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ENTANGLEMENT ENTROPY BOUND AND EMPTINESS FORMATION
PROBABILTY OF THE XXZ SPIN CHAIN

OLUWADARA OGUNKOYA

APPLIED MATHEMATICS

ABSTRACT

The first part of this thesis covers some of the background materials that are pre-

requisite to doing research in many body particle problems. The definitions are given

from a mathematical point of view and the proofs to most of the results were not

included since they can be found in standard texts.

The second part was done with Christoph Fischbacher. Here, we consider the

Heisenberg XXZ spin-J chain (J ∈ N/2) with anisotropy parameter ∆. Assuming

that ∆ > 2J (a necessary but not sufficient condition), and introducing threshold

energies EK := K
(
1− 2J

∆

)
, we show that the bipartite entanglement entropy (EE)

of states belonging to any spectral subspace with energy less than EK+1 satisfy a

logarithmically corrected area law with prefactor (2⌊K/J⌋ − 2).

The third part is based on work done with Shannon Starr. We considered a

spin-1/2 XXZ chain on the 1-D lattice of size N (even) and gave a lower bound for

the ‘Emptiness Formation Probability’ when the anisotropy parameter ∆ < 0. Also,

we gave a slightly modified result for the upper bound of the ‘Emptiness Formation

Probability’ for the case ∆ < 1 as seen in [9].
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CHAPTER 1

INTRODUCTION

This thesis is comprised of two parts. Each part involves mathematical analysis

to answer a question about the XXZ quantum spin system.

In the first part, the problem is to prove logarithmically-corrected area law bounds

for the bipartite entanglement entropy in the spin-J XXZ ferromagnetic spin chain at

all energies. This is a question that is of interest in quantum information theory. The

second part of the thesis provides new general bounds for the emptiness formation

probability in the ground state(s) of the spin-1/2 XXZ quantum antiferromagnet,

which is a quantity of some interest to theoretical physicists.

1.1 Bipartite Entanglement Entropy of the Spin-J XXZ
Quantum Ferromagnet

In the following, we prove upper bounds for the bipartite entanglement entropy

of the spin–J XXZ Heisenberg chain, where J ∈ {1/2, 1, 3/2, 2 . . . }. The spin–1/2

Heisenberg XXZ chain under the presence of a random magnetic field has recently

attracted significant interest in the rigorous study of many–body–localization (MBL),

where MBL phenomena such as exponential clustering of correlations, zero–velocity

Lieb–Robinson bounds and area laws for the entanglement entropy (EE) for states

from the lowest energy regime (“droplet” regime) have been shown recently in [4, 5,

10, 11], for a recent survey of these results, cf. also [31].

Recall that for one-dimensional models such as the chain, we say that the entan-
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glement entropy satisfies an area law with respect to the bipartition of the chain into

a “right” and a “left” subchain if it is uniformly bounded in the size of the subchain.

While an area law is generally considered as an indicator of many-body-localization,

many delocalized systems seem to exhibit a logarithmic correction, which means that

the entanglement entropy scales like the logarithm of the subchain’s length. See the

results in [5, 14, 22, 23, 25, 26, 15, 35], where such logarithmic corrections to an area

for the entanglement entropy have been obtained.

In what follows, we will adapt the ideas of Beaud and Warzel from [5], where a

log–corrected area law for droplet states of the spin–1/2 Heisenberg XXZ chain for

the generic case and a true area law under the presence of a disordered magnetic field

was shown. With the help of technical refinements, the result here was improved to

show a log–corrected energy law also for higher–energy states in [1].

While our results can certainly be viewed as a technical improvement of the

spin-1/2 case, we nevertheless believe them to be of additional interest, since they

demonstrate that given a discrete many–particle Schrödinger-type operator in one

dimension, a logarithmically corrected area law for states in a given energy range fol-

lows if the following four criteria are met: (i) a suitable relative bound that controls

the hopping operator in terms of the potential, (ii) the potential energetically favor-

ing configurations with a lower number of “building blocks”, (iii) a sufficiently low

dimension of the space of these building blocks and (iv) a generalized Pauli principle

that limits the amount of particles that can occupy any site.

In Section 2.1, we will introduce the model and review previous results. We

recall that the Spin-J XXZ model on the chain with anisotropy parameter ∆ is

unitarily equivalent to a direct sum of discrete N–particle Schrödinger operators of

the form −(2∆)−1AN + VN , where AN is a weighted adjacency operator and VN is

an interaction potential (Prop. 2.2.2). Compared to the previously studied spin-1/2
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case, VN is much more complicated and we determine the set of all its minimizing

configurations for sufficiently large N (Prop. 2.2.5). Using that the kinetic term AN

is controlled by the potential VN in the sense that −4JVN ≤ AN ≤ 4JVN (Prop.

2.2.4), we use a suitable Combes–Thomas estimate (Thm. 2.3.1) previously shown in

[1], which allows as to obtain decay estimates on spectral projections (Thm. 2.3.2).

This together with some previous results on estimating the entanglement entropy

(Lemma 2.4.1) reduces the problem to showing bounds for the sum of all possible

N -particle configurations in the subsystem weighted by their distance to the nearest

configuration with sufficiently low potential (Cor. 2.5.3).

1.2 Emptiness Formation Probability of the Spin-1/2 XXZ
Quantum Antiferromagnet

For the latter part of the thesis, one of the correlation functions in quantum

spin chain is examined. The expectation of finding a block of sidelength L with

ferromagnetic alignment in the ground state of the antiferromagnet XXZ spin chain

is considered. This is known as Emptiness Formation Probability as used in [21].

We use the graphical representation of thermal equilibrium states for the XXZ

quantum spin system. It is known that the model unitarily equivalent to a reflection

positive model for the anisotropy parameter satisfying ∆ ≤ 0, meaning the regime

including the isotropic XY model and extending to the antiferromagnetic domain.

We combine the graphical representation and reflection positivity to prove rough

bounds on the emptiness formation probability, by a method which allows us to

generalize an earlier result by Crawford, Ng and one of the authors, who were only

able to handle the interval −1 ≤ ∆ ≤ 0 at low positive temperatures.

In [9], an interpolation of the Tóth representation (Theorem 3.3.5) and the

Aisenmann-Nachtergaele representation (Theorem 3.3.9) was used to proved a lower

bound for the emptiness formation probability of the XXZ spin chain in the case
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−1 ≤ ∆ ≤ 1. The representation is the Aizenmann-Nachtergaele-Tóth-Uelstchi

(ANTU) represenation. This relied on the Lipschitz continuity of the number of

loops as a function of any individual dead-end (loop-back) or interchange process.

In the case ∆ < −1, a Feymann-Kac approach seems evident. This is independent

on the Lipschitz continuity as seen in the Aizenmann-Nachtergaele-Tóth-Uelstchi

(ANTU) represenation. The lower bound for the emptiness formation is given in

section (3.4.1).

For subsequent sections, a similar approach in obtaining the upper bound as in

[9] was adopted which yielded a slightly modified result for the upper bound of the

emptiness formation probability for the case ∆ < 1.

1.3 Definitions

Definition 1.3.1 Let H1 and H2 denote separable complex Hilbert spaces. A pair

(H,⊗) is called a tensor product of H1 and H2 if H is a Hilbert space and ⊗ is a

bilinear mapping

⊗ : H1 ×H2 −→ H, (φ, ψ) 7→ φ⊗ ψ (1.3.1)

such that the following properties hold:

(i) ⟨φ1 ⊗ ψ1, φ2 ⊗ ψ2⟩H = ⟨φ1, φ2⟩H1
⟨ψ1, ψ2⟩H2

for all φ1, φ2 ∈ H1 and ψ1, ψ2 ∈

H2.

(ii) If { ej }j=1,...,N is an orthonormal basis of H1, and { fk }k=1,...,M is an orthonor-

mal basis of H2, where N,M ∈ N ∪ {∞}, then { ej ⊗ fk }j=1,...,N,k=1,...,M is an

orthonormal of H.

Elements of the form φ⊗ ψ are called product states.

Remark 1.3.2 From definition (1.3.1), it is clear that dim(H) = dim(H1) dim(H2),

amd it is a simple exercise to prove that ∥φ⊗ ψ∥H = ∥φ∥H1
∥ψ∥H2

for all φ ∈
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H1, ψ ∈ H2. Also, not every element of H1 ⊗ H2 is a product state. e.g. linear

combination of product states may not be a product state.

Theorem 1.3.3 Let S ∈ B(H1) and T ∈ B(H2) (bounded linear map on H1 and

H2 respectively). Then there exists a unique linear operator S ⊗ T ∈ B(H1 ⊗ H2)

such that

(S ⊗ T )(φ⊗ ψ) = (Sφ)⊗ (Tψ) ∀ φ ∈ H1, ∀ ψ ∈ H2. (1.3.2)

and

∥S ⊗ T∥H = ∥S∥H1
∥T∥H2

. (1.3.3)

Proposition 1.3.4 Let S, S1, S2 ∈ B(H1) and T, T1, T2 ∈ H2.

(a) The map (S, T ) 7→ S ⊗ T is a bilinear.

(b) (S1S2)⊗ (T1T2) = (S1 ⊗ T1)(S2 ⊗ T2)

(c) (S ⊗ T )∗ = S∗ ⊗ T ∗. In particular, if S and T are self-adjoint, then S ⊗ T is

self-adjoint. The converse is false.

(d) S ⊗ T is self-adjoint and S (or T ) is self-adjoint, then T (or S) is self-adjoint.

(e) If (S⊗T ) is self-adjoint, then there exists c ∈ C\{ 0 } and self-adjoint operators

S̃ and T̃ such that S̃ = cS and T̃ = 1
c
T .

(f) If H1 and H2 are finite-dimensional, amd S and T are self-adjoint, with eigen-

values {λi }i and {µj }j, respectively, then {λiµj }ij are the eigenvalues of S⊗T .

(g) Let S and T be self-adjoint. The H := S ⊗ I + I ⊗ T is self-adjoint, and

eitH = eitS ⊗ eitT for all t ∈ R.
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1.3.1 States/Pure states

Definition 1.3.5 A normalized vector φ ∈ H is called a pure state of a Quantum

Mechanical system. Given an observable (i.e. self-adjoint operator)S in H and

φ ∈ D(S), the expectation value of A when measured for a system in a state φ is

⟨φ,Aφ⟩.

Remark 1.3.6 1. States are determined up to a constant multiple of modulus

one.

2. States correspond one-to-one to orthogonal projections of rank one (i.e. onto

one-dimensional subspaces): If ∥φ∥ = 1, then the orthogonal projection Pφf =

⟨φ, f⟩φ is rank one. On the other hand, if P is an arbitrary rank one orthogonal

projection, then any φ ∈ R(P ) with ∥φ∥ = 1 will satisfy P = Pφ

Definition 1.3.7 S is trace class operator, denoted S ∈ B1(H), if

∥S∥1 =
∑
j

sj <∞ (1.3.4)

where s1 ≥ s2 ≥ · · · > 0 are the singular values of S (i.e. non-zero eigenvalues of

|T | = (T ∗T )
1
2 )

Note: (B1(H), ∥·∥1) is a Banach space.

Definition 1.3.8 For S ∈ B1(H), the trace of S is defined as

Tr(S) =
∑
j

⟨ϕj, Sϕj⟩ (1.3.5)

where {ϕj } is an orthonormal basis of H

Note: If S ∈ B1(H) and S > 0 (in particular, self-adjoint), then Tr(S) = ∥S∥1.
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Definition 1.3.9 A mixed state or density matrix in H is a non-negative op-

erator ρ ∈ B1(H) such that

Tr(ρ) =
∑
j

λj = 1 (1.3.6)

where λ1 ≥ λ2 ≥ · · · > 0 are eigenvalues of ρ (upto multiplicities).

By spectral decomposition, we have that

ρf =
∑
j

λj ⟨ϕj, fϕj⟩ϕj using physics notation, ρ =
∑
j

λj |ϕj⟩ ⟨ϕj| (1.3.7)

This is interpreted as: a system in a mixed state ρ is with probability λj in the

state ϕj. It is hence obvious that mixed state is a generalization of state/pure state

where a pure state is equivalent to a mixzed state ρ = ⟨ϕ| |ϕ⟩.

Note: The word ‘state’ is often used to refer to a mixed state.

Definition 1.3.10 (Quantum Gibbs state) Let H ≥ 0 be self-adjoint with purely

discrete spectrum i.e. there exists an orthonormal basis {ϕj } corresponding to eigen-

values {Ej } with 0 ≤ E1 ≤ E2 ≤ · · · and En → 0 such that Hϕn = En for all n

If e−βH ∈ B1(H) (defined via fuunctional calculus) for some β > 0, then

ρβ :=
e− βH

Tr e−βH
(1.3.8)

is a mixed state called the thermal state of H at temperature T = (κβ)−1 (κ is the

Boltzmann constant).

1.4 Entropy

Definition 1.4.1 The Renyi entropy is mostly used here as it generalizes some

other entropies. Let ρ be a mixed state on H, the Renyi entropy of order α, α ∈ [0, 1),
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is defined:

Sα(ρ) =
1

1− α
log[Tr(ρα)] =

1

1− α
log

dim(H)∑
j=1

λαj

 (1.4.1)

(a) Sα ≥ 0 and Sα is non-increasing in α.

(b) Sα(ρ) = 0 if and only if ρ is a pure state.

(c) ∀ α, max
ρ

Sα(ρ) = log(dim(H)). This is attained when we have the ’maximally

mixed state’ ρ = 1
dim(H)

I.

(d) lim
α→1

Sα = −Tr(ρ log ρ) = −
dim(H)∑
i=1

λi log λi =: S(ρ) which is the von Neumann

entropy.

Proposition 1.4.2 (Schmidt Decomposition) For a pure state ϕ ∈ H = H1 ⊗

H2, there exists orthonormal bases { ej } and fk of H1 and H2 respectively and a

unique sequence s1 ≥ s2 ≥ · · · ≥ 0 with
∑

j s
2
j = 1 such that

ϕ =
∑
j

sj(ej ⊗ fj) (1.4.2)

In particular, ϕ is a product state if and only if sk ̸= 0 and sj = 0 for j ̸= k.

1.5 Partial Traces

Definition 1.5.1 Let A ∈ B1(H1 ⊗H2), then the unique operator TrH2 A ∈ B1(H1)

defined as

⟨ϕ, (TrH2 A)ψ⟩ =
∑
k

⟨ϕ⊗ fk, A(ψ ⊗ fk)⟩ (1.5.1)

is called the partial trace of A with respect to H2 or the “restriction of A to H2”.

Remark 1.5.2 (a) { fk } is an orthonormal in H2 and ϕ, ψ ∈ H1
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(b) The partial trace of A with respect to H1, TrH1 A ∈ B1(H2) is defined similarly

as

⟨ϕ̃, (TrH1 A)ψ̃⟩ =
∑
j

⟨ej ⊗ ϕ̃, A(ej ⊗ ψ̃)⟩ (1.5.2)

for all ϕ̃, ψ̃ ∈ H2

(c) We sometimes write A1 = TrH2 A and A2 = TrH1 A.

(d) If A ∈ B1(H1 ⊗H2), then

Tr(A) = Tr(TrH1 A) = Tr(TrH2 A) (1.5.3)

(e) If A ∈ B1(H1), B ∈ B1(H2), then

TrH1(A⊗B) = (TrA)B (1.5.4)

TrH2(A⊗B) = (TrB)A (1.5.5)

(f) If ρ ∈ H1 ⊗H2 is a mixed state, then TrH1(ρ) and TrH2 ρ are mixed states in H2

and H1, respectively.

(g) If ρ ∈ H1 ⊗H2 is a pure state, then TrH1(ρ) and TrH2(ρ) are pure states if and

only if ρ is a product state.

1.6 Entanglemnent Entropy

Definition 1.6.1 Let ρ be a pure state in H = H1⊗H2. Then its (bipartite) entan-

glement entropy is defined as

E(ρ) = S(TrH1(ρ)) = S(TrH2(ρ) (1.6.1)
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where S(·) denotes the von-Newmann entropy in H2 and H1 respectively.

Remark 1.6.2 S(ρ1) = S(ρ2) = 0 if and only if ρ1 and ρ2 are pure states which

occur only if ρ is a product state. Thus, entanglement entropy of pure states ρ can

be used as a measure of the ‘distance’ of ρ from product states.

Proof for the second equaility in equation( (1.6.1)) using Schmidt decomposition

can be found in various texts.

Having set up these definitions, we may state the first result in words. For any

energy range, if we cut off the spectral projection of the XXZ spin-J ferromagnetic

quantum spin chain at that energy level, then all states in the range of the spectral

projector satisfy a logarithmic bound on the entanglement entropy. More precisely

the entanglement entropy is bounded by the logarithm of the size of the spin chain,

times a universal constant depending only on the anisotropy parameter, the spin

and the energy cutoff level. Since the dimension is 1, the area of the boundary is

0-dimensional. So a logarithmically corrected area law is precisely what we prove.

1.7 Reflection Positivity

Let U be a real algebra of of observables (bounded, self-adjoint operators) with unit

and let U+ and U− be subalgebras of U such that U+ ∪ U− = U . Define θ : U± → U∓

to be a continuous morphism such that θ has an extension θ̃ : U → U satisfying

θ2 = 1.

Definition 1.7.1 A linear functional ⟨·⟩0 on U is reflection positive (RP) with

respect to θ if and only if ⟨(A⊗ 1lU−)θ̃(A⊗ 1lU−)⟩0 ≥ 0 for all A ∈ U+.

Definition 1.7.2 A linear functional ⟨·⟩0 is generalized reflection positive (GRP)

with respect to θ if and only if ⟨(A1 ⊗ 1lU−)θ̃(A1 ⊗ 1lU−) · · · (An ⊗ 1lU−)θ̃(An ⊗ 1lU−)⟩0 ≥

0 for all A1, . . . , An ∈ U+
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Example 1.7.3 Consider 2n spin 1/2-Ising spins σ−n+1, σ−n+2, . . . , σn. Let U be

the family of polynomials in all the σ’s, U+ (repectively U−) be the polynomials in

σ1, . . . , σn (respectively σ0, σ−1, . . . σ−n+1). Define θ such that θ(σi) = σ−i+1. The

functional ⟨·⟩0 such that

⟨A(σ)⟩0 =
1

4n

∑
σi=±1

A(σi) (1.7.1)

is reflection positive.

Proof:

⟨Aθ(A)(σ)⟩0 =
1

4n

∑
σi=±1

A(σi)θ(Aσi)

=
1

4n

∑
σi=±1

A(σi)A(θ(σi))

=
1

4n

∑
σi=±1, σ−i+1=±1

A(σi)A(σ−i+1) =
1

4n
[A(1) + A(−1)]2 ≥ 0

(1.7.2)

Hence, ⟨·⟩0 is refelction positive.

Also, ⟨·⟩0 is generalized reflection positive by a similar argument.
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CHAPTER 2

ENTANGLEMENT ENTROPY BOUNDS IN THE HIGHER SPIN
XXZ CHAIN

2.1 Model description

For any fixed J ∈ N/2, we consider the chain of length L ∈ N\{1}, which is described

by the Hamiltonian

HL =
L−1∑
j=1

hj,j+1 + J(2J − S3
1 − S3

L) (2.1.1)

acting on the Hilbert space HL =
⊗L

j=1C2J+1 =
⊗L

j=1Hj, with the interpretation

of Hj = C2J+1 as being the local Hilbert space describing a spin–J particle located

at site j. For later convenience, we also introduce the notation ΛL = {1, 2, . . . , L}.

The two–site Hamiltonian hj,j+1 is given by

hj,j+1 = J2 − S3
jS

3
j+1 −

1

∆
(S1

jS
1
j+1 + S2

jS
2
j+1) = J2 − S3

jS
3
j+1 −

1

2∆
(S+

j S
−
j+1 + S−

j S
+
j+1)

(2.1.2)

and the additional term J(2J−S3
1−S3

L) describes a boundary field; usually referred to

as “droplet boundary condition”. Given the canonical basis { δi }Ji=−J of a single-site

Hilbert space where

(δi)j =

 1 if i = j

0 else
, (2.1.3)

The Spin lowering operator S− and the Spin raising operator S+ are defined thus:
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S−δj :=


√
J(J + 1)− j(j − 1) δj−1, j ∈ {−J + 1, . . . , J }

0, j = −J

(2.1.4)

S+δj :=


√
J(J + 1)− j(j + 1) δj−1, j ∈ {−J, . . . , J − 1 }

0, j = J

(2.1.5)

The spin–J matrices S1 = S++S−

2
, S2 = S+−S−

2i
and S3 is the diagonal matrix with

respect to { δj }Jj=−J (i.e. S3δj = jδj).

Labeling an operator Aj ∈ C(2J+1)×(2J+1) means that it acts as A on the j-th

factor of the tensor product and as the identity on all the other factors. i.e.

Aj ≡ I ⊗ · · · ⊗ A
j-th site

⊗ · · · ⊗ I (2.1.6)

In what follows, we assume that the anisotropy parameter ∆ satisfies ∆ > 2J . While

we emphasize that ∆ > 2J is not necessary for the operators hj,j+1 to be non-negative

(see, e.g. [30, p.16]), it is certainly sufficient (see Proposition 2.2.4 below).

2.2 Equivalence to a direct sum of Schrödinger-type
operators

In the following, we are going to discuss the equivalence of the spin-J XXZ

Hamiltonian to a direct sum of discrete many-particle Schödinger-type operators. To

this end, we will firstly review previous work [12], where we described configurations

of particles via functions m : ΛL → {0, 1, . . . , 2J}, where for each i ∈ ΛL, the

value m(i) represents the number of particles that are located at site i when in
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configuration m.

Equivalently, a configuration of N particles distributed over ΛL can be described

using ordered multisets X with elements in ΛL. Here, the value of the i-th element

xi ∈ X represents the location of the i-th particle of a configuration of N particles.

For our purposes, it will be advantageous to use both points of view as they

have their respective advantages: the first description involving occupation num-

bers will be more useful when it comes to analyzing the interaction potential of the

Schrödinger-type operators. On the other hand, once it has been shown how the

entanglement entropy of a state can be estimated using the Combes-Thomas bound

for spectral projections, the problem boils down to a combinatorial problem estimat-

ing exponentially weighted sums over a large set of many-particle configurations, for

which the multiset point of view will be more convenient.

2.2.1 Previous approach using occupation numbers

In [12, Prop. 2.1], it was shown that the Hamiltonian HL is unitarily equivalent to

a direct sum of many–body Schrödinger operators. One firstly observes that HL

preserves the total magnetization/particle number: to this end, we define the local

particle number operator N loc := (J − S3) acting on C2J+1 which has spectrum

σ(N loc) = {0, 1, . . . , 2J − 1, 2J}. For any site j ∈ {1, . . . , L}, we interpret the

eigenvalues of N loc
j as the number of particles located at site j. We then define the

total particle number operator NL as

NL :=
L∑
j=1

N loc
j , (2.2.1)

where the eigenvalues σ(NL) = {0, 1, 2, . . . , 2JL − 1, 2JL} of NL are consequently

interpreted as the total number of particles spread across the sites in ΛL. It can

be verified that [HL,NL] = 0, and thus we decompose HL =
⊕2JL

N=0HN
L , where HN

L

denotes the eigenspace of NL corresponding to the eigenvalue N – the space of all
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N -particle configurations in {1, 2, . . . , L} with the restriction that no site can be

occupied by more than 2J particles. We also define HN
L := HL ↾HN

L
. Now, let

MN
L :=

{
m : {1, 2, . . . , L} → {0, 1, . . . , 2J} :

L∑
j=1

m(j) = N

}
, (2.2.2)

be the set of all functions from {1, 2, . . . , L} to {0, 1, . . . , 2J} whose values add up to

N . For convenience, we also define ML :=
⋃2JL
N=0 M

N
L – the set of all functions from

{1, 2, . . . , L} to {0, 1, . . . , 2J}. Let {ek}2Jk=0 denote a normalized eigenbasis of N loc,

such that for any k ∈ {0, 1, . . . , 2J}, we have N locek = k · ek. We then define for any

m ∈ ML

ψm :=
L⊗
j=1

em(j) . (2.2.3)

This means in particular that for any j ∈ {1, 2, . . . , L} we get N loc
j ψm = m(j)ψm.

In other words, ψm describes a configuration of particles, where at each site j ∈

{1, 2, . . . , L}, there are exactly m(j) particles. Since

NLψm =

(
L∑
j=1

m(j)

)
ψm , (2.2.4)

it immediately follows that

HN
L = span

{
ψm : m ∈ MN

L

}
. (2.2.5)

Now, consider the Hilbert space ℓ2(MN
L ) =

{
f : MN

L → C
}

equipped with inner

product ⟨f, g⟩ =
∑

m∈MN
L
f(m)g(m) and let {ϕm}m∈MN

L
denote the canonical basis

of ℓ2(MN
L ), i.e.

ϕm(n) =


1 if m = n

0 else.

(2.2.6)
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The Hilbert spaces HN
L and ℓ2(MN

L ) are unitarily equivalent via

UN
L : HN

L → ℓ2(MN
L ), ψm 7→ ϕm . (2.2.7)

For any f ∈ ℓ2(MN
L ), let us now define the adjacency operator AN , given by

(ANf)(m) =
∑

n:n∼m

w(m,n)f(n) , (2.2.8)

where for two configurations m,n ∈ MN
L to be adjacent (denoted by m ∼ n) is

defined as follows:

m ∼ n :⇔

∃ j0 ∈ {1, 2, . . . , L− 1} : m(j0)− n(j0) = ±1 and m(j0 + 1)− n(j0 + 1) = ∓1

and for any j ∈ {1, 2, . . . , L} \ {j0, j0 + 1} : m(j) = n(j) .

(2.2.9)

This definition should be interpreted in the following way: two configurations m,n of

N particles distributed over L sites (with the requirement that no site be occupied by

more than 2J particles) are adjacent if one configuration can be obtained by moving

a single particle from the other configuration to the right or left (cf. Figure 2.2.1).
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1 2 3 4 5 6 7 8

m

n

Figure 2.2.1: An example of two adjacent configurations m,n ∈ M11
8 (here: J = 2).

The values of the functions at a site are represented by blue circles corresponding to
particles occupying the respective sites, e.g. m(2) = 4. Sincem(2)−n(2) = 4−3 = 1
and m(3) − n(3) = 1 − 2 = −1, while m(j) = n(j) for any other site j, we have
m ∼ n. We interpret configuration n as obtained from configuration m by a particle
hopping to the right from site 2 to site 3. (Represented by an arrow emanating from
the hopping particle in configuration m.)

For m ∼ n, the weight function w(m,n) = w(n,m) in (2.2.8) is given by

w(m,n) =
∏

j:m(j)̸=n(j)

(J(m(j) + n(j) + 1)−m(j)n(j))1/2 , (2.2.10)

however in what follows, the explicit expression in (2.2.10) will not play a particularly

important role. Moreover, for any m,n ∈ MN
L , we define their distance dN(m,n)

to be the length of the shortest path connecting m and n, which we will refer to as

graph distance.

Remark 2.2.1 For more details concerning the construction of the spin-J Heisen-

berg XXZ model on more general underlying graph (in lieu of just the chain), we re-

fer to [12], where appropriate N-particle graphs were introduced. Similar approaches

have been used for the spin-1/2 case in [13, 27]. Consider also [2, 8, 28] and the ref-

erences therein, where similar constructions have been studied from a graph-theoretic
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point of view.

Next, we define the full interaction potential VN , which is a multiplication oper-

ator on ℓ2(MN
L ), to be given by

(VNf)(m) = V (m)f(m) =

(
L−1∑
j=1

v(m(j),m(j + 1))

)
f(m)+J(m(1)+m(L))f(m) ,

(2.2.11)

where the ‘local’ two–site potential v is given by

v(m(j),m(j + 1)) = J(m(j) +m(j + 1))−m(j)m(j + 1) (2.2.12)

and we refer to the extra term “J(m(1) +m(L))” as the “boundary field”.

In what follows, the following two facts will be particularly important: firstly that

the operatorHN
L is unitarily equivalent to the Schrödinger-type operator−(2∆)−1AN+

VN (Prop. 2.2.2) and moreover that that kinetic term can be controlled in terms of

the potential (Prop. 2.2.4):

Proposition 2.2.2 ([12, Prop. 2.1]) We have the following unitary equivalence:

UN
L H

N
L (UN

L )∗ = − 1

2∆
AN + VN =: HN ≡ HN(L) . (2.2.13)

Remark on the proof: The only detail which is not discussed in [12] is the uni-

tary equivalence of the boundary field term “J(m(1) + m(L))f(m)” in (2.2.11) to

the boundary field “J(2J − S3
1 − S3

L)” in (3.3.4), which can be verified by an easy

calculation.
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Remark 2.2.3 For the special cases N = 0 and N = 2JL, note that

dim(ℓ2(M0
L)) = dim(ℓ2(M2JL

L )) = 1 .

On these one-dimensional spaces, the operators H0 and H2JL are just given by H0 = 0

and H2JL = 4J2.

Let us now recall a useful relative bound of AN in terms of the potential VN . It is

because of this particular feature of the model that we do not have to worry about

the explicit form of the weight function w given in (2.2.10).

Proposition 2.2.4 ([12, Lemma 2.9]) The operators AN and VN satisfy the fol-

lowing relative bound:

− 4JVN ≤ AN ≤ 4JVN . (2.2.14)

Remark on the proof: Strictly speaking, in [12, Lemma 2.9], it was only shown

that AN ≤ 4JVN . However, the lower bound −4JVN ≤ AN follows from a completely

analogous argument.

Let us now further analyze the interaction potential VN and determine all the con-

figurations which minimize its value, the proof can be found in Appendix A.2.1

Proposition 2.2.5 Let N ∈ {4J, 4J + 1, . . . , 2JL} and define VN,0 := min{V (m) :

m ∈ MN
L }. Then

VN,0 := 4J2 . (2.2.15)

Moreover, – up to overall translations – the minimizers of VN are given by
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mN
j (x) =


j if x = 1

2J if x = 2, . . . , r

2J − j if x = r + 1

(2.2.16)

for N = 2Jr, 2 ≤ r ≤ L− 1, j = 0, . . . , 2J − 1 and

mN
j (x) =


j if x = 1

2J if x = 2, . . . , 1 + ⌊ N
2J
⌋

N(mod 2J)− j if x = 2 + ⌊ N
2J
⌋

(2.2.17)

if N is not a multiple of 2J , j = 0, . . . , N(mod 2J)− 1.

Remark 2.2.6 The following figure provides an example of a minimizer of the form

(2.2.16), i.e. when N ∈ {4J, 6J, 8J, . . . , 2JL}:

k k + 1
. . .

k + r

j

2J 2J 2J 2J 2J

2J − j

Figure 2.2.2: An example of a minimizer when N = 2Jr as in (2.2.16). Here, J = 9/2
and j = 3.

Definition 2.2.7 For any K ∈ N, let MN
L,K = {m ∈ MN

L : V (m) ≤ K}, i.e. the set

of occupation number functions for which the potential VN is bounded by K.
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2.2.2 An equivalent description using multisets

When it comes to tracking the positions ofN individual particles, it will be convenient

to introduce ordered N -tuples that satisfy certain conditions. For brevity, in what

follows, we will refer to these N -tuples as multisets. Thus, for any L ∈ N and any

N ∈ {1, . . . , 2JL}, let us define

SNL =

{
(x1, x2, . . . , xN) ∈ ΛNL : x1 ≤ x2 ≤ · · · ≤ xN and min

k∈{1,2,...,N−2J}
(xk+2J − xk) ≥ 1

}
,

(2.2.18)

where for any X = (x1, x2, . . . , xN) ∈ SNL , the value of each individual xi represents

the position of the i-th particle. The condition

min
k∈{1,2,...,N−2J}

(xk+2J − xk) ≥ 1 (2.2.19)

reflects the fact that no site can be occupied by more than 2J particles and is

therefore automatically satisfied if N ≤ 2J . For later convenience, we also introduce

the convention S0
L := {∅}.

The correspondence between functions of occupation numbers m ∈ MN
L and

N -particle configurations X ∈ SNL is of course straightforward. For a given X =

(x1, x2, . . . , xN) ∈ SNL , the corresponding function mX ∈ MN
L is defined as

mX(j) := |{k ∈ {1, 2, . . . , N} : xk = j}| (2.2.20)

for any j ∈ ΛL. It is not hard to see that the mappingX 7→ mX is a bijection from SNL

to MN
L . We thus denote by Xm the image of the inverse of that mapping applied to

an arbitrary m ∈ MN
L .

1 We will also use {ϕX}X∈SNL
to denote the canonical basis of

1As an example, consider the multiset corresponding to the occupation function n in Figure
2.2.1, which would be given by

Xn = (1, 2, 2, 2, 3, 3, 5, 7, 7, 8, 8) . (2.2.21)
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ℓ2(SNL ), i.e. ϕX(Y ) = 1 if X = Y and ϕX(Y ) = 0 if X ̸= Y . Then, the identification

of the Hilbert spaces ℓ2(MN
L ) with ℓ

2(SNL ) via ϕm 7→ ϕXm is straightforward. So for

any X, Y ∈ SNL , we define X ∼ Y :⇔ mX ∼ mY as well as w(X, Y ) := w(mX ,mY )

and V (X) := V (mX). By a slight abuse of notation, we will use the same symbols

HN , AN and VN to denote the unitarily equivalent operators on ℓ2(SNL ), i.e.

(HNf)(X) = − 1

2∆
(ANf)(X) + (VNf)(X) = − 1

2∆

∑
Y :X∼Y

w(X, Y )f(Y ) + V (X)f(X)

(2.2.22)

for any f ∈ ℓ2(SNL ).

For any X, Y ∈ SNL , let dN(X, Y ) := dN(mX ,mY ). The merit of the multiset-

point-of-view will now be made more apparent by the following lemma; its proof can

be found in Appendix A.1.

Lemma 2.2.8 For any two configurations X, Y ∈ SNL , where X = (x1, x2, . . . , xN)

and Y = (y1, y2, . . . , yN), we have

dN(X, Y ) =
N∑
i=1

|xi − yi| . (2.2.23)

2.3 Combes–Thomas estimate and bounds on spectral
projections

One of the main ingredients of the proof of the bound for the entanglement entropy

will be a bound on spectral projections. To be more specific, let A ⊂ SL be a set of

configurations. For any such A, we define PA to be the orthogonal projection onto



23

the subspace of functions that are supported on A, i.e.

(PAf)(X) =


f(X) if X ∈ A

0 if X ∈ SL \ A
. (2.3.1)

For later convenience, we also define PA := 1l− PA.

Theorem 2.3.1 For any N ∈ {1, 2, . . . , 2JL}, let YN be an arbitrary multiplication

operator on ℓ2(SNL ) and z /∈ σ(HN + YN) such that there exists κz > 0 for which

∥∥∥V 1/2
N (HN + YN − z)−1V

1/2
N

∥∥∥ ≤ 1

κz
<∞ . (2.3.2)

Then for all subsets A,B ⊆ SNL , we have

∥∥PA (HN + YN − z)−1 PB
∥∥ ≤ 1

VN,0

∥∥∥PAV
1/2
N (HN + YN − z)−1 V

1/2
N PB

∥∥∥ ≤ 2

VN,0κz
e−ηzd

N (A,B),

(2.3.3)

where

ηz = log

(
1 +

∆κz
4J

)
. (2.3.4)

Proof: An abstract result of this form for Schrödinger-type operators whose kinetic

term is controlled by the potential such as in Proposition 2.2.4 was shown in [1, Prop.

3.1]. The theorem now follows.

Now, let K ∈ N and for any δ ∈ (0, 1), define EK,δ :=
(
1− 2J

∆

)
(K + 1 − δ).

Moreover, for any non-negative multiplication operator WN on ℓ2(SNL ), let QN
K,δ ≡

QN
K,δ(L,WN) := 1l[0,EK,δ ](HN(L) +WN) be the spectral projection of HN +WN as-

sociated to the energy interval [0, EK,δ]. Lastly, for any K ∈ N, we introduce the

set SNL,K := {Xm : m ∈ MN
L,K}, where the sets MN

L,K were introduced in Definition

2.2.7.
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Theorem 2.3.2 Let A ⊂ SNL be a set of configurations. We then get the following

estimate:

∥∥PAQ
N
K,δ

∥∥ =
∥∥QN

K,δPA
∥∥ ≤ CN,Ke

−µKdN (A,SNL,K), (2.3.5)

where

CN,K = CN,K(∆, δ, J) = max

{
1,

8K(K + 1)

VN,0δ2

}
(2.3.6)

and µK = µK(∆, δ, J) = log

(
1 +

δ(∆− 2J)

16J(K + 1)

)
. (2.3.7)

Proof: We follow ideas from [10, Proof of Lemma 8.2] and [20]. If A ∩ SNL,K ̸= ∅,

which implies dN(A,SNL,K) = 0, then (2.3.5) immediately follows from CN,K ≥ 1.

Hence, assume A ⊂ SNL \ SNL,K from now on. Then, let us choose YN = WN + γPSNL,K

with γ =
(
1− 2J

∆

)
K and show that the operator HN +WN + γPSNL,K

satisfies the

assumptions of Theorem 2.3.1. Observe that for any E ∈ [0, EK,δ/2] one has

V
−1/2
N (HN + YN − E)V

−1/2
N ≥ − 1

2∆
V

−1/2
N ANV

−1/2
N + 1l + γPSNL,K

V −1
N − EV −1

N

(2.3.8)

≥
(
1− 2J

∆

)
+

((
1− 2J

∆

)
K − EK,δ/2

)
V −1
N PSNL,K

− EK,δ/2P SNL,K
V −1
N (2.3.9)

=

(
1− 2J

∆

)(
1l− (1− δ/2)V −1

N PSNL,K
− (K + 1− δ/2)V −1

N P SNL,K

)
. (2.3.10)

Now, note that

− (1− δ/2)V −1
N PSNL,K

≥ −(1− δ/2)PSNL,K
as well as −V −1

N P SNL,K
≥ − 1

K + 1
P SNL,K

,

(2.3.11)
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which we use to further estimate (2.3.10):

(2.3.10) ≥
(
1− 2J

∆

)(
δ

2
PSNL,K

+
δ/2

K + 1
P SNL,K

)
≥
(
1− 2J

∆

)
δ

2(K + 1)
. (2.3.12)

From this, it can be concluded that for any E ∈ [0, EK,δ], we have E /∈ σ(HN+WN+

γPSNL,K
) and moreover that

∥V 1/2
N (HN +WN + γPSNL,K

− E)−1V
1/2
N ∥ ≤ 2(K + 1)

δ
(
1− 2J

∆

) (2.3.13)

and, by a slight modification (see [10, Lemma 4.3]), one gets for any ε ∈ R:

∥V 1/2
N (HN +WN + γPSNL,K

− E + iε)−1V
1/2
N ∥ ≤ 4(K + 1)

δ
(
1− 2J

∆

) . (2.3.14)

From Theorem 2.3.1, we therefore get for any A ∈ SNL \ SNL,K

∥PSNL,K
(HN+WN+γPSNL,K

−E+iε)−1PA∥ ≤ 8(K + 1)

VN,0 · δ
(
1− 2J

∆

)e−µKdN (A,SNL,K) , (2.3.15)

for any E ∈ [0, EK,δ/2] and any ε ∈ R. The constant µK = µK(∆, δ, J) is given by

µK = log

(
1 +

δ(∆− 2J)

16J(K + 1)

)
. (2.3.16)

Now, let Γ be the circle centered at 1
2
EK,δ with radius R := 1

2

(
1− 2J

∆

)
(K + 1).

Note that this implies dist(Γ, [0, EK,δ]) =
δ
2

(
1− 2J

∆

)
=: δ′. Moreover, it follows from
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Proposition 2.2.4 that

HN +WN + γPSNL,K
≥ − 1

2∆
AN + VN + γPSNL,K

≥
(
1− 2J

∆

)
VN + γPSNL,K

(2.3.17)

≥
(
1− 2J

∆

)
(VN +K)PSNL,K

+

(
1− 2J

∆

)
VNP SNL,K

(2.3.18)

≥
(
1− 2J

∆

)
(K + 1) , (2.3.19)

which means that there is no spectrum of HN +WN + γPSNL,K
inside the circle Γ,

which implies ∮
Γ

(HN +WN + γPSNL,K
− z)−1dz = 0 . (2.3.20)

We therefore get

QN
K,δ =(QN

K,δ)
2 =

i

2π
QN
K,δ

∮
Γ

(HN +WN − z)−1dz (2.3.21)

=
i

2π
QN
K,δ

∮
Γ

[(HN +WN − z)−1 − (HN +WN + γPSNL,K
− z)−1]dz (2.3.22)

=
iγ

2π
QN
K,δ

∮
Γ

(HN +WN − z)−1PSNL,K
(HN +WN + γPSNL,K

− z)−1dz (2.3.23)

We then proceed to estimate

∥QN
K,δPA∥ ≤ γRmax

z∈Γ

[
∥QN

K,δ(HN +WN − z)−1∥∥PSNL,K
(HN +WN + γPSNL,K

− z)−1PA∥
]

(2.3.24)

≤ γR

δ′
max
z∈Γ

|∥PSNL,K
(HN +WN + γPSNL,K

− z)−1PA∥ , (2.3.25)

where we have used ∥QN
K,δ(HN +WN − z)−1∥ ≤ (δ′)−1. Note that for any z ∈ Γ, we

have

Re z ≤
(
1− 2J

∆

)(
K + 1− δ

2

)
= EK,δ/2 , (2.3.26)

which means that we can apply (2.3.15) to estimate ∥PSNL,K
(HN +WN + γPSNL,K

−
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z)−1PA∥ uniformly in z ∈ Γ. We then get

(2.3.25) ≤ 8γR(K + 1)

VN,0δ′δ(1− 2J
∆
)
e−µKd

N (A,SNL,K) =
8K(K + 1)

VN,0δ2
e−µKd

N (A,SNL,K) , (2.3.27)

which is the desired result.

Remark 2.3.3 This result applies in particular to non-negative multiplication oper-

ators WN , that are of the form

WN(X) =
N∑
i=1

ν(xi) (2.3.28)

for any X = (x1, x2, . . . , xN) ∈ SNL , where ν : ΛL → R+
0 is an arbitrary non-negative

function with domain ΛL. In this case, WN corresponds to a background magnetic

field in 3-direction, whose value at each site j is given by ν(j). To be more precise,

we have

WN = UN
L

(
L∑
j=1

N loc
j ν(j) ↾HN

L

)
(UN

L )∗ , (2.3.29)

where the unitary operator UN
L was given in (2.2.7). See also [12, Remark 2.7].

2.4 Entanglement Entropy of Higher Energy states

In what follows, we will mainly use ideas and previous results from [1, Sec. 5]. Let

SL :=
⋃2JL
N=0 SNL , which allows us to identify

ℓ2(SL) =
2JL⊕
N=0

ℓ2(SNL ) . (2.4.1)

Next, let ψ ∈ ℓ2(SL) be normalized. We denote the associated density matrix by ρψ =

|ψ⟩⟨ψ|.2 Analogous to (2.2.18), for any subset Γ ⊂ ΛL, and any N ∈ {1, . . . , 2J |Γ|},
2Using physicist’s notation, for any α, β in a Hilbert space H, the symbol “|α⟩⟨β|” denotes the

rank-one operator ψ 7→ α⟨β, ψ⟩ for any ψ ∈ H.
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we define

SNΓ :=

{
(x1, x2, . . . , xN) ∈ ΓN : x1 ≤ x2 ≤ · · · ≤ xN and min

k∈{1,2,...,N−2J}
(xk+2J − xk) ≥ 1

}
(2.4.2)

and – as before – we set S0
Γ := {∅}. Moreover, ℓ2(SΓ) is defined analogously to (2.4.1).

Now, let ℓ ∈ N such that 1 < ℓ < L. Then, ΛL = Λℓ ∪ Λcℓ is a spatial bipartition

of ΛL into two disjoint discrete subintervals, with the corresponding decomposition

of the Hilbert space ℓ2(SL) = ℓ2(SΛℓ
)⊗ ℓ2(SΛc

ℓ
). Moreover, for any X ∈ SΛℓ

and any

Y ∈ SΛc
ℓ
, which implies that X ∨ Y ∈ SL, one naturally identifies ϕX∨Y = ϕX ⊗ ϕY .

3

The reduced state ρ1 : ℓ
2(SΛℓ

) → ℓ2(SΛℓ
) is the linear operator given by

ρ1(ψ,Λℓ) ≡ ρ1 = TrΛc
ℓ
(ρψ) =

∑
X1,X2∈SΛℓ

∑
Y ∈SΛc

ℓ

ψ(X1 ∨ Y )ψ(X2 ∨ Y )|ϕX1⟩⟨ϕX2| (2.4.3)

where TrΛc
ℓ
(·) denotes the partial trace over the subsystem Λcℓ. Then, the Entan-

glement Entropy of ρψ, which we denote by E(ρψ) as in definition (1.6.1) is given

by

E(ρψ) = −Tr(ρ1 log ρ1) =: S(ρ1) , (2.4.4)

where S(ρ1) denotes the von Neumann entropy of the reduced state ρ1.
4 As in [1, 5],

we will actually show estimates for the α-Rényi entropies Sα of ρ1, which are given

by

Sα(ρ1) :=
1

1− α
log Tr[(ρ1)

α] , (2.4.5)

where α ∈ (0, 1). Since for every α ∈ (0, 1) one has S(ρ1) ≤ Sα(ρ1), showing suitable

bounds for Sα(ρ1) will then readily imply the desired result for the entanglement

3For two multisets X = (x1, x2, . . . , xj) ∈ SΛℓ
and Y = (y1, y2, . . . , yK) ∈ SΛc

ℓ
, the notation

“X ∨ Y ” denotes the multiset (x1, x2, . . . , xj , y1, y2, . . . , yk) ∈ SL. This means in particular that
mX∨Y = mX +mY .

4We adapt the convention 0 log 0 = 0.
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entropy E(ρψ). Let us now further analyze (2.4.3):

ρ1 =
∑

X1,X2∈SΛℓ

ψ(X1)ψ(X2)|ϕX1⟩⟨ϕX2|+
∑

X1,X2∈SΛℓ

∑
Y ∈SΛc

ℓ
\{∅}

ψ(X1∨Y )ψ(X2 ∨ Y )|ϕX1⟩⟨ϕX2 |,

(2.4.6)

where the first sum simply corresponds to the contributions in (2.4.3), for which

Y = ∅. Now, let the vector Ψ ∈ ℓ2(SΛℓ
) be given by Ψ :=

∑
X3∈SΛℓ

ψ(X3)ϕX3 , which

clearly satisfies ∥Ψ∥ℓ2(SΛℓ
) ≤ ∥ψ∥ℓ2(SL) and observe that

∑
X1,X2∈SΛℓ

ψ(X1)ψ(X2)|ϕX1⟩⟨ϕX2| = |Ψ⟩⟨Ψ| . (2.4.7)

So, we write ρ1 = |Ψ⟩⟨Ψ|+ρ̂1 with ρ̂1 being equal to the second sum in (2.4.6). Notice

that ρ̂1 is non-negative since it is the partial trace of a non-negative operator |ψ̂⟩⟨ψ̂|

where |ψ̂⟩ =
∑

X∈SΛℓ

∑
Y ∈SΛc

ℓ
\{ ∅ } ψ(X ∨ Y )|ϕX∨Y ⟩. Let us now focus on Tr[(ρ1)

α]:

Tr[(ρ1)
α] = Tr[(|Ψ⟩⟨Ψ|+ ρ̂1)

α] ≤ 2Tr[(|Ψ⟩⟨Ψ|)α] + 2Tr[(ρ̂1)
α] ≤ 2 + 2Tr[(ρ̂1)

α] ,

(2.4.8)

where we have used the quasi-norm property of Tr| · |α, cf. [32, Satz 3.21] and the

fact that |Ψ⟩⟨Ψ| is a non-negative rank-one operator with norm less than or equal to

one. Let us now further estimate

Tr[(ρ̂1)
α] =

∑
X∈SΛℓ

⟨ϕX , (ρ̂1)αϕX⟩ ≤
∑
X∈SΛℓ

⟨ϕX , ρ̂1ϕX⟩α =
2Jℓ∑
j=0

∑
X∈SjΛℓ

⟨ϕX , ρ̂1ϕX⟩α

(2.4.9)

≤

∣∣∣∣∣
4J−1⋃
j=0

SjΛℓ

∣∣∣∣∣
1−α

+
2Jℓ∑
j=4J

∑
X∈SjΛℓ

⟨ϕX , ρ̂1ϕX⟩α (2.4.10)

where we have used Jensen’s inequality for the first estimate in (2.4.9) and the second
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estimate (2.4.10) just follows from maximizing
∑∑

⟨ϕX , ρ̂1ϕX⟩α under the constraint∑∑
⟨ϕX , ρ̂1ϕX⟩ ≤ 1. We estimate further by noting |SjΛℓ

| ≤ ℓj and since ℓ ≥ 2,

(2.4.10) ≤ ℓ4J(1−α) +
2Jℓ∑
j=4J

∑
X∈SjΛℓ

⟨ϕX , ρ̂1ϕX⟩α . (2.4.11)

Now, for each X ∈ SΛℓ
with |X| = j, we get

⟨ϕX , ρ̂1ϕX⟩ =
∑

Y ∈SΛc
ℓ
\{∅}

|ψ(X ∨ Y )|2 = ∥PAX
ψ∥2 , (2.4.12)

where given any X ∈ SΛℓ
, we have defined PAX

:= (PX ⊗ PSΛc
ℓ
) − (PX ⊗ P{ ∅ }).

Altogether, these considerations show the following

Lemma 2.4.1 Let ψ ∈ ℓ2(SL) be normalized. Then, for any α ∈ (0, 1) we get

Tr[(ρ1)
α] ≤ 2 + 2ℓ4J(1−α) + 2

2Jℓ∑
j=4J

∑
X∈SjΛℓ

∥PAX
ψ∥2α . (2.4.13)

2.5 Proof of the logarithmically corrected entanglement
bound

In this section, the main result; the logarithmic upper bound for the entanglement

entropy is shown.

Theorem 2.5.1 For any K ∈ {4J2, 4J2+1, . . . } and any δ > 0, we get the following

estimate

lim sup
ℓ→∞

lim sup
L→∞

supW supψ E(ρψ)
log ℓ

≤ 2⌊K/J⌋ − 2 , (2.5.1)

where the suprema are taken over all non-negative functions W : SL → R+
0 and over

all normalized elements ψ ∈ ran(QK,δ(L,W )), respectively.
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2.5.1 Local distance estimates

The following lemma, whose proof can be found in Appendix A.2.2, provides us with

an estimate for the distance of a configuration in SL to the nearest configuration in

SL,K .

Lemma 2.5.2 Let X = (x1, x2, . . . , xj) ∈ SjΛℓ
with j ≥ 4J and Y = (y1, y2, . . . , yk) ∈

SkΛc
ℓ
, where k ∈ N. Then, for any K ≥ 4J2, we have the following estimate:

dj(X, SjΛℓ,K
) ≤ dj+k(X ∨ Y, Sj+kL,K) . (2.5.2)

So, the main observation made in Lemma 2.5.2 is that there always exists a configu-

ration in SjΛℓ,K
which is at least as close to X as any configuration in Sj+kL,K might be

to X ∨ Y . We now combine Lemmas 2.4.1, 2.5.2 and Theorem 2.3.2. To this end,

for any non-negative function W : SL → R+
0 , let us define QK,δ ≡ QK,δ(L,W ) :=⊕2JL

N=0Q
N
K,δ(L,WN) – the spectral projection of the full Hamiltonian onto the energy

interval [0, EK,δ] with background potential W . Here, WN : ℓ2(SNL ) → ℓ2(SNL ), de-

notes the multiplication operator induced by W , i.e. (WNf)(X) := W (X)f(X), for

any f ∈ ℓ2(SNL ) and any X ∈ SNL .

Corollary 2.5.3 Fix K ∈ N and let ℓ ≥ 4J . Let ψ ∈ ran(QK,δ) be normalized.

Then, for any α ∈ (0, 1), we have the following estimate

Tr[(ρ1)
α] ≤ 2 + 2ℓ4J(1−α) + 2C ′2α

K

2Jℓ∑
j=4J

∑
X∈SjΛℓ

e
−2αµKd

j(X,SjΛℓ,K
)
, (2.5.3)

where

C ′
K = max

{
1,

2K(K + 1)

J2δ2

}
. (2.5.4)
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Proof: Let X ∈ SjΛℓ
, where j ≥ 4J . Defining PAX,k

:= PX ⊗ PSk
Λc
ℓ

, and using that

PAX
QK,δ =

2J(L−ℓ)⊕
k=1

PAX,k
Qj+k
K,δ (2.5.5)

we get

∥PAX
ψ∥ = ∥PAX

QK,δψ∥ ≤ ∥PAX
QK,δ∥ = max

k∈{1,...,2J(L−ℓ)}
∥PAX,k

Qj+k
K,δ ∥ (2.5.6)

≤ max
k∈{1,...,2J(L−ℓ)}

(
Cj+k,K · e−µKdj+k(AX,k,Sj+k

L,K)
)

(2.5.7)

where we have used Theorem 2.3.2 for the last inequality and the constants Cj+k,K

and µK were given in (2.3.6). Now, since j + k ≥ 4J by assumption, it follows from

Proposition 2.2.5 that Vj+k,0 = 4J2 and thus

Cj+k,K = max

{
1,

2K(K + 1)

J2δ2

}
= C ′

K , (2.5.8)

independently of j. Now, for any k ∈ {1, . . . , 2J(L − ℓ)}, observe that by Lemma

2.5.2, we have

dj+k(AX,k,Sj+kL,K) = min
Y ∈Sk

Λc
ℓ

dj+k(X ∨ Y, Sj+kL,K) ≥ dj(X, SjΛℓ,K
) (2.5.9)

and thus we may proceed to estimate (2.5.7) to get

∥PAX
ψ∥ ≤ (2.5.7) ≤ C ′

K · e−µKd
j(X,SjΛℓ,K

)
. (2.5.10)
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Using Lemma 2.4.1, we consequently find

Tr[(ρ1)
α] ≤ 2 + 2ℓ4J(1−α) + 2C ′2α

K

2Jℓ∑
j=4J

∑
X∈SjΛℓ

e
−2αµKd

j(X,SjΛℓ,K
)
, (2.5.11)

which shows (2.5.3).

2.5.2 Estimates using geometric series

Lemma 2.5.4 Let XN = {X = (x1, x2, . . . , xN) ∈ ZN : x1 < x2 < · · · < xN } be the

set of spin–1/2 configurations on the infinite chain. Moreover, let C = (c1, c2, . . . , cN) =

(c, c + 1, . . . , c + (N − 1)) be an arbitrary configuration of N consecutive particles

(c ∈ Z). Then, for any γ > 0, we get

∑
X∈XN

e−γd
N (X,C) ≤

(
1

1− e−γ

)( ∞∏
k=1

1

1− e−kγ

)2

:= Lγ <∞ . (2.5.12)

Proof:

Define

XN,0 = {X ∈ XN : x1 ≥ c1 } , XN,N = {X ∈ XN : xN < cN }

and for any j ∈ { 1, . . . , N − 1 },

XN,j = {X ∈ XN : xj < cj, xj+1 ≥ cj+1 } .

Then, XN = ⊎Nj=0XN,j, where “⊎” denotes a disjoint union. For any j ∈ { 1, . . . , N − 1 },
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we get by an argument similar to [14, Lemma A.3] that

∑
X∈XN,j

e−γd
N (X,C) =

∑
x1<x2<···<xj<cj

e−γ(|x1−c1|+···+|xj−cj |)
∑

cj+1≤xj+1<xj+2<···<xN

e−γ(|xj+1−cj+1|+···+|xN−cN |)

≤ e−γj

(
j∏

k=1

1

1− e−kγ

)(
N−j∏
k=1

1

1− e−kγ

)
≤ e−γj

(
∞∏
k=1

1

1− e−kγ

)2

.

(2.5.13)

Analogously, we find

∑
X∈XN,0

e−γd
N (X,C) ≤

N∏
k=1

1

1− e−kγ
≤

(
∞∏
k=1

1

1− e−kγ

)2

(2.5.14)

∑
X∈XN,N

e−γd
N (X,C) ≤ e−γN

N∏
k=1

1

1− e−kγ
≤ e−γN

(
∞∏
k=1

1

1− e−kγ

)2

. (2.5.15)

Hence,

∑
X∈XN

e−γd
N (X,C) =

N∑
j=0

∑
X∈XN,j

e−γd
N (X,C) (2.5.16)

≤
N∑
j=0

e−γj

(
∞∏
k=1

1

1− e−kγ

)2

≤
(

1

1− e−γ

)( ∞∏
k=1

1

1− e−kγ

)2

,

(2.5.17)

which is the desired result. The infinite product’s convergence follows from elemen-

tary facts.

Definition 2.5.5 For any m ∈ MN
L , let supp(m) := {j ∈ {1, 2, . . . , L} : m(j) ̸= 0}

denote the support of m. Then, for any L, we define the set KL of “building bocks”
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in ΛL as follows

KL := {m ∈ ML : |supp(m)| = 1}

∪ {m ∈ ML : ∃ α, β ∈ ΛL : m(i) = 2J if α ≤ i ≤ β and m(i) = 0 else} .

(2.5.18)

In other words, building blocks are configurations of either a single column of up to

2J particles or of discrete intervals, where each site is occupied by exactly 2J particles

(rectangular blocks).

Lemma 2.5.6 Let γ > 0. Then for any C ∈ KL, we have

∑
X∈SNL

e−γd
N (X,C) ≤ L2J

γ (2.5.19)

Proof: Let C be a rectangular block, i.e. C = (
2J times︷ ︸︸ ︷
c, . . . , c,

2J times︷ ︸︸ ︷
c+ 1, . . . , c+ 1, . . . ,

2J times︷ ︸︸ ︷
c+m, . . . , c+m

) where N = 2J(m + 1). For any N-particle configuration X = (x1, . . . , xN) ∈ SNL ,

let Z0(X) denote the constraint

Z0(X) : x1 ≤ x2 ≤ · · · ≤ xN . (2.5.20)

Moreover, define the additional constraints

Zi(X) : xi < xi+2J < xi+4J < · · · < xi+2JRi
(2.5.21)

where i ∈ { 1, 2, . . . , 2J } and Ri = max {R ∈ {1, 2, . . . , N} : i+ 2JR ≤ N }.

Let

MN
L := {X ∈ ΛNL : Zi(X) holds ∀ i = 0, . . . , 2J } (2.5.22)
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and

ΓN := {X ∈ ZN : Zk(X) holds ∀ k = 1, . . . , 2J } . (2.5.23)

Obviously, MN
L ⊆ ΓN .

To see that MN
L = SNL (defined in (2.2.18)), note that it is obvious that MN

L ⊆ SNL

since for any X ∈ MN
L , the constraints Zi(X) imply that min { (xk+2J − xk) : k = 1, . . . , N − 2J } ≥

1.

Conversely, suppose there exists X ∈ SNL \ MN
L , i.e. X violates at least one

constraint, Zt(X) say, where t ̸= 0. Then there exists r ∈ N such that xt+2Jr ≥

xt+2J(r+1). This is a contradiction since X ∈ SNL . Hence, SNL = MN
L .

Therefore, by Lemma (2.5.4),

∑
X∈SNL

e−γd
N (X,C) ≤

∑
X∈ΓN

e−γd
N (X,C)

=
∑
Z1(X)

e−γ(|x1 − c1|+ · · ·+ |x1+2JR1 − c1+2JR1 |) × · · ·

· · · ×
∑

Z2J (X)

e
−γ(|x2J − c2J |+ · · ·+ |x2J+2JR

2J
− c2J+2JR

2J
|)

≤ L2J
γ .

(2.5.24)

If C = (c1, . . . , cN) is a column block, i.e. c1 = · · · = cN = c, where c ∈ ΛL and

N ≤ 2J , then

∑
X∈SNL

e−γd
N (X,C) ≤

∑
−∞<x1≤x2≤···≤xN<∞

e−γ[|x1−c|+···+|xN−c|] (2.5.25)

≤
∑

x1,x2,··· ,xN∈Z

e−γ[|x1−c|+···+|xN−c|] =

(
1 + e−γ

1− e−γ

)N
≤ LNγ ≤ L2J

γ ,

(2.5.26)
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which finishes the proof.

Remark 2.5.7 Note that for this result, we are making use of the generalized Pauli

principle, which requires that no site be occupied by more than 2J particles.

2.5.3 Building blocks and potential

Given a value K ∈ N and a particle number N ≥ 4J , it seems rather cumbersome to

give a full description of all configurations in MN
L,K . However, it can be shown that

any configuration in MN
L,K can be composed out of no more than K of the “building

blocks” as described in Definition 2.5.5 before.

Definition 2.5.8 Given a configuration m ∈ ML, we define the quantity B(m) as

follows:

B(m) := |{i ∈ {1, 2, . . . , L− 1} : m(i) +m(i+ 1) /∈ {0, 4J}}|+(2−δm(1),0−δm(L),0).

(2.5.27)

Moreover, for any R ∈ N, we define

BL,R := {m ∈ ML : B(m) ≤ R} as well as BN
L,R := BL,R ∩MN

L (2.5.28)

for any N ∈ {0, 1, . . . , 2JL}. Additionally, for multisets, we introduce BL,R = {X ∈

SL : mX ∈ BL,R} and BNL,R = BL,R ∩ SNL .

Remark 2.5.9 The purpose of B(m) is to count the number of neighboring sites

{i, i+1}, i = 1, 2, . . . , L− 1, which are not both occupied by either 0 or 2J particles.

Each of the two additional terms in (2−δm(1),0−δm(L),0) = (1−δm(1),0)+(1−δm(L),0)

increases B(m) by a value of one if the sites 1 or L are occupied by any particles

(which formally corresponds to including the edges {0, 1} and {L,L+1} in the count).
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Remark 2.5.10 Observe that B(m) ≤ J−1V (m) for every m ∈ ML. This follows

from the fact that v(m(i),m(i + 1)) = 0 if and only if m(i) = m(i + 1) = 0 or

m(i) = m(i+1) = 2J and v(m(i),m(i+1)) ≥ J else, and comparing the extra term

(2 − δm(1),0 − δm(L),0) in (2.5.27) with the boundary field term J(m(1) + m(L)) in

(2.2.11). For K ≥ 4J2, define K̃ := ⌊K/J⌋, and observe that this implies

SL,K ⊂ BL,K̃ and thus in particular SNL,K ⊂ BN
L,K̃

. (2.5.29)

It is now crucial to observe that any configuration in BL,K̃ can always by obtained

by composing it out of at most (K̃ − 1) “building blocks”.

Remark 2.5.11 Observe that for any m ∈ ML, there exist {k(i)}τi=1 ⊂ KL, (τ ≤ L),

with pairwise disjoint supports, such that m =
∑τ

i=1 ki. If in addition, we have

m ∈ BL,K̃, it follows from (2.5.27) that τ ≤ (K̃ − 1), i.e. any configuration in BL,K̃

can be composed out of no more than (K̃ − 1) building blocks. See Figure 2.5.1 for a

pictorial representation of building blocks.

1 2 3 4 5 6 7

Figure 2.5.1: A configuration m ∈ MN
L of N = 37 particles (here: J = 9/2). More-

over, B(m) = 6 ≤ J−1V (m) = 26 and indeed, m can be written as a composition of
4 ≤ (⌊J−1V (m)⌋ − 1) building blocks (represented here by four different colors).
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Lemma 2.5.12 Let j ∈ {4J, 4J + 1, . . . , 2Jℓ}, K ∈ {4J2, 4J2 + 1, . . . , 2Jℓ} and

K̃ := ⌊K/J⌋. Then, for any γ > 0, we get the following estimate

∑
X∈SjΛℓ

e
−γdj(X,SjΛℓ,K

) ≤ (4Je)K̃−2L2J(K̃−1)
2αµK

ℓ2K̃−3 . (2.5.30)

Proof: Analogously to before, we define Bj
Λℓ,K̃

:= Bj
L,K̃

∩ SΛℓ
and observe that due

to (2.5.29), we have SjΛℓ,K
⊂ Bj

Λℓ,K̃
and thus, we get

∑
X∈SjΛℓ

e
−γdj(X,SjΛℓ,K

) ≤
∑
X∈SjΛℓ

∑
Y ∈SjΛℓ,K

e−γd
j(X,Y ) =

∑
Y ∈SjΛℓ,K

∑
X∈SjΛℓ

e−γd
j(X,Y ) ≤

∑
Y ∈Bj

Λℓ,K̃

∑
X∈SjΛℓ

e−γd
j(X,Y ).

(2.5.31)

We now claim that for every Y ∈ Bj
Λℓ,K̃

, we get

∑
X∈SjΛℓ

e−γd
j(X,Y ) ≤ L2J(K̃−1)

γ . (2.5.32)

Since Y ∈ Bj
Λℓ,K̃

, observe that by Remark 2.5.11, there exist k(1),k(2), . . . ,k(τ) ∈ KL

with τ ≤ (K̃ − 1) and pairwise disjoint support such that

k(1) + k(2) + · · ·+ k(τ) = mY . (2.5.33)

Without loss of generality, we may assume that the building blocks are ordered such

that 1 ≤ i < s ≤ τ implies max supp(k(i)) < min supp(k(s)).

For any i ∈ {1, 2 . . . , τ}, let K(i) := Xk(i) denote the multiset associated with

the building block k(i) and thus Y = K(1) ∨K(2) ∨ · · · ∨K(τ). Now, decompose any

X ∈ SjΛℓ
analogously into X = X(1) ∨X(2) ∨ · · · ∨X(τ) such that |X(i)| = |K(i)| =: ki

for every i ∈ {1, 2, . . . , τ} and i < s implies that max(X(i)) < min(X(s)).
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We then get

∑
X∈SjΛℓ

e−γd
j(X,Y ) =

∑
X(1)∨···∨X(τ)∈SjΛℓ

e−γ(d
k1 (X(1),K(1))+···+dkτ (X(τ),K(τ))) (2.5.34)

≤
τ∏
i=1

 ∑
X(i)∈SkiΛℓ

e−γd
ki (X(i),K(i))

 ≤ L2Jτ
γ ≤ L2J(K̃−1)

γ , (2.5.35)

where we have used Lemma 2.5.6 for estimating the sum in (2.5.35). This shows

(2.5.32) which together with (2.5.31) proves that

∑
X∈SjΛℓ

e
−γdj(X,SjΛℓ,K

) ≤
∑

Y ∈Bj

Λℓ,K̃

L2J(K̃−1)
γ = |Bj

Λℓ,K̃
| · L2J(K̃−1)

γ , (2.5.36)

which means that we need to further estimate the number of configurations in Λℓ

of (K̃ − 1) or less building blocks of j particles. We do this by a rather rough

combinatorial argument: firstly, note that distributing j particles into up to (K̃ − 1)

building blocks can be estimated by
(j+K̃−2

K̃−2

)
. This is clearly an overestimate, since

it disregards the constraints in (2.5.18) which building blocks have to satisfy. Next,

we have to account for all the possible ways, those (K̃ − 1) or less building blocks

can be placed in Λℓ. A trivial upper bound for this is given by ℓK̃−1, since there are

up to ℓ sites one could place each individual building block (disregarding the fact

that the supports of the building blocks have to be disjoint and can be larger than

one and thus again overestimating). If K̃ > 2, we therefore conclude

|Bj
Λℓ,K̃

| ≤
(
j + K̃ − 2

K̃ − 2

)
· ℓK̃−1 ≤

(
(2Jℓ+ K̃ − 2)e

K̃ − 2

)K̃−2

ℓK̃−1 ≤ (4Je)K̃−2ℓ2K̃−3 ,

(2.5.37)

where we have used the estimate
(
α
β

)
≤
(
αe
β

)β
for the binomial coefficient as well as

the fact that j ≤ 2Jℓ and 4J ≤ K̃ ≤ 2ℓ. For the special case K̃ = 2, which can only



41

occur of J = 1/2, Equation (2.5.37) still follows since |Bj
Λℓ,K̃

| ≤ ℓ. This shows the

lemma.

2.5.4 Proof of the main result

Proof of Theorem 2.5.1: Let W : SL → R+
0 be an arbitrary non-negative back-

ground potential and let ψ be an arbitrary normalized element of ran(QK,δ(L,W )).

Combining Corollary 2.5.3 and Lemma 2.5.12 (with the choice γ = 2αµK) and using

that for any α ∈ (0, 1), the α-Rényi entropy is an upper bound for the von Neumann

entropy, we obtain

E(ρψ) ≤
1

1− α
log Tr[(ρ1)

α] ≤ 1

1− α
log
(
2 + 2ℓ4J(1−α) + (4Je)K̃−1C ′2α

K L2J(K̃−1)
2αµK

ℓ2K̃−2
)
,

(2.5.38)

which does not depend on L. We therefore get

lim sup
ℓ→∞

lim sup
L→∞

supW supψ E(ρψ)
log ℓ

≤ 2K̃ − 2

1− α
=

2⌊K/J⌋ − 2

1− α
. (2.5.39)

Since this is true for all α ∈ (0, 1), one can take α → 0, which yields the desired

result.

Remark 2.5.13 Note that for J = 1/2, the constant in (2.5.1), is given by (4K−2).

In [1], where only the case J = 1/2 was treated, the better bound (2K − 1) was

established. The main reason for this discrepancy is that in this special case, one can

actually show that any configuration m with V (m) ≤ K can actually be composed out

of no more than K building blocks rather than out of no more than K̃ − 1 = 2K − 1

building blocks.
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CHAPTER 3

GENERALIZATION OF EMPTINESS FORMATION BOUNDS
USING REFLECTION POSITIVITY

3.1 Classical spin systems on Zd
Let d ∈ N and G = (V , E) be a finite graph on Zd, where E is the collection of

pairs { i, j } for i ̸= j and ⟨i, j⟩ means i and j are nearest neighbors. Si represents

a spin at the site i ∈ V i.e. random variable with values in a closed subset C of

Rn, n ≥ 1. We hereby consider some spin systems:

1. The O(n) model: Let C := Sn−1 = {x ∈ Rn : | x| = 1 } and let the a priori

measure m be the surface measure on C. The Hamiltonian is given as

H(S) := −J
∑
⟨i,j⟩

Si · Sj (3.1.1)

where J ≥ 0 and the product is the usual dot product in Rn. H preserves

rotation since for any orthogonal n−dimensional matrixM ,MSi·MSj = Si·Sj.

Also, m is ‘globally’ rotation invariant since m ◦ A−1 = m for all spin sites.

The case n = 2 is the rotor model while the case n = 3 is the (classical)

Heisenberg ferromagnet.

2. Ising model: This is formally the O(1) model where C = {−1,+1 } with
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uniform a priori measure and the Hamiltonian given as

H(S) := −J
∑
⟨i,j⟩

SiSj (3.1.2)

where the ground state energy is obtained when all the spins align (for J ≥ 0)

or when the spins anti-align (for J ≤ 0). (This is true also for all the O(n)

models).

3. Potts model: This is a generalization of the ising model beyond two spin

states (i.e C = { 1, . . . r } , r < ∞) with uniform a priori measure and Hamil-

tonian

H(S) := −J
∑
⟨i,j⟩

δSiSj
(3.1.3)

The case r = 2 can be can be seen as the Ising model within an additive

constant (see [6])

3.2 Definition and statement of main results

3.2.1 Emptiness Formation Probability (EFP)

For spin 1/2, recall that the eigenvalues of the spin matrix S3 are ±(1/2). Therefore,

define projections unto the eigenvectors corresponding to these eigenvalues as the

two operators (1
2
1l ± S3). As long as N ≥ L, we may view BL as a subset of the

graph G (whose vertex set is BN). We define the projection operator

QL =
∏
i∈BL

[
1
21li + S3

i

]
(3.2.1)

The range of QL is the subspace spanned by all spin states having all spins up on

the sub-box BL. The expectation of QL (i.e expectation of having a sequence of up

spins on BL) in the ground state of thee XXZ model is called Emptines Formation
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probability in physics literatures.

Theorem 3.2.1 Suppose d ∈ N is fixed. For ∆ < −1, there are constants c, C ∈

(0,∞) such that, whenever L ≤ N
2
,

⟨QL⟩ ≥ Ce−cβL
d+1

(3.2.2)

Theorem 3.2.2 For each ∆ < 1, there exists L0 ∈ N, and c̃, C̃ > 0 such that for

all L ≥ L0, we have

⟨Q̂N,L⟩N,∆,β ≤ Ce−cN
d min(L,β) (3.2.3)

3.3 Graphical representations for the XXZ model

3.3.1 Tóth’s representation for the Heisenberg ferromagnet

The origin of the Tóth’s representation can be found in [3] and [33].

Lemma 3.3.1 (Trotter product formula [18, Prop. 2.11]) . For all X, Y ∈

Mn(C), we have that

eA+B = lim
N→0

(
e

X
N e

Y
N

)N
(3.3.1)

Proposition 3.3.2 (Duhamel’s formula [17, Prop. 3.1]) . Let A and B be

n× n matrices. Then

eA+B = eA +

∫ 1

0

etABe(1−t)(A+B)dt

=
∑
k≥0

∫
0<t1<···<tk<1

et1ABe(t2−t1)AB · · ·Be(1−tk)Adt1 · · · dtk.
(3.3.2)

Consider the finite graph G = (V , E) on Zd and the Hilbert space

HV =
⊗
j∈V

Hj (3.3.3)
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where Hj is a copy of C2. Define the XXZ Hamiltonian HG,∆ : HV −→ HV as

HG,∆ :=
∑

{ i,j }∈E

h∆ij = −
∑

{ i,j }∈E

(Sxi S
x
j + Syi S

y
j +∆ · Szi Szj ) (3.3.4)

where Sx, Sy and Sz are the normalized Pauli matrices given by;

Sx =
1

2

 0 1

1 0

 , Sy =
1

2

 0 −i

i 0

 , Sz =
1

2

 1 0

0 −1

 (3.3.5)

and consider the notation

|12⟩ :=

 1

0

 and |−1
2⟩ :=

 0

1

 (3.3.6)

The parameter ∆ ∈ R is called the anisotropy parameter. HV,∆ is ferromagnetic for

∆ > 0 and it is unitarily equivalent to the antiferromagnetic XXZ when ∆ < 0 as

seen in (B.1.1). The case ∆ = 0 gives the XX Hamiltonian.

We define the Partition function as

ZG,∆(β) := Tr(e−βHG,∆) (3.3.7)

and the Equilibrium state as

⟨X⟩G,∆,β :=
Tr(Xe−βHG,∆)

ZG,∆(β)
, β ≥ 0 (3.3.8)

For graphs G = (V , E) in any dimension d, d finite, we define V to be the box

BN , N ∈ N as

BN =
{
i = (i1, . . . , id) ∈ Zd : 0 ≤ i1, . . . , id ≤ N − 1

}
(3.3.9)
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and the edge set E as

E = TN = { { i, j } : i, j ∈ BN and j− i ∈ { e1, . . . , ed,−(N − 1)e1, . . . ,−(N − 1)ed } }

(3.3.10)

where e1, . . . , ed are the canonical basis vector in Zd and the multiples of the canonical

basis vectors in (3.3.10) show periodic boundary conditions. Hence the graph is the

discrete torus on Zd.

In what follows, we restrict N to be even for bipartite graphs and by a slight

abuse of notation, we write HG,∆, ZG,∆(β), ⟨X⟩G,∆,β in place of the Hamiltonian ,

the Partition function and the Equilibrium state with respective to the discrete torus

on Zd and |BN | = Nd.

3.3.2 Poisson edge process on the graph

Consider the graph with vertex and edge set as defined in (3.3.9) and (3.3.10) with

d = 1. To each edge { i, j } ∈ TN , attach a Poisson process on [0, β] with intensity

u such that Poisson processes for different edges are independent. Let (Ω,F ,P)

be the probability state space of these processes and let E[·] be the corresponding

expectation. Then for any realization ω ∈ Ω, we have that

ω = ((e1, t1), . . . , (ek, tk)) (3.3.11)

where the times 0 < t1 < . . . < tk < β are uniformly distributed and the edges are

chosen uniformly in TN , To each realization, we have cycles simply defined in Figure

(3.3.1), but have cumbersome definition.

To each edge process, denote the corresponding measure as dνij(ω).

Denote by σ(t) : V → {−1
2
, 1
2
}|V| the spin configuration corresponding to ω at t.
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An event on the edge ⟨i, j⟩ is called a ‘bridge’ at t if

σi(t−) = σj(t+) and σj(t−) = σi(t+) (3.3.12)

A cycle γ : [0, L] −→ V × [0, β] is a closed trajectory with γ(s) = (i(s), t(s))

satisfying:

1. γ is piece-wise continuous i.e. i(s) is a constant if γ is continuous on I ⊂ [0, L]

and d
ds
t(s) = 1 in I.

2. s is a point of discontinuity if and only if at the time t(s) (with corresponding

edge e(s)), there a ‘bridge’. Hence, e(s) = (γ(s−), γ(s+)).

The length of the cycle is the smallest positive number L such that γ(0) = γ(L).

This can be seen as the vertical legs in Figure (3.3.1), hence, it is a multiple of β.

Denote C(ω) as the collection of cycles in ω. Thus, |C(ω)| is the number of cycles in

ω.

1 2 3 4 5 6

β

Figure 3.3.1: Configuration ω showing different cyclces.
C(ω) = { (1, 4, 2, 1), (3), (5, 6, 5) } and each cycle is represented by the different colors.
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Corollary 3.3.3 Let B =
∑

e∈E Be where Be is an operator on the edge e, and A,

any matrix on HG. Then

eβ(A+B) =

∫
Ω

et1ABe1e
(t2−t1)ABe2 · · ·Beke

(β−tk)A dνE(ω), (3.3.13)

where ω = ((e1, t1), . . . , (ek, tk)) is a sample point of the probability space Ω =⋃∞
k=0{((e1, t1), . . . , (ek, tk)) : e1, . . . , ek ∈ E , 0 < t1 < t2 < · · · < tk < β}.

Proof:∫
et1ABe1e

(t2−t1)ABe2 · · ·Beke
(β−tk)A dνE(ω) =

∑
k≥0

∫
et1ABe1e

(t2−t1)ABe2 · · ·Beke
(β−tk)A dνE(ω)

=
∑
k≥0

∫
0<t1<···<tk<β

et1ABe(t2−t1)AB · · ·Be(β−tk)A dt1 · · · dtk

= eβ(A+B)

(3.3.14)

Remark 3.3.4 The second equation is as a result of integrating over each time in-

terval (ts, ts+1], s = 0, . . . , k (sk+1 = β) and across each edge in e ∈ E while the last

sum is gotten after a change of variable t̄i = t/β and comparing the right hand side

of (3.3.2).

Let Tij be the operator that flips the spins at sites i and j. Then by direct calculation,

Tij =
1

2
1lij + 2(Sxi S

x
j + Syi S

y
j + Szi S

z
j ) (3.3.15)

Next, we express the partition function (3.3.7) in terms of the probability measure

for the cycle representation. This representation is only true for the ferromagnetic

regime i.e. ∆ = 1 in (3.3.4).
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Theorem 3.3.5 (Tóth’s representation [17, Theorem. 3.3]) . For the ferro-

magnetic Hamiltonian,

ZG,1(β) = e−
β
4
|E|
∫

2|C(ω)|dνE(ω) (3.3.16)

Remark 3.3.6 The probability measure for the cycle representation is hence written

as

dνCE (ω) = (ZG,∆(β))
−1e−

β
4
|E|2|C(ω)|dνE(ω) (3.3.17)

3.3.3 The Aizenman-Nachtergaele’s representation and ANTU for
the XXZ model

Aizenman-Nachtergaele’s representation

Here, we consider the case the antiferromagnetic Hamiltonian i.e. ∆ = −1 in (3.3.4).

The Hamiltonian (3.3.4) becomes

HG,−1 := −
∑

⟨i,j⟩∈E

(Sxi S
x
j + Syi S

y
j − Szi S

z
j ) (3.3.18)

Lemma 3.3.7 The two-site operator
→
S i ·

→
Sj := Sxi S

x
j + Syi S

y
j + Szi S

z
j is

(a.) self-adjoint

(b.) has eigenvalue 1
4
of multiplicity 3 with corresponding orthonormal eigenvectors

|1
2
, 1
2
⟩, |−1

2
,−1

2
⟩ and 1√

2
(|1

2
,−1

2
⟩ + |−1

2
, 1
2
⟩)1 , and eigenvalue −3

4
of multiplicity

1 with corresponding eigenvector 1√
2
(|1

2
,−1

2
⟩ − |−1

2
, 1
2
⟩)2.

1These are referred to as triplet states by Physicists
2referred to as the singlet state.
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Proof: The proof of (a) is true from the self-adjoint property of the Pauli matrices.

To prove (b), observe that
→
S i ·

→
Sj is a 4 × 4 matrix. Hence, the result follows from

Linear algebra calculuations.

Remark 3.3.8 The eigenvector corresonding to −3
4
is called ‘Singlet state’ while the

orthonormal eigenvectors corresponding to eigenvalue 1
4
are called the ‘Triplet states’.

For all r ∈ { 1
2
,−1

2
}, let Pij be the operator defined below:

Pij |r, r⟩ = 0, Pij |r,−r⟩ = 1
2
(|r,−r⟩ − |−r, r⟩) (3.3.19)

Notice that 1
2
Pij is the projection onto the singlet state in Lemma (3.3.7). Using the

identities that for all r, s ∈ { 1
2
,−1

2
},

Sxi S
x
j |r, s⟩ = 1

4
|−r,−s⟩ , Syi S

y
j |r, s⟩ = −rs |−r,−s⟩ , and Szi S

z
j |r, s⟩ = rs |r, s⟩ ,

(3.3.20)

we have that

Pij =
1

4
1lij − (Sxi S

x
j + Syi S

y
j + Szi S

z
j ) (3.3.21)

Consider the bipartite graph G = (V , E) (for V and E as defined in (3.3.9) and (3.3.10)

respectively). Let VA and VB be a partition on V , and for any { i, j } ∈ E , i ∈ VA

and j ∈ VB.

For any fixed time t, let σ(t) : V → {−1
2
, 1
2
}|V| be the spin configuration corre-

sponding to the realization ω at t. An event on the edge { i, j } is called a ‘cul-de-sac’

at t if

σi(t−) = −σj(t−) and σi(t+) = −σj(t+) (3.3.22)

A loop γ : [0, L] −→ V×[0, β] is a closed trajectory with γ(s) = (i(s), t(s)) satisfying:



51

1. γ is piecewise continuous i.e. i(s) is a constant if γ is continuous on I ⊆ [0, L]

and

d

ds
t(s) =

 1 if i(s) ∈ VA

−1 if i(s) ∈ VB
(3.3.23)

2. s is a point of discontinuity if and only if at the time t(s) (with corresponding

edge e(s)), there a ‘cul-de-sac’ event. Hence, e(s) = (γ(s−), γ(s+)).

The smallest positive number L such that γ(0) = γ(L) is defined as the loop

length. It is the sum of the vertical legs as seen in Figure (3.3.2) but not a multiple

of β (unlike the case of cycles) since the orientation is not fixed (e.g. the length of

the blue loop is 2β plus the height of the blue box between vertices 3 and 4 in Figure

(3.3.2)). Denote L(ω) as the collection of loops in ω. Thus, |L(ω)| is the number of

loops in ω.

1 2 3 4 5 6

β

Figure 3.3.2: Configuration ω showing two loops (1, 2, 1), (3, 6, 5, 4, 3), each cycle is
represented by the colors blue and green respectively.

Assumuing the notation

(−1)i =

 1, if i ∈ VA

−1 if i ∈ VB
, (3.3.24)
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we have the following representation for the antiferromagnet

Theorem 3.3.9 (Aizenman-Nachtergaele’s representation [17, Theorem. 3.4])

Let G be the bipartite graph described above and consider the antiferromagnetic

Hamiltonan (3.3.18) (i.e. ∆ = −1). The partition function and the two-point corre-

lation function are given by

ZG,−1(β) = e−β|E|
∫

2|L(ω)|dνE,β
2
(ω), (3.3.25)

Tr(Szi S
z
j e

−βHG,−1) =


1
4
(−1)i(−1)je−β|E|

∫
2L(ω)dνE,β

2
if γi = γj

0 if γi ̸= γj

(3.3.26)

Aizenman-Nactergaele-Toth-Ueltschi’s (ANTU) representation

The combination of both the ferromagnetic and the antiferromagnetic loops in the

same representation appeared first in [34]. In [34], two special Hamiltonians were

considered, but here, we consider the relevant Hamiltonian for the spin-1/2 case

(another Hamiltonian compatible with spin-1 Hamiltonian is given in [34]).

For { i, j } ∈ E , let Qij the operator with matrix elements

⟨a, b|Qi,j|c, d⟩ = δa,bδc,d, ∀ a, b, c, d ∈ { − 1
2
, 1
2
} (3.3.27)

We then consider the Hamiltonian

HG,u = −
∑

⟨i,j⟩∈E

(uTij + (1− u)Qij − 1) (3.3.28)

with Tij as defined in (3.3.15).

Let σ(t) : V → {−1
2
, 1
2
}|V| be the spin configuration corresponding to the real-
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ization ω at t. An event on the edge { i, j } is called a ‘dead-end’ at t if

σi(t−) = σj(t−) and σi(t+) = σj(t+) (3.3.29)

For each edge { i, j } ∈ E , we consider two independent Poisson processes describing

’bridges’ and ’dead-ends’ on R with respective rates 1
2
(1− u) and 1

2
u respectively.

Let (Ω,Fu,Pu) be a probability space supporting these processes, and let Eu[·] de-

note the corresponding expectation. As before, we regard ω ∈ Ω as a realization of

finte events on E × [0, β] i.e. w = ((e1, t1), (e2, t2), . . . , (ek, tk)) for increasing times

0 < t1 < · · · < tk < β. Denote the measure associated with these processes as dνβ(ω).

Following the notation in [9], let ΣV = {−1
2
, 1
2
}|V|, ΣV,β be the set of all piece-

wise constant functions σ(·) : [0, β] → ΣV , and let ΣV,β(ω) ⊂ ΣV,β denote satisfying

the following:

� For any i ∈ V , consider the set of arrival times of all Poisson processes dνFij and

dνAFij for all j such that { i, j } ∈ E . For ϵ > 0, σi(·) is constant on the interval

[t− ϵ, t+ ϵ) if the set of all these times and [t− ϵ, t+ ϵ) are disjoint.

� We say σ(·) is ‘compatible with’ ω if σ(·) ∈ ΣV,β(ω).

Finally, let Σper
V,β(ω) ⊂ ΣV,β(ω) be the set consisting of functions satisfying periodic-

time condition σ(0) = σ(β) for each i ∈ V . In this setting, graphs are decomposed

entirely into loops as seen in Figure(3.3.3) (graphs are decomposed entirely into

cycles as seen in Figure(3.3.1)). Each loop is a trajectory of a specific spin-value.

Hence, |Σper
V,β(ω)| = 2|L(ω)| (In the Cycle representation, |Σper

V,β(ω)| = 2|C(ω)|).
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1 2 3 4 5 6

β

Figure 3.3.3: Configuration ω showing both brideges and dead-ends in the same
realization ω.

Theorem 3.3.10 For all u ∈ [0, 1], we have

ZG,u(β) =

∫
Ω

2|L(ω)|dνβ(ω) (3.3.30)

Proof: Using the Trotter’s product formula in (3.3.1) and trivial asymptotics, we

have

e−βHG,u =

 lim
N→∞

∏
⟨i,j⟩∈E

e
β
N
(uTij + (1− u)Qij − 1)

N

(3.3.31)

= lim
N→∞

 ∏
⟨i,j⟩∈E

[
1− β

N
+
β

N
(uTij + (1− u)Qij)

]N

(3.3.32)
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Therefore,

Tr e−βHG,u = lim
N→∞

∑
σ(0)

⟨σ(0)|

 ∏
⟨i,j⟩∈E

[
1− β

N
+
β

N
(uTij + (1− u)Qij)

]N

|σ(0)⟩

(3.3.33)

By inserting the identity 1l =
∑

σ |σ⟩ ⟨σ| after each product in theN products ((N−1)

times), we have

Tr e−βHG,u = lim
N→∞

∑
σ(0),...,σ(N−1)

⟨σ(0)|
∏

⟨i,j⟩∈E

(
1− β

N
+
β

N
(uTij + (1− u)Qij)

)
|σ(1)⟩ · · ·

· · · ⟨σ(N−1)|
∏

⟨i,j⟩∈E

(
1− β

N
+
β

N
(uTij + (1− u)Qij)

)
|σ(0)⟩

(3.3.34)

= lim
N→∞

∑
σ(0),...,σ(N−1)

N−1∏
i=0

⟨σ(i)|
∏

⟨i,j⟩∈E

(
1− β

N
+
β

N
(uTij + (1− u)Qij)

)
|σ(i+1)⟩

(3.3.35)

Each sum is over σ(i) ∈ {−1
2
, 1
2
}|V| and we have used the notaion σ(N) = σ(0). Recall

that the operator Tij describes the ‘bridge’ events while Qij describes the ‘dead-

end’ events. Therefore the inner product in the last equation equals 1 if and only if

σ(i+1)(0) = σ(i) and 0 otherwise for each σ(i+1) ∈ Σper
V,β(ω). Hence,

Tr e−βHG,u =

∫
Ω

∑
σ(·)∈Σper

V,β(ω)

1 dνβ(ω) (3.3.36)

=

∫
Ω

2|L(ω)|dνβ(ω) (3.3.37)
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3.4 The Feynman-Kac measure

Let {ψ+, ψ− } be the canonical orthonormal basis in C2. For any τ ∈ {−1, 1 }V ,

define the Ising basis vector

ΨV(τ) =
⊗
i∈V

ψτii (3.4.1)

From (3.3.4),

HG,∆ = HG,1 − (∆− 1)
∑

⟨i,j⟩∈E

Szi S
z
j (3.4.2)

This is a perfect expression for a Feynman-Kac type of expansion. Therefore by

a similar proof of the Feynman-Kac Formula [7, Theorem. 6.3.7] using (3.3.1) and

(3.3.13), we have that

e−βHG,∆Ψ(τ) = e−
β
4
|E|
∫

Ψ(ω(β)) · 1l{ τ }(ω(0)) · e
(∆−1)

4

∫ β

0

UG(ω(t))dt
dνFE (ω) (3.4.3)

where UG(τ) =
∑

{ i,j }∈E τiτj and ω(t) is the spin configuration immediately after

arrival time t corresponding to ω.

Therefore, the partition function in the Feynman-Kac representation is given as

ZG,∆(β) = Tr(e−βHG,∆) =
∑
τ∈ΣV

⟨Ψ(τ), e−βHG,∆Ψ(τ)⟩ (3.4.4)

= e−
β
4
|E|
∫ ∑

τ∈ΣV

1l{ τ }(ω(β)) · 1l{ τ }(ω(0)) · e
(∆−1)

4

∫ β

0

UG(ω(t))dt
dνFE (ω)

(3.4.5)

= e−
β
4
|E|
∫ ∑

σ(·)∈Σper
V,β(ω)

e

(∆−1)
4

∫ β

0

UG(σ(t))dt
dνFE (ω) (3.4.6)

Equation (3.4.6) is a consequence of the fact that the summand in (3.4.5) is non-

zero if and only if we have functions, σ(·) compatible with ω, satisfying periodic-time
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condition σ(0) = σ(β) (i.e σ(·) ∈ Σper
V,β(ω)).

Therefore, for any operator P on HV with adjoint P †,

Tr(Pe−βHG,∆) = e−
β
4
|E|
∫ ∑

τ∈ΣV

⟨P †Ψ(τ),Ψ(ω(β))⟩·1l{ τ }(ω(0))·e
(∆−1)

4

∫ β

0

UG(ω(t))dt
dνFE (ω)

(3.4.7)

3.4.1 Lower bound for EFP

Lemma 3.4.1 Suppose the dimension d ∈ N is fixed and ∆ < −1, there exist con-

stants c1, C > 0 such that,

Tr (QLe
−βHG,∆) ≥ Ce−c1βL

d

(3.4.8)

Proof: Applying (B.2.2) to any configuration ΨV(τ), we have that

⟨ΨV(τ), e
−βH∆ΨV(τ)⟩ ≥ e−β⟨ΨV (τ),HG,∆ΨV (τ)⟩ (3.4.9)

For a fixed τ (having all spins up in the sub-box BL),

⟨ΨV(τ), HG,∆ΨV(τ)⟩ = ⟨ΨV(τ), H1ΨV(τ)⟩ −
(∆− 1)

4
UG(τ)

= −1

2

∑
{i,j}∈E

⟨ΨV(τ), Ti,jΨV(τ)⟩+
1

4
|E|+ (1−∆)

4
UG(τ)

= −1

2
|E(F )|+ (|E(F )|+ |E(AF )|)

4
+

(1−∆)

4
(|E(F )| − |E(AF )|)

≤ |E| − |E(F )|
4

− ∆

4
|E(F )|
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where E(F ) is the set of ferromagnetic edges in E and E(AF ) is the set of antiferro-

magnetic edges in E . Let E(L) be the set of edges having all spins up on the sub-box

BL. Since E(L) ⊆ E(F ), there exists constants c̃1 ≥ 0 , c̃2 ≥ 1 (depending on τ) and

c2 ≥ 1 such that |E| − |E(L)| ≤ c̃1 |E| , and |E(F )| ≤ c̃2 |E(L)|.

Therefore,

⟨ΨV(τ), HG,∆ΨV(τ)⟩ ≤ c̃(τ) |E(L)| ≤ c̃(τ)Ld (3.4.10)

where c̃(τ) :=
(
c̃1 − ∆

4
c̃2
)
dc2 > 0 since ∆ < −1.

Therefore,

⟨ΨV(τ), e
−βHG,∆ΨV(τ)⟩ ≥ e−c1βL

d

(3.4.11)

where c1 := min { ˜c(τ) : τ ∈ {±1 }|V| }.

Hence the result where C is number of configurations having all spins up on the

sub-box BL.

Lemma 3.4.2 For a fixed d ∈ N, the partition function satisfies

ZG,∆(β) ≤ ec3βL
d

(3.4.12)

Proof: The proof follows trivially from [29, Eqn. (1)],

where c3 := 3/4 + |∆− 1| /2.

Theorem 3.4.3 Suppose d ∈ N is fixed. For ∆ < −1, there are constants c, C ∈

(0,∞) such that, whenever L ≤ N
2
,

⟨QL⟩ ≥ Ce−cβL
d

(3.4.13)

Proof: Combining Lemma (3.4.1) and Lemma (3.4.2), setting c := c1+ c3 and C as

in the proof of (3.4.1) proves the result.
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3.4.2 Upper bound for EFP

For the upper bound, a similar result using the grahical representations technique is

shown. Majorly, the Feymann-Kac is combined with the Tóth’s representation and

then estimating using large deviation bounds. The results here are quite similar to

[9] with slight modifications.

Assume N is even. Define the configuration τ (L,N) as follows:

τL,Ni = (−1)⌊
2i1−1
2L

⌋+···+⌊ 2id−1

2L
⌋ (3.4.14)

and the rank-1 projection

Q̂N,L = |ΨN(τ
(L,N))⟩ ⟨ΨN(τ

(L,N)| (3.4.15)

The operator Q̂N,L is called the ‘Universal Contour’. The definitions of τ (L,N) and

Q̂N,L seem cumbersome but it’s quite clear from the Figure (3.4.1).

Figure 3.4.1: On the left is an example of QL (projection unto all spins up in the
box BL) for L = 4, and d = 2 while on the right is the ‘Universal Contour’ Q̂N,L with
N = 28. The black circles represents the up-spins while the white circles represent
the down-spins. The dots represent sites without a projector.

Following the ideas in [9], QL is disseminated in space (along the direction of the
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outward orthonormal vectors). There may be some loss in the dissemination e.g. as

seen in Fig (3.4.1) since N may not be a multiple of L. This loss does not have

much effect since we will frequently consider cases where N is much larger than L.

Estimating QL from above leads to getting an upper bound for Q̂L as seen below.

Lemma 3.4.4 ([9, Lemma. 3.2]) Suppose ∆ ≤ 0. For fixed L satisfying L ≤ N/2,

EFPL(N, β) = ⟨QL⟩N,∆,β ≤
(
⟨Q̂N,L⟩N,∆,β

)1/K
(3.4.16)

where K = 2d(log2(N/L+1)).

Remark 3.4.5 The proof is done by repeatedly applying the Cauchy-Schwarz theo-

rem in the direction each normal vector where the n number of repetitions is n =

⌊log2(N/L)⌋.

Now, we have a projection Q̂N,L which maps to a specificed spin configuration on

all TN . Considering the Feyman-Kac represetation, the next thing is to disseminate

Q̂N,L in time. This is done by using Generalized Hölder’s inequality (Chessboard

Estimate). The method is to re-impose the projection Q̂N,L every β/2n units of

‘time’. The result is given below

Proposition 3.4.6 ([9, Prop. 3.4]) For any positive integer n,

⟨Q̂N,L⟩N,∆,β ≤

(
Tr[(Q̂N,L e

βH/(2n))2n]

ZG,∆(β)

)1/(2n)

(3.4.17)

By inserting the identity 1l =
∑

ΨV
|ΨV ⟩ ⟨ΨV | , (2n− 1)−times (where { | ΨV ⟩ } are
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the energy eigenvectors) in the numerator of (3.4.17), we have

Tr[(Q̂N,L e
βH/(2n))2n] =

(
⟨ΨV (τ

L,N), e−βH/(2n)ΨV (τ
L,N)⟩

)2n
(3.4.18)

Therefore (3.4.17) becomes

⟨Q̂N,L⟩N,∆,β ≤ Tr[Q̂N,L e
−βH/(2n)]

(ZG,∆(β))1/(2n)
(3.4.19)

For ease of calculation, define

Numβ,N,L,n = e−(β/(2n))(|E|/4)Tr[Q̂N,L e
βH/(2n)] (3.4.20)

Denβ,N,L,n = e−(β/(2n))(|E|/4) (ZG,∆(β))
1/(2n (3.4.21)

Therefore,

⟨Q̂N,L⟩N,∆,β ≤ Numβ,N,L,n

Denβ,N,L,n
(3.4.22)

Pre-multiplying by e−(β/(2n))(|E|/4) is crucial in estimating the partition function to

obtain the (3.4.24).

To get an upper bound for (3.4.17), we need to get an upper bound for Numβ,N,L,n

and a lower bound for Denβ,N,L,n. A lower bound for Denβ,N,L,n was found using

variational method:

Lemma 3.4.7 ([9, Lemma, 3.6]) For any graph G = (V , E) and any ∆ ∈ R, β >

0, we have

ZG,∆(β)e
−β|E|/4 = Tr

[
e−β(HG,∆+(1/4)|E|)] ≥ 1 (3.4.23)

Moreover,

Denβ,N,L,n =
(
e−β|E|/4 ZG,∆(β)

)1/(2n) ≥ 1 (3.4.24)
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Upper bound on Num using large deviation bounds

Setting P = Q̂N,L in (3.4.7) and applying (3.4.20), we have

Numβ,N,L,n = e−β|E|/(4n)E1

 ∑
σ(·)∈ΣV,β/(2n)(ω)

1l{σ(0)=σ(β/(2n))=τL,N } · exp

(
∆− 1

4

∫ β/(2n)

0

UG(σ(t))dt

)
(3.4.25)

We hence have the following result:

Proposition 3.4.8 For any ∆ < 1 and L ≥ 4(3d),

Numβ,N,L,n ≤ e−(1/8)(1−∆)dNdδT + e−[(∆/4)+(M lnM−M+1)]dNdδT (3.4.26)

where δT = β/(2n) and M = 7L/(2592d(6d)δT ).

Observe that in (3.4.25), estimating the term in the exponential uniformly (inde-

pendent of L) totally removes the dependency of the inequality on L. This leads to

a trivial result (i.e. Numβ,L,N,n is less than some exponentially large term). Further-

more, at the times t = 0 and t = β/(2n) , UG(σ(t)) = UG(τ
L,N). By definition of UG(·)

and for large L, we have that UG(τ
L,N) ≈ |E(TN)| since for { i, j } ∈ E , τL,Ni = τL,Nj

except for i and j spanning neighboring blocks. Hence to get the right dependecy on

L for times 0 < t < β/(2n), we need to account for the hopping of spins allowed by

the stochastic process associated with E1.

For ∆ < 1, |E(T)| is interpreted as the maximum possible energy of the ferro-

magnetic Ising potential which therefore leads to exponential suppression in (3.4.25).

The idea to prove large deviation bound is hence, quite straightforward. Since the

stocahstic process allows spins to hop between neighboring blocks and we do not

expect too many arrivals of events dνFi,j(ω) , then for times t ∈ (0, β/(2n)), the spin

configurations σ(t) will still have relatively low energy (approximately |E(TN)| for
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large L) for the ferromagnetic Ising potential. Therefore leading to an exponential

suppression in the antiferromagnetic Ising Gibbs state.

In the complimentary event that the stochastic process allows enough ‘bridges’

such that the ground state of the Ising antiferromagnet is attained, then the expo-

nential weight in the Ising Gibbs state is exponentially large. But the large deviation

bound for this rare event (B.2) has a nonlinear decay rate which dominates the linear

growth rate of this exponential.

Proof of Proposition (3.4.8): Define a ‘block’ to be a maximally connected set

of sites i ∈ TN satisfying the condition τL,Ni = τL,Nj . Let

F = { { i, j } ∈ E(TN) : τL,Ni ̸= τL,Nj } (3.4.27)

i.e. any edge { i, j } ∈ F spans two adjacent blocks.

Some blocks have full size Ld while there also may exist partial blocks at a distance

less than L from one of the two faces of BN in either the + or the − side of that

cordinate direction (see Fig.(3.4.2)).

Figure 3.4.2: Example of a contour τL,N with blocks where L = 4,, d = 2 and
N = 28. The Blue blocks are full blocks while the red and green blocks are partial
blocks. The red box is at a distance 2 from the down face while green box is at a
distance 2 from the right face.
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Considering this, we see that

|F | ≤ dLd−1

(
N

L
+ 2

)d
(3.4.28)

Therefore,

|F| ≤ Ld−1

(
1

L
+

2

N

)d
|E(TN)| (3.4.29)

Since N ≥ L, we have that |F| ≤ 3dL−1 |E(TN)|. Therefore,

|E(TN)| − UN(τ
L,N) ≤ 2 |F| ≤ 2(3d)L−1 |E(TN)| (3.4.30)

At times t ∈ { 0, β/(2n) }, only the edges { i, j } ∈ F satisfy the condition σi(t) =

−σj(t). We will show that with high probability at times between 0 and β/(2n),

most antiferromagnetic edges are close to F . As as result of this we give an easy

bound on the number of vertices at a short distance from F .

For any positive integer r, define Vr to be the set of all sites i ∈ TN satisfying the

condition: i is in a block Λ ⊂ TN , and has a distance less than or equal to r from

TN \ Λ. For instance,

|V1| = { i ∈ TN : ∃ j ∈ TN such that { i, j } ∈ F } (3.4.31)

Since for any edge in F , there are least 2r sites from distance less than or equal to

r (r sites on the separate blocks), then

|Vr| ≤ 2r |F| ≤ 2r(3d)L−1 |E(TN)| = 2dr(3d)L−1Nd ≤ 6drL−1Nd (3.4.32)

We then proceed to the remainder of the proof.

For eadch time t ∈ [0, β/(2n)] define X(t) to be the number of sites i such that
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τL,Ni ̸= σi(t). Then ∣∣UN(σ(t))− UN(τ
L,N)

∣∣ ≤ 4dX(t). (3.4.33)

and by (3.4.30), we have that

|E(TN)| − 2(3d)L−1 |E(TN)| − UN(σ(t)) ≤ 4dX(t) (3.4.34)

Let A be the set of events ω with fewer bridges, such that for all times t ∈ [0, β/(2n)],

we have X(t) ≤ Nd/8. On A,

1l{σ(0)=σ(β/(2n))=τL,N } exp

(
−1−∆

4

∫ β/(2n)

0

UN(σ(t))dt

)
≤ e−β/(16n)(1−∆)(1−4(3d)L−1)|E(TN )|

(3.4.35)

This is a good bound for the kind result we expect.

Now to get a similar bound on Ac, suppose there exists i such that i ∈ TN \ Vr

and σi(t) ̸= τL,Ni at some time t. Then, i is in a block and the σi(t) is opposite to

that of the block. Thus, in time [0, t], there must be a path from some neighboring

block via bridge arrivals of dνFij (ω) to bring the oppositely oriented spin to site i,

and there is another path in time (t, β/(2n)] that returns the spin σi(t) to that of

the block. Since i is at a distance more r from F , then there are at least 2r arrivals

of dνFij (ω) associated to these two paths.

As a result of this, there are at least r(X(t)−|Vr|) total arrivals of dνFij (ω) in the

interval [0, β/(2n)]. The factor of 2 has been removed since a given arrival of dνFij (ω)

could contribute to two different paths for two different vertices i, j (since an edge has

two point vertices). On Ac, we have that X(t) > Nd/8 for some time t. Choosing

r = L/(6d+2) on Ac and by (3.4.32), we get that there are at least 7LNd/((2592)6d)

arrivals of dνFij (ω) in the time interval [0, β/(2n)].
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For a Poisson random variable N , (B.2) implies that

P(N ≥ME(N )) ≤ e−(M lnM−M+1)E(N ), M ≥ 1 (3.4.36)

Recall that for dνFij (ω) in the time interval [0, β/(2n)], the total expectation of all

arrivals is |E(TN)| δT where δT = β/(2n). Therefore

P1(Ac) ≤ e−(M lnM−M+1)dNdδT , (3.4.37)

where P1 is the Probability with respect to arrivals of dνFij (ω) andM = 7L/(2592d(6d)δT ).

Combining this with (3.4.35), (3.4.37) and the uniform upper bound

1l{σ(0)=σ(β/(2n))=τL,N } exp

(
−1−∆

4

∫ β/(2n)

0

UN(σ(t))dt

)
≤ e(1/4)(1−∆)dNdδT (3.4.38)

gives the result.

Remark 3.4.9 As mentioned earlier the non-linear decay rate in (3.4.37) dominates

the linear growth rate in (3.4.38) to give the expected exponential bound for events in

Ac. Also, to get the result, P1(A) has been trivially bounded by 1.

We therefore give a bound on the expectation of the universal contour:

Theorem 3.4.10 For each ∆ < 1, there exists L0 ∈ N, and c̃, C̃ > 0 such that for

all L ≥ L0, we have

⟨Q̂N,L⟩N,∆,β ≤ Ce−cN
d min(L,β) (3.4.39)

Proof of Theorem (3.4.10): Combining (3.4.22), Lemma (3.4.7) and Proposition

(3.4.8). Choose ε > 0 (dependent on n) with M = 7L/(2592d(6d)εmin(β, L)) is

large enough such that M lnM −M +1 ≥ (1/8)(1−3∆) and M ≥ 1. Then, we have
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that

Numβ,N,L,n ≤ 2e−(1/8)(1−∆)dNdεmin(β,L) (3.4.40)

Defining c̃ := (1/8)(1−∆)dε yields the desired result.
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CHAPTER 4

OUTLOOK

There is interest in the community to further study the area law for bipartite entan-

glement entroopy. With randomness, an area law is expected to hold as seen in [19],

and [5] (in the spin 1/2 case). The Combes -Thomas estimate used in this research

is not a sufficient condition to achieve the area law, as it gives dependency of the

subsystem size. Some other expectation decay bounds may be needed in order to

get the desired bounds. Also, questions concerning the study the free XXZ quantum

spin model defined on a ring with the aim of showing a logarithmically corrected

area law for the bipartite entanglement entropy of eigenstates belonging to the first

energy band above the vacuum ground state seem important.

For emptiness formation probability, the greatest interest is among combinatori-

alist whose work is different than the rough bounds presented here. But there are

some interesting questions:

1. For the Heisenberg (or Schrödinger) dynamics in real time, how does the empti-

ness formation probability observable evolve. (Note: this thesis considers imag-

inary time dynamics.)

2. In the presence of a phase transition with multiple pure states, how does the

choice of a ground state affect the emptiness formation probability.
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A.1 Proof of the distance formula

Lemma A.1.1 The graph distance dN(X, Y ) from X to Y is given by (2.2.23).

Proof: Let δN(X, Y ) :=
∑N

i=1 |xi − yi|. To prove that δN(X, Y ) is a lower bound of

the graph distance dN(X, Y ), we first show that mX ∼ mY if and only if δN(X, Y ) =

1 ∀ X, Y ∈ SNL .

For X, Y ∈ SNL , where X = (x1, x2, . . . , xN), Y = (y1, y2, . . . , yN), suppose

dN(X, Y ) = 1. By (2.2.23), there exists k0 ∈ {1, 2, . . . , N} such that |xk0 − yk0| = 1

and xk = yk ∀ k ∈ {1, 2, . . . , N} \ {k0} . Define j0 := xk0 . Therefore yk0 = j0 ± 1.

Now, let mX and mY be the occupation number functions corresponding to X

and Y respectively. Without loss of generality, let yk0 = j0 + 1 and suppose that

mX(j0) = r, r ∈ {1, . . . , 2J}. Then mY (j0) = r − 1, since yk0 ̸= j0. Hence,

mX(j0)−mY (j0) = r− (r−1) = 1. Also, suppose mY (j0+1) = s, s ∈ { 1, . . . , 2J },

then mX(j0 + 1) = s− 1, since yk0 = j0 + 1. Therefore, mX(j0 + 1)−mY (j0 + 1) =

s−1−s = −1 andmX(j) = mY (j), ∀ j ∈ {1, . . . L}\{j0, j0+1}. Hence, mX ∼ mY .

Conversely, suppose mX ∼ mY . By (2.2.9), there exists a unique j0 ∈ {1, . . . , L−

1} such that mX(j0) − mY (j0) = ±1, mX(j0 + 1) − mY (j0 + 1) = ∓1 and

mX(j) = mY (j) ∀ j ∈ {1, . . . , L} \ {j0, j0 + 1}. Without loss of generality, suppose

mX(j0)−mY (j0) = 1 and mX(j0+1)−mY (j0+1) = −1. Using the same definitions

as before that j0 := xk0 and mX(j0) = r, let mX(j0 + 1) = s′, i.e. s′ = s − 1 where

mY (j0 + 1) = s. Let i1 = min { k : xk = j0 }, then xk = j0 for k = i1, . . . , i1 + (r− 1)

and xk = j0 + 1 for k = i1 + r, . . . , i1 + r + (s′ − 1). Therefore,

δN(X, Y ) =
N∑
j=1

|xj − yj| = 0 + · · ·+ 0 + |xi1+(r−1) − yi1+(r−1)|+ 0 + · · ·+ 0

= |j0 − (j0 + 1)| = 1

(A.1.1)
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=⇒ δN(X, Y ) = 1.

It then follows from the triangle inequality that δN(X, Y ) is a lower bound of the

graph distance.

To prove equality, it suffices to show that there exists a path from X to Y

such that the length of the path is δN(X, Y ). Let X, Y ∈ SNL and i0 = min{k ∈

{ 1, . . . N } : xk ̸= yk}. Without loss of generality, suppose xi0 < yi0 . Consider the

path

Y = (. . . , yi0−1, yi0 , yi0+1, . . .) −→ Y1 = (. . . , yi0−1, yi0 − 1, yi0+1, . . .)

−→ Y2 = (. . . , yi0−1, yi0 − 2, yi0+1, . . .) · · · −→ Yyi0−xi0 = (. . . , yi0−1, xi0 , yi0+1, . . .) .

(A.1.2)

The case xi0 > yi0 is similar by switching the roles of X and Y . Notice that

mY ∼ mY1 ∼ mY2 ∼ · · · ∼ mYyi0−xi0
and the length of this path is |xi0 − yi0|.

Define i1 := min{k ∈ { i0 + 1, . . . , N } : xk ̸= yk. Repeating the above process

for xi1 < yi1 (with a similar case for xi1 > yi1), we get another path of length

|xi1 − yi1|. Since N < ∞, the process ends at some is ≤ n such that is := min{k ∈

{ i0 + s, . . . , N } : xk ̸= yk} and repeating the process for xis yields a path of length

|xis − yis|. Therefore, we have a path from X to Y of length

|xi0 − yi0 |+ |xi1 − yi1|+ · · ·+ |xis − yis|
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=
∑

j:1≤j<i0

|xj − yj|+ |xi0 − yi0|+
∑

j:i0<j<i1

|xj − yj|+ |xi1 − yi1|+ · · ·

+
∑

j:is−1<j<is

|xj − yj|+ |xis − yis|+
∑

j:is<j≤N

|xj − yj|

=
N∑
j=1

|xj − yj| = dN(X, Y ) ,

(A.1.3)

which finishes the proof.

A.2 Auxiliary results concerning the interaction potential

A.2.1 Proof of Proposition (2.2.5)

Proof: Firstly, note that for any m ∈ MN
L one gets

V (m) =
L−1∑
j=1

[J(m(j) +m(j + 1))−m(j)m(j + 1)] + J(m(1) +m(L)) (A.2.1)

= 2J
L∑
j=1

m(j)−
L−1∑
j=1

m(j)m(j + 1) = 2JN −
L−1∑
j=1

m(j)m(j + 1) , (A.2.2)

which shows that finding minimizers of the potential is equivalent to finding maxi-

mizers of QN(m) :=
∑L−1

j=1 m(j)m(j+1). From the explicit form of QN , it is obvious

that if supp(m) is not a discrete interval, i.e. if there exists a j0 /∈ supp(m) with

min supp(m) < j0 < max supp(m), then m cannot be a maximizer of QN . Hence,

from now on, we will only consider m ∈ MN
L such that supp(m) is a discrete interval

and w.l.o.g. let us assume supp(m) = {1, 2, . . . , k} for some k ∈ N. For a proof by

contradiction, let us now assume that there is an m ∈ MN
L which maximizes QN but

is not of the form (2.2.16) or (2.2.17). Note that since N ≥ 4J and m(j) ≤ 2J for

every j ∈ {1, 2, . . . , k}, this implies that k ≥ 3. Note that for k = 3, we get

QN(m) = m(1)m(2) +m(2)m(3) = m(2)(N −m(2)) , (A.2.3)
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where we have used that m(3) = N − m(1) − m(2) for the last equation. Now,

observe that since N ≥ 4J , the maximal possible value for QN is only attained if

m(2) = 2J , which shows that for k = 3, any maximizer of QN has to be of the form

(2.2.16) or (2.2.17). Hence, from now on, we will only consider the case k ≥ 4. Let

us now distinguish a few different cases and show that for each of these cases, if m

is not of the form (2.2.16) or (2.2.17), then we can construct another m̂ ∈ MN
L such

that QN(m̂) > QN(m) – a contradiction to m maximizing QN :

First case: m(1) > m(2). In this case, we set m̂(1) := m(2), m̂(2) := m(1) and for every

other j, we define m̂(j) := m(j). This yields

QN(m̂)−QN(m) = (m(1)−m(2)) ·m(3) > 0 , (A.2.4)

which shows that m cannot maximize QN in this case.

Second case: m(1) ≤ m(2), and it is not true that m(2) = m(3) = 2J . We split this second

case into two subcases:

First subcase: m(2) < m(3). In this case, we define the configuration m̂ by setting

m̂(1) := m(1) − 1, m̂(2) := m(2) + 1 and for every other j, we define

m̂(j) := m(j). This yields

QN(m̂)−QN(m) = (m(1)−1)+m(3)−m(2) ≥ m(3)−m(2) > 0, (A.2.5)

which shows that m cannot maximize QN in this case.

Second subcase: m(2) ≥ m(3). Note that since we are in the Second case, it is not possible

that m(3) = 2J . We then define the configuration m̂ by setting m̂(1) :=

m(1)−1, m̂(3) := m(3)+1 and for every other j, we define m̂(j) := m(j).
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We then get

QN(m̂)−QN(m) = m(4) > 0 , (A.2.6)

which shows that m is not a maximizer of QN .

Third case: m(2) = m(3) = 2J . Note that in this case, we must have k ≥ 5, since

otherwise m would be of the form (2.2.16) or (2.2.17). Let k0 ∈ {4, . . . , k − 1}

be the smallest number for which m(k0) ̸= 2J . (Again, note that such a

k0 must exist, since otherwise m would be of the form (2.2.16) or (2.2.17).)

In particular, this means that m(k0 − 1) = 2J and m(k0 + 1) > 0. Now,

define m̂(1) := m(1) − 1, m̂(k0) := m(k0) + 1 and for every other j, we set

m̂(j) := m(j). We then find

QN(m̂)−QN(m) = m(k0 + 1) > 0 , (A.2.7)

which shows that m cannot be a maximizer of QN .

Since these three cases exhaust all possibilities and from (2.2.16) or (2.2.17), VN,0 =

4J2. This finishes the proof.

A.2.2 Proof of Lemma 2.5.2

Proof Let Z = (z1, z2, . . . , zj+k) ∈ Sj+kL,K be such that dj+k(X ∨ Y, Sj+kL,K) = dj+k(X ∨

Y, Z). Now, introduce the configurations Z ′ = (z1, z2, . . . , zj) ∈ SjL and Z ′′ =

(zj+1, . . . , zj+k) ∈ SkL. Moreover, let mZ′ and mZ′′ denote the corresponding oc-

cupation number functions. Note that mZ′(i) = 0 for i > zj as well as mZ′′(i) = 0

for i < zj. Moreover, note that mZ′(zj) +mZ′′(zj) ≤ 2J . It follows that V (mZ′) ≤
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V (mZ′ +mZ′′), i.e. V (Z ′) ≤ V (Z) and thus Z ′ ∈ SjL,K . To see this, observe that

V (mZ′ +mZ′′) = V (mZ′) + (2J −mZ′(zj − 1))mZ′′(zj) + (2J − (mZ′(zj) +mZ′′(zj))mZ′′(zj + 1)

+
L−1∑

i=zj+1

(2J −mZ′′(i))mZ′′(i+ 1) ≥ V (mZ′) , (A.2.8)

where we used that since mZ′ ,mZ′′ ∈ ML, one has mZ′(i),mZ′′(i) ≤ 2J for any

i ∈ {1, 2, . . . , L} and moreover that mZ′(zj) + mZ′′(zj) ≤ 2J . Now, if in addition

zj ≤ ℓ, this would imply Z ′ ∈ SjΛℓ,K
and since – trivially – dj(X, SjΛℓ,K

) ≤ dj(X,Z ′) ≤

dj+k(X ∨ Y, Z ′ ∨ Z ′′) = dj+k(X ∨ Y, Sj+kL,K) this shows (2.5.2) for the case zj ≤ ℓ. If

zj > ℓ, we need to modify our argument. If z1 > ℓ, we construct the occupation

number function g ∈ Mj
Λℓ

as follows:

g(i) :=


2J if ℓ− ⌊ j

2J
⌋+ 1 ≤ i ≤ ℓ

j(mod 2J) if ℓ− ⌊ j
2J
⌋

. (A.2.9)

Let Xg ∈ SjΛℓ
denote the multiset associated with g. Note that Xg is of the form

(2.2.16) or (2.2.17) and thus, by Proposition 2.2.5 we have Xg ∈ SjΛℓ,K
. Therefore,

dj(X, SjΛℓ,K
) ≤ dj(X,Xg) ≤ dj(X,Z ′) ≤ dj+k(X ∨ Y, Sj+kL,K) (where the second in-

equality is due to the fact that xi ≤ gi ≤ ℓ < zi, i = 1, . . . , j). So, from now on,

we may assume that z1 ≤ ℓ and thus let j0 := max{i ∈ {1, 2, . . . , j} : zi ≤ ℓ} be the

index of the last particle of Z ′ that still lies in Λℓ. We now split Z ′ = Z ′
Λℓ
∨Z ′

Λc
ℓ
, where

Z ′
Λℓ

= (z1, . . . , zj0) and Z ′
Λc
ℓ
= (zj0+1, . . . , zj). Let mZ′

Λℓ
∈ Mj0

Λℓ
be the occupation

number function associated to Z ′
Λℓ
. Lastly, let jc := j− j0 be the number of particles

in Z ′
Λc
ℓ
. We then distinguish the following two cases:

Case 1: jc +mZ′
Λℓ
(ℓ) +mZ′

Λℓ
(ℓ− 1) ≥ 4J .

Define r0 := max{k ∈ {1, . . . , ℓ − 2} :
∑ℓ

s=k(2J − mZ′
Λℓ
(s)) ≥ jc} and let
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µ = jc−
∑ℓ

s=r0+1(2J−mZ′
Λℓ
(s)). We construct the occupation number function

c ∈ Mj
Λℓ

as follows:

c(i) :=


mZ′

Λℓ
(i) if 1 ≤ i ≤ r0 − 1

mZ′
Λℓ
(i) + µ if i = r0

2J if r0 + 1 ≤ i ≤ ℓ

(A.2.10)

In other words, the particles in Z ′
Λc
ℓ
are used to “fill up” each site of configu-

ration mZ′
Λℓ

to its maximal occupation number 2J – starting from ℓ, ℓ− 1, etc.

until the jc particles in Z
′
Λc
ℓ
have been exhausted (cf. Figure A.2.1). Note that

the choice c(ℓ) = c(ℓ − 1) = 2J is following the same principle and is due to

the assumption jc +mZ′
Λℓ
(ℓ) +mZ′

Λℓ
(ℓ− 1) ≥ 4J .

1 2 . . .
ℓ ℓ + 1 ℓ + 2 ℓ + 3 ℓ + 4 ℓ + 5

Figure A.2.1: Picture showing the construction of configuration c, by moving the
jc = 11 particles in Λcℓ such that they fill up each site to its maximum occupation
number 2J = 6 starting at ℓ to the left (here: from ℓ to ℓ− 2).

We now make the following observations: Firstly, let Xc ∈ SjΛℓ
denote the

multiset corresponding to c. Then, by construction, it is clear that dj(X,Xc) ≤

dj(X,Z ′). Secondly, let s0 = min{s ∈ {1, 2, . . . , ℓ − 2} : ∀t ∈ {s + 1, . . . , ℓ} :

c(t) = 2J}. If s0 = 1, then Xc is a minimizer configuration with c(i) =
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2J ∀ i = 2, . . . , ℓ and hence, Xc ∈ SjΛℓ,K
. Since xi ≤ ci ≤ zi, i = 1, . . . , j, we

get

dj(X,Xc) =

j∑
i=1

(ci − xi) ≤
j∑
i=1

(zi − xi) ≤ dj(X,Z ′) (A.2.11)

and therefore, dj(X, SjΛℓ,K
) ≤ dj(X,Xc) ≤ dj(X,Z ′) ≤ dj+k(X ∨ Y, Sj+kL,K) for

the case s0 = 1.

Now for s0 ̸= 1, define c′′ := c · 1{s0,...,ℓ}, c′ := c − c′′, d′′ := mZ′ · 1{s0,...,L}

and d′ := mZ′ − d′′. Then, observe that c(s0) ≥ mZ′
Λℓ
(s0) and moreover that

c(s) = mZ′
Λℓ
(s) for every s < s0. Consequently, we get c′ = d′. Observe that

c′′ is of the form (2.2.16) or (2.2.17) and thus V (c′′) = 4J2. Moreover, by

Proposition 2.2.5, we have V (c′′) ≤ V (d′′). Consequently, we get

V (c) = V (c′)−c(s0−1)c(s0)+V (c′′) ≤ V (d′)−mZ′
Λℓ
(s0−1)mZ′

Λℓ
(s0)+V (d′′) = V (mZ′) ≤ K.

(A.2.12)

This shows that Xc ∈ SjΛℓ,K
. Since dj(X, SjΛℓ,K

) ≤ dj(X,Xc) ≤ dj(X,Z ′) ≤

dj+k(X ∨ Y, Sj+kL,K), this shows the assertion for Case 1.

Case 2: jc + mZ′
Λℓ
(ℓ) + mZ′

Λℓ
(ℓ − 1) < 4J . Firstly, let us define the following two

quantities:

ξ′ := mZ′
Λℓ
(ℓ− 1) +

∑
k∈N:ℓ+2k−1≤L

mZ′
Λc
ℓ

(ℓ+ 2k − 1) (A.2.13)

ξ′′ := mZ′
Λℓ
(ℓ) +

∑
k∈N:ℓ+2k≤L

mZ′
Λc
ℓ

(ℓ+ 2k) and observe that (A.2.14)

L−1∑
i=ℓ−1

mZ′(i)mZ′(i+ 1) ≤ ξ′ξ′′ , (A.2.15)

since the left hand side of (A.2.15) is a sum over a subset of the (non–negative)
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cross–terms one obtains when expanding the product ξ′ξ′′. Moreover, note that

the assumption for being in Case 2 is equivalent to ξ′ + ξ′′ < 4J . Next, we

define the occupation number function e ∈ SjΛℓ
as follows:

e(i) :=


min{2J, ξ′′}+max{ξ′ − 2J, 0} if i = ℓ

min{2J, ξ′}+max{ξ′′ − 2J, 0} if i = ℓ− 1

mZ′
Λℓ
(i) if i ∈ {1, 2, . . . , ℓ− 2} .

(A.2.16)

Let us now show that V (e) ≤ V (mZ′). To this end, observe that

V (mZ′)− V (e) =mZ′(ℓ− 2)(e(ℓ− 1)−mZ′(ℓ− 1)) + e(ℓ− 1)e(ℓ)−
L−1∑
i=ℓ−1

mZ′(i)mZ′(i+ 1)

(A.2.17)

≥e(ℓ− 1)e(ℓ)− ξ′ξ′′ , (A.2.18)

where we used e(ℓ− 1) ≥ mZΛℓ
(ℓ− 1) and (A.2.15). Since ξ′ + ξ′′ < 4J , there

are only three possible cases:

(i) ξ′′ > 2J and ξ′ ≤ 2J

(ii) ξ′′ ≤ 2J and ξ′ > 2J

(iii) ξ′ ≤ 2J and ξ′′ ≤ 2J .

We will only discuss Cases (i) and (iii); Case (ii) follows from an argument

similar to Case (i). If we are in Case (i), this means e(ℓ) = 2J and e(ℓ− 1) =

ξ′ + ξ′′ − 2J . Hence, by (A.2.18), we get

V (mZ′)− V (e) ≥ 2J(ξ′ + ξ′′ − 2J)− ξ′ξ′′ = (2J − ξ′)(ξ′′ − 2J) ≥ 0 . (A.2.19)
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For Case (iii), we have e(ℓ) = ξ′′ and e(ℓ − 1) = ξ′ and thus get – again by

(A.2.18) – the estimate

V (mZ′)− V (e) ≥ ξ′ξ′′ − ξ′ξ′′ = 0 . (A.2.20)

Hence, we have shown V (e) ≤ V (mZ′). Now, let Xe ∈ SjΛℓ
denote the multiset

associated to e. If we can show that dj(X,Xe) ≤ dj(X,Z ′), this will prove

(2.5.2) for the Case 2. Now, to see this, we firstly define the configuration

f ∈ Mj
Λℓ

as follows

f(i) :=


min{2J,mZ′(ℓ) + jc} if i = ℓ

mZ′(ℓ− 1) + max{mZ′(ℓ) + jc − 2J, 0} if i = ℓ− 1

mZ′(i) if i ∈ {1, 2, . . . , ℓ− 2} ,
(A.2.21)

which means that configuration f is obtained by adding the particles in Z ′
Λc

to

the configuration mZ′ – starting at site ℓ and any possibly remaining particles

to site ℓ − 1. Let Xf = (f1, f2, . . . , fj) ∈ SjΛℓ
be the multiset associated to f

and let p = min{i : zi > ℓ} and ξ = max { i : zi ≤ ℓ− 2 } (note that ξ exists

since if z1 > ℓ − 2 and jc < 4J − mZ′(ℓ − 1) − mZ′(ℓ), then we would have

j = j0 + jc < 4J , a contradiction). Again, we distinguish two cases:

(a) If jc ≤ 2J−mZ′(ℓ), then zi = fi for 1 ≤ i ≤ p−1 and fi = ℓ for p ≤ i ≤ j.

Then,
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dj(X,Z ′) =

p−1∑
i=1

|xi − zi|+
j∑
i=p

(zi − xi)

=

p−1∑
i=1

|xi − zi|+
j∑
i=p

(zi − fi) +

j∑
i=p

(fi − xi)

=

p−1∑
i=1

|xi − fi|+
j∑
i=p

|zi − fi|+
j∑
i=p

|fi − xi|

= dj(X,Xf ) +

j∑
i=j−jc+1

|zi − fi| ≥ dj(X,Xf ) + jc

(A.2.22)

(b) If jc > 2J − mZ′(ℓ), let η = jc − (2J − α1), where α1 = mZ′(ℓ) and

α2 = mZ′(ℓ− 1). Then, observe that

fi = zi, 1 ≤ i ≤ ξ + α2

fi = ℓ− 1, ξ + α2 + 1 ≤ i ≤ ξ + α2 + n

fi = ℓ, i > ξ + α2 + η

zi = ℓ, ξ + α2 + 1 ≤ i ≤ p− 1

(A.2.23)

Hence,

dj(X,Z ′) =

ξ+α2∑
i=1

|xi − zi|+
p−1∑

i=ξ+α2+1

|xi − zi|+
j∑
i=p

(zi − xi)

=

ξ+α2∑
i=1

|xi − zi|+
ξ+α2+η∑
i=ξ+α2+1

(zi − xi) +

p−1∑
i=ξ+α2+η+1

(zi − xi)

+

j∑
i=p

(zi − fi) +

j∑
i=p

(fi − xi)
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=

ξ+α2∑
i=1

|xi − fi|+
ξ+α2+η∑
i=ξ+α2+1

(zi − fi) +

ξ+α2+η∑
i=ξ+α2+1

(fi − xi) +

p−1∑
i=ξ+α2+η+1

(zi − fi)

+

p−1∑
i=ξ+α2+η+1

(fi − xi) +

j∑
i=p

(zi − fi) +

j∑
i=p

(fi − xi)

=

ξ+α2∑
i=1

|xi − fi|+
ξ+α2+η∑
i=ξ+α2+1

|fi − xi|+
p−1∑

i=ξ+α2+η+1

|fi − xi|+
j∑
i=p

|fi − xi|

+

ξ+α2+η∑
i=ξ+α2+1

|zi − fi|+
p−1∑

i=ξ+α2+η+1

|zi − fi|+
j∑
i=p

|zi − fi|

= dj(X,Xf ) +

ξ+α2+η∑
i=ξ+α2+1

|zi − fi|+
p−1∑

i=ξ+α2+η+1

|zi − fi|+
j∑
i=p

|zi − fi|

≥ dj(X,Xf ) +

j∑
i=p

|zi − fi|

≥ dj(X,Xf ) + (j − p+ 1) = dj(X,Xf ) + jc

(A.2.24)

Moreover, since e(i) ̸= f(i) only if i = ℓ− 1, ℓ, this implies

dj(Xe, Xf ) = |f(ℓ)− e(ℓ)| ≤ jc . (A.2.25)

We therefore get

dj(X,Xe) ≤ dj(X,Xf ) + dj(Xf , Xe) ≤ dj(X,Xf ) + jc ≤ dj(X,Z ′) , (A.2.26)

and thus, we have shown (2.5.2) for Case 2.

This finishes the proof.
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APPENDIX B

AUXILIARY RESULTS FOR EMPTINESS FORMATION
PROBABILITY
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B.1 Equivalence to the Antiferromagnetic XXZ and
Reflection positivity

Suppose N is even. Then, we may decompose BN into two halves;

For a fixed ν ∈ { 1, . . . , d }, define

V− = { i = (i1, . . . , id) ∈ { 0, . . . , N − 1 }d : iν ∈ { 1, . . . , N/2 } } (B.1.1)

V+ = { i = (i1, . . . , id) ∈ { 0, . . . , N − 1 }d : iν ∈ {N/2 + 1, . . . , N } } (B.1.2)

Moreover, define H+ := ℓ2(C(V+)) and H− = ℓ2(C(V−)) where C(BN) is the set of

all function σ = (σi)i∈V± . Hence, we may associate H(BN) = H− ⊗H+.

Hence, a function f− ∈ H− (f+ ∈ H+) is supported on the vertex set V− (V+

respectively). We therefore define the function (f− ⊗ f+) ∈ H(BN) as follows: given

σ ∈ C(BN) such that

σ± = (σi)i∈V± , (B.1.3)

(f− ⊗ f+)(σ) = f−(σ
−)f+(σ

+) (B.1.4)

Define the reflection R : V± → V∓, a reflection by the plane (passing through no

sites) between V− and V+:

R(i1, . . . , iν−1, iν , iν+1, . . . , id) = (i1, . . . , iν−1, iν , N − 1− iν , iν+1, . . . , id) (B.1.5)

We then define the isomorphism R : C(V−) → C(V+) as

R((σi)i∈V−) = (τi)i∈V+ , τi = σR(i) (B.1.6)
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Define the unitary transformation F : H− → H+ by

Ff((σi)i∈V−) = f((τi)i∈V+) (B.1.7)

Finally, define a C∗-algebra isomorphism θ : B(H+) → B(H+) by

θ(A) = FAF ∗, A ∈ B(H−) (B.1.8)

We then extend the C∗-algebra isomorphism to B(H− ⊗H+) by

θ̃(A⊗ 1lH+) = 1lH− ⊗ θ(A) (B.1.9)

Lemma B.1.1 The Hamiltonian in (3.3.4) is unitarily equivalent to the Antifer-

romagnetic XXZ Hamiltonian. Moreover, for some K ∈ N there are operators

B,C1, . . . CK of the form S ⊗ 1lH+ , S ∈ B(H+), such the Antiferromagnetic XXZ

Hamiltonian can be expressed as

B + θ̃(B)−
K∑
r=1

Crθ̃(Cr) (B.1.10)

Proof: Define U : H+ → H+ given by

Uf(σ) = f(−σ), f ∈ H+ (B.1.11)

where σ = (σj)j∈V+, −σ = (−σj)j∈V+ and σj ∈
{∣∣±1

2

〉}
.
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Let {δτ : τ ∈ C(V+)} be the orthonormal basis of ℓ2(C(V+) where

δτ (σ) =


1, if σ = τ

0, if σ ̸= τ

(B.1.12)

Then U = U∗ = U−1 and also,

USxj U = Sxj , USyj U = −Syj , and USzj U = −Szj (B.1.13)

Recall that USxj U := U(1l⊗ · · · ⊗ Sxj ⊗ · · · 1l)U for tensors only on V+.

The operator U := IH− ⊗ U is a unitary transformation on the ℓ2(C(V)) and

satisfies U = U∗ = U−1. Moreover, for i ∈ V− and j ∈ V+, we have that

Uh∆ijU = −Sxi Sxj + Syi S
y
j +∆Szi S

z
j

= −Sxi Sxj − (iSi)
y(iSyj ) + ∆Szi S

z
j (B.1.14)

Where the second equation is needed in order to make the right hand side a sum of

real operators (since Syi and Syj are not real operators).

For the case ∆ < 0 and R(i) = j, we have that

Uh∆ijU = −
3∑

k=1

Dk
i θ̃(D

k
i ) (B.1.15)

where D1 = Sx, D2 = Sy and D3 =
√
−∆ Sz.

If i, j ∈ V+, then Uh∆ijU = h∆ij . Therefore, enumerating the pairs { i, j } with j = R(i)
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and { i, j } ∈ E as { i1, j1 } , . . . , { iK , jK }, we have

UHG,∆U = B + θ̃(B)−
K∑
r=1

3∑
k=1

Dk
ir θ̃(D

k
ir) (B.1.16)

where

B =
∑

{ i,j }∈E(V−)

h∆i,j (B.1.17)

Hence by Theorem (B.1.3), HG,∆ is unitarily equivalent to a reflection positive Hamil-

tonian.

Let BR(H−) be the set of bounded “real”1 operators on H−.

Lemma B.1.2 The tracial state, defined as ⟨·⟩ = Tr[·]/Tr[1l] is reflection positive.

Proof:

Let A := A⊗ 1lH+ , A ∈ B(H−).

Tr[Aθ̃(A)] = Tr[A⊗ θ(A)] (B.1.18)

=
∑

σ∈C(BN )

⟨g(σ), (A⊗ θ(A))g(σ)⟩ (B.1.19)

=
∑

σ∈C(BN )

⟨g(σ)− , Ag(σ)−⟩H−
· ⟨g(σ)+ , θ(A)g(σ)+⟩H+

(B.1.20)

=
∑

σ∈C(Λ−)

⟨g(σ), Ag(σ)⟩H−

∑
σ∈C(Λ+)

⟨F ∗g(σ), AF
∗g(σ)⟩H+

(B.1.21)

Since R is a bijection and by the definition of F , the sums in the last equation are

1An operator A is said to be real if ⟨gσ, Agσ′⟩ ∈ R for all σ, σ′ ∈ C(Λ+)



90

equal. Hence,

Tr[Aθ̃(A)] =
(
TrH−[A]

)2 ≥ 0 (B.1.22)

where the last inequality is as a result of the fact that A is real.

Theorem B.1.3 ([16, Thm. 2.1], [6, Cor. 5.4]) If −H = B+θ̃(B)+
∑K

j=1Cj θ̃(Cj)

(or more generally B + θ(B) +
∫
C(x)θ̃[C(x)]dρ(x) for a positive measure dρ) with

B,C1, . . . CK of the form S ⊗ 1lH+ , S ∈ B(H+), and if ⟨·⟩0 is generalized reflection

positive, then

⟨·⟩H =
⟨Ae−βH⟩0
⟨e−βH⟩0

, β > 0 (B.1.23)

is generalized reflection positive.

The proof of the theorem can also be found in [9, Thm. A.6]

B.2 Large deviation bounds

We start with a large deviation bound for a Poisson random variable. Suppose that

X is a Poisson random variable with mean value λ > 0. Then for any number a ≥ 0,

we have

P(X ≥ a) = P(etX ≥ eat) , (B.2.1)

for any t > 0. Using Chernoff bounds, this gives the inequality

P(X ≥ a) ≤ E[etX]

eat
= eλ(e

t−1)−at . (B.2.2)

For a ≥ λ, we may take t = ln(a/λ) to obtain

∀a ≥ λ , P(X ≥ a) ≤ exp
(
a− λ− a ln

(a
λ

))
. (B.2.3)
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Note that we assume that 0 < λ ≤ a. But if we introduce a new variable κ such that

a− λ = κλ , (B.2.4)

then this gives

∀κ ≥ 0 , P(X ≥ (1 + κ)λ) ≤ exp (− ((1 + κ) ln(1 + κ)− κ)λ) , (B.2.5)

which is the bound that we most commonly use. We frequently take λ to be large,

and actually often λ = n for an integer n ∈ N which is large.

Remark B.2.1 We can, just as easily, obtain large deviation bounds for binomial

random variables. But unless we discretize time, the underlying variables for all the

graphical representations are continuous, and hence Poisson point processes.

Note, that the exact calculation shows that, still for a Poisson random variable

X with mean value λ, we have

P(X = 0) = e−λ . (B.2.6)

This is occassionally useful when λ > 0.

Next, we give an operator version of the Jensen inequality

Theorem B.2.2 Let f : R → R be a convex funtion and suppose A : Cn → Cn is a

positive semi-definite matrix. Then, for any normalized vector x ∈ Cn, we have

f(⟨x,Ax⟩) ≤ ⟨x, f(A)x⟩ (B.2.7)

where f(A) is defined by functional calculus.
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Proof: By spectral decomposition,

⟨x, f(A)x⟩ =

〈
x,

(
n∑
i=1

f(ai)Pai

)
x

〉
(B.2.8)

=
n∑
i=1

f(ai) ⟨x,Paix⟩ (B.2.9)

≥ f

(
n∑
i=1

ai ⟨x,Paix⟩

)
(B.2.10)

= f(⟨x,A, x⟩) (B.2.11)

Remark B.2.3 Jensen inequaity has been applied in equation (B.2.10)
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