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A HYBRID DATA AND HYPOTHESIS-DRIVEN MODEL FOR SOFTWARE 

DEVELOPMENT IN SUPPORT OF THE MACHINE-LEARNING PARADIGM 

 

 

ANTHONY DEAN BOWMAN 

 

COMPUTER ENGINEERING 

 

ABSTRACT  

 

Historically, research has often been conducted in a hypothesis-driven manner with 

software development methodologies created to support those efforts.  However, in 

recent years data-driven approaches to research have seen a dramatic rise in prominence.  

While software development methodologies such as agile development, extreme 

programming, and the waterfall model have allowed developers to tackle increasingly 

complex problems, they were not designed to efficiently support data-driven approaches 

such as the machine learning paradigm.  To address the need to support the different 

programmatic requirements of both classical, hypothesis-driven as well as data-driven 

development, novel development strategies are warranted.  In this research, we adapted 

the well-established spiral model to support both hypothesis- and data-driven 

development within its iterative design.  Within this model, we included a novel 

framework for embracing the machine learning paradigm.  By removing artificial 

limitations in the number and selection of machine learning algorithms and feature sets 

we have often seen in previous literature, this framework allows for the expanded 

application of machine learning techniques.  Supported by parallelism, feature 

engineering, and the reuse of data and feature subsets, this framework supports the 

efficient exploration of both the problem and solution spaces.  To demonstrate its 

benefits, we applied this updated lifecycle model to a complex neurological problem.  
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The results from this case study show this lifecycle model now provides greater 

flexibility for the developer in tailoring solutions to the ever-changing needs of a project, 

be they hypothesis- or data-driven.  Our framework allows for greater adoption of the 

machine learning paradigm, providing support for developers to efficiently expand the 

scope of their work while generating more optimal results.          

 

 

Keywords:  software development lifecycle, hypothesis-driven research, data-driven 

research, machine learning, signal analysis, frequency analysis 
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INTRODUCTION 

           

Overview 

 A variety of software development methodologies have been created over the past 

half century to support the creation of software that fulfills requirements of ever-

increasing complexity.  While these methodologies have allowed for the development of 

demanding software solutions, they were not designed to support the data-driven 

solutions which have recently become in high demand.  The different programmatic 

requirements between the classical, algorithmic software development and data-driven 

development warrant the creation of a novel methodology with the flexibility to support 

both, allowing the developer to adapt to the needs of the project while utilizing the same 

development methodology.  To accomplish this, we chose to adapt the spiral model, a 

well-established lifecycle model for software development with the iterative properties 

needed to incorporate our changes (Boehm, 1988).  Within this adapted spiral model is 

our novel framework for the application of the machine learning paradigm (Bowman, 

Prabhakar, & Jololian, 2022).  Through the reuse of data and feature sets, this framework 

allows for the efficient and rapid expansion of a project’s scope by facilitating parallel, 

data-driven investigations.  Through parallel model construction from a variety of 

machine learning algorithm and feature subsets, this framework generates a more optimal 

solution for each investigation.  During the course of our research, we also realized our 

framework could be the basis for an introductory course in machine learning (Bowman & 
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Jololian, 2021).  We applied our framework to a complex neurological problem, 

producing better results than previous literature (Bowman, Conwell, and Jololian, 2022).  

Expanding this application, we provide a detailed description of our adapted spiral model 

and a walkthrough of development within the context of the neurological case study. 

 

Common Limitations in Current Machine Learning Applications 

 Advances in machine learning techniques have allowed researchers to make 

substantial gains in tackling difficult problems in diverse fields such as medical 

diagnosis, image recognition, and natural language processing.   However, often times, 

machine learning has been used as a blunt instrument that is designed to ingest large 

amounts of raw data and produce usable predictive models that can help in decision 

making.   Two bottlenecks inherent in this process are: (1) the ever increasing size of the 

data may slow down the development of solutions; this is primarily related to large 

number of features characterizing the dataset and computing hardware limitations, and 

(2) the way machine learning solutions are designed to answer a particular question as 

opposed to a set of questions related to the data; this is largely due to the nature of the 

scientific method and not an implicit limitation of the machine learning approach.  

Committing substantial resources to power this machine learning tool may still produce 

subpar results due to another dilemma inherent to machine learning:  The combination of 

classification algorithm and feature set that will produce the best results cannot currently 

be predicted for any arbitrary data set or research question.  In this way, machine learning 

research can benefit from both hardware and software optimizations to improve current 

and future analytic capacity in the search for the best possible results.     
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 Currently, machine learning methodology is often employed as a general-purpose 

tool to process a large data set and produce a trained predictive model for a particular 

research question related to said data set.  While this approach has produced valuable 

insight into both the respective subject domains and the machine learning techniques 

themselves, it involves a constant struggle of optimization which cannot simply be solved 

by acquiring faster hardware:  Given a set of hardware, there exists at least one data set 

that exceeds its capacity, therefore the need for better, faster hardware is ever-present.  

Consequently, one must also turn to software level optimization to further improve their 

results beyond what is capable by their current hardware.  In this way, software 

optimizations can allow more work to be accomplished within the hardware’s current 

capacity.  In addition, those optimizations will still play a role in making full use of any 

extra processing and/or storage capacity gained from newer hardware.  Thus, software 

level optimizations through improving the overall process or algorithms can provide 

results that scale to both current and future hardware infrastructure.  In this manner, we 

describe a framework with embedded software optimizations that can be scaled to an 

arbitrary size to fit current and future hardware limitations.   
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BACKGROUND 

 Artificial intelligence (AI) in its various forms has rapidly advanced in recent 

years to include applications in a wide variety of problem domains.  We include here a 

book chapter we have submitted for publication by Elsevier which provides an overview 

of AI and examples of state-of-the-art applications. 
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The machine learning paradigm and other data-driven approaches have seen a 

substantial rise in prominence in recent years.  Fueled by advancements in data storage 

and wider availability of hardware with the processing power needed to make use of such 

algorithms, machine learning has allowed researchers to tackle increasingly complex 

problems in a wide variety of domains.  In this chapter, the authors will provide a survey 

of different forms of artificial intelligence, including natural language processing and 

various machine learning methodologies.   

This chapter begins with a brief introduction covering some of the history and 

computational advancements behind artificial intelligence (AI).  The second section of 

this chapter provides further discussion of recent historical milestones in the surge of 

adoption seen just after the turn of the twenty-first century, followed by discussion on the 

difficulties still observed in developing standardized methods of applying AI techniques.  

The third section contains a survey of AI in its different forms with discussion on the 

variety of methodologies involved, including the different machine learning approaches 

such as supervised versus unsupervised, and predictive and generative algorithms.  This 

will include examples showing the state-of-the-art capabilities currently in industry.  

During the discussion of supervised machine learning methodology, the authors provide 

further examples showing the variety and scope previous research has employed machine 

learning methodology within the context of diabetes research.  The fourth section of this 

chapter provides discussion on some of the ethical concerns related to AI and its 

applications.  In this chapter’s fifth section the authors will then discuss the inclusion of 

the machine learning paradigm within a model of research that employs both data- and 

hypothesis-driven approaches.  Following this model enables researchers to benefit from 
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the respective advantages of each approach as they complement each other, thereby 

providing the researchers with a more complete model for their scientific endeavors.         

 

1.1  Introduction 

In the latter half of the twentieth century, algorithms were developed that could 

generate predictive models based on the systematic processing of supplied data.  Because 

of their potential to mirror natural learning from experience, these algorithms were later 

labeled as machine learning algorithms.  These algorithms were then incorporated into a 

larger corpus of machine learning methodology, a type of data-driven research.  While 

the problem-solving potential of these algorithms was recognized in theory, it could not 

begin to be realized until the turn of the twenty-first century when technological advances 

in parallel processing and data storage reached a critical stage.  At this point, 

improvements in manufacturing allowed for increased data density at lower prices than 

ever before, opening up the possibility of storing the ever-increasing amounts of data 

being generated by businesses and institutions as society gradually embraced the digital 

age.   

The incorporation of intelligent systems and machine learning algorithms into a 

wide variety of application domains arguably began gaining significant momentum in the 

late 1990s before reaching critical mass in the early 2000s.  During this period, intelligent 

systems stirred interest in the field after the system dubbed Deep Blue by IBM defeated 

the human chess champion Garry Kasparov (Campbell, Hoane Jr, & Hsu, 2002; 

Newborn, 2012).  Since then, similar chess programs have been developed which also are 

capable of routinely defeating human grand champions.  They typically accomplish this 

by generating an n-ary decision tree with every branch representing a possible, legal 
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chess move on the board.  Each move is assigned a calculated weight representing how 

favorable that sub-tree is to the program toward victory so that the program can then 

make the best decision possible given the current state of the game board.  This approach 

at its core can then be considered a search problem i.e. searching through the generated 

possibilities in order to find the best possible path forward.  The task of a machine 

learning algorithm may also be described this way:  Given a training data set of features, 

search through all possible classification parameters to find the parameter set which 

allows for the best performance, provided time constraints.  More specifically, a linear 

regression algorithm attempts to search for the values b and m which specify the linear 

function that best predicts the target value of the training data and subsequent test data 

(Seber & Lee, 2012).  Similarly, a logistic regression algorithm attempts to search for the 

parameters that describe a non-linear equation which best classifies each data point in the 

training and test data sets (Bates & Watts, 1988).  An artificial neural network greatly 

expands on this task by searching for the best set of weights between every layer, 

affording it greater power to identify and incorporate more subtle details present in the 

feature set of the data at the cost of increased time requirements (Bates & Watts, 1988; 

Negnevitsky, 1995).   

 

1.2  The Birth and Rise of Machine Learning 

 Many of the algorithms now commonly labeled as machine learning algorithms 

were first formalized decades ago, such as the perceptron, an early version of the artificial 

neural network (Rosenblatt, 1958).  While these algorithms were published, there 

remained a lack of utilization due to limitations of computer hardware.  This bottleneck 
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of application began to relax in the late 2000s as two key aspects of hardware reached 

critical turning points:  A dramatic increase in processing power driven in part by 

parallelization, and the availability of cheap, large capacity storage to contain the ever-

growing collection of data to be processed.  In order to make use of newly available 

processing power, large amounts of data must be collected and organized, and in the new 

digital age there was no shortage of data.  As machine learning became more 

commonplace, engineers discovered another avenue of hardware to take advantage of:  

Graphical processing units (GPUs).  The GPUs optimizations in calculating and 

displaying graphical data also translated well to the task of training machine learning 

models, particularly those that could be represented in hardware by a two-dimensional 

matrix such as the artificial neural network.  More recent generations of GPUs contain 

specialized sub-units specifically for accelerating tasks related to machine learning as 

demand for such power has only continued to grow (Markidis et al, 2018).         

   Machine learning methodology has been used with great success to improve lives 

at the level of the community, the individual, and individual tissues.  Such applications 

include the automatic screening of mammograms for potentially cancerous growths, the 

classification of epilepsy types, and the identification of individuals at elevated risk to 

develop diabetes.  Machine learning has also been shown to be effective in creating 

models for use at the tissue level.  Models for the classification of cell types using the 

Breast Cancer Wisconsin data set have shown to have over 99% accuracy when 

distinguishing between benign and malignant samples (Abdar & Makarenkov, 2019).  A 

common theme seen in these examples is the detection of an anomaly among a normal 

background, be it a cancerous tumor, seizure activity, or a combination of factors leading 
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to development of insulin resistance.  Machine learning as a means of anomaly detection 

has also been applied in the financial sector to identify potentially fraudulent transactions.  

Through each of these examples, machine learning methodology has shown its potential 

to improve the quality of life of a community and its members.   

 

Development of Artificial Intelligence and Machine Learning Methodologies 

 While other engineering disciplines have developed scientifically sound, robust 

methods to produce solutions through processes that have withstood rigorous testing over 

time, the field of artificial intelligence, including machine learning, is still by comparison 

in its early years.  Because of this, such a scientific method to craft reliable solutions has 

not been developed, forcing developers and researchers to resort to ad hoc, trial and error 

methods.  While wholly inefficient compared to tried-and-true processes, some of these 

efforts have borne fruit which have shown to produce acceptable results.  In some cases, 

further development from this starting has led to surprising advances in our 

understanding of the machine learning paradigm and what we may accomplish with it.   

 

1.3  Branches of Artificial Intelligence 

 Artificial intelligence (AI) is now an umbrella term that encompasses a variety of 

fields including but not limited to expert systems, natural language processing, and 

machine learning.  While these fields have a wide variety of both applications and low-

level methodologies, they share a common theme:  The ability to learn from given data, 

use a model to perform a task in a manner similar to a human, then adjust that model 

based on feedback, thereby learning from the experience.  This often involves the 
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automatic processing of large amounts of data, constructing a mathematical model based 

on the data and a specific task, taking action in response to input, gathering feedback and 

refining the model.  In this way, AI is intended to iteratively learn from experience in a 

similar manner as a human does, thus gradually becoming more intelligent. 

 

Natural Language Processing 

 One branch of AI involving the processing and analysis of natural language is 

known as natural language processing, or NLP.  This branch combines the domain 

knowledge of linguistics with the computational thinking of computer science in order to 

enable a computer to process input given in a natural language and respond accordingly.  

This is generally accomplished by analyzing and parsing the input into tokens according 

to syntactical structure, analyzing the semantics of each token, incorporating that analysis 

into the given context.  Given input may be textual or spoken, providing additional 

technical and linguistic challenges according to the format of the input data.  For spoken 

data, additional consideration must be given to account for such variables as accents, 

disfluency, verbal interruptions, and the quality of the audio recordings.  While textual 

data is not affected by accents, researchers must still contend with the possibility of 

spelling or grammatical errors, as well as tokens from outside a given lexicon such as 

emojis.    

 

Recommender Systems 

  A software tool, component, or technique that provides suggested related items 

believed to be of interest to the user is labeled a recommender system (Aggarwal, 2016; 
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Ricci et al, 2011).  Sometimes called collaborative filtering models, the label was 

expanded after other techniques were developed that did not explicitly rely on filtering 

out negative alternatives, instead searching for and finding positive alternatives such as 

content-based modeling (Aggarwal, 2016).  The topic of recommender systems has seen 

a dramatic surge in prominence in conjunction with the continued rise of e-commerce 

(Ricci et al, 2011).  The growing need for businesses to be able to serve customers with 

recommendations on products for purchase is a prime example of previously small-scale 

systems being adapted to serve as a large-scale solution (Resnick & Varian, 1997).  

Systems previously created to serving book recommendations to users now became 

critical components in offering product recommendations across multiple product 

domains and vast databases (Aggarwal, 2016; Linden et al, 2003).  Further refinement of 

these recommender systems created personalized offerings, allowing for more targeted 

recommendations thought to improve the odds of a sale.  Such systems have also been 

deployed in industry for recommendation of items for content consumption, such as 

related web pages or similar movies or TV series on such commercial platforms as 

Netflix.         

 

Machine Learning Algorithms 

 Machine learning algorithms process given input data in the search for patterns to 

build a mathematical model of that data.  These models can be constructed in order to 

predict specific values or classify/categorize future input.  In the case of the former, the 

model is an equation with parameters refined through training using a set of example 

data, resulting in the model receiving feature data and calculating the corresponding 
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value.  The user can then provide feature data for an unknown sample and have the model 

calculate the value it predicts that sample to have.  An example of this would be if a 

possible were trained to predict the sale price of a home in a given zip code based on the 

number of bedrooms, bathrooms, square footage and size of the garage.  The user could 

then feed the model with an example specifying those parameters and receive the 

estimated sale price based on the historical data used to create the model.  If the user was 

only interested in distinguishing between homes that sold or did not sell, then a similar 

methodology could be used to create a model that classifies the data instead of predicting 

a specific value.  In this application, the classification algorithm would be trained on data 

describing a variety of homes, with each example labeled as “sold” or “not sold.”  After 

pre-processing, the constructed model would then be able to receive the specified features 

of an unknown sample and predict whether that home will sell or not, based on the given 

historical data.  This data-driven methodology then places a heavy emphasis on the 

quality and validity of the data as that has an immense role in the usefulness of the model 

created.     

Table 1:  Common machine learning algorithms and their characteristics 

Algorithm Type of Approach Type of Model 

Linear Regression Supervised Predictive 

Logistic Regression Supervised Discriminative 

BayesNet Supervised Discriminative 

NaiveBayes Supervised, Unsupervised Discriminative, Generative 

Artificial Neural Network Supervised, Unsupervised Discriminative, Generative 

Decision Tree Supervised Discriminative 
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K-means Clustering Unsupervised Generative 

Restricted Boltzmann 

Machine 

Unsupervised Generative 

 

Unsupervised Learning 

In one approach to machine learning, the algorithm is provided a set of examples 

as input with the task of organizing the input according to any patterns it finds in the 

features of those examples.  In this approach each data point in the input is unlabeled, so 

the resulting model has no performance metric it can be judged by and, therefore, no 

error to be calculated.  The algorithm is left up to its devices to search through the 

provided input, identify predominant patterns in the features of each example and 

organize those examples accordingly.  The researcher is then able to perform their own 

analysis on the output model to discover what pattern(s) were found and any potential 

higher-level patterns were uncovered.  As an example, a k-means clustering algorithm 

can be configured by the user for a given number of clusters and be provided examples of 

animals with features such as whether the animal has fur, gives birth to live offspring, or 

has a vertebra.  The output model could then have the given number of clusters where 

one cluster is composed of examples that have fur, do give birth to live offspring, and 

have a vertebra.  It would then be up to the user to identify this pattern and recognize that 

this cluster represents the mammals within the data set.          
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Supervised Learning 

In another approach to machine learning, the algorithm is provided input data 

where each example has been associated with a label or tag.  The task of the algorithm is 

then to search through the defined features of the input to identify patterns which 

correlate to the different labels, thereby associating those patterns to a classification 

system.  This is done by building a model with the training data set, then using that model 

to classify examples from a test data set and calculating an error metric.  The model is 

then adjusted based on that error and given another set of test data to classify.  This cycle 

repeats until either the error is calculated to be below a certain threshold, or a time limit is 

reached.  Testing a model and calculating the error for a given pass can be done by either 

using a subset of the training data or by holding some data separate from the process that 

the model has not seen before.  The model is thereby a mapping of features to labels, 

describing some pattern in the features which characterize each label in the provided data.  

Previous research employing this approach include the aforementioned discrimination 

task between benign and malignant breast cancer cells (Abdar & Makarenkov, 2019).  In 

keeping with this medical context, this approach has also been utilized in attempts to 

identify patients with type 2 diabetes, a disease increasingly common in younger age 

groups (Krishnamoorthi et al, 2022; Ragab et al, 2022; Sharma & Shah, 2021).  In this 

case, models were trained based on factors believed to be correlated with one’s risk for 

type 2 diabetes, including BMI, age, and, in the case of Ragab et al, processed images of 

patients’ retina showing microvascular changes.  In other literature, researchers explored 

a supervised machine learning approach providing the algorithm with health record data 

(Ganie  et al, 2022; Haq et al, 2020).  The resulting model was then capable of receiving 
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features extracted from the electronic medical record and identify patients at high risk for 

having type 2 diabetes.  Research reviewing the literature in this problem domain note 

overall success in applying machine learning techniques to this particular problem, 

although there is some disagreement in which algorithm should be the one of choice for 

future researchers (Fregoso-Aparicio et al, 2021; Sharma & Shah, 2021).  This variance 

harkens back to the lack of a standardized methodology for applying machine learning 

techniques to a particular problem domain, resulting in the variability in results seen 

when building models with different algorithms and feature sets.            

 

Generative Networks 

A different approach to machine learning involves the construction of a model 

which can then produce additional data instead of individual values or classifications.  

Instead of the predictive or discriminative task, the generative model provides the user a 

data point that is similar to the data points in the training data used in its construction.  It 

creates this new instance based on the characteristics of the data used to train it.  Example 

algorithms that can be used in this approach include the naïve bayes, artificial neural 

network, the Restricted Boltzmann Machine and its variants (Salakhutdinov & 

Larochelle, 2010).  Through this methodology researchers have been able to generate a 

variety of products such as programming code, natural language text, audio and images 

(OpenAI, May 2022; Ouyang et al, 2022).  The architecture known as Codex has been 

created to generate executable programming code based on natural language input from a 

human user.  While such an intellectual activity as programming is an impressive feat and 

considered by some to be a major milestone, such efforts typically necessitate the 
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processing of enormous amounts of data and fine-tuning billions of parameters to 

produce acceptable results (Ouyang et al, 2022).  To facilitate some of these efforts, 

organized databases of images have been created such as ImageNet (Deng et al, 2009).  

Creation of synthetic images has progressed to include synthetic animation of moving 

images, sometimes called deepfakes (Kim et al, 2018).  Of course, this creates ethical 

dilemmas as the creation of such convincing synthetic data can have dramatic, real-world 

consequences if produced with ill intentions.  Because of this, the developers of some 

models have introduced constraints on certain aspects such as filtering out generated 

images of real people (OpenAI, April 2022).  While great strides have been made with 

these generative models, researchers have continued to seek automated methods of fine-

tuning these models, which have led to the development of generative adversarial 

networks.           

 

Figure 1:  General framework of a Generative Adversarial Network 

Adversarial Networks  

 The generative adversarial network (GAN) is the solution to the problem of 

automatic, large-scale feedback for fine-tuning generative models (Goodfellow et al, 

2014).  This approach involves two models:  The generative model G and discriminative 

model D.  Both models are initially trained in their respective task using real data for D 

and noise for G.  They then engage in a zero-sum game where G generates an example 
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and D attempts to determine if that example is from G (synthetic or “fake”) or from the 

data set it was trained on (“real”).  If D correctly classifies the example as being “fake,” 

the parameters of G are adjusted, and another example is generated.  This loop is repeated 

until D can only correctly identify the synthetic data less than half the time (or another 

threshold chosen by the user).  This and similar approaches have been employed with 

great success in game theory, creating models which can now consistently win against 

skilled human opponents in games such as chess and Go (“AlphaGo,” n.d.).  Whereas 

previous efforts using tree-based searching and neural networks had proven successful, 

generative models in an adversarial framework have shown greater capabilities to 

generalize instead of becoming an expert at a single game (“Alphazero: Shedding new 

light on chess, Shogi, and go,” n.d.).  In the case of Alphazero, the general adversarial 

approach can also be considered an example of reinforcement learning i.e. the model 

continually learns through trial and error, playing games against another model and 

adjusting internal parameters if it loses (negative reinforcement).  With the reinforcement 

learning approach, models are trained to maximize a calculated reward within the 

confines of a dynamic environment (Kaelbling et al, 1996; Sutton & Barto, 2018).  As 

opposed to the minimizing of a calculated error value in the supervised approach, 

reinforcement learning does not need labeled input, leaving it the capability to generalize 

and be applied to various domains, including prominently game theory (François-Lavet et 

al, 2018).   
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Time Series and Signal Processing 

 Included in the multitude of subject domains machine learning methodology has 

been applied to are problems which require the processing and analysis of data gathered 

in the form of a time series.  The processing of signals can also be included in this 

problem domain as analysis can be performed in the time domain or frequency domain.  

This greatly expands the number of possible features researchers can consider for 

processing using machine learning algorithms to not only include features directly 

extracted from the original signal data, but also features extracted from transformed data 

e.g. frequency domain data.  Compounding this is the possibility to compute additional 

time and frequency domain features used as metrics to quantitatively describe the 

relationship between the signals generated from different sources in the data set.  For 

example, researchers could include power spectral features from a variety of frequency 

bands in addition to spectral coherence in the same or different frequency bands to 

compose large feature sets.  An example subject domain that often encounters this 

scenario is the analysis of electroencephalogram (EEG), magnetoencephalogram (MEG), 

or electrocardiogram (ECG or EKG) data for signs of pathology.        

 Recent developments in applying machine learning methodology to processing 

medical signal data include the detection of seizure activity in EEG or MEG data as well 

as abnormal cardiac activity on the ECG.  Wearable technology has also advanced to 

allow for machine learning to be incorporated into patients’ lives in an unobtrusive 

manner.  In the last few years, some studies have shown the Apple Watch to be effective 

in monitoring for cardiac arrythmia such as atrial fibrillation (Seshadri et al, 2020; Strik 

et al, 2020).  This deployment of machine learning into small, wearable technology opens 
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up new opportunities for monitoring and intervention in case early signs of a medical 

emergency are detected.  In addition to this real-time monitoring, machine learning 

methodology has been applied to the problem of seizure localization.  In this task, 

researchers have attempted to construct models to determine which region of the brain an 

epileptic seizure is originating from based on a patient’s EEG or MEG data (Aoe et al, 

2019; Guo et al, 2018; Soriano et al, 2017).              

 

1.4  Ethical Concerns of AI 

 Ethical concerns about the creation and use of AI span as wide of a range as the 

applications of AI.  While such a broad range is to be expected of any technology that 

touches so many different subject domains, AI in particular has historically caused great 

concern to some.  These concerns have ranged from the pragmatic, grounded ideas 

related to privacy and truth (related to AI used in surveillance and synthetic image/audio 

creation) to the more spectacular ideas related to AI-driven machines rebelling against 

humanity.  Focusing this discussion on the former, there have been privacy concerns 

raised in recent years regarding the increasing use of security cameras by governments 

and the machine learning software used to process the video data.  Major concerns relate 

to the ability for government entities to track individuals throughout their day, depending 

on how widespread the surveillance system is along common routes.  These concerns are 

extended to include the ability for wearable technology to track an individual’s location 

even as they leave the view of any camera-based surveillance, providing corporations 

additional data about their customers.       
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1.5  Scientific Advancement  

 Two general approaches to research can be described as hypothesis-driven versus 

data-driven (Hulsen et al, 2019).  Until recently, a significant portion of research was 

conducted using a hypothesis-driven approach where the researchers formulate a 

narrowly defined hypothesis, then design an experiment to test that hypothesis as 

specifically and precisely as possible, given current tools and methodology.  This focused 

application of the scientific method allows for rigorous testing and validation of the 

hypothesis, ultimately aiming to produce knowledge that has withstood multiple passes of 

validation with reproducible results.  In this way, hypothesis-driven research yields 

firmly grounded knowledge, but within a narrowly defined scope which limits the speed 

at which knowledge can be generated.   

 On the other hand, data-driven approaches to research allow for more rapid 

knowledge discovery through the processing of large volumes of data (Das et al, 2015; 

Hulsen et al, 2019).  With the recent development of standardized tools, systematic data 

mining has become possible with ever-increasing volumes of data (Das et al, 2015).  

While this approach to building a model has generated some excitement in various 

research communities for its potentially unforeseen discoveries, some studies have 

discussed significant challenges (Hulsen et al, 2019).  These include the philosophical 

underpinning behind any model produced by data-driven methods and applied to a 

subject domain without a thorough understanding and validation of what that model 

signifies (Callebaut, W., 2012).  From a more practical standpoint, other studies have 

pointed out challenges in the reproducibility and generality of data-driven models with 

some finding no consensus between models (Mestre et al, 2018).   
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Figure 2: Simplified Lifecycle Model for Research 

 

 Recently, the authors have endeavored to include both approaches into a single 

model for conducting research resulting in the creation of the iterative model seen in 

Figure 1.  This model incorporates a branching decision in Phase 1 that calls for the 

researcher(s) to consider which approach, data- or hypothesis-driven, they wish to adopt 

for the current iteration prior to executing an experiment which follows that approach in 

Phase 2.  During their evaluation of results in Phase 3, they will review their results and 



23 

 

determine if the goals of this research project have been met.  If not, the project returns to 

Phase 1 where they may choose to adopt a different approach for the next iteration.    

 

Figure 3:  Detailed Lifecycle of Research 

Figure 2 shows a more detailed and expanded model with high level processes in 

each phase.  In this view the distinction between the data-driven and hypothesis-driven 

tracks on the left and right respectively is made clear, emphasizing their respective focus 

on handling data or generating valid data through a specific experimental design.  

Following execution of the chosen research track, the researcher(s) analyze their results 

and evaluate whether the goal(s) of the project has been achieved.  If so, work proceeds 

to Phase 4 where project artifacts are delivered, and work is concluded.  If the project’s 

goals have not been met, work loops back to Phase 1.  The working hypotheses may be 

refined by incorporating knowledge gained from the previous cycle.  The researcher(s) 

may then decide on adopting a different approach for this current iteration, depending on 

how their needs have changed.  In this way, they can benefit from the strengths of both 
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data-driven and hypothesis-driven efforts in turn, reinforcing the validity of the 

knowledge generated through this model and strengthening the value of their efforts. 

 

1.6  Conclusion 

In this chapter the authors discussed the rise of the machine learning paradigm 

and rapid, widespread prevalence of artificial intelligence in a broad range of problem 

domains.  Among these discussions was an assortment of AI categories, including 

different types of machine learning methodologies.  Examples showing the state-of-the-

art of these applications point to greater involvement of AI in all aspects of industrialized, 

modern life, from wearable technologies with real-time monitoring for medical 

emergencies to intelligent systems which automatically adjust for the changing needs of a 

city’s population.  A brief discussion covering ethical concerns related to some of these 

applications was included here.  Finally, the authors presented a model of research which 

incorporates both hypothesis- and data-driven approaches to allow the researcher to 

benefit from the advantages of both. 
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Limitations in Current Methodology 

In machine learning, researchers often face a two-fold dilemma inherent to the 

field:  First, current limitations of mathematically valid methods of predicting which 

combination of machine learning algorithm and feature set will yield optimal results in 

the general case with an arbitrary data set.  Second, which singular question should the 

classification seek to answer by training said algorithm?  Current research in this field is 

implicitly limited by forcing the researchers to select a question pertaining to their area of 

interest, select a set of features they predict may be informative, then select one or more 

of the multitude of machine learning algorithms to train and test their hypothesis.  This 

method severely limits the potential impact the study will have due to the unpredictable 

nature of pairing algorithms with features to find the pairing that produces the best 

results.  Impact is further limited by the need to clearly define a single question or aspect 

of the data to explore using machine learning, limiting the scope of the study.     

 

At the abstract level, there exists a problem domain that can be described as the 

independent classification of multiple research questions within the same contextual 

background.  This domain extends throughout multiple subject domains, allowing for 

potential multidisciplinary research and applications to expand multiple knowledge bases.  

This characterization of the problem domain as a classification problem naturally leads to 

a machine learning solution.  However, a mathematically valid method of pre-

determining which machine learning algorithm will produce the best results continues to 

elude researchers.  Thus, research in this problem domain must contend with the need to 

test multiple algorithms and compare the results, selecting one and labeling it the "best" 
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of the tested sample.  An additional complication is the lack of a valid method to predict 

which set of features matched with that algorithm will lead to that best result.  Therefore, 

testing must involve a variety of feature set and algorithm combinations if the goal is not 

only to find a solution that is "good enough" but also a solution that is empirically shown 

to be better than all other tested solutions.  Testing methodology that allows for such 

extensive testing of combinations would also be inherently flexible in its applicability to 

a variety of subject domains.  Superimposing another layer onto this methodology also 

allows multiple, independent classifications to be performed by the best-tested solutions.   
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METHODOLOGY:  MACHINE LEARNING FRAMEWORK 

 To find an automated solution for localizing the seizure onset zone in epilepsy 

patients, previous studies have explored applying machine learning to neuro-imaging data 

with limited success.  These include attempting to analyze MEG data with a support 

vector machine to identify high frequency oscillations thought to correspond to epilepsy 

activity (Guo et al, 2018).  Others have used the support vector machine to analyze graph 

theoretical features extracted from fMRI data to lateralize and localize seizures to the 

temporal lobes (Wu et al, 2018.  Others attempted to train an artificial neural network and 

support vector machine on frequency domain features extracted from MEG data to 

discriminate between healthy and controls and epilepsy and between frontal focal 

epilepsy and generalized epilepsy (Aoe et al, 2019; Soriano et al, 2017).  These studies 

are representative of a large portion of articles I have read over the years because of their 

use of either the support vector machine or artificial neural network.  While they often do 

not discuss how they arrived at this algorithm, we suspect they chose it because they saw 

it used with some success in previous literature.  This represents an almost arbitrary 

decision in their methodology.  Our proposed framework seeks to correct this aspect of 

the literature by providing a more comprehensive approach toward predictive model 

construction and selection.  Early results from our framework include some models with 

accuracy consistent with these previous studies, but also some models with higher 

accuracy, sometimes using the same classifier but with different features.   
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 To remove the limitations seen in previous studies when applying machine 

learning techniques, we first developed a machine learning framework intended to 

encompass the end-to-end developmental lifecycle of machine learning solutions.  In 

doing so, we also realized that such a framework could also be utilized as the basis for an 

introductory course in machine learning.  We provide that paper here for reference.   
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ABSTRACT  

 Historically, computer science curricula have largely focused on the development 

of algorithmic solutions.  However, in recent years a new paradigm has emerged which 

focuses on machine learning as a data-driven approach to problem solving.  To better 

equip students with the background needed for this emerging method of problem solving, 

the curricula would benefit from including a greater emphasis on the concepts frequently 

found in a data-driven workflow.  Furthermore, continued advances in hardware should 

be considered to exploit parallelism in computations.  Other concepts from machine 

learning include data cleaning, feature engineering, and concurrency in computation.  In 

this paper, we propose a conceptual framework for an introductory course in machine 

learning with a data-driven workflow.  With this framework, students will be exposed to 

the high-level design and concepts of data-driven development, gradually equipping them 

with the tools to fully grasp the machine learning paradigm.  Further research is ongoing 

to construct a development environment that supports this framework for full adoption of 

the machine learning paradigm.    

 

1 Introduction 

Since their inception in the latter half of the 20th century, computer science curricula have 

faced the challenge of preparing students for the demands placed on them by their post-

collegiate career paths.  For the better part of that history, the predominant method of 

problem solving involved the development of algorithmic solutions, therefore curricula 

were adopted with courses teaching concepts and skills which supported such 

development including traditional and more recent models for software development ([1], 
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[10]).  In recent years, new data-driven approaches like machine learning have emerged 

and continued to gain widespread prominence and complexity in both industry and 

academic research [5].  While there is significant overlap in the background knowledge 

required for both approaches, there are also some concepts in the data-driven workflow 

that bear greater emphasis because of the critical role they play in generating solutions.  

Thus, there is a need for curricula to adapt to the increasing demand for students with 

sound knowledge bases of both the algorithmic and data-driven approaches.  To facilitate 

this, we propose a framework as the basis for an introductory course to the data-driven 

approach which will expose students to key concepts while providing a high-level design 

overview of the processing pipeline.  Previous literature has seen proposals for degree 

programs in data science, including a range of courses to establish the knowledge base 

students will need to fully grasp this new paradigm [7].  A course built from our proposed 

framework can serve as the anchor course to such a program, providing students with a 

broad overview and context to tie in lessons learned in the rest of their coursework.  

Absent such a specialized degree program, this course would serve as the gateway course 

in a machine learning or data science concentration within a computer science or 

engineering degree program.          

 

2 Machine Learning Development Framework 

We characterize our framework by three layers of abstraction, shown below.  Due to the 

more exploratory nature of the data-driven approach, it is natural to consider the 

developer as a researcher in this process.  Doing so leads the student to shift their mindset 

more towards a research perspective where they must be asking and answering questions 
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related to the data and the overall problem at multiple levels.  This role would also lend 

itself to prepare students for an interdisciplinary team setting, increasingly common with 

the globalization of industrial markets [3].  While working in such a group environment, 

the student developer needs to be cognizant of the variety of engineering factors to be 

analyzed and communicate with other, potentially non-engineering team members [4].  

Coursework and software to facilitate this team setting and interaction have been created 

with positive results in previous literature ([2], [8]).  Effective communication in this 

setting is a critical skill that can be applied in the industrial setting while working with a 

client to explore and clarify their needs, which often must be translated from domain 

specific vernacular to the engineering domain.  Thus, our framework for an introductory 

course in data-driven methodology includes ample opportunity for the students to interact 

with and gather feedback from others at each layer.   

 

Figure 1:  High Level Design 
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Beginning with a high-level view, our framework guides the researcher through 

multiple layers of abstraction encompassing the machine learning processing pipeline.  

The traditional mindset and pipeline as seen in previous literature commits the researcher 

to a particular solution, locking them into that specific implementation within the vast 

solution space, often without justification.  This unnecessary restriction often leads to 

sub-optimal results due to current limitations in valid methods of predicting the optimal 

algorithm [12].  Our framework addresses this problem directly by forcing the researcher 

to consider alternatives at each layer, guiding them to more thoroughly explore that 

solution space.  At the highest level of abstraction, the research layer forces the 

researcher to consider the possibility that multiple research questions could be tested 

using the same data set, perhaps exploring the same research topic but from different 

perspectives.  Preprocessing of the data in different ways could also be considered in its 

potential to influence the results of the research.  Descending into the control layer, the 

researcher would then be directed toward possible feature sets and subsets thereof before 

generating a set of possible machine learning algorithms for testing.  Students would be 

instructed as to how this layer would also provide guidance in how to parallelize the 

process of building and testing the resulting models, leading into the composite layer.  

Here, the researcher would be faced with the variety of ways the features can be 

preprocessed before model construction.  Different metrics in testing methodology should 

also be considered as related to the research questions decided upon at the top level.    
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Figure 2:  Control and Composite Layer Internal Structure 

Establishing a three-layer architecture can naturally be thought of in a hierarchical 

way:  The lower, control layer involves the aforementioned testing methodology, which 

is constructed as a set of classification problems.  For every classification problem, the 

layer includes a user-defined feature set and set of algorithms.  Every algorithm is then 

trained and tested with a variety of feature subsets.  One pairing of an algorithm with 

feature subset is selected based on performance metric(s) and deemed the empirically 

best solution to the current classification problem.  The control layer repeats this process 

for all classification problems until it arrives at a set of best solutions for those problems.  

 

This solution set is contained within the control layer, which encapsulates them 

into a single package that is prepared to accept an unknown instance from the subject 

domain.  The control layer extracts the appropriate features from this instance of interest 

and provides them to the package, distributing the features to each trained algorithm 
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according to the algorithm-feature pairings.  Each algorithm in this ensemble then 

produces a classification independent of each other with the complete set of 

classifications provided to the user afterward.  This overall approach allows for a great 

degree of flexibility as each algorithm in the ensemble can adapt to the needs of each 

problem.  The problems themselves can also be complementary in the subject domain or 

completely independent, allowing for further flexibility in adapting to the needs of the 

domain user.           

 

3 Summary 

 

With the increasing prevalence of data-driven problem solving, computer science 

curricula stand to benefit from including additional coursework specifically geared for 

that approach.  In this paper, we proposed a conceptual framework to form the basis of a 

course for data-driven problem solving which would introduce them to critical concepts 

and provide a high-level design.  Through this course, the curricula can show students 

how to adopt the machine learning paradigm and serve as students’ jumping off point into 

the world of big data, machine learning, and the like.  

 

4 Future Work 

Continual development of this framework is ongoing to establish it as the conceptual 

design of a development environment built from the ground up with data-driven 

methodology in mind.  In addition, we have tested this framework as a machine learning 

model applied to a case study involving the localization of the seizure onset zone within 
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the brain of epilepsy patients.  Early results show great promise when compared to the 

limited success seen by previous studies [6].  Preliminary results show higher accuracy 

and the ability of our framework to facilitate the application of data-driven research for 

parallel research projects.  In the interim, our framework can serve as both a conceptual 

design for our proposed introductory course into machine learning and data-driven 

problem solving as well as a high-level model for students to follow in future projects to 

facilitate full adoption of the machine learning paradigm.  This embracing of the machine 

learning paradigm would be further enhanced by using a development environment 

constructed by implementing our proposed framework.  Thus, our framework can serve 

as the basis for the course to teach students, a model for students to follow, and the 

underlying architecture for the tool students can use for their machine learning needs. 
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Framework Evaluation 

 To judge quantitatively and qualitatively judge the performance of this 

framework, we consider the standard statistical metrics of precision, recall, and f-measure 

for evaluating a trained machine learning model.  Doing so allows us to compare the final 

output of each lower layer iteration to results from a study using the standard machine 

learning approach i.e. training and testing a single machine learning algorithm with a 

single feature set.  In this comparison, the lower layer of the framework could be 

considered an expansion of the standard testing methodology by including the single 

algorithm within its list of tested algorithms and the single feature set would be included 

as a subset of the feature set provided to the algorithm set.  If we take this situation to be 

representative of the average case, then a direct comparison to the output of the lower 

layer yields an expected range of possible measured differences.   

In the worst case, the framework’s composite layer precisely matches the 

performance metrics of the standard approach, thereby confirming that particular model 

as the best performing mode tested.  This only occurs when the model generated by the 

standard approach happens to be the best combination of algorithm and feature set 

selected from the framework’s lists.  We believe the likelihood of this instance to be quite 

low due to the ever-expanding list of possible algorithms and features that may be tested, 

especially as the feature set size increases.   

In the best case, the framework’s lower, composite layer yields a model with 

higher precision, recall, and f-measure than the standard approach to an arbitrary degree.  

Because the performance of the standard approach cannot be precisely predicted, its 

range of each metric is [0.0, 1.0].  If we take the average case to be 0.5 for each metric, 
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then the best case benefit from the lower layer is 0.5, achieving perfect accuracy in each 

metric.  We believe this instance is also unlikely, so we consider instead the potential 

gain to be in the range [0.0, 0.5] where a benefit of 0.0 is the worst case discussed above.  

Thus, the proposed lower layer of the framework may yield results that, at best, are 

substantial improvements to the standard approach, and are, at worst, exactly equal and 

thereby confirm the standard approach to be empirically the best.   

Evaluation of the control layer of the framework requires consideration of the 

potential benefits gained from modeling multiple problems in parallel.  We believe 

attempting to assign quantitative measures to these benefits would result in arbitrary units 

of measurement; therefore, we adopt a qualitative approach.  The potential value of the 

overall framework can be directly compared to performing multiple, independent 

research studies (the lower layer iterations) followed by another study combining the best 

results of those into a composite with an over-arching theme specific to the subject 

domain.  In this way, the framework may dramatically reduce the time cost and improve 

the model’s generality and scientific validity by ensuring all work is carried out by the 

same researchers following the same protocol with data gathered with the same 

equipment.        

Evaluation of the performance gained by incorporating advancements in parallel 

processing into the control layer can be done by analysis of its computational efficiency.  

Analysis of the traditional workflow shows a quadratic efficiency where the time 

requirement to completion increases in relation to the number of classifiers and features, 

or O(n2) behavior.  Parallelizing the training of predictive models in our framework 

reduces this time requirement down to O(n) or linear complexity.  More precisely, the 
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parallelized framework scales according to O(C + F) where C and F are the size of the 

classifier and feature sets respectively.  We include our published paper detailing this 

machine learning framework here. 
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Abstract—In recent years a machine learning paradigm has emerged, focusing on a data-

driven approach as opposed to traditional development.  Advances in machine learning 

techniques have allowed researchers to make substantial gains in tackling complex 

problems in diverse fields such as medical diagnosis through image analysis, object 

detection and tracking, and natural language processing.   However, often researchers 

only employ one or two machine learning algorithms with a static feature set while only 

testing a single hypothesis.  This self-imposed bottleneck often produces suboptimal 

results because it arises from using machine learning within the classical, algorithmic 

context using existing development tools.  Therefore, there is a need to create new 

development tools which reflect this change to the machine learning paradigm.  In this 

research, we propose a development environment that allows researchers to leverage 

those capabilities more fully by shifting not only the tool they use but also their mindset.  

Our proposed environment serves as an intermediate tool, guiding the researcher and 

making full adoption of the machine learning paradigm throughout the software 

development process easier.  To accomplish this, our framework is defined by a three-

layer structure designed for subject domain assessment, data manipulation and feature set 

exploration.  Supported by parallelism, data cleaning and feature engineering, this 

research provides a conceptual basis for future creation of development environments for 

the machine learning paradigm.  Future development of such a conceptual design would 

allow for additional intelligent tools to aid the user in designing solutions and support 

reusability at the design level. 

Keywords—development environment, machine learning, software development 
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Introduction  

Advances in machine learning techniques have allowed researchers to make 

substantial gains in tackling difficult problems in diverse fields such as medical 

diagnosis, image recognition, and natural language processing.  However, often, machine 

learning has been used as a blunt instrument that is designed to ingest large amounts of 

raw data and produce usable predictive models that can help in decision making.   

Committing substantial resources to power this machine learning tool may still produce 

subpar results due to a dilemma inherent to machine learning:  The combination of 

classification algorithm and feature set that will produce the best results cannot currently 

be predicted for any arbitrary data set or research question [1].  This problem then 

encourages the researcher to explore the solution space to compare models generated by 

different learning algorithms trained with a variety of features.  However, research is 

often published which only focuses on a model generated by a single machine learning 

algorithm, trained by a static data set without justification as to why specifically that 

algorithm was selected.  We believe this to be a consequence of the researchers’ 

inexperience with machine learning as its prevalence increases, permeating fields beyond 

engineering such as medical research [2].  Furthermore, research papers employing 

machine learning methodology are often focused on answering a single research question.  

We believe this to be a natural consequence of the historical focus on research using the 

scientific method where only a single hypothesis should be tested at a time.  While there 

is, of course, still cause to utilize such a focused approach, this limitation need not be 

applied when exploring using data-driven methodology.        
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A survey of the literature using machine learning shows several commonly used 

development environments such as MATLAB and Jupyter Notebook [3 - 8].  From this 

review, we generated a list of attributes a development environment would ideally 

incorporate into its design for data-driven research.   

 These include support for the researcher to pursue multiple research questions in 

parallel, data selection and cleaning, feature engineering with dimensionality reduction, 

selection of multiple machine learning algorithms if desired with parallelized algorithm 

training and the ability to define and view a selection of testing metrics.  This 

environment should also support the reuse of features and data across multiple research 

projects when possible, improving the efficiency of research conducted within this 

environment.  The ability to incorporate additional modules for domain specific 

applications and additional intelligent features to augment the above functions would 

further improve the environment’s adaptability and ease of use.  Comparing this list of 

requirements to those offered by commonly used environments, we see that while some 

features are supported, their support is often limited to various degrees, resulting in 

incomplete attribute sets with regards to the ideal environment for data-driven 

development.  A partial view of this analysis can be seen in Table 1.  We believe the 

limited implementation of these features is largely in part due to development 

environments such as MATLAB predating the advent of machine learning methodology, 

thus they were not designed with data-driven techniques in mind.  These environments 

have been developed to be geared more toward classical approaches to software 

engineering and modern improvements with their focus on a singular outcome paralleling 

the focus on a single research question [9, 10].   With the requirements for a data-driven 
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focus in mind, we will now introduce our proposed framework for such a development 

environment.  We previously published this framework in the educational context as the 

basis for educating students about the machine learning processing pipeline, and now 

present the framework as the basis for a tool to aid in that education and future, 

widespread use [11].  We encourage the reader to review this previous work for 

additional, lower-level details of each layer within the framework. 

 

Development environment framework 

 We define our environment with a modular, three-layer embedded structure to 

model and streamline the machine learning processing pipeline.  Following this approach, 

the researcher is guided through a more comprehensive application of machine learning 

methodology to their subject domain, beginning with considering the possibility for 

multiple research questions in tandem.  Defining feature and classifier sets followed by 

dimensionality reduction and parallel model construction provides a thorough search 

through the solution space with the parameters and results contained within an organized 

super-structure.  This approach provides more optimal results and a clear avenue toward 

meta-analysis between the results of different research questions.  The framework’s 

object-oriented design also lends itself toward an easily upgradeable, modular 

implementation that allows integration of new, more sophisticated modules.  In this way, 

the framework may easily evolve as our understanding of machine learning methodology 

advances.    
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TABLE I.  COMMON DEVELOPMENT ENVIRONMENTS 

   

To encourage adoption of the machine learning paradigm, we propose this novel 

framework for machine learning research that attempts to provide a systematic means of 

guiding and framing research progress.  To accomplish this, we define a multi-layer 

approach:  The middle Control layer attempts to address the unpredictability issue by 

testing multiple algorithms with a variety of feature sets, with the lower Composite layer 

generating performance statistics for each algorithm-feature set pairing.  Performing this 

testing improves the ability of the study to select the pairing with the best results, at least 

of those tested.  This layer is encapsulated within an upper Research layer, which can 

order the Control layer to repeat its process for multiple feature sets and instance labels.  

Doing so allows the Research layer to define multiple questions to be trained and tested 

by the lower layers, providing the potential to greatly expand the scope of the research to 

an arbitrary degree defined by the researchers as they define the research question(s) to 

be investigated.   

The Control and Composite layers are contained within the Research layer which 

provides the higher-level context.  During this layer, the researcher is guided toward 

considering alternate research questions that could be investigated simultaneously 
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through parallel use of this environment.  In this manner, the equivalent of multiple 

research projects can be undertaken while potentially reusing 

 

  Fig 1.  Conceptual Framework 

some feature sets, reducing the time required.  

Summary 

 While data-driven problem solving has become increasingly more common, 

machine learning methodology is often under-utilized through limited model exploration.  

In this  paper we identified several attributes which a development should fully support to 

encourage greater adoption of the machine learning paradigm.  We then presented a 

conceptual framework for such an environment characterized by three layers of 

abstraction.  While we previously published this framework within the educational 

context for students’ training in data-driven development, here we present the framework 
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as the basis for a development environment to guide developers and grow with them as 

our understanding of the machine learning paradigm evolves.  

Future work 

We continue to development this framework to incorporate more intelligent components 

within its design.  These components will serve to further automate some functions while 

guiding the user toward full adoption of the machine learning paradigm at the conceptual 

level.  In addition, we are looking to include features to improve and facilitate 

collaboration with versioning control functionality to maintain organization of projects at 

both the file and conceptual levels. 
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Abstract 

 

The rise of machine learning methodologies in recent years has seen great success in a 

variety of applications.  However, this new paradigm is often utilized in limited ways 

through arbitrary selection of machine learning algorithm(s) and static feature sets, 

particularly in the medical literature.  We have previously published a framework that 

removes these artificial limiters while laying the groundwork for parallel research and 

development tracks.  To showcase the potential power from this expanded use of the 

machine learning paradigm, we applied this framework to the complex medical problem 

of epileptic seizure localization.  Resting state EEG/MEG data were simultaneously 

collected from 22 patients prior to epilepsy surgery and retroactively selected for 

analysis.  Power spectral and coherence features were extracted from all sensor time 

series data.  Sets and subsets of these features were used to train multiple machine 

learning algorithms for classifying epilepsy in different brain regions.  Models generated 

by a variety of algorithms and trained by delta, theta, beta, and low gamma MEG and 

EEG features were able to achieve an f-measure > 0.95 when distinguishing between left 

frontal epilepsy and bilateral extra-frontal epilepsy patients.  Results show the artificial 

neural network also achieved this f-measure, but only when trained on the subset of 

features including beta and low gamma EEG features.  Models generated by training the 

same algorithms and feature sets only achieved maximally an f-measure of 0.818 when 

classifying right frontal epilepsy versus bilateral extra-frontal epilepsy.  In this study, 

using parallel applications of the machine learning paradigm, we were able to both 

improve on results seen in previous studies in classifying epilepsy and showcase the 
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potential for meta-analysis across research tracks.  This study provides additional insights 

into how research can be greatly expedited and expanded in scope through parallel 

exploration of topics which share overlapping feature or data sets.     

 

Introduction 

 

With the emergence of the machine learning paradigm in recent years, researchers in a 

wide variety of fields have sought out solutions generated by machine learning 

algorithms.    While machine learning techniques continue to evolve, their adoption and 

usage is often carried out in an ad hoc manner, particularly by those whose expertise lies 

outside the field of computer science or related disciplines.  One method to help bridge 

the gap between the non-expert and such an evolving methodology would be to introduce 

new development environments to aid in facilitating adoption of the machine learning 

paradigm.  We have previously published a novel framework designed from the ground 

up with this specific purpose, first as a framework for a course in machine learning and 

later as a framework for a development environment (Bowman & Jololian, 2021; 

Bowman, Prabhakar & Jololian, 2022).  We encourage the reader to review these papers 

for a detailed description of the framework.  In this research, we applied this framework 

and methodology to a problem in the medical domain involving the localization of 

seizure onset zones in epilepsy patients.       

 

To find an automated solution for localizing the seizure onset zone in patients with focal 

epilepsy, previous studies have explored applying machine learning to neuro-imaging 
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data with limited success.  These include attempting to analyze MEG data with a support 

vector machine to identify high frequency oscillations thought to correspond to epilepsy 

activity (Guo et al, 2018).  Others have used the support vector machine to analyze graph 

theoretical features extracted from fMRI data to lateralize and localize seizures to the 

temporal lobes (Wu et al, 2018).  Other studies attempted to train an artificial neural 

network and support vector machine on frequency domain features extracted from MEG 

data to discriminate between healthy and controls and epilepsy and between frontal focal 

epilepsy and generalized epilepsy (Aoe et al, 2019; Soriano et al, 2017).  These studies 

are representative of a large portion of medical literature we have reviewed because of 

their use of either the support vector machine or artificial neural network.  While they 

often do not discuss how they arrived at the algorithm used, we suspect they chose it 

because they saw it employed with some success in previous literature.  This represents 

an almost arbitrary decision in their methodology.  Our proposed framework seeks to 

correct this aspect of the literature by providing a more comprehensive approach toward 

predictive model construction and selection.  Early results from our framework presented 

in this paper include some models with accuracy consistent with these previous studies, 

but also some models with higher accuracy, sometimes using the same classifier but with 

different features.   

 

Applying our framework to the case study, we instantiated this three-layer architecture 

with each layer broadening the scope of our search through the solution space.  

Beginning from the research layer, we were able to generate multiple research questions 

that could be explored from the same data set.  Data selection and preprocessing was then 
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determined according to the needs of those research questions with one control layer 

generated to address each question.  Within each control layer the feature and classifier 

sets were then defined, and feature extraction implemented.  Of note is the ability for this 

architecture to allow for the researcher to explore the effect completely different features 

have in relation to each research question.  Model construction and testing was then 

performed in every instantiation of the composite layer with a confusion matrix 

generated.    

 

Methods 

 

We retrospectively selected patients in our database with medically intractable epilepsy 

(n = 22).  All patients had previously undergone surgical resection and were seizure free 

for at least six months, thus confirming their epileptic locus was within the resected 

region.  As part of their pre-surgical evaluation, all patients had an MEG study performed 

using the system described below.  The study was approved by the Institutional Review 

Board at the University of Alabama at Birmingham.   

 

MEG Acquisition and Preprocessing 

 

All MEG recordings were performed using a whole-head, 148-channel system housed 

within a magnetically shielded room (4D Neuroimaging, San Diego, CA).  All patients 

were in a reclined position for the duration of the recordings.  Multiple recordings were 

collected from each patient, each lasting 10 min and collected at a sampling rate of 
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508.63 Hz.  Each data file was then preprocessed with in-house MATLAB scripts using 

Statistical Parametric Mapping software (SPM12b, http://www.fil.ion.ucl.ac.uk/spm/). 

 

EEG Acquisition and Preprocessing 

 

All EEG recordings were gathered using the International 10-20 system of electrode 

placement and gathered concurrently with each MEG recording.  All EEG data was 

gathered at a sampling rate of 2 kHz and down-sampled to 600 Hz using a low-pass filter.  

Only data from 25 EEG leads common across all patients were included for further 

analysis and feature extraction.     

 

MEG and EEG Spectral and Coherence Feature Extraction 

 

Feature extraction from both MEG and EEG recordings was performed using a 

combination of Brainstorm functions and in-house MATLAB scripting (MATLAB, 2018; 

Tadel et al, 2011).  Mean power spectrum density (Welch method) was computed using 

the Brainstorm function with the frequency bands slightly adjusted to the following:  

Delta band from 1 – 3 Hz, theta band from 3 – 8 Hz, alpha band from 8 – 12 Hz, beta 

band from 15 – 29 Hz, low gamma band from 30 – 59 Hz, high gamma band from 60 – 

90 Hz.  Spectral coherence features between sensors were computed from both MEG and 

EEG time series data using the mean square coherence function in MATLAB 2018a.   
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Machine Learning Training and Testing 

 

All classifier training and testing was performed using the Waikato Environment for 

Knowledge Analysis (WEKA) open-source machine learning software (Witten et al, 

1999).  Default parameters were used for each classifier unless otherwise noted.  Unless 

otherwise noted, all classifiers were trained and tested using 10-fold leave-one-out cross 

validation with WEKA reporting the confusion matrix, precision, recall, and weighted f-

measure for each trained model.  Classification was performed using different 

combinations of features provided to each classifier to find the combination of classifier 

and feature set that produced the highest f-measure.    

 

Results 

 

In Table 1, we present some results with seizure localization to the left frontal lobe.  

Using the weighted f-measure reported by WEKA as our metric for this matrix, we were 

able to see a wide range in results depending on algorithm and feature set.  For this and 

future tables of results, we denote a calculated f-measure as “not a number” (“NaN”) 

when the calculation involves division by zero.  The maximum f-measure for each table 

is bolded.  Maximum f-measure of 0.951 was achieved from models generated by logistic 

regression, stochastic gradient descent (SGD), simple logistic, support vector machine 

(SMV), and logistic model tree (LMT) algorithms trained by a feature set containing 

MEG power in the delta, theta, beta, and low gamma ranges.  In the case of logistic 

regression and SVM, achieved maximum f-measure decreased when features extracted 
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from EEG were included in addition to the aforementioned MEG features.  The 

multilayer perception, otherwise known as the artificial neural network (ANN), was the 

only algorithm to match the maximum f-measure with fewer, albeit different features.   

 

Table 1:  Left frontal vs bilateral extra-frontal  

 

Algorithm 
Delta 

EEG 

Theta 

EEG 

Beta 

and 

low 

gamma 

EEG 

Delta, 

theta, 

beta, 

low 

gamma 

EEG 

Delta, 

theta, 

beta, 

low 

gamma 

MEG 

EEG&MEG 

BayesNet NaN 0.777 NaN 0.777 0.872 0.872 

NaiveBayes 0.653 0.753 0.777 0.777 0.291 0.347 

NaiveBayesMultinomial NaN NaN NaN NaN NaN NaN 

Logistic Regression 0.727 0.727 0.818 0.753 0.951 0.836 

SGD 0.777 0.777 0.909 0.777 0.951 0.951 

Multilayer Perceptron 0.777 0.777 0.951 0.777 0.909 0.909 

SimpleLogistic 0.753 0.777 0.889 0.777 0.951 0.951 

SMO (SVM) NaN 0.777 NaN NaN 0.951 0.909 

DecisionStump 0.753 0.753 0.777 0.753 0.872 0.872 

J48 NaN 0.753 0.889 0.786 NaN 0.786 

LMT (log tree) 0.753 0.777 0.889 0.777 0.951 0.951 

Random Forest NaN 0.777 NaN NaN 0.777 0.852 

Random Tree 0.700 0.727 0.909 0.727 0.852 0.818 

 

Table 2 shows the results from the same algorithms trained with the same feature sets, 

relabeled to data from patients with right frontal epilepsy.  In this classification task, the 

highest weighted f-measure of 0.818 was only achieved by the logistic regression 

algorithm trained using the combined MEG feature set with power in all stated frequency 

bands.     
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Table 2:  Right frontal vs bilateral extra-frontal  

 

Algorithm 
Delta 

EEG 

Theta 

EEG 

Beta 

and 

low 

gamma 

EEG 

Delta, 

theta, 

beta, 

low 

gamma 

EEG 

Delta, 

theta, 

beta, 

low 

gamma 

MEG 

EEG&MEG 

BayesNet NaN NaN NaN NaN 0.805 0.805 

NaiveBayes 0.084 0.364 0.611 0.261 0.287 0.287 

NaiveBayesMultinomial NaN NaN NaN NaN NaN NaN 

Logistic Regression 0.570 0.613 0.398 0.600 0.818 0.636 

SGD 0.590 0.590 0.745 0.636 0.778 0.600 

Multilayer Perceptron 0.513 0.484 0.422 0.600 0.727 0.579 

SimpleLogistic NaN 0.566 NaN NaN 0.566 NaN 

SMO (SVM) NaN 0.590 NaN 0.642 0.611 0.566 

DecisionStump 0.513 0.455 0.590 0.590 0.805 0.805 

J48 0.540 0.540 0.513 0.485 NaN 0.485 

LMT (log tree) NaN 0.513 NaN NaN 0.566 NaN 

Random Forest 0.540 0.579 0.566 0.540 0.642 0.745 

Random Tree 0.438 0.600 0.485 0.441 0.611 0.745 

 

Table 3 shows the results training the same set of algorithms with coherence features 

extracted from MEG in the theta, alpha, beta, and low gamma frequency ranges (the far-

right column being the combined feature set with all frequency bands included; “OOM” 

denotes an out-of-memory error when training the model).  Here, the models were trained 

to discriminate between right and left temporal lobe epilepsy, also known as 

lateralization.  In this task, the maximum weighted f-measure of 0.818 was achieved from 
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the SimpleLogistic and LMT algorithms trained using only coherence features in the beta 

frequency band as well as the random tree algorithm using coherence features in the beta 

and low gamma bands.   

 

Table 3:  Left vs right temporal lobe epilepsy, MEG feature sets 

 

Algorithm 

Theta 

Coheren

ce 

Alpha 

Coheren

ce 

Beta 

Coheren

ce 

Low 

Gamma 

Coheren

ce 

Beta & 

Low 

Gamma 

Coheren

ce 

TABG 

Coheren

ce 

BayesNet 0.364 0.364 0.723 0.723 0.696 0.617 

NaiveBayes 0.696 0.617 0.538 0.545 0.364 0.538 

NaiveBayesMultino

mial 
0.091 0.636 

0.364 
0.455 

0.538 
0.445 

Logistic Regression 0.445 0.331 0.723 0.445 0.636 0.455 

SGD 0.331 0.261 0.538 0.636 0.723 0.723 

Multilayer 

Perceptron 
0.331 0.261 

0.617 
0.617 

0.636 
OOM 

SimpleLogistic 0.140 0.195 0.818 0.445 0.727 0.331 

SMO (SVM) 0.261 0.261 0.617 0.617 0.636 0.455 

DecisionStump 0.331 0.140 0.727 0.445 0.727 0.331 

J48 0.636 0.261 0.727 0.445 0.727 0.445 

LMT (log tree) 0.140 0.195 0.818 0.445 0.727 0.331 

Random Forest 0.331 0.364 0.808 0.455 0.696 0.636 

Random Tree 0.445 0.455 0.723 0.455 0.818 0.538 

 

Representing a single row in Table 3 in a different manner, Figure 1 below graphically 

shows how the performance of the J48 decision tree algorithm varies depending on which 

feature set was used.  The performance of this algorithm does not improve with beta and 

low gamma coherence features combined instead of the subset including only coherence 

in the beta frequency range.  Also noteworthy is the lower performance when trained on 

the full feature set including coherence features from all frequency bands. 
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Figure 1:  Performance of J48 Decision Tree with various feature sets 

 
 

Discussion of Technical Results 

 

From an engineering standpoint, this methodology presents a more thorough exploration 

through both the solution space associated with each research question as well as the 

capability to efficiently investigate multiple research questions.  Whereas the traditional 

methodology would have arrived at one or two of these models, the framework employed 

here allows for a much broader view of the landscape from which researchers can select 

the maximum weighted f-measure.  Through this broader view, the authors see some 

models with tested f-measure approximately equal to those in previous studies, 

potentially confirming their results.  Results also show some models achieve higher f-

measure, sometimes using the same algorithm as previous studies but trained with a 

different feature set.  In this case, the maximum was observed by multiple models which 

presents the researcher with the opportunity to consider other metrics as well as generate 
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additional research questions that may explore why different feature sets resulted in high 

accuracy.  Figure 1 visually shows the variability in performance of a single classifier, 

reinforcing the need for researchers to explore the solution space through multiple 

machine learning algorithms and feature sets.  Further experimentation may explore the 

effect changing various hyper-parameters has on improving the performance of some 

algorithms, such as altering the number of hidden layers of the artificial neural network.  

Stepping back to take in a more abstract view of these results leads to additional 

questions relating to model performance relative to feature subset, in some cases 

decreasing substantially.  This comparative meta-analysis is further expanded on by the 

opportunity to efficiently investigate parallel research questions (right and left frontal 

lobe epilepsy) and comparing the results from the same algorithms and feature sets.  The 

authors were also afforded the opportunity to efficiently explore another research track in 

tandem by reusing the same data set, resulting in the investigation into the possible 

relationship between coherence features and focal epilepsy.     

 

Discussion of Domain Specific Medical Results 

 

From a medical standpoint, our results show an interesting disparity between the metrics 

achieved to discriminate between focal epilepsy in different brain regions.  This is most 

easily seen when comparing the results in Tables 1 and 2:  Investigating mirrored 

hypotheses, left frontal vs right frontal epilepsy, reveals classification of left frontal 

epilepsy using the defined power spectral features to be the “easier” of the two tasks.  

This may suggest the underlying neurophysiological characteristics associated with right 
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frontal lobe epilepsy consist of a more complex pattern than that which can be identified 

by these algorithms and feature sets for left frontal lobe epilepsy.  This may imply that 

focal epilepsy originating from the right frontal lobe may be better characterized by 

changes in features beyond power spectra.  The nature of these features may provide 

further insight into the processing and functional structure of the right frontal lobe and 

how electrical pathologies such as epilepsy disrupt normal function. 

   

Our results also show greater opportunity for success in such classification tasks with 

power spectral features over coherence features, although this observation may change 

with focal epilepsy in other cortical regions.  Further research is needed with a larger data 

set to confirm this trend.  Spectral coherence was chosen as a feature because of the 

connectivity exhibited between the temporal lobes and other regions of the brain (Haneef 

et al, 2014; Spencer, 2002).  Previous studies have also explored other methods of 

quantifying neural or cortical connectivity such as transfer entropy, directed transfer 

functions, and graph theoretic metrics (Basu et al, 2015; Dai et al, 2012; Ursino et al, 

2020; Wu et al, 2018).  Mirroring the limited success seen in those studies, our results 

suggest further research is needed to explore these different metrics for connectivity in 

combination or refined, perhaps with more narrowly defined coherence metrics than used 

here.  Our results clearly show the need to explore feature subsets to train multiple 

machine learning models for testing as a subset may lead to higher performance than the 

complete feature set.    
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Conclusions 

 

In this study, we employed a previously published framework for the development of 

machine learning solutions conducted in the context of a medical case study.  Using this 

methodology to embrace the machine learning paradigm more fully, we were able to 

efficiently explore both the problem and solution spaces within the case study’s domain.  

Implementation of the composite layer allowed for empirical identification of algorithm-

feature set pairings with higher performance metrics than seen in previous studies.  

Implementation of the control layer in combination of the composite layer greatly 

improved the scope of our work, expanding the potential of the project to explore 

multiple, related domain-specific questions in rapid succession through the re-use of data 

and feature sets.   
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METHODOLOGY:  ADAPTED SPIRAL MODEL 

 We include here a copy of our manuscript submitted for publication in the ISEC 

2022 special issue of Journal of Systems and Software.  This manuscript includes a 

detailed description of our adapted spiral model as well as a walkthrough applying our 

model to the medical case study described above. 
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Abstract 

Over the past fifty years a variety of methodologies have been created to aid developers 

in dealing with the complexities of software development.  While methodologies such as 

agile development and the waterfall model have allowed for the tackling of increasingly 

demanding software solutions, they were not designed to efficiently handle data-driven 

development such as the novel paradigm of machine learning that has emerged in the last 

decade or so.  With its rapid increase in prominence and different programmatic 

requirements than traditional software, the creation of dedicated development strategies is 

warranted to address this growing need.  In this research we present an adaptation of the 

spiral model with the flexibility to accommodate both traditionally hypothesis-driven and 

emerging data-driven efforts such as machine learning.  We then present results from a 

medical case study where we applied this updated lifecycle model, including a 

walkthrough through development to elucidate its advantages.  We follow up with a 

discussion on the benefits our model provides for both software engineering and the 

specific medical problem domain.  These include the potential rapid expansion of 

research in scope while enjoying accelerated results, particularly in parallel research 

tracks which share data and/or feature sets.    

Keywords:  Machine learning, data-driven research, software development 

 

Introduction 

With the recent advent of the machine learning paradigm, software engineers are faced 

with the challenge of developing increasingly complex solutions.  These solutions can 

vary greatly in their requirements, particularly in their innate characteristics stemming 
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from the problem domain.  If the problem and solution are both well understood, then the 

traditional approaches to software engineering are well suited to constructing those 

solutions.  This is largely due to those methodologies having a largely algorithmic nature 

(Randell, 1996; Royce, 1987).  Even more modern approaches such as agile 

methodology, while providing greater flexibility in the developmental workflow, are still 

designed for classical problems which call for a single, target software product (Beck et 

al, 2011; Beck & Fowler, 2001).  The rise of data-driven methodologies such as machine 

learning represents a paradigm shift in the creation of the solution i.e. a much more 

exploratory process versus the direct, algorithmic drive toward a clear target.  This new 

paradigm also places a greater emphasis on additional tasks in data collection and 

preprocessing necessary for this methodology to produce valid solutions.  This shift in 

programmatic requirements for data-driven methodologies necessitates a corresponding 

shift in the approach to developing those solutions and in the tools available to support 

such development.  However, the increased prominence of data-driven solutions such as 

machine learning does not preclude the existence of problems which the traditional 

approaches of software development remain well suited to solving.  Therefore, a new 

lifecycle model is needed which incorporates both data- and hypothesis-driven 

development of solutions as available options to the developer.  Furthermore, a 

development environment designed to facilitate the workflow of such a lifecycle model 

would provide additional benefits to the developer through its adaptability and supporting 

features.   

Using these criteria in our software engineering lab in the Department of 

Electrical and Computer Engineering at the University of Alabama at Birmingham, we 
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have developed ideas to deal with this problem, resulting in the evolution of an existing 

software development model.  By modifying the prominent spiral model previously 

published by Boehm in 1988, we allow for the model to adapt to the needs of the 

developer according to the demands of the project.  If the project presents a problem 

which traditional development approaches are well suited for, the model guides the 

developer down that path.  Likewise, if data-driven development is called for, there is an 

alternate path through the model which facilitates such development.  However, should 

the developer ever deem a change is called for because their needs have shifted from one 

approach to another, then such a shift is also supported within this new model.  Thus, the 

model allows for the development process to adapt to a change in the requirements of the 

developer.  Predominant development environments available today are largely designed 

with either the traditional or novel data-driven development in mind.  Common 

environments such as MATLAB which were constructed for the traditional approach are 

not as efficient when using their machine learning features which were added on later in 

their lifetime (MATLAB, 2018).  On the other end of the spectrum, specialized 

environments such as AutoAI provide developers with the ease of accessibility to 

machine learning techniques (Wang et al, 2020).  However, these environments offer 

poor support for the traditional approach and are further limited in their adoption of the 

machine learning paradigm by their often single-threaded mindset, unnecessarily 

constricting data-driven research through a hypothesis-driven bottleneck.  To remove this 

bottleneck, we have previously published a framework for a development environment 

that offers greater support of the machine learning paradigm, which is included within 

our adaptive lifecycle model (Bowman, Prabhakar & Jololian, 2022).  A development 
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environment which thereby implements this adaptive spiral model would then provide the 

developer with not only a tool to support the more efficient creation of a greater variety 

of solutions but would also facilitate the surge of machine learning by offloading the 

expertise and programming proficiency needed into the tool.  This would enable the 

developer to be the domain expert, directly developing solutions instead of relying on 

interfacing with an engineer trained in machine learning techniques. 

To test this modified spiral model, we collaborated with a domain expert to 

investigate the complex problem of epileptic seizure localization.  The domain expert, a 

neurologist, was interested in the potential for machine learning to create an automated 

solution of localizing the seizure onset zone in patients with medically intractable focal 

epilepsy.  As anti-epileptic medications are only effective in approximately 75% of 

patients, surgical resection is considered to remove the epileptic focus (Coolen et al, 

2018; England et al, 2012).  While previous literature has shown the efficacy of MEG in 

pre-surgical guidance, the common method of source localization using dipole modeling 

is resource intensive in terms of both computational cost and personnel hours (Englot et 

al, 2015; Pataraia et al, 2004).  Previous studies have attempted to employ machine 

learning techniques to develop an automated method of localizing the epileptic focus to a 

specific lobe with limited success (Aoe et al, 2019; Soriano et al, 2017).  A common 

thread among these and other studies is their limited application of machine learning 

methodology, unnecessarily restricting themselves to one or two classifiers, often the 

support vector machine or artificial neural network.  Previous studies exclusively 

employing either the traditional hypothesis-driven or data-driven methods have also 

achieved limited success (Aoe et al, 2019; Basu et al, 2015; Dai & He, 2011; Elisevich et 
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al, 2011).  This represents a more abstract view of the literature, revealing a parallel 

thread:  The increased prevalence of complex problems which would greatly benefit from 

both hypothesis- and data-driven efforts working in tandem, instead of researchers 

choosing to tackle the problem using only one approach.  The seemingly arbitrary choice 

in classifier demonstrates the frequent use of data-driven methodologies like machine 

learning as tools employed in a hypothesis-driven manner by domain experts 

inexperienced with such methodologies.  This also mirrors the hypothesis-driven 

bottleneck seen in adapting environments designed with the traditional development 

approaches in mind to data-driven development.  Through this case study we intend to 

show how our adaptive spiral model can be deployed to address these bottlenecks by 

shifting the mindset of both the software engineer and the domain expert while 

formalizing the integration of hypothesis- and data-driven development.         

 

Adaptive Spiral Model Description 

The original spiral model defines the gradual development of software through an 

iterative process, visualized on a 2D Cartesian plane as a path that spirals outward from 

the origin (Boehm, 1988).  As this path travels through each of the four quadrants, 

development progresses through certain activities with each progressive spiral outward 

representing another iteration through the development lifecycle.  The original model 

broadly categorizes the activities within each quadrant:  “Determine objectives” 

(Quadrant II), “Identify and resolve risks” (Quadrant I), “Development and Test” 

(Quadrant IV), and “Plan the next iteration” (Quadrant III).  Within each quadrant, the 

model specifies various tasks performed as the path continues through each iteration.  
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These include requirements planning in Quadrant I, risk analysis and assessment in 

Quadrant II, the design, production, and testing of a prototype within Quadrant III and 

either the cycling back for another iteration or final release in Quadrant IV.  In the latter 

case, the outward spiral path terminates with the release of the software product. 

We begin our description of an adaptive spiral model by first migrating some 

activities from Quadrant IV to Quadrant I, namely the activities associated with active 

generation of code to produce prototypes.  We also label the origin as Phase 0, involving 

the creation of the project and initial specifications describing the topic and objectives.   

 

Figure 1:  Adaptive Spiral Model Phase 0 

The resulting adjustments are shown in Figure 1 with quadrants associated with a distinct 

phase until development leaves the spiral with Phase 4.  Note that Phase 0 is not included 

after Figure 1 as it is never revisited throughout the subsequent iterations of the lifecycle. 
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Figure 2:  Adaptive Spiral Model Phase 1 

Advancing through the model to Phase 1 takes the developer to the major branch decision 

in the model.  After a review of the requirements for the project and any changes to the 

hypotheses, the developers are faced with a fork in the road:  Would a traditionally 

algorithmic, hypothesis-driven approach or data-driven focus be better suited for the 

project to progress toward its goal(s)?  Additional factors that may influence this decision 

include the availability of data suitable for a data-driven approach as well as a review of 

relevant literature showing how one approach was effective.   
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Figure 3:  Adaptive Spiral Model Phase 2 with Hypothesis focus 

If the developer chooses to focus on hypothesis-driven efforts, then the Execution phase 

involves the associated activities.  A specific hypothesis is formulated and development 

progresses with that typically algorithmic focus in mind.  Data is gathered and artifacts 

generated in a manner chosen by the developers that may include such approaches as 

extreme programming.   
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Figure 4:  Adaptive Spiral Model Phase 2 with Data-driven focus 

If the developer chooses to focus on data-driven efforts, then the Execution phase instead 

involves a different set of activities as shown in Figure 4.  Development shifts to a 

mindset that is much more focused on data handling with a more lose hypothesis, 

allowing for later data analysis to guide future revisions to the hypothesis.  More 

attention is given to how the data is selected, the quality of that data, and the techniques 

chosen for this iteration of the development cycle.  For a more detailed description of a 

framework to facilitate greater adoption of the machine learning paradigm during this 

Phase, we encourage the reader to seek out our previously published research (Bowman 

& Jololian, 2021; Bowman, Prabhakar, & Jololian, 2022). 
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Figure 5:  Adaptive Spiral Model Phase 3 

Once the developer completes the execution phase, they progress into Phase 3 for 

evaluation.  At this point, efforts are focused on analyzing the results of efforts from 

Phase 2.  Results are summarized and conclusions drawn with the termination 

condition(s) for the overall project checked.  If those conditions are not met, then the 

knowledge gained from this iteration of the lifecycle passes on to the next iteration with 

all artifacts.   
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Figure 6:  Adaptive Spiral Model Phase 4 

Once it is determined that the termination condition has been met, development 

terminates in Phase 4.  All project artifacts are delivered and/or handled according to 

prevailing best practices or agreed upon terms.   

 

Case Study Methodology 

We followed our proposed model while collaborating with the domain expert to research 

the question and posit ideas to investigate as possible solutions.  For a detailed 

description of the methodology concerning patient data selection, preprocessing, and 

feature extraction, we encourage the reader to refer to our previous research (Bowman & 

Jololian, 2022).  Patient data was retrospectively selected by the domain expert based 

upon the absence of seizures for at least 6 months after epilepsy surgery, thereby 

confirming the epileptic focus was in the brain region that was resected.  All EEG and 

MEG recordings lasted 10 min and were collected at sampling rates of 2 kHz and 508.63 

Hz respectively.  The MEG data was recorded using a whole-head, 148-channel system 
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housed within a magnetically shielded room (4D Neuroimaging, San Diego, CA).  The 

EEG data gathered concurrently with each MEG recording was gathered using the 

International 10-20 system of electrode placement and subsequently down-sampled to 

600 Hz using a low-pass filter.  Data preprocessing and feature extraction for both EEG 

and MEG data were performed using the Brainstorm MATLAB toolbox and custom in-

house MATLAB scripts (MATLAB, 2018; Tadel et al, 2011).    

Not included in our previous paper is the exploration of time-invariant directed 

transfer functions (DTFs) to characterize behavior between sensors we explored later on 

and presented in this research (Dai & He, 2011).  For that segment of this project, raw 

data was imported through the Brainstorm, formatted by a custom in-house MATLAB 

script and imported into the eConnectome toolbox for DTF calculations (He et al, 2011; 

Tadel et al, 2011).  A multivariate autoregressive (MVAR) of fourth order was used, 

processing each 10 min run of MEG data in full within the 3 – 50 Hz frequency band.  

The surrogate method of statistical testing was employed with 50 permutations and a p 

value of 0.05 (Kamiński et al, 2001; Kugiumtzis, D., 2001; Theiler et al, 1991).  All 

classifier training and testing presented in this research was also performed using the 

Waikato Environment for Knowledge Analysis (WEKA) open-source machine learning 

software (Witten et al, 1999).  The primary metric reported in the tables below are the 

weighted f-measure as calculated by WEKA using default parameters for all classifiers.           

 

Case Study Lifecycle Walkthrough 

For this case study, project development was initiated with the goal of developing an 

automated solution for localizing the seizure onset zone in patients with medically 
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intractable epilepsy.  Thus, Phase 0 of our lifecycle model was completed with a clear 

topic of interest and objective in mind.  Progressing into Phase 1, our broad hypothesis 

was narrowed to the investigation of lateralization of temporal lobe epilepsy using 

machine learning techniques to fulfill the stated objective, given their success seen in 

other problem domains and limited success seen in previous literature on this topic.  

Temporal lobe epilepsy was chosen because of the immediate availability of patient data 

as temporal lobe epilepsy is the most common form of focal epilepsy.  Based on the 

choice of machine learning, the branch decision was clearly to proceed into the data-

driven branch of Phase 2.  Data selection and feature extraction were performed in the 

same manner as our previous research, with this first iteration of the lifecycle only 

including features from the 25 EEG sensors common to all patient data runs (Bowman & 

Jololian, 2022 Oct).  This limitation was decided on to gain familiarity with the data and 

functionality of various MATLAB toolboxes.  Generated software artifacts include the 

MATLAB scripts for importing EEG and MEG data into MATLAB, scripts to automate 

feature extraction, and formatted files for importing into WEKA for machine learning 

model construction and testing.  The primary artifact generated in this Phase is shown in 

Table 1 as it was the artifact most relevant to the domain expert’s interests.   

 

Table 1:  Confusion matrix from each model; EEG features only, standard 10-fold cross 

validation 

Algorithm f-measure rightMesTemp leftMesTemp Actual 

BayesNet 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 

NaiveBayes 1.000 6 0 rightMesTemp 

  0 5 leftMesTemp 

NaiveBayesUpdateable 1.000 6 0 rightMesTemp 
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  0 5 leftMesTemp 

Logistic Regression 1.000 6 0 rightMesTemp 

  0 5 leftMesTemp 

SGD 1.000 6 0 rightMesTemp 

  0 5 leftMesTemp 

Multilayer Perceptron 1.000 6 0 rightMesTemp 

  0 5 leftMesTemp 

SimpleLogistic 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 

SMO (SVM) 0.909 5 1 rightMesTemp 

  0 5 leftMesTemp 

DecisionStump 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 

J48 0.723 5 1 rightMesTemp 

  2 3 leftMesTemp 

LMT (log tree) 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 

Random Forest 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 

Random Tree 0.636 4 2 rightMesTemp 

  2 3 leftMesTemp 

 

Advancing into Phase 3, we met with the domain expert to discuss these results, some 

direct observations from reviewing the data files, and some recent journal papers we had 

discovered after a more extensive review of the literature.  It was concluded that these 

results showed promise for the capability of machine learning in this problem domain.  

More specifically, the results from this data-driven iteration were incorporated into the 

domain expert’s preconceived hypothesis, slightly altering it based on the degree of 

success.  Thus, the goals of this first iteration were achieved, but the goal of the overall 
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project was, of course, not yet reached.  All artifacts were maintained as we cycled back 

to begin a new iteration through our adaptive lifecycle.   

 For this next iteration, we chose the data-driven branch to further explore the 

problem domain using machine learning methodology.  We further expanded our 

exploration to include both EEG and MEG sensors, substantially increasing our feature 

set.  The scripting artifacts and processes developed during the first iteration were altered 

to account for these changes in hypothesis for the current iteration.  Employing the 

exploration of parallel hypotheses included in our published machine learning 

framework, we decided upon two complementary hypotheses informed by the problem 

domain:  Localization to the right temporal lobe and localization to the left temporal lobe 

versus extra-temporal epileptic onset zones with the added parameter of using different 

feature sets for each hypothesis.  Processing during Phase 2 then produced the results 

seen in Tables 5 and 6.  Note that “NaN” denotes a result that is not a number due to 

division by zero in the calculation of the weighted f-measure for that model.     

 

Table 2:  Right temporal vs. bilateral extra-temporal with EEG only, standard 10-fold 

cross validation 

Algorithm f-measure rightMesTemp leftMesTemp Actual 

BayesNet 0.491 0 6 rightMesTemp 

  4 11 
Extra-

temporal 

NaiveBayes 0.681 4 2 rightMesTemp 

  5 10 
Extra-

temporal 

NaiveBayesMultinomial ? 0 6 rightMesTemp 

  0 15 
Extra-

temporal 

Logistic Regression 0.524 1 5 rightMesTemp 

  5 10 
Extra-

temporal 
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SGD 0.619 2 4 rightMesTemp 

  4 11 
Extra-

temporal 

Multilayer Perceptron 0.626 1 5 rightMesTemp 

  2 13 
Extra-

temporal 

SimpleLogistic 0.546 0 6 rightMesTemp 

  2 13 
Extra-

temporal 

SMO (SVM) 0695 2 4 rightMesTemp 

  2 13 
Extra-

temporal 

DecisionStump 0.524 1 5 rightMesTemp 

  5 10 
Extra-

temporal 

J48 0.674 3 3 rightMesTemp 

  4 11 
Extra-

temporal 

LMT (log tree) 0.546 0 6 rightMesTemp 

  2 13 
Extra-

temporal 

Random Forest 0.593 1 5 rightMesTemp 

  3 12 
Extra-

temporal 

Random Tree 0.449 1 5 rightMesTemp 

  7 8 
Extra-

temporal 

 

 

Table 3:  Right temporal vs. bilateral extra-temporal with EEG and MEG, standard 10-

fold cross validation 

Algorithm f-measure rightMesTemp 
Extra-

temporal 
Actual 

BayesNet 0.657 3 3 rightMesTemp 

  4 10 Extra-temporal 

NaiveBayes 0.300 3 3 rightMesTemp 

  11 3 Extra-temporal 

NaiveBayesMultinomial NaN 0 6 rightMesTemp 

  0 14 Extra-temporal 
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Logistic Regression 0.657 3 3 rightMesTemp 

  4 10 Extra-temporal 

SGD 0.657 3 3 rightMesTemp 

  4 10 Extra-temporal 

Multilayer Perceptron 0.600 2 4 rightMesTemp 

  4 10 Extra-temporal 

SimpleLogistic 0.600 2 4 rightMesTemp 

  4 10 Extra-temporal 

SMO (SVM) 0613 3 3 rightMesTemp 

  5 9 Extra-temporal 

DecisionStump 0.567 4 2 rightMesTemp 

  7 7 Extra-temporal 

J48 0.461 1 5 rightMesTemp 

  6 8 Extra-temporal 

LMT (log tree) 0.600 2 4 rightMesTemp 

  4 10 Extra-temporal 

Random Forest 0.609 1 5 rightMesTemp 

  2 12 Extra-temporal 

Random Tree 0.425 2 4 rightMesTemp 

  8 6 Extra-temporal 

 

 

Upon review with the domain expert during Phase 3 of the current iteration, it was 

decided that results remain promising, although further exploration was called for with 

different feature sets and varying research questions.  At this stage, data-driven 

development was generating results which were guiding refinement of the domain 

expert’s hypothesis.  Thus, artifacts were maintained as we returned to Phase 1 and began 

a new iteration through the lifecycle.   

 



95 

 

Table 4:  Left temporal vs. bilateral extra-temporal with EEG only, standard 10-fold cross 

validation 

Algorithm f-measure leftMesTemp 
Extra-

temporal 
Actual 

BayesNet 0.583 0 5 leftMesTemp 

  3 13 
Extra-

temporal 

NaiveBayes 0.861 4 1 leftMesTemp 

  2 14 
Extra-

temporal 

NaiveBayesMultinomial NaN 0 5 leftMesTemp 

  0 16 
Extra-

temporal 

Logistic Regression 0.910 5 0 leftMesTemp 

  2 14 
Extra-

temporal 

SGD 0.954 5 0 leftMesTemp 

  1 15 
Extra-

temporal 

Multilayer Perceptron 0.954 5 0 leftMesTemp 

  1 15 
Extra-

temporal 

SimpleLogistic 0.769 3 2 leftMesTemp 

  3 13 
Extra-

temporal 

SMO (SVM) 0.810 3 2 leftMesTemp 

  2 14 
Extra-

temporal 

DecisionStump 0.676 2 3 leftMesTemp 

  4 12 
Extra-

temporal 

J48 0.457 0 5 leftMesTemp 

  7 9 
Extra-

temporal 

LMT (log tree) 0.769 3 2 leftMesTemp 

  3 13 
Extra-

temporal 

Random Forest 0.791 2 3 leftMesTemp 

  1 15 
Extra-

temporal 

Random Tree 0.729 3 2 leftMesTemp 

  4 12 
Extra-

temporal 
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During this next iteration, we again chose the data-driven branch in Phase 1 and revisited 

our original research hypothesis of mesial temporal lobe lateralization with a change in 

our application of the machine learning methodology:  Feature subsets.  The Execution 

Phase then called for adjustments to previous artifacts containing labeled feature sets 

(.arff files for processing in WEKA) instead of changes to scripting.  Feedback from the 

domain expert resulted in changing the results artifacts we present in our meetings to the 

format seen in Table 8.  A development environment designed with our adaptive spiral 

model in mind could also include the next generation of computer aided software 

engineering (CASE) tools to support such features such as version control and artifact 

formatting (Gane, 1988; Kuhn, 1989).  This would take some of the organizational 

workload off of the developer by automating such processes.   

 

Table 5:  Right vs Left mesial TLE, standard 10-fold cross validation using the second 

data file 

Algorithm 

Beta & low 

gamma 

EEG 

 (1st run) 

Theta EEG 
Theta, Beta, 

Gamma EEG 
EEG&MEG 

BayesNet 0.818 0.494 0.494 0.908 

     

NaiveBayes 1.000 0.636 0.617 0.261 

     

NaiveBayesMultinomial 1.000 0.636 0.617 0.291 

     

Logistic Regression 1.000 0.617 0.617 0.818 

     

SGD 1.000 0.617 0.538 0.545 

     

Multilayer Perceptron 1.000 0.617 0.538 0.545 
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SimpleLogistic 0.818 0.425 0.636 0.727 

     

SMO (SVM) 0.909 0.353 0.273 0.545 

     

DecisionStump 0.818 0.723 0.723 0.727 

     

J48 0.723 0.545 0.545 0.545 

     

LMT (log tree) 0.818 0.425 0.636 0.727 

     

Random Forest 0.818 0.455 0.636 0.908 

     

Random Tree 0.636 0.273 0.617 0.727 

     

 

The Evaluation Phase of this iteration saw our conclusion that clearly some feature 

subsets were more informative than others, leading to the need to test whether this 

phenomenon was also true for epilepsy in other regions of the brain.   

 This idea was tested during the next iteration, again choosing the data-driven 

branch and employing the machine learning framework for parallelization and efficient 

exploration.  Tables 6 and 7 show the results produced in this iteration.  During the 

Evaluation Phase, these results were deemed encouraging and interesting for further 

exploration.  Specific results showing poor f-measure using only power spectral features 

in the Delta range (0.1 – 3.5 Hz) in combination with previous hypothesis-driven research 

led the domain expert to reject the hypothesis that neural activity in this frequency range 

was relevant to the problem of epileptic focus localization (Berger, 1929).  Thus, we 

encountered an example where the combination of hypothesis- and data-driven 
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approaches resulted in greater refinement of knowledge than either one on their own.  

Development returned to the Branching Phase of a new iteration.   

 

Table 6:  Right vs Left Frontal, standard 5-fold cross validation  

Algorithm 
Delta 

EEG 

Theta 

EEG 

Beta 

and 

low 

gamma 

EEG 

Delta, 

theta, 

beta, 

low 

gamma 

EEG 

Delta, 

theta, 

beta, 

low 

gamma 

MEG 

EEG&MEG 

BayesNet NaN NaN 0.556 0.476 0.778 0.778 

       

NaiveBayes 0.556 0.410 0.738 NaN 0.778 0.778 

       

NaiveBayesMultinomial NaN NaN 0.667 NaN NaN NaN 

       

Logistic Regression 0.646 0.556 1.000 0.778 0.882 0.882 

       

SGD 0.646 0.476 1.000 0.738 0.738 0.738 

       

Multilayer Perceptron 0.556 0.556 1.000 0.882 0.882 0.882 

       

SimpleLogistic 0.459 0.567 0.556 0.646 0.646 0.646 

       

SMO (SVM) 0.410 NaN 0.892 0.882 0.882 0.882 

       

DecisionStump 0.444 0.459 0.444 0.459 0.556 0.556 

       

J48 0.459 0.459 

0.783 

0.778 

 

 Na

N 
NaN 

       

LMT (log tree) 0.459 0.567 0.556 0.646 0.646 0.646 

       

Random Forest 0.410 0.476 0.459 0.556 0.646 0.646 

       

Random Tree 0.410 0.410 0.556 0.778 0.410 0.410 
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Table 7:  Right vs Left Frontal, standard 5-fold cross validation  

Algorithm 
Theta 

MEG 

Beta 

MEG 

low 

gamma 

MEG 

Beta, low 

gamma 

MEG 

theta, beta, 

low gamma 

MEG 

BayesNet 0.646 0.778 0.778 0.778 0.778 

      

NaiveBayes 0.778 0.882 0.738 0.882 0.778 

      

NaiveBayesMultinomial NaN NaN NaN NaN NaN 

      

Logistic Regression NaN 0.882 0.882 0.882 0.778 

      

SGD NaN 0.778 0.882 0.882 0.738 

      

Multilayer Perceptron NaN 0.738 0.882 0.882 0.738 

      

SimpleLogistic 0.778 0.738 0.882 0.882 0.778 

      

SMO (SVM) NaN 0.882 0.882 0.882 0.738 

      

DecisionStump 0.675 0.778 0.882 0.778 0.675 

      

J48 NaN NaN NaN NaN NaN 

      

LMT (log tree) 0.778 0.738 0.882 0.882 0.778 

      

Random Forest 0.738 0.476 0.738 0.778 0.778 

      

Random Tree 0.646 0.646 0.778 0.778 0.567 

      

 

 In this new iteration, we adjusted our hypothesis to once again explore mesial 

temporal lateralization as well as another concept in parallel.  Proceeding again into the 

data-driven branch of Phase 2 in our lifecycle, we split development into two tracks, one 

for refined application of machine learning while another explored directed transfer 

functions, another data-driven methodology.  Previous literature had shown promising 

results with small sample sizes, thus we were interested in potentially replicating some of 

those results and exploring a different avenue of data-driven research (Dai & He, 2011).  
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Table 12 shows our results from the machine learning research track while Figure 7 

shows some results from the DTF research track, generated from data of one patient with 

left mesial temporal lobe epilepsy.  Exploration of this second research track was thereby 

facilitated due to reuse of data and engineering artifacts, primarily the scripting used to 

import and format the MEG data.     

 

Table 8:  Left mesial temporal vs right mesial temporal, 10-fold cross validation  

Algorithm 
Theta 

MEG 

Theta 

EEG 

Beta, 

Gamma 

EEG 

Theta, 

Beta, 

Gamma 

EEG 

EEG&MEG 

BayesNet 0.646 0.494 0.818 0.636 0.908 

      

NaiveBayes 0.778 0.636 1.000 0.909 0.261 

      

NaiveBayesMultinomial NaN 0.636 0.091 0.091 0.291 

      

Logistic Regression NaN 0.617 1.000 0.815 0.818 

      

SGD NaN 0.617 1.000 0.909 0.545 

      

Multilayer Perceptron NaN 0.617 1.000 1.000 0.545 

      

SimpleLogistic 0.778 0.425 0.818 0.815 0.727 

      

SMO (SVM) NaN 0.353 0.909 0.909 0.545 

      

DecisionStump 0.675 0.723 0.818 0.818 0.727 

      

J48 NaN 0.545 0.723 0.538 0.545 

      

LMT (log tree) 0.778 0.425 0.818 0.727 0.727 

      

Random Forest 0.738 0.455 0.818 0.723 0.908 

      

Random Tree 0.675 0.273 0.636 0.909 0.727 
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Figure 7 below shows the results from a single data file while considering only the Theta 

frequency band, commonly defined as 3 – 8 Hz (Berger, 1929).   

 

Figure 7:  DTF results from one data run of a patient with left mesial temporal lobe 
epilepsy 

Discussion 

 From an engineering standpoint, our adapted spiral model provides the flexibility 

for the developer(s) to seamlessly switch between hypothesis- and data-driven 

development as needed.  This organizational structure to development then allows for 

developers to benefit from the advantages of each approach.  With our previously 

published machine learning framework embedded into the data-driven branch of this 

model, the developer gains greater access to the power of the machine learning paradigm.  

The parallel construction and testing of machine learning models with various feature sets 

will scale with improvements in hardware.  Increased parallel performance will further 
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enable feasible exploration of the solution space, including different aspects of machine 

learning methodology such as different preprocessing techniques and fine-tuning hyper-

parameters.  Parallel exploration of research questions will scale with the shift in the 

mindset of the developer away from the traditional approach of only considering a single 

hypothesis at a time.  Furthermore, the reuse of data and feature sets implicit within our 

model allows for this scaling to be performed efficiently.  When considered together, 

these scaling aspects of our model allow for research projects to achieve a greater scope 

(in depth or breadth) while accelerating a more extensive application of machine learning 

methodologies.  Future research can also incorporate other aspects into this adaptive 

spiral model, such as further developing the intelligent features in our machine learning 

framework or the modifications based on management theory later published as the 

WinWin spiral model (Boehm et al, 1998). 

 From a medical standpoint, the results shown here reinforce some previous 

studies by other research groups while also exhibiting some interesting phenomena in 

other aspects dependent on the specific hypothesis.  For example, the results shown in 

Tables 2 and 4 reinforce the apparent disparity in discriminating left versus right, in the 

frontal lobe in these results and mirrored in the temporal lobes in our previous research 

(Bowman & Jololian, 2022).  Results showing models achieving much higher f-measure 

when identifying left frontal lobe epilepsy against extra-temporal examples versus those 

same models trained with the same feature set attempting to identify right frontal lobe 

epilepsy.  While our results are limited by a small sample size, we believe this disparity 

warrants further investigation to elucidate possible neurophysiological differences 

between lobes.  These differences in functional characteristics may then explain observed 
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phenomena and thereby influence clinical decisions based on anatomical location, 

supplementing functional mapping typically performed prior to epilepsy surgery 

(Knowlton, 2006; Pataraia et al, 2004).  Such variable functional characteristics between 

sides of the same lobe may also explain and contribute to the variability of results seen in 

previous studies exploring cortical connectivity through transfer entropy and graph 

theoretic metrics (Basu et al, 2015; Wu et al, 2018). 

 

Conclusions 

In this research, we presented an adaptation of the spiral model to incorporate both 

hypothesis- and data-driven approaches.  Combined with our previously published 

machine learning framework, this lifecycle model now provides greater flexibility for the 

developer in designing solutions appropriate for the problem at hand while allowing for 

greater adoption of the machine learning paradigm.  Through parallelism and reuse of 

data and feature subsets, this lifecycle leads the developer to efficiently generate results 

of machine learning applications, providing a path to better models through a wider 

search through the solution space.  The walkthrough provided in this work shows that 

applying our model to a complex medical problem yields better results than previous 

published attempts, even while employing a suboptimal implementation with the 

development tools immediately available.  Discussion in this research has shown how the 

benefits of this adapted model can be further amplified if a development environment 

was designed with this model in mind.  Combined with other supporting features, such a 

development environment would also provide greater accessibility to the power of the 

machine learning paradigm for engineering and domain experts alike.   
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FUTURE APPLICATIONS 

Overview 

While machine learning has gained traction in a wide variety of domains in recent 

years, one area of particular interest for future development is the smart city.  In this 

section we will present a simple example from day-to-day life in a smart city, then 

describe how machine learning is involved in different aspects of that example.  We will 

discuss ongoing research in related domains to illustrate the potential for machine 

learning methodology to provide solutions to everyday problems within the context of a 

smart city.  We will then include a paper we intend to submit for publication detailing 

how our novel lifecycle can facilitate the use of machine learning within the context of a 

smart city.     

Smart City Background 

The development of a smart city within the urban planning context includes far 

more than only the advance planning of utilities for easier, stable expansion of residential 

and commercial districts.  Analysis of information gathered from both other cities and the 

development of the current city can then be used to inform plans for future infrastructure 

or redevelopment.  Surveillance showing a substantial pocket of younger, more tech-

oriented families settling into a certain area of the city, stimulating growth in that 

direction can be used to justify focusing on improving the utilities, widening the roads, 

and making sure to designate an appropriate amount of land area for businesses and 
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schools.  Doing so will lay the groundwork to support the population growth anticipated 

in that region, making the incorporation of surveillance data into urban policy a “smart” 

process.  On the other hand, if surveillance shows little to no influx of young[er] people 

into an area, that area may be considered for redevelopment.  Older, defunct businesses 

may be removed to make way for newer businesses, including retirement 

homes/communities to accommodate the aging population of the region.  In this way, the 

smart policy can anticipate the needs of the smart city on a region-specific basis, 

determined wherever there are distinct trends in the population.      

 Shifting to the transportation context, the gradual accommodation of today's tech-

related needs can be seen in major airports across the country.  Where at first airport 

seating began providing additional power outlets as passengers needed a place to charge 

their laptop, more and more airports are now also including designated charging stations 

to charge all manner of personal electronic devices from laptops to phones.  The rapid 

growth of the smartphone industry and the population's increased adoption and use of 

their devices, especially while traveling, necessitated airports to better support those 

devices.  This relatively small-scale example shows the extent of which today's 

population is increasingly connected digitally, lending itself to the "digital city" label 

where businesses from all manner of industries also cater to this drive from customers.  

Advertisements of "free Wi-Fi" at hotels, airports, and restaurants are still only early, 

small scale examples of what a fully connected, digital city could be.  Integrated systems 

within a city's infrastructure can aid in easing traffic congestion, possibly avoiding it 

entirely.  A very basic example is a sensor at an intersection to detect when a vehicle is in 

the turn lane.  If so, the system governing the traffic lights incorporates that information 
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into its sequence of which lights to turn green, ensuring traffic continues to flow through 

the intersection.  In a more realized intelligent city, this information will be gathered, 

refined, and processed on a larger scale by a centralized intelligent system.  By 

coordinating the timing of green lights through neighboring intersections, the system can 

then ensure that traffic flows as smoothly as possible throughout the city, not limited to 

only one intersection.  Thus, a smart city can be defined as one which uses the knowledge 

gained from surveillance of the population combined with the latest technology to better 

anticipate and provide the needs of that population. 

 The capabilities of a smart city can also be an incredible boon to the economy of 

the private sector.  In a smart home equipped with such products as a smart refrigerator, 

thermostat, lighting, and other appliances, the needs of the citizen at home can be met in 

an automated fashion with little to no input from the person.  The smart refrigerator can 

be set up with the option to automatically detect when the person is running low on 

certain grocery items deemed a high priority to keep stocked.  The networked refrigerator 

sends the owner a message with a list of groceries to confirm which ones to restock, then 

connects to all grocery stores on the city-wide network provided by the smart city.  

Further customization options could include the owner selecting a list of brands and sizes 

they prefer for each item.  The intelligent system embedded within the smart refrigerator 

could then query every smart grocery store connected to the city's network for the current 

prices of each selected item from the preferred brands and sizes.  Comparing different 

prices and taking into account any pertinent delivery fees, the refrigerator could then 

optimize the grocery order and send the order(s) to the grocery store(s) at a preset time.  

Going a step further, the smart home could learn to predict ahead of time when the person 
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will need the next gallon of milk based on how quickly they drink milk in the past.  

Taking that another step further, it uses those predictions when calculating optimal 

grocery lists.  It could be that ordering the 5 items today will cost $10, buying these items 

from a certain set of stores.  However, the system predicts the person will need another 

gallon of milk tomorrow, which costs $2 plus a convenience fee of $1.  Instead of placing 

the $10 order today and $3 order tomorrow, it sees that it is able to wait an extra day and 

save the $1 convenience fee on the milk by adding it on to an order.  In this way, the 

owner's smart refrigerator offers both the convenience of automated grocery ordering and 

stocking and potential monetary savings from optimizing each individual order through 

comparison shopping and predicting the owner's needs.  This is aside from the time 

savings of having the groceries delivered to the owner's home address.   

 From the grocery store's perspective, smart homes equipped with smart 

refrigerators could mean a boon to their business volume.  Proceeding with the 

aforementioned example, the store's system receives an order over the network with a 

delivery address included.  The system can then calculate the time required for a delivery 

vehicle to reach that address from the store as well as estimate when a self-driving 

delivery vehicle will be next available.  The system provides that information to an 

employee to gather the groceries and place them within the delivery vehicle.  Said vehicle 

navigates to the provided address using infrastructure built into the roads of the smart 

city.  Once the customer has retrieved their groceries (verified by internal sensors within 

the grocery compartment of the vehicle) and closes the compartment, the vehicle either 

returns to the store or proceeds directly to the next address in the queue to deliver the 

next batch of groceries in a different compartment.  The appropriate grocery 
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compartment on the vehicle can automatically open once the customer approaches the 

vehicle and their identity confirmed by such means as a preset password or facial 

recognition (their image compared to the image in the city's database of citizens).  Orders 

can be placed into the same delivery vehicle based on optimal driving paths i.e. if two 

delivery addresses are in the same neighborhood or nearby, it is more efficient to have the 

same vehicle delivery to both address without returning to the store, assuming the 

intended delivery time selected by the customers allow for it.  In this way, the potential 

number of vehicles on the roads can be reduced as there are fewer customers driving to 

the stores and fewer delivery vehicles.  This results in the street infrastructure of the 

smart city adequately providing the needed space to handle traffic for a greater length of 

time into the future before needing to be widened.  This ensures the available 

infrastructure does not strangle any economic growth for as long as possible.  Thus, a 

smart city can provide the infrastructure to be the backbone which smart homes and smart 

businesses rely on to energize a stable and growing economy.         

 

As a commercial example within a smart city, a smart home equipped with 

network-enabled devices can anticipate future needs of its residents and facilitate 

transactions with businesses to fulfill those needs.  A smart refrigerator may be set up 

with the option to automatically detect when supply on certain, high priority grocery 

items is running low.  Upon detection, the refrigerator could connect to all grocery stores 

on the city-wide network provided by the smart city.  After gathering the pricing and 

supply information from each store, the refrigerator would present this list to the resident 

to facilitate the purchase of the desired groceries.  From the grocery store's perspective, 
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smart homes equipped with such smart refrigerators could mean a boon to their business 

volume.  Proceeding with this example, the store's system receives an order over the 

network with a delivery address included.  The system can then calculate the time 

required for a delivery vehicle to reach that address from the store as well as estimate 

when a self-driving delivery vehicle will be next available.  The system provides that 

information to an employee to gather the groceries and place them within the delivery 

vehicle.  Said vehicle navigates to the provided address using infrastructure built into the 

roads of the smart city.  Once the customer has retrieved their groceries (verified by 

internal sensors within the grocery compartment of the vehicle) and closes the 

compartment, the vehicle either returns to the store or proceeds directly to the next 

address in the queue to deliver the next batch of groceries in a different compartment.  

The appropriate grocery compartment on the vehicle can automatically open once the 

customer approaches the vehicle and their identity confirmed by such means as a preset 

password or facial recognition (their image compared to the image in the city's database 

of citizens).  Orders can be placed into the same delivery vehicle based on optimal 

driving paths i.e. if two delivery addresses are in the same neighborhood or nearby, it is 

more efficient to have the same vehicle delivery to both address without returning to the 

store, assuming the intended delivery time selected by the customers allow for it.  In this 

way, the potential number of vehicles on the roads can be reduced as there are fewer 

customers driving to the stores and fewer delivery vehicles.  This results in the street 

infrastructure of the smart city adequately providing the needed space to handle traffic for 

a greater length of time into the future before needing to be widened.  This ensures the 

available infrastructure does not strangle any economic growth for as long as possible.  
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Thus, a smart city can provide the infrastructure to be the backbone which smart homes 

and smart businesses rely on to energize a stable and growing economy.         

  Within this example we see machine learning applied in a wide variety of ways, 

some more apparent than others.  The more prominent applications include computer 

vision in the self-driving delivery vehicles and facial recognition for customer 

identification.  Perhaps less obvious are the applications that function behind the scenes, 

such as machine learning models working to detect fraudulent transactions, other models 

optimizing the traffic flow through the city among other infrastructure, or the natural 

language processing utilized if the customer uses a search feature to add other grocery 

items to the shopping list since they already plan to order some essentials.  The variety of 

applications shown within this one context offers a glimpse into the power offered by the 

machine learning paradigm.  However, this does not mean data-driven methodologies 

like machine learning are the be-all-end-all for all research and development.  For this 

next section we take a step back from smart cities to discuss research methodologies in 

broad strokes.     

 

 

 

 

 

 

 

 



117 

 

 

 

An Integrated Intelligent System for the Automatic Detection of Patients at High Risk for 

a Cardiovascular Event 

 

 

 

ANTHONY D. BOWMAN, LEON JOLOLIAN 

 

 

 

 

 

 

 

 

 

 

 

 

Submitted to SoutheastCon 2023 

Format adapted for dissertation 



118 

 

Abstract 

With the recent and growing emergence of the machine learning paradigm as a data-

driven approach to problem solving, researchers and software developers alike face the 

challenge of how to apply those techniques to increasingly complex problems.  In 

developing solutions, researchers often focus their efforts on a single hypothesis, 

choosing only one or two machine learning algorithms trained with a static feature set.  

This unnecessarily narrow focus to development represents the application of a data-

driven approach from a hypothesis-driven mindset, imposing a bottleneck on both the 

potential results and the overall scope of the project.  This limitation is reinforced by the 

limitations of current development environments.  To address this, we have previously 

published a machine learning framework to release both the bottleneck on achievable 

results and scope.  In this paper, we present an intelligent system capable of driving 

retrospective research and prospective health surveillance when designed with our 

framework in mind.  By design, this system would facilitate application of the machine 

learning paradigm in research while allowing for the deployment of solutions into a 

healthcare environment.  When deployed within a smart city, we discuss how the benefits 

of this system would be amplified to entire urban population beyond a single healthcare 

organization.     

Keywords—intelligent system, machine learning, software development, smart city 

 

Introduction  

Advances in machine learning techniques have led to substantial progress in a 

variety of domains.  Among these is the widespread application of machine learning 
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methodology to complex problems in the medical domain.  Researchers have now 

employed machine learning for data-driven investigation and development of solutions to 

problems ranging from diagnosis of medical imaging and cancer to identification of 

neurological disorders such as epilepsy (Abdar & Makarenkov, 2019; Wu et al, 2018; 

Zhang, Wang, Liu, & Yang, 2016).  While previous research has seen some incredible 

results, often the application of machine learning is unnecessary limited by selection of 

only one or two classifiers, often without justification.  We have previously published a 

framework which facilitates the adoption of the machine learning paradigm, removing 

such limitations which restricted the scope and success of applying machine learning 

(Bowman & Jololian, 2021; Bowman, Prabhakar, & Jololian, 2022).  While the volume 

of medical research employing machine learning continues to increase, there is a need to 

develop methods of translating that research into practical tools to be deployed in the 

clinical setting.  With the widespread prevalence of electronic medical record (EMR) 

systems, an intelligent system can bridge the divide between the research and clinical 

settings.  In this research, we describe such an intelligent system which, designed and 

trained with our framework in mind, provides an integral tool to conduct data-driven 

research and reduce the effort needed to deploy developed solutions into the clinical 

setting.           

In the United States today, heart disease is the leading cause of death in the adult 

population (Heron, 2018).  A system for identifying individuals at high risk for a 

cardiovascular event such as a myocardial infarction in the near future continues to elude 

researchers (Eagle et al, 2010).  This research aims to fill this gap in the healthcare 

industry, providing a flexible software solution that can both adapt to changes in focus, 
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data, or its environment as well as scale up or down to meet the needs of its target 

population.  While the discussion in this paper is primarily focused on heart disease due 

to its prevalence and mortality, the intelligent system detailed here can also function in a 

similar capacity to serve the needs of clinicians for identifying a multitude of diseases or 

disorders.       

 

  Fig 1.  High level agent diagram 

Intelligent System Base Design 

 At its core, the proposed solution is an intelligent system embedded within the 

EMR system of a medical provider, be it a large medical center or small health clinic.  

The system gathers feature data from the EMR system and automatically labels them into 

two classes depending on the presence or absence of a cardiovascular event in that 

patient's medical history.  The system then trains multiple algorithms with the labeled 

data from a specific time frame, testing each algorithm using cross validation and labeled 

data from outside the selected time frame.  After this initial training and testing period, 

the system is fully deployed for use in the clinical setting where it immediately classifies 

using each algorithm each patient encountered in every clinic each day as at risk of a 
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cardiovascular event or not.  If so, a message is automatically generated by the system 

and sent to the charge nurse of the clinic and the clinician seeing the patient that day.  

This message contains both the classification results from each algorithm and an up-to-

date confusion matrix showing the type I and type II error along with overall 

accuracy/precision.  The clinician can then make an informed decision on how to address 

the prediction by the system.  At the end of each day, new patient information regarding 

both patients with newly added cardiovascular events in their EMRs and brand-new 

patients with non-cardiovascular diagnoses will be added to the data set for the system to 

train and test itself.  In this way, the system adapts to both changes in data and 

environment as the demographic s of the local population may change over time, 

gradually accounted for automatically by the system retraining.  This system is also scale-

able from a small health clinic to a large medical center as both will likely have more 

than sufficient historical medical data to train the algorithms.  Similar systems using 

machine learning algorithms have previously been used to great effect for classification 

of mammogram images to detect potentially pathogenic abnormalities (Zhang, Wang, 

Liu, & Yang, 2016).  However, this proposed system takes a much more proactive 

approach to surveillance, with a far broader scope not limited to the results of a single 

test.  After successful deployment and use in the clinical setting, the system can then be 

used as the basis for an even wider scale deployment in the mobile market, using the 

current algorithm parameters, sensors, and a short questionnaire to gather the user's 

feature set and calculate a preliminary classification.  Frequent updates to the mobile app 

can be the vector to deliver the most up-to-date algorithm parameters as the intelligent 

system continues to train and test with new data in the clinical setting.   A similar 
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approach with an ensemble machine learning model has been shown to have acceptably 

high accuracy and be suitable for use in the telehealth market (Zhang et al., 2017). 

The overall design of this intelligent system is allowed to emerge naturally from 

the process of its creation.  Beginning with an objected oriented design process in mind, 

all potential objects in mind are treated as agents.  Each agent has associated actions, a 

list of other agents it interacts with through those actions, and data storage for 

information kept internally within the agent.  In the case of this intelligent system, there 

is a centralized processing agent, satellite clinical agents, and satellite patient agents.  The 

clinical agents can be further divided into clinician and nursing agents to distinguish 

between the information provided to each and the urgency of that information.  Because 

this is an embedded system, there are other key components it indirectly interacts with 

that may not be explicitly shown in this model, including the systems for gathering 

certain medical data such as those in radiology.  While the proper functioning of this 

system requires data from those, it retrieves that data from a centralized EMR database 

which serves as the middleman.  Figure 1 shows this general structure with the direction 

of information flow from each agent.     

 

Smart City Context 

Across the globe a mass migration of the human population continues as it has for 

the last century, away from rural living and into the metropolis of urban life.  With this 

transition, the world's cities face the issues which stem from accommodating an ever-

growing populace, now on an even greater scale than ever before in history (Caragliu, 

Del Bo, & Nijkamp, 2011).  These not only include the basic needs of clean water, 



123 

 

sanitation and public health, reliable power, well maintained roads and traffic systems but 

also a growing reliance on reliable broadband internet, information and communication 

technologies (ICTs), and the flexibility of the city's infrastructure to adapt to the needs of 

the people.  Out of this need grew the concept of the "smart city," a term without a clear 

definition but invoking a general idea of designing a city capable of not only allowing its 

people to live but thrive in a technological world.  Using the tools available within this 

smart city context, this project seeks to combat a growing health problem:  

Cardiovascular events caused by heart disease.   

 The concept of a smart city has been used and labeled with many different names 

including intelligent city, knowledge city, sustainable city, digital city, etc. (Cocchia, 

2014).  In keeping with the ambiguity of natural languages, the selection of which name 

to use and its meaning depend on the context.  If viewed in urban development, a smart 

city could be one where the government and public agencies adopt policies and strategies 

to promote and allow for the sustainable and stable growth of the community (Nam & 

Pardo, 2011).  Keeping with the urban planning context, the construction of infrastructure 

to accommodate not only the current population but the forecasted future population after 

years of growth could also be considered "smart."  This could include wider roads than is 

currently needed by today's traffic or the strategic placement of additional water 

treatment plants to serve future housing developments in the suburban areas.  Often 

coupled with the water and sewer infrastructure is the expansion of the power grid to 

provide a backbone for other utilities such as broadband internet.  Some cities have also 

taken the extra step by building the infrastructure for city-wide broadband internet, 

considering it an essential public utility alongside water and power (Nam & Pardo, 2011).  
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On an even broader scale, some nation states have done this with high-speed broadband 

internet in place throughout their country, providing the ICT basis for rapid technological 

expansion as their population grows.  This forward-thinking approach to water/sewer, 

power, and internet expansion thus allows for not only residential but industrial growth, 

particularly in the case of high-speed internet.  With technological companies becoming 

more reliant on access to or delivery of cloud-based computing solutions, the availability 

of high-speed broadband internet is critical to their success.  Pre-existing broadband 

infrastructure will likely yield substantial dividends in the long term as the tech industry 

can hit the ground running.  This head start reduces the initial time and cost for 

businesses to move into a location within the city, set up their operations and begin 

providing their goods and services.  The planning for these utilities thus enables 

jumpstarting the local economy by easing the barrier to entry, potentially reducing the 

time between when a company establishes its physical presence and when it can begin 

hiring the human workforce to use those utilities and begin generating revenue.  Such 

advance planning for the expansion of utilities can then be considered the beginning of a 

smart city.   

 Smart planning of infrastructure and a fully connected, digital city can also have 

substantial benefits regarding the health of the population.  In a smart city with the 

required networking infrastructure, the emergency medical services (EMS) can be 

optimized to ensure assistance is rendered as fast as possible by reducing the latency 

between first responders reaching the person in need as well as the time it takes to 

transport that person to the nearest emergency department if needed.  This can be done by 

automatically calculating and selecting the ambulance, fire truck, or police car which can 
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reach the person as fast as possible.  Such calculation can be fully informed by the 

location of the person (gathered by tracing the call or other means), the GPS in the EMS 

vehicle providing their current location and city-wide surveillance providing up-to-date 

traffic information between that vehicle and the target person.  This system can then also 

provide the optimal driving path (i.e. driving directions) to that vehicle’s onboard 

computer through the city-wide network, even going as far as altering the traffic lights 

along their route to further ensure minimal driving time.  If the first responders are on 

foot (i.e. outside their vehicle and inside a strictly pedestrian zone such as a shopping 

mall), the system can instead provide the most direct walking path based on the 

schematics of the building(s) as provided to the city by their architect(s).  If the first 

responders signal to the system the person requires further, immediate medical attention, 

the system can consider every emergency department within a set distance.  The system 

can then calculate the optimal path from the first responders to the nearest emergency 

department that is able to provide immediate care to that patient.  This excludes all 

emergency departments that may be closer but currently have a high patient load and 

would not be able to render medical assistance as quickly as the next department.  This 

additional screening of emergency departments would be especially critical in 

distributing the patient load throughout the medical network in the event of a mass 

casualty event.  With the added information of a patient’s critical status (how quickly 

they need care i.e. their priority as determined by the medical personnel in the field), the 

system can direct ambulances with the more critical patients to the nearest emergency 

departments capable of providing the immediate care they need.  By directing 

ambulances with less critical patients to more distant hospitals, the system distributes the 
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patient load and attempts to prevent the death of critical patients because nearby hospital 

resources were already overwhelmed.  After delivery of the patient, the EMS crew can 

fill out their section of information concerning the day’s events and submit it into the 

smart city’s centralized electronic medical record (EHR) system.  That information is 

then immediately available for review by any medical personnel looking at the patient’s 

medical record.  The first responders can then signal to the system they are once again 

available for the next prospective patient.       

 

Expanded Design within Smart Cities 

The inclusion of this system within a smart city greater expands its potential deployment 

options and benefits to the population.  With every clinic, hospital, and pharmacy 

connected to form a city-wide healthcare network, the proposed intelligent system can be 

embedded within the unified EMR used at every site.  This allows the system to access 

and incorporate data gathered at every site into its ensemble of machine learning 

algorithms.  This also allows all patients to visit any clinic or hospital they choose, 

whether it be a preference of proximity to their home/work or their preference of 

physician/healthcare provider.  On the reverse side of continually training, the system can 

also extend its reach out beyond only hospitals to the smaller, more specialized clinics to 

relay information concerning their patients with appointments each day.  The specialists 

providing care at those clinics can then be automatically informed if their patient has 

been classified as at high risk for a cardiovascular event within the next set time period.  

This information may play a more critical role in their diagnosis and/or treatment of 

seemingly unrelated symptoms, thereby avoiding a misdiagnosis.  The information can 
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also be used by pharmacists whenever the patient goes to refill a prescription for a 

medication contraindicated for someone with heart disease or related illness.  The flow of 

information through the city-wide network can then be viewed as Figure 2 below.  Thus, 

the infrastructure provided by a smart city, namely the healthcare network of clinics, 

hospitals, and pharmacies all using the same EMR, affords the intelligent system the 

potential capability of preventing costly misdiagnoses and ill-advised medications for 

better personalized medicine.             

 

 

  Fig 2.  Diagram of integration into a smart city healthcare network 

 

Summary 

In this research, we provide the high-level design of an intelligent system designed with 

our previously published machine learning framework in mind.  Employing the 

processing pipeline envisioned by that framework, this system facilitates the application 

of machine learning to a broad range of problems through its interaction with an 

electronic medical record system.  Parallel investigations are efficiently performed 
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through the re-use of data and feature sets while broadening the scope of research and 

providing more optimal solutions through a more thorough search through the solution 

space.  In addition to supporting data-driven medical research, this system would also 

allow for developed solutions to be deployed into the healthcare setting, facilitating the 

translation of research into applied work.  The incorporation of this intelligent system 

into the healthcare network of a smart city provides additional benefits to the population 

by extending its reach beyond the clinical setting. 
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CONCLUSION 

 In this research, we propose a development environment that allows researchers to 

leverage those capabilities more fully by shifting not only the tool they use but also their 

mindset.  We also identify several factors that affect the efficacy and productivity of this 

tool and the solutions it generates.  Our proposed environment serves as an intermediate 

tool, guiding the researcher and making full adoption of the machine learning paradigm 

throughout the software development process easier.  To accomplish this, our framework 

is defined by a three-layer structure designed for subject domain assessment, data 

manipulation and feature set exploration.  Supported by parallelism, data cleaning and 

feature engineering, this research provides a conceptual basis for future creation of 

development environments for the machine learning paradigm.  We used this conceptual 

tool in a case study of epilepsy seizure localization and where unintuitive solutions were 

discovered efficiently.  Future development of such a conceptual design would allow for 

additional intelligent tools to aid the user in designing solutions and support reusability at 

the design level. 
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Table 1:  EEG only, standard 10 fold cross validation 

Algorithm f-measure rightMesTemp leftMesTemp Actual 

BayesNet 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 

NaiveBayes 1.000 6 0 rightMesTemp 

  0 5 leftMesTemp 

NaiveBayesUpdateable 1.000 6 0 rightMesTemp 

  0 5 leftMesTemp 

Logistic Regression 1.000 6 0 rightMesTemp 

  0 5 leftMesTemp 

SGD 1.000 6 0 rightMesTemp 

  0 5 leftMesTemp 

Multilayer Perceptron 1.000 6 0 rightMesTemp 

  0 5 leftMesTemp 

SimpleLogistic 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 

SMO (SVM) 0.909 5 1 rightMesTemp 

  0 5 leftMesTemp 

DecisionStump 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 

J48 0.723 5 1 rightMesTemp 

  2 3 leftMesTemp 

LMT (log tree) 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 

Random Forest 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 

Random Tree 0.636 4 2 rightMesTemp 

  2 3 leftMesTemp 

 

 

 

 

Table 2:  MEG only 

Algorithm f-measure rightMesTemp leftMesTemp Actual 

BayesNet 0.727 4 2 rightMesTemp 

  1 4 leftMesTemp 

NaiveBayes 0.273 2 4 rightMesTemp 

  4 1 leftMesTemp 

NaiveBayesUpdateable 0.273 2 4 rightMesTemp 

  4 1 leftMesTemp 

Logistic Regression 0.545 3 3 rightMesTemp 

  2 3 leftMesTemp 

SGD 0.545 3 3 rightMesTemp 

  2 3 leftMesTemp 
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Multilayer Perceptron 0.545 3 3 rightMesTemp 

  2 3 leftMesTemp 

SimpleLogistic 0.723 5 1 rightMesTemp 

  2 3 leftMesTemp 

SMO (SVM) 0.545 3 3 rightMesTemp 

  2 3 leftMesTemp 

DecisionStump 0.545 3 3 rightMesTemp 

  2 3 leftMesTemp 

J48 ? 6 0 rightMesTemp 

  5 0 leftMesTemp 

LMT (log tree) 0.723 5 1 rightMesTemp 

  2 3 leftMesTemp 

Random Forest 0.630 3 3 rightMesTemp 

  1 4 leftMesTemp 

Random Tree 0.545 3 3 rightMesTemp 

  2 3 leftMesTemp 

 

 

 

Table 3:  EEG and MEG together 

Algorithm f-measure rightMesTemp leftMesTemp Actual 

BayesNet 0.727 4 2 rightMesTemp 

  1 4 leftMesTemp 

NaiveBayes 0.273 2 4 rightMesTemp 

  4 1 leftMesTemp 

NaiveBayesUpdateable 0.273 2 4 rightMesTemp 

  4 1 leftMesTemp 

Logistic Regression 0.723 5 1 rightMesTemp 

  2 3 leftMesTemp 

SGD 0.908 6 0 rightMesTemp 

  1 4 leftMesTemp 

Multilayer Perceptron 0.908 6 0 rightMesTemp 

  1 4 leftMesTemp 

SimpleLogistic 0.617 5 1 rightMesTemp 

  3 2 leftMesTemp 

SMO (SVM) 0.908 6 0 rightMesTemp 

  1 4 leftMesTemp 
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DecisionStump 0.445 2 4 rightMesTemp 

  2 3 leftMesTemp 

J48 0.723 5 1 rightMesTemp 

  2 3 leftMesTemp 

LMT (log tree) 0.617 5 1 rightMesTemp 

  3 2 leftMesTemp 

Random Forest 0.630 3 3 rightMesTemp 

  1 4 leftMesTemp 

Random Tree 0.636 4 2 rightMesTemp 

  2 3 leftMesTemp 

 

 

 

Table 1:  Right vs Left mesial temporal with EEG only, standard 10 fold cross validation 

Algorithm 
f-

measure 
rightMesTemp leftMesTemp Actual 

BayesNet 0.636 4 2 rightMesTemp 

  2 3 leftMesTemp 

NaiveBayes 0.909 5 1 rightMesTemp 

  0 5 leftMesTemp 

NaiveBayesMultinomial 0.091 1 5 rightMesTemp 

  5 0 leftMesTemp 

Logistic Regression 0.815 4 2 rightMesTemp 

  0 5 leftMesTemp 

SGD 0.909 5 1 rightMesTemp 

  0 5 leftMesTemp 

Multilayer Perceptron 1.000 6 0 rightMesTemp 

  0 5 leftMesTemp 

SimpleLogistic 0.815 4 2 rightMesTemp 

  0 5 leftMesTemp 

SMO (SVM) 0.909 5 1 rightMesTemp 

  0 5 leftMesTemp 

DecisionStump 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 
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J48 0.538 4 2 rightMesTemp 

  3 2 leftMesTemp 

LMT (log tree) 0.727 4 2 rightMesTemp 

  1 4 leftMesTemp 

Random Forest 0.723 5 1 rightMesTemp 

  2 3 leftMesTemp 

Random Tree 0.909 5 1 rightMesTemp 

  0 5 leftMesTemp 

 

 

 

Table 2:  Right vs Left mesial temporal with MEG only, standard 10 fold cross validation 

Algorithm f-measure rightMesTemp leftMesTemp Actual 

BayesNet 0.630 3 3 rightMesTemp 

  1 4 leftMesTemp 

NaiveBayes 0.630 3 3 rightMesTemp 

  1 4 leftMesTemp 

NaiveBayesMultinomial ? 6 0 rightMesTemp 

  5 0 leftMesTemp 

Logistic Regression 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 

SGD 0.545 3 3 rightMesTemp 

  2 3 leftMesTemp 

Multilayer Perceptron 0.727 4 2 rightMesTemp 

  1 4 leftMesTemp 

SimpleLogistic 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 

SMO (SVM) 0.727 4 2 rightMesTemp 

  1 4 leftMesTemp 

DecisionStump 0.545 3 3 rightMesTemp 

  2 3 leftMesTemp 

J48 ? 6 0 rightMesTemp 

  5 0 leftMesTemp 
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LMT (log tree) 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 

Random Forest 0.727 4 2 rightMesTemp 

  1 4 leftMesTemp 

Random Tree 0.636 4 2 rightMesTemp 

  2 3 leftMesTemp 

 

 

 

 

Table 3:  Right vs Left mesial temporal with EEG and MEG, standard 10 fold cross 

validation 

Algorithm f-measure rightMesTemp leftMesTemp Actual 

BayesNet 0.630 3 3 rightMesTemp 

  1 4 leftMesTemp 

NaiveBayes 0.630 3 3 rightMesTemp 

  1 4 leftMesTemp 

NaiveBayesMultinomial 0.091 1 5 rightMesTemp 

  5 0 leftMesTemp 

Logistic Regression 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 

SGD 0.908 6 0 rightMesTemp 

  1 4 leftMesTemp 

Multilayer Perceptron 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 

SimpleLogistic 0.494 5 1 rightMesTemp 

  4 1 leftMesTemp 

SMO (SVM) 0.818 5 1 rightMesTemp 

  1 4 leftMesTemp 

DecisionStump 0.727 4 2 rightMesTemp 

  1 4 leftMesTemp 

J48 0.538 4 2 rightMesTemp 

  3 2 leftMesTemp 
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LMT (log tree) 0.494 5 1 rightMesTemp 

  4 1 leftMesTemp 

Random Forest 0.727 4 2 rightMesTemp 

  1 4 leftMesTemp 

Random Tree 0.630 3 3 rightMesTemp 

  1 4 leftMesTemp 

 

 

 

 

 

Table 4:  Right temporal vs. bilateral extra-temporal with EEG only, standard 10 fold 

cross validation 

Algorithm f-measure rightMesTemp leftMesTemp Actual 

BayesNet 0.491 0 6 rightMesTemp 

  4 11 
Extra-

temporal 

NaiveBayes 0.681 4 2 rightMesTemp 

  5 10 
Extra-

temporal 

NaiveBayesMultinomial ? 0 6 rightMesTemp 

  0 15 
Extra-

temporal 

Logistic Regression 0.524 1 5 rightMesTemp 

  5 10 
Extra-

temporal 

SGD 0.619 2 4 rightMesTemp 

  4 11 
Extra-

temporal 

Multilayer Perceptron 0.626 1 5 rightMesTemp 

  2 13 
Extra-

temporal 

SimpleLogistic 0.546 0 6 rightMesTemp 

  2 13 
Extra-

temporal 

SMO (SVM) 0695 2 4 rightMesTemp 

  2 13 
Extra-

temporal 

DecisionStump 0.524 1 5 rightMesTemp 

  5 10 
Extra-

temporal 

J48 0.674 3 3 rightMesTemp 



145 

 

  4 11 
Extra-

temporal 

LMT (log tree) 0.546 0 6 rightMesTemp 

  2 13 
Extra-

temporal 

Random Forest 0.593 1 5 rightMesTemp 

  3 12 
Extra-

temporal 

Random Tree 0.449 1 5 rightMesTemp 

  7 8 
Extra-

temporal 

 

 

 

 

Table 5:  Right temporal vs. bilateral extra-temporal with EEG and MEG, standard 10 

fold cross validation 

Algorithm f-measure rightMesTemp leftMesTemp Actual 

BayesNet 0.657 3 3 rightMesTemp 

  4 10 
Extra-

temporal 

NaiveBayes 0.300 3 3 rightMesTemp 

  11 3 
Extra-

temporal 

NaiveBayesMultinomial ? 0 6 rightMesTemp 

  0 14 
Extra-

temporal 

Logistic Regression 0.657 3 3 rightMesTemp 

  4 10 
Extra-

temporal 

SGD 0.657 3 3 rightMesTemp 

  4 10 
Extra-

temporal 

Multilayer Perceptron 0.600 2 4 rightMesTemp 

  4 10 
Extra-

temporal 

SimpleLogistic 0.600 2 4 rightMesTemp 

  4 10 
Extra-

temporal 

SMO (SVM) 0613 3 3 rightMesTemp 

  5 9 
Extra-

temporal 
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DecisionStump 0.567 4 2 rightMesTemp 

  7 7 
Extra-

temporal 

J48 0.461 1 5 rightMesTemp 

  6 8 
Extra-

temporal 

LMT (log tree) 0.600 2 4 rightMesTemp 

  4 10 
Extra-

temporal 

Random Forest 0.609 1 5 rightMesTemp 

  2 12 
Extra-

temporal 

Random Tree 0.425 2 4 rightMesTemp 

  8 6 
Extra-

temporal 

 

 

 

 

Table 6:  Left temporal vs. bilateral extra-temporal with EEG only, standard 10 fold cross 

validation 

Algorithm f-measure rightMesTemp leftMesTemp Actual 

BayesNet 0.583 0 5 rightMesTemp 

  3 13 Extra-temporal 

NaiveBayes 0.861 4 1 rightMesTemp 

  2 14 Extra-temporal 

NaiveBayesMultinomial ? 0 5 rightMesTemp 

  0 16 Extra-temporal 

Logistic Regression 0.910 5 0 rightMesTemp 

  2 14 
Extra-

temporal 

SGD 0.954 5 0 rightMesTemp 

  1 15 
Extra-

temporal 

Multilayer Perceptron 0.954 5 0 rightMesTemp 

  1 15 
Extra-

temporal 
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SimpleLogistic 0.769 3 2 rightMesTemp 

  3 13 Extra-temporal 

SMO (SVM) 0.810 3 2 rightMesTemp 

  2 14 Extra-temporal 

DecisionStump 0.676 2 3 rightMesTemp 

  4 12 Extra-temporal 

J48 0.457 0 5 rightMesTemp 

  7 9 Extra-temporal 

LMT (log tree) 0.769 3 2 rightMesTemp 

  3 13 Extra-temporal 

Random Forest 0.791 2 3 rightMesTemp 

  1 15 Extra-temporal 

Random Tree 0.729 3 2 rightMesTemp 

  4 12 Extra-temporal 

 

 

 

 

 

Table 7:  Left temporal vs. bilateral extra-temporal with EEG and MEG, standard 10 fold 

cross validation 

Algorithm f-measure leftMesTemp 
Extra-

temporal 
Actual 

BayesNet failure ? ? leftMesTemp 

  ? ? 
Extra-

temporal 

NaiveBayes 0.535 5 0 leftMesTemp 

  10 6 
Extra-

temporal 

NaiveBayesMultinomial ? 0 5 leftMesTemp 

  0 14 
Extra-

temporal 

Logistic Regression 0.729 3 2 leftMesTemp 

  4 12 
Extra-

temporal 

SGD 0.905 4 1 leftMesTemp 

  1 15 Extra-
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temporal 

Multilayer Perceptron 0.810 3 2 leftMesTemp 

  2 14 
Extra-

temporal 

SimpleLogistic 0.896 3 2 leftMesTemp 

  0 16 
Extra-

temporal 

SMO (SVM) 0.851 3 2 leftMesTemp 

  1 15 
Extra-

temporal 

DecisionStump 0.861 4 1 leftMesTemp 

  2 14 
Extra-

temporal 

J48 0.457 0 5 leftMesTemp 

  7 9 
Extra-

temporal 

LMT (log tree) 0.896 3 2 leftMesTemp 

  0 16 
Extra-

temporal 

Random Forest 0.833 2 3 leftMesTemp 

  0 16 
Extra-

temporal 

Random Tree 0.810 3 2 leftMesTemp 

  2 14 
Extra-

temporal 

 

 

Table 8:  Right vs Left mTLE, standard 10 fold cross validation using the second data file 

Algorithm 

Beta & low 

gamma EEG 

 (1st run) 

Theta EEG 
Theta, Beta, 

Gamma EEG 
EEG&MEG 

BayesNet 0.818 0.494 0.494 0.908 

     

NaiveBayes 1.000 0.636 0.617 0.261 

     

NaiveBayesUpdateable 1.000 0.636 0.617 0.291 

Multinomial     

Logistic Regression 1.000 0.617 0.617 0.818 

     

SGD 1.000 0.617 0.538 0.545 
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Multilayer Perceptron 1.000 0.617 0.538 0.545 

     

SimpleLogistic 0.818 0.425 0.636 0.727 

     

SMO (SVM) 0.909 0.353 0.273 0.545 

     

DecisionStump 0.818 0.723 0.723 0.727 

     

J48 0.723 0.545 0.545 0.545 

     

LMT (log tree) 0.818 0.425 0.636 0.727 

     

Random Forest 0.818 0.455 0.636 0.908 

     

Random Tree 0.636 0.273 0.617 0.727 

     

 

 

 

 

Table 9:  Right vs Left Frontal, standard 5 fold cross validation  

Algorithm 
Delta 

EEG 

Theta 

EEG 

Beta 

and 

low 

gamma 

EEG 

Delta, 

theta, 

beta, 

low 

gamma 

EEG 

Delta, 

theta, 

beta, 

low 

gamma 

MEG 

EEG&MEG 

BayesNet ? ? 0.556 0.476 0.778 0.778 

       

NaiveBayes 0.556 0.410 0.738 ? 0.778 0.778 

       

NaiveBayesMultinomial ? ? 0.667 ? ? ? 

       

Logistic Regression 0.646 0.556 1.000 0.778 0.882 0.882 

       

SGD 0.646 0.476 1.000 0.738 0.738 0.738 

       

Multilayer Perceptron 0.556 0.556 1.000 0.882 0.882 0.882 

       

SimpleLogistic 0.459 0.567 0.556 0.646 0.646 0.646 

       

SMO (SVM) 0.410 ? 0.892 0.882 0.882 0.882 

       

DecisionStump 0.444 0.459 0.444 0.459 0.556 0.556 
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J48 0.459 0.459 0.783 0.778 ? ? 

       

LMT (log tree) 0.459 0.567 0.556 0.646 0.646 0.646 

       

Random Forest 0.410 0.476 0.459 0.556 0.646 0.646 

       

Random Tree 0.410 0.410 0.556 0.778 0.410 0.410 

       

 

Table 10:  Right vs Left Frontal, standard 5 fold cross validation  

Algorithm 
Theta 

MEG 

Beta 

MEG 

low 

gamma 

MEG 

Beta, low 

gamma 

MEG 

theta, beta, 

low gamma 

MEG 

BayesNet 0.646 0.778 0.778 0.778 0.778 

      

NaiveBayes 0.778 0.882 0.738 0.882 0.778 

      

NaiveBayesMultinomial ? ? ? ? ? 

      

Logistic Regression ? 0.882 0.882 0.882 0.778 

      

SGD ? 0.778 0.882 0.882 0.738 

      

Multilayer Perceptron ? 0.738 0.882 0.882 0.738 

      

SimpleLogistic 0.778 0.738 0.882 0.882 0.778 

      

SMO (SVM) ? 0.882 0.882 0.882 0.738 

      

DecisionStump 0.675 0.778 0.882 0.778 0.675 

      

J48 ? ? ? ? ? 

      

LMT (log tree) 0.778 0.738 0.882 0.882 0.778 

      

Random Forest 0.738 0.476 0.738 0.778 0.778 

      

Random Tree 0.646 0.646 0.778 0.778 0.567 
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Table 11:  Left frontal vs bilateral extra-frontal, standard 10 fold cross validation  

Algorithm 
Delta 

EEG 

Theta 

EEG 

Beta 

and 

low 

gamma 

EEG 

Delta, 

theta, 

beta, 

low 

gamma 

EEG 

Delta, 

theta, 

beta, 

low 

gamma 

MEG 

EEG&MEG 

BayesNet ? 0.777 ? 0.777 0.872 0.872 

       

NaiveBayes 0.653 0.753 0.777 0.777 0.291 0.347 

       

NaiveBayesMultinomial ? ? ? ? ? ? 

       

Logistic Regression 0.727 0.727 0.818 0.753 0.951 0.836 

       

SGD 0.777 0.777 0.909 0.777 0.951 0.951 

       

Multilayer Perceptron 0.777 0.777 0.951 0.777 0.909 0.909 

       

SimpleLogistic 0.753 0.777 0.889 0.777 0.951 0.951 

       

SMO (SVM) ? 0.777 ? ? 0.951 0.909 

       

DecisionStump 0.753 0.753 0.777 0.753 0.872 0.872 

       

J48 ? 0.753 0.889 0.786 ? 0.786 

       

LMT (log tree) 0.753 0.777 0.889 0.777 0.951 0.951 

       

Random Forest ? 0.777 ? ? 0.777 0.852 

       

Random Tree 0.700 0.727 0.909 0.727 0.852 0.818 

       

 

 

 

 

Table 12:  Right frontal vs bilateral extra-frontal, standard 10 fold cross validation  

Algorithm 
Delta 

EEG 

Theta 

EEG 

Beta 

and 

low 

gamma 

EEG 

Delta, 

theta, 

beta, 

low 

gamma 

EEG 

Delta, 

theta, 

beta, 

low 

gamma 

MEG 

EEG&MEG 

BayesNet ? ? ? ? 0.805 0.805 
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NaiveBayes 0.084 0.364 0.611 0.261 0.287 0.287 

       

NaiveBayesMultinomial ? ? ? ? ? ? 

       

Logistic Regression 0.570 0.613 0.398 0.600 0.818 0.636 

       

SGD 0.590 0.590 0.745 0.636 0.778 0.600 

       

Multilayer Perceptron 0.513 0.484 0.422 0.600 0.727 0.579 

       

SimpleLogistic ? 0.566 ? ? 0.566 ? 

       

SMO (SVM) ? 0.590 ? 0.642 0.611 0.566 

       

DecisionStump 0.513 0.455 0.590 0.590 0.805 0.805 

       

J48 0.540 0.540 0.513 0.485 ? 0.485 

       

LMT (log tree) ? 0.513 ? ? 0.566 ? 

       

Random Forest 0.540 0.579 0.566 0.540 0.642 0.745 

       

Random Tree 0.438 0.600 0.485 0.441 0.611 0.745 

       

 

 

 

 

Table 12:  Left mesial temporal vs right mesial temporal, 10 fold cross validation  

Algorithm 
Theta 

MEG 

Theta 

EEG 

Beta, 

Gamma 

EEG 

Theta, 

Beta, 

Gamma 

EEG 

EEG&MEG 

BayesNet 0.646 0.494 0.818 0.636 0.908 

      

NaiveBayes 0.778 0.636 1.000 0.909 0.261 

      

NaiveBayesMultinomial ? 0.636 0.091 0.091 0.291 

      

Logistic Regression ? 0.617 1.000 0.815 0.818 

      



153 

 

SGD ? 0.617 1.000 0.909 0.545 

      

Multilayer Perceptron ? 0.617 1.000 1.000 0.545 

      

SimpleLogistic 0.778 0.425 0.818 0.815 0.727 

      

SMO (SVM) ? 0.353 0.909 0.909 0.545 

      

DecisionStump 0.675 0.723 0.818 0.818 0.727 

      

J48 ? 0.545 0.723 0.538 0.545 

      

LMT (log tree) 0.778 0.425 0.818 0.727 0.727 

      

Random Forest 0.738 0.455 0.818 0.723 0.908 

      

Random Tree 0.675 0.273 0.636 0.909 0.727 

      

 

 

 

 

Table 13:  Left vs right TLE, 10 fold cross validation, MEG only  

Algorithm 

Theta 

Coheren

ce 

Alpha 

Coheren

ce 

Beta 

Coheren

ce 
Low 

Gamma 

Coheren

ce 

Beta & 

Low 

Gamma 

Coheren

ce 

TABG 

Coheren

ce 

BayesNet 0.364 0.364 0.723 0.723 0.696 0.617 

       

NaiveBayes 0.696 0.617 0.538 0.545 0.364 0.538 

       

NaiveBayesMultino

mial 
0.091 0.636 

0.364 
0.455 

0.538 
0.445 
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Logistic Regression 0.445 0.331 0.723 0.445 0.636 0.455 

       

SGD 0.331 0.261 0.538 0.636 0.723 0.723 

       

Multilayer 

Perceptron 
0.331 0.261 

0.617 
0.617 

0.636 
OOM 

       

SimpleLogistic 0.140 0.195 0.818 0.445 0.727 0.331 

       

SMO (SVM) 0.261 0.261 0.617 0.617 0.636 0.455 

       

DecisionStump 0.331 0.140 0.727 0.445 0.727 0.331 

       

J48 0.636 0.261 0.727 0.445 0.727 0.445 

       

LMT (log tree) 0.140 0.195 0.818 0.445 0.727 0.331 

       

Random Forest 0.331 0.364 0.808 0.455 0.696 0.636 

       

Random Tree 0.445 0.455 0.723 0.455 0.818 0.538 
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