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MOLECULAR INFLUENCES OF RACIAL DISPARITIES IN PANCREATIC 
NEUROENDOCRINE TUMORS 

BRENDON HERRING 

BIOMEDICAL SCIENCES 

ABSTRACT 

 

 Pancreatic Neuroendocrine Tumors (PNETs) are highly heterogeneous neoplasms 

arising from the hormone-secreting cells of the endocrine pancreas. PNETs are broadly 

categorized as functional and non-functional based on the presence of symptoms 

associated with hormone secretion, which occurs in approximately 30% of cases. While 

functional tumors are all considered for resection because of these symptoms and their 

associated sequelae, non-functional tumors > 2cm are currently resected based on 

increased risk of developing metastatic disease. However, this criterion is based on data 

from predominantly White patients. Recent studies have shown that Black patients have 

much higher rates of lymph node metastatic disease at tumor sizes under 2cm, indicating 

that interracial differences in tumor biology may be responsible.  

Upon evaluating the diversity of genomic studies in PNETs to investigate this 

further, we found little representation of Black patients and other ethnoracial minority 

groups. We then discovered differences in the mutation of key genes in PNETs between 

Black and White patients; among which was MEN1, the most frequently mutated gene in 

PNETs. Subsequently, we investigated the transcriptome, tumor microenvironment, and 

prognostic protein biomarkers for differences between Black and White patients. We 

discovered that numerous genes were differentially expressed between these cohorts, and 

that multiple differentially expressed genes were associated with clinical outcomes, 
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including tumor progression to metastasis and progression-free survival. Furthermore, we 

found differences in the infiltration of immune cells into tumors between Black and 

White patients, alongside differences in the expression of multiple previously established 

prognostic protein biomarkers. These data indicate that a host of molecular influences 

may indeed be driving racial disparities in PNET clinical outcomes.  

 

Keywords: Pancreatic Neuroendocrine Tumors, Transcriptomics, Racial 

Disparities, Clinical Outcomes
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INTRODUCTION 

Pancreatic Neuroendocrine tumors (PNETs) are a heterogeneous group of 

neoplasms originating from the cells of the endocrine pancreas. PNETs are the second 

most prevalent pancreatic malignancy with an estimated 4,032 new cases in 20201. 

PNETs are broadly categorized into two subsets- the hormonally active (termed 

functional), which occur in up to 30% of cases2-4, and non-functional tumors, which do 

not secrete sufficient hormone to elicit symptoms. Functional PNETs often cause severe 

symptoms such as debilitating diarrhea, life-threatening glucose imbalances, bleeding 

ulcers, and heart failure as a result of this aberrant hormonal secretion 5. While all 

functional tumors should be considered for resection, up to 80% of pNETs are non-

functional and the recommendation for resection is instead based on the risk of 

malignancy. Chiefly, these guidelines use tumor size as a prognostic surrogate for lymph 

node metastasis (LNM)6. According to these guidelines, tumors <1cm are observed (6% 

risk LNM), 1-2cm are resected based on clinical judgement (10% risk LNM), and those 

≥2cm are resected (40% risk LNM)7. Estimates of 5-year survival for patients with 

metastatic pNETs vary widely; rates >50% are frequently reported for well-differentiated 

tumors8,9, but as low as 10% is reported for the more aggressive, poorly-differentiated 

tumors10. Therefore, clinicians need balance the potential for favorable survival outcomes 

with the risks of death or severe complications associated with pancreatic resection, 

occurring in 3% and 50% of cases respectively 10. Given the weight and difficulty of this 

decision, it is critical to identify non-functional pNETs at risk for LNM early and offer 
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appropriate resection. 

 

Racial Disparities in Pancreatic Neuroendocrine Tumors 

Recent work has uncovered alarming disparities in the clinical outcomes between 

White patients (individuals of primary and/or proximate European ancestry) with PNETs, 

and other ethnoracial groups with pNETs. These disparities are of particularly great when 

contrasted with Black patients (individuals of primary/proximate African ancestry). Black 

patients with pNETs are more likely to present with metastatic disease, are less likely to 

undergo curative surgery, and have a 20% worse overall survival rate when compared to 

White patients11. However, if Black patients have their tumors resected they have the 

same overall survival as White patients11. At first glance, this would suggest that the 

worse survival of Black patients with pNETs is likely due to a myriad of socioeconomic 

factors and access to healthcare, rather than any particular biological differences among 

racial groups. However, given that the only published clinical outcomes data specifically 

studying at disparities in PNET care is from a single analysis of the Surveillance, 

Epidemiology, and End Results (SEER) dataset, there is nuance to this picture that is 

unexplored. Another plausible explanation is that guidelines recommending resection 

based on tumor size are simply not accurate for Black patients; and that smaller tumors 

need to be resected to prevent the onset of metastatic disease in this population. Indeed,    

the current size-based resection criterion may not be predictive of outcomes for all 

patients. Our lab recently conducted a retrospective analysis of resected pNETs at our 

institution to evaluate clinicopathologic factors that differentially influence disease-free 

survival (DFS) between Black and White patients with resected pNETs12. 151 patients 
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underwent surgical resection of pathology-confirmed pNETs between 2010 and 2019. 

Clinicopathologic variables and DFS were compared between 37 Black and 114 White 

patients. Black patients presented with larger median tumor size (3cm vs 2cm; p=0.02) 

than White patients. Furthermore, on Cox regression analysis, increasing tumor size was 

found to significantly impact DFS (p<0.01, HR 1.02, 95% CI 1.01-1.04). We concluded 

that there may be variance in clinical presentation warranting further investigation and 

noted that because current resection guidelines draw from datasets predominating in 

White patients, the size threshold for resection may not be accurate across diverse groups.  

Given the foundation of these current size-based resection criterion in the 

heightened risk of developing lymph node metastasis (LNM), our lab subsequently 

conducted a multi-institutional analysis of resected pNETs to evaluate if tumor size 

correlated with LNM risk in Black patients as it did in White patients. Significantly, this 

size to LNM risk correlation had never been investigated in a racial context. Analysis of 

the multi-institutional United States NET Study Group (USNETSG) consortium dataset 

included 454 (389 White & 65 Black) patients that underwent surgical resection of 

pNETs from 1998-2019. While size >2cm correlated to LNM in White patients by 

logistic regression, it did not in Black patients (OR 8.0 [3.9 - 16.4];p< 0.01 vs. OR 1.5 [ 

0.5 - 4.3];p= 0.49). This was then validated in a larger dataset from the National Cancer 

Database (NCDB) containing 5532 patients (4472 White & 760 Black). Comparing the 

incidence of LNM across racial groups by size category (<2cm, 2-3cm, >3cm) in both 

datasets revealed that Black patients have a statistically higher rate of LNM in <2cm 

tumors in both the USNETSG (5% vs 23%;p=<0.01) and NCDB datasets (12% vs 

21%;p=<0.01) than White patients. While prior data found tumors <2cm may be safe to 
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surveil due to a lower risk of LNM, these data show this is likely not the case for Black 

patients. Furthermore, this observation suggests biological differences between these 

racial cohorts that promote earlier development of LNM in Black patients. This prompts 

the question: what might these biological differences be? 

 

The Argument for Interracial Variation in PNET Biology 

Most data on the (epi)genetic aberrations in pNETs are from well-differentiated, 

grade 1 or 2 tumors. These data suggest pNETs have a relatively low mutational burden 

compared to other neoplasms, even among locally advanced and metastatic lesions13. 

Among these, most pNETs bear mutations in MEN1, DAXX, & ATRX (~40%, 25%, 

17%). Additional mutations in TSC1/2 (6%), PTEN (7%), homologous recombination 

repair and base excision repair genes (CHEK2, BRCA2; MUTYH; <5%), SWI/SNF 

chromatin remodeling (<5%), and histone methylases (SETD2, MLL3; <5%) have also 

been implicated. DAXX/ATRX functions to deposit histone 3.3 across the genome, with 

mutated pNETs displaying the alternative lengthening of telomeres phenotype portending 

chromosomal instability. Notably, MEN1, DAXX, and ATRX all profoundly influence 

the epigenome by interacting with transcription factors (TFs), mobile genetic elements, 

and chromatin remodeling, indicating that confounding epigenetic states may influence 

the effects of their mutation. 

Epigenetic gene regulation occurs in response to a host of environmental and 

physiologic stimuli. DNA and histone methylation, TF binding, and noncoding 

RNA(ncRNA)-based transcriptional modulation are among the most common forms of 

epigenetic regulation. DNA methylation occurs most often at CpG dinucleotides 
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concentrated in clusters (CpG islands) proximate to promoter regions, where alterations 

are known to influence cancer phenotypes by multiple mechanisms, to include the 

inactivation of tumor-suppressor genes. TF binding is dynamically regulated by 

chromatin architecture, and complex networks regulate expression of ncRNAs. Robust 

data convey the presence of differentially expressed and regulated genes in tumors among 

ethnoracial groups, representing potentially targetable differences in tumor biology14-23. 

Given the high prevalence of epigenetic dysregulation in pNETs, baseline differences in 

DNA methylation between racial/ethnic groups, and close association with epigenetic 

states and race in other cancers, differences in the epigenetics and gene expression 

profiles of pNETs between White and Black patients are highly likely19,20,24-26. Of utmost 

importance is the improved prognostication, clinical decision making, and therapeutic 

targeting that understanding these differences may confer. Supporting this assertion are 

findings in sporadic insulinomas (the most common functional pNET) that mutations in 

the YY1 chromatin remodeling gene are heavily enriched in Asian patient populations 

compared to White patients (30% vs 10%). YY1 is a direct target of mTORC1, inhibitors 

of which are among the few approved therapies for pNETs, prompting suggestion that 

this population may uniquely benefit from mTOR inhibitors27. Notably, MGMT 

hypermethylation (present in 17-50% of pNETs) has been shown to predict response to 

alkylating agents such as temozolamide, wherein understanding differences in this 

hypermethylation in Black patients might have immediate clinical implications28,29.  

It is well established that Black patients are rarely represented and/or race is not 

reported in genomic studies30. No published data exists looking at differential 

(epi)genetic expression profiles between Black and White patients with pNETs. This lack 
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of representation in sequencing datasets can have significant clinical impact, as numerous 

studies have concluded that polygenic risk scores generated with mostly White genomic 

data woefully underperform when applied to subjects of African descent31-33.  

It is well-known that epigenetic gene regulation can be influenced by the 

environment. However, in recent years the relationship between epigenetic changes, 

macroeconomics, environmental exposures, and stress have become recognized as factors 

implicated in health disparities among varied ethnoracial groups24,34,35. While much of 

this research has focused on the impacts of epigenetic changes in cardiovascular and 

metabolic diseases, a rapidly growing body of research is forming around the discovery 

of racially distinct epigenetic changes in malignancy and the implications of these 

changes on therapeutic targets and decision making19,20,24-26,34,36. Recent studies have 

demonstrated across multiple tumor types that there is an inflammatory, immune, and 

metabolic genes signature prevalent in tumors from Black patients. However, there is a 

dearth of information with respect to PNETs, and how genetic ancestry and race may be 

influencing disparities in clinical outcomes.  
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Abstract 

Not all populations are poised to benefit from advancing genomics in 

gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs), as genomics have 

focused on White patients. This study aimed to evaluate racial populations represented in 

genomic studies of GEP-NENs and to provide evidence of differential genomic findings 

between racial groups in GEP-NENs. Manuscripts analyzing DNA, RNA, or DNA 

methylation in GEP-NENs were queried using PUBMED and EMBASE. NIH 

race/ethnicity term frequency was then determined by Natural Language Processing, 

followed by manual evaluation of tumor types and subjects by racial group. 

Immunohistochemistry of institutional tissue micro-arrays and analysis of AACR GENIE 

data analyzed was performed to determine mutational differences between Black and 

White pancreatic NEN (pNEN) patients. 

313 manuscripts conducted the requisite genomic analyses, 16 of which included subject 

race data. Race data were included in 13/184 DNA, 4/107 RNA, and 1/54 DNA 

Methylation analyses. These studies included 89% White subjects (n=2032), 5.8% Asian 

subjects (n=132), 4.0% “Other” subjects (n=93), and 1.2% Black subjects (n=27). No 

Native American/Alaska Native, Native Hawaiian/Pacific Islander, or ethnically 

Hispanic/Latinx subjects were represented. There were significant differences in MEN1 

mutations among Black and White patients in immunohistochemical (13:40) and GENIE 

data (24:268 patients per group, respectively), with 9 additional genes differentially 

mutated in the GENIE dataset.
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Genomic sequencing data for GEP-NENs is almost racially homogenous. Differences in 

pNEN genomics may exist between racial groups, highlighting a need for diversity in 

future genomic analyses of GEP-NENs to understand the putative influence of interracial 

genomic variation on GEP-NEN prevention, diagnosis, and therapy.
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Introduction 

Gastroenteropancreatic Neuroendocrine Neoplasms (GEP-NENs) are a 

heterogeneous group of tumors arising from the enteroendocrine secretory cells of the 

gastrointestinal tract and endocrine pancreas. Pancreatic (pNENs) and small intestinal 

(siNENs) NENs are the most common types of GEP-NENs, accounting for 3-5% and 35–

42% of pancreatic and small intestinal malignancies, respectively.1 Some GEP-NENs 

secrete bioactive substances (functional tumors) that cause severe symptoms such as 

debilitating diarrhea, life-threatening glucose imbalances, bleeding ulcers, and heart 

failure. Surgery is the only curative therapy, but many patients with GEP-NENs have 

metastases at presentation, making curative resection unlikely.2 Most GEP-NENs are 

diagnosed between the ages of 55 and 69, although colonic NENs peak after age 70.3 

However, across all GEP-NENs, White patients are diagnosed at significantly older ages 

compared to all other ethnoracial groups. Notably, an analysis of the SEER database 

found that the incidence of GEP-NEN varies significantly among ethnoracial groups, 

occurring more frequently in Black patients (5.19 cases per 100,000 individuals) 

compared to other ethnoracial groups (White 3.05; ethnically Hispanic/Latinx 2.46; 

others 2.39).4 Additional analyses have found significant differences in the rate of 

metastatic disease among racial groups, with Black patients having the highest rate of 

advanced stage/metastatic disease in pancreatic, gastric, and appendiceal, NENs (36.3%, 

20.9%, and 13.5%), followed by White patients (34% 16.7%, 12.1%), Hispanic/Latinx 

patients (28.2%, 15.1%,  5.65%), and Asian patients (26.7%, 16.7%, 19.8%).3
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 Interestingly, White patients presented with significantly more advanced stage disease in 

small intestine, colon, and rectal NENs (25%, 40%, 11.3%) than ethnically 

Hispanic/Latinx patients (25.6%, 27.5%, 6.5%),  Black (18.1%, 35.3%, 7.2%), and Asian 

patients (18.8%, 35.3%, 6.5%), raising questions as to the etiology of these differences in 

GEP-NENs of various primary sites.3 

Regarding clinical outcomes, recent work has uncovered alarming disparities 

between White and minority GEP-NEN patients- particularly Black patients.3,5,6 Black 

patients with pNENs are more likely to be diagnosed with late-stage disease, undergo 

curative surgery less frequently, and have a 20% worse overall survival than White 

patients.6 However, if Black patients have their tumors resected they have the same 

overall survival as White patients.6 It is also well described that larger pNEN size directly 

correlates to increased risk of lymph node metastasis (LNM) and that Black patients often 

present with larger tumors.5,7 Alongside these findings, Black patients have been found to 

have higher rates of LNM in both siNENs and pNENs.8 Notably, Black patients with 

pNENs have a 360% higher rate of LNM even at small tumor sizes (< 2cm) compared to 

White patients (23% vs. 5%).9 These data, particularly the large disparity in metastasis of 

pNENs at smaller tumor sizes, suggest that clinically relevant biologic differences in 

GEP-NENs may exist between these populations.  

There is robust precedent demonstrating differentially mutated, expressed, and 

regulated genes in various cancers among racial groups, representing potentially 

targetable differences in tumor biology.10-14 DNA methylation is the most stable and best 

characterized epigenetic modification, although epigenetic modulation of gene expression 

can occur through histone modification, regulation by noncoding RNA, and a host of 
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other processes. Interestingly, DNA methylation is known to differ among racial 

populations at CpG loci throughout the genome in healthy tissue.15 Many of these 

differences are present even at birth, with significant enrichment for these differences at 

loci associated with cancers that include lung, prostate, and pancreatic among others.16 

Relative to other cancers, pNENs and siNENs are mutationally silent, with epigenetic 

dysregulation as a prevailing hallmark of these neoplasms (occurring in approximately 

75-80% of pNENs & 70-80% of siNENs).17-22 Given this high prevalence of epigenetic 

dysregulation in GEP-NENs and the known baseline differences in DNA methylation 

between racial groups, differences in the genetic, transcriptomic, and epigenetic 

((epi)genetic) profiles of GEP-NENs between these patient populations are highly 

likely.11,15  However, there are extensive disparities in the representation of diverse racial 

groups across all of genomics, extending into the realm of cancer biology.23 This not only 

diminishes our ability to specifically study (epi)genetic differences between various racial 

groups in cancer, but it also prevents minority populations from benefiting from advances 

in precision medicine, genomic screening, and prognostication. Furthermore, equitably 

assessing (epi)genetic data across more diverse groups may well help the scientific 

community to further understand the oncogenesis and progression of various cancers. 

Despite increasing research aimed at expanding minority representation in (epi)genetic 

studies and characterizing racially distinct (epi)genetic states in other cancers, there is no 

work characterizing the state of diversity in GEP-NEN sequencing efforts. Furthermore, 

there are no studies specifically evaluating the interracial (epi)genomic variation in GEP-

NENs that may be present. Accordingly, this study aims to evaluate the representation of 

racial groups in studies of GEP-NEN (epi)genomics, and to highlight the importance of 
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improved diversity in such studies by providing evidence that indicates the presence of 

differential (epi)genetic features among racial groups with these cancers.  
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Methods 

Literature Search and Data Selection 

Literature search was carried out in the PubMed and EMBASE 

((https://www.ncbi.nlm.nih.gov/pubmed/; https://www.embase.com/) databases (Fig. 1). 

Database searches were time-delimited, selecting for publications between the year 2000 

until June 2021. Structured search queries included terms pertaining to (epi)genetic 

analyses of GEP-NENs and are described in the supplementary data. Articles were 

included if they met the following selection criteria: published in the English language; 

conducted in humans; n > 1; conducting -omics analysis of DNA, RNA, or epigenetic 

states (i.e. DNA methylation) in GEP-NENs; conducting array-based or massively 

parallel next-generation sequencing analysis. Articles analyzing single gene expression, 

PCR arrays of < 5 genes (not including housekeeping genes), or point mutations at 

singular base loci (i.e. base 3, KRAS G12D/G12C/G12V alone) were excluded. Articles 

that included only pre-established cell line-based analysis were excluded. Articles such as 

editorials, letters, commentaries, reviews, clinical practice guidelines, and abstracts from 

conferences without associated published manuscripts were excluded. Meta-analyses or 

studies that exclusively studied previously published data, where one would not expect 

data on subject race to be uniquely presented, were excluded. Cases in which studies 

included multiple types of neuroendocrine neoplasms (e.g. lung, pituitary, adrenal) were 

included only if the GEP-NEN component of the study met the inclusion criteria with 

other NEN types excluded. Furthermore, only the GEP-NEN cases in these studies were 

included in the analysis of racial/ethnic representation. Studies of mixed neuroendocrine 

and non-neuroendocrine neoplasms were excluded. Manuscripts focused on pediatric 

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.embase.com/
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diagnoses were also excluded, as the incidence of all pediatric GEP-NENs is extremely 

low (under 0.1 per million, excepting appendiceal NENs at 0.5 per million) and these 

cases may be less likely to conform to the wider distribution of representation across all 

GEP-NENs.24 Reference lists of all articles meeting criterion were also reviewed for any 

additional studies meeting criterion. GEP-NENs were classified into 5 groups: pNENs, 

siNENs, colorectal NENs (including anal NENs), other gastrointestinal NEN (GI-NEN; 

e.g. appendiceal, gastric, gallbladder, esophageal NENs), and GEP-NENs not otherwise 

specified (GEP-NEN NOS). Two researchers independently reviewed titles and abstracts 

manually and selected full manuscripts for inclusion. Disagreements were resolved by 

discussion and consensus. Manuscripts were reviewed in their entirety, including 

supplemental materials where present. 

 

Natural Language Processing 

Natural Language Processing (NLP) using the python packages NLTK (v. 3.6.2) 

and PDFMiner.six (release 20201018) was used to determine the frequency of the words 

“Race,” “Ethnicity,” “African American,” “Black,” “Hispanic,” “Latino,” “Latina,” 

“Latinx,” “Asian,” “Native American,” “American Indian,” “Alaska Native,” “Native 

Hawaiian,” “Pacific Islander,” “Caucasian,” and “White,” in published original research 

manuscripts performing sequencing on GEP-NENs gathered by a systematic review of 

the literature as described above. Specifically, PDF files were read using the extract_text 

function from PDFMiner.six. Multi-word tokens were then generated using the above 

race/ethnicity terms using the MWETokenizer function from NLTK. Tokenization and 

keyword searching was then performed using MWETokenizer.tokenize and 
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text.concordance functions. Natural language processing included supplemental materials 

where present. Subject numbers by racial group were then determined via manual review 

following NLP. All manuscripts that were negative for the race/ethnicity terms in our 

NLP search were likewise manually reviewed to verify that subject race/ethnicity data 

were not reported. 

 

Immunohistochemical Analysis 

Protein expression of the DAXX, ATRX, and MEN1 genes, which is altered by 

most mutations, was determined by immunohistochemistry performed on pNEN tissue 

microarrays (TMAs).25,26 Following surgical resection, tumor specimens were fixed, 

embedded in paraffin and TMAs generated and sectioned by the UAB Pathology Core 

Research Lab. Slides were rehydrated using xylene and ethanol. Antigen retrieval was 

accomplished by immersing slides in citrate buffer (pH 6) and placing them in a pressure 

cooker for 10 min. Antibodies to Daxx (Sigma, HPA008736), Atrx (Abcam, ab97508), 

and Menin (Abcam, ab92443) were diluted at a 1:200, 1:700, and 1:100 respectively in 

PBS augmented with 0.3% Tween 20 and 5% goat serum. TMA sections were incubated 

in primary antibodies overnight at 4°C. Following biotin and peroxidase blocking, 

sections were incubated with an anti-rabbit biotin labeled secondary antibody (Pierce 

goat anti-rabbit IgG, #31820) for 1 hr at room temperature. Slides were then stained with 

DAB chromogen (Dako Liquid DAB+ substrate) and counter-stained with hematoxylin. 

TMA stains were then evaluated in a blinded manner by a board-certified pathologist 

specializing in GEP-NENs. All studies of patient-derived tissues were approved by the 

University of Alabama at Birmingham Institutional Review Board (IRB-300006067). 
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Mutational Analysis 

Mutational panel data on pNENs were obtained from the American Association for 

Cancer Research’s (AACR’s) project GENIE database using cBioPortal.27 Patient-level 

enrichments were determined for protein-altering mutations (nonsense, frameshift, non-

start, non-stop, splice-site, and structural variants/fusions including copy number 

deletions). Due to the low numbers of non-White subjects included in the AACR GENIE 

data and the lack of patient samples from other racial groups in our institutional TMAs, 

only AACR GENIE data from Black or White patients were used in this analysis. 

Additionally, because of potentially confounding differences among sequencing assays 

used in the GENIE dataset, only sequencing assays that included data for both Black and 

White patients were included. 

 

Protein-Protein Interaction Network Analysis 

Differentially mutated epigenetic regulatory genes from AACR GENIE (MEN1, 

KMT2D, EP300, and SMARCB1) were used to generate a PPI-enrichment network using 

STRING version 11.5.28 Interaction sources used in PPI network generation were curated 

databases, experimental determination, text mining, gene co-expression, and gene 

neighborhoods. Only PPIs with a confidence score > 0.7 based on interaction sources 

were considered for network generation, and first-shell interactors were limited to 10. 

Network clusters were determined by k-means clustering. Gene Ontology (GO) 

functional enrichment of biological processes and molecular functions was also 

performed using STRING. GO Functional enrichment strength was determined as log10 
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(observed enrichment/expected enrichment), with expected enrichment derived from 

randomly generated whole-genome background networks of similar size. 

 

Statistical Analysis 

Differences in representation among racial groups relative to their proportions in 

the United States population (US) and cancer genomics as a whole were evaluated by 

Fisher’s exact test. Population data for US adults were obtained from the 2020 census,29 

while data on the representation of racial groups in cancer genomics was obtained from a 

recent study of four major cancer genomic studies (TCGA, TARGET, cancer-related 

GWAS and the OncoArray Consortium).23 Mutation frequency and staining were 

likewise compared between Black and White patients using Fisher’s exact test. Given the 

low numbers of samples available from Black patients in the mutational analysis, and the 

confirmatory nature of the AACR GENIE mutational analysis for our 

immunohistochemistry (IHC) findings, we report significance based on p-values 

unadjusted for multiple comparisons. False discovery rate (FDR) adjusted p-values are 

reported alongside p-values in the mutational analysis as q-values. The mutation 

comparisons made are reported in Supplementary Data S1. PPI network significance 

was determined in comparison to expected interactions within randomly generated 

whole-genome background networks, and p-values corrected using the FDR.28 

Significance of GO functional enrichment was likewise determined. Statistical analyses 

were performed in R version 4.02 and GraphPad Prism version 8. 

 

Data Availability Statement 



19 
 

The data generated in this study are available within the article and its 

supplementary data files. Other data used are available within the AACR Project GENIE 

Database (https://GENIE.cbioportal.org/login.jsp). Further inquiries may be directed to 

the corresponding author. 

 

Results 

Manuscript Characteristics 

Using structured queries as described in the Methods, 3,329 manuscript records 

were identified (Fig. 1). 205 manuscripts were duplicated across database queries and 

their duplicates removed from further analysis. 3,124 manuscripts were reviewed for 

inclusion criterion. Most articles were excluded for not meeting article type criterion 

(reviews, editorial/opinions, clinical practice guidelines, meta-analyses; n=1438), not 

performing a requisite (epi)genetic analysis (n=691), or for analyzing only pre-

established cell lines (n=212). In total, 313 manuscripts met all inclusion criterion. 

PNENs were included in most studies (n=220), followed by siNENs (n=98) and 

colorectal NENs (n=44) (Fig. 2A). The total number of GEP-NENs that underwent 

(epi)genetic analysis in these studies was 14,845. PNENs were the most abundant GEP-

NENs in these 313 studies (n=10,309), followed by siNENs (n=3,089) and colorectal 

NENs (n=794; Fig 2B). These manuscripts were further subjected to the NLP search 

strategy, resulting in 72 manuscripts containing our race/ethnicity terms of interest.  
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Figure 1. Systematic Review Process. Studies meeting inclusion criterion for NLP 
analysis were screened independently by two investigators before screening by NLP and 

manual review to determine subject number by race. 
 

Figure 2. Manuscripts Analyzing GEP-NEN Types. A) Number of the 313 total 

manuscripts meeting criterion that analyzed each GEP-NEN type. B) Number of 
specimens from each GEP-NEN type included in all 313 manuscripts that met inclusion 

criterion. 
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Representation of Racial Groups 

In total, 16/313 manuscripts included information on the race of the subjects 

included in their (epi)genetic analyses. 13/184 studies analyzing DNA included data on 

the race of their subjects, while 4/107 analyzing RNA, and 1/54 studies analyzing 

Methylation included such data (Fig. 3). The analyses performed in the 16 studies 

reporting subject race included: SNP and mutational analyses (including genome-wide 

association studies), targeted NGS/mutational panels, miRNA sequencing, PCR array, 

methylation-specific PCR, whole-genome sequencing, and gene copy number analysis 

(Table S1). In these studies, siNENs were the most abundant (n=697), followed by 

pNENs (n=695) and colorectal NENs (n=46; Fig. 4A). These studies included 89% 

White subjects (n=2032; s=16, where s = number of studies including White subjects), 

5.8% Asian subjects (n=132, s=8), 4.0% “Other” subjects (n=93, s=11), and 1.2% Black 

subjects (n=27, s=6). No study reported race/ethnicity specific data for Hispanic/Latinx, 

Native American/Alaska Native, or Native Hawaiian/Pacific Islander subjects (Fig. 4B). 

The single methylation study that reported patient race included 90% White subjects 

(n=43) and 10% “Other” subjects (n=5). It should be noted that the discrepancy between 

total GEP-NENs analyzed in these studies by tumor subtype (n=1,457, Fig. 4A) and the 

total number of patients by racial group in these studies (n=2,284, Fig. 4B) is primarily 

the result of studies reporting the race of their entire cohort, while not specifying race 

information for the subset of their cohort included in (epi)genetic analysis. Hence, 

although the race representation results in Fig. 4B are as accurate as can be obtained by 

our methods, they are necessary extrapolations from these whole-cohort demographics 

and may differ somewhat from the real distribution. Overall, there was a significant 
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difference in the representation of race groups in GEP-NEN genomic studies, relative to 

their proportion of the United States population in the 2020 Census (p<0.001; Fig. S1).29 

White subjects were overrepresented (89.0% vs. 61.6%), Black subjects were 

underrepresented (1.0% vs. 12%), and subjects from “Other” racial groups were 

underrepresented (4.0% vs. 9%). Asian subjects appeared to be accurately represented 

with respect to the 2020 Census data (5.8% vs. 6.1%), but may be underestimated in 

GEP-NEN genomics due to the use of “Asian” without specific nationality terms in the 

NLP search strategy. Representation of racial groups in studies of GEP-NENs did not 

differ significantly from that across cancer genomics as a whole (p = 0.27).23 While the 

publication dates of studies/databases used in the referenced studies do not differ widely 

(GEP-NENs 2003 & 2010-2020; aggregate cancer genomics 2007-2016), the aggregate 

cancer genomics data included pediatric data  which may influence this result. Regarding 

the regional populations studied, most of the manuscripts that reported subject race data 

studied populations in the US (6/16, 5/16 exclusively in the Northeast US), 3/16 studied 

European populations, 3/16 studied populations in East Asia, 2/16 studied populations in 

both Europe and the US, and 2/16 studied worldwide populations.   
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Figure 3. Biomolecules Analyzed in Manuscripts Reporting Patient Race. Number of the 
313 total manuscripts that analyzed each type of biomolecule, depicted by the inclusion 

of patient race information.  
 

Table S1) Assays Used in 16 Manuscripts Reporting Patient Race 
 
 

 
 

 
 
 

 
 

 
  

Analysis Type Assay 

DNA SNP/Mutational Array 

DNA Targeted NGS Panels 

RNA miRNA-Sequencing 

RNA PCR Array 

Methylation Methylation-Specific PCR 

DNA Whole-Genome Sequencing 

DNA Copy Number Analysis 
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Figure 4. GEP-NEN Specimens Analyzed in Manuscripts Reporting Patient Race. A) 

Number of each type of GEP-NEN specimen analyzed in the 16 studies that reported 
patient race data. B) Number of patients from each ethnoracial group that were included 

in (epi)genetic studies of GEP-NENs that reported patient race.  
 

Figure S1. Comparison of racial group representation in GEP-NEN genomics, cancer 
genomics, and in the US population per 2020 census data. *Includes pediatric subjects 
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Immunohistochemical Analysis 

Given the low representation of non-White racial groups in GEP-NEN 

(epi)genomics, we began to question the applicability of previous findings to these 

groups. As pNENs were the most analyzed tumor in GEP-NEN (epi)genomics, and the 

genes MEN1, DAXX, and ATRX are the most frequently mutated in pNENs, we 

investigated their mutational status across racial groups via IHC analyses. Negative 

staining on IHC indicates a protein-altering mutation, and has been shown to be highly 

concordant with mutation in these genes.25,26 Pre-existing institutional TMAs containing 

samples from 40 White and 13 Black patients with primary, well-differentiated grade 1 

and 2 pNENs were evaluated (Fig. 5). 9/13 (69.2%) Black and 22/40 (55%) White 

patients were female. Median age at resection (range) were 64 (35-93) and 64.5 (31-82) 

years for Black and White patients, respectively. Likewise, 6/13 (46.1%) and 24/40 

(60%) tumors were grade 1 for Black and White patients. Regarding the IHC analysis, 

9/40 (23%) White and 2/13 (15%) Black patients were negative for Daxx expression 

(p=0.711), 2/40 (5%) White and 1/13 (7%) Black patients were negative for Atrx 

expression (p>0.999), and 11/40 (28%) White and 0/13 Black patients were negative for 

Menin expression (p=0.047). Previous studies have found loss of Daxx, Atrx, and Menin 

expression by IHC in pNENs to occur in 59%, 25-85%, and 18-72% of cases, 

respectively.30-32 The retention of normal Menin staining in specimens from Black 

patients supports the hypothesis that differential epigenetic modulation may be present in 

this population.32  
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Figure 5. Immunohistochemical analysis of pNEN tissue microarrays containing tumor 
specimens from 13 Black and 40 White patients. The frequently mutated genes DAXX, 
ATRX, and MEN1 were assessed for differential rates of mutation among groups. 

 

Mutational Analysis 

To provide further rationale for the inclusion of diverse subjects in genomic 

studies of GEP-NENs, we investigated suspected mutational differences between racial 

populations by querying the AACR GENIE database, which contains publicly accessible 

mutational data from 28 different institutional sequencing panels conducted on over 400 

well-differentiated pNENs from Black and White patients (n=24 and n=399).27 PNENs 

were chosen for follow-on studies, as they were the most prevalent neoplasms in the 

earlier reviewed sequencing analyses. Data from both Black and White patients together 

were available from nine sequencing assays (Fig. S3), consisting of 24 Black and 268 
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White patients that were included in further analysis. Median age (range) at sequencing 

were 55 (31-79) and 60 (19-85) years for Black and White patients, respectively. Samples 

were confirmed metastases in 45.8% of Black and 42% of White patients. Tumor grade 

was not available. We discovered 10 significant differentially mutated genes in pNENs 

between Black and White patient groups (Fig. 6 & Table 1), including CHEK2 and 

MUTYH (DNA repair), NF2 and TP53BP1 (tumor suppression [TS]), KMT2D and EP300 

(histone methyl- and acetyl- transferases [HMT, HAT] respectively), the CRKL and 

MAPK1 oncogenes, and SMARCB1 (part of the n/npBAF SWI-SNF chromatin-

remodeling complexes). Most notably, we found profound differences in the rate of  

MEN1 mutations (TS, HMT), with White patients having a much higher rate of MEN1 

mutation compared to Black patients (37.3% v. 16.7%, p= 0.031). Importantly, 4/10 

genes found to be differentially mutated have direct roles in epigenetic regulation 

(KMT2D, EP300, SMARCB1, MEN1), supporting previously described differences in 

epigenetic aberrations between racial groups in cancer.33-37  
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Table 1. Differentially Mutated Genes in pNENs among Black & White Patients in 

AACR Genie Dataset 

a. Fisher’s exact test, unadjusted for multiple comparisons; P-val = p-value  

b. Q-val = FDR-adjusted p-value 

c. Histone Methyltransferase 

d. Histone Acetyltransferase 

 

Figure 6. Analysis of mutational panel data from the AACR Project GENIE, comparing 

the incidence of significant differential protein-altering mutations between Black and 
White patients with pNENs.  

Gene Black White P-val
a
 Q-val

b
 Relevant Function 

TP53BP1 2 (12.5%) 0 (0.00%) 0.005 0.35 Tumor Suppressor 

CRKL 2 (8.33%) 0 (0.00%) 0.006 0.35 Proto-Oncogene  

MAPK1 2 (8.33%) 0 (0.00%) 0.005 0.35 Proto-Oncogene  
CHEK2 2 (8.33%) 0 (0.00%) 0.005 0.35  DNA Repair  

NF2 2 (8.33%) 0 (0.00%) 0.005 0.35  Tumor Suppressor 

MUTYH 2 (8.33%) 1 (0.37%) 0.019 0.75  DNA Repair  

SMARCB1 2 (8.33%) 0 (0.00%) 0.006 0.35  Chromatin Remodeling  

KMT2D 3 (13.04%) 4 (1.49%) 0.014 0.63  HMT
c
 

MEN1 4 (17.39%) 140 (40.35%) 0.031 0.95  Tumor Suppressor, HMT 

EP300 2 (8.33%) 2 (0.75%) 0.035 0.95  HAT
d
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Figure S2. Composition of Black and White patient cohorts from the AACR GENIE 
dataset by sequencing assay ID’s, depicted by raw subject numbers (Left) and by % 

composition (Right). Only sequencing assays that included both Black and White patients 
were considered. 

 

Protein-Protein Interaction Network Analysis 

Given known differences in epigenetics between racial groups, a PPI-enrichment 

network of the differentially mutated epigenetic regulatory genes MEN1, KMT2D, 

EP300, and SMARCB1 was generated using STRING (Fig. 7A).28 The network was 

highly interconnected and significantly enriched for PPI’s (p=2.11e-15), with a total of 

132 PPI’s discovered within the network and a mean of 8.25 interactions per node 

(Supplementary data S2). Notably, most PPI’s fell within the very high (0.9-1.0) and 

high (0.7-0.9) confidence score categories (48.5% & 18.2%), with fewer in the medium 

confidence score category (33.3%; 0.4-0.7). EP300 had the highest number of interacting 

partners (n=14), followed by KAT2B (n=13) and KDM6A/YY1 (n=11 each). KMT2D, 

SMARCB1, and MEN1 each had 9, 8, and 6 interacting partners, respectively. Gene 

ontology (GO) enrichment analysis was then performed for biological processes, 

molecular functions, and cellular components, discovering 196 significantly enriched GO 

terms in our PPI network (Supplementary data S3). Notable enriched GO terms 
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included histone H3-k4 methylation, histone acetylation, beta-catenin-TCF complex 

assembly, type b pancreatic cell differentiation, epigenetic regulation of gene expression, 

chromatin remodeling, MLL3/4 complex, and the nBAF/npBAF complex. 

According to these data, we propose an interaction model of the epigenetic 

regulatory genes found to be differentially mutated between Black and White patients 

with pNENs in our analysis (Fig. 7B). KMT2D is targeted by the Menin protein (encoded 

by the MEN1 gene), forming the MLL3/4 histone methyltransferase complex that 

regulates H3K4me3 deposition in promoter regions throughout the genome, as well as 

interacts with the p53 pathway through many of its target loci.38 The histone H3K27 

acetyltransferase EP300 requires KMT2D for its binding to a variety of enhancer regions 

and the facilitation of enhancer-promoter looping, tying mutations in these genes to one 

another functionally.39 Furthermore, KMT2D has also been shown to associate with the 

SWI/SNF chromatin remodeling complex, acting as a coactivator for nuclear hormone 

receptor driven transcriptional activation.40 This function further involves a core subunit 

of the SWI-SNF p/npBAF complexes SMARCB1. Of additional note is that SMARCB1 

facilitates the effective activation of cell-type specific enhancers by KMT2D and CBP, 

and CBP closely associates with EP300 for H3K27 acetylation. The BAF 

complexes/SMARCB1, Menin, and KMT2D all share additional roles in their inhibition 

of canonical Wnt signaling, thereby acting in a tumor-suppressive manner.41,42  
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Figure 7. A) STRING interaction network of Menin, KMT2D, SMARCB1, and EP300. 
Between-cluster interactions are denoted by dotted lines, with intra-cluster interactions 
denoted by solid lines. B) A potential model of functional interdependencies and 

convergences of Menin, KMT2D, EP300, and SMARCB1 based on network interactions 
and literature review. 

 

Discussion 

We demonstrate herein that few studies on the (epi)genetics of GEP-NENs 

include data on the race of their subjects. We find that pNENs and siNENs make up the 

greatest proportion of manuscripts’ topics and tumor specimens analyzed in the literature, 

as would be expected given their incidence compared to other GEP-NENs. We also find 

that GEP-NEN (epi)genomics overrepresents White subjects relative to the proportion of 
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the US population that they comprise (Fig. S1).23,29 Indeed, based on the US population, 

the expected representation of White subjects is ~62%, exceeded herein by ~29%. In 

contrast, Black subjects are represented at ~10% of their expected proportion (1.2% vs. 

12%). While these findings align with those from other studies characterizing the 

representation of racial groups in cancer genomics, no Native American/Alaska Native, 

Native Hawaiian, Pacific Islander, or Hispanic/Latinx subjects are explicitly represented 

in current studies of GEP-NEN (epi)genomics.23,43 From these data, we can conclude that 

there is little representation of racial minorities in (epi)genetic stud ies of GEP-NENs. 

Following this, we discovered differences in the mutation of the MEN1 gene between 

Black and White patients by IHC. We then conducted a pilot study of differentially 

mutated genes between these groups using AACR GENIE data wherein we affirmed this 

finding and discovered 9 other differentially mutated genes. We then conducted PPI 

enrichment network analysis on a subset of epigenetic regulators within those genes, 

finding them to be functionally interconnected, and propose a model of their key 

interrelated functions. According to the current genetic epidemiology of pNENs, MEN1 

is the most frequently mutated gene, followed by DAXX and ATRX. The data herein 

indicate that this may not be the case for different racial groups, warranting more 

comprehensive analyses of GEP-NEN (epi)genomics among racial groups to identify 

genomic aberrations that may be enriched in or unique to these populations.  

The inclusion of diverse patient populations in (epi)genetic studies of cancer is 

crucial to  understanding and rectifying cancer health disparities, as well as further 

understanding the biology of various cancers. Therapeutic susceptibility is one important 

translational aspect of inter-racial (epi)genetic variation that highlights the need for 
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diverse patient representation in sequencing analyses. For example, a phase III trial of the 

tyrosine-kinase inhibitor (TKI) gefitinib for non-small-cell lung cancer (NSCLC) found 

no benefit for any population other than those of Asian descent. Epidermal growth factor 

receptor (EGFR) mutations were then discovered to be far more prevalent in Asian 

patients with NSCLC compared to those of European descent (47% vs. 15%).44 This led 

to increased use of TKI’s targeting EGFR in this population as first-line therapy, in 

addition to the discovery that certain TKI’s demonstrated increased efficacy in this 

population.45,46 There is similar potential for targetable racial differences in sporadic 

insulinomas (the most common functional pNEN) as well. For example, mutations in the 

YY1 chromatin remodeling gene are heavily enriched in Asian patient populations (30% 

vs 13%).47 YY1 is a direct target of mTORC1, inhibitors of which are among the few 

approved therapies for pNENs, prompting suggestion that this population may uniquely 

benefit from mTOR inhibitors such as everolimus.48 Furthermore, MGMT 

hypermethylation (present in 17-50% of pNENs) has been shown to predict response to 

alkylating agents such as temozolamide, wherein understanding differences in this 

hypermethylation in Black patients might have immediate clinical implications.49,50 These 

points considered, the ability to identify such genomic differences across populations is 

currently limited by the lack of diverse groups in genomic studies of GEP-NENs, as 

depicted herein. 

The establishment of prognostic genomic features, which allow clinicians to 

inform treatment selection and conduct prognostication, is an important element of cancer 

genomic analysis wherein a lack of diverse subjects may exacerbate racial disparities in 

clinical outcomes. Numerous prognostic genomic features have been characterized as 



34 
 

predictors of survival for pNENs, including mutations in DAXX/ATRX and MEN1, the 

expression levels of somatostatin receptors 2 and 5, elements of the tumor immune 

microenvironment, and enzymes involved in hormone metabolism.51,52 However, it is 

likely that studies characterizing these various features as predictors of disease outcomes 

reflect the populations included in the (epi)genomic studies reviewed in the present study. 

This is highlighted by our findings that the MEN1 gene was among those that were 

differentially mutated between Black and White patients with pNENs. However, while it 

may be that well-known genes such as MEN1 for pNENs are not altered in diverse 

populations, it is possible that “non-canonical” genes representing key nodes of 

frequently altered pathways are preferentially affected in different racial populations. For 

example, oncogenic dysfunction of the Menin/MLL4 histone methyltransferase complex 

in pNENs may occur more frequently via KMT2D mutations as opposed to MEN1 

mutations in a given population. This and similar scenarios would entail that such 

aberrations are identified and included in future studies of association with patient 

outcomes- as well as clinical screens-  to serve a more diverse population’s needs 

adequately and equitably.  

Another relevant issue in the diversification of cancer genomics is the exclusive 

use of self-reported race (SRR) as opposed to the inclusion of genetic ancestry when 

characterizing racially enriched genomic features. SRR is relatively easy to obtain while 

also being correlated with genetic ancestry; and its use has persisted in large-scale 

genomic analyses as a result. Furthermore, SRR acts as a surrogate metric for a highly 

complex array of behavioral, cultural, environmental, and social variables that are 

themselves influential in disease.53 However, when SRR data are available they can be 
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inaccurate and incomplete, potentially leading to spurious associations between racial 

groups and genomic features.54 Although few studies of genomic differences in cancer 

have incorporated genetic ancestry, broadening knowledge of their influence on tumor 

biology is driving wider adoption of the practice.55,56 Numerous tools have been 

developed that allow for the incorporation of genetic ancestry into genomics analyses, 

such as Admixture57 and STRUCTURE.58 These tools use distinct methods to provide 

maximum-likelihood estimation of individual ancestries from multi-locus single 

nucleotide variants, or use Bayesian techniques to assign individuals to a pre-defined k 

number of racial groups based on their genetic features, respectively.54,59-61 Genetic 

ancestry may be particularly important to consider for disaggregating racial groups that 

can become “invisible” in studies of genomics and racial disparities due to relatively low 

subject numbers, population admixture, discrepancies between SRR and genetic ancestry, 

or emphasis on studying disparities in certain minority groups over others.62 Additionally, 

the use of genetic ancestry in the conduct of (epi)genomic analyses among racial groups, 

while not optimal, provides a method for circumventing the remiss practice of 

aggregating subjects from minority racial groups into an “Other” category without any 

additional data. Given the complexity of factors associated with SRR, there is ongoing 

discourse as to if and how genetic ancestry should be incorporated with SRR, rather than 

considered separately.53,63,64 However, it is clear that genetic ancestry should be 

considered in genomic analyses of diverse populations. 

Numerous obstacles have likely led to the current state of diversity in GEP-NEN 

genomics. Approximately 60% of patients with pNENs have metastasis upon 

presentation, precluding a curative resection that would generate tissue for biobanking. 
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Alongside this, Black and other non-white patients are less likely to undergo surgery for 

GEP-NENs, even when they meet societal guidelines for surgical resection and are good 

surgical candidates.3,65 Understandably, this results in fewer patient tumor samples from 

these racial groups being banked for use in sequencing analyses. Alternatively, given that 

tumor biobanking generally takes place at academic institutions with high surgical 

volume and that racial minorities are less likely to undergo cancer surgeries at such high-

volume centers, these differences likely influence the biobank composition where GEP-

NEN (epi)genetic research is conducted.66 A recent analysis of the SEER-Medicare 

database found that most patients with GEP-NENs receive surgery at medium or high-

volume centers.67 However, they also found no significant difference in the racial 

composition of those treated across hospital volumes. Unfortunately, this study included 

a relatively small sample size of patients with mixed surgically and medically treated 

patients (n=899) that was constrained by the availability of completed insurance claim 

data. As this is the only study analyzing the impacts of treatment center volume on GEP-

NEN outcomes to the authors’ knowledge, how the catchment populations of high-

volume GEP-NEN research hospitals might be affecting the racial representation in GEP-

NEN genomics remains unclear.  

Various initiatives and strategies have been aimed at improving the diversity and 

representativeness of cancer genomics, with focuses on research infrastructure, clinical 

trial design, community engagement, and researchers themselves. Arguably, the most 

impactful strategy is the prioritization of inclusive research by institutions, as this 

manifests as the former through specific goals and increased investment. Increasing the 

diversity of the cancer genomics workforce is the goal of the AACR’s Minorities in 

https://www.aacr.org/professionals/membership/constituency-groups/minorities-in-cancer-research/micr-council/
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Cancer Research Council and the National Cancer Institute’s Partnerships to Advance 

Cancer Health Equity program, which aim to provide training, career development, and 

research funding for early-stage investigators and trainees from under-represented 

groups. Improving the diversity of the cancer research workforce may also improve the 

involvement of diverse groups in clinical trials and genomics studies, as researchers are 

motivated to address cancer health disparities in their communities and better understand 

the systemic, logistical, and cultural barriers they face.68 Clinical trials are a key source of 

(epi)genomic data, as they often involve the collection of patient blood or tumor samples 

for (epi)genomic analyses alongside therapeutic regimens. Diversity in these clinical 

trials suffers immensely from the barriers faced by racial minority populations, as they 

are often confined to large research institutions that may be unreachable, require multiple 

visits, have restrictive inclusion criterion, have hidden costs of participation, or are 

distrusted by ethnoracial minority groups. In 2020, the US Food and Drug Administration 

released guidance to facilitate the involvement of underrepresented ethnoracial groups in 

clinical trials through Project Equity, which included recommendations for decentralizing 

clinical trial procedures into community facilities, relaxing inclusion criterion, and setting 

specific goals for enrollment of subjects from ethnoracial minority groups. In tandem 

with clinical trials, biobanking is a critical aspect of d iversity in cancer genomics studies. 

However, in addition to lacking ethnoracial diversity, data show that biobank donors tend 

to be both healthier and wealthier than the populations they ostensibly represent.69 Even 

small improvements in the numbers of subjects from ethnoracial minority groups have 

been able to improve the detection of genomic variants associated with disease processes, 

emphasizing the benefits of improving biobank diversity.70 This might be accomplished 

https://www.aacr.org/professionals/membership/constituency-groups/minorities-in-cancer-research/micr-council/
https://www.cancer.gov/about-nci/organization/crchd/diversity-training/pache
https://www.cancer.gov/about-nci/organization/crchd/diversity-training/pache
https://www.fda.gov/about-fda/oncology-center-excellence/project-equity


38 
 

by using online consent models to facilitate the ease of consenting to biobank 

participation.71 Such systems also allow institutions to provide information as to how 

patients’ samples will or are actively being used, which has been demonstrated to be a 

key factor in decision-making for biobank participation across racial groups.72 

Decentralization, or the establishment of multi-institutional regional biobanks that source 

from community institutions, may be of particular benefit to ethnoracial diversity in 

GEP-NEN genomics, due to their relatively rare nature.73 While decentralization may 

also benefit ethnoracial diversity in biobanking similarly to clinical trial enrollment, 

consistency and standardization of procedures must be carefully considered to ensure 

specimen and data quality.74 

There are several limitations of the present study to be considered. First is the lack 

of precise data on the number of patient samples by racial group that underwent 

(epi)genetic analysis, highlighted by the discrepancy between the total numbers reported 

in Fig. 4A (n=1,457) and Fig. 4B (n=2,284). Because race representation was reported 

for whole cohorts rather than for cohort subsets that were included in (epi)genetic 

analyses, the results in Fig. 4B are an inexact depiction of the unobtainable real 

distribution. A minor limitation of this study lies in the lack of a specific distribution of 

subject ages in the comparisons of racial representation in GEP-NEN studies, aggregate 

cancer genomic studies, and the US population data from the 2020 census. Notably, only 

data from aggregate cancer genomics studies included pediatric subjects, but specific age 

distribution data were not readily available in these data and were both variably reported 

in the GEP-NEN studies that reported patient race data. Another limitation lies in the 

relatively low number of Black patients compared to White patients in our analysis of 
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pNENs in the AACR GENIE cohort (n=24 and n=268, respectively) and our 

immunohistochemical data (n=13 and n=40, respectively). While this disparity in 

representation illustrates the points made within and the statistical approach aimed to 

mitigate differences in sample size, these factors must be considered in the interpretation 

of our results. Accordingly, it is noted that unadjusted p-values are used herein to 

determine the number of significantly differentially mutated genes. The small number of 

subjects in the Black AACR GENIE cohort and the number of genes analyzed (n=323; 

Supplementary Data S1) rendered all analyses non-significant with traditional 

multiplicity adjustments (Table 1). However, while caution should be exercised in 

interpreting these data, the lack of MEN1 mutations in the Black AACR GENIE cohort 

parallels our observations in an independent cohort and strengthens this conclusion. 

Furthermore, as evidenced by the literature review conducted herein, the AACR GENIE 

dataset remains the only available repository of data upon which such analyses can 

currently be conducted, further demonstrating the need for additional studies of 

underrepresented racial populations in GEP-NEN genomics. 

Our understanding of (epi)genetic variation among racial groups has important 

implications for our understanding of GEP-NENs, and may highlight genomic 

differences among racial groups influencing oncogenesis and tumor progression similarly 

to those described in other cancers. In conclusion, careful inclusion of diverse 

populations in (epi)genetic studies is integral for further understanding GEP-NEN 

biology, generalizing findings to diverse patient populations, and improving therapy for 

all.
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Abstract 

There are known disparities in outcomes between Black and White patients with 

pancreatic neuroendocrine tumors (pNETs). Recently, Black patients have been shown to 

have higher rates of lymph node metastasis in smaller tumors than White patients, 

indicating possible differences in tumor biology. Numerous prognostic gene expression 

differences between racial groups have been reported in other cancers, but no such 

analysis has been conducted in pNETs. This study aims to evaluate pNET transcriptomes 

and previously established prognostic protein biomarkers for differential expression, as 

well as differential elements of the tumor microenvironment that may be influencing 

racially disparate outcomes.  

RNA-seq was conducted on RNA isolated from well-differentiated Grade 1 and 2 

archival pancreatic NETs (PNETs) from 21 Black and 18 White patients. Following QC 

and alignment, ancestry estimates were generated from RNA-seq derived SNPs to 

estimate African ancestry. Differential gene expression was performed based on self-

reported race and African ancestry. Differentially expressed genes (DEGs) were then 

evaluated for their relationship with progression-free survival and a composite endpoint 

of lymph node metastasis, distant metastasis, and progression. Tissue microarrays of 

PNETs were then stained for PNET markers, immune cell markers, and prognostic 

proteins via multiplexed immunofluorescence. Immune cell infiltration, PD-L1 positivity, 

and prognostic protein expression were then evaluated between racial groups.  

Of 414 DEGs, 14 were significantly associated with clinical outcomes. T cell 
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infiltration and PD-L1 positivity varied between racial groups, along with expression of 

all prognostic biomarkers.  

There are differences in gene expression between Black and White patients with 

PNETs that have a relationship with tumor progression to metastatic disease, as well as in 

the expression of previously established prognostic protein biomarkers and immune cell 

infiltration. These differences warrant further investigation into interracial variation in 

PNETs. 
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Introduction 

Pancreatic Neuroendocrine tumors (PNETs) are a heterogeneous group of 

neoplasms originating from the cells of the endocrine pancreas. PNETs are the second 

most prevalent pancreatic malignancy with an estimated 4,032 new cases in 20201. 

PNETs are broadly categorized into two subsets- the hormonally active (termed 

functional), which occur in up to 30% of cases2-4, and non-functional tumors, which do 

not secrete sufficient hormone to elicit symptoms. Functional PNETs often cause severe 

symptoms such as debilitating diarrhea, life-threatening glucose imbalances, bleeding 

ulcers, and heart failure as a result of this aberrant hormonal secretion 5. While all 

functional tumors are considered for resection, up to 80% of pNETs are non-functional 

and the recommendation for resection is instead based on the risk of malignancy. Chiefly, 

these guidelines use tumor size as a prognostic surrogate for lymph node metastasis 

(LNM)6. According to these guidelines, tumors <1cm are observed (6% risk LNM), 1-

2cm are resected based on clinical judgement (10% risk LNM), and those ≥2cm are 

resected (40% risk LNM)7. Estimates of 5-year survival for patients with metastatic 

pNETs vary widely; rates >50% are frequently reported for well-differentiated tumors8,9, 

but as low as 10% is reported for the more aggressive, poorly-differentiated tumors10. 

Therefore, clinicians need balance the potential for favorable survival outcomes with the 

risks of death or severe complications associated with pancreatic resection, occurring in 

3% and 50% of cases respectively 10. Given the weight and difficulty of this decision, it is 

critical to identify non-functional pNETs at risk for LNM early and offer appropriate 
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resection. However, the aforementioned size-based resection criteria rely heavily on 

analyses of European patient cohorts; where Black patients range from 4% of the 

population in the UK to 0.1% in Poland.11,12 Indeed, according to a recent analysis of the 

National Cancer Database (NCDB) and United States Neuroendocrine Tumor Study 

Group (USNETSG), Black patients in particular have a much higher rate of LNM in 

tumors < 2cm compared to White patients (Fig. 1). Racial disparities have long been 

known to exist in PNET outcomes and therapy. Black patients are more likely to be 

diagnosed with advanced disease, receive surgery less often despite meeting criterion, 

and have worse overall survival when compared to White patients. 13-15  However, the 

high incidence of metastatic disease at small tumor sizes in Black patients prompts 

questions as to the etiology of this disparity.  

Figure 1. Black patients had higher rates of LNM in <2cm PNET tumors than White 
patients in the initial USNETSG dataset (23% vs 5%) and the validation NCDB dataset 

(21% vs 12). * p<0.01 

 Data have shown that a wide array of molecular features differ among racial 

groups in various cancers, some of which may be clinically actionable. Indeed, both 

intrinsic and extrinsic properties of cancer cells, including the genome, transcriptome, 

epigenome, and the tumor immune microenvironment have been demonstrated to differ 
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among racial groups. 16-21 However, identifying potentially actionable molecular features 

that are enriched in certain racial populations relies upon the inclusion of diverse racial 

groups in analyses that seek to study these molecular features. Previous studies have 

shown that the representation of racial groups in genomic studies of 

gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) is highly racially 

homogenous, with White patients making up an overwhelming majority of those 

represented in the literature.22 A similar trend emerges when these data are subset for 

pNETs specifically, with White patients comprising 87% of patients in such studies while 

Black patients make up only 1.3% (Fig. 2). Furthermore, while this disparity specifically 

pertains to studies that conducted DNA, RNA, or DNA methylation sequencing analyses, 

it is not presumptuous to assert that previous studies to identify and characterize other 

clinically relevant PNET biomarkers (i.e immunohistochemical) were similarly diverse.  

Figure 2. Representation of Racial Groups in Genomic Studies of PNETs. Adapted with 
permission from Cancer Research Communications.  

 

Relative to other tumors, PNETs have a low mutational burden and are rather 

characterized by high levels of epigenetic dysregulation. Highlighting this is the fact that 

the three most frequently mutated genes in PNETs- MEN1, DAXX, and ATRX- are all key 

epigenetic regulatory genes.23-28 Interestingly, epigenetic features are known to vary 
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widely between different racial groups in healthy states. Many of these variable features 

specifically overlap regions associated with various cancers, including those of the 

pancreas.29,30 A recent study from our group also found variation in the mutation of 

multiple epigenetic regulatory genes between Black and White patients, which included 

MEN1, KMT2D, SMARCB1, and EP300. Notably, the lower rate of MEN1 mutations in 

Black patients was also confirmed in an external cohort. This emphasizes not only 

differences in mutational dynamics among racial groups, but indicates resultant second -

order epigenetic differences through the vast regulatory networks of these genes.  

Altogether, there is a robust difference in metastatic propensity among Black and 

White PNET patients, possibly representing a difference in tumor biology that portends 

worse clinical outcomes for Black patients. There is little available to evaluate this 

hypothesis, as Black patients are underrepresented in PNET molecular analyses. 

However, this notion is substantiated by known genomic, epigenomic, and transcriptomic 

variation among racial groups in cancer, and has been further affirmed by findings at the 

genomic level in PNETs specifically. Therefore, the present study aims to evaluate 

additional molecular features including the transcriptome, tumor microenvironment, and 

previously established biomarkers for their potential influence on clinical outcomes and 

for their utility as biomarkers in the Black patient population.   
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Methods 

Patient Selection and Clinical Data Collection 

All studies of patient-derived tissues were performed in accordance with a 

protocol approved by the University of Alabama at Birmingham (UAB) Institutional 

Review Board (IRB-300006067). Patients with self-reported race (SRR) of Black or 

White were selected via chart review of pancreatic resections at the and/or query of 

UAB’s Institutional Tissue Biorepository (TBR). To minimize noise due to confounding 

factors, patients were selected in matching pairs based on tumor grade, sex, and age in 

order of priority. Given the possibility for extensive RNA degradation despite proper 

block storage and nucleotide recovery methods, only cases occurring after January of 

2010 were selected. After confirmation of the diagnosis with a board-certified 

pathologist, chart review was conducted to generate a database of patient clinical factors, 

including patient demographic characteristics, tumor characteristics, surgical and surgical 

pathology data, comorbidities, substance use habits, progression/recurrence status, 

survival status, and treatment information. Patients without follow-up in the past 12 

months were surveyed by UAB Cancer Registry personnel to update clinical information. 

 

Laser Microdissection 

 H&E sections were generated from resected pNET FFPE blocks and evaluated by 

a board-certified pathologist with neuroendocrine expertise to demarcate nests of tumor 

cells for laser microdissection. Immunostains for Chromogranin A (CgA) were likewise 

used to facilitate identification of tumor nests. Following strict decontamination to 

prevent RNAse exposure, 10uM sections were cut and mounted onto RNAse-free 2 uM 
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PEN membrane slides (Leica). Sections were dried overnight at 4C with desiccant. 

Following deparaffinization, sections were rehydrated in sequential dilutions of 

molecular-grade EtOH in RNAse-free water to 70% EtOH and stained with a 2% cresyl 

violet solution in 100% EtOH. Slides were then dehydrated in increasing concentrations 

EtOH to 100% and placed on ice until microdissected. Using the previously identified 

tumor nests from H&E and CgA staining as reference, microdissection was performed 

with a Leica LMD 6 using a laser at X power with an aperture of X to yield sufficient 

tissues for DNA & RNA isolation. 

 

RNA Isolation and Sequencing 

RNA were isolated using the Allprep DNA/RNA FFPE kit (Qiagen) according to 

manufacturer’s specifications. Library preparation and sequencing were then performed 

by the UAB Heflin Genomics Core. Samples were screened for quality via Bioanalyzer 

(Agilent) and those with a RIN value < 3 were excluded. RNA-Sequencing (RNA-Seq) 

was performed using the SEQuoia Complete Stranded kit (Bio-Rad) with ribo-reduction. 

Sequencing was performed on an Illumina NextSeq550 at 30 million reads/sample for 

RNA-seq. 

 

Bioinformatic Analyses 

RNA-sequencing. Bioinformatic analyses were performed on an institutional 

Linux-based computing cluster. Illumina universal adaptor sequences and poly-(A) tails 

were trimmed from RNA-seq reads using cutadapt 31. Reads were discarded if they were 

below 15 bases in length or had a quality score < 28. Reads were then mapped to a full-
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genome decoy-aware GRCh38 transcriptome using Salmon. Differentially expressed 

genes (DEG’s) were then determined using DESeq2. Covariates used  in the design matrix 

included patient sex, tumor grade, sequencing batch (n=4), race (either self-reported or 

genetic ancestry, where denoted), and the age of the tumor block from which DNA/RNA 

was isolated. Numerical covariates were centered and scaled. Likelihood ratio tests as 

employed in DESeq2 were used to evaluate covariates in a stepwise manner to confirm 

their contribution to differential gene expression by racial group. Differential gene 

expression was determined by false discovery rate (FDR) adjusted p-value (q-value; qv) 

< 0.05 and log2 fold-change (log2FC) ≥ 1. Significant DEG’s were then funneled into 

gene set enrichment analysis (GSEA), which was performed using clusterProfiler and the 

Gene Ontology (GO) consortium gene sets. Enriched Gene Sets were likewise 

determined by q-value. 

 

Ancestry estimation. Genetic ancestry was determined using Admixture (version 

1.3.0), which provides a maximum likelihood estimation of individual ancestries from 

multi-locus SNVs. Prior to admixture analysis, GATK best practices were used to 

identify SNVs from the RNAseq reads. Specifically, we aligned our RNAseq reads to 

hg19 using STAR (version 2.5.2b). Variants were called using GATK HaplotypeCaller 

(version 3.8) and subsequently filtered to exclude rare variants (i.e., <5% across all phase 

3,1000 genomes), all INDELs, and any SNPs that were not biallelic. Ancestral reference 

populations were based on the 1000 Genomes Project phase 3 superpopulations. 32 

 

Survival analysis. Rlog-normalized transcript counts for each patient were 
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generated using DESeq2. Gene expression was scaled into Z scores and Cox proportional 

hazards model generated for each gene using the RegParallel R package. CutoffFinder 

was then used to establish expression cutpoints for optimized prediction of PFS and 

Kaplan-Meier plots analysis conducted. Clinical endpoints used were progression, 

progression-free survival,  recurrence, and the presence of either distant metastatic 

disease or LNM at the time of resection. Due to the relatively small number of events in 

this cohort, composite metrics of these outcomes are used where denoted in the Results.  

 

Multiplexed Immunofluorescence  

Slides containing 5-µm of FFPE tissue sections were generated and stored at 4°C 

until use. Prior to staining, slides were baked for 30 min to 1 h at 55 °C. According to 

Akoya Biosciences protocol, FFPE tissues were dewaxed, deparaffinized in xylene then 

rehydrated in descending ethanol concentrations (100% twice, 90%, 70%, 50%, and 30%, 

respectively) and washed in ddH2O twice, each step for 5 min. Heat-induced epitope 

retrieval with antigen retrieval solution, pH 6, was performed using the pressure cooker at 

high-pressure protocol (80 °C) for 20 min. After cooling at room temperature (RT) for 30 

min to 1 h, the coverslips were washed in ddH2O twice for 2 min. Then the sample 

coverslips were immersed in the hydration buffer six times before being placed in the 

staining buffer for 20–30 min. The antibody cocktail solution was prepared to contain 1–

2 µL: 200 of the antibody/sample and then added to CODEX blocking buffer (staining 

buffer, N blocker, G blocker, J blocker, and S blocker) to block nonspecific binding of 

the antibody. For each coverslip, 190 µL of the antibody cocktail solution was added and 

incubated in a sealed humidity chamber for 3 h at RT or overnight at 4 °C. After staining, 
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sample coverslips were placed in the staining buffer twice for 2 min to rinse any unbound 

antibodies and then fixed in 1.6% paraformaldehyde diluted in the storage buffer (post-

staining fixing solution) for 10 min, followed by a total of 9 quick washes in 1x PBS. 

After washing, the sample coverslips were incubated in 100% cold methanol for 5 min, 

followed by a total of nine dunks in 1x PBS. A fresh final fixative solution was prepared 

by diluting 20 µL of the CODEX fixative reagent in 1 mL of 1x PBS. The final fixative 

solution (190 µL) was added to the sample and incubated in a sealed humidity chamber at 

RT for 20 min, followed by nine quick washes in 1x PBS to remove the fixative reagent. 

Thereafter, sample coverslips were placed in a storage buffer at 4 °C for up to two weeks 

or further processed for imaging. At imaging time, the reporters’ plate was prepared for 

the corresponding antibodies (one well/cycle), maintaining one dye type per cycle. The 

reporter stock solution was prepared for the total number of cycles. Each reporter was 

added (5 µL) to the corresponding cycle to create a reporter master mix per cycle, then 

gently mixed by pipetting before 245 µL of the mix was added into the corresponding 

well on the 96-well plate. 

Multiplexed Immunofluorescence Analysis 

Images were collected using a KEYENCE BZ-X800 fluorescent microscope 

config-ured with 3 fluorescent channels (TxRed, Cy7, Cy5) and DAPI with 20×. Whole-

slide scanning was conducted with a 20× oil immersion objective in a 5 × 5 tiled 

acquisition at 9 z-planes per tile. Images were subjected to deconvolution to remove out-

of-focus light. Then the raw experiment data were transferred using CODEX Instrument 

Management version (CIM v1.29) software and processed using CODEX Processor 

version 1.7. High-resolution whole-slide images of TMAs were scanned and uploaded 
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into the Qupath image analysis software (cite; version). Cell detection was performed 

using DAPI as input for the native cell detection function in Qupath.33 Training images 

were then generated for each antibody, and thresholds for antibody positivity established. 

Random-forest classifiers for cell populations were then trained using approximately 30% 

of the cells for a given cell population per core, including tumor cells, macrophages, and 

CD4+/CD8+ T-cells. Stained normal tissue cores from various organs (spleen, liver, 

lymph node, tonsil, placenta, skin, skeletal muscle, cardiac muscle, and normal pancreas) 

were used as positive or negative references where appropriate. Once cell populations 

were classified, density maps were generated to establish tumor bed boundaries. Distance 

metrics for individual cells relative to tumor bed boundaries were then generated to 

identify cell populations infiltrating into tumor beds.  

 

Statistical Analysis 

Differences in patient and tumor characteristics were evaluated using either 

Fisher’s exact test for categorical/ordinal characteristics, or t-test for numerical 

characteristics. Numerical characteristics were evaluated for normality and 

homoscedasticity using the Shapiro-Wilk and Levene’s tests, respectively. The 

relationship between African ancestry estimates and rlog-normalized transcript values 

from RNA-seq were evaluated using Pearson’s correlations and logistic regression 

implemented with RegParallel. Linear regression was used to evaluate the relationship 

between infiltrating immune cell populations into tumor cores with the number of tumor 

cells within tumor beds as a covariate within the model. The methods used to evaluate 

differences in the representation of racial groups in PNET genomic studies are described 
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elsewhere. Statistical analyses were performed in R version 4.02 and GraphPad Prism 

version 8. 

 

Data Availability Statement 

The data generated in this study are available within the article or upon reasonable 

request to the corresponding author. 
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Results 

Patient Demographics and Characteristics 

 While 23 tumor specimens each from Black and White patients were selected, 

matched, and sequenced, two Black patients and five White patients were excluded from 

RNA-sequencing downstream analyses due to poor quality of their respective sequencing 

libraries. Hence, 21 Black and 18 White patients were included in RNA sequencing 

analyses. Demographics and characteristics of these 39 patients are reported in Table 1. 

Neither mean age nor BMI were significantly different among the Black and White 

patient cohorts (55.1 ± 8.4 and 58.8 ± 8.5, p= 0.18; 29.9 ± 9.3 and 34.5 ± 11.1, p=0.17). 

Both Black and White patient cohorts were predominately Female (61.9% and 55.6%, 

p=0.75). Due to the uneven dropout of White patients from sequencing analyses, the 

Black patient cohort had more grade 1 tumors than the White patient cohort (61.9% and 

44.4%, p=0.34), although this difference was not statistically significant. There was no 

significant difference in tumor size between the Black and White patient cohorts (3.8 ± 

2.5cm and 4.5 ± 3.2cm, p=0.47). Likewise, there was no difference in the presence of 

lymph node metastases (23.8% and 16.7%; p=0.7) or distant metastases (14.3% and 

16.7%, p=1) at the time of resection in the Black and White patient cohorts, respectively. 

Diabetes and pancreatitis are known risk factors for the development of PNETs, although 

the influence that these conditions have on the specific phenotype of the disease is yet 

uncertain. Hence, the incidence of these comorbidities was also compared between 

cohorts. An established history of diabetes before PNET diagnosis and resection was 

present in 38.1% of Black and 44.4% of White patients (p=0.75). A history of chronic 

pancreatitis was present in one Black and two White patients, among whom one White 
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patient also had a history of acute pancreatitis (p=0.59). Smoking status was also 

evaluated among cohorts due to its potential to influence DNA methylation, as well as the 

increased risk of pancreatitis associated with smoking. 34,35 Most Black and White 

patients were never smokers (57.1% and 77.8%, p=0.48), and few patients were current 

smokers at the time of resection (14.3% and 5.5%). With respect to treatment, one Black 

patient received preoperative somatostatin analogue while one White patient received 

neoadjuvant chemotherapy for isolated metastatic disease to the liver (6 cycles of 

cisplatin + etoposide). Three Black and White patients each experienced progression of 

their cancer following resection (p=1). Progression-free survival did not differ 

significantly between the Black and White patient cohorts (median= 41.7 and 45.5 

months; p=0.48). Three Black patients and One White patient were deceased at the time 

of sequencing- of which all but one Black patient died of cancer-related complications 

(p=0.61).  
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Table 1) Patient Demographics and Characteristics  
Black (n=21) White (n=18) Total (n=39) P 

Patient Characteristics         
Age (Mean +/- SD*) 55.1 ± 8.4 58.8 ± 8.5 56.8 ±  8.5 0.18 
Sex (Female) 13 (61.9%) 10 (55.6%) 23 (59%) 0.75 
BMI  29.9 ± 9.3 34.5 ± 11.1 32 ± 10.3 0.17 

Tumor Characteristics         
Tumor Grade  

   
0.34 

G1 13 (61.9%) 8 (44.4%) 21 (53.8%)   
G2 8 (38.1%) 10 (55.6%) 18 (46.2%)   

Tumor Size (cm) 3.8 ± 2.5 4.5 ± 3.2 4.1 ± 2.9 0.47 
Lymph Node Metastases 5 (23.8%) 3 (16.7%) 8 (20.5%) 0.7 
Distant Metastases  3 (14.3%) 3 (16.7%) 6 (15.4%) 1 

Comorbidities     
History of Diabetes 8 (38.1%) 8 (44.4%) 16 (41%) 0.75 
History of Pancreatitis** 1 (4.8%) 2 (11.1%) 3 (7.7%) 0.59 

Acute 0 (0%) 1 (5.6%) 1 (2.6%)   
Chronic 1 (4.8%) 2 (11.1%) 3 (7.7%)   

Habits 
   

  
Smoking Status       0.48 

Never 12 (57.1%) 14 (77.8%) 26 (66.7%)   
Current/Former 9 (42.9%) 4 (22.2%) 13 (33.3%)   

Alcohol Use 
   

0.52 
Yes 11 (52.4%) 7 (38.9%) 18 (46.1%)   
No 10 (47.6%) 11 (61.1%) 21 (53.9%)   

Outcome Status***         
Progression 3 (14.3%) 3 (16.7%) 6 (15.4%) 1 
PFS (months; median [IQR*]) 41.7 [67.9] 45.5 [41] 45 [48.1] 0.48 
Malignancy**** 7 (33.3%) 5 (27.8%) 12 (30.8) 0.77 
Deceased (%) 3 (14.3%) 1 (5.6%) 4 (10.3%) 0.61 

* SD=standard deviation, IQR= interquartile range  

** One White patient had a history of both acute and chronic pancreatitis  

*** 1 Black patient received preop SSA, 1 White patient received neoadjuvant chemotherapy 

**** Malignancy denotes a composite endpoint of metastases (distant or LNM) or progression 

 

Differential Gene Expression Among Racial Groups 

Self-Reported Race. Following laser microdissection to isolate tumor cells, DNA 

and RNA were isolated and sequenced. When evaluating differential gene expression 

based on SRR, 414 genes (of 26,162 tested) met cutoffs for differential gene expression 

(qv < 0.05 & absolute L2FC > 1; Fig 3, Fig 4). Significant DEGs were then funneled into 

GSEA, yielding 8 significantly enriched gene sets from the Gene Ontology’s Biological 

Processes (Fig. 5). Downregulated in the Black patient cohort were gene sets relating to 
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neurogenesis, cell development, and nervous system development. Upregulated in the 

Black patient cohort were gene sets relating to the humoral immune response, 

antimicrobial humoral response, proteolysis, and epithelial cell differentiation. Further 

analysis of these gene sets revealed 79 leading edge genes most responsible for their 

enrichment (Table 2). Interestingly, leading edge genes in the upregulation of gene sets 

relating to the humoral immune response were comprised predominantly of proteolytic 

enzymes and other key pancreatic proteins expressed in states of pancreatic 

inflammation. Many of these genes have also been linked to increased severity of disease 

or poor clinical outcomes in pancreatic adenocarcinoma and other cancers.  

Table 2) Leading Edge Genes in GSEA, Ranked by Number of Appearances in Enriched Gene Sets  

HGNC 

Symbol 
L2FC ± SE* Gene Description Gene Set 

Clusters** 

CRYGD 21.4 ± 4.2 crystallin gamma D  ECD 

HOXB13 14.1 ± 4.2 homeobox B13  ECD 

PGC 15.6 ± 2.1 progastricsin  HIR, P 

REG3G 12.5 ± 2.2 regenerating family member 3 gamma  HIR, ECD 

BPIFB2 11.1 ± 2.7 BPI fold containing family B member 2  HIR 

REG3A 10.7 ± 2.6 regenerating family member 3 alpha  HIR, ECD 

GSTA2 9.3 ± 1.9 glutathione S-transferase alpha 2  ECD 

REG1B 8 ± 2.3 regenerating family member 1 beta  HIR 

CTRB1 8.4 ± 1.4 chymotrypsinogen B1  P 

CELA3B 7.9 ± 1.5 chymotrypsin like elastase 3B  P 

PLA2G1B 7.8 ± 1.5 phospholipase A2 group IB  HIR 

CPA1 7.4 ± 1.7 carboxypeptidase A1  P 

EMX1 7.3 ± 1.7 empty spiracles homeobox 1  ECD 

CPA2 7.1 ± 1.9 carboxypeptidase A2  P 

PRSS2 7.1 ± 1.8 serine protease 2  HIR, P 

CELA3A 7.1 ± 1.8 chymotrypsin like elastase 3A  P 

PRSS1 7 ± 1.6 serine protease 1  P 

KLK1 6.7 ± 1.7 kallikrein 1  P 

CELA2B 6.4 ± 1.9 chymotrypsin like elastase 2B  P 

CTRB2 6.5 ± 1.7 chymotrypsinogen B2  P 

AGR2 6.2 ± 1.5 anterior gradient 2, protein disulphide isomerase family 

member  
ECD 

GSTA1 6 ± 1.6 glutathione S-transferase alpha 1  ECD 

FOXA1 6.2 ± 1.3 forkhead box A1  ECD 

SIX2 6.1 ± 1.3 SIX homeobox 2  ECD 

CELA2A 6.1 ± 1.2 chymotrypsin like elastase 2A  P, ECD 

SERPINA5 5.4 ± 1.6 serpin family A member 5  P 

CAPN13 5.1 ± 1.2 calpain 13  P 

CGA 4.9 ± 1.3 glycoprotein hormones, alpha polypeptide  P 
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PRSS3 4.6 ± 1.4 serine protease 3  HIR, P 

IGKV3-20 4.6 ± 1.4 immunoglobulin kappa variable 3-20  HIR 

CUZD1 4.6 ± 1.4 CUB and zona pellucida like domains 1  P 

PAX5 4.8 ± 1.1 paired box 5  HIR 

IHH 4.6 ± 1.2 Indian hedgehog signaling molecule  P, ECD 

PERCC1 4.2 ± 1 proline and glutamate rich with coiled coil 1  ECD 

IGHG1 4 ± 1 immunoglobulin heavy constant gamma 1 (G1m marker)  HIR 

IGLC2 3.9 ± 0.9 immunoglobulin lambda constant 2  HIR 

CTRC 3.8 ± 0.9 chymotrypsin C  P 

CPB1 3.7 ± 0.9 carboxypeptidase B1  P 

SLPI 3.5 ± 1 secretory leukocyte peptidase inhibitor  HIR, P 

EGF 3.5 ± 1 epidermal growth factor  P 

ADGB 3.5 ± 0.9 androglobin  P 

VTN 3.2 ± 0.9 vitronectin  HIR, P 

IGLL5 3.1 ± 0.9 immunoglobulin lambda like polypeptide 5  HIR 

EGLN3 3 ± 0.8 egl-9 family hypoxia inducible factor 3  P 

ADRA2A 3 ± 0.7 adrenoceptor alpha 2A  P 

NKD2 2.9 ± 0.8 NKD inhibitor of WNT signaling pathway 2  P 

S100B -2 ± 0.5 S100 calcium binding protein B  NCD 

VEGFC -2 ± 0.5 vascular endothelial growth factor C  NCD 

DLX6 -2.1 ± 0.6 distal-less homeobox 6  NCD 

FGF9 -2.2 ± 0.7 fibroblast growth factor 9  NCD 

PGAP1 -2 ± 0.5 post-GPI attachment to proteins inositol deacylase 1  NCD 

ASTN1 -2.3 ± 0.7 astrotactin 1  NCD 

PPP1R16B -2.3 ± 0.7 protein phosphatase 1 regulatory subunit 16B  NCD 

CHD5 -2.4 ± 0.7 chromodomain helicase DNA binding protein 5  NCD 

DCC -2.4 ± 0.6 DCC netrin 1 receptor  NCD 

HOXD3 -2.6 ± 0.8 homeobox D3  NCD 

UNC5C -2.7 ± 0.8 unc-5 netrin receptor C  NCD 

CNGB1 -2.7 ± 0.7 cyclic nucleotide gated channel subunit beta 1  NCD 

PRTG -2.8 ± 0.8 protogenin  NCD 

TRPC5 -2.9 ± 0.8 transient receptor potential cation channel subfamily C 

member 5  
NCD 

CNTNAP2 -3.3 ± 0.7 contactin associated protein 2  NCD 

RNF112 -3.7 ± 1 ring finger protein 112  NCD 

FEZF2 -3.6 ± 0.8 FEZ family zinc finger 2  NCD 

NCAM2 -3.8 ± 0.9 neural cell adhesion molecule 2  NCD 

GRIP1 -3.8 ± 0.8 glutamate receptor interacting protein 1  NCD 

FAIM2 -4.2 ± 1.1 Fas apoptotic inhibitory molecule 2  NCD 

GABRB1 -4.9 ± 1.5 gamma-aminobutyric acid type A receptor subunit beta1  NCD 

TDRD5 -4.6 ± 1.2 tudor domain containing 5  NCD 

C14orf39 -5.1 ± 1.5 chromosome 14 open reading frame 39  NCD 

PENK -5.6 ± 1.6 proenkephalin  NCD 

PITX1 -5.4 ± 1.3 paired like homeodomain 1  NCD 

ZNF804A -5.7 ± 1.5 zinc finger protein 804A  NCD 

GRIK1 -5.7 ± 1.5 glutamate ionotropic receptor kainate type subunit 1  NCD 

HCN1 -5.8 ± 1.3 hyperpolarization activated cyclic nucleotide gated K channel 

1  
NCD 

TAFA3 -11.4 ± 2.4 TAFA chemokine like family member 3  NCD 

NEUROD4 -14.3 ± 4.1 neuronal differentiation 4  NCD 

TLX2 -13.4 ± 2.9 T cell leukemia homeobox 2  NCD 
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DLX2 -25.8 ± 4.2 distal-less homeobox 2  NCD 

CHRM1 -28.2 ± 3.7 cholinergic receptor muscarinic 1  NCD 

*Direction refers to the expression level of the gene in Black patients compared to White  

**NCD = Neurogenesis & Cell Development, ECD = Epithelial Cell Differentiation, HIR = Humoral 

Immune Response, P = Proteolysis  

Figure 3. Differentially Expressed Genes Between Black and White PNET Patients. 414 
genes met cutoffs for differential gene expression (qv < 0.05 & absolute L2FC > 1). 

Genes with the top 30 L2FC values in each direction are labeled. Genes with italicized 
labels have lower expression in Black PNET patients, while those with bold labels have 

higher expression.   
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Figure 4. Heatmap of Differentially Expressed Genes Between Black and White PNET 

Patients. Z scores of gene expression are depicted and patients clustered into groups 
based on similar gene expression profiles, illustrating the high level of variation between 
racial groups. The presence of malignancy, tumor grade, and levels of African ancestry 

estimates (colored grey, where unavailable) are depicted alongside gene expression 
(right). 



68 
 

Figure 5) Gene Set Enrichment Analysis of Differentially Expressed Genes. A) Dotplot 

depicting significantly enriched gene sets that are functionally activated or suppressed in 
the Black patient cohort compared to the White patient cohort. B) Network plot of 

enriched gene sets. Functionally, gene sets segregated into 4 general network categories 
based on shared genes and their expression levels: neurogenesis & cell development, 
epithelial cell differentiation, the humoral immune response, and proteolysis. 
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Genetic Ancestry. Ancestry estimates were successfully generated for 6 White and 

13 Black patients. Ancestry data were incomplete for the remaining 20 patients at the 

time of submission. The mean African ancestry estimates were 74.5% ± 9.1% and 0.17% 

± 0.4% for the Black and White patient cohorts, respectively. Upon differential gene 

expression analysis based on estimates of African ancestry, 108 genes were found to meet 

the above-described cutoffs for differential gene expression (Fig. 6; Supplementary 

Data 3). Notably, 23 of these genes were among those found to be differentially 

expressed based upon SRR in the analysis of the whole cohort. Among these genes, eight 

were within the leading edge of the GSEA, including CPA2, CTRB1, CTRC, EGF, 

IFLC2, PERCC1, REG3A, and REG3G. Upon univariate correlation between rlog-

normalized expression values and African ancestry estimates, 2100 genes met criterion 

for significance (qv < 0.05 & absolute r value > 0.3). Multivariable linear regression was 

then used to further evaluate the relationship between gene expression and African 

ancestry. Tumor grade, patient sex, sample age, and sequencing batch were included in 

the models, as likelihood ratio tests indicated a significant relationship between these 

variables and gene expression. 2360 genes were found to be significantly associated with 

African ancestry; of which 109 genes were among DEGs determined by SRR, and 35 

were within the leading edge of the GSEA by SRR. 19 genes were significant across 

these three analyses (Table 3). Notably, 7/19 genes were within the leading edge of 

GSEA. REG3A, REG3G, EGF, CPA2, IGLC2, CTRC, and CTRB1.  
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Figure 6. Genes Associated with Genetic Ancestry, and those Differentially Expressed 
by models based on SRR and Genetic Ancestry.  

Table 3) Differentially Expressed Genes Associated with Genetic Ancestry 
HGNC Symbol Description L2FC* L2FC SE* Q value 

REG3G regenerating family member 3 gamma  12.52 2.21 < 0.0001 

REG3A regenerating family member 3 alpha  10.69 2.56 0.0064 

PNLIPRP2 pancreatic lipase related protein 2  9.17 1.82 0.0003 
 

chymotrypsinogen B (CTRB) pseudogene 8.49 2.16 0.0128 

CTRB1 chymotrypsinogen B1  8.4 1.41 < 0.0001 

CEL carboxyl ester lipase  7.49 1.29 < 0.0001 

CPA2 carboxypeptidase A2  7.13 1.93 0.0219 

AQP8 aquaporin 8  6.8 1.73 0.0128 

SLC39A5 solute carrier family 39 member 5  5.37 1.27 0.006 

GP2 glycoprotein 2  4.82 1.02 0.0011 

IGLC2 immunoglobulin lambda constant 2  3.94 0.92 0.0048 

CTRC chymotrypsin C  3.82 0.87 0.0037 

EGF epidermal growth factor  3.49 0.97 0.0286 

ENC1 ectodermal-neural cortex 1  2 0.52 0.0162 

LRP5 LDL receptor related protein 5  1.71 0.47 0.0229 

RPL35 ribosomal protein L35  1.26 0.31 0.0091 

SRPRA SRP receptor subunit alpha  0.86 0.25 0.0384 
 

novel piRNA host transcript -2.31 0.62 0.0205 

XG Xg glycoprotein (Xg blood group)  -4.41 0.92 0.0008 

* L2FC = log2 Fold Change, SE= standard error  

Differentially Expressed Genes Among Racial Groups Influence Clinical 

Outcomes. Given our previous observations that there are differences in the rate of 
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metastatic disease between Black and White patients, the relationship between gene 

expression and various clinical outcomes was evaluated. Due to the relatively low 

number of events in our datasets, a composite metric termed here as “malignancy” 

(comprised of LNM at resection, metastasis at resection, and progression) was used as the 

outcome of interest. Logistic regression models were generated for genes previously 

found to be differentially expressed between racial groups. Six DEGs met cutoffs (Wald 

test p-value < 0.05 and 95% Confidence Intervals for Odds Ratios both > 1 or < 1) for 

significance, including MEGF8, TDRD5, FSTL5, RN7SKP239, GSTM2, and FMN1..  

Similarly, Cox Proportional-Hazards (Cox-PH) models were used to evaluate the 

influence of gene expression on progression-free survival. Eight DEGs met criterion for 

significance, including BPIFB2, VTN, CASZ1, REG3G, N4BP3, VPS51, REG1CP, and 

MTCO1P2. In total, 14 differentially expressed genes had a robust relationship with 

better and worse outcomes, respectively (Fig. 7). Subsequently, expression levels of 

significant DEGs were evaluated to determine optimized cutoffs for Kaplan-Meier 

analysis, and patients binned into groups based on high or low expression. Expression 

cutoffs were significantly associated with PFS for VTN and MTCO1P2, N4BP3, VPS51, 

and CASZ1 (Fig. 8). High expression of MTCO1P2 and VTN were both independently 

predictive of decreased PFS, while N4BP3, VPS51, and CASZ1 expression predicted 

increased PFS. While expression cutoffs for REG1CP and BPIFB2 approached 

significance (p= 0.057 and 0.055), those for REG3G did not (p=0.26). 
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Figure 7) Differentially Expressed Genes Associated with Clinical Outcomes. A) Heatmap of differentially expressed genes 
associated with risk of malignancy and progression-free survival. Per-gene log2 fold-change values are depicted above the heatmap. B) 
Violin plots of gene expression Z scores by racial group, depicting the distribution of gene expression values with respect to the cohort 

mean. Two novel transcripts and a U2 spliceosomal RNA are not pictured.
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Figure 8) Kaplan-Meier plots of PFS for DEGs significant in Cox-PH models. Cutoffs were optimized for their relationship with PFS 
using CutoffFinder. 
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Differences in Protein Biomarker Expression Among Racial Groups 

While the implementation of next-generation sequencing panels and polymerase 

chain reaction arrays for cancer care is increasing in tertiary care centers and steadily 

becoming more cost-efficient, widespread adoption of these assays in routine clinical 

practice faces numerous barriers36,37 The clinical utility of NGS panels is not well known 

for many cancers, particularly in minority populations for which key allele frequencies and 

the pathogenicity of many variants are unknown due to their underrepresentation in 

genomic studies38,39. These groups also may not readily have access to tertiary care 

facilities, adequate insurance, or sufficient income to undergo this testing40-43. Contrarily, 

IHC evaluation is ubiquitous in clinical practice and can be interpreted by any board -

certified pathologist. As such, numerous IHC biomarkers have been characterized to be 

predictive of clinical outcomes in pNETs44,45. Expression of SSTR2/5 is associated with 

better prognosis, while loss of p53/Rb and alpha-internexin are associated with worse 

prognosis 46-48. Evidence is conflicting as to the impact of DAXX/ATRX mutation on 

pNETs, possibly owing to racial differences in their impact and influence on pNET 

progression as we hypothesize . Recent studies have also found that DAXX/ATRX 

alterations are correlated with increased infiltration of tumor associated macrophages 

(TAMs), which is itself associated with worse outcomes49. Other TIM markers have also 

been shown to have prognostic value in pNETs, including PD-L1 and tumor-infiltrating 

lymphocytes50-52. However, many of these biomarkers have never been evaluated among 

diverse racial groups in PNETs. To do so, a cohort of pre-existing TMAs, containing 

resected PNET cores in duplicate from 28 White and 8 Black patients were stained with a 

multiplexed panel of 21 antibodies to PNET identifying markers, immune cell markers, 
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and proteins identified in previous literature to influence PNET prognosis.pNET-

identifying markers (chromogranin A, synaptophysin), prognostic pNETs biomarkers 

(PAM53, SSTR2/547, the progesterone receptor,54, alpha-internexin48), prognostic and 

pro/anti-tumor markers of the TIM (CD4, CD8, PD-1/PDL-1 & CD68)55. 

Differential Immune Cell Infiltration. Random-forest classifiers were then trained and 

implemented to identify PNET cells and immune cells, and density maps generated to 

identify cells infiltrating into tumor nests (Fig. 9). There was no significant difference in 

the number of total cells or tumor cells per core between the Black and White patient 

cohorts (56,110 and 44,200, p=0.33; 34,183, 27,504, p=0.47), although there was 

significant deviation within each group (SD =28,295 and 23,597). The mean tumor makeup 

of cores was 57.6% and 56.7% for the Black and White patient cohorts, respectively (Fig. 

S1). In order to evaluate the relationship between patient race and infiltrating T cells, 

infiltrating macrophages, and tumor cells thresholding positivity for PD-L1+, multivariable 

gaussian regression models were generated to predict these respective values. Proportions 

of these cells to the total number of tumor cells in the tumor beds (infiltrating immune 

cells) and entire cores (PD-L1+) are depicted in Fig. 10A. The number of total tumor cells 

within tumor beds was included as a covariate. Tumor grade was not a significant predictor 

in any model and resulted in worse fitment; therefore, grade was excluded from modeling. 

Overall models were significant for both T cell (adj. r2=0.34, p = 0.0002) and  macrophage 

(adj. r2=0.35, p = 0.0003) infiltration, but not for PD-L1+ Tumor cells (adj. r2=0.0006, p = 

0.37). Interestingly, upon inclusion of total T cells and macrophages into the PD-L1 model, 

fitment was improved, but the model remained not significant (adj. r2=0.11, p = 0.11). 

Expectedly, the total number of tumor cells was predictive of both T cell (B = 0.004, p < 
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0.0001) and macrophage (B =0.006, p < 0.0001) infiltration; however total tumor cells did 

not predict the number of PD-L1+ tumor cells (B=0.171, p = 0.37). Black Race was a 

significant negative predictor of CD8/CD4+ T cell infiltration (B = -1053, p = 0.007), but 

not macrophage infiltration (B = -103, p=0.6) or PD-L1+.  

 

Differential Expression of Prognostic Protein Biomarkers. While the 

implementation of next-generation sequencing panels and polymerase chain reaction 

arrays for cancer care is increasing in tertiary care centers and steadily becoming more 

cost-efficient, widespread adoption of these assays in routine clinical practice faces 

numerous barriers 36,37 The clinical utility of NGS panels is not well known for many 

cancers, particularly in minority populations for which key allele frequencies and the 

pathogenicity of many variants are unknown due to their underrepresentation in genomic 

studies38,39. These groups also may not readily have access to tertiary care facilities, 

adequate insurance, or sufficient income to undergo this testing 40-43. Contrarily, IHC 

evaluation is ubiquitous in clinical practice and can be interpreted by any board -certified 

pathologist. As such, numerous IHC biomarkers have been characterized to be predictive 

of clinical outcomes in pNETs44,45. Expression of SSTR2/5 is associated with better 

prognosis, while loss of p53/Rb and alpha-internexin are associated with worse prognosis 

46-48. Evidence is conflicting as to the impact of DAXX/ATRX mutation on pNETs, 

possibly owing to racial differences in their impact and influence on pNET progression as 

we hypothesize . Recent studies have also found that DAXX/ATRX alterations are 

correlated with increased infiltration of tumor associated macrophages (TAMs), which is 
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itself associated with worse outcomes 49. Other tumor-immune microenvironment (TIM) 

markers have also been shown to have prognostic value in pNETs, including PD-L1 and 

tumor-infiltrating lymphocytes50-52. However, many of these biomarkers have never been 

evaluated among diverse racial groups in PNETs. Therefore, using a cohort of pre-

existing TMAs, pNET-identifying markers (chromogranin A, synaptophysin), prognostic 

pNETs biomarkers (PAM53, SSTR2/547, the progesterone receptor,54, alpha-internexin48), 

prognostic and pro/anti-tumor markers of the TIM (CD4, CD8, PD-1/PDL-1 & CD68)55. 

Significant expression differences in tumor cells were present among all biomarkers 

evaluated, including podoplanin, peptidyl alpha-amidating monooxygenase (PAM), 

somatostatin receptors 2 & 5 (SSTR2 & SSTR5), alpha-internexin, PD-L1, and the 

progesterone receptor (PR). Notably, PAM, SSTR5, PR, PD-L1, and podoplanin were all 

lower in the Black patient group, while alpha-internexin and SSTR2 were higher in the 

Black patient group (Table 4, Fig. 10B). Alpha-internexin is an intermediate-filament 

protein expressed primarily in neurons that acts as a component of the axon’s scaffold 

during early axonal development. Its expression is mostly absent in normal islets, but 

peaks in the early stages of PNET development and has been associated with worse 

overall survival in PNETs48,56. Notably, the difference in alpha-internexin expression was 

the least significant of all the biomarkers evaluated and likely represents no biologically 

relevant difference. In concordance, there was no significant difference in alpha-

internexin expression in the sequencing cohort. However, this was not the case for the 

remaining biomarkers evaluated. Peptidylglycine α-amidating monooxygenase (PAM) is 

an enzyme expressed healthy neuroendocrine cells, functioning in the maturation of 

numerous secreted peptide hormones and chromogranin.53 Its loss thus serves as a proxy 
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for early tumor de-differentiation, and has been associated with worse survival outcomes 

in NETs of multiple primary sites irrespective of tumor grade and stage. Notably, PAM 

expression was lower in the Black patient cohort than the White patient group. However, 

its expression was conversely significantly higher among Black patients in our 

sequencing cohort (L2FC = 1.37 ± 0.32, qv = 0.006). SSTR2 and SSTR5 are G-protein-

coupled receptors (GPCRs) that have complex functions in regulating hormone secretion, 

metabolism, immune cell function, and gastric acid secretion in normal tissues, and are 

known to inhibit hormone secretion, proliferation, angiogenesis, and cell migration in 

PNETs47,57. They also serve as targets for tumor imaging and the delivery of 

radiotherapeutics. As such, they have been associated with broadly improved survival 

outcomes. SSTR2 was higher in the Black patient cohort than the White patient cohort, 

while SSTR5 was lower in Black patients. Neither of these genes differed  significantly in 

the sequencing cohort, however. The progesterone receptor (PR) has likewise previously 

been associated with improved disease-free survival in PNETs. Its expression was lower 

in the Black patient cohort compared to the White patient cohort, but did not differ 

significantly in sequencing analyses. PD-L1 is a well-established immunosuppressive 

biomarker that has been shown to indicate higher tumor grade and worse survival in 

PNETs. Coinciding with our analysis of PD-L1+ tumor cells, PD-L1 expression levels 

were lower in Black patients than in White patients. This was the opposite in our 

sequencing analysis, but did not achieve statistical significance. 
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Table 4. Expression of Protein Biomarkers in PNET TMAs   

Protein White patients  

(n=28) 

Black patients 

(n=8) 

RNA-Seq Cohort 

L2FC ± SE 

RNA-Seq 

Cohort QV 

PAM** 9.41 ± 7.4 8.82 ± 9.7 1.376 ± 0.33 0.006 
Podoplanin** 1.16 ± 1.3 0.45 ± 3.2 

-0.99 ± 0.67 0.51 

SSTR2** 39 ± 87.8 79.7 ± 45.5 -0.442 ± 0.43 0.68 
SSTR5** 7.1 ± 4.9 5.04 ± 9.3 0.138 ± 0.92 0.96 
Alpha-internexin* 0.51 ± 1.3 0.52 ± 1.2 0.551 ± 0.42 0.57 
PR** 2.96 ± 1.4 1.91 ± 4 -0.394 ± 0.71 0.85 
PD-L1** 2.23 ± 0.9 0.7 ± 2.9 -0.612 ± 0.54 0.6 
Expression values are depicted as mean ± standard deviation  

*p = 0.02, ** p < 0.00001 
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Figure S1) Makeup of TMA Cores by Racial Group. The proportion of tumor cells in 
each patient’s tumor cores (top), and the total number of all cells detected in their 

respective cores (bottom).  
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Figure 9) Multiplexed Immunofluorescence of PNET Tissue Microarrays. Microarrays 
containing resected G1 and G2 PNETs from 8 Black and 28 White patients were stained 

for PNET and immune cell identifying markers. Random forest classifiers were then 
trained to classify cells into populations of interest and density maps used to generate 

tumor bed boundaries, thereby identifying infiltrative immune cells.  
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Figure 10) A. Ratio of Infiltrating Immune Cells and PD-L1 Positive Tumor Cells to 
Total Tumor Cells. B. Expression of protein biomarkers previously associated with 
outcomes in PNETs. *p = 0.02, ** p < 0.00001. 
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Discussion 

In the present study, numerous genes were found to be differentially expressed 

between racial groups. These genes were enriched for those relating to the humoral 

immune response, proteolysis, neurogenesis and cell development, and epithelial cell 

differentiation, with 79 genes contributing most to their enrichment. Interestingly, most 

(n=33) core enrichment genes were related to neurogenesis and cell development, which 

is a pathway known to play a role in the biology of PNET progression. 58 This was 

followed by those in the proteolysis gene set (n=27), humoral immune response (n=19) 

and finally the epithelial cell differentiation gene set (n=13). Those enriched in the 

humoral immune response set, excepting 4 immunoglobulin genes (IGKV3-20, IGHG1, 

IGLC2, and IGLL5), overlapped with proteolysis (PRSS2, PRSS3 , SLPI, VTN, PGC), or 

also have myriad other distinct functions that heavily implicate them in cancer biology 

(PAX5, VTN, REG3A, REG3G, REG1B). The multitude of DEGs for proteases and 

proteolytic enzymes upregulated in the Black patient cohort is particularly interesting 

given the lack of pancreatitis in the Black patient cohort. Many of these genes have 

previously been associated with pro-tumorigenic roles in pancreatic adenocarcinoma- 

which has a better-characterized relationship with pancreatitis- but have not traditionally 

been associated with PNETs 59. 

Notably, a number of DEGs were found to independently predict clinical outcomes, 

specifically those tied to progression and metastatic disease. This relationship was present 

without respect to racial groups, indicating that the differential expression of genes may 

indeed be influential in driving racial disparities between Black and White patients with 

PNETs. REG3G, BPIFB2, REG1CP, VTN, FMN1, RN7SKP239, and MTCO1P2 were all 
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associated with worse outcomes. The REG3G gene (previously pancreatitis-associated 

protein 1B [PAP1B]) encodes a member of the regenerating islet-derived protein family, 

which are secreted c-type lectins that promote islet growth in response to inflammation or 

injury. REG3G has been shown to promote pancreatic carcinogenesis and suppress the 

immune response by inducing regulatory T cell differentiation and toleration among 

dendritic cells.60-62. Alongside REG3G, the lncRNA REG1CP was also predictive of 

worse outcomes. Interestingly, REG1CP has been shown to promote tumorigenesis via 

multiple mechanisms, but namely through its action to facilitate the unwinding of DNA at 

the REG3A promoter63. REG3A, which shares 85% protein homology with REG3G, has 

been robustly shown to increase tumor cell migration and invasion, and predict worse 

outcomes in multiple cancers.63-67.  Furthermore, it is similarly broadly overexpressed to 

REG3G and REG1CP in the Black patient cohort compared to the White patient cohort 

(Z score < 0 = 47% vs 11%). Formin 1 (FMN1) is an actin-nucleating protein that serves 

to facilitate interactions between the cytoskeleton and signal transduction, playing key 

roles in focal adhesion of primary epithelia as well as in dendrite and synaptogenesis in 

neurons.68 It has been robustly shown to regulate motility and invasion in glioblastoma 

cells and, while allowing for the formation of strong focal adhesions in cells via its 

effects on the microtubule lattice, dynamically regulates those adhesions to generate a 

“hurdling” pattern of cellular motility and invasion. Bactericidal/permeability-increasing 

protein, fold-containing family B, member 2 (BPIFB2) encodes a lipid 

transfer/lipopolysaccharide-binding protein that has been sparsely investigated, but 

previously studied for its relationship with immunotherapeutic outcomes in gastric 

cancer, high expression in immunologically “cold” lung adenocarcinoma, and ability to 
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reduce CD8+ T-cell chemotaxis69,70. RNASK9239 and MTCO1P2 are both pseudogenes 

that are poorly understood. Conversely, N4BP3, and CASZ1 expression were both 

positively associated with PFS. N4BP3 encodes a poorly-characterized protein that 

interacts with the NEDD4 E3 ubiquitin ligase and has been shown to play a role in 

anterior neural development, neural crest migration, and axon arborization71,72. It has 

previously been associated with angiogenesis in preclinical studies.73 Castor zinc finger 1 

(CASZ1) is a transcription factor that plays a role in the development of neural crest 

derived cells. It has been previously shown to act as a tumor suppressor in neuroblastoma 

and is associated with improved outcomes in in hepatocellular carcinoma. 74,75  

While the present study depicts that differentially expressed genes among racial 

groups have a relationship with clinical outcomes, the spectrum of gene expression does 

not mutually exclude certain racial groups. This is depicted well in the case of VTN, 

where high expression is present in most Black patients, but select few White patients 

(Fig. 7). Indeed, there are multiple possible explanations for this phenomenon. It is quite 

possible that there are molecular subtypes or conditions of PNET that simply occur with a 

higher frequency in certain racial groups due to a confluence of factors, altering gene 

expression. This phenomenon is well-characterized in prostate and breast cancer and may 

also be likened to- or even the result of- differences in the occurrence of pathogenic 

variants among racial groups.76-80 Another possible explanation is that similar 

environmental exposures are influencing gene expression, and these environmental 

factors are themselves associated with race, thus being captured within this study by 

proxy. It should be noted however, that the authors are unaware of any research into the 

potential prognostic implications (in PNETs) of the differentially expressed genes 
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associated with survival outcomes in the present study. Currently, two well-known 

molecular signatures, the NETest and PPQ, have been used to predict progression and 

response to various therapies as both blood and tumor-based gene expression panels.81-84 

Among the genes identified in this study as having a relationship with malignancy and 

progression, only 4 genes (TECPR2, ZZZ3, KRAS, PHF21A) are present in the collective 

59 genes used in these tests. Assuming that the DEGS identified in this study are indeed 

differentially expressed in PNETs among racial groups, the absence of their discussion in 

the current literature stems from the paucity of diversity in the study of  these tumors. 

Furthermore, it becomes evident that while Black patients in particular may benefit less 

or even be harmed from personalized medicine approaches in PNETs as a result of their 

relative exclusion, these genes remain understudied with respect to their potential 

implications for all patients with PNETs. Improved representation of patients from 

diverse backgrounds is imperative for understanding variation in the oncogenesis and 

progression of these heterogeneous tumors so that this information can be leveraged to 

improve patient outcomes.  

 The evaluation of previously established prognostic biomarkers between Black 

and White patients found significant differences in the expression of all proteins. Overall, 

these data indicate differences in the expression levels of these biomarkers among racial 

groups. However, only PAM expression agreed by racial group with gene expression data 

from the sequencing cohort, while PD-L1 was significantly opposite its protein level, 

having higher expression in the Black patient sequencing cohort. Of note, these data are 

from different patient samples entirely, and concordance between gene and protein 

expression is dependent on multiple factors, including transcriptional and protein 



87 
 

regulation. Furthermore, the relatively low number of Black patients and the high number 

of metastatic lesions represented in this dataset severely limit the ability to make 

conclusions based on these data. Further studies will be necessary to definitively evaluate 

these protein biomarkers and may benefit from having orthogonal validation at the 

sequencing level.  

Limitations and Future Directions 

Use of FFPE tissue. There are numerous limitations to the present study. Due to the 

relative rarity of PNETs, frequent lack of a conclusive presurgical diagnosis, and more 

streamlined microdissection of tumor cells, FFPE tissue was used rather than fresh-frozen 

tissue for the isolation of RNA for sequencing. While RNA from FFPE tissues is often 

degraded and modified by the fixation process, recent studies have shown a high 

concordance between the sequencing results of fresh-frozen and FFPE tissues using 

modern methods for deparaffinization, relief of formalin-induced crosslinking, ribosome-

depletion, and the generation of 3’ sequencing libraries to optimize the reading and 

alignment of fragmented RNA from FFPE specimens 85-87. Furthermore, the exclusion of 

older samples, those with extensive RNA degradation, and those with poor quality 

sequencing libraries served to mitigate the influence of potential nucleotide degradation. 

Considering that certain RNA species have a higher propensity to undergo degradation 

over time, the age of the sample was included as a covariate in differential expression and 

regression analysis of sequencing data.  

Sample size. Another critical limitation of this study is the relatively low sample size 

for the studies herein. In addition to limiting our ability to identify truly differentially 

expressed genes, the low number of samples corresponds to the low number of 
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progression events that occurred. Naturally, this further limited our ability to assess the 

relationship between gene expression and clinical outcomes. However, while the sample 

sizes were relatively low, the patients within this cohort represented a thoroughly curated 

set of patients that were selected to mitigate the influence of potential confounding.  

Environmental Influences, Clinical Influences, and the Limitations of RNA. Relatedly, 

this study did not evaluate associations with the numerous additional clinical and 

environmental factors that may influence gene expression. Given our previous findings 

that epigenetic regulatory genes are differentially mutated between Black and White 

patients, the likelihood of mutational dynamics and tumor epigenetics influencing 

differential gene expression is high. Indeed, integrated analyses of these data on this 

study population are forthcoming and will provide further structure to these data that will 

facilitate the identification of differential tumor biology between these groups. 

Furthermore, there may be variation in influential comorbidities that have not yet been 

captured within these data due to both the small sample size, as well as potential variation 

in the fidelity of EMR data. While extensive chart review and interviewing were 

conducted, many medical conditions go unreported or undiagnosed. Notably, the risk of 

chronic pancreatitis is two to three-fold higher for Black patients than for White patients. 

88 In particular, given the differential expression of many genes related to pancreatitis in 

this cohort, it is possible that chronic, subclinical pancreatitis was present at resection that 

was not indicated via laboratory studies, the patients’ clinical courses, or during their 

operation. Future studies to confirm these findings will necessitate intensive evaluation of 

adjacent tissue for signs of pancreatitis as well as an analysis of high-dimensional clinical 

data integrated with multi-omics analyses to advance our knowledge in this domain. In 
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addition, future studies will require functional analyses to evaluate DEGs associated with 

clinical outcomes for causative relationships. While some of the genes identified herein 

were previously characterized as such in other cancers, recently discovered transcripts 

and pseudogenes without functionally characterized noncoding RNAs may well be 

associated with outcomes because they are the byproduct of a highly dysregulated 

transcriptional environment that itself bears a causative relationship with progression via 

another mechanism.  

This study represents the first of its kind for NETs as a whole, nearly doubling the 

number of identifiably Black patients in the genomic literature of pancreatic NETs. While 

further studies will undoubtedly be necessary to better characterize the influence that 

differentially expressed genes and proteins and have on clinical outcomes, improvements 

in the availability and utility of personalized medicine portend that molecular tumor 

characteristics will be more influential in guiding cancer care in the future. Parity of 

racial representation in studies to identify clinically impactful molecular characteristics in 

PNETs will ensure that those characteristics enriched in certain racial groups are 

considered in future studies and clinical panels used to inform clinical decision-making.  
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CONCLUSION 

 In summary, there is little representation of racial groups in the current genomic, 

transcriptomic, and epigenomic literature in GEP-NENs, PNETs included. As PNETs are 

the most studied tumor in GEP-NEN genomics, this is particularly concerning. Multiple 

genes appear to be differentially mutated between Black and White patients with PNETs. 

Among these genes is MEN1, which has traditionally been considered to be the most 

frequently mutated gene in PNETs. This raises important questions as to what the more 

dominant risk genes may be for different populations. The studies herein further support 

the hypothesis that there is variation in numerous aspects of the transcriptome, tumor 

microenvironment, and protein expression between Black and White patients with 

PNETs and indicates that these differences may be influencing racial disparities in 

clinical outcomes. Of particular note, multiple DEGs were specifically association with 

African ancestry and are associated with tumor progression and metastatic disease. These 

genes should be further explored in preclinical studies to determine if they bear a causal 

relationship with these outcomes. Further studies will be necessary to validate these 

findings and more thoroughly characterize interracial differences in PNET genomics. 

High-dimensional data will be imperative to identify specific environmental, lifestyle, 

and clinical factors that may confound these studies. This body of work will serve as the 

basis for identifying and understanding specific nodes of variation that can be evaluated 

in more diverse patient populations to hopefully guide more equitable personalized 

medicine and effective treatment for patients with PNETs in the future.  
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