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BIOSTATISTICS 
 

ABSTRACT 
 

The linear mixed model has become a popular technique for the analysis of 

longitudinal data, but Wald test statistics of fixed effects for these models frequently lack 

well defined distributions.  A common approach to this problem uses the Kenward-Roger 

adjustment, which attempts to approximate the distribution of the Wald statistic by 

matching its moments obtained via Taylor expansion to those of an F distribution. 

However, this approach only matches moments obtained under the null hypothesis of no 

effect and cannot currently be used to approximate the distribution of the test statistic 

under some alternative hypothesis. This limitation prevents a straightforward approach to 

calculating power for the Kenward-Roger adjusted Wald statistic.  In chapter 2, we 

introduce a novel power calculation that extends the original methodology of Kenward 

and Roger to obtain an approximate noncentral distribution of this adjusted Wald statistic 

from which power for tests of linear trend can then be calculated. This method is then 

extended to calculate expected power for designs with anticipated rates of missing 

follow-up data in Chapter 3, and finally to the calculation of sample size for such designs 

in Chapter 4.  A variety of other techniques are also examined and compared to this 

method, with the newly developed method consistently outperforming other approaches 

in the calculation of both power and sample size. 

Key Words:  Power, Sample Size, Mixed Models, Kenward-Roger, Longitudinal Data 



iv 
 

 

ACKNOWLEDGMENTS 
 

This work could not have been achieved without the support of numerous 

individuals whose collective advise and effort provided me the means and encouragement 

to complete this project. 

 My Advisor, Dr. Lloyd Edwards, was instrumental in guiding my research.  His 

knowledge of linear mixed models and the analysis of longitudinal data proved 

invaluable in solidifying my own understanding of these subjects and challenging me to 

pursue new and creative directions.  His patience allowed me to explore many avenues 

and learn from dead ends, while his guidance ensured I never became lost. 

 The members of my Committee – Drs. Aban, Beasley, Lee, and Yi – all provided 

great insights and criticisms of my work in this dissertation.  Additionally, they have been 

a great source of learning and encouragement by challenging me in the classroom and 

inviting me to collaborate on projects that furthered my professional growth. 

 Dr. Gary Cutter introduced me to the field of biostatistics.  His continued 

encouragement, leadership, and desire to help his students and colleagues succeed 

motivated me to continue moving forward and inspired self-confidence needed to 

complete this process. 

 My fellow students were tremendous in their encouragement and positivity.  In 

particular, Anastasia Hartzes and Vincent Laufer motivated me to work hard and 

furthered my interest and curiosity in the field of statistics. 

 



v 
 

 Lastly, my parents were an unending source of love, support, and encouragement.  

Without the foundation they provided and their continued interest in my success, this 

work would not have been possible. 



vi 
 

TABLE OF CONTENTS 
 
 

Abstract ............................................................................................................................iii 

Acknowledgments............................................................................................................iv 

Table of Contents .............................................................................................................vi 

List of Tables ...................................................................................................................viii 

List of Figures ..................................................................................................................ix 

Chapter 1 Common Analysis And Power Methods For Longitudinal Data ....................1 

      I. Introduction ............................................................................................................1 

     II. The General Linear Multivariate Model (GLMM) ................................................4 
             A. Definition and Model Structure .....................................................................4 
             B. Likelihood Function and Estimation ..............................................................5 
             C. Hypothesis Testing .........................................................................................6 
                      i. Distribution of H .....................................................................................7 
                     ii. Distribution of E .....................................................................................7 
                    iii. Independence of H and E ........................................................................8 
                    iv. Distribution of tr[HE−1] .........................................................................8 
                     v. Distribution of the Wald test statistic ......................................................10 
             D. Example, Group by Time Effect ....................................................................10 
             E. Strengths and Limitations ...............................................................................11 

    III. The General Linear Model (GLM) ........................................................................12 
             A. Definition and Model Structure .....................................................................12 
             B. Likelihood Function and Estimation ..............................................................13 
             C. Issues with Likelihood Estimates ...................................................................14 
                      i. Bias of ML Estimators ............................................................................14 
                     ii. Interdependence of Estimators ...............................................................16 
                    iii. Hierarchical distribution of 𝜷𝜷� .................................................................16 
             D. REML Estimation ..........................................................................................16 
             E. Advantages and Disadvantages of the GLM ..................................................19 

    IV. The Linear Mixed Model .......................................................................................20 
             A. Definition and Model Structure .....................................................................20 
             B. Estimation.......................................................................................................21 
             C. The Kenward-Roger Approximation .............................................................22 



vii 
 

                      i. Step 1: Modifying the REML estimate of the  
                         variance of �̂�𝛽 ...........................................................................................23 
                     ii. Step 2: Approximating the distribution of the Wald 
                         test statistic ..............................................................................................24 

     V. Existing Power Calculation Methods .....................................................................28 

Chapter 2 A New Power Calculation Method for the Kenward-Roger 
Test Statistic .....................................................................................................................33 

      I. Introduction ............................................................................................................33 
     II. Derivation of Methods ...........................................................................................35 

A. Method 1: Replicating the KR Adjustment for the 
Alternative Hypothesis..................................................................................35 

             B. Alternative methods for consideration ...........................................................39 
             C. Calculating power ..........................................................................................42 

    III. Simulations and Practical Example .......................................................................42 
             A. Simulations.....................................................................................................42 
             B. Practical Example ...........................................................................................47 

    IV. Summary and Discussion ......................................................................................50 

Chapter 3 Planning for Incomplete Data in Power Calculations .....................................52 

      I. Introduction ............................................................................................................52 

     II. Existing methods planning for missing data in power  
          calculations for LMMs ...........................................................................................53 

    III. Calculating Expected Power for the KR Test with Anticipated  
          Rate of Missing Data .............................................................................................58 
             A. Expected Power ..............................................................................................58 
             B. A Heuristic Approach to Determining Necessary 
                  Computational Complexity ............................................................................60 
             C. Simulation Performance .................................................................................66 

    IV. Comparison With Other Chapter 2 Methods .........................................................68 
             A. Comparing All Methods.................................................................................68 
             B. Further Comparison of Methods 1 and 4 .......................................................70 

     V. Comparing newly developed approach to that of Ringham et al. ..........................72 

    VI. Discussion ..............................................................................................................75 

Chapter 4 Calculating Sample Size for the KR Adjusted Wald Test ..............................77 

      I. Introduction ............................................................................................................77 

     II. Existing Sample Size Calculation Techniques For Related Tests ..........................78 



viii 
 

 

    III. A New Approach to Calculating Sample Size for the KR 
          Adjusted Wald-Test ...............................................................................................82 
             A. Specifying the correct effect size ...................................................................82 
                      i. Isolating sample size from δ ...................................................................83 
                     ii. Providing σ𝛃𝛃�

2 in terms of 𝛟𝛟A ...................................................................86 
             B. Specification of the sample size calculation algorithm ..................................87 
             C. Algorithm Example ........................................................................................88 

    IV. Simulation Study and Evaluation of Performance .................................................90 

     V. Practical Example ...................................................................................................94 

Chapter 5 Summary Discussion and Ideas for Future Research ......................................97 

      I. Summary Discussion ..............................................................................................97 
     II. Limitations and Future Directions..........................................................................101 

References ........................................................................................................................104 

Appendix I Chapter 1 Likelihood Maximization .............................................................108 

Appendix II Chapter 2 Definitions and Derivations ........................................................117 

            A. Definitions .......................................................................................................118 
            B. Taylor expansion of Expected Value of KR adjusted  
                 Wald Statistic ..................................................................................................118 
            C. Adjusting solution of 𝜔𝜔 to match correct value in exact  
                 cases ................................................................................................................122 

Appendix III Chapter 3 Derivations and Supplemental Information...............................126 

Appendix IV Chapter 4 Supplemental Information and Programs ..................................129 



ix 
 

LIST OF TABLES 

 

Table 2.1: Summary of F distribution approximation methods ........................................ 42 

Table 2.2: Simulation Parameters ..................................................................................... 44 

Table 2.3: Simulation Results ........................................................................................... 44 

Table 2.4: Observation patterns for planned trial ............................................................. 49 

Table 2.5: Simulated empirical vs calculated power for Rats example ............................ 50 

Table 3.1: Sample of Generated Designs .......................................................................... 65 

Table 3.2: Calculated vs Empirical power ........................................................................ 67 

Table 3.3: Distribution of 𝐷𝐷10𝑗𝑗  when methods 1 and 4 perform best .............................. 70 

Table 4.1: Sample size calculation for design 1, desired power = 90% ........................... 91 

Table 4.2: Sample Size Calculation Performance ............................................................. 92 

Table 4.3: Comparison of nominal vs empirical power at calculated 
                 sample size ....................................................................................................... 94 

Table 4.5: Sample size calculations for rat bodyweight study.......................................... 96 

  



x 
 

LIST OF FIGURES 

 

Figure 3.1: Power for an F(1, 26.2531, ω) distribution as a function of ω ....................... 62 

Figure 3.2: Average deviation between E�(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝|𝑝𝑝)10 and 

                   E�(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝|𝑝𝑝)𝐾𝐾𝐾𝐾{25,50,100,200} ........................................................................... 66 

Figure 3.3: Calculated for Simulated power for 2100 designs ......................................... 67 

Figure 3.4: Distribution of all 400 𝐷𝐷10𝑗𝑗 and 𝐷𝐷200𝑗𝑗  values by Method j ......................... 69 

Figure 3.5: Values of |𝐷𝐷101| − |𝐷𝐷104| for all 400 designs examined............................. 72 

Figure 3.6: Comparison of E�(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝|𝑝𝑝)𝐾𝐾 vs Ringham method for 

                   K=10 and 200 ................................................................................................. 74 

 



1 
 

CHAPTER 1 

COMMON ANALYSIS AND POWER METHODS FOR LONGITUDINAL DATA 

 

I. Introduction 

Designing medical experiments involves collaboration across a wide array of 

disciplines.  Common questions encountered during the design phase concern both the 

ethics and feasibility of an experiment.  What should a treatment be compared to? How 

will the success of a treatment be measured? What logistical or recruitment hurdles might 

a study face? Appropriate answers to these questions often require input from multiple 

perspectives, and a key piece of information required for such answers is the number of 

subjects an experiment will require. 

Determining power and sample size of a study is critical for several reasons.  In 

prospective studies, an accurate sample size determination informs researchers of 

recruitment feasibility and prevents overspending. The risks to human and animal 

subjects are likewise minimized by exposing a minimal number of subjects to treatments 

with unknown side effects. In retrospective studies, knowing power for a given sample 

size helps inform researchers if a set of data can potentially answer a research question 

and is therefore worth spending effort to analyze. Similarly, knowledge of how power 

changes with sample size may help researchers determine whether a complicated 

imputation is worth performing in the presence of missing data. 



2 
 

Power can be thought of as the probability that the null statistical hypothesis is 

rejected assuming the test statistic is distributed according to some function of the 

minimal clinically significant effect size. Therefore, a proper power or sample size 

calculation should match the type of analysis planned for the experiment.  For many 

common types of statistical analyses, the power or sample size calculation is 

straightforward, as the distribution of the test statistic given the effect size is well known.  

For instance, to calculate the power for a one-sample t-test with null hypothesis 𝜇𝜇 = 0 

and alternative hypothesis 𝜇𝜇 ≠ 0, all that is required is the minimal effect size μ, the 

variance of the effect size σ2, and the number of subjects in an experiment n.  It is then 

well known that the test statistic under this parameterization follows a 𝑡𝑡𝑛𝑛−1,𝜔𝜔 distribution 

with 𝑛𝑛 − 1 degrees of freedom and noncentrality parameter 𝜔𝜔 = 𝜇𝜇
𝜎𝜎/√𝑛𝑛

 , and the 

probability a test statistic with such a distribution falls in the rejection region of a 𝑡𝑡𝑛𝑛−1,0 

distribution under the null hypothesis can be easily calculated.  Additional modifications 

to the power calculation may likewise be easily implemented.  For instance, an 

anticipated dropout rate r may be accommodated by dividing n by 1-r.  However, power 

calculations for longitudinal designs are often not so straightforward. 

Longitudinal data analysis examines data collected on the same unit (subject for 

our discourse) at multiple time points. These sequential observations are often correlated 

within subjects, and so approaches requiring independence among all observations may 

be invalid for the analysis of longitudinal data.  Instead, longitudinal data is often more 

appropriately analyzed using techniques that specifically accommodate related 

observations taken on the same subject.  The conceptual framework for such analytical 

methods extends back to the foundations of statistics itself, where the idea that 
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observational errors could be probabilistically described was already being explored by 

the likes of Bernoulli, Laplace, and Gauss.  Small errors were thought to be more 

probable than large errors, and errors within subjects were seen to be more related than 

errors between subjects.  Early attempts to accommodate such errors typically relied on 

naïve Bayes type estimation procedures, although by the early part of the 20th century 

likelihood-based methods had become more common, perhaps in part due to the 

establishment of sufficiency of likelihood estimators (Stigler, 2007). 

Among the first modern attempts at analyzing correlated data was a “mixed” 

effect ANOVA with random relatives effect (to account for correlation among relatives) 

performed by Fisher in a study on Mendelian inheritance (Fisher, 1919).  Under the 

assumption of compound symmetric within-subjects covariance provided by assuming 

random subject effect, this approach easily generalized the paired t-test to multiple 

observations and was quickly applied to the analysis of longitudinal data. However, the 

mandate of compound symmetry is often overly restrictive for longitudinal data, which 

led to other methods being explored, as well as certain generalizations relaxing this 

assumption (for example the Greenhouse Geisser correction (Greenhouse & Geisser 

1959)).  Most notably, MANOVA approaches were developed as the theory related to 

multivariate normal distributions expanded, with the advantage of these approaches being 

a lack of assumption about covariance structure, but with the disadvantage being that 

within-subjects data must be non-missing and observed at equal time points for all 

subjects (Fitzmaurice and Molenberghs, 2008). 

In the following sections, we will explore a few of these models and their 

generalizations in rigorous detail.  Such an understanding is necessary to appreciate the 
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utility of the linear mixed model for longitudinal data and importance of the Kenward-

Roger test statistic in performing inference for these models.  Specifically, the Kenward-

Roger test statistic was designed to match the Wald-type statistics for many of these 

models when exact null distributions for such statistics are known and restricted 

maximum likelihood estimation is used. Consequently, an understanding of the behavior 

of Wald-type test statistics in these models under the noncentral case will be necessary in 

guiding the development of power and sample size calculations for the Kenward-Roger 

test statistic. 

 

II. The General Linear Multivariate Model 

 
A. Definition and Model Structure 

We will first examine the General Linear Multivariate Model (GLMM).  For this model, 

we will largely be adopting the notation presented in Mardia, Kent, and Bibby (MKB, 

1979) except for using 𝜺𝜺 instead of U to represent the error term. We express this model 

as  

𝒀𝒀 = 𝑿𝑿𝑿𝑿 + 𝜺𝜺 
with 𝒀𝒀 an (𝑛𝑛 𝑥𝑥 𝜏𝜏) matrix, 𝑿𝑿 an (𝑛𝑛 𝑥𝑥 𝑞𝑞) matrix, 𝑿𝑿 a (𝑞𝑞 𝑥𝑥 𝜏𝜏) matrix, and 𝜺𝜺 an (𝑛𝑛 𝑥𝑥 𝜏𝜏) 

matrix. The GLMM can be presented as: 

�

𝑦𝑦11 𝑦𝑦12 … 𝑦𝑦1𝜏𝜏
𝑦𝑦21 𝑦𝑦22 … 𝑦𝑦2𝜏𝜏
⋮ ⋮ ⋮ ⋮
𝑦𝑦𝑛𝑛1 𝑦𝑦𝑛𝑛2 … 𝑦𝑦𝑛𝑛𝜏𝜏

�

= �

𝑥𝑥11 𝑥𝑥12 … 𝑥𝑥1𝑞𝑞
𝑥𝑥21 𝑥𝑥22 … 𝑥𝑥2𝑞𝑞
⋮ ⋮ ⋮ ⋮
𝑥𝑥𝑛𝑛1 𝑥𝑥𝑛𝑛2 … 𝑥𝑥𝑛𝑛𝑞𝑞

� �

𝛽𝛽11 𝛽𝛽12 … 𝛽𝛽1𝜏𝜏
𝛽𝛽21 𝛽𝛽22 … 𝛽𝛽2𝜏𝜏
⋮ ⋮ ⋮ ⋮
𝛽𝛽𝑞𝑞1 𝛽𝛽𝑞𝑞2 … 𝛽𝛽𝑞𝑞𝜏𝜏

�+ �

𝜀𝜀11 𝜀𝜀12 … 𝜀𝜀1𝜏𝜏
𝜀𝜀21 𝜀𝜀22 … 𝜀𝜀2𝜏𝜏
⋮ ⋮ ⋮ ⋮
𝜀𝜀𝑛𝑛1 𝜀𝜀𝑛𝑛2 … 𝜀𝜀𝑛𝑛𝜏𝜏

�  
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or more succinctly as 

�

𝒚𝒚1′
𝒚𝒚2′
⋮
𝒚𝒚𝑛𝑛′
� = �

𝒙𝒙1′
𝒙𝒙2′
⋮
𝒙𝒙𝑛𝑛′
�

⎣
⎢
⎢
⎡
𝑿𝑿1′
𝑿𝑿2′
⋮
𝑿𝑿𝑞𝑞′ ⎦
⎥
⎥
⎤

+ �

𝜺𝜺1′
𝜺𝜺2′
⋮
𝜺𝜺𝑛𝑛′
� 

 
with n representing the number of subjects, 𝜏𝜏 representing the number of observations per 

subject, and q representing the number of independent variables in the model (including 

intercept). Additionally, 𝒚𝒚𝑖𝑖′~𝑁𝑁𝜏𝜏(𝒙𝒙𝑖𝑖′𝑿𝑿,𝚺𝚺)  and  𝜺𝜺𝑖𝑖′~𝑁𝑁𝜏𝜏(𝟎𝟎,𝚺𝚺)  with 𝚺𝚺 being a 𝜏𝜏 x 𝜏𝜏 

covariance matrix and 𝒚𝒚𝑖𝑖′ are uncorrelated.   

 
B. Likelihood Function and Estimation 

The probability density function (PDF) for 𝒚𝒚𝑖𝑖 is given as: 

𝑓𝑓𝒀𝒀𝑖𝑖(𝒚𝒚𝑖𝑖) = (2𝜋𝜋)−𝜏𝜏/2 |𝚺𝚺|−1/2𝑒𝑒𝑥𝑥𝑒𝑒 �−
1
2

(𝒚𝒚𝑖𝑖 − 𝑿𝑿′𝒙𝒙𝑖𝑖)′𝚺𝚺−1(𝒚𝒚𝑖𝑖 − 𝑿𝑿′𝒙𝒙𝑖𝑖)� 

And so for the joint PDF we have: 

𝑓𝑓𝒀𝒀1,…,𝑛𝑛�𝒚𝒚1,..,𝑛𝑛� = (2𝜋𝜋)−𝑛𝑛𝜏𝜏/2 |𝚺𝚺|−𝑛𝑛/2𝑒𝑒𝑥𝑥𝑒𝑒 �−
1
2
�(𝒚𝒚𝑖𝑖 − 𝑿𝑿′𝒙𝒙𝑖𝑖)′𝚺𝚺−1(𝒚𝒚𝑖𝑖 − 𝑿𝑿′𝒙𝒙𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

� 

Thus, the PDF for 𝒀𝒀 is: 

𝑓𝑓𝒀𝒀 (𝒀𝒀) = (2𝜋𝜋)−𝑛𝑛𝜏𝜏/2 |𝚺𝚺|−𝑛𝑛/2𝑒𝑒𝑥𝑥𝑒𝑒 �−
1
2
�(𝒚𝒚𝑖𝑖′ − 𝒙𝒙𝑖𝑖′𝑿𝑿)𝚺𝚺−1(𝒚𝒚𝑖𝑖′ − 𝒙𝒙𝑖𝑖′𝑿𝑿)′
𝑛𝑛

𝑖𝑖=1

� 

Noting that 

�(𝒚𝒚𝑖𝑖′ − 𝒙𝒙𝑖𝑖′𝑿𝑿)𝚺𝚺−1(𝒚𝒚𝑖𝑖′ − 𝒙𝒙𝑖𝑖′𝑿𝑿)′
𝑛𝑛

𝑖𝑖=1

= 𝑡𝑡𝑡𝑡[(𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′] 

then 

                             𝑓𝑓𝒀𝒀 (𝒀𝒀) = (2𝜋𝜋)−𝑛𝑛𝜏𝜏/2 |𝚺𝚺|−𝑛𝑛/2𝑒𝑒𝑥𝑥𝑒𝑒{𝑡𝑡𝑡𝑡[(𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′]}. 

Therefore, the log-likelihood function for 𝒀𝒀 is: 
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                            𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) = −𝑛𝑛𝜏𝜏
2
𝑙𝑙𝑙𝑙𝑙𝑙(2𝜋𝜋) − 𝑛𝑛

2
𝑙𝑙𝑙𝑙𝑙𝑙|𝚺𝚺| − 1

2
𝑡𝑡𝑡𝑡[(𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′]. 

The maximum likelihood estimate (MLE) of 𝑿𝑿 will be independent of 𝚺𝚺 while the reverse 

is not true. Specifically, from proof 1 in Appendix I we have the MLEs for  𝑿𝑿 and 𝚺𝚺 as: 

𝑿𝑿� = (𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝒀𝒀                    

                                                         𝚺𝚺� = 1
𝑛𝑛
�𝒀𝒀 − 𝑿𝑿𝑿𝑿��′�𝒀𝒀 − 𝑿𝑿𝑿𝑿��. 

 

C. Hypothesis Testing 

The general linear hypothesis is given by H: 𝑪𝑪′𝑿𝑿U= 𝚯𝚯. Several different test 

statistics are frequently utilized for testing hypotheses in the GLMM, none of which are 

uniformly most powerful in all cases, although all reduce to the same value in many 

scenarios encountered in the analysis of longitudinal data. A comparison of several of 

these statistics is presented in Ateş (2019), with relative performance depending on 

covariance homogeneity, observational balance, and adherence to normality assumptions.  

Among the most popular of these statistics is the Hotelling-Lawley Trace (HLT) statistic 

first examined in Hotelling (1931), later generalized to cases with more than two groups 

Lawley(1938), and given its more-or-less present formalization in Hotelling (1951).  We 

will restrict our focus to this test statistic, as it has an approachable form and is explicitly 

tracked by the Kenward-Roger statistic. The form of the HLT test statistic is given as: 

𝐹𝐹 = 𝜆𝜆 ∗ 𝑡𝑡𝑡𝑡 ��𝑼𝑼′𝑿𝑿�′𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿�𝑼𝑼��𝑛𝑛𝑼𝑼′𝚺𝚺�𝑼𝑼�
−1� 

Where 𝑪𝑪 is a (𝑞𝑞 × 𝑎𝑎) between subjects contrast matrix and 𝑼𝑼 is a (𝜏𝜏 × 𝑏𝑏) within subjects 

contrast matrix.  To obtain the distribution of this test statistic, we will first derive the 

distributions of the quantities  𝑯𝑯 = 𝑼𝑼′𝑿𝑿�′𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿�𝑼𝑼  and  𝑬𝑬 = �𝑛𝑛𝑼𝑼′𝚺𝚺�𝑼𝑼�. 
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(i) Distribution of  𝐻𝐻 : From corollary 3 of Singull and Koski (2012) we have that if 

𝒀𝒀~𝑁𝑁𝜏𝜏(𝝁𝝁,𝚺𝚺) and 𝑨𝑨 is a symmetric idempotent matrix of rank r, then 

𝒀𝒀′𝑨𝑨𝒀𝒀~𝑊𝑊𝜏𝜏(𝑡𝑡,𝚺𝚺,𝝁𝝁′𝑨𝑨𝝁𝝁) , a 𝜏𝜏 x 𝜏𝜏 Wishart distributed random matrix with r degrees of 

freedom and non-centrality parameter 𝝁𝝁′𝑨𝑨𝝁𝝁. 

Now, 𝑯𝑯 = 𝑼𝑼′𝑿𝑿�′𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿�𝑼𝑼 

                = 𝑼𝑼′𝒀𝒀′𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝒀𝒀𝑼𝑼 

Note 

[𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′][𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′] 

           = 𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′ 

And so 𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′ is idempotent (proof of symmetry is 

trivially obtained by taking the transpose). Additionally, since it is idempotent, its rank is 

equal to its trace, which is  

𝒕𝒕𝒕𝒕[𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′]

= 𝒕𝒕𝒕𝒕[𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏] 

  = 𝒕𝒕𝒕𝒕[𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏] 

  = 𝒕𝒕𝒕𝒕[𝑰𝑰𝑎𝑎] 

  = 𝑎𝑎 

So, 𝒀𝒀𝑼𝑼~𝑁𝑁𝑏𝑏(𝑿𝑿𝑿𝑿𝑼𝑼,𝑼𝑼′𝚺𝚺𝑼𝑼) and therefore 

𝑯𝑯~𝑊𝑊𝑏𝑏(𝑎𝑎,𝑼𝑼′𝚺𝚺𝑼𝑼,𝑼𝑼′𝑿𝑿′𝑿𝑿′𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝑿𝑿𝑿𝑿𝑼𝑼) reducing to 

𝑯𝑯~𝑊𝑊𝑏𝑏(𝑎𝑎,𝑼𝑼′𝚺𝚺𝑼𝑼,𝑼𝑼′𝑿𝑿′𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿𝑼𝑼) 
 
 
(ii) Distribution of  𝐸𝐸:  First, let 𝑸𝑸 = 𝑰𝑰𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑿𝑿(𝑿𝑿′𝑿𝑿)−1𝑿𝑿′.  Then 𝑸𝑸 is symmetric and 

𝑸𝑸′𝑸𝑸 = 𝑰𝑰 − 𝑿𝑿(𝑿𝑿′𝑿𝑿)−1𝑿𝑿′ − 𝑿𝑿(𝑿𝑿′𝑿𝑿)−1𝑿𝑿′ + 𝑿𝑿(𝑿𝑿′𝑿𝑿)−1𝑿𝑿′𝑿𝑿(𝑿𝑿′𝑿𝑿)−1𝑿𝑿′ 
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                            = 𝑰𝑰 − (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′ 

                            = 𝑸𝑸  

Now, 𝑬𝑬 = 𝑼𝑼′�𝒀𝒀 − 𝑿𝑿𝑿𝑿��′�𝒀𝒀 − 𝑿𝑿𝑿𝑿��𝑼𝑼 = 𝑼𝑼′𝒀𝒀′𝑸𝑸′𝑸𝑸𝒀𝒀𝑼𝑼 = 𝑼𝑼′𝒀𝒀′𝑸𝑸𝒀𝒀𝑼𝑼  with 𝑸𝑸 symmetric and 

idempotent of rank = 𝑡𝑡𝑡𝑡(𝑰𝑰𝑛𝑛𝑛𝑛𝑛𝑛) − 𝑡𝑡𝑡𝑡(𝑿𝑿′𝑿𝑿(𝑿𝑿′𝑿𝑿)−1) = 𝑡𝑡𝑡𝑡(𝑰𝑰𝑁𝑁𝑛𝑛𝑁𝑁) − 𝑡𝑡𝑡𝑡�𝑰𝑰𝑞𝑞𝑛𝑛𝑞𝑞� = 𝑁𝑁 − 𝑞𝑞, 

and so: 

𝑬𝑬~𝑊𝑊𝑏𝑏(𝑁𝑁 − 𝑞𝑞,𝑼𝑼′𝚺𝚺𝑼𝑼,𝑼𝑼′𝑿𝑿′𝑿𝑿′𝑸𝑸𝑿𝑿𝑿𝑿𝑼𝑼) 

                                                                = 𝑊𝑊𝑏𝑏(𝑛𝑛 − 𝑞𝑞,𝑼𝑼′𝚺𝚺𝑼𝑼,𝑼𝑼′𝑿𝑿′𝑿𝑿′(𝑰𝑰 − 𝑿𝑿(𝑿𝑿′𝑿𝑿)−1𝑿𝑿′)𝑿𝑿𝑿𝑿𝑼𝑼)       

      = 𝑊𝑊𝑏𝑏(𝑛𝑛 − 𝑞𝑞,𝑼𝑼′𝚺𝚺𝑼𝑼,𝟎𝟎) 

 
 
(iii) Independence of 𝐻𝐻 and 𝐸𝐸 : From MKB theorem 3.4.6 (Craig’s theorem), we have 

that if 𝒀𝒀~𝑁𝑁𝜏𝜏(𝝁𝝁,𝚺𝚺) and 𝑨𝑨1 and 𝑨𝑨2 are symmetric idempotent matrices, then 𝒀𝒀′𝑨𝑨1𝒀𝒀 and 

𝒀𝒀′𝑨𝑨2𝒀𝒀 are jointly independent if  𝑨𝑨1𝑨𝑨2 = 𝟎𝟎. Letting 

𝑨𝑨1 = 𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′  and 𝑨𝑨2 = 𝑰𝑰 − 𝑿𝑿(𝑿𝑿′𝑿𝑿)−1𝑿𝑿′ we have 

𝑨𝑨1𝑨𝑨2 = 𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′(𝑰𝑰 − 𝑿𝑿(𝑿𝑿′𝑿𝑿)−1𝑿𝑿′) 

           = 𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′ −

                                                                            𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝑿𝑿(𝑿𝑿′𝑿𝑿)−1𝑿𝑿′ 

           = 𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′ −

                                                                            𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′ 

           = 𝟎𝟎 

So, since 𝑯𝑯 = 𝑼𝑼′𝒀𝒀′𝑨𝑨1𝒀𝒀𝑼𝑼  and 𝑬𝑬 = 𝑼𝑼′𝒀𝒀′𝑨𝑨2𝒀𝒀𝑼𝑼, they are independent. 

 

(iv) Distribution of 𝑡𝑡𝑡𝑡[𝐻𝐻𝐸𝐸−1] : When b = 1 (i.e. when the within-subjects contrast matrix 

U is a single column) then: 
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𝑡𝑡𝑡𝑡[𝑯𝑯𝑬𝑬−1] = 𝑯𝑯𝑬𝑬−1 =
𝜒𝜒𝑎𝑎2(𝑼𝑼′𝑿𝑿′𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿𝑼𝑼)

𝜒𝜒𝑛𝑛−𝑞𝑞2  

Therefore, in this case, 

𝑡𝑡𝑡𝑡[𝑯𝑯𝑬𝑬−1]~
𝑎𝑎

𝑛𝑛 − 𝑞𝑞
𝐹𝐹𝑎𝑎,   𝑛𝑛−𝑞𝑞,   𝜔𝜔 

        with 𝜔𝜔 = 𝑼𝑼′𝑿𝑿′𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿𝑼𝑼 

When 𝑎𝑎 = 1 (i.e. when the between-subjects contrast matrix C is a single column), then 

𝑯𝑯𝑬𝑬−1 is of rank 1 and its trace is equal to its only nonzero eigenvalue. Thus, from 

extension of MKB definition 3.7.2 and equation 3.7.15 describing the distribution of the 

largest eigenvalue of the product of two such independent Wishart matrices (note the 

trace of 𝑯𝑯𝑬𝑬−1 and the trace of 𝑬𝑬−1𝑯𝑯 are equal) we have, under the null hypothesis with 

non-centrality parameter ω = 0: 

𝑡𝑡𝑡𝑡[𝑯𝑯𝑬𝑬−1]~
𝑏𝑏

𝑛𝑛 − 𝑞𝑞 − 𝑏𝑏 + 1
𝐹𝐹𝑏𝑏,   𝑛𝑛−𝑞𝑞−𝑏𝑏+1 

Under the alternative hypothesis the noncentrality parameter is not always well defined. 

Obviously, 𝑼𝑼′𝑿𝑿′𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿𝑼𝑼 cannot be used as the noncentrality parameter 

because it is a matrix and does not directly conform to the scalar value demanded by a 

noncentral F distribution. Approximations to the distribution under the alternative 

hypothesis are still a subject of research (e.g. Johnstone and Nadler, 2017).  However, in 

certain situations such as the test of a vector of means at each of τ time points for one or 

between two groups, the noncentrality parameter can be given as that of the noncentral 

Hotelling T2 distribution. The results are important: in the one sample T2 the noncentrality 

parameter is 𝜔𝜔 = 𝝁𝝁′𝚺𝚺−1𝝁𝝁 whereas in a test of the means between two groups with sizes 

n1 and n2 the noncentrality parameter is given as 𝜔𝜔 = 𝑛𝑛1𝑛𝑛2
𝑛𝑛1+𝑛𝑛2

(𝝁𝝁𝟏𝟏 − 𝝁𝝁𝟐𝟐)′𝚺𝚺−1(𝝁𝝁𝟏𝟏 − 𝝁𝝁𝟐𝟐)   



10 
 

(Gupta, 2006) suggesting 𝜔𝜔 is obtained by scaling the effect size much like 𝜆𝜆 scales the 

test statistic to form an F distribution. 

 

(v) Distribution of the Wald test statistic:  We have seen that in two exact cases, the test 

statistic follows an F distribution.  Specifically, when b = 1: 

          𝑭𝑭 = 𝜆𝜆 ∗ 𝑡𝑡𝑡𝑡[𝑯𝑯𝑬𝑬−1] =
𝑛𝑛 − 𝑞𝑞
𝑎𝑎

𝑡𝑡𝑡𝑡[𝑯𝑯𝑬𝑬−1]  ~  𝐹𝐹𝑎𝑎,   𝑛𝑛−𝑞𝑞,   𝜔𝜔  

                                      𝜔𝜔 = 𝑼𝑼′𝑿𝑿′𝑪𝑪(𝑪𝑪′(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿𝑼𝑼 

and when a = 1 under the null hypothesis: 

𝑭𝑭 = 𝜆𝜆 ∗ 𝑡𝑡𝑡𝑡[𝑯𝑯𝑬𝑬−1] =
𝑛𝑛 − 𝑞𝑞 − 𝑏𝑏 + 1

𝑏𝑏
𝑡𝑡𝑡𝑡[𝑯𝑯𝑬𝑬−1]  ~  𝐹𝐹𝑏𝑏,   𝑛𝑛−𝑞𝑞−𝑏𝑏+1 

However, when these two cases fail, the distribution of the test statistic has no known 

distribution. Instead, it is common to assume the distribution follows an F statistic and to 

approximate the degrees of freedom of the distribution and possibly scale factor.  

Fortunately, as will be demonstrated in the following example, the hypothesis tests of 

individual fixed effects of interest in balanced linear mixed models (for this document, 

“balanced” means no missing data and all subjects are observed at the same time points) 

analyzing longitudinal data can frequently be expressed as a multivariate linear model 

with a Wald test statistic distributed identically to both special cases previously 

discussed, i.e. both a=1 and b=1. 

 

D. Example, Group by Time Effect 

Suppose we are analyzing the results of a study examining protein 

supplementation on lean body mass following bariatric surgery. Patients were 

randomized to either a routine diet of 1500 Kcal per day following surgery (group 1), or a 
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diet of 1500 Kcal per day with 400 Kcal coming from supplemental protein powder 

(group 2).  Post-surgery, patients have biometric data including lean body mass measured 

once every 3 months for a year providing 5 observations per subject (months 0, 3, 6, 9, 

12). Of primary interest is whether the trajectory of lean body mass index over time is 

different between the two groups (equivalent to the group by time effect in the mixed 

model).  There were 10 subjects in each study group with no missing data and no 

mistimed observations. 

The between and within-subjects contrast matrices to test if there is a difference 

between groups in trajectory of lean body mass over time are: 

𝑪𝑪 = [0   1]′ 

𝑼𝑼 = [−2    − 1     0     1     2 ]′ 

The design matrix for subject i will be: 

𝒙𝒙𝑖𝑖′ = [1  𝑙𝑙𝑖𝑖 ] 

with 𝑙𝑙𝑖𝑖 = 0 if subject i in group 1 and 𝑙𝑙𝑖𝑖 = 0 if subject i in group 2. The hypothesis that 

no difference exists will then be rejected if  𝑛𝑛−𝑞𝑞
𝑎𝑎
𝑡𝑡𝑡𝑡[𝑯𝑯𝑬𝑬−1] = 18 ∗ 𝑡𝑡𝑡𝑡[𝑯𝑯𝑬𝑬−1] falls in the 

rejection region of an 𝐹𝐹1,18 distribution. 

 

E. Strengths and Limitations 

Compared to other methods of analyzing longitudinal data, the GLMM has two 

attractive qualities.  First, while 𝚺𝚺� is a biased estimator of 𝚺𝚺, this bias has no impact on 

the test statistic.  Secondly, the test statistics have known distributions for the special 

cases described, which happen to correspond with testing individual effects of interest for 

most researchers. 
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However, the GLMM has several major limitations, the two most obvious of 

which are that all data must be observed (non-missing) and that all subjects must be 

observed at the same timepoints.  Such demands are clear from the structure presented in 

Section II.A, as 𝒚𝒚𝑖𝑖′ must have τ elements and 𝑿𝑿 takes no consideration of the time of 

observation (only order of observation is considered) in mapping from 𝑿𝑿 to 𝒀𝒀. Lastly, the 

structure of the model is unfamiliar to many researchers who are often unaccustomed to 

the idea of an outcome as a joint set of observations. As a result of these limitations, other 

more flexible methods for analyzing longitudinal data have become popular alternatives. 

 

III. The General Linear Model (GLM) 

The next type of model commonly used for the analysis of longitudinal data is the 

General Linear Model (GLM).  This model offers increased flexibility over the GLMM 

and is capable of explicitly estimating the effect of time as a continuous function on 

which the outcome depends. However, this model will be shown to have its own 

limitations, particularly with regards to estimation and hypothesis testing. 

 

A. Definition and Model Structure 

The GLM is specified as follows: 

𝒀𝒀𝑖𝑖 = 𝑿𝑿𝑖𝑖𝑿𝑿 + 𝜺𝜺𝑖𝑖  

In this instance i = 1,…,n refers to one of the subjects in the model.  𝒀𝒀𝑖𝑖 is the mi x 1 

matrix consisting of the outcome measurements for subject i at each of the  j =1,…,mi 

times the subject was measured.  Additionally, 𝒀𝒀𝑖𝑖  ~ 𝑁𝑁𝑛𝑛𝑖𝑖(𝑿𝑿𝑖𝑖𝑿𝑿,𝚺𝚺𝒊𝒊) and 𝒀𝒀𝑖𝑖 are independent.  

𝑿𝑿𝑖𝑖 is the mi x r fixed effects design matrix, one of whose columns is the vector of 
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timepoints at which subject i was measured (r has been used instead of q to differentiate 

from the GLMM).  𝑿𝑿 is the r x 1 vector of fixed effect parameters.  𝜺𝜺𝑖𝑖  is the mi x 1 

matrix giving the “error” or amounts by which the outcome for patient i at observation 

time j deviates from its expected value. Thus 𝜺𝜺𝑖𝑖~ 𝑁𝑁𝑚𝑚𝑖𝑖
(0,𝚺𝚺𝒊𝒊). So, structurally the model 

appears as: 

�

𝑦𝑦𝑖𝑖1
𝑦𝑦𝑖𝑖2
⋮

𝑦𝑦𝑖𝑖𝑚𝑚𝑖𝑖

� = �

𝑥𝑥𝑖𝑖11 𝑥𝑥𝑖𝑖21 … 𝑥𝑥𝑖𝑖𝑖𝑖1
𝑥𝑥𝑖𝑖12 𝑥𝑥𝑖𝑖22 … 𝑥𝑥𝑖𝑖𝑖𝑖2
⋮ ⋮ ⋮ ⋮

𝑥𝑥𝑖𝑖1𝑚𝑚𝑖𝑖 𝑥𝑥𝑖𝑖2𝑚𝑚𝑖𝑖 … 𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖

� �

𝛽𝛽1
𝛽𝛽2
⋮
𝛽𝛽𝑖𝑖

� + �

𝜀𝜀𝑖𝑖1
𝜀𝜀𝑖𝑖2
⋮

𝜀𝜀𝑖𝑖𝑚𝑚𝑖𝑖

� 

 
Stacking these observations as 𝒀𝒀 = (𝒀𝒀1 𝒀𝒀2 … 𝒀𝒀𝑛𝑛)′ we can express the model in 

shorthand form: 

𝒀𝒀 = 𝑿𝑿𝑿𝑿 + 𝜺𝜺 

Typically, the first column of the design matrix will be a column of ones representing the 

intercept term, but this is not a requirement. 

 

B. Likelihood function and Estimation 

The pdf of 𝒀𝒀𝑖𝑖 is given as: 

             𝑓𝑓𝒀𝒀𝑖𝑖(𝒀𝒀𝑖𝑖) = (2𝜋𝜋)−𝑚𝑚𝑖𝑖/2 |𝚺𝚺𝒊𝒊|−1/2𝑒𝑒𝑥𝑥𝑒𝑒 �−
1
2

(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)′𝚺𝚺𝑖𝑖−1(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)� 

In the simplest case, assume that mi = 𝜏𝜏 for all subjects.  Then 𝚺𝚺 = 𝚺𝚺𝒀𝒀 = 𝑰𝑰𝑛𝑛𝒙𝒙𝑛𝑛 ⊗ 𝚺𝚺𝒊𝒊 and 

the pdf of 𝒀𝒀 is given as: 

𝑓𝑓𝒀𝒀1,…,𝑛𝑛�𝒀𝒀1,..,𝑛𝑛� = 𝑓𝑓𝒀𝒀(𝒀𝒀) = (2𝜋𝜋)−𝑛𝑛𝜏𝜏/2 |𝚺𝚺𝒊𝒊|−𝑛𝑛/2𝑒𝑒𝑥𝑥𝑒𝑒 �−
1
2
�(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)′𝚺𝚺𝑖𝑖−1(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)
𝑛𝑛

𝑖𝑖=1

� 

           = (2𝜋𝜋)−𝑛𝑛𝜏𝜏/2 |𝚺𝚺|−1/2𝑒𝑒𝑥𝑥𝑒𝑒 �− 1
2

(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿)� 

Therefore, the log-likelihood function for 𝒀𝒀 is: 
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𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) = −
𝑛𝑛𝜏𝜏
2
𝑙𝑙𝑙𝑙𝑙𝑙(2𝜋𝜋) −

1
2
𝑙𝑙𝑙𝑙𝑙𝑙|𝚺𝚺| −−

1
2

(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿) 

From proof 2 in Appendix I, the MLEs for this balanced case are 

𝑿𝑿� = (𝑿𝑿′𝚺𝚺−1𝑿𝑿)−𝟏𝟏𝑿𝑿′𝚺𝚺−1𝒀𝒀  and  𝚺𝚺�𝑖𝑖 = 1
𝑛𝑛

(𝒀𝒀 − 𝑿𝑿𝑿𝑿)(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′ 

when assuming 𝑿𝑿 or 𝚺𝚺𝒊𝒊 is fixed and known, respectively. Unfortunately, these quantities 

both depend on each other, and so the following expressions are often given instead as 

the “feasible” estimators obtained from the conditional likelihood function for each 

parameter: 

𝑿𝑿� = �𝑿𝑿′𝚺𝚺�−1𝑿𝑿�
−𝟏𝟏
𝑿𝑿′𝚺𝚺�−1𝒀𝒀  and  𝚺𝚺�𝑖𝑖 = 1

𝑛𝑛
�𝒀𝒀 − 𝑿𝑿𝑿𝑿���𝒀𝒀 − 𝑿𝑿𝑿𝑿��′ 

For cases when the number of observations differs among subjects, the estimates may not 

be so easily expressed.  However, even if these estimates are based on balanced data, 

several problems exist that complicate analyses based on this model. 

 

C. Issues with Likelihood Estimates 

The problems with the estimates in the previous section II.B are three-fold. 

 

(i)Bias of ML Estimators Typically maximum likelihood estimates are biased. A simple 

example readily shows the bias in the ML estimate of estimate of 𝚺𝚺. Assume all subjects 

are observed τ times and all observations within and between subjects are independent 

such that 𝚺𝚺𝑖𝑖 = 𝜎𝜎2𝑰𝑰𝜏𝜏 𝑛𝑛 𝜏𝜏  and 𝚺𝚺𝒀𝒀 = 𝜎𝜎2𝑰𝑰𝑛𝑛𝜏𝜏 𝑛𝑛 𝑛𝑛𝜏𝜏 .  Then setting 𝜕𝜕
𝜕𝜕𝚺𝚺
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) = 0 and solving, 

conditional on 𝑿𝑿, we have: 

                         
𝑛𝑛
2
𝑡𝑡𝑡𝑡[𝑰𝑰𝜏𝜏𝑛𝑛𝜏𝜏] =

1
2
𝑡𝑡𝑡𝑡 ��𝚺𝚺𝑖𝑖−1(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)′

𝑛𝑛

𝑖𝑖=1

� 
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𝑛𝑛𝜏𝜏 = 𝜎𝜎−2𝑡𝑡𝑡𝑡 ��𝑰𝑰𝜏𝜏𝑛𝑛𝜏𝜏(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)′
𝑛𝑛

𝑖𝑖=1

� 

𝑛𝑛𝜏𝜏 = 𝜎𝜎−2𝑡𝑡𝑡𝑡 ��(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)′𝑰𝑰𝜏𝜏𝑛𝑛𝜏𝜏(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)
𝑛𝑛

𝑖𝑖=1

� 

𝑛𝑛𝜏𝜏 = 𝜎𝜎−2(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′(𝒀𝒀 − 𝑿𝑿𝑿𝑿)                             

𝜎𝜎2 =
1
𝑛𝑛𝜏𝜏

(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′(𝒀𝒀 − 𝑿𝑿𝑿𝑿)                              

Additionally, conditional on 𝚺𝚺 

                                          𝑿𝑿� = (𝑿𝑿′𝚺𝚺−1𝑿𝑿)−𝟏𝟏𝑿𝑿′𝚺𝚺−1𝒀𝒀 

                                               = 𝜎𝜎2𝜎𝜎−2(𝑿𝑿′𝐈𝐈−1𝑿𝑿)−𝟏𝟏𝑿𝑿′𝐈𝐈−1𝒀𝒀 

                                               = (𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝒀𝒀           

Therefore, 

                                         𝜎𝜎�2 =
1
𝑛𝑛𝜏𝜏
�𝒀𝒀 − 𝑿𝑿𝑿𝑿��′�𝒀𝒀 − 𝑿𝑿𝑿𝑿�� 

                                               =
1
𝑛𝑛𝜏𝜏

(𝒀𝒀 − 𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝒀𝒀)′(𝒀𝒀 − 𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝒀𝒀) 

Proceeding as in A.III we have 𝑛𝑛𝜏𝜏𝜎𝜎�2 = 𝒀𝒀′𝑸𝑸𝒀𝒀~𝑊𝑊1(𝑛𝑛𝜏𝜏 − 𝑡𝑡,𝜎𝜎2𝑰𝑰𝑛𝑛𝜏𝜏 𝑛𝑛 𝑛𝑛𝜏𝜏,𝟎𝟎), since    

𝒀𝒀𝑖𝑖~𝑁𝑁1(𝑿𝑿𝑖𝑖𝑿𝑿,𝜎𝜎2) 

From MKB corollary 3.4.2.1 and theorem 3.4.4 b we have: 

𝒀𝒀′𝑸𝑸𝒀𝒀~ � 𝜎𝜎2𝜒𝜒12
𝑛𝑛𝜏𝜏−𝑖𝑖

𝑖𝑖=1

 

And so 

𝐸𝐸(𝜎𝜎�2)  =  
𝑛𝑛𝜏𝜏 − 𝑡𝑡
𝑛𝑛𝜏𝜏

𝜎𝜎2  <  𝜎𝜎2 
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Note that this bias is typically not an issue in exact cases where the degrees of freedom in 

the F-statistic correct for this bias in the variance estimator, but in non-exact cases this 

bias can pose more of an issue. 

 

(ii) Interdependence of Estimators The estimates often depend on each other, thus 

preventing a general closed form solution. 

 

(iii)Hierarchical distribution of 𝑿𝑿�  In the case that  𝚺𝚺�𝑖𝑖 could be estimated independently 

of 𝑿𝑿 so that 𝑿𝑿� = �𝑿𝑿′𝚺𝚺�−1𝑿𝑿�
−𝟏𝟏
𝑿𝑿′𝚺𝚺�−1𝒀𝒀  (as we’ll see is the case in REML estimation), 

there would still be the issue that the distribution of 𝑿𝑿� would hierarchically depend on the 

distribution of 𝚺𝚺�𝑖𝑖 and would therefore be difficult to determine.  Thus, test statistics based 

on this estimate can also have distributions that are difficult to express. 

 

D. REML Estimation 

To solve issues (i) and (ii) from previous section III.C we can instead estimate 𝑿𝑿� 

and 𝚺𝚺�𝑖𝑖 via Restricted Maximum Likelihood Estimation (REML).  Essentially, we utilize 

the fact that the error term 𝜺𝜺𝑖𝑖 has the same covariance as 𝒚𝒚𝑖𝑖 but whose mean does not 

depend on  𝑿𝑿.   So instead of estimating 𝑿𝑿� and 𝚺𝚺�𝑖𝑖 based on 𝒀𝒀 we will estimate based on 

the residuals of the model. Interdependencies are introduced among observed residuals in 

the estimation process (for instance, in OLS estimation we can determine the value of the 

nth residual if we know the previous n - 1 residuals), and so we need to find a basis for 

these residuals that expresses them in terms of the original error space.  To do so, we can 

define: 
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𝑯𝑯′ = 𝑿𝑿(𝑿𝑿′𝚺𝚺−1𝑿𝑿)−1𝑿𝑿′𝚺𝚺−1             (with 𝑯𝑯 an nτ x nτ matrix) 

𝑸𝑸′ =  𝑰𝑰 − 𝑯𝑯′                                   (note 𝑸𝑸′𝑿𝑿 = 𝑿𝑿 − 𝑿𝑿(𝑿𝑿′𝚺𝚺−1𝑿𝑿)−1𝑿𝑿′𝚺𝚺−1𝑿𝑿 = 𝟎𝟎) 

𝑸𝑸 is idempotent and its rank = trace = nτ-r.  Since 𝑸𝑸 is a square matrix it can be 

expressed via “QR” factorization as 𝑸𝑸 = 𝑴𝑴𝑨𝑨 where 𝑴𝑴 is rank nτ-r and 𝑨𝑨 is an upper 

triangular matrix.  Additionally, the columns of 𝑴𝑴 form an orthogonal basis and so  

𝑹𝑹𝒊𝒊 = 𝑴𝑴𝑖𝑖
′𝒀𝒀𝑖𝑖 − 𝑴𝑴𝑖𝑖

′𝑿𝑿𝑖𝑖𝑩𝑩 = 𝑴𝑴𝑖𝑖
′𝒀𝒀𝑖𝑖~𝑁𝑁𝜏𝜏(𝟎𝟎,𝑴𝑴𝑖𝑖

′𝚺𝚺𝑴𝑴𝑖𝑖) 

Note 𝑴𝑴′𝚺𝚺𝑴𝑴 is of the same block diagonal shape as 𝜮𝜮 but with the last r rows containing 

only zeros (since 𝑴𝑴 is rank nτ-r and has columns forming orthogonal basis). We can 

therefore express the likelihood function of 𝑹𝑹 as: 

𝑙𝑙( 𝚺𝚺|𝑹𝑹) = −
𝑛𝑛𝑒𝑒
2

log(2π) −
1
2
� log|𝑴𝑴𝑖𝑖

′𝚺𝚺𝑖𝑖𝑴𝑴𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

−
1
2
�𝑹𝑹𝑖𝑖′(𝑴𝑴𝑖𝑖

′𝚺𝚺𝑖𝑖𝑴𝑴𝑖𝑖)−1𝑹𝑹𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

The above expression still has the problem that M depends on 𝑸𝑸 and therefore on the 

value of 𝜮𝜮, which is an unknown quantity we are trying to estimate. However, this 

function can be equivalently expressed as (Gurka, 2006):  

𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜮𝜮|𝒀𝒀) = 

−
𝑛𝑛𝜏𝜏 − 𝑡𝑡

2
log(2π) +

1
2

log|𝑿𝑿′𝑿𝑿|−
1
2

log|𝚺𝚺| −
1
2

log|𝑿𝑿′𝚺𝚺−1𝑿𝑿| −
1
2 �
𝒀𝒀 − 𝑿𝑿𝑿𝑿��′(𝒀𝒀 − 𝑿𝑿𝑿𝑿�) 

          Where 𝑿𝑿� = (𝑿𝑿′𝚺𝚺−1𝑿𝑿)−1𝑿𝑿′𝚺𝚺−1𝒀𝒀 

From the above expression, it is now obvious that REML allows the estimation of 𝚺𝚺 first 

and then of 𝑿𝑿.  Thus, the dependency issue in (ii) from III.C is avoided.  To see how the 

bias issue in (i) is mitigated, we can calculate the REML estimate of 𝚺𝚺 from part III.C.i. 

Here 𝑸𝑸 is idempotent and its rank = trace = nτ-r and 𝚺𝚺𝑖𝑖 = 𝜎𝜎2𝑰𝑰𝜏𝜏 𝑛𝑛 𝜏𝜏 

𝜕𝜕
𝜕𝜕𝚺𝚺

𝑙𝑙( 𝚺𝚺|𝑹𝑹) = −
1
2
��

𝜕𝜕
𝜕𝜕𝚺𝚺𝒊𝒊

𝑙𝑙𝑙𝑙𝑙𝑙|𝑴𝑴𝑖𝑖′𝚺𝚺𝑖𝑖𝑴𝑴𝑖𝑖|�
𝑛𝑛

𝑖𝑖=1

−
1
2
�𝑡𝑡𝑡𝑡 ��

𝜕𝜕
𝜕𝜕𝚺𝚺𝒊𝒊

(𝑴𝑴𝑖𝑖′𝚺𝚺𝑖𝑖𝑴𝑴𝑖𝑖)−1𝑹𝑹𝒊𝒊𝑹𝑹𝒊𝒊′
𝑛𝑛

𝑖𝑖=1

�� 
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= −
1
2
𝜕𝜕
𝚺𝚺

(𝑙𝑙𝑙𝑙𝑙𝑙|𝑴𝑴′𝜎𝜎2𝑰𝑰𝑛𝑛𝜏𝜏 𝑛𝑛 𝑛𝑛𝜏𝜏𝑴𝑴|) −
1
2
�𝑡𝑡𝑡𝑡 ��

𝜕𝜕
𝜕𝜕𝚺𝚺𝒊𝒊

(𝑴𝑴′𝜎𝜎2𝑰𝑰𝜏𝜏 𝑛𝑛 𝜏𝜏𝑴𝑴)−1𝑹𝑹𝒊𝒊𝑹𝑹𝒊𝒊′
𝑛𝑛

𝑖𝑖=1

�� 

Noting 𝑴𝑴𝑖𝑖 is orthogonal and thus invertible, so (𝑴𝑴′𝜮𝜮𝑴𝑴)−1 = 𝑴𝑴−1𝚺𝚺−1(𝑴𝑴′)−1 

= −
1
2
𝑡𝑡𝑡𝑡[𝑴𝑴′𝑴𝑴] +

1
2
𝑡𝑡𝑡𝑡[𝜎𝜎−2𝑰𝑰𝑛𝑛𝜏𝜏 𝑛𝑛 𝑛𝑛𝜏𝜏(𝑴𝑴′)−1𝑹𝑹𝑹𝑹′𝑴𝑴−1] 

= −
𝑛𝑛𝜏𝜏 − 𝑡𝑡

2
+

1
2
𝑡𝑡𝑡𝑡[𝜎𝜎−2𝑰𝑰𝑛𝑛𝜏𝜏 𝑛𝑛 𝑛𝑛𝜏𝜏(𝑴𝑴′)−1𝑹𝑹𝑹𝑹′𝑴𝑴−1] 

Recalling 𝑹𝑹 = 𝑴𝑴′𝒀𝒀 −𝑴𝑴′𝑿𝑿𝑩𝑩 

𝑛𝑛𝜏𝜏 − 𝑡𝑡 = 𝑡𝑡𝑡𝑡[𝜎𝜎2(𝑴𝑴′)−1(𝑴𝑴′𝒀𝒀 −𝑴𝑴′𝑿𝑿𝑩𝑩)(𝑴𝑴′𝒀𝒀 −𝑴𝑴′𝑿𝑿𝑩𝑩)′𝑴𝑴−1] 

𝑛𝑛𝜏𝜏 − 𝑡𝑡 = 𝑡𝑡𝑡𝑡[𝜎𝜎2(𝒀𝒀 − 𝑿𝑿𝑩𝑩)(𝒀𝒀′ − 𝑿𝑿′𝑩𝑩′)] 

𝑛𝑛𝜏𝜏 − 𝑡𝑡 = 𝑡𝑡𝑡𝑡[𝜎𝜎2(𝒀𝒀 − 𝑿𝑿𝑩𝑩)(𝒀𝒀 − 𝑿𝑿𝑩𝑩)′] 

𝑛𝑛𝜏𝜏 − 𝑡𝑡 = 𝑡𝑡𝑡𝑡[𝜎𝜎2(𝒀𝒀 − 𝑿𝑿𝑩𝑩)′(𝒀𝒀 − 𝑿𝑿𝑩𝑩)] 

𝑛𝑛𝜏𝜏 − 𝑡𝑡 = 𝜎𝜎−2(𝒀𝒀 − 𝑿𝑿𝑩𝑩)′(𝒀𝒀 − 𝑿𝑿𝑩𝑩) 

𝜎𝜎2 =
1

𝑛𝑛𝜏𝜏 − 𝑡𝑡
(𝒀𝒀 − 𝑿𝑿𝑩𝑩)′(𝒀𝒀 − 𝑿𝑿𝑩𝑩) 

As before, 𝑿𝑿� = (𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝒀𝒀 and so 

𝜎𝜎�2 =
1

𝑛𝑛𝜏𝜏 − 𝑡𝑡
(𝒀𝒀 − 𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝒀𝒀 )′(𝒀𝒀− 𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝒀𝒀 ) 

And therefore 

𝐸𝐸(𝜎𝜎�2)  =  
𝑛𝑛𝜏𝜏 − 𝑡𝑡
𝑛𝑛𝜏𝜏 − 𝑡𝑡

𝜎𝜎2 =  𝜎𝜎2 

In this case, the REML variance estimate is unbiased and therefore solves the bias issue 

in (i) from III.C.  In general, the bias of the REML estimate 𝚺𝚺� is bounded by O(n-2) 

whereas the ML estimate is bounded by O(n-1) (Tang, 2017).  Additionally, while in this 

simple case the issue described in (iii) from III.C is avoided, 𝑿𝑿� will often remain a 

function of 𝚺𝚺� even under REML estimation. Thus, the typical estimate of 𝑣𝑣𝑎𝑎𝑡𝑡� �𝑿𝑿� � =
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�𝑿𝑿′𝚺𝚺�−1𝑿𝑿�
−1

 will underestimate the true value of 𝑣𝑣𝑎𝑎𝑡𝑡�𝑿𝑿� � and therefore lead to inflated 

type-I error rates in Wald-type F tests. 

 

E. Advantages and Disadvantages of the GLM 

The general linear model with repeated measures offers several advantages over 

the GLMM.  Most important are the ability to explicitly estimate the effect of time on an 

outcome as a continuous function, as well as the lack of demand that subjects have equal 

numbers of observations or be observed at equal time points. 

However, the added flexibility of the general linear model with repeated measures 

tends to create problems with estimation and hypothesis testing, particularly when data 

are unbalanced. Additionally, the types of covariance structures accommodated by this 

model are typically those which are functions of the order of the observations rather than 

of the time at which each observation was taken.  For instance, an AR(1) covariance 

structure specifies a constant decay of correlation regardless of when observations were 

taken.  A linear exponent autoregressive (LEAR) covariance structure mitigates this 

problem to an extent by scaling the decay rate by the amount of time between 

observations, but this structure adjusts the decay rate equally irrespective of when 

observations occur and therefore may not well accommodate data with many subjects 

observed in widely varying time periods (see Simpson et al., 2010 for details on these 

covariance structures).  Thus, while the GLM may accommodate unbalanced data, its 

ability to do so is often subject to the validity of assumptions demanded by the types of 

covariance structures modeled, which impacts power via the variance estimates. 
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IV. The Linear Mixed Model 

The linear mixed model (LMM) has much of the same advantages and disadvantages of 

the GLM.  However, for the purposes of longitudinal data analysis, the LMM is capable 

of modeling covariance structures that are continuous functions of time and therefore 

provide an added level of flexibility. 

 

A. Definition and Model Structure 

The Linear Mixed Model (LMM) is specified as follows: 

𝒀𝒀𝑖𝑖 = 𝑿𝑿𝑖𝑖𝑿𝑿 + 𝒁𝒁𝑖𝑖𝒃𝒃𝑖𝑖 + 𝒆𝒆𝑖𝑖  

The structure of this model is quite similar to that of the GLM.  Again, 𝒀𝒀𝑖𝑖 is the mi x 1 

matrix consisting of the outcome measurements for subject i, i = 1,…,n, at each of the 

j = 1,…,mi times the subject was measured, and with all 𝒀𝒀𝑖𝑖 independent. 𝑿𝑿𝑖𝑖 is the mi x r 

fixed effects design matrix, one of whose columns is the vector of timepoints at which 

subject i was measured.  𝑿𝑿 is the r x 1 vector of fixed effect parameters.  𝒆𝒆𝑖𝑖 is the mi x 1 

matrix giving the “error” or amounts by which the outcome for patient i at observation 

time j deviates from its expected value. Thus 𝒆𝒆𝑖𝑖~ 𝑁𝑁𝑚𝑚𝑖𝑖
(0,𝚺𝚺𝒆𝒆𝒊𝒊).  For the remainder of this 

document we will assume 𝚺𝚺𝒆𝒆𝒊𝒊 = 𝜎𝜎2𝐈𝐈𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑖𝑖 . 

Additionally, in this model we have two new components:  𝒁𝒁𝑖𝑖 is the mi x 1 

(random intercept only) or mi x 2 (random intercept and slope) random effects design 

matrix given as: 
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𝒁𝒁𝑖𝑖 = �

1
1
⋮
1

�     or    𝒁𝒁𝑖𝑖 = �

1 𝑡𝑡1
1 𝑡𝑡2
⋮ ⋮
1 𝑡𝑡𝑚𝑚𝑖𝑖

� 

𝒃𝒃𝑖𝑖 is the 1 x 1 or 2 x 1 vector of random effect parameters to be estimated given by 𝒃𝒃𝑖𝑖 =

(𝑏𝑏𝑖𝑖0) or by  𝒃𝒃𝑖𝑖 = (𝑏𝑏𝑖𝑖0 𝑏𝑏𝑖𝑖1)′ where 𝑏𝑏𝑖𝑖0 is the increment in intercept for subject i beyond 

that of the mean model and 𝑏𝑏𝑖𝑖1 is the increment in outcome slope for subject i beyond 

that of the mean model. For random intercept only models, 𝚺𝚺𝒃𝒃𝒊𝒊 = 𝜎𝜎112  whereas for models 

with both random intercept and random slope we will have unstructured covariance: 

𝚺𝚺𝒃𝒃𝒊𝒊 = �𝜎𝜎11
2 𝜎𝜎12

𝜎𝜎12 𝜎𝜎222
� 

For the purpose of inference on the fixed effects, the values of the random effects 

themselves are typically of little interest.  Rather, the benefit of this structure in 

longitudinal data analysis is that it allows the subject specific deviations from the 

population average to be continuous functions of time and so too the variance of these 

deviations. This model assumes a linear relationship between 𝒀𝒀𝑖𝑖 and 𝑿𝑿𝑖𝑖 and that 

𝒆𝒆𝑖𝑖 ~ 𝑁𝑁𝑛𝑛𝑖𝑖(0,𝚺𝚺𝒆𝒆𝒊𝒊) is independent of 𝒃𝒃𝑖𝑖 ~ 𝑁𝑁1 𝑜𝑜𝑖𝑖 2(0,𝚺𝚺𝒃𝒃𝒊𝒊).  Therefore, 𝒀𝒀𝑖𝑖~ 𝑁𝑁𝑛𝑛𝑖𝑖�𝑿𝑿𝑖𝑖𝑿𝑿,𝚺𝚺𝒀𝒀𝒊𝒊� 

where:  

𝚺𝚺𝒀𝒀𝒊𝒊 = 𝑣𝑣𝑎𝑎𝑡𝑡(𝒁𝒁𝑖𝑖𝒃𝒃𝑖𝑖 + 𝒆𝒆𝑖𝑖) = 𝑣𝑣𝑎𝑎𝑡𝑡(𝒁𝒁𝑖𝑖𝒃𝒃𝑖𝑖)+𝑣𝑣𝑎𝑎𝑡𝑡(𝒆𝒆𝑖𝑖) = 𝒁𝒁𝑖𝑖𝚺𝚺𝒃𝒃𝒊𝒊𝒁𝒁𝑖𝑖′ + 𝜎𝜎2𝐈𝐈𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖  

 

B. Estimation 

Laird and Ware (1982) conceptualized the LMM as a two-stage hierarchical 

model.  Specifically, they specified 

Stage 1:  𝒀𝒀𝑖𝑖 = 𝑿𝑿𝑖𝑖𝑿𝑿 + 𝒁𝒁𝑖𝑖𝒃𝒃𝑖𝑖 + 𝒆𝒆𝑖𝑖  with 𝒃𝒃𝑖𝑖 fixed and 𝒆𝒆𝑖𝑖~ 𝑁𝑁𝑛𝑛𝑖𝑖�0,𝜎𝜎2𝐈𝐈𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖� 

Stage 2:  𝒃𝒃𝑖𝑖 ~ 𝑁𝑁𝑘𝑘(0,𝚺𝚺𝒃𝒃𝒊𝒊) 
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The marginal distribution of 𝒀𝒀𝑖𝑖 can then be obtained as 

𝑓𝑓𝒀𝒀(𝒀𝒀𝑖𝑖) = � 𝑓𝑓𝒀𝒀(𝒀𝒀𝑖𝑖|𝒃𝒃𝑖𝑖)𝑓𝑓𝒃𝒃(𝒃𝒃𝑖𝑖)
∞

−∞
 𝑑𝑑𝒃𝒃𝑖𝑖 

For purposes of parameter estimation however they suggest a Bayesian approach treating 

both 𝒃𝒃𝑖𝑖 and 𝑿𝑿 as random variables.  Specifically, they suggest for priors  𝑿𝑿~ 𝑁𝑁𝑖𝑖(0,𝜞𝜞) 

with 𝜞𝜞 infinitely large and 𝒃𝒃𝑖𝑖 ~ 𝑁𝑁𝑘𝑘(0,𝚺𝚺𝒃𝒃𝒊𝒊), giving the marginal distribution of 𝒀𝒀𝑖𝑖: 

𝑓𝑓𝒀𝒀(𝒀𝒀𝑖𝑖) = � � 𝑓𝑓𝒀𝒀(𝒀𝒀𝑖𝑖|𝑿𝑿,𝒃𝒃𝑖𝑖)𝑓𝑓𝑿𝑿(𝑿𝑿)𝑓𝑓𝒃𝒃(𝒃𝒃𝑖𝑖)
∞

−∞
 𝑑𝑑𝑿𝑿𝑑𝑑𝒃𝒃𝑖𝑖

∞

−∞
 

They note that maximizing 𝑓𝑓𝒀𝒀(𝒀𝒀) with respect to variance components of 𝚺𝚺𝒀𝒀 returns the 

REML estimates of 𝚺𝚺𝒀𝒀𝒊𝒊 obtained for 𝒀𝒀𝑖𝑖~ 𝑁𝑁𝑚𝑚𝑖𝑖�𝑿𝑿𝑖𝑖𝑿𝑿,𝚺𝚺𝒀𝒀𝒊𝒊�. Additionally, the Empirical 

Bayes Estimate of 𝑿𝑿 is the expected value of the posterior distribution of 𝑿𝑿 conditioned 

on 𝚺𝚺𝒀𝒀𝒊𝒊 = 𝚺𝚺�𝒀𝒀𝒊𝒊 and is equivalent to the REML estimate of 𝑿𝑿 obtained when assuming 𝑿𝑿 

fixed and 𝒀𝒀𝑖𝑖~ 𝑁𝑁𝑚𝑚𝑖𝑖�𝑿𝑿𝑖𝑖𝑿𝑿,𝚺𝚺𝒀𝒀𝒊𝒊�.  The prediction (estimate) of 𝒃𝒃𝑖𝑖 is often of little interest but 

can likewise be obtained as the expected value of the posterior distribution of 𝒃𝒃𝑖𝑖. 

The result of this equivalence between Empirical Bayes and REML estimation 

allows us to utilize the likelihood-based estimation techniques established in (III.D).  As 

such, estimation for the LMM is actually quite similar to that of the GLM.  

Unfortunately, the frequent lack of closed form solution and bias in the estimate of the 

variance of 𝑿𝑿� even under REML estimation means the Wald test statistics still lack 

known distributions in many instances. 

 

C. The Kenward-Roger Approximation 

The Kenward-Roger approximation (Kenward and Roger, 1997) attempts to 

address both the bias in the REML estimator of the variance of 𝑿𝑿� and the frequent lack of 
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known distribution of the Wald test statistic for testing H0: 𝑪𝑪′𝑿𝑿 = 𝑪𝑪′𝑿𝑿𝐻𝐻 vs Ha: 𝑪𝑪′𝑿𝑿 ≠

𝑪𝑪′𝑿𝑿𝐻𝐻 in linear mixed models (and GLM), which we can express as: 

                               W =  
1

𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟(𝑪𝑪) �𝑿𝑿
� − 𝑿𝑿𝐻𝐻�

′
𝑪𝑪�𝑪𝑪′𝛟𝛟�𝑪𝑪�

−𝟏𝟏
𝑪𝑪′�𝑿𝑿� − 𝑿𝑿𝐻𝐻�                    (1.1) 

 As such, there are essentially two steps to the approximation. 

 

(i) Step 1: Modifying the REML estimate of the variance of �̂�𝛽    The variance of 𝑿𝑿� is 

given as 𝛟𝛟� = �𝑿𝑿′𝚺𝚺�𝒀𝒀−𝟏𝟏𝑿𝑿′�
−1

 and frequently underestimates the true variance of 𝑿𝑿� for two 

previously mentioned reasons: 

(1) 𝛟𝛟�  hierarchically depends on the random variable of 𝜮𝜮�𝒀𝒀 

(2) The REML estimate 𝜮𝜮�𝒀𝒀 is often biased to some extent, though less so than the 

ML estimate 

Issue (1) had previously been tackled by Kackar and Harville, (1984) by expressing 

𝑣𝑣𝑎𝑎𝑡𝑡�𝑿𝑿�� = 𝛟𝛟 + 𝚲𝚲 where 𝛟𝛟 = �𝑿𝑿′𝚺𝚺𝒀𝒀−𝟏𝟏𝑿𝑿′�
−1

 and 𝚲𝚲 = 𝑣𝑣𝑎𝑎𝑡𝑡 �𝑿𝑿��𝚺𝚺�𝒀𝒀� − 𝑿𝑿�(𝚺𝚺𝒀𝒀)�.  They then 

used a Taylor expansion to obtain an approximate value for 𝚲𝚲.  Kenward and Roger 

similarly used a Taylor expansion of  𝛟𝛟�  to obtain its bias as a function of the REML 

estimate 𝚺𝚺�𝒀𝒀.  Combining these two results, Kenward and Roger obtained the adjusted 

estimate of the variance of 𝑿𝑿� given as:  𝛟𝛟�A = 𝛟𝛟� + 2𝚲𝚲�. The calculation of 𝚲𝚲� is provided 

in Appendix II part A, but for now it suffices to simply note an adjusted estimate is made 

to the REML based estimate of 𝑣𝑣𝑎𝑎𝑡𝑡�𝑿𝑿�� which reduces the bias in the estimate from 

O(𝑛𝑛−2) to O�𝑛𝑛−5/2� (Alnosaier, 2007). 
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(ii) Step 2: Approximating the distribution of the Wald test statistic    The Kenward-

Roger method now aims to provide an approximation to the distribution of the adjusted 

Wald type F statistic: 

𝑊𝑊 =  
1

𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟(𝑪𝑪)
�𝑿𝑿� − 𝑿𝑿𝐻𝐻�

′
𝑪𝑪�𝑪𝑪′𝛟𝛟�A𝑪𝑪�

−𝟏𝟏
𝑪𝑪′�𝑿𝑿� − 𝑿𝑿𝐻𝐻� 

To outline the approach, they first use a second order Taylor Expansion to obtain 

approximations to the mean and variance of the F statistic.  However, there is an error 

term in any expansion that will result in inaccuracies particularly when the sample size is 

small.  Consequently, they later modify the results to match the mean and variance 

known in certain exact cases.  For the initial step of the Taylor Expansion, they 

approximate the moments which may be given by the following well-known theorem: 

Theorem 1 (Mean and Variance of Normal Quadratic Form): 

Let 𝑌𝑌 = 𝑿𝑿′𝑨𝑨𝑿𝑿     with     𝑿𝑿~𝑵𝑵𝒍𝒍(𝝁𝝁,𝚺𝚺)    then, 

𝐄𝐄(𝑌𝑌) = 𝑡𝑡𝑡𝑡(𝑨𝑨𝚺𝚺) + 𝝁𝝁′𝑨𝑨𝝁𝝁 

𝐕𝐕(𝑌𝑌) = 2𝑡𝑡𝑡𝑡[(𝑨𝑨𝚺𝚺)2] + 4𝝁𝝁′𝑨𝑨𝚺𝚺𝑨𝑨𝝁𝝁 

With the condition that X must be a column vector and Y a scalar 

In terms of Theorem 1 we have 1
𝑙𝑙

F = 𝑿𝑿′𝑨𝑨𝑿𝑿     where  𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟(𝑪𝑪) = 𝑙𝑙   and 

𝑿𝑿 = 𝑪𝑪′�𝑿𝑿� − 𝑿𝑿𝐻𝐻�  𝝁𝝁 = 𝑪𝑪′(𝑿𝑿 − 𝑿𝑿𝐻𝐻)  

𝑨𝑨 = �𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏

 

𝚺𝚺 = 𝐯𝐯𝒂𝒂𝒕𝒕�𝑪𝑪′𝑿𝑿�� = 𝑪𝑪′𝐯𝐯𝒂𝒂𝒕𝒕�𝑿𝑿��𝑪𝑪 = 𝑪𝑪′(𝛟𝛟 + 𝚲𝚲)𝑪𝑪    

Therefore 

E(𝑊𝑊) = 𝑡𝑡𝑡𝑡 ��𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏(𝑪𝑪′(𝛟𝛟 + 𝚲𝚲)𝑪𝑪)� + (𝑿𝑿− 𝑿𝑿𝐻𝐻)′𝑪𝑪�𝑪𝑪′𝛟𝛟�A𝑪𝑪�

−𝟏𝟏
𝑪𝑪′(𝑿𝑿− 𝑿𝑿𝐻𝐻) 
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V(𝑊𝑊) = 2𝑡𝑡𝑡𝑡 ���𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏(𝑪𝑪′(𝛟𝛟 + 𝚲𝚲)𝑪𝑪)�

2
�

+ 4(𝑿𝑿 − 𝑿𝑿𝐻𝐻)′𝑪𝑪�𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏(𝑪𝑪′(𝛟𝛟+ 𝚲𝚲)𝑪𝑪)�𝑪𝑪′𝛟𝛟�A𝑪𝑪�

−𝟏𝟏
𝑪𝑪′(𝑿𝑿− 𝑿𝑿𝐻𝐻) 

Unfortunately, each of these terms depends on 𝛟𝛟�  and therefore on 𝚺𝚺�, and so we must use 

the hierarchical identities: 

E(𝑊𝑊) = E �E�𝑊𝑊|𝚺𝚺��� 

V(𝑊𝑊) = E �V�𝑊𝑊|𝚺𝚺���+ V �E�𝑊𝑊|𝚺𝚺���  

Kenward and Roger only approximate these moments under the null hypothesis. So, 

                 E(W) = E �E�𝐹𝐹|𝚺𝚺���

= E �𝑡𝑡𝑡𝑡 ��𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏(𝑪𝑪′(𝛟𝛟 + 𝚲𝚲)𝑪𝑪)��

+ E �(𝑿𝑿− 𝑿𝑿𝐻𝐻)′𝑪𝑪�𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏
𝑪𝑪′(𝑿𝑿− 𝑿𝑿𝐻𝐻)� 

= E �𝑡𝑡𝑡𝑡 ��𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏(𝑪𝑪′(𝛟𝛟 + 𝚲𝚲)𝑪𝑪)��                                                        

Taking the expectation of the Taylor expansion of 𝑡𝑡𝑡𝑡 ��𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏(𝑪𝑪′(𝛟𝛟+ 𝚲𝚲)𝑪𝑪)� around 

σ they arrive at  

E(𝑊𝑊) = 1 +
A2

𝑙𝑙
+ 𝑂𝑂 �𝑛𝑛−

3
2� 

where 𝑙𝑙 =rank(C). A similar process for the variance leads to  

V(𝑊𝑊) =
2
𝑙𝑙
�1 +

1
2𝑙𝑙

(A1 + A2)� +  𝑂𝑂 �𝑛𝑛−
3
2� 

Where: 

A1 = ��𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝛉𝛉𝛟𝛟𝐏𝐏𝑖𝑖𝛟𝛟)
𝑖𝑖

𝑖𝑖=1

𝑖𝑖

𝑖𝑖=1

𝑡𝑡𝑡𝑡�𝛉𝛉𝛟𝛟𝐏𝐏𝑖𝑖𝛟𝛟� 
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A2 = ��𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡�𝛉𝛉𝛟𝛟𝐏𝐏𝑖𝑖𝛟𝛟𝛉𝛉𝛟𝛟𝐏𝐏𝑖𝑖𝛟𝛟�
𝑖𝑖

𝑖𝑖=1

𝑖𝑖

𝑖𝑖=1

 

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑙𝑙𝑣𝑣�𝜎𝜎�𝑖𝑖 ,𝜎𝜎�𝑖𝑖� = 𝑖𝑖𝑗𝑗𝑡𝑡ℎ entry of the inverse of the expected information matrix 

𝛉𝛉 = 𝐂𝐂(𝐂𝐂′𝛟𝛟𝐂𝐂)−1𝐂𝐂′ 

𝐏𝐏𝑖𝑖 = −𝐗𝐗′𝚺𝚺−𝟏𝟏
𝜕𝜕𝚺𝚺
𝜕𝜕𝜎𝜎𝑖𝑖

𝚺𝚺−𝟏𝟏𝐗𝐗 

Lastly, they solve for values of 𝜆𝜆 and m such that 𝜆𝜆F = F∗~F(𝑙𝑙,𝑚𝑚) which they do 

by matching the obtained quantities to the moments of the F distribution.  The solution 

obtained does not match the correct values in certain known cases (ANOVA and 

Hotelling T2 tests), which is unsurprising because the Taylor expansion has an error term 

which is dropped from the mean and variance expressions.  To accommodate this, they 

modified their solution to the mean and variance expressions so that the exact value is 

returned for these known cases.  The derivations of these solutions are provided in 

rigorous detail in Alnosaier (2007). 

We can now show an equivalent example to that in previous section I.D, but using 

the LMM with random intercept and slope and using the Kenward-Roger test statistic for 

the group by time effect. Now, the contrast matrix for the test of the hypothesis H0: 

𝐂𝐂′𝑿𝑿 =0 will be 

𝑪𝑪 = [0  0  0  1]′ 

And for subject i the design matrix will be: 

𝑿𝑿𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡
1 𝑙𝑙𝑖𝑖 0 𝑙𝑙𝑖𝑖 ∗ 0
1 𝑙𝑙𝑖𝑖 3 𝑙𝑙𝑖𝑖 ∗ 3
1 𝑙𝑙𝑖𝑖 6 𝑙𝑙𝑖𝑖 ∗ 6
1 𝑙𝑙𝑖𝑖 9 𝑙𝑙𝑖𝑖 ∗ 9
1 𝑙𝑙𝑖𝑖 12 𝑙𝑙𝑖𝑖 ∗ 12⎦

⎥
⎥
⎥
⎤

 

where again 𝑙𝑙𝑖𝑖 = 0 if subject i belongs to control group and 𝑙𝑙𝑖𝑖 = 1 if subject i belongs to 

the treatment group. Likewise, we’ll have within subjects covariance matrix: 
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𝚺𝚺𝒃𝒃𝒊𝒊 = �𝜎𝜎00
2 𝜎𝜎01

𝜎𝜎01 𝜎𝜎112
� 

with 𝜎𝜎002  being the variance of random intercept, 𝜎𝜎112  that of random slope, and 𝜎𝜎01 the 

covariance between random intercept and random slope. 

And so the variance of 𝒀𝒀𝑖𝑖 will be 𝒁𝒁𝑖𝑖𝚺𝚺𝒃𝒃𝒊𝒊𝒁𝒁𝑖𝑖′ + 𝜎𝜎2𝐈𝐈5𝑛𝑛5 with 

𝒁𝒁𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡
1 0
1 3
1 6
1 9
1 12⎦

⎥
⎥
⎥
⎤
 

Now, using the Kenward-Roger F statistic, F𝐾𝐾𝑅𝑅, we will have F𝐾𝐾𝑅𝑅 = 18 ∗

𝑡𝑡𝑡𝑡[𝑯𝑯𝑬𝑬−1] from I.D and will be tested using the α level rejection region of an F1,18 

distribution, which we’ve seen to be the exact value for the test of the group by time 

interaction.  Thus, while in general the Wald test statistic W for the LMM does not have 

an easily calculable distribution, the Kenward-Roger adjustment has caused the exact 

value for this hypothesis known from the GLMM to be returned. 

 

V. Existing Power Calculation Methods 

As described, the KR approach only approximates the distribution of the Wald 

statistic under the null hypothesis, which means calculating power for this adjusted 

statistic is not straightforward. Existing power calculations for the KR adjusted Wald test 

can be described as belonging to at least one of three approaches:  equivalent, parallel, or 

simulated.  Equivalent approaches calculate power for a test statistic (such as the HLT 

statistic in the GLMM) that is known to be equivalent to the KR statistic in certain cases.  

Parallel approaches calculate power for some other LMM Wald statistic approximation, 

with the idea being that power for the KR statistic should be similar.  Lastly, simulated 
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approaches provide an estimate of power by simulating the specified trial a number of 

times and observing the proportion of times the null hypothesis is rejected. 

One straightforward exact approach is to use the equivalence between the HLT 

statistic in the GLMM and KR statistic in the LMM. A 2018 article by Chi et al. provides 

a detailed set of criteria under which the LMM be recast as a GLMM and the KR statistic 

obtained via REML estimation will be equivalent to the HLT trace test statistic2.  The 

resulting implications are powerful and suggest the tests of hypotheses of any individual 

fixed effects in the linear mixed model with balanced data (balanced again meaning equal 

observation numbers and times for all subjects with no time-varying covariates) has an 

exact distribution for which power can easily be calculated by using existing multivariate 

techniques.  When data are unbalanced or hypotheses of interest involve more 

complicated contrasts, such as those involving more than two groups or those involving 

multiple effects such as omnibus ANOVA type tests, the HLT and KR statistics no longer 

must be equivalent and the distribution of the HLT must itself be approximated.  

However, using existing power calculations for the HLT in such instances still provides 

an intuitive parallel approach to calculating power for the KR adjusted Wald test. 

An alternative parallel calculation was developed by Kreidler (2014). While the 

KR method matches the values of the first two moments of 𝑊𝑊Aobtained via Taylor 

expansion up to those of an F distribution, the method described by Kriedler takes the 

two step approach of of  

(1) approximating �𝑪𝑪′�𝐗𝐗′𝚺𝚺�−1𝐗𝐗′�
−1
𝑪𝑪�

−1
 as a Wishart distribution and 

  
(2) making the assumption that 𝜮𝜮� and 𝑿𝑿� are independent, so that  
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      𝑿𝑿�′𝑪𝑪 �𝑪𝑪′�𝐗𝐗′𝚺𝚺�−1𝐗𝐗�
−1
𝑪𝑪�

−1
𝑪𝑪′𝑿𝑿�  has a known correspondence with an F 

distribution for  
      testing H0: 𝐶𝐶′𝑿𝑿=0 

 
Specifically, in step 1, 𝚺𝚺� is the REML estimate obtained after recasting the LMM as the 

GLMM in section A.I. For balanced mixed models, a single estimate of 𝚺𝚺� is obtained as 

shown in A.II and so for the LMM: 𝑪𝑪′�𝐗𝐗′𝚺𝚺�−1𝐗𝐗�
−1
𝑪𝑪~𝑊𝑊𝑎𝑎 �𝑁𝑁 − 𝑞𝑞,𝑪𝑪′�𝐗𝐗′𝚺𝚺�−1𝐗𝐗�

−1
𝑪𝑪� (the 

proof being similar to that of E in the multivariate model).  However, when data are 

unbalanced, as can occur with missing or mistimed data, the LMM is recast as a 

collection of m multivariate linear models grouped by observational pattern. For each 

multivariate model d=1,…,m, 𝚺𝚺�𝑑𝑑 is estimated.  Then for each component of the LMM,  

𝑿𝑿𝑑𝑑′ 𝚺𝚺�𝑑𝑑−1𝐗𝐗𝑑𝑑 is inverse Wishart distributed, but for the overall LMM,  𝐗𝐗′𝚺𝚺�−𝟏𝟏𝐗𝐗 =

𝑿𝑿1′ 𝚺𝚺�1−1𝐗𝐗𝟏𝟏 + ⋯+ 𝑿𝑿𝑚𝑚′ 𝚺𝚺�𝑚𝑚−1𝐗𝐗𝑚𝑚 has an unknown distribution. 

 The distribution of 𝐗𝐗′𝚺𝚺�−𝟏𝟏𝐗𝐗 = 𝑿𝑿1′ 𝚺𝚺�1−1𝐗𝐗𝟏𝟏 + ⋯+ 𝑿𝑿𝑚𝑚′ 𝚺𝚺�𝑚𝑚−1𝐗𝐗𝑚𝑚 is instead 

approximated by matching the moments of the sum to those of an inverse Wishart 

distribution.  The Wishart and inverse Wishart distributions have a variance for each 

element, but not for the matrix as a whole.  So, the expected value of the sum is matched 

to the expected value of an inverse Wishart matrix, and the variance of the trace of the 

sum is matched to the variance of the trace of an inverse Wishart matrix. The degrees of 

freedom 𝑁𝑁∗ and covariance matrix 𝚺𝚺�∗−1 are solved for so that the distribution of 𝐗𝐗′𝚺𝚺�−𝟏𝟏𝐗𝐗 is 

then approximated as a 𝑊𝑊𝑞𝑞
−1(𝑁𝑁∗,𝚺𝚺∗−1) distribution.  Consequently 

�𝑪𝑪′�𝐗𝐗′𝚺𝚺�−1𝐗𝐗�
−1
𝑪𝑪�

−1
~ 𝑊𝑊𝑎𝑎

−1(𝑁𝑁∗,𝑪𝑪′(𝐗𝐗′𝚺𝚺∗−1𝐗𝐗)−1𝑪𝑪). 

 In step 2, known relationships between an F distribution and quadratic forms of 

𝐗𝐗′𝐀𝐀𝐗𝐗 with 𝑿𝑿~𝑁𝑁𝜏𝜏(𝝁𝝁,𝜮𝜮𝑛𝑛) and 𝐀𝐀~ 𝑊𝑊𝜏𝜏
−1(𝑁𝑁,𝜮𝜮𝐴𝐴) are used to express the Wald statistic w for 
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the linear mixed model as a scaled F distributed random variable. Specifically, the 

assumption is made that 𝑿𝑿� and 𝚺𝚺� are independent—an assumption suitable for 

multivariate methods, although which may not hold for the mixed model.  So, 

𝑤𝑤0~𝜆𝜆0∗𝐹𝐹(𝑛𝑛𝑢𝑢,𝑁𝑁∗ − 𝑡𝑡 + 𝑎𝑎 − 2) and 𝑤𝑤𝑎𝑎~𝜆𝜆𝑎𝑎∗ 𝐹𝐹(𝑛𝑛𝑢𝑢,𝑁𝑁∗ − 𝑡𝑡 + 𝑎𝑎 − 2, 𝛿𝛿𝑢𝑢) where 𝑤𝑤0, 𝑤𝑤𝑎𝑎 and 

𝜆𝜆0∗ , 𝜆𝜆𝑎𝑎∗  represent Wald statistics and scale factors under the null and alternative 

hypotheses.  Lastly E(𝑤𝑤0), E(𝑤𝑤𝑎𝑎), V(𝑤𝑤𝑎𝑎) are obtained and matched to a statistic of the 

form given by Kenward and Roger, namely such that 𝜆𝜆𝑤𝑤~F(𝑙𝑙, 𝜈𝜈,𝜔𝜔). 

 Power under the alternative that C′𝑿𝑿≠ 𝑿𝑿0 can then be calculated by defining 

values of 𝛼𝛼,𝑿𝑿,𝑿𝑿0,𝑪𝑪, and 𝑿𝑿 to obtain the distribution of 𝜆𝜆𝑤𝑤 under the null hypothesis that 

C′𝑿𝑿= 𝑿𝑿0. The value of 𝑓𝑓𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡 = F−1(1 − 𝛼𝛼, 𝑙𝑙, 𝜈𝜈) can be obtained and the power then 

calculated as 1 − F(𝑓𝑓𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡, 𝑙𝑙, 𝜈𝜈,𝜔𝜔).  This method has the advantage of allowing flexibility 

in anticipated observational pattern, such as allowing for missingness.  Moreover, it was 

found to perform within roughly two-decimal places of accuracy in simulations of a 

longitudinal analysis with moderate sample sizes.  However, the assumption employed by 

this methd that 𝚺𝚺� and 𝑿𝑿� are assumed to be independent is frequently violated in the mixed 

model. As such, the variability of 𝑿𝑿� may be underestimated by this approach in cases of 

unbalanced data.  The KR approach instead uses an adjusted estimator of (𝐗𝐗′𝚺𝚺−1𝐗𝐗)−1, 

and so it would also be desirable to have a power calculation for the KR test statistic that 

accommodates this adjustment.  In the following chapter, we will introduce a power 

calculation that has the same advantages as that introduced by Kriedler, but which 

addresses some of the limitations of the method for calculating power for the Kenward-

Roger test statistic. 
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Another parallel method is provided by Tang (2017). In this approach, a closed-

form estimate, 𝑽𝑽�, is found for the KR derived expression of 𝑣𝑣𝑎𝑎𝑡𝑡�𝑿𝑿�� under REML 

estimation and monotone missingness.  The power to calculate the test of treatment effect 

at last visit is obtained as 1 − 𝑃𝑃 �𝑡𝑡 ≤ 𝑡𝑡𝑚𝑚,𝛼𝛼2
� where 𝑡𝑡 = 𝛽𝛽𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑛𝑛𝑡𝑡

𝑉𝑉
 follows a noncentral t 

distribution with noncentrality parameter 𝜔𝜔 = 𝛽𝛽𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑛𝑛𝑡𝑡
𝑉𝑉

 and degrees of freedom m 

obtained approximately as the fraction of observed information retained at the study visit.  

However, this methodology has only been established for comparisons between two 

groups at a particular timepoint.  Likewise, the method for determining degrees of 

freedom in the t-distribution used for power calculations differs from the KR approach. 

Perhaps the simplest of such parallel approaches would be to calculate power for 

the traditional form of the Wald test statistic (equation 1.1) using the residual degrees of 

freedom. Prior to the development of the KR adjusted statistic, Helms (1991) advocated 

for such an approach to approximate the distribution of the Wald test statistic and thereby 

calculate power for unbalanced study designs.  Specifically, it was argued the Wald test 

statistic approximately followed an F distribution with numerator degrees of freedom 

established in the usual way, denominator degrees of freedom equal to N – rank(X||Z), 

with N = nτ (i.e. the total number of observations) and noncentrality parameter equal to 

�𝑿𝑿� − 𝑿𝑿𝐻𝐻�
′
𝑪𝑪�𝑪𝑪′𝛟𝛟�𝑪𝑪�

−𝟏𝟏
𝑪𝑪′�𝑿𝑿� − 𝑿𝑿𝐻𝐻�.  This approach was likewise used by Verbeke and 

Lessafre (1999) in calculating power for longitudinal mixed models with monotonically 

missing data, although they specifically noted this method had not been validated for the 

KR adjusted Wald test.  Nevertheless, the simplicity of this approach is appealing and 

provides a straightforward way to plan for missing observations in power calculations, 
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and it would be useful to know if such an approach could adequately calculate power for 

the KR adjusted Wald test. 

The final type of power calculation is to simply estimate power based on a 

number of simulated trials.  Unfortunately, this approach can be prohibitively time 

consuming in a number of ways.  First, code must be written to perform the simulation, 

and doing so for LMMs can be complicated and require several days of writing and 

validation.  While some existing software such as Power and Sample Size Software 

(PASS, 2015) provides a pre-existing simulated power option for the KR test, we do not 

find any pre-existing validated packages that easily accommodate for anticipated dropout, 

missing observations, or other sources of unbalanced data.  Regardless, the biggest 

limitation to this approach is that such simulations can take hours to run.  While this issue 

would not be so problematic if only power were to be calculated, the ultimate question on 

the mind of many researchers is not power but rather sample size.  As a result, calculating 

sample size would require iteratively performing many simulations, each of which could 

potentially take many hours, until the correct sample size is obtained.  Therefore, a fast 

method of calculating power would still be preferable to the simulation-based approach.  

It should, however, be noted that in our opinion a small simulation study to accompany 

any power calculation approaches may still be beneficial in providing insight into 

convergence of estimates and what types of covariance structures may be feasible to 

model. 
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CHAPTER 2 
A NEW POWER CALCULATION METHOD FOR THE KENWARD-ROGER TEST 

STATISTIC 
 

I. Introduction 

To the author’s knowledge, no method currently exists that calculates power for 

the Kenward-Roger test statistic directly for tests of linear functions of time.  Existing 

power calculations are identical to that of the KR statistic in certain cases, but they are 

technically calculating power for different test statistics which, while hopefully similar, 

may not always align with the KR statistic.  In this chapter, we introduce a power method 

with the KR statistic as its target.  Specifically, the theory and techniques used for the KR 

statistic described in Chapter I section IV.C is applied to obtain an approximate 

distribution for the Wald test statistic in the LMM under the alternative which can be 

used to calculate power. 

Unfortunately, an identical approach to that introduced by Kenward and Roger for 

the null hypothesis of the Wald test is not tractable due to the number of terms which 

must be calculated and then solved for.  Recalling the Wald test statistic for the LMM is 

given as 

𝑊𝑊 =  
1

𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟(𝑪𝑪)
�𝑿𝑿� − 𝑿𝑿𝐻𝐻�

′
𝑪𝑪�𝑪𝑪′𝛟𝛟�A𝑪𝑪�

−𝟏𝟏
𝑪𝑪′�𝑿𝑿� − 𝑿𝑿𝐻𝐻� 

then, if the KR approach is to be replicated under the alternative hypotheses, we must 

obtain the first two moments of W: 
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                                      E(𝑊𝑊) = E �E�𝑊𝑊|𝚺𝚺��� 

                                      V(𝑊𝑊) = E �V�𝑊𝑊|𝚺𝚺���+ V �E�𝑊𝑊|𝚺𝚺��� , 

with 

E �E�𝑊𝑊|𝚺𝚺��� = E �𝑡𝑡𝑡𝑡 ��𝑪𝑪′𝛟𝛟�𝑪𝑪�
−𝟏𝟏(𝑪𝑪′𝛟𝛟𝑪𝑪)��+ E �(𝑿𝑿− 𝑿𝑿𝐻𝐻)′𝑪𝑪�𝑪𝑪′𝛟𝛟�A𝑪𝑪�

−𝟏𝟏
𝑪𝑪′(𝑿𝑿− 𝑿𝑿𝐻𝐻)�, 

E �V�𝑊𝑊|𝚺𝚺��� = E�2𝑡𝑡𝑡𝑡 ���𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏(𝑪𝑪′𝛟𝛟𝑪𝑪)�

2
��

+ E �4(𝑿𝑿− 𝑿𝑿𝐻𝐻)′𝑪𝑪�𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏(𝑪𝑪′𝛟𝛟𝑪𝑪)�𝑪𝑪′𝛟𝛟�A𝑪𝑪�

−𝟏𝟏
𝑪𝑪′(𝑿𝑿− 𝑿𝑿𝐻𝐻)� 

V �E�𝑊𝑊|𝚺𝚺��� = 𝑉𝑉�𝛹𝛹�� + 𝑉𝑉(𝜔𝜔�) + 2𝐶𝐶𝑙𝑙𝑣𝑣�𝛹𝛹� ,𝜔𝜔��  

                             𝛹𝛹� = 𝑡𝑡𝑡𝑡 ��𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏(𝑪𝑪′𝛟𝛟𝑪𝑪)� ,   𝜔𝜔� = (𝑿𝑿− 𝑿𝑿𝐻𝐻)′𝛉𝛉�A(𝑿𝑿− 𝑿𝑿𝐻𝐻). 

All of these terms would need to be calculated via Taylor expansion, and the results 

would need to be modified to match the moments of an F distribution so that the exact 

values are returned in the known cases tracked by the KR statistic (HLT and ANOVA F-

tests).  Instead, we make a simplifying assumption to improve tractability of obtaining an 

approximate distribution under the alternative hypothesis. 

Specifically, we are unaware of any exact scaled F-distributed test statistics for 

which null and alternative hypotheses have different degrees of freedom or scale factor.  

We therefore make the assumption that the KR test statistic has identical degrees of 

freedom m and scale factor λ under both null and alternative hypotheses.  Under this 

assumption, we can first calculate m and λ using the expected data pattern and population 

parameters (instead of their estimated values) with the existing method provided by 

Kenward and Roger.  We then only need to calculate E(𝑊𝑊) under the alternative 
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hypothesis, which is rather straightforward.  Doing so, we can easily solve for the 

noncentrality parameter of the desired F distribution. 

 

 

II. Derivation of Methods 

A. Method 1: Replicating the KR Adjustment for the Alternative Hypothesis 

We must first calculate E(𝑊𝑊). We only need to calculate the value of 

E �(𝑿𝑿− 𝑿𝑿𝐻𝐻)′𝑪𝑪�𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏
𝑪𝑪′(𝑿𝑿− 𝑿𝑿𝐻𝐻)�, as from Alnosaier (2007) we have: 

E�𝑡𝑡𝑡𝑡 ��𝑪𝑪′𝛟𝛟�𝑪𝑪�
−𝟏𝟏

�𝑪𝑪′𝛟𝛟𝑪𝑪��� = 𝑙𝑙+ A2 +𝑂𝑂�𝑛𝑛−
3
2� 

First, note that for  

 H0 :  𝐶𝐶′(𝑿𝑿− 𝑿𝑿𝐻𝐻) = 𝐶𝐶′(𝑿𝑿− 𝑿𝑿) = 0 

 Ha : 𝐶𝐶′(𝑿𝑿− 𝑿𝑿𝐻𝐻) = 𝐶𝐶′(𝑿𝑿− 𝟎𝟎) = 𝑿𝑿 , at least for the purpose of calculating power. 

Therefore, E �(𝑿𝑿− 𝑿𝑿𝐻𝐻)′𝑪𝑪�𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏
𝑪𝑪′(𝑿𝑿− 𝑿𝑿𝐻𝐻)� = E �𝑿𝑿′𝑪𝑪�𝑪𝑪′𝛟𝛟�A𝑪𝑪�

−𝟏𝟏
𝑪𝑪′𝑿𝑿�. After 

calculating this value via Taylor Expansion as in Appendix II part B. we then obtain: 

𝐸𝐸(W) =
1
𝑙𝑙

(𝑙𝑙 + A2 + 𝐴𝐴3 + 𝑿𝑿′𝛉𝛉𝑿𝑿 − 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿) + 𝑂𝑂(𝑛𝑛−1) 

Under the assumption that scale factor and degrees of freedom are the same under null 

and alternative hypotheses, we now only must solve for the noncentrality parameter, 𝜔𝜔, 

to obtain the approximate distribution of the Wald statistic under the alternative 

hypothesis.  Due to the remainder term in the Taylor expansion, the solution will not 

return the correct value in exact cases, and so as in the Kenward-Roger method for the 

null hypothesis, we will adjust the expression for E(W) to return the correct expected 
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value under the alternative hypothesis and then use this new value to obtain the 

noncentrality parameter for the KR test statistic. First, we will let: 

E(W) = E0(W) + E𝑎𝑎(W) 

where 

E0(W) =
1
𝑙𝑙

(𝑙𝑙 + A2)      ,      E𝑎𝑎(W) =
1
𝑙𝑙

(𝑿𝑿′𝛉𝛉𝑿𝑿 + 𝐴𝐴3 − 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿)        

Now, if F = λW, then E(F) = λE(W) = λ�E0(W) + E𝑎𝑎(W)�.  Recall that for the 

noncentral F distribution with noncentrality parameter 𝜔𝜔, numerator degrees of freedom 

𝑙𝑙, and denominator degrees of freedom m, that 

E(F) =
𝑚𝑚(𝑙𝑙 + 𝜔𝜔)
𝑙𝑙(𝑚𝑚− 2)  

We can then solve for the noncentrality parameter 𝜔𝜔 as: 

E(F) = λE(W) 

𝑚𝑚(𝑙𝑙 + 𝜔𝜔)
𝑙𝑙(𝑚𝑚− 2) = λ�E0(W) + E𝑎𝑎(W)� 

Additionally, knowledge about the value of 𝜔𝜔 in various tests suggest 𝜔𝜔 may be 

broken into various components: an effect size, δ, and a scale factor, δ, such that 𝜔𝜔 = 𝛾𝛾𝛿𝛿.  

For instance, in the test of linear trend given in the example from Chapter 1 section II.D, 

the effect size may here be given as δ = 𝑿𝑿′𝛉𝛉𝑿𝑿 and the scale factor may be given as γ = 1 

so that 𝜔𝜔 = 1(𝑿𝑿′𝛉𝛉𝑿𝑿) = 𝑿𝑿′𝛉𝛉𝑿𝑿. Alternatively, in the two sample Hotelling model briefly 

mentioned in Chapter 1 section II.C.iv, the effect size is again given as δ = 𝑿𝑿′𝛉𝛉𝑿𝑿, but the 

scale factor is given as γ = 𝑛𝑛1𝑛𝑛2
𝑛𝑛1+𝑛𝑛2

 so that 𝜔𝜔 = 𝑛𝑛1𝑛𝑛2
𝑛𝑛1+𝑛𝑛2

𝑿𝑿′𝛉𝛉𝑿𝑿. So: 

                      
𝑚𝑚(𝑙𝑙 + 𝜔𝜔)
𝑙𝑙(𝑚𝑚− 2) =

𝑚𝑚(𝑙𝑙 + γν)
𝑙𝑙(𝑚𝑚 − 2) =  λ�E0(W) + E𝑎𝑎(W)� 



37 
 

                                     𝜔𝜔 = 𝛾𝛾𝛿𝛿 = 𝑙𝑙λ �
𝑚𝑚 − 2
𝑚𝑚

��E0(W) + E𝑎𝑎(W)� − 𝑙𝑙 

Noting that λ = 𝑚𝑚
E0(W)(𝑚𝑚−2) we simplify such that 

𝜔𝜔 = 𝛾𝛾𝛿𝛿 = 𝑙𝑙
E𝑎𝑎(W)
E0(W) 

In exact cases, E0(W) should equal 𝑚𝑚
𝑚𝑚−2

 with 𝑚𝑚 being the correct denominator degrees of 

freedom for the Wald F statistic.  However, this does not end up being the case, and so 

the KR method instead uses E0∗(W) = �1 − A2
𝑙𝑙
�
−1

to solve for degrees of freedom and 

scale parameter under the null hypothesis so that degrees of freedom and scale factor are 

correct. Under the alternative hypothesis in exact cases: 

E𝑎𝑎(W) =
1
𝑙𝑙
�
𝑚𝑚 + 2
𝑚𝑚

�𝑿𝑿′𝛉𝛉𝑿𝑿 

Therefore, in exact cases (see Appendix II part C for details): 

𝜔𝜔 = 𝛾𝛾𝛿𝛿 =  𝑙𝑙
E𝑎𝑎(W)
E0∗(W) =

�𝑚𝑚 + 2
𝑚𝑚 �𝑿𝑿′𝛉𝛉𝑿𝑿
𝑚𝑚

𝑚𝑚 − 2
=
𝑚𝑚2 − 4
𝑚𝑚2 𝑿𝑿′𝛉𝛉𝑿𝑿 ≠ 𝑿𝑿′𝛉𝛉𝑿𝑿 

To ensure the correct noncentrality parameter is returned in exact cases, we make a 

similar modification to E𝑎𝑎(W) as to that made to E0(W) by Kenward and Roger.  

Specifically we will let 

E𝑎𝑎∗ (W) = �
1
𝑙𝑙

[(𝑿𝑿′𝛉𝛉𝑿𝑿 − 𝐴𝐴3 + 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿)−1](𝑿𝑿′𝛉𝛉𝑿𝑿 − 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿)2        ,𝑿𝑿′𝛉𝛉𝑿𝑿 ≠ 0 

         0                                                                                          ,𝑿𝑿′𝛉𝛉𝑿𝑿 = 0
 

In the above expression, the choice of multiplying by (𝑿𝑿′𝛉𝛉𝑿𝑿 − 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿)2 vs multiplying 

by (𝑿𝑿′𝛉𝛉𝑿𝑿)2 is to some extent arbitrary.  However, from Appendix II part B, we see that 

𝑿𝑿′𝛉𝛉𝑿𝑿 − 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿 is approximately equal to 𝑿𝑿′𝑪𝑪(𝑪𝑪′𝛟𝛟A𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿 and therefore to the 

“effect size” of the test statistic in cases where 𝛟𝛟 ≠ 𝛟𝛟A, such as in many unbalanced 
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designs.  So, multiplying by (𝑿𝑿′𝛉𝛉𝑿𝑿 − 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿)2 captures more information pertaining to 

the test statistic. 

Note also that in the exact cases of balanced data and single rank contrast 

E𝑎𝑎∗ (W)
E𝑎𝑎(W) =

E0∗(W)
E0(W) 

and so the adjustment to the expected value of the Wald statistic under the alternative 

hypothesis mirrors that made by Kenward and Roger for the null hypothesis in both form 

and value. Now, 

𝜔𝜔 = 𝛾𝛾𝛿𝛿 =  𝑙𝑙
E𝑎𝑎∗ (W)
E0∗(W) =

𝑚𝑚
𝑚𝑚− 2𝑿𝑿′𝛉𝛉𝑿𝑿

𝑚𝑚
𝑚𝑚 − 2

= 𝑿𝑿′𝛉𝛉𝑿𝑿 

which is the correct value in the exact case when data are balanced and the contrast 

matrix is rank one.  

One problem still remains, however. Specifically, the choices of effect size 𝛿𝛿 and 

scale factor 𝛾𝛾 must be more generally determined.  In the exact test for linear trend with 

rank one contrast we want  𝛿𝛿 = 𝑿𝑿′𝛉𝛉𝑿𝑿 and 𝛾𝛾 = 1. However when the exact distribution of 

the test statistic is unknown, the desired values of each become less clear.  We turn 

instead to the relationship between the F distribution and noncentrality parameter in the 

linear model utilized by Muller and Peterson (1984). Specifically, the noncentrality 

parameter for the distribution of the 𝐹𝐹statistic in the balanced linear model may be 

expressed as 𝜔𝜔 = 𝑙𝑙𝐹𝐹. Now if 𝐹𝐹 = 𝜆𝜆𝑊𝑊, then under this framework we would have 𝜔𝜔 =

𝑙𝑙𝜆𝜆𝑊𝑊 = 𝜆𝜆𝑙𝑙 1
𝑙𝑙
𝑿𝑿′𝛉𝛉𝑿𝑿 = 𝜆𝜆𝑿𝑿′𝛉𝛉𝑿𝑿, suggesting that again 𝛿𝛿 = 𝑿𝑿′𝛉𝛉𝑿𝑿  but now also that 𝛾𝛾 = 𝜆𝜆. 

Currently, our adjustment to the approximation of the noncentrality parameter 

only returns the effect size for balanced data, but the effect size is not scaled.  For 
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instance, the ANOVA type omnibus F-test of all 𝛽𝛽𝑖𝑖 = 0 (here the contrast is no longer 

rank one and 𝜆𝜆 ≠ 1, nor does the test have an exact known distribution) we have when 

data are balanced: 

𝜔𝜔 = γ𝛿𝛿 =  𝑙𝑙
E𝑎𝑎∗ (W)
E0∗(W) = 𝑿𝑿′𝛉𝛉𝑿𝑿 ≠ 𝜆𝜆𝑿𝑿′𝛉𝛉𝑿𝑿 

We therefore propose the final modification that: 

𝜔𝜔 =  𝑙𝑙𝜆𝜆
E𝑎𝑎∗ (W)
E0∗(W) 

Therefore, in tests of linear trend, the desired (exact if the contrast is single rank) values 

of 𝜔𝜔 = 𝛾𝛾𝛿𝛿 = 𝜆𝜆𝑿𝑿′𝛉𝛉𝑿𝑿 will be returned in balanced cases. 

 

B. Alternative methods for consideration 

While the method just described obtains a value for the noncentrality parameter 

using the methodology described by Kenward and Roger to obtain the denominator 

degrees of freedom and scale factor for the F distribution under the null hypothesis, this 

approach is admittedly complicated.  We therefore also introduce three simple intuitive 

methods that could potentially be used to calculate power for the KR adjusted Wald test. 

The first of these alternative methods (which we’ll refer to as method 2 to distinguish it 

from the expansion based method (“method1”) described in previous section II.A), 

replicates the approach of Muller and Peterson (1984) in directly using the KR adjusted 

Wald statistic to obtain the value of the noncentrality parameter.  Specifically, under this 

second method we let the noncentrality parameter simply be (with 𝛟𝛟A = 𝛟𝛟 + 𝐀𝐀): 

𝜔𝜔 = 𝑙𝑙𝐹𝐹 = 𝑙𝑙𝜆𝜆𝑊𝑊A = 𝜆𝜆𝑿𝑿′𝑪𝑪(𝑪𝑪′𝛟𝛟A𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿 
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The distribution of the Wald test statistic under the hypothesized “true” model parameter 

values is then obtained as 𝜆𝜆𝑊𝑊A~F(𝑙𝑙,𝑚𝑚,𝜔𝜔), with 𝜆𝜆, 𝑙𝑙, and 𝑚𝑚 = 𝑚𝑚𝐾𝐾𝑅𝑅 obtained by using the 

method described by Kenward and Roger under the null hypothesis using the “true” 

parameter values in lieu of their estimates.  The second of these additional methods 

(method 3) is identical to method 2, except that the noncentrality parameter is the 

traditional value in the linear model, i.e. 

𝜔𝜔 = 𝑿𝑿′𝑪𝑪(𝑪𝑪′𝛟𝛟𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿 

which in simulation studies will allow us to examine the impact of the adjustments to the 

Wald statistic made by Kenward and Roger beyond the impact of only the modifications 

to the denominator degrees of freedom. 

 The third of these additional methods (method 4) again uses the traditional value 

of the linear model.  However, the denominator degrees of freedom depend on the 

random effects to be modeled.  If both intercept and slope are modeled as random effects, 

then the denominator degrees of freedom are set as 

𝑚𝑚 = 𝑛𝑛(1 − 𝑒𝑒) − 𝑙𝑙 − 1 

where p is the proportion of follow-up observations missing out of the total number 

possible.  For instance, in a design where each subject is supposed to be observed at τ = 5 

time points, but in the actual trial 15% of follow-up observations are missing, then m 

would equal n(4*0.85+1)/5 – l –1 = 0.88n – l –1.  In other words, this method simply 

scales the denominator degrees of freedom by the proportion of data actually observed.  

Similarly, when only a random intercept is included in the model, then 

𝑚𝑚 = 𝑛𝑛(1 − 𝑒𝑒)(𝜏𝜏 − 1) − 𝑙𝑙 − 1 
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where again p is the proportion of follow-up observations missing out of the total number 

possible.  The reason the denominator degrees of freedom differs depending on random 

effects included is that this method tries to make a simple adjustment based on the KR 

value of m in balanced designs for each of these models.  Specifically, when data are 

balanced, then the KR degrees of freedom for random intercept and slope models will be 

m = n – l – 1, whereas for random intercept only models the degrees of freedom will be m 

= n(τ – 1) – l – 1. 

 Lastly, we examined the ability of one simple existing approach (which we’ll 

refer to as method 5) to calculate power for the KR adjusted Wald test.  Specifically, we 

use the method described by Helms (1992) to approximate the distribution of the Wald 

statistic from which power may be calculated.  This method uses the traditional value of 

the noncentrality parameter in the linear model, but the denominator degrees of freedom 

are given as: 

𝑚𝑚 = 𝑁𝑁 − 𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟(𝑿𝑿||𝒁𝒁) 

where N is the total number of observations actually collected in the study, and “||” is the 

concatenation operator.  So, for a study with no missing observations, N = nτ. 

Additionally, since in the designs of interest for this dissertation the columns of Z are also 

columns of X, 𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟(𝑿𝑿||𝒁𝒁) = 𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟(𝑿𝑿).  A summary of these differing methods is 

presented in Table 2.1. 
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Table 2.1: Summary of F distribution approximation methods 
Method Random Effects 𝒎𝒎 𝝎𝝎 

1 Either 𝑚𝑚𝐾𝐾𝑅𝑅 𝑙𝑙𝜆𝜆
E𝑎𝑎∗(W)
E0∗(W) 

2 Either 𝑚𝑚𝐾𝐾𝑅𝑅 𝜆𝜆𝑿𝑿′𝑪𝑪(𝑪𝑪′𝛟𝛟A𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿 
3 Either 𝑚𝑚𝐾𝐾𝑅𝑅 𝑿𝑿′𝑪𝑪(𝑪𝑪′𝛟𝛟𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿 

4 Intercept and slope 𝑛𝑛(1 − 𝑒𝑒) − 𝑙𝑙 − 1 𝑿𝑿′𝑪𝑪(𝑪𝑪′𝛟𝛟𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿 
Intercept only 𝑛𝑛(1 − 𝑒𝑒)(𝑡𝑡 − 1) − 𝑙𝑙 − 1 𝑿𝑿′𝑪𝑪(𝑪𝑪′𝛟𝛟𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿 

5 Either 𝑁𝑁 − 𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟(𝑿𝑿||𝒁𝒁) 𝑿𝑿′𝑪𝑪(𝑪𝑪′𝛟𝛟𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿 
𝑚𝑚𝐾𝐾𝑅𝑅 is the denominator degrees of freedom calculated by Kenward and Roger 
𝑒𝑒 is the % of data missing 
N is the total number of study observations 
 
 

C. Calculating power 

For each of the methods presented in Chapter 2, Section II.B, the value of  

𝑓𝑓𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡 = F−1(1− 𝛼𝛼, 𝑙𝑙,𝑚𝑚) can then be obtained and the power of the KR Wald test 

calculated as 1 − F(𝑓𝑓𝑐𝑐𝑖𝑖𝑖𝑖𝑡𝑡, 𝑙𝑙,𝑚𝑚,𝜔𝜔). 

 

 

III. Simulations and Practical Example 

A. Simulations 

Several simulations were conducted to determine how the methods described in 

Chapter 2 Section II perform in power calculations for exact and non-exact cases. All 

simulations were structured such that each design contained only two treatment groups 

with 10 subjects per group, and 25,000 trials were simulated for each design unless 

otherwise stated.  Power was calculated only for the test of interaction between treatment 

and time except for in the final set of simulations in which power was calculated for the 

omnibus ANOVA type test of all fixed effects. Empirical power for each method was 

then counted as the number of times the p-value for the KR Wald test was less than 𝛼𝛼 =

0.05 divided by the total number of converging simulations performed. 
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For each power calculation, a full design matrix 𝑿𝑿𝐹𝐹 was first generated and then 

non-baseline values were deleted from the matrix completely at random (using the same 

seed for all simulation sets) to obtain an unbalanced design matrix 𝑿𝑿𝑈𝑈 with missing 

values.  Power was then calculated using 𝑿𝑿𝑈𝑈 with given covariance parameters. 

Simulations were then performed using the same 𝑿𝑿𝑈𝑈 on which power calculations were 

performed.  All simulations were performed on models incorporating treatment, time, and 

treatment by time interactions as main effects. The design matrix for the simulations can 

be expressed as 𝑿𝑿 = [𝑿𝑿1 𝑿𝑿2 … 𝑿𝑿𝑁𝑁]′ where 𝑿𝑿𝒊𝒊 = [𝟏𝟏′ 𝒈𝒈𝒊𝒊′ 𝒕𝒕𝒊𝒊′ (𝒈𝒈𝒕𝒕)𝑖𝑖′],  𝟏𝟏 =

[1 1 ⋯ 1], 𝒈𝒈𝒊𝒊 = [𝑙𝑙𝑖𝑖 𝑙𝑙𝑖𝑖 … 𝑙𝑙𝑖𝑖], 𝒕𝒕𝒊𝒊 = [𝑡𝑡1 𝑡𝑡2 … 𝑡𝑡𝑛𝑛𝑖𝑖], and (𝒈𝒈𝒕𝒕)𝒊𝒊 =

[𝑙𝑙𝑖𝑖𝑡𝑡1 𝑙𝑙𝑖𝑖𝑡𝑡2 … 𝑙𝑙𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖] with 𝑙𝑙𝑖𝑖 and 𝑡𝑡𝑖𝑖 as defined in Chapter 1 section IV.A, but with 

only non-missing observations present.  So, if the second observation for subject i was 

deleted, then 𝑡𝑡3 in 𝑿𝑿𝐹𝐹 became 𝑡𝑡2 in 𝑿𝑿𝑈𝑈 for that subject.  All power calculations and 

simulations were performed using SAS 9.4 (Copyright © 2016 SAS Institute Inc). 

Table 2.2 provides the parameterization of each simulation while Table 2.3 

provides the results of each simulation. The “% Observations Missing” in Table 2.3 gives 

the percentage of values deleted from 𝑿𝑿𝐹𝐹 to form 𝑿𝑿𝑈𝑈 (number of total observations used 

as denominator, even though only follow-up are missing). The “Trials Converging” 

column in this table provides the number of simulated trials where the mixed model 

estimation converged.  In Table 2.3, Methods 1-5 refer to the power calculated using the 

denominator degrees of freedom and noncentrality parameters given Table 2.1. 
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Table 2.2:  Simulation Parameters 
Design 𝑪𝑪′ 𝑿𝑿′ 𝜎𝜎00 𝜎𝜎11 *𝑡𝑡(𝑖𝑖𝑛𝑛𝑡𝑡, 𝑠𝑠𝑙𝑙𝑒𝑒) 𝜎𝜎𝑒𝑒 Set 𝒕𝒕′ for 𝑿𝑿𝐹𝐹 

1 [0  0  0  1] [4  0.5  0.35  3.95] 4 1.15 -0.5 5.85 
1a [1  2  3  4  5] 
1b [1  2  3  4  5] 
1c [1  2  3  4  5] 

2 [0  0  0  1] [4  0.5  0.35  3.95] 4 N/A N/A 5.85 
2a [1  2  3  4  5] 
2b [1  2  3  4  5] 
2c [1  2  3  4  5] 

3 [0  0  0  1] [4  0.5  0.35  1.85] 4 1.15 -0.5 5.85 
3a [1  2  3  4  5] 
3b [2  5  8  14  19] 
3c [4  7  15  22  34] 

4 [0  0  0  1] [4  0.5  0.35  3.95] 4 N/A N/A 5.85 
4a [1  2  3  4  5] 
4b [1  2  3  4] 
4c [1  2  3] 

5 �
0 1 0 0
0 0 1 0
0 0 0 1

� [4  0.5  0.35  1.65] 4 1.15 -0.5 5.85 

5a [1  2  3  4  5] 

5b [1  2  3  4  5] 

5c [1  2  3  4  5] 

*𝑡𝑡(𝑖𝑖𝑛𝑛𝑡𝑡, 𝑠𝑠𝑙𝑙𝑒𝑒) refers to the correlation between random intercept and random slope 
 
 
Table 2.3:  Simulation Results    
Design Set %  

Missing 
Trials 

Converging 
Simulated 

Power 
Calculated Power by Method 

1 2 3 4 5 

1 
1a 0 16005 0.9614 0.9693 0.9693 0.9693 0.9693 0.9800 
1b 15 14611 0.9164 0.9192 0.9284 0.9337 0.9310 0.9539 
1c 32   16092* 0.7852 0.7746 0.8227 0.8483 0.8353 0.8852 

2 
2a 0 24936 0.9978 0.9971 0.9971 0.9971 0.9971 0.9972 
2b 15 24811 0.9889 0.9871 0.9876 0.9879 0.9879 0.9883 
2c 32 24518 0.9446 0.9401 0.9437 0.9461 0.9464 0.9478 

3 
3a 20 14161 0.2788 0.3268 0.3405 0.3491 0.3437 0.3784 
3b 20 18922 0.8644 0.8691 0.8717 0.8734 0.8663 0.9008 
3c 20 19016 0.9063 0.9074 0.9079 0.9083 0.9018 0.9306 

4 
4a 15 24811 0.9889 0.9871 0.9876 0.9879 0.9789 0.9883 
4b 14 24585 0.8571 0.8542 0.8562 0.8576 0.8579 0.8611 
4c 12 24030 0.4916 0.4816 0.486 0.4889 0.4891 0.4964 

5 
5a 0 16005 0.8131 0.8118 0.8137 0.8353 0.8167 0.8945 
5b 15 14611 0.7180 0.7118 0.7288 0.7543 0.7225 0.8359 
5c 32   16092* 0.5702 0.5766 0.6119 0.6632 0.5847 0.7492 

*31500 trials were simulated to maintain a large number of converging simulations  
 

In the first series of simulations, we examined the performance of the various 

methods for a random intercept and slope model as the number of observations missing 

increased.  As designed, methods 1 - 4 return the exact power when no missing data is 

present, and method 5 provides a close approximation.  As the amount of missing data 

increases to 15% in design 1b, the methods diverge slightly, but all perform within 0.05 

units of simulated power with methods 1 and 2 providing close estimates.  As the amount 
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of missing data increases to 32% in design 1c, even more divergence is seen. In this case, 

method 1 obviously outperforms other methods, although method 2 still provides a power 

estimate within 0.05 units of the simulated power highlighting the impact of the 

adjustment to the value of the Wald test statistic made by Kenward and Roger. 

The second set of simulations is almost identical to the first, except that only a 

random intercept was fit.  The results are good for all methods regardless of missing data 

prevalence.  Additionally, more simulations were able to converge due to not having to 

estimate slope variance parameters.  The results suggest that for random intercept only 

models (identical to compound symmetric covariance), simple methods may be adequate 

for power calculations. 

In the third set of simulations, the time vector was allowed to vary as something 

other than  𝒕𝒕 = [1  2  3  4  5]′.  The parameters were set the same as those in the first set 

of simulations except the values of 𝑿𝑿 were reduced to keep power from converging to 1 

with larger time values.  The missing pattern of follow-up observation was held constant 

with only the time vector allowed to vary.  Here, unequal spacing in time seemed to have 

less impact on each method’s performance than did the magnitude of the vector.  All 

methods performed poorest at the lower power values in 3a, which could indicate lower 

powered tests are more difficult to approximate due to the nonlinear nature of power as a 

function of the noncentrality parameter. However, even though the methods were less 

accurate for low power, method 1 still outperforms other methods and maintains accuracy 

within 0.05 units of power. 

The fourth set of simulations has the same parameter values as the second and 

again only has a random intercept.  However, the time vector was allowed to be reduced 
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from  𝒕𝒕 = [1  2  3  4  5]′  by dropping the number of follow-up observations in 𝑿𝑿𝐹𝐹. The 

results here echo those of scenario 2 and again suggest the simple approaches perform as 

well as the more complicated methods in the random intercept only model.  Moreover, 

the number of follow-up observations was found to have little impact on the performance 

in this method.  Unfortunately, a similar experiment evaluating a low number of follow-

up observations would be difficult to conduct in a model with random slope because the 

estimate of slope variance would be difficult to obtain and lead to convergence issues. 

The fifth and final set of simulations is almost identical to that of the first, except 

that now we are interested in the full omnibus F test that 𝛽𝛽group = 𝛽𝛽time = 𝛽𝛽group∗time = 0. 

The effect sizes have likewise been reduced to prevent power from being too close to 1. 

The results demonstrate that with little missing data, all methods perform well. However, 

as missingness increases, the degree of performance diverges. With 32% missing, 

Method 2 performs within a 0.05 unit margin but not as well as Method 1, which 

demonstrates the superiority of the KR type method based on the Taylor expansion to 

solve for the noncentrality parameter in these more complicated scenarios.  Interestingly, 

method 4 performs closest to method 1 no matter the amount missing.  This proximity 

arises from the fact that the KR method often shrinks the denominator degrees of freedom 

only by a small amount and leaves much of the heavy lifting in the F approximation to 

the adjustment of the Wald statistic itself.  Conversely, method 4 makes a comparatively 

large adjustment to the denominator degrees of freedom that compensates for the lack of 

adjustment to the Wald statistic and therefore noncentrality parameter. 

Altogether the results of these simulations suggest methods 1 and 2 are capable of 

providing accurate power approximations in the small sample cases for which the 
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Kenward-Roger test statistic is critical.  Moreover, the expansion-based method 1 

outperformed simpler method 2 in random intercept and slope models, particularly when 

the observational pattern became more and more imbalanced due to unobserved follow-

up observations.  However, the results also suggest that in studies with low anticipated 

dropout or simple covariance structures, a variety of simple methods - including ones that 

use residual degrees of freedom and traditional values of the noncentrality parameter for 

the F distribution of the Wald-test statistic under the alternative hypothesis – are 

sufficient for calculating power. 

 

B. Practical Example 

Wolfinger (1996) examined a study on growth curve data of rats originally 

presented in Box (1950). In this study, rats were provided one of three treatments:  

Control, Thyroxin, or Thiouracil. The body weight growth curves of all rats were roughly 

linear.  Of interest: is there a difference in average trajectory of body weight over time for 

either treatment group compared to the control group? The difference observed in the 

study was quite large, so for this example we will determine how many rats would be 

required to detect a smaller difference in trajectory given the variance parameters 

observed in the study.  The model for this example can be specified as follows: 

𝒀𝒀 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒃𝒃 + 𝒆𝒆 

With 𝒀𝒀 = [𝒀𝒀1 𝒀𝒀2 … 𝒀𝒀𝑁𝑁]′ and as in chapter 1: 

𝒀𝒀𝑖𝑖 = 𝑿𝑿𝑖𝑖𝑿𝑿 + 𝒁𝒁𝑖𝑖𝒃𝒃𝑖𝑖 + 𝒆𝒆𝑖𝑖  

In this example there are 3 treatment groups, and so 
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𝑿𝑿𝑖𝑖 = �

1 𝛿𝛿𝑖𝑖 𝜓𝜓𝑖𝑖 𝑡𝑡1 𝛿𝛿𝑖𝑖𝑡𝑡1 𝜓𝜓𝑖𝑖𝑡𝑡1
1 𝛿𝛿𝑖𝑖 𝜓𝜓𝑖𝑖 𝑡𝑡2 𝛿𝛿𝑖𝑖𝑡𝑡2 𝜓𝜓𝑖𝑖𝑡𝑡2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝛿𝛿𝑖𝑖 𝜓𝜓𝑖𝑖 𝑡𝑡𝑛𝑛𝑖𝑖 𝛿𝛿𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖 𝜓𝜓𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖

� 

where 𝛿𝛿𝑖𝑖= 1 if rat i is on Thyroxin and 0 otherwise, 𝜓𝜓𝑖𝑖= 1 if rat i is on Thiouracil and 0 

otherwise, and tj is the time the jth body weight measurement for rat i is observed.  In the 

full balanced design, the time vector for each rat will be 𝑡𝑡 = [𝑡𝑡1  𝑡𝑡2  … 𝑡𝑡5]′ =

[0   1   2   3   4]′.  𝑿𝑿 is the 6 x 1 vector of fixed effect parameters to be estimated given by 

𝑿𝑿 = [𝛽𝛽0  𝛽𝛽1  𝛽𝛽2  𝛽𝛽3  𝛽𝛽4  𝛽𝛽5]′, where 𝛽𝛽0 is the mean body weight intercept for rats on 

control, 𝛽𝛽1is the mean difference in body weight intercept between rats on Thyroxin and 

rats on control, 𝛽𝛽2 is the mean difference in body weight intercept between rats on 

Thiouracil and rats on control, 𝛽𝛽3 is the mean change in body weight per week for rats on 

control, 𝛽𝛽4 is the mean difference in the amount the body weight changes per week 

between rats on Thyroxin and rats on control, and 𝛽𝛽5 is the mean difference in the 

amount the body weight changes per week between rats on Thiouracil and rats on control.  

Specifically, in this example we will have: 

𝑿𝑿 = [52.88     4.82    − 1.08      26.48    − 6.43     1.0914]′ 

Both intercept and slope will be included as random effects with: 

𝚺𝚺𝒃𝒃𝒊𝒊 = � 31.6315 −2.5103
−2.5103   15.1184

�                 𝚺𝚺𝒆𝒆𝒊𝒊 = 18.8556 ∙ 𝐈𝐈𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖  

 

As mentioned, of primary interest will be the omnibus hypothesis: is the average change 

in body weight over time different in either treatment group compared to the control 

group?  The contrast matrix will then be given as: 
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𝑪𝑪′ = �0 0 0 0 1 0
0 0 0 0 0 1� 

We can now calculate power for a trial using these estimates where the observation 

pattern of the rats is planned to be unbalanced.  Specifically, we plan for the rats to have 

the observation pattern specified in Table 2.4, which shows the planned time of 

observation for each of the six rats allocated to each treatment group. 

Table 2.4: Observation patterns for planned trial 

Treatment Rat Observation 
Times 

Control 

1     0,1,2,3,4 
2     0,1,2,3,4 
3     0,1,2,3,4 
4     0,2,3,4 
5     0,1,3,4 
6     0,1,4 

 

Thyroxin 

1     0,1,2,3,4 
2     0,1,2,3,4 
3     0,1,2,3,4 
4     0,1,2,3 
5     0,1,2,3 
6     0,2,3 

 

Thiouracil 

1     0,1,2,3,4 
2     0,1,2,3,4 
3     0,2,3,4 
4     0,1,2,4 
5     0,1,2,4 
6     0,1,2,4 

 

We calculated power for each of the 5 methods presented in Chapter 2 Section 

II.B and compared them to empirical power obtained from 75,000 simulated trials.  The 

results are presented in Table 2.5 and show that the methods using the KR degrees of 

freedom (methods 1-3) perform best, while the simpler methods 4 and 5 tend to under or 

overestimate power.  However, the estimates provided by method 4 and 5 are not terribly 

far off from the simulated value, which agrees with the results in Table 2.3 where all 
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methods tended to perform well in the presence of low to moderate amounts of missing 

data. 

Table 2.5:  Simulated empirical vs calculated power for Rats example 

Design %  
Missing 

Trials 
Converging 

Simulated 
Power 

Calculated Power by Method 
1 2 3 4 5 

rats 13 73811 0.7767 0.7738 0.7765 0.7770 0.7593 0.7865 
 

 

IV. Summary and Discussion 

  In this chapter, we developed a novel approach to calculating power for 

the KR adjusted Wald-test that extends the approach of Kenward and Roger from the null 

to the alternative hypothesis.  We also introduced three additional intuitive approaches.  

These four new approaches, as well as one existing approach based on the residual 

degrees of freedom, were then used to calculate power for multiple designs.  These 

simulations showed that most of the methods work well, even in small sample studies, 

provided the degree to which a design is unbalanced is not too large. 

Moreover, for random intercept only models, all models provide accurate and 

similar estimates of power indicating the simpler approaches are adequate in such 

scenarios.  For models with both random intercept and random slope, method 5 

consistently overestimated power – likely due in part to the larger degrees of freedom 

used by this method.  While method 4 tended to perform well in many cases, this method 

has the tendency to underestimate power by a noticeable amount (for instance, in the 

practical example analyzing rat body weights).  Additionally, method 4 may not perform 

well in designs where subjects have large variations in observational pattern (such as in 

observational studies where subjects may have very different vectors of observation 

times), but this potential limitation has not been explored. 
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Ultimately, method 1 tended to most accurately approximate power for these 

designs, especially when the observation patterns were highly unbalanced. The high 

degree of accuracy of this method and others suggests further exploration and the 

potential extension to the calculation of power, and perhaps sample size, for designs with 

some anticipated rate of missing data. 
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CHAPTER 3 
PLANNING FOR INCOMPLETE DATA IN POWER CALCULATIONS 

 
 

I. Introduction 

In chapter 2 we demonstrated that power for the KR test statistic in the LMM can 

be calculated when the observed data pattern is fixed.  Calculating power for a more 

general rate of missingness (i.e. when each observation has some probability of being 

missing) is less straightforward, but the ability to do so would be desirable in practice.  

For instance, researchers may desire to calculate power assuming each follow-up 

observation has a 10% chance of being missing at random. Planning for incomplete data 

in power calculations for non-longitudinal designs is often rather straightforward:  the 

values in the design matrix are often uniform within subject (for instance group or 

cluster), and so missing data changes the noncentrality parameter in a predictable way.  

Conversely, calculating power for such cases in longitudinal studies is particularly 

challenging, as not every missing data point is of equal importance.  For example, 

Basagaña and Spiegelman (2012) note that timepoints in the middle of a longitudinal 

study with linear outcome trajectory have comparatively little impact on power compared 

to beginning and ending timepoints, and so the impact of missing data is not obvious and 

depends on which observation is missing. 

A variety of literature exists incorporating incomplete longitudinal data into 

power calculations for linear mixed model Wald tests.  Most approaches rely either on 
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asymptotic convergence between t and z distributions or on multivariate theory and its 

frequent correspondence with LMM hypotheses. Some methods look at calculating 

power while accommodating data that are planned to be monotonically missing due to 

subject dropout, while others plan for data that are assumed to be missing in some general 

way.  We will briefly summarize a few of these approaches as well as highlight the 

limitations in applying these methods to the KR adjusted Wald test. 

 

II. Existing methods planning for missing data in power calculations for LMMs 

Hedecker, Gibbons, and Waterneaux (1999) provide power calculations for the 

test of group by time interaction when a particular rate of missingness at each follow-up 

visit is specified.  This method simply modified existing power calculations by adjusting 

covariance and noncentrality parameters based on the expected number of observations at 

each time point. For instance, they approximate the distribution of the Wald statistic 

testing the group by time interaction (or other single contrast tests of fixed effects) in the 

balanced linear mixed model as √𝑊𝑊~𝑁𝑁�√𝑊𝑊, 1�. If each time point has an equal 

probability of missing, p, then the Wald statistic would instead follow the distribution 

√𝑊𝑊~𝑁𝑁��𝑒𝑒𝑊𝑊, 1�.  This approximation is simple and intuitive, but unfortunately cannot 

be utilized in the KR adjusted Wald statistic for two primary reasons.  First, as noted in 

the paper, approximating a t distribution with a z distribution works best when the 

denominator degrees of freedom in the t distribution is at least 30, which will often not be 

feasible in small sample studies for which the KR adjustment is most necessary.  Second, 

this scaling underrepresents the true amount by which the KR Wald statistic will decrease 

due to missing data. Specifically in the context of the KR Wald Statistic, when data are 
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balanced 𝐀𝐀 = 𝟎𝟎 (definition of 𝐀𝐀 given in Appendix II part A), and so 𝛟𝛟 = 𝛟𝛟A and 𝑊𝑊 =

𝑊𝑊𝐴𝐴.  Conversely, when data are unbalanced, such as when some data are missing, 𝐀𝐀 ≠ 𝟎𝟎 

and  𝑊𝑊 ≠ 𝑊𝑊𝐴𝐴. Therefore, using 𝑒𝑒𝑊𝑊 as the noncentrality parameter will ignore the 

additional reduction of the Wald statistic caused by the elements of 𝐀𝐀 being nonzero due 

to imbalanced data. 

Wang, Hall, and Kim (2012) and Zhao and Edland (2021) provide power 

calculations for the test of group by time interaction in the case of monotone missingness 

during follow-up. Specifically, they obtain 𝛟𝛟 as calculated over the 𝜏𝜏 − 1 observation 

patterns, with the number of subjects having each determined by dropout probability p. 

They again rely on asymptotic normality of the Wald statistic, however, and so this 

approach likewise avoids the issue of calculating degrees of freedom needed in smaller 

sample sizes.  Interestingly, as pointed out by Zhao and Edland, under these approaches 

the power for the test of group by time interaction will be unaffected by the variance of 

the random intercept making specifying this parameter unnecessary.  While true in 

balanced cases, this fact will not hold for the KR adjusted test in unbalanced designs as 

the variance parameters will impact the calculations of the denominator degrees of 

freedom. 

Verbeke and Lesaffre (1999) take a similar, but still unique approach in 

attempting to calculate power while accommodating data missing in a monotone fashion.  

Specifically, as also described in Galbraith (2002), they let there be τ observations per 

subject when no dropout is present. Let 𝑷𝑷 = (𝑒𝑒1, … ,𝑒𝑒𝜏𝜏) with 𝑒𝑒𝑖𝑖 be the probability a 

patient’s data is missing after time j, and let 𝒏𝒏 = (𝑛𝑛1, … ,𝑛𝑛𝜏𝜏) be the number of patients 
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who have observations through time j.  Then power for the LMM Wald test statistic can 

be calculated using the noncentrality parameter given as 

𝜔𝜔 = 𝑿𝑿′𝑪𝑪(𝑪𝑪′𝚽𝚽𝑪𝑪)−𝟏𝟏𝑪𝑪′𝑿𝑿 

with 

𝚽𝚽 = ��𝑛𝑛𝑖𝑖𝑿𝑿(𝑖𝑖)
′ 𝚺𝚺𝑌𝑌(𝑗𝑗)

−1 𝑿𝑿(𝑖𝑖)

𝜏𝜏

𝑖𝑖=1

�

−𝟏𝟏

 

where 𝑿𝑿(𝑖𝑖) and 𝚺𝚺𝑌𝑌(𝑗𝑗)  refers to the �𝑗𝑗𝑛𝑛𝑖𝑖�𝑥𝑥4 design and �𝑗𝑗𝑛𝑛𝑖𝑖�𝑥𝑥�𝑗𝑗𝑛𝑛𝑖𝑖� covariance matrix 

consisting of patients dropping out after time j, and again 𝜏𝜏 is the maximum number of 

observations per subject.  This expression is provided in a more general format at the end 

of section 3 of Verbeke and Lesaffre but can be easily shown to take the above form in 

the case of monotone missingness.  The numerator degrees of freedom are chosen in the 

usual way, and the denominator degrees of freedom are equal to N – rank(X) as in Helms 

(1992) (although Galbraith simply uses a z approximation to the t statistic). 

The observed data 𝒏𝒏 can then be described as a sample drawn from the 

multinomial distribution given as 𝑚𝑚𝑚𝑚𝑙𝑙𝑡𝑡𝑖𝑖(𝑛𝑛,𝑒𝑒1, … ,𝑒𝑒𝜏𝜏).  As such, the power for the test in 

the presence of such dropout is itself a random variable depending on the specific sample 

of 𝒏𝒏 observed. Verbeke and Lesaffre then calculate power for 1000 different such 

samples given the model parameters and dropout probabilities to construct an empirical 

distribution of P(Power ≤ power) for the model power over the possible dropout patterns.  

This empirical distribution can then be used to evaluate the ability of a design to actually 

achieve the desired power for the design given some anticipated sample size and rate of 
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dropout.  They also argue this method provides a more holistic criteria (as opposed to a 

single value such as mean or median power) by which to compare the power of two 

designs (for instance comparing a design with 5 vs 7 observations).  However, this 

method may be less intuitive to investigators used to working with a single value for 

power, and it also requires sampling from a full design a large number of times (as 

mentioned, in this case 1000). 

Galbraith uses this same sampling strategy, but instead calculates expected power 

(focusing on group by time interactions only) rather than focusing on the empirical 

distribution of power.  Specifically, they obtain expected power (given as 

E[Power(𝒏𝒏)])by averaging calculated power over an (unspecified, but likely 1000 given 

their reference to Verbeke and Lesaffre) number of samples of observed 𝒏𝒏.  Moreover, 

they investigate the ability to approximate E[Power(𝒏𝒏)] with Power[E(𝒏𝒏)] and E(𝒏𝒏) = 

(𝑛𝑛𝑒𝑒1, … ,𝑛𝑛𝑒𝑒𝜏𝜏) where these values are then utilized in the expression of 𝚽𝚽 to calculate the 

noncentrality parameter and power (and is therefore similar to the approach of Wang, 

Hall, and Kim (2012) and Zhao and Edland (2021)). They find that, in general, this 

approximation tends to overestimate E[Power(𝒏𝒏)], but in general these values tend to be 

similar.  Unfortunately, a similar approximation is not feasible for our goal.  E(𝒏𝒏) can be 

easily specified in the case of monotone missingness because only 𝜏𝜏 − 1 observation 

patterns are possible for a subject, each with an easily described probability 𝑒𝑒𝑖𝑖 of being 

observed. Conversely, in the case of general missingness (i.e. each follow-up observation 

has probability p of being missing) enumerating all the possible observation patterns and 

their probability of occurrence for a subject becomes overwhelming as the number of 

repeated measures grows (see Tu et al. 2007 equation 23 and discussion following 
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equation 26). Additionally, these methods have not, as specifically mentioned by Verbeke 

and Lesaffre, been designed to calculate power for the KR adjusted Wald-test although 

they provide a promising framework to extend upon. 

Only Ringham et al. (2015) and Josey et al. (2021) provide methods to 

accommodate some general rate of missingness in calculating (expected) power for a test 

statistic closely associated with the KR statistic.  The roots of this method are grounded 

in the theory for the GLMM -particularly in the methods developed by Muller and 

Peterson (1984) and O'Brien and Shieh (1992) to calculate power for the McKeon 

adjusted HLT statistic, and in methods developed by Catellier and Muller (2000) to 

further adjust the degrees of freedom in the HLT test with missing data.  This method has 

the added benefit that expected power can be directly calculated rather than being 

averaged over different sample observation patterns, which in turn reduces computation 

time. 

Specifically, they adjust the degrees of freedom and noncentrality parameter 

based on the expected number of subjects with complete sets of observations. Treating 

the probability of each of τ observations being missing as 𝑒𝑒, then the expected number of 

n subjects with complete observations is easily obtained as 𝑛𝑛c = 𝑛𝑛(1 − 𝑒𝑒)𝜏𝜏. From 

Chapter 1 section II.C we have that for single contrast tests of linear trend, the HLT 

statistic �𝑛𝑛−𝑞𝑞
1
𝑡𝑡𝑡𝑡[𝑯𝑯𝑬𝑬−1]  � follows an 𝐹𝐹1,   𝑛𝑛−𝑞𝑞,   𝜔𝜔 distribution.  The method described by 

Ringham et al. simply replaces the term 𝑛𝑛 − 𝑞𝑞 with 𝑛𝑛c − 𝑞𝑞 as the denominator degrees of 

freedom and replaces 𝜔𝜔 with 𝑛𝑛c
𝑛𝑛
𝜔𝜔 as the noncentrality parameter to obtain the distribution 

of the HLT statistic under the alternative hypothesis from which expected power can be 

calculated for the HLT test with planned rate of missingness 𝑒𝑒. 
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Simulations were performed by Ringham et al. to evaluate the performance of the 

method described. Small to large sample sizes were considered, with either 3 or 6 

observations per subject and with missingness probability set as either 0.05 or 0.10.  

Results were good for designs with 48 or more subjects and 3 observations per subject.  

However, the method tended to perform worse for designs having 6 observations per 

subject or fewer than 48 subjects, which is unsurprising as the noncentrality parameter 

shrinks exponentially with the number of follow-up observations.  Additionally, this 

method only calculates expected power for a close analogue of the KR test, and so it’s 

ability to calculate power for the KR test itself given some missingness rate (especially 

when that rate is larger than 0.1) is unknown.  Lastly, this approach operates on the 

assumption power is linear around 𝜔𝜔 such that E[Power|𝑒𝑒] ≈ Power[E(𝜔𝜔|𝑒𝑒)], which is 

not always the case. 

 

III. Calculating Expected Power for the KR Test with Anticipated Rate of Missing Data 

 

A. Expected Power 

We propose the simplest solution to the limitations presented in calculating 

expected power for the KR statistic accommodating some anticipated rate of missing data 

is to average the power calculated for a number of designs randomly generated according 

to the specified probability of any follow-up observation being missing.  For instance, 

assume we have a full balanced design matrix 𝑿𝑿 (which we can denote as 𝑿𝑿𝐹𝐹 to indicate 

all subjects have a full set of τ observations), for the planned study such that for all 

subjects, for example with an observation per week for 12 weeks 
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𝑿𝑿𝑓𝑓𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡
1 𝛿𝛿𝑖𝑖 1 𝛿𝛿𝑖𝑖1
1 𝛿𝛿𝑖𝑖 2 𝛿𝛿𝑖𝑖2
⋮ ⋮ ⋮ ⋮
1 𝛿𝛿𝑖𝑖 11 𝛿𝛿𝑖𝑖11
1 𝛿𝛿𝑖𝑖 12 𝛿𝛿𝑖𝑖12⎦

⎥
⎥
⎥
⎤

 

We then may expect that in an actual trial, each follow-up observation for each subject 

may have a p probability of being missing (a more sophisticated missing data process 

generated by a specified Markov process is described by Tu et al., but we believe the 

stated approach is sufficient for typical planning needs). Thus, each subject has an 

observed design matrix with possibly missing data that we can denote as 𝑿𝑿𝑢𝑢𝑖𝑖 to represent 

that data across subjects may be unbalanced.  So, for subject 1 we may have a design 

matrix with 

𝑿𝑿𝑢𝑢1 =

⎣
⎢
⎢
⎢
⎢
⎡
1 𝛿𝛿1 1 𝛿𝛿11
1 𝛿𝛿1 3 𝛿𝛿13
1 𝛿𝛿1 4 𝛿𝛿14
1 𝛿𝛿1 8 𝛿𝛿18
1 𝛿𝛿1 10 𝛿𝛿110
1 𝛿𝛿1 12 𝛿𝛿112⎦

⎥
⎥
⎥
⎥
⎤

 

and, for subject 2 we may have a design matrix with 

𝑿𝑿𝑢𝑢2 =

⎣
⎢
⎢
⎢
⎡
1 𝛿𝛿2 1 𝛿𝛿21
1 𝛿𝛿2 4 𝛿𝛿24
1 𝛿𝛿2 7 𝛿𝛿27
1 𝛿𝛿2 9 𝛿𝛿29
1 𝛿𝛿2 10 𝛿𝛿210⎦

⎥
⎥
⎥
⎤

 

Then if we have n subjects in the model, the full observed design matrix 𝑿𝑿𝑈𝑈  is given as 

𝑿𝑿𝑈𝑈 = [𝑿𝑿𝑢𝑢1 𝑿𝑿𝑢𝑢2  ⋯𝑿𝑿𝑢𝑢𝑛𝑛]′ 

From any full design matrix 𝑿𝑿𝐹𝐹 there are Q possible 𝑿𝑿𝑈𝑈  which could be observed. To 

calculate expected power for the candidate study given probability p of any follow-up 
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observation being missing �E(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)�, we can average the power over all Q values of 

𝑿𝑿𝑈𝑈 weighted by their probability of appearing. Such an approach would be similar to that 

proposed by Zhao and Edland (2021) and Galbraith (2002) but would naturally calculate 

power for the KR statistic specifically.  Since averaging over all designs (much less 

determining the probability of each being observed) is not always feasible, the natural 

question to such an approach is: how many different designs do we need to generate and 

average power over to get a good estimate of the expected power of the study given some 

anticipated rate of missing data? 

 

B. A Heuristic Approach to Determining Necessary Computational Complexity 

We will develop a heuristic approach to determine whether we have averaged 

over enough designs with missing data to provide an accurate estimate of expected power 

given some rate of missing follow-up observations. The approach will rely on the 

relationship between the power function and noncentrality parameter, as well as on the 

natural way in which the KR test statistic changes as data becomes more unbalanced.  We 

will then use simulations to evaluate the general ability of the method developed to 

provide accurate power calculations. The results in Chapter 2 suggest that out of the five 

methods examined to calculate power for the KR adjusted Wald-test, method 1, which 

calculating power by extending the methodology of Kenward and Roger to the alternative 

hypothesis, performed best.  Therefore, we will initially focus on calculating expected 

power with some probability of any follow-up observation being missing by using an 

extension of method 1.  However, the methodology developed will also be applicable to 

methods 2-5, and so these methods will again be compared in section III of this chapter. 
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Test power as a function of the noncentrality parameter is well known to be 

nonlinear.  For instance, in Figure 3.1, as hypothesized treatment effect size tends to 

infinity, the power of the test to reject the null hypothesis of no difference in effect of 

time by treatment approaches 100% asymptotically. After a certain point, a change in 

effect size will result in a comparatively negligible change in power. Intuitively this 

relationship means that, given anticipated missingness probability p of each planned 

follow-up observation in the study, if the expected value of the noncentrality parameter 

(which we can denote as E(ω|p)) for a test statistic is high, power calculated for most 

possible observation patterns is unlikely to deviate substantially from the expected power 

of the study. For instance, if E(ω|p) = A in Figure 3.1, then observed power for the study 

will be similar for most 𝑿𝑿𝑈𝑈. Conversely, if E(ω|p) is located at a point where the power 

curve changes substantially with the noncentrality parameter, then differences in 

observation pattern can have a big impact on calculated power. For instance, if E(ω|p) = 

B in Figure 3.1, then observed power for the study may vary greatly depending on 𝑿𝑿𝑈𝑈. 

As such, one of the components that will help us determine how many generated 

𝑿𝑿𝑈𝑈 we need to average over to estimate expected study power is the derivative of the 

power function with respect to the noncentrality parameter around E(ω|p) (we will call 

this value dPower). If in a study we have E(ω|p) = C as in Figure 3.1, then dPower is 

equal to the slope of the line tangent to the power function at C.  The quantity dPower 

then provides us with some idea of how many 𝑿𝑿𝑅𝑅 we need to average over to provide a 

stable estimate of E(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒). Values of dPower would range from 0 to ∞, with a small 

value of dPower indicating only a few number 𝑿𝑿𝑈𝑈  are needed as each would provide a 

similar power value, while a large value of dPower would indicates more 𝑿𝑿𝑈𝑈 should be 
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averaged over as each may provide widely different power values.  An algorithm to 

calculate dPower is provided in Appendix III. 

   Figure 3.1: Power for an F(1, 26.2531, ω) distribution as a function of ω.

 
Of course, having study power be sensitive to changes in the noncentrality 

parameter means little if the noncentrality parameter will change by only a very small 

amount from one choice of 𝑿𝑿𝑈𝑈  to another.  For instance, if again E(ω|p) = C as in Figure 

3.1 and 𝜔𝜔𝑈𝑈 only varies by a range of 0.01 between most probable (given p) values of 𝑿𝑿𝑈𝑈, 

power calculated for each choice of 𝑿𝑿𝑈𝑈 should still provide a similar estimate of E(ω|p) 

despite the high value of dPower (compared to what it would be at point A, for instance).  

One example of such a scenario may arise in testing the group by time interaction with a 

small effect size but large number of time points. Note the expression for ω provided in 

Chapter 2 Table 2.1 for method 1, which shall be used to obtain the value of the 

noncentrality parameter in this chapter, depends on the value 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿. The elements of A 
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become increasingly nonzero as data become more imbalanced, and so we can intuitively 

view 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿 as reflecting the magnitude by which 𝜔𝜔 is affected by the variability in 

observational pattern between subjects. Values of 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿 would range from 0 to ∞, with 

larger average values of 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿 indicating a higher degree of variability in the 

noncentrality parameter depending on choice of 𝑿𝑿𝑈𝑈, whereas smaller average values 

indicate the noncentrality parameter does not vary much from one choice of 𝑿𝑿𝑈𝑈 to 

another. 

These two quantities, dPower and 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿, taken together provide us with some 

idea of both how much the noncentrality parameter will change from one choice of 𝑿𝑿𝑈𝑈  to 

another and how much the calculated power will change with the noncentrality 

parameter. We can combine these two components into a single quantity “𝐺𝐺” to provide 

an intuitive measure of whether a small or large number of 𝑿𝑿𝑈𝑈 need to be averaged over 

so that 

E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)𝐾𝐾 =
1
𝐾𝐾
�𝑃𝑃𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡�𝜔𝜔|𝑿𝑿𝑈𝑈𝑖𝑖�
𝐾𝐾

𝑖𝑖=1

 

(with 𝐾𝐾 being the number of 𝑿𝑿𝑈𝑈 over which power is averaged) provides a stable 

estimate of E(power|p). Specifically, for the sake of computational speed we can 

calculate E�(𝐺𝐺|𝑒𝑒) as the average of 10 𝐺𝐺𝑈𝑈 each calculated from a randomly generated 𝑿𝑿𝑈𝑈 

such that 

E�(𝐺𝐺|𝑒𝑒) =
1

10
�𝐺𝐺𝑈𝑈

10

𝑈𝑈=1

=
1

10
�[1000 ∙ 𝑑𝑑𝑃𝑃𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡𝑈𝑈 ∙ (𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿)𝑈𝑈]
10

𝑈𝑈=1

 

A small value of E�(𝐺𝐺|𝑒𝑒) would indicate that E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)𝐾𝐾 calculated over only a small 

number 𝐾𝐾 of 𝑿𝑿𝑈𝑈 should provide a stable estimate of E(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒), whereas a larger value 
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of E�(𝐺𝐺|𝑒𝑒) would indicate a large number of 𝑿𝑿𝑈𝑈  need to be considered. Note the quantity 

𝑑𝑑𝑃𝑃𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡𝑈𝑈 ∙ (𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿)𝑈𝑈 is multiplied by 1000 just to keep the value of 𝐺𝐺𝑈𝑈 from being too 

small. Additionally, the product between 𝑑𝑑𝑃𝑃𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡𝑈𝑈 ∙ (𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿)𝑈𝑈 was chosen instead of 

their sum to make each term equally impactful (for instance, a large value of 𝑑𝑑𝑃𝑃𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡𝑈𝑈 

and a small value of (𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿)𝑈𝑈 would negate each other to yield a moderate value of 

𝐺𝐺𝑈𝑈). 

A simulation study was performed to help evaluate what values of E�(𝐺𝐺|𝑒𝑒) may 

indicate only a small number of 𝑿𝑿𝑈𝑈  need to be generated.  2100 designs of the form 

specified in Chapter 1 Section IV.A were created by randomly generating population 

parameter values with the conditions that all model standard deviations (within subjects, 

random intercept, and random slope) were less than 100 with 𝜌𝜌(𝜎𝜎11,𝜎𝜎22) ∈ (0, 0.5], and 

that the group by time interaction effect parameter 𝛽𝛽3 be no more than 2.95 times the 

standard deviation of the random slope in order to keep power from being too large.  

Only models with both random intercept and slope were generated since the results from 

Chapter 2 Section III suggest power for random intercept only models can be accurately 

calculated with simple methods (e.g. those described by Galbraith or Zhao and Edland 

but for a general missingness pattern).  The values of time at each observation were 

allowed to vary between 1 and 75, each subsequent time value being greater than the last, 

with the number of observations varying between 3 and 12.  Lastly, each design was 

assigned a probability, 𝑒𝑒 ∈ [0.05, 0.5], of any given follow-up observation being missing. 

Model parameters 𝛽𝛽0,  𝛽𝛽1, and 𝛽𝛽2were fixed at 4, 0.9, and 3.45 respectively with only the 

group by time effect 𝛽𝛽3 being randomly generated as only this effect was examined.  As 

an example, Table 3.1 provides the first 5 of 2100 designs generated. 
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Table 3.1:  Sample of Generated Designs 
Design 𝜎𝜎𝑒𝑒 𝜎𝜎11 𝜎𝜎22 𝜌𝜌(𝜎𝜎11,𝜎𝜎22) 𝒕𝒕′ for 𝑿𝑿𝐹𝐹  1-p 𝛽𝛽3 

1 1.70284 0.83074 0.48964 0.24706 [1 6 9 14 25 29 43 52 59 65 72] 0.94 0.57702 
2 3.12824 6.48894 1.24757 0.19173 [6 15 28 29] 0.91 0.48217 
3 73.74644 4.37835 13.18203 0.17312 [6 10 14 17 19] 0.87 3.14720 
4 14.68027 2.78509 2.42391 0.30144 [2 5 11 13 22 25 28 32 40] 0.66 1.15831 
5 1.40316 0.38730 0.26408 0.43773 [1 16 25 30 32] 0.63 0.74793 

 
From each design, 200 different observational patterns 𝑿𝑿𝑈𝑈 were randomly 

generated according to p, with the seed generating these 𝑿𝑿𝑈𝑈 changing for each design.  

E�(𝐺𝐺|𝑒𝑒) was then calculated over the first 10 𝑿𝑿𝑈𝑈. Expected power was then calculated by 

averaging power calculated by method 1 over the first 10 𝑿𝑿𝑈𝑈, which will be denoted as 

E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)10, as well as over 25, 50, 100, and 200 𝑿𝑿𝑈𝑈, which will be denoted as 

E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)𝐾𝐾 with K=25, 50, 100, or 200. Finally, we examined the relationship between 

values of 𝐺𝐺 and the average absolute difference between E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)10 and 

E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)𝐾𝐾 given as: 

𝐷𝐷 =
1
4
� �E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)10 − E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)𝐾𝐾�
200

𝐾𝐾=25

 

One value of E�(𝐺𝐺|𝑒𝑒) was obtained as -2.64192E-12 due to SAS overflow issues and was 

excluded from the study for having a negative value. The results, shown in Figure 2, 

show a rather straightforward association between E�(𝐺𝐺|𝑒𝑒) and the consistency between 

E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)10 and E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)𝐾𝐾𝐾𝐾{25,50,100,200} as estimators of E(power|p). 

 As seen in Figure 3.2.A, there is a clear relationship on the logarithmic scale 

between E�(𝐺𝐺|𝑒𝑒) (simply given as log(G) in the figure) and the average absolute 

difference between E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)10 and E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)𝐾𝐾𝐾𝐾{25,50,100,200} with lower values of 

E�(𝐺𝐺|𝑒𝑒) being associated with a lower difference.  Additionally, Figure 3.2.B shows that 

no meaningful difference (in this case a difference greater than 0.01) exists between the 
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two power estimates for E�(𝐺𝐺|𝑒𝑒) values less than 1. These results hold even stronger with 

an R2 value of 0.8497 when E�(𝐺𝐺|𝑒𝑒) is calculated over 200 different 𝑿𝑿𝑈𝑈 instead of 10. The 

results presented in Figure 3.2.A suggest that when E�(𝐺𝐺|𝑒𝑒) is less than 1, only a few 

different 𝑿𝑿𝑈𝑈 (for instance 10 or 25) need to be generated in order to obtain a stable 

estimate of E(power|p), which means that in such cases an estimate can be calculated 

quickly and require few computational resources. 

Figure 3.2:  Average deviation between E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)10 and E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)𝐾𝐾𝐾𝐾{25,50,100,200} 

 

C. Simulation Performance 

A subsequent simulation study was performed to evaluate the accuracy of 

E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)10 and E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)200 as estimators of E(power|p). Specifically, 400 

designs were randomly selected from the initial 2100 mentioned in section z, with the 

condition that 200 have E�(𝐺𝐺|𝑒𝑒) values greater than 1 and 200 have E�(𝐺𝐺|𝑒𝑒) values less 

than 1. For each design selected, 20000 trials were simulated, and follow-up observations 

were deleted from the trial at random according to specified probability p for each design 

with seed generating outcome values and missing observations changing with each 

design.  Empirical expected power, E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒), for each design was then calculated as 
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the number of times the null hypothesis was rejected (with α = 0.05 in this study).  

Results of the simulation study are shown in Figure 3.3 and Table 3.2. 

 

Figure 3.3: Calculated for Simulated power for 2100 designs 

 

 

Table 3.2: Calculated vs Empirical power 
Number of different 
observational 
patterns 

E�(𝐺𝐺|𝑒𝑒) 
value 

Regression Estimates and R2 
for model: simulated power = 
β*calculated power 

Absolute difference, 
calculated vs simulated power 

�̂�𝛽 R2 Min Median Mean Max 

10 different 𝑿𝑿𝑈𝑈 
Overall 0.99139 0.9990 0.000038 0.0044 0.0089 0.090 
𝐺𝐺 <1 0.99710 0.9998 0.000070 0.0026 0.0037 0.025 
𝐺𝐺 ≥1 0.98699 0.9984 0.000038 0.0100 0.0142 0.090 

200 different 𝑿𝑿𝑈𝑈 
Overall 0.99248 0.9994 0.000014 0.0040 0.0073 0.067 
𝐺𝐺 <1 0.99755 0.9998 0.000074 0.0028 0.0037 0.023 
𝐺𝐺 ≥1 0.98855 0.9991 0.000014 0.0074 0.0109 0.067 

 

Figure 3.3 shows the high degree of concordance between empirical and 

calculated power, regardless of the number of 𝑿𝑿𝑈𝑈 used in the power calcluations. Table 

3.2 further clarifies the strength of this relationship by showing the results of the 

regression model E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒) = E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)10 with K=10 or 200.  E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)𝐾𝐾 

provided accurate power estimates regardless of the number of 𝑿𝑿𝑈𝑈 used. However, using 

200 𝑿𝑿𝑈𝑈 provided more accurate estimates than using 10, especially when values of 

E�(𝐺𝐺|𝑒𝑒) were greater than 1. Importantly, these results suggest that power can be 
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calculated accurately, and when values of 𝐺𝐺 are less than one, power can be calculated 

quickly.  

 

IV. Comparison With Other Chapter 2 Methods 

A. Comparing All Methods 

Given the complexity of method 1, we again took the opportunity to compare 

power calculated by this method to that calculated by methods 2-5 described in Chapter 2 

section II.  Specifically, we averaged power calculated by methods 2-5 over 10 and 200 

different 𝑿𝑿𝑈𝑈  for the same 400 designs mentioned in Chapter 3 Section II.B.  For each 

method we calculated 

𝐷𝐷𝐾𝐾𝑖𝑖 = E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒) − E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)𝐾𝐾𝑗𝑗 

where j=1,…,5 represents the Chapter 2 method used to calculated power, and 

E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)𝐾𝐾𝑗𝑗 is the average power calculated by method j calculated over 𝐾𝐾 ∈ (10, 200) 

different 𝑿𝑿𝑈𝑈 (all of which were the same for all methods).  The performance of all 5 

methods is summarized in the box plots of Figure 3.4, with boxes extending from lower 

25th to upper 75th percentile and whiskers extending to lower 1st and upper 99th percentile.  

This figure shows that, regardless of the number of 𝑿𝑿𝑈𝑈 used, the values calculated by 

method 1 tend to be most consistently close to the simulated value out of all methods 

with values of 𝐷𝐷101 and 𝐷𝐷2001 both being highly and symmetrically concentrated 

around zero and with the spread of 𝐷𝐷2001 being less than of 𝐷𝐷101, which is to be 

anticipated.  Conversely, method 5 based on the residual degrees of freedom consistently 

overestimates power — often by more than 0.05 units, with the number of  𝑿𝑿𝑈𝑈 used 

somewhat surprisingly having little impact on the overall spread. 
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   Figure 3.4: Distribution of all 400 𝐷𝐷10𝑖𝑖  and 𝐷𝐷200𝑖𝑖  values by Method j 

 

Additionally, we counted the number of times E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)𝐾𝐾𝑗𝑗 calculated by a 

method was closest to the simulated power.  Out of all 400 designs, expected power using 

10 different 𝑿𝑿𝑈𝑈 calculated by method 1 was most often closest to simulated power.  

Specifically, method 1 was closest 181 (45.25%) times, method 4 was closest 119 

(29.75%) times, method 3 was closest 81 (20.25%) times, method 2 was closest 15 

(3.75%) times, and finally method 5 was closest only 4 (1.00%) times.  Results were 

similar when 200 different 𝑿𝑿𝑈𝑈 were used to calculate expected power with method 1 

being slightly more dominant (performing best 198 times). These results, coupled with 

the distributions observed in Figure 3.4, demonstrate the superior ability of method 1 to 

calculate expected power for the KR adjusted Wald-test for designs with some 

anticipated probability of any follow-up observation being missing. Nevertheless, given 
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the relative simplicity and frequent accuracy of method 4, we believed a more thorough 

comparison of methods 1 and 4 was warranted. 

 

B. Further Comparison of Methods 1 and 4 

 To begin with, we wanted to examine the performance of each method when the 

other performed the best to determine if a pattern emerged suggesting scenarios where 

one method performed better than the other.  For instance, if method 1 performed poorly 

in the 119 scenarios where method 4 performed best, this would suggest some underlying 

factor could be causing method 1 to perform poorly.  The distribution of the difference 

between calculated and simulated expected power for each method when either method 1 

or method 4 provides the closest value to simulated power is presented in Table 3.3.  The 

results show that method 1 performs accurately and consistently regardless of whether 

method 1 or method 4 performed best.  Conversely, the distribution of 𝐷𝐷10𝑖𝑖  differs 

substantially depending on whether method 1 or method 4 performs best.  As such, there 

appears to be some factor that is better accommodated by method 1 than by method 4 in 

calculating expected power for certain scenarios. 

Table 3.3: Distribution of 𝐷𝐷10𝑖𝑖 when methods 1 and 4 perform best 
 𝑫𝑫𝟏𝟏𝟎𝟎𝒋𝒋 

Method Best 
Method N Minimum Q25 Median Q75 Maximum 

1 1 181 0.000038 0.001552 0.003606 0.010151 0.013323 
4 119 0.000344 0.004410 0.007783 0.009911 0.013526 

        

4 1 181 0.000674 0.006541 0.012838 0.017899 0.022694 
4 119 0.000024 0.001669 0.003193 0.006422 0.009421 

*Q25 and Q75 represent the 25-th and 75-th percentiles, respectively 
 

Both methods provide the same value when the distribution of the Wald statistic 

for the LMM is known exactly, i.e. when data are balanced.  The degree of imbalance in 
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the design then seems a natural place to look for a divergence between the two methods 

that could explain the reduction in performance of method 4 in certain scenarios.  To do 

so we looked at the difference in difference between simulated and calculated expected 

power between the two methods.  Specifically, we looked at the distribution of 𝐷𝐷𝐷𝐷101,4 

defined as: 

𝐷𝐷𝐷𝐷101,4 = |𝐷𝐷101| − |𝐷𝐷104| 

such that 𝐷𝐷𝐷𝐷101,4 will be positive when calculated power for method 4 provides a closer 

value to simulated power and 𝐷𝐷𝐷𝐷101,4 will be negative when calculated power for 

method 1 provides a closer value to simulated power.  Values of 𝐷𝐷𝐷𝐷101,4 were then 

plotted in Figure 3.5, which shows that as the probability of missing follow-up 

observations increases, the relative performance of methods 1 and 4 diverges.  Moreover, 

this divergence is driven predominately by a larger error in method 4.  Altogether, the 

results provided in Table 3.3 and Figure 3.5 suggest that both methods perform well 

when the design of a planned study is relatively balanced, but that method 1 outperforms 

the simpler method 4 when designs are imbalanced, such as when the probability of a 

follow-up observation being missing is high. 
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Figure 3.5:  Values of |𝐷𝐷101| − |𝐷𝐷104| for all 400 designs examined 

 
 

V. Comparing newly developed approach to that of Ringham et al. 

In the previous sections, we’ve compared several potential methods to calculate 

expected power that all obtain expected power by averaging power over multiple 

different 𝑿𝑿𝑈𝑈.  The results indicate that calculating power using method 1 from Chapter 2 

Section II tends to provide the best approximation to expected power. In this section, we 

therefore compared the performance of E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)10 and E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)200 obtained 

using method 1 to the method described by Ringham et al., which was derived explicitly 

to provide expected power given some probability of any observation being missing, but 

does not require averaging over different values of  𝑿𝑿𝑈𝑈 and is therefore computationally 

efficient. 
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To compare these two methods, 120 designs were generated where again all 

model standard deviations were less than 100, and the ratio of group by time interaction 

effect was no more than 3 times the standard deviation of the random slope in order to 

keep power from being too large.  Possible observation time values and their 

corresponding GLMM within subjects contrasts are provided in Appendix III table 

A.III.1, with all designs having 10 subjects per treatment group for a total of 20 subjects.  

For each possible design, E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)10 and E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)200 were generated via method 

1, as was the power estimate provided by Ringham, E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)𝑅𝑅.  Note that while 

Ringham et al. made no mandate that baseline values be nonmissing, we have done so 

and therefore modified 𝑛𝑛c to be 𝑛𝑛c = 𝑛𝑛(1 − 𝑒𝑒)𝜏𝜏−1 instead of 𝑛𝑛c = 𝑛𝑛(1 − 𝑒𝑒)𝜏𝜏.  For each 

design, E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒) was also calculated from 20000 simulations as the proportion of 

times the null hypothesis was rejected (again α = 0.05). 

Results are provided in Figure 3.6, with the anticipated rate of missingness on the 

X axis and the difference between calculated and empirical power for each of the three 

methods provided on the Y axis. Results of 32 designs were excluded, because the 

denominator degrees of freedom calculated by the method of Ringham et al. were 

between 0 and 0.9, and SAS would not calculate a critical value for this F distribution via 

the FINV function. 

Figure 3.6 shows that all methods are comparable and similar to empirical power 

for p ≤ 0.1, which corresponds well with the results originally published by Ringham et 

al.  However, as the rate of missing data increases, the E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)𝑅𝑅 vastly 

underestimates power due to the exponential effect of time in reducing the noncentrality 

parameter. This point is further clarified in Appendix III Figure A.III.1 showing the 
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comparatively strong performance of the Ringham et al. method in designs with only 4 

observations per subject. This issue would obviously become even more pronounced for 

studies involving a large number of observations per subject. Conversely, both 

E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)10 and E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)200 track closely to empirical power, with 

E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)200 tending to outperform E(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)� 10.  As such, these results highlight 

the need of a method to calculate power that is not overly conservative, and suggests the 

method we have developed can accurately address this limitation with minimal 

computational complexity. 

 Figure 3.6: Comparison of E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)𝐾𝐾 vs Ringham method for K=10 and 200 
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VI. Discussion 

In this chapter, we developed a method to calculate power for longitudinal studies 

with anticipated probability of missing follow-up observations and that plan on analyzing 

study data using linear mixed models.  Specifically, this method utilizes the power 

calculation methods established in Chapter 2 to calculate power for a number of 

observation patterns generated from the full non-missing study design according to the 

anticipated rate of missing data.  The average of these power calculations is then used as 

an estimate of the expected power of the study given the rate of missing data. Using 

method 1 to calculate power provided the most accurate estimate of expected power 

compared to methods 2-5. Moreover, method 1 was shown to perform accurately in 

simulations and outperform the method developed by Ringham et al. when the rate of 

missing data is greater than 10%, regardless of the number of designs averaged over to 

estimate expected study power.  Lastly, a heuristic quantity 𝐺𝐺 was developed to quickly 

determine whether a small or large number of designs need to be averaged over in 

estimating power. However, this method has a few limitations. 

First and foremost, this method lacks a closed form solution and requires more 

computational resources than the method of Ringham et al.  Consequently, this method 

cannot be used to calculate sample size for a study in a non-iterative fashion, but given 

the small number of different observations typically required for power estimation, we 

believe required sample size can often be obtained quickly. Second, while this method 

performed well in calculating power for most studies having 𝐺𝐺 values less than around 

80, the number of designs that should be averaged over when the 𝐺𝐺 value is larger could 

be greater than 200.  However, we conjecture such studies are rare, and so considering no 
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more than 200 different should be sufficient to calculate expected power for most studies.  

Lastly, this method was only evaluated for tests of the group by time interaction in linear 

mixed models.  While we suspect the method to hold for individual tests of treatment 

group or time, further research may be warranted before the methods described are 

extended to the tests of these fixed effects.  In the meantime, the results in this chapter 

further support the accuracy of the power calculation method derived in chapter 2, and 

the present extension of this method can help investigators accommodate anticipated 

missingness into study designs and ideally serve as a foundation for sample size 

calculations in the future, which shall be the focus of the next chapter. 
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CHAPTER 4 
CALCULATING SAMPLE SIZE FOR THE KR ADJUSTED WALD TEST 

 

I. Introduction 

Thus far, this dissertation has focused on finding ways to calculate power for 

longitudinal studies where outcomes will be analyzed via LMM using the KR adjusted 

Wald test of linear trend. Chapter 2 developed a novel way to calculate power for these 

studies for a specified observation pattern.  Chapter 3 extended these techniques to 

calculate expected power given a pre-specified rate of missingness among follow-up 

observations by leveraging heuristic techniques allowing for both accuracy and, in many 

cases, speed. In this chapter, we turn finally to the ultimate goal of this dissertation: 

determining the number of subjects required to achieve a desired power to reject the null 

hypothesis with a given α level. 

 While Chapter 2 presents an array of literature addressing power calculation for 

the KR test, comparatively little attention appears to have been lent towards the task of 

calculating sample size – at least with respect to the KR test directly.  As mentioned by 

Chi et al. (2018), the sample size can be calculated for the KR adjusted test of linear trend 

in the LMM when data are balanced by utilizing a suite of sample size calculation 

methods developed for equivalent tests in the GLMM. Calculating power for the KR test 

of linear trend when designs are unbalanced, for instance with some anticipated rate of 

missing data, then remains an open problem with likely many possible approaches.  
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Before detailing our own approach, we will present existing sample size calculation 

methods for related tests.  We will then build upon these methods to develop power 

calculation methods of our own. 

 

II. Existing Sample Size Calculation Techniques For Related Tests 

We frame the following discussion with the task of calculating sample size for the t-test . 

Assuming 𝑥𝑥1 … 𝑥𝑥𝑛𝑛 are iid drawn from a 𝑛𝑛𝑙𝑙𝑡𝑡𝑚𝑚𝑎𝑎𝑙𝑙(𝜇𝜇,𝜎𝜎2) population, then the quantity 

�̅�𝑥 − 𝜇𝜇

�𝑆𝑆
2

𝑛𝑛

~𝑡𝑡𝑛𝑛−1 

and the t-test will reject the two-sided hypothesis H0: 𝜇𝜇 = 𝜇𝜇0 = 0 with size α when 

��
�̅�𝑥 − 𝜇𝜇

�𝑆𝑆
2

𝑛𝑛

�� > 𝑡𝑡 𝑛𝑛−1,1−𝛼𝛼2
 

If the true value of 𝜇𝜇 is 𝜇𝜇𝑎𝑎, then the sample size required to reject the null hypothesis that 

𝜇𝜇 = 0 at the α level with power =1- β (with β the type II error rate) is given as 

��
𝜇𝜇𝑎𝑎 − 0

�𝑆𝑆
2

𝑛𝑛

�� = 𝑡𝑡 𝑛𝑛−1,1−𝛼𝛼/2 + 𝑡𝑡 𝑛𝑛−1,1−β   →    𝑛𝑛 =
�𝑡𝑡 𝑛𝑛−1,1−𝛼𝛼/2 + 𝑡𝑡 𝑛𝑛−1,1−β�𝜎𝜎2

𝜇𝜇𝑎𝑎2
 

This sample size formula presents an obvious dilemma: the value of 𝑛𝑛 depends on the t 

distribution’s degrees of freedom 𝑛𝑛 − 1.  Instead, the asymptotic equivalence of t and z 

distributions is often invoked with the sample size formula modified instead to  

𝑛𝑛 =
�𝑧𝑧1−𝛼𝛼/2 + 𝑧𝑧1−β�𝜎𝜎2

𝜇𝜇𝑎𝑎2
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This formula is now easily applied to the case of simple linear regression and calculating 

power for the effect given by β𝑘𝑘.  Assuming β�𝑘𝑘~𝑛𝑛𝑙𝑙𝑡𝑡𝑚𝑚𝑎𝑎𝑙𝑙 �β𝑘𝑘,𝜎𝜎β�𝑘𝑘
2 �, then 

𝑛𝑛 =
�𝑧𝑧1−𝛼𝛼/2 + 𝑧𝑧1−β�𝜎𝜎β�𝑘𝑘

2

β𝑘𝑘2
 

Extending this approach to longitudinal designs, however, remains more challenging.  

Previously mentioned formulas rely on the value of 𝜎𝜎β�𝑘𝑘
2 , which in cases of simple 

linear regression can, when testing the effect of a single treatment effect, be easily 

specified in the design stage and is uniquely determined by error variance 𝜎𝜎𝑒𝑒2.  In 

contrast, specification of 𝜎𝜎β�𝑘𝑘
2 in longitudinal studies requires more effort, particularly 

when the primary effect of interest is the interaction between treatment and time.  In such 

studies, specifying covariance structure and parameters for the outcome Y is required, 

and 𝜎𝜎β�𝑘𝑘
2 can be determined by the kkth element of �𝑿𝑿′𝚺𝚺𝒀𝒀−𝟏𝟏𝑿𝑿′�

−1 ,which depends on both the 

number of observations and values of time at which observations are taken. Additionally, 

specifying hypothetical covariance parameter values in complicated covariance structures 

(such as for random intercept and slope models) may be challenging for investigators 

unfamiliar with such approaches, although Basagaña and Spiegelman (2012) suggest 

methods by which these parameters can be derived from questions more intuitive to 

investigators. 

Lu et al. (2008) takes a simple approach to this problem by obtaining the amount 

φ by which the number of subjects required at the last visit would need to be multiplied 

so that the variance in treatment effect at the last time point with missing data is the same 

as what the variance would be without missing data. The sample size for the study is then 

obtained by multiplying the number required to obtain the desired power for the 
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treatment effect at the first visit by φ. This approach is convenient in that it does not 

require specifying many different missing data patterns. However, in this approach data 

are monotone and time is treated as a categorical variable.  Additionally, defining 

variance of the treatment effect at the final time point is difficult for the KR adjusted 

Wald-test when data are missing, all of which limits this approach from being easily 

implemented to the cases we seek to address. 

 Murray (2007) and Galbraith (2002) note that when data are balanced, sample 

size for group by time interactions will only depend on two quantities: the vector of 

timepoints at which subjects are observed, and the ratio of the error variance 𝜎𝜎𝑒𝑒2, and 

variance of random slope.   As such, when data are balanced closed form calculations can 

be provided for both the number of subjects and number of observations required, with 

the design requiring the fewest number of observations being the one having only two 

observations per subject (Galbraith, 2002).  However, when data are not balanced, a 

similar closed form expression for calculating sample size is not possible. 

Under the assumption of monotone missingness, Galbraith searches over a grid of 

values of n subjects and vector of 𝜏𝜏 observation times given as t (where each previous 

vector t is nested in the subsequent) to obtain values where the expected power is equal to 

the desired power.  A grid search in this case is necessary because the value of 𝜎𝜎β�𝑘𝑘
2  is 

given as: 

𝜎𝜎β�𝑘𝑘
2 = ���𝑛𝑛𝑖𝑖𝑿𝑿(𝑖𝑖)

′ 𝚺𝚺𝑌𝑌(𝑗𝑗)
−1 𝑿𝑿(𝑖𝑖)

𝜏𝜏

𝑖𝑖=1

�

−𝟏𝟏

�

44

 

where, as mentioned in chapter 4:  𝑛𝑛𝑖𝑖  is the number of subjects whose data is missing 

after time j, and 𝑿𝑿(𝑖𝑖) and 𝚺𝚺𝑌𝑌(𝑗𝑗)are the design and covariance matrix consisting of patients 
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dropping out or completing the study after time j.  In this case, 𝜎𝜎β�𝑘𝑘
2  depends on the value 

of 𝑛𝑛𝑖𝑖 , and so n recursively depends on itself.  However, they note that if the expected 

power E[Power(𝒏𝒏)] is approximated with with Power[E(𝒏𝒏)] as defined in Chapter 3 

section II (i.e. E(𝒏𝒏) = (𝑛𝑛𝑒𝑒1, … ,𝑛𝑛𝑒𝑒𝜏𝜏)), then with 𝑒𝑒𝑖𝑖 being the probability that a patient has 

non-missing data through time j and missing data after, 𝜎𝜎β�𝑘𝑘
2 can instead be given as 

𝜎𝜎β�𝑘𝑘
2 = ���𝑒𝑒𝑖𝑖𝑿𝑿(𝑖𝑖)

′ 𝚺𝚺𝑌𝑌(𝑗𝑗)
−1 𝑿𝑿(𝑖𝑖)

𝜏𝜏

𝑖𝑖=1

�

−𝟏𝟏

�

44

 

which conveniently permits a closed form calculation for the sample size required for the 

study.  However, since this method tends to overestimate power, it by necessity also 

underestimates sample size even if often only by a small amount.  Additionally, this 

approximation cannot be easily extended to the case of a general rate of missingness due 

to the potentially intractable number of possible observation patterns which would need 

to be summed over. 

 In summary, no method could be found to calculate power for the KR adjusted 

Wald test while accommodating some general missingness pattern.  Most existing 

methods focus on monotone missingness and tend to use z-approximations to the 

distribution of the Wald statistic. The method described by Galbraith can easily be shown 

to calculate power correctly for the Wald test when data are balanced (and therefore non-

missing) – the z-approximation would provide an excellent initial guess of sample size, 

and power based on the F distribution could quickly be found through iteration. There are 

therefore two primary limitations to all current methods in planning for missing data, 

monotone or general. First, the variance in 𝛃𝛃� is obtained from 𝛟𝛟 instead of 𝛟𝛟A used in the 
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KR adjusted Wald test statistic, and these two quantities will typically not equal each 

other when data are unbalanced.  Second, the variance in 𝚺𝚺�𝑌𝑌 is not accounted for in the 

variance of 𝛃𝛃�. 

 

III. A New Approach to Calculating Sample Size for the KR Adjusted Wald-Test 

 In this section, we will develop a method to calculate sample size for the KR test 

that maintains accuracy without being computationally cumbersome. Sample size will 

then be calculated for the expected power of a design given a probability of any follow-

up observation being missing, E(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒), as in Galbraith (2002).  However, since data 

are missing in a general (not necessarily monotone) fashion, approximating E(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒) 

with 𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡[E(𝜔𝜔|𝑒𝑒)] is not often feasible.  Instead, E(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒) will need to be 

estimated as in Chapter 3 by averaging calculated power over a sample of possible XU. 

Sample size can then be iteratively solved for by increasing (or decreasing) the sample 

size used to generate XF from which XU is drawn until the desired value of E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒)is 

achieved.  Fortunately, Chapter 3 has shown that E(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒) can often be estimated 

accurately by averaging over only a small number of XU. The remaining challenge with 

regard to minimizing computational speed is to determine from which sample size an 

iterative sample size calculation should begin. 

 

A. Specifying the correct effect size  

To calculate sample size, we need to specify an “effect size” δ or ratio of 𝛃𝛃 to 𝜎𝜎𝛃𝛃�
2.  

In the linear model (GLM, LMM, etc.) 𝜎𝜎𝛃𝛃�
2 is obtained from 𝛟𝛟, or in the KR case from 

𝛟𝛟A.  As shown by Galbraith (2002) and Zhao and Edland (2021), when data are balanced, 
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a closed form expression exists allowing δ to be expressed as 𝛿𝛿 = 𝑛𝑛 ∙ 𝑓𝑓(𝒕𝒕,𝜎𝜎e2,𝜎𝜎𝑖𝑖2𝑙𝑙𝑡𝑡 𝜎𝜎s2 ), 

with 𝑓𝑓(𝒕𝒕,𝜎𝜎e2,𝜎𝜎𝑖𝑖2𝑙𝑙𝑡𝑡 𝜎𝜎s2 ) being a function of the time vector of observations t, 𝜎𝜎e2, and 

either 𝜎𝜎𝑖𝑖2 or 𝜎𝜎s2 depending on the fixed effect of interest.  This closed form expression 

permits sample size to be factored out and solved for by 𝛿𝛿 in terms of the variance 

components of the outcome Y instead of the variance of 𝛃𝛃.  However, when data are 

unbalanced, this approach is not feasible.  Two problems must then be addressed when 

specifying for longitudinal studies under the KR framework.  First (i), sample size must 

somehow be isolated from effect size 𝛿𝛿 to avoid a recursive sample size formula.  Second 

(ii), 𝜎𝜎𝛃𝛃�
2 must be given in terms of 𝛟𝛟A instead of 𝛟𝛟. 

 

(i) Isolating sample size from 𝛿𝛿 To address the first issue, we look at the balanced case 

and note that desired sample size 𝑛𝑛𝑑𝑑 can be calculated by inflating the ratio of 𝛃𝛃 to 𝜎𝜎𝛃𝛃�
2 

directly in terms of a given starting sample size 𝑛𝑛𝑠𝑠 instead of having to specify δ in terms 

of 𝚺𝚺𝒀𝒀𝑖𝑖.  For instance, in the case of a simple t-test using a standard normal approximation 

we can express 𝑛𝑛𝑑𝑑 as 

𝑛𝑛𝑑𝑑 = 𝑛𝑛𝑠𝑠�𝑧𝑧1−𝛼𝛼/2 + 𝑧𝑧1−β�
2

⎝

⎛
�𝜎𝜎

2

𝑛𝑛𝑠𝑠
𝜇𝜇𝑎𝑎

⎠

⎞

2

         with   

⎝

⎛ 𝜇𝜇𝑎𝑎

�𝜎𝜎
2

𝑛𝑛𝑠𝑠⎠

⎞

2

= 𝜔𝜔|𝑛𝑛𝑠𝑠 

and so equivalently 

𝑛𝑛𝑑𝑑 =
𝑛𝑛𝑠𝑠�𝑧𝑧1−𝛼𝛼/2 + 𝑧𝑧1−β�

2

𝜔𝜔|𝑛𝑛𝑠𝑠
 

In other words, this formula tells us what sample size 𝑛𝑛𝑑𝑑 is required so that 𝜔𝜔 =

�𝑧𝑧1−𝛼𝛼/2 + 𝑧𝑧1−β�
2
when using 𝑛𝑛𝑑𝑑 instead of 𝑛𝑛𝑠𝑠. Noting that we can equivalently express z 
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as the noncentrality parameter of the t-distribution under the alternative hypothesis given 

𝑛𝑛𝑠𝑠 subjects, we can then finally express 𝑛𝑛𝑑𝑑 as 

𝑛𝑛𝑑𝑑 =
𝑛𝑛𝑠𝑠�𝑧𝑧1−𝛼𝛼/2 + 𝑧𝑧1−β�

2

(𝜔𝜔|𝑛𝑛𝑠𝑠)2   

 In short, this reformulation allows 𝑛𝑛𝑑𝑑 to be calculated by first obtaining 𝜔𝜔|𝑛𝑛𝑠𝑠 for 

some arbitrary sample size 𝑛𝑛𝑠𝑠 and then solving for 𝑛𝑛𝑑𝑑. We can then use this method to 

calculate sample size by using any of the expressions for 𝜔𝜔 given in Chapter 2 Table 2.1. 

Specifically, we can for an arbitrary sample size 𝑛𝑛𝑠𝑠 calculate E�(𝜔𝜔|𝑛𝑛𝑠𝑠) by averaging 𝜔𝜔|𝑛𝑛𝑠𝑠 

over a number of XU and then obtain 𝑛𝑛𝑑𝑑  as 

𝑛𝑛𝑑𝑑 =
𝑛𝑛𝑠𝑠�𝑧𝑧1−𝛼𝛼/2 + 𝑧𝑧1−β�

2

�E�(𝜔𝜔|𝑛𝑛𝑠𝑠)�
2  

This method only applies to tests of individual fixed effects (i.e. only Wald tests with 

rank one contrasts) and is facilitated by the symmetry of the normal distribution.  For 

instance, a random variable 𝑁𝑁~𝑛𝑛�𝑧𝑧1−𝛼𝛼 + 𝑧𝑧1−β, 1� will be greater than 𝑧𝑧1−𝛼𝛼 exactly (1 −

β)% of the time.  Conversely, the F-distribution is often nonsymmetric, and so 

determining the necessary value of noncentrality parameter required to achieve (1 − β)% 

power is not straightforward.  Instead, we will use an approximate value obtained by 

matching cumulants of the Z and F distributions. 

These cumulants can be obtained through the ‘quantile’ function in SAS, however 

in this dissertation we will use an approximation that explicitly relates the cumulants of Z 

and F distributions.  Specifically, Ferreira (2011) showed that, for the random variable F 

having a central F distribution with v1 numerator and v2 denominator degrees of freedom, 

P(𝐹𝐹 < 𝑓𝑓) ≈ P(𝑍𝑍 < 𝑧𝑧) with 𝑍𝑍~𝑛𝑛𝑙𝑙𝑡𝑡𝑚𝑚𝑎𝑎𝑙𝑙(0,1) and 
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                                      𝑧𝑧 =
�(2𝑣𝑣2 + 𝑣𝑣1𝑓𝑓/3 + 𝑣𝑣1 − 2)𝑓𝑓

2𝑣𝑣2 + 4𝑣𝑣1𝑓𝑓/3
3

− �1 − 2
9𝑣𝑣1

�

� 2
9𝑣𝑣1

                          (4.1) 

provided that 𝑣𝑣2 is large and 𝑣𝑣2/𝑣𝑣1 ≥ 3. Letting 𝑧𝑧 = 𝑧𝑧1−𝛼𝛼 + 𝑧𝑧1−β then we can solve for 𝑓𝑓 

in equation 4.1 (which we can refer to as 𝑓𝑓(1−𝛼𝛼)+(1−β)) and obtain a new formulation for 

𝑛𝑛𝑑𝑑 that accommodates multi-rank contrasts: 

                                                     𝑛𝑛𝑑𝑑 = 𝑐𝑐𝑒𝑒𝑖𝑖𝑙𝑙 �𝑙𝑙𝑛𝑛𝑠𝑠
𝑓𝑓(1−𝛼𝛼)+(1−β)

E�(𝜔𝜔|𝑛𝑛𝑠𝑠)
�                                             (4.2) 

Where ceil is the ceiling function and 𝑓𝑓(1−𝛼𝛼)+(1−β) is obtained as: 

                                                   𝑓𝑓(1−𝛼𝛼)+(1−β) =
−𝑏𝑏 + √𝑏𝑏2 − 4𝑎𝑎𝑐𝑐

2𝑎𝑎
                                         (4.3) 

𝑎𝑎 =
𝑣𝑣1
3

  , 𝑏𝑏 = 𝑣𝑣1 + 2𝑣𝑣2 −
4
3
𝐾𝐾𝑣𝑣1 − 2  , 𝑐𝑐 = −2𝐾𝐾𝑣𝑣2 

𝐾𝐾 = �1 + 𝑧𝑧�
2

9𝑣𝑣1
−

2
9𝑣𝑣1

�

3

 

Additionally, 𝑣𝑣1 = 𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟(𝑪𝑪) = 𝑙𝑙 and 𝑣𝑣2 = 10000 to maintain consistency with the z 

approximation.  As an example, suppose we desire 85% power to reject the null 

hypothesis of the F test with 𝛼𝛼 = 0.05.  Assume 𝑣𝑣1 = 𝑙𝑙 = 4.  Here we would have 𝑧𝑧 =

𝑧𝑧0.95 + 𝑧𝑧0.85 = 1.644854 + 1.036433 = 2.681287.  Using the values in equation 4.3 

we obtain  𝑓𝑓(1−𝛼𝛼)+(1−β) = 3.9203138.  Now, we can check that 𝑃𝑃(𝑍𝑍 < 2.681287) =

0.99633 and similarly 𝑃𝑃�𝐹𝐹4,10000 < 3.92031� = 0.99651, and so there is a high degree 

of concordance between the F and Z approximation.  Thus, 𝑛𝑛𝑑𝑑 can be thought of as the 

sample size required for the noncentrality parameter in the F distribution to be 

approximately equivalent to 𝑧𝑧1−𝛼𝛼 + 𝑧𝑧1−β in terms of cumulants.  While this method does 
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not provide an exact match, it appears to perform well when the numerator degrees of 

freedom are 6 or less. 

(ii) Providing 𝜎𝜎𝑿𝑿�
2 in terms of 𝛟𝛟A  The method described in (i) uses the value of the 

noncentrality parameter provided in Chapter 2 Table 2.1 for method 1and therefore 

naturally incorporates the modifications made by KR so that var(𝛃𝛃�) = 𝛟𝛟A instead of 𝛟𝛟.  

However, the value of 𝛟𝛟A will crucially depend on the value of 𝑛𝑛𝑠𝑠, with the elements of 

𝐀𝐀 tending towards 0 (and therefore 𝛟𝛟A towards 𝛟𝛟) as the value of n tends to ∞ given a 

similar data observation pattern.  With the eventual goal being an iterative algorithm that 

searches for the correct sample size starting at 𝑛𝑛𝑑𝑑𝑠𝑠 , we then want to choose a value of 𝑛𝑛𝑠𝑠 

that provides and initial value of 𝛟𝛟A neither leads to largely overestimated values of 

𝜔𝜔|𝑛𝑛𝑑𝑑𝑠𝑠 at small values of 𝑛𝑛𝑑𝑑𝑠𝑠nor to largely underestimated values of 𝜔𝜔|𝑛𝑛𝑑𝑑𝑠𝑠  at large values 

of 𝑛𝑛𝑑𝑑𝑠𝑠, as both scenarios would lead to a larger number of iterations needing to be 

performed in the search algorithm. 

First, we will define a function: 𝜑𝜑(𝑥𝑥) = 𝑡𝑡 ∗ 𝑐𝑐𝑒𝑒𝑖𝑖𝑙𝑙(𝑥𝑥/𝑡𝑡), where 𝑡𝑡 is the number of 

treatment groups in the study. We settle on a value of 𝑛𝑛𝑠𝑠 = 𝜑𝜑(50), as this value will 

provide a value of A (on which 𝛟𝛟A depends) that noticeably impacts 𝜔𝜔 in the presence of 

substantially unbalanced data, but that does not greatly underestimate 𝜔𝜔 when 𝑛𝑛𝑑𝑑𝑠𝑠is large 

and would lead to a large number of computations at each iteration of the sample size 

search. The choice of 𝑛𝑛𝑠𝑠 was not further investigated, as it will only severely impact 

calculation speed in designs where data are anticipated to be highly unbalanced, e.g. 

when probability of any follow-up observation being missing is high. 
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B. Specification of the sample size calculation algorithm 

After the design, model parameters, and probability p of any follow-up observation being 

missing have all been specified, the first step of the sample size calculation algorithm is 

to provide a starting value 𝑛𝑛𝑑𝑑1 from which to obtain the final desired sample size 𝑛𝑛𝑑𝑑𝑓𝑓 .  

This is done by calculating E��𝜔𝜔|𝑛𝑛𝑠𝑠 = 𝜑𝜑(50)� as specified in A.ii with the number of 𝑿𝑿𝑈𝑈 

being given as: 

         1, if p = 0 
       25, if p > 0 and E�(𝐺𝐺) ≤ 1 (we use 25 instead of 10, as this can still be done quickly) 
       50, if p > 0 and 1< E�(𝐺𝐺) ≤ 2.5 
     100, if p > 0 and 2.5< E�(𝐺𝐺) ≤ 5 
     150, if p > 0 and 5< E�(𝐺𝐺) ≤ 7.5 
     200, if p > 0 and 7.5< E�(𝐺𝐺) ≤ 10 
     250, if p > 0 and E�(𝐺𝐺) > 10 
 
based on the results in chapter 3 suggesting larger values of G indicate a larger number of 

𝑿𝑿𝑈𝑈 need to be averaged over in order to provide a stable power estimate (while this stage 

is concerned with estimating the expected value of 𝜔𝜔, the number of 𝑿𝑿𝑈𝑈 determined in 

this stage will be carried forward into the power calculation phase as well).  Then, 𝑛𝑛𝑑𝑑1 is 

obtained using equation 4.2 with E��𝜔𝜔|𝑛𝑛𝑠𝑠 = 𝜑𝜑(50)� used to calculate 𝑛𝑛𝑑𝑑1.  E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒) 

is then calculated using 𝑛𝑛𝑑𝑑1 as in chapter 3, and if E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑒𝑒) is equal to the power 

desired by the investigator, the algorithm moves to step 3.  Otherwise, the algorithm 

continues to the second step. 

In the second step, the sample size in each group is increased by 1.  While in more 

complicated designs, the sample size could be increased per group proportionate to the 

allocation ratio, we have restricted our focus to studies with equal group allocation ratio. 
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Power is recalculated using the new sample size, and the process is repeated until 

calculated power is at least equal to desired power. 

For the third and final step, since 𝜔𝜔 could be underestimated for large sample 

sizes due to 𝜔𝜔 being calculated over a sample size of 50 and the elements of A therefore 

being more nonzero than would be observed with large sample sizes, the final step of the 

algorithm reduces the sample size in each group by the group’s allocation ratio.  Power is 

then recalculated, and the process is repeated until power is less than the desired power.  

The last sample size before power is less than desired power is then chosen as 𝑛𝑛𝑑𝑑𝑓𝑓 .  This 

final step will typically add little to overall calculation time, as 𝑛𝑛𝑑𝑑1 will typically be less 

than 𝑛𝑛𝑑𝑑𝑓𝑓 and will therefore only involve a single additional iteration for the algorithm. 

 

C. Algorithm Example 

In Chapter 2 section III, we calculated power for the omnibus test of any 

differential effect of time in either of the two rat groups compared to placebo.  In that 

example, power was calculated for a single value of 𝑿𝑿𝑈𝑈 randomly sampled from 𝑿𝑿.  We 

now focus on general probability p of any follow-up observation being missing and ask: 

“How many rats will be required for each treatment group to achieve an expected power 

of 90% given anticipated p=0.15”? The model parameters are specified in Chapter 2 

section III and are used as inputs to our sample size calculation algorithm. 

 In step 1, 𝑿𝑿 is initially specified as in Chapter 2 section III with φ(50) = 51 rats or 

17 rats per group.  From 𝑿𝑿, 10 different 𝑿𝑿𝑈𝑈 are randomly generated according to p=0.15.  

For each 𝑿𝑿𝑈𝑈, the noncentrality parameter 𝜔𝜔𝑈𝑈 and value 𝐺𝐺𝑈𝑈 are calculated.  Finally, 

E�(𝜔𝜔|𝑛𝑛𝑠𝑠 = 51,𝑒𝑒 = 0.15) and E�(𝐺𝐺|𝑛𝑛𝑠𝑠 = 51,𝑒𝑒 = 0.15) are calculated as the average value 
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of 𝜔𝜔𝑈𝑈 and 𝐺𝐺𝑈𝑈 for the 10 𝑿𝑿𝑈𝑈.  Doing so, we obtain E�(𝜔𝜔|𝑛𝑛𝑠𝑠 = 51,𝑒𝑒 = 0.15) = 32.1509 

and E�(𝐺𝐺|𝑛𝑛𝑠𝑠 = 51,𝑒𝑒 = 0.15) = 0.004. Now, 𝑛𝑛𝑑𝑑1 can be calculated as  

𝑛𝑛𝑑𝑑1 = 𝑐𝑐𝑒𝑒𝑖𝑖𝑙𝑙 �𝑙𝑙𝑛𝑛𝑠𝑠
𝑓𝑓(1−𝛼𝛼)+(1−β)

E�(𝜔𝜔|𝑛𝑛𝑠𝑠)
� 

From equation 4.3 using: 

 𝑣𝑣1 = 𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟(𝑪𝑪) = 2,     𝑣𝑣2 = 1000,       𝑧𝑧 = 𝑧𝑧0.95 + 𝑧𝑧0.9 = 1.64485 + 1.28155 = 2.9264 

we obtain 𝑓𝑓(1−𝛼𝛼)+(1−β) = 6.4843 and therefore 𝑛𝑛𝑑𝑑1 = 21 (i.e. 7 rats per group). 

 In step 2, we first calculate expected power obtained from 25 (since 𝐺𝐺 <1) 

different 𝑿𝑿𝑈𝑈 generated from consisting of  1
3
𝑛𝑛𝑑𝑑1 = 7 rats per group.  Doing so, we obtain 

E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑛𝑛 = 21,𝑒𝑒 = 0.15) = 0.85603, which is less than the desired value of 0.9, and 

so the process is repeated using 7 + 1 = 8 rats per group instead (i.e. 𝑛𝑛𝑑𝑑2 = 24).  Doing 

so, we obtain E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑛𝑛 = 24, 𝑒𝑒 = 0.15) = 0.91359, which is greater than 0.9, and so 

the algorithm proceeds to step 3. 

 In step 3, we subtract 1 from the n per group settled upon in step 2 and recalculate 

expected power.  Doing so, we obtain E�(𝑒𝑒𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡|𝑛𝑛 = 21,𝑒𝑒 = 0.15) = 0.85603 which is 

less than 0.8. Therefore, no further steps are necessary and the algorithm terminates with 

𝑛𝑛𝑑𝑑𝑓𝑓 = 24 or 8 rats per group being the final sample size selected.  Empirical results from 

20,000 simulated trials likewise support each step of this algorithm with average 

simulated power using 7 rats per group obtained as 85.56% and from 8 rats per group 

obtained as 91.02%.  This algorithm was performed in SAS 9.4 and took 23 seconds to 

run. 
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IV. Simulation Study and Evaluation of Performance 

A set of simulations were performed to evaluate the performance of the methods 

developed to calculate expected power for the KR adjusted Wald-test. Specifically, we 

first calculated power for designs 1 and 5 specified in Chapter 2 Table 2.1.  We compare 

simulated power to the expected power calculated by the algorithm specified in previous 

section II.B using each of power calculation methods 1-4 specified in Chapter 2 section 

II. Note the denominator degrees of freedom were modified such that 𝑚𝑚 = 𝑛𝑛(1 − 𝑒𝑒) −

𝑙𝑙 − 1 with 𝑒𝑒 the expected rather than observed proportion of follow-up observations 

being missing. Only models with both random intercept and random slope were 

examined, since Chapter 2 results suggest power and sample size for intercept only 

models can be calculated via simple methods.  Additionally, method 5 was not examined 

in this simulation study as it was shown in Chapter 3 to substantially overestimate power. 

Typically, the desired sample size would be the minimal number of subjects 

required to achieve the desired expected power.  However, the ability to calculate this 

minimal number may not be the singular criteria by which performance should be 

evaluated especially when comparing two sample size calculation methods. Consider the 

scenario comparing two different methods: method 1 determines n=14 and n=15 to 

provide 84.9% and 91.0% power, respectively, while method 2 determines n=14 and 

n=15 to provide 87.5% and 92.5% power. Additionally, suppose the true power values 

for n=14 and n=15 are 85.05% and 91.2%.  Method 1 would then incorrectly determine 

n=15 would be the number required to achieve at least 85% power, despite having more 

accurate nominal power values. In evaluating these methods, we therefore examine both 
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the ability of each method to provide the correct sample size as well as the comparison of 

calculated and simulated power at each sample size. 

For designs 1 and 5 in Chapter 2 table 2.1, sample size was calculated to achieve 

75%, 80%, 85%, 90%, and 95% expected power for each design with probability of a 

follow-up observation missing being 0.4, 0.2, and 0.1. For instance, Table 4.1 shows the 

sample size required to achieve 90% expected power for each method for design 9 

assuming each follow-up observation has a 10% chance of being missing. Methods 1, 2, 

and 4 all calculate the correct sample size, with the nominal expected power associated 

with method 1 being closest to the empirical power associated with that sample size. 

Table 4.1:  Sample size calculation for design 1, desired power = 90% 

Method p N per group 
calculated 

Nominal 
Power 

Empirical 
Power 

1 0.10 9 0.9316 0.91584 
2 0.10 9 0.9344 0.91584 
3 0.10 8 0.9010 0.86699 
4 0.10 9 0.9338 0.91584 

 
 Expected power was calculated for a total of 15 specifications for each method 

(power, missing probability p combination, so 5*3) for each design.  With a total of 4 

methods and 2 designs, this means a total of 120 sample size calculations were 

performed.  The results of these calculations are presented in Appendix IV Table A.IV.1, 

and this table also includes power calculations that were not given as solutions for one 

method but did appear as solutions for other methods so that power could be compared 

for each method at each sample size.  While the full set of results is available in 

Appendix IV, we will focus on certain important aspects of these results in this section. 

 First and foremost, we are interested in the ability of these methods to calculate 

the correct sample size.  Table 4.2 shows the number of times each method correctly 
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calculated the sample size required such that the simulated (empirical) expected power 

achieved the desired level.  On average, methods 1 and 4 calculated the correct sample 

size most frequently (both 73% of the time). In all methods, sample size per group was 

never off by more than 1.  Calculations for design 5 were more accurate for all methods, 

with methods 1 and 4 again performing best (each being correct 87% of the time).  We 

suspect the reason for this difference in performance lies in sample size.  For design 1, 

calculated sample sizes ranged from 6 to 13 per group, whereas for design 5 calculated 

sample sizes ranged from 10 to 19 per group.  Methods 1 and 4 were each only incorrect 

a total of 3 times when sample sizes were 10 per group or larger, and the difference 

between nominal and empirical power in such cases was a maximum of 0.0082 (0.9558 

vs 0.9476) for method 1 and 0.0098 (0.9574 vs 0.9476) for method 4. 

Table 4.2: Sample Size Calculation Performance 
  Sample Size Calculation 

Design Method Correct Overestimated Underestimated 
1 

(Single group 
by time 

contrast) 

1 9 0 6 
2 9 0 6 
3 4 0 11 
4 9 0 6 

     

5 
(Omnibus 
contrast) 

1 13 1 1 
2 12 0 3 
3 5 0 10 
4 13 2 0 

     

Total 

1 22 1 7 
2 21 0 9 
3 9 0 21 
4 22 2 6 

 

We also looked at the concordance between nominal and empirical expected 

power at each of the sample sizes calculated for all methods. Specifically, some methods 

had different sample sizes, so we made sure that power was calculated using all methods 
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for any sample size calculated by any method.  For instance, suppose methods 1, 2, and 5 

determined for 75%, 80%, 85%, 90%, and 95% power a total of 6, 7, 8, 10, and 12 

subjects per group were required while method 3 determined 5, 7, 8, 9, and 11 subjects 

were required.  In this scenario, we would calculate power for 5, 6, 7, 8, 9, 10, 11, and 12 

subjects per group using each of the power calculation methods and compare the 

calculated to empirical power.  Table 4.3 provides a summary of the absolute deviation 

between calculated and empirical expected power over all sample sizes for each method, 

both per design and in total.  This table shows that all methods performed well in 

calculating nominal power for any specific sample size. Performance was poorer in 

design 1, again perhaps due to the smaller sample sizes, but all methods still performed 

well. Thus, as shown in Appendix IV Table A.IV.1, while the correct sample size was not 

always chosen, this can in some cases be due to nominal and empirical power being very 

similar but on opposite sides of the desired power threshold.  Method 1 tended to provide 

the closest approximation to empirical power followed closely by Method 4, with both 

having a median difference of less 0.01 from empirical power. In fact, Method 1 achieved 

the closest approximation to empirical power in 25 (73.5%) of 34 sample sizes (compared 

to 7 times (20.6%) for method 3 and 2 times (5.9%) for method 6), and for the 9 sample 

sizes for which another method performed better, the maximum difference between 

nominal and empirical power for method 1 was 0.0087. 
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Table 4.3: Comparison of nominal vs empirical power at calculated sample size 
   Absolute difference between Calculated and Empirical Power 

Design Method Number of 
Sample Sizes Min Max Median Mean SD 

1 
(Single 

group by 
time 

contrast) 

1 15 0.000048 0.062738 0.015756 0.022604 0.021254 
2 15 0.007508 0.080843 0.031440 0.034168 0.023165 
3 15 0.009786 0.091593 0.034050 0.041051 0.025604 

4 15 0.006658 0.074113 0.030442 0.031502 0.021667 

        

5 
(Omnibus 
contrast) 

1 19 0.000063 0.008664 0.002511 0.002780 0.002093 
2 19 0.000152 0.026222 0.005116 0.007886 0.007768 
3 19 0.005950 0.062212 0.025244 0.025901 0.015850 
4 19 0.000833 0.010948 0.002408 0.003755 0.002952 

        

Total 

1 34 0.000048 0.062738 0.003954 0.011526 0.017142 
2 34 0.000152 0.080843 0.010980 0.019481 0.020881 
3 34 0.005950 0.091593 0.027503 0.032585 0.021759 
4 34 0.000833 0.074113 0.006882 0.015996 0.019987 

Altogether, these results suggest that all methods are capable of providing 

accurate sample size calculations, with method 1 being the most accurate.  However, 

method 4 frequently provided the same sample size as method 1 with only a slightly 

larger difference between nominal and empirical power suggesting this simple method 

may be a viable option for calculating power.  Moreover, these results confirm that 

sample size can be calculated quickly.  Each algorithm provided a sample size calculation 

in around 20 seconds since G was always less than 0.1 and therefore only 25 𝑿𝑿𝑈𝑈 were 

averaged over.  

 

V. Practical Example 

We turn again to the study on growth curves of rat body weights described in 

Chapter 2 Section III.B provided by Wolfinger (1996) and Box (1950). To summarize:  

rats were provided a control treatment, Thyroxin, or Thiouracil, and the question of 

interest for the study was whether there is a difference in average trajectory of body 

weight between either treatment group and the control group. 
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We can now calculate the sample size required to achieve 75%, 80%, 85%, and 

90% power via the algorithm described in X using each power calculation method. In 

addition to methods 1-4 in Chapter 1, we will also use method 5 (with 𝑚𝑚 = 𝑛𝑛𝜏𝜏(1 − 𝑒𝑒) −

𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟(𝑿𝑿||𝒁𝒁) with 𝑒𝑒 the expected rather than observed proportion of follow-up observations 

being missing) to show how using a traditional power calculation based on the residual 

degrees of freedom (as can be found in Helms 1992) or similar normal approximation to 

calculate sample size for the KR adjusted Wald-test compares to the sample sizes 

obtained using methods 1-4. In this example, we will assume each treatment group has 

the number of rats, and the probability of any follow-up observation being missing will 

be p = 0.15.  We lastly performed a final sample size calculation needed for 90% power 

assuming 𝛽𝛽4 = -2.44 instead of -6.43, as this scenario would likely require a large sample 

size, in order to compare the performance of all methods in a large sample scenario.  

Results are provided in Table 4.5. 

These results show that methods 1-3 are again able to calculate sample size 

accurately for a design encountered by researchers.  Method 4 tended to slightly 

underestimate power, while method 5 tended to vastly overestimate power leading to 

incorrect sample size in some instances.  However, when sample sizes were large, all 5 

methods performed accurately.  This convergence in performance conforms with 

expectations:  the distribution of the KR adjusted Wald-test statistic asymptotically 

converges with that of the traditional Wald-test in the LMM. Ultimately, these results, 

coupled with the results in section III and in previous chapters, highlight the need for a 

power and sample size approach specifically targeting the KR adjusted Wald-test when 

sample sizes are small, and suggest method 1 is the optimal approach tried of doing so.  
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Table 4.5: Sample size calculations for rat bodyweight study 
Value 
of 𝛽𝛽4 

Desired 
Power 

Method Calculated 
N per group 

required 

Nominal 
Expected 

Power 

Empirical 
Expected 

Power 

Simulations 
Converging 

−6.43 

80% 

1 7 0.85603 0.85559 19839 
2 7 0.85675 0.85559 19839 
3 7 0.85722 0.85559 19839 
4 7 0.84681 0.85559 19839 
5 6 0.84961 0.78517 19695 

      

85% 

1 7 0.85603 0.85559 19839 
2 7 0.85675 0.85559 19839 
3 7 0.85722 0.85559 19839 
4 8 0.90193 0.91020 19921 
5 7 0.90315 0.85559 19839 

      

90% 

1 8 0.90781 0.91020 19921 
2 8 0.90842 0.91020 19921 
3 8 0.90881 0.91020 19921 
4 8 0.90193 0.91020 19921 
5 7 0.90315 0.85559 19839 

       

-2.44 90% 

1 35 0.90152 0.9018 20000 
2 35 0.90165 0.9018 20000 
3 35 0.90174 0.9018 20000 
4 35 0.90052 0.9018 20000 
5 35 0.90856 0.9018 20000 
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CHAPTER 5 
SUMMARY DISCUSSION AND IDEAS FOR FUTURE RESEARCH 

 
 

I. Summary Discussion 
 

The Kenward Roger adjustment to the Wald test statistic in the LMM was developed to 

address three primary issues with using the traditional form of the statistic (equation 1.1) when 

making inferences about fixed effects.  First the REML variance estimates are biased.  Second, 

the variance of 𝑿𝑿� does not take into account the variance in 𝚺𝚺� on which 𝑿𝑿� depends.  Lastly, the 

distribution of the test statistic is generally unknown except for special cases.  Kenward 

and Roger only defined their adjustment under the null hypothesis, however, and so 

calculating power for their adjusted statistic is not straightforward.  Currently, no 

methods for calculating power or sample size exist that target the KR adjusted Wald 

statistic by specifically addressing all three issues for which the KR adjustment was 

developed.  In this dissertation, we addressed this void in methodology by introducing a 

technique for calculating power and sample size (which in this dissertation we generally 

referred to as “method 1”) that extends to the alternative hypothesis the approach 

originally used by Kenward and Roger to adjust the Wald statistic under the null. 

 Additionally, we introduced three other methods (methods 2-4) utilizing simpler 

methodologies.  All four of these methods were compared in their ability to calculate 

power and sample size, both to each other and to a fifth pre-existing method described in 

Helms (1992) that simply uses the residual degrees of freedom and traditional value of 

the noncentrality parameter.  Specifically, all methods were compared on their ability to 
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calculate power for designs with a specific observation pattern, their ability to calculate 

power for designs with some anticipated probability of any follow-up observation being 

missing, and their ability to calculate sample size for designs with some anticipated 

probability of any follow-up observation being missing. 

 All methods performed well when only a random intercept was used in the model.  

When both intercept and slope were included as random effects in the model, method 1 

consistently outperformed the other four methods examined, especially when the designs 

became more imbalanced (in this case caused by an increase in missing follow-up data).  

Outperforming these other four methods clarifies why a sophisticated approach to 

calculating the KR adjusted Wald test is necessary.  Outperforming methods 3-5 shows 

that the KR adjusted variance of 𝑿𝑿� (given as 𝛟𝛟A) should be accounted for, and in the case 

of methods 4-5, the adjustment to the denominator degrees of freedom in the F 

distribution should be accounted for in any method calculating power or sample size for 

this test.  Outperforming method 2 suggests a more subtle issue that must be accounted 

for, as method 2 accommodates both the adjusted variance of 𝑿𝑿� and the adjustment to the 

denominator degrees of freedom. 

 Specifically, the KR method obtains denominator degrees of freedom and scale 

factor by matching to the expected value and variance of the adjusted Wald statistic.  

Using 𝛟𝛟�A as the estimated variance of in 𝑿𝑿� the KR adjusted Wald statistic 𝑊𝑊𝐴𝐴 we have: 

E(𝑊𝑊𝐴𝐴) = E �E�𝑊𝑊𝐴𝐴|𝛟𝛟�A�� 

However, method 2 utilizes the traditional relationship between the noncentrality 

parameter and F statistic in the linear model (i.e. 𝜔𝜔 = 𝑙𝑙𝐹𝐹).  The accuracy of this 

relationship implicitly relies on the assumption that E(𝑊𝑊𝐴𝐴) = E�𝑊𝑊𝐴𝐴|𝛟𝛟�A = 𝛟𝛟A�.  When 
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data are unbalanced, then the Taylor expansion in Appendix II suggest that 

E �E�𝑊𝑊𝐴𝐴|𝛟𝛟�A�� < E�𝑊𝑊𝐴𝐴|𝛟𝛟�A = 𝛟𝛟A� (although there is a remainder term in this expansion 

that makes this statement difficult to prove definitively).  Additionally, since we have  

E(𝜆𝜆𝑊𝑊𝐴𝐴) = E(𝐹𝐹) =
𝑚𝑚(𝑙𝑙 + 𝜔𝜔)
𝑙𝑙(𝑚𝑚 − 2)  

then in unbalanced designs 𝜔𝜔 obtained from E �E�𝑊𝑊𝐴𝐴|𝛟𝛟�A�� must be less than if 𝜔𝜔 were 

obtained from E�𝑊𝑊𝐴𝐴|𝛟𝛟�A = 𝛟𝛟A� provided degrees of freedom are the same, which is 

attested to by the fact that in all calculations examined in this dissertation the 

noncentrality parameter obtained using method 1 was smaller than that obtained using 

method 2.  Therefore, the performance of method 1 over method 2 (although often 

marginal) suggests that method 1 better captures the reduction in noncentrality parameter 

due to the hierarchical relationship of 𝛟𝛟�A and 𝑊𝑊𝐴𝐴 in unbalanced designs.  Ultimately, the 

relative performance of these methods highlights the importance of calculating power and 

sample size using methodology similar to that of Kenward and Roger and suggests that 

method 1 successfully performs this task. 

 Power and sample size calculations accommodating some anticipated probability 

p of any follow-up data being missing rely on averaging calculated power over a number 

of different observed design matrices 𝑿𝑿𝑈𝑈 generated by deleting follow-up observations 

from the full potential design matrix 𝑿𝑿𝐹𝐹 according to p.  As such, these calculations have 

the potential to be computationally intensive.  To limit the computational demands of this 

method, we developed a heuristic value G that can be used to determine when only a few 

number of 𝑿𝑿𝑈𝑈 need to be averaged over in order to provide a consistent estimate of the 

expected power (or sample size needed to obtain such power) of the study.  Specifically, 
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when values of G are low, we found only a few 𝑿𝑿𝑈𝑈 need to be considered in calculating 

expected power.  Moreover, these low values of G are more likely when power is high 

and p is low, which will be typical for most sample size calculations of interest to 

researchers.  As such, these results suggest that sample size calculations performed by 

iteratively searching for a minimum sample size achieving desired expected power can 

typically be conducted quickly with few computational demands. 

 Aiding in the speed of such a sample size algorithm, we developed an approach to 

calculating an initial starting sample size from which to search that utilizes the 

relationship between the noncentrally parameter and the Z (standard normal) distribution.  

This approach relies on the approximation between F and Z distributions that, while 

therefore not perfectly accurate, often provides a starting sample size within one or two 

values of the final determined sample size and easily accommodates the general form of 

the Wald statistic in the linear model. 

 Ultimately, this dissertation not only highlights the need for methods 

accommodating the KR adjusted Wald statistic in power and sample size calculations, but 

provides an accurate method of doing so that is computationally practical. Specifically, 

method 1 addresses the same issues targeted by Kenward and Roger using similar 

methodology, and upon examination this new method provides reliably accurate power 

and sample size calculations, both objectively and compared to other methods, for the KR 

adjusted Wald statistic. 
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II. Limitations and Future Directions 

 While the methods developed in this dissertation (and method 1 in particular) 

have been demonstrated to accurately calculate power for the KR adjusted Wald test in 

the LMM, these methods are not without their limitations in applicability, nor is this 

dissertation without limits in scope. 

 Method 1 has only been developed to calculate power for models treating time as 

a continuous variable in the design matrix X.  Notably, in designs where X has a dummy 

variable for each time-point, the obtained solution for the noncentrality parameter will 

not match the value in known exact cases.  The method 1 solution for the noncentrality 

parameter can easily be modified to obtain the correct value for both models by 

multiplying 𝜔𝜔 by 1 − 1
𝑚𝑚

+ 𝑙𝑙2

𝑚𝑚𝑚𝑚
 , where W is the number of within subjects factors (in this 

case number of time points).  We have not examined this adjustment further, however, as 

this type of model restricts the benefits of the mixed model by requiring balanced data.  

Such an adjustment may nonetheless be necessary if this method is to be applied to 

designs incorporating random cluster effects in future research. 

Another limitation with method 1 appears in the bias of the remainder term in the 

Taylor expansion.  Specifically, when we have in balanced data 

E �𝑿𝑿′𝑪𝑪�𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏
𝑪𝑪′𝑿𝑿� = 𝑿𝑿′𝛉𝛉𝑿𝑿 − 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿 + 𝑂𝑂(𝑛𝑛−1) (Appendix II section B).  As the 

proportion of follow-up observations missing becomes more extreme, the bias in this 

value obtained by the Taylor Expansion increases.  In such cases this bias will cause the 

numerator in the solution of the noncentrality parameter to shrink and denominator to 

inflate by an excessive amount, which will result in a noncentrality parameter 

substantially smaller than the correct value.  However, this issue is relegated to extremely 
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unbalanced designs, for instance cases where 60 or 70 percent of follow-up observations 

are missing, and will thus be of little practical concern when calculating power for most 

studies. 

The limitations in the scope of this dissertation also provide avenues for future 

research.  For instance, this dissertation only examined linear mixed models with either 

random intercept or random intercept and slope.  The KR adjustment, however, can be 

applied to more general covariance matrices.  In the original adjustment developed by 

Kenward and Roger in 1997, a term appears in the expression for 𝛟𝛟�A that becomes zero 

for linear covariance structures (i.e. structures where the second derivative of the 

covariance matrix is 0 with respect to all estimated parameters, as in the random intercept 

and slope models) and is not included in this dissertation or the original proc mixed and 

GLIMMIX procedure in SAS.   Kenward and Roger (2009) noted that dropping this term 

in nonlinear covariance structures (for instance AR(1) structures in the GLM) could 

introduce additional sources of bias, and they provided an adjustment to their method that 

extends to such nonlinear covariances (and has since been implemented in proc 

Mixed/GLIMMIX as an additional option).  Therefore, two additional areas of research 

could be explored: first whether method 1 as currently exists adequately calculates power 

for this adjusted method in nonlinear covariance models, and secondly whether a parallel 

adjustment to method 1 is feasible. 

Another natural direction for future research would be the extension of method 1 

to models that do not assume normality of the outcome.  Proc GLIMMIX in SAS already 

permits the KR adjustment for a variety of assumed conditional outcome distributions, 

including Binomial and Poisson (provided a pseudo likelihood approach is used for 
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estimation). Therefore, future research extending method 1 to such generalized linear 

mixed model approach has potentially wide applicability for a wide class of models. 

In the meantime, the methods examined in this dissertation, and in particular 

method 1, allows for accurate calculation of power and sample size for the KR adjusted 

Wald test in relatively small sample longitudinal studies with normally distributed 

outcomes.  Moreover, these methods allow researchers to accurately plan for a range of 

missing data in the study design phase and thus allowing for power and sample size 

calculations that are neither overly conservative nor optimistic.  
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Proof 1: Maximum Likelihood Estimates for the General Linear Multivariate Model 

Before we begin maximizing the likelihood function, we will define a useful operation. 

Definition 1: 𝜕𝜕
𝜕𝜕𝑨𝑨
𝑨𝑨 

For matrix 𝐀𝐀 = �

𝑎𝑎11 𝑎𝑎12 … 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋮ ⋮

𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛

� ,   𝜕𝜕
𝜕𝜕𝐀𝐀
𝐀𝐀 = 𝐃𝐃𝐀𝐀 = �

𝑑𝑑11 𝑑𝑑12 … 𝑑𝑑1𝑛𝑛
𝑑𝑑21 𝑑𝑑22 ⋯ 𝑑𝑑2𝑛𝑛
⋮ ⋮ ⋮ ⋮

𝑑𝑑𝑚𝑚1 𝑑𝑑𝑚𝑚2 ⋯ 𝑑𝑑𝑚𝑚𝑛𝑛

� 

where �
𝑑𝑑𝑖𝑖𝑖𝑖 = 1  𝑖𝑖𝑓𝑓 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ 𝒂𝒂
𝑑𝑑𝑖𝑖𝑖𝑖 = 0 𝑖𝑖𝑓𝑓 𝑎𝑎𝑖𝑖𝑖𝑖 ∉ 𝒂𝒂

 

and 𝒂𝒂 is the set of all elements of A which are allowed to vary when taking the 

derivative.  For instance, if 𝒂𝒂 = [𝑎𝑎11,𝑎𝑎24], then 𝑑𝑑11 = 1, 𝑑𝑑24 = 1, and all other 𝑑𝑑𝑖𝑖𝑖𝑖 = 0. 

This concept will be necessary to show 𝑿𝑿� and 𝚺𝚺� maximize the likelihood function 

regardless of which combination of elements of 𝑿𝑿 and 𝚺𝚺 are allowed to vary. 

Maximizing the likelihood function 

(i) We’ll maximize 𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) w.r.t. 𝑿𝑿 by first taking  𝜕𝜕
𝜕𝜕𝑿𝑿
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀).  Note that 

     (a)    𝜕𝜕
𝜕𝜕𝑿𝑿

[(𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝚺𝚺−1] = 𝜕𝜕
𝜕𝜕𝑿𝑿

[𝒀𝒀𝚺𝚺−1 − 𝑿𝑿𝑿𝑿𝚺𝚺−1] = 𝟎𝟎(𝑛𝑛𝑛𝑛𝑛𝑛) −𝑿𝑿𝑫𝑫𝑿𝑿𝚺𝚺−1 

     (b)    𝜕𝜕
𝜕𝜕𝑿𝑿

[(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′] = 𝜕𝜕
𝜕𝜕𝑿𝑿

(𝒀𝒀) − 𝜕𝜕
𝜕𝜕𝑿𝑿

(𝑿𝑿′𝑿𝑿′) = 𝟎𝟎(𝑛𝑛𝑛𝑛𝑛𝑛) −𝑫𝑫𝑿𝑿
′ 𝑿𝑿′ 

     (c)    𝜕𝜕
𝜕𝜕𝑿𝑿

[(𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′] = (𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝚺𝚺−1 𝜕𝜕
𝜕𝜕𝑿𝑿

[(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′] + 𝜕𝜕
𝜕𝜕𝑿𝑿

[(𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝚺𝚺−1](𝒀𝒀 − 𝑿𝑿𝑿𝑿)′ 

  = 𝑿𝑿𝑿𝑿𝚺𝚺−1𝑫𝑫𝑿𝑿
′ 𝑿𝑿′ − 𝒀𝒀𝚺𝚺−1𝑫𝑫𝑿𝑿

′ 𝑿𝑿′ + 𝑿𝑿𝑫𝑫𝑿𝑿𝚺𝚺−1𝑿𝑿′𝑿𝑿′ − 𝑿𝑿𝑫𝑫𝑿𝑿𝚺𝚺−1𝒀𝒀′ 

Now, using cyclic permutation under the trace operator and the fact that 𝜕𝜕
𝜕𝜕𝑿𝑿
𝑡𝑡𝑡𝑡(𝑨𝑨) =

𝑡𝑡𝑡𝑡 � 𝜕𝜕
𝜕𝜕𝑿𝑿
𝑨𝑨� we have 

𝜕𝜕
𝜕𝜕𝑿𝑿
𝑡𝑡𝑡𝑡[(𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′] = 𝑡𝑡𝑡𝑡�𝑫𝑫𝑿𝑿

′ 𝑿𝑿′𝑿𝑿𝑿𝑿𝚺𝚺−1 − 𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝒀𝒀𝚺𝚺−1 + 𝑿𝑿′𝑿𝑿′𝑿𝑿𝑫𝑫𝑿𝑿𝚺𝚺−1 − 𝒀𝒀𝑿𝑿𝑫𝑫𝑿𝑿𝚺𝚺−1�  

                                 = 𝑡𝑡𝑡𝑡��𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝑿𝑿𝑿𝑿 − 𝑫𝑫𝑿𝑿

′ 𝑿𝑿′𝒀𝒀 + 𝑿𝑿′𝑿𝑿′𝑿𝑿𝑫𝑫𝑿𝑿 − 𝒀𝒀𝑿𝑿𝑫𝑫𝑿𝑿�𝚺𝚺−1� 
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                                      =  𝑡𝑡𝑡𝑡[𝑲𝑲𝚺𝚺−1] 

This function will obviously equal zero when 𝑲𝑲𝚺𝚺−1 = 𝐎𝐎𝑛𝑛𝑛𝑛𝑛𝑛 which will occur when 

 𝑿𝑿𝑿𝑿𝚺𝚺−1𝑫𝑫𝑿𝑿
′ 𝑿𝑿′ = 𝒀𝒀𝚺𝚺−1𝑫𝑫𝑿𝑿

′ 𝑿𝑿′  since then so too will 𝑿𝑿𝑫𝑫𝑿𝑿𝚺𝚺−1𝑿𝑿′𝑿𝑿′ = 𝑿𝑿𝑫𝑫𝑿𝑿𝚺𝚺−1𝒀𝒀′.  Solving 

we have: 

𝑿𝑿𝑿𝑿𝚺𝚺−1𝑫𝑫𝑿𝑿
′ 𝑿𝑿′ = 𝒀𝒀𝚺𝚺−1𝑫𝑫𝑿𝑿

′ 𝑿𝑿′ 

𝚺𝚺−1𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝑿𝑿𝑿𝑿 = 𝚺𝚺−1𝑫𝑫𝑿𝑿

′ 𝑿𝑿′𝒀𝒀 

𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝑿𝑿𝑿𝑿 = 𝑫𝑫𝑿𝑿

′ 𝑿𝑿′𝒀𝒀 

𝑿𝑿′𝑿𝑿𝑿𝑿 = 𝑿𝑿′𝒀𝒀 

                        𝑿𝑿� = (𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝒀𝒀 

For the second derivative test we have 

𝜕𝜕2

𝜕𝜕2𝑿𝑿
𝑡𝑡𝑡𝑡[(𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′] = 𝑡𝑡𝑡𝑡�𝑿𝑿𝑫𝑫𝑿𝑿𝚺𝚺−1𝑫𝑫𝑿𝑿

′ 𝑿𝑿′ + 𝑿𝑿𝑫𝑫𝑿𝑿𝚺𝚺−1𝑫𝑫𝑿𝑿
′ 𝑿𝑿′�  

                      = 𝑡𝑡𝑡𝑡��𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝑿𝑿𝑫𝑫𝑿𝑿 + 𝑫𝑫𝑿𝑿

′ 𝑿𝑿′𝑿𝑿𝑫𝑫𝑿𝑿�𝚺𝚺−1� 

Note for 𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝑿𝑿𝑫𝑫𝑿𝑿 = 𝑨𝑨  we have 𝑎𝑎𝑖𝑖𝑖𝑖 = ∑ ∑ 𝑥𝑥𝑢𝑢𝑢𝑢𝑥𝑥𝑢𝑢𝑢𝑢

𝑞𝑞
𝑢𝑢=1

𝑛𝑛
𝑢𝑢=1 > 0  for all 𝑖𝑖 = 1, … , 𝜏𝜏 when 

all elements of 𝑿𝑿 are allowed to vary and 0 < 𝑎𝑎𝑖𝑖𝑖𝑖 ≤ ∑ ∑ 𝑥𝑥𝑢𝑢𝑢𝑢𝑥𝑥𝑢𝑢𝑢𝑢
𝑞𝑞
𝑢𝑢=1

𝑛𝑛
𝑢𝑢=1  for all 𝑖𝑖 = 1, … , 𝜏𝜏 

otherwise, and since 𝚺𝚺−1 is positive semidefinite with all eigenvalues, 𝜆𝜆𝑖𝑖(𝚺𝚺−1), 

nonnegative and at least one nonzero, we have 

𝜕𝜕2

𝜕𝜕2𝑿𝑿
𝑡𝑡𝑡𝑡[(𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝚺𝚺−1(𝒀𝒀− 𝑿𝑿𝑿𝑿)′] = �𝑎𝑎𝑖𝑖𝑖𝑖

𝜏𝜏

𝑖𝑖=1

𝜆𝜆𝑖𝑖(𝚺𝚺−1) > 0  

Therefore,  −1
2
𝜕𝜕2

𝜕𝜕2𝑿𝑿
𝑡𝑡𝑡𝑡[(𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′] < 0 and so the MLE for 𝑿𝑿 is 

𝑿𝑿� = (𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝒀𝒀 
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(ii) We’ll maximize 𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) w.r.t. 𝚺𝚺 by first taking  𝜕𝜕
𝜕𝜕𝚺𝚺
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀).  Note that 𝜕𝜕

𝜕𝜕𝑨𝑨
𝑙𝑙𝑙𝑙𝑙𝑙|𝑨𝑨| =

𝑡𝑡𝑡𝑡 �𝑨𝑨−1 𝜕𝜕𝑨𝑨
𝜕𝜕𝑨𝑨
� (Petersen and Pedersen, 2012, expression 43) so 

𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) = −
𝑛𝑛𝜏𝜏
2
𝑙𝑙𝑙𝑙𝑙𝑙(2𝜋𝜋) −

𝑛𝑛
2
𝑙𝑙𝑙𝑙𝑙𝑙|𝚺𝚺| −

1
2
𝑡𝑡𝑡𝑡[(𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝚺𝚺−1(𝒀𝒀− 𝑿𝑿𝑿𝑿)′] 

𝜕𝜕
𝜕𝜕𝚺𝚺
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) = −𝑛𝑛

2
𝑡𝑡𝑡𝑡 �(𝚺𝚺)−1 𝜕𝜕

𝜕𝜕𝚺𝚺
(𝚺𝚺)� − 1

2
𝑡𝑡𝑡𝑡 � 𝜕𝜕

𝜕𝜕𝚺𝚺
(𝚺𝚺−1)(𝒀𝒀− 𝑿𝑿𝑿𝑿)′(𝒀𝒀 − 𝑿𝑿𝑿𝑿)�  

         = −𝑛𝑛
2
𝑡𝑡𝑡𝑡[𝚺𝚺−1𝑫𝑫𝚺𝚺] + 1

2
𝑡𝑡𝑡𝑡[𝚺𝚺−1𝑫𝑫𝚺𝚺𝚺𝚺−1(𝒀𝒀− 𝑿𝑿𝑿𝑿)′(𝒀𝒀 − 𝑿𝑿𝑿𝑿)] 

Solving for zero we have 

𝚺𝚺−1𝑫𝑫𝚺𝚺 = 1
𝑛𝑛

[𝚺𝚺−1𝑫𝑫𝚺𝚺𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′(𝒀𝒀 − 𝑿𝑿𝑿𝑿)]  

𝑫𝑫𝚺𝚺 = 1
𝑛𝑛
𝑫𝑫𝚺𝚺𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′(𝒀𝒀 − 𝑿𝑿𝑿𝑿)    

𝚺𝚺� = 1
𝑛𝑛

(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′(𝒀𝒀 − 𝑿𝑿𝑿𝑿)      

For the second partial derivative test we have 

(a)    𝜕𝜕
2

𝜕𝜕2𝚺𝚺
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) = 1

2
𝑡𝑡𝑡𝑡(𝚺𝚺−1𝚺𝚺−1) + 𝑡𝑡𝑡𝑡[𝚺𝚺−1𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′(𝒀𝒀 − 𝑿𝑿𝑿𝑿)]  

       which evaluated at  𝑿𝑿 = 𝑿𝑿�  and  𝚺𝚺 = 1
𝑛𝑛
�𝒀𝒀 − 𝑿𝑿𝑿𝑿��′�𝒀𝒀 − 𝑿𝑿𝑿𝑿�� is a function of the     

       traces of powers (i.e. squared, cubed, etc.) of ��𝒀𝒀 − 𝑿𝑿𝑿𝑿��′�𝒀𝒀 − 𝑿𝑿𝑿𝑿���
−1

, a symmetric 

       positive semi-definite matrix of rank>0, and is therefore greater than 0. 

(b)   𝜕𝜕
2

𝜕𝜕2𝑿𝑿
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) evaluated at 𝑿𝑿 = 𝑿𝑿�  and  𝚺𝚺 = 1

𝑛𝑛
�𝒀𝒀 − 𝑿𝑿𝑿𝑿��′�𝒀𝒀 − 𝑿𝑿𝑿𝑿�� is also greater 

than 0  since again  ��𝒀𝒀 − 𝑿𝑿𝑿𝑿��′�𝒀𝒀 − 𝑿𝑿𝑿𝑿���
−1

 is positive semidefinite, and so the proof is 

almost  identical to the second derivative test given in (i) but with this new quantity 

instead of 𝚺𝚺−1 

(c)   𝜕𝜕2

𝜕𝜕𝑿𝑿𝜕𝜕𝚺𝚺
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀)  evaluated  at 𝑿𝑿 = 𝑿𝑿� and 𝚺𝚺 = 1

𝑛𝑛
�𝒀𝒀 − 𝑿𝑿𝑿𝑿��′�𝒀𝒀 − 𝑿𝑿𝑿𝑿�� 
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                 = −𝑡𝑡𝑡𝑡��𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝑿𝑿𝑿𝑿 − 𝑫𝑫𝑿𝑿

′ 𝑿𝑿′𝒀𝒀 + 𝑿𝑿′𝑿𝑿′𝑿𝑿𝑫𝑫𝑿𝑿 − 𝒀𝒀𝑿𝑿𝑫𝑫𝑿𝑿�𝚺𝚺−1𝚺𝚺−1� 

      = 0 

        because from (i) we have ��𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝑿𝑿𝑿𝑿 −𝑫𝑫𝑿𝑿

′ 𝑿𝑿′𝒀𝒀 + 𝑿𝑿′𝑿𝑿′𝑿𝑿𝑫𝑫𝑿𝑿 − 𝒀𝒀𝑿𝑿𝑫𝑫𝑿𝑿�� = 𝟎𝟎    

        when 𝑿𝑿 = 𝑿𝑿� 

Therefore, � 𝜕𝜕
2

𝜕𝜕2𝚺𝚺
� � 𝜕𝜕2

𝜕𝜕2𝑿𝑿
� − � 𝜕𝜕2

𝜕𝜕𝑿𝑿𝜕𝜕𝚺𝚺
�
2
 > 0 evaluated at 𝑿𝑿 = 𝑿𝑿�  and  𝚺𝚺 = 1

𝑛𝑛
�𝒀𝒀 − 𝑿𝑿𝑿𝑿��′�𝒀𝒀 −

𝑿𝑿𝑿𝑿��. Thus, 𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) achieves bivariate maximum at 

 𝑿𝑿� = (𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝒀𝒀 ,  𝚺𝚺� = 1
𝑛𝑛
�𝒀𝒀 − 𝑿𝑿𝑿𝑿��′�𝒀𝒀 − 𝑿𝑿𝑿𝑿��. 

 

Proof 2: Maximum Likelihood Estimates for the Balanced General Linear Model 

(i) We’ll maximizing 𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) by first taking  𝜕𝜕
𝜕𝜕𝑿𝑿
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀).  Note that 

     (a)    𝜕𝜕
𝜕𝜕𝑿𝑿

[(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′𝚺𝚺−1] =  𝜕𝜕
𝜕𝜕𝑿𝑿

[(𝒀𝒀′ − 𝑿𝑿′𝑿𝑿′)𝚺𝚺−1] = −𝟏𝟏1𝑛𝑛𝑖𝑖𝑿𝑿′𝚺𝚺−1 

     (b)    𝜕𝜕
𝜕𝜕𝑿𝑿

[(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿)] = (𝒀𝒀 − 𝑿𝑿𝑿𝑿)′𝚺𝚺−1 𝜕𝜕
𝜕𝜕𝑿𝑿

[𝒀𝒀 − 𝑿𝑿𝑿𝑿] + 𝜕𝜕
𝜕𝜕𝑿𝑿

[(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′𝚺𝚺−1](𝒀𝒀 − 𝑿𝑿𝑿𝑿) 

= −(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′𝚺𝚺−1𝑿𝑿𝑫𝑫𝑿𝑿 − 𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿) 

                         = −𝒀𝒀′𝚺𝚺−1𝑿𝑿𝑫𝑫𝑿𝑿 + 𝑿𝑿′𝑿𝑿′𝚺𝚺−1𝑿𝑿𝑫𝑫𝑿𝑿 − 𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝚺𝚺−1𝒀𝒀 + 𝑫𝑫𝑿𝑿

′ 𝑿𝑿′𝚺𝚺−1𝑿𝑿𝑿𝑿 

     Setting 𝜕𝜕
𝜕𝜕𝑿𝑿
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) = 0 and solving we have 

                     𝒀𝒀′𝚺𝚺−1𝑿𝑿 + 𝑿𝑿′𝚺𝚺−1𝒀𝒀 = 𝑿𝑿′𝑿𝑿′𝚺𝚺−1𝑿𝑿 + 𝑿𝑿′𝚺𝚺−1𝑿𝑿𝑿𝑿 

                                      𝑿𝑿′𝚺𝚺−1𝒀𝒀 = 𝑿𝑿′𝚺𝚺−1𝑿𝑿𝑿𝑿   (since then also 𝑿𝑿′𝚺𝚺−1𝒀𝒀 = 𝑿𝑿′𝚺𝚺−1𝑿𝑿𝑿𝑿)    

                  (𝑿𝑿′𝚺𝚺−1𝑿𝑿)−𝟏𝟏𝑿𝑿′𝚺𝚺−1𝒀𝒀 = (𝑿𝑿′𝚺𝚺−1𝑿𝑿)−𝟏𝟏𝑿𝑿′𝚺𝚺−1𝑿𝑿𝑿𝑿     

                  (𝑿𝑿′𝚺𝚺−1𝑿𝑿)−𝟏𝟏𝑿𝑿′𝚺𝚺−1𝒀𝒀 = 𝑿𝑿�                                           

(ii) We’ll next continue maximizing 𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) by first taking  𝜕𝜕
𝜕𝜕𝚺𝚺
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀). 

      Note that 1
2

(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′𝚺𝚺−1(𝒀𝒀− 𝑿𝑿𝑿𝑿) is scalar and so: 
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              1
2

(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿) = 𝑡𝑡𝑡𝑡 �1
2

(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿)� = 𝑡𝑡𝑡𝑡 �1
2
𝚺𝚺−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿)(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′� 

      Now, 

𝜕𝜕
𝜕𝜕𝚺𝚺

𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) = −
𝑛𝑛
2
𝜕𝜕
𝜕𝜕𝚺𝚺𝒊𝒊

(𝑙𝑙𝑙𝑙𝑙𝑙|𝚺𝚺𝒊𝒊|) −
1
2
𝜕𝜕
𝜕𝜕𝚺𝚺

�𝑡𝑡𝑡𝑡 ��𝚺𝚺𝑖𝑖−1(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)′
𝑛𝑛

𝑖𝑖=1

�� 

                              = −
𝑛𝑛
2
𝑡𝑡𝑡𝑡 �(𝚺𝚺𝒊𝒊)−1

𝜕𝜕
𝜕𝜕𝚺𝚺𝒊𝒊

(𝚺𝚺𝒊𝒊)� −
1
2
𝑡𝑡𝑡𝑡 ��

𝜕𝜕
𝜕𝜕𝚺𝚺

(𝚺𝚺𝑖𝑖−1)(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)′
𝑛𝑛

𝑖𝑖=1

� 

                   = −
𝑛𝑛
2
𝑡𝑡𝑡𝑡�𝚺𝚺𝑖𝑖−1𝑫𝑫𝚺𝚺𝑖𝑖� +

1
2
𝑡𝑡𝑡𝑡 ��𝚺𝚺𝑖𝑖−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺𝑖𝑖

−1(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)′
𝑛𝑛

𝑖𝑖=1

� 

Setting 𝜕𝜕
𝜕𝜕𝚺𝚺
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) = 0 and solving we have, 

𝑛𝑛
2
𝑡𝑡𝑡𝑡�𝚺𝚺𝑖𝑖−1𝑫𝑫𝚺𝚺𝑖𝑖� =

1
2
𝑡𝑡𝑡𝑡 ��𝚺𝚺𝑖𝑖−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺𝑖𝑖

−1(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)′
𝑛𝑛

𝑖𝑖=1

� 

𝑛𝑛
2
𝑡𝑡𝑡𝑡[𝑰𝑰𝜏𝜏𝑛𝑛𝜏𝜏] =

1
2
𝑡𝑡𝑡𝑡 ��𝚺𝚺𝑖𝑖−1(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)′

𝑛𝑛

𝑖𝑖=1

� 

Note in balanced data 𝚺𝚺𝒊𝒊 is the same for all subjects, and so can factor out 𝚺𝚺𝑖𝑖−1to write 

𝑛𝑛
2
𝑡𝑡𝑡𝑡[𝑰𝑰𝜏𝜏𝑛𝑛𝜏𝜏] =

1
2
𝑡𝑡𝑡𝑡 �𝚺𝚺𝑖𝑖−1�(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)′

𝑛𝑛

𝑖𝑖=1

� 

𝑛𝑛𝑰𝑰𝜏𝜏𝑛𝑛𝜏𝜏 = 𝚺𝚺𝑖𝑖−1�(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)′
𝑛𝑛

𝑖𝑖=1

 

𝚺𝚺𝑖𝑖 =
1
𝑛𝑛
�(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)′
𝑛𝑛

𝑖𝑖=1

 

𝚺𝚺�𝑖𝑖 =
1
𝑛𝑛

(𝒀𝒀 − 𝑿𝑿𝑿𝑿)(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′ 

(iii) We’ll now use the second partial derivative test to prove bivariate maximization 

We found zeros in (i) and (ii) at  𝑿𝑿� = (𝑿𝑿′𝚺𝚺−1𝑿𝑿)−𝟏𝟏𝑿𝑿′𝚺𝚺−1𝒀𝒀  and  𝚺𝚺�𝑖𝑖 = 1
𝑛𝑛

(𝒀𝒀 − 𝑿𝑿𝑿𝑿)(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′ 
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Note that 𝑿𝑿� and 𝚺𝚺�𝑖𝑖 are zeros regardless of values of 𝑿𝑿 and 𝚺𝚺.  Thus 𝜕𝜕
𝜕𝜕𝑿𝑿
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) and 

𝜕𝜕
𝜕𝜕𝚺𝚺
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) are both zero when evaluated at 𝚺𝚺𝒊𝒊 = 𝚺𝚺�𝑖𝑖 and 𝑿𝑿 = 𝑿𝑿�, respectively. 

Next, 

          𝜕𝜕
2

𝜕𝜕2𝑿𝑿
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) = −1

2
𝜕𝜕
𝜕𝜕𝑿𝑿
�−𝒀𝒀′𝚺𝚺−1𝑿𝑿𝑫𝑫𝑿𝑿 + 𝑿𝑿′𝑿𝑿′𝚺𝚺−1𝑿𝑿𝑫𝑫𝑿𝑿 − 𝑫𝑫𝑿𝑿

′ 𝑿𝑿′𝚺𝚺−1𝒀𝒀 + 𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝚺𝚺−1𝑿𝑿𝑿𝑿�  

        = −1
2
�𝑫𝑫𝑿𝑿

′ 𝑿𝑿′𝚺𝚺−1𝑿𝑿𝑫𝑫𝑿𝑿 + 𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝚺𝚺−1𝑿𝑿𝑫𝑫𝑿𝑿� 

        = ∑ ∑ 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖=1

𝑖𝑖
𝑖𝑖=1  , for 𝑨𝑨 = 𝑿𝑿′𝚺𝚺−1𝑿𝑿  

Note,  𝑿𝑿′𝚺𝚺−1𝑿𝑿 is symmetric and through the spectral theorem can be written as 𝑮𝑮′𝜦𝜦𝑮𝑮, 

with 𝜦𝜦 being a diagonal matrix of non-negative eigenvalues of 𝑨𝑨 (since 𝚺𝚺−1 is positive 

definite, so is 𝑿𝑿′𝚺𝚺−1𝑿𝑿). So ∑ ∑ 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖=1

𝑖𝑖
𝑖𝑖=1 = ∑ �𝑑𝑑𝑖𝑖𝛬𝛬𝑖𝑖𝑖𝑖�∑ 𝑑𝑑𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖=1 �
2
�𝑖𝑖

𝑖𝑖=1 > 0 and so, 

when evaluated at 𝚺𝚺𝒊𝒊 = 𝚺𝚺�𝑖𝑖 and 𝑿𝑿 = 𝑿𝑿�, we have  

𝜕𝜕2

𝜕𝜕2𝑿𝑿
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) = −

1
2
�𝑫𝑫𝑿𝑿

′ 𝑿𝑿′𝚺𝚺�−1𝑿𝑿𝑫𝑫𝑿𝑿 + 𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝚺𝚺�−1𝑿𝑿𝑫𝑫𝑿𝑿� = −

1
2
��𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖

𝑖𝑖

𝑖𝑖=1

𝑖𝑖

𝑖𝑖=1

   < 0 

Next, 

         
𝜕𝜕2

𝜕𝜕2𝚺𝚺
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀)

=
𝜕𝜕
𝜕𝜕𝚺𝚺

�−
𝑛𝑛
2
𝑡𝑡𝑡𝑡�𝚺𝚺𝑖𝑖−1𝑫𝑫𝚺𝚺𝑖𝑖� +

1
2
𝑡𝑡𝑡𝑡 ��𝚺𝚺𝑖𝑖−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺𝑖𝑖

−1(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)′
𝑛𝑛

𝑖𝑖=1

�� 

=
𝑛𝑛
2
𝑡𝑡𝑡𝑡�𝚺𝚺𝑖𝑖−1�𝑫𝑫𝚺𝚺𝑖𝑖�𝚺𝚺𝑖𝑖

−1�𝑫𝑫𝚺𝚺𝑖𝑖��  −
2
2
𝑡𝑡𝑡𝑡 �𝚺𝚺𝑖𝑖−1�𝑫𝑫𝚺𝚺𝑖𝑖�𝚺𝚺𝑖𝑖

−1�𝑫𝑫𝚺𝚺𝑖𝑖�𝚺𝚺𝑖𝑖
−1�(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)(𝒀𝒀𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑿𝑿)′

𝑛𝑛

𝑖𝑖=1

� 

                                   =
𝑛𝑛
2
𝑡𝑡𝑡𝑡�𝚺𝚺𝑖𝑖−1�𝑫𝑫𝚺𝚺𝑖𝑖�𝚺𝚺𝑖𝑖

−1�𝑫𝑫𝚺𝚺𝑖𝑖�� −
2
2
𝑡𝑡𝑡𝑡�𝚺𝚺𝑖𝑖−1�𝑫𝑫𝚺𝚺𝑖𝑖�𝚺𝚺𝑖𝑖

−1�𝑫𝑫𝚺𝚺𝑖𝑖�𝚺𝚺𝑖𝑖
−1𝑛𝑛𝚺𝚺�𝑖𝑖� 

Evaluated at 𝚺𝚺𝒊𝒊 = 𝚺𝚺�𝑖𝑖 = 1
𝑛𝑛

(𝒀𝒀 − 𝑿𝑿𝑿𝑿)(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′ and 𝑿𝑿 = 𝑿𝑿� = (𝑿𝑿′𝚺𝚺−1𝑿𝑿)−𝟏𝟏𝑿𝑿′𝚺𝚺−1𝒀𝒀,  
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                                      =
𝑛𝑛
2
𝑡𝑡𝑡𝑡 �𝚺𝚺�𝑖𝑖

−1�𝑫𝑫𝚺𝚺𝑖𝑖�𝚺𝚺�𝑖𝑖
−1�𝑫𝑫𝚺𝚺𝑖𝑖�� −

2𝑛𝑛
2
𝑡𝑡𝑡𝑡 �𝚺𝚺�𝑖𝑖

−1�𝑫𝑫𝚺𝚺𝑖𝑖�𝚺𝚺�𝑖𝑖
−1�𝑫𝑫𝚺𝚺𝑖𝑖�𝚺𝚺�𝑖𝑖

−1𝚺𝚺�𝑖𝑖� 

                                     = −
𝑛𝑛
2
𝑡𝑡𝑡𝑡 �𝚺𝚺�𝑖𝑖

−1�𝑫𝑫𝚺𝚺𝑖𝑖�𝚺𝚺�𝑖𝑖
−1�𝑫𝑫𝚺𝚺𝑖𝑖�� 

Note, when all elements of 𝚺𝚺𝒊𝒊 are allowed to vary, 𝑡𝑡𝑡𝑡 �𝚺𝚺�𝑖𝑖
−1�𝑫𝑫𝚺𝚺𝑖𝑖�𝚺𝚺�𝑖𝑖

−1�𝑫𝑫𝚺𝚺𝑖𝑖�� =

 𝑡𝑡𝑡𝑡 �𝚺𝚺�𝑖𝑖
−1(𝟏𝟏𝜏𝜏𝑛𝑛𝜏𝜏)𝚺𝚺�𝑖𝑖

−1(𝟏𝟏𝜏𝜏𝑛𝑛𝜏𝜏)� which is the square of the sum of all elements of 𝚺𝚺�𝑖𝑖
−1 and is 

therefore positive. When some elements are held fixed, 𝑡𝑡𝑡𝑡 �𝚺𝚺�𝑖𝑖
−1�𝑫𝑫𝚺𝚺𝑖𝑖�𝚺𝚺�𝑖𝑖

−1�𝑫𝑫𝚺𝚺𝑖𝑖�� will 

obviously still be greater than zero albeit less than the square of the sum of all elements 

of 𝚺𝚺�𝑖𝑖
−1. Thus, when evaluated at 𝚺𝚺𝒊𝒊 = 𝚺𝚺�𝑖𝑖 and 𝑿𝑿 = 𝑿𝑿� we have 

𝜕𝜕2

𝜕𝜕2𝚺𝚺
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) = −

𝑛𝑛
2
𝑡𝑡𝑡𝑡 �𝚺𝚺�𝑖𝑖

−1�𝟏𝟏𝑛𝑛𝑛𝑛𝑛𝑛�𝚺𝚺�𝑖𝑖
−1�𝟏𝟏𝑛𝑛𝑛𝑛𝑛𝑛�� < 0 

 Finally, 

     𝜕𝜕2

𝜕𝜕𝑿𝑿𝜕𝜕𝚺𝚺
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) = 𝜕𝜕

𝜕𝜕𝚺𝚺
� 𝜕𝜕
𝜕𝜕𝑿𝑿
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀)� 

=
𝜕𝜕
𝜕𝜕𝚺𝚺

�−𝒀𝒀′𝚺𝚺−1𝑿𝑿𝑫𝑫𝑿𝑿 + 𝑿𝑿′𝑿𝑿′𝚺𝚺−1𝑿𝑿𝑫𝑫𝑿𝑿 − 𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝚺𝚺−1𝒀𝒀 + 𝑫𝑫𝑿𝑿

′ 𝑿𝑿′𝚺𝚺−1𝑿𝑿𝑿𝑿� 

                = 𝒀𝒀′𝚺𝚺−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺
−1𝑿𝑿𝑫𝑫𝑿𝑿 −

𝜕𝜕
𝜕𝜕𝚺𝚺

�𝑿𝑿′𝑿𝑿′𝚺𝚺−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺
−1𝑿𝑿𝑫𝑫𝑿𝑿� + 𝑫𝑫𝑿𝑿

′ 𝑿𝑿′𝚺𝚺−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺
−1𝒀𝒀 −  

                                                     
𝜕𝜕
𝜕𝜕𝚺𝚺

�𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝚺𝚺−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺

−1𝑿𝑿𝑿𝑿� 

Note when 𝑿𝑿 = (𝑿𝑿′𝚺𝚺−1𝑿𝑿)−𝟏𝟏𝑿𝑿′𝚺𝚺−1𝒀𝒀, we have 

 𝜕𝜕
𝜕𝜕𝚺𝚺
�𝑫𝑫𝑿𝑿

′ 𝑿𝑿′𝚺𝚺−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺
−1𝑿𝑿𝑿𝑿� = 𝜕𝜕

𝜕𝜕𝚺𝚺
�𝑫𝑫𝑿𝑿

′ 𝑿𝑿′𝚺𝚺−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺
−1𝑿𝑿(𝑿𝑿′𝚺𝚺−1𝑿𝑿)−𝟏𝟏𝑿𝑿′𝚺𝚺−1𝒀𝒀� 

= −𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝚺𝚺−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺

−1𝒀𝒀 + 𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝚺𝚺−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺

−1𝑿𝑿(𝑿𝑿′𝚺𝚺−1𝑿𝑿)−𝟏𝟏𝑿𝑿′𝚺𝚺−1𝒀𝒀 −  

                                      𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝚺𝚺−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺

−1𝑿𝑿(𝑿𝑿′𝚺𝚺−1𝑿𝑿)−𝟏𝟏𝑿𝑿′𝚺𝚺−1𝒀𝒀 

= −𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝚺𝚺−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺

−1𝒀𝒀  
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Thus, at 𝚺𝚺𝒊𝒊 = 𝚺𝚺�𝑖𝑖 and 𝑿𝑿 = 𝑿𝑿� we have 

     𝜕𝜕2

𝜕𝜕𝑿𝑿𝜕𝜕𝚺𝚺
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) = 𝒀𝒀′𝚺𝚺�−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺�

−1𝑿𝑿𝑫𝑫𝑿𝑿 − 𝒀𝒀′𝚺𝚺�−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺�
−1𝑿𝑿𝑫𝑫𝑿𝑿 + 𝑫𝑫𝑿𝑿

′ 𝑿𝑿′𝚺𝚺�−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺�
−1𝒀𝒀 − 

𝑫𝑫𝑿𝑿
′ 𝑿𝑿′𝚺𝚺�−1𝑫𝑫𝚺𝚺𝑖𝑖𝚺𝚺�

−1𝒀𝒀 

                                = 0 

In summary, at 𝚺𝚺𝒊𝒊 = 𝚺𝚺�𝑖𝑖 and 𝑿𝑿 = 𝑿𝑿� we have 

 𝜕𝜕
𝜕𝜕𝑿𝑿
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) = 0 

 𝜕𝜕
𝜕𝜕𝚺𝚺
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) = 0 

 𝜕𝜕2

𝜕𝜕2𝑿𝑿
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) < 0 

 𝜕𝜕2

𝜕𝜕2𝚺𝚺
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) < 0 

 � 𝜕𝜕
2

𝜕𝜕2𝑿𝑿
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀)� � 𝜕𝜕

2

𝜕𝜕2𝚺𝚺
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀)� − � 𝜕𝜕2

𝜕𝜕𝑿𝑿𝜕𝜕𝚺𝚺
𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀)�

2
> 0 

Therefore 𝑙𝑙(𝑿𝑿,𝚺𝚺|𝒀𝒀) achieves bivariate maximum at 

 𝑿𝑿� = (𝑿𝑿′𝚺𝚺−1𝑿𝑿)−𝟏𝟏𝑿𝑿′𝚺𝚺−1𝒀𝒀  and  𝚺𝚺�𝑖𝑖 = 1
𝑛𝑛

(𝒀𝒀 − 𝑿𝑿𝑿𝑿)(𝒀𝒀 − 𝑿𝑿𝑿𝑿)′ 
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APPENDIX II 

CHAPTER 2 DEFINITIONS AND DERIVATIONS 
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A. Definitions 

Some of these terms have already been presented in the body of the text, but have been 

repeated here for a consolidated list of terms. 

𝛉𝛉 = 𝑪𝑪(𝑪𝑪′𝛟𝛟𝑪𝑪)−𝟏𝟏𝑪𝑪′       with 𝛟𝛟 = �𝑿𝑿′𝚺𝚺𝒀𝒀−𝟏𝟏𝑿𝑿′�
−1 

𝐏𝐏𝑖𝑖 = −𝑿𝑿′𝚺𝚺−𝟏𝟏
𝜕𝜕𝚺𝚺
𝜕𝜕𝜎𝜎𝑖𝑖

𝚺𝚺−𝟏𝟏𝑿𝑿 

𝐐𝐐𝑖𝑖𝑖𝑖 = 𝑿𝑿′𝚺𝚺−𝟏𝟏 𝜕𝜕𝚺𝚺
𝜕𝜕𝜎𝜎𝑖𝑖

 𝚺𝚺−𝟏𝟏 𝜕𝜕𝜮𝜮
𝜕𝜕𝜎𝜎𝑗𝑗

 𝚺𝚺−𝟏𝟏 

𝑴𝑴𝑖𝑖𝑖𝑖 =
𝜕𝜕2𝜽𝜽
𝜕𝜕𝜎𝜎𝑖𝑖𝜕𝜕𝜎𝜎𝑖𝑖

 

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑗𝑗𝑡𝑡ℎ entry of the inverse of the expected information matrix 

𝐀𝐀 = 2𝚲𝚲� = 2𝛟𝛟���𝑤𝑤𝑖𝑖𝑖𝑖�𝐐𝐐𝑖𝑖𝑖𝑖 − 𝐏𝐏𝑖𝑖𝛟𝛟𝐏𝐏𝑖𝑖��
𝑖𝑖

𝑖𝑖=1

𝑖𝑖

𝑖𝑖=1

𝛟𝛟   � note 𝚲𝚲� is obtained using 𝚺𝚺� in place of 𝚺𝚺� 

A2 = ��𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡�𝛉𝛉𝛟𝛟𝐏𝐏𝑖𝑖𝛟𝛟𝛉𝛉𝛟𝛟𝐏𝐏𝑖𝑖𝛟𝛟�
𝑖𝑖

𝑖𝑖=1

𝑖𝑖

𝑖𝑖=1

 

A3 =
1
2
��𝑤𝑤𝑖𝑖𝑖𝑖𝑿𝑿′𝑴𝑴𝑖𝑖𝑖𝑖𝑿𝑿

𝑖𝑖

𝑖𝑖=1

𝑖𝑖

𝑖𝑖=1

 

 

B. Taylor expansion of Expected Value of KR adjusted Wald Statistic 

  E(W) = E �E�𝐹𝐹|𝚺𝚺���  

= E �𝑡𝑡𝑡𝑡 ��𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏(𝑪𝑪′(𝛟𝛟 + 𝚲𝚲)𝑪𝑪)��+ E �(𝑿𝑿 − 𝑿𝑿𝐻𝐻)′𝑪𝑪�𝑪𝑪′𝛟𝛟�A𝑪𝑪�

−𝟏𝟏
𝑪𝑪′(𝑿𝑿− 𝑿𝑿𝐻𝐻)� 

From Alnosaier (2007) we have: 

E �𝑡𝑡𝑡𝑡 ��𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏(𝑪𝑪′(𝛟𝛟 + 𝚲𝚲)𝑪𝑪)�� = 1 +

A2

𝑙𝑙
+ 𝑂𝑂 �𝑛𝑛−

3
2� 
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To derive E �(𝑿𝑿− 𝑿𝑿𝐻𝐻)′𝑪𝑪�𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏
𝑪𝑪′(𝑿𝑿− 𝑿𝑿𝐻𝐻)� first note from lemma 3.1.2.1 from 

Alnosaier (2007) we have: 

           �𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏

= �𝑰𝑰 − �𝑪𝑪′𝛟𝛟�𝑪𝑪�
−𝟏𝟏
�𝑪𝑪′𝐀𝐀�𝑪𝑪� + 𝑂𝑂𝑛𝑛(𝑛𝑛−2)� �𝑪𝑪′𝛟𝛟�𝑪𝑪�

−𝟏𝟏
 

                                  = �𝑪𝑪′𝛟𝛟�𝑪𝑪�
−𝟏𝟏
− �𝑪𝑪′𝛟𝛟�𝑪𝑪�

−𝟏𝟏
�𝑪𝑪′𝐀𝐀�𝑪𝑪��𝑪𝑪′𝛟𝛟�𝑪𝑪�

−𝟏𝟏
+ 𝑂𝑂𝑛𝑛(𝑛𝑛−2)�𝑪𝑪′𝛟𝛟�𝑪𝑪�

−𝟏𝟏
 

And so, noting  �𝑪𝑪′𝛟𝛟�𝑪𝑪�
−𝟏𝟏

 is 𝑂𝑂𝑛𝑛(𝑛𝑛), 

E ��𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏
� = E ��𝑪𝑪′𝛟𝛟�𝑪𝑪�

−𝟏𝟏
� − E ��𝑪𝑪′𝛟𝛟�𝑪𝑪�

−𝟏𝟏
�𝑪𝑪′𝐀𝐀�𝑪𝑪��𝑪𝑪′𝛟𝛟�𝑪𝑪�

−𝟏𝟏
� + E�𝑂𝑂𝑛𝑛(𝑛𝑛−1)� 

 

Now, letting 𝛉𝛉�=𝑪𝑪�𝑪𝑪′𝛟𝛟�𝑪𝑪�
−𝟏𝟏
𝑪𝑪′ we then have 

 E �𝑿𝑿′𝑪𝑪�𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏
𝑪𝑪′𝑿𝑿� = E�𝑿𝑿′𝛉𝛉�𝑿𝑿� − E�𝑿𝑿′𝛉𝛉�𝐀𝐀�𝛉𝛉�𝑿𝑿�+ 𝑂𝑂(𝑛𝑛−1) 

We can now obtain E�𝑿𝑿′𝛉𝛉�𝑿𝑿� and  E�𝑿𝑿′𝛉𝛉�𝐀𝐀�𝛉𝛉�𝑿𝑿� using a Taylor expansion about σ. 

 

First, we’ll establish bounds of certain values which shall appear in the Taylor expansion 

derived quantities of E(F).  From Alnosaier (2007) we have: 

(1) 𝛟𝛟 , 𝜕𝜕𝛟𝛟
𝜕𝜕𝜎𝜎𝑖𝑖

 , 𝜕𝜕2𝛟𝛟
𝜕𝜕𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗

  are all 𝑂𝑂(𝑛𝑛−1) 

(2) 𝛉𝛉 , 𝜕𝜕𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖

 , 𝜕𝜕2𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗

  are all 𝑂𝑂(𝑛𝑛) 

(3) 𝚲𝚲 = 𝚲𝚲� + 𝑂𝑂�𝑛𝑛−5/2� ,    with 𝚲𝚲� , 𝜕𝜕𝚲𝚲
�

𝜕𝜕𝜎𝜎𝑖𝑖
 , 𝜕𝜕2𝚲𝚲�

𝜕𝜕𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗
 being 𝑂𝑂(𝑛𝑛−2) 

(4) E(𝜎𝜎�𝑖𝑖 − 𝜎𝜎𝑖𝑖) = 0 + 𝑂𝑂(𝑛𝑛−2) for linear covariance structures (i.e. of the form 𝜕𝜕2𝚺𝚺
𝜕𝜕𝜎𝜎𝑖𝑖𝜕𝜕𝜎𝜎𝑗𝑗

= 𝟎𝟎) 

(5) 𝐶𝐶𝑙𝑙𝑣𝑣�𝜎𝜎�𝑖𝑖 ,𝜎𝜎�𝑖𝑖� = 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑂𝑂(𝑛𝑛−2) 
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(6) 𝑤𝑤𝑖𝑖𝑖𝑖 is 𝑂𝑂(𝑛𝑛−1) ,  with 𝑤𝑤𝑖𝑖𝑖𝑖 being the 𝑖𝑖𝑗𝑗𝑡𝑡ℎ element of the inverse of the expected 

information matrix 

(7) E�(𝜎𝜎�𝑖𝑖 − 𝜎𝜎𝑖𝑖)�𝜎𝜎�𝑖𝑖 − 𝜎𝜎𝑖𝑖�(𝜎𝜎�𝑘𝑘 − 𝜎𝜎𝑘𝑘)� is 𝑂𝑂(𝑛𝑛−2) 

Additionally we have 

(8) E�(𝜎𝜎�𝑖𝑖 − 𝜎𝜎𝑖𝑖)�𝜎𝜎�𝑖𝑖 − 𝜎𝜎𝑖𝑖�� = 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑂𝑂(𝑛𝑛−2) for linear covariance structures 

We can now perform the Taylor Expansion to obtain E�𝑿𝑿′𝛉𝛉�𝑿𝑿� and  E�𝑿𝑿′𝛉𝛉�𝐀𝐀�𝛉𝛉�𝑿𝑿� 

 

(i) Deriving E�𝑿𝑿′𝛉𝛉�𝑿𝑿� 

Via Taylor expansion we have: 

𝛉𝛉� = 𝛉𝛉 + �(𝜎𝜎�𝑖𝑖 − 𝜎𝜎𝑖𝑖)
𝑖𝑖

𝑖𝑖=1

𝜕𝜕𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖

+
1
2
��(𝜎𝜎�𝑖𝑖 − 𝜎𝜎𝑖𝑖)�𝜎𝜎�𝑖𝑖 − 𝜎𝜎𝑖𝑖�

𝜕𝜕2𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖𝜕𝜕𝜎𝜎𝑖𝑖

𝑖𝑖

𝑖𝑖=1

+ 𝑂𝑂(𝑛𝑛−1)
𝑖𝑖

𝑖𝑖=1

 

Note 

                             
𝜕𝜕𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖

= −𝐂𝐂(𝐂𝐂′𝛟𝛟𝐂𝐂)−1𝐂𝐂′
𝜕𝜕𝛟𝛟
𝜕𝜕𝜎𝜎𝑖𝑖

𝐂𝐂(𝐂𝐂′𝛟𝛟𝐂𝐂)−1𝐂𝐂′ 

                       
𝜕𝜕2𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖𝜕𝜕𝜎𝜎𝑖𝑖

= 𝛉𝛉(𝛟𝛟𝐏𝐏𝑖𝑖𝛟𝛟)𝛉𝛉�𝛟𝛟𝐏𝐏𝑖𝑖𝛟𝛟�𝛉𝛉 + 𝛉𝛉�𝛟𝛟𝐏𝐏𝑖𝑖𝛟𝛟�𝛉𝛉(𝛟𝛟𝐏𝐏𝑖𝑖𝛟𝛟)𝛉𝛉 

                                              − 𝛉𝛉𝛟𝛟𝐏𝐏𝑖𝑖𝛟𝛟𝐏𝐏𝑖𝑖𝛟𝛟𝛉𝛉 − 𝛉𝛉𝛟𝛟𝐏𝐏𝑖𝑖𝛟𝛟𝐏𝐏𝑖𝑖𝛟𝛟𝛉𝛉 +  𝛉𝛉𝛟𝛟𝐐𝐐𝑖𝑖𝑖𝑖𝛟𝛟𝛉𝛉 

                                      = 𝑴𝑴𝑖𝑖𝑖𝑖 

Therefore, 

E�𝛉𝛉�� = 𝛉𝛉 + � E(𝜎𝜎�𝑖𝑖 − 𝜎𝜎𝑖𝑖)
𝑖𝑖

𝑖𝑖=1

𝜕𝜕𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖

+
1
2
��E�(𝜎𝜎�𝑖𝑖 − 𝜎𝜎𝑖𝑖)�𝜎𝜎�𝑖𝑖 − 𝜎𝜎𝑖𝑖��

𝜕𝜕2𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖𝜕𝜕𝜎𝜎𝑖𝑖

𝑖𝑖

𝑖𝑖=1

+ 𝑂𝑂(𝑛𝑛−1)
𝑖𝑖

𝑖𝑖=1

 

          = 𝛉𝛉 + 𝑂𝑂(𝑛𝑛−1) +
1
2
��𝑤𝑤𝑖𝑖𝑖𝑖𝑴𝑴𝑖𝑖𝑖𝑖

𝑖𝑖

𝑖𝑖=1

+ 𝑂𝑂(𝑛𝑛−1) + 𝑂𝑂(𝑛𝑛−1)
𝑖𝑖

𝑖𝑖=1
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          = 𝛉𝛉 +
1
2
��𝑤𝑤𝑖𝑖𝑖𝑖𝑴𝑴𝑖𝑖𝑖𝑖

𝑖𝑖

𝑖𝑖=1

+ 𝑂𝑂(𝑛𝑛−1)
𝑖𝑖

𝑖𝑖=1

 

And consequently 

E�𝑿𝑿′𝛉𝛉�𝑿𝑿� = 𝑿𝑿′E�𝛉𝛉��𝑿𝑿 =  𝑿𝑿′𝛉𝛉𝑿𝑿 +
1
2
��𝑤𝑤𝑖𝑖𝑖𝑖𝑿𝑿′𝑴𝑴𝑖𝑖𝑖𝑖𝑿𝑿

𝑖𝑖

𝑖𝑖=1

+ 𝑂𝑂(𝑛𝑛−1)
𝑖𝑖

𝑖𝑖=1

 

 

(ii) Deriving E�𝑿𝑿′𝛉𝛉�𝐀𝐀�𝛉𝛉�𝑿𝑿� 

First, note 𝐀𝐀 = 2𝚲𝚲� and is therefore 𝑂𝑂(𝑛𝑛−2). Next, 

𝜕𝜕𝛉𝛉𝐀𝐀𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖

= 𝛉𝛉𝐀𝐀
𝜕𝜕𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖

+ 𝛉𝛉
𝜕𝜕𝐀𝐀
𝜕𝜕𝜎𝜎𝑖𝑖

𝛉𝛉 +
𝜕𝜕𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖

𝐀𝐀𝛉𝛉 

which is 𝑂𝑂(1) since all of its terms are are 𝑂𝑂(𝑛𝑛)𝑂𝑂(𝑛𝑛−2)𝑂𝑂(𝑛𝑛) = 𝑂𝑂(1). 

𝜕𝜕2𝛉𝛉𝐀𝐀𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖𝜕𝜕𝜎𝜎𝑖𝑖

= 𝛉𝛉𝐀𝐀
𝜕𝜕2𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖𝜕𝜕𝜎𝜎𝑖𝑖

+
𝜕𝜕2𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖𝜕𝜕𝜎𝜎𝑖𝑖

𝐀𝐀𝛉𝛉 +
𝜕𝜕𝛉𝛉𝐀𝐀
𝜕𝜕𝜎𝜎𝑖𝑖

𝜕𝜕𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖

+
𝜕𝜕𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖

𝜕𝜕𝐀𝐀𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖

+ 𝛉𝛉
𝜕𝜕𝐀𝐀
𝜕𝜕𝜎𝜎𝑖𝑖

𝜕𝜕𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖

+
𝜕𝜕𝐀𝐀
𝜕𝜕𝜎𝜎𝑖𝑖

𝜕𝜕𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖

𝛉𝛉

+ 𝛉𝛉
𝜕𝜕2𝐀𝐀
𝜕𝜕𝜎𝜎𝑖𝑖𝜕𝜕𝜎𝜎𝑖𝑖

𝛉𝛉 

which is again 𝑂𝑂(1) since all of its terms are 𝑂𝑂(𝑛𝑛)𝑂𝑂(𝑛𝑛−2)𝑂𝑂(𝑛𝑛) = 𝑂𝑂(1). 

Now via Taylor expansion we have: 

𝛉𝛉�𝐀𝐀�𝛉𝛉� = 𝛉𝛉𝐀𝐀𝛉𝛉 + �(𝜎𝜎�𝑖𝑖 − 𝜎𝜎𝑖𝑖)
𝑖𝑖

𝑖𝑖=1

𝜕𝜕𝛉𝛉𝐀𝐀𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖

+
1
2
��(𝜎𝜎�𝑖𝑖 − 𝜎𝜎𝑖𝑖)�𝜎𝜎�𝑖𝑖 − 𝜎𝜎𝑖𝑖�

𝜕𝜕2𝛉𝛉𝐀𝐀𝛉𝛉
𝜕𝜕𝜎𝜎𝑖𝑖𝜕𝜕𝜎𝜎𝑖𝑖

𝑖𝑖

𝑖𝑖=1

+ 𝑂𝑂(𝑛𝑛−2)
𝑖𝑖

𝑖𝑖=1

 

And so 

E�𝛉𝛉�𝐀𝐀�𝛉𝛉�� = 𝛉𝛉𝐀𝐀𝛉𝛉 + 𝑂𝑂(𝑛𝑛−1)    and therefore   E�𝑿𝑿′𝛉𝛉�𝐀𝐀�𝛉𝛉�𝑿𝑿� = 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿 + 𝑂𝑂(𝑛𝑛−1) 

 

(iii) Deriving E(W) 

Putting everything together from Alnosaier and parts (i) and (ii) we have 
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  E(W) = E �E�𝐹𝐹|𝚺𝚺���  

= E �𝑡𝑡𝑡𝑡 ��𝑪𝑪′𝛟𝛟�A𝑪𝑪�
−𝟏𝟏(𝑪𝑪′(𝛟𝛟 + 𝚲𝚲)𝑪𝑪)��+ E �(𝑿𝑿 − 𝑿𝑿𝐻𝐻)′𝑪𝑪�𝑪𝑪′𝛟𝛟�A𝑪𝑪�

−𝟏𝟏
𝑪𝑪′(𝑿𝑿− 𝑿𝑿𝐻𝐻)� 

         = 1 +
A2

𝑙𝑙
+ 𝑂𝑂 �𝑛𝑛−

3
2� + 𝑿𝑿′𝛉𝛉𝑿𝑿 +

1
2
��𝑤𝑤𝑖𝑖𝑖𝑖𝑿𝑿′𝑴𝑴𝑖𝑖𝑖𝑖𝑿𝑿

𝑖𝑖

𝑖𝑖=1

+ 𝑂𝑂(𝑛𝑛−1)
𝑖𝑖

𝑖𝑖=1

+ 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿

+ 𝑂𝑂(𝑛𝑛−2) 

= 1 +
A2

𝑙𝑙
+ 𝑿𝑿′𝛉𝛉𝑿𝑿 +

1
2
��𝑤𝑤𝑖𝑖𝑖𝑖𝑿𝑿′𝑴𝑴𝑖𝑖𝑖𝑖𝑿𝑿

𝑖𝑖

𝑖𝑖=1

𝑖𝑖

𝑖𝑖=1

+ 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿 + 𝑂𝑂(𝑛𝑛−1)                               

Letting 

A3 =
1
2
��𝑤𝑤𝑖𝑖𝑖𝑖𝑿𝑿′𝑴𝑴𝑖𝑖𝑖𝑖𝑿𝑿

𝑖𝑖

𝑖𝑖=1

𝑖𝑖

𝑖𝑖=1

 

we can then simply write 

  E(W) = 1 +
A2

𝑙𝑙
+ 𝑿𝑿′𝛉𝛉𝑿𝑿 + A3 + 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿 + 𝑂𝑂(𝑛𝑛−1) 

 

C. Adjusting solution of 𝜔𝜔 to match correct value in exact cases 

(i) Obtaining value of A3 + 𝑿𝑿′𝛉𝛉𝑿𝑿 − 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿 in balanced linear mixed models 

We’ll start by assuming all observations are independent, so 𝚺𝚺𝒀𝒀𝑖𝑖 = σ2𝐈𝐈𝑛𝑛𝑛𝑛𝑛𝑛. We can now 

evaluate the terms in the expressions. 

(1) 𝛟𝛟 = �𝑿𝑿′𝚺𝚺𝒀𝒀−𝟏𝟏𝑿𝑿�
−1

= �𝑿𝑿′ 1
σ2
𝐈𝐈𝑿𝑿�

−1
= σ2(𝑿𝑿′𝑿𝑿)−1 

(2) 𝛉𝛉 = 𝐂𝐂(𝐂𝐂′𝛟𝛟𝐂𝐂)−1𝐂𝐂′ = 𝐂𝐂(𝐂𝐂′σ2(𝑿𝑿′𝑿𝑿)−1𝐂𝐂)−1𝐂𝐂′ = 1
σ2
𝐂𝐂(𝐂𝐂′(𝑿𝑿′𝑿𝑿)−1𝐂𝐂)−1𝐂𝐂′ 

(3) 𝐏𝐏1 = −𝑿𝑿′𝚺𝚺−𝟏𝟏 𝜕𝜕𝚺𝚺
∂σ2

𝚺𝚺−𝟏𝟏𝑿𝑿 = −𝑿𝑿′ 1
σ2
𝐈𝐈 1
σ2
𝑿𝑿 = −� 1

σ2
�
2
𝑿𝑿′𝑿𝑿 

(4) 𝐐𝐐11 = −𝑿𝑿′𝚺𝚺−𝟏𝟏 𝜕𝜕𝚺𝚺
∂σ2

𝚺𝚺−𝟏𝟏 𝜕𝜕𝚺𝚺
∂σ2

𝚺𝚺−𝟏𝟏𝑿𝑿 = � 1
σ2
�
3
𝑿𝑿′𝑿𝑿 
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(5) 𝐐𝐐11 − 𝐏𝐏1𝛟𝛟𝐏𝐏1 = � 1
σ2
�
3
𝑿𝑿′𝑿𝑿 − � 1

σ2
�
3
𝑿𝑿′𝑿𝑿 = 𝟎𝟎 

(6) 𝐀𝐀 = 2𝚲𝚲� = 2𝛟𝛟∑ ∑ �𝑤𝑤𝑖𝑖𝑖𝑖�𝐐𝐐𝑖𝑖𝑖𝑖 − 𝐏𝐏𝑖𝑖𝛟𝛟𝐏𝐏𝑖𝑖��𝑖𝑖
𝑖𝑖=1 𝛟𝛟𝑖𝑖

𝑖𝑖=1 = 2𝑤𝑤11𝚽𝚽(𝐐𝐐11 − 𝐏𝐏1𝛟𝛟𝐏𝐏1) = 𝟎𝟎 

(7) 𝑤𝑤11 = CRLB(σ�2) = 2𝜎𝜎4

𝑛𝑛𝑛𝑛−𝑞𝑞
 

(8) 2𝛉𝛉(𝛟𝛟𝐏𝐏1𝛟𝛟)𝛉𝛉(𝛟𝛟𝐏𝐏1𝛟𝛟)𝛉𝛉 = 2
σ6
𝐂𝐂(𝐂𝐂′(𝑿𝑿′𝑿𝑿)−1𝐂𝐂)−1𝐂𝐂′ 

(9) 𝛉𝛉𝛟𝛟(𝟐𝟐𝐏𝐏1𝛟𝛟𝐏𝐏1 − 𝟐𝟐𝐐𝐐11)𝛟𝛟𝛉𝛉 = 0 

(10) 𝑀𝑀11 = 2𝛉𝛉(𝛟𝛟𝐏𝐏1𝛟𝛟)𝛉𝛉(𝛟𝛟𝐏𝐏1𝛟𝛟)𝛉𝛉 − 𝛉𝛉𝛟𝛟(𝟐𝟐𝐏𝐏1𝛟𝛟𝐏𝐏1 − 𝟐𝟐𝐐𝐐11)𝛟𝛟𝛉𝛉 = 2
σ6
𝐂𝐂(𝐂𝐂′(𝑿𝑿′𝑿𝑿)−1𝐂𝐂)−1𝐂𝐂′ 

So: 

     𝑤𝑤11𝑀𝑀11 =
2𝜎𝜎4

𝑛𝑛𝑒𝑒 − 𝑞𝑞
2
σ6
𝐂𝐂(𝐂𝐂′(𝑿𝑿′𝑿𝑿)−1𝐂𝐂)−1𝐂𝐂′ =

4
𝑛𝑛𝑒𝑒 − 𝑞𝑞

1
σ2
𝐂𝐂(𝐂𝐂′(𝑿𝑿′𝑿𝑿)−1𝐂𝐂)−1𝐂𝐂′ 

     𝐴𝐴3 =
1
2
𝑿𝑿′𝑤𝑤11𝑀𝑀11𝑿𝑿 =

2
𝑛𝑛𝑒𝑒 − 𝑞𝑞

1
σ2
𝑿𝑿′𝐂𝐂(𝐂𝐂′(𝑿𝑿′𝑿𝑿)−1𝐂𝐂)−1𝐂𝐂′𝑿𝑿 

Therefore, we have: 

𝐴𝐴3 + 𝑿𝑿′𝛉𝛉𝑿𝑿 − 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿 = 𝐴𝐴3 + 𝑿𝑿′𝛉𝛉𝑿𝑿 = �
2

(𝑛𝑛𝑒𝑒 − 𝑞𝑞)σ2
+

1
σ2
�𝑿𝑿′𝐂𝐂(𝐂𝐂′(𝑿𝑿′𝑿𝑿)−1𝐂𝐂)−1𝐂𝐂′𝑿𝑿 

                                                                     =
2 + 𝑛𝑛𝑒𝑒 − 𝑞𝑞
𝑛𝑛𝑒𝑒 − 𝑞𝑞

𝑿𝑿′𝛉𝛉𝑿𝑿 

                                                       = 𝑚𝑚+2
𝑚𝑚

𝑿𝑿′𝛉𝛉𝑿𝑿 

The value of m is obtained exactly by the KR method for ANOVA and HLT tests of 

linear trend with rank 1 contrast, and so this solution should, and upon calculation does, 

also generalize to the HLT test of linear trend. 
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(ii) Obtaining exact solution 

Our goal is to adjust E𝑎𝑎(W) into E𝑎𝑎∗ (W) in a way that parallels the adjustment of E0(W) 

into E0∗(W) made by Kenward and roger.  In the original KR paper, in order to obtain the 

correct values for l and m, the value of 

E0(W) =
1
𝑙𝑙

(𝑙𝑙 + A2) = 1 +
A2

𝑙𝑙
 

is instead modified to E0∗(W) so that 

E0∗(W) = �1 −
A2

𝑙𝑙
�  −1 

Formally we can express this as: 

E0(W) = 1 +
A2

𝑙𝑙
= 𝑎𝑎 + 𝑏𝑏 − 0 = 𝑎𝑎 + 𝑏𝑏 − 𝑐𝑐 

E0∗(W) =
1

1 − A2
𝑙𝑙

=
(𝑎𝑎 − 𝑐𝑐)2

𝑎𝑎 − b + c
 

Now we have: 

E𝑎𝑎(W) =
1
𝑙𝑙

(𝑿𝑿′𝛉𝛉𝑿𝑿 + 𝐴𝐴3 − 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿) =
1
𝑙𝑙

(𝑎𝑎 + 𝑏𝑏 − 𝑐𝑐) 

Noting that in the solution to the noncentrality parameter we multiply by 𝑙𝑙 we can focus 

just on the quantity 𝑿𝑿′𝛉𝛉𝑿𝑿 + 𝐴𝐴3 − 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿 =  𝑎𝑎 + 𝑏𝑏 − 𝑐𝑐.  Employing the form of the 

adjustment obtained by Kenward and Roger we then have the similar form: 

E𝑎𝑎∗ (W) =
1
𝑙𝑙

(𝑎𝑎 − 𝑐𝑐)2

𝑎𝑎 − b + c
=

1
𝑙𝑙

(𝑿𝑿′𝛉𝛉𝑿𝑿 − 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿)2

(𝑿𝑿′𝛉𝛉𝑿𝑿 − 𝐴𝐴3 + 𝑿𝑿′𝛉𝛉𝐀𝐀𝛉𝛉𝑿𝑿) 

And solving for E𝑎𝑎∗ (W) as in part (i) we have: 

E𝑎𝑎∗ (W) =
1
𝑙𝑙

(𝑿𝑿′𝛉𝛉𝑿𝑿)𝟐𝟐

𝑚𝑚 − 2
𝑚𝑚 𝑿𝑿′𝛉𝛉𝑿𝑿

=
1
𝑙𝑙

𝑚𝑚
𝑚𝑚 − 2

𝑿𝑿′𝛉𝛉𝑿𝑿 

Therefore: 
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𝜔𝜔 =  𝑙𝑙
E𝑎𝑎∗ (W)
E0∗(W) =

𝑚𝑚
𝑚𝑚 − 2𝑿𝑿′𝛉𝛉𝑿𝑿

𝑚𝑚
𝑚𝑚 − 2

= 𝑿𝑿′𝛉𝛉𝑿𝑿 

Now obviously to obtain the desired result of 𝜔𝜔 = 𝜆𝜆𝑿𝑿′𝛉𝛉𝑿𝑿 we simply multiply the 

solution to the noncentrality parameter by 𝜆𝜆 and therefore obtain 

𝜔𝜔 =  𝑙𝑙𝜆𝜆
E𝑎𝑎∗ (W)
E0∗(W) 
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Calculating dPower 

We use the limit definition of a derivative: 

𝑓𝑓′(𝑥𝑥) = lim
ℎ→∞

𝑓𝑓(𝑥𝑥 + ℎ) − 𝑓𝑓(𝑥𝑥)
ℎ

 

Let the power function given some value of the noncentrality parameter ω be given as ѱ(ω), then 

we let h=0.000001 and calculate approximate dPower as: 

𝑑𝑑𝑃𝑃𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡 =
ѱ(𝜔𝜔 + ℎ) −ѱ(𝜔𝜔)

ℎ
=
ѱ(𝜔𝜔 + 0.000001) −ѱ(𝜔𝜔)

0.000001
 

This approximation provides accurate calculation of 𝑑𝑑𝑃𝑃𝑙𝑙𝑤𝑤𝑒𝑒𝑡𝑡 when the slope of the power 

function around 𝜔𝜔 is not extremely steep, which is true for values of power for which researchers 

are interested. 

Supplemental tables and figures 

Table A.III.1: Observation times and GLMM contrasts for comparing to Ringham 
method 

 Contrasts for GLMM Equivalent Hypothesis  
LMM 𝒕𝒕′ Between subjects, 𝑪𝑪′ Within subjects, 𝑼𝑼′ 

[1  2  3  4] [0  1] [-3  -1  1  3] 
[3  6  9  12  15] [0  1] [-12  -6  0  6  12] 
[1  4  9  13  18  21] [0  1] [-20  -14  -4  4  14  20] 
[2  5  6  9] [0  1] [-7  -1  1  7] 
[1  3  7  10  13  17  19] [0  1] [-18  -14  -6  0  6  14  18] 
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Figure A.III.1: Performance of power methods when design has four time points 

 

Figure A.III.2: Performance of power methods when design has more than four time points 

 

 



129 
 

 

APPENDIX IV 

CHAPTER 4 SUPPLEMENTAL INFORMATION AND PROGRAMS 
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Supplemental Tables 

Table A.IV.1: Results of Chapter 4 Simulation Study 

Design Method 1-p Desired 
Power 

N per 
group 

Nominal 
Power 

Empirical 
Power 

Sample Size 
Calculation 

1 1 0.6 0.75 8 0.75909 0.743952 Underestimate 
1 1 0.6 0.8 9 0.82005 0.812538 Correct 
1 1 0.6 0.85 10 0.87001 0.870058 Correct 
1 1 0.6 0.9 11 0.90427 0.90717 Correct 
1 1 0.6 0.95 13 0.95224 0.952842 Correct 
1 1 0.8 NA 6 0.7209 0.658547  

1 1 0.8 0.75 7 0.80764 0.76397 Correct 
1 1 0.8 0.8 7 0.80764 0.76397 Underestimate 
1 1 0.8 0.85 8 0.8671 0.832648 Underestimate 
1 1 0.8 0.9 9 0.91008 0.89368 Underestimate 
1 1 0.8 0.95 11 0.95894 0.954674 Correct 
1 1 0.9 0.75 6 0.7652 0.702462 Underestimate 
1 1 0.9 0.8 7 0.84187 0.803974 Correct 
1 1 0.9 0.85 8 0.89414 0.86699 Correct 
1 1 0.9 0.9 9 0.9316 0.915844 Correct 
1 1 0.9 0.95 10 0.95578 0.947608 Underestimate 
1 2 0.6 0.75 8 0.79351 0.743952 Underestimate 
1 2 0.6 0.8 9 0.84732 0.812538 Correct 
1 2 0.6 0.85 10 0.89058 0.870058 Correct 
1 2 0.6 0.9 11 0.91963 0.90717 Correct 
1 2 0.6 0.95 13 0.96035 0.952842 Correct 
1 2 0.8 NA 6 0.73939 0.658547  

1 2 0.8 0.75 7 0.82075 0.76397 Correct 
1 2 0.8 0.8 7 0.82075 0.76397 Underestimate 
1 2 0.8 0.85 8 0.87665 0.832648 Underestimate 
1 2 0.8 0.9 9 0.91679 0.89368 Underestimate 
1 2 0.8 0.95 11 0.9624 0.954674 Correct 
1 2 0.9 0.75 6 0.77369 0.702462 Underestimate 
1 2 0.9 0.8 7 0.84788 0.803974 Correct 
1 2 0.9 0.85 8 0.89843 0.86699 Correct 
1 2 0.9 0.9 9 0.9344 0.915844 Correct 
1 2 0.9 0.95 10 0.9577 0.947608 Underestimate 
1 3 0.6 0.75 8 0.81277 0.743952 Underestimate 
1 3 0.6 0.8 8 0.81277 0.743952 Correct 
1 3 0.6 0.85 9 0.86252 0.812538 Underestimate 
1 3 0.6 0.9 10 0.902 0.870058 Underestimate 
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1 3 0.6 NA 11 0.9282 0.90717  

1 3 0.6 0.95 13 0.96484 0.952842 Correct 
1 3 0.8 0.75 6 0.75014 0.658547 Underestimate 
1 3 0.8 0.8 7 0.82845 0.76397 Underestimate 
1 3 0.8 0.85 8 0.8823 0.832648 Underestimate 
1 3 0.8 0.9 9 0.92077 0.89368 Underestimate 
1 3 0.8 0.95 11 0.96446 0.954674 Correct 
1 3 0.9 0.75 6 0.77873 0.702462 Underestimate 
1 3 0.9 0.8 7 0.8515 0.803974 Correct 
1 3 0.9 0.85 7 0.8515 0.803974 Underestimate 
1 3 0.9 0.9 8 0.90104 0.86699 Underestimate 
1 3 0.9 NA 9 0.93612 0.915844  

1 3 0.9 0.95 10 0.95888 0.947608 Underestimate 
1 4 0.6 0.75 8 0.78658 0.743952 Underestimate 
1 4 0.6 0.8 9 0.84298 0.812538 Correct 
1 4 0.6 0.85 10 0.88801 0.870058 Correct 
1 4 0.6 0.9 11 0.91736 0.90717 Correct 
1 4 0.6 0.95 13 0.9595 0.952842 Correct 
1 4 0.8 NA 6 0.73266 0.658547  

1 4 0.8 0.75 7 0.81607 0.76397 Correct 
1 4 0.8 0.8 7 0.81607 0.76397 Underestimate 
1 4 0.8 0.85 8 0.87345 0.832648 Underestimate 
1 4 0.8 0.9 9 0.91475 0.89368 Underestimate 
1 4 0.8 0.95 11 0.96178 0.954674 Correct 
1 4 0.9 0.75 6 0.77122 0.702462 Underestimate 
1 4 0.9 0.8 7 0.84639 0.803974 Correct 
1 4 0.9 0.85 8 0.8975 0.86699 Correct 
1 4 0.9 0.9 9 0.93383 0.915844 Correct 
1 4 0.9 0.95 10 0.95741 0.947608 Underestimate 
5 1 0.6 NA 11 0.69771 0.693458  

5 1 0.6 0.75 12 0.75515 0.752985 Correct 
5 1 0.6 0.8 13 0.8024 0.797011 Underestimate 
5 1 0.6 NA 14 0.84464 0.845952  

5 1 0.6 0.85 15 0.8752 0.876355 Correct 
5 1 0.6 0.9 16 0.90496 0.902386 Correct 
5 1 0.6 NA 18 0.94133 0.943501  

5 1 0.6 0.95 19 0.95476 0.954823 Correct 
5 1 0.8 NA 10 0.73783 0.738354  

5 1 0.8 0.75 11 0.79532 0.800145 Correct 
5 1 0.8 0.8 12 0.84551 0.847017 Overestimate 
5 1 0.8 0.85 13 0.88321 0.883914 Correct 
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5 1 0.8 0.9 14 0.91322 0.916338 Correct 
5 1 0.8 0.95 16 0.95228 0.955042 Correct 
5 1 0.9 0.75 10 0.77584 0.776826 Correct 
5 1 0.9 0.8 11 0.82956 0.838224 Correct 
5 1 0.9 0.85 12 0.87391 0.878398 Correct 
5 1 0.9 0.9 13 0.90731 0.910967 Correct 
5 1 0.9 0.95 15 0.95169 0.954201 Correct 
5 2 0.6 NA 11 0.71968 0.693458  

5 2 0.6 0.75 12 0.7743 0.752985 Correct 
5 2 0.6 0.8 13 0.81884 0.797011 Underestimate 
5 2 0.6 0.85 14 0.85785 0.845952 Underestimate 
5 2 0.6 NA 15 0.88656 0.876355  

5 2 0.6 0.9 16 0.91365 0.902386 Correct 
5 2 0.6 NA 18 0.94731 0.943501  

5 2 0.6 0.95 19 0.95951 0.954823 Correct 
5 2 0.8 NA 10 0.74905 0.738354  

5 2 0.8 0.75 11 0.80483 0.800145 Correct 
5 2 0.8 0.8 11 0.80483 0.800145 Correct 
5 2 0.8 0.85 12 0.85274 0.847017 Underestimate 
5 2 0.8 NA 13 0.88903 0.883914  

5 2 0.8 0.9 14 0.91763 0.916338 Correct 
5 2 0.8 0.95 16 0.95489 0.955042 Correct 
5 2 0.9 0.75 10 0.78241 0.776826 Correct 
5 2 0.9 0.8 11 0.83496 0.838224 Correct 
5 2 0.9 0.85 12 0.87787 0.878398 Correct 
5 2 0.9 0.9 13 0.9103 0.910967 Correct 
5 2 0.9 0.95 15 0.9533 0.954201 Correct 
5 3 0.6 0.75 11 0.75567 0.693458 Underestimate 
5 3 0.6 0.8 12 0.80542 0.752985 Underestimate 
5 3 0.6 NA 13 0.84481 0.797011  

5 3 0.6 0.85 14 0.87926 0.845952 Underestimate 
5 3 0.6 0.9 15 0.90427 0.876355 Underestimate 
5 3 0.6 NA 16 0.92763 0.902386  

5 3 0.6 0.95 18 0.95641 0.943501 Underestimate 
5 3 0.6 NA 19 0.96666 0.954823  

5 3 0.8 0.75 10 0.77918 0.738354 Underestimate 
5 3 0.8 0.8 11 0.8297 0.800145 Correct 
5 3 0.8 0.85 12 0.87254 0.847017 Underestimate 
5 3 0.8 0.9 13 0.90459 0.883914 Underestimate 
5 3 0.8 NA 14 0.92968 0.916338  

5 3 0.8 0.95 16 0.96193 0.955042 Correct 
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5 3 0.9 0.75 10 0.80804 0.776826 Correct 
5 3 0.9 0.8 10 0.80804 0.776826 Underestimate 
5 3 0.9 0.85 11 0.8556 0.838224 Underestimate 
5 3 0.9 NA 12 0.89389 0.878398  

5 3 0.9 0.9 13 0.92259 0.910967 Correct 
5 3 0.9 0.95 15 0.96015 0.954201 Correct 
5 4 0.6 NA 11 0.68251 0.693458  

5 4 0.6 NA 12 0.74416 0.752985  

5 4 0.6 0.75 13 0.79474 0.797011 Overestimate 
5 4 0.6 0.8 14 0.83804 0.845952 Correct 
5 4 0.6 0.85 15 0.87112 0.876355 Correct 
5 4 0.6 0.9 16 0.90144 0.902386 Correct 
5 4 0.6 NA 18 0.94012 0.943501  

5 4 0.6 0.95 19 0.95399 0.954823 Correct 
5 4 0.8 NA 10 0.73481 0.738354  

5 4 0.8 0.75 11 0.79416 0.800145 Correct 
5 4 0.8 0.8 12 0.84462 0.847017 Overestimate 
5 4 0.8 0.85 13 0.88308 0.883914 Correct 
5 4 0.8 0.9 14 0.91324 0.916338 Correct 
5 4 0.8 0.95 16 0.9527 0.955042 Correct 
5 4 0.9 0.75 10 0.77799 0.776826 Correct 
5 4 0.9 0.8 11 0.83218 0.838224 Correct 
5 4 0.9 0.85 12 0.87599 0.878398 Correct 
5 4 0.9 0.9 13 0.90914 0.910967 Correct 
5 4 0.9 0.95 15 0.95286 0.954201 Correct 

Blue values not included in Table 4.3 averages as they are duplicates 
 

 

SAS Code 

The following SAS Code on the following pages calculates sample size required to 

achieve 90% power using Method 1 and 𝛽𝛽4 = -6.43 in Table 4.5.  SAS program editor 

formatting does not carry over well to a paper document with defined margins.  Thus, for 

a more readable file, copy and past the program into SAS. 
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/*Specify Design*/ 
******************; 
******************; 
%let ncpuse=ncp1; *Other options: ncp2, ncp3, ncp4, ncp5; 
%let ddfuse=m1; *Other options: m2, m3, m4, m5; 
%let xbar1=57.7; *Hypothesized population mean of treatment group 1 
(investigative treatment); 
%let xbar2=52.8800; *Hypothesized population mean of treatment group 2 (control 
treatment); 
%let xbar3=51.8; *Hypothesized population mean of treatment group 3 (comparator 
treatment); 
%let btime1=20.05; *Hypothesized effect of Time in group 1; *Use 24.04 for 
large sample example; 
%let btime2=26.48; *Hypothesized effect of Time in group 2; 
%let btime3=27.5714; *Hypothesized effect of Time in group 3; 
%let g1ratio=1; *Number of observations of which we will take the mean for 
treatment group; 
%let g2ratio=1; *Number of observations of which we will take the mean for 
control group; 
%let g3ratio=1; *Number of observations of which we will take the mean for 
comparator group; 
%let missparm=0.85; *1-probability of any follow-up being missing; 
%let errdev=4.342303536; *Hypothesized within subjects error standard 
deviation; 
%let ranistd=5.62418883; *Hypothesized standard deviation of Random Intercept; 
%let ransstd=3.888238676; *Hypothesized standard deviation of Random Slope (set 
to 0 if want intercept only); 
%let correlation=-0.114792316; *Hypothesized correlation between random 
intercept and random slope (set to 0 if want intercept only); 
%let timevec=0,1,2,3,4; *Vector of time values for each subject when no 
observations missing; 
%let alpha=0.05; *Desired Type-I Error Rate; 
%let despower=0.9; *Desired Power; 
%let seed1=607824; 
%let seed2=52451; 
%let seed3=7983831; 
%let ran1seed1=8695815; 
%let ran1seed2=64638; 
%let ran2seed1=1436208; 
%let ran2seed2=3378521; 
%let ran3seed1=145532; 
%let ran3seed2=7530156; 
%let misseed1=647211; 
%let misseed2=71617929; 
%let misseed3=4278484; 
 
data work.MacroVals; 
 missparm=&missparm; 
 n1=ceil(((&g1ratio/(&g1ratio+&g2ratio+&g3ratio))*50)); 
 n2=ceil(((&g2ratio/(&g1ratio+&g2ratio+&g3ratio))*50)); 
 n3=ceil(((&g3ratio/(&g1ratio+&g2ratio+&g3ratio))*50)); 
 if missparm=1 then reps=1; 
 else reps=10; 
 call symput('n1', n1); 
 call symput('n2', n2); 
 call symput('n3', n3); 
 call symput('reps', reps); 
run; 
 
 
 
 
/* 
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*/ 
data work.Treatment;  
 seed=&misseed1; 
 reps=&reps; 
 do rep=1 to reps; 
  do n=1 to &n1; 
  ID=compress(put(n,best8.)||"A"); 
   do Time=min(&timevec) to max(&timevec); 
   z=ranuni(seed); /*Uses uniform(0,1) random variable "z" to 
assign missing values if z>missparm, modified later to force baseline as 
nonmissing*/ 
   if  z>&missparm then u=0; 
   else if z<=&missparm then u=1; 
   output; 
   end; 
   end; 
  end; 
  drop seed z; 
run; 
 
proc sql; 
 create table work.Treatobs as 
  select rep, ID, Time, case Time when . then 1 else 1 end as 
intercept, 
     case Time when . then 1 else 1 end as Treatment, 
       case Time when . then 0 else 0 end as Comparator, u 
  from work.Treatment 
  where Time in (&timevec); 
quit; 
 
data work.Placebo; 
 seed=&misseed2; 
 reps=&reps; 
   do rep=1 to reps; 
  do n=1 to &n2; 
  ID=compress(put(n,best8.)||"B"); 
   do time=min(&timevec) to max(&timevec); 
   z=ranuni(seed); /*Uses uniform(0,1) random variable "z" to 
assign missing values if z>missparm, modified later to force baseline as 
nonmissing*/ 
   if  z>&missparm then u=0; 
   else if z<=&missparm then u=1; 
   output; 
   end; 
   end; 
  end; 
  drop seed z; 
run; 
 
proc sql; 
 create table work.Plbobs as 
  select rep, ID, Time, case Time when . then 1 else 1 end as 
intercept, 
     case Time when . then 0 else 0 end as Treatment, 
     case Time when . then 0 else 0 end as Comparator, u 
  from work.Placebo 
  where Time in (&timevec); 
quit; 
 
data work.Comparator; 
 seed=&misseed3; 
 reps=&reps; 
/* 
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*/ 
 
   do rep=1 to reps; 
  do n=1 to &n3; 
  ID=compress(put(n,best8.)||"C"); 
   do time=min(&timevec) to max(&timevec); 
   z=ranuni(seed); /*Uses uniform(0,1) random variable "z" to 
assign missing values if z>missparm, modified later to force baseline as 
nonmissing*/ 
   if  z>&missparm then u=0; 
   else if z<=&missparm then u=1; 
   output; 
   end; 
   end; 
  end; 
  drop seed z; 
run; 
 
proc sql; 
 create table work.Cmptorobs as 
  select rep, ID, Time, case Time when . then 1 else 1 end as 
intercept, 
     case Time when . then 0 else 0 end as Treatment, 
     case Time when . then 1 else 1 end as Comparator, u 
  from work.Comparator 
  where Time in (&timevec); 
quit; 
 
data work.MixedData_a; *Combine placebo and treatment designs into one dataset; 
 set work.Treatobs work.Plbobs work.Cmptorobs; 
run; 
 
proc sql; *Will create variable "M" to serve as missing data indicator and make 
sure no baseline values are missing; 
 create table work.MixedData_b as 
  select rep, ID, intercept, Treatment, Comparator, Time, 
Treatment*Time as TreatTime, Comparator*Time as CompTime, 
     case when u=0 and time ne min(&timevec) then . else 
1 end as M 
  from work.MixedData_a; 
quit; 
 
proc sql; 
 create table work.MixedData as 
  select rep, ID, intercept, Treatment, Comparator, Time, TreatTime, 
CompTime 
  from work.MixedData_b 
  where M ne .; 
quit; 
 
proc sort data=work.MixedData; 
 by rep id time; 
run; 
quit; 
 
%macro Mij(i=&covparmi,j=&covparmj); /*This macro calculates the second partial 
derivatives of THETA with respect to covariance parameters i and j*/ 
 (O*PHI*P&i*PHI*O*PHI*P&j*PHI*O+O*PHI*P&j*PHI*O*PHI*P&i*PHI*O-
O*PHI*(P&i*PHI*P&j+P&j*PHI*P&i-Q&i&j-Q&j&i)*PHI*O) 
%mend Mij; 
/* 
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*/ 
data work.power_b; 
 COL1=9999; 
run; 
 
%macro power(rep=&sim); 
proc sql; 
 create table work.mixeddata_&rep as 
  select * 
  from work.MixedData 
  where rep=&rep; 
quit; 
proc sort data=work.mixeddata_&rep; 
 by rep id time; 
run; 
quit; 
data work.seqids_&rep; 
 set work.MixedData_&rep; 
 by id; 
 retain order 0; 
  if first.id then order=order+1; 
run; 
ods select all; 
proc iml; 
Contrasts=({0 0 0 0 1 0, 0 0 0 0 0 1})`; 
C=Contrasts; 
L=trace(ginv(C)*C); 
q=L+1; *+1 if to account for intercept; 
ivar=&ranistd; 
svar=&ransstd; 
corr=&correlation; 
errvar=&errdev*&errdev; 
cov=(ivar*({1 0, 0 0})+svar*({0 0, 0 1}))*(corr*({0 1, 1 0})+I(2))*(ivar*({1 0, 
0 0})+svar*({0 0, 0 1})); 
bint=&xbar2; *group 2 will be used as reference group; 
btreat=&xbar1-&xbar2; *treatment effect; 
bcompare=&xbar3-&xbar2; 
btime=&btime2; *time effect in reference group 2; 
btreattime=&btime1-&btime2; *group*time interaction; 
bcomptime=&btime3-&btime2; 
Beta=(bint||btreat||bcompare||btime||btreattime||bcomptime)`; 
B=Beta; 
n=&n1+&n2+&n3; 
use work.seqids_&rep;; 
 do i=1 to n; 
   read all var {intercept Treatment Comparator Time TreatTime CompTime} 
where(order=i) into X; 
   read all var {intercept Time} where(order=i) into Z; 
   S=z*cov*z`+I((nrow(X)))@errvar; 
   if i=1 then V=(X`*inv(S)*X); 
     else V=V+(X`*inv(S)*X); 
end; 
PHI=inv(V); 
use work.seqids_&rep;; 
 do i=1 to n; 
   read all var {intercept Treatment Comparator Time TreatTime CompTime} 
where(order=i) into X; 
   read all var {intercept Time} where(order=i) into Z; 
   S=z*cov*z`+I((nrow(X)))@errvar; 
   d1=z*({1 0, 0 0})*z`; 
   d2=z*({0 0, 0 1})*z`; 
   d3=I(nrow(X)); 
/* 
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*/ 
   d4=z*({0 1, 1 0})*z`; 
   if i=1 then P1=-X`*inv(S)*d1*inv(S)*X; else P1=P1-
X`*inv(S)*d1*inv(S)*X; 
   if i=1 then P2=-X`*inv(S)*d2*inv(S)*X; else P2=P2-
X`*inv(S)*d2*inv(S)*X; 
   if i=1 then P3=-X`*inv(S)*d3*inv(S)*X; else P3=P3-
X`*inv(S)*d3*inv(S)*X; 
   if i=1 then P4=-X`*inv(S)*d4*inv(S)*X; else P4=P4-
X`*inv(S)*d4*inv(S)*X; 
   if i=1 then Q11=X`*inv(S)*d1*inv(S)*d1*inv(S)*X; else 
Q11=Q11+X`*inv(S)*d1*inv(S)*d1*inv(S)*X; 
   if i=1 then Q12=X`*inv(S)*d1*inv(S)*d2*inv(S)*X; else 
Q12=Q12+X`*inv(S)*d1*inv(S)*d2*inv(S)*X; 
   if i=1 then Q13=X`*inv(S)*d1*inv(S)*d3*inv(S)*X; else 
Q13=Q13+X`*inv(S)*d1*inv(S)*d3*inv(S)*X; 
   if i=1 then Q14=X`*inv(S)*d1*inv(S)*d4*inv(S)*X; else 
Q14=Q14+X`*inv(S)*d1*inv(S)*d4*inv(S)*X; 
   if i=1 then Q21=X`*inv(S)*d2*inv(S)*d1*inv(S)*X; else 
Q21=Q21+X`*inv(S)*d2*inv(S)*d1*inv(S)*X; 
   if i=1 then Q22=X`*inv(S)*d2*inv(S)*d2*inv(S)*X; else 
Q22=Q22+X`*inv(S)*d2*inv(S)*d2*inv(S)*X; 
   if i=1 then Q23=X`*inv(S)*d2*inv(S)*d3*inv(S)*X; else 
Q23=Q23+X`*inv(S)*d2*inv(S)*d3*inv(S)*X; 
   if i=1 then Q24=X`*inv(S)*d2*inv(S)*d4*inv(S)*X; else 
Q24=Q24+X`*inv(S)*d2*inv(S)*d4*inv(S)*X; 
   if i=1 then Q31=X`*inv(S)*d3*inv(S)*d1*inv(S)*X; else 
Q31=Q31+X`*inv(S)*d3*inv(S)*d1*inv(S)*X; 
   if i=1 then Q32=X`*inv(S)*d3*inv(S)*d2*inv(S)*X; else 
Q32=Q32+X`*inv(S)*d3*inv(S)*d2*inv(S)*X; 
   if i=1 then Q33=X`*inv(S)*d3*inv(S)*d3*inv(S)*X; else 
Q33=Q33+X`*inv(S)*d3*inv(S)*d3*inv(S)*X; 
   if i=1 then Q34=X`*inv(S)*d3*inv(S)*d4*inv(S)*X; else 
Q34=Q34+X`*inv(S)*d3*inv(S)*d4*inv(S)*X; 
   if i=1 then Q41=X`*inv(S)*d4*inv(S)*d1*inv(S)*X; else 
Q41=Q41+X`*inv(S)*d4*inv(S)*d1*inv(S)*X; 
   if i=1 then Q42=X`*inv(S)*d4*inv(S)*d2*inv(S)*X; else 
Q42=Q42+X`*inv(S)*d4*inv(S)*d2*inv(S)*X; 
   if i=1 then Q43=X`*inv(S)*d4*inv(S)*d3*inv(S)*X; else 
Q43=Q43+X`*inv(S)*d4*inv(S)*d3*inv(S)*X; 
   if i=1 then Q44=X`*inv(S)*d4*inv(S)*d4*inv(S)*X; else 
Q44=Q44+X`*inv(S)*d4*inv(S)*d4*inv(S)*X; 
*Information Matrices; 
   if i=1 then I11a=trace(inv(S)*d1*inv(S)*d1); else 
I11a=trace(I11a)+trace(inv(S)*d1*inv(S)*d1); 
   if i=1 then I12a=trace(inv(S)*d1*inv(S)*d2); else 
I12a=trace(I12a)+trace(inv(S)*d1*inv(S)*d2); 
   if i=1 then I13a=trace(inv(S)*d1*inv(S)*d3); else 
I13a=trace(I13a)+trace(inv(S)*d1*inv(S)*d3); 
   if i=1 then I14a=trace(inv(S)*d1*inv(S)*d4); else 
I14a=trace(I14a)+trace(inv(S)*d1*inv(S)*d4); 
   if i=1 then I21a=trace(inv(S)*d2*inv(S)*d1); else 
I21a=trace(I21a)+trace(inv(S)*d2*inv(S)*d1); 
   if i=1 then I22a=trace(inv(S)*d2*inv(S)*d2); else 
I22a=trace(I22a)+trace(inv(S)*d2*inv(S)*d2); 
   if i=1 then I23a=trace(inv(S)*d2*inv(S)*d3); else 
I23a=trace(I23a)+trace(inv(S)*d2*inv(S)*d3); 
   if i=1 then I24a=trace(inv(S)*d2*inv(S)*d4); else 
I24a=trace(I24a)+trace(inv(S)*d2*inv(S)*d4); 
   if i=1 then I31a=trace(inv(S)*d3*inv(S)*d1); else 
I31a=trace(I31a)+trace(inv(S)*d3*inv(S)*d1); 
/* 



139 
 

 
*/ 
   if i=1 then I32a=trace(inv(S)*d3*inv(S)*d2); else 
I32a=trace(I32a)+trace(inv(S)*d3*inv(S)*d2); 
   if i=1 then I33a=trace(inv(S)*d3*inv(S)*d3); else 
I33a=trace(I33a)+trace(inv(S)*d3*inv(S)*d3); 
   if i=1 then I34a=trace(inv(S)*d3*inv(S)*d4); else 
I34a=trace(I34a)+trace(inv(S)*d3*inv(S)*d4); 
   if i=1 then I41a=trace(inv(S)*d4*inv(S)*d1); else 
I41a=trace(I41a)+trace(inv(S)*d4*inv(S)*d1); 
   if i=1 then I42a=trace(inv(S)*d4*inv(S)*d2); else 
I42a=trace(I42a)+trace(inv(S)*d4*inv(S)*d2); 
   if i=1 then I43a=trace(inv(S)*d4*inv(S)*d3); else 
I43a=trace(I43a)+trace(inv(S)*d4*inv(S)*d3); 
   if i=1 then I44a=trace(inv(S)*d4*inv(S)*d4); else 
I44a=trace(I44a)+trace(inv(S)*d4*inv(S)*d4); 
end; 
I11=((0.5*trace(I11a)-0.5*trace(2*PHI*Q11-PHI*P1*PHI*P1)))*({1 0 0 0, 0 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I12=((0.5*trace(I12a)-0.5*trace(2*PHI*Q12-PHI*P1*PHI*P2)))*({0 1 0 0, 0 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I13=((0.5*trace(I13a)-0.5*trace(2*PHI*Q13-PHI*P1*PHI*P3)))*({0 0 1 0, 0 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I14=((0.5*trace(I14a)-0.5*trace(2*PHI*Q14-PHI*P1*PHI*P4)))*({0 0 0 1, 0 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I21=((0.5*trace(I21a)-0.5*trace(2*PHI*Q21-PHI*P2*PHI*P1)))*({0 0 0 0, 1 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I22=((0.5*trace(I22a)-0.5*trace(2*PHI*Q22-PHI*P2*PHI*P2)))*({0 0 0 0, 0 1 0 0, 
0 0 0 0, 0 0 0 0}); 
I23=((0.5*trace(I23a)-0.5*trace(2*PHI*Q23-PHI*P2*PHI*P3)))*({0 0 0 0, 0 0 1 0, 
0 0 0 0, 0 0 0 0}); 
I24=((0.5*trace(I24a)-0.5*trace(2*PHI*Q24-PHI*P2*PHI*P4)))*({0 0 0 0, 0 0 0 1, 
0 0 0 0, 0 0 0 0}); 
I31=((0.5*trace(I31a)-0.5*trace(2*PHI*Q31-PHI*P3*PHI*P1)))*({0 0 0 0, 0 0 0 0, 
1 0 0 0, 0 0 0 0}); 
I32=((0.5*trace(I32a)-0.5*trace(2*PHI*Q32-PHI*P3*PHI*P2)))*({0 0 0 0, 0 0 0 0, 
0 1 0 0, 0 0 0 0}); 
I33=((0.5*trace(I33a)-0.5*trace(2*PHI*Q33-PHI*P3*PHI*P3)))*({0 0 0 0, 0 0 0 0, 
0 0 1 0, 0 0 0 0}); 
I34=((0.5*trace(I34a)-0.5*trace(2*PHI*Q34-PHI*P3*PHI*P4)))*({0 0 0 0, 0 0 0 0, 
0 0 0 1, 0 0 0 0}); 
I41=((0.5*trace(I41a)-0.5*trace(2*PHI*Q41-PHI*P4*PHI*P1)))*({0 0 0 0, 0 0 0 0, 
0 0 0 0, 1 0 0 0}); 
I42=((0.5*trace(I42a)-0.5*trace(2*PHI*Q42-PHI*P4*PHI*P2)))*({0 0 0 0, 0 0 0 0, 
0 0 0 0, 0 1 0 0}); 
I43=((0.5*trace(I43a)-0.5*trace(2*PHI*Q43-PHI*P4*PHI*P3)))*({0 0 0 0, 0 0 0 0, 
0 0 0 0, 0 0 1 0}); 
I44=((0.5*trace(I44a)-0.5*trace(2*PHI*Q44-PHI*P4*PHI*P4)))*({0 0 0 0, 0 0 0 0, 
0 0 0 0, 0 0 0 1}); 
I=ginv(I11+I12+I13+I14+I21+I22+I23+I24+I31+I32+I33+I34+I41+I42+I43+I44); 
*Inverse of Expected Information Matrix; 
*W Terms; 
w11=({1 0 0 0})*I*({1 0 0 0})`; 
w12=({1 0 0 0})*I*({0 1 0 0})`; 
w13=({1 0 0 0})*I*({0 0 1 0})`; 
w14=({1 0 0 0})*I*({0 0 0 1})`; 
w21=({0 1 0 0})*I*({1 0 0 0})`; 
w22=({0 1 0 0})*I*({0 1 0 0})`; 
w23=({0 1 0 0})*I*({0 0 1 0})`; 
w24=({0 1 0 0})*I*({0 0 0 1})`; 
w31=({0 0 1 0})*I*({1 0 0 0})`; 
w32=({0 0 1 0})*I*({0 1 0 0})`; 
/* 
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*/ 
w33=({0 0 1 0})*I*({0 0 1 0})`; 
w34=({0 0 1 0})*I*({0 0 0 1})`; 
w41=({0 0 0 1})*I*({1 0 0 0})`; 
w42=({0 0 0 1})*I*({0 1 0 0})`; 
w43=({0 0 0 1})*I*({0 0 1 0})`; 
w44=({0 0 0 1})*I*({0 0 0 1})`; 
*Sum Terms; 
c11=w11*(Q11-(P1*PHI*P1)); 
c12=w12*(Q12-(P1*PHI*P2)); 
c13=w13*(Q13-(P1*PHI*P3)); 
c14=w14*(Q14-(P1*PHI*P4)); 
c21=w21*(Q21-(P2*PHI*P1)); 
c22=w22*(Q22-(P2*PHI*P2)); 
c23=w23*(Q23-(P2*PHI*P3)); 
c24=w24*(Q24-(P2*PHI*P4)); 
c31=w31*(Q31-(P3*PHI*P1)); 
c32=w32*(Q32-(P3*PHI*P2)); 
c33=w33*(Q33-(P3*PHI*P3)); 
c34=w34*(Q34-(P3*PHI*P4)); 
c41=w41*(Q41-(P4*PHI*P1)); 
c42=w42*(Q42-(P4*PHI*P2)); 
c43=w43*(Q43-(P4*PHI*P3)); 
c44=w44*(Q44-(P4*PHI*P4)); 
sum=c11+c12+c13+c14+c21+c22+c23+c24+c31+c32+c33+c34+c41+c42+c43+c44; 
PHIA=PHI+2*PHI*(sum)*PHI; 
Astar=2*PHI*(sum)*PHI; 
*Theta denoted as O in this code; 
 O=C*ginv(C`*PHI*C)*C`; 
*Traces; 
*A1; 
ta11=w11*trace(O*PHI*P1*PHI)*trace(O*PHI*P1*PHI); 
ta12=w12*trace(O*PHI*P1*PHI)*trace(O*PHI*P2*PHI); 
ta13=w13*trace(O*PHI*P1*PHI)*trace(O*PHI*P3*PHI); 
ta14=w14*trace(O*PHI*P1*PHI)*trace(O*PHI*P4*PHI); 
ta21=w21*trace(O*PHI*P2*PHI)*trace(O*PHI*P1*PHI); 
ta22=w22*trace(O*PHI*P2*PHI)*trace(O*PHI*P2*PHI); 
ta23=w23*trace(O*PHI*P2*PHI)*trace(O*PHI*P3*PHI); 
ta24=w24*trace(O*PHI*P2*PHI)*trace(O*PHI*P4*PHI); 
ta31=w31*trace(O*PHI*P3*PHI)*trace(O*PHI*P1*PHI); 
ta32=w32*trace(O*PHI*P3*PHI)*trace(O*PHI*P2*PHI); 
ta33=w33*trace(O*PHI*P3*PHI)*trace(O*PHI*P3*PHI); 
ta34=w34*trace(O*PHI*P3*PHI)*trace(O*PHI*P4*PHI); 
ta41=w41*trace(O*PHI*P4*PHI)*trace(O*PHI*P1*PHI); 
ta42=w42*trace(O*PHI*P4*PHI)*trace(O*PHI*P2*PHI); 
ta43=w43*trace(O*PHI*P4*PHI)*trace(O*PHI*P3*PHI); 
ta44=w44*trace(O*PHI*P4*PHI)*trace(O*PHI*P4*PHI); 
A1=ta11+ta12+ta13+ta14+ta21+ta22+ta23+ta24+ta31+ta32+ta33+ta34+ta41+ta42+ta43+t
a44; 
*A2; 
tb11=w11*trace(O*PHI*P1*PHI*O*PHI*P1*PHI); 
tb12=w12*trace(O*PHI*P1*PHI*O*PHI*P2*PHI); 
tb13=w13*trace(O*PHI*P1*PHI*O*PHI*P3*PHI); 
tb14=w14*trace(O*PHI*P1*PHI*O*PHI*P4*PHI); 
tb21=w21*trace(O*PHI*P2*PHI*O*PHI*P1*PHI); 
tb22=w22*trace(O*PHI*P2*PHI*O*PHI*P2*PHI); 
tb23=w23*trace(O*PHI*P2*PHI*O*PHI*P3*PHI); 
tb24=w24*trace(O*PHI*P2*PHI*O*PHI*P4*PHI); 
tb31=w31*trace(O*PHI*P3*PHI*O*PHI*P1*PHI); 
tb32=w32*trace(O*PHI*P3*PHI*O*PHI*P2*PHI); 
tb33=w33*trace(O*PHI*P3*PHI*O*PHI*P3*PHI); 
/* 
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*/ 
tb34=w34*trace(O*PHI*P3*PHI*O*PHI*P4*PHI); 
tb41=w41*trace(O*PHI*P4*PHI*O*PHI*P1*PHI); 
tb42=w42*trace(O*PHI*P4*PHI*O*PHI*P2*PHI); 
tb43=w43*trace(O*PHI*P4*PHI*O*PHI*P3*PHI); 
tb44=w44*trace(O*PHI*P4*PHI*O*PHI*P4*PHI); 
A2=tb11+tb12+tb13+tb14+tb21+tb22+tb23+tb24+tb31+tb32+tb33+tb34+tb41+tb42+tb43+t
b44; 
*Mij component of E(F_NonCentral) terms; 
M11=%Mij(i=1,j=1); 
M12=%Mij(i=1,j=2); 
M13=%Mij(i=1,j=3); 
M14=%Mij(i=1,j=4); 
M21=%Mij(i=2,j=1); 
M22=%Mij(i=2,j=2); 
M23=%Mij(i=2,j=3); 
M24=%Mij(i=2,j=4); 
M31=%Mij(i=3,j=1); 
M32=%Mij(i=3,j=2); 
M33=%Mij(i=3,j=3); 
M34=%Mij(i=3,j=4); 
M41=%Mij(i=4,j=1); 
M42=%Mij(i=4,j=2); 
M43=%Mij(i=4,j=3); 
M44=%Mij(i=4,j=4); 
*A3 component of E(F) and Var(F); 
tc11=w11*B`*M11*B; 
tc12=w12*B`*M12*B; 
tc13=w13*B`*M13*B; 
tc14=w14*B`*M14*B; 
tc21=w21*B`*M21*B; 
tc22=w22*B`*M22*B; 
tc23=w23*B`*M23*B; 
tc24=w24*B`*M24*B; 
tc31=w31*B`*M31*B; 
tc32=w32*B`*M32*B; 
tc33=w33*B`*M33*B; 
tc34=w34*B`*M34*B; 
tc41=w41*B`*M41*B; 
tc42=w42*B`*M42*B; 
tc43=w43*B`*M43*B; 
tc44=w44*B`*M44*B; 
A3=0.5*(tc11+tc12+tc13+tc14+tc21+tc22+tc23+tc24+tc31+tc32+tc33+tc34+tc41+tc42+t
c43+tc44); 
L=trace(ginv(C)*C); 
*DF components; 
E=inv(1-(A2/L)); 
B=(1/(2*L))*(A1+(6*A2)); 
gg=((L+1)*A1-(L+4)*A2)/((L+2)*A2); 
dd1=gg/(3*L+2*(1-gg)); 
dd2=(L-gg)/(3*L+2*(1-gg)); 
dd3=(L-gg+2)/(3*L+2*(1-gg)); 
V=(2/L)*((1+(dd1*B))/((1-(dd2*B))*(1-(dd2*B))*(1-(dd3*B)))); 
rr=V/(2*E*E); 
B=Beta; 
*Degrees of Freedom M and Scale Factor Lambda; 
m=4+((L+2)/((L*rr)-1)); 
Lambda=m/(E*(m-2)); 
*Expected Value; 
E_null=(1/L)*(L+A2); 
/* 
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E_alt=E_null + (1/L)*(B`*C*ginv(C`*PHI*C)*C`*B+A3)-
(1/L)*(B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B); 
ncp=lambda*(B`*C*ginv(C`*PHIA*C)*C`*B);  
rat1=(lambda*E_null)/(m/(m-2)); 
ncpform=B`*C*ginv(C`*PHI*C)*C`*B; 
E0=ginv(1-(A2/L)); *KR adjustment to E_null; 
EA=(1/L)*ginv(ncpform-
A3+B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B)*((ncpform-
B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B)*(ncpform-
B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B)); 
ncpnew=L*Lambda*(EA/E0); 
ncp1=ncpnew; 
ncp2=ncp; 
ncp3=ncpform; 
ncp4=ncpform; 
ncp5=ncpform; 
ncpuse=&ncpuse; 
alpha=&alpha; 
alpha2=1-&alpha; 
zscorea=quantile("Normal", alpha2, 0, 1); 
despower=&despower; 
zscoreb=quantile("Normal", despower, 0, 1); 
zscore=zscorea+zscoreb; 
QFC32=(abs(zscore)*sqrt(2/(9*L))+(1-(2/(9*L))))**3; *K in dissertation 
quadratic formula; 
QFa2=L/3; *a in dissertation quadratic formula; 
QFb2=L+2*10000-(4/3)*QFC32*L-2; *b in dissertation quadratic formula; 
QFc2=-2*QFC32*10000; *c in dissertation quadratic formula; 
Fscore=(-QFb2+sqrt(QFb2*QFb2-4*QFa2*QFc2))/(2*QFa2); 
multfactor=((Fscore))*(1/ncpuse)*L; 
scalera=B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B; 
L=trace(ginv(C)*C); 
*DF components; 
E=inv(1-(A2/L)); 
B=(1/(2*L))*(A1+(6*A2)); 
gg=((L+1)*A1-(L+4)*A2)/((L+2)*A2); 
dd1=gg/(3*L+2*(1-gg)); 
dd2=(L-gg)/(3*L+2*(1-gg)); 
dd3=(L-gg+2)/(3*L+2*(1-gg)); 
V=(2/L)*((1+(dd1*B))/((1-(dd2*B))*(1-(dd2*B))*(1-(dd3*B)))); 
rr=V/(2*E*E); 
*Degrees of Freedom M and Scale Factor Lambda; 
m=4+((L+2)/((L*rr)-1)); 
Lambda=m/(E*(m-2)); 
*Power; 
alpha=0.05; 
alval=1-0.05; 
timevec=({&timevec}); 
m1=m; 
m2=m; 
m3=m; 
m4=(&n1+&n2+&n3)*(((nrow(timevec)-1)*&missparm+1)/nrow(timevec))-L-1; 
m5=(&n1+&n2+&n3)*(((nrow(timevec)-
1)*&missparm+1)/nrow(timevec))*(nrow(timevec))-6; 
muse=&ddfuse; 
critval=finv(alval, L, muse); *So p(Wald<w) = p((1/lambda)*F < f);  
power=1-probf(critval, L, muse, ncpuse); 
ncp_dev=ncpnew+0.000001; 
power_dev=((1-probf(critval, L, m, ncp_dev))-(1-probf(critval, L, m, 
ncpnew)))/0.000001; 
G=1000*scalera*power_dev; 
/* 
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*/ 
R2=1-inv(1+(1/L)*Lambda*ncp*(L/m)); 
outvec=power||multfactor||G; 
create work.power_a from outvec; 
append from outvec; 
quit; 
 
data work.power_b; 
 set work.power_b work.power_a; 
run; 
%mend power; 
 
%macro average; 
 %do designs=1 %to &reps; 
  %power(rep=&designs); 
 %end; 
%mend average; 
 
%average; run; 
 
proc sql; 
 create table work.power_c as 
  select COL1 as Power, COL2 as multfactor, Col3 as G 
  from work.power_b 
  where COL1 ne 9999; 
quit; 
 
proc sql; 
 create table work.AveragePower as 
  select mean(Power) as Power, mean(multfactor) as multfactor, 
mean(G) as G 
  from work.power_c; 
quit; 
 
 
proc sql; 
 create table work.macrostarta as 
  select Power, multfactor, G, ceil(&n1*multfactor) as n1, 
ceil(&n2*multfactor) as n2, ceil(&n3*multfactor) as n3, 
            
            
       case when &missparm*1=1 then 1 
            
            
        when &missparm*1<1 and 
G<=1 then 25 
            
            
        when &missparm*1<1 and 
1<G<=2.5 then 50 
            
            
        when &missparm*1<1 and 
2.5<G<=5 then 100 
            
            
        when &missparm*1<1 and 
5<G<=7.5 then 150 
            
            
        when &missparm*1<1 and 
7.5<G<=10 then 200 
/* 
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*/            
            
        when &missparm*1<1 and 
G>10 then 250 
            
            
        else . end as reps 
  from work.AveragePower; 
quit; 
 
data work.MacroValsglobal; 
 set work.macrostarta; 
 call symput('reps', reps); 
run; 
 
data work.MacroVals; 
 set work.macrostarta; 
 call symput('n1', n1); 
 call symput('n2', n2); 
 call symput('n3', n3); 
run; 
 
%let power=0; 
 
%macro m(n1=&q1,n2=&q2,n3=&q3); 
%do %while(&power<&despower); 
data work.Treatment;  
 seed=&misseed1+1; 
 reps=&reps; 
 do rep=1 to reps; 
  do n=1 to &n1; 
  ID=compress(put(n,best8.)||"A"); 
   do Time=min(&timevec) to max(&timevec); 
   z=ranuni(seed); /*Uses uniform(0,1) random variable "z" to 
assign missing values if z>missparm, modified later to force baseline as 
nonmissing*/ 
   if  z>&missparm then u=0; 
   else if z<=&missparm then u=1; 
   output; 
   end; 
   end; 
  end; 
  drop seed z; 
run; 
 
proc sql; 
 create table work.Treatobs as 
  select rep, ID, Time, case Time when . then 1 else 1 end as 
intercept, 
     case Time when . then 1 else 1 end as Treatment, 
       case Time when . then 0 else 0 end as Comparator, u 
  from work.Treatment 
  where Time in (&timevec); 
quit; 
 
data work.Placebo; 
 seed=&misseed2+1; 
 reps=&reps; 
   do rep=1 to reps; 
  do n=1 to &n2; 
  ID=compress(put(n,best8.)||"B"); 
/* 
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*/ 
   do time=min(&timevec) to max(&timevec); 
   z=ranuni(seed); /*Uses uniform(0,1) random variable "z" to 
assign missing values if z>missparm, modified later to force baseline as 
nonmissing*/ 
   if  z>&missparm then u=0; 
   else if z<=&missparm then u=1; 
   output; 
   end; 
   end; 
  end; 
  drop seed z; 
run; 
 
proc sql; 
 create table work.Plbobs as 
  select rep, ID, Time, case Time when . then 1 else 1 end as 
intercept, 
     case Time when . then 0 else 0 end as Treatment, 
     case Time when . then 0 else 0 end as Comparator, u 
  from work.Placebo 
  where Time in (&timevec); 
quit; 
 
data work.Comparator; 
 seed=&misseed3+1; 
 reps=&reps; 
   do rep=1 to reps; 
  do n=1 to &n3; 
  ID=compress(put(n,best8.)||"C"); 
   do time=min(&timevec) to max(&timevec); 
   z=ranuni(seed); /*Uses uniform(0,1) random variable "z" to 
assign missing values if z>missparm, modified later to force baseline as 
nonmissing*/ 
   if  z>&missparm then u=0; 
   else if z<=&missparm then u=1; 
   output; 
   end; 
   end; 
  end; 
  drop seed z; 
run; 
 
proc sql; 
 create table work.Cmptorobs as 
  select rep, ID, Time, case Time when . then 1 else 1 end as 
intercept, 
     case Time when . then 0 else 0 end as Treatment, 
     case Time when . then 1 else 1 end as Comparator, u 
  from work.Comparator 
  where Time in (&timevec); 
quit; 
 
data work.MixedData_a; *Combine placebo and treatment designs into one dataset; 
 set work.Treatobs work.Plbobs work.Cmptorobs; 
run; 
 
proc sql; *Will create variable "M" to serve as missing data indicator and make 
sure no baseline values are missing; 
 create table work.MixedData_b as 
  select rep, ID, intercept, Treatment, Comparator, Time, 
/* 
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*/Treatment*Time as TreatTime, Comparator*Time as CompTime, 
     case when u=0 and time ne min(&timevec) then . else 
1 end as M 
  from work.MixedData_a; 
quit; 
 
proc sql; 
 create table work.MixedData as 
  select rep, ID, intercept, Treatment, Comparator, Time, TreatTime, 
CompTime 
  from work.MixedData_b 
  where M ne .; 
quit; 
 
proc sort data=work.MixedData; 
 by rep id time; 
run; 
quit; 
 
data work.power_b; 
 COL1=9999; 
run; 
 
%macro power(rep=&sim); 
proc sql; 
 create table work.mixeddata_&rep as 
  select * 
  from work.MixedData 
  where rep=&rep; 
quit; 
proc sort data=work.mixeddata_&rep; 
 by rep id time; 
run; 
quit; 
data work.seqids_&rep; 
 set work.MixedData_&rep; 
 by id; 
 retain order 0; 
  if first.id then order=order+1; 
run; 
ods select all; 
proc iml; 
Contrasts=({0 0 0 0 1 0, 0 0 0 0 0 1})`; 
C=Contrasts; 
L=trace(ginv(C)*C); 
q=L+1; *+1 if to account for intercept; 
ivar=&ranistd; 
svar=&ransstd; 
corr=&correlation; 
errvar=&errdev*&errdev; 
cov=(ivar*({1 0, 0 0})+svar*({0 0, 0 1}))*(corr*({0 1, 1 0})+I(2))*(ivar*({1 0, 
0 0})+svar*({0 0, 0 1})); 
bint=&xbar2; 
btreat=&xbar1-&xbar2; *treatment effect; 
bcompare=&xbar3-&xbar2; 
btime=&btime2; *time effect in reference group 2; 
btreattime=&btime1-&btime2; *group*time interaction; 
bcomptime=&btime3-&btime2; 
Beta=(bint||btreat||bcompare||btime||btreattime||bcomptime)`; 
B=Beta; 
n=&n1+&n2+&n3; 
/* 
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*/ 
use work.seqids_&rep; 
 do i=1 to n; 
   read all var {intercept Treatment Comparator Time TreatTime CompTime} 
where(order=i) into X; 
   read all var {intercept Time} where(order=i) into Z; 
   S=z*cov*z`+I((nrow(X)))@errvar; 
   if i=1 then V=(X`*inv(S)*X); 
     else V=V+(X`*inv(S)*X); 
end; 
PHI=inv(V); 
use work.seqids_&rep;; 
 do i=1 to n; 
   read all var {intercept Treatment Comparator Time TreatTime CompTime} 
where(order=i) into X; 
   read all var {intercept Time} where(order=i) into Z; 
   S=z*cov*z`+I((nrow(X)))@errvar; 
   d1=z*({1 0, 0 0})*z`; 
   d2=z*({0 0, 0 1})*z`; 
   d3=I(nrow(X)); 
   d4=z*({0 1, 1 0})*z`; 
   if i=1 then P1=-X`*inv(S)*d1*inv(S)*X; else P1=P1-
X`*inv(S)*d1*inv(S)*X; 
   if i=1 then P2=-X`*inv(S)*d2*inv(S)*X; else P2=P2-
X`*inv(S)*d2*inv(S)*X; 
   if i=1 then P3=-X`*inv(S)*d3*inv(S)*X; else P3=P3-
X`*inv(S)*d3*inv(S)*X; 
   if i=1 then P4=-X`*inv(S)*d4*inv(S)*X; else P4=P4-
X`*inv(S)*d4*inv(S)*X; 
   if i=1 then Q11=X`*inv(S)*d1*inv(S)*d1*inv(S)*X; else 
Q11=Q11+X`*inv(S)*d1*inv(S)*d1*inv(S)*X; 
   if i=1 then Q12=X`*inv(S)*d1*inv(S)*d2*inv(S)*X; else 
Q12=Q12+X`*inv(S)*d1*inv(S)*d2*inv(S)*X; 
   if i=1 then Q13=X`*inv(S)*d1*inv(S)*d3*inv(S)*X; else 
Q13=Q13+X`*inv(S)*d1*inv(S)*d3*inv(S)*X; 
   if i=1 then Q14=X`*inv(S)*d1*inv(S)*d4*inv(S)*X; else 
Q14=Q14+X`*inv(S)*d1*inv(S)*d4*inv(S)*X; 
   if i=1 then Q21=X`*inv(S)*d2*inv(S)*d1*inv(S)*X; else 
Q21=Q21+X`*inv(S)*d2*inv(S)*d1*inv(S)*X; 
   if i=1 then Q22=X`*inv(S)*d2*inv(S)*d2*inv(S)*X; else 
Q22=Q22+X`*inv(S)*d2*inv(S)*d2*inv(S)*X; 
   if i=1 then Q23=X`*inv(S)*d2*inv(S)*d3*inv(S)*X; else 
Q23=Q23+X`*inv(S)*d2*inv(S)*d3*inv(S)*X; 
   if i=1 then Q24=X`*inv(S)*d2*inv(S)*d4*inv(S)*X; else 
Q24=Q24+X`*inv(S)*d2*inv(S)*d4*inv(S)*X; 
   if i=1 then Q31=X`*inv(S)*d3*inv(S)*d1*inv(S)*X; else 
Q31=Q31+X`*inv(S)*d3*inv(S)*d1*inv(S)*X; 
   if i=1 then Q32=X`*inv(S)*d3*inv(S)*d2*inv(S)*X; else 
Q32=Q32+X`*inv(S)*d3*inv(S)*d2*inv(S)*X; 
   if i=1 then Q33=X`*inv(S)*d3*inv(S)*d3*inv(S)*X; else 
Q33=Q33+X`*inv(S)*d3*inv(S)*d3*inv(S)*X; 
   if i=1 then Q34=X`*inv(S)*d3*inv(S)*d4*inv(S)*X; else  
Q34=Q34+X`*inv(S)*d3*inv(S)*d4*inv(S)*X; 
   if i=1 then Q41=X`*inv(S)*d4*inv(S)*d1*inv(S)*X; else 
Q41=Q41+X`*inv(S)*d4*inv(S)*d1*inv(S)*X; 
   if i=1 then Q42=X`*inv(S)*d4*inv(S)*d2*inv(S)*X; else 
Q42=Q42+X`*inv(S)*d4*inv(S)*d2*inv(S)*X; 
   if i=1 then Q43=X`*inv(S)*d4*inv(S)*d3*inv(S)*X; else 
Q43=Q43+X`*inv(S)*d4*inv(S)*d3*inv(S)*X; 
   if i=1 then Q44=X`*inv(S)*d4*inv(S)*d4*inv(S)*X; else 
Q44=Q44+X`*inv(S)*d4*inv(S)*d4*inv(S)*X; 
/* 
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*/ 
*Information Matrices; 
   if i=1 then I11a=trace(inv(S)*d1*inv(S)*d1); else 
I11a=trace(I11a)+trace(inv(S)*d1*inv(S)*d1); 
   if i=1 then I12a=trace(inv(S)*d1*inv(S)*d2); else 
I12a=trace(I12a)+trace(inv(S)*d1*inv(S)*d2); 
   if i=1 then I13a=trace(inv(S)*d1*inv(S)*d3); else 
I13a=trace(I13a)+trace(inv(S)*d1*inv(S)*d3); 
   if i=1 then I14a=trace(inv(S)*d1*inv(S)*d4); else 
I14a=trace(I14a)+trace(inv(S)*d1*inv(S)*d4); 
   if i=1 then I21a=trace(inv(S)*d2*inv(S)*d1); else 
I21a=trace(I21a)+trace(inv(S)*d2*inv(S)*d1); 
   if i=1 then I22a=trace(inv(S)*d2*inv(S)*d2); else 
I22a=trace(I22a)+trace(inv(S)*d2*inv(S)*d2); 
   if i=1 then I23a=trace(inv(S)*d2*inv(S)*d3); else 
I23a=trace(I23a)+trace(inv(S)*d2*inv(S)*d3); 
   if i=1 then I24a=trace(inv(S)*d2*inv(S)*d4); else 
I24a=trace(I24a)+trace(inv(S)*d2*inv(S)*d4); 
   if i=1 then I31a=trace(inv(S)*d3*inv(S)*d1); else 
I31a=trace(I31a)+trace(inv(S)*d3*inv(S)*d1); 
   if i=1 then I32a=trace(inv(S)*d3*inv(S)*d2); else 
I32a=trace(I32a)+trace(inv(S)*d3*inv(S)*d2); 
   if i=1 then I33a=trace(inv(S)*d3*inv(S)*d3); else 
I33a=trace(I33a)+trace(inv(S)*d3*inv(S)*d3); 
   if i=1 then I34a=trace(inv(S)*d3*inv(S)*d4); else 
I34a=trace(I34a)+trace(inv(S)*d3*inv(S)*d4); 
   if i=1 then I41a=trace(inv(S)*d4*inv(S)*d1); else 
I41a=trace(I41a)+trace(inv(S)*d4*inv(S)*d1); 
   if i=1 then I42a=trace(inv(S)*d4*inv(S)*d2); else 
I42a=trace(I42a)+trace(inv(S)*d4*inv(S)*d2); 
   if i=1 then I43a=trace(inv(S)*d4*inv(S)*d3); else 
I43a=trace(I43a)+trace(inv(S)*d4*inv(S)*d3); 
   if i=1 then I44a=trace(inv(S)*d4*inv(S)*d4); else 
I44a=trace(I44a)+trace(inv(S)*d4*inv(S)*d4); 
end; 
I11=((0.5*trace(I11a)-0.5*trace(2*PHI*Q11-PHI*P1*PHI*P1)))*({1 0 0 0, 0 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I12=((0.5*trace(I12a)-0.5*trace(2*PHI*Q12-PHI*P1*PHI*P2)))*({0 1 0 0, 0 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I13=((0.5*trace(I13a)-0.5*trace(2*PHI*Q13-PHI*P1*PHI*P3)))*({0 0 1 0, 0 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I14=((0.5*trace(I14a)-0.5*trace(2*PHI*Q14-PHI*P1*PHI*P4)))*({0 0 0 1, 0 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I21=((0.5*trace(I21a)-0.5*trace(2*PHI*Q21-PHI*P2*PHI*P1)))*({0 0 0 0, 1 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I22=((0.5*trace(I22a)-0.5*trace(2*PHI*Q22-PHI*P2*PHI*P2)))*({0 0 0 0, 0 1 0 0, 
0 0 0 0, 0 0 0 0}); 
I23=((0.5*trace(I23a)-0.5*trace(2*PHI*Q23-PHI*P2*PHI*P3)))*({0 0 0 0, 0 0 1 0, 
0 0 0 0, 0 0 0 0}); 
I24=((0.5*trace(I24a)-0.5*trace(2*PHI*Q24-PHI*P2*PHI*P4)))*({0 0 0 0, 0 0 0 1, 
0 0 0 0, 0 0 0 0}); 
I31=((0.5*trace(I31a)-0.5*trace(2*PHI*Q31-PHI*P3*PHI*P1)))*({0 0 0 0, 0 0 0 0, 
1 0 0 0, 0 0 0 0}); 
I32=((0.5*trace(I32a)-0.5*trace(2*PHI*Q32-PHI*P3*PHI*P2)))*({0 0 0 0, 0 0 0 0, 
0 1 0 0, 0 0 0 0}); 
I33=((0.5*trace(I33a)-0.5*trace(2*PHI*Q33-PHI*P3*PHI*P3)))*({0 0 0 0, 0 0 0 0, 
0 0 1 0, 0 0 0 0}); 
I34=((0.5*trace(I34a)-0.5*trace(2*PHI*Q34-PHI*P3*PHI*P4)))*({0 0 0 0, 0 0 0 0, 
0 0 0 1, 0 0 0 0}); 
I41=((0.5*trace(I41a)-0.5*trace(2*PHI*Q41-PHI*P4*PHI*P1)))*({0 0 0 0, 0 0 0 0, 
0 0 0 0, 1 0 0 0}); 
/* 
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*/ 
I42=((0.5*trace(I42a)-0.5*trace(2*PHI*Q42-PHI*P4*PHI*P2)))*({0 0 0 0, 0 0 0 0, 
0 0 0 0, 0 1 0 0}); 
I43=((0.5*trace(I43a)-0.5*trace(2*PHI*Q43-PHI*P4*PHI*P3)))*({0 0 0 0, 0 0 0 0, 
0 0 0 0, 0 0 1 0}); 
I44=((0.5*trace(I44a)-0.5*trace(2*PHI*Q44-PHI*P4*PHI*P4)))*({0 0 0 0, 0 0 0 0, 
0 0 0 0, 0 0 0 1}); 
I=ginv(I11+I12+I13+I14+I21+I22+I23+I24+I31+I32+I33+I34+I41+I42+I43+I44); 
*Inverse of Expected Information Matrix; 
*W Terms; 
w11=({1 0 0 0})*I*({1 0 0 0})`; 
w12=({1 0 0 0})*I*({0 1 0 0})`; 
w13=({1 0 0 0})*I*({0 0 1 0})`; 
w14=({1 0 0 0})*I*({0 0 0 1})`; 
w21=({0 1 0 0})*I*({1 0 0 0})`; 
w22=({0 1 0 0})*I*({0 1 0 0})`; 
w23=({0 1 0 0})*I*({0 0 1 0})`; 
w24=({0 1 0 0})*I*({0 0 0 1})`; 
w31=({0 0 1 0})*I*({1 0 0 0})`; 
w32=({0 0 1 0})*I*({0 1 0 0})`; 
w33=({0 0 1 0})*I*({0 0 1 0})`; 
w34=({0 0 1 0})*I*({0 0 0 1})`; 
w41=({0 0 0 1})*I*({1 0 0 0})`; 
w42=({0 0 0 1})*I*({0 1 0 0})`; 
w43=({0 0 0 1})*I*({0 0 1 0})`; 
w44=({0 0 0 1})*I*({0 0 0 1})`; 
*Sum Terms; 
c11=w11*(Q11-(P1*PHI*P1)); 
c12=w12*(Q12-(P1*PHI*P2)); 
c13=w13*(Q13-(P1*PHI*P3)); 
c14=w14*(Q14-(P1*PHI*P4)); 
c21=w21*(Q21-(P2*PHI*P1)); 
c22=w22*(Q22-(P2*PHI*P2)); 
c23=w23*(Q23-(P2*PHI*P3)); 
c24=w24*(Q24-(P2*PHI*P4)); 
c31=w31*(Q31-(P3*PHI*P1)); 
c32=w32*(Q32-(P3*PHI*P2)); 
c33=w33*(Q33-(P3*PHI*P3)); 
c34=w34*(Q34-(P3*PHI*P4)); 
c41=w41*(Q41-(P4*PHI*P1)); 
c42=w42*(Q42-(P4*PHI*P2)); 
c43=w43*(Q43-(P4*PHI*P3)); 
c44=w44*(Q44-(P4*PHI*P4)); 
sum=c11+c12+c13+c14+c21+c22+c23+c24+c31+c32+c33+c34+c41+c42+c43+c44; 
PHIA=PHI+2*PHI*(sum)*PHI; 
Astar=2*PHI*(sum)*PHI; 
*Theta denoted as O in this code; 
 O=C*ginv(C`*PHI*C)*C`; 
*Traces; 
*A1; 
ta11=w11*trace(O*PHI*P1*PHI)*trace(O*PHI*P1*PHI); 
ta12=w12*trace(O*PHI*P1*PHI)*trace(O*PHI*P2*PHI); 
ta13=w13*trace(O*PHI*P1*PHI)*trace(O*PHI*P3*PHI); 
ta14=w14*trace(O*PHI*P1*PHI)*trace(O*PHI*P4*PHI); 
ta21=w21*trace(O*PHI*P2*PHI)*trace(O*PHI*P1*PHI); 
ta22=w22*trace(O*PHI*P2*PHI)*trace(O*PHI*P2*PHI); 
ta23=w23*trace(O*PHI*P2*PHI)*trace(O*PHI*P3*PHI); 
ta24=w24*trace(O*PHI*P2*PHI)*trace(O*PHI*P4*PHI); 
ta31=w31*trace(O*PHI*P3*PHI)*trace(O*PHI*P1*PHI); 
ta32=w32*trace(O*PHI*P3*PHI)*trace(O*PHI*P2*PHI); 
ta33=w33*trace(O*PHI*P3*PHI)*trace(O*PHI*P3*PHI); 
/* 
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*/ 
ta34=w34*trace(O*PHI*P3*PHI)*trace(O*PHI*P4*PHI); 
ta41=w41*trace(O*PHI*P4*PHI)*trace(O*PHI*P1*PHI); 
ta42=w42*trace(O*PHI*P4*PHI)*trace(O*PHI*P2*PHI); 
ta43=w43*trace(O*PHI*P4*PHI)*trace(O*PHI*P3*PHI); 
ta44=w44*trace(O*PHI*P4*PHI)*trace(O*PHI*P4*PHI); 
A1=ta11+ta12+ta13+ta14+ta21+ta22+ta23+ta24+ta31+ta32+ta33+ta34+ta41+ta42+ta43+t
a44; 
*A2; 
tb11=w11*trace(O*PHI*P1*PHI*O*PHI*P1*PHI); 
tb12=w12*trace(O*PHI*P1*PHI*O*PHI*P2*PHI); 
tb13=w13*trace(O*PHI*P1*PHI*O*PHI*P3*PHI); 
tb14=w14*trace(O*PHI*P1*PHI*O*PHI*P4*PHI); 
tb21=w21*trace(O*PHI*P2*PHI*O*PHI*P1*PHI); 
tb22=w22*trace(O*PHI*P2*PHI*O*PHI*P2*PHI); 
tb23=w23*trace(O*PHI*P2*PHI*O*PHI*P3*PHI); 
tb24=w24*trace(O*PHI*P2*PHI*O*PHI*P4*PHI); 
tb31=w31*trace(O*PHI*P3*PHI*O*PHI*P1*PHI); 
tb32=w32*trace(O*PHI*P3*PHI*O*PHI*P2*PHI); 
tb33=w33*trace(O*PHI*P3*PHI*O*PHI*P3*PHI); 
tb34=w34*trace(O*PHI*P3*PHI*O*PHI*P4*PHI); 
tb41=w41*trace(O*PHI*P4*PHI*O*PHI*P1*PHI); 
tb42=w42*trace(O*PHI*P4*PHI*O*PHI*P2*PHI); 
tb43=w43*trace(O*PHI*P4*PHI*O*PHI*P3*PHI); 
tb44=w44*trace(O*PHI*P4*PHI*O*PHI*P4*PHI); 
A2=tb11+tb12+tb13+tb14+tb21+tb22+tb23+tb24+tb31+tb32+tb33+tb34+tb41+tb42+tb43+t
b44; 
*Mij component of E(F_NonCentral) terms; 
M11=%Mij(i=1,j=1); 
M12=%Mij(i=1,j=2); 
M13=%Mij(i=1,j=3); 
M14=%Mij(i=1,j=4); 
M21=%Mij(i=2,j=1); 
M22=%Mij(i=2,j=2); 
M23=%Mij(i=2,j=3); 
M24=%Mij(i=2,j=4); 
M31=%Mij(i=3,j=1); 
M32=%Mij(i=3,j=2); 
M33=%Mij(i=3,j=3); 
M34=%Mij(i=3,j=4); 
M41=%Mij(i=4,j=1); 
M42=%Mij(i=4,j=2); 
M43=%Mij(i=4,j=3); 
M44=%Mij(i=4,j=4); 
*A3 component of E(F) and Var(F); 
tc11=w11*B`*M11*B; 
tc12=w12*B`*M12*B; 
tc13=w13*B`*M13*B; 
tc14=w14*B`*M14*B; 
tc21=w21*B`*M21*B; 
tc22=w22*B`*M22*B; 
tc23=w23*B`*M23*B; 
tc24=w24*B`*M24*B; 
tc31=w31*B`*M31*B; 
tc32=w32*B`*M32*B; 
tc33=w33*B`*M33*B; 
tc34=w34*B`*M34*B; 
tc41=w41*B`*M41*B; 
tc42=w42*B`*M42*B; 
tc43=w43*B`*M43*B; 
tc44=w44*B`*M44*B; 
/* 
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*/ 
A3=0.5*(tc11+tc12+tc13+tc14+tc21+tc22+tc23+tc24+tc31+tc32+tc33+tc34+tc41+tc42+t
c43+tc44); 
L=trace(ginv(C)*C); 
*DF components; 
E=inv(1-(A2/L)); 
B=(1/(2*L))*(A1+(6*A2)); 
gg=((L+1)*A1-(L+4)*A2)/((L+2)*A2); 
dd1=gg/(3*L+2*(1-gg)); 
dd2=(L-gg)/(3*L+2*(1-gg)); 
dd3=(L-gg+2)/(3*L+2*(1-gg)); 
V=(2/L)*((1+(dd1*B))/((1-(dd2*B))*(1-(dd2*B))*(1-(dd3*B)))); 
rr=V/(2*E*E); 
B=Beta; 
*Degrees of Freedom M and Scale Factor Lambda; 
m=4+((L+2)/((L*rr)-1)); 
Lambda=m/(E*(m-2)); 
*Expected Value; 
E_null=(1/L)*(L+A2); 
E_alt=E_null + (1/L)*(B`*C*ginv(C`*PHI*C)*C`*B+A3)-
(1/L)*(B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B); 
ncp=lambda*(B`*C*ginv(C`*PHIA*C)*C`*B);  
rat1=(lambda*E_null)/(m/(m-2)); 
ncpform=B`*C*ginv(C`*PHI*C)*C`*B; 
E0=ginv(1-(A2/L)); *KR adjustment to E_null; 
EA=(1/L)*ginv(ncpform-
A3+B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B)*((ncpform-
B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B)*(ncpform-
B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B)); 
ncpnew=L*Lambda*(EA/E0); 
ncp1=ncpnew; 
ncp2=ncp; 
ncp3=ncpform; 
ncp4=ncpform; 
ncp5=ncpform; 
ncpuse=&ncpuse; 
scalera=B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B; 
L=trace(ginv(C)*C); 
*DF components; 
E=inv(1-(A2/L)); 
B=(1/(2*L))*(A1+(6*A2)); 
gg=((L+1)*A1-(L+4)*A2)/((L+2)*A2); 
dd1=gg/(3*L+2*(1-gg)); 
dd2=(L-gg)/(3*L+2*(1-gg)); 
dd3=(L-gg+2)/(3*L+2*(1-gg)); 
V=(2/L)*((1+(dd1*B))/((1-(dd2*B))*(1-(dd2*B))*(1-(dd3*B)))); 
rr=V/(2*E*E); 
*Degrees of Freedom M and Scale Factor Lambda; 
m=4+((L+2)/((L*rr)-1)); 
Lambda=m/(E*(m-2)); 
*Power; 
alpha=&alpha; 
alval=1-alpha; 
timevec=({&timevec}); 
m1=m; 
m2=m; 
m3=m; 
m4=(&n1+&n2+&n3)*(((nrow(timevec)-1)*&missparm+1)/nrow(timevec))-L-1; 
m5=(&n1+&n2+&n3)*(((nrow(timevec)-
1)*&missparm+1)/nrow(timevec))*(nrow(timevec))-6; 
muse=&ddfuse; 
/* 
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*/ 
critval=finv(alval, L, muse); *So p(Wald<w) = p((1/lambda)*F < f);  
power=1-probf(critval, L, muse, ncpuse); 
ncp_dev=ncpnew+0.000001; 
power_dev=((1-probf(critval, L, m, ncp_dev))-(1-probf(critval, L, m, 
ncpnew)))/0.000001; 
R2=1-inv(1+(1/L)*Lambda*ncp*(L/m)); 
create work.power_a from power; 
append from power; 
quit; 
 
data work.power_b; 
 set work.power_b work.power_a; 
run; 
%mend power; 
 
%macro average; 
 %do designs=1 %to &reps; 
  %power(rep=&designs); 
 %end; 
%mend average; 
 
%average; run; 
 
proc sql; 
 create table work.power_c as 
  select COL1 as Power 
  from work.power_b 
  where COL1 ne 9999; 
quit; 
 
proc sql; 
 create table work.AveragePower as 
  select count(power) as Designs, mean(Power) as Power, std(power) 
as DevPower, min(power) as MinPower, max(power) as maxPower, 
     1*&n1 as n1final, 1*&n2 as n2final, 1*&n3 as n3final 
  from work.power_c; 
quit; 
data work.MacroVals; 
 set work.AveragePower; 
 n1=round(&n1+&g1ratio); 
 n2=round(&n2+&g2ratio); 
 n3=round(&n3+&g3ratio); 
 call symput('Power', Power); 
 call symput('n1', n1); 
 call symput('n2', n2); 
 call symput('n3', n3); 
run; 
%end; 
%mend m; 
%m(n1=&n1,n2=&n2,n3=&n3); run; 
 
proc sql; 
 create table work.SampleSize1 as 
  select n1final as n1, n2final as n2, n3final as n3, Power as 
Power, Power as nominal_power 
  from work.AveragePower; 
quit; 
 
data work.MacroVals; 
 set work.SampleSize1; 
/* 
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*/ 
 call symput('Power', Power); 
 call symput('n1', n1); 
 call symput('n2', n2); 
 call symput('n3', n3); 
run; 
 
%macro m2(n1=&q1,n2=&q2,n3=&q3); 
%do %while(&power>&despower); 
data work.Treatment;  
 seed=&misseed1+1; 
 reps=&reps; 
 do rep=1 to reps; 
  do n=1 to &n1; 
  ID=compress(put(n,best8.)||"A"); 
   do Time=min(&timevec) to max(&timevec); 
   z=ranuni(seed); /*Uses uniform(0,1) random variable "z" to 
assign missing values if z>missparm, modified later to force baseline as 
nonmissing*/ 
   if  z>&missparm then u=0; 
   else if z<=&missparm then u=1; 
   output; 
   end; 
   end; 
  end; 
  drop seed z; 
run; 
 
proc sql; 
 create table work.Treatobs as 
  select rep, ID, Time, case Time when . then 1 else 1 end as 
intercept, 
     case Time when . then 1 else 1 end as Treatment, 
       case Time when . then 0 else 0 end as Comparator, u 
  from work.Treatment 
  where Time in (&timevec); 
quit; 
 
data work.Placebo; 
 seed=&misseed2+1; 
 reps=&reps; 
   do rep=1 to reps; 
  do n=1 to &n2; 
  ID=compress(put(n,best8.)||"B"); 
   do time=min(&timevec) to max(&timevec); 
   z=ranuni(seed); /*Uses uniform(0,1) random variable "z" to 
assign missing values if z>missparm, modified later to force baseline as 
nonmissing*/ 
   if  z>&missparm then u=0; 
   else if z<=&missparm then u=1; 
   output; 
   end; 
   end; 
  end; 
  drop seed z; 
run; 
 
proc sql; 
 create table work.Plbobs as 
  select rep, ID, Time, case Time when . then 1 else 1 end as 
intercept, 
/* 
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*/ 
     case Time when . then 0 else 0 end as Treatment, 
     case Time when . then 0 else 0 end as Comparator, u 
  from work.Placebo 
  where Time in (&timevec); 
quit; 
 
data work.Comparator; 
 seed=&misseed3+1; 
 reps=&reps; 
   do rep=1 to reps; 
  do n=1 to &n3; 
  ID=compress(put(n,best8.)||"C"); 
   do time=min(&timevec) to max(&timevec); 
   z=ranuni(seed); /*Uses uniform(0,1) random variable "z" to 
assign missing values if z>missparm, modified later to force baseline as 
nonmissing*/ 
   if  z>&missparm then u=0; 
   else if z<=&missparm then u=1; 
   output; 
   end; 
   end; 
  end; 
  drop seed z; 
run; 
 
proc sql; 
 create table work.Cmptorobs as 
  select rep, ID, Time, case Time when . then 1 else 1 end as 
intercept, 
     case Time when . then 0 else 0 end as Treatment, 
     case Time when . then 1 else 1 end as Comparator, u 
  from work.Comparator 
  where Time in (&timevec); 
quit; 
 
data work.MixedData_a; *Combine placebo and treatment designs into one dataset; 
 set work.Treatobs work.Plbobs work.Cmptorobs; 
run; 
 
proc sql; *Will create variable "M" to serve as missing data indicator and make 
sure no baseline values are missing; 
 create table work.MixedData_b as 
  select rep, ID, intercept, Treatment, Comparator, Time, 
Treatment*Time as TreatTime, Comparator*Time as CompTime, 
     case when u=0 and time ne min(&timevec) then . else 
1 end as M 
  from work.MixedData_a; 
quit; 
 
proc sql; 
 create table work.MixedData as 
  select rep, ID, intercept, Treatment, Comparator, Time, TreatTime, 
CompTime 
  from work.MixedData_b 
  where M ne .; 
quit; 
 
proc sort data=work.MixedData; 
 by rep id time; 
run; 
/* 
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quit; 
 
data work.power_b; 
 COL1=9999; 
run; 
 
%macro power(rep=&sim); 
proc sql; 
 create table work.mixeddata_&rep as 
  select * 
  from work.MixedData 
  where rep=&rep; 
quit; 
proc sort data=work.mixeddata_&rep; 
 by rep id time; 
run; 
quit; 
data work.seqids_&rep; 
 set work.MixedData_&rep; 
 by id; 
 retain order 0; 
  if first.id then order=order+1; 
run; 
ods select all; 
proc iml; 
Contrasts=({0 0 0 0 1 0, 0 0 0 0 0 1})`; 
C=Contrasts; 
L=trace(ginv(C)*C); 
q=L+1; *+1 if to account for intercept; 
ivar=&ranistd; 
svar=&ransstd; 
corr=&correlation; 
errvar=&errdev*&errdev; 
cov=(ivar*({1 0, 0 0})+svar*({0 0, 0 1}))*(corr*({0 1, 1 0})+I(2))*(ivar*({1 0, 
0 0})+svar*({0 0, 0 1})); 
bint=&xbar2; 
btreat=&xbar1-&xbar2; *treatment effect; 
bcompare=&xbar3-&xbar2; 
btime=&btime2; *time effect in reference group 2; 
btreattime=&btime1-&btime2; *group*time interaction; 
bcomptime=&btime3-&btime2; 
Beta=(bint||btreat||bcompare||btime||btreattime||bcomptime)`; 
B=Beta; 
n=&n1+&n2+&n3; 
use work.seqids_&rep; 
 do i=1 to n; 
   read all var {intercept Treatment Comparator Time TreatTime CompTime} 
where(order=i) into X; 
   read all var {intercept Time} where(order=i) into Z; 
   S=z*cov*z`+I((nrow(X)))@errvar; 
   if i=1 then V=(X`*inv(S)*X); 
     else V=V+(X`*inv(S)*X); 
end; 
PHI=inv(V); 
use work.seqids_&rep;; 
 do i=1 to n; 
   read all var {intercept Treatment Comparator Time TreatTime CompTime} 
where(order=i) into X; 
   read all var {intercept Time} where(order=i) into Z; 
   S=z*cov*z`+I((nrow(X)))@errvar; 
/* 
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   d1=z*({1 0, 0 0})*z`; 
   d2=z*({0 0, 0 1})*z`; 
   d3=I(nrow(X)); 
   d4=z*({0 1, 1 0})*z`; 
   if i=1 then P1=-X`*inv(S)*d1*inv(S)*X; else P1=P1-
X`*inv(S)*d1*inv(S)*X; 
   if i=1 then P2=-X`*inv(S)*d2*inv(S)*X; else P2=P2-
X`*inv(S)*d2*inv(S)*X; 
   if i=1 then P3=-X`*inv(S)*d3*inv(S)*X; else P3=P3-
X`*inv(S)*d3*inv(S)*X; 
   if i=1 then P4=-X`*inv(S)*d4*inv(S)*X; else P4=P4-
X`*inv(S)*d4*inv(S)*X; 
   if i=1 then Q11=X`*inv(S)*d1*inv(S)*d1*inv(S)*X; else 
Q11=Q11+X`*inv(S)*d1*inv(S)*d1*inv(S)*X; 
   if i=1 then Q12=X`*inv(S)*d1*inv(S)*d2*inv(S)*X; else 
Q12=Q12+X`*inv(S)*d1*inv(S)*d2*inv(S)*X; 
   if i=1 then Q13=X`*inv(S)*d1*inv(S)*d3*inv(S)*X; else 
Q13=Q13+X`*inv(S)*d1*inv(S)*d3*inv(S)*X; 
   if i=1 then Q14=X`*inv(S)*d1*inv(S)*d4*inv(S)*X; else 
Q14=Q14+X`*inv(S)*d1*inv(S)*d4*inv(S)*X; 
   if i=1 then Q21=X`*inv(S)*d2*inv(S)*d1*inv(S)*X; else 
Q21=Q21+X`*inv(S)*d2*inv(S)*d1*inv(S)*X; 
   if i=1 then Q22=X`*inv(S)*d2*inv(S)*d2*inv(S)*X; else 
Q22=Q22+X`*inv(S)*d2*inv(S)*d2*inv(S)*X; 
   if i=1 then Q23=X`*inv(S)*d2*inv(S)*d3*inv(S)*X; else 
Q23=Q23+X`*inv(S)*d2*inv(S)*d3*inv(S)*X; 
   if i=1 then Q24=X`*inv(S)*d2*inv(S)*d4*inv(S)*X; else 
Q24=Q24+X`*inv(S)*d2*inv(S)*d4*inv(S)*X; 
   if i=1 then Q31=X`*inv(S)*d3*inv(S)*d1*inv(S)*X; else 
Q31=Q31+X`*inv(S)*d3*inv(S)*d1*inv(S)*X; 
   if i=1 then Q32=X`*inv(S)*d3*inv(S)*d2*inv(S)*X; else 
Q32=Q32+X`*inv(S)*d3*inv(S)*d2*inv(S)*X; 
   if i=1 then Q33=X`*inv(S)*d3*inv(S)*d3*inv(S)*X; else 
Q33=Q33+X`*inv(S)*d3*inv(S)*d3*inv(S)*X; 
   if i=1 then Q34=X`*inv(S)*d3*inv(S)*d4*inv(S)*X; else 
Q34=Q34+X`*inv(S)*d3*inv(S)*d4*inv(S)*X; 
   if i=1 then Q41=X`*inv(S)*d4*inv(S)*d1*inv(S)*X; else 
Q41=Q41+X`*inv(S)*d4*inv(S)*d1*inv(S)*X; 
   if i=1 then Q42=X`*inv(S)*d4*inv(S)*d2*inv(S)*X; else 
Q42=Q42+X`*inv(S)*d4*inv(S)*d2*inv(S)*X; 
   if i=1 then Q43=X`*inv(S)*d4*inv(S)*d3*inv(S)*X; else 
Q43=Q43+X`*inv(S)*d4*inv(S)*d3*inv(S)*X; 
   if i=1 then Q44=X`*inv(S)*d4*inv(S)*d4*inv(S)*X; else 
Q44=Q44+X`*inv(S)*d4*inv(S)*d4*inv(S)*X; 
*Information Matrices; 
   if i=1 then I11a=trace(inv(S)*d1*inv(S)*d1); else 
I11a=trace(I11a)+trace(inv(S)*d1*inv(S)*d1); 
   if i=1 then I12a=trace(inv(S)*d1*inv(S)*d2); else  
I12a=trace(I12a)+trace(inv(S)*d1*inv(S)*d2); 
   if i=1 then I13a=trace(inv(S)*d1*inv(S)*d3); else 
I13a=trace(I13a)+trace(inv(S)*d1*inv(S)*d3); 
   if i=1 then I14a=trace(inv(S)*d1*inv(S)*d4); else 
I14a=trace(I14a)+trace(inv(S)*d1*inv(S)*d4); 
   if i=1 then I21a=trace(inv(S)*d2*inv(S)*d1); else 
I21a=trace(I21a)+trace(inv(S)*d2*inv(S)*d1); 
   if i=1 then I22a=trace(inv(S)*d2*inv(S)*d2); else 
I22a=trace(I22a)+trace(inv(S)*d2*inv(S)*d2); 
   if i=1 then I23a=trace(inv(S)*d2*inv(S)*d3); else 
I23a=trace(I23a)+trace(inv(S)*d2*inv(S)*d3); 
/* 
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   if i=1 then I24a=trace(inv(S)*d2*inv(S)*d4); else 
I24a=trace(I24a)+trace(inv(S)*d2*inv(S)*d4); 
   if i=1 then I31a=trace(inv(S)*d3*inv(S)*d1); else 
I31a=trace(I31a)+trace(inv(S)*d3*inv(S)*d1); 
   if i=1 then I32a=trace(inv(S)*d3*inv(S)*d2); else 
I32a=trace(I32a)+trace(inv(S)*d3*inv(S)*d2); 
   if i=1 then I33a=trace(inv(S)*d3*inv(S)*d3); else 
I33a=trace(I33a)+trace(inv(S)*d3*inv(S)*d3); 
   if i=1 then I34a=trace(inv(S)*d3*inv(S)*d4); else 
I34a=trace(I34a)+trace(inv(S)*d3*inv(S)*d4); 
   if i=1 then I41a=trace(inv(S)*d4*inv(S)*d1); else 
I41a=trace(I41a)+trace(inv(S)*d4*inv(S)*d1); 
   if i=1 then I42a=trace(inv(S)*d4*inv(S)*d2); else 
I42a=trace(I42a)+trace(inv(S)*d4*inv(S)*d2); 
   if i=1 then I43a=trace(inv(S)*d4*inv(S)*d3); else 
I43a=trace(I43a)+trace(inv(S)*d4*inv(S)*d3); 
   if i=1 then I44a=trace(inv(S)*d4*inv(S)*d4); else 
I44a=trace(I44a)+trace(inv(S)*d4*inv(S)*d4); 
end; 
I11=((0.5*trace(I11a)-0.5*trace(2*PHI*Q11-PHI*P1*PHI*P1)))*({1 0 0 0, 0 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I12=((0.5*trace(I12a)-0.5*trace(2*PHI*Q12-PHI*P1*PHI*P2)))*({0 1 0 0, 0 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I13=((0.5*trace(I13a)-0.5*trace(2*PHI*Q13-PHI*P1*PHI*P3)))*({0 0 1 0, 0 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I14=((0.5*trace(I14a)-0.5*trace(2*PHI*Q14-PHI*P1*PHI*P4)))*({0 0 0 1, 0 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I21=((0.5*trace(I21a)-0.5*trace(2*PHI*Q21-PHI*P2*PHI*P1)))*({0 0 0 0, 1 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I22=((0.5*trace(I22a)-0.5*trace(2*PHI*Q22-PHI*P2*PHI*P2)))*({0 0 0 0, 0 1 0 0, 
0 0 0 0, 0 0 0 0}); 
I23=((0.5*trace(I23a)-0.5*trace(2*PHI*Q23-PHI*P2*PHI*P3)))*({0 0 0 0, 0 0 1 0, 
0 0 0 0, 0 0 0 0}); 
I24=((0.5*trace(I24a)-0.5*trace(2*PHI*Q24-PHI*P2*PHI*P4)))*({0 0 0 0, 0 0 0 1, 
0 0 0 0, 0 0 0 0}); 
I31=((0.5*trace(I31a)-0.5*trace(2*PHI*Q31-PHI*P3*PHI*P1)))*({0 0 0 0, 0 0 0 0, 
1 0 0 0, 0 0 0 0}); 
I32=((0.5*trace(I32a)-0.5*trace(2*PHI*Q32-PHI*P3*PHI*P2)))*({0 0 0 0, 0 0 0 0, 
0 1 0 0, 0 0 0 0}); 
I33=((0.5*trace(I33a)-0.5*trace(2*PHI*Q33-PHI*P3*PHI*P3)))*({0 0 0 0, 0 0 0 0, 
0 0 1 0, 0 0 0 0}); 
I34=((0.5*trace(I34a)-0.5*trace(2*PHI*Q34-PHI*P3*PHI*P4)))*({0 0 0 0, 0 0 0 0, 
0 0 0 1, 0 0 0 0}); 
I41=((0.5*trace(I41a)-0.5*trace(2*PHI*Q41-PHI*P4*PHI*P1)))*({0 0 0 0, 0 0 0 0, 
0 0 0 0, 1 0 0 0}); 
I42=((0.5*trace(I42a)-0.5*trace(2*PHI*Q42-PHI*P4*PHI*P2)))*({0 0 0 0, 0 0 0 0, 
0 0 0 0, 0 1 0 0}); 
I43=((0.5*trace(I43a)-0.5*trace(2*PHI*Q43-PHI*P4*PHI*P3)))*({0 0 0 0, 0 0 0 0, 
0 0 0 0, 0 0 1 0}); 
I44=((0.5*trace(I44a)-0.5*trace(2*PHI*Q44-PHI*P4*PHI*P4)))*({0 0 0 0, 0 0 0 0, 
0 0 0 0, 0 0 0 1}); 
I=ginv(I11+I12+I13+I14+I21+I22+I23+I24+I31+I32+I33+I34+I41+I42+I43+I44); 
*Inverse of Expected Information Matrix; 
*W Terms; 
w11=({1 0 0 0})*I*({1 0 0 0})`; 
w12=({1 0 0 0})*I*({0 1 0 0})`; 
w13=({1 0 0 0})*I*({0 0 1 0})`; 
w14=({1 0 0 0})*I*({0 0 0 1})`; 
w21=({0 1 0 0})*I*({1 0 0 0})`; 
w22=({0 1 0 0})*I*({0 1 0 0})`; 
w23=({0 1 0 0})*I*({0 0 1 0})`; 
/* 
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*/ 
w24=({0 1 0 0})*I*({0 0 0 1})`; 
w31=({0 0 1 0})*I*({1 0 0 0})`; 
w32=({0 0 1 0})*I*({0 1 0 0})`; 
w33=({0 0 1 0})*I*({0 0 1 0})`; 
w34=({0 0 1 0})*I*({0 0 0 1})`; 
w41=({0 0 0 1})*I*({1 0 0 0})`; 
w42=({0 0 0 1})*I*({0 1 0 0})`; 
w43=({0 0 0 1})*I*({0 0 1 0})`; 
w44=({0 0 0 1})*I*({0 0 0 1})`; 
*Sum Terms; 
c11=w11*(Q11-(P1*PHI*P1)); 
c12=w12*(Q12-(P1*PHI*P2)); 
c13=w13*(Q13-(P1*PHI*P3)); 
c14=w14*(Q14-(P1*PHI*P4)); 
c21=w21*(Q21-(P2*PHI*P1)); 
c22=w22*(Q22-(P2*PHI*P2)); 
c23=w23*(Q23-(P2*PHI*P3)); 
c24=w24*(Q24-(P2*PHI*P4)); 
c31=w31*(Q31-(P3*PHI*P1)); 
c32=w32*(Q32-(P3*PHI*P2)); 
c33=w33*(Q33-(P3*PHI*P3)); 
c34=w34*(Q34-(P3*PHI*P4)); 
c41=w41*(Q41-(P4*PHI*P1)); 
c42=w42*(Q42-(P4*PHI*P2)); 
c43=w43*(Q43-(P4*PHI*P3)); 
c44=w44*(Q44-(P4*PHI*P4)); 
sum=c11+c12+c13+c14+c21+c22+c23+c24+c31+c32+c33+c34+c41+c42+c43+c44; 
PHIA=PHI+2*PHI*(sum)*PHI; 
Astar=2*PHI*(sum)*PHI; 
*Theta denoted as O in this code; 
 O=C*ginv(C`*PHI*C)*C`; 
*Traces; 
*A1; 
ta11=w11*trace(O*PHI*P1*PHI)*trace(O*PHI*P1*PHI); 
ta12=w12*trace(O*PHI*P1*PHI)*trace(O*PHI*P2*PHI); 
ta13=w13*trace(O*PHI*P1*PHI)*trace(O*PHI*P3*PHI); 
ta14=w14*trace(O*PHI*P1*PHI)*trace(O*PHI*P4*PHI); 
ta21=w21*trace(O*PHI*P2*PHI)*trace(O*PHI*P1*PHI); 
ta22=w22*trace(O*PHI*P2*PHI)*trace(O*PHI*P2*PHI); 
ta23=w23*trace(O*PHI*P2*PHI)*trace(O*PHI*P3*PHI); 
ta24=w24*trace(O*PHI*P2*PHI)*trace(O*PHI*P4*PHI); 
ta31=w31*trace(O*PHI*P3*PHI)*trace(O*PHI*P1*PHI); 
ta32=w32*trace(O*PHI*P3*PHI)*trace(O*PHI*P2*PHI); 
ta33=w33*trace(O*PHI*P3*PHI)*trace(O*PHI*P3*PHI); 
ta34=w34*trace(O*PHI*P3*PHI)*trace(O*PHI*P4*PHI); 
ta41=w41*trace(O*PHI*P4*PHI)*trace(O*PHI*P1*PHI); 
ta42=w42*trace(O*PHI*P4*PHI)*trace(O*PHI*P2*PHI); 
ta43=w43*trace(O*PHI*P4*PHI)*trace(O*PHI*P3*PHI); 
ta44=w44*trace(O*PHI*P4*PHI)*trace(O*PHI*P4*PHI); 
A1=ta11+ta12+ta13+ta14+ta21+ta22+ta23+ta24+ta31+ta32+ta33+ta34+ta41+ta42+ta43+t
a44; 
*A2; 
tb11=w11*trace(O*PHI*P1*PHI*O*PHI*P1*PHI); 
tb12=w12*trace(O*PHI*P1*PHI*O*PHI*P2*PHI); 
tb13=w13*trace(O*PHI*P1*PHI*O*PHI*P3*PHI); 
tb14=w14*trace(O*PHI*P1*PHI*O*PHI*P4*PHI); 
tb21=w21*trace(O*PHI*P2*PHI*O*PHI*P1*PHI); 
tb22=w22*trace(O*PHI*P2*PHI*O*PHI*P2*PHI); 
tb23=w23*trace(O*PHI*P2*PHI*O*PHI*P3*PHI); 
tb24=w24*trace(O*PHI*P2*PHI*O*PHI*P4*PHI); 
/* 
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*/ 
tb31=w31*trace(O*PHI*P3*PHI*O*PHI*P1*PHI); 
tb32=w32*trace(O*PHI*P3*PHI*O*PHI*P2*PHI); 
tb33=w33*trace(O*PHI*P3*PHI*O*PHI*P3*PHI); 
tb34=w34*trace(O*PHI*P3*PHI*O*PHI*P4*PHI); 
tb41=w41*trace(O*PHI*P4*PHI*O*PHI*P1*PHI); 
tb42=w42*trace(O*PHI*P4*PHI*O*PHI*P2*PHI); 
tb43=w43*trace(O*PHI*P4*PHI*O*PHI*P3*PHI); 
tb44=w44*trace(O*PHI*P4*PHI*O*PHI*P4*PHI); 
A2=tb11+tb12+tb13+tb14+tb21+tb22+tb23+tb24+tb31+tb32+tb33+tb34+tb41+tb42+tb43+t
b44; 
*Mij component of E(F_NonCentral) terms; 
M11=%Mij(i=1,j=1); 
M12=%Mij(i=1,j=2); 
M13=%Mij(i=1,j=3); 
M14=%Mij(i=1,j=4); 
M21=%Mij(i=2,j=1); 
M22=%Mij(i=2,j=2); 
M23=%Mij(i=2,j=3); 
M24=%Mij(i=2,j=4); 
M31=%Mij(i=3,j=1); 
M32=%Mij(i=3,j=2); 
M33=%Mij(i=3,j=3); 
M34=%Mij(i=3,j=4); 
M41=%Mij(i=4,j=1); 
M42=%Mij(i=4,j=2); 
M43=%Mij(i=4,j=3); 
M44=%Mij(i=4,j=4); 
*A3 component of E(F) and Var(F); 
tc11=w11*B`*M11*B; 
tc12=w12*B`*M12*B; 
tc13=w13*B`*M13*B; 
tc14=w14*B`*M14*B; 
tc21=w21*B`*M21*B; 
tc22=w22*B`*M22*B; 
tc23=w23*B`*M23*B; 
tc24=w24*B`*M24*B; 
tc31=w31*B`*M31*B; 
tc32=w32*B`*M32*B; 
tc33=w33*B`*M33*B; 
tc34=w34*B`*M34*B; 
tc41=w41*B`*M41*B; 
tc42=w42*B`*M42*B; 
tc43=w43*B`*M43*B; 
tc44=w44*B`*M44*B; 
A3=0.5*(tc11+tc12+tc13+tc14+tc21+tc22+tc23+tc24+tc31+tc32+tc33+tc34+tc41+tc42+t
c43+tc44); 
L=trace(ginv(C)*C); 
*DF components; 
E=inv(1-(A2/L)); 
B=(1/(2*L))*(A1+(6*A2)); 
gg=((L+1)*A1-(L+4)*A2)/((L+2)*A2); 
dd1=gg/(3*L+2*(1-gg)); 
dd2=(L-gg)/(3*L+2*(1-gg)); 
dd3=(L-gg+2)/(3*L+2*(1-gg)); 
V=(2/L)*((1+(dd1*B))/((1-(dd2*B))*(1-(dd2*B))*(1-(dd3*B)))); 
rr=V/(2*E*E); 
B=Beta; 
*Degrees of Freedom M and Scale Factor Lambda; 
m=4+((L+2)/((L*rr)-1)); 
Lambda=m/(E*(m-2)); 
/* 
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*/ 
*Expected Value; 
E_null=(1/L)*(L+A2); 
E_alt=E_null + (1/L)*(B`*C*ginv(C`*PHI*C)*C`*B+A3)-
(1/L)*(B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B);  
ncp=lambda*(B`*C*ginv(C`*PHIA*C)*C`*B);  
rat1=(lambda*E_null)/(m/(m-2)); 
ncpform=B`*C*ginv(C`*PHI*C)*C`*B; 
E0=ginv(1-(A2/L)); *KR adjustment to E_null; 
EA=(1/L)*ginv(ncpform-
A3+B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B)*((ncpform-
B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B)*(ncpform-
B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B)); 
ncpnew=L*Lambda*(EA/E0); 
ncp1=ncpnew; 
ncp2=ncp; 
ncp3=ncpform; 
ncp4=ncpform; 
ncp5=ncpform; 
ncpuse=&ncpuse; 
scalera=B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B; 
L=trace(ginv(C)*C); 
*DF components; 
E=inv(1-(A2/L)); 
B=(1/(2*L))*(A1+(6*A2)); 
gg=((L+1)*A1-(L+4)*A2)/((L+2)*A2); 
dd1=gg/(3*L+2*(1-gg)); 
dd2=(L-gg)/(3*L+2*(1-gg)); 
dd3=(L-gg+2)/(3*L+2*(1-gg)); 
V=(2/L)*((1+(dd1*B))/((1-(dd2*B))*(1-(dd2*B))*(1-(dd3*B)))); 
rr=V/(2*E*E); 
*Degrees of Freedom M and Scale Factor Lambda; 
m=4+((L+2)/((L*rr)-1)); 
Lambda=m/(E*(m-2)); 
*Power; 
alpha=&alpha; 
alval=1-alpha; 
timevec=({&timevec}); 
m1=m; 
m2=m; 
m3=m; 
m4=(&n1+&n2+&n3)*(((nrow(timevec)-1)*&missparm+1)/nrow(timevec))-L-1; 
m5=(&n1+&n2+&n3)*(((nrow(timevec)-
1)*&missparm+1)/nrow(timevec))*(nrow(timevec))-6; 
muse=&ddfuse; 
critval=finv(alval, L, muse); *So p(Wald<w) = p((1/lambda)*F < f);  
power=1-probf(critval, L, muse, ncpuse); 
ncp_dev=ncpnew+0.000001; 
power_dev=((1-probf(critval, L, m, ncp_dev))-(1-probf(critval, L, m, 
ncpnew)))/0.000001; 
R2=1-inv(1+(1/L)*Lambda*ncp*(L/m)); 
create work.power_a from power; 
append from power; 
quit; 
 
data work.power_b; 
 set work.power_b work.power_a; 
run; 
%mend power; 
 
/* 
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*/ 
%macro average; 
 %do designs=1 %to &reps; 
  %power(rep=&designs); 
 %end; 
%mend average; 
 
%average; run; 
 
proc sql; 
 create table work.power_c as 
  select COL1 as Power 
  from work.power_b 
  where COL1 ne 9999; 
quit; 
 
proc sql; 
 create table work.AveragePower as 
  select count(power) as Designs, mean(Power) as Power, std(power) 
as DevPower, min(power) as MinPower, max(power) as maxPower, 
     1*&n1 as n1final, 1*&n2 as n2final, 1*&n3 as n3final 
  from work.power_c; 
quit; 
data work.MacroVals; 
 set work.AveragePower; 
 n1=round(&n1-&g1ratio); 
 n2=round(&n2-&g2ratio); 
 n3=round(&n3-&g3ratio); 
 call symput('Power', Power); 
 call symput('n1', n1); 
 call symput('n2', n2); 
 call symput('n3', n3); 
run; 
%end; 
%mend m2; 
 
%m2(n1=&n1, n2=&n2, n3=&n3); run; 
 
 
proc sql; 
 create table work.SampleSize2 as 
  select round(n1final+&g1ratio) as n1, round(n2final+&g2ratio) as 
n2, round(n3final+&g3ratio) as n3, n1final as n1small, n2final as n2small, 
n3final as n3small, Power 
  from work.AveragePower; 
quit; 
 
data work.MacroVals; 
 set work.SampleSize2; 
 call symput('Power', Power); 
 call symput('n1', n1); 
 call symput('n2', n2); 
 call symput('n3', n3); 
run; 
 
 
%macro m3(n1=&q1,n2=&q2,n3=&q3); 
data work.Treatment;  
 seed=&misseed1+1; 
 reps=&reps; 
 do rep=1 to reps; 
  do n=1 to &n1; 
/* 
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*/ 
  ID=compress(put(n,best8.)||"A"); 
   do Time=min(&timevec) to max(&timevec); 
   z=ranuni(seed); /*Uses uniform(0,1) random variable "z" to 
assign missing values if z>missparm, modified later to force baseline as 
nonmissing*/ 
   if  z>&missparm then u=0; 
   else if z<=&missparm then u=1; 
   output; 
   end; 
   end; 
  end; 
  drop seed z; 
run; 
 
proc sql; 
 create table work.Treatobs as 
  select rep, ID, Time, case Time when . then 1 else 1 end as 
intercept, 
     case Time when . then 1 else 1 end as Treatment, 
       case Time when . then 0 else 0 end as Comparator, u 
  from work.Treatment 
  where Time in (&timevec); 
quit; 
 
data work.Placebo; 
 seed=&misseed2+1; 
 reps=&reps; 
   do rep=1 to reps; 
  do n=1 to &n2; 
  ID=compress(put(n,best8.)||"B"); 
   do time=min(&timevec) to max(&timevec); 
   z=ranuni(seed); /*Uses uniform(0,1) random variable "z" to 
assign missing values if z>missparm, modified later to force baseline as 
nonmissing*/ 
   if  z>&missparm then u=0; 
   else if z<=&missparm then u=1; 
   output; 
   end; 
   end; 
  end; 
  drop seed z; 
run; 
 
proc sql; 
 create table work.Plbobs as 
  select rep, ID, Time, case Time when . then 1 else 1 end as 
intercept, 
     case Time when . then 0 else 0 end as Treatment, 
     case Time when . then 0 else 0 end as Comparator, u 
  from work.Placebo 
  where Time in (&timevec); 
quit; 
 
data work.Comparator; 
 seed=&misseed3+1; 
 reps=&reps; 
   do rep=1 to reps; 
  do n=1 to &n3; 
  ID=compress(put(n,best8.)||"C"); 
   do time=min(&timevec) to max(&timevec); 
/* 
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*/ 
   z=ranuni(seed); /*Uses uniform(0,1) random variable "z" to 
assign missing values if z>missparm, modified later to force baseline as 
nonmissing*/ 
   if  z>&missparm then u=0; 
   else if z<=&missparm then u=1; 
   output; 
   end; 
   end; 
  end; 
  drop seed z; 
run; 
 
proc sql; 
 create table work.Cmptorobs as 
  select rep, ID, Time, case Time when . then 1 else 1 end as 
intercept, 
     case Time when . then 0 else 0 end as Treatment, 
     case Time when . then 1 else 1 end as Comparator, u 
  from work.Comparator 
  where Time in (&timevec); 
quit; 
 
data work.MixedData_a; *Combine placebo and treatment designs into one dataset; 
 set work.Treatobs work.Plbobs work.Cmptorobs; 
run; 
 
proc sql; *Will create variable "M" to serve as missing data indicator and make 
sure no baseline values are missing; 
 create table work.MixedData_b as 
  select rep, ID, intercept, Treatment, Comparator, Time, 
Treatment*Time as TreatTime, Comparator*Time as CompTime, 
     case when u=0 and time ne min(&timevec) then . else 
1 end as M 
  from work.MixedData_a; 
quit; 
 
proc sql; 
 create table work.MixedData as 
  select rep, ID, intercept, Treatment, Comparator, Time, TreatTime, 
CompTime 
  from work.MixedData_b 
  where M ne .; 
quit; 
 
proc sort data=work.MixedData; 
 by rep id time; 
run; 
quit; 
 
data work.power_b; 
 COL1=9999; 
run; 
 
%macro power(rep=&sim); 
proc sql; 
 create table work.mixeddata_&rep as 
  select * 
  from work.MixedData 
  where rep=&rep; 
quit; 
/* 
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*/ 
proc sort data=work.mixeddata_&rep; 
 by rep id time; 
run; 
quit; 
data work.seqids_&rep; 
 set work.MixedData_&rep; 
 by id; 
 retain order 0; 
  if first.id then order=order+1; 
run; 
ods select all; 
proc iml; 
Contrasts=({0 0 0 0 1 0, 0 0 0 0 0 1})`; 
C=Contrasts; 
L=trace(ginv(C)*C); 
q=L+1; *+1 if to account for intercept; 
ivar=&ranistd; 
svar=&ransstd; 
corr=&correlation; 
errvar=&errdev*&errdev; 
cov=(ivar*({1 0, 0 0})+svar*({0 0, 0 1}))*(corr*({0 1, 1 0})+I(2))*(ivar*({1 0, 
0 0})+svar*({0 0, 0 1})); 
bint=&xbar2; 
btreat=&xbar1-&xbar2; *treatment effect; 
bcompare=&xbar3-&xbar2; 
btime=&btime2; *time effect in reference group 2; 
btreattime=&btime1-&btime2; *group*time interaction; 
bcomptime=&btime3-&btime2; 
Beta=(bint||btreat||bcompare||btime||btreattime||bcomptime)`;  
B=Beta; 
n=&n1+&n2+&n3; 
use work.seqids_&rep; 
 do i=1 to n; 
   read all var {intercept Treatment Comparator Time TreatTime CompTime} 
where(order=i) into X; 
   read all var {intercept Time} where(order=i) into Z; 
   S=z*cov*z`+I((nrow(X)))@errvar; 
   if i=1 then V=(X`*inv(S)*X); 
     else V=V+(X`*inv(S)*X); 
end; 
PHI=inv(V); 
use work.seqids_&rep;; 
 do i=1 to n; 
   read all var {intercept Treatment Comparator Time TreatTime CompTime} 
where(order=i) into X; 
   read all var {intercept Time} where(order=i) into Z; 
   S=z*cov*z`+I((nrow(X)))@errvar; 
   d1=z*({1 0, 0 0})*z`; 
   d2=z*({0 0, 0 1})*z`; 
   d3=I(nrow(X)); 
   d4=z*({0 1, 1 0})*z`; 
   if i=1 then P1=-X`*inv(S)*d1*inv(S)*X; else P1=P1-
X`*inv(S)*d1*inv(S)*X; 
   if i=1 then P2=-X`*inv(S)*d2*inv(S)*X; else P2=P2-
X`*inv(S)*d2*inv(S)*X; 
   if i=1 then P3=-X`*inv(S)*d3*inv(S)*X; else P3=P3-
X`*inv(S)*d3*inv(S)*X; 
   if i=1 then P4=-X`*inv(S)*d4*inv(S)*X; else P4=P4-
X`*inv(S)*d4*inv(S)*X; 
/* 
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   if i=1 then Q11=X`*inv(S)*d1*inv(S)*d1*inv(S)*X; else 
Q11=Q11+X`*inv(S)*d1*inv(S)*d1*inv(S)*X; 
   if i=1 then Q12=X`*inv(S)*d1*inv(S)*d2*inv(S)*X; else 
Q12=Q12+X`*inv(S)*d1*inv(S)*d2*inv(S)*X; 
   if i=1 then Q13=X`*inv(S)*d1*inv(S)*d3*inv(S)*X; else 
Q13=Q13+X`*inv(S)*d1*inv(S)*d3*inv(S)*X; 
   if i=1 then Q14=X`*inv(S)*d1*inv(S)*d4*inv(S)*X; else 
Q14=Q14+X`*inv(S)*d1*inv(S)*d4*inv(S)*X; 
   if i=1 then Q21=X`*inv(S)*d2*inv(S)*d1*inv(S)*X; else 
Q21=Q21+X`*inv(S)*d2*inv(S)*d1*inv(S)*X; 
   if i=1 then Q22=X`*inv(S)*d2*inv(S)*d2*inv(S)*X; else 
Q22=Q22+X`*inv(S)*d2*inv(S)*d2*inv(S)*X; 
   if i=1 then Q23=X`*inv(S)*d2*inv(S)*d3*inv(S)*X; else 
Q23=Q23+X`*inv(S)*d2*inv(S)*d3*inv(S)*X; 
   if i=1 then Q24=X`*inv(S)*d2*inv(S)*d4*inv(S)*X; else 
Q24=Q24+X`*inv(S)*d2*inv(S)*d4*inv(S)*X; 
   if i=1 then Q31=X`*inv(S)*d3*inv(S)*d1*inv(S)*X; else 
Q31=Q31+X`*inv(S)*d3*inv(S)*d1*inv(S)*X; 
   if i=1 then Q32=X`*inv(S)*d3*inv(S)*d2*inv(S)*X; else 
Q32=Q32+X`*inv(S)*d3*inv(S)*d2*inv(S)*X; 
   if i=1 then Q33=X`*inv(S)*d3*inv(S)*d3*inv(S)*X; else 
Q33=Q33+X`*inv(S)*d3*inv(S)*d3*inv(S)*X; 
   if i=1 then Q34=X`*inv(S)*d3*inv(S)*d4*inv(S)*X; else 
Q34=Q34+X`*inv(S)*d3*inv(S)*d4*inv(S)*X; 
   if i=1 then Q41=X`*inv(S)*d4*inv(S)*d1*inv(S)*X; else 
Q41=Q41+X`*inv(S)*d4*inv(S)*d1*inv(S)*X; 
   if i=1 then Q42=X`*inv(S)*d4*inv(S)*d2*inv(S)*X; else 
Q42=Q42+X`*inv(S)*d4*inv(S)*d2*inv(S)*X; 
   if i=1 then Q43=X`*inv(S)*d4*inv(S)*d3*inv(S)*X; else 
Q43=Q43+X`*inv(S)*d4*inv(S)*d3*inv(S)*X; 
   if i=1 then Q44=X`*inv(S)*d4*inv(S)*d4*inv(S)*X; else 
Q44=Q44+X`*inv(S)*d4*inv(S)*d4*inv(S)*X; 
*Information Matrices; 
   if i=1 then I11a=trace(inv(S)*d1*inv(S)*d1); else 
I11a=trace(I11a)+trace(inv(S)*d1*inv(S)*d1); 
   if i=1 then I12a=trace(inv(S)*d1*inv(S)*d2); else 
I12a=trace(I12a)+trace(inv(S)*d1*inv(S)*d2); 
   if i=1 then I13a=trace(inv(S)*d1*inv(S)*d3); else 
I13a=trace(I13a)+trace(inv(S)*d1*inv(S)*d3); 
   if i=1 then I14a=trace(inv(S)*d1*inv(S)*d4); else 
I14a=trace(I14a)+trace(inv(S)*d1*inv(S)*d4); 
   if i=1 then I21a=trace(inv(S)*d2*inv(S)*d1); else 
I21a=trace(I21a)+trace(inv(S)*d2*inv(S)*d1); 
   if i=1 then I22a=trace(inv(S)*d2*inv(S)*d2); else  
I22a=trace(I22a)+trace(inv(S)*d2*inv(S)*d2); 
   if i=1 then I23a=trace(inv(S)*d2*inv(S)*d3); else 
I23a=trace(I23a)+trace(inv(S)*d2*inv(S)*d3); 
   if i=1 then I24a=trace(inv(S)*d2*inv(S)*d4); else 
I24a=trace(I24a)+trace(inv(S)*d2*inv(S)*d4); 
   if i=1 then I31a=trace(inv(S)*d3*inv(S)*d1); else 
I31a=trace(I31a)+trace(inv(S)*d3*inv(S)*d1); 
   if i=1 then I32a=trace(inv(S)*d3*inv(S)*d2); else 
I32a=trace(I32a)+trace(inv(S)*d3*inv(S)*d2); 
   if i=1 then I33a=trace(inv(S)*d3*inv(S)*d3); else 
I33a=trace(I33a)+trace(inv(S)*d3*inv(S)*d3); 
   if i=1 then I34a=trace(inv(S)*d3*inv(S)*d4); else 
I34a=trace(I34a)+trace(inv(S)*d3*inv(S)*d4); 
   if i=1 then I41a=trace(inv(S)*d4*inv(S)*d1); else 
I41a=trace(I41a)+trace(inv(S)*d4*inv(S)*d1); 
/* 
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*/ 
   if i=1 then I42a=trace(inv(S)*d4*inv(S)*d2); else 
I42a=trace(I42a)+trace(inv(S)*d4*inv(S)*d2); 
   if i=1 then I43a=trace(inv(S)*d4*inv(S)*d3); else 
I43a=trace(I43a)+trace(inv(S)*d4*inv(S)*d3); 
   if i=1 then I44a=trace(inv(S)*d4*inv(S)*d4); else 
I44a=trace(I44a)+trace(inv(S)*d4*inv(S)*d4); 
end; 
I11=((0.5*trace(I11a)-0.5*trace(2*PHI*Q11-PHI*P1*PHI*P1)))*({1 0 0 0, 0 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I12=((0.5*trace(I12a)-0.5*trace(2*PHI*Q12-PHI*P1*PHI*P2)))*({0 1 0 0, 0 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I13=((0.5*trace(I13a)-0.5*trace(2*PHI*Q13-PHI*P1*PHI*P3)))*({0 0 1 0, 0 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I14=((0.5*trace(I14a)-0.5*trace(2*PHI*Q14-PHI*P1*PHI*P4)))*({0 0 0 1, 0 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I21=((0.5*trace(I21a)-0.5*trace(2*PHI*Q21-PHI*P2*PHI*P1)))*({0 0 0 0, 1 0 0 0, 
0 0 0 0, 0 0 0 0}); 
I22=((0.5*trace(I22a)-0.5*trace(2*PHI*Q22-PHI*P2*PHI*P2)))*({0 0 0 0, 0 1 0 0, 
0 0 0 0, 0 0 0 0}); 
I23=((0.5*trace(I23a)-0.5*trace(2*PHI*Q23-PHI*P2*PHI*P3)))*({0 0 0 0, 0 0 1 0, 
0 0 0 0, 0 0 0 0}); 
I24=((0.5*trace(I24a)-0.5*trace(2*PHI*Q24-PHI*P2*PHI*P4)))*({0 0 0 0, 0 0 0 1, 
0 0 0 0, 0 0 0 0}); 
I31=((0.5*trace(I31a)-0.5*trace(2*PHI*Q31-PHI*P3*PHI*P1)))*({0 0 0 0, 0 0 0 0, 
1 0 0 0, 0 0 0 0}); 
I32=((0.5*trace(I32a)-0.5*trace(2*PHI*Q32-PHI*P3*PHI*P2)))*({0 0 0 0, 0 0 0 0, 
0 1 0 0, 0 0 0 0}); 
I33=((0.5*trace(I33a)-0.5*trace(2*PHI*Q33-PHI*P3*PHI*P3)))*({0 0 0 0, 0 0 0 0, 
0 0 1 0, 0 0 0 0}); 
I34=((0.5*trace(I34a)-0.5*trace(2*PHI*Q34-PHI*P3*PHI*P4)))*({0 0 0 0, 0 0 0 0, 
0 0 0 1, 0 0 0 0}); 
I41=((0.5*trace(I41a)-0.5*trace(2*PHI*Q41-PHI*P4*PHI*P1)))*({0 0 0 0, 0 0 0 0, 
0 0 0 0, 1 0 0 0}); 
I42=((0.5*trace(I42a)-0.5*trace(2*PHI*Q42-PHI*P4*PHI*P2)))*({0 0 0 0, 0 0 0 0, 
0 0 0 0, 0 1 0 0}); 
I43=((0.5*trace(I43a)-0.5*trace(2*PHI*Q43-PHI*P4*PHI*P3)))*({0 0 0 0, 0 0 0 0, 
0 0 0 0, 0 0 1 0}); 
I44=((0.5*trace(I44a)-0.5*trace(2*PHI*Q44-PHI*P4*PHI*P4)))*({0 0 0 0, 0 0 0 0, 
0 0 0 0, 0 0 0 1}); 
I=ginv(I11+I12+I13+I14+I21+I22+I23+I24+I31+I32+I33+I34+I41+I42+I43+I44); 
*Inverse of Expected Information Matrix; 
*W Terms; 
w11=({1 0 0 0})*I*({1 0 0 0})`; 
w12=({1 0 0 0})*I*({0 1 0 0})`; 
w13=({1 0 0 0})*I*({0 0 1 0})`; 
w14=({1 0 0 0})*I*({0 0 0 1})`; 
w21=({0 1 0 0})*I*({1 0 0 0})`; 
w22=({0 1 0 0})*I*({0 1 0 0})`; 
w23=({0 1 0 0})*I*({0 0 1 0})`; 
w24=({0 1 0 0})*I*({0 0 0 1})`; 
w31=({0 0 1 0})*I*({1 0 0 0})`; 
w32=({0 0 1 0})*I*({0 1 0 0})`; 
w33=({0 0 1 0})*I*({0 0 1 0})`; 
w34=({0 0 1 0})*I*({0 0 0 1})`; 
w41=({0 0 0 1})*I*({1 0 0 0})`; 
w42=({0 0 0 1})*I*({0 1 0 0})`; 
w43=({0 0 0 1})*I*({0 0 1 0})`; 
w44=({0 0 0 1})*I*({0 0 0 1})`; 
*Sum Terms; 
c11=w11*(Q11-(P1*PHI*P1)); 
c12=w12*(Q12-(P1*PHI*P2)); 
/* 
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*/ 
c13=w13*(Q13-(P1*PHI*P3)); 
c14=w14*(Q14-(P1*PHI*P4)); 
c21=w21*(Q21-(P2*PHI*P1)); 
c22=w22*(Q22-(P2*PHI*P2)); 
c23=w23*(Q23-(P2*PHI*P3)); 
c24=w24*(Q24-(P2*PHI*P4)); 
c31=w31*(Q31-(P3*PHI*P1)); 
c32=w32*(Q32-(P3*PHI*P2)); 
c33=w33*(Q33-(P3*PHI*P3)); 
c34=w34*(Q34-(P3*PHI*P4)); 
c41=w41*(Q41-(P4*PHI*P1)); 
c42=w42*(Q42-(P4*PHI*P2)); 
c43=w43*(Q43-(P4*PHI*P3)); 
c44=w44*(Q44-(P4*PHI*P4)); 
sum=c11+c12+c13+c14+c21+c22+c23+c24+c31+c32+c33+c34+c41+c42+c43+c44; 
PHIA=PHI+2*PHI*(sum)*PHI; 
Astar=2*PHI*(sum)*PHI; 
*Theta denoted as O in this code; 
 O=C*ginv(C`*PHI*C)*C`; 
*Traces; 
*A1; 
ta11=w11*trace(O*PHI*P1*PHI)*trace(O*PHI*P1*PHI); 
ta12=w12*trace(O*PHI*P1*PHI)*trace(O*PHI*P2*PHI); 
ta13=w13*trace(O*PHI*P1*PHI)*trace(O*PHI*P3*PHI); 
ta14=w14*trace(O*PHI*P1*PHI)*trace(O*PHI*P4*PHI); 
ta21=w21*trace(O*PHI*P2*PHI)*trace(O*PHI*P1*PHI); 
ta22=w22*trace(O*PHI*P2*PHI)*trace(O*PHI*P2*PHI); 
ta23=w23*trace(O*PHI*P2*PHI)*trace(O*PHI*P3*PHI); 
ta24=w24*trace(O*PHI*P2*PHI)*trace(O*PHI*P4*PHI); 
ta31=w31*trace(O*PHI*P3*PHI)*trace(O*PHI*P1*PHI); 
ta32=w32*trace(O*PHI*P3*PHI)*trace(O*PHI*P2*PHI); 
ta33=w33*trace(O*PHI*P3*PHI)*trace(O*PHI*P3*PHI); 
ta34=w34*trace(O*PHI*P3*PHI)*trace(O*PHI*P4*PHI); 
ta41=w41*trace(O*PHI*P4*PHI)*trace(O*PHI*P1*PHI); 
ta42=w42*trace(O*PHI*P4*PHI)*trace(O*PHI*P2*PHI); 
ta43=w43*trace(O*PHI*P4*PHI)*trace(O*PHI*P3*PHI); 
ta44=w44*trace(O*PHI*P4*PHI)*trace(O*PHI*P4*PHI); 
A1=ta11+ta12+ta13+ta14+ta21+ta22+ta23+ta24+ta31+ta32+ta33+ta34+ta41+ta42+ta43+t
a44; 
*A2; 
tb11=w11*trace(O*PHI*P1*PHI*O*PHI*P1*PHI); 
tb12=w12*trace(O*PHI*P1*PHI*O*PHI*P2*PHI); 
tb13=w13*trace(O*PHI*P1*PHI*O*PHI*P3*PHI); 
tb14=w14*trace(O*PHI*P1*PHI*O*PHI*P4*PHI); 
tb21=w21*trace(O*PHI*P2*PHI*O*PHI*P1*PHI); 
tb22=w22*trace(O*PHI*P2*PHI*O*PHI*P2*PHI); 
tb23=w23*trace(O*PHI*P2*PHI*O*PHI*P3*PHI); 
tb24=w24*trace(O*PHI*P2*PHI*O*PHI*P4*PHI); 
tb31=w31*trace(O*PHI*P3*PHI*O*PHI*P1*PHI); 
tb32=w32*trace(O*PHI*P3*PHI*O*PHI*P2*PHI); 
tb33=w33*trace(O*PHI*P3*PHI*O*PHI*P3*PHI); 
tb34=w34*trace(O*PHI*P3*PHI*O*PHI*P4*PHI); 
tb41=w41*trace(O*PHI*P4*PHI*O*PHI*P1*PHI); 
tb42=w42*trace(O*PHI*P4*PHI*O*PHI*P2*PHI); 
tb43=w43*trace(O*PHI*P4*PHI*O*PHI*P3*PHI); 
tb44=w44*trace(O*PHI*P4*PHI*O*PHI*P4*PHI); 
A2=tb11+tb12+tb13+tb14+tb21+tb22+tb23+tb24+tb31+tb32+tb33+tb34+tb41+tb42+tb43+t
b44; 
*Mij component of E(F_NonCentral) terms; 
M11=%Mij(i=1,j=1); 
/* 
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*/ 
M12=%Mij(i=1,j=2); 
M13=%Mij(i=1,j=3); 
M14=%Mij(i=1,j=4); 
M21=%Mij(i=2,j=1); 
M22=%Mij(i=2,j=2); 
M23=%Mij(i=2,j=3); 
M24=%Mij(i=2,j=4); 
M31=%Mij(i=3,j=1); 
M32=%Mij(i=3,j=2); 
M33=%Mij(i=3,j=3); 
M34=%Mij(i=3,j=4); 
M41=%Mij(i=4,j=1); 
M42=%Mij(i=4,j=2); 
M43=%Mij(i=4,j=3); 
M44=%Mij(i=4,j=4); 
*A3 component of E(F) and Var(F); 
tc11=w11*B`*M11*B; 
tc12=w12*B`*M12*B; 
tc13=w13*B`*M13*B; 
tc14=w14*B`*M14*B; 
tc21=w21*B`*M21*B; 
tc22=w22*B`*M22*B; 
tc23=w23*B`*M23*B; 
tc24=w24*B`*M24*B; 
tc31=w31*B`*M31*B; 
tc32=w32*B`*M32*B; 
tc33=w33*B`*M33*B; 
tc34=w34*B`*M34*B; 
tc41=w41*B`*M41*B; 
tc42=w42*B`*M42*B; 
tc43=w43*B`*M43*B; 
tc44=w44*B`*M44*B; 
A3=0.5*(tc11+tc12+tc13+tc14+tc21+tc22+tc23+tc24+tc31+tc32+tc33+tc34+tc41+tc42+t
c43+tc44); 
L=trace(ginv(C)*C); 
*DF components; 
E=inv(1-(A2/L)); 
B=(1/(2*L))*(A1+(6*A2)); 
gg=((L+1)*A1-(L+4)*A2)/((L+2)*A2); 
dd1=gg/(3*L+2*(1-gg)); 
dd2=(L-gg)/(3*L+2*(1-gg)); 
dd3=(L-gg+2)/(3*L+2*(1-gg)); 
V=(2/L)*((1+(dd1*B))/((1-(dd2*B))*(1-(dd2*B))*(1-(dd3*B)))); 
rr=V/(2*E*E); 
B=Beta; 
*Degrees of Freedom M and Scale Factor Lambda; 
m=4+((L+2)/((L*rr)-1)); 
Lambda=m/(E*(m-2)); 
*Expected Value; 
E_null=(1/L)*(L+A2); 
E_alt=E_null + (1/L)*(B`*C*ginv(C`*PHI*C)*C`*B+A3)-
(1/L)*(B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B); 
ncp=lambda*(B`*C*ginv(C`*PHIA*C)*C`*B);  
rat1=(lambda*E_null)/(m/(m-2)); 
ncpform=B`*C*ginv(C`*PHI*C)*C`*B; 
E0=ginv(1-(A2/L)); *KR adjustment to E_null; 
EA=(1/L)*ginv(ncpform-
A3+B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B)*((ncpform-
B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B)*(ncpform-
B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B)); 
/* 
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*/ 
ncpnew=L*Lambda*(EA/E0); 
ncp1=ncpnew; 
ncp2=ncp; 
ncp3=ncpform; 
ncp4=ncpform; 
ncp5=ncpform; 
ncpuse=&ncpuse; 
scalera=B`*C*ginv(C`*PHI*C)*C`*Astar*C*ginv(C`*PHI*C)*C`*B; 
L=trace(ginv(C)*C); 
*DF components; 
E=inv(1-(A2/L)); 
B=(1/(2*L))*(A1+(6*A2)); 
gg=((L+1)*A1-(L+4)*A2)/((L+2)*A2); 
dd1=gg/(3*L+2*(1-gg)); 
dd2=(L-gg)/(3*L+2*(1-gg)); 
dd3=(L-gg+2)/(3*L+2*(1-gg)); 
V=(2/L)*((1+(dd1*B))/((1-(dd2*B))*(1-(dd2*B))*(1-(dd3*B)))); 
rr=V/(2*E*E); 
*Degrees of Freedom M and Scale Factor Lambda; 
m=4+((L+2)/((L*rr)-1)); 
Lambda=m/(E*(m-2)); 
*Power; 
alpha=&alpha; 
alval=1-alpha; 
timevec=({&timevec}); 
m1=m; 
m2=m; 
m3=m; 
m4=(&n1+&n2+&n3)*(((nrow(timevec)-1)*&missparm+1)/nrow(timevec))-L-1; 
m5=(&n1+&n2+&n3)*(((nrow(timevec)-
1)*&missparm+1)/nrow(timevec))*(nrow(timevec))-6; 
muse=&ddfuse; 
critval=finv(alval, L, muse); *So p(Wald<w) = p((1/lambda)*F < f);  
power=1-probf(critval, L, muse, ncpuse); 
ncp_dev=ncpnew+0.000001; 
power_dev=((1-probf(critval, L, m, ncp_dev))-(1-probf(critval, L, m, 
ncpnew)))/0.000001; 
R2=1-inv(1+(1/L)*Lambda*ncp*(L/m)); 
create work.power_a from power; 
append from power; 
quit; 
data work.power_b; 
 set work.power_b work.power_a; 
run; 
%mend power; 
 
%macro average; 
 %do designs=1 %to &reps; 
  %power(rep=&designs); 
 %end; 
%mend average; 
 
%average; run; 
 
proc sql; 
 create table work.power_c as 
  select COL1 as Power 
  from work.power_b 
  where COL1 ne 9999; 
quit; 
/* 
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*/ 
proc sql; 
 create table work.AveragePower as 
  select count(power) as Designs, mean(Power) as Power, std(power) 
as DevPower, min(power) as MinPower, max(power) as maxPower, 
     1*&n1 as n1final, 1*&n2 as n2final, 1*&n3 as n3final 
  from work.power_c; 
quit; 
%mend m3; 
 
%m3(n1=&n1, n2=&n2, n3=&n3); run; 
 
 
proc sql; 
 create table work.SampleSize as 
  select n1final as n1, n2final as n2, n3final as n3, Power as 
Nominal_Power "Nominal Power", sum(0,&reps) as reps 
  from work.AveragePower; 
quit; 
 
proc print data=work.SampleSize noobs; 
run; 
quit; 
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