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COGNITION AND THE BRAIN OF THE HEALTHY OLDEST-OLD 

 

SARA A. SIMS 

 

MEDICAL/CLINICAL PSYCHOLOGY 

 

ABSTRACT  

 

There is an increasing number of people aged 65 and older, particularly in the oldest old 

cohort (aged 85 and older). Aging is characterized by significant changes in the brain 

including disruptions to white matter and functional connectivity. While cognition is 

impacted in many age related diseases, like Alzheimer’s Disease or Parkinson’s Disease, 

an understanding of the healthy aging brain is important for informing research on 

successful aging. 

My dissertation consists of three aims: (1) For the first aim, my overall objective was to 

determine the validity of the NIH toolbox in the oldest old cohort. I used other standard 

measures of cognition and compared performance on the NIH toolbox measures of 

cognition in order to determine validity of the toolbox. (2) For the second aim, I created a 

brain parcellation based on an oldest-old sample so that I could use age appropriate 

network node locations when studying network dynamic measures in Aim 3. (3) For the 

third aim, my overall objective was to identify the degree to which brain networks are 

segregated in healthy oldest-old adults and whether network properties explain variance 

in cognitive performance. To address these aims, I used The McKnight Brain Aging 

Registry (MBAR), which is a multisite study across the McKnight Brain Research 

Foundation institutes. The dataset consists of cognition and MRI data from 200 

individuals who were screened for neurological disorders and cognitive impairment.  



 

  iv 

I have expanded the field’s current knowledge of cognition of successful agers by 

investigating the relationship between brain functional network dynamics and cognitive 

performance in the healthy oldest old as well as the validity of new measures of cognition 

in this cohort. I add to the literature on age-related dedifferentiation, showing that even in 

a very old and cognitively healthy sample, cognitive dedifferentiation may impact 

executive functioning abilities and functional network dedifferentiation is related to 

cognitive abilities.  

 

Keywords: oldest-old, cognitive aging, networks, segregation, dedifferentiation, 

processing speed 
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INTRODUCTION 

 

 An increasing number of people are reaching the age of 65 and older, with rapid 

growth of the 85 and older cohort (Vincent & Velkoff, 2010). It is estimated that by 

2050, people aged 85 and over will make up more than 21% of the older adult population 

(Vincent & Velkoff, 2010). The oldest-old cohort is of particular research interest 

because these individuals have undergone healthy cognitive aging - a goal for most older 

adults. Since successful brain aging is important to quality of life, the goal of aging 

research is no longer to promote survival to old age, but thriving in older adulthood, and 

these studies focus on a thriving older adults sample.  

The first step to understanding cognitive aging is studying successful agers. 

Studying healthy agers is impactful because it enables examination of brain and behavior 

relationships of individuals who have lived into the oldest-old age range without being 

affected by diseases common to aging populations. Studies of the younger-old (65-85 

years old) can be confounded by the inclusion of individuals with pre-symptomatic 

disease, since it is not known which individuals may be experiencing undetectable, pre-

clinical cognitive disorders and which individuals will go on to be healthy for another 

decade. However, the oldest-old have lived into late ages and we can therefore be more 

confident of their status as successful agers. Additionally, these successfully aged 

individuals allow for measurement of the upper-end of the spectrum of aging: what we all 

hope to achieve in the aging process.  

https://sciwheel.com/work/citation?ids=8550246&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8550246&pre=&suf=&sa=0
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While our work exclusively examines individuals who are cognitively healthy, the 

general trend is that variance in cognitive performance and brain metrics increases with 

age. More variance in the variables of interest helps us better understand the relationship 

between the brain and preserved cognition (Gratton, Nelson, & Gordon, 2022). 

With age, the ability to think and reason declines, with executive functioning and 

processing speed being particularly affected by aging (Reuter-Lorenz, Festini, & Jantz, 

2016; Spaan, 2015). Dedifferentiation has been used to help explain cognitive and brain 

changes in aging individuals. Dedifferentiation describes how previously the process of 

previously separable entities becoming less distinct; this concept can be used to describe 

cognitive abilities (Baltes et al., 1980) as well as network organization (Goh et al., 2011). 

However, relatively little work has examined cognition and brain relationships in oldest-

old individuals (Wettstein, Wahl, & Heyl, 2015).  

An important societal goal is an intervention to slow or stop age-related cognitive 

decline; essentially to develop strategies to make all oldest-old adults more like the rarer 

cognitively healthy oldest-old adults. Thus, understanding the aspects of healthy oldest-

old brains which contribute to healthy cognitive performance is essential to developing 

cognitive rehabilitation interventions for aging individuals. The experiments performed in 

Paper 1 addressed: 1) the capacity and validity of measuring cognitive domains in oldest-

old adults, and in Paper 2 addressed: 1) creating oldest-old specific brain network 

parcellation, and 2) relating cognitive measures to brain functional network dynamics. 

  

https://sciwheel.com/work/citation?ids=12930520&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8623966,8623973&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=8623966,8623973&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=8623993&pre=&suf=&sa=0
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NIH Toolbox Cognitive Battery 

The NIH Toolbox Cognitive assessment battery (NIH TB-CB) was developed as a 

way to strive toward brevity, portability, and homogeneity in neurobehavioral assessment 

research through the use of short tasks that can be administered via iPad (Gershon et al., 

2013). The NIH TB-CB covers a wide range of cognitive domains including executive 

functioning, episodic memory, language, processing speed, attention, and working 

memory (Gershon et al., 2013). Factor analysis of the NIH TB-CB measures with “gold 

standard” measures of the same domains of cognition has revealed convergent and 

discriminant validity of these measures (Mungas et al., 2014). Mungas and colleagues 

(2014) tested the validity of the NIH TB-CB in a younger age range (20-85) by 

generating a series of factor models and then comparing the models based on model fit 

indices. They found that the 5 factors of Vocabulary, Reading, Episodic Memory, 

Working Memory, and Executive Function/Processing Speed best described the 

relationship between the NIH TB and the gold standard measures. This factor structure 

did not vary across their younger adult (20-60) and older adult (60-85) age groups. The 

factor loadings also supported convergent and discriminant validity. However, normative 

data for the NIH TB-CB was only collected for adults up to age 85, leaving out an ever-

growing percentage of the older adult population.  

In order to better understand the utility of the NIH TB-CB in the oldest-old 

population, the current study used confirmatory factor analysis to investigate (1) whether 

the NIH TB-CB factor structure differs in the oldest-old adults compared to what was 

previously reported for younger older adults (Mungas et al., 2014) and (2) if there is 

convergent and discriminant validity among the NIH TB-CB and validated measures in 

the oldest-old. I was also interested in the impact of an individual’s experience with 

https://sciwheel.com/work/citation?ids=4464340&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4464340&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4464340&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1453300&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1453300&pre=&suf=&sa=0
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technology on NIH TB-CB composite scores. I hypothesized that the factor structure of 

the NIH Toolbox is consistent across the lifespan, therefore the 5-factor model, derived 

from a younger adult sample (Mungas et al., 2014) would have a better model fit than 

alternative factor models. 

Based on the methods of previous work (Mungas et al., 2014), in this study, I 

assessed the degree to which the original conceptual model, which was created during the 

production of the NIH TB-CB, aligns with the factor structure created from an oldest-old 

sample. This approach established the reproducibility of previous findings (Mungas et al., 

2014) while extending it into the oldest-old cohort.  

 

Brain Network Parcellation for the Oldest-Old 

When studying interactions among brain networks, it is important to know that 

the individual elements (nodes) in the network are correctly identified in the cerebral 

cortex. Some literature suggests that these network elements may be different in older vs. 

younger adults (Han et al., 2018). Therefore, it is important to use an age-specific cortical 

parcellation that most accurately represents the brain organization of the sample. 

Although there is evidence that increasing age is associated with decreasing segregation 

of brain systems and functional brain networks, such observations are limited by having 

only been found in younger age ranges using younger adult nodes (Han et al. 2018; 

Geerligs et al. 2015; Chan et al. 2014; Wig 2017). Han et al. (2018) found that while the 

spatial organization of large-scale brain networks is relatively maintained throughout 

aging, the boundaries of resting-state functional connectivity-defined area parcellation 

become more dissimilar from the younger adult map with increasing age, with the largest 

distinction between parcellations in the younger-adults and oldest-old adults. 

https://sciwheel.com/work/citation?ids=1453300&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1453300&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1453300&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1453300&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6072385&pre=&suf=&sa=0
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Additionally, cohort-specific parcellations were more homogenous and provided better 

estimates of functionally distinct areas compared to parcellations defined by younger-

adult nodes (Han et al., 2018). Based on these findings, I created a cortical parcellation 

with nodes that would best fit our cognitively healthy oldest-old sample using similar 

methods as Han et al. (2018) and Chan et al. (2014).  

 

Cognition and Brain Network Segregation in the Healthy Oldest-Old 

 

Next, I aimed to understand how measures of cognition relate to brain network 

dynamics. There are some cognitive domains that are especially susceptible to age-related 

decline, including processing speed, executive function, and memory (Reuter-Lorenz et 

al., 2016; Spaan, 2015). Brain networks are an important avenue of aging and cognitive 

research since network infrastructure, including network integration and segregation, 

have been shown to be related to cognition (Chan, Park, Savalia, Petersen, & Wig, 2014; 

Cohen & D’Esposito, 2016; Shine et al., 2016). The term segregation refers to the 

balance of connectivity within and among networks, with very high segregation 

indicating isolated networks and very low segregation indicating networks are no longer 

separable ((Wig, 2017); Figure 1).  

  

https://sciwheel.com/work/citation?ids=8623966,8623973&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=8623966,8623973&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=3930587,56904,4882802&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=3930587,56904,4882802&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=4452885&pre=&suf=&sa=0
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Increasing segregation  

 

Figure 1. Spectrum of network segregation. The circles represent network nodes or regions 

of the network, and the lines represent connections between the nodes. Each color in the 

circles represents a distinct network. The middle panel depicts balanced networks with 

integration (connections within the network) and segregation (the distinction between 

networks with fewer connections between networks than within a network). To the right of 

the middle panel, networks become increasingly isolated with increasing segregation. To 

the left of the middle panel, networks become decreasingly distinguishable with decreasing 

segregation. Images adapted from Wig 2017.  

 

Recent studies have shown that the network properties of brain connectivity 

change over the lifespan (20-89 years old) and that older adults have less well-segregated 

networks (Chan et al., 2014). Previous work has shown that many brain factors contribute 

to preserving cognition in aging populations. Such factors include improved efficiency of 

network structure and intact white and gray matter structure, which both relate to 

relatively better cognitive performance (Vaqué-Alcázar et al., 2020). We know that brain 

networks also play a key role in aging since older adults exhibit changes in brain 

structural and functional network integrity as part of the aging process (Marstaller, 

Williams, Rich, Savage, & Burianová, 2015). For example, relative to younger adults, 

older adults have weaker connections within functional networks, including the fronto-

parietal, salience, and default mode networks (Marstaller et al., 2015). Also, older adults 

exhibit an overall decline in gray matter thickness and white matter integrity related to 

declining functional network engagement (Marstaller et al., 2015). In addition, brain 

https://sciwheel.com/work/citation?ids=56904&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8678486&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3456898&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3456898&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3456898&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3456898&pre=&suf=&sa=0
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structure and function are impacted by many of the diseases that are common in the aging 

population including cognitive disorders such as Alzheimer’s Disease and mild cognitive 

impairment (MCI) (Birdsill et al., 2014; Chhatwal et al., 2018; Pichet Binette et al., 2020; 

Taylor et al., 2017).  

The association system consists of higher-order cognition networks such as the 

frontoparietal network (FPN), cingulo-opercular network (CON), and default mode 

network (DMN). These networks are associated with poorer performance on measures of 

episodic memory, processing speed, attention, and executive functions (Chan, Alhazmi, 

Park, Savalia, & Wig, 2017; Damoiseaux, 2017; Goh, 2011; Hausman et al., 2020; Iordan 

et al., 2017; Koen, Srokova, & Rugg, 2020; Nashiro, Sakaki, Braskie, & Mather, 2017; 

Ng, Lo, Lim, Chee, & Zhou, 2016; Varangis, Habeck, Razlighi, & Stern, 2019). 

However, Chan et al. (2014) only reported the relationship between the segregation of the 

association system as a whole to measures of cognitive performance. Here, I focused on 

not only the association system but the networks that comprise that system including the 

FPN, CON, and DMN in order to look at specific network segregation relationships to 

cognitive domains. I used the network nodes created from the MBAR sample of oldest-

old individuals which were created as part of Aim 2.  

My objectives were to 1) identify the degree to which the association system and 

functional networks are segregated in healthy oldest-old adults and 2) determine if 

network segregation explains variance in cognitive performance. I hypothesized that 

maintaining cognition at age 85+ requires segregated association networks.  

 

Much previous research on aging has focused on age-related diseases and disease-

related brain changes. Other studies have examined differences between younger and 

https://sciwheel.com/work/citation?ids=4938074,8199976,6731207,3447541&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=4938074,8199976,6731207,3447541&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=9130742,3340898,3572930,4639079,7899037,8550303,7516563,4067222,340611&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=9130742,3340898,3572930,4639079,7899037,8550303,7516563,4067222,340611&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=9130742,3340898,3572930,4639079,7899037,8550303,7516563,4067222,340611&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=9130742,3340898,3572930,4639079,7899037,8550303,7516563,4067222,340611&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0
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older adults in a relatively small age range. Thus the functioning of a healthy aging brain 

in the oldest-old age group (85 and older) is largely understudied. In these studies, I have 

expanded on prior methods of studying the functional networks and cognition by using an 

older, 85+ population. The goal of this study was to further investigate cognition in the 

context of successful brain aging in the oldest-old cohort by examining new cognitive 

measures and how functional network dynamics are associated with cognitive 

performance.  

My dissertation is innovative in addressing the validity of the NIH TB in adults 

over 85, which has not been done before. Technology use in the testing environment is 

emerging and so ensuring the validity of using these new methods of neuropsychological 

testing in the aging population is essential. Research in this area is novel in that it applies 

network dynamics to an oldest-old cohort and looks at the relationship between network 

dynamics and cognition within that cohort. 

An understanding of the healthy aging brain’s functional networks and cognitive 

performance will help define the goal of becoming a healthy ager for studies assessing 

cognitive rehabilitation interventions for aging-related cognitive disorders. Although 

research in the 85+ age group is increasing, a lack of data has hindered research in the 

oldest-old, especially individuals who have successfully aged to 85 years and older 

(Bennett et al., 2017; Giulioli & Amieva, 2016; Rogalski et al., 2019). In particular, some 

widely-used methods from research on younger people have not been validated in this 

population. Further, while some aspects of brain function have been shown to change 

with age and with age-related changes in behavior, a thorough investigation of the 

complex relationship between cognitive abilities and functional network dynamics has 

yet to be done in the oldest-old.  

https://sciwheel.com/work/citation?ids=8550224,8678073,4852832&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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Abstract 

Objective 

To evaluate the construct validity of the NIH Toolbox Cognitive Battery (NIH TB-CB) in 

the healthy oldest-old (85+ years old).  

Method 

Our sample from the McKnight-Brain-Aging-Registry consists of 179 individuals, 85 to 

99 years of age, screened for memory, neurological, and psychiatric disorders. Using 

previous research methods on a sample of 85+ y/o adults, we conducted confirmatory 

factor analyses on models of NIH TB-CB and same domain standard neuropsychological 

measures. We hypothesized the five-factor model (Reading, Vocabulary, Memory, 

Working-Memory, and Executive/Speed) would have the best fit, consistent with younger 

populations. We assessed confirmatory and discriminant validity. We also evaluated 

demographic and computer use predictors of NIH TB-CB composite scores.  

Results 

Findings suggest the six-factor model (Vocabulary, Reading, Memory, Working 

Memory, Executive, and Processing Speed) had a better fit than alternative models. NIH 

TB-CB tests had good convergent and discriminant validity, though tests in the executive 

functioning domain had high inter-correlations with other cognitive domains. Computer 

use was strongly associated with higher NIH TB-CB overall and fluid cognition 

composite scores. 

Conclusion 

The NIH TB-CB is a valid assessment for the oldest-old samples, with relatively weak 

validity in the domain of executive functioning. Computer use’s impact on composite 

scores could be due to the executive demands of learning to use a tablet. Strong 
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relationships of executive function with other cognitive domains could be due to 

cognitive dedifferentiation. Overall, the NIH TB-CB could be useful for testing cognition 

in the oldest-old and the impact of aging on cognition in older populations. 

 

Keywords: Aged 85 and over, neuropsychological tests, cognition, confirmatory factor 

analysis, construct validity, test development 

 

Introduction 

The population of individuals within the oldest-old age range (85 years and older) 

is rapidly growing (Vincent & Velkoff, 2010). However, the lack of available data with a 

comprehensive assessment of cognitive functions in healthy agers over age 85 limits 

research in this age cohort. The developers of the NIH Toolbox- Cognitive Battery (NIH 

TB-CB) limited their collection of normative data to those ages 3-85. Technology use in 

the cognitive testing environment is emerging, so ensuring the validity of using these new 

neuropsychological testing methods in the aging population is essential - especially since 

this oldest-old population may be less likely than other age groups to be comfortable with 

technology usage. Results of this study inform the use of the NIH TB-CB in future 

research in the oldest-old population. 

The NIH Toolbox Cognitive Battery (NIH-CB) strives towards brevity, 

portability, and homogeneity in neurobehavioral assessment research through short tasks 

performed on an iPad (Gershon et al., 2013). The Cognitive Battery covers a wide range 

of cognitive domains, including executive functioning, episodic memory, language, 

processing speed, attention, and working memory (Gershon et al., 2013). The NIH 

Toolbox is valid in diverse samples of varying age, language, race, ethnicity, gender, 

https://sciwheel.com/work/citation?ids=8550246&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4464340&pre=&suf=&sa=0
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education, developmental disability, and neurological conditions (N E Carlozzi et al., 

2017; Flores et al., 2017; Hackett et al., 2018; Heaton et al., 2014; Hessl et al., 2016; Ma 

et al., 2021; Mungas et al., 2013; Tulsky et al., 2017; Weintraub, Dikmen, et al., 2013; 

Weintraub et al., 2014). For example, Mungas and colleagues (2014) examined younger 

and older age groups but only up to age 85. While the NIH TB-CB has been used in older 

adult samples (O’Shea et al., 2018), to our knowledge, no findings have been reported on 

the effectiveness of the NIH TB-CB as a battery to measure cognitive functions in 

healthy individuals over age 85. 

Factor analysis of the NIH Toolbox cognitive measures with standard 

neuropsychological tests of the same domains of cognition revealed good construct 

validity (Mungas et al., 2014). Meaning, there was support for correspondence between a 

given domain and a test used to measure it, which was indicated by the individual tests 

showing both strong associations with the hypothesized cognitive domains (i.e., 

convergent validity); as well as, weak relationships between each of the tests and other 

domains (i.e., discriminant validity). In this case, Mungas and colleagues (2014) tested 

the validity of the NIH TB-CB in a cohort of adults, 20 to 85 years of age using 

confirmatory factor analysis. Although the NIH Toolbox assesses six specific domains 

(working memory, executive function, episodic memory, processing speed, vocabulary, 

and reading), they found that a five-factor model best describes the relationship between 

the NIH Toolbox Cognitive Battery and standard neuropsychological measures: 

Vocabulary, Reading, Episodic Memory, Working Memory, and Executive 

Function/Processing Speed with the NIH TB-CB tests falling largely within expected 

domains (Mungas et al., 2014). This factor structure did not vary across younger (ages 

20-60) and older adults (ages 60-85), supporting the use of the NIH TB-CB as a measure 

https://sciwheel.com/work/citation?ids=11659563,10009759,1453303,5725395,1453309,4464338,3547528,2063715,11723469,11723601&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=11659563,10009759,1453303,5725395,1453309,4464338,3547528,2063715,11723469,11723601&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=11659563,10009759,1453303,5725395,1453309,4464338,3547528,2063715,11723469,11723601&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=11659563,10009759,1453303,5725395,1453309,4464338,3547528,2063715,11723469,11723601&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=12019544&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1453300&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1453300&pre=&suf=&sa=0
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of cognitive health across the adult age range from 20 to 85. Investigating the factor 

structure of the NIH TB-CB in individuals older than age 85 provides an important 

opportunity to evaluate its utility for assessing cognitive functions in the fastest growing 

age group within the population of healthy older adults. 

This study examines the validity of the NIH TB-CB cognitive domains in 

cognitively healthy older adults over age 85, which, to our knowledge, has yet to be 

reported. We employed a series of confirmatory factor analyses to investigate the 

convergent and discriminant validity, as well as the dimensional structure underlying the 

NIHTB-CHB and other validated measures of cognition in healthy older adults aged 85 

years old and over. We hypothesized that the factor structure of the NIH Toolbox would 

be consistent across the lifespan, and thus the 5-factor model, derived from a younger 

adult sample (Mungas et al., 2014), would have a better model fit than alternative factor 

models. We also sought to evaluate the influence of demographic characteristics and 

computer use in this oldest-old age cohort on NIH TB-CB Composite scores.  

 

Method 

Participants  

We analyzed data collected from the McKnight Brain Aging Registry, a cohort of 

community-dwelling, cognitively unimpaired older adults, 85 to 99 years of age. Figure 1 

shows the extensive participant screening process. During initial screening over the 

phone, trained study coordinators administered the Telephone Interview for Cognitive 

Status modified (TICS-M) (Cook, Marsiske, & McCoy, 2009) and an interview to assess 

for major exclusion criteria, which included individuals under age 85, severe psychiatric 

conditions, and neurological conditions, and cognitive impairment. Following the 

https://sciwheel.com/work/citation?ids=1453300&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3341458&pre=&suf=&sa=0
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telephone screening, eligible participants underwent an in-person screening visit during 

which they were evaluated by a neurologist, a detailed medical history was obtained to 

assess health status and eligibility, and the Montreal Cognitive Assessment (MoCA) was 

administered (Nasreddine et al., 2005). An additional point was added for adjustment of 

the MoCA score to account for non-white race and/or education equal to or below 12th 

grade. This adjustment was for the purpose of fairly screening individuals of lower 

education or non-white backgrounds and this adjustment is not based on normative data. 

The study was conducted in accordance with the Helsinki declaration. Approval for the 

study was received from the Institutional Review Boards at each of the data collection 

sites including University of Alabama at Birmingham, University of Florida, University 

of Miami, and University of Arizona. 

 

  

https://sciwheel.com/work/citation?ids=1028118&pre=&suf=&sa=0
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Figure 1. Participant Screening Process 

 

Telephone screening criteria included exclusion for major physical disabilities, 

dependence in instrumental activities of daily living or basic activities of daily living, 

uncontrolled medical conditions that would limit life expectancy or interfere with 

participation in the study, severe psychiatric conditions, neurological conditions (i.e., 

major vessel stroke, Parkinson’s Disease, dementia), active substance abuse or alcohol 

dependence, less than 6th-grade reading level, vision or hearing deficits that would cause 

impediment to cognitive test administration, MRI contraindications, and inability to 

follow study protocol and task instructions due to cognitive impairment. TICS-M was 

administered over the phone. An additional evaluation was included in the screening 

visit, including examination by a neurologist, geriatric depression scale, and detailed 

medical history. 

 

Our fully screened sample consists of 192 community-dwelling individuals aged 

85-99. We removed data from 13 participants from the analysis due to missingness 

related to administrator error, low visual acuity, participant’s color blindness, or 
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participant not completing the task. This left a remaining 179 participants in our sample. 

Only 138 participants were given the questionnaire related to computer use since this was 

adopted after data collection had begun; therefore analyses with the computer frequency 

variable are based on those 138 participants. Data from this group of healthy agers were 

collected using a standardized protocol across the four McKnight Institutes: University of 

Alabama at Birmingham, University of Florida, University of Miami, and University of 

Arizona. We recruited participants through mailings, flyers, physician referrals, and 

community-based recruitment.  
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Table 1. Participant Characteristics 

Participant Characteristics 

Total Sample (N=179) 

Age (Years), +/- SD (Years) 88.34 +/- 3.06 (85-99) 

Education (Years), Mean +/- SD (range) 18.13+/-2.69 (11-22) 

Race and Education Adjusted MoCA, 

Mean +/- SD (range) 
24.78 +/- 2.51 (17-30) 

NIH TB Cognitive Total Composite 

demographically corrected* standard 

score, Mean +/- SD (range) 

104.75+/- 12.18 (71-135) 

NIH TB Cognitive Fluid Composite 

demographically corrected* standard 

score, Mean +/- SD (range) 

97.52 +/- 12.7 (75-130) 

NIH TB Cognitive Crystallized 

Composite demographically corrected* 

standard score, Mean +/- SD (range) 

110.7 +/- 12.84 (71-170) 

Sex, N(%) 

Female 96 (53.63%) 

Male 83 (46.36%) 

Race/Ethnicity, N(%) 

Non-Hispanic Caucasian 165 (92.21%) 

African American  6 (3.35%) 

Hispanic Caucasian 5 (2.79%) 

Asian 3 (1.67%) 

Marital Status, N(%) 

Widowed 87 (48.6%) 

Married 70 (39.1%) 

Divorced 13 (7.26%) 

Domestic Partnership 6 (3.35%) 

Never Married 3 (1.67%) 

Sample Subset (N=138) 

Computer Use Frequency, Mean +/- SD 

(range) 
2.8+/-1.75(0-5) 

NIH TB Uncorrected Total Cognition 

Composite Score, Mean +/- SD (range) 
 95 +/- 8.53 (76-116) 

NIH TB Uncorrected Fluid Cognition 

Composite Score, Mean +/- SD (range) 
80+/-9.38 (61-102) 

NIH TB Uncorrected Crystallized 

Cognition Composite Score, Mean +/- 

SD (range) 

112+/-7.87 (93-129) 
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*Note that demographic corrections are not available for individuals over age 85, 

therefore corrections for all participants, including those over 85 years of age, were 

based on normative data for individuals age 85 years old.  

 

Cognitive measures 

Testing was performed by staff trained and certified across the four sites to 

administer the test battery. Testing was administered across two visits on separate days. 

We performed quality control on behavioral data through the double data entry tool in 

Redcap, wherein we entered data twice, and discrepancies were identified and corrected 

(Harris et al., 2019, 2009). The data were then again visually inspected and assessed for 

potential outliers and errors.  

 

NIH TB-CB measures 

We used scores from the NIH TB-CB (Gershon et al., 2013; Weintraub et al., 

2014), including the Dimensional Change Card Sort (DCCS) Test, the Flanker Inhibitory 

Control and Attention Test, the Picture Sequence Memory Test, the Pattern Comparison 

Processing Speed Test, the List Sorting Working Memory Test, the Oral Reading 

Recognition Test, and the Picture Vocabulary Test. The Dimensional Change Card Sort 

(DCCS) Test measures executive function by indicating a target characteristic and then 

instructing participants to quickly select the object that matches the indicated 

characteristic for that trial (either shape or color). The Flanker Inhibitory Control and 

Attention Test measures executive function by having participants quickly select the 

correct direction of an arrow among a set of arrows. The Pattern Comparison Processing 

Speed Test measures processing speed by having participants quickly decide whether or 

not two images match. The Picture Sequence Memory Test measures episodic memory 

https://sciwheel.com/work/citation?ids=6926311,222641&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=4464340,1453309&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=4464340,1453309&pre=&pre=&suf=&suf=&sa=0,0
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by asking participants to place cards in a particular order from memory. The List Sorting 

Working Memory Test measures working memory by presenting an increasing number of 

pictures and then instructing participants to order the pictures by size and semantic 

category from memory. The Oral Reading Recognition Test measures language by 

having participants read aloud words shown on the screen. The Picture Vocabulary Test 

measures language by presenting a word verbally and instructing participants to select 

one of four images that best describes the word. Table 2 includes NIH TB-CB measures 

and their associated domains. Only raw or calculated scores were used for the analysis. 

We also performed follow-up analysis with demographically corrected scores for the NIH 

TB-CB scores. 

Table 2. NIH Toolbox Measures and Associated Cognitive Domains 

 

Measure Scoring 

Measure 

Associated Domains 

Dimensional Change Card 

Sort Test (DCCS) 

Computed 

Scores 

Executive Function (Cognitive 

Flexibility and Attention) 

Flanker Inhibitory Control and 

Attention 

Computed 

Scores 

Executive Function (Cognitive 

Flexibility and Attention) 

Picture Sequence Memory 

Test 

Theta Scores Episodic Memory 

Pattern Comparison 

Processing Speed Test 

Raw Scores Attention and Processing Speed 

List Sorting Working Memory 

Test 

Raw Scores Working Memory and Executive 

Functioning 

Oral Reading Recognition 

Test 

Theta Scores Language (Reading and 

Crystalized Abilities) 

Picture Vocabulary Test Theta Scores Language (Receptive Vocabulary) 
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Standard Neuropsychological measures 

We used standard neuropsychological tests with strong psychometric properties 

within the same domains as those used in the NIH TB-CB. Memory functioning was 

assessed through the California Verbal Learning Test II (CVLT-II) (Delis, Kramer, 

Kaplan, & Ober, 1987), a word list learning task, and the Benson Figure Test (Beekly et 

al., 2007), a visual memory task.  Executive functioning was assessed through the Trail 

Making Test B (Gaudino, Geisler, & Squires, 1995), visual attention and switching task; 

WAIS-IV Matrix Reasoning (Benson, Hulac, & Kranzler, 2010) subtest, which involves 

recognizing and utilizing pattern recognition and integration; and the Stroop Color Word-

Inhibition test (Colin M. MacLeod, 1992; C M MacLeod, 1991), an inhibition task. 

Language/Vocabulary was assessed through the WAIS-IV Similarities (Benson et al., 

2010), which involves explaining abstract relationships between two words. Processing 

speed was assessed through the WAIS-IV Coding and Symbol Search (Benson et al., 

2010) subtests which both involve speeded visual processing. Lastly, working memory 

was assessed through the WAIS-IV Letter-Number sequencing subtest (Benson et al., 

2010), a task involving sequencing a set of letters and numbers, and Digit Span (Beekly 

et al., 2007), a number recall task including recall backward. Table 3 includes the 

standard neuropsychological measures and their associated domains. Only raw or 

calculated scores were used. We also performed follow-up analysis with demographically 

corrected scores for the NIH TB-CB scores. 

  

https://sciwheel.com/work/citation?ids=8625136&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8625136&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8678997&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8678997&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4614290&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2936833&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=372173,284685&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=2936833&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2936833&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2936833&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2936833&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2936833&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2936833&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8678997&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8678997&pre=&suf=&sa=0
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Table 3. Standard Neuropsychological measures and Associated Cognitive Domains 

 

Measures Scoring Measure Domains 

Trail Making Test 

(TMT) Part B 

Time (number of seconds per 

line drawn) 

Executive Functioning 

(Switching) 

Letter-Number 

Sequencing 

Number of correct trials Working Memory (mental 

manipulation) 

Digit Span Backward Number of correct trials Working Memory (mental 

manipulation) 

California Verbal 

Learning Test 

(CVLT) 

Total number of correct 

responses at delayed recall 

Episodic verbal learning and 

memory 

Matrix Reasoning 

(WAIS-IV) 

Total number of correct 

responses 

Perceptual Reasoning (Executive 

Function) 

Coding (WAIS-IV) Total number correct within the 

specified time limit 

Processing Speed 

Symbol Search 

(WAIS-IV) 

The difference in number of 

correct responses and number 

of incorrect responses 

Processing Speed 

Similarities (WAIS-

IV) 

Total number of correct 

responses 

Verbal Reasoning and 

Comprehension 

Stroop Color-Word 

Inhibition 

Interference score Executive Functioning (Inhibition) 

Benson Figure Test Total score based on accuracy 

and placement of figure 

components 

Episodic Visual Memory  

 

 

Confirmatory Factor Analysis 

Based on the methods of previous work from Mungas and colleagues (2014), we 

performed a series of confirmatory factor analyses, which allowed us to assess the degree 

to which the original conceptual model of the NIH Toolbox Cognitive Battery aligns with 

the factor structure of the NIH Toolbox Cognitive Battery and standard 

neuropsychological measures of the same cognitive domains within the oldest-old. We 
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compared models matching this conceptual model, as well as alternative models, detailed 

in Table 4.  

Table 4. Alternative models 

 

1 Factor Model   

Model Factors Measures used in Each Factor 

1a Global All 

2 Factor Models   

Model Factors Measures used in Each Factor 

2a Crystallized 
Oral Reading Recognition, Picture Vocabulary, 

Similarities  

  Fluid 

Picture Sequence Memory, List Sorting WM, LNS, Digit 

Span Backward, CVLT, Benson Figure, DCCS, Pattern 

Comparison Processing Speed, List Sorting WM, TMT 

Part B, Matrix Reasoning, Coding, Symbol Search, Stroop 

Color-Word Inhibition, Flanker 

2b Memory  
Picture Sequence Memory, List Sorting WM, LNS, Digit 

Span Backward, CVLT, Benson Figure  

  
Non- 

memory 

DCCS, Pattern Comparison Processing Speed, List 

Sorting WM, TMT Part B, Matrix Reasoning, Coding, 

Symbol Search, Stroop Color-Word Inhibition, Flanker 

3 Factor Models   

Model Factors Measures used in Each Factor 

3a Language Oral Reading Recognition, Picture Vocabulary  

  EM/WM 
Picture Sequence Memory, List Sorting WM, LNS, Digit 

Span Backward, CVLT, Benson Figure  

  EF/Speed 

DCCS, Pattern Comparison Processing Speed, List 

Sorting WM, TMT Part B, Matrix Reasoning, Coding, 

Symbol Search, Stroop Color-Word Inhibition, Flanker 

3b Language Oral Reading Recognition, Picture Vocabulary  

  EM  Picture Sequence Memory, CVLT, Benson Figure  

  
WM/EF/  

Speed 

DCCS, Pattern Comparison Processing Speed, List 

Sorting WM, TMT Part B, LNS, Digit Span Backward, 

Matrix Reasoning, Coding, Symbol Search, Stroop Color-

Word Inhibition, Flanker 

4 Factor Models   

Model Factors Measures used in Each Factor 

4a Language Oral Reading Recognition, Picture Vocabulary  

  EM Picture Sequence Memory, Benson Figure  

  WM List Sorting WM, LNS, Digit Span Backward 
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  EF/Speed 

DCCS, Pattern Comparison Processing Speed, List 

Sorting WM, TMT Part B, Matrix Reasoning, Coding, 

Symbol Search, Stroop Color-Word Inhibition, Flanker 

4b Vocabulary Picture Vocabulary  

  Reading Oral Reading Recognition  

  EM Picture Sequence Memory, CVLT, Benson Figure  

  
WM/EF/ 

Speed 

DCCS, Pattern Comparison Processing Speed, List 

Sorting WM, Trail Making  Part B, LNS, Digit Span 

Backward, Matrix Reasoning, Symbol Search and 

Coding, Stroop Color-Word Inhibition, Flanker 

4c Vocabulary Picture Vocabulary  

  Reading Oral Reading Recognition  

  EM/WM 
Picture Sequence Memory, List Sorting WM, LNS, Digit 

Span Backward, CVLT, Benson Figure  

  EF/Speed 

DCCS, Pattern Comparison Processing Speed, List 

Sorting WM, TMT Part B, Matrix Reasoning, Coding, 

Symbol Search, Stroop Color-Word Inhibition, Flanker 

5 Factor Models   

Model Factors Measures used in Each Factor 

5a Language Oral Reading Recognition, Picture Vocabulary  

  EM Picture Sequence Memory, CVLT, Benson Figure  

  WM List Sorting WM, LNS, Digit Span Backward 

  EF 
DCCS, List Sorting WM, TMT Part B, Matrix Reasoning, 

Stroop Color-Word Inhibition, Flanker 

  Speed 
Pattern Comparison Processing Speed, Coding, Symbol 

Search  

5b Vocabulary Picture Vocabulary  

  Reading Oral Reading Recognition  

  EM Picture Sequence Memory, CVLT, Benson Figure  

  WM List Sorting WM, LNS, Digit Span Backward 

  EF/Speed 

DCCS, Pattern Comparison Processing Speed, List 

Sorting WM, TMT Part B, Matrix Reasoning, Coding, 

Symbol Search, Stroop Color-Word Inhibition, Flanker 

6 Factor Model   

Model Factors Measures used in Each Factor 

6a Vocabulary Picture Vocabulary  

  Reading Oral Reading Recognition  

  EM Picture Sequence Memory, CVLT, Benson Figure  

  WM List Sorting WM, Digit Span Backward 

  EF 
DCCS, List Sorting WM, TMT Part B, Matrix Reasoning, 

Stroop Color-Word Inhibition, Flanker 

  Speed 
Pattern Comparison Processing Speed, Coding, Symbol 

Search  
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Following Mungas et al. (2014), we included the following tests of model fit: 

overall Chi-square test of model fit as well as the Tucker Lewis Index (TLI) (Tucker & 

Lewis, 1973), Comparative Fit Index (CFI) (Bentler & Bonett, 1980; Bentler, 1990), the 

root mean square error of approximation (RMSEA) (Browne & Cudeck, 1992), and 

Standardized Root Mean Square Residual (SRMR) (Bentler, 1989). We evaluated 

modification indices to see if there could be any significant improvement in the model by 

changing model parameters. We compared models using the Akaike Information 

Criterion (AIC). This approach can further establish the reproducibility of previous 

findings (Mungas et al., 2014) while extending it to our oldest-old cohort. We used R and 

the lavaan package to perform confirmatory factor analysis (Rosseel, 2012). 

 

Evaluation of Validity 

Convergent validity was assessed by examining factor loadings of NIH TB- CB 

on their domain factor and evaluating the correlation between an average of the standard 

neuropsychological measures of a domain and the NIH TB- CB of the domain. 

Discriminant validity was assessed by examining modification indices cross-loadings of 

NIH TB-CB measures, identifying high inter-correlation of factors, and evaluating the 

correlation between an average of the standard neuropsychological measures of a domain 

and the NIH TB-CB of a different domain. These methods of assessing validity of 

cognitive measures have been applied previously (Andresen, 2000; Noelle E Carlozzi et 

al., 2017; Heaton et al., 2014; Tulsky et al., 2017; Weintraub, Bauer, et al., 2013).  

 

 

https://sciwheel.com/work/citation?ids=2756685&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2756685&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=743025,3862468&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=4546801&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11586200&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1453300&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1371241&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7959111,1453303,11659563,8550217,11723563&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=7959111,1453303,11659563,8550217,11723563&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
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Multiple Regression with NIH TB-CB Composite Scores 

Composite scores are automatically generated through the NIH TB-CB. Prior 

work that generated normative data indicated that there is a decline of fluid composite 

scores with age and a plateau of crystallized composite scores after middle age (Casaletto 

et al., 2015). The composite scores from our sample fit with this trend (Table 1) with 

relatively similar crystallized scores as other older adults and lower fluid scores than 

younger adults age groups (Casaletto et al., 2015). Three multiple linear regressions 

predicted the three NIH TB- CB Uncorrected Composite Standard Scores- Total, 

Crystallized, and Fluid. Predictors included years of education, age, gender (1=Male, 

2=Female), race (1=White, 2= Black/African American, 3=Asian), and computer use 

frequency (0=No computer experience/Not used a computer in last three months, 1= Less 

than one hour a week, 2= 1 hour but less than 5 hours a week, 3= 5 hours but less than 10 

hours a week, 4= 10 hours but less than 15 hours a week, 5= At least 15 hours a week). 

Table 1 includes descriptive statistics for these variables. 

 

Results 

Model fit 

Based on prior studies, we hypothesized that the 5-factor model of the NIH TB-

CB and standard neuropsychological measures would have a better fit than alternative 

factor models. We found that the 5-factor (Language, Memory, Working Memory, 

Executive, and Speed) and 6-factor (Vocabulary, Reading, Memory, Working Memory, 

Executive, and Speed) models have similar fit indices that indicate good fit (Table 5). 

The 6-factor model had a slightly smaller AIC (5-factor AIC=16210.229 and 6-factor 

AIC=16208.346). We, therefore, chose the 6-factor model as the best fit. The model 

https://sciwheel.com/work/citation?ids=7343224&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7343224&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7343224&pre=&suf=&sa=0


 

26 

 

aligns with the original six domains of the NIH TB-CB (working memory, executive 

function, episodic memory, processing speed, language, and reading) (Gershon et al., 

2013). 

The 5-factor model found in Mungas et al. (2014) (Vocabulary, Reading, 

Memory, Working Memory, Executive/Speed) was different from the 5-factor model our 

study found to be a good fit in the oldest-old sample. Mungas and colleagues (2014) 

found that the model that combined executive and speed into one factor, and separated 

vocabulary and reading into two separate factors, was a better fit than a 5-factor model 

that separated executive and speed factors and instead combined vocabulary and reading 

into a language factor (Table 5). We did not find an inter-correlation between executive 

and speed factors>.9 as was found in prior studies (Mungas et al., 2014; Tulsky et al., 

2017). 

Table 5. Model Fit Indices  

Model Overall χ² 

[df] 

CFI TLI RMSEA (90% CI) SRMR AIC 

1a 283.765 [119] 0.784 0.753 0.088 (0.075-0.101) 0.075 16699.98 

2a 240.598 [118] 0.839 0.814 0.076 (0.062-0.09) 0.072 16658.794 

2b 274.544 [118] 0.794 0.763 0.086 (0.073-0.099) 0.074 16692.739 

3a 223.483 [116] 0.859 0.834 0.072 (0.058-0.086) 0.071 16645.678 

3b 220.664 [116] 0.862 0.839 0.071 (0.057-0.085) 0.068 16642.86 

4a 195.412 [113] 0.892 0.87 0.064 (0.048-0.079) 0.065 16623.608 

4b 215.099 [114] 0.867 0.842 0.070 (0.056-0.085) 0.067 16641.294 

4c 221.732 [114] 0.858 0.831 0.073 (0.058-0.087) 0.07 16647.928 

5a 172.573 [109] 0.916 0.896 0.057(0.040-0.073) 0.06 16608.769 

5b 187.030 [110] 0.899 0.875 0.063 (0.047-0.078) 0.064 16621.225 

6a 162.623 [105] 0.924 0.902 0.055 (0.038-0.072) 0.058 16606.818 

Overall chi-squared measures how well a model compares to observed data. Comparative 

Fit Index (CFI) examines the discrepancy between data and the hypothesized model. 

Tucker Lewis Index (TLI) analyzes the discrepancy between the  x2 of the hypothesized 

https://sciwheel.com/work/citation?ids=4464340&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4464340&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1453300,11659563&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=1453300,11659563&pre=&pre=&suf=&suf=&sa=0,0
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model and the null model. The Root Mean Squared Error of Approximation (RMSEA) 

analyzes discrepancy between the hypothesized model (with optimal parameter 

estimates) and population covariance matrix. The Standardized Root Mean Square 

Residual (SRMR) is the root of the discrepancy between the sample covariance matrix 

and model covariance matrix. The Akaike Information Criterion (AIC) is a value used to 

evaluate how well a model fits the data. Lower is a better fit. 

 

Convergent Validity 

Standardized coefficients for the 6-factor model (Table 6) showed NIH TB-CB 

measures loaded strongly on their respective factors, supporting convergent validity. 

Picture Vocabulary loaded very highly (.82) on the Vocabulary factor; List-Sorting 

loaded highly (.634) on the Working Memory factor; both DCCS and Flanker loaded 

strongly (.62 and .585) on the Executive Functioning factor; Picture Sequencing loaded 

strongly (.533) on the Memory factor, and Pattern Comparison had a moderate loading 

(.442) on the Speed factor. When we analyzed the correlation between an average of the 

standard neuropsychological measures of a domain and the NIH TB- CB of the domain, 

we found Picture Sequence, List-Sorting, Pattern Comparison, and Picture Vocabulary all 

had adequate correlations for convergent validity; however, Flanker and DCCS measures 

had weak correlations with the executive functioning standard neuropsychological 

measures, and therefore convergent validity was not supported based on this metric 

(Andresen, 2000). Since we did not have a standard neuropsychological measure 

available to load with the NIH TB-CB Oral Reading Task, convergent validity for the 

Reading domain was not assessed.  

  

https://sciwheel.com/work/citation?ids=7959111&pre=&suf=&sa=0
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Table 6. Standardized coefficients for the 6-factor model 

Latent 

Factor 
Observed Indicator Loading 

Vocabulary 
TB Picture Vocabulary 0.82 

WAIS-IV Similarities 0.664 

Reading TB Oral Reading 1 

Episodic 

Memory 

TB Picture Sequence Memory 

CVLT 

Benson Figure 

0.533 

0.703 

0.413 

Working 

Memory 

TB List Sorting 0.634 

Letter Number Sequence 0.503 

Digit Span Backwards 0.648 

Executive 

Function 

TB DCCS 

TB Flanker Test 

WAIS-IV Matrix Reasoning 

Stroop Interference 

Trails B 

-0.62 

-0.585 

-0.555 

-0.293 

0.675 

Speed 

TB Pattern Comparison 0.442 

WAIS-IV Coding 0.72 

WAIS-IV Symbol Search 0.807 

 

 

Discriminant Validity 

Only one weak modification index indicated a split loading of the NIH TB-CB 

Flanker measure on the Vocabulary factor. The lack of strong cross-loadings between 

factors indicated discriminant validity of our model. Additionally, the intercorrelations 

among the six factors (intercorrelation range of r=.157-.811; Table 7) were within 

acceptable limits as used in a prior NIH TB validity study (Tulsky et al., 2017). The 

consistently highest inter-correlations were between executive functioning and other 

domains (intercorrelations range of r=.428-.811; Table 7). While vocabulary and reading 

were correlated (r=.641), these two crystallized intelligence factors were also related to 

fluid intelligence factors; therefore, there was no clear crystallized/fluid separation.  

  

https://sciwheel.com/work/citation?ids=11659563&pre=&suf=&sa=0
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Table 7. Inter-correlation of factors for the 6-factor model 

  Episodic 

Memory 

Working 

Memory 

Speed Executive 

Function 

Vocabulary 

Working 

Memory 

0.487      

Speed 0.587 0.499     

Executive 

Function 

-0.616 -0.77 -0.811    

Vocabulary 0.537 0.68 0.579 -0.715   

Reading 0.157 0.494 0.238 -0.428 0.641 

 

 

The correlation between an average of the standard neuropsychological measures 

of a domain and the NIH TB-CB of a different domain indicated Picture Sequence, List-

Sorting, Pattern Comparison, and Picture Vocabulary all had correlations to other 

domains that were smaller than the correlation to their domain (Figure 2). However, 

Flanker and DCCS measures had higher correlations to domains outside Executive 

Functioning; therefore, this metric indicates poor discriminant validity for these 

measures.  
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Figure 2. Correlations between NIH TB-CB Measures and standard neuropsychological 

Domain Average 

 

TB= NIH TB-CB measures; green outline= within domain correlation, consistent with 

convergent validity; black outline= outside domain correlation, consistent with 

discriminant validity 

 

Together, convergent and discriminant validity evidence indicates sufficient 

construct validity of the NIH TB-CB within an 85+ cohort, with relatively weaker 

construct validity for executive functioning measures in the NIH TB-CB.  
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Predictors of NIH TB-CB Composite Scores 

Race (β=−3.5, p=.009), data collection site (β=1.98, p=.017), computer use 

frequency (β=1.19, p=.007), and years of education (β=.64, p=.021) were significant 

predictors of the NIH TB-CB Total composite score and the overall model’s adjusted R2 

was .1541 (p<.001) There was a significant  R2-change of .164 (p<.001) between the first 

block of the covariate, site, and the second block with race, gender, age, years of 

education, and computer use frequency.  

Only computer use frequency (β=1.12, p=.02) was a significant predictor of NIH 

TB-CB Fluid composite score, and the overall model’s adjusted R2 was .03 (p=.07). 

There was a significant R2-change of .0717 (p=.042) between the first block of the 

covariate, site, and the second block with race, gender, age, years of education, and 

computer use frequency.  

Race (β=−4.16, p=.001) and years of education (β=1.1, p<.001) were significant 

predictors of NIH TB -CB Crystallized composite score, and the overall model’s adjusted 

R2 was .21 (p<.001). There was a significant R2-change of .17 (p<.001) between the first 

block of the covariate, site, and the second block with race, gender, age, years of 

education, and computer use frequency.  

 

Follow-up Analysis with Demographically-Corrected Scores for the NIH TB-CB 

We repeated the analysis with demographically-corrected scores for the NIH TB-

CB and found no differences in the interpretation of the findings including no changes in 

determination of best fitting model, validity or predictors of NIH TB- CB Composite 

Scores (see Supplemental Table 1 and 2 for model fit indices and model standardized 

coefficients). 
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Discussion 

In our cohort of cognitively unimpaired, older adults over 85 years of age, the 

NIH TB-CB tests and standard neuropsychological measures had convergent and 

discriminant validity, consistent with the six domains of cognition initially intended to be 

evaluated by the NIH TB-CB. These findings suggest the NIH TB-CB has construct 

validity in oldest-old adults, ages 85-99. The 5-factor model (model 5a), which combines 

reading and vocabulary into a language factor, also displayed a good model fit. There was 

relatively less evidence to support the combination of executive function and speed 

factors, as shown in the 5-factor model by Mungas and colleagues (2014). However, 

there were strong relationships between executive function and all other factors. We also 

found that computer use frequency strongly predicted the total and fluid NIH TB-CB 

composite scores, suggesting that either (1) greater experience with computers impacts 

performance on this tablet-based assessment or (2) having lower cognitive capacity 

(reflected in the NIH TB-CB scores) leads to less computer use. 

 

Cognitive Dedifferentiation and the Executive Decline Hypothesis 

Cognitive dedifferentiation describes the tendency for separable cognitive abilities 

(such as language and executive function) to become less separable with age; 

dedifferentiation may reflect underlying cognitive impairment  (Baltes, Cornelius, Spiro, 

Nesselroade, & Willis, 1980; Batterham, Christensen, & Mackinnon, 2011; Hülür, Ram, 

Willis, Schaie, & Gerstorf, 2015; Wallert et al., 2021; Wilson, Segawa, Hizel, Boyle, & 

Bennett, 2012). Our findings of more widespread domain intercorrelations with executive 

functioning could reflect age-related cognitive dedifferentiation. We only included 

https://sciwheel.com/work/citation?ids=5274396,2404492,11483745,5572097,5274459&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=5274396,2404492,11483745,5572097,5274459&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=5274396,2404492,11483745,5572097,5274459&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=5274396,2404492,11483745,5572097,5274459&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
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healthy individuals in our sample, so this cognitive dedifferentiation may be a result of 

healthy aging.  

A potential explanation for the strong relationship between executive function and 

other cognitive domains is that executive functions may play a greater role in supporting 

non-executive task performance in older people, as outlined in the executive decline 

hypothesis (Crawford, Bryan, Luszcz, Obonsawin, & Stewart, 2000; Ferrer-Caja, 

Crawford, & Bryan, 2002; Salthouse, Atkinson, & Berish, 2003). Prior factor analysis 

research has shown similar relationships between executive and non-executive tasks 

(Lamar, Zonderman, & Resnick, 2002). This reflects on a broader issue in classifying 

tests as measuring only a single domain. The NIH-TB was intentionally developed so that 

each cognitive domain would be linked to one or two tasks from the toolbox. The 

domains are not pure, however, and the tests used to assess each are likely to be affected 

by performance limitations in other domains.   

We found that the best-fitting model was the 6 factor model, rather than the 5 

factor model (model 5b) that Mungas et al (2014) found to best fit data for a younger 

sample. The difference in best-fit model could be due to increased associations of 

executive function with all other domains in the oldest-old. Both the hypothesis of greater 

cognitive dedifferentiation with age and the executive decline hypothesis would predict 

increased association of executive function with other domains, as was observed.  Thus, 

our result is likely to represent a more holistic effect than simply reflecting a tight 

coupling between executive functioning and speed domains in this population. 

https://sciwheel.com/work/citation?ids=11640025,11640026,452029&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11640025,11640026,452029&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=8696656&pre=&suf=&sa=0
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Role of computer use frequency in cognitive performance 

Younger age, higher education, non-Hispanic ethnicity, physical health, and 

mental health have been shown to be predictors of greater computer use (Werner, 

Carlson, Jordan-Marsh, & Clark, 2011). Additionally, perceptual speed moderates the 

relationship between age and technology ownership (Kamin & Lang, 2016). Previous 

work has indicated a relationship between cognitive performance and the level of 

computer experience (Fazeli, Ross, Vance, & Ball, 2013; Wu, Lewis, & Rigaud, 2019). 

Since computer use frequency was a significant predictor of total and fluid composite 

scores, technological familiarity may play a crucial role in performance on NIH TB-CB 

measures. Participants who were relatively less familiar with technology may have also 

experienced increased demand on executive functioning as they had to learn 

technological skills while also performing a cognitive task. Alternatively, since adept use 

of computers requires cognitive abilities such as executive functioning and processing 

speed, participants with lower cognitive abilities may tend to avoid engagement with 

computers in their daily lives due to the cognitive demands of computer use. 

Additionally, there are key differences between paper-and-pencil tasks and tablet-

based tasks that could impact performance, such as less ability to self-correct, less 

flexibility for the administrator to pace the task appropriately for the participant, and less 

engagement between the administrator and the participant (Aşkar et al., 2012). Attitudes 

towards computers could have resulted in a lower frequency of computer use and, 

therefore, a negative impact on their cognitive scores (Fazeli et al., 2013). Future work 

should investigate participants’ disposition towards computers and their current computer 

use. This could impact the usability of the NIH TB-CB in older samples since older 

adults are less likely to have familiarity with technology than younger cohorts (Victorson 

https://sciwheel.com/work/citation?ids=9734277&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9734277&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11791256&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11791251,5916574&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11932582&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5916574&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9734277,4405896&pre=&pre=&suf=&suf=&sa=0,0
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et al., 2013; Werner et al., 2011). Researchers may need to assess a participant’s 

technology use to determine the appropriateness of using the NIH TB-CB. Alternatively, 

composite scores could account for current and past computer use in the calculation of 

standardized scores (Lee Meeuw Kjoe, Agelink van Rentergem, Vermeulen, & Schagen, 

2021).  

 

Limitations  

This study has limitations. We did not have a standard neuropsychological 

measure similar to the Oral Reading test available in the dataset, so convergent validity 

for that factor could not be fully tested in our study. Our sample is also mostly white and 

highly educated, which limits the generalizability of this work. We also acknowledge that 

in our confirmatory factor analysis, we could not account for variability that may have 

occurred across data collection sites. However, substantial efforts were made to 

homogenize data collection across sites and we included site as a covariate in our 

regression models (Section “Predictors of NIH TB-CB Composite Scores”). Future work 

could further describe the oldest-old cohort through comparisons of this sample to other 

age cohorts who also completed the iPad version of the NIH TB-CB. 

 

Conclusions 

The NIH TB-CB was created to solve issues of inconsistency and difficulty of 

administration of neuropsychological testing in research, focusing on those ages 3 to 85. 

Our findings suggest that this test battery could be valuable for the assessment of 

cognitive health in individuals over 85. Having a common metric on an easy-to-use iPad 

https://sciwheel.com/work/citation?ids=9734277,4405896&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11791261&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11791261&pre=&suf=&sa=0
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tablet could enable research studies to include larger and more representative samples of 

older adults, and researchers could easily compare these scores to other studies which 

have adopted the NIH TB-CB. The NIH TB-CB could also be helpful since it can provide 

precise timing metrics along with cognitive accuracy scores for use in aging studies. This 

work has confirmed the construct validity and the feasibility of the NIH TB-CB in an 85+ 

sample, which will provide a basis for the usability of the battery in future older adult 

research. However, there may be limitations in the NIH TB-CB’s ability to validly assess 

individuals with low computer use and validly measure executive functioning, possibly 

due to age-related changes in executive functioning’s relationship with other cognitive 

domains. This work provides a pathway towards broadening the age span of the NIH TB-

CB to 99 years of age which will allow longitudinal and cohort studies to compare across 

almost the entire human lifespan (3-99).  
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Code is available at https://github.com/Visscher-Lab/validity_nihtb_mbar 
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Supplemental Table 1. Model Fit Indices with demographically corrected NIH TB scores 

Model Overall χ² 

[df] 

CFI TLI RMSEA (90% CI) SRMR AIC 

1a 290.518 [119] 0.777 0.745 0.09 (0.077-0.103) 0.076 19686.013 

2a 243.955 [118] 0.836 0.811 0.077 (0.064-0.091 0.073 19641.45 

2b 281.336 [118] 0.787 0.755 0.088 (0.075-0.101) 0.075 19678.831 

3a 225.225 [116] 0.858 0.833 0.073 (0.058-0.087) 0.072 19626.72 

3b 222.291 [116] 0.862 0.838 0.072 (0.057-0.086) 0.069 19623.785 

4a 193.334 [113] 0.895 0.874 0.063 (0.048-0.078) 0.065 19600.828 

4b 216.551 [114] 0.866 0.841 0.071 (0.057-0.085) 0.068 19622.046 

4c 222.776 [114] 0.858 0.831 0.073 (0.059-0.087) 0.072 19628.27 

5a 170.821 [109] 0.92 0.9 0.056(0.039-0.072) 0.059 19586.316 

5b 187.327 [110] 0.906 0.884 0.061 (0.045-0.076) 0.064 19595.821 

6a 159.009 [105] 0.93 0.909 0.054 (0.036-0.07) 0.057 19582.503 

Overall chi-squared measures how well a model compares to observed data. 

Comparative Fit Index (CFI) examines the discrepancy between data and the 

hypothesized model. Tucker Lewis Index (TLI) analyzes the discrepancy between the  

x2 of the hypothesized model and the null model. The Root Mean Squared Error of 

Approximation (RMSEA) analyzes discrepancy between the hypothesized model (with 

optimal parameter estimates) and population covariance matrix. The Standardized Root 

Mean Square Residual (SRMR) is the root of the discrepancy between the sample 

covariance matrix and model covariance matrix. The Akaike Information Criterion 

(AIC) is a value used to evaluate how well a model fits the data. Lower is a better fit.  
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Supplemental Table 2. Standardized coefficients for the 6-factor model with 

demographically corrected NIH TB scores 

Latent 

Factor 
Observed Indicator Loading 

Vocabulary 
TB Picture Vocabulary 0.817 

WAIS-IV Similarities 0.668 

Reading TB Oral Reading 1 

Episodic 

Memory 

TB Picture Sequence Memory 

CVLT 

Benson Figure 

0.532 

0.699 

0.427 

Working 

Memory 

TB List Sorting 0.627 

Letter Number Sequence 0.510 

Digit Span Backwards 0.657 

Executive 

Function 

TB DCCS 

TB Flanker Test 

WAIS-IV Matrix Reasoning 

Stroop Interference 

Trails B 

-0.608 

-0.556 

-0.544 

-0.289 

0.653 

Speed 

TB Pattern Comparison 0.433 

WAIS-IV Coding 0.727 

WAIS-IV Symbol Search 0.793 
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Abstract 

Evaluating brain network interactions in cognitively healthy older adults can help us 

understand how brain characteristics vary with age and how these variations affect 

cognitive functioning. Functional connections among groups of brain areas give insight 

into the brain’s organization, and the cognitive effects of aging may relate to this large-

scale organization. We investigated functional network properties in 146 cognitively 

healthy participants aged 85+ in the McKnight Brain Aging Registry. We found that the 

segregation of both the cortical association system and the segregation of the fronto-

parietal network (FPN) were strong predictors of cognition and processing speed. We 

also provide a healthy oldest-old (85+) cortical parcellation that can be used in future 

work in this age group. This study shows that network segregation of the oldest-old brain 

is closely linked with cognitive performance. In particular, segregation of the FPN plays 

an important role in supporting overall cognition and processing speed in this 85+ aging 

cohort. This work adds to the growing body of knowledge about age-related 

dedifferentiation by demonstrating that cognitive ability is associated with differentiated 

functional networks even in very old individuals experiencing successful cognitive aging. 

 

Keywords: oldest-old, cognitive aging, networks, segregation, FPN, CON, DMN, 

dedifferentiation, processing speed 
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Introduction 

 Slowing age related cognitive decline is an important societal goal. 

Understanding the factors contributing to optimal cognitive function throughout the aging 

process is essential to developing effective cognitive rehabilitation interventions. To 

better understand successful cognitive aging, we recruited participants who have reached 

the oldest-old age (i.e., 85+ years) with documented excellent cognitive health. We then 

examined the relationship between cognitive behavior and brain network segregation, 

large-scale patterns of functional connectivity measured with fMRI. Prior work has 

mostly been done in younger-old samples (largely 65-85 years old). Studying the 

younger-old can be confounded by including pre-symptomatic disease, since it is 

unknown which individuals may be experiencing undetectable, pre-clinical cognitive 

disorders and which will continue to be cognitively healthy for another decade. The 

cognitively unimpaired oldest-old have lived into late ages, and we can be more confident 

in determining their status as successful agers. A further benefit of studying these 

successful cognitive agers is that because of their advanced age and the normal aging and 

plasticity processes associated with it, there is greater variance in both their performance 

on neurocognitive tasks, and in brain connectivity measures than there is in younger 

cohorts (Christensen et al., 1994).  This increased variance makes it easier to observe 

across-subject relationships of cognition and brain networks. We provide new insight into 

the relationship between the segregation of networks and cognition by investigating this 

relationship in an oldest-old cohort of healthy individuals. 

Some cognitive domains are particularly susceptible to decline with age, 

including processing speed, executive function, and memory (Reuter-Lorenz, Festini, & 

Jantz, 2016; Spaan, 2015). Processing speed refers to the speed with which cognitive 

https://sciwheel.com/work/citation?ids=10802359&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8623966,8623973&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=8623966,8623973&pre=&pre=&suf=&suf=&sa=0,0
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processes, such as reasoning and memory, can be executed (Sliwinski & Buschke, 1997). 

Salthouse (1996) proposed that cognitive aging is associated with impairment in 

processing speed, which in turn may lead to a cascade of age-associated deficits in other 

cognitive abilities. Because processing speed is so strongly associated with a wide array 

of cognitive functions, it is crucial to understand how it can be maintained in an aged 

population. Executive functioning is a broad collection of cognitive capacities 

encompassing sustained attention, updating, inhibition, switching, and set-shifting (Fisk 

& Sharp, 2004; Lamar, Zonderman, & Resnick, 2002; McCabe, Roediger, McDaniel, 

Balota, & Hambrick, 2010; Rabinovici, Stephens, & Possin, 2015; Sorel & Pennequin, 

2008). With normal aging, executive functioning performance reliably declines (Fisk & 

Sharp, 2004; Harada, Natelson Love, & Triebel, 2013; Reuter-Lorenz et al., 2016; 

Salthouse, Atkinson, & Berish, 2003; Spaan, 2015), and this decline is faster in older 

ages (Zaninotto, Batty, Allerhand, & Deary, 2018). Memory is another well-studied 

cognitive domain that encompasses multiple processes, such as encoding, consolidation, 

and retrieval of information (Huo, Li, Wang, Zheng, & Li, 2018; Zlotnik & Vansintjan, 

2019). Age-related decline in memory is reported subjectively by most older adults 

(Craik, 2008), with episodic memory being the most impacted by aging compared to 

other memory systems (Luo & Craik, 2008). Working memory and language function 

cognitive domains are known to be vulnerable to the aging process as well. Working 

memory refers to the simultaneous temporary storage and active manipulation of 

information (Stanley et al., 2015). There is reliable evidence across studies that working 

memory gradually declines from early to late adulthood (Kidder, Park, Hertzog, & 

Morrell, 1997; Salthouse & Babcock, 1991; Stanley et al., 2015; Vaqué-Alcázar et al., 

2020). Language function, particularly language production, also undergoes age-related 

https://sciwheel.com/work/citation?ids=7586461&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8200177,3270865,6271336,8696656,374078&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=8200177,3270865,6271336,8696656,374078&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=8200177,3270865,6271336,8696656,374078&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=8200177,3270865,6271336,8696656,374078&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=8623973,452029,3270865,8623966,3539519&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=8623973,452029,3270865,8623966,3539519&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=8623973,452029,3270865,8623966,3539519&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=10667546&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11034238,9599297&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11034238,9599297&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10547282&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5274728&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4930154&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4930154,3042488,12159362,8678486&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=4930154,3042488,12159362,8678486&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=4930154,3042488,12159362,8678486&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
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decline and is related to other cognitive functions affected by aging, including working 

memory and executive function (Rizio & Diaz, 2016).  

Brain networks play a crucial role in aging, and older adults exhibit differences in 

brain structural and functional network integrity that impact network dynamics 

(Marstaller, Williams, Rich, Savage, & Burianová, 2015). Because of their correlation to 

cognitive performance, brain network dynamics have emerged as a major avenue to study 

aging and cognitive decline (Andrews-Hanna et al., 2007; Antonenko & Flöel, 2014; 

Chan, Park, Savalia, Petersen, & Wig, 2014; Cohen & D’Esposito, 2016; Ng, Lo, Lim, 

Chee, & Zhou, 2016; Shine et al., 2016; Wen et al., 2011). Many properties of networks 

can be quantified (Bullmore & Sporns, 2009; Damoiseaux, 2017; van den Heuvel & 

Hulshoff Pol, 2010). Network integration describes how much the network’s regions 

interact and can be quantified as the mean connectivity of nodes within a given network 

(within network connectivity). The network participation coefficient describes the variety 

of connections of a given node. A low participation coefficient indicates a node is more 

selectively connected to its network, and high participation coefficient indicates a node is 

widely connected to other networks (Rubinov & Sporns, 2010). Modularity describes 

how separable a system is into parts (Rubinov & Sporns, 2010). Lastly, segregation 

describes the balance of within and between network connectivity. Very high segregation 

indicates isolated networks, and very low segregation indicates the networks are no 

longer separable (Wig, 2017).  

A neural system’s functional specialization and segregation is determined by the 

network's balance of connections between and within the network and is indicative of 

organizational integrity (Chan, Alhazmi, Park, Savalia, & Wig, 2017; Damoiseaux, 2017; 

Iordan et al., 2017; Koen, Srokova, & Rugg, 2020; Varangis, Habeck, Razlighi, & Stern, 

https://sciwheel.com/work/citation?ids=5190374&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3456898&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3930587,56904,4882802,3340898,3904693,3163246,148813&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=3930587,56904,4882802,3340898,3904693,3163246,148813&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=3930587,56904,4882802,3340898,3904693,3163246,148813&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=449517,148799,4639079&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=449517,148799,4639079&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=149446&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=149446&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4452885&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3572930,4639079,7899037,8550303,7516563&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=3572930,4639079,7899037,8550303,7516563&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
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2019). In older adults, functional networks have increased between-network connectivity 

and decreased within-network connectivity (Chan et al., 2017; Damoiseaux, 2017; Iordan 

et al., 2017; Koen et al., 2020; Varangis et al., 2019). Prior research suggests differing 

hypotheses about the origin of age-related cognitive decline. The compensation 

hypothesis, which refers to the over-recruitment of brain regions within a network, while 

the dedifferentiation hypothesis, which refers to the loss of functional specialization and 

segregation in brain network activity and has received greater support; however, these 

hypotheses are not mutually exclusive (Chan et al., 2014; Daselaar et al., 2015; Seider, 

Porges, Woods, & Cohen, 2021; Siman-Tov et al., 2016).  

Previous studies have found that dedifferentiation of higher-order cognitive 

networks of the association system —the fronto-parietal network (FPN), cingulo-

opercular network (CON), and default mode network (DMN)—are related to poorer 

performance in many cognitive abilities, including episodic memory, processing speed, 

attention, and executive function (Chan et al., 2017; Damoiseaux, 2017; Goh, 2011; 

Hausman et al., 2020; Iordan et al., 2017; Koen et al., 2020; Nashiro, Sakaki, Braskie, & 

Mather, 2017; Ng et al., 2016; Varangis et al., 2019). The FPN is associated with 

complex attention and directing cognitive control (Avelar-Pereira, Bäckman, Wåhlin, 

Nyberg, & Salami, 2017; Malagurski, Liem, Oschwald, Mérillat, & Jäncke, 2020; 

Oschmann & Gawryluk, 2020; Ray et al., 2019). The CON is associated with sustained 

executive control and perceptual and attentional task maintenance (Coste & 

Kleinschmidt, 2016; Hausman et al., 2020; Sadaghiani & D’Esposito, 2015). The DMN 

is activated during rest, internally focused tasks and memory processing, but is 

suppressed during cognitively demanding, externally focused tasks (Avelar-Pereira et al., 

2017; Hampson, Driesen, Skudlarski, Gore, & Constable, 2006; Hellyer et al., 2014; Ng 

https://sciwheel.com/work/citation?ids=3572930,4639079,7899037,8550303,7516563&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=3572930,4639079,7899037,8550303,7516563&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=3572930,4639079,7899037,8550303,7516563&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=56904,161601,6646118,11483772&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=56904,161601,6646118,11483772&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=9130742,3340898,3572930,4639079,7899037,8550303,7516563,4067222,340611&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=9130742,3340898,3572930,4639079,7899037,8550303,7516563,4067222,340611&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=9130742,3340898,3572930,4639079,7899037,8550303,7516563,4067222,340611&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=8624158,4824426,11549680,9923474&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=8624158,4824426,11549680,9923474&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=8624158,4824426,11549680,9923474&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=2539790,2506769,9130742&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=2539790,2506769,9130742&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=4824426,3340898,796206,845453,717474,3025266&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=4824426,3340898,796206,845453,717474,3025266&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
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et al., 2016; Sambataro et al., 2010; Sestieri, Corbetta, Romani, & Shulman, 2011). 

Processing speed has been shown to be related to all of these networks (Ruiz-Rizzo et al., 

2019; Sheffield et al., 2015; Staffaroni et al., 2018; Vatansever, Menon, & Stamatakis, 

2017). In longitudinal studies, the rate of change in functional segregation of the FPN 

(Malagurski et al., 2020), and DMN (Ng et al., 2016), has been associated with the rate of 

change in processing speed.  

The purpose of this study is to understand the underlying neural mechanisms 

associated with preserved cognition. In particular, we focused on the functional network 

architecture and, specifically, examined how FPN, CON, and DMN segregation relate to 

executive function, processing speed, working memory, language, and episodic memory. 

We expand on prior methods of studying functional networks and cognition by using an 

older, 85+ cohort and a brain parcellation derived from our healthy oldest-old sample.  

Here we address the hypothesis that higher levels of cognitive function in healthy 

agers is related to greater segregation of the association system and its sub-networks: 

FPN, CON, and DMN. We predicted that decreases in segregation within the Association 

System, FPN, CON, and DMN would be related to poorer overall cognition and cognitive 

domain performance in oldest-old adults. We used multiple regression and forward 

selection hierarchical regressions between cognitive measures and network properties to 

test their association in this oldest-old aged cohort.  

  

https://sciwheel.com/work/citation?ids=4824426,3340898,796206,845453,717474,3025266&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=4959244,6830594,3028107,4410918&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=4959244,6830594,3028107,4410918&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=4959244,6830594,3028107,4410918&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=9923474&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3340898&pre=&suf=&sa=0
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Results 

 

A priori power analysis 

An a priori power analysis was conducted using a sample size of 146 in 

hierarchical multiple regression with one variable in block one and five variables in block 

two, and a hierarchical multiple regression with one variable in block one and ten 

variables in block two (See section 4.2). Using the sample size of 146, all analyses can 

detect small effect sizes with an alpha of .05 and a power of .80. The smallest detectable 

effect for a correlation was r=.23, similar to the effect size found by Chan et al. (2014). 

The smallest detectable effect for hierarchical multiple regression with two variables in 

block one and four variables in block two was .085, and the hierarchical multiple 

regression with two variables in block one and three variables in block two was .078.  

 

Exploratory Factor Analysis 

Exploratory Factor Analysis (EFA) revealed five factors: 1) Processing Speed, 2) 

Episodic Memory, and 3) Executive Functioning, 4) Working Memory, and 5) Language. 

(See Supplemental Table 1 for variable factor loadings). Overall cognition was calculated 

as the average of an individual’s factor scores across the 5 factors. 

 

Functional Connectivity of Network Nodes 

We created network nodes based on methods developed by Chan et al. (2014) and 

Han et al. (2018) for our oldest-old sample (Figure 1). 
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Figure 1. Regions of Interest Identification. A: Functional connectivity boundary maps 

based on methods used by (Han et al., 2018); B: Local minima ROIs (3mm discs) based 

on methods used by (Chan et al., 2014); C: Local minima ROIs with the color of Network 

Membership of ROIs based on parcellation colors that are shown underneath ROIs 

(Power et al., 2011).  White ROIs indicate nodes that do not belong to any labeled 

network.  

 

 Using the ROIs we created (Figure 1), we generated a group average of Fisher’s 

z-transformed correlation matrix grouped by network and system membership (Figure 2). 

https://sciwheel.com/work/citation?ids=6072385&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=56904&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=382771&pre=&suf=&sa=0
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Figure 2. Group average Fisher’s z- transformed correlation matrix of 321 nodes. The 

Association system consists of the Default mode (red), Fronto-parietal control (yellow), 

Ventral attention (teal), Cingulo-opercular control (purple), and Dorsal attention (green). 

The Sensory-Motor system consists of the Hand somato-motor (light blue), Visual (blue), 

Mouth somato-motor (orange), and Auditory networks (pink). 
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Association System metrics & Overall Cognition 

Table 1. Association System and 

Overall Cognition Metrics Mean SD Range 

Segregation 0.4205 0.1071 

0.0929–

0.6463 

Mean Within-Network Connectivity 0.0833 0.0246 

0.0162–

0.1522 

Participation Coefficient 0.4356 0.0235 

0.3675–

0.4746 

Modularity 0.2561 0.0374 

0.1321–

0.3501 

Overall Cognition Factor Score 0.00989 0.4428 -0.96-1.4 

 

 We then generated descriptive statistics of association system metrics and the 

overall cognition metric (Table 1; methods section 4.3). Overall cognition was related to 

association system segregation (r=.243, p=.003), modularity (r=.266, p=.001), and mean 

within-network connectivity (r=.193, p=.019), but not participation coefficient (r=-.122, 

p=.14) (Figure 3). These relationships remainded significant after multiple comparisons 

correction using FDR (Benjamini & Hochberg, 1995), partial correlation with site as a 

covariate and partial correlation with cortical thickness as a covariate. Additionally, the 

effect size of the correlations remained largely unchanged with partial correlations. There 

was a strong, significant relationship between association system segregation and 

modularity (r=.575, p<.001).  

  

 

https://sciwheel.com/work/citation?ids=6279401&pre=&suf=&sa=0
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Figure 3. Scatter plots between Association System metrics and overall cognitive 

performance. Density plots for the variables are presented for each variable on the edge 

of the scatter plot. Overall cognition score is shown in black and association system 

metrics are shown in grey. 

 

The hierarchical multiple regression of overall cognition showed that there were 

no significant predictors of overall cognition among the association system metrics: 

segregation (β = .137, p=.25), modularity (β = .175, p=.075), participation coefficient (β 

= .071, p=.501), and mean connectivity (β = .088, p=.358). There was a significant R2-

change of .082  (F(4,139)=3.26, p=.014) between the first block of the covariates (site 

and cortical thickness) and the second block with association system metrics.  
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Network metrics and Overall Cognition 

 

Table 2. Network Segregation Mean SD Range 

DMN 0.4517 0.1495 0.0628–0.7209 

FPN 0.3279 0.1385 -0.0482–0.5989 

CON 0.2784 0.1848 -0.2677–0.7439 

 

We then investigated the relationship of overall cognition with the network 

segregation of three networks that belong to the Association System: FPN, CON, and 

DMN (Table 2).  

The forward selection hierarchical regression of overall cognition showed that 

FPN segregation was the best predictor of overall cognition among the networks. There 

was a significant R2-change of .08 (F(1, 142)=12.987, p<.001) between the first block of 

the covariates (site and cortical thickness) and the second block with FPN segregation, 

which was also a significant predictor (β = .284, p<.001).  

 To further describe specific relationships between overall cognition and network 

metrics, are shown in Figure 4. Of note, these relationships remain significant after 

correction for multiple comparisons using FDR and partial correlation with site as a 

covariate. Partial correlation showed that the addition of cortical thickness as a covariate 

did not impact the relationship between overall cognition and FPN and DMN, however 

the correlation between CON segregation and overall cognition was no longer significant 

after adding cortical thickness as a covariate (r=.159, p=.055). 
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Figure 4. Scatter plot of Overall Cognition and FPN (yellow), CON (purple), and DMN 

(red) network segregation. Density plots for the variables are presented for each variable 

on the edge of the scatter plot. The colors on these plots match the network color in 

Figure 1. Only segregation for FPN and DMN were still significant after adding a 

covariate of cortical thickness.  

 

Network metrics and cognitive domains 

To further break down overall cognition into cognitive domains, we investigated 

the relationship between the segregation of the FPN, CON, and DMN and five domains 

of cognition: Processing Speed, Executive Functioning, Episodic Memory, Working 

Memory, and Language (Table 3). To replicate prior findings we analyzed the 

relationship between association system segregation and memory, which was not 
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correlated as had been previously found in work by Chan and colleagues (2017) (r=.061, 

p=.467).  

 

Table 3. Cognitive Domain Factor 

Scores  Mean SD Range 

Processing Speed 0.05 0.86 -2.49-2.74 

Executive Functioning 0.05 0.83 -2.36-2.34 

Episodic Memory 0.05 0.84 -1.82-1.69 

Working Memory -0.02 0.87 -2.4-2.53 

Language -0.08 0.79 -1.77-2.54 

 

The forward selection hierarchical regression of processing speed showed that 

FPN segregation was the best predictor of processing speed among the networks. There 

was a significant R2-change of .09 (F(1, 142)=15.519, p<.001) between the first block of 

the covariates (site and cortical thickness) and the second block with FPN segregation 

which was a significant predictor (β = .301, p<.001). Processing speed was related to all 

networks’ segregation (Figure 5). These relationships were still significant after 

correction for multiple comparisons using FDR, partial correlation with site as a covariate 

and partial correlation with cortical thickness as a covariate. 
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Figure 5. Scatter plot of Processing Speed and FPN (yellow), CON (purple), and DMN 

(red) network segregation. Density plots for the variables are presented for each variable 

on the edge of the scatter plot. The colors on these plots match the network color in 

Figure 1.  

 

The forward selection hierarchical regression of executive functioning showed 

that FPN segregation was the best predictor of executive functioning among the 

networks; there was strong trend in R2-change of .025 (F(1, 142)=3.921, p=.050) between 

the first block of the covariates (site and cortical thickness) and the second block with 

FPN segregation, which was not a significant predictor (β = .157, p=.050). Executive 

functioning was only significantly related to FPN segregation (Figure 6). However, this 

relationship was no longer significant after multiple comparison corrections (p=.132). 
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Figure 6. Scatter plot of Executive Functioning and FPN (yellow), CON (purple), and 

DMN (red) network segregation. Density plots for the variables are presented for each 

variable on the edge of the scatter plot. The colors on these plots match the network color 

in Figure 1. No relationships were significant after multiple comparisons correction. 

 

The forward selection hierarchical regression for memory, working memory, and 

language did not identify a predictor. Additionally, correlations between these cognitive 

domains and the FPN, DMN, and CON segregation were very weak and not significant 

(Supplemental Table 3).  
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Discussion 

First, we created a set of parcels for oldest-old adults based on functional 

connectivity boundary-based mapping. We then showed that association system 

segregation, modularity, and mean connectivity were related to overall cognition. We 

found that compared to segregation of the CON and DMN, FPN segregation was the best 

predictor of overall cognition, processing speed, and executive functioning. These results 

demonstrate that the oldest-old brain is segregated within the association system and 

association networks, and that the FPN may be important in supporting cognitive 

function and processing speed as we age. Prior studies have largely examined young-

older adults when studying network dynamics (under age 85), thereby excluding an ever-

growing portion of the older adult population. In this study, we expanded on prior 

methods of studying network functioning by using an older, healthy 85+ cohort to better 

understand how aspects of cognition are related to brain networks in the context of 

healthy aging. 

 

Healthy Oldest-old network parcellation 

It is important to understand how a healthy aging cortex is subdivided, especially 

since brain network organization can change across the lifespan (Bagarinao et al., 2019). 

Previous work has measured brain organization in younger age ranges by creating 

boundaries between brain regions using shifts in functional connectivity patterns, 

boundary-based mapping, and then identifying nodes within those boundaries (Chan et 

al., 2014; Han et al., 2018). With the sample from the McKnight Brain Aging Registry, 

we had the opportunity to apply the same methods to a sample with an older age range 

and larger sample size than previous work for the oldest-old portion of the sample. We 

https://sciwheel.com/work/citation?ids=7321911&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6072385,56904&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=6072385,56904&pre=&pre=&suf=&suf=&sa=0,0
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provide a healthy oldest-old (85+) parcellation that can be used in future work in this age 

group and can be used to compare to disease populations in this age range. An age-

appropriate parcellation may more accurately identify cortical mapping of networks. 

Future work will analyze the organization of the nodes in this parcellation and identify 

networks without younger-adult-based network descriptors. 

 

Age-related functional dedifferentiation  

 Models of dedifferentiation and compensation are used to explain changes in the 

selectivity of functional activity of brain regions that occurs in the aging context (Koen et 

al., 2020; Li, Lindenberger, & Sikström, 2001; Rakesh, Fernando, & Mansour L, 2020; 

Reuter-Lorenz & Cappell, 2008; Reuter-Lorenz, Stanczak, & Miller, 1999). The neural 

dedifferentiation hypothesis posits that functional networks are not as selectively 

recruited (Goh, 2011; Koen et al., 2020). On the other hand, the compensation hypothesis 

posits that functional networks must recruit more regions or “over-activate” to complete 

the intended task (Reuter-Lorenz & Cappell, 2008). These two models may be 

compatible (Burianová, Lee, Grady, & Moscovitch, 2013).  

The study of the association system and association networks across the lifespan 

has indicated that dedifferentiation is related to age and a co-occurring decrease in 

cognitive functioning (Chan et al., 2014; Geerligs, Renken, Saliasi, Maurits, & Lorist, 

2015; Han et al., 2018). Longitudinal work on association system networks has indicated 

that segregation of association system networks decreases with age (Chong et al., 2019), 

and this rate of decline corresponds to declining cognitive functioning in the elderly 

(Malagurski et al., 2020; Ng et al., 2016). However, the mean age of participants in prior 

work was well below that of the current study and the study sample size for the oldest-old 

https://sciwheel.com/work/citation?ids=8550303,161829,10910120,284233,11320584&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=8550303,161829,10910120,284233,11320584&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=8550303,161829,10910120,284233,11320584&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=8550303,340611&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=161829&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5274700&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=56904,6072385,148676&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=56904,6072385,148676&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=7183087&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9923474,3340898&pre=&pre=&suf=&suf=&sa=0,0
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was smaller than that of the current study. Therefore, it was unknown how far in the 

aging process dedifferentiation can continue while cognitive functions are maintained and 

to what degree different networks are sensitive to dedifferentiation in the oldest-old brain. 

The goal of this study was to further investigate cognition and brain network 

dedifferentiation in the context of successful brain aging in the oldest-old cohort. We did 

this by examining dedifferentiation of the association system metrics of segregation, 

participation coefficient, modularity, and within-network connectivity and network 

segregation. 

 

 Dedifferentiation predicts preserved cognition in the cognitively healthy elderly 

We found that association system segregation and modularity had positive, 

significant relationships with overall cognition. However, mean-connectivity had a 

relatively weaker relationship and participation coefficient did not have a significant 

relationship. Additionally, modularity and segregation were tightly related. The findings 

of our study support the dedifferentiation hypothesis, since the association system cannot 

function as well when it is not differentiated adequately. However, this finding does not 

exclude the compensation hypothesis. Overall cognition is modestly correlated with mean 

connectivity, which shows that within-system connectivity is an important aspect of 

overall system structure, but measures like segregation and modularity go beyond 

measurement of network strength and provide insight into how the system is organized. 

When we analyzed specific networks within the association system, we found that 

among the networks (FPN, CON, and DMN), the network segregation of the FPN was 

the greatest predictor of overall cognition. Additionally, only the FPN and DMN 

segregation were significantly correlated with overall cognition. Although all networks’ 
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segregation were correlated to processing speed performance and the effect size of 

correlations between processing speed and FPN and DMN segregation were similar, FPN 

segregation was the best predictor. Additionally, FPN was the best predictor of executive 

functioning though it was not a significant predictor on its own and the association did 

not survive multiple comparison correction. We have shown that FPN segregation is 

related to overall cognitive abilities and one of the key cognitive functions affected by 

aging — processing speed.  

Prior studies have shown that FPN and DMN properties relate to processing speed 

task performance (Madden et al., 2010; Malagurski et al., 2020; Reineberg, Andrews-

Hanna, Depue, Friedman, & Banich, 2015; Rieck, Baracchini, Nichol, Abdi, & Grady, 

2021). Recent research indicates that the FPN regulates other brain networks to support 

cognitive functioning (Avelar-Pereira et al., 2017; Marstaller et al., 2015). The FPN and 

DMN interact less efficiently in older adults compared to younger adults; the networks 

are coupled during rest and across tasks in older adults, suggesting that aging causes the 

FPN to have more difficulty flexibly engaging and disengaging networks (Avelar-Pereira 

et al., 2017; Grady, Sarraf, Saverino, & Campbell, 2016; Spreng & Schacter, 2012). Age-

related within-network structural changes and between-network functional 

dedifferentiation may disrupt the FPN’s ability to control other networks, like the DMN 

(Avelar-Pereira et al., 2017; Geerligs et al., 2015; Grady et al., 2016; Marstaller et al., 

2015; Romero-Garcia, Atienza, & Cantero, 2014; Zhang et al., 2014). Because of the 

FPN's function as a control network, age-related disruptions in FPN connectivity may 

explain the initial and most noticeable difference in cognition, processing speed (Ng et 

al., 2016; Oschmann & Gawryluk, 2020; Rieck, Baracchini, & Grady, 2021). 

https://sciwheel.com/work/citation?ids=5336431,11227165,3341851,9923474&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=5336431,11227165,3341851,9923474&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=5336431,11227165,3341851,9923474&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=3456898,4824426&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=4824426,2716631,4824437&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=4824426,2716631,4824437&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=4824426,3456898,4684235,148676,4684295,2716631&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=4824426,3456898,4684235,148676,4684295,2716631&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=11549680,3340898,11136496&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11549680,3340898,11136496&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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The findings from this work support prior research by demonstrating that while 

dedifferentiation may occur in aging populations, processing speed can be maintained in 

old age and this may be due to co-occurring maintained segregation of the DMN and 

especially the FPN. Therefore, sustainable healthy cognitive aging may be marked by 

maintaining segregated network organization. Further research will need to investigate 

the mechanisms of maintenance of network organization in healthy agers.  

 While segregation is not the only metric that can detect dedifferentiation, our 

findings indicate that it reliably relates to cognitive abilities. With segregation's 

predictive ability, it may serve as a more sensitive metric than other network metrics 

when assessing cognitive decline in aging populations. Additionally, our work helps 

inform other research that has indicated that segregation may be a marker of potential 

cognitive resilience in Alzheimer’s Disease (Ewers et al., 2021) and prior work has begun 

to investigate its usage as a marker for future cognitive status (Chan et al., 2021). Studies 

have shown that learning-induced plasticity through cognitive training and exercise could 

be an avenue for changing network dynamics to improve cognitive performance (Iordan 

et al., 2017; Voss et al., 2010). Future research could target network dynamics in the 

older adult population to preserve cognitive functioning. 

 

Limitations and Future Directions 

This study has several limitations. Since this work is based on data collected 

across multiple sites, the data collection site was used as a covariate in partial correlation 

analysis and entered in the first block of hierarchical regression analyses. Across 

analyses, inclusion of site as a covariate had little to no effect on statistical tests. 

However, we recognize that this may not completely address site differences, such as 

https://sciwheel.com/work/citation?ids=10821205&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12004791&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7899037,1110132&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=7899037,1110132&pre=&pre=&suf=&suf=&sa=0,0
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different test administrators, different populations, scanner inhomogeneities, etc. We also 

included cortical thickness values as a covariate to account for the potential confounding 

of fMRI signal due to atrophy in this oldest-old sample. We did not find that cortical 

thickness had a significant impact across most of our analysis, except for one correlation 

between CON segregation and overall cognition. We performed post-collection data 

quality assessment methods, including visual inspection of MRI and cognitive data, strict 

fMRI preprocessing steps, visual inspection of all generated surfaces and motion 

parameters, and double data entry for all cognitive data.  

  We also recognize that the generalizability of our findings is limited due to the 

limited diversity of our sample which is mostly non-Hispanic, Caucasian, and highly 

educated individuals. Prior work has shown that these factors can influence association 

system segregation (Chan et al., 2021). Future work should be focused on broadening the 

diversity of oldest-old samples. 

Given the cross-sectional nature of this work, we have limited information about 

our participants' state of health and cognitive performance earlier in life or what their 

cognitive health will be later in life. Thus, we are not able to investigate whether an 

individual’s current functioning is a decline from prior functioning or if they will go on to 

develop cognitive impairment. The scope of this work is focused on healthy oldest-old 

and not the developmental process of aging. Therefore, inferences from this study focus 

on what we can learn from individuals who survived to 85+ and are cognitively healthy 

in their oldest-old years.  Future work should investigate longitudinal changes in 

cognition and functional networks to evaluate differences in rates of decline among the 

oldest-old. 

 

https://sciwheel.com/work/citation?ids=12004791&pre=&suf=&sa=0
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Conclusions 

This work provides novel insight into the healthy oldest-old brain and intact 

cognition in the aging process. We add to the literature on age-related dedifferentiation, 

showing that even in a very old and cognitively healthy sample, dedifferentiation is 

related to cognition. This suggests that previously observed relationships are not due to 

inclusion of participants with early stage disease. Our results demonstrate that the 

association system of the oldest-old brain is segregated, and that the FPN is important to 

supporting cognitive function and processing speed as we age. These results are 

consistent with the idea that the segregated organization of association networks is 

needed to allow the FPN to serve as a central player for manipulating other networks 

efficiently.  

 

Materials and Methods 

Participants 

Data were collected as part of the McKnight Brain Aging Registry (MBAR), 

funded by the Evelyn F. McKnight Brain Foundation. Data were collected from the four 

McKnight Institutes: the University of Alabama at Birmingham, the University of 

Florida, the University of Miami, and the University of Arizona. The study sample 

includes 197 individuals with cognitive data and 146 with cognitive and MRI data, after 

excluding ten participants due to high head movement in MRI, six due to anatomical 

incompatibility with Freesurfer surface rendering, and one due to outlier network 

segregation values. Participants were community-dwelling, cognitively unimpaired older 

adults, 85 to 99 years of age. We performed a multi-step screening process including 

exclusions for memory disorders, neurological disorders, and psychiatric disorders. 
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Details of the screening process are shown in Supplemental Figure 1. In the first stage of 

screening, trained study coordinators administered the Telephone Interview for Cognitive 

Status modified (TICS-M) (Cook, Marsiske, & McCoy, 2009) and conducted an 

interview to determine whether the patient met major exclusion criteria, which included 

individuals under age 85, severe psychiatric conditions, neurological conditions, and 

cognitive impairment. The telephone screening was followed by an in-person screening 

visit at which eligible participants were evaluated by a neurologist, a comprehensive 

medical history was obtained to ascertain health status and eligibility, and the Montreal 

Cognitive Assessment (MoCA) was administered (Nasreddine et al., 2005). Participants 

were recruited through mailings, flyers, physician referrals, and community-based 

recruitment. Participant characteristics are shown in Table 4. Participant characteristics of 

the full sample of 197 participants used in the cognitive data analysis can be found in 

supplemental Table 1 broken down by data collection site. Approval for the study was 

received from the Institutional Review Boards at each of the data collection sites 

including University of Alabama at Birmingham, University of Florida, University of 

Miami, and University of Arizona. 

  

https://sciwheel.com/work/citation?ids=3341458&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1028118&pre=&suf=&sa=0
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Table 4. Participant 

Characteristics 

Total Sample, 

N=146 

Age (years), mean ± SD (range) 88.4 ± 3.18 (85-99) 

Education (years), mean ± SD 

(range) 
16.1 ± 3.03 (9-26) 

Sex, N(%)  

Female 79 (54.11%) 

Male 67 (45.89%) 

Race, N(%)  

Non-Hispanic Caucasian 134 (91.78%) 

African American 6 (4.11%) 

Hispanic Caucasian 5 (3.42%) 

Asian 1 (0.69%) 

Marital Status, N(%)  

Widowed 74 (50.69%) 

Married 54 (36.99%) 

Divorced 13 (8.90%) 

Living as Married/Domestic 

Partnership 
3 (2.06%) 

Never Married 2 (1.37%) 

Dominant Hand, N(%)  

Right 131 (89.73%) 

Left 15 (10.27%) 

 

Cognitive Measures 

Multiple imputation is a statistical technique to estimate missing values in a 

dataset (Murray, 2018; Nassiri, Lovik, Molenberghs, & Verbeke, 2018). In our multiple 

imputation analysis, all variables used in the subsequent exploratory factor analysis 

(EFA) were used in multiple imputations to address missingness in Stroop interference 

https://sciwheel.com/work/citation?ids=11314152,5634410&pre=&pre=&suf=&suf=&sa=0,0
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score (10 missing values), Trails B score (3 missing values), and Stroop word trial score 

(6 missing values). Missingness was due to administrator error, participant’s inability to 

correctly perceive the stimuli due to low visual acuity or color blindness, or the 

participant not finishing a task in the allotted time. We obtained a similar mean and range 

of the variables when the dataset was restricted to only complete cases. Imputed data 

from 5 iterations were then pooled by the average of the imputed value across iterations.  

An exploratory factor analysis (EFA) with varimax rotation was performed on 18 

variables to identify cognitive domains. The EFA used all available cognitive data 

(n=196). The number of factors was determined by eigenvalue greater than 1, analysis of 

scree plot, and parallel analysis, which indicated five factors (Humphreys & Montanelli 

Jr., 1975; O’Connor, 2000; Zwick & Velicer, 1986). Factor scores were then calculated 

using the regression method (Thomson, 1939). Cognitive measures used for this EFA can 

be found in supplemental Table 2. Overall cognition was calculated as the average of the 

factor scores for each individual. 

Quality control was performed on behavioral data through Redcap double data 

entry, wherein data are entered twice, and discrepancies are identified and corrected 

(Harris et al., 2019, 2009). Data were also visually inspected for errors.  

 

Network Analysis 

Imaging Acquisition 

For all subjects, an anatomical scan was collected (T1-weighted; repetition time 

(TR) = 2530ms; echo time (TE) = 3.37ms; field of view [FOV (ap,fh,rl)] = 240 X 256 X 

176 mm; slice gap=, 0; voxel size=1.0 X 1.0 X 1.0 mm; flip angle (FA) = 7º). After the 

anatomical scan, a resting-state functional scan was collected (T2*-weighted, TE/TR 

https://sciwheel.com/work/citation?ids=11275548,3864006,4107861&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11275548,3864006,4107861&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11275400&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=222641,6926311&pre=&pre=&suf=&suf=&sa=0,0
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30/2400 ms; FOV = 140 X 5 X 140; FA = 70º; voxel size = 3.0 X 3.0 X 3.0 mm; 

interleaved order of acquisition). Before the functional scan, participants were instructed 

to try to be as still as possible, stay awake, keep their eyes open, and let their minds 

wander without thinking of anything in particular. A central fixation cross was presented 

during the scan, which participants were told they could choose to look at during the 

scan.  

 

Preprocessing 

Anatomical images were preprocessed through Freesurfer (version 6.0) to render 

cortical surfaces (Fischl, 2012). Generated surfaces were then visually inspected for 

errors.  

Before functional connectivity analysis, data were preprocessed with rigorous 

quality control methods for motion censoring (Carp, 2013; Gratton et al., 2020; Power, 

Barnes, Snyder, Schlaggar, & Petersen, 2012; Power, Schlaggar, & Petersen, 2015; 

Siegel et al., 2014), implemented by XCPEngine (Ciric et al., 2018) and fMRIPrep 

(Esteban et al., 2019). Nuisance regressors included global signal, cerebral spinal fluid, 

white matter, the six motion parameters, their temporal derivatives, and their first order 

and quadratic expansion. Censoring included a framewise displacement threshold of 

0.5mm, a DVARS threshold of 5, a high pass filter of 0.01, and a low pass filter of 0.08. 

Spatial smoothing of 4 mm was applied.  

 

Network Nodes  

We build upon Chan et al. (2014) and Han et al. (2018) by creating nodes from 

our oldest-old sample. Since our sample of oldest-old adults was larger and included 

https://sciwheel.com/work/citation?ids=1351880&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4464039,1277897,24218,1374987,10361155&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=4464039,1277897,24218,1374987,10361155&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=4464039,1277897,24218,1374987,10361155&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=6033560&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6124019&pre=&suf=&sa=0


 

73 

 

more fMRI data per participant than Han et al. (2018) or Chan et al. (2014), we generated 

nodes from our sample using the same methods. Han et al. (2018) showed that while 

functional connectivity boundary-based parcellation of the human cortex was generally 

consistent across the lifespan, the boundaries become less similar to the younger adult 

boundaries as cohorts get older. However, the relationship between increasing age and 

decreasing system segregation was still intact even with older adult nodes (Han et al., 

2018). This difference between young and oldest-old adult parcellations led us to use the 

same methods of boundary-based parcellation as Han et al. (2018) (Figure 1, Part A), the 

method of detection of local minima ROIs and creation of 3-mm radius discs as Chan et 

al. (2014) (Figure 1, Part B), and network membership identification from the 

parcellation by Power et al. (2011) (Figure 1, Part C) to assess system and network 

segregation.  

 

 Calculation of Network Properties 

In each participant, a mean time course was computed for each node from the 

atlas. A node-to-node correlation matrix was formed by correlating each node’s time 

course with every node (Figure 2). The matrix of Pearson’s r values was then transformed 

into Fisher’s z. Only positive correlations were retained for all metrics except the within-

network mean connectivity for which both negative and positive values were 

incorporated. Within-network connectivity was calculated as the mean node-to-node z-

value of all the nodes within that network. Segregation was calculated as within-network 

connectivity minus between-network connectivity, divided by within-network 

connectivity (Chan et al., 2014; Wig, 2017). Participation coefficient and modularity 

were calculated using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010). 

https://sciwheel.com/work/citation?ids=6072385&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6072385&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=56904,4452885&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=149446&pre=&suf=&sa=0
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Cortical Thickness Covariate 

Cortical thickness data was derived from Freesurfer’s cortical surfaces. Cortical 

thickness values were averaged across all ROIs (Figure 1) for each individual. This 

variable was then used as a covariate in subsequent analyses in order to account for 

potential confounding effects of atrophy. 

 

Relating Cognition to Network metrics 

Multiple regression was performed to assess association system metrics 

(modularity, participation coefficient, segregation, and mean connectivity) as predictors 

of overall cognition. Site and cortical thickness were entered in block one and association 

system metrics were entered in block two. We also performed correlation analysis 

between overall cognition and each association system metric including site and cortical 

thickness as covariates in partial correlations. Correlations were corrected for multiple 

comparisons using false discovery rate (FDR) correction. We also examined the 

relationship between modularity and segregation with a correlational analysis. 

Five forward selection hierarchical regressions were performed to assess the 

predictors of each of the cognitive domains identified in the EFA (processing speed, 

executive functioning, episodic memory, working memory, and language). For each 

forward selection hierarchical regression, the data collection site and cortical thickness 

were entered as the first block, and segregation of the FPN, DMN, and CON were entered 

as the second block. Partial correlations with the site and cortical thickness as a covariate 
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were assessed for variables within each regression, and FDR correction was used for 

multiple comparison correction.   
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Code is available for node creation at https://github.com/Visscher-

Lab/MBAR_oldestold_nodes  and for statistical analysis and figures at 

https://github.com/Visscher-Lab/FPN_segregation_paper 

 

  

https://github.com/Visscher-Lab/V1_eccentricty_HCP_analysis/


 

76 

 

Supplemental Materials 

Supplemental Figure 1 

 

Telephone screening criteria included exclusion for major physical disabilities, MRI 

contraindications, dependence in instrumental activities of daily living or basic activities 

of daily living, uncontrolled medical conditions that would limit life expectancy or 

interfere with participation in the study, severe psychiatric conditions, neurological 

conditions (i.e., major vessel stroke, Parkinson’s Disease, dementia), active substance 

abuse or alcohol dependence, less than 6th-grade reading level, vision or hearing deficits 

that would cause impediment to cognitive test administration, and inability to follow 

study protocol and task instructions due to cognitive impairment. TICS-M was 

administered over the phone. If the TICS-M score falls within range for Site PI review, 

the Site PI would then decide if the participant should be deemed ineligible and excluded 

from the study or if the participant should continue on with the screening process. MoCA 

was performed at the in-person screening visit. An additional evaluation was included in 

the initial in person visit, including examination by a neurologist, geriatric depression 

scale, and detailed medical history. 
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Supplemental Table 1. 

Participant 

Characteristics 

Total, 

N=146 

UAB1, N= 

48 (32.9%) 

UA2, N= 35 

(24.0%) 

UF3, N= 

35 

(24.0%) 

UM4, N= 

28 

(19.2%) 

Age (years), mean ± SD 

(range) 

88.4 ± 

3.18 (85-

99) 

 88.4 ± 3.47 

(85-98) 

 88.7 ± 2.98 

(85-95) 

89.1 ± 

3.65 (85-

99) 

87.1 ± 

1.70 

(85-91) 

Education (years), mean 

± SD (range) 

16.1 ± 

3.03 (9-

26) 

 15.7 ± 2.62 

(12-22) 

 15.9 ± 2.89 

(9-22) 

16.5 ± 

3.30 (10-

22) 

16.5 ± 

3.52 

(12-26) 

Sex, N(%)      

Female 79 

(54.11%) 

 24 (50.00%)  18 

(51.43%) 

20 

(57.14%) 

17 

(60.71%

) 

Male 67 

(45.89%) 

 24 (50.00%)  17 

(48.57%) 

15 

(42.86%) 

11 

(39.29%

) 

Race, N(%)      

Non-Hispanic Caucasian 134 

(91.78%) 

 44 (91.67%)  33 

(94.29%) 

35 

(100.00%

) 

22 

(78.57%

) 

African American 6 (4.11%)  4 (8.33%)  0 (0.00%) 0 

(0.00%) 

2 

(7.14%) 

Hispanic Caucasian 5 (3.42%)  0 (0.00%)  2 (5.71%) 0 

(0.00%) 

3 

(10.71%

) 

Asian 1 (0.69%)  0 (0.00%)  0 (0.00%) 0 

(0.00%) 

1 

(3.57%) 

Marital Status, N(%)      

Widowed 74 

(50.69%) 

 27 (56.25%)  16 

(45.71%) 

19 

(54.29%) 

12 

(42.86%

) 

Married 54 

(36.99%) 

 17 (35.42%)  12 

(34.29%) 

13 

(37.14%) 

12 

(42.86%

) 

Divorced 13 

(8.90%) 

 4 (8.33%)  3 (8.57%) 3 

(8.57%) 

3 

(10.71%

) 
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Living as 

Married/Domestic 

Partnership 

3 (2.06%)  0 (0.00%)  3 (8.57%) 0 

(0.00%) 

0 

(0.00%) 

Never Married 2 (1.37%)  0 (0.00%)  1 (2.86%) 0 

(0.00%) 

1 

(3.57%) 

Dominant Hand, N(%)      

Right 131 

(89.73%) 

 45 (93.75%)  29 

(82.86%) 

33 

(94.29%) 

24 

(85.71%

) 

Left 15 

(10.27%) 

 3 (6.25%)  6 (17.14%) 2 

(5.71%) 

4 

(14.29%

) 

1UAB, University of Alabama at Birmingham; 2UA, University of Arizona; 3UF, 

University of Florida; 4UM, University of Miami 
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Supplemental Table 2. 

Factor Loadings for 

Cognitive Domains 

Processing 

Speed Memory 

Executive 

Functioning 

Working 

Memory Language 

WAIS-IV Coding1 .785       

Stroop Color-Word 

Reading Trial2 .678     

Trail Making Test A 

(lines/sec)3 -.670       

WAIS-IV Symbol 

Search1 .593   .364    

CVLT II Long Delay 

Recall4   .749     

FNAME Total Score5  .709    

Craft Story Paraphrase 

Delay Recall6   .599     

WAIS-IV Block Design1   .704   

WAIS-IV Matrix 

Reasoning1   .552   

Benson Figure Test 

Delay Recall6   .362 .376    

Stroop Color Word-

Inhibition Test 

Interference2     .367   

Trail Making Test B 

(lines/sec) (minus Trail 

Making Test A 

(lines/sec))3   -.328   

Digit Span Forward6    .745  

Digit Span Backward6      .714  

WAIS-IV Letter-Number 

Sequencing1      .362  

Letter Verbal Fluency (F 

& L)7     .661 

WAIS-IV Similarities1     .430 

Semantic Fluency 

(Animals)8  .409   .421 

 

1 (Weschler, 2008); 2 (MacLeod, 1992); 3 (Gaudino, Geisler, & Squires, 1995); 4 (Delis, 

Kramer, Kaplan, & Ober, 1987); 5 (Amariglio et al., 2012); 6 (Beekly et al., 2007); 7 

(Newcombe, 1969); 8 (Benton, 1968) 
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Supplemental Table 3. 

Correlations between 

Cognitive Domains and 

Network Segregation Memory 

Working 

Memory Language 

FPN Segregation 

r=.073 

p=.382  

r=.124 

p=.135 

r=.06 

p=.473 

DMN Segregation 

r=-.017 

p=.84 

r=.092 

p=.729 

r=.137 

p=.098 

CON Segregation 

 r=-.024 

p=.777 

r=.097 

p=.242 

r=.025 

p=.762 
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SUMMARY AND CONCLUSIONS 

 The population of people aged 85 and older is increasing steadily, meaning that 

the effort to improve healthy cognitive aging is increasingly urgent (Vincent & Velkoff, 

2010). These studies help to describe healthy cognitive aging by 1) assessing the validity 

of extending the age range of the NIH TB-CB into the oldest-old age group, 2) creating a 

brain network parcellation from a sample of healthy oldest-old adults, and 3) relating 

performance in cognitive domains to segregation of the association system and 

association functional networks. Together, these studies extend the literature on 

dedifferentiation in the context of healthy aging.  

 

Dedifferentiation 

  A common theme emerged in these studies about healthy aging. Dedifferentiation 

generally refers to the process of previously separable things becoming less distinct. In 

aging literature, this concept of dedifferentiation has been applied to both cognition and 

brain network dynamics. Through my dissertation studies, I have furthered our 

understanding of dedifferentiation in the context of successful aging.  

Cognitive dedifferentiation describes how separable cognitive abilities become less 

separable from each other with age and this dedifferentiation may reflect underlying 

cognitive impairment  (Baltes, Cornelius, Spiro, Nesselroade, & Willis, 1980; Batterham, 

Christensen, & Mackinnon, 2011; Hülür, Ram, Willis, Schaie, & Gerstorf, 2015; Wallert 

et al., 2021; Wilson, Segawa, Hizel, Boyle, & Bennett, 2012). While we generally found 

that our healthy agers had cognitive domain patterns similar to younger adults, the 

findings in the NIH TB-CB Validity study show more widespread domain 

intercorrelations with executive functioning. The observed dedifferentiation of executive 
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functioning is reflective of age-related cognitive dedifferentiation. Since our sample was 

only composed of healthy agers, this cognitive dedifferentiation may be a result of 

healthy aging.  

 Dedifferentiation is used in many ways to describe the dynamics of brain activity. 

Dedifferentiation refers to becoming more similar or less distinct, so this can be used to 

describe brain regions becoming less selective when they are functionally active, 

networks no longer only being called upon for only certain kinds of cognitive tasks, and 

the overall structure of network organization no longer showing distinct networks, but 

rather networks becoming less able to distinguish themselves from one another (Goh, 

2011; Koen et al., 2020; Li, Lindenberger, & Sikström, 2001; Rakesh, Fernando, & 

Mansour L, 2020; Reuter-Lorenz & Cappell, 2008; Reuter-Lorenz, Stanczak, & Miller, 

1999). Many properties of networks can be quantified and could reflect network 

dedifferentiation (Bullmore & Sporns, 2009; Damoiseaux, 2017; van den Heuvel & 

Hulshoff Pol, 2010). Network integration describes the strength of connections within a 

network; network participation coefficient describes how diverse the connections are for 

each node in the network (low participation coefficient means it prefers to connect to its 

own network, and high participation coefficient means it prefers to connect to other 

networks; modularity describes how easy it is to distinguish the parts (networks) from the 

whole (system); and segregation describes the balance of connection within the network 

to a connection outside the network (very high segregation means networks are not 

connected to one another and very low segregation means the networks are 

indistinguishable from one another) (Rubinov & Sporns, 2010; Wig, 2017). All of these 

metrics reflect some aspect of dedifferentiation in different ways. Measures like 

segregation go beyond the measurement of traditional network strength and provide 
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insight into how the system is organized and quantify the level of dedifferentiation in the 

system. Additionally, segregation can be studied at the system or network level. In older 

adults, functional networks have increased between-network connectivity, decreased 

within-network connectivity, and lower system segregation; therefore, older adults have 

more dedifferentiated networks (Chan et al., 2017; Damoiseaux, 2017; Iordan et al., 

2017; Koen et al., 2020; Varangis et al., 2019). Studies of association system segregation 

have demonstrated that dedifferentiation increases with age at a rate that correlates with 

cognitive decline (Chan et al., 2014; Chong et al., 2019; Geerligs, Renken, Saliasi, 

Maurits, & Lorist, 2015; Han et al., 2018; Malagurski, Liem, Oschwald, Mérillat, & 

Jäncke, 2020; Ng et al., 2016). This work helped to shed light on how far into the aging 

process dedifferentiation can continue while cognitive functions are maintained. The 

findings of our study support the dedifferentiation hypothesis since I found that the 

association system cannot function as well and is not able to produce as high a level of 

cognitive performance when it is not well differentiated/well segregated.  

We have also shown that FPN segregation is related to overall cognitive abilities 

and one of the key cognitive functions affected by aging — processing speed. The 

findings from this work support prior research by demonstrating that while 

dedifferentiation may occur in aging populations, processing speed can be maintained in 

old age and this may be due to co-occurring maintained segregation of the DMN and 

FPN. Therefore, sustainable healthy cognitive aging may be marked by maintaining 

segregated network organization.  

 I add to the literature on age-related dedifferentiation, showing that even in a very 

old and cognitively healthy sample, cognitive dedifferentiation may impact executive 
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functioning abilities and functional network dedifferentiation is related to cognitive 

abilities.  

 

Validity of the NIH Toolbox Cognitive Battery 

The NIH TB-CB was created to address problems of inconsistent batteries and 

difficulties in conducting neuropsychological testing in research among those ages 3 to 

85. This test battery may be useful for assessing cognitive health in individuals aged over 

85 as well. The use of the NIH TB-CB in aging research would enable researchers to 

include a larger and more representative sample of older adults in their research studies, 

and researchers can also easily compare their scores to those of other studies using the 

NIH TB-CB.  

However, the NIH TB-CB has not been shown to validly measure executive 

functioning in the oldest-old. There could be age-related changes in the relationship 

between executive function and other cognitive domains. This finding may be due to a 

variety of influencing factors. An approach to explain these findings is cognitive 

dedifferentiation. Cognitive dedifferentiation describes how cognitive performance across 

a range of cognitive domains becomes more similar to each other with increasing age 

(Baltes et al., 1980; Batterham et al., 2011; Hülür et al., 2015; Wallert et al., 2021; 

Wilson et al., 2012). Another potential explanation for the strong relationship between 

executive function and other cognitive domains is the executive decline hypothesis. The 

executive decline hypothesis posits that executive functions play a greater role in 

supporting non-executive task performance in older people (Crawford, Bryan, Luszcz, 

Obonsawin, & Stewart, 2000; Ferrer-Caja, Crawford, & Bryan, 2002; Salthouse, 

Atkinson, & Berish, 2003). My findings fit within this hypothesis since the relationship 
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between executive functioning and other domains I observed could be reflecting how 

executive functions are supporting/executive functioning decline is undermining other 

cognitive functions in an aged sample. Additionally, each cognitive domain in the NIH-

TB was created to correspond to one or two tasks in the toolbox. However, the cognitive 

domains are not pure and it is likely that performance limitations in any given domain, 

such as executive functioning, will affect the tests within all the domains. Taken together, 

these interpretations of the relationship between executive function and other cognitive 

functions give insight into how a cognitive battery such as the NIH TB-CB may over-

represent executive functioning performance in more than just the specific executive 

function domain. It is likely that individuals with poor executive functioning, which is 

more likely to occur in aged individuals, will have artificially low scores in other 

domains. This is a major limitation to using the NIH TB-CB in aging research. 

  We also discovered that the measurement of cognition in older adults may be 

more sensitive to outside factors like familiarity with the technology used in the testing 

environment. A variety of factors have been shown to relate to the degree of an 

individual’s computer use including age, education, ethnicity, physical health, and mental 

health (Werner, Carlson, Jordan-Marsh, & Clark, 2011), in addition to perceptual speed 

which moderates the relationship between age and technology ownership (Kamin & 

Lang, 2016). Studies have found that the level of computer experience is related to 

cognitive performance (Fazeli, Ross, Vance, & Ball, 2013; Wu, Lewis, & Rigaud, 2019). 

Technological familiarity may strongly influence performance on NIH TB-CB measures 

since computer use frequency was a significant predictor of fluid composite scores. 

Participants with less experience with technology may have also faced challenges of 

overloading their executive functioning capacity as they were required to learn new 
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technologies while also undertaking a cognitive task. On the other hand, due to the 

cognitive demands of using computers, participants with lower cognitive abilities may 

avoid engaging with computers on a regular basis due to their lack of executive function 

and processing speed. This could impact the usability of the NIH TB-CB in older samples 

and researchers may need to assess a participant’s technology use to determine the 

appropriateness of using the NIH TB-CB. It would also be appropriate for the composite 

scores to account for current and past computer use in the calculation of standardized 

scores (Lee Meeuw Kjoe, Agelink van Rentergem, Vermeulen, & Schagen, 2021).  

While there are some limitations to the appropriateness of the NIH TB-CB in an 

oldest-old sample, this work has confirmed the overall construct validity and the 

feasibility of the NIH TB-CB in an 85+ sample. I have provided a basis for the usability 

of the battery in future older adult research and recommendations for future development. 

The work provides a platform to expand the NIH TB-CB's age range to 99 years of age, 

enabling longitudinal and cohort studies that can compare almost the entire human 

lifespan (3-99 years).  

 

Healthy Oldest-Old Network Parcellation 

Dividing up the cortex has been heavily studied and done in a myriad of ways 

(Arslan et al., 2018; Fischl et al., 2002; Gordon et al., 2016; Han et al., 2018; Parisot et 

al., 2017; Wig, Laumann, Cohen, et al., 2014; Wig, Laumann, & Petersen, 2014). It is 

important to divide the cortex into sections because it allows us to study regions more 

specifically. The specificity of regions within a parcellation could be determined by many 

methods including, but not limited to functional connectivity, white matter pathways, 

task-based activation, and the combinations of many methods at once (Fischl & Sereno, 
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2018; Glasser et al., 2016; Salehi et al., 2020; Wang et al., 2015). We can use different 

degrees of specificity- for example, we could use the occipital lobe or we could be more 

specific with each of the areas of the visual cortex (V1, V2, V3, etc.). It is essential to 

accurately identify regions within a parcellation in order to use that parcellation to study 

features of the cortical regions (Bryce et al., 2021; Glasser et al., 2016; Gordon et al., 

2017; Wig, Laumann, & Petersen, 2014; Zalesky et al., 2010). The brain organization of 

younger adults are generally a bit different from older adults and therefore parcellations 

based solely on younger adults could inaccurately align to an older adult’s brain (Han et 

al., 2018). Therefore, understanding how a healthy aging cortex is subdivided is critical 

and especially relevant to my dissertation since brain network organization can change 

with age (Bagarinao et al., 2019). Studies in younger age groups have measured brain 

parcellation by creating boundaries between brain regions using changes in functional 

connectivity patterns, boundary-based mapping, and then identifying cortical nodes 

within these boundaries (Chan et al., 2014; Han et al., 2018). In my study, I applied the 

same methods to a sample of older individuals and even larger sample size than 

previously used for the analysis of the oldest-old part of the sample. The healthy elderly 

parcellation (85+) I created can be used for comparing healthy and disease-associated 

populations of this age group. I also used this age-appropriate parcellation to better 

describe the cortical mapping of networks in subsequent analyses in my dissertation. I am 

currently performing a follow-up analysis of the organization of the nodes in this 

parcellation and identifying networks without younger-adult-based network descriptors.  
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Processing Speed and Network Segregation 

We sought to understand the brain basis of preserved cognition in functional 

network dynamics and specifically the underlying contribution of the association system 

and the FPN, DMN, and CON in supporting essential and valuable cognitive skills.  

Dedifferentiation is used to explain changes in how brain regions and networks become 

less distinguishable with age (Goh, 2011; Koen et al., 2020; Li et al., 2001; Rakesh et al., 

2020; Reuter-Lorenz & Cappell, 2008; Reuter-Lorenz et al., 1999). Studies of the 

association system and association networks across the lifespan have shown that 

dedifferentiation is correlated with aging and a concurrent decline in cognitive 

functioning (Chan et al., 2014; Geerligs et al., 2015; Han et al., 2018). Our results are in 

line with other research on the segregation of the association system while demonstrating 

that segregation of the association system is an important aspect of cognitive functioning 

in the oldest-old brain (Chan et al., 2014; Chong et al., 2019)  

When we analyzed specific networks within the association system, we found that 

among the networks (FPN, CON, and DMN), the network segregation of the FPN and 

DMN was correlated with overall cognition and processing speed and FPN segregation 

was the greatest predictor of overall cognition and processing speed. Previous research 

supports the role of FPN and DMN in processing speed task performance (Madden et al., 

2010; Malagurski et al., 2020; Reineberg, Andrews-Hanna, Depue, Friedman, & Banich, 

2015; Rieck, Baracchini, Nichol, Abdi, & Grady, 2021). The FPN regulates other brain 

networks in order to support cognitive functioning (Avelar-Pereira, Bäckman, Wåhlin, 

Nyberg, & Salami, 2017; Marstaller et al., 2015). In older adults, the FPN interacts less 

efficiently with the DMN compared to younger adults; the networks are synced during 

rest and across tasks, suggesting that aging renders the FPN less flexible in engaging and 
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disengaging networks (Avelar-Pereira et al., 2017; Grady, Sarraf, Saverino, & Campbell, 

2016; Spreng & Schacter, 2012). Therefore, functional dedifferentiation may disrupt the 

FPN’s ability to control other networks, like the DMN (Avelar-Pereira et al., 2017; 

Geerligs et al., 2015; Grady et al., 2016; Marstaller et al., 2015; Romero-Garcia, Atienza, 

& Cantero, 2014; Zhang et al., 2014). Because the FPN functions as a control system, 

disruptions in its connectivity may be responsible for age-related decline in processing 

speed, which is the first and most noticeable change in cognition due to age (Ng et al., 

2016; Oschmann & Gawryluk, 2020; Rieck, Baracchini, & Grady, 2021). 

Since processing speed is one of the earliest and most impactful losses of 

cognition in aging (Deary et al., 2009; Salthouse, 1996; Vance, 2009; Wadley et al., 

2021; Wahl, Schmitt, Danner, & Coppin, 2010), it is important to understand what makes 

intact processing speed possible in an aging population. I have shown that network 

segregation, and more specifically the FPN segregation is related to overall cognitive 

abilities and processing speed. The segregated nature of association networks facilitates 

the FPN's role as a central player in manipulating other networks efficiently. 

This work supports previous research by demonstrating that processing speed can 

be maintained in old age despite dedifferentiation occurring in aging populations. This 

may be due to the maintained segregation of the FPN and DMN. In sum, healthy 

cognitive aging can be characterized by preserving a segregated network organization. 

 

Conclusions 

These studies provide resources for future work in aging in general and work in 

healthy aging. I have shown the strengths and weaknesses of the NIH TB-CB as a 

cognitive battery to be used in aging research. I have created a brain parcellation that can 
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be used to appropriately identify network nodes in oldest-old adults, and I have shown 

that segregation of networks is not only possible in the oldest-old brain, but maybe 

fundamental to intact cognition in oldest-old adulthood. Additionally, this work provides 

a pathway toward broadening the age span of the NIH TB-CB to 99 years of age, almost 

the entire human lifespan (3-99).  

  We hope this work will not only be impactful for healthy aging, but also for the 

development of future biomarkers and interventions in cognitive aging. In these studies, I 

identified relationships between the brain network dynamics and cognition, which could 

help inform cognitive interventions that target optimizing brain functioning and 

infrastructure and cognition in older adult populations. Additionally, because I have 

identified network segregation’s relationship to processing speed, my work helps inform 

research that has indicated segregation as a predictor for future cognitive status and a 

biomarker for cognitive resilience in Alzheimer’s Disease since processing speed 

declines are indicating factors of future Alzheimer’s Disease and MCI (Chan et al., 2021; 

Ewers et al., 2021). Also, my work could help focus intervention studies that have shown 

network dynamics can be changed through cognitive training and exercise; meaning 

network segregation could be a modifiable risk factor for cognitive impairment (Iordan et 

al., 2017; Voss et al., 2010). Future intervention research could target network dynamics 

in the older adult population as a way to preserve cognitive functioning in aging. Overall, 

this work provides novel insight into the healthy oldest-old brain and intact cognition in 

the aging process.  
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	Objective
	To evaluate the construct validity of the NIH Toolbox Cognitive Battery (NIH TB-CB) in the healthy oldest-old (85+ years old).
	Method
	Our sample from the McKnight-Brain-Aging-Registry consists of 179 individuals, 85 to 99 years of age, screened for memory, neurological, and psychiatric disorders. Using previous research methods on a sample of 85+ y/o adults, we conducted confirmator...
	Results
	Findings suggest the six-factor model (Vocabulary, Reading, Memory, Working Memory, Executive, and Processing Speed) had a better fit than alternative models. NIH TB-CB tests had good convergent and discriminant validity, though tests in the executive...
	Conclusion
	The NIH TB-CB is a valid assessment for the oldest-old samples, with relatively weak validity in the domain of executive functioning. Computer use’s impact on composite scores could be due to the executive demands of learning to use a tablet. Strong r...
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	The population of individuals within the oldest-old age range (85 years and older) is rapidly growing (Vincent & Velkoff, 2010). However, the lack of available data with a comprehensive assessment of cognitive functions in healthy agers over age 85 li...
	The NIH Toolbox Cognitive Battery (NIH-CB) strives towards brevity, portability, and homogeneity in neurobehavioral assessment research through short tasks performed on an iPad (Gershon et al., 2013). The Cognitive Battery covers a wide range of cogni...
	Factor analysis of the NIH Toolbox cognitive measures with standard neuropsychological tests of the same domains of cognition revealed good construct validity (Mungas et al., 2014). Meaning, there was support for correspondence between a given domain ...
	This study examines the validity of the NIH TB-CB cognitive domains in cognitively healthy older adults over age 85, which, to our knowledge, has yet to be reported. We employed a series of confirmatory factor analyses to investigate the convergent an...
	Method
	Participants
	We analyzed data collected from the McKnight Brain Aging Registry, a cohort of community-dwelling, cognitively unimpaired older adults, 85 to 99 years of age. Figure 1 shows the extensive participant screening process. During initial screening over th...
	Figure 1. Participant Screening Process
	Telephone screening criteria included exclusion for major physical disabilities, dependence in instrumental activities of daily living or basic activities of daily living, uncontrolled medical conditions that would limit life expectancy or interfere w...
	Our fully screened sample consists of 192 community-dwelling individuals aged 85-99. We removed data from 13 participants from the analysis due to missingness related to administrator error, low visual acuity, participant’s color blindness, or partici...
	Table 1. Participant Characteristics
	*Note that demographic corrections are not available for individuals over age 85, therefore corrections for all participants, including those over 85 years of age, were based on normative data for individuals age 85 years old.
	Cognitive measures
	Testing was performed by staff trained and certified across the four sites to administer the test battery. Testing was administered across two visits on separate days. We performed quality control on behavioral data through the double data entry tool ...
	NIH TB-CB measures
	We used scores from the NIH TB-CB (Gershon et al., 2013; Weintraub et al., 2014), including the Dimensional Change Card Sort (DCCS) Test, the Flanker Inhibitory Control and Attention Test, the Picture Sequence Memory Test, the Pattern Comparison Proce...
	Table 2. NIH Toolbox Measures and Associated Cognitive Domains
	Standard Neuropsychological measures
	We used standard neuropsychological tests with strong psychometric properties within the same domains as those used in the NIH TB-CB. Memory functioning was assessed through the California Verbal Learning Test II (CVLT-II) (Delis, Kramer, Kaplan, & Ob...
	Table 3. Standard Neuropsychological measures and Associated Cognitive Domains
	Confirmatory Factor Analysis
	Based on the methods of previous work from Mungas and colleagues (2014), we performed a series of confirmatory factor analyses, which allowed us to assess the degree to which the original conceptual model of the NIH Toolbox Cognitive Battery aligns wi...
	Table 4. Alternative models
	Following Mungas et al. (2014), we included the following tests of model fit: overall Chi-square test of model fit as well as the Tucker Lewis Index (TLI) (Tucker & Lewis, 1973), Comparative Fit Index (CFI) (Bentler & Bonett, 1980; Bentler, 1990), the...
	Evaluation of Validity
	Convergent validity was assessed by examining factor loadings of NIH TB- CB on their domain factor and evaluating the correlation between an average of the standard neuropsychological measures of a domain and the NIH TB- CB of the domain. Discriminant...
	Multiple Regression with NIH TB-CB Composite Scores
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	Results
	Model fit
	Based on prior studies, we hypothesized that the 5-factor model of the NIH TB-CB and standard neuropsychological measures would have a better fit than alternative factor models. We found that the 5-factor (Language, Memory, Working Memory, Executive, ...
	The 5-factor model found in Mungas et al. (2014) (Vocabulary, Reading, Memory, Working Memory, Executive/Speed) was different from the 5-factor model our study found to be a good fit in the oldest-old sample. Mungas and colleagues (2014) found that th...
	Table 5. Model Fit Indices
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	Convergent Validity
	Standardized coefficients for the 6-factor model (Table 6) showed NIH TB-CB measures loaded strongly on their respective factors, supporting convergent validity. Picture Vocabulary loaded very highly (.82) on the Vocabulary factor; List-Sorting loaded...
	Table 6. Standardized coefficients for the 6-factor model
	Discriminant Validity
	Only one weak modification index indicated a split loading of the NIH TB-CB Flanker measure on the Vocabulary factor. The lack of strong cross-loadings between factors indicated discriminant validity of our model. Additionally, the intercorrelations a...
	Table 7. Inter-correlation of factors for the 6-factor model
	The correlation between an average of the standard neuropsychological measures of a domain and the NIH TB-CB of a different domain indicated Picture Sequence, List-Sorting, Pattern Comparison, and Picture Vocabulary all had correlations to other domai...
	Figure 2. Correlations between NIH TB-CB Measures and standard neuropsychological Domain Average
	TB= NIH TB-CB measures; green outline= within domain correlation, consistent with convergent validity; black outline= outside domain correlation, consistent with discriminant validity
	Together, convergent and discriminant validity evidence indicates sufficient construct validity of the NIH TB-CB within an 85+ cohort, with relatively weaker construct validity for executive functioning measures in the NIH TB-CB.
	Predictors of NIH TB-CB Composite Scores
	Race (β=−3.5, p=.009), data collection site (β=1.98, p=.017), computer use frequency (β=1.19, p=.007), and years of education (β=.64, p=.021) were significant predictors of the NIH TB-CB Total composite score and the overall model’s adjusted R2 was .1...
	Only computer use frequency (β=1.12, p=.02) was a significant predictor of NIH TB-CB Fluid composite score, and the overall model’s adjusted R2 was .03 (p=.07). There was a significant R2-change of .0717 (p=.042) between the first block of the covaria...
	Race (β=−4.16, p=.001) and years of education (β=1.1, p<.001) were significant predictors of NIH TB -CB Crystallized composite score, and the overall model’s adjusted R2 was .21 (p<.001). There was a significant R2-change of .17 (p<.001) between the f...
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	Discussion
	In our cohort of cognitively unimpaired, older adults over 85 years of age, the NIH TB-CB tests and standard neuropsychological measures had convergent and discriminant validity, consistent with the six domains of cognition initially intended to be ev...
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	Limitations
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	Conclusions
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