candidate fusions, with a default of maximal distance of 20bp for high accuracy reads 

and 40bp for noisy reads. Next, the candidate fusions from each cluster are merged into a 

gene fusion call, with temporary breakpoint positions as the mean values from the 

candidate fusions. All gene fusion calls are then filtered based on the number of fusion-

supporting reads. By default, the cutoff of minimal supporting reads 𝑁𝑁𝑆𝑆𝑝𝑝𝐼𝐼 is set as 

𝑁𝑁𝑆𝑆𝑝𝑝𝐼𝐼 = 𝑁𝑁𝑟𝑟𝑆𝑆𝐼𝐼 /50000 + 3, where 𝑁𝑁𝑟𝑟𝑆𝑆𝐼𝐼 is the total number of the candidate fusions 

detected in the input dataset. Fusion calls supported by more than 𝑁𝑁𝑆𝑆𝑝𝑝𝐼𝐼 reads are reported 

as confident gene fusion calls.  

  

3. Fused transcript reconstruction and breakpoint refinement 

For each gene fusion event, FusionSeeker extracts the sequences of the fusion-

supporting reads from the BAM file and writes into a new FASTQ file. It then performs 

Partial Order Alignment (POA) for each call independently using bsalign 

(https://github.com/ruanjue/bsalign). All consensus sequences generated from POA are 

combined into a FASTA file and linked to each gene fusion call with its ID. When a 

reference genome is provided, FusionSeeker then aligns all the transcript sequences to the 

reference genome with minimap2 [6]. The precise breakpoint positions of each gene 

https://github.com/ruanjue/bsalign
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fusion call are inferred from the transcript sequence alignment and used to replace the 

temporary positions inferred from the candidate fusions.  

 

Simulation and benchmark methods can be found in Supplementary Note 2.  
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RESULTS 

1. Benchmark gene fusion detection on the simulated datasets 

We first benchmarked the accuracy of gene fusion detection of FusionSeeker on 

the simulated datasets. A total of 150 gene fusion transcripts (100 with breakpoints in 

exons, 50 in introns) were randomly generated and assigned to different expression levels 

(10x, 50x, and 100x). PacBio Iso-Seq-like and Nanopore-like reads were simulated with 

pbsim [7] and Badread (v0.2.0) [8] and then aligned to the reference genome. 

FusionSeeker and another two long-read gene fusion callers, JAFFAL and LongGF, were 

used to detect gene fusions from the simulated reads. We repeated the simulation for 

three times, and FusionSeeker consistently achieved the highest F1 score among the three 

tools in both Iso-Seq and Nanopore datasets (Table 1). In all three simulated datasets, 

FusionSeeker identified more true-positive events than the other two tools, with slightly 

more false-positive calls than LongGF (Fig. S1). The higher recall of FusionSeeker was 

mainly beneficial from its ability to detect gene fusions located in intronic regions, where 

FusionSeeker identified 94.67% of intronic events while JAFFAL and LongGF only 

reported 14.67% and 54.67%, respectively, using Iso-Seq data (Table 1 and Table S1). 

In general, all three fusion callers achieved higher recall in detecting fusions with high 

and medium expression levels than fusions with low expression level (Table S2). 
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Approximately 67% of the gene fusions missed by FusionSeeker were from the low-

expression-level group, and the missing was caused by the low coverage of reads.  

Table 1. The accuracy of gene fusion detection on the simulated datasets 

 FusionSeeker  JAFFAL  LongGF 

 Recall Precision F1 
score  Recall Precision F1 

score  Recall Precision F1 
score 

Iso-Seq            

Exonic 96.00 96.88 96.32  69.33 96.57 80.72  96.00 97.03 96.51 

Intronic 94.67 90.00 92.28  14.67 66.67 24.04  54.67 94.87 69.36 

Total 95.56 93.89 94.71  51.11 82.73 63.15  82.22 96.14 88.58 

Nanopore            

Exonic 99.00 94.98 96.95  73.00 96.35 83.06  98.00 96.70 97.35 

Intronic 99.33 78.72 87.84  18.00 53.81 26.98  56.67 91.80 70.08 

Total 99.11 87.65 93.03  54.67 82.23 65.62  84.22 95.26 89.36 

We then evaluated the fused transcript sequences generated by FusionSeeker. To 

generate high-accuracy transcript sequences, FusionSeeker performs a partial order 

alignment using fusion-containing reads and calculates a consensus sequence for each 

gene fusion event. In the simulated datasets, FusionSeeker reconstructed full-length fused 

transcripts for more than 99.5% of events, with average sequence identities of 99.87% 

and 99.14% using Iso-Seq and Nanopore reads, respectively (Table S3). When aligned to 

the reference genome, the FusionSeeker transcript sequences showed a better identity 

than raw reads (Fig. S2). Taken together, we have demonstrated that FusionSeeker can 

accurately identify gene fusions and report full-length fused transcript sequences in the 

simulated datasets.  

Recall, precision, and F1 score in the table are the mean values of three replicate simulation datasets. 
Highest recall, precision, and F1 score among the three fusion callers are marked as bold.  
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2. Gene fusion discovery in cancer transcriptomes 

We then applied the three gene fusion callers on three cancer cell lines, SKBR-3, 

MCF7, and HCT116. The PacBio Iso-Seq and Nanopore reads of each cell line were 

downloaded and aligned to the human reference genome [9-12]. In the SKBR-3 cell line, 

FusionSeeker identified 31 gene fusions, among which 15 events have been previously 

discovered and validated (Table 2) [12-15]. Three of the previous studies for gene fusion 

detection in SKBR-3 were based on short-read RNA sequencing data [13-15], except the 

Nattestad et al [12] which used the PacBio Iso-Seq dataset. Tested on this Iso-seq data, 

FusionSeeker showed a better consistency with Nattestad et al. than the other short-read 

results (Table S4). JAFFAL and LongGF identified 13 and 10 previously validated gene 

fusions, respectively. Comparing the gene fusion lists of three callers, 8 gene fusions 

were reported by all the three tools, 3 gene fusions were reported by both FusionSeeker 

and JAFFAL, and 3 gene fusions were reported by both JAFFAL and LongGF (Fig. 2A). 

There were 19 FusionSeeker-unique, 11 JAFFAL-unique, and 5 LongGF-unique events. 

We cross-validated these unique gene fusion events with long-read DNA sequencing data 

and considered a gene fusion as validated when at least 3 DNA sequencing reads were 

aligned to both genes (Fig. S3). 17 out of 19 (89.47%) FusionSeeker-unique gene fusions 

were validated by DNA sequencing, which was higher than JAFFAL (3/11, 27.27%) and 

LongGF (3/5, 60.00%). In particular, with further investigation we observed a 4-hop 

intronic gene fusion from FusionSeeker-unique calls, 

CSNK2A1:NCOA3:MMP24OS:TSHZ2, which was also supported by DNA sequencing 

data (Fig. S4).  
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Table 2. Detection of previously validated gene fusions in cancer cell lines 

  FusionSeeker  JAFFAL  LongGF 

Cell line Data type Reported Previously 
validated  Reported Previously 

validated  Reported Previously 
validated 

SKBR-3          

 Iso-Seq 30 15  25 13  16 10 

MCF-7          

 Iso-Seq 172 21  184 23  285 20 

 Nanopore 61 20  34 18  41 20 

HCT-116          

 Iso-Seq 3 1  2 1  2 1 

 Nanopore 17 1  12 1  10 1 

In MCF-7 cell line, FusionSeeker identified 172 gene fusions in Iso-Seq dataset 

and 61 gene fusions in Nanopore dataset (Table 2), with 21 and 20 previously validated 

gene fusions identified using Iso-Seq and Nanopore datasets, respectively (Table S5). In 

HCT-116 cell line, FusionSeeker reported 3 and 17 gene fusions in Iso-Seq and Nanopore 

dataset, respectively. In particular, a previously known gene fusion, TXLNG:SYAP1, in 

MCF-7 cell line has two validated alternative breakpoint positions in TXLNG, with one 

located in the first exon and the other located in the first intron of TXLNG [15]. 

FusionSeeker reported both exonic and intronic breakpoints for this fusion event, while 

JAFFAL and LongGF only reported the exonic breakpoint and missed the intronic 

breakpoint (Fig. S5). The few previously validated events detected by JAFFAL but not 

by FusionSeeker were supported by ≤4 reads and therefore failed to pass the filter of 

FusionSeeker (Table S6). When comparing gene fusion callsets of the three callers, 47 

and 19 gene fusions were reported by all three callers in Iso-Seq and Nanopore dataset, 

respectively (Fig. 2B). Gene fusions reported by JAFFAL or LongGF but not by 

Reported, number of gene fusions reported by each fusion caller. Previously validated, number of previously 
validated gene fusions detected by each fusion caller. 
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FusionSeeker were usually supported by fewer reads, with 88.35% of them supported by 

≤3 reads in MCF-7 Iso-Seq dataset (Fig. S6). Within the 77 and 29 FusionSeeker-unique 

calls in MCF-7 Iso-Seq and Nanopore dataset, we designed PCR primers for 10 most 

confident novel events and validated 7 of them using RNA extracted from MCF-7 cell 

line (Table S7). All four events discovered in both Iso-Seq and Nanopore datasets were 

validated by PCR.  

Figure 2. Gene fusion discovery in cancer cell lines. A Venn diagram of gene fusion 
calls by FusionSeeker, JAFFAL, and LongGF in SKBR-3 cell line. B Venn diagrams 
of gene fusion calls by the three fusion callers in MCF-7 cell line using Iso-Seq (top) 
and Nanopore direct RNA sequencing (bottom) data. C The identity of raw reads and 
transcript sequences reported by FusionSeeker and JAFFAL in MCF-7 Iso-Seq (left) 
and Nanopore (right) direct RNA sequencing dataset. **, p<0.01. ***, p<0.001. N.S., 
not significant. The p-values were calculated by Mann-Whitney U test.  
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When comparing two lists of gene fusion calls from Iso-Seq and Nanopore 

datasets for each caller, we observed slightly higher overlapping ratio in FusionSeeker 

callsets than JAFFAL and LongGF, with Jaccard index of 0.1208 for FusionSeeker, 

0.0741 for JAFFAL, and 0.0584 for LongGF in MCF-7 cell line, respectively (Fig. S7). 

This overall low overlapping rate was probably caused by the evolution of the cell line or 

inconsistent sequencing depth on each gene in the two datasets during sequencing (Fig. 

S8). This systemic difference may need further investigation. 

We then applied three fusion callers on non-cancer datasets from Human Genome 

Structural Variation Consortium (HGSVC) to assess the false discovery rate of three 

tools. In all the 12 non-cancer samples, FusionSeeker reported the fewest number of gene 

fusions, suggesting that FusionSeeker had lowest false discovery rates among the three 

tested fusion callers (Table S8). We have also applied FusionSeeker on a patient sample 

with acute myeloid leukemia (AML) to demonstrate its clinical utility [5]. FusionSeeker 

identified a pre-validated gene fusion between RUNX1 and RUNX1T1 and reported 

another 7 confident gene fusion events in the patient sample (Table S9). 

 

3. Isoform sequence reconstruction with de novo assembly 

We next evaluated the transcript sequences generated by FusionSeeker. Compared 

to the raw reads, FusionSeeker transcript sequences showed significant higher identity 

with reference gene sequences in both Iso-Seq and Nanopore datasets of MCF-7 cell line 

(Fig. 2C). JAFFAL also reported one of the fusion-containing reads as the transcript 

sequence, which showed no significant difference in identity comparing with the raw 

reads. In the Iso-Seq dataset of the SKBR3 and the Nanopore dataset of the HCT-116 cell 
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lines, FusionSeeker reported more accurate transcript sequences than the raw reads, while 

transcript sequences reported by JAFFAL showed no significant differences (Fig. S9). 

There was no significant difference between FusionSeeker transcript sequences and raw 

reads in HCT-116 Iso-Seq dataset, likely due to only three gene fusions were reported. 

Note that the identity calculated by comparing with the reference is an underestimation of 

transcript sequence accuracy, owing to the presence of genetic variants in these cell lines. 

These genetic variants can often be maintained in the transcript sequences (Fig. S10). 
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DISCUSSION 

In this work, we presented FusionSeeker for gene fusion detection in long-read cancer 

transcriptome sequencing data. FusionSeeker can detect gene fusions in both exonic and 

intronic regions. Based on simulation and three cancer cell line data, we have 

demonstrated that FusionSeeker outperformed existing methods in characterizing gene 

fusion events. Besides, we have both orthogonally and experimentally validated many 

gene fusion events only detected by FusionSeeker. These novel gene fusions may be 

important for tumorigenesis and progression, which deserves further investigation. Since 

the long-read sequencing platform can almost generate full-length transcripts, 

FusionSeeker provides accurate full-length fusion transcripts based on an assembly 

approach. The full-length fusion transcripts may facilitate downstream functional and 

clinical research.  

After candidate fusion detection, FusionSeeker used DBSCAN to cluster 

candidate fusions that share the same breakpoints. DBSCAN was implanted as it does not 

require pre-determined number of clusters, which allows FusionSeeker to report gene 

fusions with one or multiple breakpoints in the same gene pair. DBSCAN can also 

robustly exclude outliers while clustering, which is necessary in this case as there are 

often abundant noise signals in long-read RNA sequencing read alignments.  
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Data access 

The source code of FusionSeeker is available at https://github.com/Maggi-

Chen/FusionSeeker under MIT license, and the scripts used for benchmark in the 

manuscript are available at https://github.com/Maggi-Chen/FS_code. The Nanopore 

direct RNA sequencing data of the MCF-7 and HCT-116 cell lines are available at 

https://github.com/GoekeLab/sg-nex-data/ [11]. The PacBio Iso-Seq sequencing data of 

the MCF-7 and the HCT116 cell lines are available at SRA under the accessions 

SRP055913 [10] and SRP091981 [9]. The PacBio Iso-Seq and CLR sequencing data of 

the SKBR-3 cell line are downloaded from SRA under accession SRP150606 [12]. 

PacBio Iso-Seq data of HGSVC samples are available at HGSVC data portal 

(https://www.internationalgenome.org/data-portal/). AML patient data is downloaded 

from SRA under SRR12048357 [5]. 
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Figure S1. Number of true-positive and false-positive gene fusion calls in simulated datasets.  
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Table S1. Gene Fusion detection on simulated datasets 

  Iso-Seq  Nanopore 

Tool Dataset Total TP TP-
exon 

TP-
intron 

 Total TP TP-
exon 

TP-
intron 

FusionSeeker Rep1 147 139 96 43  153 142 94 48 

 Rep2 149 139 92 47  164 145 96 49 

 Rep3 149 141 95 46  159 146 98 48 
           

JAFFAL Rep1 86 71 68 3  93 77 71 6 

 Rep2 96 75 68 7  108 81 73 8 

 Rep3 96 84 72 12  99 88 75 13 
           

LongGF Rep1 120 116 94 22  126 121 96 25 

 Rep2 136 129 96 33  139 131 98 33 

 Rep3 129 125 98 27  133 127 100 27 

 
  Total, total number of gene fusion events reported by each tool. TP, true positive events. TP-exon, true positive 

events located in exomes. TP-intron, true positive events located in introns.  
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Table S2. Recall of gene fusion discovery  at different expression levels in simulation 

  Iso-Seq  Nanopore 

  High Medium Low  High Medium Low 

FusionSeeker         
 Rep1 96.00 97.96 90.20  98.00 100.0 100.0 

 Rep2 100.0 94.12 88.64  100.0 98.04 95.45 
 Rep3 100.0 100.0 91.84  100.0 100.0 100.0 

 Mean 98.67 97.36 90.22  99.33 99.35 98.48 

JAFFAL         
 Rep1 54.00 55.10 33.33  62.00 57.14 35.29 
 Rep2 49.09 56.86 43.18  52.73 62.75 45.45 

 Rep3 57.45 57.41 53.06  61.70 61.11 53.06 

 Mean 53.51 56.46 43.19  58.81 60.33 44.60 

LongGF         

 Rep1 82.00 85.71 64.71  84.00 87.76 70.59 

 Rep2 81.82 86.27 90.91  81.82 90.20 90.91 

 Rep3 80.85 81.48 87.76  80.85 81.48 91.84 

 Mean 81.56 84.49 81.12  82.22 86.48 84.44 

Highest mean recall in each expression level among three tested fusion callers is labeled as bold. 
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Table S3. Transcript reconstruction of FusionSeeker on simulated datasets 

Data type Dataset Detected GF Full-length transcript Identity 

Iso-Seq Replicate 1 139 139 99.99 

 Replicate 2 139 138 99.93 

 Replicate 3 141 141 99.69 

Nanopore Replicate 1 142 142 99.08 

 Replicate 2 145 144 99.19 

 Replicate 3 146 145 99.15 

 
   Transcript sequences output by FusionSeeker were considered as ‘full-length’ when more than 95% of 

the simulated fused transcript sequence was reconstructed. 
Detected GF, number of detected gene fusion in each dataset. Full-length transcript, number of gene 
fusion with full-length transcript sequences. Identity, identity of reconstructed transcript sequence 
compared to the ground-truth sequences. 
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Figure S2. Identity of simulated raw reads and consensus transcript sequences of FusionSeeker. 
The consensus sequences generated by partial order alignment showed higher identity than raw reads in 
both PacBio Iso-Seq (left) and Nanopore (right) datasets. 
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Table S4. Detection of previously validated gene fusions in SKBR-3 cell line 

 Previous validation  Tested callers 

Gene fusion Number Edgren Inaki Nattestad Chen  FusionSeeker JAFFAL LongGF 

TATDN1:GSDMB 3          
RARA:PKIA 3          
DHX35:ITCH 3          
SUMF1:LRRFIP2 3          
TBC1D31:ZNF704 3          
ANKHD1:PCDH1 3         
CYTH1:EIF3H 2           
CCDC85C:SETD3 2         
NFS1:PREX1 1         
ATAD5:TLK2 2           
PREX1:CPNE1 2           
DEPDC1B:PDE4D 1            
TAF2:COLEC10 1            
TRIO:FBXL7 1            
RPTOR:RNF213 1         
PBRM1:WDR82 1         
BLOC1S6:AKAP13 1         
VSTM2L:CTNNBL1 1         
COL14A1:MTSS1 1         
CBX3:CCDC32 1         
RANBP10:PSKH1 1         
SAMD12:MTBP 2           
KLHDC2:SNTB1 1            
PVT1:LINC00536 1            
MECOM:LMCD1-
AS1 1     

 
   

 
  

RAD51B:SEMA6D 1            
TOX2:STAU1 1            
LINC01524:PHF20 1            

  
Gene fusions detected by FusionSeeker with option “—min_supp 3” were marked green. 
Number, number of previous studies that validated this gene fusion.  
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Figure S3. Examples of FusionSeeker-unique gene fusion calls supported by DNA sequencing 
reads in SKBR-3 cell line. IGV view of PacBio Iso-Seq sequencing (top) and PacBio CLR DNA-
sequencing (bottom) read alignments at gene fusion EXT1:SAMD12 (a) and PCAT1:AMZ2 (b). 
Alignments of the same read were colored with same color at two breakpoints. 
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Figure S4. FusionSeeker-unique 4-hop gene fusion CSNK2A1:NCOA3:MMP24OS:TSHZ2 in 
SKBR-3 cell line. PacBio Iso-Seq sequencing (a) and PacBio CLR DNA-sequencing (b) read 
alignments covering the gene fusion. Top panel shows all read alignments. Bottom panel shows 
alignment of a single read from top panel.  
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Table S5. Detection of previously validated gene fusions in MCF-7 cell line 
 PacBio Iso-Seq  Nanopore direct RNA 
Gene fusion FusionSeeker JAFFAL LongGF  FusionSeeker JAFFAL LongGF 
ARFGEF2:SULF2        
BCAS4:BCAS3        
RPS6KB1:DIAPH3        
VPS35L:IQCK        
RPS6KB1:VMP1        
TBL1XR1:RGS17        
TXLNG:SYAP1        
MYO6:SENP6        
GATAD2B:NUP210L        
PAPOLA:AK7        
ESR1:CCDC170        
SULF2:PRICKLE2        
POP1:MATN2        
SLC25A24:NBPF6        
SYTL2:PICALM        
ATP1A1:ZFP64        
NAV1:GPR37L1        
BCAS3:ATXN7        
MYH9:EIF3D        
PNPLA7:DPH7        
RSBN1:AP4B1-AS1        
BMERB1:ABCC1        
RAD51C:ATXN7        
VAV3:AP4B1-AS1        
BCAS3:AMPD1        
CHEK2:XBP1        
GCN1:MSI1        
ATXN7L3:FAM171A2        
SMARCA4:CARM1        
AHCYL1:RAD51C        
DEPDC1B:ELOVL7        
MYO9B:FCHO1        
BCAS4:ZMYND8        
PLCG1:TOP1        

Gene fusions not detected by any long-read fusion callers were not shown. 
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Figure S5. Previously validated gene fusion breakpoints of TXLNG:SYAP1 in MCF-7 cell line. 
PacBio Iso-Seq sequencing (a) and Nanopore direct RNA sequencing (b) read alignments covering the 
two validated gene fusion breakpoints on TXLNG. One validated breakpoint located in first exon (black 
arrow) was reported by all three gene fusion callers. The other validated breakpoint located in first 
intron (red arrow) was only reported by FusionSeeker. 



 

  173 

 
  

Table S6. Previously validated gene fusions missed by FusionSeeker in MCF-7 cell line 

  JAFFAL  FusionSeeker 

Dataset Gene fusion #Spanning 
reads Classification  Reported #Candidate 

fusion Pass filter 

Iso-Seq        
 POP1:MATN2 4 LowConfidence  No 0 No 
 BCAS3:AMPD1 2 HighConfidence  Yes 2 No 
 CHEK2:XBP1 2 HighConfidence  Yes 2 No 

 RAD51C:ATXN7 2 HighConfidence  Yes 2 No 
 SULF2:PRICKLE2 2 HighConfidence  Yes 3 No 
Nanopore        
 BCAS4:ZMYND8 4 LowConfidence  Yes 2 No 
 PLCG1:TOP1 3 LowConfidence  Yes 3 No 
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Figure S6. Number of fusion-supporting reads of gene fusion calls. Distribution of number of 
fusion-supporting reads of gene fusion calls reported by three callers in MCF-7 Iso-Seq dataset. More 
than 88% of the three groups of gene fusions not reported by FusionSeeker (red, pink, and purple) are 
supported by ≤ 3 reads. 
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Figure S7. Overlap between gene fusion calls from Iso-Seq and Nanopore datasets. Venn diagram 
of number of gene fusion calls detected in Iso-Seq and Nanopore dataset of MCF-7 (left) and HCT-116 
(right) cell lines. Jaccard index of two lists of gene fusions was labeled on each group. 
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Figure S8. Correlation of coverage between Iso-Seq and Nanopore dataset. Low correlation of 
sequencing coverages in Iso-Seq and Nanopore datasets in MCF-7 (left) and HCT-116 (right) cell lines. 
Each dot represents a protein-coding gene. Regression line and R-square were calculated with linear 
regression model.  
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Table S8. Number of false-positive gene fusions in non-cancer datasets 
Sample FusionSeeker JAFFAL LongGF 

HG00268 18 19 59 
HG01457 6 21 74 
HG02106 16 27 81 
HG02666 11 22 60 
HG03248 17 21 81 
HG03807 10 20 50 
HG04217 15 32 66 
NA18989 16 22 65 
NA19317 16 36 109 
NA19331 14 34 88 
NA19347 4 15 41 
NA19384 9 14 40 

  
Gene fusion calls of JAFFAL only include ‘HighConfidence’ gene fusions. Fewest false-positive calls 
were marked in bold.  
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Table S9. Gene fusion detected in an AML patient sample 

Gene 1 Gene 2 Breakpoint 1 Breakpoint 2 Num_supp 

RUNX1 RUNX1T1 Chr21: 34849656 Chr8: 92073489 40 

RPS25 ARL14EPL Chr11: 119018340 Chr5: 116052176 38 

NBEAL1 RPL12 Chr2: 203190770 Chr9: 127451393 27 

EEF1A1 EEF1A1P5 Chr6: 73518555 Chr9: 92073489 20 

PSPHP1 KMT2C Chr7: 55773181 Chr7: 116052176 14 

PTMA DTWD2 Chr2: 231708528 Chr5: 127451393 14 

HNRNPH1 ACTB Chr5: 179614796 Chr7: 133020454 13 

SYN3 ACOT13 Chr22: 32532571 Chr6: 152367259 11 
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Figure S9. Identity of raw reads and transcript sequences reported by FusionSeeker and 
JAFFAL. ***, p<0.001. N.S., not significant. p-values were calculated by Mann-Whitney U test. 
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Figure S10. Examples of better base accuracy in FusionSeeker consensus transcript sequence. 
IGV view of gene fusion FOXA1:TTC6 in Iso-Seq (a) and Nanopore (b) datasets of MCF-7 cell line. 
In both datasets, there are fewer mismatches and indels in FusionSeeker consensus transcript sequences 
(top panel) than in fusion-containing raw reads (bottom panel). The SNP of C>T at chr14:37592537 
was retained in consensus transcript sequence in both Iso-Seq and Nanopore datasets. 
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Supplementary Note 1. Full list of HGSVC members 

  

The members of the Human Genome Structural Variation Consortium (HGSVC) are 

Haley J. Abel, Hufsah Ashraf, Peter A. Audano, Anna O. Basile, Christine Beck, Marc 

Jan Bonder, Harrison Brand, Marta Byrska-Bishop, Mark J.P. Chaisson, Yu Chen, Ken 

Chen, Zechen Chong, Nelson T. Chuang, Wayne E. Clarke, André Corvelo, Scott E. 

Devine, Peter Ebert, Jana Ebler, Evan E. Eichler, Uday S. Evani, Susan Fairley, Paul 

Flicek, Sky Gao, Mark B. Gerstein, Maryam Ghareghani, Ira M. Hall, Pille Hallast, 

William T. Harvey, Patrick Hasenfeld, Alex R. Hastie, Wolfram Höps, PingHsun Hsieh, 

Sarah Hunt, Jan O. Korbel, Sushant Kumar, Charles Lee, Alexandra P. Lewis, Chong Li, 

Bin Li, Yang I. Li, Jiadong Lin, Tsung-Yu Lu, Rebecca Serra Mari, Tobias Marschall, 

Ryan E. Mills, Zepeng Mu, Katherine M. Munson, David Porubsky, Benjamin Raeder, 

Tobias Rausch, Allison A. Regier, Jingwen Ren, Bernardo Rodriguez-Martin, Ashley D. 

Sanders, Martin Santamarina, Xinghua Shi, Chen Song, Oliver Stegle, Michael E. 

Talkowski, Luke J. Tallon, Jose M.C. Tubio, Aaron M. Wenger, Xiaofei Yang, Kai Ye, 

Feyza Yilmaz, Xuefang Zhao, Weichen Zhou, Qihui Zhu, and Michael C. Zody. 
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Supplementary Note 2. Supplementary methods 

 

Simulated datasets generation 

A transcriptome including all protein-coding transcripts from human GENCODE 

v39 (RRID:SCR_014966) and additional 150 fused transcripts was simulated. 300 

protein-coding genes were randomly selected and paired as the gene fusions, among 

which 100 fused transcripts were generated with both breakpoints located in exons, and 

50 fused transcripts were generated with one breakpoint in an intronic region. All 

transcripts were randomly assigned into three groups with low, medium, and high 

expression levels. PacBio Iso-Seq-like reads and Nanopore-like reads were simulated 

using pbsim (v 1.0.3) and Badread (v0.2.0) with a depth of 10x (low expression), 50x 

(medium expression), and 200x (high expression), respectively. The simulation process, 

including the fused transcript generation, was repeated for three times. 

 

Benchmark in simulated datasets 

The simulated reads were aligned to the human reference genome GRCh38 

without alternative contigs using minimap2 (v2.24) with options “-x splice:hq” for 

PacBio Iso-Seq simulation and options “-x splice” for Nanopore simulation. 

FusionSeeker (v1.0.1) was applied on read alignments with options “--min_supp 5”. 

LongGF (v0.1.2) and JAFFAL (v2.2) was applied with the default settings. All unique 

pairs of fusion genes reported by each tool were compared to the 150 ground-truth gene 

fusions to count number of true positive (TP) and false positive (FP). Recall and 

precision were calculated as 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑙𝑙 =  𝑇𝑇𝑇𝑇
150

 and 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑛𝑛 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

, and F1 score was 
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calculated as 𝐹𝐹1 =  2∗𝐸𝐸𝐷𝐷𝑟𝑟𝑆𝑆𝐶𝐶𝐶𝐶∗𝑠𝑠𝐸𝐸𝐷𝐷𝑟𝑟𝑝𝑝𝑠𝑠𝑝𝑝𝐶𝐶𝐼𝐼
𝐸𝐸𝐷𝐷𝑟𝑟𝑆𝑆𝐶𝐶𝐶𝐶+𝑠𝑠𝐸𝐸𝐷𝐷𝑟𝑟𝑝𝑝𝑠𝑠𝑝𝑝𝐶𝐶𝐼𝐼

. Breakpoint accuracy was evaluated by measuring 

the distance from reported breakpoint positions from each caller to the breakpoints from 

ground truth. The identity of the raw reads and FusionSeeker transcript sequences were 

measured as 𝑝𝑝𝑖𝑖𝑟𝑟𝑛𝑛𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 =  1 −  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑁𝑁𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑒𝑒

, where 𝑁𝑁𝑆𝑆𝐶𝐶𝑝𝑝𝑎𝑎𝐼𝐼𝑆𝑆𝐷𝐷𝐼𝐼𝐷𝐷 is length of read/transcript 

sequence aligned to the reference genome, and 𝑁𝑁𝐷𝐷𝑒𝑒𝑝𝑝𝐷𝐷 is number of mismatches (including 

deletions and insertions) in the alignment.  

 

Gene fusion detection in cancer cell lines 

PacBio Iso-Seq (4.16Gbp) and Nanopore direct RNA sequencing data (6.36Gbp) 

of MCF-7, PacBio Iso-Seq (0.21Gbp) and Nanopore direct RNA sequencing data 

(6.07Gbp) of HCT-116 cell lines, and PacBio Iso-Seq data (10.91Gbp) of SKBR-3 cell 

lines were downloaded and aligned to the human reference genome GRCh38 using 

minimap2 (v2.24) with options “-x splice:hq” for Iso-Seq data and options “-x splice” for 

Nanopore data. FusionSeeker (v1.0.1) and LongGF (v0.1.2) were applied to the Iso-Seq 

and Nanopore read alignment files with the default settings. JAFFAL (v2.2) was applied 

to the PacBio Iso-seq and Nanopore reads with default settings. All unique pairs of gene 

fusions located on the autosomes and sex chromosomes were used for comparison. 

Previously validated gene fusion events of MCF-7, SKBR-3, and HCT116 cell lines were 

collected from previous publication and curated by removing fusions of genes without 

official gene names and updating gene names to official gene symbols in Ensembl v104 

annotation (RRID:SCR_002344).  
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Validation of FusionSeeker-unique gene fusions in MCF-7 cell line 

The MCF-7 cell line was obtained from Dr. Anna Sorace’s laboratory at 

University of Alabama at Birmingham, Birmingham, AL and incubated in DMEM in the 

presence of 10% FBS, 1% Na-pyruvate, 1% L-glutamine, 1% pen-strep for 48 hours prior 

to RNA harvesting. RNeasy Plus Mini Kit (Qiagen, 74136) was used for RNA extraction. 

iScript Reverse transcription supermix (Bio-Rad, 1708841) was used for RT-PCR. RNA 

to cDNA conversion was performed in Thermal Cycler (Bio-Rad, C1000 Touch) with the 

preset program. The cDNAs (100ng) were amplified by PCR with a set of primers 

(10uM). The primer sequences used in the PCR reaction were listed in the Table S7. 2% 

agarose gel was used in the gel electrophoresis analysis. 10uL of PCR products were 

loaded in each well. BON genomic Notch1 was used to serve as the positive control at 

210bp.   

 

Gene fusion detection in non-cancer datasets 

PacBio Iso-Seq datasets of 12 HGSVC samples were downloaded and aligned to 

human reference genome GRCh38 using minimap2 (v2.24) with options “-x splice:hq”. 

FusionSeeker (v1.0.1) and LongGF (v0.1.2) were applied to the Iso-Seq read alignment 

files with default settings. JAFFAL (v2.2) was applied to the PacBio Iso-seq reads with 

default settings, and only fusion calls with ‘HighConfidence’ tag were kept. All unique 

pairs of gene fusions located on the autosomes and sex chromosomes were used for 

comparison. 

 

 



 

  185 

Gene fusion detection in patient sample 

Nanopore dataset of an AML patient sample was downloaded and aligned to 

human reference genome GRCh38 using minimap2 (v2.24) with options “-x splice”. 

FusionSeeker (v1.0.1) was applied to the read alignment file with default settings.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

Work Summary 

In this dissertation, I introduced three bioinformatics tools, DeBreak, Inspector, and 

FusionSeeker, for more comprehensive characterization of SVs and showed some 

applications of these tools in genetics and clinical research. I present DeBreak in Chapter 

2 as an alignment-based SV discovery method for efficient and accurate structural variant 

detection using long-read sequencing data. I have demonstrated the high SV discovery 

accuracy and breakpoint accuracy of DeBreak in both simulations and in real benchmark 

sample HG002. The higher SV discovery accuracy of DeBreak benefited from its 

density-based clustering methods, in which the clustering window size is adjustable 

according to SV size and local sequence context. DeBreak achieved single-basepair 

accuracy for SV breakpoint prediction as it generates highly accurate consensus 

sequences that contain few sequencing errors to infer precise SV breakpoints. DeBreak 

also doubled the maximal detectable insertion size by performing local de novo assembly 

for detecting ultra-large insertions. The tumor mode of DeBreak allows it to discover 

nearby breakpoints of complex SVs in cancer genome. These novel functions of DeBreak 

enable us to identify SVs with precise breakpoint locations in noisy long-read sequencing 

data.  
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 In Chapter 3, I present Inspector as a reference-free evaluation method for de 

novo assembly results. Inspector utilizes raw sequencing data to evaluate assembly 

quality without help of a reference genome. It can identify structural and small-scale 

errors in the assembly contigs by distinguishing true assembly errors from inherent 

genetic variants. Inspector’s evaluations on real assemblies of HG002 revealed distinct 

assembly error patterns for different assemblers and the enrichment of assembly errors in 

the repetitive regions in human genome for most assemblies. With its error-correction 

module, Inspector can improve the assembly quality by correcting the identified assembly 

errors, which will improve the precision of the following assembly-based SV discovery. 

These functions exceed those achieved by existing assembly evaluators. Inspector is an 

accurate assembly evaluator and correction tool, which can facilitate future improvement 

of de novo assembly quality. 

 In  Chapter 4, I present FusionSeeker for gene fusion detection in long-read 

cancer transcriptome sequencing data. Unlike other existing long-read gene fusion 

callers, FusionSeeker can detect gene fusions located in both exonic and intronic regions 

and generate error-free transcript sequences for reported gene fusion events. In this 

chapter, I have demonstrated that FusionSeeker achieved higher accuracy in 

characterizing gene fusion events than other tools using both simulation data and real 

cancer cell line data. I have designed PCR experiments and validated 7 novel gene 

fusions reported by only FusionSeeker in MCF-7 cell line, which may be important for 

tumorigenesis and progression. By correcting sequencing errors in the raw reads, 

FusionSeeker reconstructs accurate full-length fusion transcripts, which will facilitate 

downstream functional and clinical research on these gene fusions.  
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Together, these three tools have promoted accurate detection of SVs from both 

alignment-based and assembly-based approaches and accurate detection of gene fusions 

at transcriptome level. This suite of bioinformatics tools can be applied to facilitate SV-

related analysis in the future genetics and clinical research. 

 

Future Research Directions 

1. Applying bioinformatics in biomedical research 

 With the rapid development of sequencing techniques in the past few decades, 

sequencing-based bioinformatics research has played important roles in recent 

biomedical research. There is urgent need for more advanced and efficient algorithms for 

better utilization of sequencing data in basic genomics and clinical research. The three 

tools introduced in this dissertation, including DeBreak, Inspector, and FusionSeeker, 

have provided the community a suite of bioinformatics tools for more comprehensive 

characterization of structural variants, which will deepen our insights into SVs and their 

functions in population diversity and disease by facilitating future genomics research, 

clinical studies, and bioinformatics algorithm development.  

 In genomic research, precise discovery of SV is the foundation of accurate 

population-level analysis on SVs. Studies on mechanism of SV formation usually focus 

on flanking sequences near SV breakpoints, which relies on precise prediction of SV 

breakpoints[42, 43]. Recent work on telomere-to-telomere assembly of human genomes 

and pangenome reference project has targeted at providing more complete reference 

genome and comprehensive genetic profiling through de novo assembly[44, 45]. With 

these efforts, de novo assembly has become an important approach in driving future 
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discovery in human genomic health and disease, which could be further facilitated with 

assembly evaluation and improvement methods such as Inspector.  

SV discovery, especially accurate prediction of SV breakpoints, is essential for 

disease genetics and cancer research, including studying causal mutations, disease 

diagnosis and progression markers, and potential treatment targets. In systemic lupus 

erythematosus, FCGR gene family-associated SVs are located within a complex 

segmental duplication region and are thus difficult to detect using routine SV discovery 

approaches[10]. Our efforts in both alignment- and assembly-based SV discovery of 

DeBreak and Inspector have enabled detection of SVs in most of PacBio HiFi datasets of 

SLE patients using local and whole-genome de novo assembly. 

In bioinformatics research, our tools provide a guidance for future development of 

novel algorithms and pipelines. The advanced algorithms implanted in our tools, 

including density-based clustering, local de novo assembly, and parallel computing, can 

be applied to solve other problems. In particular, Inspector evaluation of assembly quality 

provides accurate positions of misassemblies, which can serve as unbiased benchmark 

method for further improving assembly algorithms. 

 

2. Application on large-scale datasets 

 As the NGS becomes more common in genetic research, there are several publicly 

available large-scale NGS datasets for healthy individuals and patient samples, including 

HGSVC[26], PCAWG [46], and TOPMed [47]. SV analysis on such datasets provides 

insights on genomic evolution and disease mechanisms at population level. Large-scale 
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SV analysis of healthy individuals using long-read data would enable more accurate 

characterization of normal human genetic variations, as the foundational SV discovery is 

more comprehensive using long-read data. However, due to the high cost of long-read 

sequencing, current public long-read datasets usually contain fewer numbers of samples. 

For example, GIAB sequenced seven samples, including two trio families, as benchmark 

samples[48]. HGSVC sequenced a total of 32 samples from distinct populations using 

long-read platforms[26], which are much fewer compared to 3,110 samples with NGS 

data. Such small sample size is not sufficient to make significant conclusions in 

population genetics. Once the sequencing cost is reduced for TGS and more samples are 

sequenced, DeBreak can be applied to identify SVs for further large-scale studies.  

 For cancer transcriptome sequencing data, application of FusionSeeker is also 

limited by data availability. Currently, publicly available transcriptome sequencing data 

is restricted to cancer cell lines, which are more stable and less heterogenous than 

primary tumor biopsies[49-51]. When more patient samples are sequenced with long-read 

transcriptome sequencing platforms, FusionSeeker can be applied to identify gene fusions 

for each tumor sample. Disease-related gene fusions can then be inferred when shared by 

a subgroup of patients with the same cancer type.  

 

3. Application on Non-human Species 

Although the applicable organisms of DeBreak and FusionSeeker are not limited 

to human, most of the benchmarks in this dissertation were done based on human 

genomes, owing to the lack of available long-read benchmark datasets for non-human 
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species. Both DeBreak and FusionSeeker can be applied to other diploid or haploid non-

human species with available reference genome and gene annotations. The performance 

of these tools may be affected when applied on other species, owing to the differences in 

the genomic features. Parameters for non-human species could be optimized when more 

sophisticated benchmarking datasets are available for non-human species. 

Moreover, due to the limited availability of ground-truth SV sets, DeBreak was 

benchmarked for insertion and deletion discovery in HG002 and HGSVC samples, but 

not for duplication, inversion, or translocation. Further validation of SV discovery 

accuracy on these SV types would be desirable and will help improve DeBreak’s 

performance if comprehensive high-confidence truth SV sets become more readily 

available.  

In Chapter 3, I have shown benchmarking and analysis of human and Anna’s 

hummingbird genomes for Inspector. When detecting assembly errors using binominal 

test, Inspector has an assumption of diploid genome for the input assembly. The 

assumption can work on any species with monoploid or diploid genomes but not for 

polyploid genomes. Applying current version of Inspector on polyploid genomes may 

lead to inaccurate identification of assembly errors and therefore inaccurate evaluation of 

assembly quality. I plan to expand the application of Inspector by adding statistical 

models for polyploid genomes in future versions. 
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