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ELECTROMECHANICAL MECHANISMS OF ELECTROMIGRATION
- NOVEL APPROACHES

RAGHAVENDRA RAO MORUSUPALLI

INTERDISCIPLINARY ENGINEERING

ABSTRACT

Reliability of today’s interconnect lines in microelectronic devices is critical to product

lifetime. The metal interconnects are carriers of large current densities and mechanical

stresses, which can cause void formation or metal extrusion into the passivation leading

to failure. The modeling and simulation of stress evolution caused by electromigration in

interconnect lines and vias can provide a means for predicting the time to failure of the

device. Reliability and performance are equally important in the microelectronics industry

of today. Product lifetimes are expected to be as high as 10 to 15 years of service. A typical

microprocessor has millions of interconnect lines and the probability of line failure under

operating conditions can be quite high. The interconnects in a modern microprocessor unit

must be carefully engineered and tested to ensure that they are highly reliable.

Electromigration has been modeled as momentum transfer between conducting electrons

and lattice atoms in a current carrying metal line. Early microelectronic devices were man-

ufactured with large line cross-sectional areas and therefore electromigration was not an

issue due to the low current densities. As devices and interconnects scaled down in feature

size, the current densities became extremely large and electromigration became a key reli-

ability concern. The current densities in modern microelectronic devices can be as high as

10 mA per square micron.

We investigate and present less researched electromechanical mechanisms that produce mi-

gration of lattice ions towards the anode of a current carrying conductor without the a priori

assumption of only an electron wind force and stress gradient as driving the migration.

i



The work presented in this dissertation focuses on new models, their significance, new

tools and newly suggested experiments to validate the derived models. We attempt to look

at contemporary models of atomic flux during electromigration by incorporating forces on

migrating ions that always existed but were left out in the models.

Keywords: electromigration, metals, interconnects, stress evolution, modeling, mag-

netic field, lorentz force, voids, morphology, experiments, simulation
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SUMMARY

The present work claims the following original contributions:

• A tool was developed using MathCAD for simulation of electromigration induced

stress in interconnect structures using a model of electromigration induced stress.

• Study of the effect of line geometry and overhangs on line stress evolution.

• Comparison of line stress predictions with measured electromigration failure times,

useful to predict actual electromigration failures times through stress simulations.*

• Investigation of less researched magnetic and electromechanical mechanisms that

would produce migration of ions towards the anode without the a priori assumption

of an electron wind force and stress gradients only.*

• A novel model for atomic flux during electromigration is developed that includes

intrinsically generated Lorentz forces acting on migrating lattice ions.*

• A qualitative analysis that proposes new and alternate possibilities for void mor-

phological evolution during electromigration due to the impact of Lorentz forces on

migrating ions.

• Study of the effect of current crowding on line stress evolution using MATLAB sim-

ulation tool.

• Suggestions for novel experiments that can prove the ideas theorized in the present

work.*
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* Work presented and published (MRS and IEEE).

These items are further elaborated as follows but detailed elsewhere in various chapters

of this dissertation:

Contemporary understanding and modeling of the phenomenon of Electromigration is that

of current induced transport of lattice atoms[1][2]. Accelerating electrons in a conducting

line under the influence of a driving electric potential undergo collision and momentum ex-

change with the lattice atoms. In the presence of high current densities, an electron “wind

force” is developed and momentum is transferred to atoms in the conducting material re-

sulting in an atomic flux. This net flux causes conducting material to be depleted “up wind”

and accumulated “down wind”. This depletion of material eventually leads to voids at the

cathode end that cause interconnect failures. Material can also accumulate and extrude to

make electrical contact with neighboring interconnect lines causing circuit malfunction.

To begin with, a tool was developed using MathCAD[3] for simulation of electromigration

induced stress in VLSI interconnect structures using a model of electromigration induced

stress. This model solves the equations governing atomic diffusion and stress evolution

in one dimension. A numerical solution scheme has been implemented to calculate the

atomic flux and the evolution of mechanical stress in interconnects. The effects of line

geometries and overhangs, material properties and electromigration stress conditions have

been included in the simulation. The tool has been used to simulate electromigration-

induced stress in pure Cu interconnects, but it can be applied for any pure interconnect

material. The tool was also used for comparing experimental data with simulated data for

stress evolution in a line. Existing electromigration Time to Fail (TTF) data from studies

conducted and published by Vairagar et al[4] was used to compare existing experimental

electromigration data with our simulated stress data for similar test structures.
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We have also investigated less researched magnetic and electromechanical mechanisms that

would produce migration of ions to the anode without the a priori assumption of an electron

wind force and a stress gradient only as driving the migration. This approach for electromi-

gration flux modeling is novel and has not been researched extensively. The magnetic field

is generated by flow of electrons elsewhere in the same conductor. It is not an externally ap-

plied magnetic field, but rather intrinsic to the conductor due to the flow of electrons within

it. Lorentz forces acting on migrating lattice ions due to the magnetic fields are combined

with electron wind force and the stress gradient to derive a new model for atomic flux. An

estimation of the Lorentz forces on migrating ions for typical conditions is calculated and

conditions under which the new model might be significant for electromigration damage

and lifetime are presented. Conditions that make the Lorentz force significant will also

result in void morphology evolution that is not necessarily in the direction of the electro-

migration driving force. A qualitative analysis is presented.

Further to the developed new model, we attempt to investigate how current crowding may

affect electromigration adversely. Additionally, the effect of variation of the generated

magnetic fields in an interconnect and resulting variations in Lorentz forces on lattice ions

and their overall impact on electromigration is qualitatively analyzed. Further work is nec-

essary to understand newly proposed phenomena such as ”lattice squeezing” due to mag-

netic fields on flowing electrons and a newly proposed concept of ”Dielectric drag”. These

will be looked at as future work and ongoing research.

This work also includes modeling electromechanical mechanisms with the aid of simu-

lations and modeling tools such as MATLAB[5] for stress evolution as a function of ge-

ometry and current density variations along the length of a conductor. We begin by re-

viewing the known effects of line geometry induced electromechanical mechanisms and

current crowding on electromigration. In multilevel interconnects, current crowding occurs

whenever the current changes direction, such as when passing through a via. Tu et al[6]
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have proposed that in current crowding, the current-density gradient can exert a driving

force strong enough to cause excess vacancies (point defects) to migrate from high to low

current-density regions. Electrical current crowding occurs at locations where interconnect

path turns or converges, e.g. vias, sharp right angle turns etc, where the current passes from

one level of the structure to another. We have attempted to simulate how abrupt geometry

changes and therefore abrupt current density changes can cause corresponding changes in

line stress evolution. Such simulations provide insights into potential conditions that may

make the impact of Lorentz force on atomic flux a matter of significance. Further work is

needed in this area and will be looked at as future and ongoing research.

Although some simulation work has been completed using Molecular Dynamics[7] (MD)

tools such as LAMMPS[8], no further work in MD was planned as the intent was to apply

one dimensional models using simulation tools such as MATLAB that seem to be more

suitable for incorporating electron flow and thermal transport for electromigration.

Finally, experimental methods and sample fabrication techniques are suggested to study the

effect of Lorentz force on defects and voids during the process of electromigration. The

approach and propositions are high level recommendations. The actual conduction of the

experiments or the sample fabrication is out of scope of this dissertation.
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CHAPTER 1

PHYSICS OF ELECTROMIGRATION

1.1 Integrated Circuits and Interconnect Challenges

Integrated circuits of today contain millions of logic elements and circuits[9]. Human in-

genuity has made it possible to package millions of circuit elements onto a tiny piece of

silicon chip measuring less than half a square inch. Power consumption, cost and reliability

of integrated circuits are key drivers for new design, architecture and materials research for

semiconductor integrated circuit technologies. For the past forty years, there have been

two major goals in the industry for the reliability of interconnect in integrated circuits. Ini-

tially it was the construction of more reliable interconnects followed by a shift in the focus

for just pushing the limits of performance. Substantial progress has been made towards

manufacturing reliable systems. The goal is closely linked to the improvement and the

understanding of the mechanisms of electromigration failure. The reliability at operating

conditions is measured by extrapolating accelerated test data[10] which is used to measure

the electromigration lifetimes. This extrapolation methodology results in uncertainty in

the predicted reliability performance which in turn makes design rules more conservative.

An improved extrapolation scheme is therefore necessary to maximize performance and in

improving the processing of interconnects. A superior and accurate extrapolation method

can only be designed with a correct understanding of the details of electromigration failure

mechanisms.
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1.2 Electromigration Basics

Electromigration is the current induced transport of lattice atoms. Accelerating electrons in

a conducting line under the influence of a driving electric potential undergo collision and

momentum exchange with the lattice atoms. In the presence of high current densities, an

electron “wind force” is developed and momentum is transferred to atoms in the conducting

material resulting in an atomic flux[11][12]. This net flux causes conducting material to be

depleted “up wind” and accumulated “down wind”. This depletion of material eventually

leads to voids that cause interconnect failures. Material can also accumulate and extrude

to make electrical contact with neighboring interconnect lines, and may cause circuit mal-

function.

The momentum transferred by the electron wind force to a lattice atom is greatest when

there is a vacancy nearby, or in the region of a grain boundary. Vacancies or grain bound-

aries must be present for metal atoms to move from their fixed positions in the crystal

lattice[13]. In grain boundaries there is a region of distortion and open space, and the diffu-

sion of atoms can be accommodated in these regions rather easily as compared to elsewhere

in the lattice.

For aluminum, the dominant mechanism of failure due to electromigration has been at-

tributed to atomic and vacancy diffusion along the grain boundaries. Typically, triple points

of grain boundaries can serve as centers of atomic flux divergence leading to nucleation and

growth of voids. For copper conductor lines, the dominant mechanism has been attributed

to atomic and vacancy diffusion along the conductor surfaces and interfaces. Cu has a

much higher melting point (10830C) compared with the melting point of Al (6600C), so

that atomic diffusion should be much slower in Cu than Al at the same temperature. Theo-

retically, electromigration is expected to be much less in Cu interconnects but in reality the

advantage is not as big as expected. This is partly due to the fact that electromigration in Cu
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occurs by surface diffusion which has a lower activation energy than grain boundary diffu-

sion. More general discussion of diffusion in solids, has been presented by Shewmon[14]

and also Kaur et al[15].

1.3 Black’s Law of Electromigration

It has become an industry standard to study electromigration by measurement of the mean

times to failure (MTTF) of interconnect lines. In 1969, Jim Black[16] studied Al inter-

connect lines undergoing electromigration failure and empirically derived the following

equation,

MTTF =
A

jn
exp(

Ea
kT

) (1.1)

where j is the current density, n is usually 2 for Al, T is the temperature, A is a con-

stant that needs to be empirically determined and Eais the activation energy for failure and

k is Boltzmann’s constant. The key feature of Black’s equation is the dependence of the

MTTF on the square power of current density, i.e., n = 2. The actual value of n to be used

varies and is determined by electromigration experiments at accelerated temperatures and

is a function of the type of diffusion mechanism that is dominant in causing the failure of a

particular conducting material.

Above room temperature, it is inevitable that a lattice has point defects (vacancies and in-

terstitials), grain boundaries (between crystals of differing orientation) and dangling atomic

bonds at the surfaces and bulk interfaces. Phonons (atomic vibrations) exist at room tem-

perature and become increasingly important as the temperature rises. Phonons cause elec-

tron scattering and momentum transfer. It takes time and sufficient momentum exchange

to cause atom and vacancy diffusion leading to the formation of voids or extrusions in met-

als. The presence of lattice defects and phonons (and therefore higher temperatures) can

accelerate the failure caused by electromigration.
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Black’s law provides basic empirically derived insight into electromigration failure, how-

ever, it does not provide a complete understanding of the underlying mechanisms related

to the electromigration behavior for which more detailed physically based models such as

that presented by Gleixner and Nix[17] are useful for additional insights.

1.4 Electromigration and Stress

In an interconnect line with blocking boundaries, the effect of electromigration is to deplete

atoms on the cathode side while causing the atoms to accumulate on the anode. As atoms

and vacancies diffuse towards the opposite ends in an interconnect, voids will begin to form

at the cathode when there is no source of atoms to fill a vacancy that has reached the cath-

ode. This results in the build-up of tensile stress at the cathode and compressive stresses at

the anode end[18]. When the tensile stress at the cathode exceeds the critical stress neces-

sary for void nucleation, a void will nucleate and begin to grow (Figure 1.1). Eventually the

size of the void increases and leads to a resistance increase of the interconnect line leading

to failure[19].

Figure 1.1: Illustration of electromigration, void formation and passivation cracking for a
passivated metal line with grain-boundary textures and subjected to high current density.

To analyze the stress evolution precisely, numerical simulations are necessary. The

simulation of these stresses is presented in detail in the next chapters.
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Figure 1.2: Interconnect line with vias and overhangs.

1.5 The Reservoir Effect

A reservoir is an extension (overhang) of the interconnect metal line beyond the vias (Fig-

ure 1.2). For a simple interconnect structure with two vias and a metal line with overhangs

at the ends beyond the vias, the metal line does not carry any current in the overhangs. It

has been shown that the lattice atoms in the reservoir, migrate in the absence of an electric

field to replenish vacant sites in the non-overhang portions of the metal line and under the

vias. This effect is called the reservoir effect and it has been known to improve the electro-

migration lifetime of line-via structures[19][20]. The motion of host atoms toward the via

is in general driven by a concentration gradient and a stress gradient[20][21]. In addition,

via electromigration lifetime has been shown to be a strong function of the reservoir length

under fixed testing conditions[19].
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CHAPTER 2

REVIEW OF ELECTROMIGRATION MODELS

2.1 Black’s Model

Jim Black[11] was first to derive an equation for the mean time to failure (MTTF) of a

metal line subjected to Electromigration. In the late sixties, Jim Black of Motorola was in-

volved in understanding the line voiding problem that was later termed as electromigration.

Jim’s pioneering work included the first careful systematic investigations of electromigra-

tion failure kinetics. His experiments uncovered the curious behavior that electromigration

failures followed kinetics that depended not on the inverse of the current density, but on the

inverse square.

MTTF =
A

jn
exp

(
Ea
kT

)
(2.1)

where MTTF is the mean time to failure in a distribution of samples, A is a constant that

needs to be empirically determined and Ea is the activation energy. The experimental val-

ues found for the activation energy suggested grain boundary diffusion as the mass transport

mechanism for metals such as Al however it can be the activation energy attributed to sur-

face diffusion for other metals such as Cu. For nucleation dominated failure, this equation

has proven to be adequate even to the present day. Only small corrections, often too small

to be detected experimentally, have been needed to keep Black’s Law consistent with the

latest theoretical developments. Jim Black started with the assumption that the mean time
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to failure (MTTF) depended inversely on the rate of mass transport Rm

MTTF ∝ 1

Rm

(2.2)

Rm is in turn proportional to the momentum transfer between conduction and thermally

activated electrons,

Rm ∝ ne∆pNa (2.3)

where ne is the density of conducting electrons, ∆p is the momentum transfer from elec-

trons to the metal atoms andNa is the density of thermally activated ions. Since the electron

density and momentum transfer are proportional to the amount of current density j, and the

activated ions follow an Arrhenius equation,

ne ∝ j, ∆p ∝ j (2.4)

Na ∝ exp

(
−Ea
kT

)
(2.5)

the MTTF can therefore be modeled as

MTTF =
A

j2
exp

(
Ea
kT

)
(2.6)

where A is a constant that depends on the interconnect geometry and choice of material[11][16].

It has been established through various experimental results[22] that the current density

function not always follows a fixed exponent and can therefore be modeled with a vari-

able value of n. The modified and more general version of Black’s law can therefore be

expressed as,

MTTF =
A

jn
exp

(
Ea
kT

)
(2.7)

The actual value of n depends on the experimental conditions and needs to be determined.

Various experimental and theoretical works[23][24][25] have provided values for the ex-
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ponent n and its physical significance. A n value of 1 indicates a failure mechanism that

is dominated by void growth[26], whereas a n value of 2 can be explained instead by a

mechanism that is dominated by void nucleation[23].
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CHAPTER 3

MODELING OF LINE STRESS

3.1 Description of the Model

A description of the model is given here. The line structure is idealized as shown in Fig.

1.1. As shown in the figure, the length of the line is L, the width of the line is 2a and the

thickness of the line is h. Neither the passivation on top of the line nor the substrate below

the line are shown. Atomic transport is assumed to occur along the top (and/or bottom)

surfaces of the line. The thickness of the interfacial region in which transport occurs,

denoted as δ is greatly exaggerated in Figure 3.1. [27].

Figure 3.1: Schematic diagram of a simple interconnect line structure. Atomic transport
is assumed to occur along the top (and or bottom) surface of the line. The thickness of
the interfacial region in which transport occurs, denoted as δ is greatly exaggerated in the
figure.
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3.2 Analysis of the Model

For the present analysis, the transport along the edges of the line is ignored. The atomic

flux along the top and/or bottom interfaces in the presence of both a stress gradient and

electron wind may be expressed as per Huntington[28]

J ia =
Di

kT

[
∂σin
∂x

+
Fe
Ω

]
(3.1)

where i stands for either the top or bottom surface of the line. The atomic diffusivity is

given by

Di = Do
i exp

(
−Qi

kT

)
(3.2)

where Qi is the activation energy for diffusion along the interface and Do
i is the pre-

exponential constant. As discussed below, consider the interfacial diffusion to be bounded

by the limits of grain boundary diffusion at the lower end and surface diffusion at the upper

end. Also, Fe is the electron wind force in the direction of the current flow given by

Fe = −eZ∗ρj (3.3)

where eZ∗ is the effective charge on the ions, ρ is the resistivity of the metal line and j

is the current density[28][17].

In the present treatment the mass and/or vacancy flow into or out of the crystal lattice is

ignored. An analysis that takes these factors into account has not been developed. The

accumulation of mass at the interface may be computed using a mass balance. This leads
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to the expression for the volume of mass accumulation V at a given point along the interface

∂V

∂x
= −2aΩδ

∂J ia
∂x

(3.4)

where Ω is the atomic volume. The accumulation of matter at any point along the

interface causes the two sides of the interface (the line and the passivation, for example) to

be displaced away from each other, leading to a pressure in the interface. As discussed by

Gleixner and Nix[17], insertion of matter at an interface can be treated like a pressurized

crack of length 2a. According to this treatment the form of the normal displacements at the

interface is

uz(y) = 4
( p
M

)√
a2 − y2 (3.5)

where p is the pressure in the interface and M is the plane strain elastic modulus of the

surrounding material. Also, the corresponding area of the opened crack is

A = 4πa2
( p
M

)
(3.6)

The gradient in the rate of volume accumulation V at a given point along the interface

is simply the rate of change of the opened area given by

∂V

∂x
= −2aΩδ

∂J ia
∂x

= Ȧ (3.7)

where the area displacement rate is,

Ȧ = 4πa2 1

M

∂p

∂t
(3.8)
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But since the normal stress in the interface is σin = −p (tension is negative pressure) it

follows that

Ȧ = −4πa2 1

M

∂σin
∂t

(3.9)

Thus, combining equations (3.7) and (3.9) the governing equation is

4πa2 1

M

∂σin
∂t

= 2aΩδ
∂J ia
∂x

(3.10)

and combining with equation (3.1),

2πa

ΩδM

∂σin
∂t

=
∂

∂x

Di

kT

[
∂σin
∂x

+
Fe
Ω

]
(3.11)

Equation 3.11 is the partial differential equation (PDE) for computing the stress evo-

lution in the line. This PDE is solved numerically in the MathCAD tool that has been

developed. Initially the stress in the line is assumed to be zero. Then, as current flows in

the line, a stress develops according to Equation 3.11. Naturally the stresses develop first

at the ends of the line where diffusion is blocked. Gradually a stress gradient develops ev-

erywhere in the line. Eventually, at long enough times, a linear, steady state, stress gradient

develops.

The most uncertain parameter in the model is the diffusivity in the interface. To estimate

the stresses it is assumed that the interfacial diffusivity is bounded by grain boundary and

surface diffusivity. In particular, the tool allows one to assume either grain boundary diffu-

sion or surface diffusion for the diffusivity. Naturally, the stresses develop more quickly if

surface diffusion is assumed and more slowly if grain boundary diffusion is assumed. The
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interfacial diffusivity might be lower than grain boundary diffusivity but it is not likely any

higher than surface diffusion.
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CHAPTER 4

NUMERICAL IMPLEMENTATION

This chapter presents the details of the numerical implementation of the partial differential

Equation 3.11. The method of finite difference equations has been used for the numerical

implementation.

4.1 Derivation of Finite Difference Equations

The basic idea of the finite differences method of solving a PDE is to replace spatial and

time derivatives by suitable approximations, then to numerically solve the resulting differ-

ence equations. Consider a function f(x, t). Instead of solving for the conditions where x

and t are continuous, let us consider solving for fj,n = f(xj, tn) where x and t represent

space and time dimensions respectively.

Imagine a grid system shown in Figure 4.1, where the point labeled j, n corresponds to

(x, t) = (xj, tn) . The derivatives of f can be approximated in terms of the values of f at

grid points. For example, it is known that

∂f

∂x
= lim
4x→0

4f
4x

(4.1)

This derivative at the grid-point (x, t) = (xj, tn) can be approximated in the following
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Figure 4.1: Imaginary grid system for the Finite Differences

different ways:
∂f

∂x

∣∣∣∣
xj ,tn

=
fj+1,n − fj,n
xj+1 − xj

=
fj+1,n − fj,n

δx
(4.2)

which is called the forward difference. The derivative can also be approximated as a

backward difference as shown below:

∂f

∂x

∣∣∣∣
xj ,tn

=
fj,n − fj−1,n

xj − xj−1

=
fj,n − fj−1,n

δx
(4.3)

In this treatment the forward difference equation for the numerical implementation has

been used.

The second derivative at the grid-point (x, t) = (xj, tn) can be approximated as:

∂2x

∂x2
= lim
4x→0

4
(
∂f
∂x

)
4x

This equation for the second derivative at the grid-point (x, t) = (xj, tn) can be approxi-
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mated using the finite difference expression:

∂2f

∂x2

∣∣∣∣
xj ,tn

=
fj+1,n − 2fj,n + fj−1,n

(4x)2
(4.4)

With the difference equations methodology developed so far for the first and second

derivatives of a general function f , it is now possible to express the PDE using difference

equations.

4.2 Implementation without Overhang Elements

The interconnect can be represented by a finite difference element model as shown in Fig-

ure 4.2. Consider the opposite sides of the interconnect as being mass-blocking. Several

Figure 4.2: Interconnect line represented by finite difference elements

variables are introduced as defined below:

j := 0, 1, . . . , J . . . ranges over space increments - Finite elements

n := 0, 1, . . . , N . . . ranges over time increments

Consider flux from cell j to cell j + 1 in the finite element representation of Fig 4.1

Jj→j+1 =
D

kT

[(
σn,j+1 − σn,j

δx

)
+
Fe
Ω

]
(4.5)

16



Now, for flux change from cell j − 1 to cell j is given by:

Jj−1→j =
D

kT

[(
σn,j − σn,j−1

δx

)
+
Fe
Ω

]
(4.6)

Volume Accumulation rate at cell j can be shown to be equal to:

δVj = δ2aΩ[Jj−1→j − Jj→j+1] (4.7)

The area rate at the cell j is:

Ȧj =
δVj
δx

(4.8)

By using the pressurized crack model referred to in chapter 2, it can be shown that:

Ȧj = −4πa2 1

M

(
σn+1,j − σn,j
4t

)
= δ2aΩ

1

δx
[Jj−1→j − Jj→j+1] (4.9)

and therefore, inserting Eq 4.5 and Eq 4.6 into Eq 4.9 and using simple algebra shown

below for Eq 4.10 thru Eq 4.13, the stress evolution expression of Eq 4.14 can be easily

derived:
−2πa

δΩM

(
σn+1,j − σn,j
4t

)
=

1

δx
[Jj−1→j − Jj→j+1] (4.10)

−2πa

δΩM

(
σn+1,j − σn,j
4t

)
=

1

δx
× D

KT

[
σn,j − σn,j−1

δx
+
Fe
Ω
− σn,j+1 − σn,j

δx
− Fe

Ω

]
(4.11)
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−2πa

8ΩM

(
σn+1,j − σn,j
4t

)
=

D

KT

[
σn,j − σn,j−1 − σn,j+1 + σn,j

(δx)2

]
(4.12)

σn+1,j − σn,j
4t

=
δΩMD

2πakT

[
σn,j+1 − 2σn,j + σn,j−1

(δx)2

]
(4.13)

σn+1,j = σn,j + β4t
(
σn,j+1 − 2σn,j + σn,j−1

(δx)2

)
(4.14)

where β = δΩMD
2πakT

This applies to an arbitrary point where j 6= 0 and j 6= J . This is an expression for the

time evolution of the line stress state for an arbitrary point not including the ends.

Using a similar analysis, it can be shown that for the element represented by j = 0 the time

evolution of line stress is be given by:

σn+1,0 = σn,0 + β4t
(
σn,1 − σn,0

(δx)2
+
Fe/Ω

δx

)
(4.15)

and for the element represented by j = J , the time evolution of the line stress is given

by:

σn+1,J = σn,J + β4t
(
σn,J − σn,J−1

(δx)2
+
Fe/Ω

δx

)
(4.16)

Equations (4.14) thru (4.16) are an explicit numerical implementation because the com-

putation of σ at time = n + 1 is completely determined by our computation of σ at
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time = n . This scheme is also called consistent because the finite difference approxi-

mations have a truncation error that approaches zero in the limit that δt→ 0 and δx→ 0 .

Although this is a consistent method, it is still not guaranteed that iterating the stress state

difference equations (4.14) thru (4.16) will give a good approximation to the true solution

of the stress equation. The numerical implementation will be fully convergent when the

solution of the stress equation approaches the exact solution.

The issue of convergence is related to the issue of stability of the numerical implemen-

tation. (the implementation will be conditionally stable if it does not magnify errors that

arise in the course of the calculations). For a linear PDE, and a consistent finite difference

approximation, stability is the necessary and sufficient condition for convergence. It can be

shown that the numerical implementations given by equations (4.14) thru (4.16) are only

convergent when the following conditional stability criterion is met[17].

D
δt

(δx)2
≤ 0.5 (4.17)

The stability criteria described above has been carefully incorporated into the numeri-

cal implementation and a balance has been worked between speed, accuracy, stability and

practicability. Details of a MathCAD implementation of the PDE using difference equa-

tions is presented in the next chapter. It uses the following initial and boundary conditions

for a pure copper interconnect with two mass blocking ends:

IC : σ0,j = 0

i.e. at time time = 0 , stress σ0,j = 0.

BC : J−1→0 = 0 and JJ→J+1 = 0
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i.e. for insulating line ends j = 0 and j = J , the flux in and flux out are zero respectively.

4.3 Implementation with Overhang Elements

This is the case of a pure copper interconnect with two mass blocking ends as part of

overhang: This can be represented schematically as shown below in Figure 4.3. In the

Figure 4.3: Interconnect line represented by finite difference elements with end overhang
elements.

schematic of Figure 4.2. the finite elements before the elements represented by j = 1 and

after j = J − 1 are overhangs and a analysis of the net flux for these elements would show

that these special elements have stress relations described by the following equations:

σn+1,j = σn,j + β4t
((

σn,j+1 − 2σn,j + σn,j−1

(δx)2

)
+
Fe/Ω

δx

)
for j = 1 (4.18)

and

σn+1,j = σn,j + β4t
((

σn,j+1 − 2σn,j + σn,j−1

(δx)2

)
− Fe/Ω

δx

)
for j = J − 1 (4.19)

IC : σ0,J = 0

i.e. at time time = 0 , stress σ0,J = 0, everywhere.
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BC : J−1→0 = 0 and JJ→J+1 = 0

i.e. for insulating line ends j = 0 and j = J , the flux in and flux out are zero respectively.

The boundary condition for the overhang case is extended to all elements which are part of

the overhang. The implementation is shown in the next chapter.

The size of the overhang can be varied by choosing the appropriate position of the special

finite difference element(s).

In the MathCAD implementation described in the next chapter, non-dimensional forms of

the difference equations have been used.
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CHAPTER 5

MATHCAD IMPLEMENTATION

5.1 Basic Assumptions

The MathCAD implementation of the PDE Equations involve some basic assumptions.

Throughout the implementation the interconnect material is assumed to be pure Copper

element with the following material properties[17][29]

Atomic V olume Ω = 1.18× 10−29 Cubic Meters

P lane Strain Modulus M = 7× 1010 Pa

Thickness of Interface δ = 1× 10−9 Meters

Resistivity ρ = 1.7× 10−8 Ohm−Meters

Effective Charge Number Z = 4

The Line geometry was assumed to have the following dimensions:

Line length L = 70 microns

Line width 2a = 0.56 microns

Line thickness h = 0.97 microns

Two limiting cases of Cu diffusivity D0i are assumed[29]
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Table 5.1: Assumed values for Cu interconnect

5.2 Implementation Without Overhang

Figure 5.1: MathCAD implementation for stress evolution equation for 3000C at a current
density of 18.75 mA per square micron.
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5.3 Implementation With Overhang

Figure 5.2: MathCAD implementation for stress evolution equation for 3000C at a current
density of 25 mA per square micron and with a overhang size of 3.5 microns for a 70
micron long interconnect.
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CHAPTER 6

RESULTS - LINE STRESS

The simulation tool developed in this work using MathCAD was later used for stress es-

timation for a published experimental electromigration dataset by Vairager et al[4]. Cal-

culations of the stresses were made at the cathode end of typical Cu lines. It has been

assumed that mass flow takes place along the line/passivation interface and leads to tension

at the cathode end of the line. The most critical unknown quantities are the thickness and

diffusivity of the interface.

6.1 Limiting Cases and Test Structure

Two basic limiting cases were studied to place some bounds on the results. For a lower

bound estimate of the stress it was assumed that the interface can be treated like a grain

boundary in Cu. For an upper bound estimate it was assumed that the interface can be

treated like a free surface of Cu. Stress was calculated at the cathode end of a 70 micron

Cu line, as shown in Figure 6.1, with the dimensions shown.

The interface thickness was assumed to be 1 nm, probably an upper bound estimate. If

surface diffusion is assumed for a Cu line tested at 3000C and at a current density of 15 mA

per square micron then the stress that develops under these conditions is about 270 MPa. If

grain boundary diffusion is assumed, the stress is only 25 MPa. These stresses are probably

too small to initiate voiding, but of course the conditions that have been used do not lead to
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Figure 6.1: Supplied EM test structure

failure.

Stress was calculated at the cathode end of a 70 micron Cu line, using the temperature of

3000C and current density of 25 mA per square micron. If surface diffusion is assumed at

3000C and at a current density of 15 mA per square micron then the stress that develops

under these conditions is about 770 MPa. If grain boundary diffusion is assumed, the stress

is only 80 MPa.

(a) Interface treated like a grain boundary in Cu

(b) interface treated like a free surface of Cu

Figure 6.2: Curves of calculated line stress evolution (at T= 573K and times of 30, 6, 3, 0.3
and 0.03 hours (no change) at a current density of 25 mA per square micron).
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6.2 Test Structure Failure Conditions

Conditions for which failure occurred in Intel supplied structures were studied. Intel pro-

vided a mean failure time of 330 hours for a Cu line tested at 3300C and at a current density

of 25 mA per square micron. The simulator showed that, assuming that surface diffusion

controls the diffusion along the interface, the stress at the end of the line saturates at 770

MPa in about 70 hours (Figure 6.3). This is a very large stress that could surely initiate

plastic deformation and eventually failure. Even if grain boundary diffusion is assumed to

characterize diffusion along the interface, a large stress of 237 MPa develops in 330 hours.

The stresses that develop under the experimental conditions of the in-situ EM experiments

are much less, consistent with the fact that failure does not occur under these conditions. It

is encouraging that these simulations not only provided a useful guide to the experiments

but have also proven useful in connecting the numerical results to the observed plasticity

and eventual failure of the interconnect line.

Figure 6.3: Curves of calculated stress evolution for the supplied test structure (at T= 603K
and times of 70, 14, 7, 0.7 and 0.07 hours (no change) at a current density of 25 mA per
square micron and the interface treated like a free surface of Cu
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Figure 6.4: Curves of calculated stress evolution in an interconnect line (at T= 573K and
times of 30, 6, 3, 0.3 and 0.03 hours (no change) at a current density of 25 mA per square
micron). The interface is treated like a free surface of Cu and the interconnect has no
overhang length. Peak stress reached is 750 MPa.

6.3 Effect of Overhang

Stress evolution curves were simulated for a line with no overhang (Figure 6.4) and also for

the case where the line was assumed to have ten finite difference elements as overhangs on

each side of the vias (Figure 6.5). This amounts to an overhang length of 3.5 microns for an

interconnect length of 70 microns. The effect of the overhang is to reduce the tensile and

compressive stresses at the ends of the interconnect. The stress reaches a peak value where

the overhang overlaps with the via element (Figure 6.5). The simulation also suggests that

it takes longer, under the same stress conditions, to reach a particular stress value. The

advantage of this becomes clear when failure occurs at a critical stress. In general, it would

take longer to reach critical failure stress conditions with some amount of overhang (reser-

voir). As explained earlier, the effect of the reservoir is to improve the electromigration

lifetime.
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Figure 6.5: Curves of calculated stress evolution in an interconnect line (at T= 573K and
times of 30, 6, 3, 0.3 and 0.03 hours (no change) at a current density of 25 mA per square
micron). The interface is treated like a free surface of Cu and the interconnect has a over-
hang length of 3.5 microns at the ends. Peak stress reached is 450 MPa.

6.4 Line Stress Conclusions

A one dimensional model for electromigration induced stress evolution has been devel-

oped. Numerical implementation was performed using the method of finite differences. A

MathCAD tool was developed to realize the numerical implementation.

Two basic limiting cases were studied to place some bounds on the results. For a lower

bound estimate of the stress it was assumed that the interface can be treated like a grain

boundary in Cu. For an upper bound estimate it was assumed that the interface can be

treated like a free surface of Cu. Measured failure times and known structure geometries

for experimental samples were used to estimate the stress build-up in the interconnect lines.
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Line stress build-up for interconnect structures with overhang elements were simulated us-

ing the developed tool. Results show that the advantage of the overhangs is to improve

the electromigration lifetime of interconnect lines by reducing the time taken to reach peak

stress. The stress is at the peak value over the vias.

The model developed needs further work by taking into account, the vacancy flows into the

crystal in the vertical direction.
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CHAPTER 7

COMPARISON OF EXPERIMENTAL AND SIMULATION DATA

Existing electromigration Time to Fail (TTF) data from studies conducted and published by

Vairagar et al[4] was used to compare existing experimental electromigration data with our

simulated stress data for similar test structures. Electromigration TTF Data was available

for experimental samples with known structure geometries and test conditions. Calculated

line stress was compared with available TTF data for the interconnect lines. TTF to line

stress correlation was investigated for various sample geometries and test conditions.

7.1 Results

Simulation runs were performed using the developed numerical scheme using MathCAD.

Stress calculations were simulated for units with known geometry, electromigration stress

conditions and TTF (Table 7.1). For the calculations it was assumed that the interface can

be treated like a free surface of Cu.

7.2 Effect of Geometry and Temperature on Line Stress

For the narrow geometry samples stressed at the same current density, the calculated line

stress at TTF is independent of electromigration temperature. Wider geometry units also

show a similar trend in line stress build up that does not vary with temperature for a par-

ticular stress current density. However, compared to the narrow units, the line stress at

TTF is much lower for the wider units for electromigration under similar conditions. One
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explanation for the lower simulated line stress build up at TTF for the wider units could be

that wider units undergo a much larger mass transport in less time when compared to the

narrow units and therefore the line stress levels need not build up to the same levels at TTF.

7.3 Effect of Geometry and Current Density on Line Stress

For a fixed geometry and temperature, higher electromigration current densities result in

lower TTF, as expected, but the calculated line stress at TTF is higher for higher electro-

migration current densities. However, compared to the narrow geometry samples, the line

stress at TTF is again lower for wider units with the same electromigration temperature

and current densities. Although we can explain the lower stress for wider lines by making

the mass transport argument again, it is not readily clear as to why the stress at TTF is

higher for higher electromigration current densities and with fixed geometry and tempera-

ture. More analysis is needed. The effect of geometry, temperature and current density on

line stress is summarized in Table 7.2.
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Table 7.1: Line stress calculations for units with known geometries, test conditions and
TTF data

Table 7.2: The effect of geometry, temperature and current density on line stress
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7.4 Experimental vs Simulation Data Conclusions

In this work we investigated the correlation of measured electromigration TTF with cal-

culated line stress. Line stress models are physically based, in contrast to the empirically

based Black’s law. If EM TTF correlates with line stress, we have a means for predicting

line TTF thru stress calculations.

In general, for particular line geometry, the calculated line stress at TTF is constant and in-

dependent of electromigration temperature and furthermore line stress levels at TTF seem

to go down for wider geometries. Line stress at TTF is higher for higher electromigration

current densities and with fixed geometry and temperature. Further investigation is needed

to understand the effect of current density on line stress. This is presented in the subsequent

chapter on current crowding.

34



CHAPTER 8

MOLECULAR DYNAMICS

Molecular Dynamics (MD) is a simulation technique[7] for complex material systems,

modelled at the atomic level. The equations of motion are solved numerically to follow

the time evolution of the system, allowing the derivation of kinetic and thermodynamic

properties of interest.

In MD simulations the time evolution of a set of interacting particles is calculated via

the solution of Newton’s equations of motion, as shown in Equation 8.1, where ri(t) =

(xi(t), yi(t), zi(t)) is the position vector of ith particle and Fi is the force acting upon ith

particle at time t and mi is the mass of the particle.

Fi = mi
∂2ri(t))

∂t2
(8.1)

The particles usually correspond to atoms and may represent any distinct entities that

can be conveniently described in terms of a certain interaction law. To integrate the above

second order differential equations the instantaneous forces acting on the particles and their

initial positions and velocities must be specified. Due to the multiple body nature of the

problem the equations of motion are solved numerically. The calculated trajectories are

defined by both position and velocity vectors and describe the time evolution of the system

in space within a finite time interval.
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8.1 Modeling of Electromigration Using Molecular Dynamics Simulations

The modeling of thermal transport in solids at non-equilibrium conditions is popular using

classical Molecular Dynamics (MD), which has the advantage of explicitly representing

phonon modes and the scatterers of phonons, such as defects and boundaries. However,

the disadvantage of MD is the missing ability for modeling free electrons and their role

in thermal transport. These electronic effects are vital in the performance of electronic

devices in general and therefore present significant challenges to model Electromigration

using Molecular Dynamics, in general[30].

As a first cut attempt to model Electromigration in MD simulations[31], an extra force was

added on each atom in a lattice and the total force FTotal calculated at each time step as a

sum of FEAM and FEM where FEAM is the force calculated by Embedded-Atom-Method

(EAM) and FEM is the force due to electron atom interactions triggered by collisions and

momentum transfer.

FTotal = FEAM + FEM (8.2)

8.2 Molecular Dynamics Implementation of EM using LAMMPS Software

LAMMPS[8] is a classical Molecular Dynamics code written in C++ programming lan-

guage that can model an ensemble of particles in a liquid, solid, or gaseous state. It can

model metallic, granular, and coarse-grained systems using a variety of force fields and

boundary conditions. LAMMPS integrates Newton’s equations of motion for collections

of atoms, molecules, or macroscopic particles that interact via short or long-range forces

with a variety of initial or boundary conditions.
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In this work, electromigration has been implemented as a two step process using LAMMPS.

Some prior work involving LAMMPS for Silver electromigration was performed by Xu

and Hook et al [32]. The first step relaxes a specified and finite block of Copper conductor

model at 1000K. LAMMPS code runs output a visualization file. Since all atoms are ini-

tially created in a perfect Face centered cubic (FCC) lattice position with a lattice constant

of 0.3597nm, the Cu system needs relaxation to reach a stable status at the simulation tem-

perature. A void was introduced in the lattice in order to create an imperfection that would

help with simulated diffusion as an otherwise perfect crystal has no such vacancies to help

with the diffusion process. No extra force FEM was added at this stage of relaxation simu-

lation for a period of 0.5ns. In the following 0.1ns, FEM was ramped from 0 to 16pN (pico

Newtons) and at a constant rate and it was maintained so until the end of the simulation.

The timestep was 1fs.

The thermal effect of the current was neglected and a thermostatic ensemble was used. In

order to prevent the system from moving freely as a whole when extra force was added,

an edge of the block system was fixed (shrink wrapped) after system relaxation. The extra

force is similar to the electron wind force FEM .

Figures 8.1 and 8.2 show the LAMMPS code used for Cu block relaxation at 1000K and

it Visualization using Visual Molecular Dynamics (VMD) software [33][34], respectively.

Figures 8.3 to 8.7 show the Visualization of LAMMPS specified finite Cu Block after

relaxation at 1000K and 0.5ns. The visualization in the figures illustrate the movement of

atoms under the influence of an electron wind force, as simulated. Some atoms are marked

and color coded for tracking purpose. The marking does not influence the force on these

atoms.
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Figure 8.1: Step 1: LAMMPS code for Cu Block relaxation at 1000K

Figure 8.2: Visualization of LAMMPS Specified finite Cu Block before relaxation
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Figure 8.3: Visualization of LAMMPS Specified finite Cu Block after relaxation at 1000K
and 0.5ns

Figure 8.4: Step 2: LAMMPS code for Cu Electromigration Simulation
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Figure 8.5: Continuation of Step 2: LAMMPS code for Cu Electromigration Simulation
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Figure 8.6: Visualization of LAMMPS Specified finite Cu Block before Electromigration
simulation. A strip of atoms were marked blue (surface) and yellow (bulk) to monitor the
movement of atoms. The marking does not influence the force on these atoms.
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Figure 8.7: Visualization of LAMMPS Specified finite Cu Block after Electromigration
simulation.
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8.3 Next Steps for Simulation Work

LAMMPS software is very advanced with many applications, however, based on the at-

tempts performed in this work, it is probably not very suitable for simulation of electron

and thermal transport. Although we could successfully superimpose a force to simulate

an electron wind force using LAMMPS, methods for further simulation work were not

achieved. We have therefore not obtained any significant results using LAMMPS for sim-

ulation of electromigration. No further simulation work using LAMMPS was completed,

however, intent was to apply one dimensional models using more suitable simulation tools

such as MATLAB by incorporating electron flow and thermal transport in electromigration.

Such simulation work was used to characterize the effect of current crowding on line stress

evolution. This is presented in a later chapter of this work.

43



CHAPTER 9

EFFECT OF MAGNETIC FIELDS ON ELECTROMIGRATION

Magnetic fields can be produced by electric currents (moving charges), which can be

macroscopic currents as in conducting metal wires or microscopic currents associated with

moving electrons in atomic orbits. Geometries that enhance current crowding can also im-

pact such magnetic fields within the conductor. Of particular interest is the high density

current flows in the interconnects of an integrated circuit and the effect such currents have

in creating their own magnetic fields and their impact on migrating lattice ions.

9.1 Link between Electric Currents and Magnetic Fields

In 1820, Hans Christian Oersted[35] discovered that a current carrying wire deflects a

nearby compass by exerting a force on its magnetic needle. Neglecting the earth’s mag-

netic field, the compass needle always aligns in a direction perpendicular to the current

carrying wire. This was the first experiment to establish a link between electricity and

magnetism which until then were treated as distinct and unrelated phenomena. Just as an

electric current (a moving charge) produces a magnetic field, a charge that is moving under

the influence of a magnetic field will experience a magnetic force on itself due to its charge

and motion.
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9.2 The Biot-Savart Law and the Lorentz Force

In order to analyze the impact of magnetic fields in the context of electromigration we start

by looking at the forces on a lattice atom due to the magnetic field induced upon them by

moving electrons elsewhere in the same conductor, followed by an analysis which looks at

what a force such as this might do to the net diffusion path of these lattice atoms undergo-

ing Electromigration, noting that a path adopted by a diffusing lattice atom leaves behind a

migrating void in some other direction.

Biot-Savart law[36] gives the magnetic field due to an infinitesimal length “dl”, the current

element, of a larger current carrying conductor. The total magnetic field at a point in space

that is at a perpendicular distance “R” from the current carrying line can then be found by

integrating over the total length of all such current elements:

dB =
µ0

4π

Id`× r̂

r2
(9.1)

The current “I” shown in the diagram is the conventional current representing flow of

positive charges and the direction of electron flow is therefore opposite to the direction of

“I” as indicated. The total magnetic field at the point is then obtained by integrating the

field due to each current element as follows.

B =
µ0

4π

∫
Id`× r̂

r2
(9.2)

It can be shown further (after evaluating the integral) that the magnetic field can be

expressed as:
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B =
µ0I

2πR
(9.3)

In order for a force to be exerted on a charge “q” (at this point) due to the magnetic

field, the charge must be in motion because the magnetic force on a stationary charge or

on a charge moving parallel to the magnetic field is always zero. Force on the point with

charge “q” and moving with a velocity “v” is given by the cross product:

F = qv ×B (9.4)

This is the Lorentz force on a moving charge due to magnetic the field. The direction

of the force can be determined using the right hand rule as illustrated in Figure 9.1. The

force is always perpendicular to the direction of motion and the direction of the magnetic

field.

Figure 9.1: Right hand rule. Given the direction of the conventional current I, the curl of
the fingers determines the direction of the magnetic field B and the palm of the right hand
determines the direction of the force on the flowing positive charge.
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9.3 Source of the Magnetic Field during Electromigration

In this work the magnetic field produced by moving electrons, an electric current, and its ef-

fect on lattice atoms, particularly the force exerted on moving lattice atoms that may be un-

dergoing a slow but steady movement in the direction of the electron flow (ie a steady state

Electromigration) is investigated. Literature survey shows very little research by groups in

academia or industry. Although there has been some prior work to be found in the study

of Magnetomechanical instabilities in materials [37] [38] there is very limited to no prior

research into the effects of magnetic fields and Lorentz forces on atomic flux during elec-

tromigration.

A note on “moving lattice atoms” as referenced here: The lattice atoms are fixed, unlike

the moving electrons, however they are never really at absolute rest state not only due to

intrinsic thermal vibrations but also because in a system that is undergoing Electromigra-

tion, the lattice atoms are known to undergo a net force that tends to move the atoms in a

general direction that is from the anode to cathode end of the interconnect.

In a conductor with electrons flowing in a positive x direction, lattice ions also migrate in

the direction of electron flow. The flowing electrons generate a magnetic field in the neg-

ative z direction and a positively charged migrating lattice ion will experience a Lorentz

force in the negative y direction. This is easy to visualize using the right hand rule. The

question that must be asked is whether or not this magnetic field results in a sufficient mag-

nitude and direction of the Lorentz force that may result in either aiding or inhibiting the

process of electromigration and/or void formation. An estimation of relative magnitudes of

the electron wind and Lorentz forces is presented in the following section.
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9.4 Estimation of the Lorentz Force

Current density in an interconnect line would produce not only electron wind forces but

also Lorentz forces on a lattice ion migrating in the direction of electron flow and under

the influence of a magnetic field. An estimation of the magnitude of the Lorentz forces

compared to the electron wind forces for a simple geometry has been calculated in this sec-

tion. Such an estimate for a simple geometry of an interconnect line would produce useful

insights.

Consider an interconnect line of width w = 2a and thickness t carrying a current I which

Figure 9.2: Interconnect line of width w = 2a and thickness t carrying a current I which
is uniformly distributed over the cross-section of the line

is uniformly distributed over the cross-section of the line as shown in the Figure 9.2.

The electron wind force acting on a positive ion is known to be:
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F x
e = −eZ∗ρj (9.5)

where eZ∗ is the effective change on the ions, ρ is the resistivity of the metal line and

J is the current density[28].

The dimensions of the terms in this relation are:

−eZ∗: C (Coulombs),

ρ: V olt m/A,

J : A/m2 and

F x
e: Newtons

For ions located a small distance δ from the edge of the line and drifting in response to the

electron wind there, a Lorentz force of:

F y
B = −qvBz (9.6)

acts on the ions, where q is the charge on the ions, v is the drift velocity (in the x di-

rection) and Bz is the magnetic field at y = δ due to the current elsewhere in the line. The

dimensions of the terms in this relation are: q: C (Coulombs), v: m/s, Bz: T (Tesla or

Newton / Am) and the force F y
B has the dimensions of Newtons.

To determine F y
B we need to calculate Bz at y = δ using the Biot-Savart law for the mag-

netic field associated with a current. The current flowing in the domain from y to y + dy,

i.e. dI , produces a magnetic field dBz at y = δ given by:
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dBz =
µ0dI

2π(y − δ)

dI = J.dy.t

where µ0 is the permeability. For free space the permeability µ0 is equal to 4π10−7 Tm/A

One can see that dBz is singular as y → δ, so we should calculate dBz from y = 2δ to

y = W .

Bz(y = δ) =

∫ W

2δ

dBz =

∫ W

2δ

µ0Jt

2π(y − δ)
dy

Bz(y = δ) =
µ0Jt

2π

∫ W

2δ

dy

(y − δ)

=
µ0Jt

2π
ln(y − δ)

(
W

δ

)

=
µ0Jt

2π
[(ln(W − δ)− ln(2δ − δ)]

Bz(y = δ) =
µ0Jt

2π
ln(

W − δ
δ

) (9.7)

Now consider the magnetic field associated with the current in the domains 0 < y < δ

and δ < y < 2δ. The magnetic fields from the currents in these two domains will cancel

exactly so the above result for Bz(y = δ) should be correct. Obviously as δ → 0 Bz →∞.
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The drift velocity of the ions, v can be expressed as:

v = MF x
e (9.8)

where M is the mobility of the ion.

Using this velocity with Equation (9.6) and using Equation (9.7) to get Bz we have:

F y
B = −qMF x

eµ0Jt

2π
ln(

W − δ
δ

) (9.9)

Now we can calculate the magnitude of F y
B, i.e.

∣∣F y
B
∣∣ and compare it with the mag-

nitude of F x
e, |F x

e|,

∣∣∣∣F y
B

F x
e

∣∣∣∣ = qM
µ0Jt

2π
ln(

W − δ
δ

) (9.10)

We see that if the ions are immobile, the mobility M = 0, as expected. Also, the

magnitude of F y
B depends on the current density and the thickness of the line.

The dimensions of
∣∣∣F yBFxe

∣∣∣ = dimensionless. To estimate the magnitude of F y
B compared

to F e
x let’s take the mobility of the ions using Einstein’s simple mobility law:

M =
D

kT
(9.11)
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and using Equation 9.8 the velocity can be easily shown to be:

v =
D

kT
F (9.12)

Using Equation 9.11 and substituting for mobility M in Equation 9.10, the ratio of the

forces can be written as:

∣∣∣∣F y
B

F x
e

∣∣∣∣ = q
D

kT

µ0Jt

2π
ln(

W − δ
δ

) (9.13)

where D is the diffusion coefficient for the ions and given by:

D = Do exp
−Q
kT

To make an estimate of the ratio we will consider bulk diffusion in Aluminum by as-

suming the following values:

D0 = 2.25× 10−4 m2

S
and Q = 1.5eV

To take an extreme case, consider T = 500◦C or T = 773◦K.

k = 8.63× 10−5 eV
K

kT = 8.63× 10−5 × 773 = 6.67× 10−2

so D = 2.25× 10−4 exp −1.5
6.67×10−2

D = 4.18× 10−14 m2

s

kT = 1.38× 10−23 × 773 = 1.066× 10−20 J
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So the mobility would be:

M = D
kT

= 4.18×10−4 (m2/s)
1.066×10−20 (J)

M = 3.92× 1016 m
Ns

The charge on a singly charged migrating ion might can be assumed to be 1.6× 10−19C

Let’s also take the current density to be:

10 mA
(µm)2

= 10 A
(m)2

J = 1010 A
m2

and the thickness of the line is assumed to be t = 0.1µm = 10−7m

and the width of the line is assumed to be W = 1µm = 10−6m

and the distance to the edge of the line is assumed to be δ = 0.1µm = 10−7m

Therefore:

∣∣∣∣F y
B

F x
e

∣∣∣∣ = (1.6× 10−19)× (3.92)× 1016× (4π× 10−7× (1010)× (10−7)× 1

2π
ln(

1− 0.1

0.1
)

∣∣∣∣F y
B

F x
e

∣∣∣∣ = 2.74× 10−6 (dimensionless) (9.14)

In this case the Lorentz force would be a million times smaller than the electron wind

force.
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9.5 Unified Model for Atomic Flux during Electromigration

The atomic flux along the top and/or bottom interfaces of a conducting line, as illustrated

in Figure 3.1, and in the presence of both a stress gradient and electron can be expressed

as[28]:

J ia =
Di

kT

[
∇σin +

Fe
Ω

]
(9.15)

For this assumption, i stands for either the top or the bottom surfaces of the line and

σin is the normal traction for diffusion along the surfaces (stress). We also assume that the

length of the conductor L >> w, where w is the conductor width. Diffusion along the x

direction dominates and the diffusion along y direction is ignored. Therefore atomic flux

Ja can be expressed as:

J ia =
Di

kT

[
∂σin
∂x

+
F e
x

Ω

]
(9.16)

We have shown that Bz, the magnetic field at y = δ is given by Bz(y = δ) =

µ0Jt
2π

ln(W−δ
δ

). Equation 9.7. This is the magnetic field at y = δ, due to current elsewhere

in the conductor. Also the force FB
y acting on a moving lattice atom under the influence of

the magnetic field Bz is given by F y
B = −qvBz. Equation 9.6.

FB
y acts in the negative y direction as illustrated in Figure 9.3.

Any given lattice atom at y = δ that is undergoing migration, has two perpendicular

forces acting upon it at any given time and that resultant force F eB
xy will be a vector sum of

the forces F e
x and FB

y : ∣∣F eB
xy

∣∣ =

√
|F e
x |

2 +
∣∣FB

y

∣∣2 (9.17)
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Figure 9.3: Vector sum of Magnetic force FB
y and electron wind force F e

x acting on a
migrating lattice atom in the conductor.

θ = arctan

∣∣∣∣F y
B

F x
e

∣∣∣∣ (9.18)

Therefore, the atomic flux due to the Lorentz force, stress gradient and the electron

wind force can be written as:

J ia =
Di

kT

[
∂σin
∂x

+
F eB
xy

Ω

]
(9.19)

55



9.6 Significance of the Unified Model

The presented model predicts that there is a component of atomic flux which is not always

in the direction of electron flow. The resultant magnitude and direction of atomic flux

depends on the relative strengths of the electron wind and Lorentz forces acting on the mi-

grating lattice ions. As estimated in the prior section, the Lorentz force FB
y is about a mil-

lion times smaller than the electron wind force F e
x , under typical conditions, and therefore

typically the ions undergo net migration in the general direction of electron flow. Efforts

are underway to determine whether there are conditions where the Lorentz force is signif-

icant, such as when local current densities[39][40] are high enough to make it comparable

to the electron wind force. Regions of high current density can be attributed to material

transitions, geometry[41] along electromigration path and defects causing constriction to

flow of carriers. Finally, the model assumes that the migrating atoms are ions and therefore

considered to be non-neutral. Any migrating neutral atoms, if present, will not experience

a Lorentz force. The model developed here ignores the possibility of neutral lattice atoms

undergoing electromigration.

9.7 Magnetic Field Variation within the Conductor

The Lorentz force acting on the migrating ions depends on the magnetic field and therefore

any variation of the magnetic field within the conductor will also determine any corre-

sponding variations of the Lorentz force on the migrating ions.

Consider a cylindrical conductor of length L and with a cross sectional diameter of 2W

as illustrated in 9.4.
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Figure 9.4: Magnetic field due to an element dl at a distance δ from the surface of a cylin-
drical conductor of diameter 2W .

Using Ampere’s Circuital Law:

∮
Bθ · dl = µ0 · Ienclosed (9.20)

Due to cylindrical symmetry, the magnetic field at every element dl, a distance δ from

the surface, due to the electron flow is the same at every other point dl that will be at a

distance δ from the surface. Therefore:

Bθ

∮
·dl = µ0 · Ienclosed

Bθ

∮
dl = Bθ · 2π · (w − δ)
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Ienclosed = I · (w − δ)2

w2

Bθ · 2π · (w − δ) = µ0I ·
(w − δ)2

w2

Bθ at a distance δ from the cylinder surface is then given by:

Bθ =
µ0I

2π
· w − δ
w2

Bθ =
µ0J

2
· (w − δ) (9.21)

As can be seen in Equation 9.21, the magnetic field is zero at the center of the cylinder

(δ → w) and is a maximum at the cylindrical conductor’s outer surface (δ → 0) Figure 9.5.

Figure 9.5: Magnetic field is zero at the center of the conductor (δ → w) and is a maximum
at the conductor’s outer surface (δ → 0).

The variation of the magnetic field from the center to the edges, Figure 9.5, has a similar
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trend for a rectangular conductor, Figure 9.2, where the magnetic field is zero at its center

and maximum at the edges. This is easy to see from Equation 9.7.

9.8 Variation of the Lorentz Force and its Significance

The variation of the magnetic field from the center of the conductor to its edges means

that the migrating ions in the center of the conductor will not experience any Lorentz force

(Equation 9.6) while ions on the outer surface of the conductor will experience the maxi-

mum Lorentz force.

The Magnetic field and therefore Lorentz force on the migrating ions increases linearly

from the center to the surface of the conductor as illustrated in Figure 9.6. In effect, there is

a radial dilatation due to Lorentz forces on the drifting ions as the Lorentz force experienced

by the atoms within the cross section is non-uniform. It is zero for lattice atoms on the

central axis and maximum for those on the surfaces.

Figure 9.6: The variation of the magnetic field within a cylindrical conductor results in a
corresponding variation in the Lorentz forces from center to the edge of the conductor.

In a conductor such as Copper, the transport is dominated by surface diffusion and the

effect of Lorentz force on surface diffusion will be more prominent at regions within the

conductor that are away from the center.
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9.9 Impact of Lorentz Force on Void Morphological Evolution during

Electromigration

Void morphological evolution under electric current has been widely studied by many

groups[27, 42, 43, 44]. This typically involves analytically solving electric field and sur-

face capillary forces around the void surface in order to theoretically predict the void’s

evolution. Wang and Yao[45] show analysis of electromigration-induced void morphologi-

cal evolution using a theory of mass diffusion. They analyzed for three typical void shapes

of circular, ellipse, and cardioid. It is the competition between the electron wind force due

to the electric field and the surface capillary forces that determine the evolution path and

shape of the void[45]. However, Wang and Yao’s treatment is incomplete as the impact

of the Lorentz forces on the void morphological evolution needs to be established. In this

section we look at the void morphological evolution for a circular void that incorporates

not only the impact of electric field induced electron wind forces and the surface capillary

forces but also the Lorentz forces on the migrating lattice ions. A qualitative analysis is

presented.

Figure 9.7 illustrates a void as described by Wang and Yao in their work. It is a two

dimensional infinite conductor plane under the influence of an electric field E∞. The void

shape and position are evolving with time driven by diffusing ions along the surface of the

void.

The diffusion process is governed by the component of the electromigration driving

force along the void surface and the surface capillary force. While the electromigration

driving force depends on the current density, the surface capillary force depends on the

curvature of the void surface. Wang and Yao have shown that based on the Nernst-Einstein

relation, the number of atoms per unit time passing along a unit length on a void surface is

given by[46]:
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Figure 9.7: Wang and Yao’s illustration of a void subjected to an electric field at infinity.
Vn is the normal velocity of the void evolution on the surface.

J =
Dδs

ΩKT

(
− Z∗eEt + Ωγ

dκ

ds

)
(9.22)

where:

D is the surface diffusivity,

δs is the thickness of the surface layer,

Ω is the atomic volume,

K is the Boltzmann constant,

T is the temperature,

Z∗ is the effective valence,

e is the electron charge magnitude,

Et is the electric field tangent to the void surface

γ is the surface energy,
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κ is the curvature of the surface at κ = dθ
ds

Z∗eEt is the electromigration driving force along the surface of the void

Ωγ dκ
ds

is the capillary force on the void surface.

Wang and Yao have also shown that the normal velocity, Vn, at any point on the void

surface is given by:

Vn = −Ω
dJ

ds
(9.23)

If F e
x is the electromigration driving force in the direction of the electron flow then the

tangential component of the electromigration driving force acting along the surface of the

void is F e
t and and given by Z∗eEt, the electron wind force along the surface of the void.

When the void is a circle of radius R, the surface capillary force Ωγ dκ
ds

disappears and

therefore Wang and Yao’s Equation 9.22 reduces to:

J =
Dδs

ΩKT

(
− Z∗eEt

)
(9.24)

Since −Z∗eEt, the electromigration driving force acting along the surface of the void,

is F e
t , the equation can be re-written as follows:

J =
Dδs

ΩKT

(
F e
t

)
(9.25)

This representation is however incomplete as it does not include the effect of Lorentz

forces acting on the migrating ions along the surface of the void. We have previously
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derived in Equation 9.17 that for any given lattice ion within the bulk of the conductor

undergoing migration, there are two perpendicular forces acting upon it at any given time

and that the resultant force F eB
xy will be a vector sum of those two forces acting in the X-Y

plane. For the ions migrating along the surface of the void, these component forces are

F e
t , the electromigration driving force acting tangentially and FB

p , the Lorentz force, acting

perpendicular to the void surface and also perpendicular to the tangential electromigration

driving force of F e
t . The magnitude of this resultant force is given by:

∣∣F eB
xy

∣∣ =

√
|F e
t |

2 +
∣∣FB

p

∣∣2

The angle θ, as illustrated in Figure 9.8, is given by:

θ = arctan

∣∣∣∣∣FB
p

F e
t

∣∣∣∣∣

A modified and a more accurate representation is needed for the flux of the migrating

ions along the surface of the void, J , and for the normal velocity on the void surface Vn.

Further work is needed for this analysis.

The electromigration driving force on the atoms along the surface of the void, F e
t , al-

ways acts in a tangential direction. The Lorentz force FB
p is acting in the radial direction

and perpendicular to the electromigration driving force F e
t but not always pointed towards

the center of the void. Vacancies would therefore be created at the lower void surface and

absorbed at the upper void surface. This results in the void to drift upward. As there is

no electromigration drift on the side surfaces of the void, i.e. at points ”A” and ”B” in the

Figure 9.8, the Lorentz and the electron wind forces are zero at these points. However, it

is to be noted that the normal velocities on the void, represented by Vn are non-zero and
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Figure 9.8: Electron wind and Lorentz forces acting on the migrating ions along the surface
of a void in a conducting metal matrix. The magnetic field Bz is directed into the plane of
the paper. No forces act on ions at points A and B. Void may move slightly downward as it
is swept along to the left.

largest at points A and B because of mass accumulation or depletion at those points driven

by diffusion rather than any ionic currents that may be present at those same points.

The significance of this qualitative analysis is determined by the strength of the Lorentz

force relative to the electron wind force. We have shown that under typical electromigra-

tion conditions, the Lorentz force is a million times smaller than the electron wind force.

Conditions that make the Lorentz force significant will result in void morphology evolu-

tion that may not move the void straight to the left, as suggested by Wang and Yao. The

void may move slightly downward as it is swept along to the left. Such conditions were

mentioned in Section 9.6 and some experiments to study the impact of Lorentz forces on

void evolution are presented in Chapter 11.
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Additional work is needed in the current analysis including further derivation of modi-

fied expressions for Flux J and normal velocity Vn for a more complete analysis using the

component forces. This will be looked at as future work and ongoing research.

9.10 Other Considerations and Future Work

Until now we have discussed the impact of Lorentz force on lattice ions. As described

elsewhere in detail, the moving electrons create a magnetic field that results in the Lorentz

force acting on the migrating lattice ions. We now consider two other phenomena which

can have additional impact and significance. These are mentioned briefly and qualitatively

in the following sub-sections however details and quantitative treatment is beyond the scope

of this dissertation and will be considered for future and ongoing research work in this field.

9.10.1 Elastic squeezing of the lattice due to Lorentz force on electrons

The electron flow that creates a magnetic field will also result in Lorentz forces on the mov-

ing electrons. Such a force on the electrons themselves has been reported to cause a ”Pinch

Effect” leading to plastic deformation of metals[47]. It is possible that such ”Pinching” can

result in an ”Elastic Squeezing” of the lattice ion. Unlike the Lorentz force on migrating

ions that has been shown to act in the negative Y direction, the force due to pinching elec-

trons would in effect squeeze or compress the lattice and for a cylindrical conductor such a

pressure on the lattice would be directed radially towards the central axis of the conductor.

Some preliminary analysis shows that the effect of electronic squeezing on the lattice may

be insignificant, however, further research in this area is ongoing.

9.10.2 A new concept of ”Dielectric Drag”

It remains to be seen if dielectric behavior could contribute to atomic flux during electromi-

gration. Hubbard[48] suggested that the Coulomb interaction of the electrons in solids can
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be understood by treating the solid as a homogeneous dielectric. The dielectric behavior

can be interpreted on the atomic scale as immobility of electrons because they are held too

tightly by the ions (leading to charge separation). Most materials, including conductors,

are known to exhibit some degree of dielectric behavior. If electrons are flowing, but at the

same time the ions are trying to prevent them from moving due to Coulomb forces, then

perhaps the electrons have a tendency to drag the ions along with them. This is not the

Lorentz force and is also in a direction different to the Lorentz force on the lattice ions, but

perhaps it contributes to the atomic flux. We like to call this phenomenon as ”Dielectric

drag”. Further research in this area is ongoing.
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CHAPTER 10

CURRENT CROWDING AND SIMULATION

10.1 Literature Review on Current Crowding and Effect of Geometry

Current crowding[49] occurs whenever a current changes direction, for example, when

passing through sharp corners or a via. It has been proposed[39] that in current crowding,

the current-density gradient can exert a driving force strong enough to cause excess vacan-

cies (point defects) to migrate from high to low current-density regions. This leads to void

formation.

Current crowding affects electromigration adversely. It has been postulated by Tu and

Yeh et al[39] that point defects such as vacancies and solute atoms have a lower probabil-

ity of occurring in high current-density regions than in low current-density regions. The

potential gradient in current crowding provides a driving force to displace these defects

from high to low current-density regions. As a consequence, the voids tend to form in

low current-density regions rather than in high current-density regions, which is contrary

to intuition.

The concept of a driving force for vacancy diffusion due to a gradient in current density

accounts for observations that voids often form in regions where no current is flowing. In

this model[39], a chemical potential, P, is defined for a vacancy in a conductor carrying a

current density, j , as:

P = qv|j|A∆ρv (10.1)
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where qv is the charge, A is the scattering cross section, and ∆ρv is the specific resistivity

of the vacancy, respectively. It is argued that vacancies have a charge equivalent to the elec-

tromigration “effective charge,” z∗, and that they would move down a chemical potential

gradient defined by the current crowding. The site where the current is the highest would

have the greatest potential and the lowest current density, the least potential. Chemical

potential gradients as high as 10 eV/cm were calculated[39].

10.2 Line Geometry and Electromigration Stress Simulations using

MATLAB

Electromigration driven flux of lattice ions results in the evolution of mechanical stresses

in the interconnects. Korhonen and Borgesen et al[50],[51] have derived solutions for the

differential equation governing the evolution of back stresses during electromigration.

As described in earlier chapters, we derived a one-dimensional model for line stress during

electromigration and implemented it as a numerical solution in chapters 3 and 4, respec-

tively. We further used the MathCAD simulator tool to study geometry, temperature and

current density effects on line stress and compared it with actual experimental data from

other groups, as described in chapter 7. In the following sections we describe the line

stress evolution adopted and modeled by other groups and attempt to simulate their one

dimensional models for calculating evolved line stress using MATLAB. This is expected to

provide useful insights on how abrupt changes in geometry may result in line stress varia-

tions as a function of stress time and position along the line geometry and therefore due to

local current crowding.

10.2.1 Line Stress Equation of Korhonen

In the following section we present line stress evolution simulations for two different line

geometries using the stress evolution equations for a one-dimensional metal line by Korho-

nen and Borgesen et al[51].
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The widely used Korhonen’s equation[50],[52] is given as follows:

∂σ

∂t
=

∂

∂x

[
k

(
∂σ

∂x
+
eZρj

Ω

)]
(10.2)

Where:

κ = DBΩ/kBT

D = D0 exp(−Ea/kBT ) is the atomic diffusivity,

B is the bulk modulus,

Ω is the atomic volume,

Ea is the activation energy,

kB is Boltzmann’s constant, and

eZ is the effective charges on the migrating lattice ions.

The temperature and current density are uniformly distributed along the length of the

conductor.

10.2.2 Korhonen’s Line Stress Equation as a Cosine Series

Huang et al[52] have shown that for a finite conductor of length l with blocked boundaries,

Korhonen’s equation has a solution for an initial-boundary value problem that can be shown

to be an infinite Cosine series:

σ = σT +
ezρjl

Ω

(
1

2
− x

l
− 4

∞∑
n=0

cos( (2n+1)πx
l

(2n+ 1)2π2
e−κ

(2n+1)2π2

t2

)
(10.3)

where, l is the length of the conductor, j is the current density, σT is the evolved me-

chanical stress at temperature T .
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10.2.3 Test Structure Geometry for MATLAB Simulation

A simple test geometry was realized in order to study the effect of an abrupt change in

current density on the stress evolution along the conducting line with the help of computer

simulations using MATLAB.

The line stress buildup simulations were run on a conductor of uniform cross-section

for a control data-set and the simulations repeated on another conductor geometry of equal

length and material properties, except that the cross-sectional area in the middle of the

conductor was abruptly reduced for about 60µ compared to elsewhere in the conductor

with a total length of L = 100µ. The line basic assumptions and geometry are described in

Table 10.1 and as illustrated in Figure 10.1.

Table 10.1: Material properties and line geometry assumptions for Matlab simulations

10.2.4 MATLAB Code for Simulation

The MATLAB simulation presented here is limited to calculation of line stress evolution

without consideration given to magnetic fields and Lorentz forces. Lorentz forces from

such fields are not part of the simulation. The simulation is to show the effect of abrupt

change in current density only on line stress evolution. We have modeled the effect of
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Figure 10.1: (a) Geometry of control unit with uniform cross-sectional area, (b) Geometry
of simulation unit. Both (a) and (b) have similar thickness t, length L and average current
density j = I/(w × t) except along a length of 60µ, as illustrated, where the width w is
halved in simulation unit, resulting in twice the local current density.

magnetic fields on atomic flux in this dissertation. The simulation of magnetic fields and

resulting Lorentz forces for line stress evolution is out of scope for this dissertation but

efforts will be underway as future and ongoing research.

Korhonen’s line stress equation represented as a Cosine series (Equation 10.3) is a one

dimensional equation for line stress evolution. We have coded this in MATLAB to conduct

simulation studies for one specific geometry. This section lists the MATLAB code for the

control unit in its entirety.

1 % BEGIN MATLAB CODE
2 %
3 %
4 %
5 % Author: Rao Morusupalli
6 % Date: June, 2021
7 % Purpose: Conducting Line Stess build-up calculations
8 % Inputs: Current Density, Temperature, line dimensions, Material

properties etc
9 % Outputs: Stress along lenghth of conducting line

10

11 clc
12 clear
13 clf (figure(1))
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14

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
16

17 % Line Geometry Assumptions
18 L = 100e-6; % meters (100 microns), Line length = L
19 a = 0.35e-6; % meters, 2a = 0.56 microns, line width = 2a
20 delta = 1e-9; % meters, Thickness of interface
21 h = 0.97e-6; % meters, h = 0.97 microns, line thickness = h
22

23 % Basic Constants
24 q = 1.6e-19; %(C) Electronic Charge
25 kB = 1.38e-23; %(mˆ2.kg.sˆ2.Kˆ-1) Boltzmann Constant
26

27 % Material properties of Copper - original in Dissertation using MathCAD
28 resistivity_Cu = 1.7e-8;% ohm-meters, Resistivity
29 %M = 7e10; %(Pa)% % pascals, Plane Strain Modulus
30 % Other Material properties of Copper
31 B = 1.99e7; %(Pa)% % Pascals, Bulk Moduloius Modulus
32 % NOTE M = Plane Strain Elastic Modulous is B*[(2*pi*a)/delta]
33 % NOTE B = M*(delta)/(2*pi*a)
34 % M assumed for MATHCAD simulations was 7e10 therefore B assumed here is
35 % 1.99e7
36 Z = 4; % effective charge number of atoms
37 D0 = 15e-6; % Cu Diffusivity (Surface=15e-6, GB=5e-6, mˆ2

per sec
38 Ea = 0.89*q; % 86.65 Kilo Joules per mole = 86.65/96.487 =

0.89eV, 1 ev = 96.487 kJ/mol
39 Omega = 1.18e-29 ; % cubic meters, Atomic volume
40

41 % Note on D0 and Ea conversions
42 % Activation Energies in ev and KJ per mole
43 % Cu GB Diffusion
44 %(D0 = 5e-6 mˆ2 per sec), Ea = 104 KJ per mole = 1.078eV
45 % Cu Surface Diffusion
46 %(D0 = 15e-6 mˆ2 per sec), Ea = 86.65 KJ per mole = 0.89ev
47

48

49

50 rstress=0; %(Pa) residual stress
51

52 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
53 % Simulation parameters:
54 % T = Temperature in degrees K%
55 % curden: Current density
56 % jlocmax: Maximum line lenght
57 % jlocstep: step distance along line

%
58 % loc: Coordinate along the wire
59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
60 T = 573; %(K)
61 curden = 10e9; %(A.mˆ-2)
62

63 jlocmax = 100e-6; % cathode end
64 jlocstep = 0.02e-4;
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65 jloc = 0:jlocstep:jlocmax;
66

67 deltaupon2pia = (delta/(2*a*pi));
68 Fe = q*Z*resistivity_Cu*curden; %Electron Wind Force in NEWTONS
69 G = (deltaupon2pia)*(Fe)/Omega; %Outside multipler in Cosine Series
70 %G = q*Z*resistivity_Cu*curden/Omega; %Outside multipler in Cosine

Series
71 kappa = D0*exp(-Ea/kB/T)*B*Omega/kB/T; %Factor inside Cos series

summation
72

73 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
74 % calculate stress (EM stress + residual_stress) along the line length
75 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
76 M = size(jloc,2);
77 stress = zeros(M,1);
78 N = 100;
79 eta = (1:2:2*N-1)’*pi/L;
80

81 %set various simulation run times, t, here (seconds)
82 t1 = 1*3600;
83 t2 = 25*3600;
84 t3 = 50*3600;
85 t4 = 100*3600; % 30 hours
86

87 for j = 1:M
88 phi = (cos(eta*jloc(j)))./(eta.ˆ2*Lˆ2.*exp(eta.ˆ2.*kappa*t1));
89 stress1(j) = G*L*(0.5-jloc(j)/L-4*sum(phi))+rstress;
90

91 phi = (cos(eta*jloc(j)))./(eta.ˆ2*Lˆ2.*exp(eta.ˆ2.*kappa*t2));
92 stress2(j) = G*L*(0.5-jloc(j)/L-4*sum(phi))+rstress;
93

94 phi = (cos(eta*jloc(j)))./(eta.ˆ2*Lˆ2.*exp(eta.ˆ2.*kappa*t3));
95 stress3(j) = G*L*(0.5-jloc(j)/L-4*sum(phi))+rstress;
96

97 phi = (cos(eta*jloc(j)))./(eta.ˆ2*Lˆ2.*exp(eta.ˆ2.*kappa*t4));
98 stress4(j) = G*L*(0.5-jloc(j)/L-4*sum(phi))+rstress;
99 end

100

101 figure(1)
102 hold on
103 plot(jloc,stress1,’-xr’,’linewidth’,1.5)
104 plot(jloc,stress2,’-xb’,’linewidth’,1.5)
105 plot(jloc,stress3,’-xg’,’linewidth’,1.5)
106 plot(jloc,stress4,’-xm’,’linewidth’,1.5)
107 xlabel(’distance along line (m)’,’fontsize’,16)
108 ylabel(’stress(Pa)’,’fontsize’,16)
109 set(gca,’fontsize’,12)
110 title(’Stress evolution under constant current load’)
111 subtitle(’Uniform Conductor’)
112 ax = gca;
113 ax.TitleFontSizeMultiplier = 1.5;
114 ax.Color = ’white’;
115 set(gca,’YLim’,[-3e5, 3e5]);
116 set(gca,’XLim’,[0, 100e-6]);
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117 legend(’t=1 hour’,’t=25 hours’,’t=50 hours’, ’t=100 hours’)
118 grid on
119 grid minor
120 %
121 %
122 %
123 % END MATLAB CODE

10.2.5 Simulation Results and Discussion

Figure 10.2: Stress evolution in a ”Uniform cross-section” conductor under constant cur-
rent load. Simulation time ”t” shown in hours. Stress saturates at t=100 hours.

In prior simulation work using MathCAD and as described in previous sections, two

limiting cases were studied. In the current simulation work using MATLAB, only one

basic limiting case is presented. It was assumed that the interface can be treated like a

free surface of Cu. Such an assumption is in line with real world diffusion paths observed

during electromigration in Cu. Stress was calculated and plotted along regular intervals

for a 100µ Cu line. The interface thickness was assumed to be 1 nm, probably an upper

bound estimate. If surface diffusion is assumed for a Cu line simulated at 3730K and with
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Figure 10.3: Stress evolution in a ”Constricted cross-section” conductor under constant
current load. Simulation time ”t” shown in hours.

a current density of 10mA per square micron then the stress that develops under these con-

ditions at a point on the line just before L = 20µ from the anode is about 100 KPa, at time

t = 100hours. This is the point along the line where the cross-section is abruptly reduced

by a factor of 0.5. The stress immediately after L = 20µ is about 200KPa. This increase of

stress in the constricted geometry is seen all along the constriction length when compared

to the control geometry as illustrated in the simulation plots shown in Figure 10.2 and Fig-

ure 10.3. These stresses are probably too small to initiate voiding, but the conditions that

have been assumed do not lead to failure.

The abrupt increase in evolved stress along the line is also higher for longer duration of the

stress times. Additionally, the stress seems to increase in the constricted part of the con-

ducting line even when the evolved stress was otherwise saturated. These are highlighted

in the simulation plots shown in Figure 10.4.
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Figure 10.4: Stress evolution in a ”Constricted cross-section” conductor follows the abrupt
change in cross-sectional area. More pronounced for longer stress durations.

In conclusion, the simulation results presented here show that abrupt changes in geometry

not only cause the expected changes in current density but also abrupt changes in stress

evolution that results due to electromigration. Further research is needed to combine the

presented effects of geometry and stress with magnetic fields and Lorentz forces and this

work is noted for future and ongoing research work.

76



CHAPTER 11

SUGGESTED EXPERIMENTS

In this chapter some experimental suggestions are presented to study the effect of Lorentz

force on defects and voids during the process of electromigration. The approach and propo-

sitions are high level recommendations. The actual conduction of the experiments or the

sample fabrication is out of scope of this dissertation. As the model of atomic flux devel-

oped in this work is new and there are no prior data points available in literature for study

of the direct impact of Lorentz forces on atomic flux during electromigration, the actual

experimental methods that may be designed and implemented are expected to have much

flexibility and variations.

11.1 Experiment to Study the Effect of Lorentz Force on Void Growth

The variation of the magnetic field and Lorentz force and its effect and significance have

been discussed qualitatively in the previous Chapter. We now present the specifics of some

suggested experiments to study the effect of Lorentz force on void growth.

11.1.1 In-situ Observations of voids in general

Some prior work in the observation of void growth and motion not related to Lorentz forces

is presented here as motivation for a similar study and visualization of the effect of Lorentz

forces on voids for electromigrating metal lines.

Meyer, Hermann, Langer and Zschec[53] have designed and demonstrated a study of void
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growth during electromigration using in-situ experimentation on fully passivated cross-

sections of copper interconnects. This setup enables demonstration of the effect of flux

divergence and grain boundaries by presenting an SEM (Scanning Electron Microscopy) /

FIB (Focussed Ion Beam) visualization of actual growth and motion of the voids. Choi and

Thompson et al[54] have conducted similar experiments using in-situ SEM and performed

observations on copper interconnects to study and demonstrate void formation and growth

including studies to correlate void formation to line widths.

11.1.2 In-situ Observations for effect of Lorentz force

In order to study and visualize the effect of magnetic field induced Lorentz force, an in-

situ setup similar to as described in Section 11.1.1 can be used with special emphasis on

location of the voids. This is because the novel model presented in section 9.5 predicts that

the effect of Lorentz force on defects and voids is minimal at the center and the central axis

of the conductor and becomes maximum at its outer surfaces.

11.1.3 Suggested methods for Fabrication of voids for experimental samples

Since the formation of defects and voids in an interconnect depends on materials and impu-

rities, fabrication technology, line widths and test structure geometry, it can be challenging

to fabricate voids of predetermined size and location within an experimental interconnect

sample. As described in the previous section, for a controlled experiment, time zero voids

at both the center and the outer surfaces of the interconnect need be fabricated to study the

variation of the effect of Lorentz force within an interconnect described in previous sec-

tions.

If placement of defects and voids with a predetermined size and location within a sam-

ple is not practicable, one can study the variation of void growth and their migration by

comparing a significant number of random and intrinsic voids that are naturally formed
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due to any fabrication process. It should be possible to conduct in-situ observations on

these fabricated defects and voids by grouping their behavior and variation from center to

the edge of the conducting line.

Significant research results by other groups on the reduction of voiding in metal lines

with the aim of reducing stress voiding and improving electromigration lifetime is avail-

able in the literature[55]. In copper interconnect lines the interface between the cap layer

and the metal is a region of fast diffusion path. A sub-optimized cap layer can therefore

induce defects at the surface of a metal line. Similarly, looking at techniques that reduce

the defects and voids within the bulk of an interconnect line can provide practical insights

to point defects and voids within the bulk region for the sake of creating experimental sam-

ples with known defect size, density and location within the conductor. Daniel et al [56]

have demonstrated the effect of copper seed aging on void formation in single crystal cop-

per. Wetting of copper is compromised during copper electroplating due to oxide formation

caused by copper seed aging. Controlling the aging of seed copper can therefore control

void size, density and location.

Actual fabrication of samples is beyond the scope of this dissertation.

11.2 Experiment to Study the Effect of Current Crowding on Lorentz Force

As stated in section 10.1, it has been proposed[39] that during current crowding, the

current-density gradient can exert a driving force strong enough to cause excess vacan-

cies (point defects) to migrate from high to low current-density regions. This leads to void

formation.

Park et al[57] have simulated and tested structures with different levels of current

crowding and tested its impact on electromigration lifetime.

Localized magnetic field strength may be much higher due to higher local current den-
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sity. The Lorentz for F y
B depends on the magnetic field (equations 9.6 and 9.9) and there-

fore the current density j for a fixed line thickness t. Although the effect of current crowd-

ing on void formation and its dynamics has been studied[57], the effect of current crowding

on Lorentz force experienced by migrating lattice ions is less investigated.

11.2.1 Suggested test structure geometries for effect of current crowding on
Lorentz Force

Here we suggest experiments and test structures to compare the effect of Lorentz force

on void growth with current crowding as a factor. The in-situ void growth observations

suggested in the previous sections can be performed on specific test structures described

in this section that increase local current crowding while maintaining a uniform average

current density.

We expect either enhanced or reduced void growth and migration in areas of excess lo-

cal current crowding. The effect of Lorentz force on void growth and migration is expected

to be most pronounced in the outer regions of the conductor and minimal in the central axis

regions. Additionally, similar to line-via interfaces in real life interconnects, right angle

bends in the suggested test structures can help understand the effect of magnetic fields at

such transition locations..

With this in mind, the suggested test samples have current crowding that is targeted in

the outer regions of the conductor (figure 11.1), while maintaining a near uniform conductor

current density and overall length that is similar between the test and control structures.
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Figure 11.1: (a) Top and side view of current crowding test structure, (b) Top and side
view of control structure. Both (a) and (b) have same width w, thickness t, length 7w and
average current density j = I/(w× t). Note: The structures are proposed to be continuous
metal lines. The square pieces in the illustration are for reference only.

11.3 Experiment to Verify the Impact of Lorentz Force using an Externally
Applied Magnetic Field

In chapter 9.4 it was shown that the Lorentz force is about a million times smaller than

the Electron wind force acting on the migrating lattice ions. For the simple geometry of

an interconnect as illustrated in Fig 9.2 and with the same assumptions that were made to

estimate the Lorentz force, it can be shown that at a distance δ = 1nm from the conductor’s

edge, the magnetic field due to electron flow elsewhere in the conductor is approximately

1.38× 10−3 Tesla.

One can produce magnetic fields as high as 20 or 30 Tesla in a laboratory facility. If a

magnetic field of 13.8 Tesla, which is four orders of magnitude larger than the intrinsically

generated magnetic field of 1.38 × 10−3 Tesla, can be applied, then the Lorentz force as

calculated in section 9.4 will be as large as one percent of the electromigration driving

force. This might have an observable effect to study the impact of the externally produced
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Lorentz force. It would serve as a proof of concept that the Lorentz force does have an

impact on elecgtromigration flux and void formations.

If one could subject an aluminum or copper conductor to such a strength of an externally

applied magnetic field, then there might be a force large enough to sweep ions from one side

of the line to the other, creating tensile stresses on one interface and compressive stresses

on the other. The tensile stresses might lead to voids at the edge of the line subjected to

tension.

Conducting such an experiment, with a very large and externally applied magnetic field,

will ratify the theory of the impact of Lorentz force of any magnitude including the Lorentz

force generated by intrinsic magnetic fields due to flow of electrons during electromigra-

tion. Additionally, such a high magnetic field experiment could help to prove that the mass

migration caused by electromigration involves the flow of ions and not neutral atoms, which

would not be subjected to Lorentz forces.
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CHAPTER 12

CONCLUSIONS

A one dimensional model was developed for simulation of electromigration-induced stress

in VLSI interconnect structures using a model of electromigration induced stress. The

effects of line geometries and overhangs, material properties and electromigration stress

conditions have been included in the simulation using the MATCHCAD tool. The tool has

been used to simulate electromigration-induced stress in pure Cu interconnects, but it can

be applied for any pure interconnect material. The tool was also used for comparing avail-

able experimental data with generated simulated data for stress evolution in a line.

A new model for atomic flux during electromigration that includes the effect of magnetic

fields on migrating ions, due to electron flow elsewhere in a conductor, has been derived. It

includes Lorentz force acting on the migrating ions. This force was not previously included

as a factor in widely used models of atomic flux during electromigration.

Under typical conditions the Lorentz force is a million times smaller than the electron wind

force. It remains to be determined if conditions exist where the Lorentz force can be a

significant factor impacting electromigration damage and lifetime. The impact of Lorentz

force on void morphological evolution during electromigration was qualitatively analyzed.

Initial analysis shows that significant amount of Lorentz force can result in void evolution

that is not necessarily towards the cathode. Further research is needed in this field.
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Some simulation work is presented using tools such as MATLAB in order to investigate

how current density variations along the cross-section and geometry of a conductor result

in stress variations that may result in enhancing the significance of the investigated Lorentz

forces for atomic flux. Further research is needed in this area as well. Further work is also

necessary to understand newly proposed phenomena such as ”Lattice squeezing” due to

magnetic fields on flowing electrons and a newly proposed concept of ”Dielectric drag”.

Some preliminary analysis shows that the effect of electronic squeezing on the lattice may

be insignificant. These will be looked at as future work and ongoing research.

Experimental methods and sample fabrication techniques for void formation and their lo-

cation control are suggested to study the effect of Lorentz force on defects and voids during

the process of electromigration. The actual fabrication and testing is out of scope for this

dissertation but will be looked as future work for ongoing research.

Finally, electromigration continues to be a major reliability concern in the semiconductor

chip industry. With current silicon technology nodes reaching under 5nm critical dimen-

sions, the issues associated with reliability of today’s interconnects in microelectronic de-

vices is even more critical to product lifetime. It is important to understand the root cause

of intrinsic and extrinsic defects and voids in a metal line. Many are unanswered today. A

deeper understanding of void formation and dynamics and the role played by intrinsically

generated Lorentz forces during electromigration can throw new light in understanding the

issues and optimizing interconnect design for improved product lifetime and reliability.
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