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A PROCESS FRAMEWORK FOR IDENTITY AND ACCESS MANAGEMENT 
BASED ON INTERNET OF THINGS ARCHITECTURE 

 
VAHID MOGHADDASI 

COMPUTER ENGINEERING 

ABSTRACT 

 The swift progression of the Internet of Things (IoT) architecture has revolution-

ized various industrial processes, including enterprise Identity and Access Management 

(IAM). This dissertation develops a dynamic process framework for Identity and Access 

Management based on the Internet of Things architecture. System analysis with Digital 

Twin simulation explores the integration of IoT devices to enhance IAM in enterprises. 

Digital Twin is a virtual service that enabled us the creation of a comprehensive digital 

IAM environment to explore alternative designs.  

 This dissertation begins by providing an overview of IoT architecture and its impact 

on enterprise IAM. It discusses the challenges enterprises face in managing identities and 

access in an increasingly connected world. The dissertation then introduces Digital Twin 

and its role in IoT, explaining how it can create a virtual representation of IAM processes 

and their lifecycle. 

 The focus of this dissertation is on creating a process framework for IAM-based 

IoT architecture and Digital Twin simulation. This dissertation presents a detailed analy-

sis of how Digital Twin can simulate IAM scenarios, test IAM policies, and predict the 
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impact of IAM changes in a controlled environment. This can lead to improved security, 

efficiency, and compliance.  
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CHAPTER 1 

INTRODUCTION 

In this dissertation, we present a dynamic framework for Identity and Access 

Management (IAM) [1] based on the Internet of Things architecture analysis with simula-

tion [2]. The goal of our approach is to its responsiveness and continuous use of feedback 

coming from process monitoring sensors and systems. Simulation is facilitated with digi-

tal twin technology [3]. Figure 1 depicts our Dynamic IAM Process framework (DYN-

IAMP), which will be explained as we advance in this dissertation.  

 
 
 

Figure 1. A Dynamic Identity and Access Management Process (DYN-IAMP) framework. 

 We selected one subsystem to create a pilot process of a large and complex IAM 

process. The dissertation focuses on the use of Azure Digital Twins simulation for IAM. It 
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provides a thorough overview of how digital twin can test IAM rules, simulate IAM sce-

narios, and forecast the effects of IAM changes in a safe setting. Improved security, effec-

tiveness, and compliance in IAM can result from this [2]. 

Overview and Dissertation Content 
 

In this dissertation, Chapter 2 presents Identity and Access Management as a Pro-

cess. IAM sub-processes are explored, and the “Report Access Model” sub-process is 

elaborated. In addition “Report Workflow” sub-process is explained. Digital Twin tech-

nology and Digital Twin representation in Azure were also explored. This chapter further 

addresses the design and implementation of the IAM process. It includes control objec-

tives in the IAM process and Digital Twin in the design process. Azure implementation is 

also discussed.  

 Enterprise System Engineering (ESE) is a critical discipline that focuses on the ho-

listic design and management of complex systems within an enterprise. Achieving quality 

with process modeling is a key aspect of ESE, as it allows for the visualization and analysis 

of business processes, thereby identifying potential areas for improvement. Quality defini-

tion plays a pivotal role in process improvement, as it provides a benchmark against which 

the effectiveness of processes can be measured. Process improvement activities and mod-

eling are integral to ESE, as they facilitate the systematic identification, analysis, and im-

provement of existing processes. These activities are often driven by the need to enhance 

efficiency, reduce waste, and improve overall performance. 

The components of enterprise design and lifecycle are also crucial in ESE. These 

components, which may include system architecture, technology infrastructure, and oper-

ational processes, must be carefully designed and managed throughout their lifecycle to 
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ensure they Persist in addressing the changing requirements of the business sector. The 

need for enterprise engineering is underscored by the increasing complexity of business 

environments and the growing interdependence of business processes. A well-designed 

enterprise system can enhance operational efficiency, improve adaptability, and provide a 

competitive advantage in the marketplace. 

Lastly, a process-centered engineering quality model is essential in ESE. This 

model focuses on the quality of processes. This way, enterprises can achieve better out-

comes, enhance customer satisfaction, and drive business success. 

Chapter 4 is on System Design as a Structured Process. This chapter encompasses 

various methodologies and strategies, each with unique structural attributes. A general sys-

tem perspective is essential, especially in the Internet of Things sensor architecture, where 

the interplay of various components is crucial. Design strategies can range from top-down 

and bottom-up approaches, which focus on the system as a whole or individual component, 

respectively, to more hybrid methods like the outside-in/inside-out and the most-critical-

components-first procedures. Constraint-driven design and control-driven approaches fur-

ther add to the diversity of design alternatives. 

The starting point and scope, and scale of design methodologies can significantly 

influence the design process. For instance, the edge-in design methodology begins with 

the system's boundaries. Requirements analysis is a critical step in all design philoso-

phies, helping to identify quantifiable constraints that guide the design process. In the 

end, these varied design philosophies strive to develop a logical design that satisfies both 

the system's requirements and constraints, thereby guaranteeing its functionality and effi-

ciency. 
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Chapter 5 is the case study, Incorporating Digital Twin Technology Into The 

Framework. This chapter addresses current IAM issues by creating a virtual representa-

tion of IAM processes. Implementing this involves creating an Azure Digital Twins in-

stance and generating the necessary resources. Digital Twin models are then created, 

which can be explored using the Azure Digital Twins Explorer [28]. Data can be im-

ported from spreadsheets or JavaScript Object Notation files, establishing relationships 

between IoT Digital Twin models. An IoT Hub is created, and devices are added to the 

Azure Internet of Things Hub. An Azure Function App is then developed, which includes 

building a function to ingest the telemetry data. An event subscription for the Function 

App is created, and a simulator is used to send telemetry data to the IoT Hub. This inte-

gration of Digital Twin technology can significantly enhance the efficiency and security 

of IAM processes. At the end of the chapter, we test the End To End operation. 

Chapter 6 is on Summary, Conclusions, and Future work. IAM is a crucial yet of-

ten overlooked aspect of enterprise security. Unauthorized access and manipulation of 

private data pose significant challenges. Both government regulations and enterprise poli-

cies aim to prevent such unauthorized activities. This dissertation proposes treating IAM 

as a formal process for provisioning access to digital assets and resources. The complex-

ity of IAM arises from the rapidly changing business environment, necessitating constant 

monitoring and updating of asset entitlements. 

The dissertation presents a dynamic IAM framework based on Internet of Things 

architecture analysis using digital twin technology. The proposed approach's goal is its 

responsiveness and continuous use of data feedback from process monitoring sensors and 

systems. The author's experience with an adaptive business improvement methodology 
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helped the implementation process. Future potential developments in utilizing artificial 

intelligence and machine learning are discussed. 

Summary 

This dissertation introduces a dynamic framework for Identity and Access Man-

agement (IAM) based on the analysis of Internet of Things (IoT) architecture using simu-

lation. The framework aims to be responsive and continuously utilize feedback from pro-

cess monitoring sensors and systems. The simulation aspect is enabled through the use of 

digital twin technology.  

In this dissertation, we identified and addressed two open research questions. 

These questions are, 1) How to develop a simulation framework for representing the dy-

namic behavior for access management in a distributed computing environment in an en-

terprise. 2) How to implement the IoT architecture model for depicting and dealing with 

real-time scenarios regulating access to distributed resources. 

As for future work, there are potential avenues for improvement and advancement 

in IAM. One area of exploration is the utilization of artificial intelligence and machine 

learning techniques to enhance IAM processes. These technologies can contribute to 

more robust and intelligent access control mechanisms. Additionally, ongoing research 

and development can focus on addressing emerging threats and vulnerabilities in IAM 

systems, as well as refining the integration of IAM with other cybersecurity measures. 

Continuous evaluation and adaptation of IAM strategies are essential to keep up with the 

evolving security landscape and ensure adequate protection of digital assets. 

 



 
 
 

6 

 
 
 
 
 

CHAPTER 2 

LITERATURE REVIEW 

Identity and Access Management (IAM) is a salient part of any mid-size to a large 

company, which has been long neglected to improve. Access to private data and manipu-

lating that data by unauthorized users has always been a problem and challenge. It is gov-

ernment regulation, as well as the company policy, to prevent any data leak, which costs 

companies of a large size. In the context of an IAM system, the user lifecycle has external 

inputs and observable outputs. Inputs are business events, hiring an employee or contrac-

tor, changing departments, ending a contract, etc. Outputs are the changes made to inte-

grated systems and applications, creating a login ID, deactivating a login ID, assigning or 

revoking a group membership, etc [1]. 

The start of every user's journey involves an onboarding event, which could be a 

new hire for employees or contractors, sign-up for customers and partners, enrollment for 

students, and so on. This event leads to the creation of one or more login accounts, along 

with home directories or mail folders. As time passes, users may change their passwords 

regularly, and sometimes they may forget or lock themselves out, requiring IT support for 

password reset or simple lockout. As users transition within the organization, such as 

changing job functions, projects, or locations, there is often a need to manage and modify 

their entitlements and other related objects [4]. 

Every user will inevitably depart at some point, and it's crucial that their access 

privileges are revoked. Often, user-associated items like home directories, email folders, 
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and so on, may need to be preserved for a certain period before they can be permanently 

removed. Certain user information, such as their unique IDs and rehire eligibility, might 

be kept indefinitely for future use. Some of the most demanding tasks in Identity and Ac-

cess Management (IAM) processes are outlined below. Tasks such as recognizing addi-

tions, modifications, and removals within a system of record (SoR, like HR) and execut-

ing corresponding actions - establishing accounts, granting/revoking access, etc., on 

linked systems and applications are automated. Users have the ability to alter their pro-

files through self-service requests, such as updating their home phone numbers, and can 

request new entitlements, like access to a specific application or folder. Through dele-

gated administration, managers, application owners, and other relevant parties can re-

quest modifications to identities and privileges within their purview [4]. Periodically, in-

dividuals in charge of applications or data must review the users and their security privi-

leges.  

They should pinpoint any unsuitable entries and request their deletion. Identity 

synchronization is used to identify changes in attributes, like phone numbers or depart-

ment codes, in one system and automatically update them in others. Regardless of the 

source, all changes must undergo an authorization workflow. This process necessitates 

validation and approval from business participants before any implementation.. 

Identity and Access Management as a Process 

Figure 2 demonstrates that IAM is a process that creates access roles and corre-

sponding rules based on business processes and security requirements. This system is 

used to authenticate, authorize, and enforce access to essential resources by creating 

unique identities assigned to specific roles and governed by rule sets [5]. 



 
 
 

8 

A process-centric approach may be used by organizations making critical deci-

sions on how IAM should be addressed in their organizations to explain the fundamental 

ideas. When arranging system criteria and matching functional capabilities to client 

needs, use it as a template for requests for proposals or bids. Serve as a critical analysis 

point for discussions with systems engineers and service providers on deployment plan-

ning and service rules. Contribute to organizational conversations about sustaining IAM 

once it goes into production. Identify-current supports process automation tasks. We se-

lected the Report sub-process and control authorization to expand this dissertation [6]. 

 

 
 
 
Figure 2. IAM as a Process. 

Report Access Model Sub-process of IAM 

 To ensure compliance and for auditing purposes, having the appropriate tools and 

capability to create a report on the structure of the model is crucial. Access model reports 

commonly include identities such as users, accounts, attributes, and orphan/dormant ac-

counts, as well as entitlements such as roles, groups, and accounts. Additionally, reports 

may cover the history of user activity, role analytics, and workflow data, such as activity 

within the queue, historical trends, and request popularity. Configuration data, system 
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data, and troubleshooting information may also be included in the report, such as event 

logs, unsatisfied requests, and entitlements with no/invalid owners.  

The report access model acts as a visual representation of the access "rules," 

which includes role descriptions, comprehensive rule sets, and contexts. This applies to 

the resources that identities will engage with, as opposed to the distinct access levels of 

individual identities. As depicted in Figure 3, the report access model is a periodic pro-

cess predominantly employed by information security or auditing departments, even 

though the administration and operations departments utilize this process [7]. 

To ensure compliance and address any issues, managers and System Access 

Authorizers should be able to utilize reporting tools. These tools allow them to access 

user data and generate audits in the event of certain triggers. Processes that may be 

triggered include violations of Segregation of Duties (SoD) rules, whether for specific 

users or rules in general. Moreover, violations related to Role-Based Access Control 

(RBAC) may arise, such as users having entitlements that don't align with their 

assigned roles due to excess or deficiency. It's equally crucial to keep an eye on access 

that hasn't been recently or ever certified, as well as denied workflow requests. 

Additionally, users with entitlements beyond their assigned roles, those with sensitive 

entitlements, and those whose entitlements result in a high-risk score should be under 

close scrutiny. Addressing orphaned and inactive accounts is also of significant 

importance [5]. 
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Figure 3. Report Access Model Subprocess. 

Report Workflow Sub-process 

 An IAM must have a very detailed reporting and logging method at every step in 

the workflow subprocess, as depicted in Figure 4. The reporting and logging will ensure 

timely identification of a pattern and alerting at the time of an incident occurrence. One 

example of this method is Approve/Deny subprocess in the workflow. A proper workflow 

process would promote the unavailability of a resource and create a bottleneck. The Change 

in the workflow will eliminate these concerns. 

 The reporting workflow will be utilized to gauge the time taken by the 'Use' work-

flow subprocess, ensuring that the Service Level Agreement (SLA) is adhered to and mak-

ing necessary adjustments to the workflow if required. 



 
 
 

11 

 
 
 

Figure 4. Subprocess of Report Workflow. 

In an IAM process, there must be an event-driven logging technique in which a 

report is generated. To complete the auditing and compliance tasks, the identity reporting 

will ensure that the reconciliation subprocess is executed within the IAM process at any 

given time, as depicted in Figure 5. Even the audit and compliance-triggered report will 

be logged as an event. Some of the reportable audit events are what an individual user has 

been doing; Users and their access entitlement have been violated; A high-risk termina-

tion has been issued; Discrepancies exist in the workflow, known as a toxic combination. 

To have a seamless and efficient access and entitlements workflow, enterprises must 

agree on a single identity source and authoritative body of the IAM process. The single 

identity source will ensure the changes in identity and entitlement to be centrally governed 

and act upon should a change occur [8]. 
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Figure 5. Report Identity Subprocess. 
 

Identity and Access Management Process using Azure Digital Twins 
 

 This dissertation initiates a comprehensive introduction to the structure of IoT and 

its influence on enterprise IAM. It delves into enterprises' difficulties in handling identity 

and access management in a progressively interconnected environment. Following this, 

the thesis presents Azure Digital Twins and their significance in IoT, elucidating how it 

can generate a digital mimicry of IAM processes and lifecycle [8]. 

Design of IoT Devices and models for Identity and Access Management 

 The IAM process using IoT devices and models represents a significant evolution 

in how enterprises manage security. These devices generate large data sets and have 

unique identities that must be managed effectively to ensure secure access and prevent un-

authorized data manipulation. By integrating IoT models into the IAM process, enterprises 

can create a dynamic and responsive system that continuously uses data feedback from 

IoT devices to monitor and update asset entitlements. This approach not only enhances 

security but also allows for the efficient management of the rapidly changing business 

environment typical of IoT ecosystems. Digital twin technology can further enhance this 

process by providing a virtual representation of the IAM process, enabling simulation, 
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analysis, and continuous improvement. Integrating IoT devices and models into the IAM 

process represents a significant step forward in enterprise security management [9]. 

Design and Implementation of IAM Process 

 Treating IAM as a business process rather than a technological challenge has 

many benefits. The system can be integrated into a workflow, the architecture of the In-

ternet of Things and zero-time operation can be utilized in the process [6], the outcome 

can be dynamically altered using a Drag-and-Drop system, and the removal of human 

factors and interaction can help to minimize errors [10]. IAM process, creates, updates, 

and deletes three kinds of objects that are Identities - records of people and non-human 

entities; entitlements - grant identities access rights; and Credentials - used by identities 

to sign into systems – such as passwords, tokens, or certificates. The two latter are the 

most crucial part which will pin to the identities during inception. 

 Process control that must exist in any IAM can be categorized as seen in Table 1 

below. The objective is to reduce the number of access rights given to a user inappropri-

ately or was never reviewed after it was appropriately given and is no longer needed.  

Table 1 lists the control objectives that need to be imposed on the IAM process, which 

was generated based on personal experience and resources. Control objectives are the 

backbone of an IAM process that must be satisfied [11]. 
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Table 1 

List of control objectives in the IAM process  

Control Objective Description 
Identity Lifecycle 
Management 

Implement a robust process for managing the lifecycle of identities, 
including creation, modification, and deletion of user accounts. 

Access Rights Re-
view 

Regularly review and update access rights to ensure they remain ap-
propriate and remove any unnecessary access. 

Strong Authentica-
tion 

Enforce strong authentication mechanisms to verify the identity of us-
ers and systems. 

Multi-factor Au-
thentication 

Implement multi-factor authentication where necessary to provide an 
additional layer of security. 

Timely Deactiva-
tion 

Establish a process for timely deactivation of access rights when users 
leave the organization or change roles. 

Audit Trail Maintain an audit trail of all access rights changes to provide visibility 
and accountability. 

Unauthorized Ac-
cess Prevention 

Implement controls to prevent unauthorized access, such as firewalls, 
intrusion detection systems, and encryption. 

IAM Controls Re-
view 

Regularly test and review the effectiveness of IAM controls to ensure 
they are working as intended. 

Compliance Ensure compliance with relevant laws, regulations, and standards re-
lated to identity and access management. 

 
 
 Clearly, a generalized and parameterized framework is needed to encompass and 

address the complexities of enterprise-wide IAM processes. The access modeling process 

converts policy inputs, into formal structures like roles and rules. These are subsequently 

used in the formation and management of identity. This process flow is usually the first to 

be executed, and it involves the creation and provision of an authentication and 

authorization model, while also maintaining a formal process trace for future examination 

[9].  

The workflow process delineates how an identity is formed based on existing 

business policies, like operational procedures. The identity process gets its output from the 

access modeling process via the workflow. The identity modeling process uses the 
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workflow to map the required roles, rules, etc., for a specific user. The identity modeling 

process collaborates with the workflow process to receive suitable mappings. The access 

modeling process comprises four main processes: create, use, alter, and report. Each 

process contains subprocesses that offer more in-depth information about the steps 

required to establish an efficient enterprise access strategy. Although the access modeling 

process can be carried out in various technology contexts, like a specific corporate 

application environment, an access management infrastructure program, or an operating 

system, the process steps are alike. The access modeling approach and strategic 

information flows are depicted in Figure 6 [12].  

 

 

 
 
 

Figure 6. Access Modeling Process. 

Digital Twin in Design and Implementation of IAM process.  

Digital Twin technology helps in the design and implementation of the Identity 

and Access Management (IAM) process. By creating a virtual representation of the IAM 
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process, Digital Twin allows for a comprehensive simulation and analysis of the system. 

This enables the identification of potential vulnerabilities and inefficiencies, facilitating 

the development of more secure and efficient IAM processes. In the implementation 

phase, Digital Twin is a dynamic model that can be continuously updated to reflect 

changes in the real-world IAM process. This allows for real-time monitoring and adjust-

ment of the IAM process, enhancing responsiveness to the rapidly changing business en-

vironment. Furthermore, using Digital Twin technology in the IAM process can facilitate 

better decision-making, as it provides a detailed understanding of the system's perfor-

mance under various scenarios. This integration of Digital Twin technology significantly 

enhances the design and implementation of the IAM process, leading to improved secu-

rity and efficiency [13]. 

Azure Technology in Design and Implementation of IAM Process 

Digital Twin technology is an innovative method that has been applied in numer-

ous sectors, including the design and execution of IAM processes. This technology en-

tails creating a virtual duplicate of a physical system, enabling real-time tracking, analy-

sis, and optimization. When utilized in IAM, Digital Twin technology can notably im-

prove the security and efficiency of these processes. 

In the context of IAM, the Digital Twin can represent the entire network of an or-

ganization, including all its devices, users, and access points. This digital representation 

can provide a comprehensive system view, allowing for real-time monitoring and detec-

tion of anomalies or security breaches. This can significantly enhance the system's secu-

rity, as any unauthorized access can be immediately detected and addressed [13]. 
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Additionally, Digital Twin technology is used to optimize the IAM process. Or-

ganizations can detect any bottlenecks in the IAM process and take necessary steps to ad-

dress them. This can lead to improved efficiency and productivity and reduced costs. 

The implementation of Digital Twin technology in IAM involves several steps. First, an 

Azure Digital Twins instance is created, which serves as the foundation for the Digital 

Twin. Next, resources represent the various components of the IAM system, such as de-

vices, users, and access points. These resources are then modeled using Azure Digital 

Twins Models, which define the characteristics and behaviors of the resources [14]. 

Once the models are created, data is imported from a JavaScript Object Notation 

(JSON) file. This data is used to establish relationships between the IoT Digital Twin 

Models, which represent the interactions between the various components of the IAM 

system. An IoT Hub is then created, which serves as the communication gateway be-

tween the Digital Twin and the physical IAM system. Devices are added to the Azure In-

ternet of Things Hub, which allows them to communicate with the Digital Twin. An Az-

ure Function App is also created, which is used to ingest the telemetry data from the de-

vices. An event subscription for the Function App is created, and a simulator is used to 

send telemetry data to the IoT Hub. This data is used to update the state of the Digital 

Twin in real-time, allowing for continuous monitoring and optimization of the IAM pro-

cess [13]. 

In conclusion, Digital Twin technology offers a powerful tool for enhancing the 

design and implementation of IAM processes. By providing real-time monitoring and 

analysis, it can significantly improve the security and efficiency of these processes, lead-
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ing to improved productivity and reduced costs. As seen in Table 2, we summarized chal-

lenges to Identity and Access Management in terms of access and credential, business, 

and financial aspects. 

Table 2  

Challenges to Identity and Access Management 

Access and Credentials 
• How to request access? 
• Who must approve the request? 
• When will the request be completed? 
• Too many login prompts and passwords.  
• Orphan and dormant accounts. 
• Too many people with privileged access. 
• Static admin and service passwords are a security risk. 

 
Business 

• Regulatory and Compliance 
• HIPAA, Sarbanes Oxley, EU Privacy Directive, etc. 

• IT Support cost 
• Help desk call volume 
• Time/Effort to manage access rights 

• Service Level Agreement (SLA) 
• Faster onboarding 
• A simple request approval process 

 
Financial 

• An investment in identity and access management processes and infrastructure 
is typically supported by  

• Cost savings 
• Reassign staff out of the help desk or user administration group. 

• Improved productivity 
• Help new users start work sooner and eliminate delays experi-

enced by users who have problems or need changes. 
• Stronger security 

• Clean up entitlements, enforce security policies, and create audit 
logs. Comply with SOX, HIPAA, etc. 
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Design and Implementation of IAM Processes 

The design and implementation of IAM processes require an engineering ap-

proach. The proper engineering approach in these cases is called the engineering of enter-

prise systems. The discipline that applies systems engineering to the essential part of 

businesses is generally called Enterprise System Engineering (ESE). Enterprise engineer-

ing differs from systems engineering because it considers an organization’s whole lifecy-

cle. Businesses have existed for periods, but they have not always been designed simi-

larly. Furthermore, firms were not previously considered as a whole system that could be 

logically designed, depicted in Figure 7 [14]. 

Enterprises have expanded rapidly with little attention to the systematic design of 

their processes and systems. It has been indicated that many organizations' business pro-

cedures were created long before information technology existed. It is not surprising that 

some companies and organizations still have business processes that model an IT system 

mechanism. Many small modifications were made over time without considering and 

looking at the enterprise processes as a whole [15]. 

 
 

Figure 7. Enterprise system. 
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Enterprise Systems and Enterprise Architecture 

A business is a social system that links people, information, and technology resources to 

achieve a common goal. Many interactions are required to understand enterprise behavior 

as a system. Sharing information, coordinating functions, and allocating resources are just 

examples. 

 The term 'enterprise' encompasses a range of entities, including governments, sup-

ply chains, businesses, and virtual enterprises. Moreover, the term 'organization' is re-

stricted as it represents one aspect of the enterprise. Enterprise Architecture is a discipline 

that, i) outlines, organizes, standardizes, and records the complete architecture and all sig-

nificant components of the respective organization, spanning relevant domains such as 

business, digital, physical, or organizational; and ii) the relationships and interactions be-

tween elements belonging to those domains, such as processes, functions, applications, 

events, data, or technologies [16]. 

 To ensure efficiency in the lifecycle of workflow problems, the enterprise needs 

to provide an overall enterprise design to control all its projects. Even a small enterprise 

project should conform to the enterprise architecture. In this way, the enterprise will en-

sure that all projects get the attention they need, which should accomplish its goals. Many 

organizations are currently using enterprise systems, a collection of complicated compo-

nents that collect and deliver data to aid in the decision-making required for corporate 

control. Successful organizations use the enterprise system to make accurate decisions in 

a short amount of time, allowing the management to make the best decisions for the com-

pany [17]. 
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Process Improvement Using Quality Definitions 

 Process improvement refers to identifying, evaluating, and enhancing existing 

business processes within an organization to meet new standards or quality requirements. 

Quality is one of the most crucial elements in engineering. Basic defaults aid us in attain-

ing exceptional quality. Concentrating on quality attributes recognizes that quality is 

multi-faceted and consists of conflicting elements. Quality attributes encompass aspects 

such as durability, usability, and user-friendliness, among others [17]. 

 Some fundamental qualities of quality must be included in the product, such as 

look, cost, and dependability. The consumer must be satisfied with the degree of quality. 

Otherwise, the product will be overlooked. In addition, when quality is at the necessary 

level, it may rise, making it less competitive in the marketplace. It is difficult to locate a 

product that meets all the quality criteria. In addition, the importance given to each qual-

ity criterion defines the aspect of quality. When contrasted to a quality profile, emphasis 

is useful in deciding between product alternatives. Table 3 shows a range of quality em-

phasis for watch quality. Generally, quality is the capability of a product concerning a 

specified number of quality attribute emphases [18]. 
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Table 3  
 
Spectrum of product quality attribute emphasis 

Emphasis/ Quality 
Attribute 

Appearance Cost Reliability 

None C C C 

Reliability Em-
phasis 

C C Ö 

Cost Emphasis C Ö C 

Cost / Reliability 
Emphasis 

C Ö Ö 

Appearance Em-
phasis 

Ö C C 

Appearance / Re-
liability Emphasis 

Ö C Ö 

Appearance / Cost 
Emphasis 

Ö Ö C 

Excellence Ö Ö Ö 

 

Achieving Quality Improved Process  

Isolated and static views are two ways to evaluate process capabilities and product 

quality. The definition of process focus is attaining quality through a process analysis that 

begins with adding descriptions of the process's actions to a logical and understandable 

form. The process should also be specified in the process model since it may be used to 

enhance the process. A model, in general, is useful for expressing the most important ele-

ments of reality while allowing for limitless detail [18]. 

All subsequent process improvement efforts may be thought of as being built on 

the basis of process modeling. The capacity to comprehend and enable objective evalua-

tions, software processes, and making changes are three characteristics that make process 

modeling valuable. Process modeling can also aid with model evaluation by providing 
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recommendations for process changes. When comparing processes, the method of calcu-

lating quality leverage metrics may be used. The work of process improvement has a vi-

sion. This process follows the vision of improvement because improvement is continu-

ous. The iterative technique of defining the process, execution, measurement gathering, 

improvement, and analysis are all emphasized in this view of process improvement. As 

demonstrated in Figure 8, each stage has the essential input for the next phase in the pro-

cess. 

 

 
 
 

Figure 8. Process-centered improvement operational concept. 

A Context for Process Improvement 

 The connection between the evolutionary activities in software processes and the 

activities that support those processes determines the components we need to describe pro-

cess-centered improvement. The process improvement group oversees the organization's 

software development. The process improvement group is also a valuable resource for 

many businesses. The process technology group strives to enhance the tools and techniques 

that support the process. Figure 9 depicts this connection. 
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Figure 9. Process-Centered engineering quality model. 

  Collecting data and evaluating obtained data are three integral components of pro-

cess improvement. Although the automated tools make the process easier, some sub-

functions will still require human participation. Additionally, process modeling can be 

built using the tools provided by the data provided by the engineering activity. The feed-

back gained through actual process modeling execution may be used to help the organiza-

tion design process technology and improve it. The function of process improvement can 

be improved through process recording and model simulation done using Azure Digital 

Twins [19]. 

Process Improvement Activities and Modeling 

 The concept of process improvement activities will be explained in this section. 

Lifecycle process engineering has also been defined previously. For the process improve-

ment connection to be established, all activities here must work on specified objectives 

within the context of process improvement and the extra requirements of infrastructure 

and communication demands. Furthermore, communication and infrastructure capabili-

ties can aid in developing each level of activity dimension. 
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 Technology acquisition, process modeling, measurement and execution, and anal-

ysis and improvement are the four components of the process-centered improvement op-

erations approach, as outlined. The latest advancements in process modeling languages 

that have emerged from the opinions of the underlying methodologies will be discussed 

in this part. By creating a set of criteria for each formalism, we can tackle improvement 

challenges differently. The formulation of process support tools is completed by a signifi-

cant amount of research, which includes the construction of process models as the foun-

dation for automating development environments [20]. 

In order to make the process transparent, process modeling is required. Process 

modeling, for example, provides the organization with a number of essential issues such 

as the resources and capabilities required to begin the activity, the scope of the process to 

be modeled, the features of reality that must be included, and the components that should 

be removed. There are also some benefits to using the process to think about and deter-

mine the contents of the process model. Traditionally, the concept of the IAM has always 

been synonymous with technical tasks and challenges. Such a task would have included 

but not limited to either purchasing a software system from a vendor and have them de-

ploy enterprise-wide or a few technical staff install it. Although this method is widely be-

ing used to this day and has been mostly the choice of the companies, but some have been 

trying to develop their own IAM software which is wished to perform as well as a very 

costly third-party software package [20]. 

In either of the above cases, there are many common problem and mishap which 

is often overlooked, and not enough attention is paid to. Some of the burdens which can 

be problematic are, lack of automation, lack of dynamic changes, the operator with access 
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is on vacation, silo system of IAM which know nothing about each other, and many 

more. 

IAM systems creates, updates, and deletes three kinds of attributes, Identities - 

records of people and nonhuman personas. For example, how the records are entered in 

database tables. Entitlements - which grant identities access rights. For example, how us-

ers are authenticated before they are granted access to sensitive data or functions? Cre-

dentials - used by identities to sign into systems -- such as passwords, tokens, or certifi-

cates. For Example, is there a close link between what users can access on systems and 

applications and their real-world business responsibilities? 

In other words, identities are managed just so that there will be something on 

which to pin credentials and entitlements. The objective is to maximize the security ex-

pressed in authentication and authorization decisions while minimizing the time and cost 

spent managing the underlying identities, entitlements, and credentials. It's not enough to 

examine existing identities to find users who have entitlements that are not appropriate to 

their business needs. Therefore, new entitlements should be assigned to be consistent 

with business needs; entitlements should be revoked in response to business changes, 

such as terminations or transfers; and when analytics find inappropriate entitlements, they 

should be deactivated as quickly as possible [19]. 

Components of Enterprise Design and Lifecycle 

The designer is the most significant component of the "business," especially if it 

is a product [12]. During all stages of the design project, the designer cannot design an 
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enterprise alone; instead, numerous people from various disciplines are frequently in-

volved. Some of the members of the enterprise design team have job titles assigned to 

them as the following [14, 15]. 

Business Systems Analyst has extensive knowledge of the business domain lan-

guage, such as accounting, and the technology employed in that domain. Enterprise Ar-

chitect is a professional with extensive experience building a comprehensive perspective 

of an organization's strategy, information, procedures, and structure. A system Architect 

is A person with experience in designing a high-level design of technical system and is 

referred to as a system architect. A project Manager is a person who oversees the fulfill-

ment of all project objectives. The project manager is in charge of identifying all team 

members, supervising them, planning the project, tracking its progress, and being ac-

countable for all project outcomes. A system designer is a person who has experience in 

designing one or more parts of the system. This person has the technical background to 

know how the system will work. The change Manager is the person in charge of the 

change management strategy, this person is in charge of ensuring that the change man-

agement plan is carried out successfully. A system Engineer is a technical expert with 

knowledge of the entire process of creating, running, developing, maintaining, and re-

placing quality management systems. An application Developer is a programmer with ex-

perience developing new software depending on the technology [21]. 

The enterprise lifecycle is divided into three stages, development, deployment, 

and operation. Development is essential since it encompasses the engineering steps re-

quired to build an enterprise system. The deployment process encompasses the enterprise 
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system's change management procedure. The administration of the overall enterprise sys-

tem is referred to as operation. The typical phases of an enterprise's lifecycle can be sum-

marized as System identification, Analysis, Design, Construction, Implementation, Oper-

ation and Maintenance, and finally, Decommission. Figure 10 shows that an enterprise 

may cycle through many development projects before it is decommissioned. 

 

 
 
 
Figure 10. Relationship between enterprise development and operation. 

Engineering of Enterprises 

 There are a variety of viewpoints on the importance of enterprise engineering. 

Davenport and Short, for example, discuss the need for engineers who can design and an-

alyze business processes and apply IT to improve them. It also explicitly asserts the ne-

cessity for an engineering approach and describes enterprise engineering as a set of 

change management techniques [21]. 

 It is emphasized the necessity to transition from a haphazard approach to enter-

prise design towards a methodical, engineering-based approach. Three foundations are 
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required for an enterprise engineering discipline. Enterprise integration knowledge out-

lines the various ways in which the different elements of an enterprise can be organized 

and integrated to function collectively.  

 Enterprise engineering concentrates on the design of the entire enterprise. Busi-

nesses can be categorized into two types for engineering purposes. With the rise of the 

service industry, agile businesses should adopt a service-based process model. Overall, 

it's becoming evident that a rigorous engineering approach is needed for designing inte-

grated enterprise solutions. Enterprise architecture serves as a strategic foundation for en-

terprise information systems. This principle outlines the facility's vision, the information 

and methods required to realize it, and the evolutionary processes for incorporating new 

technologies in response to changing vision requirements, as illustrated in Figure 11 [11]. 

 

 
 
 

Figure 11. The three layers of enterprise architecture. 

Layers of enterprise architecture include Vision includes the goals, objectives, and 

strategies of an organization. Design and Process include the Research and Development 
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global roll-out plan; and Operations include day-to-day production run, break-fix, and up-

dates. Advancement in Azure Digital Twins allows efficient simulation of Enterprise Ar-

chitecture. 

A Process-Centered Engineering Quality Model 

 The quality profile that has been created concludes that engineering design quality 

factors such as timeliness, cost, and reliability should drive the design process of engi-

neering artifacts as defined by [11]. Engineering design quality criteria must assume that 

the customer has a budget for the product; other attributes include the time required to 

complete the product and the product's minimum operational requirements. Table 4 

shows a quality profile based on engineering design quality factors. The expense of de-

veloping the product has exceeded estimates. As a result, the supplier's cost will be lower 

than the customer's overhead cost barrier. While timeliness is commendable, the process 

that supports product creation has fallen short of reliability requirements. Table 4 shows a 

spectrum of concentration that can be applied to engineering design [11].  
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Table 4 

Spectrum of engineering design emphasis 

Emphasis/ Quality At-
tribute Cost Timeliness Reliability 

Pure Research C C C 

Reliability Emphasis C C Ö 

Timeliness Emphasis C Ö C 

Timeliness / Reliabil-
ity Emphasis C Ö Ö 

Cost Emphasis Ö C C 

Cost / Reliability Em-
phasis 

Ö C Ö 

Cost / Timeliness Em-
phasis 

Ö Ö C 

Pure Engineering Ö Ö Ö 

  

 Instead of focusing solely on product quality, the concept of quality can be broad-

ened by comprehending the processes that underpin product construction. These process 

features enable for product and resource transformation. This process involves a number 

of interconnected tools, people, and activities. The process-centered engineer quality 

model encompasses all interactions within the engineering activity as well as their natural 

processes. The process is simulated in Azure Digital Twins. 

A General Systems Design Methodology 

In this section, we present the first composite view of a design methodology that 

attempts to combine the desirable attributes of several of the design strategies. The basic 

structure of this methodology has its origins in a design approach referred to as edges-in 

design, which is based on design principles. The basic edges in the design approach, 
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along with its supporting principles, has been extended somewhat to reflect the require-

ments identified. We have also attempted to form a methodology amenable to partial au-

tomation. Included are specific attempts to acknowledge the impact of preconceived con-

cepts of the final implementation hardware, the requirement for accommodating con-

straints, and the need for iteration within the logical design process to accommodate the 

possibility of multiple virtual machine layers in complex system designs.  

We present an overview of the entire design process aimed at establishing a 

framework within which the detailed discussions of the remainder of the book are set. We 

shall not go into the details of specific tactics and mechanisms in this section. Still, we 

shall relate a design philosophy to a design strategy such that the rationale for each phase 

and step of the methodology is clear and the relationship of the strategy to the general 

system perspective is firmly understood [12, 13, 14, 15].  

The methodology structures the approach to this problem and provides a strategy 

that can be followed to arrive at good designs. It contains separate phases that partition 

the logical design from the physical. The logical design phase may be iterated through 

several logical layers until a suitable level for mapping to a specific hardware/software 

boundary is reached. The starting point for each iteration through the logical design phase 

is a set of virtual machine requirements. This partitioning of the logical system descrip-

tion into a hierarchy of logical structures facilitates the design of complex systems by in-

troducing a simple mechanism for modularizing the design. Furthermore, as we shall see 

in later chapters, the concepts of nesting packages and tasks in a structure diagram de-

scription of the system directly support such a hierarchical design approach.  
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The basic philosophy of this design approach is that we should first determine ex-

actly what the system must do before considering how it is to be implemented. This im-

plies both a careful analysis of user requirements, constraints, and specifications and a 

complete definition of the logical system structure prior to actual hardware considera-

tions. By imposing a hierarchical structure on the logical system description, the problem 

of partitioning and allocating this description to a special hardware/software combination 

can also be approached in a structured, modular fashion [16, 17, 18]. 

Edges-in Design 

We begin this section with an overview of the basic edges-in-design approach. 

We then consider extensions to this approach to form a design methodology based on a 

multileveled system perspective and show how this perspective is reflected in the struc-

ture of the methodology. To effectively design a system based on the requirements pro-

vided, it is recommended that the designer initially distinguish between nonfunctional re-

quirements and constraints. Following this, the necessary system functions should be 

identified, starting with the system interfaces or boundaries. To achieve this, one must ex-

periment with divisions. From these interface descriptions, the suggested procedure fol-

lows a top-down partitioning and refinement of the system's interior to create a logical 

description of all system functions necessary to support the required system operation. 

This implies using some descriptive mechanism to develop a logical software architecture 

description. In the original development of the methodology, the descriptive mechanism 

used was access graphs. From the access graphs, the designer attempts to define all the 

necessary active processes for the system and then define their interaction. The descrip-



 
 
 

34 

tion of process interaction is accomplished by defining a set of monitors to handle sched-

uling and synchronization. The supporting semaphore structures are assumed as kernel 

functions. Alternately, the structure diagram mechanism could be used, based on defining 

tasks that interact through rendezvous mechanisms [19, 20, 21, 22].  

Once the logical software architecture description has been completed, the next 

step is to identify the necessary support functions required for implementation. If an ac-

cess graph description is used, then support mechanisms must include a set of kernel 

functions that provide semaphores, process context switching, and support for the appro-

priate process/monitor communications, including call routing and parameter passing. 

Thus, the kernel features, in addition to the necessary support of a programming language 

to implement the software, represent the virtual machine that is needed to support the im-

plementation of the logical system description. Having defined this logical architecture, 

including the virtual machine support requirements, the designer is ready to face the 

problem of partitioning this logical system description and allocating the various parti-

tions to a specific hardware architecture for implementation.  

The kernel functions were defined as a special critical region of software or, pos-

sibly, as hardware functions, such as a hardware test and set operation. The kernel func-

tions and the hardware, therefore, offered an instruction set suitable for the implementa-

tion of the logical architecture of the system. The partitioning and allocation problem 

centered on the partitioning of the logical architecture of the software and allocating it to 

the various processors while maintaining the kernel functions as a common critical re-

gion. It is important to note that, in this allocation process, the basic concept of hardware 
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architecture is either a conventional uniprocessor or a collection of interconnected pro-

cessors. This assumption was entirely justified in the original development of the meth-

odology since the fundamental processing elements were always microprocessors.  

The benefits of following this approach to the design of multiple microprocessor 

systems are substantial. By defining the complete logical structure of the software in ad-

vance of the hardware, the problems of hardware/software integration are considerably 

reduced. Because the complete software structure is known, the selection of the hardware 

can be done based on reasonably well-defined performance requirements. Indeed, the 

complete software structure can be implemented on a general-purpose computer by well-

known multitasking methods to verify the logical operation of the design. Comparative 

performance measures can be made for various proposed system partitions prior to the 

actual construction of the final system hardware [23, 24, 25].   

Multileveled Systems Design 

We now present an extension to the basic edges-in-design approach. This exten-

sion is based on an abstraction of the conventional onionskin system model to account for 

multiple logical levels for which the final implementation, as either hardware or software, 

is not preconceived. These levels represent successive logical layers of a hierarchical sys-

tem organization. Within a system, distinct modes of operation can be seen as divisions in 

a logical layer, which create multiple virtual machines needed for the same system [25].  

This logical view of systems represents, to some extent, a preconception regard-

ing the final system structure. Indeed, by focusing on this system perspective, we are ex-

plicitly acknowledging this as our fundamental starting point in the system design pro-
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cess. In a specific system design problem, this general model of system structure is re-

fined and modified by the specific requirements and constraints imposed on the design. 

Given the requirements specification, the first phase of the design process is to fit the 

stated system requirements into a logical system description based on this system per-

spective.  

The unique aspects of this expanded design methodology that differentiate it from 

the basic edges-in approach include the explicit recognition of the influence of precon-

ceptions about the final system's overall structure, the likely sensors technology for im-

plementation, and the rapid evolution of integrated circuit technology. It also involves the 

introduction of an initial system partitioning activity as part of the first step of partition-

ing system functions and constraints [24]. There's an iteration of the logical architecture 

and virtual machine definition steps in the logical design phase that breaks down the 

overall logical system design into a hierarchically structured, modularized set of smaller 

logical design problems. It also acknowledges that the logical partitioning and hierar-

chical structure of the logical system design might not align with the physical partitioning 

and topology of the final system, necessitating a structured method for partitioning the 

logical architecture and allocating various portions of the system to hardware at different 

levels of the logical design. The abstraction we are proposing to the basic onionskin sys-

tem model extends the virtual machine concept to all system layers regardless of whether 

they will eventually be implemented entirely in hardware or software or as some combi-

nation of both [16].  

The definition of a virtual machine is an outline of the system's visible attributes, 

which are relevant at that particular level of the system's description. Thus, we consider 
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each layer of the system to be representable as a set of logical primitive operations that 

summarize the observable functions of the system at that level, not distinguishing be-

tween those functions executed directly in hardware and those executed in software. This 

lack of commitment to either hardware or software at all logical levels of the system de-

scription is necessary if we are to create a consistent logical description that will later be 

partitioned to define a specific hardware/software boundary for the final implementation. 

Indeed, the blurring of the hardware/software boundary mentioned has reached a stage 

where the distinction between the two is often determined as much by the observer's 

point of view as by any fact of implementation [24].   

The design approach we are presenting is based on the concept that it is unneces-

sary to consider system functions as either hardware or software until a complete logical 

description of the system has been created. Hence, the initial driving force behind the de-

sign process is not the designer's knowledge of hardware structures. However, this be-

comes very important in later stages of the design process, but an understanding of the 

system requirements and the user's perspective of the system and its operation. The user-

visible system interfaces and observable modes of system operation guide the initial sys-

tem division into virtual machine levels and the identification of the necessary functions 

at each level. From this perspective, the edges-in approach can be seen as a variant of the 

outside-in design strategy [26].  

The second stage of the design process essentially mirrors the fundamental struc-

ture of the edges-in approach. The expansion here involves the specific incorporation of 

an initial division of the system into a that corresponds to the virtual machine layers of 
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our general system model as part of the initial system function identification step. The de-

tails of the logical architecture are defined iteratively through successive refinements, 

starting with the highest-level virtual machine interfaces and then for each sublevel until 

all user-visible system features have been outlined. This method divides the overall logi-

cal structure of complex systems into several smaller, more manageable logical design 

problems. [25, 26].  

The third phase, selecting a suitable hardware architecture, may also be ap-

proached hierarchically in many design problems by carrying out the partitioning and al-

location of major system elements at a high logical level. This is often necessary due to 

specific constraints or physical partitioning requirements stated in the specification. Once 

the specific functional characteristics of these major system partitions have been defined, 

including their performance requirements and interfacing details, they can be treated as 

separate subsystem design problems.  

The iterative process of logical design should be continued through at least all 

user-visible system levels before committing to major hardware architecture features. 

This will help to prevent costly and time-consuming redesigns and retrofits that can occur 

when a hardware commitment is made before all the details of the logical system struc-

ture have been worked out. The final phase of the design process, component selection 

and final implementation of the design, comes after the logical structure of the system has 

been completely determined, various partitions and allocations to hardware have been an-

alyzed, and a final hardware architecture has been selected. Here, the final decisions on 

the hardware/software boundary will be made as the detailed structure of the various 

hardware elements is fixed [26].  
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Requirements Analysis and System Specification 

As with all the other design approaches we have discussed, the approach advo-

cated in this section begins with explicitly recognizing the need for a thorough problem 

analysis leading to identifying user requirements and constraints from which a system re-

quirements specification must be generated. The issues of requirements analysis and sys-

tem specification are considered in detail in this section. First, however, we stress that it 

is in this initial phase of the overall design of systems that many design efforts have yet 

to go astray. Regardless of the ingenuity and expertise of the design team, if a clear un-

derstanding of the system requirements and constraints has not been gained, it is doubtful 

that the final design will meet them [27].  

Hence, a key point of the entire design philosophy is that it begins with, and is 

based on, a clear understanding and a concise specification of what must be designed and 

what constraints are placed on the design. This in turn tends to focus the designer's initial 

perceptions of the system structure in terms of what is perceived to be possible within the 

constraints. These initial perceptions of system structure will depend, to a large degree, 

on perceived component technologies with which the final system will be implemented. 

When creating specifications for processing systems in an environment of rapidly chang-

ing fundamental component capabilities and cost/performance ratios, it is possible, even 

probable, that one of two general problems will result. First, if the user's perception of 

what is possible does not reflect the current capabilities, then the specifications may be 

overly restrictive and limit the designer in achieving an optimal design; on the other 

hand, the perceived capabilities of current technology, on the part of the specifier, may be 
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overly ambitious and lead to specifications that cannot be met within the performance re-

quirements and constraints imposed. Thus, it is very important to examine the specifica-

tions carefully to determine how realistic the overall requirements are before beginning 

the design process at all [27]. 

Requirements Analysis 

Ideally, the design process begins with a clear specification of system require-

ments. The specification should provide a concise statement of all necessary functional 

and nonfunctional system characteristics, including any implementation constraints, and 

minimum throughput requirements, that must be met. The system specification sets out 

both the quantitative and the qualitative characteristics on which the acceptance of the fi-

nal system design will be based. In many situations, as viewed from the perspective of 

the design team, the formulation of both the user requirements and the resulting system 

specification is considered a customer responsibility. In such cases, the system specifica-

tion forms the initial input to the design process and represents the baseline for validation 

of the various levels of system description that arise throughout the design process.  

The essential requirement for a suitable system specification is that it provides a 

clear statement of all system features required by the user in a form that is accessible both 

to the user and to the system designer. This document represents the interface between 

the user and the designer. While it is not reasonable for the designer to expect the system 

users, in general, to be conversant in the concepts of systems design, it is almost always 

the case that the users will expect the designer to be highly knowledgeable in the user's 

application area [28]. 
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There are many kinds of specifications and formats for specifications. The basic 

purpose of any specification is to state concisely the significant properties or features of a 

system or object. Precisely what properties or features are considered significant will 

vary extensively, depending on the kind of specification and its intended purpose. In gen-

eral, we can divide specifications into two broad categories. Requirements specifications; 

and Implementation specifications. Requirements specifications are generally intended to 

outline those properties and features required in a system as well as any implementation 

constraints that are to be imposed. Still, detailed implication features and non-user-visible 

system characteristics are left unspecified. Essentially, a requirements specification as-

sumes that some form of design and/or development work is required to reach an imple-

mentation that satisfies the requirements. Generally, some identifier should always be 

used in conjunction with the word specification to indicate the nature of the object being 

specified and the purpose of the specification, such as Functional requirements specifica-

tions, System design specifications, System development specifications, Functional item 

specifications, and Program development specifications [28].  

Specifications generally state the detailed characteristics of the actual implemen-

tation or fabrication of an object. The design process may be considered as creating an 

implementation specification, which guides the detailed fabrication of the final physical 

product. The design process usually involves initial prototyping to validate the design. It 

is the detailed specification of exactly how the implementation of a set of requirements 

can be achieved that is the real result of the design process. A requirements specification 

states what is required but not specifically how it will be achieved. An implementation 
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specification details exactly how some object is to be created. Since we are interested in 

design, we shall consider only requirements specifications in this section [27].  

Two preliminary steps are necessary to prepare specifications. First, the problem 

must be characterized, and from this, a set of user requirements must be prepared, second, 

from these requirements, specifications are prepared that include the circumferential con-

straints, which the system must satisfy, in addition to the operational features. The final 

document can occupy volumes and require technical experts and legal assistance to pre-

pare and interpret. We characterize and quantify some aspects of specifications regarding 

their logical structure.  

The importance of initial requirements analysis is often under-stressed in discus-

sions of design methodologies and approaches. As stated previously, it is often assumed 

that requirements specification is a customer function, while the actual specification is, in 

fact, the interface between the designer and the user. It sets out the functional require-

ments and constraints on which final acceptance of the system must be based. Thus, vali-

dation of the design against the requirements specification must be carried out throughout 

the design process. A central theme of our design methodology is that it begins with and 

is based on a clear understanding of what must be designed and what constraints are im-

posed on the design [28]. 

As shown in Table 5, Table 6, and Table 7, we listed current issues, deficiencies 

in current approaches, and addressing the needs, respectively. As such, we conclude our 

literature survey by listing the needs. In the next chapter, we will start with our approach 

to the design and implementation of IAM processes. 
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Table 5 

Current issues 

 
• There are many IAM solutions available. 

• Each solution addresses the IAM issues differently. 

• While some provide enhanced features, they increase complexity and opera-
tional cost. 
 

• Some solutions focus on automation, whereas others focus on workflow pro-
cesses. 
 

• Security is the primary concern where ease of use and flexibility is not consid-
ered.   

 

 

Table 6 

Deficiencies and current approaches 
 

 

• Functionality and features: While many IAM solutions are available, they pri-
marily provide the same features. 

• Workflow and automation: Most of the solutions lack seamless workflow auto-
mation. 

• Toxic Combination: They mostly ignore insecure combinations, such as the re-
quester is also an approver of their requests. 

• Enhancement: There is little or no room for infrastructure enhancement or ex-
pansions. 
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Table 7 

Addressing the needs 
 

 

• Ease of use: How simple is it to set up and manage users, access rights, roles, 
etc.? 

• Integration capabilities: How well can the system integrate with your existing 
infrastructure?  

• Compliance and Reporting: How well does the system assist with compliance 
and reporting? 

• Scalability: Can the system grow with your organization? 

• Security: What security features are built-in? 

• Cost: What is the pricing structure?  
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CHAPTER 3 

SYSTEM DESIGN AS A STRUCTURED PROCESS 

System design is a structured process that requires two essential conditions for 

success. The designer must possess a guiding technique or algorithm to navigate the de-

sign process, and they must have a thorough understanding of the requirements and the 

correct perspective on the systems to be developed. The design methodology should de-

tail the steps that transform the specifications or needs statement into the final product, 

considering all constraints and operational requirements. It is difficult, if not impossible, 

to measure the extensive knowledge and experience that a sturdy design brings. Never-

theless, it is possible to analyze and explain the general framework of their methodol-

ogy.It's also feasible to chart the sequence and interconnections between certain key pro-

cesses that consistently yield successful systems [24]. 

The most vital elements of a successful design methodology often involve princi-

ples that assist individuals in making decisions amidst uncertainty. A viewpoint on what 

is being developed is also essential to the design process. Although it is frequently disre-

garded, our perspectives limit our ability to succeed. As a result, having the right perspec-

tive and using complementary design methodologies are crucial requirements for innova-

tion. We see that techniques frequently appear to be very diverse in detail because differ-

ent procedures are needed to adjust the methodology to a specific perspective. But it's 

astonishing how many design techniques share the same basic structure. The exploration 

of design techniques is the focus of this chapter [29].  
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A General System Perspective  

Before discussing design techniques, it's important to clarify an overall viewpoint 

of the system that could be the focus of our design work. Understanding that there are al-

ways two models, one at the logical level that describes what the system does or must do 

and one at the physical level that specifies how the logical components are to be distrib-

uted or realized in terms of some combination of IoT sensors and software, is also essen-

tial. 

Virtual machines, as in Digital Twin, serve as logical interfaces, to sum up. De-

pending on elements like the number of tiers of system programmability or user-visible 

system interfaces, the number of virtual machine layers in each system may change. Each 

virtual machine layer gives the subsequent higher layer a logical system view. For vari-

ous reasons, the hardware designers' physical view does not necessarily need to match 

this logical view. One of the functions of the virtual machine is frequently to make the 

hardware invisible to the programmer or the system's final user. We can already observe 

the integration of functionality to enable several logical system levels with sensors [29]. 

An entirely partitioned onion represents the system's overall logical structure. In a 

true sense, this is the systems designer's first significant contribution because it creates 

the framework for how the rest of the design will be implemented. In the following parts, 

we'll go through how these levels relate, the problems with partitions, and the design 

strategies for implementing each. However, before moving on, there are a few terms and 

terminology related to design in general that will help create a shared understanding. The 

design team should communicate their opinion on the project's outcomes, an essential 
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quality. Without a shared viewpoint, the team would almost certainly encounter commu-

nication issues, which could result in failure in the worst-case scenario or exorbitant ex-

penses in coordination overhead in the best-case scenario. 

The role of a design methodology is to identify the structure and components of a 

system that meet the given requirements [30]. These requirements are derived from an 

analysis of the initial problem and are used to formulate the specifications. Ideally, the 

design process should not be constrained by these specifications, meaning the system's 

structure should not be pre-determined. However, this is seldom practical. Specifying a 

system without some commitment to its structure is challenging, if not impossible. As a 

result, when the design phase begins, there are almost always some implicit structural 

limitations. Constraints from the implementation phase also impact the design phase, re-

stricting some options. The primary differences in methodologies can be traced back to 

how these constraints are recognized and interpreted at each stage.  

Structural Attributes of Design Methodologies 

There is a wealth of material surrounding the general area of design that is diffi-

cult to assimilate without some structure. Unfortunately, many, often conflicting, struc-

tures attempt to organize the many approaches. We shall begin with a simplistic view 

with IoT perspective of the design process, and develop our own point of view [31]. Four 

major activities are isolated into the specification, logical systems design, sensor architec-

ture selection, and system implementation. This is where using Digital Twin and Azure 

implementation pays off. 
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The process of specification activity entails transforming user requirements into a 

document that accurately conveys the essence of the problem to be tackled. This docu-

ment serves as a guide for the design process and also enables quantifiable assessments of 

the design outcomes. The design process starts and finishes with the specifications. Dur-

ing the logical systems design phase, the specifications are analyzed and a group of vir-

tual machines are created. These virtual machines can eventually be transformed into a 

mixture of IoT sensors and software. 

Internet of Things Sensors Architecture  

In this step, the virtual machines are allocated to candidate IoT sensor architec-

tures. Here, the problem of partitioning the logical design for eventual implementation 

must be faced. This stage of the design demands knowledge across several disciplines. To 

create the necessary system, the implementation stage requires careful consideration of 

the hardware components and the development of both the hardware and software as-

pects, with attention paid to all the details involved. A nontrivial aspect of this process is 

the final validation demonstrating performance following the original specifications. 

When approached consistently, this stage can often be reduced to several smaller-scale 

iterations of the design stages [29].  

There is, in general, very little disagreement with this overall view of the design 

process if the discussion of details proceeds no further. It is in the details of how the steps 

are carried out and on the principles that influence decisions that disagreement is found. 

Some views are fundamentally different, and it is important to understand these differ-

ences and why they occur. A design methodology possesses the basic attribute of provid-

ing order to and a reason for each step in the design process. Usually, the methodology 
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and the reasons apply to a broad class of applications and, therefore, must be understand-

able and consistent when applied across the class members. 

 When creating major design components, it is important to adhere to a design 

strategy, which outlines specific steps and a general approach to the process. Two catego-

ries of strategies have been suggested to aid design methodologies [31]. Various design 

strategies exist, including orthogonal and hybrid approaches. Orthogonal strategies con-

sist of top-down and bottom-up methods. In contrast, hybrid strategies focus on critical 

components first, starting from the outside-in or inside-out, or beginning with edges-in or 

interfaces first. Although there is some overlap among these strategies, we will discuss 

them in greater detail later. Design tactics are specific procedures for implementing steps 

in the overall strategy, and they may be either controlled or uncontrolled approaches. The 

selection of the appropriate tactical approach at the appropriate stage of the design pro-

cess is a major issue in the design. Tools called design mechanisms are used to help with 

certain parts of the design process, whether it's strategic or tactical. These mechanisms 

can include things like diagrams, graphs, and tables, and they help represent the design 

process itself. Pseudo-code and other notational conventions may also be used.. As ob-

served earlier, mechanisms often disguise the basic equivalence of two methodologies, 

and their details are often the most difficult to understand. A design methodology can be 

examined from a more global point of view [30]. These often contain opposing attributes 

regarding acceptance by the various groups in a particular environment.  

Structural Attributes 

Every methodology can be seen as having a two-part fundamental structure. The 

first part involves a series of steps, accompanied by a set of guiding principles, which are 
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followed to create a design. These principles assist in decision-making during uncertain 

situations. To put a plan into action, the next step is to make design choices that match a 

set procedure.  

The characteristics of a methodology encompass a variety of attributes that are 

separate from its fundamental structure. These features often rely on the specific mecha-

nisms utilized and are typically the most influential factors in selecting a methodology 

from various options. For instance, the management of a design project imposes its own 

set of requirements, such as the need for benchmarks and progress reportability, the abil-

ity to predict and therefore organize the use of design-related resources, including person-

nel, and the necessity for documentation [32]. Satisfying these requirements depends on 

how stringent they are in a particular environment and on the basic features of the design 

mechanisms used in the methodology. To some extent, it is the mechanisms that yield the 

most effective inter. faces between the structure and the features perceived by both man-

agement and the designers; it is the mechanism that represents the medium for communi-

cating the design. A point of some importance, therefore, is the proper choice of mecha-

nisms. The associated mechanisms can obscure a good methodology, and, to some extent, 

a poor methodology can be made acceptable with suitable mechanisms. Finally, in this 

regard, the structure and features of a methodology may be so inextricably combined as 

to be inseparable even for examination. It is desirable that the mechanisms, and other im-

posed procedures, be supportive and lead to designs within the constraints. This is easier 

to state than to do in many environments.  

The key to success for any design team lies in a solid understanding of the re-

quirements and awareness of alternatives. Therefore, the methodology should capture the 



 
 
 

51 

requirements, highlight alternatives, foster synergy, promote and nurture creativity, sup-

port individual and team efforts, be manageable, and be comprehensible to the average 

intellect within the design team. The last requirement is often overlooked, yet there are 

limits to human intellects, and esoteric excursions into abstractions are almost always 

doomed to failure, regardless of their other merits.  

Design Strategies 

Before exploring the different strategies, tactics, and mechanisms, it's worth not-

ing that there's significant debate over the sole use of any one group of them. The general 

agreement appears to be that a thoughtful combination of all these elements is likely what 

leads to successful designs. In this section, we will examine strategies in greater depth. 

Top-down design strategies are commonly recommended, and tasks are carried out in a 

sequence that progressively defines the layers of the system. It's a fundamental principle 

in the top-down method that there's a hierarchical relationship between these layers that 

can be identified [33].  

The system design incorporates horizontal logical partitions that naturally create 

modularity. To further enhance this modularity, vertical partitions can be introduced 

within each layer. It should be noted that this is a strategic approach, and the specific tac-

tics or mechanisms for achieving these benefits still need to be determined.  

Deviations from a strict interpretation of this design procedure often occur, even 

in strictly software projects. For example, the target language for implementation may be 

fixed. This constraint may force subtle biases into the process because of inherent lan-

guage limitations that influence the software architecture. Financial constraints, for exam-

ple, may force the use of existing software modules, which may not be suitable [33].  
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At an even more pragmatic level, it is not always obvious where the top is. It is 

presumed that this is somehow obvious from the user requirements and specifications. 

Experience tends to confirm this is a contentious issue in many situations, and even con-

sensus does not guarantee it has been found. Generally, the steps are not independent, and 

strict precedence relations among successive steps are often impossible to maintain. The 

lack of a strict precedence relation between successive steps in a top-down design process 

does not invalidate the concept. It means that human intellect must accommodate the con-

straints and imposes the necessity of iterations between steps in the design. Before dis-

cussing the impact of such iterations, it is perhaps wise to discuss the other approaches. A 

different approach from the top-down strategy is the bottom-up strategy, which involves 

successive compositions [34].  

Undoubtedly, this approach has demonstrated its success and cost-efficiency in 

numerous systems. As long as the final expansion of the system falls within the capabili-

ties of the presented set of fundamental modules, this methodology can be applied with 

effectiveness. However, two potential challenges may arise. It can be difficult to accu-

rately anticipate whether the intended system can be executed with precision. Secondly, 

estimating the associated costs can also present difficulties. Therefore, a keen understand-

ing of feasibility becomes crucial for a successful design project that begins with a di-

verse range of pre-existing components.  

In a broader sense, all designs are constrained by existing target components. We 

cannot arbitrarily specify gate delays in hardware or instruction execution time in soft-

ware. A design procedure must accommodate such constraints while creating a design 

that realizes the original requirements. A comparison of these two approaches will be 
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made before considering compromises. Both approaches are strategies for bridging the 

gap between a set of specifications and a system. Our conclusion is that whatever features 

of either method prove useful should be used. The top-down approach is supposed to 

yield a correct solution, and it can be shown to execute the requirements [34, 35].  

The major criticisms in this regard are twofold. First, for a very large system, it 

may not be possible, in any circumstances, to prove or even demonstrate overall correct-

ness. This is a major problem in creating complex sensor components, and second, even 

if it is correct, it may not be implementable within the framework of all the constraints. 

This is a most serious reservation in extending a strictly top-down strategy beyond soft-

ware. A response-time constraint is always present in signal processing systems. Exces-

sive modularity, imposed by the top-down approach, often leads to inefficient execution 

of an algorithm. On the other hand, it is much easier to optimize a modular system that is 

known to work than to debug a nonworking but potentially highly efficient system.  

The bottom-up approach begins with basic components known to be available and 

working. The system is constructed by successively combining these components, in the 

same sense that a carpenter combines components to build a house. The major criticism is 

that the resulting system may not meet the specifications because the original components 

were inappropriate. Further arguments suggest that critical choices made at a low level 

may seriously constrain or inhibit decisions that must be made at higher levels. On the 

other hand, as the design proceeds, there is no difficulty in proving that what has been 

constructed thus far works. Progress payments may depend on such demonstrations [35].  

A top-down approach generally takes longer to formulate the logical structure be-

fore architectural choices are apparent. In the bottom-up approach, convergence may be 
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faster but dependent on many intangibles such as experience and insight. There is no ab-

solute assurance, however, that a top-down approach will yield appropriate candidate ar-

chitectures or that the choice of basic components in a bottom-up approach will yield an 

acceptable system.  

All practical designs are constrained in some way. The important requirement is 

to accommodate these constraints without inhibiting the innovative talents of the design-

ers. A hybrid approach is almost always necessary; designs often proceed from both ends 

and meet in the middle. Indeed, as we shall now discuss, they could start in the middle 

and proceed outward, or vice versa [35].  

The Significant-Components Approach 

In this method, the system parts that operate under the most constraints are de-

signed first. The rest of the system can be designed and integrated using other methods. 

By utilizing this approach, the designer can ensure that critical operational limita-

tions are satisfied. Additionally, there is added assurance that crucial system functions 

can be carried out successfully. This method requires some knowledge about the logical 

structure of the system. It is suggested that this approach serves as a standard for dividing 

the logical functions of the system. Experienced designers can often recognize the pres-

ence of crucial components in a design right from the start, regardless of the strategy em-

ployed.[35]. 

Constraint-Driven Design 

Constraints are commonly present in numerous design environments. The design 

aims to meet these limitations in such situations. Constraint-driven design is a method 

that aligns all design strategies with the realities of critical components and constraints. 
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The primary feature of this approach is the explicit acknowledgment of the stage 

in the design process where a constraint exerts its impact. These constraints may appear 

as structural biases introduced by the specifications from the top or critical components 

inserted from the bottom. Moreover, other constraints present in the specifications or the 

design environment are addressed at a suitable stage in the process. 

This approach has two notable advantages. Firstly, it's more likely to converge on 

an acceptable solution. Secondly, the constraints are addressed at the appropriate level. 

This method includes several advantages claimed by other approaches. In general terms, 

it is executed in two sequences: from the top and the edges. From the top, the design fol-

lows a logical sequence of steps that connect the specifications to a product. From the 

edges, the influence of any constraints is determined for each step. [36]. 

The strategy described here is appealing yet it is difficult in some cases to parti-

tion the constraints and to demonstrate their specific influence. Constraints might, for ex-

ample, dictate a bottom-up approach or vice versa. A fundamental commonality among 

all the strategies discussed earlier is their attempt to modularize the overall system de-

sign. The core idea of dividing complex systems into major system modules is intuitively 

attractive as it enables the overall structure to be understood as a whole while concealing 

the implementation specifics within well-defined modules. This is recognized by reflect-

ing upon the similarities between access graphs, which originated in operating system de-

sign, and structure diagrams, which reflect the concepts of a high-order language. The 

cornerstone of both approaches is the hiding of detail within well-defined conceptual 

modules. The procedure for arriving at such a modularized system description, following 

the general guidelines of any chosen strategy, is governed by a specific design tactic [36].  
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Control-Driven Approaches 

Control-driven design approaches are generally more widely recognized. Identify-

ing the functions to be performed, along with their necessary precedence and control fea-

tures, are a natural approach for real-time processing. Historically, the development of 

software systems and the design of operating systems have focused first on revealing and 

decomposing the functions to be performed. The required data structures are constructed 

and integrated into the system after the process interaction has been designed. This ten-

dency is apparent in using access graph concepts for system design, where processes and 

monitors constitute the main conceptual units and the data structures are implicit. One of 

the basic problems of simple access graph concepts is extending them to include more ex-

plicit detail concerning data structures. A more important reason for a control-driven 

strategy to seem natural is our general familiarity with the basic computing concept and 

procedure-oriented programming methodologies [36].  

In a conventional processing environment, we tend to think of processing as the 

ordered sequential execution of procedures acting on a data set available within the sys-

tem. The natural tactic for designing such systems tends to concentrate on the definition 

of the procedures and their ordering and coordination. New programming methodologies 

and architectural concepts have been developed that concentrate more on the data in-

volved in the processing, their protection, their manipulation, and their flow throughout 

the overall system. These new approaches are appropriate in our area of design. Most 

successful implementations of data-flow-driven designs have been in software rather than 

as complete systems. However, signal processing has strong data-flow characteristics as 

well as real-time constraints. A design procedure for such systems must accommodate 
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both data flow and control characteristics. In addition, experience indicates that deriving 

either from the other often leads to a contorted system structure. In signal processing, the 

existence of input/output streams of data is a common characteristic. The procedural enti-

ties required to manipulate these data are also rigorously specified and constrained in 

real-time performance. A hybrid approach is required. The concepts of control-drive and 

data-driven tactics reflect only the initial part, the tip of the iceberg of a fundamental divi-

sion in system operation and control [37].  

Design Mechanisms 

A wide variety of mechanisms is used to support design activities of all kinds. 

Many of these mechanisms are graphic, or partially graphic, in nature, ranging from tim-

ing diagrams, circuit diagrams, logic diagrams, and block diagrams used for hardware de-

sign to flowcharts, bubble graphs, access graphs, and structure diagrams generally used 

for software design. Other design mechanisms are more textual or symbolically oriented, 

such as algebraic transfer languages, pseudo-code, and structured English. 

A basic feature of a design mechanism is that it provides a consistent set of prede-

fined concepts and an associated representation of these concepts, with which designs are 

described, represented, and communicated. The major requirement placed on a design 

mechanism is that it is appropriate for the design process it is supposed to support.  

Two important aspects of design mechanisms, in general, are apparent. At the 

lower levels of detail, the design mechanisms traditionally used for hardware and soft-

ware designs tend to vary considerably, reflecting the general trend to treat hardware and 

software design as separate technological activities [38]. At a higher level of abstraction, 
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common design mechanisms could be used and interpreted as either hardware or soft-

ware; and the more detailed the level of description represented by a specific design 

mechanism, the more closely it tends to be associated with either a particular tactical ap-

proach, a specific design process, or a preconceived implementation mechanism. 

Consider first the traditional association of design mechanisms with either hard-

ware or software. If we select design mechanisms that are pre-associated with describing 

either hardware or software, then they influence our perspective of the implementation 

approach from the start. Conversely, our perspective of how we will implement a design 

impacts our choice of the support mechanisms we select to describe the design. This may 

be desirable in many design environments. Suppose selected design mechanisms bias the 

design toward the wrong implementation approach. In that case, it means, at best, a more 

difficult task to reach the correct final solution for implementation and, at worst, a com-

plete design failure [37].  

Suppose we choose sufficiently abstract mechanisms that can be interpreted as 

hardware or software. In that case, generally, they do not allow sufficient detail to be ex-

pressed about lower-level details, and a change to another design mechanism is required 

once the decision is made. It is desirable to have a design mechanism that applies equally 

well to hardware and software yet allows for detailed design representation in both areas.  

Next, consider the association of design mechanisms with either a data-driven or a 

control-driven approach. We must deal with both the data flow and control aspects of the 

system eventually. If we must use two different mechanisms, they should be easily re-

lated. Ideally, we should be able to address both aspects with a single design mechanism. 
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Ideals are rarely implementable in practice. What we appear to need are appropriate de-

sign mechanisms for dealing with both hardware and software descriptions from both 

control-driven and data-driven tactical approaches. We demonstrate that this requirement 

can be met with a combination of design mechanisms, one flowing smoothly into the 

other. Mechanisms often become inbuilt through extended use, even when they are inade-

quate and inefficient. It often seems easier to work longer with inefficient tools than to 

learn new ones. The previous familiarity provides inertia which can be difficult to over-

come. The advantage of Digital Twin in its implementation with Azure makes the simula-

tion easier [38].  

Starting Point, Scope, and Scale of Design Methodologies   

The starting point of a methodology should be well-defined. This point must be 

unambiguously identifiable; unfortunately, it rarely is. The reason is open to controversy; 

however, it is proposed here that it is the content of the specifications or some less rigor-

ous requirements statement that confuses starts. If the methodology is well defined and 

understood, then the execution of the algorithm might tolerate several starting points. The 

requirement is to have all the input information required to drive the algorithm, and 

herein lies the problem; specifications are seldom complete, orthogonal, or structured to 

provide the required information.  

The scope of a methodology refers to the class of problems to which it can be suc-

cessfully applied. The scale refers to its capability to handle the whole problem, from the 

overall systems to programs and processor design. A methodology that is well suited for 

designing complex software systems may not be at all suitable for projects which require 
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a large amount of hardware and software design. In his case, the scope of the methodol-

ogy appears to be too narrow [38].   

Complexity and Integrity 

We have provided an overview of design methodologies above. An analysis was 

conducted on the different structural characteristics of a design methodology with regard 

to its tactics, mechanisms, and strategies. 

Choosing a design methodology is a complex matter that must address issues not 

only in the system being designed but also in project control and management. Strictly 

orthogonal choices are rarely possible due to the near-universal presence of numerous 

constraints that influence design decisions. These constraints necessitate iterations on the 

design steps that distort a purely successive refinement of the successive composition ap-

proach. Perhaps more significantly, these iterations require human intervention, reducing 

the possibility of fully automating the design. 

From this overview, we can derive several fundamental conclusions. Firstly, a 

rigid adherence to a single, purely orthogonal design strategy is unlikely to yield optimal 

results for real-world design problems. Secondly, the multileveled complexity of pro-

cessing systems, coupled with the need to accommodate constraints, necessitates some 

form of iterative procedure within any design methodology. Thirdly, applying either a 

control-driven or a data-driven tactic may be required at different design stages. Lastly, 

mechanisms that support a variety of strategies and a hybrid tactical approach are essen-

tial. A discussion of the details of the design process must wait until more concepts are 

developed and related to a system description mechanism. In modular processors, the 

modules may perform their functions in parallel and combine their results to form a final 



 
 
 

61 

answer. We must have a descriptive mechanism to account for this concurrency and for 

the implied synchronization problems [38].  
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CHAPTER 4 

INCORPORATING DIGITAL TWIN TECHNOLOGY INTO THE FRAMEWORK: 
CASE STUDY 

 
 Utilizing digital twin technology enables us to address the complex issues present 

in the Identity and Access Management (IAM) process we previously discussed and cre-

ate a secure environment where automation and provisioning can coexist. This strategy 

will assist industries in enhancing their IAM process to meet higher security standards. It 

will enable the automation and provisioning processes to work seamlessly to identify and 

anticipate potential issues [39, 40].  

Current Identity and Access Management Issues 

Many companies struggle with managing their users and ensuring their security 

entitlements, which various factors can cause. However, digital twin technology offers 

potential solutions to address these issues. 

Users must sign into a large number of systems and apps, and this number is ris-

ing. Although the federation and password repository are mostly being used in corpora-

tions, but the challenge is still persistently existing. Regulatory requirements add to the 

administrative, auditing, and policy-enforcement burden. The process of deactivating ac-

cess may need to be expedited or made more reliable to prevent users who have left the 

organization from maintaining access. It's crucial to ensure consistent security for privi-

leged accounts, such as Administrator accounts, as failure to do so can result in weak ac-

countability and allow departed users to retain access to critical systems [41]. Over time, 
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users can accumulate security entitlements, which can potentially lead to fraud or other 

abuses. Responding to audit inquiries about who has specific access, who requested and 

approved it, and whether it aligns with policy can be a lengthy process. Addressing these 

requirements and constraints is vital in showcasing the Azure implementation in our case 

study. Hence, we will delve into these aspects in greater detail. 

Requirements and Constraints 

The user requirements form the working document that drives the preparation of 

requirements specifications. The logical structure of a requirement specification may be 

assumed to be composed of two parts, the operational description and the constraints. 

Each part forms a link to the remainder of the design and implementation.  

The operational description portion of the specification should form a reasonable 

image of the original requirements, augmented by the perception of what is possible as 

opposed to what is ideally desirable. In the following discussion, a performance measure 

will be considered, which provides a method of quantifying the processing required at 

each step. Here are implied the nonfunctional requirements imposed on the final system 

[48]. These constraints fall into two broad categories for our purposes; implementation 

limiting constraints directly limit the choice of final components and physical architec-

tures, for example, cost, specified technology second sourced components, specified 

equipment, environmental constraints, etc [38].  

Structural constraints force logical partitions on the system before the implemen-

tation phase, for example, modularity, fault tolerance, maintenance features, system jour-

naling, and reliability. It combines the performance requirements outlined in the opera-

tional description and the constraints that lead to the acceptance criteria. These generally 
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take the form of a specific set of operational benchmarks that must be demonstrated as 

the final proof of compliance with the requirements.  

Quantifiable Constraints 

In the specification, quantifiable constraints that stem from an examination of the 

system and its components are taken into account. These constraints may not always be 

straightforward or fully comprehensible, but they are linked to numerical values that the 

designer must either incorporate or provide a justification for. 

Quantifiable design limitations exist, with three commonly grouped into the relia-

bility category. Reliability refers to the likelihood of fulfilling the operational function for 

a set duration and is impacted by various factors, including the failure mechanism model 

assumed. It is identified by predicting the mean time between failures (MTBF). The study 

of failure models and the calculation of MTBF numbers are beyond the scope of this dis-

sertation. However, several other factors are closely related to reliability.  

Availability is defined as the percentage of time the system is operational. It is re-

lated to reliability and to the mean time to repair (MTTR) a failure, i.e.,  

𝐴 =
MTBF

MTBF + MTTR 	x	100% 

This attribute is useful because it relates to and focuses many decisions in the design and 

implementation phases [42].  

It is the relationship between MTBF and MTTR that determines the availability of 

the system. At one extreme, systems that recover from failure in zero time regardless of 

the MTBF are always available but if each failure resulted in lost data, no useful work 

would ever be accomplished. On the other hand, extremely reliable systems that cannot 

be repaired are available only until the first failure. The system failure rate is a composite 
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function of component reliability and the redundancy built into the system. MTTR is also 

a function of redundancy.  

For a system to be accepted by the customer, acceptance tests must be passed, 

which are based on quantifiable constraints. It is crucial to understand how these con-

straints influence design decisions, and even more important to identify which design de-

cisions impact these constraints. Although it can be challenging to develop general guide-

lines, in specific cases, each quantifiable constraint should be explicitly considered dur-

ing every decision made in the design process. Digital Twin technology has addressed all 

of these aspects. 

Nonquantifiable Constraints 

In nearly every set of specifications, there exists a set of attributes that are chal-

lenging, if not impossible, to quantify. These include those which cannot be accounted 

for in the direct design sequence; therefore, they are analyzed or accounted for after the 

design is completed. The limitations imposed on a design project are often not quantifia-

ble based on a universally accepted framework, but are instead established and acknowl-

edged for the duration of the project. 

In this category fall many attributes such as modularity, extensibility, graceful 

degradation, and in some cases even reliability. In general, it is difficult to accommodate 

all constraints in any reasonable design algorithm. Indeed, the one we shall suggest in  

It is difficult to provide general guidelines in this regard; however, a specific ex-

ample may help. Suppose a system is proposed that has, in addition to performance, a 

stringent requirement for reliability and modularity in both new functions and growth. It 
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is straightforward to demonstrate that a proposed design achieves the desired perfor-

mance. Given this, a reliability analysis could demonstrate compliance with the reliability 

specification. Modularity could be demonstrated by adding new functions or other growth 

increments. From the list of prospects that satisfy the performance requirements, a shorter 

list can be prepared of candidates that satisfy all the other constraints. These constraints 

are thus real, although challenging to deal with directly in the initial phases of a design.  

The ability to offer degraded performance in the presence of a fault implies that 

no component can completely inhibit performance if it fails. A single-point failure is a 

component that, if failed, completely stops operation. These components are the first to 

be subjected to extensive reliability considerations and, perhaps, for replication to 

achieve redundancy. With the use of IoT devices and Digital Twin, in conjunction with 

Machine Learning, future failure will be predicted ahead of time, reducing the downtime 

of the operation. 

The nonquantifiable constraints will form the second attribute to be considered in 

an algorithm for assigning logical architectures to sensors. There are examples of these in 

power distribution systems [43]. 

Logical Design 

In the final implementation of any digital processing system, including compre-

hensive systems like Digital Twin, there are two major physical realities: the system-wide 

sensors and the code representing the software executed by the programmable portions of 

the sensors. The final system design is a detailed definition of the sensors and the soft-

ware and how they work together to perform the required processing. The systems design 

process involves transitioning from a statement of requirements and constraints to a final 
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definition of the hardware and software that meets the stated requirements within the 

specified constraints. 

A physical description of the system is given in terms of its hardware and soft-

ware components. A logical description can be given regarding the logical requirements 

for system data flow and control. When we first attempt to compare these descriptions at 

the overall system level, we usually find a complex mapping between the two. That is, 

the distinct high-level data flow and control aspects of the system do not usually map di-

rectly either to specific hardware or software elements in a one-to-one manner. 

The logical design process is viewed as a reversal of the process of architectural 

analysis. The analysis begins with a physical system and breaks out the data flow and 

control features such that the system structure and operation can be examined. Starting 

with a set of requirements, the logical design process entails organizing them into a logi-

cal description of the data flow and control features. This description serves as a founda-

tion for choosing a physical system implementation.[44].  

Partitioning of System Functions 

When presented with the system requirements specification, the designer must 

first identify the primary functional requirements of the system. The requirements should 

then be categorized into distinct groups based on the user's perception of system func-

tions and the corresponding operational properties of each group.There are two main cat-

egories for these system functions: grouping them into primary functional requirements 

and taking into account their operational characteristics.dataflow and control functions. 

The specification should provide sufficient information to define all the required user-vis-

ible system features, such as levels of programmability and/or modes of operation. For 
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instance, the specification may require the system to operate in a turnkey or fixed-func-

tion mode at the highest level yet necessitate the system to be programmable at one or 

lower levels of operation..  

Also included in this step is the separation of the nonfunctional requirements and 

constraints. That is, partition the system requirements into an initial hierarchy based on 

specified system interfacing and functional operation requirements if such a hierarchy is 

obvious while setting aside the nonfunctional requirements and constraints to consider 

only when they explicitly impact design decisions. For each system level, starting with 

the top level, define the required interface characteristics in terms of the logical system 

functions which describe the visible characteristics of the virtual machine. This is similar 

in concept to the definition of the visible part, or specification, of a package or task in a 

structure diagram. Indeed, as we shall discuss later, this is exactly the way to use struc-

ture diagram concepts as a mechanism to support this design approach [45].  

The purpose of this first step in the logical design process is to create, from the 

specifications, a global perspective of how the system must be structured. This usually 

involves numerous sketches, at the block diagram level, of various functional partitions 

that might prove feasible. The process is often started by postulating the system as a 

black box and considering the overall system interfaces required. This is logically equiva-

lent to defining the outer interface layer of the system onionskin diagram perspective. 

From the interface, one could consider all the input/output signals and devices that must 

be attached. It is unusual to find specifications that are devoid of such requirements, alt-

hough they may be part of the design goals. However, more important at this initial stage 

of the design process is the identification of all the logical system interfaces required. The 



 
 
 

69 

best guidelines that can be offered here are to carefully examine the operational descrip-

tion of the intended system use. From this description, a partitioning of the various modes 

of operation and the associated system functions for each mode should be possible. This 

may be considered an initial attempt to match the system requirements to the logical sys-

tem perspective. This partitioning of the specified system requirements could result in a 

single overall virtual machine, an obvious hierarchical partitioning into several virtual 

machine layers, or possibly a logical structure that has more than one distinctly partition-

able virtual machine description at the outermost edge of the onionskin [45]. 

In general, every logical interface or physical input/output device will require 

some tasks to manage its affairs. Indeed, experience indicates that a basic principle of 

structure diagram generation is to assign a task to every input/output. These may be later 

combined or further partitioned, but that does not violate the principle. Thus, a basic logi-

cal partitioning can be. 

The partitioning criteria are usually difficult to quantify exactly. Two opposing 

considerations are usually evident. Partitioning must proceed until it is evident that the 

major functions demanded by, or implicit in, the specifications have been met; and the 

granularity of the partition should not proceed to such a level as to constrain the consider-

ation of optimal solutions.  

The point here is that the boundary is a gray area, and, once again, explicit direc-

tions are not forthcoming except in the form of general principles. Whenever possible, 

the partitioning should be organized as a hierarchical structure such that distinct levels of 

modularity are maintained. These levels should be matched to distinct logical levels of 

system interfacing and modes of operation, if possible. We note, however, that this initial 
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system partitioning is primarily concerned with user-visible system operation and interac-

tion. Thus, it often concentrates on system control features, and a control-oriented ap-

proach seems applicable initially, followed by data-flow considerations later. The follow-

ing general principles are offered as guidance in this first step of the logical design.  

Assemble a list of the major system functions specifically required, or implied, by 

the specification. This list should represent all the user-visible system features that will 

form the basis for validating the design and establishing system acceptance criteria. Also, 

separate all nonfunctional requirements and constraints that are specified. Try several ini-

tial partitions of the system functions based on separable modes of system operation, no-

ticeable logical levels of user visibility or programmability, etc [44]. The inputs to this 

activity will come mostly from the operational description portion of the specification if 

one exists, or it may be necessary to extract an operational description of the system from 

the performance characteristics portion of the specification. This activity will also be in-

fluenced, to a considerable extent, by the designer's perception of who will use the sys-

tem and in what operational context. Stop the partitioning of a candidate as soon as a 

clear picture emerges that the essence of the specifications has been captured.  

Several potentially useful partitions may emerge, especially if the design team has 

multiple designers. Provided each seems reasonable, they should all be retained, for it is 

rarely possible at this stage to choose an optimal solution. The next step is to design the 

logical architecture and refine the definition of each virtual machine, such as Digital 

Twin.  
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Logical Architectures and Virtual Machines 

The second step of the logical design phase involves the creation of a logical ar-

chitecture description for the virtual machine(s) defined by the system interfaces. Follow-

ing either a control-driven or a data-driven tactic and using a specific descriptive mecha-

nism, we must define the logical structure, organization, and interaction of the system 

functions to provide the necessary operational features of the interface. This implies a 

definition of the logical operation of the virtual machine, as seen from the interface 

above, and a description of the operation, organization, and interaction of the data flow 

and control functions that implement the logical interface. This may be compared to the 

description of the body of a package or task whose specification represents a virtual ma-

chine interface.  

The logical architecture can be described using a variety of descriptive mecha-

nisms, such as an access graph or a structure diagram. We shall use structure diagrams 

exclusively in this book as the final descriptive mechanism for logical architectures, alt-

hough we shall also use data-flow graphs as an intermediate design mechanism which is 

useful in the derivation of structure diagrams. In this step, the system functions must be 

incorporated into alternative proposals for tasks and packages, before considering their 

interconnection through either rendezvous or simple calls [46]. Data-flow diagrams may 

be considered overly simplified structure diagrams in which the distinction between 

packages and tasks has been removed, and all the access arrows are omitted, leaving only 

nodes representing functions and the data-flow arrows. Data-flow diagrams allow a quick 

analysis of several possible functional decompositions of the system without having to 
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consider the detailed control issues of function interactions. Thus, data-flow diagrams ex-

plicitly support a data-driven tactical approach to logical systems design.  

From the logical architecture description, define a set of support functions needed 

to implement that logical architecture. This essentially represents a decomposition of the 

functions of the logical architecture into a set of sub-functions for implementation. These 

sub-functions define the requirements of the next lower-level virtual machine for which 

the entire logical design cycle can be reiterated. This recursive process stops when all 

user-visible system levels, identified from the specification, have been defined and/or 

when a direct hardware implementation of the virtual machine functions seems possible 

within the constraints.   

A design team on familiar ground can often merge these two perspectives. How-

ever, when confronted with new systems, the explicit separation of these perspectives is 

necessary to expose the range of possible solutions and to encourage innovations in the 

process. Our basic strategy is to maintain this separation and create a logical description 

of what the system must do before considering specific implementation possibilities. Dur-

ing the following discussion, we will deal only with the logical perspective [45].  

The ideal scenario is that the implementation specifics should not influence the 

design. However, past experiences often provide valuable insights on how to proceed. 

There are instances where starting with a bottom-up design can be highly successful. 

Generally, these potential solutions should be identified, and other options should be ex-

plored before making a final decision. It's important to avoid committing to a specific 

hardware or software implementation. The factors that determine the best balance be-

tween these implementation methods are constantly evolving. 
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Regarding logical complexity, it's preferable to maintain simplicity at this stage. If 

a logical description of functions is excessively complex, it can lead to three issues. 

Firstly, the complexity is likely to increase during the implementation phase. Secondly, it 

could suggest that the operational requirements needed to be fully understood. Lastly, it 

could prevent a thorough evaluation and validation [46].  

Several basic issues and alternatives must be considered in formulating logical ar-

chitectures. These include not only the data-flow characteristics that must be supported 

but also the basic system operation and control philosophy to be followed, the specific 

control mechanisms required, and the issues of centralization and distribution of func-

tions that impact scheduling and synchronization schemes. The logical architecture serves 

two additional functions. First, it creates the requirements for the next lower-level virtual 

machine to support it, and second, it becomes the object for partitioning and allocation 

onto hardware [47].  

Partitioning and Allocation to Hardware Sensor Systems 

The purpose of the logical design procedure is to create a system description that 

outlines what it does and how it is logically structured. Using a descriptive mechanism 

akin to a high-level language to define various system functions and sub-functions should 

not be mistaken for the final implementation mechanisms. The logical system description 

simply identifies what the system needs to do. Once this description is complete, it must 

be divided and allocated to a specific hardware architecture. It is at this stage in the de-

sign process that the full impact of both the performance requirements and the implemen-

tation constraints are felt.  
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The hierarchical system description could be created down to an arbitrary level of 

detail, such as defining the details of individual words or even bit manipulations. How-

ever, we anticipate allocating at least some system functions to hardware at a very high 

level when IoT sensor implementation technology is used. Thus, the allocation of major 

system functions to an overall system hardware architecture may take place at or near the 

highest-level virtual machine description. In this sense, the initial iteration of the logical 

design phase of this methodology is essentially the same as the basic edges-in approach. 

There are two major activities closely linked at this point in the design process. First, the 

logical system description must be partitioned for allocation to hardware, and second, an 

appropriate hardware architecture must be selected. The overall process of partitioning 

the logical architecture and allocating this partition to hardware requires that both parti-

tioning and hardware selection be done together and iteratively [47].  

One of two opposing approaches might be taken in this activity. The first ap-

proach could be to partition the logical architecture according to certain parts-toning rules 

and guidelines. The results of various partitioning attempts could be used to select a suit-

able hardware architecture. The opposing approach would allow some general character-

istics of known hardware architectures, or constraints, to drive the system partitioning. In 

practice, some combination of the two approaches is required to achieve suitable parti-

tioning and allocation.  

The known performance characteristics of various hardware architectures can be 

used to help develop rules and guidelines for system partitioning. The results of partition-

ing the system concerning such rules can suggest appropriate allocations to specific hard-

ware structures. Considering the performance requirements and constraints, the result is 
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an iterative procedure whereby the alternative logical architecture partitions are allocated 

to various candidate hardware architectures. The resulting systems are analyzed and com-

pared concerning performance and compliance with the specifications [42].  

Partitioning 

The structure diagram representation of the system could be implemented as soft-

ware on a multi-purpose computer. If such an implementation satisfies the system specifi-

cations, it is a desirable way to proceed, for the implementation mechanisms are well un-

derstood. If this is not the case, then the logical system description must be partitioned for 

allocation onto an array of processors. Unfortunately, formal partitioning algorithms are 

not pragmatically viable or are limited in scope. This state of affairs prevails because of 

the numerous conflicting requirements on the partitions. To begin with, the partitions 

tend to determine the structure of the physical interconnection topologies. The partitioned 

algorithm may not yield a correspondence to any realizable physical architecture. Thus, 

an overall requirement is for a meaningful relationship to exist between logically and 

physically realizable partitions [48].  

Partitions based on the modularity constraints require that the impact of such 

changes be confined to a single partition. Ideally, the addition of a new feature should be 

accommodated with no contamination of existing partitions. Reliability is also affected 

by partitioning. Failure effect analysis must ensure that failures are contained within a re-

stricted boundary, ideally one partition or a subset of it. These failure containment bound-

aries can be used to detect and recover from failures. Such an analysis should also point 
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to the optimal components to be replicated to obtain redundancy to meet availability re-

quirements. Finally, the partitions should enhance the ability to reconfigure the system 

for graceful degradation in the event of failure [43].  

The problem of partitioning and allocation of the logical system description to a 

specific hardware/software implementation may also be approached hierarchically. The 

overall system, as represented by a high-level virtual machine description, may be parti-

tioned, and allocated to a general high-level hardware architecture. The specific perfor-

mance requirements that this allocation places on the various elements of the hardware 

may then be taken as the input virtual machine requirements to define a set of modular-

ized subsystem design problems, which can each be approached separately by an iteration 

of the entire logical design and hardware selection phases. We note, however, that ex-

treme care must be exercised in breaking the design problem down in this way. It may 

turn out that one or more of the subsystem design problems does not have a viable solu-

tion that meets the performance requirements and the implementation constraints. This 

can lead to the costly situation of a complete system redesign. Partitions are, in the end, 

linked closely to available hardware architectures.  
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CHAPTER 5 

DIGITAL TWIN SIMULATION WITH CONSTRAINTS  

Based on how this service is used in the real world, there are different definitions 

for digital twin. This section concentrates on summarizing the most often-used definition. 

A digital twin can be a complex machinery such as a power turbine or a simpler entity 

such as a water pump [49]. 

Digital Twin is a real-time counterpart of the running IAM process and will simu-

late a real IAM workflow, it uses real-time data from parts of an IAM workflow and sim-

ulates them, to analyze data from IAM process and make intelligent decisions. Digital 

Twin will learn and understand, how an IAM workflow is operating now, and predict 

how it will operate in the future for taking preventing measures or alert humans to act in 

timely manner. One of the primary themes is the development of digital simulation mod-

els for physical and technical objects. These models are not static; they evolve in sync 

with the lifecycle of the physical object. Such dynamically updated models can continu-

ously receive new data from sensors attached to the technical object, control devices, the 

environment, and larger systems. They can generalize newly obtained and past data and 

adjust the model's parameters. Essentially, a dynamically updated model of the object is 

its digital twin. 

The digital twin is regularly trained with fresh and historical data. It adjusts pa-

rameters in real-time, adapts to external conditions, and calculates the ideal behavior of 

the technological object in the current environment. Dynamic digital models allow us to 
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project technical objects into the digital realm, enabling us to use them to enhance the op-

eration of technical objects, automate technical condition monitoring, diagnose faults, 

and predict technical conditions [49]. 

Digital Twin and Identity and Access Management 
 

In IAM, the proliferation of digitalization and the complexity of connectivity de-

mands a mechanism that can assess the operation and security of vital infrastructures. 

Digital Twin (DT) is changing IAM in this area. DTs are virtual replicas of real systems 

that mimic every aspect of a product or process and can deliver actionable insights 

through monitoring, optimization, and prediction, all powered by asset centric data. Fur-

thermore, DT with replication and simulation models can prevent and discover security 

problems in the IAM without interfering with the live system's operations.  

However, such DT advantages are predicated on a belief in data trust, integrity, 

and security. When it comes to the integration and interoperability of many components 

or sub-components among distinct DT owned by multiple stakeholders to provide an ag-

gregated view of the complex physical system, data trustworthiness is increasingly cru-

cial. Furthermore, processing large amounts of data in real-time to generate actionable in-

sights is a vital requirement that necessitates automation. Finally, we identify roadblocks 

to adopting intelligence-driven architectures in IAM [50, 51]. 

Implementation Details using Azure 

The procedure described here is a complete instruction to create digital twin in 

Microsoft Azure for this project. We will build a digital twin model for IAM processes. 

In this model, we will simulate users’ lifecycle process from the time is onboarded to the 

time they are terminated.  
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We are going to create the Digital Twin instance, then we will create an Internet 

of Things (IoT) hub. We will simulate some selected sensors transmitting data from 

selected devices as a step in the IAM process. We will have that data ingested into the 

IoT hub, and then we and then will load that data into Digital Twin using an Azure 

function.   

In these sections, we will demonstrate creating and setting up the environment in 

Azure Digital Twins [52]. 

Creating An Azure Digital Twins Instance 

In the first step, we will create a new instance of Azure Digital Twins by logging 

on to the Azure portal at https://portal.azure.com and locate Azure Digital Twins in the 

Azure Marketplace [53] as depicted in Figure 12. 

 
 
 
Figure 12: Locating Azure Digital Twins in Azure Marketplace. 
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Creating Resources 

 Resources are the components in Azure Digital Twins that are necessary to build 

an environment to simulate a real-world scenario. Azure resources will include our 

subscription to Azure, resource group, and geographical region. Figure 13 illustrates the 

creation of ADT resources. In the basic tab option, we specify the subscription to the 

ADT instance and the resource group associated with it. A resource name must be given 

along with the geographical location. We have chosen West Central US to be close to 

UAB where the demonstration and ingestion are performed. 

 
 
 
Figure 13: Creating Azure Digital Twins resource. 

It is essential that extra attention should be given to Azure access control and 

roles for the resources that we build to eliminate any access issues, as it is depicted in 

Figure 14. Check access is chosen to view the owner access and all other delegated 

access. In this view, we added roles and assignments.  



 
 
 

81 

 
 
 
Figure 14: Azure Access control. 

Figure 15 depicted the list of current access control given to users to utilize the 

ADT subscription. The access control within Azure is very granular which we leverage to 

provide access to users who are involved in this project. Azure Data Owners must be 

explicitly entered in the Azure AIM and given proper roles to be able to access and 

manipulate the data. 

 

 



 
 
 

82 

 
 
 
Figure 15: List and assign roles in Azure Access control panel. 

Creating The Digital Twin Models 

A digital twin is a virtual representation of a process or an object which simulates 

the lifecycle of the entity which is being used [54].  

The following JSON code [55] in Figure 16, illustrates the Azure function for 

ingesting data from IAM devices into the IoT hub of the IAM process models. This file 

contains the basic tags necessary for this project, the tags are “context,” which is the 

metadata for the DTML and DTDL information, and the version number, in this case, 

version 2. “id” is the DTMI string for the type of information we have added here which 

is “user.” The JSON code also includes contents, consisting of type, name, schema, 

description, and if the data is read-only or read-write. 
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{ 
    "@context": "dtmi:dtdl:context;2", 
    "@id": "dtmi:com:uabiamprocess:uabiamstage:entitlements:stage:user;1", 
    "@type": "Interface", 
    "displayName": "User - Interface Model", 
    "contents": [ 
        { 
            "@type": "Property", 
            "name": "id", 
            "schema": "string", 
            "description": "User entitlements Id", 
            "writable": true 
        }, 
        { 
            "@type": "Property", 
            "name": "Name", 
            "schema": "string", 
            "description": "User entitlements Name", 
            "writable": true 
        } 
    ] 
} 

 
 
Figure 16: JSON code to ingest data from sensors into devices in Azure IoT. 
 

Digital Twin Model Identifier (DTMI) and Digital Twin Definition Language 

(DTDL) are defining the models and their relationship together. The keyword DTMI, and 

“.com” are reverse DNS [56] for UAB IAM Process entry for “UAB Identity and Access 

Management Process,” which is our entity as it is depicted in Figure 17. 
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{ 
    "@context": "dtmi:dtdl:context;2", 
    "@id": "dtmi:com:uabiamprocess:lifecycle:cycle:entitlement:user;2", 
    "@type": "Interface", 
    "displayName": "Authorization ", 
    "contents": [ 
        { 
            "@type": "Property", 
            "name": "id", 
            "schema": "string", 
            "description": "User Entitlement - Validate", 
            "writable": true 
        }, 
        { 
            "@type": "Property", 
            "name": "access", 
            "schema": "string", 
            "description": "User Access - Validate", 
            "writable": true 
        }, 
 { 
            "@type": "Relationship", 
            "@id": "dtmi:com:uabiamprocess:lifecycle:cycle:entitlement:SelfService;2", 
            "name": "SelfService", 
            "displayName": "Self Service", 
            "target": "dtmi:com:uabiamprocess:lifecycle:selfservice;2" 
        } 
    ] 
} 
1", 
                        "name": "New", 
                        "schema": "string" 
                    } 
                ] 
            } 
        }, 
        { 
            "@type": "Relationship", 
            "@id": 
"dtmi:com:uabiamprocess:uabiamstage:entitlements:iamstep:rel_has_devices;1", 
            "name": "rel_has_devices", 
            "displayName": "Has devices", 
            "target": 
"dtmi:com:uabiamprocess:uabiamstage:entitlements:iamstep:iamstep_device;1" 
        } 
    ] 
} 

 
 
Figure 17: Relationships between Digital Twin models. 

Validating the DTDL Models 

We must validate the Digital Twin Definition Language that we have developed 

by using DTDL Validator utility which is provided by Microsoft. The utility must be 

compiled on the local platform. In Figure 18, you can see a successful build of the utility 

on MacOS. 
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% dotnet build            
MSBuild version 17.3.2+561848881 for .NET 
  Determining projects to restore... 
  Restored /Users/admin/DTDL-Validator-master/DTDLValidator-
Sample/DTDLValidator/DTDLValidator.csproj (in 1.47 sec). 
  DTDLValidator -> /Users/admin/DTDL-Validator-master/DTDLValidator-
Sample/DTDLValidator/bin/Debug/netcoreapp3.1/DTDLValidator.dll 
 
Build succeeded. 
    0 Warning(s) 
    0 Error(s) 
 
Time Elapsed 00:00:07.77 
% 

 
 
Figure 18: Compiling DTDL Validator using dotnet utility. 

 We will need to run the DTDL validator against the model that we created for our 

project. Figure 19 illustrates a successful validation. In here, we used Microsoft utility 

“dotnet” to validate all the JSON code that we have developed for this project. 

% dotnet run --directory /Users/admin/UAB_AIM_DigitalTwinsDemo-main/UABIAMModels 
Simple DTDL Validator (dtdl parser library version 6.1.0.0) 
Validating *.json files in folder '/Users/admin/UABIAMModels'. 
Recursive is set to False 
 
Read 5 files from specified directory 
Validated JSON for all files - now validating DTDL 
 
********************************************** 
** Validated all files - Your DTDL is valid ** 
********************************************** 
Found a total of 30 entities 
% 

 
 
Figure 19: Successful validation of models. 

Azure Digital Twins Explorer 

Azure Digital Twins Explorer is a tool that allows us to view the digital twin 

configuration and formatio, in Azure digital twin cloud space. This tool comes in many 

different forms, locally installed on your device, install in a Ducker container, Command 

Line Interface (CLI) [57] or web User Interface (UI). In this project, we will be using the 

web UI interface only. Figure 20 depicted the viewing of the URL to the current project 

in Azure Digital Twins. The name field is a free-hand entry by following the rules and 
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format of the text which we are entering. The value is the URL where the Digital Twin is 

deployed in Azure cloud. 

 
 
 
Figure 20: Retrieving Azure Digital Twins instance URL. 

In Figure 21, the URL to ADT instance is loaded into the ADT explorer. The 

explorer needs this URL to connect to the digital twin instance which is running on Azure 

cloud. It is essential that we have payed attention that the security in Azure instance 

allows such a connection; otherwise, the explorer will fail to connect. 
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Figure 21: Entering Azure Digital Twins URL in Explorer. 

Figure 22 illustrates that the ADT explorer has successfully connected to the 

project’s ATD instance and extracted the twin from the database. As it is shown in the 

figure, all stages of the IAM has a relationship to another model. 

 



 
 
 

88 

 
 
 

Figure 22: Azure Digital Twins explorer showing the twin.  

This is one lifecycle for one user entitlement, and one system and device; in a 

large environment, we would have hundreds or thousands of relationships. If we have 10 

users, we would have had 10 different lifecycles, and we would want to be able to see all 

of those, especially if the main concern is just to see immediately if one of my users has a 

system that is throwing a violation alert. 

Importing Data from Spreadsheet 

In large environments such UAB or a large-size company, we can import the 

relationship in bulk from a spreadsheet. This spreadsheet is specifically formatted with 

the DTMI relationship model IDs and the ID for specific instances- so you would fill this 

in with data from your database or wherever your entitlement and users are stored. Table 

8 depicts CSV of the DTMI of the models for a bulk load to the ADT database, in this 
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file, there are Model ID to identify the model, the unique ID of the entitlement, the 

relationship to other models, and the initial default data.  

Table 8 

CSV format of DTMI for bulk load into Digital Twin 

ModelID ID (must be 
unique) 

Relation
ship 
(From) 

Relation
ship 
Name 

Init Data 

dtmi:com:UABiamproc
ess:lifecycle:cycle
:entitlement;1 

entitlement
_504504 

cycle_12
34 

rel_has_
entitlem
ents 

{ "id": "504504"} 

dtmi:com:UABiamproc
ess:lifecycle:cycle
;1 

cycle_2345   { "cycleId": 1234 } 

dtmi:com:UABiamproc
ess:lifecycle:cycle
:entitlement;1 

entitlement
_253641 

cycle_23
45 

rel_has_
entitlem
ents 

{ "id": "253641"} 

dtmi:com:UABiamproc
ess:lifecycle:cycle
:system:system_devi
ce;1 

system_devi
ce_63491101 

system_6
34911 

rel_has_
devices 

{ "id": "63491101", "violation": 12.5, 
"violationAlert": true } 

dtmi:com:UABiamproc
ess:lifecycle:cycle
:entitlement:user;1 

user_999999 entitlem
ent_5045
04 

rel_has_
users 

{ "id": "999999", "Name": "Vahid Moghaddasi" } 

dtmi:com:UABiamproc
ess:lifecycle:cycle
:entitlement:user;1 

user_605047 entitlem
ent_2536
41 

rel_has_
users 

{ "id": "605047", "Name": "Leon Jololian" } 

 
 

Importing Data from JavaScript Object Notation File 

There is another way to import bulk data into ADT and that is via a JavaScript 

Object Notation (JSON) file which has all the necessary information embedded in it. As 

Figure 23 depicts, in the JSON file, which is being used to upload bulk data, there are 

“digitalTwinsFileInfo” tag that includes the version number, user ID, user name and a 

unique identifier. This file also includes the DTMI information about the current model in 

which this file is representing for. 



 
 
 

90 

 
 
 
Figure 23: JSON code to upload bulk data into ADT. 

Use The Command Line Interface to Create  New Digital Twin 

As mentioned, there is also a way to build the Azure IoT hub and ADT. Azure has 

an extensive Command Line Interface (CLI) to interact with your project. With Azure 

CLI, it is possible to automate all the processes and alerts as well as send the events to 

ADT IoT hub. Most likely, a large enterprise will have to use Azure CLI to feed the data 

to ADT. In our model, we have used the portal UI and refrain from many other methods 

which Azure provides us. 

To use ADT CLI, we will need to compile the CLI tool on the platform on which 

our project is running.  

Figure 24 illustrates the command to check the version of the CLI on a local 

computer. All Azure CLI commands start with ‘az.’ In the following output, we observed 

the version of the CLI, the version of the CLI core engine, and the version of the 
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telemetry library. There are dependencies to Azure CLI which must meet to properly 

work, in this case, Microsoft Authentication Library (MSAL) and Azure Management 

Resource libraries.  

% az --version         
azure-cli                         2.46.0 
core                              2.46.0 
telemetry                          1.0.8 
 
Dependencies: 
msal                              1.20.0 
azure-mgmt-resource             21.1.0b1 
Legal docs and information: aka.ms/AzureCliLegal 
Your CLI is up-to-date. 

 
 
 
Figure 24: Azure Digital Twins CLI. 

Establishing Relationship Between IoT Digital Twin Models 

 The models which are written for this project must contain a workable 

relationship between the other models based on their behavior and function. For example, 

authentication should have a relationship to authorization. All the relations are defined in 

DTDL and inside the model files. 

 Figure 25 illustrates the graphical representation of ADT models and their 

relationship with one another. In this model, we start the relationship from Provisioning 

to Authentication then to Authorization and Self-Service, and from there to Governance 

and finally to Deprovisioning. This is a lifecycle of the IAM workflow. 
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Figure 25: Model graph with established relationship. 

Creating an IoT Hub 

Azure IoT Hub [58] is a cloud-based solution that lets you communicate with 

various IoT devices and components (sensors). This is the facility we will use to 

communicate between our devices and our digital twin. Each of your devices will need to 

authenticate with the IoT hub individually so that security is ensured. 

From Azure Service, we add IoT service to this project. Next, select we select the 

subscription and resource group which we have already created. Choose a unique name 

for the IoT hub and then pick a region near the location where the project is being 

implemented. The daily message limits differentiate each tier. You can cycle through the 

other options or click “Review + Create” using the default options.  Once your hub is 

provisioned, you will find various summary statistics on the overview page for that hub. 

Figures 26 illustrate creating an IoT hub that will serve in this project for us as a 
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connector to the devices that we create. We observe that the IoT hub is being created and 

deployed to the region in where is closest to the project location. 

 
 
 
Figure 26: Creating IoT hub and being deployed to Azure cloud. 

 IoT hub has successfully been deployed in Azure cloud in the designated region 

as deprecated in Figure 27. The IoT hub is now deployed in the region where we decided 

to deploy it to and that is West central US which is closest to UAB location in Alabama. 

 
 
 
Figure 27: IoT hub is created and deployed to Azure cloud. 

 



 
 
 

94 

Adding Devices to Internet of Things Hub 

At this point, we will set up the devices that we will use to communicate with the 

IoT Hub. From the overview page of the IoT Hub, locate the Device Management 

function in the left nav and then click on “Devices” to see an inventory of your 

configured devices. Click on “Add Device” to create a new device for your hub. We need 

to make sure the Device Id field matches the device id that we have defined on our digital 

twin. Otherwise, we will not be able to communicate with them. Next, select the 

appropriate Authentication type and choose “Save” to create your new device. Once the 

devices are created, you can test connectivity to the hub using a simulator or the actual 

devices via the appropriate Application Programming Interface (API) [59]. 

 As in Figure 28 and Figure 29 depicted, we are creating devices for each process 

in the IAM lifecycle using the Azure ADT Explorer web UI. We have named the device 

unique and descriptive for simplicity and to reduce confusion. We have created all the 

IAM devices for this project as each device will send its own telemetry to the hub for 

processing. In creating devices, we include a unique device ID, Authentication type and 

allow the connection to this device to IoT hub.  
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Figure 28: Creating provisioning IoT device. 

 
 
 

Figure 29: Creating authentication IoT device. 
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 We must list all the devices that we created in the device list shown in Figure 30. 

This step is necessary to ensure that all the IoT devices have been created and functional. 

Any error message in this step should be taken care of before moving on to the next step. 

 
 
 

Figure 30: List of all devices that we created in IoT hub. 

Once the devices are created successfully, the device string and access security 

key will be generated by Azure IoT and assign to each device. These keys can be 

regenerated if need be in case of leaking out and potential security and vulnerability 

issue. Figure 31 depicted the location of the connection string to the device and the secret 

keys to communicate with the device. We need this information to securely communicate 

with the device and prevent intruders to use the device. 
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Figure 31: Device ID, Shared key, and connection string. 

Creating an Azure Function App 

Azure Function App is a serverless computing service offered by Microsoft Azure 

[60]. It provides developers with the capability to develop and deploy small, independent 

pieces of code known as "functions" without the need to manage infrastructure [61]. 

Supported programming languages in Azure Function App, including C#, Java, 

JavaScript, Python, and PowerShell. Each Azure Function App comprises multiple 

functions, each functioning autonomously and triggered when specific events or 

conditions occur. These events can encompass handling HTTP requests, processing 

messages from Azure Service Bus, responding to changes in Azure Storage, or triggering 

based on predefined schedules. 

In the context of Azure Digital Twins, the Azure Function App can be utilized to 

respond to data received from IoT devices and other sources. To transmit telemetry data 

from physical devices or a simulator to the Azure Digital Twins instance, it is necessary 

to create an Azure function responsible for ingesting the telemetry data published to the 
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IoT Hub. The function that receives the telemetry events can then update properties on 

the Azure Digital Twins instance or generate events within the instance. To create a 

Function App, we select Function App from the Azure Marketplace [53]. We select the 

subscription and Resource Group. We chose a unique name for the function app and 

selected “Code” under Publish option. Choose the appropriate Runtime stack, Version, 

and Region. We selected a storage account. We used Consumption (Serverless) for the 

Plan type. We selected the appropriate option for networking and monitoring, and finally, 

we “Review + Create”.  

We need to create a data owner role for the function app so that it can be 

authenticated with Azure services. We use “Azure role assignments” to add a new role 

assignment and choose “Resource group” for the scope of this project we choose the 

appropriate resource group. We paid extra attention to make sure that everyone involved 

in the project has “Azure Digital Twins Data Owner” role or you risk running into 

problems when we try to ingest data from your IoT Hub. Figure 32 illustrates the list of 

Function App which we have already created for this project. The Function App name is 

a unique and descriptive for simplicity, we choose UABIAMInjestor. 

 
 
 

Figure 32: List all Function App. 
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We have configured Function App to be used by this project and to have a secure 

connection to be made to it. Figure 33 depicts the configuration of the Function App. In 

IAMFunctionApps configuration, we have set environment variables pertaining to our 

project as the default values are unsuitable. We will need to create an environment 

variable for the service URL used by the function app to connect to the digital twin 

instance. The URL environment variable is stored in ADT_SERVICE_URL name field. 

The value should be the hostname of our Azure Digital Twins instance prefix by 

“https://”.  

 
 
 

Figure 33: Function App configuration. 

Building Function to Ingest the Telemetry Data 

Telemetry data in Azure refers to the information collected from various Azure 

resources, such as virtual machines and applications, for monitoring and analysis 

purposes [40, 41]. We have developed the telemetry ingestion function from scratch 

using instructions from the documentation or use the sample code available on the 
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Microsoft Digital Twin Tutorial. We will load the project into Microsoft Visual Studio 

and build the project. We will then publish the function onto Azure directly from Visual 

Studio. 

Event Subscription in Dealing with IAM Exceptions 

Azure Event Subscription is a feature in Microsoft Azure that enables the routing 

of events from various Azure services to subscriber endpoints [62]. To connect events 

from IoT Hub to the Function App for ingesting the events, we must create an event 

subscription for the IoT Hub. This is done from the IoT Hub overview page, where  

“Event” on the left hand nav to create an event subscription. Event Schema=”Event Grid 

Schema”. We chose a name for “System Topic Name”. Under the event type, we checked 

“Device Telemetry” and unchecked everything else. Endpoint ytpe is visible by 

Type=”Azure Function” and then selecting the desired endpoint matching the target 

resource group, Function App, slot, and lastly, the actual function.  

Developing Simulator to Send Telemetry Data to IoT Hub 

The Azure Digital Twins Simulator is a tool provided by Microsoft Azure for 

simulating and testing digital twin applications [63]. We will use a simulator to test the 

interoperability among our Azure Digital Twins components before bringing our devices 

online. There are samples available in various languages that we can use to assemble our 

simulator. For our project, we are using the C# version. We need to make a few 

modifications to the boilerplate codes to connect to our IoT Hub and send the telemetry 

data that matches our models. We will construct the connection information using the 

name and shared access key of our IoT Hub, in addition to the name and shared access 
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keys of our IoT devices. For the telemetry data, we must create a data structure in C# 

using the corresponding digital twin models.  

After we have assembled the codes for our simulator, we need to compile the 

code using the dotnet Software Development Kit SDK [63]. Once our simulator code is 

compiled cleanly, we can then run the simulator from a command line interface. Figure 

34 illustrates a successful compilation of the ingest code on the local computer. In this 

project, we used the Microsoft utility, “dotnet” version 17.6.1 to compile the source code. 

 
 
 

Figure 34: Building the simulator. 

Ultimately that is how we will send back the IAM data to ADT to ingest. 

Generally, what we used for this project is the hub name, shared access key, and each of 

the shared access keys for all the sensors that we are using, as depicted in Figure 35. 

In this telemetry simulator, we are including predefined libraries such as System, 

System Collections, System Text, and System Threading.  
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using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
 
namespace DeviceSimulator 
{ 
    public class UABIAMTelemetry 
    { 
        public string id { get; set; } 
        public double iamprocess { get; set; } 
        public bool iamprocessAlert { get; set; } = false; 
    } 
} 

 
 
Figure 35: Telemetry Simulator. 

End To End Simulation for IoT Functionality 

We should now be able to send simulated telemetry data to the IoT Hub using our 

simulator, which our function app will then ingest [64]. The Azure portal provides us 

with facilities that allow us to manage all aspects of our IoT Hub, devices and digital twin 

instances. There are several visual metrics available in the IoT Hub and Function App 

summary pages. These will aid in verifying and troubleshooting connectivity between our 

simulator, IoT Hub, and our IoT Hub and Function App.  

The Metrics tab on the Function App summary page has statistics such as function 

executing count and amount of data consumed by time. The streaming logs can be 

accessed via the “Log stream” [65] menu from this page. The log stream is great for 

confirming we are receiving data from the IoT Hub. If there are errors or exception 

violation, we should be able to see them in the logs.  

Once we have confirmed data are flowing from the Simulator to the hub and then 

to the Azure Function App, we should be able to see the updates on our digital twin via 

the explorer. If for some reason our twin are not getting the updates, then we should 
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check to make sure the properties on our twin have been initialized with the appropriate 

credentials and shared keys. This is one of the most common problems regarding 

receiving updates. We summarised a typical scenario of our case study in Table 9 Case 

Study Scenario. 

Table 9 

Case Study Scenario 

 
 

• It is typical within an enterprise for users to move from one department to another. 
 

• The initial department might be a technical group providing the employee (user) access 
to operational-critical servers. 
 

• On the other hand, the new department could be a managerial group. 
 

• Both the old and the new managers (System Access Authorizer) independently have 
the responsibility of making sure the user has not carried over the entitlements to the 
new group. 
 

• The new manager must determine the privileges needed for the new role and 
accordingly submit/verify/approve the new access. 
 

• The old and new access rights are not mutually exclusive the complexity is partially in 
the fact that a typical employee may have hundreds if not thousands of access rights. 
 

• Another complexity is that each entitlement for an employee is kept in a different 
repository. These repositories are maintained in decentralized distributed systems. 
 

• Further complexity is introduced because the enterprise would acquire yet another 
entitlement system to monitor and track users' entitlement on different systems, 
primarily manually. 
 

• This entitlement system will ask SAA to verify the access of the employee to hundreds 
or thousands of systems and resources, which often gets approved by bulk due to the 
amount of manual work that has to be done. 
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CHAPTER 6 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

Access to private data and manipulating that data by unauthorized users has al-

ways been a problem and challenge. It is usually government regulation and an enterprise 

policy to prevent unauthorized processes. Identity and Access Management (IAM) is an 

essential part of any enterprise, which has to be improved. 

Figure 36 illustrates the summary of an IAM process model in an organization. 

 
 

 

Figure 36: IAM Summary. 

We are proposing to treat IAM as a formal process by which enterprises provide 

access to their digital assets and resources. The complexity of IAM emanates from the 
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rapidly changing business environment requiring constant monitoring and updating of en-

titlement to assets. In this dissertation, we present a dynamic framework for IAM based 

on the Internet of Things architecture analysis with simulation by utilizing digital twin 

technology.  

The goal of our approach is in its responsiveness and continuous use of data feed-

back coming from process monitoring sensors and systems. Furthermore, our experience 

of an adaptive business improvement methodology used for enterprise design called In-

ternet of Things architecture is used in our design approach. We have been working on 

the IAM space for the last two decades. Our current knowledge, with the associated is-

sues, has guided our research in the design of this new framework. Our preliminary pilot 

identification and implementation further guided our design of this framework we named: 

A Dynamic Identity and Access Management Process (DYN-IAMP). Furthermore, our im-

plementation incorporates the “Drag-and-Drop Communication of Data” patent devel-

oped at UAB.  Our framework, DYN-IAMP, is a new dynamic process approach through 

the development of core competency in the domain of IAM. Figure 1 in the introduction 

above faithfully depicts the proposed framework.  

The implementation of Azure Digital Twins in Identity and Access Management 

(IAM) and the use of machine learning [64] technology presents a transformative ap-

proach to managing digital identities and access controls. Azure Digital Twins is a ser-

vice that enables the creation of comprehensive digital models of an environment. When 

integrated with IAM, it can provide a detailed representation of users, their roles, and ac-

cess privileges within a system. 
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We have completed Internet of Things end-to-end Simulation as shown in Figure 

37. This end-to-end Simulation is implemented using Azure Digital Twins technology. 

 

 
 
 
Figure 37: Internet of Things end-to-end Simulation. 
 
The summary of the end-to-end simulation is shown in Table 10. 
 
Table 10 
 
Summary of applying the end-to-end Simulation 
 

 
• User access is monitored in real time, and alerts are generated if access is al-

tered outside the predefined parameters. 
 

• If a user moves to a new department, entitlement will change to the predefined 
access, which is set in the simulator engine. 
 

• Every previous access right which the user had will be revoked, and new access 
rights will be applied according to the new position and role. 

 
 
The summary and conclusion of our environment are shown in Table 11. 
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Table 11 
 
Summary and Conclusion 
 

 
• The simulation environment serves as a valuable tool for understanding, testing, 

and improving access management processes in a distributed computing envi-
ronment in an enterprise. 
 

• The simulation environment can be used to analyze and optimize access man-
agement processes. It can provide insights into potential bottlenecks, security 
vulnerabilities, or inefficiencies in the processes.  
 

• The proposed architecture uses a real-time simulation environment to validate 
and ensure that access management requirements are met.  

 
 

This digital twin model can be used to simulate and analyze potential security 

threats, thereby enhancing the overall security posture. It can also help understand the im-

pact of any changes to access controls before they are implemented, reducing the poten-

tial for unforeseen security issues. 

The integration of machine learning [64] technology further enhances this ap-

proach. Machine learning algorithms can be used to analyze patterns in user behavior and 

access requests. This can help identify anomalies that might indicate potential security 

threats, such as unusual access requests or changes in user behavior. 

Furthermore, machine learning can also be used to automate granting or revoking access 

privileges based on these patterns, making the IAM system more dynamic and respon-

sive. This combination of Azure Digital Twins and machine learning technology in IAM 

represents a powerful tool for enhancing security and efficiency in digital systems. 
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