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APPLICATIONS OF LONGITUDINAL MACHINE LEARNING METHODS  
IN MULTI-STUDY ALZHEIMER’S DISEASE DATASETS 

CHARLES F. MURCHISON 

BIOSTATISTICS 

ABSTRACT 

Advances in statistical learning models for prediction have led to broader application 

across a variety of disciplines, granting generalizations and adaptations that were previ-

ously intractable even with advanced computational techniques.  Among these is the al-

lowance of correlated data with inherent paneled structure such as longitudinal or clus-

tered data; adjustments which have already begun to be applied to a variety of supervised 

and unsupervised machine learning methods which had previously focused on cross-sec-

tional data.  These modifications have seen rudimentary testing in a number of applied 

disciplines where correlated data is commonly observed, including medical and clinical 

research.  One field in particular that has garnered interest is Alzheimer’s disease and re-

lated dementias.  As this disorder is characterized by a prolonged and progressive disease 

course with an extensive variety of potential biomarkers, its feature-dense datasets with 

repeated patient measures are well suited for applications of machine learning prediction 

while utilizing longitudinal modifications.  While some novel adaptations of longitudinal 

machine learning methods have already been tested in the realm of Alzheimer’s disease, 

there has not yet been a comprehensive evaluation to compare these techniques against 

each other or against widely accepted standards such as traditional inferential techniques 

like mixed-effects regression.  Nor has there been rigorous investigation into how sub-

ject-specific effects can impact the error and bias of these predictions and the distinctions 

which may arise when developing entire temporal profiles as compared to the forecasting 



 

 
iv 

of future observations while leveraging previously observed data.  This dissertation ad-

dresses these deficiencies in the literature by directly comparing a variety of machine 

learning techniques with longitudinal adaptations against each other and reference stand-

ards using a large, multi-study Alzheimer’s disease meta-database as well as assessing 

the role of subject-specific effects using synthetic data.  This study is especially compre-

hensive, considering both continuous and categorical outcomes as well as differences 

when generating whole profiles de novo or forecasting of future observations based on 

prior sequences.  With its emphasis on longitudinal data, this study considers not only 

predictive capacity for unobserved data using population-level characteristics, but also 

prediction of future observations using a variety of subject-specific effects. 

 

Keywords: machine learning, prediction, longitudinal, subject-specific effects,  

Alzheimer’s disease 
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INTRODUCTION 

 

Prediction versus Inference in Statistical Learning 

As a discipline, statistical methods have largely been cast as serving one of two pri-

mary roles: either to draw inferences about the association between covariates of interest 

and a response outcome, or prediction of a response given certain parameterizations and 

corresponding covariate sets.  The former in particular is frequently leveraged by bio-

statisticians and their collaborative researchers, enabling a better understanding of associ-

ations between observed variables and outcomes while facilitating formal hypothesis test-

ing.  However, interest in the role prediction, through statistical learning, can play as a 

companion to traditional inference methods has greatly increased in the last several dec-

ades.  Much of this impetus stems directly from advances in technology and improve-

ments in computational power which has enabled many of the heuristic and algorithmic 

approaches central to machine learning which were previously intractable.  These im-

provements have corresponded with greater capacity to collect, refine, and develop large-

scale datasets, and their combination has led to substantial growth in predictive learning 

methods which have seen implementations that would otherwise never have been possi-

ble.  Many of the predictive models and algorithms which have been developed have 

fallen under the banner of machine or statistical learning and now comprise an entire field 

in their own right.   
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Machine learning, in general, has placed less emphasis on the interpretation of covari-

ate associations and inference and instead focused on the ability to identify underlying 

features through dimensional reduction or to either accurately predict a response using 

classification and labelling or to predict numeric real-valued outcomes akin to regression.  

Many of the goals and concerns central to inferential methods, such as minimizing bias, 

are given secondary importance, with high accuracy of future predictions generally con-

sidered paramount.  In addition, the concept of hypothesis testing is largely left by the 

wayside even though it is a frequent goal of inferential statistics specifically.  This differ-

ence in prioritization has let machine learning, as a separate collection of techniques, be 

accepted as another facet of statistics as it has attained more widespread popularity and 

been utilized in several different applications.  Notable advances have been most widely 

seen in domains where large corpuses of data are common, such as image annotation, nat-

ural language tasks, and high-dimensional dataset processing.  Predictive learning meth-

ods have also evoked notable interest in several fields of medical research.  Recognizing 

their readily available and sizable datasets, medical and clinical disciplines have been 

among the most prominent spheres of research attempting to leverage the techniques of 

machine learning against the vast data-rich resources available to them such as electronic 

health records and high-resolution medical images.  While inference and interpretation of 

variable associations will continue to be a central aspect of statistical research and appli-

cation, predictive machine learning techniques have already demonstrated their capacity 

to support and buttress the classical inference methods many often think of in prototypi-

cal statistical analysis. 
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Responses and Supervision for Machine Learning Outcomes 

As various algorithms have developed, it has been necessary to delineate the several 

methods of statistical learning akin to the same way different inferential methods are dis-

tinguished.  Much like inferential linear regression models, machine learning methods are 

often defined by the nature of their response variables.  Ordinary least-squares models for 

normally distributed scale variables and logistic regression for binomially distributed out-

comes have their own machine learning analogues including regression and binary classi-

fication.  Similarly, extensions such as multinomial classification for categorical variables 

with more than two levels can be applied to both inferential models and predictive de-

signs.  Even further augmentations seen in inferential models, like splines to allow for 

non-linear relationships, have corresponding methods for learning and prediction such as 

generalized additive models which are also capable of characterizing non-linear effects.  

As so much of statistical inference has informed predictive methods, it comes as no sur-

prise many of the unique facets of response outcomes in standard statistical and biostatis-

tical techniques have corollaries also seen in machine learning implementations. 

However, machine learning also has utility even in the absence of expressly defined 

response variables.  This in turn leads to a design consideration less common in standard 

statistical methods with the notion of supervision, namely the amount of prior knowledge 

on the outcome of interest.  In machine learning, there is often a distinction between su-

pervised learning and unsupervised learning.  Generally speaking, in supervised learning 

the label of the output, whether numeric or categorical, is known prior to the development 

of a predictive model, and these known outputs directly inform the structure and training 

methods of the input features to forecast response predictions.  In unsupervised learning, 
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the outputs are either unknown or unobservable and relationships and feature associations 

are defined solely by the underlying structure of the data inputs without any sort of over-

sight or consideration of the output.  This scenario is actually quite common and there are 

many situations in which the outputs may be unknown.  For example, human annotation 

of the data, the general gold-standard for curation, may be too resource intensive and as 

such is intractable.  This might be the case for a collection of hundreds of thousands of 

pictures being used for image recognition.  Similarly, a researcher may want to take a 

completely de novo approach to data clustering with a desire to use unsupervised meth-

ods to generate hypotheses for later inferential hypothesis testing. 

Notably, unlabeled data is not solely utilized by unsupervised machine learning tech-

niques.  While unsupervised methods are generally focused on clustering of data or re-

duction of dimensionality of dataset features, prediction tasks may still be desired even in 

the absence of curated outputs.  In these situations, the machine learning model is tasked 

with teaching itself labels without any sort of reference based on prior curation, a method 

referred to as self-supervision.  Self-supervision learning has become very popular in a 

variety of machine learning applications, especially in image processing where feature 

identification or classification is desired but labelling of images is not available.  Many of 

the advances in deep learning neural networks and autoencoders have applied these self-

supervision approaches to their learning tasks.  A common example is the denoising of 

images where reconstruction of an otherwise unknown original image is the desired out-

put when the input is solely based on a variety of perturbed versions of the image.  Alt-

hough self-supervision methods have been frequently developed for use with unlabeled 

data, their goal of classification can still be utilized with annotated datasets to reinforce 
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and support model training.  As such, there are many circumstances where unsupervised 

and self-supervised methods on unlabeled data can be expressly purposed and these 

methodologies, by their very nature, require special consideration compared to prototypi-

cal supervised techniques. 

It should be noted that data supervision is not a strictly binary consideration but rather 

a spectrum wherein fully curated data or data without any labelled outcome are the two 

extremes of supervised and unsupervised, respectively.  There are several methods that 

lie in between within the realm of semi-supervised methods where partial annotation is 

available.  This is frequently seen when human labelling of a full dataset is especially ex-

pensive in either time or resources but labelling of a smaller subset is much more feasi-

ble.  In these situations, model training can make partial utilization of the known data to 

help direct and inform the associations which subsequently arise from the unlabeled out-

comes.  Furthermore, data in absence of an outcome is also not unheard of in inferential 

statistics.  For example, log-linear models commonly seen in systems analysis can also be 

created in the absence of a strict output but can still identify associations among features 

and covariates and provide the corresponding effect sizes and strengths of associations in 

the forms of confidence intervals and p-values.  However, the idea of model supervision 

and the utilization of unlabeled data is much more common in machine learning, espe-

cially when applied to large corpuses of data with thousands or millions of features. 

 

Correlated and Longitudinal Structure in Response Measures 

Beyond similarities in the nature of their responses and outcomes, machine learning 

algorithms also have a marked overlap with traditional inference methods in several of 
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their necessary underlying assumptions.  Much in the same way they are necessary for 

valid inference in relationships, certain fundamental assumptions are required to increase 

accuracy and increase prediction veracity in statistical learning.  One assumption shared 

by the more basic forms of both inferential and predictive methods is the independence of 

observations.  When the data has natural structure, for example through correlated or re-

peated measures, the assumption of independence is violated, and model adjustments are 

required regardless of the ultimate goal of the statistical design.  In inferential methods 

this can be handled through techniques such as repeated measures analysis of variance, 

generalized linear regression, or mixed-effects models.  In these cases, additional struc-

ture is applied to the residual variance of a model while also adjusting the ways in which 

models can vary, generally through redefining the degrees of freedom.  Machine learning 

algorithms are no less susceptible to deviations in prediction that are dependent on any 

inherent correlation of the data, whether in the known response of a supervised method or 

a priori clustering of input features prior to unsupervised associative models. 

Akin to how inferential methods began with assumptions of independence before 

generalizing to correlated data, machine learning implementations first began with cross-

sectional data, establishing the fundamental groundwork before attempting to extend to 

more complex and refined data designs.  These considerations of correlated data have 

taken multiple forms in the machine learning literature.  Some have obvious analogs to 

inferential methods, such as accounting for repeated measures taken longitudinally and 

leveraging the knowledge of serial correlation to aid in within-unit predictions.  Others 

are more esoteric, such as using known language structures to aid in natural language 

processing or proximity of image sub-units which display increased feature similarity 
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with decreasing distance.  Not only has this led to several extensions of previously devel-

oped statistical learning techniques with cross-sectional origins, for example applying 

random effects components much like mixed-effects models, these considerations of 

structured data have led to entirely new techniques which have supplanted their original 

designs, most notably with advances in neural networks and other self-supervised meth-

ods.  Regardless, there has been increased appreciation for the role correlated data plays 

in predictive statistical learning and the impact it can have on accuracy and validity can-

not be overstated. 

Even outside of machine learning paradigms, other considerations of correlated data 

on prediction are important.  For example, subject-specific effects can be utilized in a 

number of ways including complete suppression in order to rely solely on population-

level effects, imputation of probable subject-specific covariate values based on prior 

model parameters such as the covariance matrices of mixed-effects models, or leveraged 

directly as known subject-specific values based on previously observed values when 

models are built de novo.  The exact behavior of these subject-specific effects is not espe-

cially well known even in standard inferential statistical models, let alone for machine 

learning methods.  The role these subject-specific effects have could very easily be con-

text dependent with different designs having specific strengths depending on how they 

are utilized, such as when calculating cohort level effects on average as opposed to spe-

cific predictions for an individual.  In addition, when model parameterizations are pro-

vided instead of calculated directly, there may be severe consequences with differences in 

prediction capacity even for the same type of model.  This is just another unique aspect of 
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longitudinal data that is critical to remember both for standard inferential methods as well 

as machine learning designs. 

 

Applications in Medical Research 

Many of the considerations and extensions in statistical learning have been directly 

informed by the attempts to apply the methodologies in real-world disciplines and scenar-

ios.  As mentioned, one of the most prominent of these fields ripe for application is in 

clinical medical research.  At its most basic level, clinical research meets many of the 

various criteria previously discussed.  Correlated data is exceedingly common, with some 

studies focusing on the patient as the fundamental unit with several repeated in-patient 

measures while others consider natural clustering of sets of patients due to similarities in 

demographics, diagnoses, or dispositions.  In both cases, correlation within dataset panels 

has severe repercussions on final prediction if proper allowances are not made.  Further-

more, this gives an additional enhancement on how prediction of correlated data can be 

utilized: not only can a new, previously unobserved unit or patient be generated based on 

a specific set of features or characteristics, but a subsequent measure for a patient who 

has already been previously observed can also be forecast.  In this latter case not only are 

the population-level features such as demographics and patient characteristics utilized, 

but the unique subject-specific adjustments are also applied, leveraging the additional se-

quence information inherent in the serially correlated data.  This can ostensibly give addi-

tional validity to any within-unit forecast response, potentially yielding even greater lev-

els of accuracy than would otherwise be seen by only using population-level features. 
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As previously mentioned, the complexion of clinical and medical data readily lends 

itself towards machine learning applications by its very nature.  High dimensionality is 

especially common, with feature sets often greatly outstripping the number of discrete 

data units (e.g. patients) in sheer scope and breadth.  Assays on hundreds of biomarkers 

from blood, spinal fluid, and other vectors are commonly taken in the course of both clin-

ical practice as well as medical research.  The advances in assays and informatics anal-

yses have also created enormous corpuses of “omics” data.  Patient populations can now 

be characterized across metrics which number from hundreds of gene alleles or protein 

products, to thousands of single-nucleotide polymorphisms, to even larger data corpuses 

such evaluations on the near countless species within the gut microbiome.  The width of 

these ever-increasing datasets requires careful handling and standard statistical inferential 

techniques often perform poorly in these scenarios due to overfitting and multiplicity of 

hypotheses.  However, dimensional reduction and feature collapse are hallmarks of statis-

tical learning and extraction of underlying latent structures can still lead to high-quality 

prediction even when inference of association may be limited. 

Another application of statistical learning to medical research which warrants men-

tioning is imaging.  In much the same way computational advances have contributed to 

machine learning, medical imaging has greatly benefited from its own technological ad-

vances.  This has led not only to images of higher resolution and quality, but whole new 

modalities of imaging and extensions from two-dimensional images comprised of pixels 

to three-dimensional representations built from voxels.  Accompanying these imaging 

methods is the desire to assist manual curation, and even apply automation, which have 

spearheaded unique applications of machine learning in the domain of image processing.  
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These include feature identification within individual images as well as larger-scale clas-

sification and categorization tasks for entire image collections.  In turn, this has led to a 

variety of machine learning applications that have seemingly larger departures from the 

underlying statistical techniques that preceded them; however, the fundamentals of the 

classification and evaluation still apply in many respects to the original inferential and 

statistical learning methods which preceded them. 

 

Specific Applications for Alzheimer’s Disease and Related Dementias 

One set of disorders is of particular interest in the machine learning field for many of 

the reasons previously discussed: Alzheimer’s disease and related dementias (ADRD).  

Alzheimer’s disease (AD) is one of the most prominent medical concerns both nationally 

and across the globe.  The aging population, particularly within the western world, has 

made the prevalence of this disease reach all-time highs and is one of the leading causes 

of death among those over the age of 65.  Rates from 2018 estimated that over 5.7 million 

patients are living with AD in the United States alone and this is expected to increase to 

13.8 million patients by 2050.  Accompanying this disease is a burden of direct care, time 

investment and material cost for patients, caregivers, doctors, and taxpayers; an estimated 

$277 billion dollars was spent on AD and similar dementias in the United States in 2018, 

with $186 billion being directly paid by Medicare.  This combination of cost and perva-

siveness has been accompanied by a necessity to better identify and treat patients with 

AD and placed particular emphasis on predicting future changes in cognition, whether as 

direct cognitive outcomes used as diagnostic criteria or predicting future cognitive status.  

One of the unique characteristics of AD is its prolonged time course with many of the 
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pathological and biological hallmarks occurring years before clinical symptoms begin to 

manifest.  This has led to a corresponding increase in research into the ability to foresee 

future changes in cognition and dementia status in patients based on these markers.  The 

ability to accurately predict cognitive trajectories and changes in patients can in turn help 

direct interventional treatments and ideally even aid in prevention while aiding research-

ers when designing clinical trials. 

As mentioned, ADRD research bears many hallmarks and prerequisites of statistical 

learning.  This includes the nature of its high-dimensional datasets with extensive neu-

roimaging, genetic, and biomarker profiling which have been collected to characterize the 

disease more fully.  These covariate-rich datasets can be used as labeled data in a super-

vised fashion to identify feature sets which can either predict metrics used in AD research 

or to classify patients wholesale based on cognitive and functional status.  Unsupervised 

and semi-supervised applications are also valid as definitions of AD can vary based on 

cognitive capacity, clinical function, and expression of specific pathologies and bi-

omarkers.  In addition, the progressive nature of the disease and its protracted time course 

have led to long-term studies comprising sets of collected data within patients who are 

followed for years and even decades.  Thus, not only can novel predictions of unobserved 

or hypothetical patients be considered, but so can future predictions of patients within da-

tasets with their unique, individual-level factors used to aid prediction.  Taken in combi-

nation, this has made ADRD research a prime candidate for the applications of machine 

learning techniques.  The potential in ADRD has been recognized for some time although 

there have been several deficiencies in approaches which seek to be addressed. 
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Longitudinal Machine Learning and Alzheimer’s Disease 

Although there have been several studies which have attempted to use machine learn-

ing paradigms to predict cognitive status and neuropsychological outcomes, nearly all 

have been focused on cross-sectional data, merely drawing associative conclusions rather 

than directly predicting longitudinal trajectories and change within patients and subjects, 

or compressing longitudinal measures into single aggregate values like annualized 

change.  This has limited the utility and predictive capacity of these machine learning 

methods since they have been unable to make use of the longitudinal nature of AD da-

tasets which collect data repeatedly over time, whether as part of formal interventional 

trials, observational studies, or during the data collection process in the course of stand-

ard clinical care practice.  While some domains such as natural language processing have 

more stringently required the ability to leverage temporal or sequential context in training 

and prediction, it is only recently that machine learning modalities applied in other disci-

plines such as medical research have initiated investigation as to how to best make use of 

time series and sequence data.  Fortunately, this has begun to lead to the generalization of 

many classic statistical learning applications to now account for panel and longitudinal 

data, whether through use of mixed-effect analogs to model subject or cluster-specific ef-

fects, or self-referential memory designs that retain prior information during training to 

inform future responses. 

As these methods have been developed and refined in other areas of medical research, 

they have started to be used to aid in the prediction of Alzheimer’s disease diagnoses and 

changes in cognition.  However, methods presented within the literature are often consid-

ered in isolation, with novel algorithms presented and benchmarked using synthetic data 
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in conjunction with widely available AD datasets such as the long-standing Alzheimer’s 

Disease Neuroimaging Initiative (ADNI).  Unfortunately, these longitudinal methods are 

largely evaluated with only rudimentary metrics on single types of response outputs with 

minimal comparisons between methods.  As such, there has not yet been a broader con-

sensus on the potentially situational benefit of these methods where they are comprehen-

sively assessed to ascertain the role they will ultimately have in cognitive decline re-

search and clinical practice, especially when compared to long-standing models which 

are already accepted by the AD research community.  Different outcomes serving differ-

ent research and clinical goals, generalization across multiple studies, and comparison of 

more disparate learning designs are simply unavailable which limits the full consideration 

of these predictive methods and the field of neurodegeneration suffers because of this. 

This dissertation bridges the deficiency between the initial implementation of these 

longitudinal machine learning techniques and their potential application in AD research 

by extensively evaluating and comparing these more novel methods both against each 

other as well as against commonly accepted and pre-specified standards using the more 

traditional inferential modelling paradigms.  This enables more direct comparison of the 

roles both the heavily investigated supervised and discriminative techniques as well as 

the more novel self-supervised and generative deep learning methods can serve in the 

study of Alzheimer’s disease.  Furthermore, different outcomes providing different con-

textual purposes are considered, specifically neuropsychological scores of cognitive abil-

ity frequently used as clinical research outcomes as well as classification of cognitive sta-

tus inherent to standard clinical practice.  Special examination is also given to the differ-

ent types of longitudinal prediction provided by these models when making direct use of 
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prior observations.  Specifically, models are evaluated not only for their ability to predict 

whole trajectories of outcomes for previously unobserved patients solely using popula-

tion-level characteristics but also for their predictive capacity to forecast future observa-

tions within previously observed units by leveraging individual-specific model adjust-

ments to outcomes.  Taken together, this wide-ranging evaluation more fully character-

izes the impact of longitudinal machine learning in predicting cognitive changes and help 

inform its utility in the field of Alzheimer’s disease research as a whole. 
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OBJECTIVES, AIMS, AND IMPORTANCE 

The primary objectives of this dissertation research were to compare the predictive 

ability of a variety of longitudinal machine learning techniques when specifically applied 

to a harmonized dataset of subjects with varying levels of cognitive and functional im-

pairment, ranging from the cognitively intact to patients with known diagnoses of Alz-

heimer’s disease.  These patients were assembled from a datastore of various clinical tri-

als and observational studies (the AD meta-database) with an emphasis on repeated 

measures of cognitive outcomes and feature sets comprising both persistent baseline val-

ues as well as time-dependent variables.  Two types of outcomes were considered based 

on class of the variables and their contextual importance.  The first was the Alzheimer’s 

Disease Assessment Scale – Cognitive Subscale (ADAS-Cog), a metric commonly used 

to evaluate cognitive impairment in research studies and interventional trials, as a contin-

uous scale outcome using regression-based designs.  The other was classification of cog-

nitive status, specifically comparing cognitively intact to cognitively impaired, with the 

binary variable built based on the staging score of the Clinical Dementia Rating (CDR) 

with scores of 0 for normal patients compared to those with scores of 0.5 or greater indi-

cating any level of cognitive impairment.  These two outcomes were selected as contex-

tual and timeframe counterpoints with the ADAS-Cog used as a measure of later stage 

dementia with particular utility as a metric in AD research while changes in cognitive sta-

tus emphasized an earlier phase of the disease with specific benefit for patients seen in a 
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clinical setting.  Additionally, predictive capacity of the models was compared based on 

their ability to develop an entire whole-subject trajectory or temporal profile of an indi-

vidual using population-level features as well as their performance to forecast a future 

observation in a previously observed participant by leveraging subject-specific adjust-

ments to outcomes alongside the population-level characteristics.  In addition to direct 

comparison of these models, these data-driven techniques were also compared against 

commonly used standards of regression and classification using more traditional inferen-

tial statistical methods.  Specifically, linear mixed-effect models were developed for the 

ADAS-Cog (regression on a normalized beta-distributed response) using pre-specified 

parameterizations from the widely leveraged Critical Paths for Alzheimer’s disease 

(CPath) AD simulation software and cognitive status built with ad hoc models (logistic 

mixed-effects regression) using a portion of the primary meta-database.  Finally, special 

consideration was given to the exact contribution of subject-specific effects for these dif-

ferent designs, comparing prediction performance under a variety of scenarios including 

complete suppression of subject-specific effects, their imputation from model parameters, 

and directly leveraging previously observed sequences and known fitted values.  This 

comprehensive evaluation was designed to give a better understanding of how these vari-

ous longitudinal statistical learning methods could support AD research. 

The first aim was to evaluate and compare supervised and discriminative longitudinal 

machine learning techniques for regression and classification in the multi-study Alz-

heimer’s disease dataset.  This aim focused on the more commonly implemented discrim-

inative models for machine learning with adaptations to facilitate their use on longitudi-

nal data.  These methods initially focused on three primary classes of statistical learning 
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techniques: penalized or regularized regression (ℓ1 LASSO, ℓ2 ridge regression, and 

elastic net on mixed-effects regression models), ensemble methods using decision trees 

(bagging and boosting on mixed-effects regression trees, and mixed-effects random for-

est), and support vector machines using multiple kernels to account for long-term and 

short-term longitudinal effects.  Over the course of the study, emphasis was eventually 

placed on the ensemble methods as the most robust and well characterized of these super-

vised designs. 

The second aim sought to evaluate and compare self-supervised or generative deep 

learning techniques for regression and classification in the same multi-study Alzheimer’s 

disease cohort.  This aim was structured around the more novel deep learning neural net-

works that have seen wider use in fields of image processing and natural language tasks 

and apply their time-dependent extensions to the longitudinal data collected in the AD 

meta-database.  These methods have demonstrated straightforward transfers to sequence-

based data making them well-suited to longitudinal data representations.  The methods 

under consideration were long short-term memory (LSTM) recurrent neural networks 

(RNN) and one-dimensional convolutional neural networks (1D CNN) for time series 

data.  These designs were explicitly selected as they both have training paradigms that 

naturally translate to longitudinal data applications. 

The third aim moved away from model-level evaluations to directly contrast the role 

of subject-specific effects on prediction when used in a variety of model designs and how 

those effects differed according to model parameterization, type of subject-specific effect, 

and their application when generating whole temporal trajectories for subjects or when 

forecasting future observations.  Investigation of subject-specific effects on generating 
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whole outcome trajectories and observation forecasting compared suppression of subject-

specific effects to only use population-level covariates, imputation of subject-specific ef-

fects based on model parameterizations, and directly leveraging subject-specific effects 

when forecasting future observations based on prior data used during model building.  

Superiority in regression-based prediction metrics for the ADAS-Cog was compared 

among the pre-parameterized CPath reference model, a mixed-effects regression model 

with an equivalent structure but a de novo parameterization, and a supervised machine 

learning ensemble method, all within and across subject-specific effect designs. 

Overall, the purpose of this dissertation was to expand upon the field of statistical and 

machine learning to better understand the role it can play in aiding with the prediction of 

cognitive outcomes in the field of Alzheimer’s disease and related dementias.  Of note, 

this research was designed to fill a deficiency in the literature by more comprehensively 

characterizing longitudinal machine learning methods when applied to AD and mild cog-

nitive impairment (MCI) research datasets.  In addition, it was developed with a goal of 

better understanding the impact the repeated measures and correlated data commonly col-

lected in AD studies have on these learning methods and their predictive ability.  Addi-

tionally, this dissertation was applied to a real-world dataset developed across multiple 

studies and harmonized, mirroring the increasingly common trend of combining and ag-

gregating multiple distinct datasets into unified data repositories.  Such research designs 

are consistent with the goals of ADRD research as earlier and earlier interventions are in-

vestigated to postpone the onset of cognitive decline and dementia.  This comprehensive 

evaluation not only compared these various discriminative and generative machine learn-

ing models against each other, but also against widely accepted referential standards 
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which had been developed using more traditional inferential approaches to prediction, 

simulation, and data generation. 

Of special interest was the predictive capacity of the machine learning models in 

question when utilized for both entire time course trajectories of unobserved data units as 

well as forecasting future observations when leveraging previously observed data for 

model generation.  The unique nature of longitudinal data allows for two types of predic-

tion: either generation of new data profiles wholesale or extending previously observed 

data to forecast subsequent measures.  As such, special care was taken to explicitly con-

sider both types of longitudinal prediction which is frequently an underappreciated aspect 

of time-series data.  This gave a unique comparison point to identify the utility these 

models could provide as predictive tools with the idea that some designs would be better 

suited for novel data generation while others may display increased performance to ex-

tend observations within a dataset.  This also allowed for a better understanding of how 

machine learning prediction, as a tool, could be leveraged in AD research and which 

model designs were better suited for predicting data de novo or as a unit/patient-level 

forecasting tool.  Additionally, this directly tied to the notion of the impact subject-spe-

cific effects can have on these predictions and whether performance differed between tra-

jectory generation and observational forecasting when subject-specific effects were sup-

pressed, imputed, or directly leveraged. 

Finally, this dissertation provided a unique opportunity to investigate the role ma-

chine learning can play in AD/MCI research more deeply in the context of both research 

studies, through the use of the ADAS-Cog, and clinical practice, via the CDR-Based cog-

nitive status classification.  Of particular benefit and importance is an understanding of 
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the impact longitudinal considerations play in the training, testing and validation of statis-

tical learning regressors and classifiers.  This is especially poignant as electronic health 

record mining, large-scale datasets, and multi-study cohorts are developed in both clinical 

practice and interventional research.  As the machine learning field continues to make use 

of different modalities, the results of this research can help contribute to the understand-

ing discriminative and generative models of learning have in predicting AD outcomes at 

a variety of timepoints, contexts, and scenarios.  Taken together, this study provides an 

excellent analysis well poised to aid in the overall understanding the various characteris-

tics of longitudinal machine learning can play in predicting cognitive outcomes and facil-

itating its related research. 
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LITERATURE REVIEW 

 

Initial Beginnings 

Machine and statistical learning, as a concept, is not especially novel.  In fact, the first 

published instance of an algorithm designed to be executed on a machine was presented 

by Ada Lovelace in 1843.  Designed to calculate a set of Bernoulli numbers on a pro-

posed general-purpose computer called the Analytical Engine, this is widely recognized 

as the first computer program (Fuegi & Francis, 2003).  Although Lovelace’s algorithm 

laid the groundwork and additional mathematical models of learning would continue to 

be designed, any sort of practical realization of a machine learning system was still over a 

century away.  It would not be practically realized until 1958 when Frank Rosenblatt de-

veloped the perceptron algorithm and the associated Mark I Perceptron machine at the 

United States Office of Naval Research (Rosenblatt, 1958).  The perceptron, unsurpris-

ingly, was somewhat rudimentary in design; it was only capable of learning linearly sepa-

rable patterns and limited in its classification capacity.  For example, single-layer percep-

trons like Rosenblatt’s are incapable of solving exclusive or (XOR) level problems 

(Minsky & Papert, 1969).  Although limited in scope, several advances in implementa-

tion of machine learning designs were carried out, with learning programs created which 

could solve algebraic word problems and prove geometric theorems.  These algorithms 

all generally followed the approach of stepwise heuristics to solve their problems and as 
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such were saddled by the same limitation, namely traversing the enormous breadth of po-

tential search paths in an efficient and timely manner (Russel & Norvig, 2003).  A renais-

sance of sorts began in the 1980’s with the advent of expert systems which attempted to 

use knowledge representations to mimic the decision-making capacity of a human expert.  

However, the optimism and promises of the expert systems again failed to meet expecta-

tions and enthusiasm and financial support both waned (Leondes, 2001).  However, by 

the mid-90’s many of the goals originally sought by artificial intelligence and machine 

learning began to see fruition, with one of the most notable being the creation of Deep 

Blue, a chess playing computer developed by IBM.  After losing a series in 1996 to world 

champion Garry Kasparov, refinements were made by IBM engineers and in May of 

1997 Deep Blue defeated Kasparov in a six-game rematch 3 ½ - 2 ½, becoming the first 

instance of a computer to best a reigning world chess champion (Higgins, 2017). 

 

Recent Advances and Applications to Alzheimer’s Disease 

From these early implementations, access to large repositories of data, faster and bet-

ter computers, and continued refinement of algorithms have pushed the field of machine 

learning even further and the discipline has seen an incredible amount of progress over 

the last 25-30 years.  The early promises of the perceptron models are now reaching frui-

tion with the advent of deep learning methods and multi-layer neural networks (LeCun et 

al., 2015; Schmidhuber, 2015) and notable advances in image processing, natural lan-

guage tasks, machine translation, sequence analysis and many other fields have all begun 

to be realized.  This includes medical domains such as Alzheimer’s disease with particu-

lar emphasis on the potential role of machine learning in predicting changes in cognition.  
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Large-scale datasets with hundreds of patients have been created and include not only tra-

ditional patient characteristics like demographics, neuropsychological metrics, and 

measures of clinical function, but are further supported by more novel biomarkers from 

blood and spinal fluid, genetic assays and, perhaps most notably, a variety of neuroimag-

ing techniques which directly measure brain structure and pathologies in vivo including 

magnetic resonance imaging (MRI) and positron emission tomography (PET) (Chen et 

al., 2014; Marti-Juan et al., 2020; Rathore et al., 2017).  Furthermore, the progressive na-

ture of AD has allowed these datasets to consist of longitudinal data with an eye towards 

the ultimate goal of slowing disease progression if not outright preventing disease transi-

tion.  However, in spite of these datasets well suited for machine learning applications in 

AD, much statistical learning research has largely been limited to either cross-sectional 

designs or has only considered repeated measures with respect to covariates and not to 

outcomes (Chen & Bowman, 2011; Luts et al., 2012).  This has largely been an issue with 

available methods and only recently has there been greater emphasis on fully leveraging 

the longitudinal nature of repeated measure patient data in machine learning paradigms.  

This is considered especially important in Alzheimer’s disease as prediction of future 

cognitive states based on a patient’s current clinical profile is of critical concern. 

 

Supervised and Discriminative Learning 

Regularized Regression 

Of the many different types of machine learning paradigms, supervised learning 

methods have seen the most amount of research and development, most likely due to 

their reliance on well-defined outputs which greatly facilitates and directs the machine’s 
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task.  Some of the earliest machine learning designs were simply adaptations of tradi-

tional, inference-based regression models which placed greater emphasis on increased ac-

curacy of model predictions.  These did so by leveraging the bias-variance trade-off in a 

model by reducing model variance at the cost of increased bias of coefficient estimates.  

The earliest of these methods were seen in 1970 with the proposal of ridge regression 

(Hoerl & Kennard, 1970), a method of constraining the coefficient estimates of highly 

correlated or non-important independent variables and shrinking them towards zero using 

a square ℓ2 penalty term.  Subsequent adaptations include least absolute shrinkage and 

selection operator (LASSO) regression which is functionally similar to ridge regression 

but uses an ℓ1 penalty term based on the absolute value which allows coefficients esti-

mates to actually reach zero for unimportant independent variables (Tibshirani, 1996).  

These two regularization techniques can also be combined using elastic net regularization 

which includes both ℓ1 and ℓ2 penalty terms with varying representative strengths which 

can be tuned specifically to the task at hand (Zou & Hastie, 2005).  These methods are 

still widely used in a variety of disciplines in both academic and non-academic settings 

although most of their utility is taken with cross-sectional data on independent observa-

tions.  However, extensions have been investigated to see how well these methods can 

generalize to correlated data structures such as longitudinal datasets.  Methods to adapt 

both ridge and LASSO penalizations since they were first introduced have been at-

tempted with the most common consideration being the inclusion of additional correlated 

structures such as the random effects components of linear mixed models (Skolov et al., 

2016).  Expanding on these refinements, applications directly related to medical research 

have been conducted on datasets such as those in longitudinal genome-wide association 



 

 
25 

studies (Barber et al., 2017) and repeated measures in retinal optical coherence tomogra-

phy data (Lang et al., 2016) as well as numerous simulation datasets.  The combination 

regularization method of elastic net regression has also been investigated in a variety of 

medical research fields and is of great interest in reducing the domain space of bi-

omarkers, for example in cardiovascular incidence (Eliot et al., 2011).  

Despite these advances even within the general domain of medical research, applica-

tions of longitudinal regularization methods specific to neurodegenerative disease or cog-

nitive decline have been sparse.  Instead, most regression techniques which manipulate 

the bias-variance trade-off attempt to take some sort of adjustment to prior models that 

are simply informed or inspired by shrinkage and penalization.  A recent example was 

dubbed likelihood contrasts where data were iteratively added to a standard mixed-effects 

regression model and the change in log-likelihood was evaluated according to classifica-

tion to one of two groups.  These models would then predict the classification based on 

the maximization, essentially using the log-likelihood as their objective function (Klen et 

al., 2020).  Another recent design applied to psychology and inspired by machine learn-

ing methods is called Gaussian process panel modelling which is a more Bayesian ap-

proach to dealing with longitudinal data (Karch et al., 2020).  While these implementa-

tions were evaluated using standard accuracy metrics, in both cases the predominant mo-

tivating rationale was to aid feature selection and not necessarily conduct prediction mod-

els based on the training data.  Because of this variety in implementation and the relative 

dearth in neurodegeneration related applications, this has left characterization of these 

types of mixed-effects shrinkage methods in AD ripe for investigation.  In spite of this 

potential, practical implementations of mixed-effects regularized regression have largely 
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fallen out of favor in recent years, with libraries such as GELMMnet for Python and R 

packages such as lmmlasso and lmmen either being orphaned or no longer receiving 

regular update support as researchers have moved to other, more novel types of machine 

learning (ML) methods. 

 

Ensemble Methods 

Alternatively, ensemble methods, especially those explicitly using classification and 

regression trees, have seen much more research and support not only in their longitudinal 

extensions but also within the realm of AD specific research when compared to standard 

penalized regressions.  Classification and regression trees (CART) are among the oldest 

classes of heuristic learners, first coined in 1984 by Leo Breiman (Breiman et al., 1984) 

to describe a directed acyclic graph which can be used to aid decision making.  These 

trees provide the foundation for the ensemble methods wherein several trees are used in 

conjunction to create a “forest” to further increase predictive capacity of the models.  

These ensemble methods can be exceedingly varied with an early example being bag-

ging, a portmanteau of bootstrap and aggregation, which builds multiple CARTs using 

several bootstrap samplings of the training data with replacement followed by aggrega-

tion across the forest of trees (Breiman, 1996).  Another variation is boosting, with one of 

the most prominent examples being the Adaptive Boosting or AdaBoost algorithm, where 

trees are incrementally adjusted based on previous training instances to improve perfor-

mance (Freund & Schapire, 1996).  Another variation is the random forest which extends 

bagging from sampling subjects to instead sample various portions of the feature space 

and develop sets of independent variables from the data which reduces correlation within 
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the forest and helps limit the tendency of decision trees to overfit to their training data 

(Breiman, 2001). 

Ensemble methods are among the most popular of the supervised machine learning 

methodologies and as such have seen several attempts to extend into the analysis of lon-

gitudinal data.  One of the earliest attempts was conducted by Hajjem et al. in 2011 

(Hajjem et al., 2011) when they adapted regression trees to account for clustered data, in-

cluding unbalanced designs.  This was largely just an adapted expectation maximization  

algorithm that fit a regression tree instead of a fixed-effects parameterization but of 

greater interest was when the same group at HEC Montreal adapted the design further to 

create mixed-effects random forests instead of just single trees (Hajjem et al., 2014).  

Similar extensions have also been carried out with boosting methods for multivariate 

trees (Miller et al., 2017; Pande et al., 2017) as an alternative to bootstrap based methods 

like bagging and random forest while another method simply fused multiple mixed-effect 

trees together with one tree focused on fixed-effects and another random effects (Ngufor 

et al., 2019).  However, in all of the cited articles there was no attempt to do characteriza-

tion of these methods in the field of neurology, let alone in neurodegenerative disease and 

cognitive decline.  For example, the motivating example in the mixed-effects random for-

est introduction was box office sales while the random forest fusions were focused on 

predicting hemoglobin A1c levels.  However, despite these contextual limitations, longi-

tudinal applications of ensemble methods are among the most popular paradigms with 

implementations in several programming languages including R (randomForest, 

longituRF) and Python (merf).  These implementations have seen continual updates 

and improvements and are still considered ripe for further study unlike the relative quiet 
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given to regularized mixed-effects models.  As such, as these methods see continued sup-

port and investment by the machine learning field alongside greater traction specifically 

in medical research, they are a ready avenue of investigation for application in predicting 

outcomes in AD and neurodegeneration. 

 

Kernel Methods 

Among the most robust types of statistical learning models are those which make use 

of kernel methods, most notably support vector machines (SVM).  Like many of the pre-

viously discussed methodologies, the SVM algorithm was first proposed long before it 

was refined and implemented in its current form.  SVMs are rooted in the basics of Vap-

nik-Chervonenkis theory (VC theory) which was first proposed in 1974 (Vapnik & 

Chervonenkis, 1974) and provides a framework for machine learning explicitly from a 

statistical point of view with emphasis on consistency, complexity and control of general-

ization.  SVMs are the most well-known practical implementation of VC theory and were 

first proposed as non-probabilistic linear classifiers in 1995 (Cortes & Vapnik, 1995).  At 

the most fundamental level, they function similarly to the classic single-layer perceptron 

by separating and parsing the parameter space of a dataset.  However, they extend on the 

perceptron by maximizing the distance separating the categories of a dataset in a classifi-

cation task or the decision boundary that encapsulates the most data in a regression prob-

lem.  In addition, SVMs are uniquely suited for non-linearly separable problems via the 

“kernel trick” which creates a non-linear hyperplane that maps the original dataset, which 

can consist of a high-dimensional feature space, to a reduced space that then uses the ker-

nel to linearly parse the data implicitly (Bishop, 2006).  A variety of kernels can be used 
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with SVMs from rudimentary linear kernels to polynomial kernels with predetermined 

powers of exponentiation to radial basis function kernels whose expansion has an infinite 

number of dimensions.  The particular strength of the kernel trick is that the higher di-

mension feature space does not need to be directly calculated and instead only the inner 

product space is necessary making calculation of the kernel function efficient and compu-

tationally tractable. 

Due to their robustness and heavy use in the machine learning literature, support vec-

tor machines for classification and regression have also seen adaptations with respect to 

applications to longitudinal datasets.  As with many of the early implementations, there 

was an initial limitation wherein response outcomes were only measured at single time 

points in a cross-sectional fashion rather than repeatedly or with other some sort of ex-

plicit structure (Chen & Bowman, 2011; Du et al., 2015).  However, more recent ad-

vances have applied adjustments which can now account for true correlated or panel data 

including longitudinal responses.  The common approach of these methods has been to 

expand upon the single kernel fitting inherent to SVMs and apply multiple kernels in tan-

dem.  These designs begin with one kernel, often with a standard implementation such as 

a Gaussian radial basis function, which focuses on solely modelling the feature parame-

terizations while another kernel, frequently structured to resemble a covariance matrix 

such as those seen in the random effects component of linear mixed models, instead han-

dles subject-specific effects to account for the inherent correlation within the data 

measures (Chen et al., 2015).  These multiple kernels are then fused together into a single 

linear function which can then predict either categorical classifications or real-valued out-

comes in regression.  These fusion kernels have an additional benefit of being to apply 
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several separate kernels to the population-level effects as well, thus being able to have 

different kernels for different data modalities which may have disparate underlying distri-

butions such as distributions of patient genetics versus population characteristics and de-

mographics.  Of interest, the mixed-effects SVM paper by Chen et al. (Chen et al., 2015) 

was applied to neurodegeneration and actually carried out on ADNI imaging data, specif-

ically the MRI images, in order to predict a measure they referred to as brain age.  In their 

more provincial forms, SVMs are very popular and widely used in a variety of disciplines 

when applied to cross-sectional data, in no small part due to being so intrinsically rooted 

in the fundamentals of statistical learning as a natural outgrowth of VC theory.  However, 

this mathematical underpinning also makes them especially complex and less accessible 

when compared to other machine learning methods like regularized regression and en-

semble forests.  As such, practical implementations are rather limited with multiple ker-

nel packages and libraries being especially sparse.  Kernels for patient or cluster-specific 

effects are generally left to the user to design and implement as opposed to the commonly 

used and predefined radial basis function and polynomial kernels.  Even supported pack-

ages such as MKLpy for Python and RMKL for R require significant amounts of user-pro-

vided definitions making generalized implementation especially challenging without ex-

tensive prior mathematical and statistical expertise.  This is in turn reflected in the litera-

ture with very few published implementations of multiple kernel models on correlated 

data and with little advancement seen in the last several years as investigators have in-

stead focused on other methodologies, specifically deep learning applications using artifi-

cial neural networks. 
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Neural Networks and Deep Learning 

Many of the more recent advances in the field of machine learning have been devel-

opments in artificial neural networks (ANN) and deep learning.  As a concept, ANNs 

build upon the original mathematical proposal of Pitts and McCulloch from 1943 

(McCulloch & Pitts, 1943) to generate learning models inspired by the connective net-

works found in the biological brain.  The nodes of an ANN represent the neurons while 

their connections mimic synapses and the strength or weights of these connections are ad-

justed by optimization of a loss function during the training process to either increase or 

decrease node connectivity as the system learns.  Deep learning is an extension of ANNs 

using multiple layers of nodes to allow the system to extract higher level features using 

greater degrees of abstraction and representative knowledge at each subsequent layer and 

in turn learn more complex designs.  In the decades since Rosenblatt’s perceptron was 

implemented as a single-layer neural network (NN), several adaptations have led to the 

development of ever more powerful NN models to the point where deep learning is con-

sidered the current frontier of machine learning and artificial intelligence.  Some of these 

early proposed improvements include the mathematical presentation of backpropagation 

in calculating the gradient of the loss function to efficiently train the connective weights 

of a network (Kelley, 1960), a method that is still used in feed-forward networks today, 

and the application of polynomial activation functions which allowed neural networks to 

be more than simple linear classifiers (Ivakhnenko, 1968).  The 1968 paper by Alexy 

Ivakhnenko is especially pertinent as it also presented a multi-layer extension of the basic 

perceptron to enable the non-linear classification and is marked as the first instance of a 

deep learning system. 
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The early 1980’s saw two especially critical developments in ANNs specifically in 

the context of longitudinal data representations.  In 1980, Kunihiko Fukushima proposed 

the Neocognitron (Fukushima, 1980), the first convolutional neural network (CNN) 

which uses convolutional kernels to slide along the data inputs and create smaller, locally 

connected feature maps.  Prior to the advent of CNNs, multi-layer networks had generally 

been fully connected with the nodes of each layer connecting to every node in the adjoin-

ing layers which often led to overfitting to the training data.  By applying the convolu-

tional kernels which emphasize proximal associations and local connections, CNNs can 

regularize their networks to assemble increasingly complex feature maps without overfit-

ting.  Another key adaptation was the development of the recurrent neural network 

(RNN), with the first implementations seen with the Hopfield Network in 1982 

(Hopfield, 1982) and, its extension, the Boltzmann Machine in 1985 (Ackley et al., 

1985).  Prior to this, neural networks were unidirectional with a fixed depth, wherein a 

signal would only propagate in a single direction from one layer to the next.  RNNs gen-

eralize this prototypical neural network structure by allowing nodes to self-connect, using 

an internal memory state to adjust these connection weights and simulate sequential or 

temporal behavior.  RNNs are especially powerful as they can be either finite, with a lim-

ited number of recurrent edges which can be unrolled into a feed-forward network, or in-

finite with no limit on the number of internal connections.  Both developments are espe-

cially key in the domain of longitudinal machine learning as they clearly demonstrate nat-

ural extensions to time-series data, either with the sliding convolutions mimicking time-

step transitions or the recurrent neural network’s internal updates as time steps.  While 
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several other adaptations have pushed deep learning methods as a whole, such as the res-

olution of the vanishing gradient problem (Hochreiter, 1998) and the application of 

graphical processors to speed up training through parallelization (Raina et al., 2009), 

these two extensions in particular were critical for longitudinal applications of ANNs. 

 

Long Short-Term Memory Recurrent Neural Networks 

After their initial presentation, a key issue was identified with especially deep NNs 

like the recurrent neural networks: the gradient problem.  Standard RNNs are still gener-

ally trained using backpropagation methods, with the gradient of the loss function used to 

update weights after each pass through the system.  However, with their relatively exten-

sive depth, even for finite impulse RNNs, the gradients, which must still be calculated to 

finite precision, either vanish as they tend towards zero or explode as they tend to infin-

ity.  This is a problem for any ANNs of sufficient depth and was first identified by Sepp 

Hochreiter in 1991 (Hochreiter, 1991).  Several solutions have been proposed to address 

the gradient problem such as the rectified linear unit (ReLU) as an activation function 

(Glorot et al., 2011) but an adaptation specific for RNNs was the development of long 

short-term memory (LSTM) RNNs.  First presented in 1997 (Hochreiter & Schmidhuber, 

1997), LSTM RNNs address the gradient issue by allowing errors to propagate through 

the self-connecting edges unchanged.  It does so through the use of “memory gates” 

which can direct how a recurrent unit can either update a weight based on the gradient, 

leave it unchanged, or outright exclude the error in a reset function.  Even after their ini-

tial presentation several decades ago, the standard LSTM remains one of the best starting 

points for handling error propagation in networks using recurrent units and are still used 



 

 
34 

today to help initialize more complex implementations of RNNs (Le et al., 2015).  With 

many of the early issues with proper training resolved and their natural application to se-

quential datasets, it is straightforward to see how LSTM RNNs can easily generalize be-

yond their natural language processing origins and are especially well-suited for applica-

tions to longitudinal datasets. 

 

One-Dimensional Convolutional Neural Networks 

As mentioned, one of the earliest efforts to help regularize fully connected neural net-

works was with convolutional neural networks.  Mathematically, convolutions are simply 

filters applied to a set of inputs which are then used to create a feature map of local areas 

which can overlap to represent the entire dataset in a more abstract fashion while mini-

mizing information loss.  The key principle of CNNs is that by applying these filters in a 

sequential fashion, the CNN can identify spatial and temporal dependencies within the 

input by putting greater associative strength on more proximal convolutions.  This re-

duces the dimensional space of the original input, creating more and more abstract and 

computationally tractable feature maps, without losing the internal dependencies of the 

data (Goodfellow et al., 2016).  After convolution, there is then a pooling layer which 

further reduces the dimensionality of the feature map making calculations even more fea-

sible.  This process is then repeated to develop an abstract representation of the input 

which can later be used either for reconstruction of the training data (e.g. for denoising of 

images) or generalization to feature extraction and identification in new data. 

The original application of the CNN was the previously described Neocognitron, 

which was developed for image processing.  In fact, processing and feature extraction of 
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images are still the most widely used applications of CNNs, with each convolutional filter 

window stepping through the two-dimensional image to create the feature maps.  How-

ever, researchers have also generalized the CNN to be applied in datasets outside of im-

ages, developing networks that still leverage the internal structure that is critical to cap-

ture, as desired in sequential and time-series data (Kiranyaz et al., 2021).  The general 

idea remains the same, with shifting of a convolutional filter to extract proximal depend-

encies followed by pooling to reduce dimensionality and improve calculations, but the 

specific architecture and mathematical operations used in training emphasize associations 

in a single dimension.  This has enabled extensions of CNNs beyond its image processing 

origins and let them be used in a variety of settings like human activity signal processing 

in wearable devices (Lee et al., 2017) and encouraging the use of one-dimensional CNNs 

(1D CNN) to other directionally structured datasets including longitudinal applications. 

 

Deep Learning Methods and Medical Research 

While there has been substantial progress in the field of self-supervised and deep 

learning, many of the advances have taken place outside the context of medical research 

(Liu et al., 2018; Liu et al., 2020).  As discussed, much of the contextual focus has been 

placed on image processing, recognition, and feature extraction, especially for convolu-

tional neural networks.  Similarly, much of the work using LSTM recurrent neural net-

works has focused on natural language processing and machine translation, leveraging 

the sequential relationships inherent in language (Palangi et al., 2016).  Although there 

have been extensions outside these more typical domains, such as the analysis of high di-

mensional time series data in biometric tracking (Ravi et al., 2016) or the previously cited 
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example in wearable devices, it is only recently that adaptations of self-supervised and 

deep learning methods have been applied to medical research.  Some of these extensions 

are very natural, such as the classification of temporal electrocardiogram signals in cardi-

ology (Singstad & Tronstad, 2020) using CNNs or leveraging LSTM RNNs to identify 

epileptic seizures using electroencephalogram data (Xu et al., 2020).  However, these ap-

plications tend to resemble the original applications, with a high density of small sequen-

tial increments which mirror the proximal pixel relationships of images or the smaller 

steps of continuously recorded time series inherent to human activity data.  As such, the 

ability of these deep learning techniques to generalize to domains like clinical trial data 

with more disparate and disjoint time courses, like those observed in studies of neuro-

degeneration, has been rather limited and it is largely unknown how these self-supervised 

methods will work with AD data.  Regardless, there is a great deal of potential to utilize 

these sequence dependent methods which may garner additional predictive capacity be-

yond what is possible using standard supervised machine learning methods. 

 

Non-Longitudinal Machine Learning in Alzheimer’s Disease 

As has been shown, much of the emphasis on longitudinal aspects of statistical and 

machine learning has had a focus outside of medical and clinical applications, let alone 

within the domain of neurodegeneration and Alzheimer’s disease.  However, that is not to 

say that machine learning paradigms have not been widely applied to AD.  Machine 

learning designs to aid in diagnosing dementia were seen as early as 2008 when SVMs 

were used to distinguish AD from normal aging and fronto-temporal dementia with the 

results compared to diagnoses by human radiologists (Klöppel et al., 2008).  This has not 
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wanted as a simple search in PubMed for “machine learning” and “Alzheimer’s disease” 

returned 330 publications in 2020 alone.  Since those beginnings, an enormous number of 

studies have attempted to leverage statistical learning to either improve diagnosis or to 

create metrics that can be used as aggregates or surrogates.  Some studies have attempted 

to use dimensional reduction and feature selection for idiopathic AD, with some studies 

attempting to find genetic variants beyond the well-known APOE4 allele (De Velasco 

Oriol et al., 2019; Huang et al., 2018) while others focus on identifying novel proteomic 

biomarkers (Bader et al., 2020).  Taking inspiration from the gut-brain axis implicated in 

Parkinson’s disease, studies have even begun applying high dimensionality techniques to 

the gut microbiome in AD (Kaur et al., 2021).  In addition to feature selection, prediction 

and diagnosis using machine learning methods have also been evaluated in AD.  The po-

tential of machine learning when applied to neuroimaging has long been recognized and 

investigation into imaging-based classification has been encouraged for some time 

(Mirzaei et al., 2016; Rathore et al., 2017).  Furthermore, with such a wide variety of 

cross-sectional methods, some studies have taken comprehensive approaches to compare 

different machine learning methods to predict either diagnosis state or age of onset (Naik 

et al., 2020) or review different novel learning methods which have been previously con-

sidered (Marti-Juan et al., 2020).  Some studies have even attempted forecasting to pre-

dict slopes of change of neuropsychological metrics as markers for AD progression 

(Fisher et al., 2019).  However, these studies all generally suffer from the same sets of 

limitations.  The vast majority focus solely on cross-sectional measures using independ-

ent data units with no consideration of longitudinal structure.  While this is valuable for 

identifying features or biomarkers associated with categorizations of neurodegeneration 
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and AD, they do little to inform prediction within units.  Even among those that do make 

use of longitudinal data, many rely on aggregate measures, often calculating metrics like 

annualized change, which are then used as the outputs using the same types of cross-sec-

tional machine learning methods requiring independent inputs.  Attempts to utilize actual 

longitudinal panels and repeated measures of patient data are exceedingly rare which lim-

its the ability to use generative models to predict disease progression, cognitive decline, 

and functional transition.  Critically, this not only holds for novel observations and pa-

tients with previously unseen characteristics, but also restricts the future prediction and 

forecasting of metrics and AD classifications within patients based on their prior observa-

tion profiles.  Although AD research has seen enormous strides from the advances in ma-

chine and statistical learning, this lack of characterization using true longitudinal models 

which fully leverage the structure and correlation of longitudinal data is a major defi-

ciency in the literature and a deeper, more comprehensive investigation is a feature the 

AD research field has been eager to receive. 

 

Special Considerations for Subject-Specific Effects 

The desire for longitudinal prediction of ADRD outcomes is abundantly clear and, as 

has been discussed, models which are able to utilize these data structures are central in 

furthering research in the field.  Even with the more standard inferential methods, there is 

an appreciation that care is needed when modeling these data, as rudimentary statistical 

designs are unable to adequately account for within-panel relationships.  For example, 

basic ordinary least-squares regression assumes all observations are independent and ig-

nores the interrelatedness of repeated measures, leading to potential errors in inference 
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and incorrect conclusions (Bernal-Rusiel et al., 2013; Burton et al., 1998; Fitzmaurice et 

al., 2011).  Internal similarity is expected with repeated measures, referred to as serial 

correlation, and modelling of these subject-specific effects is critical for proper analysis 

of longitudinal data (Higgins et al., 2001).  Fortunately, several designs allow for panel 

data and are leveraged in ADRD research.  Prevalent is mixed-effects modelling using 

the population-level fixed effects seen in common regression techniques alongside sub-

ject-specific random effects components allowing both starting points (intercepts) and 

trajectories (slopes) to vary on an individual-by-individual basis (Donohue & Aisen, 

2012; Doody et al., 2001).  Mixed effect models are invaluable in ADRD research, aiding 

inferential conclusions in both interventional trials and observational studies (Ard et al., 

2015; Gavidia-Bovadilla et al., 2017). 

With refinement of statistical techniques, method evaluations have used a combina-

tion of long-running natural history datasets and clinical trials from the literature 

(Capuano et al., 2018; Ito et al., 2013; Rogers et al., 2012) alongside data simulation 

studies to assess model generalizability across more varied scenarios (Chen et al., 2018; 

Di et al., 2016; Wang et al., 2018).  Many have shown potential with prediction or gener-

ation of trajectories of decline in ADRD (Kim et al., 2021; O'Shea et al., 2021) but some 

aspects remain under-investigated, such as the role of participant-level effects and their 

impact on estimation of cognitive outcome measures (Li et al., 2020).  A critical point is 

exact subject-specific effects are unique to an individual within a given model and must 

otherwise be imputed based on model covariances, a practice which may not be appropri-

ate (Giil et al., 2021; Guo et al., 2021).  Furthermore, models are developed with focused 

and specific goals but when leveraged outside their original purpose may have unforeseen 
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consequences.  For example, pre-specified parameterizations may behave well under cer-

tain assumptions but be severely misrepresentative in scenarios for which they were 

never intended (Breitve et al., 2018; Giil & Aarsland, 2020; Milliken & Edland, 2000; 

Uspenskaya-Cadoz et al., 2019).  Understanding the influence of subject-specific effects 

under certain designs, such as imputation, can assist subsequent model creation and direct 

how to best use calculated predictions of cognitive outcomes.   

Deeper and more refined knowledge of the performance and behavior of these differ-

ent model designs, types of predictions and forecasts, class of outcomes, and various sub-

ject-specific effects can all tie together to help direct researchers to make the most in-

formed decisions possible when developing their own research methods.  It would be en-

tirely expected for each combination of model design to have their own set of strengths 

and weaknesses and the preferred model is dependent on the goals of the investigator.  

Evaluation of the influence of subject-specific effects is a critical step in the process of 

characterizing predictive performance of longitudinal machine learning methods in Alz-

heimer's disease, providing both a current evaluation of the field and a pipeline for future 

machine and statistical learning paradigms. 
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METHODS AND APPROACH 

 

Outcomes 

Two outcome measures were used for evaluation of the machine learning methods in 

this dissertation to provide a more comprehensive assessment of their predictive capacity, 

one continuous and one binary categorical.  The continuous measure for regression analy-

sis was the Alzheimer’s Disease Assessment Scale – Cognitive Subscale (ADAS-Cog) 

while the categorical outcome was a binary recasting of the Clinical Dementia Rating 

(CDR).  Two responses were utilized to not only evaluate the ML methods on multiple 

classes of variables but also provide two different outcome contexts in ADRD research. 

The ADAS-Cog, the continuous outcome for regression analysis, is an assessment 

battery designed to evaluate multiple domains of cognitive functioning including 

memory, reasoning, orientation, praxis, language, and word finding difficulty.  It is 

scored on a continuous scale ranging from 0 to 70 total errors with higher scores indica-

tive of greater levels of impairment.  It is commonly used as an outcome in AD clinical 

trial settings as a more refined assessment of both global and domain specific cognition.  

Like other neuropsychological assessments such as the Montreal Cognitive Assessment 

(MoCA) and Mini-Mental State Exam (MMSE), the ADAS-Cog has higher resolution at 

greater levels of impairment and demonstrates better ability to distinguish severity among 

impaired individuals.  However, its sensitivity is compromised when attempting to assess 
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the cognitively intact, losing this resolution at lower scores.  In addition, the ADAS-Cog 

is largely a tool for research purposes and due to its length and involved administration is 

generally not used in clinical settings.  However, research has indicated a 3 to 4 point in-

crease in ADAS-Cog over a six-month period can viewed as clinically meaningful 

change, at least in early AD. 

The CDR is a five-point scale which characterizes six domains of both cognitive and 

functional performance including memory, orientation, judgment, community affairs, 

home & hobbies, and personal care.  Because it assesses both cognitive and functional 

ability, it can be used as a diagnostic tool in clinical settings or as a metric in ADRD 

studies.  Specifically, it distinguishes between a cognitively intact individual (CDR score 

of 0), an individual with mild or questionable impairment (CDR score of 0.5), or some-

one who has advanced beyond cognitive difficulties to varying degrees of the functional 

impairment observed in dementia (mild, moderate, and severe dementia with a CDR 

score of 1, 2, or 3 respectively).  In particular, the CDR is able to draw diagnostic conclu-

sions on mild cognitive impairment in the absence of functional deficiencies since pertur-

bations observed only in the memory domain results in scores of 0.5 indicating mild im-

pairment.  For the purposes of this study, in order to provide a counterpoint to the later 

stage resolution of the ADAS-Cog, CDR scores were binned at a breakpoint of 0.5 to cre-

ate a binary outcome (non-impaired vs impaired) and specifically emphasize earlier 

stages of cognitive decline. 

The use of these two outcomes imparts several key benefits.  First, it allows for an as-

sessment of the machine learning models when they are utilized for both regression and 

classification purposes, both of which are common within ADRD research as well as for 
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statistical modelling in general.  They also provide multiple contexts for Alzheimer’s dis-

ease as the ADAS-Cog subscale and classification by CDR have their own utility in de-

mentia research.  The ADAS-Cog is primarily a research tool while the CDR is designed 

for diagnostic ability and is much more likely in clinical settings.  As previously dis-

cussed, there are also temporal contexts for how each response was used in this study 

wherein the ADAS-Cog provides high resolution on distinguishing levels of impairment 

among those who are exhibiting some level of dementia already while the CDR is much 

more capable at identifying more mild levels of impairment, including distinctions be-

tween the cognitively intact and those with only mild impairment.  This leads to an espe-

cially important characteristic of these two outcomes: clinical vs research utility.  The 

ADAS-Cog as a metric is much better suited for researchers in ADRD but the scale itself 

may have relatively little importance in a clinical setting as the notion of a “one point 

change” in ADAS-Cog or score shifts below the cited 3-4 point change may not espe-

cially meaningful to a patient.  Conversely, diagnostic categorization using the CDR may 

be viable as a study inclusion tool but may be too coarse of an outcome when conducting 

an interventional clinical trial focusing on more subtle changes.  However, being able to 

identify a patient as impaired versus non-impaired may have much more clinical utility 

for both patient and provider, especially if this classification can be predicted at future 

timepoints for an unimpaired individual. 

 

Reference Models 

In addition to cross-model evaluation of the ML implementations, all models were in-

itially contrasted against more standard inferential methods as control models using pre-
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specified parameterizations.  This was to establish baseline comparisons with the specific 

hypothesis that the ML models would present with superior predictive capacity by virtue 

of having improved outcome metrics relative to the reference designs.  For both the 

ADAS-Cog and CDR impairment outcomes, parameterizations were established outside 

the evaluation dataset used for the ML training and testing. 

The reference model for the ADAS-Cog was taken from the parameterization of the 

Critical Paths for Alzheimer’s Disease (CPath) consortium first presented by Rogers et al. 

in 2012  (Rogers et al., 2012).  The CPath model was developed from a variety of litera-

ture reported values and cohort studies to describe progression of the ADAS-Cog in both 

natural history and randomized clinical trial settings with the goal of creating a frame-

work to generate representative simulation cohorts which could be used for feasibility 

purposes when designing future interventional or observational studies.  The model uses 

the parameterizations from a beta regression mixed-effects design to accommodate the 

bounded ADAS-Cog score by transforming the natural 0-70 score range to a 0-1 normal-

ized scale.  Initial ADAS-Cog scores are created using baseline MMSE score with longi-

tudinal trajectories according to baseline age, sex, APOE4 allele count, and baseline 

MMSE.  Additionally, subject-specific effects can be randomly sampled using the pro-

vided model covariance matrices for both intercept and slope.  Model parameters were 

developed using both summary-level and patient-level data using a Bayesian implementa-

tion to adjust meta-data from the literature with individual-level effects.  Although the 

original model was tuned out to two years of linear time, it has demonstrated effective-

ness when used for wider times frames.  Further details about the CPath model can be 

found in Rogers et al. (Rogers et al., 2012) as well as an implementation in R using the 
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adsim package (Polhamus, 2013), including coefficient values for population-level co-

variate effects along with covariance measures used to generate subject-specific effects. 

Unlike the CPath model for ADAS-Cog, a pre-specified parameterization for the cate-

gorical casting of CDR was not available from the literature.  Instead, a similar mixed-

effects regression model was developed using a holdout subset of the multi-study meta-

database used in this dissertation.  After harmonization of the dataset, as described below, 

15% of the CDR measures were extracted with subjects representatively sampled such 

that their final timepoint of evaluation was reflective of the terminal times for the entire 

dataset.  These CDR values were utilized solely in the development of the reference pa-

rameterization and were never used during the training, tuning, or testing of the ML mod-

els.  Much like the CPath reference model, the CDR impairment reference used a mixed-

effects model, although specifically using a logistic regression design to accommodate 

the binary outcome.  The fixed effect covariates used in model building were the same as 

those used by the CPath model, specifically baseline age, sex, APOE4 allele count, and 

baseline MMSE with a linear time component.  Unlike the CPath model there was no 

time-MMSE interaction term as this was found to impede model convergence due to 

overfitting of the model.  An unstructured random effects design was used with subject-

specific effects for intercept, slope, and a covariance term between the components.  

CDR impairment modelling was done using the lme4 package in R (Bates et al., 2015). 

For both reference model designs, only the population-level coefficient parameters 

were used to calculate predicted responses.  Although values for the model covariances 

were available for each reference, these were not used when predicting outcomes, except 

for the imputation design for the ADAS-Cog in aim 3 as described below.  In addition, 
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fitted subject-specific effects were never used during forecasting as these were not availa-

ble given the pre-specified nature of the parameterizations. 

 

The Alzheimer’s Disease Meta-Database 

Data for this dissertation was drawn from a meta-database consisting of 18 clinical 

trials from the Alzheimer’s Disease Cooperative Study (ADCS) and the four phases of 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) observational study.  The meta-

database was first presented in 2014 by Kennedy et al. (Kennedy et al., 2014) and has 

participants representing the full spectrum of Alzheimer’s dementia, from cognitively in-

tact to diagnosed clinical AD.  In its base form, the meta-database consists of 8936 partic-

ipants with nearly 46,987 observational timepoints extending out to 12 years and includes 

study subjects with longitudinal data as well as single timepoint participants who were 

screened for inclusion but were not involved with the final studies. 

Harmonization of the dataset was required in advance and was designed to map dis-

parately coded visits to a continuous temporal variable based on study date, including 

2392 participants with only baseline data or screening-only subjects.  Key aspects of the 

data preparation include the requirement of the principle ADAS-Cog and CDR outcomes 

which were not available in all studies.  Furthermore, all subjects were required to have 

the population-level demographics used in the reference models, most notably genotyp-

ing for APOE4 allele counts.  Although additional timepoints were available, the fol-

low-up time was capped at six years as the ADCS clinical trials were never conducted be-

yond three years and the longer-term ADNI participants were found to be inherently un-

impaired and were anticipated to impact generalization of model prediction at more distal 
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timepoints.  Full details of the data preparation and harmonization process can be found 

in the flow diagram in Figure 1. 

The final covariate feature sets used in the ML models of aims 1 and 2 included base-

line covariates of baseline age, sex (male, female), race (3 level factor: White, Black/Af-

rican American, Other), ethnicity (2 level factor: Non-Hispanic or unknown, Hispanic), 

education (6 level factor: did not graduate high school (HS), high school diploma or gen-

eral equivalency degree (GED), some college, college degree, some post-graduate educa-

tion, post-graduate degree), any use of anti-dementia medication (donepezil, rivastig-

mine, galantamine, tacrine, or memantine), and APOE4 allele count.  Time dependent co-

variates included MMSE score, weight, and systolic and diastolic blood pressure with 

missing covariates imputed using last observation carried forward as needed. 

 

Types of Prediction and Establishment of Training and Testing Sets 

For all aims, two types of predictions were considered: development of whole-subject 

temporal profile trajectories and forecasts of final observations given prior data.  The 

whole-subject profiles, colloquially referred to as trajectories, predicted outcomes at all 

observed timepoints for a given subject, from baseline to their final visits.  Forecast pre-

dictions of final observations, also referred to simply as forecasts or forecasting, only 

considered the final observation for an individual and expressly made use of prior se-

quences of outcome responses where applicable, such as direct use of fitted subject-spe-

cific random effects for individuals used in model generation. 

To accommodate both cases of predictions, two types of holdout datasets were cre-

ated for testing of the models.  After harmonization of the meta-database, including the 



 

 
48 

previously described 15% extraction of CDR measures to create the classification refer-

ence parameterization, the meta-database had 10% of the remaining 3501 subjects ran-

domly selected as the holdout testing set for trajectory evaluation, with all timepoints ex-

tracted.  Of the remaining 3118 subjects, 10% of those were then randomly selected for 

forecast observation evaluation, with only their final timepoint extracted.  For forecasting 

assessments, the preceding data for these subjects was used directly, whether as fitted 

subject-specific random effects for ML models which used mixed-effects regression com-

ponents, or directly leveraging the previously observed sequences for the deep learning 

methods.  The same testing set was used for all model evaluations with the remaining 

data used solely for training purposes in aims 1 and 2.  Full details of the establishment of 

the holdout testing sets can be found in the flow diagram of Figure 2.  Details of the base-

line covariates described in the previous section for the final training and testing sets can 

be found in Tables 1 and 2 for continuous and categorical variables respectively. 

 

Cross-Validation for Hyperparameter Tuning 

The various ML models used in this study also contained several hyperparameters, 

configurations external to the model in question whose values cannot be estimated from 

the data and are instead heuristically determined.  Hyperparameters serve several critical 

roles.  One is improvement in model performance leading to more accurate predictions.  

Another is improvements in model efficiency to make computationally challenging mod-

els, due to lengthy processing times or extensively large memory footprints, more tracta-

ble.  Hyperparameter tuning is a critical step in machine learning and was a necessary 

component of proper model evaluation for this study’s aims.  Hyperparameter tuning and 
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optimization followed a standard grid search protocol with hyperparameters for each ML 

model specified in advance and each combination of parameters evaluated in turn.  Eval-

uation of each hyperparameter set used 10-fold cross validation, with the exception of the 

boosted trees ensemble method which used 5-fold cross-validation for computational 

tractability.  After establishment of the training dataset described above, subjects were 

split into 10 equally sized groups or cross-folds.  Each of the 10 folds was then sequen-

tially held out during model generation and used as an internal validation set to calculate 

predictions for data not used in the model generation, yielding 10 distinct models with 10 

sets of testing predictions and evaluation metrics which were then averaged for a final 

performance assessment.  This was repeated for each of the hyperparameter sets with the 

final model building set either selected by consensus of metrics with the best values or 

manually selected when consensus was unclear.  In those later cases, selection generally 

prioritized minimal root mean square error or mean absolute error for ADAS-Cog regres-

sion or maximal area under the receiver operator characteristic curve (ROC AUC) or re-

call sensitivity for CDR impairment classification.  The 10 models from that hyperparam-

eter set were then used for evaluation of the holdout testing datasets with the predicted 

ADAS-Cog values or impairment classifications scores averaged across the models as per 

the recommended procedure by Hastie et al. (Hastie et al., 2009).  The same collection of 

cross-folds was used for all models, with the exception of the boosted models which 

combined adjacent groups (i.e. first fold with second, third with fourth, etc.) for its 5-fold 

design.  Different hyperparameters sets were considered for regression and classification 

models independently; however, hyperparameter selection was only conducted on trajec-

tories, with the same tunings used for both whole-subject profiles and final observation 



 

 
50 

forecasting.  Finally, the hyperparameter set identified for the ADAS-Cog for the mixed-

effects random forest in aim 1 was the same set used during evaluation of subject-specific 

effects assessments of aim 3.  Individual hyperparameters for each ML method are de-

scribed in their corresponding section below. 

 

Evaluation of Model Predictions 

To quantify the performance of the evaluated ML models and the inferential reference 

standards, the model predictions for the ADAS-Cog and CDR impairment classification 

were compared against the known values from either the cross-fold holdout during hy-

perparameter tuning or the relevant holdout testing set during final model evaluation. 

The regression metrics included root mean square error (RMSE), the square root of 

the mean squared difference between the predicted and true values, and the mean abso-

lute error (MAE or mean AE), the mean of the absolute distance between the predicted 

and true responses.  These metrics comprise both the variance and the bias inherent in a 

predicted outcome with both being utilized wherein the RMSE is more common, but the 

MAE is less prone to influence by outlier values due to extreme values of either predic-

tions or true outcomes.  The symmetric mean absolute percentage error (SMAE%), the 

absolute difference between predicted and true values divided by half the sum of those 

values, was also calculated but was only used during the hyperparameter consensus pro-

cess as a potential tie-breaker metric.  The bias was also calculated in two fashions: the 

raw bias, taken as the difference between the predicted and true values which can be neg-

ative, and the absolute value of the bias (AVB or AV bias) which forces the bias to be 

positive.  These metrics assesses deviation from the expected value of an estimator and 
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comprises the non-systemic component of model prediction error with the bias helping 

determine over or underestimation while the AVB is a more robust statistic for evalua-

tion.  Importantly, both errors and biases are scale dependent with smaller RMSE, MAE 

and AVB all indicative of superior model performance while raw biases closer to zero are 

preferred regardless of sign. 

The classification metrics were largely based on the layout of each model’s confusion 

matrix which tabulates the number of true and false positives and true and false negatives 

with nearly all metrics comprising some combination of these counts.  The first metric 

was accuracy, which is the proportion of correct predictions (the sum of true positives 

and true negatives) out of all predictions.  It is known that accuracy can be an inappropri-

ate evaluation metric in isolation and can be highly misrepresentative in imbalanced da-

tasets.  However, since all reference and ML model evaluations involved relative compar-

ison of performance metrics, this was considered only a mild concern.  The other confu-

sion matrix metrics included precision, also known as the positive predictive value, which 

is the proportion of true positives out of all predicted positives (i.e. true positives divided 

by the sum of true positives and false positives) as well as recall, better known as sensi-

tivity, which is calculated as the proportion of correctly identified positives out of all pre-

dicted positives (i.e. true positives divided by the sum of true positives and false nega-

tives).  These two metrics are less prone to imbalance than accuracy and answer two dis-

tinct questions about a classifier’s performance.  Precision considers how many of the se-

lected responses are relevant and is a critique of a model’s tendency towards false posi-

tive selection while recall asks how many relevant responses are selected and provides an 

assessment of a model’s tendency to misclassify false negatives.  All three metrics are 
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calculated as normalized proportions with higher values indicative of improved predic-

tion performance. 

Importantly, all three metrics are dependent on selecting a cut point to categorize the 

outcome response score of a classifier model to a binary class label.  Optimal cut points 

were calculated in a data-driven fashion on an individual model basis.  Specifically, den-

sities of the impairment score classifiers were calculated, and the two largest peaks iden-

tified (i.e. the two values around which the response scores tended to cluster).  The mid-

point between these peaks was then used as the optimal cut point with scores below the 

cut point cast as non-impaired 0’s while scores above the cut point were cast as impaired 

1’s.  In some cases, the combination of classifier imbalance and large feature space made 

peak isolation, especially for non-impaired subjects, challenging.  In those cases, 

Youden’s J statistic was instead used as the optimal cut point.  Youden’s index considers 

the sum of the sensitivity and specificity at all possible cut points for the scores of a clas-

sifier with the optimal value being the score which maximizes this sum.  Regardless, be-

cause of this dependency on a specified cut point for accuracy, precision and recall, re-

ceiver operator characteristics (ROC) were calculated for the classifiers using the stand-

ard metrics of sensitivity and 1 minus the specificity.  Normalized areas under the curve 

(AUC) were calculated using the polygon rule and provided as an additional performance 

metric of global classification performance with the benefit of being cut point agnostic to 

a cut point. 

A final metric was the net reclassification improvement or index (NRI) which quanti-

fies how well a new model reclassifies an outcome, in terms of changing an incorrect re-

sponse to a correct one and vice versa.  The tabulation process of the NRI can be either 
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positive or negative, with a negative value indicating worse overall reclassification per-

formance of the new model, with higher values representing classification improvement.  

This metric was specifically used when comparing the various ML classification models 

against the logistic regression reference model and was not used during hyperparameter 

evaluation.  There has been some concern in the literature about the use of NRI as a met-

ric as even uninformative covariates may lead to positive NRI values much in the same 

way additional parameters improves coefficients of determination in a regression model 

(Pepe et al., 2015).  However, preliminary investigation found that when considering the 

improvement of a classifier with inclusion of additional covariates to a model, there was 

no issue with using the NRI, so long as the assessed models were fit on a different dataset 

than the data being reclassified.  However, when comparing models using the same da-

taset they were built on, such as for diagnostic purposes, other metrics such as the stand-

ardized net benefit are preferred as they are more apt to penalize the inclusion of non-as-

sociated variables.  Although this could be a concern during features selection in the 

high-dimensionality feature spaces of machine learning models it was found to not be an 

issue for the current study as independent datasets were used for model training and hold-

out testing thus making the NRI an adequate comparison metric for CDR impairment 

classification in this context.   

 

Ensemble Machine Learning Methods 

Although both regularized regression models and support vector machines with modi-

fied kernels were initially considered as prospective supervised methods for aim 1, ade-

quate and well-defined implementations could not be secured.  Packages and libraries 
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were either underdeveloped and lacking in the necessary features for this dissertation 

work or were no longer supported by the authors as more advanced techniques and meth-

ods became preferred.  Over the course of the study, both designs were eventually aban-

doned, and emphasis was instead given to the ensemble methods which continued to re-

ceive support from both developers and the ML research community. 

The final set of evaluated machine learning models focused on ensemble tree-based 

methods.  This included mixed-effects random forests (MERF) which sample from the 

feature space, bootstrap aggregated (bagged) generalized linear mixed model (GLMM) 

trees which sample from the set of meta-database subjects, alongside a single non-bagged 

GLMM tree for comparison, and sequential boosting of residuals (boosted) mixed-effects 

trees.  These trees all follow the same general design where population-level effects are 

determined by the tree while subject-specific effects are modelled in the terminal leaf 

nodes.  For all trees, the objective functions were optimized using the squared error loss 

for ADAS-Cog regression and cross-entropy loss for CDR impairment classification.  In 

addition, hyperparameter tuning was done on a per-model basis in order to individually 

optimize each model according to its unique tuning profile. 

 

Mixed-Effects Random Forests 

Random forest models are ensemble methods which improve upon standard decision 

tree designs by allowing for “feature bagging” to randomly select a subset of model fea-

tures and generate a forest of partial feature set trees which are uncorrelated.  Tree out-

puts are then averaged across the forests to improve overall predictive accuracy and limit 

the need for tuning of tree-specific hyperparameters.  MERF models extend the random 
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forest by including mixed-effects models in terminal nodes to accommodate the serial 

correlation inherent in repeated measures and panel data.  These additional components 

provide subject-specific effects which then update the population-level effects in the ran-

dom forests stochastically.  Hyperparameters include the proportion of the feature sets 

randomly selected to build each partial tree (set at 20%, 40%, or 60% of the feature space 

for ADAS-Cog and 35% or 70% for CDR-based impairment) and the number of trees 

built for each random forest (set at 250, 500, or 750 trees for ADAS-Cog and 500 or 750 

trees for CDR-based impairment). 

The current implementation for this work was based on the design presented by Capi-

taine et al. (Capitaine et al., 2021) in the longituRF package in R (Capitaine et al., 

2021) with modifications to provide greater control over how the subject-specific effects 

were used during prediction.  The original functionality only allowed for predictions us-

ing fitted random effects, requiring subjects to have been used during the model building 

process.  Accordingly, the models could not accommodate prediction on new data.  The 

predict function was rewritten with the additional modifications expanding on this basic 

use of known subject-specific effects, which was used for observational forecasting.  

These adaptations also allow for complete suppression of the subject-specific effects 

component to rely solely on the population-level fixed effects or to impute subject-spe-

cific effects based on parameterizations of the model covariance matrices as desired. 

 

Bagged Generalized Linear Mixed Model Trees 

Generalized linear mixed model trees are a modification of standard classification and 

regression trees which explicitly account for the clustered structure of panel data such as 
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in repeated measure data (Fokkema et al., 2018).  Similar to the tree building described 

for the MERF model, trees are first built based on the fixed effect parameterizations of 

the model before application of a random effects component in the terminal nodes which 

is then used to update the tree using recursive partitioning.  Bootstrap aggregation, or 

bagging, is a generalized procedure for ML models which fits multiple models simultane-

ously after sampling with the collection of outputs averaged across all trees, limiting the 

requirement for tree pruning.  Unlike the covariate subsets of MERF models, bagging 

procedures use the full feature space but instead randomly sample with replacement from 

the data points themselves, in this case, the meta-database subjects.  Panels which are not 

selected (the out-of-bag set) are then used for model validation and tuning.  Similar to the 

MERF design, the tree-specific tuning is less required and the considered hyperparame-

ters included the proportion of samples used for each tree (set at 40% or 75%) and the 

number of generated trees (set at 100 or 200 trees). 

The basic GLMM implementation for this study used the glmertree package in R 

(Fokkema et al., 2018) and was used for creation of the set of trees built during bagging 

as well as the single GLMM tree used as a reference.  The process for conducting the 

bootstrap aggregation, including the random sampling of the dataset, averaging across the 

bagged GLMM trees, and validation of the results using the out-of-bag samples, was de-

veloped independently, and applied as a wrapper to the primary GLMM function. 

 

Boosting on Mixed-Effects Trees 

Unlike the sampling processes used by the MERF and bagged ensemble methods, 

boosting uses the entire feature space and sample set when building its trees.  Instead, the 
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output of a tree is used to modify the dataset and this new dataset is used to iteratively 

build the next set of trees.  Boosted decision trees are the specific extension of Jerome 

Friedman’s original gradient boosting machine (Friedman, 2001), whose most common 

implementation is the widely used AdaBoost algorithm, into a classification and regres-

sion tree architecture.  Boosted mixed-effects trees further extend this architecture to al-

low for panel data by including mixed-effects regression models in terminal nodes prior 

to the boosting stage.  Unlike the sampling based MERF and bagged GLMM models, 

outcomes are more dependent on tree structure and pruning via hyperparameter tuning is 

required.  Additionally, as trees are fit iteratively to convergence, performance hyperpa-

rameter optimization and parallelization becomes critical as model building can be espe-

cially time consuming with exceptionally large memory demands.  The hyperparameters 

include the number of trees, the minimum number of samples in the terminal nodes, the 

layer depth of the trees, and the shrinkage rate applied to the residuals during boosting. 

Implementation of the boosted trees used a combination of the gbm and mvtboost 

packages in R (Hickey et al., 2016; Miller & McArtor, 2017).  The boosted trees were 

found to be especially computationally intensive which limited their implementation and 

tuning in this dissertation.  As previously described, hyperparameter tuning could only 

allow for 5-fold cross-validation.  Tuning was also limited to considering the number of 

trees used in boosting and was set at either 100 or 200 trees.  The other parameters, termi-

nal node samples (20), tree depth (15), and shrinkage rate (0.01), were instead based on 

performance tuning conducted during pilot testing on a smaller subset of the data with a 

reduced feature space.  These hyperparameters were found to perform adequately for 

both ADAS-Cog regression and CDR impairment classification and were used for all 
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boosted models.  Additionally, while cross-validation was able to be conducted in a regi-

mented fashion for most of the ML methods in this study, the boosted tree models were 

instead run independently in parallel in order to accommodate these specific memory and 

time demands with additional wrapper scripts developed to assist in this process. 

 

Deep Learning Neural Networks 

The selection of artificial neural networks used in aim 2 included recurrent neural net-

works using a long short-term memory component for sequential data (referred to here as 

LSTM RNN or simply LSTM or RNN), a one-dimensional convolutional neural network 

for sequences (1D CNN or CNN), and a standard non-sequential feed-forward neural net-

work (FNN) as a comparison control.  All ANN models used standard build methods 

with connection weights between nodes calculated using stochastic gradient descent dur-

ing back propagation.  A rectified linear unit (ReLU) was used as the activation function 

between connecting layers while a sigmoid function was used to calculate the final output 

score which was then transformed to either an ADAS-Cog regression value or cast to an 

impairment classification.  Like the ensemble methods of the first aim, the optimized ob-

jective function was mean square error loss for ADAS-Cog regression and cross-entropy 

loss for CDR impairment classification and 10-fold cross-fold validation was used for hy-

perparameter tuning.  Of note, R does not have native neural network functionality and 

instead coordinates with other programming languages which build the models.  This dis-

sertation used an interface with Python 3.3 using the reticulate package (Ushey et 

al., 2021) while network building was done using TensorFlow via the tensorflow 
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package (Allaire & Yuan, 2021) with Keras as the facilitating interface using the keras 

package (Allaire & Chollet, 2021).   

 

Non-Sequential Feed-Forward Neural Networks 

To compare against the sequential ANN methods, a standard multi-layer perceptron 

was created as a control design.  Time was still included as a feature but was simply con-

sidered as another covariate with each timepoint observation considered an independent 

event.  All network layers were densely connected with the number of nodes per layer de-

creasing by 50% at each subsequent layer.  Hyperparameters included the total number of 

densely connected layers (set as 2 or 3) and the number of starting nodes in the first layer 

(set as either 8 or 4).  Other hyperparameters were available for consideration including 

constraints on allowed values for the kernel connections and starting bias values.  Initial 

testing indicated benefit of constraining the kernels but not the bias with the preferred 

constraint being a maximized normalization constraint with a maximum value of 2.  

These constraint settings were used for all node and layer combinations used during tun-

ing.  In addition to the full temporal FNN built for model evaluation, a baseline FNN was 

created using only values at baseline for both types of outcomes.  This baseline FNN was 

used for prediction of trajectories in the sequential NN models as described below. 

 

Long Short-Term Memory Recurrent Neural Networks 

Recurrent neural networks are extensions of basic feed-forward networks with the in-

clusion of a cyclic internal state to retain information about variable sequences of inputs.  

Long short-term memory adaptations extend this further by incorporating a gating feature 
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which allows the network to retain both distal and proximal information about prior se-

quences independently using “forget gates” which control the amount of sequential infor-

mation that is retained both short-term and long-term.  In addition to allowing both types 

of prior sequencing to be used during prediction, it resolves the vanishing gradient prob-

lem inherent in RNNs when applied to longer sequences.  Although LSTM RNNs have 

their roots in natural language processing (Jozefowicz et al., 2016) their unidirectional 

behavior have natural extensions to temporal data as used in this study.  In addition to the 

densely connected layers of the FNN, all LSTM RNN models begin with a LSTM class 

layer which initializes the use of the RNN along with the necessary short and long-term 

gating.  Only a single LSTM layer is defined although multiple densely connected layers 

can be added afterward.  Hyperparameters for the densely connected layers were the 

same as those used in the FNN models although pilot testing indicated use of more than 

one dense layer would lead to overfitting to the training data.  Additionally, similar con-

straint definitions on the kernels and starting bias were found and again set as a maxim-

ized normal constraint with a maximum value of 2 for the kernel with unconstrained bias.  

Tuning selection instead focused on the number of nodes to retain in the LSTM layer and 

considered either 32 or 16 nodes. 

 

One-Dimensional Convolutional Neural Networks 

Rather than retaining varying amount of prior sequence data like the LSTM models, 

convolutional neural networks use a sliding window (convolution or kernel) to extract 

successively smaller sets of contiguous sequences which are then pooled and flattened 

before being processed as a one-dimensional vector through a standard densely connected 
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network.  Although primarily used for image processing and recognition for feature ex-

traction using a two-dimensional window, one-dimensional convolutions can be used to 

shift unidirectionally along a single axis such as for applications using temporal data.  

Like the layer ordering of LSTM RNN models, 1D CNN architecture begins with a series 

of alternating convolution and pooling layers before a flattening layer feeds into a series 

of FNN dense layers.  In addition to the standard layer, node, and constraint hyperparam-

eters, CNNs require tuning for the size of the convolution window, the size of the shift 

the kernel takes, and the amount of sequence reduction during pooling.  Given the small 

size of the individual temporal sequences in the current dataset, the convolution window 

was set at a size of two with only single steps to consider all possible adjoining sequence 

components.  Use of a minimally defined convolution window in turn limited the net-

works to only a single set of convolution and pooling layers.  Instead, like the LSTM, hy-

perparameter tuning focused on the number of nodes to pass to the final densely con-

nected layer and again considered either 32 or 16 nodes.  Constraint hyperparameters on 

the kernels and starting bias followed the same piloted conventions as previously de-

scribed with the same parameterizations. 

 

Prediction of Trajectories in Sequential Neural Networks 

Since all neural networks were modelled using Python and TensorFlow, specific con-

ventions were required with respect to data formats.  Specifically, multi-dimensional ar-

rays (tensors) had to be constructed as inputs to be used by TensorFlow with each row 

corresponding to a single observation for a participant with columns corresponding to 

timepoints and array slices representing individual features (outcome of interest, age, 
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etc.).  Sequential representation was done by backfilling each row with prior data with the 

right-most column as the value for the current observation.  Since complete matrices were 

required for backpropagation, both CNN and RNN models began with a masking layer 

which defined missing values to be ignored by the networks which could then be used to 

apply the sequence padding in the missing cells. 

Of note, predictions of neural networks in TensorFlow are iterative in nature with 

each row being calculated individually instead of in bulk using standard linear algebra 

techniques.  While this is not a concern for the FNN models which only have two-dimen-

sional arrays, or when predicting observational forecasts where prior sequences where al-

ready known and populated, it presented a problem when developing whole subject tra-

jectories.  Specifically, the outcome slices for the input arrays would consist solely of 

masked values and could not be used as viable inputs for the starting masking layers of 

the 1D CNN and LSTM models.  To address this, starting values for the outcomes were 

seeded using the previously described baseline FNN model and used to populate the first 

column of the outcome slice of the response array.  This starting sequence was then ap-

plied to the sequential neural networks with predictions for the next time point calculated 

and then used to update the response slice.  This process was then repeated until all sub-

sequent observations had been predicted. 

 

Comparison of Model Prediction Performance 

The previously described evaluation metrics for each ML model were first compared 

against their respective reference model before being compared pairwise against each 

other.  This gave each model pairing four different types of comparisons which were 
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based on a combination of both class of outcome (ADAS-Cog or CDR impairment) and 

type of prediction (whole subject trajectory or observation forecasting).  The raw differ-

ence in evaluation metric was calculated along with percent difference relative to the 

poorer performing model.  Statistical significance of model improvement was done by 

using 1000-fold bootstrapping to calculate 95% confidence intervals (CI) of the metric 

differences as well as one-sided proportional p-values to identify statistically significant 

model differences in prediction performance as either greater or less than zero. 

 

Approach for Evaluation of Subject-Specific Effects 

For aim 3, the role of subject-specific effects was investigated to determine how im-

putation or suppression of subject-specific effects impacted variance and bias when pre-

dicting both whole trajectories and observational forecasting.  General modifications to 

the previously described methods included an emphasis on the ADAS-Cog methods to 

expressly investigate subject-specific effects in the CPath model.  Furthermore, perfor-

mance metric evaluations were limited to RMSE and AVB although the bootstrapping 

process for statistical assessments remained the same.  In addition to the pre-specified 

CPath parameterization, an analogous mixed-effects beta regression (BR) model was 

built de novo from the dataset to calculate updated values for the population-level fixed 

effects and subject-specific random effect components as well as the MERF model de-

scribed in aim 1.  The meta-database was again used as the primary data source although 

data points were considered in 6 month increments out to only 24 months of evaluation to 

align with the original development of the CPath model.  In addition, only the covariates 

used by the CPath model as previously described were used when building the de novo 
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BR (DN BR) and MERF models to allow for more equitable model comparison empha-

sizing the subject-specific effects without influence of feature set width. 

 

Development of Synthetic Datasets for Validation 

To complement the model evaluation for the meta-database and test generalizability 

of the influence of subject-specific effects, validation datasets were generated using simu-

lation of 500 separate synthetic cohorts each with 400 participants in 6 month increments 

out to 60-months of evaluation.  Cohorts first sampled the population-level covariates 

used by the CPath parameterization before generating panels of simulated ADAS-Cog 

subscale scores expected from subjects with equivalent demographic characteristics.  As 

defined by the CPath model, simulated population-level covariates were baseline age, 

sex, APOE4 allele counts, and baseline MMSE and were generated to create cohorts sim-

ilar in disposition to the meta-database as a representative population expected for studies 

in cognitive decline.  Ages were randomly sampled from the observed meta-database co-

hort with additional demographics synthetically generated using classification and regres-

sion trees to create similar marginal combinations of covariates with assistance from the 

synthpop package in R (Nowok et al., 2016).  Final evaluation timepoints for each syn-

thetic subject were randomly permuted to simulate a 15% dropout rate followed by a 

row-wise deletion of 15% of all remaining timepoints to simulate reasonably anticipated 

missingness in a real-world study. 

To create the longitudinally correlated ADAS-Cog panel data, Gower’s distance was 

first calculated among the actual subjects in the meta-database according to the popula-
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tion-level covariates described above.  This distance was used to cluster the meta-data-

base subjects using weighted median spheroid distance to create 20 distinct similarity 

clusters.  Simulated participants were assigned to the nearest meta-database cluster ac-

cording to their generated demographics and randomly linked to the ADAS-Cog 

measures of an actual meta-database subject within the same similarity cluster.  A mixed-

effects beta regression model for each cluster was created using these linked ADAS-Cog 

measures with cubic polynomial time as fixed effects with random intercepts and slopes 

using unstructured covariance.  Each synthetic subject then had new ADAS-Cog 

measures generated according to their corresponding cluster-specific model with fixed 

and random effects randomly generated from the model covariance matrices using multi-

variate normal sampling.  To accommodate the extended 60-month timeframe and gener-

alization to other datasets, the covariance matrices were relaxed to allow for more varied 

ADAS-Cog scores at later timepoints.  This process generated unique panels of ADAS-

Cog scores for each simulated participant while retaining serial correlation and within-

subject covariance structure expected from real-world subjects with similar population-

level demographics and characteristics. 

 

Influence of Subject-Specific Effects on ADAS-Cog 

As in aims 1 and 2, evaluation was performed on holdout sets sampled from both the 

meta-database and the simulated data for two types of ADAS-Cog predictions: whole tra-

jectories for subjects across all time points and forecasting of final observations.  Larger 

validation holdouts were used for this aim but followed the same process as previously 

described, beginning with 20% of all subjects held out for whole trajectories followed by 
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20% of final observations of the model building datasets to forecast final observations.  

Holdout sampling was repeated 200 times for the meta-database and performed once for 

each of the 500 synthetic cohorts.  For each model and prediction type, subject-specific 

effects (SSE) were either 1) suppressed with only population-level effects (PLE) used,  

2) robustly imputed using 100 samplings from the random effects covariance parameters, 

or 3) applied directly based on the de novo BR and MERF model fitted values when fore-

casting final observations.  Evaluation metric comparisons focused on pairings either 

within model design (CPath, DN BR, MERF) or subject-specific effect structures (popu-

lation only, imputation of subject-specific effects, known fitted effects).  The impact on 

predictive capacity for ADAS-Cog considered the differences in model performance 

based on the metrics of RMSE and AVB using the previously described bootstrapping 

procedures but also identified models with improved metrics in at least 90% of the meta-

database samplings and synthetic cohorts. 
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Figure 1 

Harmonization Flow of Meta-Database Development to Pre-Holdout Dataset 

 

Note.  Lists number of subjects (N), total time points (t), and subjects with only one evaluation time (t=1); including by outcome.  
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Figure 2 

Development of CDR Reference Dataset, Training Holdout Set, and Testing Holdout Set for the Meta-Database 

 

Note.  Follows from the CPath modelling dataset at the end of Figure 1 with the same conventions.  
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Table 1 

Continuous Subject Characteristics at Baseline Within the Meta-Database 

 Training dataset Trajectory holdouts Observation holdouts 

Baseline 
characteristic 

All 
subjects 

N = 2755 

CDR 0 
subjects 
N = 453 

CDR 0.5+ 
subjects 

N = 2302 

All 
subjects 
N = 304 

CDR 0 
subjects 
N = 52 

CDR 0.5+ 
subjects 
N = 252 

All 
subjects 
N = 230 

CDR 0 
subjects 
N = 34 

CDR 0.5+ 
subjects 
N = 196 

ADAS-Cog 
score 

12.9 ± 
8.02 

5.9 ± 
2.90 

14.5 ± 
7.96 

12.8 ± 
8.12 

6.2 ± 
3.22 

14.4 ± 
8.15 

12.5 ± 
7.15 

6.0 ± 
2.85 

13.8 ± 
7.05 

Age (yrs) 73.7 ± 
7.58 

73.8 ± 
6.03 

73.7 ± 
7.85 

74.0 ± 
7.92 

73.8 ± 
5.48 

74.1 ± 
8.34 

73.9 ± 
7.21 

73.8 ± 
5.82 

74.0 ± 
7.43 

MMSE score 25.0 ± 
4.46 

29.0 ± 
1.22 

24.3 ± 
4.45 

24.9 ± 
4.65 

29.1 ± 
1.01 

24.1 ± 
4.64 

25.6 ± 
4.04 

28.8 ± 
1.37 

25.0 ± 
4.10 

Weight (lbs) 144.2 ± 
49.0 

152.7 ± 
46.8 

142.5 ± 
49.2 

144.2 ± 
49.9 

154.9 ± 
50.4 

142.0 ± 
49.7 

146.3 ± 
48.7 

158.6 ± 
45.8 

144.2 ± 
49.0 

Systolic 
blood pressure 

133.8 ± 
17.3 

134.0 ± 
16.7 

133.8 ± 
17.4 

133.0 ± 
16.4 

134.6 ± 
16.4 

132.7 ± 
16.5 

133.8 ± 
16.7 

131.7 ± 
15.0 

134.2 ± 
17.0 

Diastolic 
blood pressure 

74.2 ± 
9.78 

73.6 ± 
9.77 

74.3 ± 
9.78 

74.4 ± 
9.20 

73.7 ± 
9.07 

74.5 ± 
9.23 

74.1 ± 
10.0 

72.5 ± 
9.95 

74.3 ± 
10.0 

Note.  Cohorts defined according to final holdout groups as displayed in Figure 2.  Data are displayed as mean ± standard deviation.  
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Table 2 

Categorical Subject Characteristics at Baseline Within the Meta-Database 

 Training dataset Trajectory holdouts Observation holdouts 

Baseline 
characteristic 

All 
subjects 

N = 2755 

CDR 0 
subjects 
N = 453 

CDR 0.5+ 
subjects 

N = 2302 

All 
subjects 
N = 304 

CDR 0 
subjects 
N = 52 

CDR 0.5+ 
subjects 
N = 252 

All 
subjects 
N = 230 

CDR 0 
subjects 
N = 34 

CDR 0.5+ 
subjects 
N = 196 

Sex  

 Male 1436 (52.1) 225 (49.7) 1211 (52.6) 160 (52.6) 22 (42.3) 138 (54.8) 119 (51.7) 20 (58.8) 99 (50.5) 

 Female 1319 (47.9) 228 (50.3) 1091 (47.4) 144 (47.4) 30 (57.7) 114 (45.2) 111 (48.3) 14 (41.2) 97 (49.5) 

APOE4 allele counts  

 Non-carriers 1266 (46.0) 314 (69.3) 952 (41.4) 151 (49.7) 42 (80.8) 109 (43.3) 116 (50.4) 22 (64.7) 94 (48.0) 

 Heterozygous 
APOE4 carriers 

1145 (41.6) 128 (28.3) 1017 (44.2) 116 (38.2) 7 (13.5) 109 (43.3) 88 (38.3) 11 (32.4) 77 (39.3) 

 Homozygous 
APOE4 carriers 344 (12.5) 11 (2.4) 333 (14.5) 37 (12.2) 3 (5.8) 34 (13.5) 26 (11.3) 1 (2.9) 25 (12.8) 

Race  

 White 2519 (91.4) 413 (91.2) 2106 (91.5) 283 (93.1) 49 (94.2) 234 (92.9) 209 (90.9) 32 (94.1) 177 (90.3) 

 Black / African 
American 

129 (4.7) 27 (6.0) 102 (4.4) 14 (4.6) 3 (5.8) 11 (4.4) 7 (3.0) 1 (2.9) 6 (3.1) 

 Other race 107 (3.9) 13 (2.9) 94 (4.1) 7 (2.3) 0 (0.0) 7 (2.8) 14 (6.1) 1 (2.9) 13 (6.6) 
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 Training dataset Trajectory holdouts Observation holdouts 

Baseline 
characteristic 

All 
subjects 

N = 2755 

CDR 0 
subjects 
N = 453 

CDR 0.5+ 
subjects 

N = 2302 

All 
subjects 
N = 304 

CDR 0 
subjects 
N = 52 

CDR 0.5+ 
subjects 
N = 252 

All 
subjects 
N = 230 

CDR 0 
subjects 
N = 34 

CDR 0.5+ 
subjects 
N = 196 

Ethnicity  

 Non-Hispanic / 
unknown 2653 (96.3) 439 (96.9) 2214 (96.2) 295 (97.0) 51 (98.1) 244 (96.8) 218 (94.8) 34 (100.0) 184 (93.9) 

 Hispanic 102 (3.7) 14 (3.1) 88 (3.8) 9 (3.0) 1 (1.9) 8 (3.2) 12 (5.2) 0 (0.0) 12 (6.1) 

Highest education  

 Less than HS 217 (7.9) 13 (2.9) 204 (8.9) 30 (9.9) 0 (0.0) 30 (11.9) 18 (7.8) 1 (2.9) 17 (8.7) 

 High school 
diploma / GED 516 (18.7) 40 (8.8) 476 (20.7) 55 (18.1) 2 (3.8) 53 (21.0) 42 (18.3) 3 (8.8) 39 (19.9) 

 Some college 568 (20.6) 92 (20.3) 476 (20.7) 50 (16.4) 7 (13.5) 43 (17.1) 40 (17.4) 9 (26.5) 31 (15.8) 

 College degree 631 (22.9) 108 (23.8) 523 (22.7) 69 (22.7) 18 (34.6) 51 (20.2) 64 (27.8) 8 (23.5) 56 (28.6) 

 Some post-grad 460 (16.7) 102 (22.5) 358 (15.6) 53 (17.4) 14 (26.9) 39 (15.5) 42 (18.3) 8 (23.5) 34 (17.3) 

 Graduate degree 363 (13.2) 98 (21.6) 265 (11.5) 47 (15.5) 11 (21.2) 36 (14.3) 24 (10.4) 5 (14.7) 19 (9.7) 

Anti-dementia medication use  

 No medication 1313 (47.7) 423 (93.4) 890 (38.7) 154 (50.7) 50 (96.2) 104 (41.3) 109 (47.4) 30 (88.2) 79 (40.3) 

 Yes medication 1442 (52.3) 30 (6.6) 1412 (61.3) 150 (49.3) 2 (3.8) 148 (58.7) 121 (52.6) 4 (11.8) 117 (59.7) 

Note.  Cohorts defined according to final holdout groups as displayed in Figure 2.  Data are displayed as counts with percentages ac-
cording to column margins in parenthesis. 
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RESULTS 

 

Reference Model Results 

Performance metrics for the ADAS-Cog predictions from the reference CPath model 

are presented for both the entire testing dataset as well as at individual time points in Ta-

ble 3 for whole subject trajectories with scatterplots of the true and predicted values as 

well as plots of overestimation and underestimation found in Figures 3 and Figure 4 re-

spectively.  Equivalent performance metrics for final observation forecasts are shown in 

Table 4 with prediction and discrepancy scatterplots in Figures 5 and 6.  For the entire 

dataset, predictions errors for both RMSE and MAE were numerically higher for fore-

casting compared to trajectories.  As expected, RMSE values were larger than MAE val-

ues due to especially large ADAS-Cog scores but the relative increases were not notably 

different between trajectories (RMSE: 6.82; MAE: 5.28, 30% increase) and forecasts 

(RMSE: 9.72; MAE: 6.86, 40% increase).  Biases indicated a general overestimation of 

ADAS-Cog scores for trajectories, largely due to an inability of the CPath model to accu-

rately predict observed scores in the lower range of 0 to 5.  Conversely, forecast observa-

tions were generally underestimated with an inability to accurately predict especially 

large ADAS-Cog values.  Of interest, AVB values were rather similar between trajecto-

ries and forecasts and biases were numerically similar with differences predominately in 
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the sign.  Importantly, these error and bias results indicate relatively similar spread in 

ADAS-Cog scores between the two holdout testing sets. 

Performance metrics for the CDR impairment predictions from the reference logistic 

mixed model classifier are presented for both the entire testing dataset as well as at indi-

vidual time points in Table 5 for whole subject trajectories with bar charts comparing the 

counts of observed and predicted impaired meta-database subjects as well as the propor-

tion of false positives and false negatives marginalized on time found in Figures 7 and 8.  

Equivalent performance metrics for final observation forecasts are shown in Table 6 with 

prediction and misclassification bar plots in Figures 9 and 10.  Compared to the predic-

tions for ADAS-Cog from the CPath model, performances of the reference logistic classi-

fier were more similar between trajectories of CDR impairment and final observation 

forecasts.  Accuracy was high at over 70% with especially high precisions of over 95%, a 

somewhat expected result due to the imbalance of CDR status in the training data set with 

80.8% of participants with CDR scores of 0.5 or greater.  Both types of predictions had a 

tendency towards false negatives as indicated by comparatively lower recalls of 66% for 

trajectories and 69% for forecasts.  ROC AUC values were relatively large for both types 

of predictions indicating good overall classification ability by the reference classifiers 

even without considerations of optimal cut points. 

 

Prediction from Ensemble Methods 

ADAS-Cog Results 

Summary sets of the evaluation metrics for the ADAS-Cog predictions across all 

timepoints for both whole subject trajectories as well as final observation forecasts for the 
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ensemble methods of aim 1 can be found in Table 7.  Results of the cross-fold validation 

sweeps conducted during hyperparameter selection for the MERF, bagged GLMM trees, 

and boosted mixed-effects trees can be found in Figures 11-13 with results of the top per-

forming hyperparameter combinations for each method in Table 8. 

When optimizing the MERF models on ADAS-Cog, hyperparameter evaluation was 

unable to reach consensus, with each metric implicating a different configuration set.  

However, there was relatively little difference between the hyperparameter combinations 

although utilization of only 20% of the feature space was uniformly associated with 

larger prediction error.  The final hyperparameter set selected used 40% of the feature 

space during sampling and constructed 750 trees per forest. 

For the MERF models, performance metrics for whole subject trajectories are in Ta-

ble 9 with overall statistical evaluation of the prediction metrics compared to the CPath 

reference model in Table 10.  For whole subject trajectories, scatterplots of predicted and 

actual ADAS-Cog scores and the corresponding estimation discrepancies are visualized 

in Figures 14 and 15.  For final observation forecasts, equivalent performance metric and 

evaluation results can be found in Tables 11 and 12 with scatterplots of predicted and ac-

tual scores along with estimation discrepancies shown in Figures 16 and 17.  All metrics 

indicated improved performance of the MERF model relative to the CPath reference for 

both whole subject trajectories and observation forecasts.  Unlike the reference model, 

prediction errors were similar between the two types of predictions with slightly smaller 

RMSE (4.93 versus 4.72) and MAE (3.79 versus 3.59) values for forecasts.  Raw predic-

tion bias was notably small across the full dataset for trajectories with a value of 0.07 alt-

hough this was largely due to averaging as bias values tended to underestimate at earlier 
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timepoints and overestimate at later times with a similar pattern for forecasts.  This was 

also reflected with the AVB values which were again smaller for forecasts (2.82) com-

pared to trajectories (3.16). 

Optimization for the bagged GLMM trees was able to reach consensus among the 

four considered configurations, with a combination of only 100 trees using a larger sam-

ple fraction size of 75% being the preferred design.  Differences in performance were 

much more dependent on the sample size fraction instead of the number of trees used 

during bagging, with relatively little difference between 100 and 200 trees within each of 

the two fraction sets but improvements were observed in all metrics when larger sample 

fractions were used. 

For the single GLMM tree models, performance metrics for whole subject trajectories 

are in Table 13 with overall statistical evaluation of the prediction metrics compared to 

the CPath reference model in Table 14.  For whole subject trajectories, scatterplots of 

predicted and actual ADAS-Cog scores and the corresponding estimation discrepancies 

are visualized in Figures 18 and 19.  For final observation forecasts, equivalent perfor-

mance metric and evaluation results can be found in Tables 15 and 16 with scatterplots of 

predicted and actual scores along with estimation discrepancies shown in Figures 20 and 

21.  Similar results for the bagged GLMM models are presented in Tables 17 and 18 with 

plots in Figures 22 and 23 for whole subject trajectories as well as Tables 19 and 20 and 

Figures 24 and 25 for final observation forecasts.  Much like the MERF model, the single 

GLMM tree and the bagged forests both gave superior performance compared to the 

CPath reference for both types of prediction errors as well as raw bias and AVB.  Of 
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note, when predicting whole subject trajectories, values for performance metrics were nu-

merically lower for the bagged GLMMs compared to the single tree; however, the met-

rics were similar enough that bootstrapping during cross-model prediction did not indi-

cate any significant difference between the two GLMM methods.  Conversely, all predic-

tion errors and biases were numerically lower for the single GLMM tree when forecast-

ing future observations, and in the case of RMSE, mean AE and AV bias, the 95% boot-

strapped confidence intervals of the differences in performance metrics between the two 

GLMM tree methods did not indicate statistical significance (RMSE: [-1.17, -0.03]; 

MAE: [-0.86, -0.10]; AVB: [-0.55, -0.01]). 

As mentioned in the methods, hyperparameter selection for the boosted mixed-effects 

trees method for the final meta-database focused solely on the number of trees with the 

other parameters piloted using smaller datasets for tractability purposes with hyperparam-

eter selection using 5-fold cross-validation instead of 10-fold as with the other models.  

The processing time and memory footprints for the boosted trees made computation espe-

cially challenging and use of the restricted hyperparameter configurations with a maxi-

mum tree depth of 15, a minimum of 20 observations in the terminal nodes, with a boost-

ing shrinkage rate of 0.01 were all found to be adequate for the meta-database and its cur-

rent feature space.  Although there was relatively little difference in bias based on num-

ber of trees in the iterative boosting, there were appreciable reductions in both RMSE and 

MAE with larger trees.  Consensus was reached for the boosted method with all metrics 

recommending the use of 200 trees over 100. 

For the final boosted tree models, performance metrics for whole subject trajectories 

are in Table 21 with overall statistical evaluation of the prediction metrics compared to 
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the CPath reference model in Table 22.  For whole subject trajectories, scatterplots of 

predicted and actual ADAS-Cog scores and the corresponding estimation discrepancies 

are visualized in Figures 26 and 27.  For final observation forecasts, equivalent perfor-

mance metric and evaluation results can be found in Tables 23 and 24 with scatterplots of 

predicted and actual scores along with estimation discrepancies shown in Figures 28 and 

29.  As with the other ensemble methods, performance was superior for the boosted 

mixed-effects trees with reductions in RMSE, MAE and both bias calculations for both 

whole subject trajectories and observation forecasts.  Unlike other ensemble methods, 

boosting had lower prediction errors when determining trajectories compared to forecasts 

for both RMSE (trajectories: 4.94; forecasts: 5.23) and MAE (trajectories: 3.86; forecasts: 

3.97) although these were still much more numerically similar compared to the discrep-

ancies seen in the CPath reference model.  Much like the MERF model, raw bias values 

were smaller for trajectories compared to forecasts but again this result appeared largely 

driven by underestimation at earlier timepoints and overestimations further out.  Also, 

like the MERF model, AVB values were similar between the two types of predictions alt-

hough they were slightly lower for forecasts. 

 

CDR-Based Impairment Results 

Evaluation metrics for the CDR-based impairment status predictions across all 

timepoints for both whole subject trajectories and final observation forecasts for the en-

semble methods of aim 1 can be found in Table 25.  Results of the cross-fold validation 

sweeps conducted during hyperparameter selection for the MERF, bagged GLMM trees, 
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and boosted mixed-effects trees can be found in Figures 30-32 with results of the top per-

forming hyperparameter combinations in Table 26. 

The most notable outcome from the CDR impairment prediction portion of the study 

was the exceptionally large performance metrics when forecasting, with the sequential 

models of aim 1 and aim 2 both showing near perfect prediction capacity with many met-

rics valued at 0.95 and higher.  This largely seems to be a consequence of relative stabil-

ity of the impairment classifier in the meta-database as CDR exhibited little change 

within subjects, especially for the clinical trials of the ADCS component.  In particular, 

this highlights these model’s utility and reliance on subject-specific effects.  These results 

do not necessarily detract from the research questions at hand or model comparison pipe-

line but should temper the interpretation of any forecasting results. 

When optimizing the MERF models for CDR classification, consensus was not unani-

mous across the four considered configuration sets but did indicate general better model 

performance with more trees and larger proportions of feature subsets.  Similar to the 

ADAS-Cog tuning, improvements from larger feature sampling proportions were more 

sizable compared to performance improvements from simply increasing the number of 

trees in the random forests.  Recall, in particular, observed additional benefit from feature 

space increases.  Due to the general similarity across configurations for precision and 

ROC AUC combined with the previously noted improvements in recall, the final hy-

perparameter configuration for the MERF classifier was 750 trees per random forest with 

sampling of 70% of the feature space. 

For the MERF models, performance metrics for whole subject trajectories are in Ta-

ble 27 with overall statistical evaluation of the prediction metrics compared to the logistic 
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classifier reference model in Table 28.  For whole subject trajectories, bar plots of the 

predicted and actual impaired subject counts along with the proportion of misclassifica-

tions within each timepoint can be found in Figures 33 and 34.  For final observation 

forecasts, equivalent performance metric and evaluation results can be found in Tables 29 

and 30 with bar plots of predicted and actual impaired counts along with misclassification 

rates by timepoint shown in Figures 35 and 36.  As when predicting ADAS-Cog scores, 

the MERF model exhibited significantly improved performance when classifying CDR 

impairment compared to the logistic reference model for both whole trajectories and ob-

servation forecasting.  Precision was numerically higher although bootstrapping did not 

indicate statistically significant increases from the already high precision of the reference 

design.  However, accuracy, despite imbalance, and AUC were larger for both types of 

predictions and recall saw notable gains with a 20.8% improvement in recall for whole 

subject trajectories and a 40.8% improvement for forecasts.  This indicates a reduction in 

false negative classification for the MERF models compared to the reference and was re-

flected in the associated NRI values of 0.124 and 0.285 for trajectories and forecasts re-

spectively, which highlight the improved reclassification of the MERF model. 

Hyperparameter tuning for the bagged GLMM trees on CDR impairment status did 

not reach unanimous consensus but did give general suggestions.  Recall and accuracy 

both saw the greatest gains when larger proportions of the subject dataspace were sam-

pled during bagging while precision and ROC AUC, although reduced with the larger 

proportions, were much more numerically similar in comparison.  At these higher bag-

ging proportions, the number of trees was a much less important consideration although 
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nearly all metrics implicated the use of fewer trees.  Based on these results, the final con-

figuration design used a 0.75 proportion of the subjects during sampling with 100 trees 

for aggregation. 

For the single GLMM models, performance metrics for whole subject trajectories are 

in Table 31 with overall statistical evaluation of the prediction metrics compared to the 

logistic classifier reference model in Table 32.  For whole subject trajectories, bar plots of 

the predicted and actual impaired subject counts along with the proportion of misclassifi-

cations within each timepoint can be found in Figures 37 and 38.  For final observation 

forecasts, equivalent performance metric and evaluation results can be found in Tables 33 

and 34 with bar plots of predicted and actual impaired counts along with misclassification 

rates by timepoint shown in Figures 39 and 40.  Similar tables and plots for the bagged 

GLMM model are in Tables 35 and 36 and Figures 41 and 42 for whole subject trajecto-

ries as well as Tables 37 and 38 and Figures 43 and 44 for final observation forecasts.  

The same patterns of classification improvement observed with the MERF model were 

also seen with the single GLMM tree model and bagged GLMM trees.  Numerically, all 

evaluation metrics were higher for both trajectories and forecasts in both types of GLMM 

designs with all being significantly greater than the logistic classifier, with the exception 

of precision, which as mentioned was already high in the reference model.  Reductions in 

false negatives were sizable with improvements in trajectory recall of 17.5% and 21.3% 

and forecasting recall of 39.9% and 39.2% for the single GLMM and bagged trees re-

spectively.  Also, like the MERF model, the improvements in classification, while sizable 

for whole subject trajectories, where exceptionally great when applied to observation 
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forecasting, highlighting the role of prior knowledge when evaluating the especially sta-

ble impairment classification.  For example, reclassification improvement in trajectories 

as indicated by NRI was 0.128 and 0.127 for the single tree and the bagged trees respec-

tively but 0.285 and 0.302 for final observation forecasting.  A noteworthy difference for 

the GLMM classifiers was that the improvements in forecasting previously observed in 

the single GLMM tree under a regression framework for prediction of ADAS-Cog were 

no longer observed for CDR classification.  Numerically, many evaluation metrics were 

better under the bagged framework for both trajectories and forecast predictions such as 

the ROC AUC (single GLMM trajectory: 0.892; bagged trajectory: 0.901; single GLMM 

forecast: 0.981; bagged forecast: 0.987); however, the only difference between GLMM 

models considered statistically significant was recall for trajectories (95% CI: [0.001, 

0.050], p=0.021) with a mild trend for the ROC AUC of whole-subject trajectories (95% 

CI [-0.003, 0.031], p=0.056). 

Optimization of the boosted mixed-effects trees again only considered the number of 

trees in the boosting sequence with the same configuration for tree depth, terminal node 

observations, and shrinkage rate using 5-fold cross-validation for configuration tuning.  

When contrasted to the tuning for ADAS-Cog, differences in metrics between 100 trees 

and 200 trees were much smaller and unanimous consensus was not reached.  Recall and 

accuracy gave slight preference to 100 trees while AUC and precision gave priority to 

200 boosting trees.  Since the improvements in recall for the boosted trees were generally 

smaller compared to the equivalent tuning improvements observed in the other ensemble 

classifiers, the larger set of 200 boosted trees was once again selected for impairment 

classification using CDR. 
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For the boosted trees, performance metrics for whole subject trajectories are in Table 

39 with overall statistical evaluation of the prediction metrics compared to the logistic 

classifier reference model in Table 40.  For whole subject trajectories, bar plots of the 

predicted and actual impaired subject counts along with the proportion of misclassifica-

tions within each timepoint can be found in Figures 45 and 46.  For final observation 

forecasts, equivalent performance metric and evaluation results can be found in Tables 41 

and 42 with bar plots of predicted and actual impaired counts along with misclassification 

rates by timepoint shown in Figures 47 and 48.  The same pattern observed in all previ-

ous ensemble classifiers was once again seen for the boosted trees design.  Improvements 

were seen by all metrics for both types of predictions when compared to the logistic 

mixed-effects reference classifier and were considered statistically significant by boot-

strapping, except for precision.  Once again, the most sizable increases were in false neg-

ative reduction with recall increasing by 22.0% for trajectories and 35.2% for forecasts.  

This was reflected in the NRI increases compared to the reference classifier with reclassi-

fication values of 0.147 and 0.246 respectively under the new designs.  However, the 

computational performance of the boosted trees in terms of build time and memory de-

mands was once more the poorest compared to all other ML models and, in fact, was 

even worse for CDR impairment classification when compared to the computational de-

mands when modelling the ADAS-Cog with boosted trees.  This is even after the previ-

ously described adjustments in model building by running the models in parallel with 

fewer cross-folds for model tuning.  Although the boosted trees design still performed 

well, for example, it displayed the highest ROC AUC for all models for trajectories with 

a value of 0.916, its predictive performance was arguably not powerful enough to justify 
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the additional requirements in time and computational resources as well as implementa-

tion modifications necessary for this particular ensemble method. 

 

Prediction from Neural Networks 

ADAS-Cog Results 

Evaluation metrics for the ADAS-Cog predictions across all timepoints for both 

whole subject trajectories and final observation forecasts for the various neural networks 

of aim 2 can be found in Table 43.  Results of the cross-fold validation sweeps conducted 

during hyperparameter selection for the feed-forward neural networks, one-dimensional 

convolutional neural networks, and long short-term memory recurrent neural networks 

can be found in Figures 49-51 with results of the top performing hyperparameter combi-

nations in Table 44. 

Hyperparameter tuning of the FNN models generally suggested the use of three hid-

den layers beginning with 8 nodes although RMSE implicated the use of only two layers.  

The improvement in raw bias with the additional layer was substantial enough compared 

to the minimal differences in prediction error between configurations that the deeper 

model was selected even though hyperparameter consensus was not unanimous. 

For the feed-forward neural network reference designs, performance metrics for 

whole subject trajectories are in Table 45 with overall statistical evaluation of the predic-

tion metrics compared to the CPath reference model in Table 46.  For whole subject tra-

jectories, scatterplots of predicted and actual ADAS-Cog scores and the corresponding 

estimation discrepancies are visualized in Figures 52 and 53.  For final observation fore-

casts, equivalent performance metric and evaluation results can be found in Tables 47 and 
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48 with scatterplots of predicted and actual scores along with estimation discrepancies 

shown in Figures 54 and 55.  Much like the ensemble methods of aim 1, the neural net-

work designs of aim 2 showed significant improvement when predicting ADAS-Cog 

scores for both whole subject trajectories and final observation forecasts.  This includes 

the FNN reference network even though it did not leverage sequential data in the same 

fashion as the other neural network designs.  Prediction errors were much less for the 

FNN design compared to the CPath reference with improvements of 31.7% for RMSE 

and 32.6% for MAE.  Notably, the FNN model demonstrated increased prediction errors 

for forecasting when compared to trajectory predictions, a similar pattern also observed 

in the CPath reference model and ostensibly due to neither model making direct use of 

prior sequence data when forecasting.  This pattern also held with bias in the FNN mod-

els with reductions in both raw bias and AVB compared to the CPath reference which 

were significant under bootstrapping, but with increased bias for forecasts relative to tra-

jectory determinations. 

As described in the hyperparameter methods for the 1D CNN model, use of a mini-

mally sized convolution kernel limited the number of convolution-pooling layers to a sin-

gle set, with tuning instead focusing on the number of nodes in the convolution layer to 

be passed to final dense connection scoring layer considering either 32 or 16 nodes.  Alt-

hough bias showed greater improvement with a larger number of nodes, this was the only 

metric to suggest so with all prediction errors larger under the 32 node design.  This was 

suggestive of overfitting to the training data, so consensus assigned the final hyperparam-

eter set to the 16 node configuration. 
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For the 1D convolutional neural network, performance metrics for whole subject tra-

jectories are in Table 49 with overall statistical evaluation of the prediction metrics com-

pared to the CPath reference model in Table 50.  For whole subject trajectories, scatter-

plots of predicted and actual ADAS-Cog scores and the corresponding estimation dis-

crepancies are visualized in Figures 56 and 57.  For final observation forecasts, equiva-

lent performance metric and evaluation results can be found in Tables 51 and 52 with 

scatterplots of predicted and actual scores along with estimation discrepancies shown in 

Figures 58 and 59.  The 1D CNN, like other ML models, was better at ADAS-Cog pre-

diction for both trajectories and forecasting when compared to the CPath reference alt-

hough not necessarily to the same degree as other ML designs.  Prediction errors for 

MAE and absolute value of the bias were reduced for both types of predictions despite a 

hyperparameter configuration that was less optimized for bias.  One difference of note is 

the 1D CNN followed the same raw bias pattern as the CPath reference with overestima-

tion for trajectories, especially at later timepoints, and underestimation for forecasts.  

Meanwhile most models had similar signs for their raw bias metrics.  However, the most 

notable effect of ADAS-Cog prediction for the 1D CNN was RMSE for trajectories.  Alt-

hough RMSE was numerically lower for the 1D CNN design, it was only a 4.6% reduc-

tion (1D CNN: 6.506; CPath: 6.82) and was the only ML model in both aims not to be 

observed as statistically different from the reference model with bootstrapping (95% CI: 

[-0.705, 0.050]).  However, when observed data were used in the 1D CNN design, RMSE 

observed significant improvements with a reduction of 39.8% compared to the CPath 

method (95% CI: [-4.82, -2.84]).  In addition, unlike the FNN reference network which 

did not make direct use of the sequential nature of the panel data, evaluation metrics for 
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observation forecasting were superior compared to the metrics of trajectories, the pattern 

commonly observed in the sequential ensemble methods. 

Optimization of the long short-term memory recurrent neural network followed the 

same process as the 1D CNN with tuning limited to the number of nodes in the LSTM 

layer.  A similar pattern arose with reduced bias with a greater number of nodes at the ex-

pense of increased RMSE and MAE.  Again, due to concerns with potential overfitting to 

the training data and loss of generalization, the smaller node set of 16 was selected for 

evaluation on the holdout testing set for ADAS-Cog. 

For the LSTM recurrent neural network, performance metrics for whole subject tra-

jectories are in Table 53 with overall statistical evaluation of the prediction metrics com-

pared to the CPath reference model in Table 54.  For whole subject trajectories, scatter-

plots of predicted and actual ADAS-Cog scores and the corresponding estimation dis-

crepancies are visualized in Figures 60 and 61.  For final observation forecasts, equiva-

lent performance metric and evaluation results can be found in Tables 55 and 56 with 

scatterplots of predicted and actual scores along with estimation discrepancies shown in 

Figures 62 and 63.  The results of performance improvement for the LSTM model were 

generally similar to the results of the CNN model when predicting ADAS-Cog scores.  

Both prediction errors and biases were reduced for the LSTM RNN including a statisti-

cally significant reduction in RMSE for whole subject trajectories (9.6% reduction, 95% 

CI [-0.996, -0.260]) which was not seen in the 1D CNN framework.  Raw bias was nu-

merically lower, although not significant compared to the CPath reference for either pre-

diction type and followed the same pattern seen in the other sequential neural network de-

sign with overestimation of trajectories and underestimation of observation forecasts.  
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Most strikingly, the benefit of leveraging previously known observations was again ap-

parent for the sequential RNN with improved prediction performance for both errors and 

biases when using previously known data for forecasting as when compared to generation 

of whole subject trajectories.  Like the 1D CNN, this indicates the utility of the sequential 

neural networks when compared to the standard non-sequential FNN under a forecasting 

paradigm for these continuous cognitive outcomes. 

 

CDR-Based Impairment Results 

Evaluation metrics for the CDR-based impairment status predictions across all 

timepoints for both whole subject trajectories and final observation forecasts for the neu-

ral network methods of aim 2 can be found in Table 57.  Results of the cross-fold valida-

tion sweeps conducted during hyperparameter selection for the FNN, 1D CNN, and 

LSTM RNN models can be found in Figures 64-66 with results of the top performing hy-

perparameter combinations in Table 58. 

As in aim 1, the most notable result of the impairment prediction for the neural net-

works was the exceedingly large metrics for the two sequential networks while forecast-

ing.  That these increases were not seen to the same degree in the non-sequential FNN 

model gives further credence to the notion these performance metrics are being driven by 

the relative stability of CDR score and, by association, the corresponding impairment 

classification within individual subjects and how the longitudinal models are leveraging 

this prior knowledge. 

Hyperparameter optimization for the FNN models followed the same general pattern 

as the ensemble methods, with relatively little difference between the two layer and three 
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layer configurations.  Unanimous consensus was not reached on these models with recall 

and accuracy favoring the deeper designs while precision and ROC AUC favored the 

shallower two layer framework.  As with other models that met with this pattern, recall 

improvements were slightly larger compared to improvements in AUC and the desire to 

reduce false negatives common in the classification models led to selection of the deeper 

three layer design as the evaluation network. 

For the FNN models, performance metrics for whole subject trajectories are in Table 

59 with overall statistical evaluation of the prediction metrics compared to the logistic 

classifier reference model in Table 60.  For whole subject trajectories, bar plots of the 

predicted and actual impaired subject counts along with the proportion of misclassifica-

tions within each timepoint can be found in Figures 67 and 68.  For final observation 

forecasts, equivalent performance metric and evaluation results can be found in Tables 61 

and 62 with bar plots of predicted and actual impaired counts along with misclassification 

rates by timepoint shown in Figures 69 and 70.  As with other ML and ensemble designs, 

the FNN model showed improvement over the mixed model logistic classifier across all 

performance metrics.  All classification improvements were also statistically significant 

with the exception of precision, which was known to be high even for the standard infer-

ential model.  Unlike when the FNN model predicted ADAS-Cog scores, the classifica-

tion metrics for observation forecasting were improved when compared to the perfor-

mance for the whole subject trajectories.  However, these improvements were much more 

mild when compared to results observed in the sequential ANN methods or the ensemble 

classifiers of aim 1, most likely for the CDR stability reasons and use of known sequen-

tial data aspects cited above.  This was reflected with similar NRI values for trajectories 
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and forecasts of 0.134 and 0.123 respectively, with the decrease for observation forecasts 

largely due to a preponderance of false negatives at later times. 

Hyperparameter optimization for the 1D CNN and LSTM RNN led to very similar re-

sults despite the difference in architecture of the networks.  Consensus for the 1D CNN 

was unanimous with all metrics indicating improved performance for the smaller convo-

lutional layer using only 16 nodes instead of 32.  Nearly all metrics for the RNN also rec-

ommended the smaller LSTM layer of 16 nodes with the exception of recall, which sug-

gested a wider layer of 32 nodes.  However, the increase in recall was smaller than the in-

creases in the other classification metrics so the final configuration utilized 16 nodes in 

its LSTM layer.  These tuning results were the same as those for the ADAS-Cog with in-

creased node counts generally leading to overfitting to the training data given the rela-

tively small size of the feature space for the meta-database. 

For the 1D CNN, performance metrics for whole subject trajectories are in Table 63 

with overall statistical evaluation of the prediction metrics compared to the logistic classi-

fier reference model in Table 64.  For whole subject trajectories, bar plots of the pre-

dicted and actual impaired subject counts along with the proportion of misclassifications 

within each timepoint can be found in Figures 71 and 72.  For final observation forecasts, 

equivalent performance metric and evaluation results can be found in Tables 65 and 66 

with bar plots of predicted and actual impaired counts along with misclassification rates 

by timepoint shown in Figures 73 and 74.  Improvements in the CDR impairment classi-

fication of the 1D CNN were much better compared to the reference classifier for both 

types of predictions.  All metrics were greater for the sequential NN and were statistically 

significant by bootstrapping except for precision on whole subject trajectories.  The 



 

 
91 

added utility of prior sequence by these sequential models was again displayed with vast 

improvements in metrics during observation forecasting compared to prediction of whole 

subject trajectories (trajectory NRI: 0.159; forecast NRI: 0.787).  As with other sequential 

designs, false negative reduction was the most apparent improvement for both prediction 

types.  Although there was a somewhat higher than expected false negative rate when 

forecasting impairment at later time points, this was still minimal compared to the refer-

ence logistic classifier with a recall of 0.944 across all data points.  However, forecasting 

also saw a relatively high precision of 0.994 indicating a high capacity to identify impair-

ment when compared to the other sequential models.  A final observation was that alt-

hough the trajectory performance for the 1D CNN was not markedly better than the FNN 

control for all metrics, the relative improvements compared to the reference model were 

not as stark as observed with the ADAS-Cog, with recall and accuracy both higher for the 

1D CNN compared to the FNN. 

For the LSTM RNN, performance metrics for whole subject trajectories are in Table 

67 with overall statistical evaluation of the prediction metrics compared to the logistic 

classifier reference model in Table 68.  For whole subject trajectories, bar plots of the 

predicted and actual impaired subject counts along with the proportion of misclassifica-

tions within each timepoint can be found in Figures 75 and 76.  For final observation 

forecasts, equivalent performance metric and evaluation results can be found in Tables 69 

and 70 with bar plots of predicted and actual impaired counts along with misclassification 

rates by timepoint shown in Figures 77 and 78.  As with all other ML models, the LSTM 

neural network was a much better classifier of CDR impairment when compared to the 

logistic mixed-effects model.  Precision was numerically higher for both trajectories and 
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forecasts, although not significant under bootstrapping, with all other performance met-

rics statistically greater than the logistic reference model framework.  False negatives 

were especially reduced with recalls of 0.824 for trajectories and 0.983 for forecasts, both 

of which were the highest for all models in both aims.  As with the 1D CNN, the reduc-

tion in metrics for trajectories relative to the FNN reference network were not as pro-

nounced for CDR impairment classification when compared to ADAS-Cog score predic-

tions performance, with the LSTM model again showing better accuracy and recall com-

pared to the non-sequential NN.  The exceptional capacity for forecasting in this stable 

dataset was again on display for the sequential neural network with NRI values of 0.146 

for trajectories but 0.769 for forecasting of final observations. 

 

Cross-Model Comparisons 

Comprehensive evaluations comparing the performance metrics for all machine learn-

ing models from aims 1 and 2 along with their corresponding reference model are pro-

vided for both whole subject trajectories and final observation forecasting for each com-

bination of performance metric and type of prediction.  Values are presented as numeric 

difference in metric between the models, percent difference in metrics, the one-sided 

bootstrap proportional p-value, and the bootstrapped 95% confidence intervals for the nu-

meric differences.  For the ADAS-Cog score predictions, comparisons for RMSE, MAE, 

raw bias, and AVB can be found in Tables 71-78, each for whole subject trajectories and 

final observation forecasts.  For the classification of CDR impairment status, model com-

parisons for accuracy, precision, recall, and ROC AUC can be found in Tables 79-86, 

again within both whole subject trajectories and final observation forecasts. 
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As previously described, the ensemble methods of aim 1 and neural networks of aim 

2 all showed significant improvements in prediction performance when compared to the 

inferential reference methods for both ADAS-Cog score and impairment status based on 

CDR, whether predicting whole subject trajectories or forecasting final observations.  

However, there was no model which uniformly demonstrated improved performance 

across all evaluated frameworks, with certain models exhibiting better performance de-

pending on prediction type, evaluation metric, and class of outcome.   

When predicting whole subject trajectories for the ADAS-Cog, the MERF and FNN 

models gave the best predictions with the lowest RMSE and MAE prediction errors as 

well as the lowest AV biases compared to the other ensemble methods and neural net-

works.  The FNN model outperformed all other neural networks under bootstrapping 

while the MERF model was numerically better than the other ensemble methods, alt-

hough the prediction errors and biases compared to the boosted mixed-effects trees were 

not significantly different.  Furthermore, the evaluation metrics of the FNN model also 

indicated superior performance when compared to the MERF model for RMSE (95% CI: 

[-0.469, -0.062]), MAE (95% CI: [-0.374, -0.078]), and AVB (95% CI: [-0.478, -0.161]). 

Although the FNN model predicted whole trajectories for ADAS-Cog scores well, it 

was not as effective at forecasting compared to the sequential ML methods.  The ensem-

ble methods had uniformly lower RMSE values compared to the neural networks with the 

single GLMM tree and MERF models demonstrating the lowest RMSE and MAE predic-

tion errors compared to the other methods for ADAS-Cog forecasting.  RMSE prediction 

errors for the neural networks were the highest observed among the models with the FNN 

model having numerically lower, but not statistically different, RMSE compared to the 
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sequential CNN and RNN designs.  However, MAE prediction errors were numerically 

better for the LSTM and CNN models compared to the bagged GLMM and boosted trees, 

although not significantly superior.  Combined with the RMSE results, this suggests the 

sequential neural network models may be less capable of predicting especially extreme 

ADAS-Cog scores indicating a sensitivity to outlier measures.  In contrast to the predic-

tion error results, the reductions in AVB for the two sequential NN methods were pro-

nounced, with significantly reduced bias compared to all other models except for the sin-

gle GLMM tree.  As a result, model selection when forecasting final ADAS-Cog obser-

vations is especially dependent on which metric is to be optimized. 

The different ML models also had varied patterns of performance metrics when pre-

dicting whole trajectories of CDR impairment.  Precision was especially high, with rela-

tively few false positives for all designs using the data-driven cut point selection de-

scribed in the methods.  Although all models had at least as much positive predictive 

value as the logistic mixed-effects classifier, only the non-sequential FNN model had sta-

tistically higher precision (95% CI: [0.002, 0.025]) compared to the reference model.  

Additionally, the precision of the FNN model was also statistically improved compared 

to most other ML models.  However, it must be noted precision in whole subject trajecto-

ries was high for all models with the lowest value seen in the LSTM RNN with 0.958 as 

its observed value.  Although the FNN model had high performance for the ADAS-Cog 

trajectories, it did not perform as well when predicting trajectories for CDR impairment.  

It had the lowest accuracy and recall of all models, but this may be due to cut point opti-

mization; a facet that may explain the increases in precision and a relatively high ROC 

AUC, although it was not statistically distinct from the ensemble methods.  Accuracy and 
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recall were highest for the two sequential ANN models although improvements over the 

boosted trees and bagged GLMM models were not statistically significant.  When consid-

ering the ROC AUC metric which is agnostic to a classification cut point, the CNN and 

LSTM NN models were the poorest performers, albeit superior to the reference classifier, 

with the highest AUC observed by the boosted mixed-effects trees with a value of 0.916 

which was statistically better than nearly every other model. 

When evaluating the model performance for forecasting final CDR impairment status, 

a variety of patterns were seen, much like trajectory evaluation.  As has been mentioned, 

the most notable feature was the exceptional improvement in predictive capacity for the 

sequential methods when contrasted to generation of whole subject trajectories.  While 

this is most certainly a consequence of the disposition of the meta-database, it does still 

enable cross-model comparison between the sequential methods.  The results most clearly 

supporting the role of prior sequence leveraging can be seen by noting how the non-se-

quential FNN model had the poorest forecasting performance across all metrics.  How-

ever, the FNN model’s improvement over the reference mixed model classifier indicates 

stable impairment class and prior data sequence does not explain all of the improved per-

formance and implicating other facets specific to the network itself. 

Among the sequential models, accuracy especially favored the LSTM RNN with a 

value of 0.972 using the cut point optimization; however, all sequential models had fore-

cast accuracies of greater than 0.930, all of which outstripped both the reference (0.730) 

and FNN models (0.832).  Precision was exceptionally high for all models, including the 

reference design and non-sequential FNN.  In fact, the only improvement observed to be 

statistically significant was from the 1D CNN model compared to the logistic classifier 
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(95% CI: [0.005, 0.023]).  Like accuracy, recall favored the LSTM RNN with a value of 

0.983 but all sequential ML models had recalls of 0.940 or greater indicating exceptional 

reduction in false negative misclassification while using prior sequence information when 

compared to the reference and FNN designs.  These exceptionally high values for preci-

sion, recall and accuracy were also carried over into evaluation of the ROC AUC 

measures.  Notably, the cut point agnostic AUC metric favored the ensemble methods 

over the neural network designs, again showing the dependence of the other metrics on 

cut point selection.  The highest AUC was seen in the bagged GLMM design with a value 

of 0.987 although all sequential models had AUCs of 0.950 or greater.  Again, the se-

quential designs showed their specific utility for forecasting on this particular classifier 

when compared to the non-sequential FNN, even when acknowledging the stability of 

impairment classification.  Although the ROC AUC for the FNN model was an improve-

ment over the reference control with a value of 0.924 (95% CI: [0.058, 0.131]), an espe-

cially important result which highlights machine learning utility specifically, it was sig-

nificantly lower compared to the other models which were able to adequately leverage 

previously observed data and acknowledge the limited within-subject change of CDR-

based impairment. 

 

Influence of Subject-Specific Effects on ADAS-Cog 

Meta-Database Results 

Summary evaluation results of RMSE, MAE and AVB for the meta-database across 

the 200 samplings are presented for both prediction methods with average performance 

metrics reported in Table 87.  For whole subject trajectories, percent differences in 
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RMSE and AVB between models and the corresponding 95% confidence intervals pre-

sented in Table 88 with RMSE values visualized in Figure 79 and AVB values in Figure 

80.  Similar cross-design comparisons for final observation forecasts, including models 

with fitted subject-specific effects, are presented in Table 89 and visualized for RMSE 

and AVB in Figures 81 and 82 respectively.  Within models, the imputation of subject-

specific effects led to increases in RMSE compared to designs using only population-

level effects with notably larger percent increases for the CPath model compared to the 

de novo BR and MERF models.  Across models when only using population effects, there 

was no observable difference in RMSE; however, when imputing subject-specific effects, 

the CPath model observed increases in RMSE compared to the de novo models for both 

whole trajectories and final observations.  Also, under imputation, RMSE for the MERF 

models was higher compared to the de novo BR model for both prediction types.  Using 

known subject-fitted effects when forecasting led to the least prediction error with 

smaller RMSE for both de novo BR and MERF models compared to their population-

level effects only and robust imputation designs. 

Patterns for changes in AV bias for the meta-database were less consistent than those 

for error.  When comparing within models between the population-level effects only and 

robust imputation designs, the CPath model observed an increase in all samplings in 

AVB under imputation for both whole subject trajectories and final observation forecast-

ing while the de novo BR method had decreases in bias under imputation.  For trajecto-

ries, there was no difference in bias within the MERF models although there was a de-

crease in bias in 92% of the meta-database samplings for observational forecasting.  
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When using fitted subject-specific effects for forecasting, the DN BR model saw de-

creases in AVB compared to its other two designs, meeting the 90% meta-database sam-

pling threshold (98% for imputation and all samplings for population-level effects).  This 

threshold also held for the MERF model comparing fitted effects to population level ef-

fects (91% of samplings) but not when comparing fitted effects to the imputed design 

(67.5% of samplings).  Across models when using only population-level effects, although 

median AVB was largest in the CPath model for whole trajectories and largest in DN BR 

model when forecasting, neither met the 90% consistency threshold compared to AVB in 

the two de novo models.  Under imputation, the CPath model had higher AVB compared 

to both de novo models for both prediction types.  There was no observed difference in 

AVB between the de novo BR and MERF models under imputation for either prediction 

type nor was there a difference in AVB when using fitted subject-specific effects.   

 

Synthetic Validation Datasets Results  

Summary evaluation results of RMSE, MAE and AVB for the 500 60-month simula-

tion datasets are presented for both prediction methods with average performance metrics 

reported in Table 90.  For whole subject trajectories, percent differences in RMSE and 

AVB between models and the corresponding 95% confidence intervals presented in Ta-

ble 91 with RMSE values visualized in Figure 83 and AVB values in Figure 84.  Similar 

cross-design comparisons for final observation forecasts, including models with fitted 

subject-specific effects, are presented in Table 92 and visualized for RMSE and AVB in 

Figures 85 and 86 respectively.  General patterns in RMSE for the meta-database were 

largely repeated under simulation although overall RMSE values were larger.  Imputation 
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of subject-specific effects again led to increases in RMSE compared to population-effects 

only designs for both types of predictions.  However, of particular interest, the percent in-

creases in RMSE for the CPath model were notably attenuated in the synthetic cohorts 

while percent increases were larger under simulation for the two de novo methods.  When 

using only population-level effects, there was no difference in RMSE values across the 

various models with none of the comparisons meeting the 90% threshold.  However, 

when using imputation of subject-specific effects, the CPath model did have higher 

RMSE compared to the de novo BR and MERF models in nearly every synthetic cohort.  

As before, using fitted subject-specific effects led to RMSE values significantly lower for 

both types of de novo models compared to the other subject-specific effects designs but 

no difference was observed in error between the de novo BR and MERF models when us-

ing fitted effects.  This later result in particular highlights the likely dependence on width 

of the feature set in machine learning performance evaluation using prediction error as 

both de novo models used the same reduced covariate set, unlike the wider set for the 

MERF model in aim 1. 

For bias under simulation, the patterns first seen in the meta-database for the de novo 

BR and MERF models were again observed.  For whole trajectories, bias was lower un-

der imputation compared to population-level only designs for the de novo BR model, alt-

hough in only 78% of the cohorts, with no difference in bias between the MERF models.  

When forecasting final observations, imputation did lead to numerically lower AVB for 

both models although neither met the 90% threshold (74.8% of cohorts for de novo BR 

and 70.2% of cohorts for MERF).  Using fitted subject specific effects led to greatly re-

duced AVB compared to the population-level only models for both de novo BR (96.6% 
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of cohorts) and MERF models (92% of cohorts) but did not meet the 90% cohort thresh-

old when comparing models with subject-specific effects which were imputed to subject-

specific effects fit directly (84% for DN BR and 80.2% for MERF).  Most notably for the 

CPath model, although AVB values were still numerically larger when subject-specific 

effects were imputed when compared to the CPath model using only population-level ef-

fects, the increases were markedly lower under simulation compared to the meta-data-

base, with increased bias only observed in 66% of the whole trajectory cohorts and 62.6% 

of the forecasting cohorts.  In addition, when comparing across the various models using 

either population-level effects only or when imputing subject-specific effects, none of the 

model comparisons reached the 90% threshold which held for both whole trajectories and 

observational forecasting. 
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TABLES AND FIGURES – RESULTS  

 

Table 3 

CPath Reference Model Prediction Performance – Whole Subject Trajectories of 
ADAS-Cog Score 

Years RMSE MAE Bias AV Bias 

0.0 5.222 4.220 1.481 3.668 

0.25 6.054 5.035 1.159 5.004 

0.5 5.851 4.753 2.088 4.163 

0.75 8.957 6.950 0.434 5.439 

1.0 7.109 5.407 1.383 4.422 

1.25 10.142 8.260 1.579 7.643 

1.5 8.228 6.416 1.025 5.390 

2.0 7.082 5.448 1.601 4.620 

2.5 6.294 5.024 1.832 4.251 

3.0 7.541 5.760 2.119 4.727 

4.0 6.076 4.828 2.228 3.951 

5.0 8.072 5.982 1.328 4.756 

6.0 7.817 6.034 2.272 5.017 

All 6.819 5.283 1.602 4.421 

Note.  Regression performance metrics presented at individual time points as well as 
across all time points. 
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Figure 3 

CPath Reference Model True and Predicted ADAS-Cog Scores – Whole Subject  
Trajectories 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Figure 4 

CPath Reference Model Prediction Discrepancies for ADAS-Cog Scores – Whole Subject  
Trajectories 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Table 4 

CPath Reference Model Prediction Performance – Final Observation Forecasts of 
ADAS-Cog Score 

Years RMSE MAE Bias AV Bias 

0.25 4.149 3.203 -3.054 3.733 

0.5 10.578 6.994 -1.003 4.970 

1.0 8.022 5.795 -1.274 4.324 

1.25 15.152 9.456 9.430 3.522 

1.5 10.236 7.806 0.745 6.384 

2.0 9.025 6.923 -2.805 5.193 

3.0 7.303 5.535 -0.010 4.783 

4.0 12.497 8.489 -4.438 4.799 

5.0 7.806 5.860 0.630 4.244 

6.0 12.140 8.372 -4.779 5.744 

All 9.720 6.859 -1.360 4.799 

Note.  Regression performance metrics presented at individual time points as well as 
across all time points. 
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Figure 5 

CPath Reference Model True and Predicted ADAS-Cog Scores – Final Observation 
Forecasts 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Figure 6 

CPath Reference Model Prediction Discrepancies for ADAS-Cog Scores – Final  
Observation Forecasts 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Table 5 

Logistic Reference Model Prediction Performance – Whole Subject Trajectories of  
CDR-Based Impairment 

Years Accuracy Precision Recall AUC 

0.0 0.747 0.984 0.705 0.879 

0.5 0.747 0.973 0.711 0.866 

1.0 0.734 0.964 0.704 0.861 

1.5 0.750 0.976 0.757 0.753 

2.0 0.657 0.919 0.564 0.827 

2.5 0.586 1.000 0.586 1.000 

3.0 0.581 0.912 0.484 0.767 

4.0 0.706 0.778 0.350 0.695 

5.0 0.606 0.750 0.353 0.669 

6.0 0.594 0.571 0.286 0.639 

All 0.711 0.958 0.661 0.841 

Note.  Classification performance metrics presented at individual time points as well as 
across all time points. 
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Figure 7 

Logistic Reference Model True and Predicted CDR-Based Impairment Counts – Whole 
Subject Trajectories 
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Figure 8 

Logistic Reference Model Misclassification Rates for CDR-Based Impairment – Whole 
Subject Trajectories 

 
Note.  False positive and false negative rates marginalized by time to be relative to total 
counts at that timepoint. 
  



 

 
110 

Table 6 

Logistic Reference Model Prediction Performance – Final Observation Forecasts of 
CDR-Based Impairment 

Years Accuracy Precision Recall AUC 

0.5 0.571 0.889 0.615 0.615 

1.0 0.774 1.000 0.774 1.000 

1.5 0.967 1.000 0.967 1.000 

2.0 0.806 0.960 0.800 0.867 

3.0 0.587 0.957 0.550 0.662 

4.0 0.667 1.000 0.500 0.700 

5.0 0.833 1.000 0.714 0.829 

6.0 0.645 1.000 0.421 0.794 

All 0.730 0.977 0.694 0.825 

Note.  Classification performance metrics presented at individual time points as well as 
across all time points. 
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Figure 9 

Logistic Reference Model True and Predicted CDR-Based Impairment Counts – Final 
Observation Forecasts 
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Figure 10 

Logistic Reference Model Misclassification Rates for CDR-Based Impairment – Final 
Observation Forecasts 

 
Note.  False positive and false negative rates marginalized by time to be relative to total 
counts at that timepoint. 
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Table 7 

Ensemble Methods Performance Summary – ADAS-Cog Score 

Type of 
prediction 

Performance 
metric 

CPath 
reference MERF Single 

GLMM 
Bagged 
GLMM 

Boosted 
trees 

Whole subject trajectories 

 RMSE 6.819 4.928 5.684 5.542 4.943 

 Mean AE 5.283 3.792 4.427 4.323 3.858 

 Bias 1.602 0.066 0.427 0.423 0.107 

 AV bias 4.421 3.162 3.673 3.557 3.227 

Final observation forecasts 

 RMSE 9.720 4.721 4.528 5.142 5.233 

 Mean AE 6.859 3.588 3.357 3.842 3.971 

 Bias -1.360 -1.151 -0.593 -0.208 -1.322 

 AV bias 4.799 2.820 2.573 2.888 3.158 

Note.  Regression performance metrics summarized across all time points with CPath 
model shown for reference. 
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Figure 11 

MERF Model Hyperparameter Tunings – ADAS-Cog Score 

 
Note.  Hyperparameter tunings provided from cross-fold validations on whole subject tra-
jectories. 
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Figure 12 

Bagged GLMM Trees Model Hyperparameter Tunings – ADAS-Cog Score 

 
Note.  Hyperparameter tunings provided from cross-fold validations on whole subject tra-
jectories. 
  



 

 
116 

Figure 13 

Boosted Trees Model Hyperparameter Tunings – ADAS-Cog Score 

 
Note.  Hyperparameter tunings provided from cross-fold validations on whole subject tra-
jectories. 
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Table 8 

Top Hyperparameters for Ensemble Methods – ADAS-Cog Score 

Ensemble 
method 

Performance 
metric 

Best 
value Hyperparameter set 

MERF model 

 RMSE 5.044 % Features=0.60 ; # Trees=250 

 Mean AE 3.791 % Features=0.60 ; # Trees=750 

 SMAE % .330 % Features=0.40 ; # Trees=250 

 Bias -0.012 % Features=0.40 ; # Trees=750 

Bagged GLMM trees model 

 RMSE 5.626 # Trees=100 ; % Subjects=0.75 

 Mean AE 4.363 # Trees=100 ; % Subjects=0.75 

 SMAE % 0.365 # Trees=100 ; % Subjects=0.75 

 Bias -0.548 # Trees=100 ; % Subjects=0.75 

Boosted trees model 

 RMSE 5.074 # Trees=200 

 Mean AE 3.835 # Trees=200 

 SMAE % 0.337 # Trees=200 

 Bias -0.013 # Trees=200 

Note.  For each ensemble method, the best performing hyperparameter set for each re-
gression metric is displayed along with the corresponding value.  
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Table 9 

MERF Model Prediction Performance – Whole Subject Trajectories of ADAS-Cog Score 

Years RMSE MAE Bias AV Bias 

0.0 4.749 3.628 0.096 2.885 

0.25 5.381 4.211 -1.007 3.407 

0.5 4.486 3.439 0.491 2.916 

0.75 6.605 5.080 -2.476 3.759 

1.0 4.989 3.820 -0.127 3.226 

1.25 6.968 5.668 -1.849 4.412 

1.5 5.337 3.902 -0.564 3.059 

2.0 4.830 3.829 0.641 3.490 

2.5 4.907 3.869 -2.046 2.766 

3.0 4.856 3.954 0.527 3.668 

4.0 3.880 3.141 1.410 3.004 

5.0 3.561 2.767 1.717 2.133 

6.0 4.541 3.665 2.090 2.968 

All 4.928 3.792 0.066 3.162 

Note.  Regression performance metrics presented at individual time points as well as 
across all time points. 
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Table 10 

Evaluation of MERF Model Relative to CPath Reference – Whole Subject Trajectories of 
ADAS-Cog Score 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

RMSE 4.928 6.819 -1.891 -27.73% [-2.112, -1.658] 

Mean AE 3.792 5.283 -1.491 -28.23% [-1.651, -1.321] 

Bias 0.066 1.602 -1.536 -95.90% [-1.797, -1.289] 

AV bias 3.162 4.421 -1.258 -28.46% [-1.449, -1.036] 

Note.  Values for change in metric and percent difference relative to CPath reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 14 

MERF Model True and Predicted ADAS-Cog Scores – Whole Subject Trajectories 

 
Note.  Error bars centered at mean with standard deviation ranges. 



 

 
121 

Figure 15 

MERF Model Prediction Discrepancies for ADAS-Cog Scores – Whole Subject  
Trajectories 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Table 11 

MERF Model Prediction Performance – Final Observation Forecasts of  
ADAS-Cog Score 

Years RMSE MAE Bias AV Bias 

0.25 3.407 2.728 -0.008 2.545 

0.5 4.692 3.171 -0.880 2.436 

1.0 3.982 3.262 -0.703 2.736 

1.25 6.023 5.084 -0.320 6.509 

1.5 6.031 4.877 -0.681 4.230 

2.0 4.995 3.670 -1.505 2.269 

3.0 4.108 3.044 -0.892 2.340 

4.0 5.275 3.858 -1.793 2.876 

5.0 3.089 2.388 -1.556 2.268 

6.0 4.660 3.821 -1.818 3.043 

All 4.721 3.588 -1.151 2.820 

Note.  Regression performance metrics presented at individual time points as well as 
across all time points. 
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Table 12 

Evaluation of MERF Model Relative to CPath Reference – Final Observation Forecasts 
of ADAS-Cog Score 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

RMSE 4.721 9.720 -4.999 -51.43% [-5.490, -4.532] 

Mean AE 3.588 6.859 -3.271 -47.69% [-3.635, -2.899] 

Bias -1.151 -1.360 0.209 -15.37% [-0.350, 0.796] 

AV bias 2.820 4.799 -1.979 -41.24% [-2.393, -1.649] 

Note.  Values for change in metric and percent difference relative to CPath reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 16 

MERF Model True and Predicted ADAS-Cog Scores – Final Observation Forecasts 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Figure 17 

MERF Model Prediction Discrepancies for ADAS-Cog Scores – Final Observation  
Forecasts 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Table 13 

Single GLMM Tree Model Prediction Performance – Whole Subject Trajectories of 
ADAS-Cog Score 

Years RMSE MAE Bias AV Bias 

0.0 5.039 3.770 -0.165 2.811 

0.25 5.949 4.675 -1.653 3.932 

0.5 4.987 3.882 0.460 3.462 

0.75 7.579 5.878 -3.290 4.255 

1.0 5.609 4.438 0.181 3.461 

1.25 8.007 6.232 -2.928 4.956 

1.5 6.377 4.710 -0.626 3.756 

2.0 5.528 4.592 1.742 4.205 

2.5 5.088 4.082 -1.775 3.975 

3.0 5.919 4.910 2.139 4.576 

4.0 5.550 4.672 3.687 4.354 

5.0 5.844 4.704 4.394 3.830 

6.0 6.857 5.332 4.829 4.522 

All 5.684 4.427 0.427 3.673 

Note.  Regression performance metrics presented at individual time points as well as 
across all time points. 
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Table 14 

Evaluation of Single GLMM Tree Model Relative to CPath Reference – Whole Subject  
Trajectories of ADAS-Cog Score 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

RMSE 5.684 6.819 -1.135 -16.64% [-1.378, -0.890] 

Mean AE 4.427 5.283 -0.856 -16.20% [-1.031, -0.681] 

Bias 0.427 1.602 -1.175 -73.35% [-1.468, -0.906] 

AV bias 3.673 4.421 -0.748 -16.92% [-0.992, -0.532] 

Note.  Values for change in metric and percent difference relative to CPath reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 18 

Single GLMM Tree Model True and Predicted ADAS-Cog Scores – Whole Subject  
Trajectories 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Figure 19 

Single GLMM Tree Model Prediction Discrepancies for ADAS-Cog Scores – Whole  
Subject Trajectories 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Table 15 

Single GLMM Tree Model Prediction Performance – Final Observation Forecasts of  
ADAS-Cog Score 

Years RMSE MAE Bias AV Bias 

0.25 3.768 3.336 -1.000 3.704 

0.5 4.847 3.153 -0.261 2.158 

1.0 3.662 2.828 -0.554 1.908 

1.25 5.609 4.595 0.661 4.452 

1.5 6.334 4.789 -1.004 3.253 

2.0 5.290 3.837 -1.073 2.591 

3.0 3.846 2.851 -0.506 2.166 

4.0 4.181 3.148 -0.385 2.759 

5.0 2.630 2.142 -0.697 1.962 

6.0 3.842 3.253 -0.240 2.908 

All 4.528 3.357 -0.593 2.573 

Note.  Regression performance metrics presented at individual time points as well as 
across all time points. 
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Table 16 

Evaluation of Single GLMM Tree Model Relative to CPath Reference – Final  
Observation Forecasts of ADAS-Cog Score 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

RMSE 4.528 9.720 -5.192 -53.42% [-5.767, -4.665] 

Mean AE 3.357 6.859 -3.501 -51.05% [-3.885, -3.105] 

Bias -0.593 -1.360 0.768 -56.43% [0.216, 1.331] 

AV bias 2.573 4.799 -2.226 -46.39% [-2.464, -1.839] 

Note.  Values for change in metric and percent difference relative to CPath reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 20 

Single GLMM Tree Model True and Predicted ADAS-Cog Scores – Final Observation 
Forecasts 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Figure 21 

Single GLMM Tree Model Prediction Discrepancies for ADAS-Cog Scores – Final  
Observation Forecasts 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Table 17 

Bagged GLMM Trees Model Prediction Performance – Whole Subject Trajectories of 
ADAS-Cog Score 

Years RMSE MAE Bias AV Bias 

0.0 4.995 3.737 -0.145 2.667 

0.25 5.913 4.658 -1.638 3.783 

0.5 4.925 3.833 0.489 3.260 

0.75 7.531 5.818 -3.175 4.244 

1.0 5.495 4.351 0.172 3.494 

1.25 7.711 6.105 -2.724 5.057 

1.5 6.061 4.589 -0.514 3.639 

2.0 5.426 4.480 1.670 4.030 

2.5 4.840 3.816 -1.634 3.817 

3.0 5.690 4.689 2.151 4.597 

4.0 5.366 4.493 3.526 4.232 

5.0 5.380 4.264 4.012 3.246 

6.0 6.424 5.012 4.426 3.560 

All 5.542 4.323 0.423 3.557 

Note.  Regression performance metrics presented at individual time points as well as 
across all time points. 
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Table 18 

Evaluation of Bagged GLMM Trees Model Relative to CPath Reference – Whole Subject  
Trajectories of ADAS-Cog Score 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

RMSE 5.542 6.819 -1.277 -18.73% [-1.503, -1.041] 

Mean AE 4.323 5.283 -0.960 -18.18% [-1.131, -0.786] 

Bias 0.423 1.602 -1.179 -73.61% [-1.487, -0.897] 

AV bias 3.557 4.421 -0.864 -19.55% [-1.079, -0.604] 

Note.  Values for change in metric and percent difference relative to CPath reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 22 

Bagged GLMM Trees Model True and Predicted ADAS-Cog Scores – Whole Subject  
Trajectories 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Figure 23 

Bagged GLMM Trees Model Prediction Discrepancies for ADAS-Cog Scores – Whole  
Subject Trajectories 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Table 19 

Bagged GLMM Trees Model Prediction Performance – Final Observation Forecasts of  
ADAS-Cog Score 

Years RMSE MAE Bias AV Bias 

0.25 3.314 3.198 -1.786 3.106 

0.5 5.913 3.415 -0.557 1.430 

1.0 4.232 3.556 -0.798 2.679 

1.25 7.041 5.588 0.319 4.713 

1.5 6.515 4.863 -1.138 2.834 

2.0 6.460 4.915 -1.074 3.415 

3.0 4.068 3.161 -0.092 2.892 

4.0 4.854 3.892 0.337 3.011 

5.0 2.829 2.180 0.132 1.807 

6.0 4.746 3.690 1.597 2.964 

All 5.142 3.842 -0.208 2.888 

Note.  Regression performance metrics presented at individual time points as well as 
across all time points. 



 

 
139 

Table 20 

Evaluation of Bagged GLMM Trees Model Relative to CPath Reference – Final  
Observation Forecasts of ADAS-Cog Score 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

RMSE 5.142 9.720 -4.577 -47.09% [-5.154, -4.026] 

Mean AE 3.842 6.859 -3.017 -43.98% [-3.464, -2.601] 

Bias -0.208 -1.360 1.152 -84.71% [0.498, 1.775] 

AV bias 2.888 4.799 -1.911 -39.83% [-2.330, -1.677] 

Note.  Values for change in metric and percent difference relative to CPath reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 24 

Bagged GLMM Trees Model True and Predicted ADAS-Cog Scores – Final Observation 
Forecasts 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Figure 25 

Bagged GLMM Trees Model Prediction Discrepancies for ADAS-Cog Scores – Final  
Observation Forecasts 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Table 21 

Boosted Trees Model Prediction Performance – Whole Subject Trajectories of 
ADAS-Cog Score 

Years RMSE MAE Bias AV Bias 

0.0 4.765 3.642 0.173 2.832 

0.25 5.415 4.218 -0.906 3.740 

0.5 4.557 3.527 0.604 2.851 

0.75 6.204 4.871 -2.741 3.968 

1.0 4.936 3.907 0.078 3.273 

1.25 6.863 5.508 -2.386 4.346 

1.5 5.168 3.801 -0.937 2.936 

2.0 5.069 4.160 0.806 3.700 

2.5 4.816 3.783 -1.673 2.883 

3.0 5.069 4.200 0.787 3.534 

4.0 4.015 3.191 1.674 2.550 

5.0 3.462 2.726 1.121 2.147 

6.0 4.497 3.740 1.370 3.429 

All 4.943 3.858 0.107 3.227 

Note.  Regression performance metrics presented at individual time points as well as 
across all time points. 
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Table 22 

Evaluation of Boosted Trees Model Relative to CPath Reference – Whole Subject  
Trajectories of ADAS-Cog Score 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

RMSE 4.943 6.819 -1.876 -27.51% [-2.097, -1.662] 

Mean AE 3.858 5.283 -1.426 -26.98% [-1.590, -1.275] 

Bias 0.107 1.602 -1.495 -93.30% [-1.736, -1.240] 

AV bias 3.227 4.421 -1.194 -27.01% [-1.424, -1.016] 

Note.  Values for change in metric and percent difference relative to CPath reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 26 

Boosted Trees Model True and Predicted ADAS-Cog Scores – Whole Subject  
Trajectories 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Figure 27 

Boosted Trees Model Prediction Discrepancies for ADAS-Cog Scores – Whole Subject 
Trajectories 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Table 23 

Boosted Trees Model Prediction Performance – Final Observation Forecasts of  
ADAS-Cog Score 

Years RMSE MAE Bias AV Bias 

0.25 3.028 2.693 -1.414 2.330 

0.5 3.793 2.986 0.072 2.462 

1.0 4.110 3.397 -1.297 3.194 

1.25 6.506 5.505 -0.149 5.837 

1.5 6.779 5.083 -1.998 3.904 

2.0 6.969 5.240 -2.160 3.435 

3.0 4.317 3.383 -0.541 2.694 

4.0 5.280 4.120 -1.803 2.819 

5.0 2.905 2.327 -0.990 1.809 

6.0 4.726 3.861 -1.651 3.826 

All 5.233 3.971 -1.322 3.158 

Note.  Regression performance metrics presented at individual time points as well as 
across all time points. 
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Table 24 

Evaluation of Boosted Trees Model Relative to CPath Reference – Final Observation 
Forecasts of ADAS-Cog Score 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

RMSE 5.233 9.720 -4.487 -46.16% [-5.073, -3.937] 

Mean AE 3.971 6.859 -2.888 -42.10% [-3.317, -2.463] 

Bias -1.322 -1.360 0.038 -2.82% [-0.582, 0.704] 

AV bias 3.158 4.799 -1.641 -34.20% [-2.159, -1.413] 

Note.  Values for change in metric and percent difference relative to CPath reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 28 

Boosted Trees Model True and Predicted ADAS-Cog Scores – Final Observation  
Forecasts 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Figure 29 

Boosted Trees Model Prediction Discrepancies for ADAS-Cog Scores – Final  
Observation Forecasts 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Table 25 

Ensemble Methods Performance Summary – CDR-Based Impairment 

Type of 
prediction 

Performance 
metric 

CPath 
reference MERF Single 

GLMM 
Bagged 
GLMM 

Boosted 
trees 

Whole subject trajectories 

 Accuracy 0.711 0.815 0.803 0.818 0.825 

 Precision 0.958 0.960 0.967 0.960 0.965 

 Recall 0.661 0.798 0.776 0.801 0.806 

 ROC AUC 0.841 0.903 0.892 0.907 0.916 

Final observation forecasts 

 Accuracy 0.730 0.967 0.967 0.963 0.935 

 Precision 0.977 0.983 0.989 0.989 0.982 

 Recall 0.694 0.978 0.972 0.966 0.939 

 ROC AUC 0.825 0.981 0.981 0.987 0.972 

Note.  Classification performance metrics summarized across all time points with logistic 
model shown for reference. 
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Figure 30 

MERF Model Hyperparameter Tunings – CDR-Based Impairment 

 
Note.  Hyperparameter tunings provided from cross-fold validations on whole subject tra-
jectories. 
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Figure 31 

Bagged GLMM Trees Model Hyperparameter Tunings – CDR-Based Impairment 

 
Note.  Hyperparameter tunings provided from cross-fold validations on whole subject tra-
jectories. 
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Figure 32 

Boosted Trees Model Hyperparameter Tunings – CDR-Based Impairment 

 
Note.  Hyperparameter tunings provided from cross-fold validations on whole subject tra-
jectories. 
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Table 26 

Top Hyperparameters for Ensemble Methods – CDR-Based Impairment 

Ensemble 
method 

Performance 
metric 

Best 
value Hyperparameter set 

MERF model 

 Accuracy 0.754 % Features=0.70 ; # Trees=750 

 Precision 0.967 % Features=0.35 ; # Trees=500 

 Recall 0.733 % Features=0.70 ; # Trees=750 

 ROC AUC 0.791 % Features=0.35 ; # Trees=500 

Bagged GLMM trees model 

 Accuracy 0.701 # Trees=100 ; % Subjects=0.75 

 Precision 0.973 # Trees=100 ; % Subjects=0.40 

 Recall 0.665 # Trees=100 ; % Subjects=0.75 

 ROC AUC 0.770 # Trees=200 ; % Subjects=0.40 

Boosted trees model 

 Accuracy 0.811 # Trees=100 

 Precision 0.947 # Trees=200 

 Recall 0.813 # Trees=100 

 ROC AUC 0.806 # Trees=200 

Note.  For each ensemble method, the best performing hyperparameter set for each classi-
fication metric is displayed along with the corresponding value.  
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Table 27 

MERF Model Prediction Performance – Whole Subject Trajectories of CDR-Based  
Impairment 

Years Accuracy Precision Recall AUC NRI 

0.0 0.859 0.977 0.849 0.932 0.108 

0.5 0.847 0.972 0.838 0.911 0.105 

1.0 0.829 0.957 0.830 0.899 0.078 

1.5 0.839 0.959 0.869 0.802 -0.288 

2.0 0.755 0.934 0.703 0.867 0.139 

2.5 0.655 1.000 0.655 1.000 - 

3.0 0.663 0.907 0.609 0.809 0.080 

4.0 0.824 0.923 0.600 0.847 0.282 

5.0 0.788 0.917 0.647 0.934 0.357 

6.0 0.812 0.900 0.643 0.861 0.468 

All 0.815 0.960 0.798 0.903 0.124 

Note.  Classification performance metrics presented at individual time points as well as 
across all time points.  NRI based on reclassification from logistic reference model; NRI 
incalculable under certain ROC AUC conditions. 
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Table 28 

Evaluation of MERF Model Relative to Logistic Reference – Whole Subject Trajectories 
of CDR-Based Impairment 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

Accuracy 0.815 0.711 0.105 14.72% [0.082, 0.125] 

Precision 0.960 0.958 0.002 0.23% [-0.011, 0.015] 

Recall 0.798 0.661 0.138 20.82% [0.111, 0.161] 

ROC AUC 0.903 0.841 0.061 7.30% [0.043, 0.078] 

Note.  Values for change in metric and percent difference relative to logistic reference 
model; bootstrap confidence interval corresponds to change in metric. 
  



 

 
157 

Figure 33 

MERF Model True and Predicted CDR-Based Impairment Counts – Whole Subject  
Trajectories 
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Figure 34 

MERF Model Misclassification Rates for CDR-Based Impairment – Whole Subject  
Trajectories 

 
Note.  False positive and false negative rates marginalized by time to be relative to total 
counts at that timepoint. 
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Table 29 

MERF Model Prediction Performance – Final Observation Forecasts of CDR-Based  
Impairment 

Years Accuracy Precision Recall AUC NRI 

0.5 0.929 1.000 0.923 1.000 1.308 

1.0 1.000 1.000 1.000 1.000 - 

1.5 1.000 1.000 1.000 1.000 - 

2.0 1.000 1.000 1.000 1.000 - 

3.0 0.957 0.975 0.975 0.971 0.425 

4.0 0.933 0.909 1.000 0.940 0.300 

5.0 0.917 1.000 0.857 0.971 0.143 

6.0 0.935 0.947 0.947 0.987 0.443 

All 0.967 0.983 0.978 0.981 0.285 

Note.  Classification performance metrics presented at individual time points as well as 
across all time points.  NRI based on reclassification from logistic reference model; NRI 
incalculable under certain ROC AUC conditions. 
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Table 30 

Evaluation of MERF Model Relative to Logistic Reference – Final Observation Forecasts 
of CDR-Based Impairment 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

Accuracy 0.967 0.730 0.237 32.46% [0.209, 0.256] 

Precision 0.983 0.977 0.007 0.67% [-0.016, 0.023] 

Recall 0.978 0.694 0.283 40.78% [0.260, 0.300] 

ROC AUC 0.981 0.825 0.157 19.01% [0.132, 0.172] 

Note.  Values for change in metric and percent difference relative to logistic reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 35 

MERF Model True and Predicted CDR-Based Impairment Counts – Final Observation 
Forecasts 
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Figure 36 

MERF Model Misclassification Rates for CDR-Based Impairment – Final Observation 
Forecasts 

 
Note.  False positive and false negative rates marginalized by time to be relative to total 
counts at that timepoint. 
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Table 31 

Single GLMM Tree Model Prediction Performance – Whole Subject Trajectories of 
CDR-Based Impairment 

Years Accuracy Precision Recall AUC NRI 

0.0 0.862 0.977 0.853 0.923 0.112 

0.5 0.823 0.960 0.819 0.891 0.041 

1.0 0.825 0.981 0.803 0.901 0.151 

1.5 0.804 0.978 0.813 0.815 0.056 

2.0 0.755 0.958 0.683 0.871 0.166 

2.5 0.414 1.000 0.414 1.000 - 

3.0 0.698 0.952 0.625 0.791 0.186 

4.0 0.824 0.923 0.600 0.818 0.282 

5.0 0.818 0.923 0.706 0.908 0.415 

6.0 0.750 0.800 0.571 0.831 0.341 

All 0.803 0.967 0.776 0.892 0.128 

Note.  Classification performance metrics presented at individual time points as well as 
across all time points.  NRI based on reclassification from logistic reference model; NRI 
incalculable under certain ROC AUC conditions. 
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Table 32 

Evaluation of Single GLMM Tree Model Relative to Logistic Reference – Whole Subject 
Trajectories of CDR-Based Impairment 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

Accuracy 0.803 0.711 0.093 13.06% [0.071, 0.114] 

Precision 0.967 0.958 0.010 1.00% [-0.003, 0.021] 

Recall 0.776 0.661 0.115 17.47% [0.089, 0.141] 

ROC AUC 0.892 0.841 0.051 6.09% [0.031, 0.068] 

Note.  Values for change in metric and percent difference relative to logistic reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 37 

Single GLMM Tree Model True and Predicted CDR-Based Impairment Counts – Whole 
Subject Trajectories 
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Figure 38 

Single GLMM Tree Model Misclassification Rates for CDR-Based Impairment – Whole 
Subject Trajectories 

 
Note.  False positive and false negative rates marginalized by time to be relative to total 
counts at that timepoint. 
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Table 33 

Single GLMM Tree Model Prediction Performance – Final Observation Forecasts of 
CDR-Based Impairment 

Years Accuracy Precision Recall AUC NRI 

0.5 0.929 1.000 0.923 1.000 1.308 

1.0 1.000 1.000 1.000 1.000 - 

1.5 1.000 1.000 1.000 1.000 - 

2.0 0.972 1.000 0.967 1.000 - 

3.0 0.957 0.975 0.975 0.917 0.425 

4.0 0.933 0.909 1.000 0.980 0.300 

5.0 0.917 1.000 0.857 1.000 0.143 

6.0 0.968 1.000 0.947 0.982 0.526 

All 0.967 0.989 0.972 0.981 0.308 

Note.  Classification performance metrics presented at individual time points as well as 
across all time points.   NRI based on reclassification from logistic reference model; NRI 
incalculable under certain ROC AUC conditions. 
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Table 34 

Evaluation of Single GLMM Tree Model Relative to Logistic Reference – Final  
Observation Forecasts of CDR-Based Impairment 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

Accuracy 0.967 0.730 0.237 32.46% [0.214, 0.260] 

Precision 0.989 0.977 0.012 1.24% [-0.006, 0.023] 

Recall 0.972 0.694 0.278 39.98% [0.254, 0.300] 

ROC AUC 0.981 0.825 0.157 19.01% [0.133, 0.173] 

Note.  Values for change in metric and percent difference relative to logistic reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 39 

Single GLMM Tree Model True and Predicted CDR-Based Impairment Counts – Final 
Observation Forecasts 
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Figure 40 

Single GLMM Tree Model Misclassification Rates for CDR-Based Impairment – Final 
Observation Forecasts 

 
Note.  False positive and false negative rates marginalized by time to be relative to total 
counts at that timepoint. 
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Table 35 

Bagged GLMM Trees Model Prediction Performance – Whole Subject Trajectories of 
CDR-Based Impairment 

Years Accuracy Precision Recall AUC NRI 

0.0 0.868 0.973 0.865 0.929 0.105 

0.5 0.835 0.960 0.833 0.913 0.056 

1.0 0.829 0.963 0.824 0.910 0.097 

1.5 0.821 0.958 0.850 0.755 -0.307 

2.0 0.797 0.962 0.743 0.887 0.226 

2.5 0.552 1.000 0.552 1.000 - 

3.0 0.674 0.909 0.625 0.824 0.095 

4.0 0.843 0.929 0.650 0.852 0.332 

5.0 0.788 0.917 0.647 0.923 0.357 

6.0 0.812 0.900 0.643 0.917 0.468 

All 0.818 0.960 0.801 0.907 0.127 

Note.  Classification performance metrics presented at individual time points as well as 
across all time points.  NRI based on reclassification from logistic reference model; NRI 
incalculable under certain ROC AUC conditions. 
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Table 36 

Evaluation of Bagged GLMM Trees Model Relative to Logistic Reference – Whole  
Subject Trajectories of CDR-Based Impairment 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

Accuracy 0.818 0.711 0.107 15.05% [0.086, 0.126] 

Precision 0.960 0.958 0.002 0.25% [-0.011, 0.015] 

Recall 0.801 0.661 0.141 21.27% [0.115, 0.163] 

ROC AUC 0.907 0.841 0.066 7.80% [0.047, 0.082] 

Note.  Values for change in metric and percent difference relative to logistic reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 41 

Bagged GLMM Trees Model True and Predicted CDR-Based Impairment  
Counts – Whole Subject Trajectories 
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Figure 42 

Bagged GLMM Trees Model Misclassification Rates for CDR-Based Impairment – Whole 
Subject Trajectories 

 
Note.  False positive and false negative rates marginalized by time to be relative to total 
counts at that timepoint. 
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Table 37 

Bagged GLMM Trees Model Prediction Performance – Final Observation Forecasts of 
CDR-Based Impairment 

Years Accuracy Precision Recall AUC NRI 

0.5 0.929 1.000 0.923 1.000 1.308 

1.0 1.000 1.000 1.000 1.000 - 

1.5 1.000 1.000 1.000 1.000 - 

2.0 0.972 1.000 0.967 1.000 0.333 

3.0 0.957 0.975 0.975 0.950 0.425 

4.0 0.867 0.900 0.900 0.980 0.200 

5.0 0.917 1.000 0.857 0.971 0.143 

6.0 0.968 1.000 0.947 0.982 0.526 

All 0.963 0.989 0.966 0.987 0.302 

Note.  Classification performance metrics presented at individual time points as well as 
across all time points.  NRI based on reclassification from logistic reference model; NRI 
incalculable under certain ROC AUC conditions. 
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Table 38 

Evaluation of Bagged GLMM Trees Model Relative to Logistic Reference – Final  
Observation Forecasts of CDR-Based Impairment 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

Accuracy 0.963 0.730 0.232 31.82% [0.204, 0.256] 

Precision 0.989 0.977 0.012 1.23% [-0.005, 0.023] 

Recall 0.966 0.694 0.272 39.17% [0.243, 0.295] 

ROC AUC 0.987 0.825 0.162 19.66% [0.148, 0.173] 

Note.  Values for change in metric and percent difference relative to logistic reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 43 

Bagged GLMM Trees Model True and Predicted CDR-Based Impairment Counts – Final 
Observation Forecasts 
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Figure 44 

Bagged GLMM Trees Model Misclassification Rates for CDR-Based Impairment – Final 
Observation Forecasts 

 
Note.  False positive and false negative rates marginalized by time to be relative to total 
counts at that timepoint. 
  



 

 
179 

Table 39 

Boosted Trees Model Prediction Performance – Whole Subject Trajectories of  
CDR-Based Impairment 

Years Accuracy Precision Recall AUC NRI 

0.0 0.859 0.982 0.845 0.936 0.124 

0.5 0.823 0.960 0.819 0.905 0.041 

1.0 0.833 0.969 0.824 0.911 0.122 

1.5 0.848 0.979 0.860 0.852 0.103 

2.0 0.811 0.951 0.772 0.888 0.232 

2.5 0.724 1.000 0.724 1.000 - 

3.0 0.721 0.917 0.688 0.839 0.158 

4.0 0.843 0.929 0.650 0.835 0.332 

5.0 0.788 0.917 0.647 0.938 0.357 

6.0 0.812 0.900 0.643 0.845 0.468 

All 0.825 0.965 0.806 0.916 0.147 

Note.  Classification performance metrics presented at individual time points as well as 
across all time points.  NRI based on reclassification from logistic reference model; NRI 
incalculable under certain ROC AUC conditions. 
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Table 40 

Evaluation of Boosted Trees Model Relative to Logistic Reference – Whole Subject  
Trajectories of CDR-Based Impairment 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

Accuracy 0.825 0.711 0.114 16.05% [0.090, 0.135] 

Precision 0.965 0.958 0.007 0.76% [-0.007, 0.019] 

Recall 0.806 0.661 0.146 22.03% [0.118, 0.169] 

ROC AUC 0.916 0.841 0.075 8.87% [0.059, 0.090] 

Note.  Values for change in metric and percent difference relative to logistic reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 45 

Boosted Trees Model True and Predicted CDR-Based Impairment Counts – Whole  
Subject Trajectories 
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Figure 46 

Boosted Trees Model Misclassification Rates for CDR-Based Impairment – Whole  
Subject Trajectories 

 
Note.  False positive and false negative rates marginalized by time to be relative to total 
counts at that timepoint. 
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Table 41 

Boosted Trees Model Prediction Performance – Final Observation Forecasts of  
CDR-Based Impairment 

Years Accuracy Precision Recall AUC NRI 

0.5 0.857 1.000 0.846 1.000 1.231 

1.0 0.967 1.000 0.967 1.000 - 

1.5 1.000 1.000 1.000 1.000 - 

2.0 0.944 0.967 0.967 0.978 0.167 

3.0 0.913 0.950 0.950 0.854 0.233 

4.0 0.933 1.000 0.900 0.980 0.400 

5.0 0.833 1.000 0.714 1.000 - 

6.0 0.935 1.000 0.895 0.961 0.474 

All 0.935 0.982 0.939 0.972 0.246 

Note.  Classification performance metrics presented at individual time points as well as 
across all time points.  NRI based on reclassification from logistic reference model; NRI 
incalculable under certain ROC AUC conditions. 
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Table 42 

Evaluation of Boosted Trees Model Relative to Logistic Reference – Final Observation 
Forecasts of CDR-Based Impairment 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

Accuracy 0.935 0.730 0.204 27.98% [0.172, 0.232] 

Precision 0.982 0.977 0.006 0.60% [-0.015, 0.023] 

Recall 0.939 0.694 0.244 35.15% [0.206, 0.277] 

ROC AUC 0.972 0.825 0.148 17.90% [0.123, 0.168] 

Note.  Values for change in metric and percent difference relative to logistic reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 47 

Boosted Trees Model True and Predicted CDR-Based Impairment Counts – Final  
Observation Forecasts 
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Figure 48 

Boosted Trees Model Misclassification Rates for CDR-Based Impairment – Final  
Observation Forecasts 

 
Note.  False positive and false negative rates marginalized by time to be relative to total 
counts at that timepoint. 
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Table 43 

Neural Networks Performance Summary – ADAS-Cog Score 

Type of 
prediction 

Performance 
metric 

CPath 
reference FNN 1D CNN LSTM RNN 

Whole subject trajectories 

 RMSE 6.819 4.660 6.506 6.167 

 Mean AE 5.283 3.560 4.673 4.423 

 Bias 1.602 0.526 1.075 1.359 

 AV bias 4.421 2.830 3.427 3.146 

Final observation forecasts 

 RMSE 9.720 5.483 5.856 5.650 

 Mean AE 6.859 4.257 3.823 3.727 

 Bias -1.360 0.431 -1.068 -1.109 

 AV bias 4.799 3.437 2.280 2.438 

Note.  Regression performance metrics summarized across all time points with CPath 
model shown for reference. 
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Figure 49 

Feed-Forward Neural Network Hyperparameter Tunings – ADAS-Cog Score 

 
Note.  Hyperparameter tunings provided from cross-fold validations on whole subject tra-
jectories. 
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Figure 50 

1D Convolutional Neural Network Hyperparameter Tunings – ADAS-Cog Score 

 
Note.  Hyperparameter tunings provided from cross-fold validations on whole subject tra-
jectories. 
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Figure 51 

LSTM Recurrent Neural Network Hyperparameter Tunings – ADAS-Cog Score 

 
Note.  Hyperparameter tunings provided from cross-fold validations on whole subject tra-
jectories. 
  



 

 
191 

Table 44 

Top Hyperparameters for Neural Networks – ADAS-Cog Score 

Neural 
network 

Performance 
metric 

Best 
value Hyperparameter set 

Feed-forward neural network 

 RMSE 5.087 2 layers: {4,2} 

 Mean AE 3.857 3 layers: {8,4,2} 

 SMAE % 0.328 3 layers: {8,4,2} 

 Bias -0.092 3 layers: {8,4,2} 

1D convolutional neural network 

 RMSE 5.458 CNN nodes=16  

 Mean AE 3.831 CNN nodes=16  

 SMAE % 0.267 CNN nodes=16  

 Bias -0.030 CNN nodes=32  

LSTM recurrent neural network 

 RMSE 5.127 LSTM nodes=16 

 Mean AE 3.581 LSTM nodes=16 

 SMAE % 0.259 LSTM nodes=16 

 Bias -0.519 LSTM nodes=32 

Note.  For each neural network, the best performing hyperparameter set for each regres-
sion metric is displayed along with the corresponding value.  
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Table 45 

Feed-Forward Neural Network Prediction Performance – Whole Subject Trajectories of 
ADAS-Cog Score 

Years RMSE MAE Bias AV Bias 

0.0 4.709 3.502 0.545 2.648 

0.25 5.477 4.344 0.345 3.233 

0.5 4.356 3.350 0.971 2.617 

0.75 5.008 4.137 -0.088 3.336 

1.0 4.868 3.700 0.603 2.937 

1.25 5.781 4.467 0.444 3.682 

1.5 4.507 3.365 0.490 2.747 

2.0 4.731 3.684 0.571 3.299 

2.5 4.465 3.429 -1.707 2.473 

3.0 4.552 3.591 0.317 2.947 

4.0 3.711 2.929 0.761 2.696 

5.0 3.265 2.386 0.426 1.854 

6.0 4.060 3.284 0.312 2.827 

All 4.660 3.560 0.526 2.830 

Note.  Regression performance metrics presented at individual time points as well as 
across all time points. 
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Table 46 

Evaluation of Feed-Forward Neural Network Relative to CPath Reference – Whole  
Subject Trajectories of ADAS-Cog Score 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

RMSE 4.660 6.819 -2.160 -31.67% [-2.351, -1.972] 

Mean AE 3.560 5.283 -1.723 -32.61% [-1.876, -1.579] 

Bias 0.526 1.602 -1.076 -67.18% [-1.297, -0.853] 

AV bias 2.830 4.421 -1.591 -35.99% [-1.733, -1.429] 

Note.  Values for change in metric and percent difference relative to CPath reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 52 

Feed-Forward Neural Network True and Predicted ADAS-Cog Scores – Whole Subject  
Trajectories 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Figure 53 

Feed-Forward Neural Network Prediction Discrepancies for ADAS-Cog Scores – Whole 
Subject Trajectories 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Table 47 

Feed-Forward Neural Network Prediction Performance – Final Observation Forecasts 
of ADAS-Cog Score 

Years RMSE MAE Bias AV Bias 

0.25 5.017 4.021 0.958 3.075 

0.5 3.874 3.153 0.400 2.633 

1.0 5.363 4.146 0.810 3.611 

1.25 6.575 4.725 2.563 3.721 

1.5 7.189 6.127 3.179 6.241 

2.0 6.671 5.097 0.035 3.883 

3.0 4.817 3.881 -0.082 3.276 

4.0 4.768 3.638 0.230 2.597 

5.0 2.553 1.976 -0.679 1.530 

6.0 5.004 4.022 -0.912 3.142 

All 5.483 4.257 0.431 3.437 

Note.  Regression performance metrics presented at individual time points as well as 
across all time points. 
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Table 48 

Evaluation of Feed-Forward Neural Network Relative to CPath Reference – Final  
Observation Forecasts of ADAS-Cog Score 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

RMSE 5.483 9.720 -4.237 -43.59% [-4.814, -3.699] 

Mean AE 4.257 6.859 -2.602 -37.94% [-3.051, -2.182] 

Bias 0.431 -1.360 1.792 -68.31% [1.096, 2.584] 

AV bias 3.437 4.799 -1.362 -28.38% [-1.962, -0.778] 

Note.  Values for change in metric and percent difference relative to CPath reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 54 

Feed-Forward Neural Network True and Predicted ADAS-Cog Scores – Final  
Observation Forecasts 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Figure 55 

Feed-Forward Neural Network Prediction Discrepancies for ADAS-Cog Scores – Final  
Observation Forecasts 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Table 49 

1D Convolutional Neural Network Prediction Performance – Whole Subject Trajectories 
of ADAS-Cog Score 

Years RMSE MAE Bias AV Bias 

0.0 4.597 3.463 0.769 2.520 

0.25 9.456 7.709 0.111 6.869 

0.5 5.118 3.976 1.078 3.043 

0.75 8.418 6.389 -1.997 4.792 

1.0 6.292 4.549 0.407 3.242 

1.25 9.407 7.547 0.743 5.704 

1.5 7.397 5.312 0.916 3.790 

2.0 5.820 4.284 1.087 3.294 

2.5 6.148 4.712 2.644 3.372 

3.0 6.440 4.764 2.362 4.087 

4.0 5.905 3.755 1.998 2.425 

5.0 9.299 5.600 3.631 2.887 

6.0 9.135 5.704 4.614 3.101 

All 6.506 4.673 1.075 3.427 

Note.  Regression performance metrics presented at individual time points as well as 
across all time points. 
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Table 50 

Evaluation of 1D Convolutional Neural Network Relative to CPath Reference – Whole  
Subject Trajectories of ADAS-Cog Score 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

RMSE 6.506 6.819 -0.313 -4.59% [-0.705, 0.050] 

Mean AE 4.673 5.283 -0.610 -11.54% [-0.845, -0.397] 

Bias 1.075 1.602 -0.527 -32.88% [-0.885, -0.219] 

AV bias 3.427 4.421 -0.994 -22.48% [-1.230, -0.771] 

Note.  Values for change in metric and percent difference relative to CPath reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 56 

1D Convolutional Neural Network True and Predicted ADAS-Cog Scores – Whole  
Subject Trajectories 

 
Note.  Error bars centered at mean with standard deviation ranges. 



 

 
203 

Figure 57 

1D Convolutional Neural Network Prediction Discrepancies for ADAS-Cog  
Scores – Whole Subject Trajectories 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Table 51 

1D Convolutional Neural Network Prediction Performance – Final Observation  
Forecasts of ADAS-Cog Score 

Years RMSE MAE Bias AV Bias 

0.25 5.791 4.640 -2.001 5.199 

0.5 7.186 4.663 -2.023 2.662 

1.0 5.896 4.042 -1.393 3.511 

1.25 5.782 4.777 1.534 4.384 

1.5 7.752 5.155 0.156 3.219 

2.0 4.857 3.452 -0.933 2.617 

2.5 2.646 2.646 2.646 2.646 

3.0 3.909 2.671 -0.671 1.803 

4.0 8.314 5.065 -2.712 2.662 

5.0 4.697 3.093 -0.715 1.360 

6.0 5.633 3.732 -1.894 1.983 

All 5.856 3.823 -1.068 2.280 

Note.  Regression performance metrics presented at individual time points as well as 
across all time points. 
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Table 52 

Evaluation of 1D Convolutional Neural Network Relative to CPath Reference – Final  
Observation Forecasts of ADAS-Cog Score 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

RMSE 5.856 9.720 -3.864 -39.76% [-4.822, -2.844] 

Mean AE 3.823 6.859 -3.035 -44.26% [-3.528, -2.449] 

Bias -1.068 -1.360 0.292 -21.47% [-0.412, 1.062] 

AV bias 2.280 4.799 -2.519 -52.49% [-2.857, -2.011] 

Note.  Values for change in metric and percent difference relative to CPath reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 58 

1D Convolutional Neural Network True and Predicted ADAS-Cog Scores – Final  
Observation Forecasts 

 
Note.  Error bars centered at mean with standard deviation ranges. 



 

 
207 

Figure 59 

1D Convolutional Neural Network Prediction Discrepancies for ADAS-Cog  
Scores – Final Observation Forecasts 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Table 53 

LSTM Recurrent Neural Network Prediction Performance – Whole Subject Trajectories 
of ADAS-Cog Score 

Years RMSE MAE Bias AV Bias 

0.0 4.561 3.442 0.707 2.490 

0.25 5.985 4.810 0.709 3.982 

0.5 5.240 3.966 1.298 2.975 

0.75 8.993 6.459 3.051 3.788 

1.0 6.439 4.591 0.686 3.162 

1.25 9.410 7.334 3.439 5.512 

1.5 7.345 5.368 1.776 3.461 

2.0 5.500 4.057 0.867 3.170 

2.5 5.018 3.616 0.065 2.421 

3.0 5.987 4.370 1.920 3.220 

4.0 5.727 3.874 2.450 2.560 

5.0 9.000 5.945 3.281 3.682 

6.0 8.435 5.426 4.274 3.797 

All 6.167 4.423 1.359 3.146 

Note.  Regression performance metrics presented at individual time points as well as 
across all time points. 
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Table 54 

Evaluation of LSTM Recurrent Neural Network Relative to CPath Reference – Whole  
Subject Trajectories of ADAS-Cog Score 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

RMSE 6.167 6.819 -0.652 -9.56% [-0.996, -0.260] 

Mean AE 4.423 5.283 -0.861 -16.29% [-1.067, -0.629] 

Bias 1.359 1.602 -0.244 -15.20% [-0.532, 0.089] 

AV bias 3.146 4.421 -1.275 -28.84% [-1.446, -1.092] 

Note.  Values for change in metric and percent difference relative to CPath reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 60 

LSTM Recurrent Neural Network True and Predicted ADAS-Cog Scores – Whole Subject 
Trajectories 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Figure 61 

LSTM Recurrent Neural Network Prediction Discrepancies for ADAS-Cog  
Scores – Whole Subject Trajectories 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Table 55 

LSTM Recurrent Neural Network Prediction Performance – Final Observation  
Forecasts of ADAS-Cog Score 

Years RMSE MAE Bias AV Bias 

0.25 3.315 3.070 -1.764 3.584 

0.5 6.723 4.546 -1.641 2.956 

1.0 5.481 3.950 -1.020 2.971 

1.25 6.605 5.394 1.805 5.299 

1.5 7.470 5.158 0.759 3.924 

2.0 5.597 3.561 -1.712 1.982 

2.5 4.623 4.623 4.623 4.623 

3.0 3.812 2.565 -0.732 1.777 

4.0 8.071 4.369 -2.978 1.955 

5.0 3.810 2.934 -0.638 2.389 

6.0 4.942 3.774 -2.230 2.824 

All 5.650 3.727 -1.109 2.438 

Note.  Regression performance metrics presented at individual time points as well as 
across all time points. 
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Table 56 

Evaluation of LSTM Recurrent Neural Network Relative to CPath Reference – Final  
Observation Forecasts of ADAS-Cog Score 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

RMSE 5.650 9.720 -4.070 -41.88% [-5.099, -3.156] 

Mean AE 3.727 6.859 -3.132 -45.67% [-3.681, -2.578] 

Bias -1.109 -1.360 0.251 -18.48% [-0.432, 0.991] 

AV bias 2.438 4.799 -2.361 -49.20% [-2.830, -1.990] 

Note.  Values for change in metric and percent difference relative to CPath reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 62 

LSTM Recurrent Neural Network True and Predicted ADAS-Cog Scores – Final  
Observation Forecasts 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Figure 63 

LSTM Recurrent Neural Network Prediction Discrepancies for ADAS-Cog Scores – Final 
Observation Forecasts 

 
Note.  Error bars centered at mean with standard deviation ranges. 
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Table 57 

Neural Networks Performance Summary – CDR-Based Impairment 

Type of 
prediction 

Performance 
metric 

Logistic 
reference FNN 1D CNN LSTM RNN 

Whole subject trajectories 

 Accuracy 0.711 0.800 0.836 0.835 

 Precision 0.958 0.972 0.963 0.958 

 Recall 0.661 0.768 0.822 0.824 

 ROC AUC 0.841 0.908 0.855 0.848 

Final observation forecasts 

 Accuracy 0.730 0.832 0.949 0.972 

 Precision 0.977 0.980 0.994 0.983 

 Recall 0.694 0.816 0.944 0.983 

 ROC AUC 0.825 0.924 0.958 0.949 

Note.  Classification performance metrics summarized across all time points with logistic 
model shown for reference. 
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Figure 64 

Feed-Forward Neural Network Hyperparameter Tunings – CDR-Based Impairment 

 
Note.  Hyperparameter tunings provided from cross-fold validations on whole subject tra-
jectories. 
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Figure 65 

1D Convolutional Neural Network Hyperparameter Tunings – CDR-Based Impairment 

 
Note.  Hyperparameter tunings provided from cross-fold validations on whole subject tra-
jectories. 
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Figure 66 

LSTM Recurrent Neural Network Hyperparameter Tunings – CDR-Based Impairment 

 
Note.  Hyperparameter tunings provided from cross-fold validations on whole subject tra-
jectories. 
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Table 58 

Top Hyperparameters for Neural Networks – CDR-Based Impairment 

Neural 
network 

Performance 
metric 

Best 
value Hyperparameter set 

Feed-forward neural network 

 Accuracy 0.821 3 layers: {8,4,2} 

 Precision 0.935 2 layers: {4,2} 

 Recall 0.844 3 layers: {8,4,2} 

 ROC AUC 0.785 2 layers: {4,2} 

1D convolutional neural network 

 Accuracy 0.941 CNN nodes=16  

 Precision 0.967 CNN nodes=16  

 Recall 0.962 CNN nodes=16  

 ROC AUC 0.899 CNN nodes=16  

LSTM recurrent neural network 

 Accuracy 0.936 LSTM nodes=16 

 Precision 0.967 LSTM nodes=16 

 Recall 0.956 LSTM nodes=32 

 ROC AUC 0.896 LSTM nodes=16 

Note.  For each neural network, the best performing hyperparameter set for each classifi-
cation metric is displayed along with the corresponding value.  
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Table 59 

Feed-Forward Neural Network Prediction Performance – Whole Subject Trajectories of 
CDR-Based Impairment 

Years Accuracy Precision Recall AUC NRI 

0.0 0.829 0.972 0.817 0.925 0.057 

0.5 0.803 0.964 0.789 0.896 0.034 

1.0 0.825 0.981 0.803 0.908 0.151 

1.5 0.804 0.989 0.804 0.845 0.247 

2.0 0.797 0.974 0.733 0.895 0.240 

2.5 0.517 1.000 0.517 1.000 - 

3.0 0.686 0.951 0.609 0.832 0.170 

4.0 0.843 0.929 0.650 0.840 0.332 

5.0 0.818 1.000 0.647 0.890 0.419 

6.0 0.812 0.900 0.643 0.857 0.468 

All 0.800 0.972 0.768 0.908 0.134 

Note.  Classification performance metrics presented at individual time points as well as 
across all time points.  NRI based on reclassification from logistic reference model; NRI 
incalculable under certain ROC AUC conditions. 
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Table 60 

Evaluation of Feed-Forward Neural Network Relative to Logistic Reference – Whole 
Subject Trajectories of CDR-Based Impairment 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

Accuracy 0.800 0.711 0.090 12.61% [0.068, 0.111] 

Precision 0.972 0.958 0.014 1.48% [0.002, 0.025] 

Recall 0.768 0.661 0.107 16.26% [0.083, 0.133] 

ROC AUC 0.908 0.841 0.066 7.89% [0.051, 0.082] 

Note.  Values for change in metric and percent difference relative to logistic reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 67 

Feed-Forward Neural Network True and Predicted CDR-Based Impairment  
Counts – Whole Subject Trajectories 
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Figure 68 

Feed-Forward Neural Network Misclassification Rates for CDR-Based  
Impairment – Whole Subject Trajectories 

 
Note.  False positive and false negative rates marginalized by time to be relative to total 
counts at that timepoint. 
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Table 61 

Feed-Forward Neural Network Prediction Performance – Final Observation Forecasts 
of CDR-Based Impairment 

Years Accuracy Precision Recall AUC NRI 

0.5 0.786 0.917 0.846 0.846 0.231 

1.0 0.867 1.000 0.867 1.000 - 

1.5 0.967 1.000 0.967 1.000 - 

2.0 0.889 0.964 0.900 0.944 0.100 

3.0 0.717 0.966 0.700 0.783 0.150 

4.0 0.867 1.000 0.800 0.940 0.300 

5.0 0.750 1.000 0.571 0.943 -0.143 

6.0 0.806 1.000 0.684 0.908 0.263 

All 0.832 0.980 0.816 0.924 0.123 

Note.  Classification performance metrics presented at individual time points as well as 
across all time points.  NRI based on reclassification from logistic reference model; NRI 
incalculable under certain ROC AUC conditions. 
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Table 62 

Evaluation of Feed-Forward Neural Network Relative to Logistic Reference – Final  
Observation Forecasts of CDR-Based Impairment 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

Accuracy 0.832 0.730 0.102 13.91% [0.045, 0.148] 

Precision 0.980 0.977 0.003 0.34% [-0.022, 0.023] 

Recall 0.816 0.694 0.121 17.45% [0.060, 0.177] 

ROC AUC 0.924 0.825 0.099 12.00% [0.058, 0.131] 

Note.  Values for change in metric and percent difference relative to logistic reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 69 

Feed-Forward Neural Network True and Predicted CDR-Based Impairment  
Counts – Final Observation Forecasts 

 

 



 

 
228 

Figure 70 

Feed-Forward Neural Network Misclassification Rates for CDR-Based  
Impairment – Final Observation Forecasts 

 
Note.  False positive and false negative rates marginalized by time to be relative to total 
counts at that timepoint. 
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Table 63 

1D Convolutional Neural Network Prediction Performance – Whole Subject Trajectories 
of CDR-Based Impairment 

Years Accuracy Precision Recall AUC NRI 

0.0 0.870 0.973 0.864 0.879 0.113 

0.5 0.851 0.966 0.848 0.857 0.093 

1.0 0.855 0.970 0.851 0.863 0.149 

1.5 0.857 0.960 0.888 0.544 -0.269 

2.0 0.797 0.939 0.762 0.822 0.198 

2.5 0.724 1.000 0.724 1.000 - 

3.0 0.744 0.957 0.688 0.798 0.249 

4.0 0.843 0.929 0.650 0.809 0.332 

5.0 0.818 0.923 0.706 0.822 0.415 

6.0 0.781 0.889 0.571 0.758 0.397 

All 0.836 0.963 0.822 0.855 0.159 

Note.  Classification performance metrics presented at individual time points as well as 
across all time points.  NRI based on reclassification from logistic reference model; NRI 
incalculable under certain ROC AUC conditions. 
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Table 64 

Evaluation of 1D Convolutional Neural Network Relative to Logistic Reference – Whole 
Subject Trajectories of CDR-Based Impairment 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

Accuracy 0.836 0.711 0.126 17.68% [0.105, 0.147] 

Precision 0.963 0.958 0.005 0.53% [-0.009, 0.018] 

Recall 0.822 0.661 0.161 24.44% [0.137, 0.186] 

ROC AUC 0.855 0.841 0.013 1.60% [0.022, 0.066] 

Note.  Values for change in metric and percent difference relative to logistic reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 71 

1D Convolutional Neural Network True and Predicted CDR-Based Impairment  
Counts – Whole Subject Trajectories 
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Figure 72 

1D Convolutional Neural Network Misclassification Rates for CDR-Based  
Impairment – Whole Subject Trajectories 

 
Note.  False positive and false negative rates marginalized by time to be relative to total 
counts at that timepoint. 
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Table 65 

1D Convolutional Neural Network Prediction Performance – Final Observation  
Forecasts of CDR-Based Impairment 

Years Accuracy Precision Recall AUC NRI 

0.5 0.929 1.000 0.923 0.962 0.231 

1.0 1.000 1.000 1.000 1.000 - 

1.5 0.967 1.000 0.967 1.000 - 

2.0 0.972 1.000 0.967 0.983 0.867 

3.0 0.957 0.975 0.975 0.904 0.692 

4.0 1.000 1.000 1.000 1.000 - 

5.0 0.750 1.000 0.571 0.786 0.600 

6.0 0.903 1.000 0.842 0.921 0.575 

All 0.949 0.994 0.944 0.958 0.787 

Note.  Classification performance metrics presented at individual time points as well as 
across all time points.  NRI based on reclassification from logistic reference model; NRI 
incalculable under certain ROC AUC conditions. 
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Table 66 

Evaluation of 1D Convolutional Neural Network Relative to Logistic Reference – Final 
Observation Forecasts of CDR-Based Impairment 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

Accuracy 0.949 0.730 0.218 29.90% [0.194, 0.248] 

Precision 0.994 0.977 0.018 1.80% [0.005, 0.023] 

Recall 0.944 0.694 0.250 35.96% [0.222, 0.284] 

ROC AUC 0.958 0.825 0.133 16.15% [0.147, 0.174] 

Note.  Values for change in metric and percent difference relative to logistic reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 73 

1D Convolutional Neural Network True and Predicted CDR-Based Impairment  
Counts – Final Observation Forecasts 
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Figure 74 

1D Convolutional Neural Network Misclassification Rates for CDR-Based  
Impairment – Final Observation Forecasts 

 
Note.  False positive and false negative rates marginalized by time to be relative to total 
counts at that timepoint. 
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Table 67 

LSTM Recurrent Neural Network Prediction Performance – Whole Subject Trajectories 
of CDR-Based Impairment 

Years Accuracy Precision Recall AUC NRI 

0.0 0.877 0.978 0.869 0.892 0.139 

0.5 0.855 0.967 0.853 0.860 0.098 

1.0 0.855 0.964 0.856 0.853 0.129 

1.5 0.857 0.960 0.888 0.544 -0.269 

2.0 0.776 0.937 0.733 0.807 0.168 

2.5 0.655 1.000 0.655 1.000 - 

3.0 0.744 0.938 0.703 0.783 0.219 

4.0 0.843 0.875 0.700 0.818 0.350 

5.0 0.818 0.867 0.765 0.820 0.412 

6.0 0.781 0.818 0.643 0.766 0.413 

All 0.835 0.958 0.824 0.848 0.146 

Note.  Classification performance metrics presented at individual time points as well as 
across all time points.  NRI based on reclassification from logistic reference model; NRI 
incalculable under certain ROC AUC conditions. 
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Table 68 

Evaluation of LSTM Recurrent Neural Network Relative to Logistic Reference – Whole 
Subject Trajectories of CDR-Based Impairment 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

Accuracy 0.835 0.711 0.124 17.45% [0.103, 0.144] 

Precision 0.958 0.958 0.000 0.05% [-0.013, 0.013] 

Recall 0.824 0.661 0.164 24.76% [0.139, 0.188] 

ROC AUC 0.848 0.841 0.007 0.84% [0.031, 0.072] 

Note.  Values for change in metric and percent difference relative to logistic reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 75 

LSTM Recurrent Neural Network True and Predicted CDR-Based Impairment  
Counts – Whole Subject Trajectories 
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Figure 76 

LSTM Recurrent Neural Network Misclassification Rates for CDR-Based  
Impairment – Whole Subject Trajectories 

 
Note.  False positive and false negative rates marginalized by time to be relative to total 
counts at that timepoint. 
  



 

 
241 

Table 69 

LSTM Recurrent Neural Network Prediction Performance – Final Observation Forecasts 
of CDR-Based Impairment 

Years Accuracy Precision Recall AUC NRI 

0.5 0.929 1.000 0.923 0.962 0.231 

1.0 1.000 1.000 1.000 1.000 - 

1.5 1.000 1.000 1.000 1.000 - 

2.0 1.000 1.000 1.000 1.000 - 

3.0 0.978 0.976 1.000 0.917 0.717 

4.0 0.933 0.909 1.000 0.900 0.800 

5.0 0.917 1.000 0.857 0.929 0.886 

6.0 0.935 0.947 0.947 0.932 0.596 

All 0.972 0.983 0.983 0.949 0.769 

Note.  Classification performance metrics presented at individual time points as well as 
across all time points.  NRI based on reclassification from logistic reference model; NRI 
incalculable under certain ROC AUC conditions. 
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Table 70 

Evaluation of LSTM Recurrent Neural Network Relative to Logistic Reference – Final 
Observation Forecasts of CDR-Based Impairment 

Performance 
metric 

Learning 
model 

Reference 
model 

Change in 
metric 

Percent 
difference 

Bootstrap 
95% CI 

Accuracy 0.972 0.730 0.242 33.10% [0.221, 0.261] 

Precision 0.983 0.977 0.007 0.68% [-0.012, 0.023] 

Recall 0.983 0.694 0.289 41.59% [0.268, 0.306] 

ROC AUC 0.949 0.825 0.124 15.06% [0.133, 0.172] 

Note.  Values for change in metric and percent difference relative to logistic reference 
model; bootstrap confidence interval corresponds to change in metric. 
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Figure 77 

LSTM Recurrent Neural Network True and Predicted CDR-Based Impairment  
Counts – Final Observation Forecasts 
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Figure 78 

LSTM Recurrent Neural Network Misclassification Rates for CDR-Based  
Impairment – Final Observation Forecasts 

 
Note.  False positive and false negative rates marginalized by time to be relative to total 
counts at that timepoint. 
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Table 71 

Cross-Model Comparisons – Root Mean Square Error of ADAS-Cog Score for Whole Subject Trajectories 

Model Reference FNN MERF Boosted Bagged GLMM LSTM CNN 

Reference 
 

6.819 
 

-2.160 
(-31.67%) 

<.001 

-1.891 
(-27.73%) 

<.001 

-1.876 
(-27.51%) 

<.001 

-1.277 
(-18.73%) 

<.001 

-1.135 
(-16.64%) 

<.001 

-0.652 
(-9.56%) 

<.001 

-0.313 
(-4.59%) 

.041 

FNN [-2.351, 
-1.972] 

 
4.660 

 

-0.269 
(-5.45%) 

.004 

-0.284 
(-5.74%) 

.007 

-0.882 
(-15.92%) 

<.001 

-1.025 
(-18.03%) 

<.001 

-1.508 
(-24.45%) 

<.001 

-1.847 
(-28.38%) 

<.001 

MERF [-2.112, 
-1.658] 

[-0.469, 
-0.062] 

 
4.928 

 

-0.015 
(-0.31%) 

.457 

-0.614 
(-11.07%) 

<.001 

-0.756 
(-13.30%) 

<.001 

-1.239 
(-20.09%) 

<.001 

-1.578 
(-24.26%) 

<.001 

Boosted [-2.097, 
-1.662] 

[-0.481, 
-0.069] 

[-0.247, 
0.207] 

 
4.943 

 

-0.598 
(-10.80%) 

<.001 

-0.741 
(-13.03%) 

<.001 

-1.224 
(-19.84%) 

<.001 

-1.563 
(-24.02%) 

<.001 

Bagged [-1.503, 
-1.041] 

[-1.102, 
-0.675] 

[-0.824, 
-0.393] 

[-0.813, 
-0.387] 

 
5.542 

 

-0.142 
(-2.51%) 

.107 

-0.625 
(-10.14%) 

<.001 

-0.965 
(-14.83%) 

<.001 

GLMM [-1.378, 
-0.890] 

[-1.212, 
-0.831] 

[-0.977, 
-0.523] 

[-0.951, 
-0.531] 

[-0.387, 
0.093] 

 
5.684 

 

-0.483 
(-7.83%) 

<.001 

-0.822 
(-12.64%) 

<.001 

LSTM [-0.996, 
-0.260] 

[-1.699, 
-1.298] 

[-1.463, 
-1.018] 

[-1.429, 
-1.031] 

[-0.846, 
-0.395] 

[-0.718, 
-0.245] 

 
6.167 

 

-0.339 
(-5.21%) 

.034 

CNN [-0.705, 
0.050] 

[-2.054, 
-1.655] 

[-1.800, 
-1.341] 

[-1.773, 
-1.370] 

[-1.181, 
-0.740] 

[-1.053, 
-0.572] 

[-0.682, 
0.013] 

 
6.506 
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Note.  Whole subject trajectory RMSE values across all timepoints for each model listed 
on the diagonal, beginning with the CPath reference, followed by the top performing 
learning model.  Learning models are then ordered according to decreasing performance.  
Upper half of matrix contains numeric difference in metric, with percent difference in pa-
renthesis, then one-sided bootstrapped proportional p-value; lower half of matrix contains 
the corresponding bootstrapped 95% confidence interval for the numeric difference.  All 
differences are for the better performing model in the column relative to the poorer per-
forming model in the row. 
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Table 72 

Cross-Model Comparisons – Root Mean Square Error of ADAS-Cog Score for Final Observation Forecasts 

Model Reference GLMM MERF Bagged Boosted FNN LSTM CNN 

Reference 
 

9.720 
 

-5.192 
(-53.42%) 

<.001 

-4.999 
(-51.43%) 

<.001 

-4.577 
(-47.09%) 

<.001 

-4.487 
(-46.16%) 

<.001 

-4.237 
(-43.59%) 

<.001 

-4.070 
(-41.88%) 

<.001 

-3.864 
(-39.76%) 

<.001 

GLMM [-5.767, 
-4.665] 

 
4.528 

 

-0.193 
(-4.09%) 

.235 

-0.615 
(-11.95%) 

.019 

-0.705 
(-13.47%) 

.010 

-0.955 
(-17.42%) 

.001 

-1.122 
(-19.86%) 

<.001 

-1.328 
(-22.68%) 

<.001 

MERF [-5.490, 
-4.532] 

[-0.754, 
0.377] 

 
4.721 

 

-0.421 
(-8.20%) 

.049 

-0.512 
(-9.78%) 

.021 

-0.762 
(-13.90%) 

.001 

-0.929 
(-16.44%) 

.001 

-1.135 
(-19.38%) 

<.001 

Bagged [-5.154, 
-4.026] 

[-1.170, 
-0.030] 

[-0.934, 
0.095] 

 
5.142 

 

-0.090 
(-1.73%) 

.383 

-0.340 
(-6.21%) 

.120 

-0.507 
(-8.98%) 

.046 

-0.713 
(-12.18%) 

.011 

Boosted [-5.073, 
-3.937] 

[-1.289, 
-0.101] 

[-1.004, 
-0.006] 

[-0.677, 
0.544] 

 
5.233 

 

-0.250 
(-4.56%) 

.190 

-0.417 
(-7.38%) 

.076 

-0.623 
(-10.63%) 

.024 

FNN [-4.814, 
-3.699] 

[-1.558, 
-0.380] 

[-1.284, 
-0.265] 

[-0.950, 
0.208] 

[-0.858, 
0.303] 

 
5.483 

 

-0.167 
(-2.95%) 

.270 

-0.373 
(-6.37%) 

.116 

LSTM [-5.099, 
-3.156] 

[-1.682, 
-0.539] 

[-1.418, 
-0.408] 

[-1.131, 
0.072] 

[-1.019, 
0.151] 

[-0.748, 
0.393] 

 
5.650 

 

-0.206 
(-3.52%) 

.304 

CNN [-4.822, 
-2.844] 

[-1.886, 
-0.728] 

[-1.693, 
-0.611] 

[-1.333, 
-0.118] 

[-1.197, 
-0.014] 

[-0.906, 
0.218] 

[-1.114, 
0.699] 

 
5.856 
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Note.  Final observation forecast RMSE values across all timepoints for each model listed 
on the diagonal, beginning with the CPath reference, followed by the top performing 
learning model.  Learning models are then ordered according to decreasing performance.  
Upper half of matrix contains numeric difference in metric, with percent difference in pa-
renthesis, then one-sided bootstrapped proportional p-value; lower half of matrix contains 
the corresponding bootstrapped 95% confidence interval for the numeric difference.  All 
differences are for the better performing model in the column relative to the poorer per-
forming model in the row. 
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Table 73 

Cross-Model Comparisons – Mean Absolute Error of ADAS-Cog Score for Whole Subject Trajectories 

Model Reference FNN MERF Boosted Bagged LSTM GLMM CNN 

Reference 
 

5.283 
 

-1.723 
(-32.61%) 

<.001 

-1.491 
(-28.23%) 

<.001 

-1.426 
(-26.98%) 

<.001 

-0.960 
(-18.18%) 

<.001 

-0.861 
(-16.29%) 

<.001 

-0.856 
(-16.20%) 

<.001 

-0.610 
(-11.54%) 

<.001 

FNN [-1.876, 
-1.579] 

 
3.560 

 

-0.232 
(-6.11%) 

.004 

-0.297 
(-7.71%) 

<.001 

-0.763 
(-17.64%) 

<.001 

-0.862 
(-19.50%) 

<.001 

-0.867 
(-19.58%) 

<.001 

-1.113 
(-23.82%) 

<.001 

MERF [-1.651, 
-1.321] 

[-0.374, 
-0.078] 

 
3.792 

 

-0.066 
(-1.71%) 

.211 

-0.531 
(-12.29%) 

<.001 

-0.631 
(-14.26%) 

<.001 

-0.635 
(-14.35%) 

<.001 

-0.882 
(-18.86%) 

<.001 

Boosted [-1.590, 
-1.275] 

[-0.444, 
-0.143] 

[-0.232, 
0.087] 

 
3.858 

 

-0.465 
(-10.76%) 

<.001 

-0.565 
(-12.77%) 

<.001 

-0.570 
(-12.87%) 

<.001 

-0.816 
(-17.45%) 

<.001 

Bagged [-1.131, 
-0.786] 

[-0.921, 
-0.603] 

[-0.682, 
-0.371] 

[-0.626, 
-0.308] 

 
4.323 

 

-0.100 
(-2.25%) 

.124 

-0.104 
(-2.35%) 

.112 

-0.350 
(-7.50%) 

<.001 

LSTM [-1.067, 
-0.629] 

[-1.007, 
-0.697] 

[-0.775, 
-0.478] 

[-0.717, 
-0.418] 

[-0.268, 
0.084] 

 
4.423 

 

-0.005 
(-0.10%) 

.490 

-0.251 
(-5.37%) 

.010 

GLMM [-1.031, 
-0.681] 

[-1.015, 
-0.716] 

[-0.795, 
-0.465] 

[-0.731, 
-0.407] 

[-0.273, 
0.073] 

[-0.217, 
0.232] 

 
4.427 

 

-0.246 
(-5.27%) 

.002 

CNN [-0.845, 
-0.397] 

[-1.267, 
-0.963] 

[-1.032, 
-0.715] 

[-0.961, 
-0.658] 

[-0.521, 
-0.183] 

[-0.464, 
-0.036] 

[-0.422, 
-0.061] 

 
4.673 
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Note.  Whole subject trajectory MAE values across all timepoints for each model listed 
on the diagonal, beginning with the CPath reference, followed by the top performing 
learning model.  Learning models are then ordered according to decreasing performance.  
Upper half of matrix contains numeric difference in metric, with percent difference in pa-
renthesis, then one-sided bootstrapped proportional p-value; lower half of matrix contains 
the corresponding bootstrapped 95% confidence interval for the numeric difference.  All 
differences are for the better performing model in the column relative to the poorer per-
forming model in the row. 
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Table 74 

Cross-Model Comparisons – Mean Absolute Error of ADAS-Cog Score for Final Observation Forecasts 

Model Reference GLMM MERF LSTM CNN Bagged Boosted FNN 

Reference 
 

6.859 
 

-3.501 
(-51.05%) 

<.001 

-3.271 
(-47.69%) 

<.001 

-3.132 
(-45.67%) 

<.001 

-3.035 
(-44.26%) 

<.001 

-3.017 
(-43.98%) 

<.001 

-2.888 
(-42.10%) 

<.001 

-2.602 
(-37.94%) 

<.001 

GLMM [-3.885, 
-3.105] 

 
3.357 

 

-0.231 
(-6.43%) 

.126 

-0.369 
(-9.91%) 

.039 

-0.466 
(-12.19%) 

.016 

-0.485 
(-12.61%) 

.004 

-0.614 
(-15.45%) 

.004 

-0.899 
(-21.13%) 

<.001 

MERF [-3.635, 
-2.899] 

[-0.616, 
0.175] 

 
3.588 

 

-0.139 
(-3.72%) 

.247 

-0.235 
(-6.15%) 

.125 

-0.254 
(-6.61%) 

.097 

-0.383 
(-9.64%) 

.029 

-0.669 
(-15.71%) 

.002 

LSTM [-3.681, 
-2.578] 

[-0.735, 
0.043] 

[-0.512, 
0.273] 

 
3.727 

 

-0.097 
(-2.53%) 

.352 

-0.115 
(-3.00%) 

.321 

-0.244 
(-6.15%) 

.177 

-0.530 
(-12.46%) 

.035 

CNN [-3.528, 
-2.449] 

[-0.856, 
-0.043] 

[-0.653, 
0.168] 

[-0.605, 
0.441] 

 
3.823 

 

-0.019 
(-0.49%) 

.462 

-0.148 
(-3.72%) 

.260 

-0.434 
(-10.18%) 

.074 

Bagged [-3.464, 
-2.601] 

[-0.864, 
-0.096] 

[-0.658, 
0.119] 

[-0.630, 
0.467] 

[-0.577, 
0.596] 

 
3.842 

 

-0.129 
(-3.25%) 

.283 

-0.415 
(-9.75%) 

.031 

Boosted [-3.317, 
-2.463] 

[-0.997, 
-0.212] 

[-0.763, 
0.014] 

[-0.748, 
0.271] 

[-0.698, 
0.416] 

[-0.548, 
0.354] 

 
3.971 

 

-0.286 
(-6.72%) 

.093 

FNN [-3.051, 
-2.182] 

[-1.280, 
-0.509] 

[-1.071, 
-0.293] 

[-1.091, 
0.041] 

[-0.984, 
0.194] 

[-0.831, 
0.028] 

[-0.712, 
0.132] 

 
4.257 
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Note.  Final observation forecast MAE values across all timepoints for each model listed 
on the diagonal, beginning with the CPath reference, followed by the top performing 
learning model.  Learning models are then ordered according to decreasing performance.  
Upper half of matrix contains numeric difference in metric, with percent difference in pa-
renthesis, then one-sided bootstrapped proportional p-value; lower half of matrix contains 
the corresponding bootstrapped 95% confidence interval for the numeric difference.  All 
differences are for the better performing model in the column relative to the poorer per-
forming model in the row. 
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Table 75 

Cross-Model Comparisons – Raw Bias of ADAS-Cog Score for Whole Subject Trajectories 

Model Reference MERF Boosted Bagged GLMM FNN CNN LSTM 

Reference 
 

1.602 
 

1.536 
(-95.90%) 

<.001 

1.495 
(-93.30%) 

<.001 

1.179 
(-73.61%) 

<.001 

1.175 
(-73.35%) 

<.001 

1.076 
(-67.18%) 

<.001 

0.527 
(-32.88%) 

.001 

0.244 
(-15.20%) 

.075 

MERF [1.289, 
1.797] 

 
0.066 

 

0.042 
(-38.71%) 

.435 

0.357 
(-84.45%) 

.003 

0.361 
(-84.60%) 

<.001 

0.460 
(-87.50%) 

<.001 

1.010 
(-93.89%) 

<.001 

1.293 
(-95.16%) 

<.001 

Boosted [1.240, 
1.736] 

[-0.203, 
0.279] 

 
0.107 

 

0.316 
(-74.63%) 

.003 

0.320 
(-74.88%) 

.003 

0.419 
(-79.60%) 

<.001 

0.968 
(-90.03%) 

<.001 

1.251 
(-92.10%) 

<.001 

Bagged [0.897, 
1.487] 

[0.130, 
0.590] 

[0.079, 
0.537] 

 
0.423 

 

0.004 
(-0.97%) 

.492 

0.103 
(-19.58%) 

.219 

0.653 
(-60.68%) 

<.001 

0.936 
(-68.87%) 

<.001 

GLMM [0.906, 
1.468] 

[0.114, 
0.622] 

[0.079, 
0.570] 

[-0.246, 
0.286] 

 
0.427 

 

0.099 
(-18.80%) 

.248 

0.648 
(-60.29%) 

<.001 

0.932 
(-68.57%) 

<.001 

FNN [0.853, 
1.297] 

[0.209, 
0.726] 

[0.185, 
0.671] 

[-0.148, 
0.385] 

[-0.185, 
0.374] 

 
0.526 

 

0.550 
(-51.10%) 

<.001 

0.833 
(-61.29%) 

<.001 

CNN [0.219, 
0.885] 

[0.759, 
1.272] 

[0.734, 
1.215] 

[0.395, 
0.946] 

[0.361, 
0.937] 

[0.330, 
0.806] 

 
1.075 

 

0.283 
(-20.84%) 

.045 

LSTM [-0.089, 
0.532] 

[1.060, 
1.539] 

[1.008, 
1.494] 

[0.684, 
1.219] 

[0.636, 
1.204] 

[0.593, 
1.055] 

[-0.046, 
0.605] 

 
1.359 
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Note.  Whole subject trajectory raw bias values across all timepoints for each model 
listed on the diagonal, beginning with the CPath reference, followed by the top perform-
ing learning model.  Learning models are then ordered according to decreasing perfor-
mance.  Upper half of matrix contains numeric difference in metric, with percent differ-
ence in parenthesis, then one-sided bootstrapped proportional p-value; lower half of ma-
trix contains the corresponding bootstrapped 95% confidence interval for the numeric dif-
ference.  All differences are for the better performing model in the column relative to the 
poorer performing model in the row. 
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Table 76 

Cross-Model Comparisons – Raw Bias of ADAS-Cog Score for Final Observation Forecasts 

Model Reference Bagged FNN GLMM CNN LSTM MERF Boosted 

Reference 
 

-1.360 
 

-1.152 
(-84.71%) 

<.001 

-1.792 
(-68.31%) 

.005 

-0.768 
(-56.43%) 

.005 

-0.292 
(-21.47%) 

.227 

-0.251 
(-18.48%) 

.231 

-0.209 
(-15.37%) 

.249 

-0.038 
(-2.82%) 

.428 

Bagged [-1.775, 
-0.498] 

 
-0.208 

 

0.639 
(-148.25%) 

.243 

-0.385 
(-64.91%) 

.138 

-0.860 
(-80.53%) 

.004 

-0.901 
(-81.24%) 

.005 

-0.943 
(-81.93%) 

.001 

-1.114 
(-84.26%) 

<.001 

FNN [-2.584, 
-1.096] 

[-0.023, 
1.307] 

 
0.431 

 

-1.024 
(-172.73%) 

.320 

-1.499 
(-140.35%) 

.037 

-1.540 
(-138.87%) 

.028 

-1.582 
(-137.44%) 

.020 

-1.753 
(-132.61%) 

.006 

GLMM [-1.331, 
-0.216] 

[-1.023, 
0.271] 

[-1.715, 
-0.287] 

 
-0.593 

 

-0.476 
(-44.52%) 

.049 

-0.516 
(-46.55%) 

.033 

-0.559 
(-48.52%) 

.028 

-0.729 
(-55.16%) 

.014 

CNN [-1.062, 
0.412] 

[-1.474, 
-0.238] 

[-2.255, 
-0.777] 

[-1.041, 
0.100] 

 
-1.068 

 

-0.041 
(-3.67%) 

.430 

-0.083 
(-7.21%) 

.399 

-0.254 
(-19.19%) 

.234 

LSTM [-0.991, 
0.432] 

[-1.572, 
-0.200] 

[-2.236, 
-0.876] 

[-1.099, 
0.046] 

[-0.781, 
0.660] 

 
-1.109 

 

-0.042 
(-3.68%) 

.467 

-0.213 
(-16.11%) 

.271 

MERF [-0.796, 
0.350] 

[-1.608, 
-0.284] 

[-2.286, 
-0.818] 

[-1.158, 
0.003] 

[-0.804, 
0.643] 

[-0.743, 
0.680] 

 
-1.151 

 

-0.171 
(-12.91%) 

.291 

Boosted [-0.704, 
0.582] 

[-1.726, 
-0.454] 

[-2.476, 
-1.050] 

[-1.264, 
-0.087] 

[-0.959, 
0.418] 

[-0.912, 
0.457] 

[-0.713, 
0.377] 

 
-1.322 
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Note.  Final observation forecast raw bias values across all timepoints for each model 
listed on the diagonal, beginning with the CPath reference, followed by the top perform-
ing learning model.  Learning models are then ordered according to decreasing perfor-
mance.  Upper half of matrix contains numeric difference in metric, with percent differ-
ence in parenthesis, then one-sided bootstrapped proportional p-value; lower half of ma-
trix contains the corresponding bootstrapped 95% confidence interval for the numeric dif-
ference.  All differences are for the better performing model in the column relative to the 
poorer performing model in the row. 
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Table 77 

Cross-Model Comparisons – Absolute Value of the Bias of ADAS-Cog Score for Whole Subject Trajectories 

Model Reference FNN LSTM MERF Boosted CNN Bagged GLMM 

Reference 
 

4.421 
 

-1.591 
(-35.99%) 

<.001 

-1.275 
(-28.84%) 

<.001 

-1.258 
(-28.46%) 

<.001 

-1.194 
(-27.01%) 

<.001 

-0.994 
(-22.48%) 

<.001 

-0.864 
(-19.55%) 

<.001 

-0.748 
(-16.92%) 

<.001 

FNN [-1.733, 
-1.429] 

 
2.830 

 

-0.316 
(-10.04%) 

.001 

-0.332 
(-10.51%) 

<.001 

-0.397 
(-12.29%) 

<.001 

-0.597 
(-17.42%) 

<.001 

-0.727 
(-20.43%) 

<.001 

-0.843 
(-22.95%) 

<.001 

LSTM [-1.446, 
-1.092] 

[-0.456, 
-0.140] 

 
3.146 

 

-0.017 
(-0.53%) 

.354 

-0.081 
(-2.51%) 

.120 

-0.281 
(-8.21%) 

.002 

-0.411 
(-11.55%) 

<.001 

-0.527 
(-14.36%) 

<.001 

MERF [-1.449, 
-1.036] 

[-0.478, 
-0.161] 

[-0.203, 
0.167] 

 
3.162 

 

-0.064 
(-1.99%) 

.253 

-0.265 
(-7.72%) 

.008 

-0.394 
(-11.08%) 

<.001 

-0.510 
(-13.90%) 

<.001 

Boosted [-1.424, 
-1.016] 

[-0.526, 
-0.220] 

[-0.254, 
0.090] 

[-0.247, 
0.128] 

 
3.227 

 

-0.201 
(-5.85%) 

.017 

-0.330 
(-9.28%) 

<.001 

-0.446 
(-12.15%) 

<.001 

CNN [-1.230, 
-0.771] 

[-0.736, 
-0.429] 

[-0.465, 
-0.116] 

[-0.435, 
-0.034] 

[-0.400, 
-0.034] 

 
3.427 

 

-0.129 
(-3.64%) 

.160 

-0.246 
(-6.69%) 

.013 

Bagged [-1.079, 
-0.604] 

[-0.867, 
-0.565] 

[-0.597, 
-0.227] 

[-0.576, 
-0.204] 

[-0.560, 
-0.169] 

[-0.361, 
0.086] 

 
3.557 

 

-0.116 
(-3.17%) 

.170 

GLMM [-0.992, 
-0.532] 

[-0.972, 
-0.680] 

[-0.704, 
-0.344] 

[-0.701, 
-0.288] 

[-0.674, 
-0.281] 

[-0.483, 
-0.028] 

[-0.338, 
0.158] 

 
3.673 
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Note.  Whole subject trajectory AVB values across all timepoints for each model listed 
on the diagonal, beginning with the CPath reference, followed by the top performing 
learning model.  Learning models are then ordered according to decreasing performance.  
Upper half of matrix contains numeric difference in metric, with percent difference in pa-
renthesis, then one-sided bootstrapped proportional p-value; lower half of matrix contains 
the corresponding bootstrapped 95% confidence interval for the numeric difference.  All 
differences are for the better performing model in the column relative to the poorer per-
forming model in the row. 
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Table 78 

Cross-Model Comparisons – Absolute Value of the Bias of ADAS-Cog Score for Final Observation Forecasts 

Model Reference CNN LSTM GLMM MERF Bagged Boosted FNN 

Reference 
 

4.799 
 

-2.519 
(-52.49%) 

<.001 

-2.361 
(-49.20%) 

<.001 

-2.226 
(-46.39%) 

<.001 

-1.979 
(-41.24%) 

<.001 

-1.911 
(-39.83%) 

<.001 

-1.641 
(-34.20%) 

<.001 

-1.362 
(-28.38%) 

<.001 

CNN [-2.857, 
-2.011] 

 
2.280 

 

-0.158 
(-6.47%) 

.299 

-0.293 
(-11.37%) 

.110 

-0.540 
(-19.14%) 

.008 

-0.607 
(-21.04%) 

.005 

-0.878 
(-27.79%) 

<.001 

-1.157 
(-33.66%) 

<.001 

LSTM [-2.830, 
-1.990] 

[-0.522, 
0.347] 

 
2.438 

 

-0.135 
(-5.24%) 

.241 

-0.382 
(-13.54%) 

.017 

-0.450 
(-15.57%) 

.007 

-0.720 
(-22.80%) 

<.001 

-0.999 
(-29.07%) 

<.001 

GLMM [-2.464, 
-1.839] 

[-0.678, 
0.212] 

[-0.552, 
0.222] 

 
2.573 

 

-0.247 
(-8.76%) 

.102 

-0.315 
(-10.90%) 

.024 

-0.585 
(-18.53%) 

<.001 

-0.864 
(-25.14%) 

<.001 

MERF [-2.393, 
-1.649] 

[-0.904, 
-0.096] 

[-0.851, 
-0.025] 

[-0.485, 
0.058] 

 
2.820 

 

-0.068 
(-2.35%) 

.405 

-0.338 
(-10.70%) 

.030 

-0.617 
(-17.95%) 

.001 

Bagged [-2.330, 
-1.677] 

[-0.972, 
-0.103] 

[-0.893, 
-0.093] 

[-0.553, 
-0.010] 

[-0.468, 
0.290] 

 
2.888 

 

-0.270 
(-8.56%) 

.009 

-0.549 
(-15.98%) 

<.001 

Boosted [-2.159, 
-1.413] 

[-1.263, 
-0.430] 

[-1.163, 
-0.363] 

[-0.823, 
-0.249] 

[-0.752, 
0.019] 

[-0.647, 
-0.036] 

 
3.158 

 

-0.279 
(-8.12%) 

.019 

FNN [-1.962, 
-0.778] 

[-1.524, 
-0.697] 

[-1.442, 
-0.619] 

[-1.102, 
-0.528] 

[-1.031, 
-0.260] 

[-0.926, 
-0.315] 

[-0.824, 
-0.027] 

 
3.437 
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Note.  Final observation forecast AVB values across all timepoints for each model listed 
on the diagonal, beginning with the CPath reference, followed by the top performing 
learning model.  Learning models are then ordered according to decreasing performance.  
Upper half of matrix contains numeric difference in metric, with percent difference in pa-
renthesis, then one-sided bootstrapped proportional p-value; lower half of matrix contains 
the corresponding bootstrapped 95% confidence interval for the numeric difference.  All 
differences are for the better performing model in the column relative to the poorer per-
forming model in the row. 
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Table 79 

Cross-Model Comparisons – Accuracy of CDR-Based Impairment for Whole Subject Trajectories 

Model Reference CNN LSTM Boosted Bagged MERF GLMM FNN 

Reference 
 

0.711 
 

0.126 
(17.68%) 

<.001 

0.124 
(17.45%) 

<.001 

0.114 
(16.05%) 

<.001 

0.107 
(15.05%) 

<.001 

0.105 
(14.72%) 

<.001 

0.093 
(13.06%) 

<.001 

0.090 
(12.61%) 

<.001 

CNN [0.105, 
0.147] 

 
0.836 

 

0.002 
(0.20%) 

.439 

0.012 
(1.40%) 

.120 

0.019 
(2.28%) 

.048 

0.021 
(2.58%) 

.022 

0.033 
(4.09%) 

.002 

0.036 
(4.50%) 
<.001 

LSTM [0.103, 
0.144] 

[-0.018, 
0.021] 

 
0.835 

 

0.010 
(1.20%) 

.141 

0.017 
(2.08%) 

.053 

0.019 
(2.38%) 

.035 

0.031 
(3.89%) 

.002 

0.034 
(4.30%) 

.002 

Boosted [0.090, 
0.135] 

[-0.010, 
0.031] 

[-0.010, 
0.030] 

 
0.825 

 

0.007 
(0.87%) 

.235 

0.009 
(1.16%) 

.214 

0.021 
(2.65%) 

.023 

0.024 
(3.06%) 

.015 

Bagged [0.086, 
0.126] 

[-0.003, 
0.039] 

[-0.004, 
0.038] 

[-0.013, 
0.029] 

 
0.818 

 

0.002 
(0.29%) 

.422 

0.014 
(1.77%) 

.096 

0.017 
(2.17%) 

.062 

MERF [0.082, 
0.125] 

[0.001, 
0.043] 

[-0.003, 
0.039] 

[-0.013, 
0.029] 

[-0.018, 
0.023] 

 
0.815 

 

0.012 
(1.47%) 

.147 

0.015 
(1.87%) 

.084 

GLMM [0.071, 
0.114] 

[0.011, 
0.055] 

[0.011, 
0.053] 

[0.001, 
0.042] 

[-0.006, 
0.035] 

[-0.011, 
0.034] 

 
0.803 

 

0.003 
(0.39%) 

.402 

FNN [0.068, 
0.111] 

[0.015, 
0.057] 

[0.014, 
0.055] 

[0.003, 
0.044] 

[-0.005, 
0.039] 

[-0.006, 
0.036] 

[-0.020, 
0.024] 

 
0.800 
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Note.  Whole subject trajectory accuracy values across all timepoints for each model 
listed on the diagonal, beginning with the logistic model reference, followed by the top 
performing learning model.  Learning models are then ordered according to decreasing 
performance.  Upper half of matrix contains numeric difference in metric, with percent 
difference in parenthesis, then one-sided bootstrapped proportional p-value; lower half of 
matrix contains the corresponding bootstrapped 95% confidence interval for the numeric 
difference.  All differences are for the better performing model in the column relative to 
the poorer performing model in the row. 
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Table 80 

Cross-Model Comparisons – Accuracy of CDR-Based Impairment for Final Observation Forecasts 

Model Reference LSTM MERF GLMM Bagged CNN Boosted FNN 

Reference 
 

0.730 
 

0.242 
(33.10%) 

<.001 

0.237 
(32.46%) 

<.001 

0.237 
(32.46%) 

<.001 

0.232 
(31.82%) 

<.001 

0.218 
(29.90%) 

<.001 

0.204 
(27.98%) 

<.001 

0.102 
(13.91%) 

<.001 

LSTM [0.221, 
0.261] 

 
0.972 

 

0.005 
(0.48%) 

.242 

0.005 
(0.48%) 

.254 

0.009 
(0.97%) 

.162 

0.023 
(2.46%) 

.020 

0.037 
(4.00%) 
<.001 

0.140 
(16.85%) 

<.001 

MERF [0.209, 
0.256] 

[-0.016, 
0.024] 

 
0.967 

 

0.000 
(0.00%) 

.549 

0.005 
(0.49%) 

.432 

0.019 
(1.97%) 

.090 

0.033 
(3.50%) 

.012 

0.136 
(16.29%) 

<.001 

GLMM [0.214, 
0.260] 

[-0.016, 
0.024] 

[-0.028, 
0.023] 

 
0.967 

 

0.005 
(0.49%) 

.406 

0.019 
(1.97%) 

.100 

0.033 
(3.50%) 

.008 

0.136 
(16.29%) 

<.001 

Bagged [0.204, 
0.256] 

[-0.012, 
0.028] 

[-0.019, 
0.023] 

[-0.019, 
0.023] 

 
0.963 

 

0.014 
(1.48%) 

.186 

0.028 
(3.00%) 

.027 

0.131 
(15.73%) 

<.001 

CNN [0.194, 
0.248] 

[0.003, 
0.043] 

[-0.009, 
0.042] 

[-0.009, 
0.042] 

[-0.014, 
0.037] 

 
0.949 

 

0.014 
(1.50%) 

.144 

0.117 
(14.04%) 

<.001 

Boosted [0.172, 
0.232] 

[0.017, 
0.057] 

[0.005, 
0.056] 

[0.009, 
0.051] 

[0.000, 
0.051] 

[-0.015, 
0.039] 

 
0.935 

 

0.103 
(12.36%) 

<.001 

FNN [0.045, 
0.148] 

[0.119, 
0.159] 

[0.112, 
0.159] 

[0.107, 
0.159] 

[0.103, 
0.154] 

[0.088, 
0.146] 

[0.070, 
0.131] 

 
0.832 
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Note.  Final observation forecast accuracy values across all timepoints for each model 
listed on the diagonal, beginning with the logistic model reference, followed by the top 
performing learning model.  Learning models are then ordered according to decreasing 
performance.  Upper half of matrix contains numeric difference in metric, with percent 
difference in parenthesis, then one-sided bootstrapped proportional p-value; lower half of 
matrix contains the corresponding bootstrapped 95% confidence interval for the numeric 
difference.  All differences are for the better performing model in the column relative to 
the poorer performing model in the row. 
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Table 81 

Cross-Model Comparisons – Precision of CDR-Based Impairment for Whole Subject Trajectories 

Model Reference FNN GLMM Boosted CNN Bagged MERF LSTM 

Reference 
 

0.958 
 

0.014 
(1.48%) 

.010 

0.010 
(1.00%) 

.070 

0.007 
(0.76%) 

.134 

0.005 
(0.53%) 

.220 

0.002 
(0.25%) 

.364 

0.002 
(0.23%) 

.375 

0.000 
(0.05%) 

.479 

FNN [0.002, 
0.025] 

 
0.972 

 

0.005 
(0.47%) 

.214 

0.007 
(0.72%) 

.112 

0.009 
(0.94%) 

.064 

0.012 
(1.22%) 

.027 

0.012 
(1.24%) 

.039 

0.014 
(1.43%) 

.019 

GLMM [-0.003, 
0.021] 

[-0.008, 
0.016] 

 
0.967 

 

0.002 
(0.24%) 

.370 

0.004 
(0.46%) 

.225 

0.007 
(0.75%) 

.131 

0.007 
(0.76%) 

.113 

0.009 
(0.95%) 

.090 

Boosted [-0.007, 
0.019] 

[-0.005, 
0.018] 

[-0.011, 
0.014] 

 
0.965 

 

0.002 
(0.22%) 

.358 

0.005 
(0.51%) 

.215 

0.005 
(0.52%) 

.232 

0.007 
(0.71%) 

.146 

CNN [-0.009, 
0.018] 

[-0.003, 
0.021] 

[-0.008, 
0.016] 

[-0.010, 
0.014] 

 
0.963 

 

0.003 
(0.28%) 

.311 

0.003 
(0.30%) 

.314 

0.005 
(0.48%) 

.228 

Bagged [-0.011, 
0.015] 

[-0.000, 
0.023] 

[-0.005, 
0.020] 

[-0.008, 
0.017] 

[-0.011, 
0.015] 

 
0.960 

 

0.000 
(0.01%) 

.480 

0.002 
(0.20%) 

.371 

MERF [-0.011, 
0.015] 

[-0.001, 
0.022] 

[-0.006, 
0.019] 

[-0.008, 
0.017] 

[-0.010, 
0.016] 

[-0.015, 
0.014] 

 
0.960 

 

0.002 
(0.18%) 

.376 

LSTM [-0.013, 
0.013] 

[0.000, 
0.025] 

[-0.004, 
0.021] 

[-0.006, 
0.018] 

[-0.009, 
0.018] 

[-0.012, 
0.015] 

[-0.012, 
0.014] 

 
0.958 
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Note.  Whole subject trajectory precision values across all timepoints for each model 
listed on the diagonal, beginning with the logistic model reference, followed by the top 
performing learning model.  Learning models are then ordered according to decreasing 
performance.  Upper half of matrix contains numeric difference in metric, with percent 
difference in parenthesis, then one-sided bootstrapped proportional p-value; lower half of 
matrix contains the corresponding bootstrapped 95% confidence interval for the numeric 
difference.  All differences are for the better performing model in the column relative to 
the poorer performing model in the row. 
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Table 82 

Cross-Model Comparisons – Precision of CDR-Based Impairment for Final Observation Forecasts 

Model Reference CNN GLMM Bagged LSTM MERF Boosted FNN 

Reference 
 

0.977 
 

0.018 
(1.80%) 

.002 

0.012 
(1.24%) 

.068 

0.012 
(1.23%) 

.062 

0.007 
(0.68%) 

.162 

0.007 
(0.67%) 

.188 

0.006 
(0.60%) 

.236 

0.003 
(0.34%) 

.333 

CNN [0.005, 
0.023] 

 
0.994 

 

0.005 
(0.55%) 

.106 

0.006 
(0.56%) 

.121 

0.011 
(1.11%) 

.042 

0.011 
(1.12%) 

.049 

0.012 
(1.19%) 

.022 

0.014 
(1.45%) 

.017 

GLMM [-0.006, 
0.023] 

[-0.005, 
0.011] 

 
0.989 

 

0.000 
(0.01%) 

.459 

0.005 
(0.55%) 

.276 

0.005 
(0.56%) 

.274 

0.006 
(0.63%) 

.167 

0.009 
(0.90%) 

.141 

Bagged [-0.005, 
0.023] 

[-0.006, 
0.011] 

[-0.017, 
0.011] 

 
0.989 

 

0.005 
(0.54%) 

.274 

0.005 
(0.55%) 

.262 

0.006 
(0.62%) 

.189 

0.009 
(0.89%) 

.132 

LSTM [-0.012, 
0.023] 

[-0.001, 
0.017] 

[-0.013, 
0.017] 

[-0.012, 
0.017] 

 
0.983 

 

0.000 
(0.01%) 

.361 

0.001 
(0.08%) 

.350 

0.003 
(0.34%) 

.354 

MERF [-0.016, 
0.023] 

[-0.001, 
0.017] 

[-0.013, 
0.017] 

[-0.013, 
0.017] 

[-0.020, 
0.017] 

 
0.983 

 

0.001 
(0.07%) 

.384 

0.003 
(0.33%) 

.336 

Boosted [-0.015, 
0.023] 

[0.000, 
0.018] 

[-0.012, 
0.018] 

[-0.012, 
0.018] 

[-0.020, 
0.018] 

[-0.021, 
0.018] 

 
0.982 

 

0.003 
(0.26%) 

.355 

FNN [-0.022, 
0.023] 

[0.003, 
0.020] 

[-0.009, 
0.020] 

[-0.008, 
0.020] 

[-0.017, 
0.020] 

[-0.018, 
0.020] 

[-0.017, 
0.020] 

 
0.980 
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Note.  Final observation forecast precision values across all timepoints for each model 
listed on the diagonal, beginning with the logistic model reference, followed by the top 
performing learning model.  Learning models are then ordered according to decreasing 
performance.  Upper half of matrix contains numeric difference in metric, with percent 
difference in parenthesis, then one-sided bootstrapped proportional p-value; lower half of 
matrix contains the corresponding bootstrapped 95% confidence interval for the numeric 
difference.  All differences are for the better performing model in the column relative to 
the poorer performing model in the row. 
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Table 83 

Cross-Model Comparisons – Recall of CDR-Based Impairment for Whole Subject Trajectories 

Model Reference LSTM CNN Boosted Bagged MERF GLMM FNN 

Reference 
 

0.661 
 

0.164 
(24.76%) 

<.001 

0.161 
(24.44%) 

<.001 

0.146 
(22.03%) 

<.001 

0.141 
(21.27%) 

<.001 

0.138 
(20.82%) 

<.001 

0.115 
(17.47%) 

<.001 

0.107 
(16.26%) 

<.001 

LSTM [0.139, 
0.188] 

 
0.824 

 

0.002 
(0.26%) 

.430 

0.018 
(2.23%) 

.069 

0.023 
(2.87%) 

.023 

0.026 
(3.26%) 

.019 

0.048 
(6.20%) 
<.001 

0.056 
(7.31%) 
<.001 

CNN [0.137, 
0.186] 

[-0.021, 
0.026] 

 
0.822 

 

0.016 
(1.97%) 

.108 

0.021 
(2.61%) 

.043 

0.024 
(3.00%) 

.023 

0.046 
(5.93%) 
<.001 

0.054 
(7.03%) 
<.001 

Boosted [0.118, 
0.169] 

[-0.007, 
0.041] 

[-0.009, 
0.038] 

 
0.806 

 

0.005 
(0.63%) 

.339 

0.008 
(1.01%) 

.265 

0.030 
(3.88%) 

.007 

0.038 
(4.97%) 
<.001 

Bagged [0.115, 
0.163] 

[0.000, 
0.046] 

[-0.004, 
0.045] 

[-0.018, 
0.031] 

 
0.801 

 

0.003 
(0.38%) 

.407 

0.025 
(3.23%) 

.021 

0.033 
(4.31%) 

.006 

MERF [0.111, 
0.161] 

[0.001, 
0.051] 

[0.001, 
0.050] 

[-0.017, 
0.032] 

[-0.021, 
0.027] 

 
0.798 

 

0.022 
(2.85%) 

.047 

0.030 
(3.92%) 

.010 

GLMM [0.089, 
0.141] 

[0.023, 
0.072] 

[0.021, 
0.070] 

[0.006, 
0.054] 

[0.001, 
0.050] 

[-0.003, 
0.048] 

 
0.776 

 

0.008 
(1.05%) 

.272 

FNN [0.083, 
0.133] 

[0.032, 
0.081] 

[0.028, 
0.078] 

[0.014, 
0.062] 

[0.008, 
0.057] 

[0.005, 
0.053] 

[-0.020, 
0.034] 

 
0.768 
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Note.  Whole subject trajectory recall values across all timepoints for each model listed 
on the diagonal, beginning with the logistic model reference, followed by the top per-
forming learning model.  Learning models are then ordered according to decreasing per-
formance.  Upper half of matrix contains numeric difference in metric, with percent dif-
ference in parenthesis, then one-sided bootstrapped proportional p-value; lower half of 
matrix contains the corresponding bootstrapped 95% confidence interval for the numeric 
difference.  All differences are for the better performing model in the column relative to 
the poorer performing model in the row. 
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Table 84 

Cross-Model Comparisons – Recall of CDR-Based Impairment for Final Observation Forecasts 

Model Reference LSTM MERF GLMM Bagged CNN Boosted FNN 

Reference 
 

0.694 
 

0.289 
(41.59%) 

<.001 

0.283 
(40.78%) 

<.001 

0.278 
(39.98%) 

<.001 

0.272 
(39.17%) 

<.001 

0.250 
(35.96%) 

<.001 

0.244 
(35.15%) 

<.001 

0.121 
(17.45%) 

<.001 

LSTM [0.268, 
0.306] 

 
0.983 

 

0.006 
(0.57%) 

.176 

0.011 
(1.15%) 

.089 

0.017 
(1.73%) 

.034 

0.039 
(4.14%) 
<.001 

0.045 
(4.76%) 
<.001 

0.168 
(20.55%) 

<.001 

MERF [0.260, 
0.300] 

[-0.013, 
0.022] 

 
0.978 

 

0.006 
(0.57%) 

.314 

0.011 
(1.16%) 

.174 

0.034 
(3.55%) 

.002 

0.039 
(4.17%) 

.001 

0.162 
(19.86%) 

<.001 

GLMM [0.254, 
0.300] 

[-0.010, 
0.028] 

[-0.017, 
0.023] 

 
0.972 

 

0.006 
(0.58%) 

.323 

0.028 
(2.96%) 

.025 

0.034 
(3.57%) 

.008 

0.156 
(19.18%) 

<.001 

Bagged [0.243, 
0.295] 

[-0.003, 
0.034] 

[-0.012, 
0.028] 

[-0.022, 
0.028] 

 
0.966 

 

0.022 
(2.37%) 

.057 

0.028 
(2.98%) 

.017 

0.151 
(18.49%) 

<.001 

CNN [0.222, 
0.284] 

[0.022, 
0.056] 

[0.011, 
0.050] 

[-0.000, 
0.050] 

[-0.005, 
0.045] 

 
0.944 

 

0.006 
(0.60%) 

.286 

0.128 
(15.75%) 

<.001 

Boosted [0.206, 
0.277] 

[0.025, 
0.061] 

[0.014, 
0.056] 

[0.007, 
0.056] 

[0.002, 
0.050] 

[-0.027, 
0.036] 

 
0.939 

 

0.123 
(15.07%) 

<.001 

FNN [0.060, 
0.177] 

[0.148, 
0.184] 

[0.139, 
0.179] 

[0.128, 
0.179] 

[0.123, 
0.173] 

[0.095, 
0.162] 

[0.088, 
0.153] 

 
0.816 
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Note.  Final observation forecast recall values across all timepoints for each model listed 
on the diagonal, beginning with the logistic model reference, followed by the top per-
forming learning model.  Learning models are then ordered according to decreasing per-
formance.  Upper half of matrix contains numeric difference in metric, with percent dif-
ference in parenthesis, then one-sided bootstrapped proportional p-value; lower half of 
matrix contains the corresponding bootstrapped 95% confidence interval for the numeric 
difference.  All differences are for the better performing model in the column relative to 
the poorer performing model in the row. 
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Table 85 

Cross-Model Comparisons – ROC AUC of CDR-Based Impairment for Whole Subject Trajectories 

Model Reference Boosted FNN Bagged MERF GLMM CNN LSTM 

Reference 
 

0.841 
 

0.075 
(8.87%) 
<.001 

0.066 
(7.89%) 
<.001 

0.066 
(7.80%) 
<.001 

0.061 
(7.30%) 
<.001 

0.051 
(6.09%) 
<.001 

0.013 
(1.60%) 
<.001 

0.007 
(0.84%) 
<.001 

Boosted [0.059, 
0.090] 

 
0.916 

 

0.008 
(0.90%) 

.161 

0.009 
(0.99%) 

.116 

0.013 
(1.46%) 

.051 

0.023 
(2.62%) 
<.001 

0.061 
(7.15%) 
<.001 

0.068 
(7.96%) 
<.001 

FNN [0.051, 
0.082] 

[-0.009, 
0.024] 

 
0.908 

 

0.001 
(0.09%) 

.471 

0.005 
(0.55%) 

.245 

0.015 
(1.70%) 

.042 

0.053 
(6.19%) 
<.001 

0.059 
(7.00%) 
<.001 

Bagged [0.047, 
0.082] 

[-0.006, 
0.025] 

[-0.016, 
0.017] 

 
0.907 

 

0.004 
(0.46%) 

.326 

0.014 
(1.61%) 

.056 

0.052 
(6.09%) 
<.001 

0.059 
(6.90%) 
<.001 

MERF [0.043, 
0.078] 

[-0.003, 
0.028] 

[-0.010, 
0.022] 

[-0.013, 
0.022] 

 
0.903 

 

0.010 
(1.14%) 

.136 

0.048 
(5.61%) 
<.001 

0.054 
(6.41%) 
<.001 

GLMM [0.031, 
0.068] 

[0.007, 
0.039] 

[-0.002, 
0.030] 

[-0.003, 
0.031] 

[-0.009, 
0.027] 

 
0.892 

 

0.038 
(4.42%) 
<.001 

0.044 
(5.21%) 
<.001 

CNN [0.022, 
0.066] 

[0.044, 
0.076] 

[0.036, 
0.068] 

[0.034, 
0.069] 

[0.030, 
0.065] 

[0.018, 
0.056] 

 
0.855 

 

0.006 
(0.76%) 

.001 

LSTM [0.031, 
0.072] 

[0.050, 
0.082] 

[0.043, 
0.076] 

[0.040, 
0.076] 

[0.036, 
0.071] 

[0.024, 
0.062] 

[0.016, 
0.058] 

 
0.848 
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Note.  Whole subject trajectory ROC AUC values across all timepoints for each model 
listed on the diagonal, beginning with the logistic model reference, followed by the top 
performing learning model.  Learning models are then ordered according to decreasing 
performance.  Upper half of matrix contains numeric difference in metric, with percent 
difference in parenthesis, then one-sided bootstrapped proportional p-value; lower half of 
matrix contains the corresponding bootstrapped 95% confidence interval for the numeric 
difference.  All differences are for the better performing model in the column relative to 
the poorer performing model in the row. 
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Table 86 

Cross-Model Comparisons – ROC AUC of CDR-Based Impairment for Final Observation Forecasts 

Model Reference Bagged MERF GLMM Boosted CNN LSTM FNN 

Reference 
 

0.825 
 

0.162 
(19.66%) 

<.001 

0.157 
(19.01%) 

<.001 

0.157 
(19.01%) 

<.001 

0.148 
(17.90%) 

<.001 

0.133 
(16.15%) 

<.001 

0.124 
(15.06%) 

<.001 

0.099 
(12.00%) 

<.001 

Bagged [0.148, 
0.173] 

 
0.987 

 

0.005 
(0.55%) 

.217 

0.005 
(0.55%) 

.195 

0.015 
(1.49%) 

.028 

0.029 
(3.02%) 

.001 

0.038 
(4.00%) 
<.001 

0.063 
(6.84%) 
<.001 

MERF [0.132, 
0.172] 

[-0.011, 
0.017] 

 
0.981 

 

0.000 
(0.00%) 

.454 

0.009 
(0.94%) 

.182 

0.024 
(2.46%) 

.027 

0.033 
(3.43%) 

.005 

0.058 
(6.26%) 
<.001 

GLMM [0.133, 
0.173] 

[-0.011, 
0.016] 

[-0.025, 
0.016] 

 
0.981 

 

0.009 
(0.94%) 

.176 

0.024 
(2.46%) 

.025 

0.033 
(3.43%) 

.007 

0.058 
(6.26%) 
<.001 

Boosted [0.123, 
0.168] 

[-0.001, 
0.026] 

[-0.016, 
0.025] 

[-0.014, 
0.025] 

 
0.972 

 

0.014 
(1.51%) 

.121 

0.023 
(2.47%) 

.035 

0.049 
(5.27%) 

.002 

CNN [0.147, 
0.174] 

[0.012, 
0.040] 

[-0.001, 
0.039] 

[-0.000, 
0.039] 

[-0.011, 
0.035] 

 
0.958 

 

0.009 
(0.95%) 
<.001 

0.034 
(3.71%) 
<.001 

LSTM [0.133, 
0.172] 

[0.021, 
0.049] 

[0.007, 
0.048] 

[0.008, 
0.049] 

[-0.004, 
0.043] 

[0.024, 
0.049] 

 
0.949 

 

0.025 
(2.73%) 
<.001 

FNN [0.058, 
0.131] 

[0.048, 
0.074] 

[0.032, 
0.074] 

[0.035, 
0.074] 

[0.024, 
0.068] 

[0.049, 
0.075] 

[0.034, 
0.071] 

 
0.924 
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Note.  Final observation forecast ROC AUC values across all timepoints for each model 
listed on the diagonal, beginning with the logistic model reference, followed by the top 
performing learning model.  Learning models are then ordered according to decreasing 
performance.  Upper half of matrix contains numeric difference in metric, with percent 
difference in parenthesis, then one-sided bootstrapped proportional p-value; lower half of 
matrix contains the corresponding bootstrapped 95% confidence interval for the numeric 
difference.  All differences are for the better performing model in the column relative to 
the poorer performing model in the row. 
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Table 87 

Subject-Specific Effects Performance Metrics Summary – Meta-Database Samplings 

 RMSE Mean AE AV bias 

Subject-specific 
effects design 

CPath 
reference 

DN BR 
model 

MERF 
model 

CPath 
reference 

DN BR 
model 

MERF 
model 

CPath 
reference 

DN BR 
model 

MERF 
model 

Whole trajectories  

 Population 
effects only 

6.43 ± 
0.196 

6.42 ± 
0.232 

6.32 ± 
0.239 

4.92 ± 
0.125 

4.60 ± 
0.137 

4.64 ± 
0.140 

1.12 ± 
0.312 

0.60 ± 
0.414 

0.21 ± 
0.259 

 Imputed 
subject effects 

12.54 ± 
0.124 

7.79 ± 
0.191 

8.14 ± 
0.179 

9.19 ± 
0.098 

5.73 ± 
0.117 

6.21 ± 
0.120 

3.03 ± 
0.308 

0.22 ± 
0.286 

0.20 ± 
0.212 

Observation forecasts  

 Population 
effects only 

7.70 ± 
0.348 

7.78 ± 
0.385 

7.47 ± 
0.380 

5.79 ± 
0.212 

5.46 ± 
0.223 

5.43 ± 
0.215 

0.57 ± 
0.482 

1.02 ± 
0.529 

0.63 ± 
0.277 

 Imputed 
subject effects 

16.52 ± 
0.195 

8.93 ± 
0.339 

10.07 ± 
0.291 

12.20 ± 
0.155 

6.46 ± 
0.204 

7.81 ± 
0.192 

3.94 ± 
0.497 

0.58 ± 
0.525 

0.39 ± 
0.454 

 Fitted 
subject effects 

 4.24 ± 
0.238 

4.44 ± 
0.249 

 3.00 ± 
0.129 

3.15 ± 
0.137 

 0.25 ± 
0.256 

0.27 ± 
0.275 

Note.  Results presented as mean ± standard deviation for RMSE and MAE and median ± interquartile range for AVB. 
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Table 88 

RMSE and AVB Subject-Specific Effects Cross-Model Comparisons – Meta-Database Samplings – Whole Subject Trajectories 

 CPath 
PLE only 

CPath 
imputed 

DN BR 
PLE only 

DN BR 
imputed 

MERF 
PLE only 

MERF 
imputed 

CPath 
PLE only — 

-171.0% 
[-201.4%, 
-153.5%] * 

85.8% 
[52.2%, 
141.6%] 

 
434.1% 

[287.7%, 
764.7%] * 

 

CPath 
imputed 

95.0% 
[92.9%, 
96.9%] * 

—  
1284.6% 
[825.4%, 

1929.2%] * 
 

1443.7% 
[1032.4%, 
2052.6%] * 

DN BR 
PLE only 

-0.1% 
[-1.6%, 
1.3%] 

 — 
174.9% 
[68.4%, 
292.9%] 

187.4% 
[98.0%, 
370.5%] 

 

DN BR 
imputed 

 
-60.9% 

[-62.3%, 
-59.6%] * 

21.3% 
[19.6%, 
23.1%] * 

—  
11.5% 

[-38.1%, 
84.9%] 

MERF 
PLE only 

-1.8% 
[-3.3%, 
-0.3%] 

 
-1.6% 

[-3.3%, 
-0.1%] 

 — 
6.6% 

[-57.9%, 
65.9%] 

MERF 
imputed  

-54.0% 
[-55.2%, 
-52.9%] * 

 
4.5% 

[3.5%, 
5.6%] 

28.8% 
[27.0%, 
30.6%] * 

— 
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Note.  For whole subject trajectories, RMSE comparisons shown below the diagonal and 
AVB comparisons shown above.  Results presented as percent differences in metrics of 
the row model relative to the column model (e.g. negative percentages indicate better pre-
dictive performance for the model design listed in the row relative to the column) along 
with bootstrapped 95% confidence interval for the percent difference.  Tests not associ-
ated by either model type or subject-specific effects design were not evaluated with en-
tries left blank. 

* Comparisons where the better predicting model displayed improved metrics in at least 
90% of the 200 meta-database samplings for whole subject trajectories. 
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Figure 79 

Root Mean Square Error on Subject-Specific Effects – Meta-Database Samplings – Whole Subject Trajectories 

 
Note.  Error bars centered on mean with standard deviation ranges. 
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Figure 80 

Absolute Value of the Bias on Subject-Specific Effects – Meta-Database Samplings – Whole Subject Trajectories 

 
Note.  Error bars centered on median with interquartile ranges. 
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Table 89 

RMSE and AVB Subject-Specific Effects Cross-Model Comparisons – Meta-Database Samplings – Final Observation Forecasts 

 CPath 
PLE only 

CPath 
imputed 

DN BR 
PLE only 

DN BR 
imputed 

DN BR 
fitted 

MERF 
PLE only 

MERF 
imputed 

MERF 
fitted 

CPath 
PLE only 

— 
-593.4% 

[-862.4%, 
-448.9%] * 

-79.0% 
[-151.3%, 
-32.7%] 

  
-11.8% 

[-59.0%, 
17.3%] 

  

CPath 
imputed 

114.7% 
[111.5%, 
117.8%] * 

—  
575.9% 

[422.7%, 
849.0%] * 

  
899.3% 

[625.7%, 
1462.8%] * 

 

DN BR 
PLE only 

1.0% 
[-1.0%, 
3.2%] 

 — 
74.5% 

[25.7%, 
143.2%] 

305.2% 
[196.1%, 
439.9%] * 

60.1% 
[28.2%, 
92.2%] 

  

DN BR 
imputed 

 
-85.0% 

[-87.3%, 
-82.8%] * 

14.9% 
[12.6%, 
17.2%] * 

— 
132.3% 
[50.3%, 

238.7%] * 
 

47.8% 
[-3.5%, 
152.3%] 

 

DN BR 
fitted 

  
-83.4% 

[-87.5%, 
-79.3%] * 

-110.7% 
[-114.8%, 
-106.3%] * 

—   
-8.5% 

[-52.8%, 
35.9%] 

MERF 
PLE only 

-3.0% 
[-5.3%, 
-0.8%] 

 
-4.1% 

[-6.4%, 
-1.9%] 

  — 
61.1% 

[15.6%, 
151.0%] 

133.4% 
[79.0%, 

213.8%] * 

MERF 
imputed 

 
-64.1% 

[-65.8%, 
-62.4%] * 

 
12.7% 

[11.2%, 
14.4%] * 

 
34.8% 

[32.5%, 
37.4%] * 

— 
44.9% 
[-6.3%, 
124.1%] 

MERF 
fitted 

    
4.8% 

[2.2%, 
7.4%] * 

-68.1% 
[-72.0%, 
-64.2%] * 

-126.6% 
[-130.7%, 
-122.4%] * 

— 



 

 
283 

Note.  For final observation forecasts, RMSE comparisons shown below the diagonal and 
AVB comparisons shown above.  Results presented as percent differences in metrics of 
the row model relative to the column model (e.g. negative percentages indicate better pre-
dictive performance for the model design listed in the row relative to the column) along 
with bootstrapped 95% confidence interval for the percent difference.  Tests not associ-
ated by either model type or subject-specific effects design were not evaluated with en-
tries left blank. 

* Comparisons where the better predicting model displayed improved metrics in at least 
90% of the 200 meta-database samplings for final observation forecasts. 
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Figure 81 

Root Mean Square Error on Subject-Specific Effects – Meta-Database Samplings – Final Observation Forecasts 

 
Note.  Error bars centered on mean with standard deviation ranges. 
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Figure 82 

Absolute Value of the Bias on Subject-Specific Effects – Meta-Database Samplings – Final Observation Forecasts 

 
Note.  Error bars centered on median with interquartile ranges. 
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Table 90 

Subject-Specific Effects Performance Metrics Summary – Synthetic Validation Cohorts 

 RMSE Mean AE AV bias 

Subject-specific 
effects design 

CPath 
reference 

DN BR 
model 

MERF 
model 

CPath 
reference 

DN BR 
model 

MERF 
model 

CPath 
reference 

DN BR 
model 

MERF 
model 

Whole trajectories  

 Population 
effects only 

12.88 ± 
1.552 

11.80 ± 
1.537 

11.54 ± 
1.441 

9.54 ± 
1.105 

8.69 ± 
1.071 

8.84 ± 
1.021 

1.14 ± 
1.677 

2.24 ± 
2.170 

1.11 ± 
1.387 

 Imputed 
subject effects 

18.77 ± 
0.904 

15.75 ± 
1.230 

15.85 ± 
1.373 

13.89 ± 
0.732 

11.93 ± 
0.942 

12.25 ± 
1.052 

2.34 ± 
2.120 

1.08 ± 
1.421 

1.12 ± 
1.423 

Observation forecasts  

 Population 
effects only 

15.15 ± 
2.101 

13.04 ± 
1.926 

12.41 ± 
1.849 

11.28 ± 
1.590 

9.76 ± 
1.432 

9.47 ± 
1.341 

2.01 ± 
2.435 

2.23 ± 
2.241 

1.77 ± 
2.043 

 Imputed 
subject effects 

23.35 ± 
1.267 

17.03 ± 
1.619 

17.15 ± 
1.685 

17.88 ± 
1.049 

13.05 ± 
1.263 

13.51 ± 
1.322 

3.11 ± 
2.829 

1.19 ± 
1.326 

1.08 ± 
1.353 

 Fitted 
subject effects 

 2.89 ± 
1.548 

2.65 ± 
1.364 

 1.28 ± 
0.492 

1.19 ± 
0.441 

 0.38 ± 
0.470 

0.44 ± 
0.414 

Note.  Results presented as mean ± standard deviation for RMSE and MAE and median ± interquartile range for AVB.   
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Table 91 

RMSE and AVB Subject-Specific Effects Cross-Model Comparisons – Synthetic Validation Cohorts – Whole Subject Trajectories 

 CPath 
PLE only 

CPath 
imputed 

DN BR 
PLE only 

DN BR 
imputed 

MERF 
PLE only 

MERF 
imputed 

CPath 
PLE only — 

-106.3% 
[-175.6%, 
-48.2%] 

-97.5% 
[-161.1%, 
-40.2%] 

 
1.9% 

[-33.3%, 
48.1%] 

 

CPath 
imputed 

45.7% 
[42.2%, 
49.5%] * 

—  
116.5% 
[70.4%, 
194.1%] 

 
108.3% 
[58.4%, 
177.1%] 

DN BR 
PLE only 

-9.1% 
[-13.2%, 
-5.6%] 

 — 
107.3% 
[57.8%, 
185.7%] 

101.2% 
[58.0%, 
172.1%] 

 

DN BR 
imputed 

 
-19.1% 

[-21.4%, 
-16.9%] * 

33.5% 
[29.5%, 
37.4%] * 

—  
-3.9% 

[-47.2%, 
30.1%] 

MERF 
PLE only 

-11.6% 
[-15.5%, 
-7.8%] 

 
-2.3% 

[-5.7%, 
1.3%] 

 — 
-0.9% 

[-43.2%, 
35.8%] 

MERF 
imputed  

-18.4% 
[-20.8%, 
-16.1%] * 

 
0.6% 

[-1.9%, 
3.0%] 

37.4% 
[33.0%, 
41.9%] * 

— 
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Note.  For whole subject trajectories, RMSE comparisons shown below the diagonal and 
AVB comparisons shown above.  Results presented as percent differences in metrics of 
the row model relative to the column model (e.g. negative percentages indicate better pre-
dictive performance for the model design listed in the row relative to the column) along 
with bootstrapped 95% confidence interval for the percent difference.  Tests not associ-
ated by either model type or subject-specific effects design were not evaluated with en-
tries left blank. 

* Comparisons where the better predicting model displayed improved metrics in at least 
90% of the 500 synthetic cohorts for whole subject trajectories. 
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Figure 83 

Root Mean Square Error on Subject-Specific Effects – Synthetic Validation Cohorts – Whole Subject Trajectories 

 
Note.  Error bars centered on mean with standard deviation ranges. 
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Figure 84 

Absolute Value of the Bias on Subject-Specific Effects –Synthetic Validation Cohorts – Whole Subject Trajectories 

 
Note.  Error bars centered on median with interquartile ranges. 
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Table 92 

RMSE and AVB Subject-Specific Effects Cross-Model Comparisons – Synthetic Validation Cohorts – Final Observation Forecasts 

 CPath 
PLE only 

CPath 
imputed 

DN BR 
PLE only 

DN BR 
imputed 

DN BR 
fitted 

MERF 
PLE only 

MERF 
imputed 

MERF 
fitted 

CPath 
PLE only 

— 
-54.7% 

[-106.2%, 
-17.2%] 

-11.2% 
[-51.9%, 
19.7%] 

  
13.6% 

[-18.8%, 
55.0%] 

  

CPath 
imputed 

54.1% 
[50.0%, 
58.7%] * 

—  
161.2% 

[109.5%, 
247.7%] 

  
186.9% 

[121.5%, 
281.2%] 

 

DN BR 
PLE only 

-16.2% 
[-20.5%, 
-11.9%] 

 — 
87.8% 

[43.8%, 
158.9%] 

480.1% 
[357.3%, 
671.1%] * 

26.3% 
[-1.7%, 
69.6%] 

  

DN BR 
imputed 

 
-37.1% 

[-40.1%, 
-34.2%] * 

30.6% 
[26.4%, 
35.1%] * 

— 
208.9% 

[133.2%, 
315.5%] 

 
9.8% 

[-25.3%, 
47.3%] 

 

DN BR 
fitted 

  
-350.6% 

[-399.7%, 
-303.9%] * 

-488.5% 
[-561.0%, 
-427.8%] * 

—   
-14.0% 

[-46.3%, 
15.8%] 

MERF 
PLE only 

-22.1% 
[-26.9%, 
-17.3%] 

 
-5.1% 

[-9.4%, 
-0.6%] 

  — 
63.3% 

[21.2%, 
121.2%] 

303.0% 
[212.6%, 
418.8%] * 

MERF 
imputed 

 
-36.1% 

[-39.1%, 
-33.2%] * 

 
0.7% 

[-2.3%, 
3.4%] 

 
38.2% 

[33.6%, 
42.8%] * 

— 
146.8% 
[88.0%, 
228.5%] 

MERF 
fitted 

    
-9.3% 

[-27.3%, 
5.5%] 

-369.0% 
[-422.1%, 
-325.0%] * 

-548.2% 
[-622.5%, 
-488.7%] * 

— 
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Note.  For final observation forecasts, RMSE comparisons shown below the diagonal and 
AVB comparisons shown above.  Results presented as percent differences in metrics of 
the row model relative to the column model (e.g. negative percentages indicate better pre-
dictive performance for the model design listed in the row relative to the column) along 
with bootstrapped 95% confidence interval for the percent difference.  Tests not associ-
ated by either model type or subject-specific effects design were not evaluated with en-
tries left blank. 

* Comparisons where the better predicting model displayed improved metrics in at least 
90% of the 500 synthetic cohorts for final observation forecasts. 
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Figure 85 

Root Mean Square Error on Subject-Specific Effects – Synthetic Validation Cohorts – Final Observation Forecasts 

 
Note.  Error bars centered on mean with standard deviation ranges. 
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Figure 86 

Absolute Value of the Bias on Subject-Specific Effects – Synthetic Validation Cohorts – Final Observation Forecasts 

 
Note.  Error bars centered on median with interquartile ranges. 
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DISCUSSION 

 

Overall Results 

This dissertation is the first comprehensive evaluation of the predictive performance 

of longitudinal machine learning methods when applied to cognitive outcomes, consider-

ing ensemble supervised learning methods and novel adaptations of deep learning neural 

networks across multiple classes of responses with assessments for both generation of 

whole temporal profile trajectories and forecasting of future observations based on previ-

ously observed data.  When compared against common inferential reference models with 

pre-specified parameterizations, all ML designs demonstrated improved performance un-

der all evaluated conditions.  Prediction errors and biases were reduced for predictions of 

ADAS-Cog scores while accuracy, sensitivity/recall and cut point agnostic ROC AUC 

measures all increased when classifying impairment status based on CDR scores.  Fur-

thermore, the models that made direct use of sequential data when forecasting future ob-

servations demonstrated exceptional gains in predictive performance compared to designs 

that only considered population-level covariates and ignored any possible subject-specific 

effects for both outcome types.  Although all ML models showed improvement over their 

respective references, there was no one statistical learning design that was uniformly su-

perior across all outcomes and types of predictions. 
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In addition to the ML evaluations, this study included the first assessment of the im-

pact of subject-specific effects when predicting longitudinal change in cognitive decline 

as measured by the ADAS-Cog with comparisons considering a pre-parameterized model 

used for cohort generation, an analogous regression model built directly from the dataset, 

and an ensemble ML method using mixed-effects random forests.  Imputation of subject-

specific effects was associated with increases in prediction error compared to designs 

where these effects were suppressed but reductions in error were observed when using 

known fitted subject-specific effects.  Bias was less consistent but was generally largest 

when only population-level effects were used and decreased when subject-specific effects 

were imputed and decreased further when fitted subject-specific effects were used di-

rectly during forecasting.  However, for the pre-parameterized model, bias increased un-

der imputation of subject-specific effects.  Notably, although this increase was sizable 

within a real-world meta-database, it was significantly attenuated when tested under sim-

ulation with more generalized datasets and observed in only a fraction of the synthetic co-

horts, implying generalizability of the reference model under imputation methods. 

 

The Meta-Database of Alzheimer’s Disease Studies 

The meta-database proved to be an exceptionally potent data source for the evaluation 

aspects of this study, providing a large and robust collection of participants with ample 

amounts of longitudinal measures for both the continuous ADAS-Cog outcome and clas-

sification of CDR impairment.  Even after multiple processing and harmonization steps 

and extraction of multiple data subsets for building both the logistic mixed-effects refer-

ence model as well as the holdout testing sets, there were still 2555 unique subjects with 
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ADAS-Cog measurements and 2755 participants with CDR scores, with nearly 15,000 

total timepoints for model building.  Importantly, the meta-database consisted of several 

different studies from both interventional trials of the ADCS and observational data from 

the ADNI study which supplied an excellent and varied set of ADRD study participants.  

This has implications for practical implementations of these ML models since they 

should readily generalize to other ADRD research populations and better highlight the 

utility of longitudinal machine learning methods to these subsequent cohorts. 

While there is little question about how well the meta-database worked for this study, 

there are some discussion points which should be raised.  Although some data were 

culled during the various cleaning steps of the harmonization, there was no larger loss 

than the requirement of APOE4 genotyping for allele counts.  Nearly half of the 7071 

participants in the preceding phase were dropped during this step and three of the 14 

ADCS studies were excluded solely on this requirement alone as they had no genotyping 

component.  However, over half of the participants who were dropped for lack of geno-

typing only had single timepoint observations, with many of them being screen failures or 

study exclusions.  This makes conceptual sense since investigators would not be expected 

to genotype a screen failure and this expectation helps offset some of the potential con-

cern as the primary goal of this dissertation was to evaluate the longitudinal capacity of 

the statistical learning methods. 

An early stage of the harmonization set the maximum evaluation time at six years 

even though some participants were followed for as long as 12 years.  This decision to set 

the maximum time was not made lightly and was given substantial thought during the 

study design.  The primary rationale was the ADCS interventional studies were typically 
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conducted for either two or three years.  As a result, nearly all of the observations at these 

more distal times came from the ADNI observational study.  Even setting the maximum 

time to six years still gave a larger study footprint to the ADNI dataset at later times and 

this would have been further compounded with a more extended evaluation window.  In 

addition, it is important to remember that Alzheimer’s disease naturally focuses on an el-

derly population.  This leads to a counterintuitive scenario wherein participants that are 

followed in an ADRD study for that exceptional length of time will tend to be “super ag-

ers” who are healthier and less likely to exhibit cognitive impairment.  Paradoxically, this 

means participants observed at these later time points will have lower ADAS-Cog scores 

and less likely to have impairment based on the CDR.  While it would have been intri-

guing to test the performance of the ML models at even longer time lengths, to avoid any 

issues with the apparent improvement in cognitive ability at later times, which would not 

be anticipated in a natural population, and further overemphasis on the ADNI dataset, it 

was decided to shorten the evaluation window to six years.  Although disappointing, this 

still yielded an excellent cohort for predicting cognitive ability. 

Another aspect of the meta-database to mention is the selection of the covariate fea-

ture space used for the ML models.  A key benefit of machine learning in general is its 

capacity to work with larger feature spaces, even those that would lead to overfitting with 

fewer observations than features.  Statistically, there would be expected improvements in 

prediction over the reference models simply be expanding the feature space, which is 

why relative increases to the reference models as well as cross-model comparisons were 

done for aims 1 and 2.  In addition, when explicitly considering the role of subject-spe-

cific effects in aim 3, the same feature space was used for all models, even the MERF 
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ML model.  This was to specifically isolate the impact of subject-specific parameters on 

ADAS-Cog prediction without additional influence due to wider feature spaces.  When 

selecting the covariates for inclusion, other covariates known to influence cognitive abil-

ity were included such as race/ethnicity, education, and use of anti-dementia medication.  

It was unfortunate the only time dependent covariates which could be included were 

MMSE score and some vitals known to also associate with impairment, but this was ulti-

mately dependent on the innate covariate coverage of the meta-database.  The vitals 

measures of weight and blood pressure should not be taken as indications of vascular im-

pairment as there are more appropriate metrics such as Hachinski score for stroke.  While 

this metric is part of the meta-database, it did not have the same coverage as other covari-

ates and was generally only seen at screening visits and used as an exclusionary tool.  

These listed metrics were selected due to their known association specific with ADRD 

based impairment and while other ML methods may highlight wider covariate sets, such 

as in genomic analysis, this still provided an appropriate feature space for the primary re-

search question. 

A final aspect to reiterate is the general disposition of the meta-database, especially 

with respect to the binary cognitive impairment classification generated from CDR score.  

A goal of this dissertation was to use a larger real-world dataset beyond the commonly 

utilized ADNI data frequently seen in AD-related ML studies.  This was accomplished by 

the inclusions of the ADCS clinical trials but led to a unique set of concerns.  The clinical 

trial data, as mentioned, is limited in duration to only 2-3 years.  In addition, CDR is of-

ten used as an inclusion criterion, leading to the observed imbalance favoring impairment 

which is discussed further below.  The more critical aspect is CDR is expected to change 
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relatively little over a short period of time, nor is it expected to improve if cognitive or 

especially functional impairment is already present.  A consequence of this is that CDR 

score, and by extension the impairment classifier of this dissertation, should be expected 

to be relatively stable within a given individual: people may transition from unimpaired 

to impaired if disease has progressed enough, but it is highly unlikely someone will tran-

sition in the opposite direction.  Combined with the imbalance favoring impairment, there 

should be relatively little shift in the classifier.  This undoubtedly is manifested in results 

of the impairment forecasting of the sequential models: rather than leveraging the covari-

ate feature spaces, they are most likely relying on their known subject-specific effects 

leading to results such as the dramatic decrease in false negatives.  While this is a point 

which absolutely must be raised, it does not necessarily detract from the research ques-

tions at hand.  A primary goal was cross-model prediction and distinguishing recall sensi-

tivities, even if they are exceedingly large, is still quite feasible with these methods.  In 

addition, there is value in a model to identify stability.  In fact, it would be a greater con-

cern if these sequential models were unable to accurately forecast a consistent classifier.  

Regardless, taking the raw performance metrics at their exceedingly high face values is 

an incorrect representation of the results (frankly, no classifier should perform this well), 

but it does not detract from goals and results of this study in evaluating these longitudinal 

models in a more complex and realistic AD dataset. 

 

Reference Model Observations 

One of the most critical aspects when designing this study was the establishment of 

reference models for longitudinal prediction of the two cognitive outcomes.  Analytically, 
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this provided a control condition that all ML models could be compared to which helped 

ground the ML models to a common baseline during evaluation.  Importantly, this would 

also provide an implementation reference since many of these novel ML methods, espe-

cially with the adaptations to account for panel data, show extremely high demands with 

respect to both processing speed and memory footprints.  Although these practical imple-

mentation criteria were not directly evaluated during the course of the study, ad hoc ob-

servations were noted with a consistent eye to how the ML models compared to these in-

ferential references both predictively and practically.  In fact, one of the most striking re-

sults of the reference model implementations was how well both the CPath regression 

model for ADAS-Cog and the logistic mixed-effects impairment classifier performed 

when predicting either whole subject trajectories or final observation forecasts.  This is 

especially notable since both reference designs had parameterizations determined from 

outside the evaluated meta-database, with the CPath model developed from legacy da-

tasets and literature values, and the logistic mixed-effects classifier built with a holdout 

set that was never otherwise used during the ML evaluation process.  Despite this, these 

inferential models were admirable for the predictive capacity indicating their generaliza-

bility to predict longitudinal cognitive outcomes even outside their original specifica-

tions.  However, although both inferential methods had appreciable performance, there 

was still substantial room for improvement by the ML methods. 

The CPath predictions for ADAS-Cog worked well in terms of on average values as 

reflected by the acceptable overall bias and mean errors for the two types of predictions.  

Observing overall RMSE/MAE values of 6.82/5.28 for trajectories and 9.72/6.86 for 

forecasts along with similar AVB values of 4.4 and 4.8 are appreciable for a scale that 
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can range from 0 to 70.  However, the model struggled to predict more extreme 

ADAS-Cog scores which became most apparent when inspecting the scatterplots of pre-

diction scores.  Many scores which were observed in the upper 40-70 point range were 

rarely predicted at that level.  However, it should also be noted the CPath model strug-

gled to predict lower scores and almost never gave a prediction in the 0-7 point range, 

values which would be expected of more cognitively intact individuals who were also 

known to be present in the meta-database.  Thus, even though the scores were consistent 

for the CPath model, variances were much tighter and individual predictions had the po-

tential to be vastly incorrect.  A final point to reiterate is the CPath model performed bet-

ter when predicting whole subject trajectories instead of forecasting final observations.  

This would be an important observation when predicting ADAS-Cog scores with the ML 

models, especially with the understanding that the use of the pre-parameterization pre-

cluded any direct leveraging of prior sequence data with reliance solely on the popula-

tion-level demographic variables. 

The logistic mixed-effects model similarly worked well overall in the meta-database 

and, unlike the CPath model, the decreased performance for forecasting was markedly at-

tenuated.  Accuracies for both types of predictions were greater than 0.70 with precisions 

greater than 0.95 indicating little concern with false positive misclassifications.  How-

ever, both of these metrics, especially accuracy, must be carefully considered when used 

in imbalanced datasets such as the meta-database.  As a trade-off to this large positive 

predictive capacity, there was a greater tendency of the logistic classifier towards false 

negative predictions wherein a participant would be misclassified as non-impaired with a 

CDR score of 0 while they were actually observed with an impairment classification from 
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a larger CDR score.  This was reflected most notably in the recall values with a 0.66 for 

the whole trajectories and 0.69 for forecasts.   Another deficiency was how predictive 

performance generally decreased at later timepoints of three years or more with lower ac-

curacy, precision, and recall, especially for trajectories.  This was not generally observed 

with prediction of ADAS-Cog scores by the CPath model which was relatively consistent 

across timepoints and was more influenced by the presence of individual outlier values.  

A final aspect of these metrics to mention is their dependence on adequate cut point de-

termination which must be considered for any score-based classifier.  Taking the same 

data-driven approach of cut point optimization as described in the methods for all models, 

both inferential and learning based, certainly tempers this concern but this is where the 

utility of the cut point-agnostic ROC AUC becomes crucial.  Despite the false negatives, 

a propensity generally observed with other evaluated models as well, the overall predic-

tive performance of the logistic mixed-effects classifier was high with AUC values of 

0.841 and 0.825 for whole subject trajectories and observation forecasts respectively.  

Within the overall context of this study, both reference models performed well, especially 

given their relatively limited covariate sets of age, MMSE, sex and APOE4 count, but 

once again, clearly displayed room for improvement in their predictive ability for the 

cognitive outcomes of interest. 

 

Original Implementation Goals for Supervised Methods 

The initial proposal for aim 1 of this study was to evaluate a more comprehensive list 

of supervised machine learning models than the final series of ensemble tree methods.  

This included variations of regularized regression widely used in cross-sectional settings, 
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most notably the ℓ2 penalized ridge regression, ℓ1 LASSO regression, and their com-

bined elastic net formulation, as well as combination kernel methods of support vector 

machines.  Given early citations, these methods appeared promising as additional compo-

nents of more traditional supervised ML methods; however, practical application proved 

to be challenging.  When attempting to implement the variety of regularized regression 

designs, many packages in R and libraries in Python which had first been published sev-

eral years ago were no longer receiving active updates from the authors and were so out-

dated they no longer worked with the statistical software such as with lmmlasso and 

glmmLasso (Groll, 2017; Schelldorfer, 2011).  Others had received more recent updates 

but were reliant on other packages and components which in turn had lost their own sup-

port and were no longer stable like lmmen (Sidi, 2020).  Finally, some packages would 

work in their current software environments but were far too simplistic in their architec-

ture for this study.  This was the case with ggmix in R (Bhatnagar et al., 2021) and 

GELMMnet in Python (Schubert & Marks, 2017) which were originally developed for 

genomics studies and only allowed for single random effects components for intercept 

terms.  While this was adequate for the panel data of their original implementations, they 

were insufficient for the complexities of the longitudinal designs of this dissertation. 

For the multiple kernel SVMs, the original proposal was to have a standard Gaussian 

or radial basis function kernel account for the fixed effects components of the models 

while a second kernel would handle the panel nature of the data.  This was inspired by the 

prior work of Luts et al. (Luts et al., 2012) who had demonstrated the potential of multi-

kernel SVMs in both regression and classification of longitudinal data.  A package was 

found for R which would handle multiple kernel SVMs which is still receiving support 



 

 
305 

from the authors, RMKL (Wilson & Li, 2019).  However, practical issues arose as pre-de-

fined kernels of the package were found to be very limited and were highly reliant on 

specifications of the user.  Implementation of an appropriate subject-specific kernel for 

panel data along with the proper selection and tuning of the multiple kernel design for the 

meta-database would constitute a notable research project on its own and, in the interests 

of giving the other models the credence and attention they deserved, it was decided to ex-

clude the multiple kernel SVMs from this work. 

While these early outcomes were disappointing, that is not to say they do no warrant 

investigation.  Revisiting the regularized regression designs or implementing a multiple 

kernel SVM for longitudinal ADRD data may be worthwhile pursuits.  However, it is 

telling that many of the citations are original publications from five to ten years ago with 

little subsequent follow-up.  The machine learning field has seen many advances since 

then both with more refined ensemble methods like those of aim 1 and especially in the 

field of deep learning and neural networks as evaluated in aim 2.  While there may still be 

utility in these other longitudinal supervised methods, the field as a whole may have 

simply decided on new avenues that could hold even greater potential and promise in the 

evaluation of repeated measures data.  Ultimately, understanding and appreciating the di-

rection the field is moving as a whole and adjusting accordingly is also an important facet 

for any research area.  Finally, it is critical to reiterate that even if regularized regression 

and multiple kernel SVMs may not see much impact when applied in longitudinal or 

panel paradigms, they are still very widely used in statistical learning in cross-sectional 

applications.  The glmnet package in R (Friedman et al., 2010) whose sole focus is reg-

ularized regression is one of the most robust statistical learning libraries available and is 
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receiving constant use and support.  In addition, SVMs are a critical component of the 

scikit-learn library in Python (Pedregosa et al., 2011) and are especially powerful 

in addressing high dimensional feature spaces.  These ML models will continue to see 

use for quite some time and understanding their specific role and context, even if that 

does not involve longitudinal applications, is key to their utilization. 

 

Classification of CDR-Based Impairment 

Although CDR impairment for the meta-database in the context of within-subject sta-

bility has been discussed at length already, there are other aspects of this classification 

task to discuss in general terms.  When conducting evaluations on a categorical outcome, 

it is critical to remember and reiterate two key points.  The first aspect is how many of 

the metrics used in the evaluations of this study are reliant on a binary outcome as they 

arise from tabulations taken from a confusion matrix.  Identifying false positives and 

false negatives requires explicit class assignments and without these there is no way to 

calculate metrics such as accuracy, precision/positive predictive value, or recall/sensitiv-

ity.  Even other metrics that were not directly calculated here (e.g. the F1 score which is a 

linear transformation of precision and recall) have these same groundings in the confu-

sion matrix.  This bears mentioning since the outcomes of a classifier are almost never di-

rectly returned as the exact classes.  Instead, they are generally score-based with a nor-

malized value which is then reliant on informed decisions by the analyst or investigator to 

provide the corresponding classification assignments.  Cut point optimization of these 

scores is a central aspect of categorization model building in its own right and can heav-

ily influence the resulting calculations from a confusion matrix.  Optimization may not 
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even be the actual preference of an investigator if specific protection against type I or 

type II errors is a desired trait of the classifier.  For the purposes of this dissertation, opti-

mization based on data density and use of Youden’s J statistic are more than sufficient 

and their consistent application across the reference, ensemble, and neural network meth-

ods does alleviate many of the concerns that may arise from cut point selection, but this 

process is still important to remember, nonetheless.  In addition, the use of cut point ag-

nostic evaluation metrics like the AUC of the ROC curve also help offset any complica-

tions that may arise from improper translation from a score to a binary class.  These types 

of more comprehensive metrics are arguably even more valuable in properly evaluating a 

classification model. 

The other point to mention is issues with class imbalance and the corresponding im-

pact on the evaluation metrics, especially accuracy.  In isolation, accuracy is actually a 

poor metric for model qualification in the presence of imbalance.  After all, if one class is 

especially sparse, high accuracy can be achieved by simply always selecting the domi-

nant class.  Even in the absence of the observed within-subject stability, these imbalance 

effects could easily be a concern in this study on their own since the meta-database is 

known to have a preponderance of impairment with over 75% of the participants exhibit-

ing CDR scores of 0.5 or greater at some point in their study.  This imbalance could read-

ily explain why precision in particular is so high for these models, even for trajectories.  

However, the evaluation pipeline itself is designed to address many of these concerns.  

First, the metrics themselves are never truly considered in isolation but only in relative 

changes.  Thus, while accuracy may be high with the logistic mixed-effects reference 

model due to imbalance, it is the relative improvements in accuracy in the ML models 
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that is the actual metric of interest.  In addition, a variety of outcomes helps focus on the 

models themselves rather than the dataset.  Changes in recall, for example, can help high-

light a reduction in false negatives which would be a more likely occurrence in an imbal-

anced dataset, which could in turn represent a strength of the ML methods compared to 

other prediction designs.  While these types of issues with classification model assess-

ment are not of exceptional concern in the current study, they are worth bearing in mind 

whenever conducting any sort of evaluation of a categorization method. 

A final practical consideration relates specifically to the observed imbalance of the 

meta-database.  As mentioned, over 75% of the cohort was classified as having impair-

ment according to the CDR.  However, it must be noted CDR is still a clinical measure 

designed for a clinical setting.  Furthermore, it is often used as a screening tool for exclu-

sionary purposes in a research study.  Issues with the veracity of the observed CDR score 

must at least be cited since there is the potential that CDR scores may be inflated for a va-

riety of reasons.  For example, the instrument itself may suffer due to inappropriate appli-

cation by study personnel not sufficiently trained for such a clinically demanding tool or 

there is slight exaggeration between scores of 0 and 0.5 in the interest of meeting recruit-

ment needs.  If these cases are true, it may be that the models with relatively low recall 

are not predicting false negatives but are in fact accurately identifying these participants 

as cognitively unimpaired and it is the clinical ratings themselves that are at issue.  This 

could easily not be the case, and this is certainly not a critique of the meta-database itself 

given the wide collection of studies.  However, in the presence of the imbalanced disposi-

tion of CDR impairment this possibility is at least worth some commentary. 
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Ensemble Methods Observations 

Two very noteworthy results were apparent during the assessments of aim 1.  The 

first was how the supervised ensemble methods demonstrated improved predictive per-

formance when compared to the reference models for both classes of outcomes and both 

types of predictions while being statistically significant in almost all evaluation metrics.  

The second was the substantial improvement when the longitudinal models were able to 

make direct use of prior sequence data while forecasting final observations when com-

pared to de novo generation of whole subject trajectories.  These results clearly demon-

strate the utility and potential of the supervised ensemble methods as predictive models 

for the ADAS-Cog and impairment of CDR classification, especially with forecasting. 

For the ADAS-Cog predictions, an interesting consideration is how well these models 

would predict extreme or outlier values, a noted issue with the CPath reference.  Since 

RMSE is more sensitive to outliers compared to MAE, it would be anticipated that 

RMSE improvements would be more substantial if the specific utility of the ensemble 

methods was for predicting extreme scores.  However, percent changes in RMSE and 

MAE were found to be similar for ML methods indicating uniform improvements in 

ADAS-Cog prediction across the full scores range.  For trajectories, RMSE decreases 

ranged from 16.6% for the single GLMM tree to 27.7% for the MERF model while MAE 

improvements ranged from 16.2% to 28.2% for the same ensemble methods.  Forecasts 

were not as close but still relatively similar with the top performer, the single GLMM 

tree, having RMSE and MAE improvements of 53.4% and 51.1% respectively while the 

weakest model, the boosted mixed-effects trees, observed improvements of 46.1% and 
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42.1%.  Although not as well aligned as ADAS-Cog trajectories, there were fewer indi-

vidual observations in the forecasting holdout set which may contribute to the increased 

variation.  Regardless, the similarity in both RMSE and MAE highlight how well the en-

semble methods reduce prediction error for the ADAS-Cog at all possible values, includ-

ing extreme scores. 

When considering improvements in bias, it is key to draw distinctions between raw 

bias, which can be negative, and absolute bias.  Interestingly, raw bias indicated a ten-

dency to overestimate ADAS-Cog scores when building trajectories but underestimate 

scores when forecasting final observations.  This pattern was seen in both the CPath ref-

erence and the ensemble methods.  However, while raw bias statistically improved for all 

ensemble methods when predicting trajectories, it only improved for the two GLMM 

methods but not the MERF or boosted mixed-effects models when forecasting.  However, 

while bias can be informative to give indications or over or underestimation, as a metric it 

can be challenging to properly evaluate for predictive capacity, which is why absolute 

value of the bias was also considered.  With AVB, the improvements in systematic error 

becomes clearer for the ensemble methods, with all models exhibiting significant im-

provements compared to the CPath reference for both types of predictions with improve-

ments ranging from 16.9% to 28.5% for trajectories and 34.2% to 46.4% for forecasting 

of final observations.  Combining the results of RMSE, MAE and AVB, we can easily 

see how the ensemble methods demonstrate superior predictive capacity by improving 

overall accuracy as well as the systematic components of the error. 

For prediction of impairment by CDR scoring, the ensemble methods again demon-

strated exceptional increases in performance compared to the reference logistic classifier.  
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Accuracy for trajectories increased for the ensemble models from 13.0% to 16.0% while 

forecast accuracy increased between 28.0% and 32.5% even with the known imbalance in 

impairment status.  Although precision did increase numerically, none of the improve-

ments were significant under bootstrapping although this is not especially surprising 

given the high positive predictive value already displayed by the reference model.  Of 

greater importance was the reduction in false negative misclassification, a noted concern 

of the logistic model.  Trajectories recall increased from 0.661 for the reference model to 

0.776 for the single GLMM tree, the model with the smallest recall, to 0.806 for the top 

performing boosted mixed-effects trees.  Forecasting improvements in recall were even 

more impressive with all models showing recall of 0.940 or greater.  Outside explicit 

classification metrics, performance was still superior for the ML models with ROC AUC 

significantly increasing for both trajectories and forecasts.  These improvements were 

moderate for trajectories, ranging from 6.1% for the single GLMM tree to 8.9% for the 

boosted mixed-effects model but were notably substantial when forecasting final observa-

tions with increases ranging from 17.9% to 20.0% with AUCs of 0.972 or greater.  Even 

with the previously cited concerns when evaluating performance of these classifiers, the 

improvements for the ML models over the reference design were undeniable. 

A final characteristic to note, as highlighted by the numeric values of the metrics, is 

just how much more powerful these models were when they were able to leverage previ-

ously observed data when forecasting final observations.  The relative increases in met-

rics were substantial under forecasting, even when accounting for the minimal improve-

ments in the logistic classifier and the actual worsening of predictive capacity for the 

CPath reference.  Even allowing for these trends in the reference models is not enough to 
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offset the vast improvements observed for the sequential ensemble methods when they 

were able to fully utilize their longitudinal capacity.  This is perhaps best exemplified in 

the improvements in recall for CDR impairment as false negatives were a persistent con-

cern for the logistic classifier and to some degree even the ML models when generating 

whole subject trajectories.  Even when considering the discussed imbalanced and tem-

poral stability concerns, forecasting sensitivity was at minimum 0.94 for the ensemble 

methods without any loss to precision with values of 0.98 or greater.  This propensity for 

forecast prediction utilizing prior data, either using the more refined ADAS-Cog outcome 

or leveraging the knowledge of within-subject CDR stability, is one of the most telling 

aspects of this study and was a key observation leading into the evaluation of the neural 

network models of aim 2. 

 

Neural Networks Observations 

When first discussing the neural network designs, it is best to begin by highlighting 

how practically all the observations first presented in the ensemble methods of aim 1 also 

carried over when the sequential neural network adaptations were evaluated against the 

reference models in aim 2.  First, just like the ensemble ML methods, there was substan-

tial improvement in predictive performance for both classes of outcomes and both types 

of predictions.  In addition, statistical significance was observed for performance im-

provements against the CPath regression and logistic classifier in all prediction metrics, 

with the exception of raw bias for observation forecasting of the ADAS-Cog and preci-

sion for classifying CDR impairment in either prediction type.  Ostensibly, this would be 

for many of the same reasons such as increased variance in raw bias measure for ADAS-
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Cog and the already high precision demonstrated by the logistic reference design when 

classifying CDR-based impairment.  Finally, the improvements in predictive capacity for 

the ML models, especially the sequential 1D CNN and LSTM RNN, were especially ap-

parent when applied to forecasting of final observations such that prior sequence infor-

mation could be directly leveraged.  Returning to the previously cited precision and recall 

when forecasting CDR impairment, the two sequential NN models proved the equal to 

the ensembles with recalls of at least 0.944 alongside exceptional positive predictive val-

ues of 0.983 at minimum.  Considering the similarities in predictive ability between the 

supervised and neural network models, at least against the reference designs, what is 

more intriguing is how the NN methods differed amongst each other, especially when 

considering the non-sequential feed forward neural network and prediction of whole sub-

ject trajectories. 

The standard feed-forward neural network was selected as an alternative reference 

model for the neural networks since it is by far the most ubiquitous deep learning model 

available.  Every adaptation to neural networks builds off this original multi-layer percep-

tron design and, in many ways, it is the deep learning equivalent of the ordinary least-

squares model in linear regression.  This made it an excellent counterpoint to the other 

NN designs with their specific utility in longitudinal settings.  What was most notable 

about the FNN is just how well it performed when generating whole subject trajectories.  

In fact, it was the best performing model when predicting ADAS-Cog, with the lowest 

RMSE, MAE and AVB values of all models, including the ensemble methods.  It did lose 

some of this capacity in the classification design, with a tendency to misclassify false 

negatives leading to reductions in accuracy and recall although it did exhibit increased 
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precision as well as an appreciable 0.908 ROC AUC for trajectories.  Importantly, when 

compared to the whole subject trajectories of the 1D CNN and LSTM RNN sequential 

models, the non-sequential FNN displayed superior predictive capacity for the ADAS-

Cog and better ROC AUC when classifying impairment. 

At first, this seems to suggest the sequential design of the deep learning adaptations 

are not necessary when predicting cognitive performance; however, the FNN model did 

not have any way to directly leverage observed sequence data and, as a result, exhibited 

some of the lowest predictive ability when forecasting final observations.  The RMSE for 

ADAS-Cog forecasts was comparatively poor for all neural networks, falling behind all 

the ensemble methods, and none were significantly different from any other.  Even more 

striking is contrary to its exceptional performance for trajectories, the MAE and AVB un-

der the FNN design were the worst of all evaluated ML models.  This behavior was also 

seen when forecasting CDR impairment with the FNN having the lowest values for all 

classification metrics, a stark reversal of its performance for trajectories.  Perhaps the 

most telling observation of the FNN predictions is how it mirrored the behavior of the 

reference models rather than the other ML paradigms: while the sequential ML methods 

almost universally saw great improvements in performance metrics with forecasting com-

pared to generating whole subject trajectories, the non-sequential FNN, just like the refer-

ence models, saw only mild gains when classifying CDR impairment and actually wors-

ened when forecasting ADAS-Cog scores. 

There are two likely explanations for these patterns of the deep learning methods, one 

specifically related to the FNN and the other based on the sequential adaptations.  First, 

the most obvious explanation is that feed-forward neural network only considered time as 
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a population level covariate and, unlike the sequential ML methods, is unable to directly 

utilize prior sequence data.  This could very easily result in the observed predictive shifts 

that mirrored those of the reference model and further emphasizes the utility of the true 

sequential methods when they are able to leverage prior data for forecasting.  The other 

potential issue is not with the ability of the FNN to forecast observations but rather how 

the sequential 1D CNN and LSTM RNN models generated whole subject trajectories.  As 

described in the methods, prediction using sequential neural networks is iterative in na-

ture with each time step being added piecewise to populate the evaluation array.  For the 

first timestep, the array slice corresponding to either outcome is completely empty and 

the requisite linear algebra is unable to be calculated.  To account for this, a baseline 

FNN model was created to generate seed values that could populate the baseline 

timepoints and then allow the iterative sequential building of the response measure to 

proceed as normal.  The standard FNN model does not have this requirement since the ar-

ray slice, which is actually just a column vector, is calculated all at once.  If the starting 

values for trajectory generation of the sequential networks are inappropriate, this could 

easily impact downstream calculations and errors in prediction could be propagated 

throughout an entire panel of subject data.  In other words, it may not be that the FNN 

models were exceptionally powerful when generating trajectories, but rather the methods 

used to build these profiles for the sequential neural networks were comparatively poor.  

Alternative methods to build the outcome array slice for 1D CNN and LSTM RNN mod-

els may lead to improved trajectory prediction that could be on par with the FNN model 

and constitutes an interesting research direction in its own right.  Regardless, one thing 

that cannot be denied is how well the CNN and RNN models performed when allowed to 
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appropriately leverage previously observed data as exhibited by the same excellent per-

formance in forecasting observed in the other sequential ML methods for both types of 

cognitive outcomes measures. 

 

Cross-Model Comparisons for All Designs 

While all the machine learning methods demonstrated substantial improvements over 

the inferential reference models, cross-model comparisons were also an important facet 

of this assessment.  This helps further offset concerns such as the independent covariates 

of the ML models which may have artificially increased their predictive capacity simply 

by increasing their feature space used for fitting the outcomes.  However, one of the most 

intriguing outcomes of this study is there was no blanket consensus as to the “best” 

model for either regression of ADAS-Cog or classification of CDR impairment.  Addi-

tionally, aside from the observations of the neural network models previously described, 

there was no obvious model that outperformed within either trajectories or forecasting.  

Many of the models exhibited their own strengths and weaknesses and each could have 

their own utility depending on research goal and context. 

Although unanimous agreement was not possible, some trends did arise.  As men-

tioned, the FNN model performed especially well when predicting ADAS-Cog trajecto-

ries, outpacing all other models with respect to RMSE, MAE and AVB.  This includes 

statistical significance over the MERF and boosted mixed-effects models which had simi-

lar metrics to each other but outperformed the two GLMM ensemble methods for ADAS-

Cog trajectories.  Trajectory prediction errors of the two GLMM models and the LSTM 
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and CNN models clustered below these other models with the GLMM models in particu-

lar showing deficiencies in all metrics.  However, when forecasting ADAS-Cog scores, 

the single GLMM tree improved substantially, with the lowest RMSE values with MAE 

values which were on par with the MERF errors, which had retained their low values first 

observed with the ADAS-Cog trajectories.  Interestingly, the RMSE values for the LSTM 

and CNN models remained comparatively high but the MAE values were comparable to 

the MERF and single GLMM model.  This pattern is intriguing for its implications on 

predictions of outlier values, suggesting the ensemble methods may particularly excel at 

finding these extreme values when compared to the neural networks which are more sen-

sitive to outliers.  Additionally, the AVB values for the sequential neural networks were 

the lowest for all models although no statistical difference was observed with the MERF 

or GLMM models, implying specific utility of the sequential ANN models for minimiz-

ing bias.  Finally, although the boosted mixed-effects trees performed well with trajecto-

ries with the ADAS-Cog, they tended to lag behind the other models with respect to fore-

casting.  The boosted trees displayed the highest AV bias and MAE values of all models, 

second only to the previously cited poor performance of the non-sequential FNN, and 

also had the highest RMSE values of all ensemble methods. 

Some general cross-model trends were also apparent with respect to prediction of 

CDR impairment.  Precision was known to be exceptionally high for all models and it 

was not especially surprising to observe that none of the models differed against one an-

other, either when predicting whole subject trajectories or forecasting final observations.  

False negative protection as measured by recall indicated three clusters for trajectories 
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with the sequential neural networks outperforming the ensemble methods while, as previ-

ously discussed, the FNN model demonstrated a relatively high false negative rate.  Simi-

lar clustering for recall was seen with forecasting, although not as well defined simply 

because all the sequential models exhibited such vast improvements.  However, the 

LSTM, MERF and two GLMM models were statistically indistinguishable with the CNN 

and boosted trees falling slightly behind while, again, the FNN model displayed excep-

tionally poor recall.  Relative accuracy interestingly tended to favor the neural networks 

over the ensemble methods, most likely because of the increase in recall; however, statis-

tical significance tended not to be seen simply because of the high accuracy already in-

herent in the dataset, ostensibly due to repeatedly cited meta-database imbalance.  Re-

moving consideration of cut points and focusing on the ROC AUC as a global metric was 

interesting since it favored the boosted mixed-effects and FNN for trajectories which in-

dicates better cut point optimizations may have been possible for those two models in 

particular and alternatives to the data driven approach may have been valid.  Forecasting 

comparisons are also valuable in the current context despite the impairment stability as 

all sequential models are expected to perform well.  In these cases, AUC values clustered 

all of the ensemble methods ahead of the neural networks; however, this must again be 

tempered by the observation that the AUC differences for forecasting of the sequential 

models were comparisons of values of 0.98 and 0.96 which are both exceptionally high. 

 

Whole Subject Trajectories and Final Observation Forecasting 

As has been discussed several times, one of the most prominent results is how much 

predictive performance of the sequential ML models improved when they were able to 
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make use of prior sequence data when forecasting final observations, whether due to im-

proved fit as expected in ADAS-Cog or knowledge of classification stability as with 

CDR-based impairment.  This behavior is best highlighted by omission, focusing on the 

pre-specified CPath regression and logistic classification reference models alongside the 

non-sequential FNN models.  As mentioned, the classification capacity of the logistic ref-

erence model only saw minimal gains when forecasting while the CPath reference actu-

ally worsened with increases in prediction error and bias.  However, by virtue of their pa-

rameterizations outside the training dataset, they were unable to make use of subject-spe-

cific effects and had to rely solely on the population level demographics.  The FNN 

model exhibited similar behavior when forecasting for the same reason: all covariates 

were considered population-level effects, with cross-sectional time, and no subject-spe-

cific effects contributed to any part of the prediction.  Meanwhile, forecasting with the se-

quential models provided predictions on meta-database subjects whose data had been part 

of their training dataset.  As a result, subject-specific effects were known by these mod-

els, either in the form of fitted random effects for the ensemble methods that had mixed-

effects components or the exact sequences of measures which comprised the outcome ar-

ray slice for the sequential neural networks.  However, these additional parameters were 

not available when the ML models generated whole subject trajectories since this testing 

set was comprised entirely of holdout data.  As a result, they were unable to directly lev-

erage their longitudinal capacity leading to decreases in predictive performance. 

An important final point on CDR stability to mention is the direct comparison of fore-

casting for the two non-sequential methods in this dissertation: the logistic reference 

model and the feed-forward neural network.  The stability of CDR within subjects cannot 
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be the sole explanation of the exceptionally high classification metrics while forecasting 

for the sequential models.  If this were the case, the FNN model would not have had such 

marked numeric and statistical improvements over the reference classifier since neither of 

these designs used any sort of subject-specific component.  At least some of the improve-

ment in forecast predictions of the impairment classifier must come from the use of the 

deep learning methodology over the inferential method, otherwise improvements in the 

FNN model would be much less apparent.  Whether due to the expanded feature space, 

differences in estimation architecture, or some other rationale, there must be at least some 

aspect of machine learning which aids in prediction and forecasting the impairment clas-

sification beyond leveraging subject-specific effects. 

Accordingly, one question that arises naturally from this is the exact role these sub-

ject-specific effects have on predicting cognitive outcomes.  Is the prior knowledge the 

most significant contribution or is simply the inclusion of the subject-specific effects 

merely as additional parameters enough to improve predictive ability?  This was investi-

gated early in the study when deciding how to handle subject-specific effects for the ref-

erence models.  Both inferential methods are generalized linear mixed-effects models and 

are able to utilize random effects to account for subject-specific panel data.  Even though 

exact fitted effects were unknown, covariance parameters for intercepts and slopes were 

provided by the CPath model authors and were calculated ad hoc when the logistic classi-

fier was first built.  This left two potential solutions for handling the subject-specific ef-

fects: either suppress them entirely to rely solely on the population-level fixed effects or 

impute them from the model covariances as reasonable approximations.  Pilot attempts at 

imputation yielded unexpected results: all metrics for both ADAS-Cog scoring and CDR 
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impairment classification were markedly worse under imputation for both trajectories and 

forecasts.  This was especially surprising since the CPath authors recommend the use of 

the provided covariances when generating synthetic cohorts for feasibility of clinical tri-

als.  It was ultimately decided for aims 1 and 2 to instead rely solely on population-level 

effects for the reference designs, but these results informed much of the direction of aim 

3 to identify the particular role subject-specific effects play in prediction of cognitive out-

comes using these methods. 

 

Influence of Subject-Specific Effects 

While aim 3 could have been more comprehensive, addressing several models as well 

as CDR impairment, it was decided to focus on the primary research question of subject-

specific effects and their utility in response prediction.  The within-subject stability of 

CDR in the meta-database made it a poor candidate for this type of query so the emphasis 

was given to ADAS-Cog.  The CPath model was taken based on the previous observation 

of imputation worsening prediction combined with the cited recommendation of imputa-

tion by the package authors.  The ad hoc beta-regression model was selected as it fol-

lowed the same covariate specification as the CPath model with the benefit of being built 

directly from the datasets with updated parameter values.  This not only evaluated the im-

pact of the pre-specified parameterization of the CPath model but also allowed for the ap-

plication of known and fitted subject-specific effects for utilization during forecasting for 

the DN BR model.  The MERF model was selected as it was among the top performing 

ML models when predicting the ADAS-Cog although the covariate set was reduced to 

the CPath selection to avoid any undue influence in evaluation metrics that may have 



 

 
322 

arisen due to the expansion of the feature space.  Together, this provided an excellent 

framework to specifically address the question of subject-specific effects and their impact 

on prediction. 

Most prevalent was the pervasive increase in RMSE and MAE across all models 

when subject specific effects were robustly imputed compared to utilization of only popu-

lation-level effects, largely due to increases in variance of the ADAS Cog predictions.  

However, although error of the ADAS-Cog predictions increased under imputation, the 

predictions were, on average, almost always less biased.  This is intuitive from a strict 

statistical perspective as subject-specific effects are still parameters themselves, and their 

inclusion should lead to reduced bias even with increased variance (Hastie et al., 2009).  

The exception was imputation for the CPath model which observed increases in AVB for 

both trajectories and forecasting.  Additionally, the increases in RMSE were much larger 

for the CPath model under imputation when applied to the meta-database, doubling in 

magnitude while the de novo BR and MERF models only increased by 20-30%. 

At first, this would seem to imply the recommendation of the CPath authors to impute 

subject-specific effects is ill advised.  However, just as striking were the results when im-

putation was investigated under the generalized synthetic datasets.  Prediction error and 

bias increased for all models, expected given the more variable datasets, but the relative 

increases under imputation were vastly different.  RMSE and MAE shifts for the de novo 

models under imputation increased to 35-40% while the CPath model, instead of dou-

bling as seen in the meta-database, only observed increases in prediction error of 45%.  

Although bias still increased for the CPath model in the synthetic datasets, the attenuation 

was even sharper.  Trajectory increases went from 170% in the meta-database to 106% in 
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the synthetic cohorts while increase in forecasting bias was only 55% under simulation 

compared to a nearly 600% increase in the real-world dataset.  While bootstrapping still 

placed the RMSE and MAE errors of the CPath model ahead of the de novo designs, bias 

under imputation or in the absence of subject-specific effects was statistically indistin-

guishable among the three evaluated models.  Together, these results imply good general-

izability of the CPath model with imputation of subject-specific effects, supporting the 

recommendations of the authors for its appropriate use case of cohort generation. 

 

Fitted Effects from Previously Observed Data 

Two important results also arise from the behavior of the de novo BR model and 

MERF model built directly from the datasets.  First, a previously cited key benefit of 

building directly from the data is the ability to directly leverage known and fitted subject-

specific effects when forecasting future observations in subjects who were part of the pa-

rameterization process.  For both de novo models, properly utilizing the subject-specific 

effects as known parameters led to ADAS-Cog predictions which far outperformed the 

models using only population level effects or robustly imputing individual-level effects.  

While not necessarily surprising, it highlights just how powerful known subject effects 

can be with forecasting as the reductions in error and bias in both the meta-database and 

synthetic cohorts were statistically significant compared to the designs that either sup-

pressed or imputed subject-specific effects.  However, it must be noted this advantage 

only applies when both prior data can be used and when model parameterizations are 

done ad hoc.  These advantages are unfortunately not applicable when either generating 
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whole subject trajectories or when predicting outcomes using pre-specified parameteriza-

tions like those of the CPath model. 

The other outcome to note is the similarity in error and bias values between the de 

novo BR and MERF models within the various designs of subject-specific effects.  A pri-

mary result of aims 1 and 2 is the improvement of the ML predictions compared to the 

inferential references; however, as previously mentioned, the ML models had the benefit 

of an expanded feature space with additional explanatory covariates.  The MERF model 

of aim 3 did not have this benefit, using the same covariate set as the other models.  Thus, 

it was interesting to see how indistinguishable the errors and biases were when compared 

to the DN BR model which could have been cast as an inferential reference model itself 

in the earlier aims.  However, these same results may not have been observed had the de 

novo BR model been expanded to include the additional covariates like race and educa-

tion instead of reducing the feature space of the MERF model as was done here.  A 

strength of ML models in general is their ability to accommodate especially wide datasets 

while inferential methods can be subject to overfitting.  Building the aim 3 de novo mod-

els with this in mind could have easily led to improved performance for the MERF model 

as seen in aim 1 and demonstrated its utility in ADAS-Cog prediction over inferential 

methods when using a wider feature space.  However, the goal of this aspect of the study 

was to specifically investigate the subject specific effects on prediction, thus it was 

deemed important to match the population-level effects and individual-level designs 

across the models.  This led to a focused reliance on the architecture of the CPath model 

when defining the de novo models and suggests further investigation of the role of feature 

space when comparing inferential and machine learning methods. 
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Clinical Relevance of Imputation 

From a clinical perspective, the most important consideration of this facet of the dis-

sertation is how these observed patterns in error and bias should direct model utilization 

in ADRD research.  Ultimately, this is dependent on the goals of the investigator as dif-

ferent types of predictions and model designs have their own strengths and weaknesses 

and are best used in their appropriate usage scenarios.  Statistically, increases in error and 

bias are generally viewed as detrimental but they can serve certain purposes within larger 

clinical study and trial design contexts.  This comes into sharpest focus when considering 

generation of synthetic data when compared to direct prediction of outcomes for an actual 

AD patient. 

Although the current study focused on ADAS-Cog prediction, the CPath model itself 

was originally developed to generate feasible cohorts to simulate studies in cognitive de-

cline, most notably interventional clinical trials.  This is a very different goal from explic-

itly predicting either trajectories of decline or forecasting future events and the CPath pa-

rameterizations were not originally meant for these prediction tasks.  Instead, the goal 

was to develop a methodology which could generate a reasonable cohort an investigator 

could anticipate recruiting for feasibility purposes.  Under this structure, emphasizing 

data generation, increased variance and reduced bias are in fact desirable as they will lead 

to expected ADAS Cog trajectories which, on average, will tend to be close to the ground 

truth for a population of interest.  This suggests the inclusion of subject-specific effects 

which have been imputed will give more appropriate outcomes with greater variability 

and reduced overall bias. 



 

 
326 

In comparison, when attempting to predict outcomes for an actual AD study partici-

pant or clinical patient, it is far more desirable to have outcomes that are highly accurate 

with the lowest possible error, even if these predictions are not as unbiased as they could 

be.  In these situations, relying solely on population-level effects leads to more accurate 

results rather than imparting additional variance by imputing a potential, but otherwise 

unknown, subject-specific effect.  Even more preferred is making use of previously ob-

served data in an already evaluated individual to calculate known and fitted subject-spe-

cific effects which give the most accurate predictions possible.  Thus, for predictions at 

the individual level, researchers and clinicians are best served building their own models 

if possible and using previously observed data or, if relying on outside parameterizations, 

only using demographic and population-level effects. 

A key point to mention is when attempting to predict ADAS-Cog scores in the meta-

database, a collection of real-world data with certain aspects which have been discussed 

at length, the pre-parameterized CPath model showed large increases in both error and 

bias.  As mentioned, this would initially suggest the model as a whole is poorly designed 

for either generation of synthetic cohorts, its intended purpose, or prediction.  However, it 

is critical to reiterate this study made use of prediction as a framework, for which the 

CPath model is not necessarily well suited.  Critically, when applied to the more general-

ized synthetic cohorts during simulation, the increases in error and bias were markedly 

smaller in magnitude and much more in line with the evaluation metrics observed in the 

two models built directly from the data.  This suggests a specific issue of using the pre-

specified parameterization with the meta-database in particular given its disposition spe-

cifically under a prediction framework.  However, based on the simulation results, the 



 

 
327 

CPath model can be expected to generalize well to other cohorts like those generated dur-

ing simulation.  This makes its utilization, including the imputation of subject-specific ef-

fects as recommended by the authors, more than appropriate for its intended use of gener-

ating cohorts for clinical trial simulation and calculating expected on-average ADAS-Cog 

values. 

 

Limitations and future directions 

Several of the limitations of this study have been previously mentioned but provide 

many possible avenues for further investigation.  The cohort make-up of the meta-data-

base has been commented on repeatedly but bears a final mention.  The utility of any 

model is very dependent on the nature of the data it is applied to and these ML methods 

are no exception.  Issues such as persistence of the CDR-based classifier within subjects, 

the imbalance emphasizing impairment, the loss of subjects missing genotyping, these all 

contribute to the performance of the models.  This may also be compounded by the mix-

ture of clinical and observational data in the meta-database.  This mixture may be detri-

mental to prediction as these two cohorts have several inherent differences and should not 

necessarily be considered to have arisen from the same source population.  As such, en-

richment methods, like focusing on ADCS or ADNI studies independently, may represent 

an additional source of rigor.  Data selection in turn feeds into availability of covariates 

from a dataset, like APOE4, and the associated reference design structure comes into 

play.  A model built ad hoc may be a better reference, as seen with the de novo BR model 

of aim 3, than a pre-specified parameterization such as the CPath model used as the com-

mon reference design.  Of course, not every investigator has the data to build their own 
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parameter set so multiple tiers of reference have their own utility.  While these facets of 

the meta-database do not necessarily detract from the model comparisons or other results 

in this work, they should always be kept in mind when conducting any sort of validation 

or characterization of a potential model. 

The emphasis of this research was on the predictive behavior of the longitudinal ML 

models themselves, against each other and the inferential reference designs.  One aspect 

not addressed was feature selection or identification of the most powerful predictive co-

variates which is a common emphasis in machine learning research.  This has practical 

implications for ADRD applications specifically when considering the potential role of 

subject demographic characteristics which have less prevalent coverage.  For example, 

genotyping of the APOE4 allele was by far the most restrictive covariate of the meta-da-

tabase and contributed to the greatest reduction of subjects for analysis.  However, this 

allele is well-known for its association with idiopathic AD and could very easily be one 

of the most powerful predictors of cognitive outcomes.  Although genotyping APOE4 is 

not especially common in clinical settings, providers may be more inclined to determine 

allele counts if its utility in predicting impairment were explicitly demonstrated, espe-

cially when forecasting future observations.  But as mentioned, covariate identification 

was not this study’s goal which focused on model characterization over feature selection.  

This current characterization of the models themselves is a critical first step in the assess-

ment process which gives results such as identifying the MERF model as one of the most 

powerful predictors of ADAS-Cog.  The impact of feature space is, in turn, a natural fol-

low-up to the current work, especially in light of the results of aim 3 which indicated sim-

ilar prediction errors and biases between the inferential BR and ML MERF models when 
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given the same restricted feature space.  Wider covariates sets, with an emphasis on 

meaningful identification, would provide more detail information on which contexts and 

setting are best suited for ML methods in ADRD research. 

A similar expansion is less focused on ML methods per se, but rather the role of cut 

point optimization for classification tasks in general.  As discussed, many of the evalua-

tion metrics for classification are reliant on translating a score value to a binary outcome 

which confounds observations of reduced recall and high precision.  This is especially 

true in the case of imbalanced datasets such as the meta-database.  Improvements in AUC 

of the ROC curve, which is agnostic to strict classification decisions, offset this concern 

to a degree but use of different cut point optimization techniques and the inclusion of 

other evaluation metrics which are less reliant on confusion matrix outcomes could be 

greatly beneficial.  However, that is not to say translation from a response score to a strict 

categorization should be abandoned altogether.  From a clinical perspective, classification 

to a label such as impaired or unimpaired is essentially the ultimate goal for these tasks, 

especially at ambiguous threshold scores, and should be a focus of ML classification 

methods research.  Accordingly, cut point optimizations and the impact they have on the 

robustness of machine learning models is also a worthwhile pursuit. 

One of the most unexpected and intriguing results was the comparison of the whole 

subject trajectory predictions for the non-sequential FNN models when up against the 1D 

CNN and LSTM RNN models in aim 2, especially for the ADAS-Cog.  As mentioned, 

these results could be cast one of two ways: either why did the FNN models perform as 

well as they did or, conversely, why did the sequential neural networks perform relatively 

poorly in comparison.  It is hard to claim neural networks are ill-suited for whole subject 
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trajectory prediction given the results of the FNN.  In addition, the utility of these specific 

sequential adaptations must be acknowledged as they were some of the most powerful 

methods for final observation forecasting.  A potential rationale is not with the models 

themselves but rather how the trajectory predictions were calculated for the CNN and 

LSTM designs.  While the use of a baseline FNN model to seed the trajectory predictions 

was certainly a sufficient and feasible solution to the empty array issue, there may be al-

ternative methods that provide more accurate predictions and would be less prone to 

propagation of errors due to the iterative response calculations of the sequential ANN 

methods.  Although the predictive capacity of the sequential models cannot be denied 

when using known sequence data for forecasting future observations, investigation into 

alternative prediction methods for trajectories is a natural follow-up in neural network ap-

plications to cognitive outcomes. 

A final point is the role of performance evaluation and hyperparameter selection for 

machine learning.  Hyperparameters are a unique aspect in ML methods as they cannot 

be directly determined from the data.  Model tuning and hyperparameter selection was 

certainly an aspect of this study and helped provide even better predictions of the cogni-

tive outcomes, but it was not a central component.  Expansion of the grid searches with 

additional hyperparameters using more settings could easily lead to further refinements 

and result in even better performance of the models.  In addition, while some hyperpa-

rameters assist with predictive ability of the models, as was their utilization goal here, 

others instead focus on improving the performance of the models by reducing processing 

time or requisite memory.  These performance aspects were not explicitly evaluated dur-

ing this study but are well worth characterization as well.  The most obvious example is 



 

 
331 

the boosted mixed-effects trees which although demonstrating high predictive perfor-

mance, including the highest ROC AUC when predicting whole trajectories of CDR im-

pairment, unquestionably presented as the slowest and most resource intensive method of 

this study.  As mentioned, it was so demanding it was the only model to use 5-fold cross-

validation while all other models used 10-fold.  Although its ROC AUC on CDR impair-

ment forecasting was demonstrated as significantly superior to most models it cannot be 

reasonably recommended as a method with the current implementation.  Other models 

still perform well but at a fraction of the cost of time and resources.  Performance out-

comes are just as critical as predictive ability with machine learning models and fully 

evaluating an individual model on both aspects is key.  The translation of any method to a 

practical setting should always be the goal in this kind of methods research and is im-

portant to remember when applying these implementations to clinical ADRD research. 
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CONCLUSIONS 

One of the central themes of this study was to bridge the divide between statistical 

consideration and clinical utility of longitudinal machine learning in Alzheimer’s disease 

research by providing an overview of how these methods can be applied and what inves-

tigators can expect in terms of performance.  In addition to statistical considerations of 

these models, a goal was to demonstrate the specific practical utility of the methods and 

how they can benefit AD researchers and clinicians in their own studies.  The most im-

portant caveat is there was no general consensus in the best model for either regression or 

classification in these designs and each of these models has their own strengths and 

weaknesses.  Whether being used for whole subject trajectories or forecasting future data 

points within an individual, the preferred model requires an informed decision and de-

pends on the goals of the investigator or clinician.  This also relates to goals of what as-

pect of prediction is being optimized such as minimization of prediction bias even at the 

cost of additional error for ADAS-Cog or protection specifically against false negatives 

when classifying impairment from the CDR.  This further extends into how subject-spe-

cific effects should be utilized and the role of imputation can play, including its efficacy 

in developing robust synthetic cohorts for feasibility but generally detracting from predic-

tion on a subject-by-subject basis.  If the goal is generating data where on average accu-

racy is desired for a full cohort, the inclusion of imputed subject-specific effects is war-

ranted.  However, if the goal is instead to predict the trajectory or endpoint of a specific 
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individual, then only population level fixed effects should be used to get the most accu-

rate prediction possible.  Recognizing these scenarios and aligning them with the desired 

study design and clinical goals is what will lead to better, more accurate prediction of 

outcomes and higher quality research in cognitive decline.  Ultimately, this dissertation is 

a critical first step in characterizing predictive performance of longitudinal machine 

learning methods in Alzheimer's disease, serving as both a current evaluation of the field 

and a pipeline for evaluation for future statistical learning paradigms. 

 

  



 

 
334 

 

 

 

REFERENCES 

Ackley, D., Hinton, G. E., & Sejnowski, T. (1985). A learning algorithm for Boltzmann 
machines. Cognitive Science, 9(1), 147-169.  

 
Allaire, J., & Chollet, F. (2021). keras: R Interface to 'Keras'.  R package version 2.4.0. 

https://CRAN.R-project.org/package=keras 

 
Allaire, J., & Yuan, T. (2021). tensorflow: R Interface to 'TensorFlow'. R  package 

version 2.4.0. https://CRAN.R-project.org/package=tensorflow 

 
Ard, M. C., Raghavan, N., & Edland, S. D. (2015, Sep-Oct). Optimal composite scores 

for longitudinal clinical trials under the linear mixed effects model. Pharm Stat, 
14(5), 418-426. https://doi.org/10.1002/pst.1701  

 
Bader, J. M., Geyer, P. E., Muller, J. B., Strauss, M. T., Koch, M., Leypoldt, F., 

Koertvelyessy, P., Bittner, D., Schipke, C. G., Incesoy, E. I., Peters, O., 
Deigendesch, N., Simons, M., Jensen, M. K., Zetterberg, H., & Mann, M. (2020, 
Jun). Proteome profiling in cerebrospinal fluid reveals novel biomarkers of 
Alzheimer's disease. Mol Syst Biol, 16(6), e9356. 
https://doi.org/10.15252/msb.20199356  

 
Barber, R. F., Reimherr, M., & Schill, T. (2017). The function-on-scalar LASSO with 

applications to longitudinal GWAS. Electronic Journal of Statistics, 11(1), 1351-
1389.  

 
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects 

Models Using lme4. J Stat Software, 67(1), 1-48.  

 
Bernal-Rusiel, J. L., Greve, D. N., Reuter, M., Fischl, B., Sabuncu, M. R., & Alzheimer's 

Disease Neuroimaging, I. (2013, Feb 1). Statistical analysis of longitudinal 
neuroimage data with Linear Mixed Effects models. Neuroimage, 66, 249-260. 
https://doi.org/10.1016/j.neuroimage.2012.10.065  

 

https://cran.r-project.org/package=keras
https://cran.r-project.org/package=tensorflow
https://doi.org/10.1002/pst.1701
https://doi.org/10.15252/msb.20199356
https://doi.org/10.1016/j.neuroimage.2012.10.065


 

 
335 

Bhatnagar, S., Oualkacha, K., Yang, Y., & Greenwood, C. (2021). ggmix: Variable 
Selection in Linear Mixed Models for SNP Data. R package version 0.0.2. 
https://CRAN.R-project.org/package=ggmix 

 
Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer Publishing.  

 
Breiman, L. (1996). Bagging Predictors. Machine Learning, 24(2), 123-140.  

 
Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.  

 
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and Regression 

Trees. Wadsworth & Brooks / Cole Advanced Books.  

 
Breitve, M. H., Chwiszczuk, L. J., Bronnick, K., Hynninen, M. J., Auestad, B. H., 

Aarsland, D., & Rongve, A. (2018). A Longitudinal Study of Neurocognition in 
Dementia with Lewy Bodies Compared to Alzheimer's Disease. Front Neurol, 9, 
124. https://doi.org/10.3389/fneur.2018.00124  

 
Burton, P., Gurrin, L., & Sly, P. (1998, Jun 15). Extending the simple linear regression 

model to account for correlated responses: an introduction to generalized 
estimating equations and multi-level mixed modelling. Stat Med, 17(11), 1261-
1291. https://doi.org/10.1002/(sici)1097-0258(19980615)17:11  

 
Capitaine, L., Genuer, R., & Thiebaut, R. (2021, Jan). Random forests for high-

dimensional longitudinal data. Stat Methods Med Res, 30(1), 166-184. 
https://doi.org/10.1177/0962280220946080  

 
Capuano, A. W., Wilson, R. S., Leurgans, S. E., Dawson, J. D., Bennett, D. A., & 

Hedeker, D. (2018, Mar). Sigmoidal mixed models for longitudinal data. Stat 
Methods Med Res, 27(3), 863-875. https://doi.org/10.1177/0962280216645632  

 
Chen, S., & Bowman, F. D. (2011, Dec). A Novel Support Vector Classifier for 

Longitudinal High-dimensional Data and Its Application to Neuroimaging Data. 
Stat Anal Data Min, 4(6), 604-611. https://doi.org/10.1002/sam.10141  

 
Chen, S., Grant, E., Wu, T. T., & Bowman, F. D. (2014, Jan). Statistical Learning 

Methods for Longitudinal High-dimensional Data. Wiley Interdiscip Rev Comput 
Stat, 6(1), 10-18. https://doi.org/10.1002/wics.1282  

 

https://cran.r-project.org/package=ggmix
https://doi.org/10.3389/fneur.2018.00124
https://doi.org/10.1002/(sici)1097-0258(19980615)17:11
https://doi.org/10.1177/0962280220946080
https://doi.org/10.1177/0962280216645632
https://doi.org/10.1002/sam.10141
https://doi.org/10.1002/wics.1282


 

 
336 

Chen, T., Zeng, D., & Wang, Y. (2015, Dec). Multiple kernel learning with random 
effects for predicting longitudinal outcomes and data integration. Biometrics, 
71(4), 918-928. https://doi.org/10.1111/biom.12343  

 
Chen, Y. F., Ni, X., Fleisher, A. S., Zhou, W., Aisen, P., & Mohs, R. (2018). A 

simulation study comparing slope model with mixed-model repeated measure to 
assess cognitive data in clinical trials of Alzheimer's disease. Alzheimers Dement 
(N Y), 4, 46-53. https://doi.org/10.1016/j.trci.2017.12.002  

 
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 

273-297.  

 
De Velasco Oriol, J., Vallejo, E. E., Estrada, K., Tamez Pena, J. G., & Disease 

Neuroimaging Initiative, T. A. (2019, Dec 16). Benchmarking machine learning 
models for late-onset alzheimer's disease prediction from genomic data. BMC 
Bioinformatics, 20(1), 709. https://doi.org/10.1186/s12859-019-3158-x  

 
Di, J., Wang, D., Brashear, H. R., Dragalin, V., & Krams, M. (2016, Mar-Apr). 

Continuous event monitoring via a Bayesian predictive approach. Pharm Stat, 
15(2), 109-122. https://doi.org/10.1002/pst.1727  

 
Donohue, M. C., & Aisen, P. S. (2012, Apr). Mixed model of repeated measures versus 

slope models in Alzheimer's disease clinical trials. J Nutr Health Aging, 16(4), 
360-364. https://doi.org/10.1007/s12603-012-0047-7  

 
Doody, R. S., Massman, P., & Dunn, J. K. (2001, Mar). A method for estimating 

progression rates in Alzheimer disease. Arch Neurol, 58(3), 449-454. 
https://doi.org/10.1001/archneur.58.3.449  

 
Du, W., Cheung, H., Johnson, C. A., Goldberg, I., Thambisetty, M., & Becker, K. (2015). 

A longitudinal support vector regression for prediction of ALS score. 2015 IEEE 
International Conference on Bioinformatics and Biomedicine (BIBM),  

 
Eliot, M., Ferguson, J., Reilly, M. P., & Foulkes, A. S. (2011). Ridge regression for 

longitudinal biomarker data. The International Journal of Biostatistics, 7(1).  

 
Fisher, C. K., Smith, A. M., Walsh, J. R., & Coalition Against Major, D. (2019, Sep 20). 

Machine learning for comprehensive forecasting of Alzheimer's Disease 
progression. Sci Rep, 9(1), 13622. https://doi.org/10.1038/s41598-019-49656-2  

 

https://doi.org/10.1111/biom.12343
https://doi.org/10.1016/j.trci.2017.12.002
https://doi.org/10.1186/s12859-019-3158-x
https://doi.org/10.1002/pst.1727
https://doi.org/10.1007/s12603-012-0047-7
https://doi.org/10.1001/archneur.58.3.449
https://doi.org/10.1038/s41598-019-49656-2


 

 
337 

Fitzmaurice, G., Laird, N., & Ware, J. (2011). Applied Longitudinal Analysis, 2nd 
Edition. John Wiley & Sons.  

 
Fokkema, M., Smits, N., Zeileis, A., Hothorn, T., & Kelderman, H. (2018, Oct). 

Detecting treatment-subgroup interactions in clustered data with generalized 
linear mixed-effects model trees. Behav Res Methods, 50(5), 2016-2034. 
https://doi.org/10.3758/s13428-017-0971-x  

 
Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. Proc 

13th Int Conf on Machine Learning,  

 
Friedman, J. (2001). Greedy Function Approximation: A Gradient Boosting Machines. 

Annal Stat, 29, 1189-1232.  

 
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized 

Linear Models via Coordinate Descent. J Stat Software, 33(1), 1-22.  

 
Fuegi, J., & Francis, J. (2003). Lovelace & Babbage and the creation of the 1843 'notes'. 

IEEE Annals of the History of Computing, 25(4), 16-26.  

 
Fukushima, K. (1980). A self-organizing neural network model for a mechansim of 

pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 
193-202.  

 
Gavidia-Bovadilla, G., Kanaan-Izquierdo, S., Mataro-Serrat, M., Perera-Lluna, A., & 

Alzheimer's Disease Neuroimaging, I. (2017). Early Prediction of Alzheimer's 
Disease Using Null Longitudinal Model-Based Classifiers. PLoS One, 12(1), 
e0168011. https://doi.org/10.1371/journal.pone.0168011  

 
Giil, L. M., & Aarsland, D. (2020). Greater Variability in Cognitive Decline in Lewy 

Body Dementia Compared to Alzheimer's Disease. J Alzheimers Dis, 73(4), 1321-
1330. https://doi.org/10.3233/JAD-190731  

 
Giil, L. M., Aarsland, D., & Vik-Mo, A. O. (2021). Differentiating traits and states 

identifies the importance of chronic neuropsychiatric symptoms for cognitive 
prognosis in mild dementia. Alzheimers Dement (Amst), 13(1), e12152. 
https://doi.org/10.1002/dad2.12152  

 
Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks. 

PMLR, 15, 315-323.  

https://doi.org/10.3758/s13428-017-0971-x
https://doi.org/10.1371/journal.pone.0168011
https://doi.org/10.3233/JAD-190731
https://doi.org/10.1002/dad2.12152


 

 
338 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.  

 
Groll, A. (2017). glmmLasso: Variable Selection for Generalized Linear Mixed Models 

by L1-Penalized Estimation. R package version 1.5.1. https://CRAN.R-
project.org/package=glmmLasso 

 
Guo, J., Shang, Y., Fratiglioni, L., Johnell, K., Welmer, A. K., Marseglia, A., & Xu, W. 

(2021, Mar 26). Individual changes in anthropometric measures after age 60 
years: a 15-year longitudinal population-based study. Age Ageing. 
https://doi.org/10.1093/ageing/afab045  

 
Hajjem, A., Bellavance, F., & Larocque, D. (2011). Mixed effects regression trees for 

clustered data. Statistics & probability letters, 81(4), 451-459.  

 
Hajjem, A., Bellavance, F., & Larocque, D. (2014). Mixed-effects random forest for 

clustered data. Journal of Statistical Computation and Simulation, 84(6), 1313-
1328.  

 
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning, 

2nd Ed. Springer.  

 
Hickey, J., Metcalfe, P., Ridgeway, G., Schroedl, S., Southworth, H., & Therneau, T. 

(2016). gbm: Genealized Boosted Regression Models. https://github.com/gbm-
developers/gbm 

 
Higgins, C. (2017). A Brief History of Deep Blue, IBM's Chess Computer. 

https://www.mentalfloss.com/article/503178/brief-history-deep-blue-ibms-chess-
computer 

 
Higgins, J. P., Whitehead, A., Turner, R. M., Omar, R. Z., & Thompson, S. G. (2001, 

Aug 15). Meta-analysis of continuous outcome data from individual patients. Stat 
Med, 20(15), 2219-2241. https://doi.org/10.1002/sim.918  

 
Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen (German) 

Technische Univ. Munich]. Munich, Germany.  

 
Hochreiter, S. (1998). The Vanishing Gradient Problem During Learning Recurrent 

Neural Nets and Problem Solutions. International Journal of Uncertainty, 6(2), 
107-116.  

https://cran.r-project.org/package=glmmLasso
https://cran.r-project.org/package=glmmLasso
https://doi.org/10.1093/ageing/afab045
https://github.com/gbm-developers/gbm
https://github.com/gbm-developers/gbm
https://www.mentalfloss.com/article/503178/brief-history-deep-blue-ibms-chess-computer
https://www.mentalfloss.com/article/503178/brief-history-deep-blue-ibms-chess-computer
https://doi.org/10.1002/sim.918


 

 
339 

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 
9(8), 1735-1780.  

 
Hoerl, A., & Kennard, R. (1970). Ridge Regression: Biased Estimation for 

Nonorthogonal Problems. Technometrics, 12(1), 55-67.  

 
Hopfield, J. (1982). Neural networks and physical systems with emergent collective 

computational abilities. PNAS, 79(8), 2554-2558.  

 
Huang, X., Liu, H., Li, X., Guan, L., Li, J., Tellier, L., Yang, H., Wang, J., & Zhang, J. 

(2018, Jan 10). Revealing Alzheimer's disease genes spectrum in the whole-
genome by machine learning. BMC Neurol, 18(1), 5. 
https://doi.org/10.1186/s12883-017-1010-3  

 
Ito, K., Corrigan, B., Romero, K., Anziano, R., Neville, J., Stephenson, D., & Lalonde, R. 

(2013). Understanding placebo responses in Alzheimer's disease clinical trials 
from the literature meta-data and CAMD database. J Alzheimers Dis, 37(1), 173-
183. https://doi.org/10.3233/JAD-130575  

 
Ivakhnenko, A. (1968). The Group Method of Data Handling - a Rival of the Method of 

Stochastic Apprxoimation. Soviet Automatic Control, 13(3), 43-55.  

 
Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., & Wu, Y. (2016). Exploring the 

Limits of Language Modeling. arXiv 1602.02410.  

 
Karch, J. D., Brandmaier, A. M., & Voelkle, M. C. (2020). Gaussian Process Panel 

Modeling-Machine Learning Inspired Analysis of Longitudinal Panel Data. Front 
Psychol, 11, 351. https://doi.org/10.3389/fpsyg.2020.00351  

 
Kaur, H., Singh, Y., Singh, S., & Singh, R. B. (2021, Apr). Gut microbiome-mediated 

epigenetic regulation of brain disorder and application of machine learning for 
multi-omics data analysis. Genome, 64(4), 355-371. https://doi.org/10.1139/gen-
2020-0136  

 
Kelley, H. (1960). Gradient Theory of Optimal Fight Paths. American Rocket Society 

Journal, 30(10), 947-954.  

 
Kennedy, R. E., Cutter, G. R., & Schneider, L. S. (2014, May). Effect of APOE genotype 

status on targeted clinical trials outcomes and efficiency in dementia and mild 
cognitive impairment resulting from Alzheimer's disease. Alzheimers Dement, 
10(3), 349-359. https://doi.org/10.1016/j.jalz.2013.03.003  

https://doi.org/10.1186/s12883-017-1010-3
https://doi.org/10.3233/JAD-130575
https://doi.org/10.3389/fpsyg.2020.00351
https://doi.org/10.1139/gen-2020-0136
https://doi.org/10.1139/gen-2020-0136
https://doi.org/10.1016/j.jalz.2013.03.003


 

 
340 

Kim, S. E., Lee, B., Jang, H., Chin, J., Khoo, C. S., Choe, Y. S., Kim, J. S., Kang, S. H., 
Kim, H. R., Hwangbo, S., Jeong, J. H., Yoon, S. J., Park, K. W., Kim, E. J., Yoon, 
B., Jang, J. W., Hong, J. Y., Na, D. L., Seo, S. W., Choi, S. H., & Kim, H. J. 
(2021, Feb 19). Cognitive trajectories of patients with focal ss-amyloid 
deposition. Alzheimers Res Ther, 13(1), 48. https://doi.org/10.1186/s13195-021-
00787-7  

 
Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. (2021). 1D 

convolutional neural networks and applications: A survey. Mechanical Systems 
and SIgnal Processing, 151, 107398.  

 
Klen, R., Karhunen, M., & Elo, L. L. (2020, Jan 23). Likelihood contrasts: a machine 

learning algorithm for binary classification of longitudinal data. Sci Rep, 10(1), 
1016. https://doi.org/10.1038/s41598-020-57924-9  

 
Klöppel, S., Stonnington, C. M., Barnes, J., Chen, F., Chu, C., Good, C. D., Mader, I., 

Mitchell, L. A., Patel, A. C., Roberts, C. C., Fox, N. C., Jr, C. R. J., Ashburner, J., 
& Frackowiak, R. S. J. (2008). Accuracy of dementia diagnosis: a direct 
comparison between radiologists and a computerized method. Brain, 131(11), 
2969-2974.  

 
Lang, A., Carass, A., Al-Louzi, O., Bhargava, P., Solomon, S. D., Calabresi, P. A., & 

Prince, J. L. (2016). Combined registration and motion correction of longitudinal 
retinal OCT data. Medical Imaging 2016: Image Processing,  

 
Le, Q. V., Jaitly, N., & Hinton, G. E. (2015). A simple way to initialize recurrent 

networks of rectified linear units. arXiv preprint arXiv:1504.00941.  

 
LeCun, Y., Bengio, Y., & Hinton, G. (2015, May 28). Deep learning. Nature, 521(7553), 

436-444. https://doi.org/10.1038/nature14539  

 
Lee, S., Yoon, S., & Cho, H. (2017). Human activity recognition from accelerometer data 

using Convolutional Neural Network. 2017 IEEE International Conference on Big 
Data and Smart Computing,  

 
Leondes, C. (2001). Expert Systems: The Technology of Knowledge Management and 

Decision Making for the 21st Century. Academic Press.  

 
 
 

https://doi.org/10.1186/s13195-021-00787-7
https://doi.org/10.1186/s13195-021-00787-7
https://doi.org/10.1038/s41598-020-57924-9
https://doi.org/10.1038/nature14539


 

 
341 

Li, Q., Guo, Y., He, Z., Zhang, H., George, T. J., Jr., & Bian, J. (2020). Using Real-
World Data to Rationalize Clinical Trials Eligibility Criteria Design: A Case 
Study of Alzheimer's Disease Trials. AMIA Annu Symp Proc, 2020, 717-726. 
https://www.ncbi.nlm.nih.gov/pubmed/33936446  

 
Liu, C.-L., Hsaio, W.-H., & Tu, Y.-C. (2018). Time series classification with multivariate 

convolutional neural network. IEEE Transactions on Industrial Electronics, 
66(6), 4788-4797.  

 
Liu, X., Zhang, F., Hou, Z., Wang, Z., Mian, L., Zhang, J., & Tang, J. (2020). Self-

supervised Learning: Generative or Contrastive. arXiv, 2006.08218, 1-20.  

 
Luts, J., Molenberghs, G., Verbeke, G., Van Huffel, S., & Suykens, J. A. (2012). A 

mixed effects least squares support vector machine model for classification of 
longitudinal data. Computational Statistics & Data Analysis, 56(3), 611-628.  

 
Marti-Juan, G., Sanroma-Guell, G., & Piella, G. (2020, Jun). A survey on machine and 

statistical learning for longitudinal analysis of neuroimaging data in Alzheimer's 
disease. Comput Methods Programs Biomed, 189, 105348. 
https://doi.org/10.1016/j.cmpb.2020.105348  

 
McCulloch, W., & Pitts, W. (1943). A Logical Calculus of the Ideas Immanent in 

Nervous Activity. Bulletin of Mathematical Biophysics, 5, 115-133.  

 
Miller, P., & McArtor, D. (2017). mvtboost: Tree Boosting for Multivariate Outcomes. 

https://github.com/patr1ckm/mvtboost 

 
Miller, P. J., McArtor, D. B., & Lubke, G. H. (2017). metboost: Exploratory regression 

analysis with hierarchically clustered data. arXiv preprint arXiv:1702.03994.  

 
Milliken, J. K., & Edland, S. D. (2000, Jun 15-30). Mixed effect models of longitudinal 

Alzheimer's disease data: a cautionary note. Stat Med, 19(11-12), 1617-1629. 
https://doi.org/10.1002/(sici)1097-0258(20000615/30)19:11/12<1617::aid-
sim450>3.0.co;2-c  

 
Minsky, M., & Papert, S. (1969). Perceptrons: an introduction to computational 

geometry. MIT Press.  

 
Mirzaei, G., Adeli, A., & Adeli, H. (2016, Dec 1). Imaging and machine learning 

techniques for diagnosis of Alzheimer's disease. Rev Neurosci, 27(8), 857-870. 
https://doi.org/10.1515/revneuro-2016-0029  

https://www.ncbi.nlm.nih.gov/pubmed/33936446
https://doi.org/10.1016/j.cmpb.2020.105348
https://github.com/patr1ckm/mvtboost
https://doi.org/10.1002/(sici)1097-0258(20000615/30)19:11/12
https://doi.org/10.1515/revneuro-2016-0029


 

 
342 

Naik, B., Mehta, A., & Shah, M. (2020, Nov 5). Denouements of machine learning and 
multimodal diagnostic classification of Alzheimer's disease. Vis Comput Ind 
Biomed Art, 3(1), 26. https://doi.org/10.1186/s42492-020-00062-w  

 
Ngufor, C., Van Houten, H., Caffo, B. S., Shah, N. D., & McCoy, R. G. (2019, Jan). 

Mixed effect machine learning: A framework for predicting longitudinal change 
in hemoglobin A1c. J Biomed Inform, 89, 56-67. 
https://doi.org/10.1016/j.jbi.2018.09.001  

 
Nowok, B., Raab, G., & Dibben, C. (2016). synthpop: Bespoke Creation of Synthetic 

Data in R. J Stat Software, 74(11), 1-26.  

 
O'Shea, D. M., Thomas, K. R., Asken, B., Lee, A. K. W., Davis, J. D., Malloy, P. F., 

Salloway, S. P., Correia, S., & Alzheimer's Disease Neuroimaging, I. (2021). 
Adding cognition to AT(N) models improves prediction of cognitive and 
functional decline. Alzheimers Dement (Amst), 13(1), e12174. 
https://doi.org/10.1002/dad2.12174  

 
Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., & Ward, R. (2016). 

Deep Sentence Embedding Using Long Short-Term Memory Networks: Analysis 
and Application to Information Retrieval. arXiv, 1502.06922v3, 1-25.  

 
Pande, A., Li, L., Rajeswaran, J., Ehrlinger, J., Kogalur, U. B., Blackstone, E. H., & 

Ishwaran, H. (2017). Boosted multivariate trees for longitudinal data. Machine 
Learning, 106(2), 277-305.  

 
Pedregosa, F., Varoquaux, G., Gramfort, A., MMichel, V., Thirion, B., Grisel, O., 

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., 
& Cournapeau, D. (2011). Scikit-learn: Machine Learning in Python. JMLR, 12, 
2825-2830.  

 
Pepe, M. S., Fan, J., Feng, Z., Gerds, T., & Hilden, J. (2015, Oct 1). The Net 

Reclassification Index (NRI): a Misleading Measure of Prediction Improvement 
Even with Independent Test Data Sets. Stat Biosci, 7(2), 282-295. 
https://doi.org/10.1007/s12561-014-9118-0  

 
Polhamus, D. (2013). adsim: Simulate Alzhieimer's Disease clincial trials. R package 

version 3.0.  

 

https://doi.org/10.1186/s42492-020-00062-w
https://doi.org/10.1016/j.jbi.2018.09.001
https://doi.org/10.1002/dad2.12174
https://doi.org/10.1007/s12561-014-9118-0


 

 
343 

Raina, R., Madhavan, A., & Ng, A. (2009). Large-scale Deep Unsupervised Learning 
using Graphics Processors. Proceedings of the 26th International Conference on 
Machine Learning, Montreal, Canada. 

 
Rathore, S., Habes, M., Iftikhar, M. A., Shacklett, A., & Davatzikos, C. (2017, Jul 15). A 

review on neuroimaging-based classification studies and associated feature 
extraction methods for Alzheimer's disease and its prodromal stages. Neuroimage, 
155, 530-548. https://doi.org/10.1016/j.neuroimage.2017.03.057  

 
Ravi, D., Wong, C., Lo, B., & Yang, G.-Z. (2016). A deep learning approach to on-node 

sensor data analytics for mobile or wearable devices. IEEE journal of biomedical 
and health informatics, 21(1), 56-64.  

 
Rogers, J. A., Polhamus, D., Gillespie, W. R., Ito, K., Romero, K., Qiu, R., Stephenson, 

D., Gastonguay, M. R., & Corrigan, B. (2012, Oct). Combining patient-level and 
summary-level data for Alzheimer's disease modeling and simulation: a beta 
regression meta-analysis. J Pharmacokinet Pharmacodyn, 39(5), 479-498. 
https://doi.org/10.1007/s10928-012-9263-3  

 
Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information Storage and 

Organization in the Brain. Psychological Review, 65(6), 386-408.  

 
Russel, S., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach (2nd ed). 

Prentice Hall.  

 
Schelldorfer, J. (2011). lmmlasso: Linear mixed-effects models with Lasso. R package 

version 0.1-2. https://CRAN.R-project.org/package=lmmlasso 

 
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural 

networks, 61, 85-117.  

 
Schubert, B., & Marks, D. (2017). GELMMnet - Generalized network-based elastic-net 

linear mixed model. https://github.com/debbiemarkslab/GELMMnet 

 
Sidi, J. (2020). lmmen: Linear Mixed Model Elastic Net. R package version 1.0. 

https://CRAN.R-project.org/package=lmmen 

 
Singstad, B., & Tronstad, C. (2020). Convolutional Neural Network and Rule-Based 

Algorithms for Classifying12-lead ECGs. Computing in Cardiology, 47, 1-4.  

 

https://doi.org/10.1016/j.neuroimage.2017.03.057
https://doi.org/10.1007/s10928-012-9263-3
https://cran.r-project.org/package=lmmlasso
https://github.com/debbiemarkslab/GELMMnet
https://cran.r-project.org/package=lmmen


 

 
344 

Skolov, A., Carlin, D. E., Paull, E. O., Baertsch, R., & Stuart, J. M. (2016). Pathway-
based genomics prediction using generalized elastic net. PLoS Computational 
Biology, 12(3), e1004790.  

 
Tibshirani, R. (1996). Regression Shrinkage and Selection via the lasso. J of the Royal 

Statistical Society, 58(1), 267-288.  

 
Ushey, K., Allaire, J., & Tang, Y. (2021). reticulate: Interace to 'Python'. R package 

version 1.20. https://CRAN.R-project.org/package=reticulate 

 
Uspenskaya-Cadoz, O., Alamuri, C., Wang, L., Yang, M., Khinda, S., Nigmatullina, Y., 

Cao, T., Kayal, N., O'Keefe, M., & Rubel, C. (2019). Machine Learning 
Algorithm Helps Identify Non-Diagnosed Prodromal Alzheimer's Disease 
Patients in the General Population. J Prev Alzheimers Dis, 6(3), 185-191. 
https://doi.org/10.14283/jpad.2019.10  

 
Vapnik, V., & Chervonenkis, A. (1974). Pattern Recognition Theory, Statistical Learning 

Problems. Nauka.  

 
Wang, G., Berry, S., Xiong, C., Hassenstab, J., Quintana, M., McDade, E. M., Delmar, 

P., Vestrucci, M., Sethuraman, G., Bateman, R. J., & Dominantly Inherited 
Alzheimer Network Trials, U. (2018, Sep 20). A novel cognitive disease 
progression model for clinical trials in autosomal-dominant Alzheimer's disease. 
Stat Med, 37(21), 3047-3055. https://doi.org/10.1002/sim.7811  

 
Wilson, C., & Li, K. (2019). RMKL: Multiple Kernel Learning for Classification or 

Regression Problems. R package version 1.0. https://CRAN.R-
project.org/package=RMKL 

 
Xu, G., Ren, T., Chen, Y., & Che, W. (2020). A One-Dimensional CNN-LSTM Model 

for Epileptic Seizure Recognition Using EEG Signal Analysis. Fronteirs in 
Neuroscience, 14, 1-9.  

 
Zou, H., & Hastie, T. (2005). Regularization and Variable Selection via the Elastic Net. J 

of the Royal Statistical Society, 67(2), 301-320.  

 

https://cran.r-project.org/package=reticulate
https://doi.org/10.14283/jpad.2019.10
https://doi.org/10.1002/sim.7811
https://cran.r-project.org/package=RMKL
https://cran.r-project.org/package=RMKL


345 

 
 

 

 

 

APPENDIX A 

GLOSSARY OF TERMS 

 



 

 
346 

Alzheimer's disease 

A type of progressive dementia affecting memory, thinking and behavior which even-
tually interferes with daily tasks.  Pathologically characterized by the presence of 
β-amyloid plaques, neurofibrillary tangles of phosphorylated tau, and neurodegenera-
tive loss of brain tissue.  Clinical dementia is largely defined by the presence of func-
tional impairment in addition to cognitive impairment. 

Alzheimer's Disease Assessment Scale – Cognitive Subscale 

One half of the Alzheimer’s Disease Assessment Scale assessing the severity of the 
cognitive symptoms of dementia.  Comprised of 11 tasks for both subject-completion 
and observer-based assessment evaluating memory, language, and praxis.  Generally 
used in clinical trials or other research environments and not in clinical practice. 

Alzheimer’s Disease Neuroimaging Initiative 

A long-standing collaborative study initiated in 2004 to study Alzheimer’s disease by 
identifying more sensitive and accurate biomarkers, most notably imaging measures 
like magnetic resonance imaging and positron emission tomography.  This observa-
tional study has undergone several phases and extensions with the most recent having 
begun in 2016. 

Alzheimer's disease and related dementias 

A collection of dementia diagnoses sharing many of the cognitive and pathological 
features with Alzheimer’s disease which makes distinguishing the different diseases 
difficult.  Includes disorders such as frontotemporal degeneration, Lewy body demen-
tia, vascular contributions to cognitive impairment and dementia, mixed etiology de-
mentias and others. 

apolipoprotein E 

A protein involved in the metabolism of fats.  Has three major alleles within humans 
(E2, E3, and E4) with the E4 variant highly associated with idiopathic Alzheimer’s 
disease with both increased prevalence and an earlier age of onset.  Dosage effects are 
also observed with more pronounced effects seen by homozygous carriers of the E4 
subtype compared to heterozygous carriers. 

artificial neural network 

See neural network. 

bagging 

A portmanteau of bootstrap and aggregation.  An ensemble method which samples 
from the training data before tree building.  This is repeated several times with the 
trees’ functions averaged together at the end e.g. majority classification vote or mean 
response. 
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bias-variance trade-off 

A property of predictive models where total prediction error is a function of both bias 
and variance.  A high bias model is unable to sufficiently model the relationship be-
tween training and testing data (underfitting) while a high variance model erroneously 
models noise in the training data and is unable to generalize to other data (overfit-
ting). 

boosting 

In this context, training data is fit to a single classifier (a weak learner) which modi-
fies the data e.g. calculation and application of model residuals.  This modified data is 
then fit to a new tree and the process is sequentially iterated to eventually lead to a 
strong learner. 

bootstrap 

The technique of randomly sampling from a dataset with replacement.  Can also refer 
to the resulting dataset.  Creates a dataset with an empirical distribution expected to 
be similar to the original data’s probability distribution. 

Clinical Dementia Rating 

An instrument used in both clinical practice and research for staging of Alzheimer’s 
disease, assessing both cognitive ability as well as basic functions of daily living and 
engagement.  Comprises six domains (memory, orientation, judgment, community af-
fairs, home & hobbies, personal care) with each having individual scores as well as a 
global score of 0, 0.5, 1, 2, and 3.  The global score in turn corresponds with an Alz-
heimer’s disease stage of normal/intact, mild cognitive impairment, and mild/moder-
ate/severe dementia. 

cognitively intact 

Patients with no evidence of cognitive decline beyond what would be expected in 
their age group.  Pathological changes are generally not considered when defining 
normal cognition although further subsets are possible.  Also referred to as cogni-
tively normal. 

convolutional neural network 

A neural network where connections between layers are limited to local sets of in-
coming nodes, allowing for fewer nodes at each layer instead of the fully connected 
layers seen in most neural networks.  This limits connections to emphasize local fea-
tures within a “window” with less attention paid to more distal features.  In the one-
dimensional case can be used for longitudinal data by focusing on proximal events. 
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Critical Paths for Alzheimer’s Disease 

A consortium project created to develop new tools and methods to assist in the design 
of clinical interventional trials in Alzheimer’s disease with an emphasis on drug inter-
ventions.  One such tool is a simulation framework of drug-based clinical trials using 
the Alzheimer’s Disease Assessment Scale – Cognitive Subscale as an outcome 
measure. 

cross-validation 

A type of evaluation where a training set is split into a pre-specified number of folds.  
Separate models are developed with each fold excluded in sequence with the holdout 
then used for evaluation purposes for things like hyperparameter optimization.  Final 
evaluations are often done across the set of developed models with results then aggre-
gated together. 

decision tree 

Any sort of flow-like structure used to support decision making.  Comprised of nodes 
and edges where a node consists of some type of function and the edge is the decision 
made on the result of that function leading to subsequent nodes or a final decision 
(leaf node).  Also qualifies as a type of machine learning algorithm. 

discriminative model 

Models which learn classification boundaries or response values using conditional 
probability of the target Y given the input X.  Is generally associated with supervised 
learning. 

elastic net 

Regularization which uses a linear combination of ℓ1 and ℓ2 loss.  Is designed to 
overcome limitations of other regularization methods such as feature selection issues. 

ensemble 

A machine learning method which uses multiple algorithm implementations in com-
bination or aggregation to improve prediction performance beyond that of any single 
component algorithm or model. 

features 

The collection of input variables used for training a machine learning or inferential 
regression model. 

feed-forward neural network 

A rudimentary type of neural network which follows a very basic design of nodes 
fully connected across one or more layers without further modification or accommo-
dation to various data structures. 



 

 
349 

generalized linear mixed model tree 

A type of decision tree which accounts for longitudinal or panel data by applying a 
linear mixed model in the terminal leaf nodes. 

generative model 

Models which learn boundaries or response estimates by directly modelling the joint 
distribution of X and Y before applying Bayes’s rule.  In the current context generally 
refers to unsupervised or self-supervised methods. 

hyperparameters 

A specific type of parameter that is used to control the learning process in order to 
improve model performance.  Unlike trained parameters, these are estimated during 
validation and are generally not defined by data themselves. 

kernel method 

A method of determining a hyperplane used for maximal margin modelling which 
maps the features to a higher dimensional space to achieve separation.  Specifically 
uses kernel functions to implicitly calculate the higher dimensional feature space us-
ing the inner products of data point pairs. 

least absolute shrinkage and selection operator 

A regularization method which uses a variation on the sum of the absolute value of 
parameter estimates as the loss function called the ℓ1 loss.  Uses a shrinkage term as a 
hyperparameter to control the penalization. 

linear mixed model 

Also referred to as linear mixed-effects models.  See mixed-effects regression. 

long-short term memory 

A variation of recurrent neural networks developed to address some limitations with 
training and parameter estimation.  Specifically allows for layers to retain or forget 
previous data in a variable fashion and incorporate new inputs stochastically to update 
activation functions accordingly.   

longitudinal 

Defined here as any type of data or method which involves repeated measurements of 
the same variable on the same unit under a time series framework e.g. annual 
measures on a patient.  Also referred to as panel data or panel method. 
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mild cognitive impairment 

Generally seen as a transitional state between natural cognitive decline in aging and 
the earliest features of dementia.  Sometimes referred to as prodromal Alzheimer’s 
disease.  Memory deficits are present but do not yet interfere with daily living. 

machine learning 

The utilization of algorithms to allow systems to iteratively and automatically im-
prove models through exposure and experience.  Often contrasts with traditional in-
ferential statistics due to greater emphasis on prediction rather than hypothesis testing 
and covariate interpretation. 

Mini-Mental State Exam 

A 30-point test which measures cognitive ability with lower scores corresponding to 
greater levels of impairment.  Can also be used as a staging instrument although con-
sensus of diagnosis to level of disease is less well-defined compared to the Clinical 
Dementia Rating as it does not address impairment of function beyond cognitive abil-
ity.  In general, scores of 28 or higher are accepted as cognitively intact, 23-28 indi-
cate mild cognitive impairment, and scores below 23-21 are associated with varying 
levels of dementia. 

mixed-effects regression 

A model comprised of both fixed (i.e. measured) effects and random (i.e. unobserved) 
effects.  Commonly used in the analysis of longitudinal or panel data. 

multi-layer perceptron 

See feed-forward neural network. 

neural network 

Defined here as any machine learning method which feeds input data through a set of 
layers, each comprised of several nodes, before the final output decision.  Each node 
involves some sort of activation function with weights connecting to the nodes of 
subsequent layers determining how data is passed through the layers and evaluated. 

panel 

See longitudinal. 

parameters 

The collection of model-specific function values estimated during training which the 
machine learning model uses for response prediction. 

penalization 

See regularization. 
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radial basis function 

A kernel in the form of a radial or Gaussian function to allow a mapping to an infinite 
dimensional space.  One of the more common kernels used in support vector ma-
chines. 

random effects 

A model parameter which is itself a random variable.  Often used in hierarchical, 
panel, or clustered designs.  For linear mixed models, often used to model unit-spe-
cific longitudinal variations. 

random forest 

A variation on bagging which instead of sampling from the subjects or units will sam-
ple the number of features used to build any given tree.  These random trees are then 
aggregated but have the benefit of being uncorrelated. 

recurrent neural network 

A type of neural network which allows previous layer outputs to be used as inputs for 
all subsequent layers.  Allows for having a variable number of layers which does not 
require a fixed size for the input and leverages series structure by using prior data. 

regularization 

A class of technique used in regression modelling to discourage a more complex 
model by constraining the estimates of a model parameter.  The general goal is to fur-
ther minimize total prediction error by greatly reducing variance at the cost of slightly 
higher bias in the model.  Also referred to as penalization. 

ridge regression 

A method which uses a variation on the sum of the squared parameter estimates as the 
loss function called the ℓ2 loss.  Regularizes a model using a shrinkage hyperparame-
ter but will not allow parameter estimates to completely go to zero such that all fea-
tures remain within the model. 

statistical learning 

See machine learning. 

self-supervised learning 

A mixture of supervised and unsupervised learning where only a small portion of the 
training data has known labels.  The goal is a mixture of supervised and unsupervised 
techniques such as pre-training a network with unlabeled data for initialization and 
then estimating and fine-tuning the model parameters with the labeled input data. 
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supervised learning 

A machine learning method where the responses of the testing set are known prior to 
training, allowing direct mapping of the input variables to the response variables.  
Thus, the goal is to estimate the mapping function as to be applied to new input data. 

support vector machine 

A machine learning technique which uses a maximal margin classifier to determine a 
response (support vector classifier) by separating data using a hyperplane.  This is 
combined with some type of non-linearity applied to the hyperplane to create the 
model. 

testing set 

A completely held-out dataset used for unbiased evaluation of the final model after 
both training and tuning. 

training set 

The dataset used to fit the feature parameters of a supervised or semi-supervised ma-
chine learning system using an algorithm’s optimization method. 

validation set 

A dataset held out during the training portion which is used to optimize or tune hy-
perparameters and provide an unbiased evaluation of a machine learning model’s per-
formance.  Often taken as a subset of a training set using methods such as cross-vali-
dation. 

unsupervised learning 

A machine learning method where the labels or values of the response variables are 
unknown.  Instead of approximating the mapping the labelling function directly the 
goal is to model the underlying structure of the input data. 
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