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COMBINING MEG AND FMRI TO EXAMINE DYNAMIC TASK-RELATED BRAIN 

ACTIVITY WITH HIGH SPATIO-TEMPORAL RESOLUTION 

 

SANGEETA NAIR 

BEHAVIORAL NEUROSCIENCE 

ABSTRACT 

The characterization of brain networks contributing to healthy learning and 

memory can inform abnormalities and treatment approaches among clinical populations. 

A recent shift from lesion-based to network-based approaches of studying healthy and 

atypical brain development highlights the need for a more comprehensive understanding 

across spatiotemporal domains, particularly in the case of high-level cognitive processes. 

Both, associative learning and working memory involve distributed and interconnected 

networks of specialized brain regions. Dynamic communication within- and between- 

such systems are unable to be fully resolved by individual non-invasive imaging 

techniques such as fMRI or MEG. While fMRI serves as an ideal tool to investigate 

spatial contributions underlying sustained neural activity related to a task, MEG provides 

temporal resolution unparalleled by hemodynamic methods.  

 A framework aimed to integrate these complementary methods should be flexible 

enough to account for inconsistencies between the intrinsic sensitivities of fMRI and 

MEG and it should encourage a distributed solution that best captures the complex neural 

activity often spanning fronto-temporal areas. 

This dissertation aims to develop a co-processing stream that integrates 

information from fMRI and MEG tasks in a data-driven manner to investigate the effects 

of a multimodal approach in evaluating high-level cognitive processes. The first aim was 

to characterize networks underlying associative learning and examine the effects of age, 
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sex, and handedness on active and passive learning. We found broad fronto-parietal 

activity contributed to self-generation with that activity within specific task-related brain 

areas modulated by sex and age.  

The second aim was to integrate fMRI and MEG data from the same paired-

associate learning task within a Bayesian framework to improve temporal visualization of 

nodes within relevant networks. This work provided an implementable framework to 

merge such datasets, which was tested on an event-related Sternberg memory task within 

the third aim. Across studies, this work also shed light on what information may be 

gained by constraining MEG inverse solutions with fMRI spatial priors. Some benefits of 

incorporating fMRI spatial information to MEG source reconstruction include the ability 

to detect additional contributing brain areas during learning and memory, and to better 

characterize information flow between relevant brain areas. 
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INTRODUCTION 

 

“See that the imagination of nature is far, far greater than the imagination of man.” 

 – Richard P. Feynman 

 

Dynamics of Memory 

 The process of memory formation has been well investigated and informed by 

various types of lesion, animal, behavioral, and neuroimaging studies. Human memory is 

divided into three major stages: sensory memory, short-term (or working) memory, and 

long-term memory (Squire and Zola 1996). Recent efforts have focused on evaluating the 

neuroanatomical and functional underpinnings of verbal learning and memory. In 

general, the learning and memory processes are complicated as they involve concurrent 

and sequential events with several brain structures and their connections all of which are 

important for successful encoding and/or learning.  The nodes of this network include 

bilateral pre/frontal cortices, cingulate, and medial and lateral temporal regions (Krause 

et al. 1999; Mottaghy et al. 1999). In healthy controls, the process of word-pair learning 

studied with PET revealed strong linkages within the left hemisphere (Krause et al. 1999) 

and this was confirmed with fMRI (Mottaghy et al. 1999). FMRI relies on an endogenous 

contrast agent related to regional blood flow and can identify active brain regions that 

contribute to different cognitive and behavioral tasks with high spatial resolution. To 
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date, the memory processes of encoding, retrieval, and familiarity have been evaluated 

with various fMRI tasks. Active learning via self-generation of information engages a 

wide range of cognitive functions, suggesting the recruitment of distributed, highly 

connected networks. A meta-analysis of successful memory effects across fMRI studies 

indicated substantial involvement of a broad fronto-temporal network including left 

inferior frontal cortex, insula, bilateral fusiform gyrus, and left medial temporal cortex 

(Kim 2011). More specifically, areas implicated in encoding and retrieval include inferior 

frontal gyrus (IFG) in long term memory (Poldrack et al. 1999; Baker et al. 2001) and 

lexical-semantic response selection (S L Thompson-Schill et al. 1997; Sharon L. 

Thompson-Schill, D’Esposito, and Kan 1999), dorsolateral prefrontal cortex in 

manipulating visuospatial information and memory formation (Paller and Wagner 2002), 

anterior cingulate cortex in conflict monitoring and attention (van Veen et al. 2001; 

Botvinick, Cohen, and Carter 2004; Moss et al. 2011), middle temporal gyrus in item 

analysis (Binder et al. 2009; R Cabeza and Nyberg 2000), and parahippocampal areas in 

encoding novel stimuli (Otten, Henson, and Rugg 2001). 

 In terms of lateralization, studies of healthy participants have clearly documented left 

fronto-temporo-occipital network involvement in immediate and delayed retrieval of 

verbal information (Dupont et al. 2002; Konishi et al. 2000). While various brain areas 

are involved in the learning process, hippocampi, parahippocampal gyri, dorso-lateral-

prefrontal and lateral temporo-parietal cortex are most frequently identified in these 

studies. Other studies in healthy controls, including studies by our group, evaluated the 

process of verbal memory retrieval (Dupont et al. 2001; Eliassen, Holland, and Szaflarski 
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2008; Vannest et al. 2012) and also documented similar left-hemispheric network 

involvement.  

  While studying healthy brains provides tremendous insight into the processes 

required for efficient and effortless conduction of memory processes, the effects of 

disease states on these processes provide additional and invaluable information that can 

be later converted into developing specific interventions designed to alleviate such 

problems. For example, studies of retrieval and/or familiarity have documented 

differential effect of epilepsy on these processes. Due to the brain areas underlying 

memory processes being also involved in seizure generation, impairments in episodic 

memory is expected in patients with temporal lobe epilepsy (TLE) (Squire et al. 2015). 

The presence of such deficits in memory among patients with frontal lobe epilepsy (FLE) 

suggests that additional mechanisms associated with seizure propagation may be at play 

(Nair and Szaflarski 2020). The temporal resolution of fMRI alone does not allow for the 

direct assessment of the dynamics underlying relevant brain networks, raising questions 

around differential within-network communication among patients with focal epilepsies. 

An applicable framework aimed to fill this knowledge gap is crucial for understanding 

the distributed processes of verbal memory and developing interventions that may 

alleviate abnormalities within those networks.  

 

Multimodal Neuroimaging 

 As an indirect measure of brain activity, fMRI primarily reflects oxygen 

consumption and metabolic neural activity, and is often used to identify regions of 

sustained neural activity with high spatial resolution (within millimeters) (Brown et al. 
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2007; Buxton et al. 2004; Logothetis et al. 2001). In recent years, fMRI has gained 

attention as a tool to investigate healthy brain development (Fair et al. 2009; Bressler and 

Menon 2010), functional connectivity underlying sensory and high-level cognitive 

functions (Bassett and Bullmore 2006; Sporns 2011; Kim 2011), network abnormalities 

across various clinical populations (Griffis et al. 2017; Allendorfer et al. 2013; S Nair 

2016), and evaluating intervention and treatment effects over time (Gaston et al. 2020; 

Martin et al. 2019a; Murdaugh, Maximo, and Kana 2015).  

 Potential reasons for an increase in fMRI studies are multifold: as many clinical and 

research institutions have access to a 1.5T or 3T MRI scanner, fMRI is a widely available 

and implementable technique (Brown et al. 2007). Unlike positron emission tomography 

(PET), which is also grounded in principles of cerebral blood flow and metabolism, fMRI 

does not use radioactive isotopes due to its reliance on intrinsic contrast agents and, thus, 

it allows for the safe investigation of functional connectivity across time. Additionally, 

the rising popularity of resting-state fMRI (rs-fMRI) addresses a common practical 

concern among clinical research groups assessing differences in functional brain 

networks. Resting-state approaches allow for the elucidation of brain networks without 

placing complicated task demands on individuals who may otherwise be not be able to 

perform such task, greatly expanding the applicability of fMRI within various clinical 

populations (Lottman et al., 2019; Nair et al., 2018). As fMRI is broadly identified as a 

hemodynamic imaging technique, information gained about neural processing is largely 

dependent on a complex relationship between cerebral blood flow and oxidative 

metabolism (Buxton 2013; Buxton et al. 2004) and therefore limited in the information it 

can provide within the temporal domain. Neuronal activity takes place on the order of 
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milliseconds, which is considerably faster than the 5-7 second hemodynamic response 

function (HRF) on which fMRI relies. Thus, hemodynamic approaches to brain function 

are unable to capture rapidly shifting or dynamic brain activity often underlying high-

level cognitive processes. Previously described fMRI studies of healthy controls illustrate 

brain networks that contribute to various associative learning and working memory 

processes, but less is known of the dynamic communication between nodes in these 

networks and the effects of disease states on them.  

      Magnetoencephalography (MEG) and/or electroencephalography (EEG) are 

particularly well suited to answer questions regarding the timing of brain activity and 

information transfer. Both techniques measure neuronal activity and thus can preserve the 

timescale of such activity. EEG measures electric fields at the scalp surface, but different 

layers of tissue between the brain and scalp may distort the signal and make it difficult to 

localize the source of the measured activity (also called the “inverse problem”). MEG, 

often considered the magnetic equivalent of EEG, does not suffer from the same 

distortions and difficulties with solving the inverse problem (Hämäläinen 1992a). 

Foundations of MEG are based on the right-hand rule principle where electrical currents 

generated by postsynaptic neural activity produce a perpendicular magnetic field and 

small, but measurable magnetic signals at the scalp surface. Unlike electrical currents, 

these magnetic fields are not distorted by inhomogeneous layers of tissue, skull, and scalp 

between the brain and measuring device, rendering the determination of sources from 

MEG data much simpler and more reliable than with EEG. Though MEG has 

spatiotemporal strengths compared to EEG, the spatial resolution of MEG is still limited 

when compared to fMRI.  
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 FMRI and MEG can be viewed as complementary methods due to their relative 

strengths, though they represent and measure different aspects of brain function (R. N. 

Henson et al. 2011; Hämäläinen 1992b; Brown et al. 2007; Dale et al. 2000). Studies that 

have directly compared the localizing ability of MEG and fMRI suggest the inclusion of 

fMRI constraints in inverse models of MEG source reconstruction may be beneficial 

(Wang, Holland, and Vannest 2012; Sharon and Hamalainen 2007). Sharon and 

Hamalainen, in a study directly comparing EEG, MEG, and EEG+MEG solutions to 

fMRI found the combination of EEG and MEG improved localization greater than either 

technique alone (Sharon and Hamalainen 2007). They demonstrated that superior 

localization, afforded by the combined approach, was not driven by an increased total 

number of sensors. This suggests that complementary physical properties of EEG and 

MEG enhance localization accuracy. Further, the correspondence between approaches 

supports the potential use for fMRI constraints within MEG and/or EEG data. Wang and 

colleagues (2012) evaluated spatial concordance between sources identified with fMRI 

and MEG during a verb generation task (Wang, Holland, and Vannest 2012) and found 

convergence across several well-established language areas. Although there was a 

considerable spatial overlap between modalities, areas of disagreement between the 

techniques highlighted the difference in sensitives of each method to brain activity.   

 The induced activity underlying high-order cognitive processes involves complex, 

integrated responses between distal brain areas. As such, it can be difficult to resolve 

source localization with existing inverse solutions that isolate a small number of focal 

sources (Wang, Holland, and Vannest 2012). Successful studies utilizing the strengths of 

both MEG and fMRI have largely focused on sensory or motor processing (Ahlfors et al. 
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1999; Auranen et al. 2009; Schulz et al. 2004; Tuunanen et al. 2003; Stippich et al. 1998), 

and resting state (Lottman et al. 2019). To date, only few studies have examined higher 

cognitive functions e.g., memory or language (Wang, Holland, and Vannest 2012; Dale et 

al. 2000; Stefan and da Silva 2013).  

 As both associative learning and working memory involve specialized networks 

comprised of distal brain regions, it is critical that approaches integrating fMRI and MEG 

allow for distributed source solutions and address areas of inconsistencies between 

modalities. Bayesian integration schemes like the parametric empirical Bayesian (PEB) 

framework for MEG source inversion use a probabilistic model that incorporates 

constraints (e.g. fMRI spatial priors) to determine an optimal source solution (R. N. 

Henson et al. 2011; R.N. Henson et al. 2009). In particular, the Multiple Sparse Priors 

(MSP) approach addresses concerns of widespread, whole-brain activity during high-

order cognitive tasks: The data-driven nature of MSP automatically selects a sparse or 

distributed model that best characterizes complex neural activity. MSP also handles 

disagreement between modalities flexibly: The source solution must give high data 

likelihood (in terms of MEG) and be probable under the constraints of the priors (in terms 

of fMRI). MSP also allows for differential weighting of prior spatial information as 

“soft” constraints, which does not require a direct correspondence between MEG and 

fMRI sources (Baillet and Garnero 1997; R. N. Henson et al. 2011).  

 

Possible Future Applications 

 Focal epilepsies account for 60-70% of all epilepsies (Jokeit, Bosshardt, and Reed 

2011), and patients with temporal or frontal lobe epilepsies suffer from cognitive deficits 
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across one or more domains including attention, memory and learning, mental 

processing, and executive functioning (Black et al. 2010; Dodrill 1986; Helmstaedter, 

Elger, and Lendt 1994; Kent et al. 2006a; Mitchell et al. 1992; Seidenberg et al. 1986). 

Traditional approaches to identifying epileptic tissue for resection primarily involved 

establishing the ictal onset zone, but there has been a steady shift over time from a “zone” 

to a “network” approach that better characterizes the complex, interregional interactions 

across the brain.  

 A network perspective is especially appropriate in understanding focal epilepsies: 

Atypical neural synchronization within focal areas affects whole brain, system-level 

dynamics (Spencer 2004; Burman and Parrish 2018; Fahoum et al. 2012), and functional 

regions that exhibit certain deficits can produce permanent neurological and 

psychological effects during interictal periods that may extend beyond the ictal onset 

zone (Laufs 2012). Difficulties with memory are the most frequent complaints in patients 

with epilepsy and can often serve as barriers to completing education and gainful 

employment and the negatively impact quality of life (Zhao et al. 2014; Black et al. 2010; 

Kent et al. 2006b). A network perspective to focal epilepsies, coupled with a data 

processing stream to identify spatiotemporal characteristics underling whole-brain 

networks expands upon traditional lesion-based approaches and may allow for a better 

understanding of widespread neurological effects, behavioral deficits, and inform 

intervention approaches (Diessen, Zweiphenning, and Jansen 2014; Kramer and Cash 

2013).  
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Research Aims 

 Current work in the UAB Epilepsy Research Center focuses on evaluating the 

temporal and spatial characteristics of cognitive processes in persons with epilepsy to 

understand the effects of epilepsy and intervention on these processes. While the current 

focus is on evaluating network contributions in epilepsy, questions regarding ideal 

multimodal approaches remain unaddressed. We aimed to develop a data processing 

stream using cognitive data from healthy controls that could be applied to future studies 

of network abnormalities and behavioral deficits in persons with epilepsy. The questions 

informing this work include:  

 (1) What is the optimal data-driven method to derive regions of interest underlying 

a sparse-acquisition, verbal working memory fMRI task,  

 (2) How to optimally combine two imaging modalities (fMRI and MEG) in one 

robust analysis stream to provide better understanding of associative learning processes, 

and  

 (3) Can this pipeline be applied to data with a classic event-related design to better 

characterize the spatiotemporal correlates of working memory in healthy individuals?  

 Our overarching hypothesis is that a multimodal approach to associative learning 

and working memory within the MSP framework will yield improved spatiotemporal 

estimates than either method alone. 

 Manuscript 1 – The purpose of this study was to develop and employ a data-driven 

method to identify robust task-related networks underlying associative learning in a large 

sample of healthy individuals (n=174). We also examined the effects of sex, age, and 

handedness of the neural correlates of active and passive learning.  
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 Manuscript 2 – The primary goal of this study was to develop a data processing 

stream that combined fMRI and MEG associative learning data to maximize the strengths 

of each modality within a Bayesian framework by applying MSP to constrain MEG 

source reconstructions with fMRI spatial priors. Using this technique, we expected that 

spatially constrained analyses of MEG data using whole-brain network analyses from 

fMRI would provide information about the temporal dynamics within active learning 

networks that was not available from fMRI or MEG data alone.  

 Manuscript 3 – The focus of this study was to test the established co-processing 

pipeline using data from a modified Sternberg task. We examined spatiotemporal 

characteristics of networks underlying working memory and aimed to highlight 

improvements seen using this constrained approach. 
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CHAPTER 1 

SEX, AGE, AND HANDEDNESS MODULATE THE NEURAL CORRELATES OF 

ACTIVE LEARNING 

 

Abstract 

Self-generation of material compared to passive learning results improved 

memory performance; this may be related to recruitment of a fronto-temporal encoding 

network. Using a verbal paired-associate learning fMRI task, we examined the effects of 

sex, age, and handedness on the neural correlates of self-generation.  

Data from 174 healthy English-speaking participants (78M, 56 atypically handed; 

ages 19–76) were preprocessed using AFNI and FSL. Independent component analysis 

was conducted using GIFT (Group ICA fMRI Toolbox). Forty-one independent 

components were temporally sorted by task time series. Retaining correlations (r >  0.25) 

resulted in three task-positive (“generate”) and three task-negative (“read”) components. 

Using participants’ back-projected components, we evaluated the effects of sex, 

handedness, and aging on activation lateralization and localization in task-relevant 

networks with two-sample t -tests. Further, we examined the linear relationship between 

sex and neuroimaging data with multiple regression, covarying for scanner, age, and 

handedness. 

Task-positive components identified using ICA revealed a fronto-parietal network 

involved with self-generation, while task-negative components reflecting passive reading 
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showed temporo-occipital involvement. Compared to older adults, younger adults 

exhibited greater task-positive involvement of the left inferior frontal gyrus and insula, 

whereas older adults exhibited reduced prefrontal lateralization. Greater involvement of 

the left angular gyrus in task-positive encoding networks among right-handed individuals 

suggests the reliance on left dominant semantic processing areas may be modulated by 

handedness. Sex effects on task-related encoding networks while controlling for age and 

handedness suggest increased right hemisphere recruitment among males compared to 

females, specifically in the paracentral lobe during self-generation and the suparmarginal 

gyrus during passive reading.  

Identified neuroimaging differences suggest that sex, age, and handedness are 

factors in the differential recruitment of encoding network regions for both passive and 

active learning. 
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INTRODUCTION 

 

Active and passive learning are the mainstays of acquiring new knowledge. 

Active learning involves thoughtful analysis of and engagement with new content while 

reading complete information is a form of passive learning that does not require engaging 

with the material. The benefits of active learning have been well studied, and active 

engagement in the classroom has been widely shown to improve retention of information, 

academic achievement, and self-esteem (Prince, 2004; Schefft and Biederman, 1990; 

Springer et al., 1999).  

 

Active Learning  

Actively learning and memorizing new, language-related information has been 

shown to improve retention of information over passive reading (McDaniel et al., 1988, 

Olofsson and Nilsson, 1992). Self-generation is a type of active learning strategy that 

involves the discovery and production of an item based on incomplete information. 

During self-generation, the individual takes a role in the process of generating the target 

item based on a cue, or a piece of information that aids in retrieval of the target item 

(Jacoby, 1978). For example, the use of mnemonic devices can aid in retrieval and bolster 

memory of target items among aging adults (Hill, Allen, and Gregory, 1990; Derwinger, 

Neely, Bäckman, 2005). There is a consensus that such active participation leads to 

improved outcomes compared to passive participation among healthy individuals across a 
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range of domains including memory, coordination of selective attention, mood state, self-

esteem, and with generalization of new knowledge (Markant et al., 2016; Schefft and 

Biederman, 1990; Walsh et al., 1995). Self-generation techniques have been shown to 

also improve memory across numerous clinical groups, including Alzheimer’s disease 

and dementia (Lipinska et al., 1994; Souliez et al., 1996, Barrett et al., 2000), Parkinson’s 

disease (Barrett et al., 2000), traumatic brain-injury (Schefft et al., 2008a), epilepsy 

(Schefft et al., 2008b), and aphasia (Marshall et al., 1994).  

The benefit of active over passive learning is due to the nature of the process 

itself:  generation is a problem-solving task where one obtains the solution by engaging in 

some series of operations (e.g. finding relations among cues). Several cognitive 

mechanisms by which generation improves retention have been proposed (Nyberg, 2002; 

Otten et al., 2001; Craik, 2002). For example, the process of active self-generation 

increases distinctiveness or relevance of target words compared to read words and thus 

increases retention of the target words (McDaniel et al., 1988; Walsh et al., 1995). Or, 

enhanced memory may be the result of improved self-esteem by having successfully 

solved a problem (Olofsson and Nilsson, 1992). Another postulated mechanism states 

that enhanced retention and memory from self-generation may be due to a deeper level of 

cognitive processing required for active compared to passive reading (Craik & Lockhart., 

1972, Craik, 2002, Lespinet-Najib et al., 2004).  

 

Neural correlates of active learning and deep semantic processing  

Neuroimaging studies have reported recruitment of a frontal and medial temporal 

encoding network during tasks requiring a deeper level of processing (Otten et al., 2001; 
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Nyberg 2002). Across a range of tasks that demand deep semantic processing and 

attention, greater activity in the left prefrontal cortex has been associated with better 

memory performance (Kapur et al., 1994; Demb et al., 1995; Shallice et al., 1994; 

Buckner et al., 1999; McDermott et al., 1999). Additional cortical and subcortical regions 

implicated in successful encoding of new information include bilateral lingual, fusiform, 

inferior frontal, and parahippocampal gyri, premotor and medial parietal cortices, anterior 

cingulate cortex, thalami, and left insula (Kapur et al., 1995; Fletcher & Henson, 2001; 

Szaflarski et al., 2004; Kim 2011). One neuroimaging study examined brain areas 

involved in shallow vs. deep semantic processing to suggest the bilateral inferior 

prefrontal cortex and left anterior and posterior hippocampus to be differentially activated 

depending on the depth of processing, particularly in verbal memory encoding (Otten et 

al., 2001). Successful non-semantic encoding (alphabetical task) was shown to recruit a 

specific subset of brain regions (Otten et al., 2001). Similar studies employing tasks 

isolating semantic vs. shallow processing have found that deeper semantic processing 

was associated with increased activity in the left prefrontal regions (Kapur et al., 1994; 

Grady et al., 1998; Buckner et al., 2000; Cabeza and Nyberg, 2000). It has been 

suggested that encoding of verbal/semantic information may be left lateralized, while 

nonverbal encoding (e.g. scenes) may involve bilateral recruitment (Nyberg et al., 1996).  

Lateralization effects have also been seen with episodic memory encoding and 

retrieval, described via the HERA model (Hemispheric Encoding/Retrieval Asymmetry; 

Tulving et al., 1994; Nyberg et al., 1996). Originally described in young participants, the 

HERA model purports hemispheric asymmetry of the prefrontal cortex (PFC), finding 

more involvement of the left PFC during encoding of episodic long-term memory and 
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recruitment of right PFC during retrieval of episodic long-term memory (Tulving et al., 

1994). However, the HERA model did not generalize to older populations, where 

bilateral PFC involvement was seen during both encoding and retrieval stages of an 

episodic memory task (Cabeza et al., 1997a, b). Lateralization may also be related to age 

(Allendorfer et al., 2012a; Szaflarski et al., 2006, 2012) with this concept resulting in the 

development of the HAROLD (Hemispheric Asymmetry Reduction in OLder ADults) 

model of functional lateralization (Cabeza, 2002; Nenert et al., 2017; See Section 1.4). 

Active learning is a top-down approach to problem solving that, depending on the 

task, can involve a range of cognitive functions including attention, cognitive effort, item 

distinctiveness, working memory, and semantic and conceptual processing (Rosner et al., 

2013). It engages a wide range of cognitive functions, suggesting distributed and highly 

connected networks. Theories of executive control and working memory suggest 

prefrontal regulation of posterior brain activity (Miller and Cohen, 2001; Shimamura, 

2008), and a broad fronto-temporal network has been supported by neuroimaging 

findings from other groups (Nyberg, 2002; Kirchoff & Buckner, 2006; Qin et al., 2007; 

Otten et al., 2001). Specifically, studies of encoding and retrieval have reported 

recruitment of inferior frontal gyrus (IFG; long-term memory; Bookheimer, 2002; Baker 

et al., 2001; Poldrack et al., 1999), dorsolateral prefrontal cortex (manipulation of 

visuospatial information and long-term memory formation; Frith et al., 1991; Paller and 

Wagner, 2003), cingulate gyrus (conflict monitoring, attention; van Veen et al., 2001; 

Botvinick et al., 2004), middle temporal gyrus (verbal or item analysis; Binder et al., 

2009; Cabeza and Nyberg, 2000), and parahippocampal areas (memory; Otten et al., 

2001). Further, a meta-analysis of successful memory effects indicated broad 
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involvement of the fronto-temporal network including the left inferior frontal 

cortex/insula, bilateral fusiform cortex, and left medial temporal cortex (Kim, 2011).  

Finally, one study examined active learning processes via paired-associates 

encoding and verbal self-generated responses fMRI task (Vannest et al., 2012) to show 

results consistent with the depth of processing literature (Tulving et al., 1994). The nature 

of the self-generation condition forces participants to access knowledge of various 

semantic elements of both, the cue and target words, leading to deeper cognitive 

processing than the reading condition. Their results supported previous behavioral 

findings of improved memory performance in self-generation, as well as participation of 

left lateralized fronto-parietal areas during active encoding (Vannest et al., 2012, 2015).  

 

Sex differences of memory and language: Lateralization and depth of processing 

Sex differences in the lateralization of memory and language domains have been 

previously identified (Shaywitz et al., 1995). One study investigating phonological 

processing found that males showed strong left lateralized activation in the IFG while 

females had more diffuse, bilateral involvement (Shaywitz et al., 1995). In general, other 

studies have also supported lateralization effects across brain areas: females typically 

show widespread, right hemispheric involvement during semantic tasks where males 

show a strong left lateralized effect (Kimura, 1983; Pugh et al., 1996; Jaeger et al., 1998; 

Phillips et al., 2000). While cognitive strategies may differ between sexes, both often 

perform similarly on behavioral measures (Shaywitz et al., 1995; Berenbaum et al., 1997; 

Weiss et al., 2006). However, females do show some advantages in verbal memory, 

verbal fluency and production, and tasks with meaningful, semantic content (Andreano 
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and Cahill, 2009; Kimura and Clarke, 2002; Kimura and Seal, 2003). As verbal fluency 

and lexical access depend on a number of cognitive functions and brain systems, one 

study examined the effect of sex when controlling for memory performance of a verb 

generation task (Allendorfer et al., 2012b). Their results suggest that both sexes actually 

display similar activation patterns when controlling for in-scanner performance, though 

minor differences were observed (Allendorfer et al., 2012b).  

A study of event-related potentials (ERP) examining dynamics of passive 

language processing found that the temporal characteristics of the early stages of lexical-

semantic encoding are similar among both sexes (Wirth et al., 2006). However, 

differences in higher-order, controlled semantic processing suggest females engage in a 

deeper level of processing compared to males, demonstrating faster processing of related 

words (as measured by the N400). There is also support for differential organization of 

information across sexes during verbal learning tasks (Sunderaraman et al., 2013; Kramer 

et al., 1988) suggesting different processing strategies during encoding (Mulligan and 

Lozito, 2004).   

 

Age-related changes in self-generation  

Aging has been suggested to impact the lateralization of language networks 

underlying semantic processing (Allendorfer et al., 2012a; Szaflarski et al., 2006, 2012). 

The HAROLD model proposes that language functions in the brain become less 

lateralized with age, which may be due to a compensatory mechanisms during aging 

(compensation view), or increased difficulty recruiting domain-specific neural networks 

(dedifferentiation view; Cabeza, 2002). Initially developed in respect to pre-frontal 
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activity, the HAROLD model may also be generalized to temporal and parietal brain 

areas (Grady et al., 2002, 2000; Bellis et al., 2000).  

 An investigation into age-related changes in the neural bases of encoding found 

that although overall memory performance of self-generated words decreased among 

older individuals, self-generated words were better remembered compared to read words 

across all age groups (Vannest et al., 2015). In this study, age-related decreases in 

connectivity of networks associated with self-generation did not correspond to a decrease 

in memory performance suggesting that these networks may be less affected by age-

related “dedifferentiation” (less specialization of a network; Cabeza, 2002). A potential 

effect of dedifferentiation may be reduced lateralization seen in older adults during 

implicit memory tests (Bergerbest et al., 2009), where they tend to show bilateral brain 

activation in domains that younger adults show strong unilateral activation (Szaflarski et 

al., 2006; Logan et al., 2002; Morcom et al., 2003; Rosen at al., 2002). 

 

Impact of handedness on semantic encoding and retrieval  

Handedness and language lateralization are linked genetically (Szaflarski et al., 

2002; Szaflarski et al., 2012). One study theorized that atypical-handers (left- or mixed-

handers) may have a retrieval advantage over right handers due to higher dependence of 

these processes on interhemispheric communication (Christman & Propper, 2001; 

Prichard, Propper, & Christman, 2013). Increased right hemispheric access among 

atypical-handers is supported by studies showing a relationship between handedness and 

corpus callosum volume where larger volume is associated with atypical-handedness 

(Habib et al., 1991; Luders et al., 2010; Witelson & Goldsmith, 1991). While encoding of 
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verbal information involves left prefrontal areas, retrieval of that information recruits 

right prefrontal areas (Tulving et al, 1994). This suggests that increased access to the 

right hemisphere may aid in retrieval, consistent with the HERA model of hemispheric 

asymmetry during episodic memory encoding and retrieval (Chu, Abeare, & Bondy, 

2012; Propper, Christman, & Phaneuf, 2005; Propper & Christman, 2004; Tulving et al., 

1994). However, a recent study did not find any behavioral differences due to handedness 

in working memory tasks, though their findings of an advantage among atypical handers 

during episodic retrieval were consistent with previous literature (Sahu et al., 2016).  

In view of the available studies, our main objective was to examine the neural 

correlates of semantic learning during self-generation and investigate the role sex may 

play in brain participation during this process. We investigate these questions within a 

two-level analysis framework: The first level of analysis identifies task-related networks 

using a hypothesis-independent source separation technique, independent component 

analysis (ICA), and by temporally sorting components based on the task time series. We 

then compare subject component maps for the identified task-related networks in a series 

of subsequent hypothesis-driven analyses regarding the role sex, age, and handedness 

may play in the recruitment of these task-related networks (Bartels and Zeki, 2005). We 

hypothesized sex differences in support of a left lateralized language network among 

males and more widespread, bilateral processing among females to be associated with 

similar behavioral outcomes between sexes. The present study also investigated the role 

age and personal handedness may play in active encoding, and if any differences remain 

among sexes when taking these variables into account. We hypothesized that the self-

generation process would be affected by these factors in such a way that age would affect 
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the robustness or degree of connectivity in fronto-parietal, task-related networks. In 

addition, potential compensatory mechanisms may play a role in performance if these 

factors impact self-generation and active encoding.  

 

METHODS 

Participants  

Participants were 174 native English-speaking adults (96 female; 56 atypically-handed; 

ages 19-76) with no history of neurological or psychiatric disorders (Table 1). 

Handedness was determined using the derived laterality quotient from the Edinburgh 

Handedness Inventory (Oldfield, 1971). Participants were coded categorically as follows: 

atypically-handed from -100 to +49 and right-handed from +50 to +100. The Institutional 

Review Boards at the University of Cincinnati, the Cincinnati Children’s Hospital 

Medical Center, and the University of Alabama at Birmingham approved this project 

(NIH R01-NS04828), and all participants provided written informed consent.  
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Table 1 

Participant Demographics 

 
Male 

participants (N 

= 78) 

Female 

participants  

(N = 96) 

All participants 

(N = 174) 

Age    
     Mean (SD)  40.71 (14.1) 41.66 (15.0) 41.23 (14.6) 

     Min - Max 19 - 74 19 - 76 19 - 76 

Handedness (#)    
     Right 54 64 118 

     Atypical 24 32 56 

In-scanner Performance (%)   
Read     

    Correct 71.3%  87.9%  80.6% 

    Incorrect 24.0%  11.8%  17.1%  

     No response 4.8%  0.25%  2.3%  

Generate  
     Correct  58.2%  71.0%  65.3%  

     Incorrect 31.2%  20.0% 24.9%  

     No response 10.7%  9.0%  9.7% 

Post-test Accuracy (%)   
     Read  70.7% 74.0% 72.5% 

     Generate 73.7% 76.5% 75.2% 

 

 

Materials  

Related word pairs were chosen from previous studies, with all included words 

under 6 letters long (Basso et al., 1994; Schefft et al., 2008a, Schefft et al., 2008b; Siegel 

et al., 2012). The 60 selected word pairs were evenly distributed across 5 relationship 

classes: associates (e.g., lock – key), category members (e.g., saucer – bowl), synonyms 

(e.g., street – road), antonyms (e.g., hot – cold), and rhymes (e.g., care – dare) (Siegel et 

al., 2012).  
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Paired-associate learning task and recognition  

This fMRI task was previously utilized by our group (Basso et al., 1994; Schefft 

et al., 2008b; Vannest et al., 2012, 2015; Siegel et al., 2012). Also data from some of the 

participants were included in previous studies (Vannest et al., 2012, 2015; Siegel et al., 

2012). Briefly, the verbal paired-associate learning task was presented during the fMRI 

scanning session, and a recognition post-test was administered in a testing room 

thereafter (see section 2.5). During the in-scanner task, 60 word pairs were presented 

either in full (e.g., spider – web) or with the second word partially missing (e.g., bed – 

p*****), and participants were instructed to say the second word aloud (Figure 1a). In the 

“read” condition (e.g., spider – web), participants simply read the second word in the pair 

aloud. In the “generate” condition (e.g., bed – p*****), participants had to first self-

generate the target word and then say it aloud. In-scanner responses were monitored and 

transcribed.  

After the scanning session, participants performed a recognition test evaluating 

their memory of the second word in each word pair that was presented during the fMRI 

task. All 60 words presented during the fMRI task across both “read” and “generate” 

conditions (30 words per condition) were included in the post-test in a three-item forced-

choice format. The target word and two foils were presented on a computer screen, and 

participants indicated which of the three words they recognized from the in-scanner task 

with a key press on the computer (Figure 1b). The post-test was self-paced; the test would 

advance to the next set of three items once the subject had responded. Post-test 

performance scores were analyzed for any statistical differences using Wilcoxon signed-

rank tests for “read” vs. “generated” words across all participants, and among males vs. 
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females, atypically-handed vs. right handed participants, and older adults vs. younger 

(see Section 3.1).  

 

MRI Acquisition  

Anatomical and functional MRI data were acquired for the 174 participants 

included in analysis across two scanners: a 3T Philips Achieva MRI scanner at the 

University of Cincinnati provided by the Imaging Research Center (151 participants) and 

a 3T head-only Siemens Magnetom Allegra MRI scanner at the University of Alabama at 

Birmingham provided by the Civitan Functional Neuroimaging Laboratory (23 

participants). Across both scanners, data were acquired using a clustered-sparse temporal 

image acquisition, HUSH: Hemodynamics Unrelated to Sounds from Hardware 

(Schmithorst & Holland, 2004; see Figure 2). Aside from the ability to record overt 

responses inside the scanner, the HUSH partially silent event-related design takes 

advantage of the delayed response of canonical hemodynamic response function (HRF). 

The positive peak of the HRF occurs approximately 4 to 6 seconds post-stimulus 

presentation and response (Buxton et al., 2004), allowing us to capture activity taking 

place seconds preceding data collection. Scanner type was used as covariate in all 

analyses.  

 

3T Philips Achieva MRI scanner (Cincinnati Children’s Hospital Medical Center). 151 

participants. High-resolution T1-weighted anatomical images were acquired (TR: 8.1s, 

TE: 2.17ms, FOV: 25.0 cm x 21.1 cm x 18.0 cm, matrix: 252 x 211, flip angle: 8 degrees, 

slice thickness: 1mm). Functional T2*-weighted images were obtained using the HUSH 

silent clustered-sparse temporal image acquisition (TR: 2000ms, TE: 38ms, FOV: 24.0 
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cm x 24.0 cm x 12.8 cm, flip angle: 90 degrees, matrix: 64x64, slice thickness: 4mm, 32 

axial slices with 0% distance factor; voxel size: 3.75mm x 3.75mm x 4mm). 

 

3T Siemens Magnetom Allegra MRI scanner (University of Alabama at Birmingham). 23 

participants. High-resolution T1-weighted anatomical images were acquired (TR: 2.3s, 

TE: 2.17ms, FOV: 25.6 cm x 25.6 cm x 19.2 cm, matrix: 256 x 256, flip angle: 9 degrees, 

slice thickness: 1mm). Functional T2*-weighted images were obtained with the HUSH 

silent clustered-sparse temporal image acquisition (TR: 2000ms, TE: 35ms, FOV: 24.0 

cm x 24.0 cm x 12.8 cm, flip angle: 70 degrees, matrix: 64x64, slice thickness: 4mm, 30 

axial slices with 7% distance factor; voxel size: 3.8mm x 3.8mm x 4mm). 

FMRI stimuli were presented using a silent event-related design as described in 

detail previously (Allendorfer et al., 2012b; Vannest et al., 2012; 2015). Briefly, for each 

stimulus, a word pair was presented for 6 seconds and participants were instructed to read 

the second word out loud; audio responses were recorded. This was followed by 6 

seconds of data collection (3 image volumes) with the word “STOP,” instructing 

participants to stop talking during acquisition. A total of 180 whole-brain volumes were 

collected across the full 12 minutes of the task. The task was not dependent on a verbal 

response: if there was no response after a word pair was presented, the task would 

continue uninterrupted (Vannest et al., 2012; 2015).  

 

FMRI data preprocessing 

 Data were processed using Analysis of Functional NeuroImages software (AFNI; 

Cox 1996) and FMRI software library (FSL; Smith et al., 2004). Functional images were 
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first split into three separate parts: the first, second, and third volumes for each stimulus 

presentation were separated into three separate functional images in order to account for 

signal intensity changes in the HRF over time (Schmithorst & Holland, 2004). See Figure 

3 for a schematic of the analysis pipeline. Functional images were then motion corrected 

using AFNI’s align_epi_anat.py and 3dvolreg. Functional images were registered to the 

anatomical images using FSL’s FLIRT (Jenkinson et al., 2002), images were resampled 

to 3mm isotropic voxels, and standardized to the MNI152 template atlas using FSL’s 

nonlinear registration tool (FNIRT). We smoothed all participants’ datasets to an 

effective smoothness of a Gaussian FWHM of 6mm using AFNI’s 3dBlurToFWHM. 

Functional volumes did not undergo any additional filtering or artifact regression prior to 

Group ICA (Calhoun et al., 2001). Trials were not excluded based on participant 

responses. Participants undergo the process of encoding word pair associates whether or 

not they produce the correct word in the scanner; therefore all trials were used for each 

subject in the second level analyses.  

 

Group ICA  

Group spatial ICA was carried out using GIFT in Matlab software (Group ICA 

fMRI Toolbox, v4.0b) for each of the three image volume sets by first conducting two 

principle component analyses (PCAs) for data reduction. Subject-specific PCA was 

conducted as the first round of PCA to reduce each subject’s functional data, yielding 51 

components. Subjects data are then temporally concatenated and data underwent a second 

round of PCA, yielding 41 components (Erhardt et al., 2011; Calhoun et al., 2001). Group 

level independent components were derived using the Infomax ICA algorithm, yielding 
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41 group level components (for each of the three HUSH image volumes). The number of 

independent components was chosen in accordance to a similar previous study from our 

group (Vannest et al., 2015). Subject-specific spatial maps (SMs) were derived with 

GIFT’s GICA3 back-reconstruction method (Calhoun et al., 2001, 2002; Erhardt et al., 

2010). GICA3 estimates subject-specific time-courses and SMs from mixing matrices 

derived in PCA data reduction steps, and has been shown to provide more robust results 

with more intuitive interpretation (Erhardt et al., 2010).  

GIFT’s temporal sorting tool allows for the classification of components by 

temporal characteristics, comparing the model’s timecourse to the time courses of 

independent components (Rachakonda et al., 2007). Using the correlation function in the 

temporal sorting tool, group-level components were sorted by binary task time series 

(model timecourse) and components with a correlation coefficient |r| > 0.25 were 

identified as task-related components. The binary task time series used designated “1” for 

the “generate” condition (active generation, task-positive) and “0” for the “read” 

condition (passive reading, task-negative). See Figure 3 for an example of the binary task 

time series used.  

Components with a correlation coefficient of r > 0.25 were identified as task-

positive (correlating with the “generate” condition), and components with a correlation 

coefficient of r < -0.25 were identified as task-negative (correlating with the “read” 

condition) and were retained. Components with a correlation coefficient between -0.25 > 

r > 0.25 were excluded from all further analyses. Components were visually inspected 

and regionally similar/matching components were identified across all three image 

volumes. If a component met threshold for task-relatedness (|r| > 0.25) across more than 
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one of the three image volumes, then the most highly correlated volume was selected for 

further analysis. These six derived task-related components represent statistically 

independent sources contributing to task-positive and task-negative networks and do not 

reflect a specific contrast within the task (generate vs. read).  

 

Relationships between task-related components and sex, handedness, and age  

To compare differences in network extent among our participants, we utilize an 

approach available within the group ICA toolbox (GIFT). GIFT produces subject specific 

SMs for each independent component by implementing a series of back-reconstruction 

steps from each component at the group level (Calhoun et al., 2001; Meier et al., 2012). 

To investigate the effects sex, handedness, and age may have on task-positive and task-

negative networks, we conducted a second level analysis by extracting SMs from each 

subjects’ individual dataset for each corresponding task-related component (components 

that met a correlation threshold of |r| > 0.25).  

A total of six components met threshold for task-relatedness, and participants 

corresponding SMs were used in a series of two-sample t-tests using AFNI’s 3dttest++. 

We used two-sample t-tests to examine any spatial differences in network extent of task-

related components between sexes (male vs. female), handedness (atypical vs. right), and 

age (<50 vs. ≥50 years old) groups, (including scanner type as a covariate). We were also 

interested in if any differences between males and females could be attributed to 

handedness, and ran separate two-sample t-tests comparing males and females (one for 

right-handed individuals, one comparing atypically-handed individuals).  
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To examine age as a continuous variable as well as the effect of sex differences 

while controlling for scanner and handedness, we conducted multiple regression analyses 

using AFNI’s 3dRegAna. All analyses were corrected for multiple comparisons using 

Monte Carlo simulations and results were considered significant if clusters met the 

threshold of p<0.05 when corrected for multiple comparisons (AFNI’s 3dClustSim 

yielded: cluster size at least 171 voxels when corrected at p<0.05 and 80 voxels when 

corrected at p<0.01). Additionally, we investigated if sex differences change with age 

across all task-related components using a linear mixed-effects modeling approach with 

AFNI’s 3dLME, with our model specification testing for an interaction effect between 

sex and age, while controlling for scanner and handedness.  

 

RESULTS 

Performance data  

A Wilcoxon signed-rank test conducted in SPSS Statistics 25 showed that post-

test accuracy for the “generated” words (M(SD), %: 22.57(3.7), 75.2%) and the “read” 

words (21.75(3.9), 72.5%) was significantly different after encoding (Z =-2.643, 

p=0.008). Independent-samples t-tests revealed no significant differences between sexes 

or handedness groups for memory of read words (p=0.099 and p=0.863, respectively) or 

generated words (p=0.135 and p=0.219, respectively). For memory of “read” words, 

differences were found between older (M(SD), %: 20.67(4.0), 68.9%) and younger 

(22.23(3.8), 74.1) adults (p=0.014), as well as memory of “generated” words between 

older (21.46(3.9), 70.2%) and younger (23.07(3.5), 75.5%) adults (p=0.008). Multiple 

linear regressions revealed no sex differences in post-test accuracy after controlling for 
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age. Sex was not a predictor of memory performance on generated words while 

controlling for age and handedness F(3, 169) =1.387, p=0.303, R2=0.024. Sex was also 

not a significant predictor of memory performance on read words while controlling for 

age and handedness F(3, 169)=1.758, p=0.058, R2=0.030. Additionally, there were no 

interaction effects of age and sex on performance of generated words F(4,168)=1.109, 

p=0.590, R2=0.026, or on read words F(4, 168)=1.377, p=0.613, R2=0.032.  

 

Group ICA: Task-positive components 

Of the 41 components, three components were identified as task-positive, meeting 

a threshold of r > 0.25 for the generate condition (Table 2 and Figure 4a-c). The 

component with the highest correlation with the task (r=0.4244) included bilateral 

fusiform gyri, bilateral declive, and right inferior temporal gyrus, middle occipital gyrus, 

middle temporal gyrus (MTG), precuneus, and superior parietal lobule. The second 

highest correlated task-positive component (r=0.3784) included left middle frontal gyrus, 

bilateral IFG, left ventral anterior insula, left precentral gyrus, and left inferior parietal 

lobule (IPL). The third component (r=0.3573) included bilateral IFG, bilateral superior 

temporal gyri (STG), cingulate gyrus, anterior cingulate cortex, and bilateral ventral 

anterior insula.   
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Table 2:  

MNI coordinates for task-positive and task-negative components  

 
IC r Hush volume Location X Y Z 

       
 Task-positive components (Figure 4)       
4a 0.4244 2 L fusiform gyrus -46 -58 -16 
   R fusiform gyrus 40 -66 -20 
   R interior temporal gyrus 50 -56 -16 
   L declive -32 -58 -20 
   R declive 38 -58 -22 
   L middle occipital gyrus -32 -84 6 
   R middle occipital gyrus  42 -71 -16 
   R MTG 54 -58 -14 
   L precuneus -24 -70 36 
   R precuneus 32 -72 34 
   L superior parietal lobule -22 -66 48 
   R superior parietal lobule  24 -64 44 
   R IPL 36 -54 50 
   L cuneus -26 -78 28 
   L culmen -30 -50 -22 
   R culmen 36 -52 -24 
4b 0.3784 2 L middle frontal gyrus -44 40 -2 
   L IFG -46 26 18 
   R IFG 46 30 14 
   L ventral anterior insula -46 10 12 
   L precentral gyrus -50 12 8 
   L IPL -34 -56 42 
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   R IPL 36 -58 46 
   L STG -46 16 -8 
   L medial frontal gyrus -2 28 38 
   L cingulate gyrus -2 24 40 
4c 0.3573 2 L IFG -40 18 -12 
 

  R IFG 44 16 -8 

   L STG -44 16 -12 

   R STG 44 16 -12 

   L cingulate gyrus 0 22 36 

   R cingulate gyrus 2 24 32 

   L ACC 0 32 22 

   R ACC 2 36 22 

   L insula -40 14 -4 

   R insula 36 18 0 
 Task-negative components (Figure 4)    
4e -0.3019 2 L posterior insula -44 -4 -6 

 
  R posterior insula 44 -12 4 

 
  L STG -56 4 -4 

 
  R STG 48 -2 -4 

 
  L transverse temporal gyrus -40 -24 10 

 
  R transverse temporal gyrus 48 -24 10 

 
  R precentral gyrus 48 -14 6 

   R postcentral gyrus 56 -26 14 

4f -0.2740 2 L precuneus 0 -72 36 

 
  R precuneus 2 -72 40 

 
  L cuneus 0 -72 32 

 
  R cuneus 4 -72 32 

 
  L cingulate gyrus 0 -26 28 

 
  R cingulate gyrus 2 -44 32 
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   L PCC -4 -38 22 

   R PCC 4 -36 22 

   L IPL -34 -58 40 

   R IPL 40 -58 44 

   L angular gyrus -34 -58 36 

   R angular gyrus 44 -60 34 

   L supramarginal gyrus -44 -56 26 

4g -0.2607 3 L PCC -8 -56 4 

 
  R PCC 10 -54 4 

 
  L culmen  -6 -46 0 

   R culmen 6 -46 -2 

   L parahippocampal gyrus -10 -50 0 

   L lingual gyrus -12 -54 2 

   L precuneus -4 -62 16 

   R precuneus 4 -64 20 

   L fusiform gyrus -26 -40 -16 

   L superior frontal gyrus -18 34 36 

   L middle frontal gyrus -22 22 42 

   R middle frontal gyrus 26 20 44 

Note: L: left; R: right. MTG: middle temporal gyrus; IFG: inferior frontal gyrus; IPL: inferior parietal lobe; STG: 
superior temporal gyrus; ACC: anterior cingulate cortex; PCC: posterior cingulate cortex. 
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Group ICA: Task-negative components 

Three components were identified as task-negative, meeting a threshold of r < -

0.25 for the read condition (Table 2 and Figure 4d-f). Components are listed from highest 

correlation: the first component (r=-0.3019) included bilateral posterior insula, STG, 

transverse temporal gyri, and right pre- and post-central gyri. The second component (r=-

0.2740) included bilateral cuneus and precuneus, cingulate gyri, posterior cingulate 

cortex, and right IPL. The third component (r=-0.2607) included posterior cingulate 

cortex and left culmen.   

 

Relationships between task-related components, sex, handedness, and age 

Two-sample t-tests revealed differences in spatial extent in task-related brain 

activity recruited between sexes during self-generation and passive reading. All results 

presented meet a threshold of p<0.05 corrected. For males compared to females during 

self-generation, network extent was greater in right postcentral gyrus (Figure 5a) and left 

dorsal anterior insula (Figure 5b), and in left supramarginal gyrus (Figure 5c) and right 

STG (Figure 5d) during reading. For right-handers compared to atypical-handers, extent 

was larger in left insula (Figure 6d) and angular gyrus (Figure 6c) during reading and 

self-generation respectively, and smaller in left cuneus (Figure 6a) and posterior cingulate 

cortex (PCC; Figure 6b) during generation.  

Separate analyses of right- and atypically-handed individuals between-group sex 

differences showed somewhat different effects across groups. Right-handed males 

showed increased recruitment in right middle occipital gyrus compared to right-handed 
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females during self-generation, while atypically-handed individuals did not show this sex 

effect. Right-handed females also showed increased recruitment in right superior 

temporal gyrus compared to males during self-generation that was not seen among 

atypically-handed individuals. During reading, right-handed females showed increased 

recruitment of right middle frontal gyrus and right cuneus compared to right-handed 

males, but this difference was not seen among atypically-handed individuals. 

Younger adults (<50 years old) displayed more widespread involvement during 

both self-generation and passive reading compared to older adults (≥50 years old) across 

a range of areas (Figure 7a, 7c-h) except for left middle frontal gyrus (Figure 7b), which 

showed greater recruitment during self-generation among older compared to younger 

adults (corrected p<0.05). During self-generation, younger adults showed greater 

recruitment across bilateral insula, anterior and middle cingulate cortices (Figure 7a), and 

left IFG (Figure 7a,d), and bilateral middle occipital gyri (Figure 7c). During passive 

reading, younger adults showed greater involvement across right precuneus (Figure 7e), 

bilateral precuneus (Figure 7f), posterior cingulate cortices (Figure 7f,h), and right 

inferior parietal lobe (Figure 7g).   

 

Regression and mixed-effects modeling results  

Multiple linear regression analyses allowed us to examine 1) age as a continuous 

variable while controlling for scanner type, and 2) the effect of sex on task-related 

components while controlling for age, handedness, and scanner type. All results 

presented meet a threshold of p<0.01 corrected. Subjects extracted z-scores represent 

deviation from the group level within that component. Self-generation areas showed 
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decreased recruitment (via subject specific extracted z-scores) with increasing age across 

frontal and temporo-parietal areas. Passive encoding areas including STG, PCC, and IPL 

also showed decreased recruitment as age increases. We also found that during self-

generation, males recruit right paracentral areas (Figure 8a) and left dorsal anterior insula 

(Figure 8c) more than females, while females recruit right middle temporal gyrus (Figure 

8b) compared to males. During passive reading, men recruit right supramarginal gyrus/ 

superior temporal gyrus areas (Figure 8d) compared to women while controlling for age, 

handedness, and scanner.  

A linear mixed-effects model examining task-related components revealed a 

significant interaction between sex and age while controlling for scanner and handedness 

in task-positive networks (Figure 9a). In the active generation condition, as age increases, 

males show increased recruitment of the left supramarginal gyrus while this pattern does 

not exist in females, though the slope of the trend line shows an opposite pattern of 

decreased recruitment as age increases. Results presented meet a corrected threshold of 

p<0.01 and the relationship between individual subjects extracted average z-score from 

the left supramarginal gyrus (SMG) and age are shown for males and females separately, 

with the regression line displayed controlling for handedness and scanner to show 

direction of the effect (Figure 9b).  

 

DISCUSSION 

We examined network differences underlying active and passive memory 

encoding using a verbal paired-associate learning task. Overall, the results of the analyses 

are consistent with previous behavioral studies and indicate that generated words during 
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the encoding task were remembered more accurately in post-testing than read words 

(Olofsson and Nilsson, 1992; Schefft and Biederman, 1990; Vannest et al., 2012, 2015), 

though the inclusion of both semantically and phonologically related words might have 

impacted the recognition of read and generated words to some degree (Siegel et al., 

2012). However, this effect is likely small and, thus, not investigated here. ICA revealed 

a broad fronto-parietal network underlying self-generation, while passive reading showed 

strong temporal-occipital contributions. Further investigation of self-generation and 

passive reading showed sex, age, and handedness differences in regional patterns of 

network involvement.  

 

Sex, age, and handedness differences in active vs. passive learning  

Sex effects. There is a wide body of work suggesting that networks supporting semantic 

and phonological processing may be more left lateralized in healthy, right-handed males 

compared to females, who tend to show more bilateral and widespread pattern of network 

involvement (Binder et al., 2009). In previous studies, this differential sex effect was seen 

in superior and middle temporal areas during a story-listening task (Kansaku et al., 2000). 

However, we did not observe this effect during passive reading, where a greater spatial 

extent of task-negative related activation in the right superior temporal gyrus was 

observed in males compared to females. Considering the role personal handedness plays 

in the neural organization of language (Kansaku and Kitazawa, 2001; Szaflarski et al., 

2002; 2006; Tzourio-Mazoyer et al., 2010a), and the inclusion of only (or predominantly) 

right-handed participants in studies of sex differences in language distribution, our 

findings in a large sample of right- and atypical-handers may reflect differential 
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recruitment during semantic or phonological processing than previously observed 

(Andreano and Cahill, 2009).  

 Further investigation of sex differences between right- and atypically-handed 

individuals revealed that during self-generation, right-handed females show increased 

recruitment in right superior temporal gyrus compared to right-handed males that was not 

seen in the atypically-handed group. Right-handed females also showed right-lateralized 

activity compared to right-handed males during reading in the middle frontal gyrus, 

which was not seen among atypically-handed individuals. While females have 

demonstrated more bilateral involvement in posterior temporal areas during linguistic 

processing compared to males, females have shown a similar left-lateralized pattern to 

men in the angular and supramarginal gyri (Kansaku et al., 2000). Our findings reveal 

greater recruitment among males in left supramarginal gyrus while reading compared to 

females, and also an interaction effect with sex and age during generation where males 

show greater recruitment of the left SMG as age increases while females do not show this 

effect, suggesting differential recruitment of resources in processing phonological inputs 

and outputs based on sex and age during both passive and active encoding (Oberhuber et 

al., 2016; Stoeckel et al., 2009).  

 

Age effects. During self-generation, older adults showed lesser network recruitment than 

younger adults in frontal areas including left inferior frontal gyrus and bilateral insula, as 

well as bilateral middle occipital gyrus. Our findings of left IFG engagement during 

active encoding among younger but not older adults is consistent with previous reports of 

greater prefrontal lateralization among younger adults (Cabeza, 2002; Morcom et al., 
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2003). This age-related reduced lateralization of this task-related activity may reflect a 

decreased specialization of brain areas relevant for task demands (Cabeza, 2002). One 

region implicated among older compared to younger adults was the left middle frontal 

gyrus. This increased recruitment among older adults may be related to a compensatory 

mechanism (Morcom et al., 2003) during semantic processing necessary for similar 

performance. 

During passive reading, older adults exhibited reduced recruitment compared to 

younger adults across posterior and parietal brain regions including bilateral precuneus, 

posterior cingulate cortex, and right inferior parietal lobe. This is in contrast to previous 

studies indicating older adults involve posterior brain regions more compared to younger 

adults (Morcom et al., 2003). Our findings of greater PCC recruitment in younger 

compared to older adults suggests passive reading aloud may be a more effortful for older 

adults, or even simply that passive reading engages different networks among younger vs. 

older adults reflecting differential strategies between the groups (Berlingeri et al., 2013). 

This compensation view is contrasted with a dedifferentiation perspective of the age-

related differences in brain activity. The CRUNCH (Compensation-Related Utilization of 

Neural Circuits Hypothesis) model provides a framework for age-related increases in 

activation in different brain areas, not specific to hemispheric side (Reuter-Lorenz and 

Cappell, 2008; Berlingeri et al., 2013). Considering the level of task demand is relevant 

in interpreting our findings of greater recruitment in younger adults compared to older 

adults during both passive reading and active generation within the CRUNCH model 

(Berlingeri et al., 2013). When engaging in tasks with overall lower cognitive load, 

neural effects supporting the CRUNCH model may not be elucidated (Jamadar, 2018).  
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An examination of age as a continuous variable yielded several components 

showing age-related decreases across both self-generation and passive reading:  two out 

of three task-positive components showed age-related decreases with subject component 

relatedness (Figure 4a,c), whereas age increases, our relatedness measure decreases 

across inferior frontal, superior temporal, and superior parietal brain areas. Other studies 

have supported age-related decreases in parietal areas across various cognitive tasks 

(Grady et al., 2010), and during self-generation (Vannest et al., 2015). Two out of three 

task-negative components also showed age-related decreases (Figure 4f,g) across 

temporal and posterior cingulate areas during reading, consistent with evidence of 

decreased default mode related activity among older individuals (Grady et al., 2010; 

Mevel et al., 2013; Vannest et al., 2015).  

 

Handedness effects. Handedness plays an important role in hemispheric language 

dominance (Geschwind and Galaburda, 1985; Szaflarski et al., 2002, 2012). 

Neuroanatomical differences exist between right-handed and atypically-handed 

individuals, particularly in terms of the planum temporale (Foundas et al., 1995, 2003; 

Shapleske et al., 1999). Studies also show a negative relationship between corpus 

callosum volume and degree of handedness, where increasing atypical handedness is 

associated with larger corpus callosum volumes (Habib et al., 1991; Witelson & 

Goldsmith, 1991), which may be influenced by increased interhemispheric information 

transfer among atypical- compared to right-handers (Sahu et al., 2016; Gao et al., 2015; 

Tzourio-Mazoyer et al., 2010). Interhemispheric communication time has been linked to 

brain volume, and larger brains have been shown to group quick cognitive functions in 
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one hemisphere (Ringo et al., 1994). Our findings of right-handers compared with 

atypical-handers showing left angular gyrus involvement during self-generation and left 

insular involvement during passive reading may be due to the left-dominant language 

processing seen among right-handers, while atypical-handers may have substantial 

interhemispheric communication to lighten processing load.  

While left angular gyrus activation has been associated with language ability (Van 

Ettinger-Veenstra et al., 2016) and semantic processing (Hartwigsen et al., 2016; Seghier 

and Price, 2013), an examination of functional properties and subdivisions of the angular 

gyrus reveal an integrative role across multisensory domains, including reorienting 

attention and familiar problem solving (Seghier and Price, 2013). Activation of left 

angular gyrus may also be modulated by several factors, including reading level and age 

(Meyler et al., 2007; Meyler et al., 2008), while sex and handedness as potential 

modulatory factors of the angular gyrus have not been studied in depth (Seghier and 

Price, 2013).  Recruitment of the left angular gyrus among right-handers during self-

generation in the present study may be related to increased reliance on left dominant 

semantic processing areas compared to atypical handers. Gray matter asymmetry between 

left- and right- handed individuals suggests less specialization for speech in the left 

hemisphere among left-handed individuals (Hervé et al., 2006), and right-handed 

individuals have shown more left lateralized patterns of activity compared to left-handed 

individuals (Gao et al., 2015), suggesting organizational differences in semantic 

processing between left- and atypically- handed individuals.  
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Sex effects, controlling for age and handedness. Our analyses of sex effects on task-

related components while controlling for age, handedness, and scanner reveal a similar 

pattern in terms of the involvement of the left dorsal anterior insula during self-

generation among males and right middle temporal gyrus among females, but also reveals 

right hemisphere differences among sexes (males > females) in the paracentral lobe 

during self-generation and in the supramarginal gyrus during passive reading. The role of 

the anterior insula in affective and cognitive functions suggest that our findings of 

increased involvement of left dorsal anterior insula among males compared to females 

may be related to a lateralization effect of performance monitoring (Dosenbach et al., 

2006), attention orienting (Corbetta and Shulman, 2002), or salience (Seeley et al., 2007; 

Menon & Uddin, 2010). Our previous study examining verb generation suggested sex 

lateralization effects may be dependent on performance and language ability, and found a 

similar right lateralized pattern for males in caudate/anterior cingulate gyrus when 

controlling for performance (Allendorfer et al., 2012b). Another study investigated any 

relationship between white matter integrity of the superior longitudinal fasciculus (SLF) 

and language functioning across healthy, right-handed participants ranging from 19-76 

years old (Madhavan et al., 2014). An examination of sex differences across adulthood in 

mean fractional anisotropy (FA) values of the SLF found a differential pattern of decline 

in FA of the SLF across aging males and females, as well as with language functioning as 

measured by performance on the Controlled Oral Word Association Test.  

 

Attention and salience during encoding implicates a fronto-parietal network   

A “network” approach to functional organization in the brain suggests the brain 
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responds to environmental demands (sensory or cognitive) by recruiting brain areas that 

aid in signal processing. This large-scale distribution of resources results in sets of 

regions showing statistical dependence in relation to the specific demand or task. More 

recent approaches to cognitive neuroscience involve a framework with several 

differentiated and interacting networks underlying human brain function (Menon and 

Uddin, 2010) with these networks having specific profiles of activation and deactivation.  

A fronto-parietal network, including the posterior parietal cortex (PPC) and areas 

of the prefrontal cortex (Buckner et al., 1999; Otten et al., 2001), has been shown to 

underlie visual attention (Corbetta et al., 2002; Corbetta et al., 2008). Involvement of the 

inferior parietal lobe (IPL) in this network may be related to maintaining attention on task 

goals and encoding events in the environment (Singh-Curry & Husain, 2009; Rueckart & 

Grafman, 1998; Adler et al., 2001; Vandenberghe et al., 2001) or performance (Donnelly 

et al., 2011). In this study, task-positive components underlying self-generation showed 

broad fronto-parietal involvement, including left IPL (Figure 4b), suggesting an increase 

in attentional demands when self-generating compared to reading. One study examined 

how differential attention during verbal encoding modulates fronto-parietal brain activity, 

finding significant contributions from the middle frontal gyri (MFG) during high-

attention stimuli (Christiensen et al., 2012). The MFG has been hypothesized to be an 

area of integration between dorsal and ventral attention streams, serving as a gateway 

between top-down and bottom-up attention and playing a major role in controlling and 

reorienting attention (Japee et al., 2015). In this study, generating the second word in the 

pair involves using the presented cue and a top-down search of known words 

semantically or phonologically related to the first word. Our findings of left MFG 
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recruitment during self-generation suggests increased allocation of resources to this brain 

region during active encoding. 

The “salience network” refers to a group of brain regions involved in cognitive or 

emotional arousal; it includes the anterior insula, dorsal anterior cingulate cortex (dACC), 

and several subcortical and limbic structures (Seeley et al., 2007; Kay et al., 2012; 

Morgan et al., 2008; Menon, 2015). Implication of the insular cortex in neuroimaging 

studies suggests its role in salience and stimuli detection, facilitating attention and 

working memory during task switching (Menon and Uddin, 2010; Sridharan et al., 2008). 

In this study, the insula and anterior cingulate cortex were identified in task-positive 

components, likely contributing to sustained attention during self-generating word pairs. 

Our examination of sex differences suggests males may recruit brain areas involved with 

sustained attention and task switching attention compared to females during self-

generation. The two clusters in left insula and right postcentral gyrus that were involved 

with self-generation among males compared to females may be, perhaps, serving as an 

attention modulating mechanism when task demands increase during active encoding 

(Steinmetz et al., 2000); similar sex-differences were observed in developmental but not 

adult studies of language lateralization (Szaflarski et al., 2002, 2012). The insula was also 

implicated in our examination of handedness and brain regions underlying reading aloud 

in that right-handers showed greater extent in the left insula involvement compared to 

atypical-handers. A study of effective connectivity during a Chinese semantic task found 

that left-handers showed differential effective connectivity between the insula and 

prefrontal / occipital areas compared to right-handers, suggesting differential information 

processing among atypical-handed individuals during visual and semantic word retrieval 
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of Chinese characters (Gao et al., 2015). Due to the integrative role of the insula in 

bottom-up and top-down processing, these authors hypothesized that handedness may 

impact information transfer at a causal, system level during semantic word retrieval.  

 

A dynamic network underlies the encoding process 

A meta-analysis of 74 fMRI encoding and memory studies revealed five main 

brain areas consistently associated with subsequent memory. The study also examines 

how patterns of activity are modulated by task-related conditions (nature of material: 

verbal or pictorial; type of encoding: item or associative) (Kim 2011). Findings support 

the “task-dependency” principle that the encoding process cannot be reduced to a fixed 

set of brain areas, but rather the neural correlates of encoding should be viewed as a 

dynamic network that responds to task-specific requirements (Kim, 2011; Otten and 

Rugg, 2001; Rugg et al., 2002). Therefore, it is the type of encoding task that determines 

which regions are functionally relevant and will be recruited for successful processing 

and will show subsequent memory effects.  

 There is also evidence suggesting certain aspects of network organization and 

recruitment during encoding may be dependent on specific demographic variables such 

as age (Allendorfer et al., 2012a; Szaflarski et al., 2006, 2012; Maillet & Rajah, 2014; de 

Chastelaine et al., 2016), sex (Hill et al., 2014; Mulligan and Lozito, 2004), or 

handedness (Seghier and Price, 2013). Our findings support differential recruitment of 

these dynamic networks underlying encoding during self-generation based on a number 

of variables. In task-positive networks, older adults showed reduced prefrontal 

lateralization compared to younger adults as left IFG showed greater spatial extent of 
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activation among younger adults than older adults. Right-handed individuals also 

displayed greater recruitment on left semantic processing areas compared to left-handed 

individuals in these same task-positive networks. The influence of sex on task-related 

networks suggests increased right hemisphere recruitment among males compared to 

females during both self-generation and passive reading. These findings provide some 

insight into networks underlying active and passive encoding, and how the recruitment of 

these dynamic networks may be influenced by demographic factors like age, sex, and 

preferred handedness. 

 

Conclusions 

In summary, independent component analysis of a verbal paired-associate 

learning fMRI task revealed fronto-parietal network contributions during self-generation 

of word pairs, and recruitment of temporo-occipital areas during reading words aloud. 

Sex, handedness, and age groups showed similar memory performance, but significant 

differences in task-positive and task-negative brain areas across groups suggest 

differential recruitment of encoding network areas to achieve similar performance levels.  
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FIGURES 

 

 

  
 

Figure 1. A schematic of the two parts of the verbal paired-associate learning fMRI task 

consisting of a) an in-scanner encoding task, and a b) post-fMRI recognition test. During 

the fMRI encoding task, word pairs are presented on the screen for 6 seconds, and 

participants are instructed to read (or generate) the second word of the word pair aloud. 

The STOP screen instructs participants to stop talking while three image volumes are 

acquired for a total of 6 seconds. This continues for all 60 word-pair stimuli, for a total of 

12 minutes. After scanning, participants conduct a recognition post-test in a nearby 

facility testing room. Participants are presented with three words: one target word they 

had been exposed to during the in-scanner encoding task, and two foils, and participants 

are instructed to indicate which of the three words they recognize from the task.  
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Figure 2. HUSH Image Acquisition. A schematic of one stimulus presentation and image 

acquisition period (total of 12 seconds) using a clustered-sparse temporal acquisition, 

Hemodynamics Unrelated to Sounds of Hardware (HUSH). Stimulus is presented for the 

first 6 seconds, followed by acquisition of three image volumes with a TR of 2 seconds. 

This is repeated for all 60 word-pair stimuli for 12 minutes and a total of 180 image 

volumes. (HRF: Hemodynamic response function). 
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Figure 3. A schematic of the analysis pipeline. HUSH volumes were split into the 3 

volumes acquired, and subsequent preprocessing and analysis in GIFT (PCA/ICA) was 

applied to volumes separately. After sorting components using the binary task time series, 

regionally similar components were identified across the three analyses and the volume 

with the highest correlated to the task time series was retained for further analyses. 

(Superscripts correspond to sections in the methods that further describe that stage in the 

analysis. HUSH: Hemodynamics Unrelated to Sounds of Hardware; FLIRT: FMRIB’s 

linear image registration tool; FWHM: full width at half maximum; PCA: principle 

component analysis; ICA: independent component analysis; SMs: spatial maps).  
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Figure 4. Task-positive and task-negative components (correlated with the generate and 

read conditions |r| > 0.25). Images are presented in neurological orientation (R=R). 

Group average independent components positively correlated (r > 0.25), 3a-c, and 

negatively correlated (r < -0.25), 3e-g, with the task timecourse, along with composite 

images for task-positive (3d) and task-negative (3h) components presented below. 

Components span the following brain regions: a) bilateral occipital; b) bilateral (left-

lateralized) inferior frontal gyrus and precentral gyrus; c) anterior insula and superior 

temporal gyrus; d) composite image of task-positive components (3a-c); e) bilateral 

superior temporal gyrus; f) bilateral precuneus and posterior cingulate cortex; g) posterior 

cingulate cortex and culmen; h) composite image of task-negative components (3e-g).    
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Figure 5. Relationships between sex and task-related components: Two-sample t-tests 

between males and females in task-positive components (4a-b) and task-negative 

components (4c-d) reveal males recruit additional brain areas during active encoding 

compared to females: a) right postcentral gyrus, b) left insula; and during passive 

encoding: c) left supramarginal gyrus, d) right superior temporal gyrus (F: females, M: 

males; p<0.05 corrected).  
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Figure 6. Relationships between handedness and task-related components. Two-sample t-

tests reveal differences between atypically-handed and right-handed individuals in task-

positive components (5a-c) and task-negative components (5d). In terms of spatial extent 

of task-related activation, atypical-handers and right-handed individuals recruited 

additional regions during active encoding: a) left cuneus, b) posterior cingulate cortex, c) 

left angular gyrus; and during passive encoding: d) left insula. Orange depicts areas 

where atypical-handers task-related extent was greater than right-handed individuals, and 

blue depicts areas where right-handed individuals task-related extent was greater than 

atypical-handers (A: atypical-handed, R: right-handed; p<0.05 corrected) 
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Figure 7. Relationships between age and task-related components. Two-sample t-tests 

reveal differences between younger (<50 y.o.) and older (≥50 y.o.) adults in task-positive 

components (6a-d) and task-negative components (6e-f). Recruitment among young 

adults seemed more widespread compared to older adults during self-generation, with 

greater recruitment across a) bilateral insula, anterior and middle cingulate cortices, and 

left inferior frontal gyrus, c) bilateral middle occipital gyrus, d) left inferior frontal gyrus 

and left insula. During self-generation, older adults showed greater recruitment compared 

to younger adults in b) left middle frontal gyrus. During reading, younger adults showed 

greater activity compared to older adults across: e) right precuneus, f) bilateral precuneus 
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and PCC, g) right inferior parietal lobe, and h) bilateral PCC (Y: younger adults (<50 

y.o.), O: older adults (≥50 y.o.); p<0.05 corrected).  
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Figure 8. Relationship between sex and task-related components, controlling for scanner, 

age, and handedness. Males show greater task-positive network extent when controlling 

for scanner, age, and handedness in a) right paracentral lobe and c) left insula during self-

generation and greater task-negative network extent in d) right supramarginal gyrus / 

STG during passive reading. Females show greater task-positive recruitment during self-

generation of b) right middle temporal gyrus (F: females, M: males; p<0.01 corrected).  
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Figure 9. Linear mixed-effects model revealed a) an interaction between sex and age 

while controlling for scanner and handedness in the left supramarginal gyrus in a task-

positive component. Correlations between subjects mean z-score for the left 

supramarginal gyrus ROI and age suggests that b) as age increases, males show increased 

recruitment of left SMG during passive reading while females show a decline in BOLD 

signal intensity as age increases (p<0.01 corrected). 
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CHAPTER 2 

DYNAMIC BRAIN ACTIVITY DURING ASSOCIATIVE LEARNING EXAMINED 

WITH MEG/FMRI CO-PROCESSING 

 

Abstract 

Due to limitations of individual neuroimaging methods we examine spatial and 

temporal contributions to self-generation using multimodality imaging with functional 

magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) within the 

Bayesian framework Multiple Sparse Priors (MSP). 24 healthy participants performed an 

fMRI and MEG paired-associate learning task. FMRI data were processed within Group 

ICA fMRI Toolbox. Independent components (ICs) were temporally sorted by task time 

series (|r|>0.30 threshold identified task-related ICs). Task-positive (“generate”) ICs were 

retained as spatial priors for MEG analyses. MEG data were processed by averaging trials 

to increase the signal-to-noise ratio within subjects and with an event-related theta power 

approach. MEG source reconstructions were constrained within the task-positive ICs for 

both analytical approaches.  

For fMRI, five networks were identified as task-related. Four ICs underlying 

active generation spanned bilateral parietal, orbitofrontal, medial frontal and superior 

temporal regions, and occipital lobe. FMRI-constrained MEG source reconstructions 

yielded early visual cortex activity followed by left inferior frontal gyrus (IFG) and 

orbito-frontal cortex (OFC) recruitment to coalesce in the left inferior temporal lobe. For 
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the event-related theta approach, reconstructions showed a progression of activity from 

bilateral temporal areas to left OFC and middle temporal gyrus, followed by right IFG. 

MSP analyses informed by fMRI produced more focused regional activity than 

reconstructions without priors suggesting increased attention and maintenance when 

selecting relevant semantic information during active generation. Constraining MEG 

source reconstruction to fMRI priors during active generation implicates interconnected 

fronto-temporal and fronto-parietal networks across time. 
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INTRODUCTION 

The processes behind acquiring new knowledge are broadly divided into two 

learning styles: passive and active (Mcdaniel, Waddill, and Einstein 1988; Olofsson and 

Nilsson 1992; Pugh et al. 1996). Passive learning is conceptualized as a one-way 

transference of information. Individuals are meant to passively absorb and retain new 

knowledge through traditional approaches like lectures, presentations, and reading. In 

contrast, active learning requires engagement and participation from the individual such 

as group discussions, hands-on workshops, or interactive games (Prince 2004). As these 

two styles of learning require different contributions from the individual in terms of 

cognitive mechanisms including attention and depth of processing, they also present 

specific strengths in various settings. The benefits of active learning have been widely 

studied across a range of metrics, including improved retention of information, academic 

achievement, and self-esteem (Mcdaniel et al. 1988; Olofsson and Nilsson 1992). 

Enhanced memory of active learning, for example, with self-generating content, has been 

hypothesized to be a result of the increased distinctiveness of the target word (Otten, 

Henson, and Rugg 2001a).  

The neurological processes underlying both passive and active learning recruit 

distinct and overlapping brain networks. There have been recent efforts to evaluate 

neuroanatomical and functional contributions to verbal learning in healthy and diseased 

populations using positron emission tomography (PET) and functional magnetic 
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resonance imaging (fMRI) (Binder et al. 2009), as well as contributions from the 

electrophysiological literature outlining stereotyped responses across groups (Marinković 

2004). However, such approaches are hampered by either the poor temporal resolution of 

fMRI or poor spatial resolution of PET or electrophysiology techniques. In fMRI, the 

blood oxygen level dependent (BOLD) responses are sensitive to functional changes in 

response to a specific task. Although fMRI is often utilized for its high spatial resolution, 

the method is limited in what information it can provide within the temporal domain. As 

neuronal activity takes place in the order of milliseconds, considerably faster than any 

associated vascular changes at roughly 5-7 seconds of the hemodynamic response 

function (HRF) (Hawco et al. 2007; de Munck et al. 2007), fMRI is unable to preserve 

the temporal resolution of neuronal activity and thus is not widely used to explore the 

timing and information flow of cognitive processes. Previously mentioned fMRI studies 

of healthy controls identify distributed networks that underlie various verbal memory 

processes (encoding and retrieval), but little is known about the dynamic communication 

between nodes in these networks (Baker et al. 2001; Buckner, Kelley, and Petersen 1999; 

Kim 2011).  

Bioelectric-based methods, including electroencephalography (EEG) and 

magnetoencephalography (MEG), are sensitive to electromagnetic fields generated by 

synaptic currents in the brain. These techniques offer insight into neuronal activity with 

an especially high temporal resolution, allowing for evaluation of activity as it unfolds 

across milliseconds. As such, bioelectric and electromagnetic techniques are particularly 

well suited to explore questions around the dynamics of brain activity and information 

transfer. While both EEG and MEG noninvasively measure electromagnetic fields at the 
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scalp surface and retain valuable temporal information, EEG is unable to resolve the 

location of the source of any measured activity. This “inverse problem” is primarily 

driven by the heterogeneous layers of tissue, skull, and scalp with varying conductivities 

between the brain and scalp (i.e., between the source and measurement device). The 

electrical potentials measured at the scalp surface are in turn, distorted across the scalp, 

and without the ability to accurately model the conductivities of different layers of tissue, 

it is difficult to localize the measured signals across the brain. MEG is described as the 

magnetic equivalent to EEG due to the specific properties of magnetic fields. MEG is 

impacted by the inverse problem to a lesser degree compared to EEG as the measured 

magnetic field is not distorted by heterogeneous layers of tissue between the brain and the 

measuring device (Hämäläinen 1992). Source localization is considerably easier with 

MEG compared to EEG and there exist many possible “solutions” to the inverse problem 

via equivalent dipole fitting, beamforming, and Bayesian methods. However, the 

shortcoming of MEG is that it is only sensitive to currents tangential to the scalp surface 

as only these currents produce magnetic fields detectable outside the head (Hämäläinen 

1992; Singh 2014). Further, activity from deep or subcortical sources is challenging to 

resolve with MEG. In whole, this distinction makes determining sources from MEG 

recordings preferred over EEG, though the spatial resolution of both of these techniques 

is limited compared to fMRI. 

 Because fMRI and MEG visualize different neural sources and measure different 

aspects of brain function, these methods are complementary (Wang and Holland 2014; 

Wang, Holland, and Vannest 2012). FMRI measures metabolic processes that drive 

neural firing and is able to identify primary brain regions and networks involved with 



	

	

	

84	

different tasks with millimeter accuracy, but its poor temporal resolution limits its use to 

determine directional information flow within a network. MEG directly reflects magnetic 

fields generated by postsynaptic neural activity and preserves the millisecond time-scale 

of neurophysiologic activity, but unlike hemodynamic methods, it has limited spatial 

resolution. Implementing a multi-modal approach by combining hemodynamic and 

electrophysiological functional connectivity methods capitalizes on the advantages of 

both modalities. We are able to develop complete models of verbal memory in healthy 

populations by characterizing neuroanatomical contributions alongside sequential and 

dynamic aspects of verbal encoding with high spatiotemporal resolution. The ability to 

capture and describe the differential recruitment of contributing brain areas during a task 

is especially relevant during working memory, as the time scale of brain activity during 

verbal memory is known to be fast (Marinković 2004). 

Successful studies combining the strengths of both MEG and fMRI have mainly 

focused on sensory or motor processing (Ahlfors et al. 1999; Auranen et al. 2009; Schulz 

et al. 2004; Stippich et al. 1998; Tuunanen et al. 2003) and rest (Lottman et al. 2019). 

Studies investigating higher cognitive functions are limited (Wang et al. 2012). It is 

especially challenging for MEG to resolve source localization that involves complex and 

distributed neural processes: inducted activity is not likely to be time-locked to stimuli 

across subjects, may arise from multiple generators across the cortex, and thus can be 

difficult to isolate (Lopes da Silva 2013; Takeda et al. 2014). When examining 

distributed responses during a cognitive task, certain considerations should be discussed. 

Experimental paradigms evaluating sensory responses, including visual, auditory, motor, 

and somatosensory responses, typically involve very short paradigms (and, in turn, have 
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high signal-to-noise ratio (SNR) due to averaging hundreds of trials). However, it is 

substantially more difficult to reach similar SNR among paradigms associated with high-

order cognitive tasks due to the duration of each trial (Wang and Holland 2021). 

Additionally, averaging across trials when investigating induced activity has the potential 

to weaken SNR when responses are not time-locked to the stimulus across runs, unlike 

consistently identified event-related potentials (ERPs) of sensory stimuli and related 

evoked activity (Hillebrand et al. 2005; Takeda et al. 2014). 

The main goal of our study was to develop a processing stream that combines 

information from fMRI and MEG during a verbal memory learning and attention task to 

maximize the strengths of each modality. FMRI’s spatial resolution and MEG’s temporal 

resolution may be resolved together within a Bayesian framework by applying the 

Multiple Sparse Prior (MSP) algorithm (Friston et al. 2008a; Henson et al. 2011, 2019). 

We used this pipeline to identify spatiotemporal characteristics of active encoding with 

improved spatial and temporal resolution when compared to fMRI or MEG approaches 

alone.   

 

METHODS 

Participants  

We recruited 24 healthy native English-speaking adults (13 female, 4 atypically 

handed, ages 18-39 years) with no history of neurological or psychiatric disorders (Table 

1). Participation included attending two separate sessions of scanning approximately one 

week apart. Of the 24 participants, 23 completed all study procedures and are included in 

the analyses. The Institutional Review Board at the University of Alabama at 
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Birmingham approved this project, and all participants provided written informed 

consent. Participants completed the MRI scanning session during their first visit and the 

MEG scanning session during their second visit (Nair et al. 2019; Vannest et al. 2015).  

 
Table 1 

Participant demographics 

 

  

Male participants  

(N = 11) 

Female participants  

(N = 13) 

All participants  

(N = 24)  

Age    
    mean (sd) 25.73 (6.2) 24.46 (3.9) 25.04 (5.0) 

    min - max 20 - 39 18 - 30 18 - 39 

Handedness (#)   
    Right 10 10 20 

    Aytpical 1 3 4 

 

Paired-Associate Learning Task  

During both fMRI and MEG sessions, related word pairs were presented to 

participants during the verbal paired-associate learning task (Schefft et al. 2008). All 

word pairs selected for the present study were all under 6 letters in length and were 

chosen from previous studies (Schefft et al. 2008; Siegel et al. 2012). Word pairs were 

distributed across 5 relationship classes: associates (e.g., lock – key), category members 

(e.g., saucer – bowl), synonyms (e.g., street – road), antonyms (e.g., hot – cold), and 

rhymes (e.g., care – dare) (Siegel et al. 2012). To ensure comprehension regarding task 

procedures, participants practiced a version of the task before their first scanning session. 

During fMRI scanning, 60 word pairs were presented either in full (e.g., spider – web), or 

with the second word partially missing (e.g., bed – p*****), and participants were 
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instructed to either passively read or actively self-generate the second word out loud. 

During MEG scanning, 200 word pairs were presented, but only with the second word 

partially missing and participants were instructed to covertly generate the target word for 

each trial. There was no overlap in the word pairs used in the fMRI and MEG versions of 

the task. For all but three participants, fMRI scanning sessions preceded MEG scanning 

sessions by several weeks.  

 

Data Acquisition  

MRI Acquisition. Anatomical and fMRI data were acquired on a Siemens Magnetom 

Prisma 3.0T whole-body MRI system during approximately one hour-long scanning 

session. High-resolution T1-weighted anatomical images were acquired (TR: 2400ms, 

TE: 2.22ms, FOV: 25.6x24.0x16.7cm, matrix 256x240, flip angle: 8 degrees, slice 

thickness: 0.8mm, voxel size: 0.8x0.8x0.8mm). During the in-scanner pairs encoding 

task, functional T2*-weighted images were obtained using a partially silent event-related 

task design (TR: 1990ms, TE: 35ms, FOV: 240x240x129mm, flip angle: 70 degrees, 

matrix 240x240, slice thickness: 4mm, axial slices, voxel size: 3.8x3.8x4mm). This 

clustered-sparse temporal acquisition technique (HUSH; Schmithorst and Holland 2004) 

allows for recording overt responses during scanning while taking advantage of the 

intrinsic delayed response of the HRF. The HUSH technique captures activity taking 

place seconds preceding data collection, as the positive peak of the HRF occurs around 4 

to 6 seconds following stimulus presentation (Buxton et al., 2004).  
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MEG Acquisition. MEG recordings (sampling frequency of 291 Hz) were collected in a 

magnetically shielded room using a 148-channel whole head magnetometer (MagnesTM 

2500 WH, 4-D Neuroimaging). Fiducial head-sensor coils and head shape data using a 

3D digitizer were collected to monitor head position and for co-registration between 

participant’s MEG data and anatomical MRI. Collection of task and a resting-state scans 

was counterbalanced. 

 

FMRI Data Processing 

We have outlined the co-processing pipeline for clarity in Figure 1, and annotated 

MATLAB scripts (.mat) for the entire pipeline are available to share (directory creation, 

fMRI and MEG preprocessing and second level analyses). These can be adapted to suit 

various task designs. Preprocessing of event-related fMRI data was performed with 

SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). To account for any signal intensity changes 

in the HRF across three volumes acquired via sparse acquisition, functional image 

volumes were split into three separate HUSH parts (Schmithorst and Holland, 2004), 

realigned and coregistered to individual participant’s anatomical before normalization to 

the MNI152 template atlas. All functional image volumes were then spatially smoothed 

to an effective smoothness of a Gaussian FWHM of 6mm. There were no additional 

filtering or artifact regression steps prior to Group ICA (Calhoun et al., 2001). All trials 

were retained for analysis as participants attempted to reach semantic and contextual 

integration during the task, and thus are assumed to undergo the process of encoding 

word pair associates regardless of whether they produce the correct word during the task 

(Marinkovik, 2004). Further details regarding fMRI preprocessing of HUSH data, 
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including a broad schematic of the developed analysis pipeline, can be found in our 

previously published work (Nair et al. 2019).  

Group-level spatial independent component analysis (ICA) was carried out using 

Group ICA fMRI Toolbox, v4.0b (GIFT; http://mialab.mrn.org/software/gift) 

implemented in MATLAB (Calhoun et al. 2001). Functional image volumes were not 

subject to any additional filtering or artifact regression prior to Group ICA (Calhoun et al. 

2001). First, two rounds of subject-specific principle component analysis (PCAs) were 

conducted for data reduction for each of the three HUSH image volumes. The first round 

of PCA at the individual subject level yielded 51 components, and the second yielded 41 

components (Calhoun et al. 2001; Erhardt et al. 2011). A high model order of 41 

independent components was selected using Infomax algorithm to aid in segmenting 

task-related brain activity into functionally distinct and noise-related sources (Hutchison 

and Morton 2015; Ray et al. 2013; Saliasi et al. 2014; Ystad et al. 2010) consistent with 

similar studies from our group (Nair et al. 2019; Vannest et al. 2015). Using GIFT’s 

GICA3 back-reconstruction method, subject-specific time courses and spatial maps 

(SMs) were estimated from matrices derived in previous PCA steps (Calhoun et al. 2001; 

Erhardt et al. 2011). GIFT yields these spatial maps that can be interpreted as networks of 

similar BOLD activity, related to various aspects of processing (Calhoun et al., 2001; 

McKeown et al., 2003). We used GIFT’s temporal sorting tool to classify components by 

comparing the model’s time course to the time courses of all 41 ICs using a correlation 

function (Rachakonda et al. 2007). The model time course was inputted as a binary task 

time series, where a “1” was used to designate the active encoding condition (task-

positive trials), and a “0” identified passive reading (task-negative) trials. Components 
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with a correlation coefficient of |r|>0.30 were selected as task-related (Gaston et al. 2017; 

Nair et al. 2019; Vannest et al. 2015). After temporal sorting, components are arranged 

based on correlation with the binary time series, and those with positive and negative 

correlations that meet threshold are visually examined. Of the 41 components identified, 

4 components met threshold for task-positive relatedness, and 1 component was 

identified as task-negative. For the active encoding condition, component correlations 

were r>0.30 and for the passive reading condition, correlations were r>-0.30. 

Components with a correlation coefficient between -0.30>r>0.30 were excluded from 

any further analyses.  

To resolve any discrepancies using the HUSH sparse acquisition paradigm and 

three GIFT analyses, task-related components were visually inspected to identify similar 

regional activity across HUSH parts. When a component met task-relatedness threshold 

across more than one volume, then the volume with the highest correlation to the task 

time series was selected. Once components were selected as meeting threshold for both 

task-positive and -negative conditions, masks were directly created from group ICA 

NIFTI files using AFNI’s ‘Save Mask’ tool in the graphical user interface.   

 

MEG Data Processing 

MEG raw data in 4D/BTI format were first converted using SPM’s convert 

function (spm_eeg_convert), and headshape points were incorporated (spm_eeg_prep). 

An ERP approach was employed in order to identify early sensory responses to active 

generation, and an approach isolating theta frequency band (4-7Hz) was employed due to 
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the lexical-semantic retrieval nature of the task (Bastiaansen et al. 2005; Klimesch 1999; 

Pu et al. 2020; Raghavachari et al. 2006).  

 

ERP approach. A series of filters was applied to the converted raw data (spm_eeg_filter): 

a high pass filter at 0.6Hz, followed by a notch filter to remove line noise (60Hz, 120Hz), 

and a low pass filter at 30Hz. Data were epoched (spm_eeg_epochs), trials were averaged 

(spm_eeg_average), and a low pass filter at 30Hz was applied once more due to the 

potential introduction of high frequencies after averaging (Litvak et al. 2011).  

 

Theta power approach. To analyze event-related theta power, additional analyses 

averaging power across the time-frequency window (4-7Hz) were conducted (Henson et 

al. 2019). For these data, a high pass filter at 0.6Hz, notch filters at 60Hz and 120Hz, and 

a low pass filter at 60Hz were applied. To preserve cognitive activity that is not likely 

time-locked across trials, within subject epochs were not averaged before moving 

forward with source localization.  

For both approaches, artefact detection was conducted using SPM's threshold z-

scored data detection algorithm with the threshold set at z=3 (spm_eeg_artefact). 

Artefacts were marked as events with an excision window around each event of 100ms. 

Channels with more than 80% of trials with detected artefacts were declared as bad. Data 

were epoched using a trial definition file that establishes a condition label, event type, 

event value, and trial shift.  
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Multiple Sparse Priors: fMRI Constrained MEG 

Combining data from two modalities with different neural sources is challenging. 

At present, there is no optimal solution for integrating MEG and fMRI data. We 

employed a hierarchical Bayesian approach, Multiple Sparse Prior (MSP) to approximate 

current density and determine possible source solutions for a verbal memory task (Friston 

et al. 2008a; Henson et al. 2010, 2011, 2019; Litvak et al. 2011). We used the fMRI task-

positive independent components outlined in Section 2.4 as spatial priors to constrain 

MEG source estimations within MSP. 

The MEG imaging pipeline for source analysis is divided into four steps, three of 

which are executed in the “g_source_reconstruction.m” script. First, source space 

modeling created a head model based on an individual’s structural image and 

corresponding spatial deformation field. A nonlinear transformation was applied to create 

individual cortical meshes in the designated template space using a “normal” cortical 

mesh size (5124 vertices). Next, data co-registration utilized the fiducials by projecting 

the MEG data onto each participant’s anatomical MRI using a rigid-body transformation 

(Henson et al. 2010). When a subject’s structural MRI is available, it is recommended to 

specify fiducial points but not use the head shape information (Litvak et al. 2011). 

Forward volume head modeling of the projected magnetic field was determined by using 

a single-shell (surface) fit to the individual’s scalp mesh. Lead field matrices calculated 

during this stage are later used for inversions. Following source space modeling and co-

registration and forward computation variables are created for each fMRI prior (four task-

positive IC’s). Source reconstruction takes place during the model inversion stage of 

processing, using multiple sparse priors for each prior using greedy search (GS) inversion 
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type, with a full time-frequency window of [-100 to 1200 ms] and a prior mask (.nii) for 

each prior derived fMRI components from section 2.4.3. 

In the final stage of source analysis, inverse reconstruction, time-frequency 

contrasts were created by inverting the epoch of interest (across listed frequencies) to 

localize the effects within the cortical mesh (Henson et al. 2019). For the ERP approach, 

time windows analyzed (in ms) included [0 150], [100 250], [300 450], [350 500], [500 

650], [600 750], and [700 850], and a baseline condition at [-150 0]. For the theta 

approach, time windows included [100 250], [300 450], [450 600], [600 750], [750 900], 

[900 1050], [1050 1200] with frequencies restricted to 4-7 Hz.   

 To examine spatial projections at the group level, paired two-sample t-tests were 

conducted for each prior and for each time window of interest, contrasting the active 

generation condition with a baseline condition (stats.factorial_design).  

 

RESULTS 

Group ICA: Task-related components from fMRI data 

Five components met threshold for task-relatedness out of the 41 components 

identified using Group ICA (Table 2, Figure 2). Four were the active generation 

condition (positive correlation with task time course) and one was the passive reading 

condition (negative correlation with task time course).  The component with the highest 

task correlation (IC19; r=0.4142) included regions spanning right supramarginal gyrus, 

postcentral gyrus, and middle frontal gyrus, bilateral superior and inferior parietal lobes 

(IPL), and precuneus (Figure 2a). The component with the second highest task-positive 

correlation (IC13; r=0.3674) included regions spanning bilateral inferior, medial, and 
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middle frontal gyri, supramarginal gyri, inferior and superior parietal lobes, left superior 

temporal gyrus (STG) and middle temporal gyrus (MTG), superior frontal gyrus, 

precentral gyrus, and precuneus (Figure 2b). The third component (IC4; r=0.3652) 

included bilateral cuneus, inferior and middle occipital gyri, lingual gyri, and 

supramarginal gyri (Figure 2c). The fourth task-positive component (IC26; r=0.3319)  

 

Table 2 

Group level task-related ICs from fMRI (Figure 2) and the location, volume and MNI 

coordinates (x, y, z) for each IC cluster’s center of mass. L, left; R, right 

Component  Location Volume (cc) x y z 

Task-positive components (active generation) 

IC19  R supramarginal gyrus 7.1 26 -58 58 

(r=0.41418) R precuneus 6.7 12 -66 62 

 R superior parietal lobe 6.5 30 -58 60 

 R inferior parietal lobe 6.1 34 -54 58 

 L inferior parietal lobe 5.6 -32 -54 58 

 L precuneus 5.6 -20 -66 52 

 L superior parietal lobe 5.1 -22 -66 58 

 R postcentral gyrus 3.5 14 -58 66 

  R middle frontal gyrus 1.4 40 0 54 

IC13  L middle frontal gyrus 15 -52 14 30 

(r=0.36739) L inferior frontal gyrus 10.9 -52 18 28 

 L supramarginal gyrus 7.6 -46 24 24 

 L inferior parietal lobe 5.4 -32 -62 48 

 R middle frontal gyrus 5 52 22 28 

 R inferior frontal gyrus 4.5 50 26 24 

 L superior parietal lobe 2.8 -30 -66 46 

 R supramarginal gyrus 2.5 46 26 22 

 L precuneus 2.5 -28 -68 42 

 L medial frontal gyrus 1.9 -2 28 42 

 L precentral gyrus 1.8 -44 4 38 

 L superior frontal gyrus 1.7 -30 58 2 
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 R superior parietal lobe 1.6 34 -62 50 

 R inferior parietal lobe 1.5 34 -60 46 

 R medial frontal gyrus 1.2 2 24 44 

 L middle temporal gyrus 1.1 -58 -50 4 

  L superior temporal gyrus 1.1 -60 -48 8 

IC4  R middle occipital gyrus 9.7 26 -94 6 

(r=0.36521) L middle occipital gyrus 6.7 -24 -96 0 

 R cuneus 6.5 14 -94 -8 

 L lingual gyrus 5.4 -8 -98 -6 

 L cuneus 5.1 -12 -98 -6 

 R lingual gyrus 3.3 15 -94 -8 

 L inferior occipital gyrus 3.3 -28 -92 -12 

 R supramarginal gyrus 2.3 24 -92 -8 

 R inferior occipital gyrus 1.5 30 -90 -12 

  L supramarginal gyrus 1 -22 -94 -8 

IC26  R inferior frontal gyrus 7.4 44 18 -10 

(r=0.3319) R superior frontal gyrus 6.5 4 14 54 

 L inferior frontal gyrus 5.7 -44 16 -8 

 R anterior cingulate cortex 5.6 6 30 26 

 L anterior cingulate cortex 4.8 -2 30 28 

 R cingulate gyrus 3.8 2 30 30 

 L medial frontal gyrus 3.3 -4 12 50 

 R medial frontal gyrus 3.2 2 24 46 

 L superior frontal gyrus 3.1 0 12 56 

 L cingulate gyrus 3 0 24 34 

 R middle frontal gyrus 3 32 54 22 

 R insula 2.6 36 24 2 

 L superior temporal gyrus 2.5 -44 16 -12 

 R superior temporal gyrus 2.4 48 18 -8 

 L insula 2.1 -40 14 -4 

 L extra-nuclear 1.3 -32 26 8 

 R extra-nuclear 1.3 36 16 -10 

 R caudate 1.2 8 6 4 

Task-negative components (passive reading) 

IC38  L precuneus 10.2 0 -64 32 

(r=  

-0.34658) R precuneus 7.2 4 -64 30 

 L posterior cingulate cortex 4.6 0 -54 20 
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 R posterior cingulate cortex 4.6 5 -52 20 

 L cingulate gyrus 4.5 0 -64 28 

 L middle temporal gyrus 3.7 -48 -70 28 

 R cingulate gyrus 3.5 4 -64 26 

 L superior temporal gyrus 2.4 -46 -62 28 

 R superior temporal gyrus 2.3 50 -60 28 

 R inferior parietal lobe 2.2 44 -66 40 

 L angular gyrus  2.2 -44 -70 36 

 R middle temporal gyrus 2 50 -64 26 

 L middle frontal gyrus 2 -22 26 44 

 R angular gyrus 1.9 50 -64 30 

 L superior frontal gyrus 1.9 -22 28 48 

 L inferior parietal lobe 1.5 -42 -70 40 

 L superior parietal lobe 1.3 -34 -74 44 

 R supramarginal gyrus 1.3 50 -60 32 

 R superior parietal lobe 1.1 38 -70 46 

  R extra-nuclear 1 16 -54 18 

 
 

spans bilateral inferior and superior frontal gyri, insula, anterior cingulate cortex (ACC) 

and medial frontal gyri, STG, and extra-nuclear areas, and right middle frontal gyrus and 

caudate (Figure 2d). The one component meeting task-relatedness for passive reading 

(IC38; r=-0.3466) spans bilateral precuneus, cingulate and posterior cingulate cortices 

(PCC), angular gyri, STG and MTG, inferior and superior parietal lobe, and left superior 

and middle frontal gyri, and right supramarginal gyrus and extra-nuclear areas (Figure 

2e). All four task-positive components were retained as fMRI priors (binarized masks) 

for MEG source reconstruction, and the distributed cortical solutions for each prior’s 

model inversion are listed below.  
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MEG Source Reconstruction  

Source reconstruction was performed in standardized MNI space for each fMRI 

prior resulting in summarized images (Figures 3 and 4). Reconstructions were run for all 

four fMRI priors (independent components meeting task-positive threshold) for each 

subject, producing individual subject spatial maps. Results from the paired two-sample t-

test contrasting the active generation condition to baseline period are presented in Figures 

3b-c, 4b-c. Source reconstruction maps were also generated without fMRI priors for the 

ERP and theta power (Figures 3a, 4a) approaches. All results are corrected for multiple 

comparisons at p<0.05.  

 

IC19 (Figure 3b). Source reconstruction results using the ERP approach for IC19 using 

fMRI prior that spans bilateral parietal areas are presented in Figure 3b and Table 3. 

Early activity in the first 150ms across bilateral occipital and left inferior temporal gyri, 

followed by recruitment of bilateral inferior temporal gyri, superior orbitofrontal and 

medial frontal gyri between 100 and 250ms. Between 350 and 500ms, group activity 

spans medial and inferior frontal gyri, right parahippocampal gyrus, and left inferior 

temporal gyrus, and between 500 and 650ms, sustained activity in bilateral medial frontal 

gyrus right medial orbitofrontal cortex (OFC), and fusiform gyrus.  

 

IC13 (Figure 4b). Source reconstruction images for our theta power approach for IC13 

using fMRI prior that includes bilateral frontal gyri and left parietal lobe are presented in 

Figure 4b and Table 3. Early activity between 300 and 450ms in left inferior temporal 

gyrus and MTG, followed by right inferior temporal gyri and left middle temporal pole 
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between 450 and 600ms. Within the next 150ms, left MTG joins right middle temporal 

pole. The time window between 750 and 900ms yielded broad, bilateral temporal activity 

and left inferior OFG. From 900 to 1050ms, we see right fusiform and left inferior 

temporal gyri contributions.  

 

IC4 (Figure 3c). Source reconstruction results using the ERP approach for IC4 using 

fMRI prior that spans bilateral occipital areas are presented in Figure 3c and Table 3. 

Activity within bilateral fusiform gyri, MTG, right middle frontal gyri, and strong middle 

occipital gyrus contributions are present within the first 150ms, with bilateral  

 

Table 3 

MEG source reconstruction results for each fMRI prior using the ERP approach (Figure 

3) and the theta-power approach (Figure 4). For each time window, the location and MNI 

coordinates (x, y, z) for each source location’s center of mass are provided. L, left; R, 

right 

fMRI 

Prior 

Time window 

(ms) Location  x y z 

ERP approach 

No fMRI 
priors  0-150 R parahippocampal gyrus 32 -20 -28 

  L calcarine gyrus -4 -92 -10 

  R inferior occipital gyrus 34 -92 -10 

  R inferior occipital gyrus 48 -76 -4 

  L medial orbitofrontal cortex -6 54 -8 

  R middle temporal gyrus 64 -40 -2 

  L superior occipital gyrus -16 -80 40 

 100-250 R medial frontal gyrus -6 54 20 

  L medial orbitofrontal cortex -6 54 -8 

  R inferior occipital gyrus 44 -70 -14 



	

	

	

99	

  R superior orbitofrontal cortex 24 44 -14 

  L inferior frontal gyrus, opercular part -50 10 2 

  R middle frontal gyrus 40 44 18 

  R superior medial frontal gyrus 8 56 18 

 350-500 R parahippocampal gyrus 24 -14 -30 

  L inferior temporal gyrus -44 -26 -24 

  R medial frontal gyrus 8 60 -18 

  L medial orbitofrontal cortex -6 62 -12 

  L middle temporal gyrus -52 -38 0 

  R middle temporal gyrus 50 -38 -2 

  L inferior frontal gyrus, opercular part -48 12 4 

 500-650 R medial orbitofrontal cortex 10 52 -4 

  L inferior orbitofrontal cortex -46 24 -12 

  L medial orbitofrontal cortex -6 54 -10 

  L middle temporal gyrus -64 -36 0 

    L superior medial frontal gyrus -8 54 18 

IC19  0-150 R fusiform gyrus 38 -26 -26 

  L calcarine gyrus -6 -92 -10 

  L inferior temporal gyrus -54 -58 -20 

  R inferior occipital gyrus 30 -88 -8 

  L middle occipital gyrus -48 -78 0 

  L middle occipital gyrus -32 -84 30 

  L superior occipital gyrus -16 -82 40 

 100-250 L inferior temporal gyrus -58 -54 -22 

  R superior orbitofrontal cortex 8 52 -24 

  R inferior occipital gyrus 38 -82 -16 

  L superior orbitofrontal cortex -6 54 -10 

  L rolandic operculum -44 -4 12 

  R superior medial frontal gyrus 8 54 18 

  L superior medial frontal gyrus -8 58 20 

 350-500 R parahippocampal gyrus 28 -20 -28 

  R superior orbitofrontal cortex 10 56 -22 

  L inferior temporal gyrus -58 -54 -22 

  L inferior orbitofrontal cortex -46 26 -12 

  L middle orbitofrontal cortex -24 40 -12 

  L inferior frontal gyrus, opercular part -44 10 6 

  L superior medial frontal gyrus -8 56 18 

  R superior medial frontal gyrus 8 54 18 
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 500-650 R fusiform gyrus 44 -36 -22 

  R medial orbitofrontal cortex 10 44 -12 

  L superior medial frontal gyrus -8 54 18 

    R superior medial frontal gyrus 8 54 16 

IC4  0-150 R fusiform gyrus 38 -28 -26 

  L fusiform gyrus -44 -48 -20 

  L middle occipital gyrus -48 -78 0 

  L middle temporal gyrus -64 -36 0 

  R middle temporal gyrus 64 -40 -2 

  R middle frontal gyrus 42 44 4 

  L middle occipital gyrus -32 -84 30 

  R middle frontal gyrus 38 42 18 

 100-250 R parahippocampal gyrus 30 -22 -28 

  L parahippocampal gyrus -22 -18 -28 

  R medial frontal gyrus 6 54 -20 

  L fusiform gyrus -30 -82 -18 

  L medial orbitofrontal cortex -6 54 -8 

  R inferior occipital gyrus 30 -88 -8 

  R middle orbitofrontal cortex 26 42 -14 

  R inferior temporal gyrus 40 -52 -14 

  R middle frontal gyrus 40 44 18 

  L middle frontal gyrus -42 38 16 

  R superior medial frontal gyrus 8 56 18 

  L superior medial frontal gyrus -8 54 18 

 350-500 L inferior temporal gyrus -40 -38 -18 

  R medial orbitofrontal cortex 8 40 -10 

  L inferior orbitofrontal cortex -40 28 -12 

  L medial orbitofrontal cortex -6 54 -10 

  L middle temporal gyrus -56 -38 0 

  R middle temporal gyrus 62 -42 2 

  R superior medial frontal gyrus 8 56 18 

 500-650 R parahippocampal gyrus 26 -10 -32 

  R fusiform gyrus 38 -28 -24 

  R medial frontal gyrus 8 58 -18 

  L inferior orbitofrontal cortex -46 24 -12 

  L medial orbitofrontal cortex -6 54 -10 

  L middle temporal gyrus -66 -34 -2 

  R middle temporal gyrus 62 -42 2 
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  L superior medial frontal gyrus -8 56 18 

  R superior medial frontal gyrus 8 54 16 

Theta power approach  

No fMRI 
priors  300-450 L inferior temporal gyrus -36 4 -42 

 450-600 L inferior temporal gyrus -32 4 -40 

  R middle temporal pole 30 6 -42 

  L inferior temporal gyrus -42 -28 -20 

  L middle temporal gyrus -60 -14 -24 

 600-750 R fusiform gyrus 28 2 -42 

  L middle temporal pole -38 4 -44 

 750-900 R inferior temporal gyrus 40 2 -38 

  L inferior temporal gyrus -40 2 -44 

  L middle temporal gyrus -60 -14 -22 

  L inferior orbitofrontal cortex -16 20 -24 

  R middle temporal gyrus 62 -12 -20 

 900-1050 R inferior temporal gyrus 42 2 -38 

  L inferior temporal gyrus -40 2 -44 

    L middle temporal gyrus -60 -14 -24 

IC13  300-450 L inferior temporal gyrus -34 6 -42 

  L middle temporal gyrus -64 -18 -10 

 450-600 R inferior temporal gyrus 40 2 -38 

  L middle temporal pole -38 4 -44 

  L middle temporal gyrus -60 -14 -16 

 600-750 R middle temporal pole 34 4 -38 

  L inferior temporal gyrus -32 2 -40 

  L lateral inferior temporal gyrus -60 -12 -26 

 750-900 R middle temporal pole 30 6 -42 

  L middle temporal pole -38 4 -44 

  L middle temporal gyrus -60 -14 -16 

  L inferior orbitofrontal cortex -24 8 -18 

 900-1050 R fusiform gyrus 26 0 -44 

    L inferior temporal gyrus -32 4 -40 

IC26  450-600 R fusiform gyrus 26 6 -42 

  L inferior temporal gyrus -34 4 -42 

  L middle temporal gyrus -64 -18 -10 

 600-750 R inferior temporal gyrus 28 8 -44 

  L middle temporal gyrus -60 -14 -16 
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  L insula -26 8 -18 

 750-900 L inferior orbitofrontal cortex -28 16 -24 

  L middle temporal gyrus -64 -18 -10 

 900-1050 L middle temporal pole -30 6 -40 

  L inferior orbitofrontal cortex -16 18 -24 

  L middle temporal gyrus -62 -14 -14 

    R pars triangularis 52 24 0 

 

 

parahippocampal gyrus, superior medial and middle frontal gyri and orbitofrontal gyri 

following between 100-250ms. Within the 350 to 500ms window, we see bilateral MTG 

recruited, along with left inferior and medial orbitofrontal gyri, and right superior medial 

frontal gyrus. Within 500 to 650ms, there is still recruitment of bilateral MTG and 

superior medial frontal areas, along with right fusiform gyrus.  

 

IC26 (Figure 4c). Source reconstruction images for the theta power approach for IC26 

using fMRI prior within bilateral inferior frontal gyrus and anterior cingulate cortices are 

presented in Figure 4c and Table 3. The earliest significant activity is within the time 

window of 450-600ms within left inferior temporal gyrus and MTG, and right fusiform 

gyrus. Between 600 and 750ms, there is recruitment of right inferior temporal gyrus 

along with left MTG and left insula, followed by left inferior OFG and left MTG within 

750 and 900ms. Activity within the left middle temporal pole, inferior OFG, and MTG, 

along with right pars triangularis is present within the 900 to 1050ms window.  

 

DISCUSSION 

The aim of the present study was to develop a processing pipeline that would 

integrate fMRI and MEG data and to use this pipeline to analyze a paired associate 
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learning task conducted with the same group of subjects. By first establishing spatial 

contributions to active generation using fMRI, we are able to constrain MEG source 

space solutions to specific volumes of interest (Friston et al. 2008b; Henson et al. 2019).  

 

FMRI: Spatial contributions to active generation  

The four independent components meeting a task-positive threshold of r>0.30 

broadly capture various aspects of active encoding. The network with the highest 

correlation with the task, IC19 (Figure 3b), includes bilateral inferior and superior 

parietal areas, which have been shown to be recruited during tasks involving maintaining 

visual and cognitive attention (Otten, Henson, and Rugg 2001b). The inferior parietal 

lobe (IPL) is thought to play a substantial role in maintaining attention (Rueckert and 

Grafman 1998; Rushworth, Krams, and Passingham 2001). In the present study, IPL 

contributions seen during self-generation (Figures 2a-b) suggest that attentional demands 

may be greater when actively encoding the second word in the word pair compared to 

passive reading.  

The network with the second highest correlation with the task, IC13 (Figure 4b), 

is the only component meeting threshold that showed a left-lateralization effect within a 

broad fronto-parietal network. There is evidence suggesting the middle frontal gyri’s 

(MFG) role in integrating between dorsal and ventral attention streams, aiding in 

reorienting attention towards relevant task demands (Christensen et al. 2012; Japee et al. 

2015). In the case of active generation, top-down modulation is necessary in the mental 

search for target words using cues, and frontal contributions likely play an integrative 

role during the present task. In addition to dynamic interactions with posterior brain 
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areas, the MFG (Miller and Cohen 2001), and more broadly the dorsolateral prefrontal 

cortex (dlPFC), has been long affiliated with working memory processes and retrieval 

(D’Esposito et al. 1997; Thompson-Schill et al. 1997).   

Another task-positive network with frontal contributions, IC26 (Figure 4c), shows 

bilateral frontal and superior temporal activity at the group level, along with ACC. This is 

largely consistent with previous studies of self-generation effects, where the ACC, a part 

of the salience network, may be playing a role in the present task when internally 

monitoring potential responses to the task demands (Nair et al. 2019; Rosner, Elman, and 

Shimamura 2013; Vannest et al. 2015). Additionally, there is recent evidence that activity 

within the ACC and left inferior frontal gyrus (IFG), along with superior parietal areas, 

may be modulated by the complexity of processing during a semantic task (Moss et al. 

2011). In the present study, all three regions are implicated within two task-positive 

networks, suggesting increased task demand within self-generation compared to passive 

reading. Our findings of bilateral superior temporal gyrus involvement is also consistent 

with previous work on word and pseudoword recognition (Simos et al. 2000).  

The third task-positive network spans bilateral visual areas, including middle and 

inferior occipital gyri, lingual and supramarginal gyri, and cuneus. Our findings of an 

extended visual network recruited during self-generation are important considering the 

visual nature of the task presented (Nair et al. 2019). Additionally, the differences in 

stimuli for passive reading and active generation may contribute to this network meeting 

task-relatedness as well: while the “read” condition fully presented two related word pairs 

on screen, the “generate” condition replaced letters in the second word pair with asterisks 
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characters, possibly introducing variability in the visual complexity between stimuli 

utilized in the two conditions.  

Together, brain areas associated with the default mode network (DMN) are 

thought to contribute to internal processing, and studies of self-generation have 

implicated certain areas of the DMN (IPL, medial PFC, and precuneus) to aspects of 

internally generating semantic information (Rosner et al. 2013). Here, we also note 

contributions from bilateral IPL, medial PFC, and precuneus across task-positive 

networks (Figures 2a-b, d) during self-generation suggesting aspects of the task 

encourage internal mediation perhaps during semantic and conceptual processing while 

searching for the correct word pair.  

The only task-negative component to meet threshold for passive reading 

implicated a temporo-parietal network spanning PCC, superior and middle temporal gyri, 

inferior and superior parietal lobes. This network appears more classically aligned with 

the DMN, with strong activation in bilateral precuneus, IPL, and PCC, and is consistent 

with previous work examining brain networks associated with reading and generating 

(Rosner et al. 2013). In terms of the differential DMN contributions during self-

generation and passive reading, it is plausible that various aspects of internal processing 

may recruit regionally specific areas of the DMN depending on task demands (Buckner 

and Carroll 2007; Shimamura 2011; Spreng, Mar, and Kim 2009). 

 

MEG: ERP approach to active generation 

MEG source reconstructions for the evoked approach constrained using fMRI 

priors (Figure 3a) and without priors (Figures 3b-c), all show early primary visual 
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activity, followed by left inferior frontal gyrus and left inferior temporal lobe. Left IFG 

activity is more pronounced in the reconstruction for IC19, the fMRI network that spans 

bilateral parietal areas (Figure 2a) within 100-250ms. The left IFG has been long 

implicated in studies involving categorization of words (Demb et al. 1995; Kapur et al. 

2016), and when identifying words among competing alternatives (Thompson-Schill et 

al. 1997; Thompson-Schill, D’Esposito, and Kan 1999). Despite parietal activity being 

absent from MEG reconstructions, these findings also suggest early communication 

within a frontoparietal network during active generation. This network has been 

historically associated sustained attention during a task (Ptak 2012), and has been 

implicated in stimulus-driven action (Corbetta, Patel, and Shulman 2008), rule-learning 

(de Diego Balaguer et al. 2007), and recently been found to respond to cue-related stimuli 

(Macaluso and Doricchi 2013).  

Activity in the left OFC is more robust within 350-500ms in reconstructions for 

IC4 (Figure 3c), the prior spanning primary visual areas, compared to other evoked 

reconstructions. The timing of this activity is consistent with MEG findings of 

distributed, left-lateralized activity within frontopolar areas during semantic processing 

around 400ms (Halgren et al. 2002). These findings also support previous work 

suggesting prefrontal areas play a role in modulating sensory cortices during learning in a 

top-down fashion (Gilbert and Li 2013; Liu et al. 2020; Poort et al. 2015; Zhang et al. 

2014).  
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MEG: Event-related Theta Power 

Source reconstructions for the theta power approach with (Figure 4a) and without 

fMRI priors (Figures 4b-c) all show early left ITG activity within the first 600ms, but 

fMRI constrained reconstructions seemed to elucidate dynamics and information transfer 

more clearly than the reconstructions not informed by fMRI priors. Reconstructed time 

windows loosely constrained to IC26 (Figure 4c), the bilateral network including IFG, 

medial frontal cortex, and STG, suggest recruitment of a broad frontotemporal network 

during active generation. There is a clear progression of early activity from bilateral 

inferior temporal areas to sustained left inferior OFC and MTG activity at around 750ms, 

and right IFG activity after 900ms.    

In relation to language processing and the generation effect, the left ITG is a 

critical region in the semantic system (Binder et al. 2009; Kim et al. 2011), involved in 

image generation (D’Esposito et al. 1997), and implicated as playing a role in stimulus 

encoding during visual working memory tasks (Woloszyn and Sheinberg 2009). Our 

findings correspond with previous work both within the temporal window and spatial 

characteristics of left ITG (Dhond et al. 2001; Marinkovic et al. 2012), and work 

suggesting left temporal theta may be modulated by retrieving lexical-semantic properties 

of specific words (Bastiaansen et al. 2005). The later involvement of left OFC suggests 

increased attention and maintenance of semantic or lexical information (Rosner et al. 

2013; Tops and Boksem 2011), and along with bilateral temporal activity may represent 

communication underlying response selection and decision making (Young and Shapiro 

2011) during active generation.  
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Some caution should be used when interpreting timing associated with theta-

related effects, as the temporal resolution of lower frequencies is poorer than higher 

frequencies by roughly a few hundred milliseconds (Knösche and Bastiaansen 2002), 

which may contribute to the sustained activity in bilateral temporal areas across time 

windows (IC13, Figure 4b).  

 

Differences between MSP with and without priors  

Previous work examining the impact of fMRI priors on reconstructed MEG 

source activity has yielded mixed findings, with the MSP framework demonstrating 

greater model evidence compared to other techniques (Friston et al. 2008b; López et al. 

2014; R.N. Henson et al. 2009), with the use of both consistent and inconsistent fMRI 

priors still increasing the accuracy of MEG source reconstruction (Henson et al. 2011; 

Wang and eHolland 2021), and priors derived from a meta-analysis also improving MEG 

source reconstruction (Suzuki and Yamashita 2021).  

Previously, Wang and colleagues had demonstrated both spatial concordance and 

disagreement between MEG and fMRI among different brain areas (Wang et al. 2012). 

These findings suggest a model integrating the two modalities must prove robust against 

invalid fMRI spatial priors. MSP addresses this concern by applying a “soft” constraint of 

priors, which allows for disagreement between the two sources (Wang and Holland 

2014). A recent study from the same group found improvement in induced activity over 

evoked activity during a high-order cognitive paradigm when incorporating fMRI priors 

into the MEG inversion solution (Wang and Holland 2021). These findings together 
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highlight the ability of MSP to select either a sparse solution or multiple, distributed 

cortical sources automatically in a data driven way, using empirical priors.   

In the current study, source reconstructions without fMRI priors yielded more 

distributed solutions (Figure 2) compared to reconstructions constrained by fMRI priors. 

Overall, MSP solutions for both ERP and theta-power approaches produced more focused 

regions that were largely, but not entirely, present in solutions without priors. This can be 

seen with early, sustained (0-500ms) left inferior temporal gyrus activity in solutions 

from bilateral parietal prior (IC19, Figure 3b) where left ITG activity is not present until 

350ms in the no priors approach. Another instance where a constrained solution with 

fMRI prior seems to elucidate a more detailed pattern of activity is with theta-power 

approach: while the bilateral frontal network fMRI prior (IC26, Figure 4c) seemed to 

capture stronger and sustained left orbitofrontal cortex activity, along with less 

pronounced left ITG contributions compared to no prior approach. The left lateralized 

fronto-parietal fMRI prior (IC13, Figure 4b) does capture sustained left ITG activity 

similar to the no prior approach. Additionally, with the occipital prior (IC4, Figure 3c), 

the early posterior activity is sustained longer than without the prior approach (0-250ms).  

  

A model of dynamic processing across all priors 

The event-related active generation fMRI paradigm implicated four broad 

networks that, when integrated within the MSP framework for MEG source 

reconstruction, yielded distributed solutions across peristimulus time. Within the first 

250ms, solutions constrained to the primary occipital prior (Figure 2c) showed inferior 

and middle occipital activity within the first 250ms (Figure 3c), followed by left inferior 
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temporal gyrus and orbitofrontal cortex activity (350-500ms). These specific fronto-

temporal contributions were apparent within earlier time windows within the MSP 

reconstruction for the bilateral inferior parietal prior (Figure 2a). With an event-related 

theta-power approach, the left-lateralized (Figure 2b) and bilateral frontal priors (Figure 

2d) displayed sustained inferior temporal gyrus and middle temporal pole (450ms+), 

along with delayed left OFC activity (750ms+) within the bilateral frontal prior (Figure 

4c).  

The lack of parietal effects across all MSP reconstructions that is present in fMRI 

spatial ICA results may suggest parietal contributions may be too scattered temporally to 

be present in the group analysis, or perhaps that this particular approach may not be 

sensitive enough to detect these effects within MEG at the group level.  

 

Other considerations 

Another important MEG processing consideration that has a potential impact on 

SNR and interpretability involves treatment of artifacts and characterization of “bad” 

data. As public sharing of electrophysiological data gains popularity alongside large 

databases of fMRI data, the MEG/EEG community has continued to build upon methods 

to improve replicability of experiments. While frequency filtering can address low 

frequency artifacts, high frequency artifacts like muscle activity, and line noise artifacts, 

these methods are not able to suppress broadband artifacts and data often require 

additional inspection. Though many of the widely used software packages (Brainstorm, 

FieldTrip, MNE, SPM) have ready to use tools that can identify and reject segments of 

data based on basic metrics, like peak-to-peak signal amplitude differences used here,  
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modern and more advanced methods include identifying bad sensors using Signal Space 

Separation methods (Jas et al. 2017). There are benefits to automated techniques to 

identify and reject ‘bad’ data, including reproducibility of data processing across sites 

and studies, though barriers to successful implementation of these techniques exist, 

especially when using 4d/BTI MEG data as in the current study.   

 

Conclusions 

In summary, the present study built a MEG/fMRI data co-processing pipeline and 

found four major networks associated with self-generation using fMRI, along with 

differential progression of activity across multiple sparse priors MEG source 

reconstruction solutions. Across fMRI priors, evoked responses begin bilaterally across 

lateral and medial occipital cortex, spreading to inferior frontal, orbitofrontal, and inferior 

temporal areas. No early significant activity (< 300ms) was captured across analyses 

examining event-related theta power, and bilateral temporal activity was left lateralized 

within 750ms. Inclusion of fMRI priors to the MSP framework seemed to produce 

similar, but more detailed accounts of distributed activity across the cortex.  
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Figure 1. Co-processing pipeline overview/schematic. Data collection (section 2.3), preprocessing fMRI (2.4.1) and MEG 
(2.5.1), group level fMRI analysis using group ICA (2.4.2) and MEG image analysis (2.5.2), MSP model inversion steps (2.4.2 
and 2.5.2), and second level analysis comparing ”generate” and “baseline” conditions (2.5.3)
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Figure 2. Task-related fMRI components. Images are presented in neurological 
orientation (right in the image is right in the brain). (A-F) are group average independent 
components positively correlated (r>0.25) and (G) is negatively correlated (r<0.25) with 
the time course. Components span: (A) bilateral SPL and IPL, precuneus, middle 
occipital gyri, and right supramarginal gyrus (IC19); (B) bilateral IFG, precentral gyri, 
left superior frontal gyrus, middle orbital gyrus, IPL, middle occipital gyrus (IC13); (C) 
bilateral calcarine gyri, fusiform gyri, lingual gyri, middle occipital gyri, inferior 
temporal gyri (IC4); (D) bilateral IFG, insula, ACC, MCC, supplementary motor area 
(IC26); (E) bilateral precuneus, MCC, calcarine and angular gyri, PCC, middle occipital 
gyri, MTG (IC38). SPL: superior parietal lobe; IPL: inferior parietal lobe; IFG: inferior 
frontal gyrus; ACC: anterior cingulate cortex; MCC: middle cingulate cortex; MTG: 
middle temporal gyrus; PCC: posterior cingulate cortex 
 
 
 



	

	

	

128	

 
 
Figure 3. Multiple sparse priors (MSP) for ERP approach. (a) no priors approach, (b) 
IC19 constrained source reconstructions, (c) IC4 constrained reconstructions. Images are 
presented in neurological orientation (R=R).  
  



	

	

	

129	

 
 
Figure 4. Multiple sparse priors (MSP) for event-related theta-power approach. (a) no 
priors approach, (b) IC13 constrained source reconstructions, (c) IC26 constrained 
reconstructions. Images are presented in neurological orientation (R=R).  
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CHAPTER 3 

EVALUATING DYNAMICS WITHIN NETWORKS UNDERLYING WORKING 
MEMORY USING MULTIPLE SPARSE PRIORS 

 

Abstract 

FMRI of working memory has documented aspects of the learning and memory processes 

but it is unable to resolve their dynamics. FMRI and MEG co-processing may improve 

our understanding of the spatio-temporal characteristics of brain networks. We 

investigated the dynamics of working memory network using Multiple Sparse Priors 

(MSP) derived from fMRI to constrain the MEG source reconstruction across time. 24 

healthy participants were presented with a modified Sternberg task during fMRI and 

MEG scanning sessions. Task-related Independent Components (ICs) were derived from 

fMRI data using Group ICA fMRI Toolbox (GIFT), identifying networks underlying 

encoding and retrieval working memory processes. Conjunction masks were created 

combining across ICs for encoding (7 ICs) and retrieval (6 ICs). These were then used to 

constrain MEG source reconstructions using Multiple Sparse Priors (MSP) across time 

windows spanning 50sec from 1750-2450ms for encoding and 350-850ms for retrieval. 

Time windows were also reconstructed without fMRI priors. ICs that met task-

relatedness for encoding and retrieval spanned bilateral fronto-parietal areas. During 

encoding, the use of fMRI priors revealed dynamic brain activity across bilateral middle 

temporal regions within the first 2 seconds, followed by recruitment of the left 
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supramarginal and bilateral inferior frontal gyri that were not visible without priors. 

During retrieval, constrained source reconstructions yielded early bilateral activity within 

orbitofrontal cortex, followed by right-lateralized engagement and robust bilateral 

inferior frontal recruitment not seen in analyses without fMRI priors. Across conditions, 

there was an advantage of applying fMRI spatial priors to MEG source reconstruction. 

Co-processing of data revealed additional brain regions underlying working memory, and 

expanded on the dynamic communication between relevant brain areas. The use of fMRI 

spatial priors on MEG inverse solutions provided a better understanding of the 

spatiotemporal relationships for encoding and retrieval than the use of MEG alone.    
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INTRODUCTION 

 The learning and memory processes are complicated as they comprise of 

concurrent and sequential events involving several brain structures including bilateral 

pre/frontal cortices, cingulate, and medial and lateral temporal regions and their 

connections, all of which are important for successful encoding and retrieval (Krause et 

al. 1999; Mottaghy et al. 1999). Working memory is typically modeled across three 

phases: initial encoding of information, maintenance of the information during some 

delay, and retrieval of the information amid response selection (Repovs and Baddeley 

2006). Recent efforts have focused on evaluating the neuroanatomical and functional 

underpinnings of memory processes in the normative population. The temporal and 

frontal lobes play a particular role in the encoding process as brain regions that either 

mediate or induce complex associations between mood and cognition (Helmstaedter and 

Kurthen 2001) which is likely due to their interconnections (Hermann, Wyler, and Richey 

1988; Lieb et al. 1991). While various brain areas are thought to participate in the 

learning process, hippocampi, parahippocampal gyri, dorsolateral prefrontal and lateral 

temporo-parietal cortex are most frequently identified in these studies (Dupont et al. 

2002; R. N. A. Henson, Burgess, and Frith 2000; Konishi et al. 2000; Krause et al. 1999).  

Specialized whole-brain networks comprised of distributed, interconnected 

regions play a critical role in higher-order cognitive functions (e.g., language processing, 

attention, and developing strategies for learning and retrieval (Fair et al. 2009; Shaywitz 
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et al. 1995)). Functional magnetic resonance imaging (fMRI) is a widely used tool to 

identify neural contributions underlying a range of somatosensory and cognitive 

processes, including working memory, and a wide body of work using this technique has 

contributed greatly to our understanding of healthy network organization throughout 

development and aging (Bressler and Menon 2010; Cabeza et al. 1997; Fair et al. 2009; 

Sporns 2013).  

Neuroimaging studies of encoding and retrieval have documented differential 

effects of various disease states on the learning and memory processes, but the dynamics 

of these processes are not fully understood. Filling this knowledge gap is important for 

understanding the distributed processes of working memory and developing interventions 

that may alleviate abnormalities within those networks. Though approaches to estimate 

temporal information from fMRI exist, such approaches are still limited by the intrinsic 

lag of the hemodynamic response function and measured blood oxygenation level 

dependent (BOLD) signal, and thus are constrained by assumptions and simplifications 

inherent to the limitation (Buxton 2013; Buxton et al. 2004).  

 Magnetoencephalography (MEG) directly measures magnetic fields generated by 

postsynaptic neural activity, preserving the millisecond time-scale of neurophysiological 

activity. Though MEG boasts specific strengths in the temporal domain, unlike 

hemodynamic methods, it has a poor spatial resolution. Although fMRI and MEG 

represent different neural sources and measure different aspects of brain function, these 

methods can be seen as complementary (Coombes 2010; Lottman et al. 2019; Schulz et 

al. 2004; Stippich et al. 1998; Wang, Holland, and Vannest 2012). Due to the relative 

strengths and weaknesses of fMRI and MEG across spatio-temporal domains, finding an 
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optimal solution to integrate data from both modalities may provide a more detailed 

estimation of functional networks supporting working memory by characterizing 

sequential and dynamic aspects of encoding and retrieval.  

We aimed to identify brain networks underlying working memory in healthy 

controls using fMRI, and to evaluate the dynamics of encoding and retrieval within 

relevant brain areas with MEG. To address this, we implemented a recently developed 

co-processing pipeline (Nair et al. 2021) that integrates fMRI and MEG task data within a 

hierarchical Bayesian framework by using task-derived independent components from a 

modified Sternberg task to constrain MEG source reconstructions using Multiple Sparse 

Priors (MSP). We hypothesized that the MSP approach would allow for increased 

granularity of the dynamic spatial and temporal aspects of encoding and retrieval during 

working memory.  

 

METHODS 

Participants  

A total of 24 healthy native English-speaking adults (13 female, 4 atypically 

handed, ages 18-39 years) with no history of neurological or psychiatric disorders were 

recruited. Across two in-person visits, all participants completed the MRI scanning 

session and 23 participants completed the MEG scanning session due to a participant 

moving away (Nair et al. 2021). For all but 3 participants, the fMRI session preceded the 

MEG session. The Institutional Review Board at the University of Alabama at 

Birmingham approved this project, and all participants provided written informed 

consent.  
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Modified Sternberg Working Memory Task  

During the fMRI sessions, in the modified Sternberg visual working memory task, 

participants were presented with a string of either 2 or 6 letters on a screen, followed by a 

delay of either 4s or 12s, and then presented with one single letter (Gaston et al. 2020; 

Sternberg 1966). Individuals were instructed to remember the letter series from the 

previous slide and, via button box press, to respond either “yes” or “no” whether they 

remembered the single letter presented in the previous series. The task was completed 

across 2 functional scans spanning 9:38 minutes each, comprising of 64 trials in total. 

The task was pseudorandomized across the load, delay, and correct responses. 

During the MEG scanning session, a total of 200 stimuli were presented across 

one run, with the total duration typically ranging from 30-45 minutes (dependent on 

participant response times). Minor differences in the task compared to fMRI included 

presentation of an alpha-numeric string of 1, 3, 5, or 7 letters and the delay jittered 

between 2 and 2.5 seconds. There was a 1-back format across both task designs, as 

participants were not instructed to remember subsequent trials. A schematic of the fMRI 

and MEG tasks is provided in Figure 1.  

 

Image Acquisition  

Anatomical and functional MRI data were collected on a Siemens Magnetom 

Prisma 3.0T whole-body MRI system. High-resolution T1-weighted anatomical images 

were obtained (TR: 2400ms, TE: 2.22ms, FOV: 25.6x24.0x16.7cm, matrix 256x240, flip 

angle: 8 degrees, slice thickness: 0.8mm, voxel size: 0.8x0.8x0.8mm). Functional T2*-



	

	

	

137	

weighted images were acquired using an event-related task design (TR: 2000ms, TE: 

35ms, FOV: 240x240, flip angle: 90 degrees, matrix 64x64, slice thickness: 4mm, axial 

slices, voxel size: 3.8x3.8x4mm) across two runs of 9 minutes and 40 seconds each.  

MEG recordings were acquired with a MagnesTM 2500WH, 4-D Neuroimaging, 

148-channel whole-head magnetometer system with a sampling frequency of 291 Hz. A 

3D digitizer and fiducial head-sensor coils were used to collect head shape data for co-

registration between an individual’s MEG data and anatomical MRI.  

 

Data Processing  

All preprocessing of event-related fMRI and 4D/BTI MEG data was performed 

with SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). The co-processing pipeline 

implemented in the present study and outlined below is described in detail in our recent 

publication(Nair et al. 2021). 

 

FMRI Processing and Group Level Analyses 

 For both runs of the task, functional image volumes underwent realignment and 

co-registration to each participant’s corresponding anatomical MRI, followed by 

normalization to the MNI152 template atlas using participant-specific deformation fields 

derived during co-registration, and spatial smoothing to an effective smoothness of a 

Gaussian FWHM of 6mm. Overall accuracy was relatively high across all subjects (mean 

overall runs: 84.2%), and all trials were retained for the following analyses.  

 Group-level spatial independent component analysis (ICA) was carried out in 

MATLAB using Group ICA fMRI Toolbox, v4.0b (GIFT; 
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http://mialab.mrn.org/software/gift)(Calhoun et al. 2001). Two rounds of subject-specific 

principal component analysis (PCA) were conducted at the individual subject level for 

each run prior to ICA, with the first and second runs of PCA yielding 51 and 41 

components, respectively. PCA is often conducted prior to ICA for data reduction 

purposes, identifying and selecting components that account for the most variance in the 

dataset (Chen, Calhoun, and Liu 2012). Next, a model order of 41 independent 

components (ICs) was selected using the Infomax algorithm.  

Subject-specific time courses and corresponding spatial maps were generated 

using GICA3, a back-reconstruction method offered within GIFT that allows for the 

interpretation at the group level much like networks of similar BOLD activity (Calhoun 

et al. 2001; McKeown, Hansen, and Sejnowsk 2003). As a data-driven, blind source 

separation method, ICA is unable to order source signals without additional task-relevant 

information. We used GIFT’s temporal sorting tool to order components according to the 

correlation between the model’s time course to the time courses of all 41 ICs 

(Rachakonda et al. 2007). Once sorted by binary task time series for both encoding and 

retrieval, components were visually inspected and ICs with the highest correlation for 

each condition were identified as task-related. For both conditions, component 

correlations of r>0.071 were excluded from further analyses (Gaston et al. 2017; Nair et 

al. 2019; Vannest et al. 2015). ICs that met task-relatedness were then combined into one 

conjunction mask within each condition (7 ICs for encoding, 6 ICs for retrieval), to be 

later used in MEG source space modeling.  
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MEG Preprocessing and Source Reconstruction 

 Due to the length of the MEG task, some sessions were incomplete due to 

technical or subject-related reasons. As such,15 of the 23 participants undergoing the 

scanning session had complete data for the Sternberg task as determined by a minimum 

of 160 completed trials (80% of total trials). For preprocessing, MEG data were 

converted, headshape points were integrated, and a series of high (0.6 Hz), notch (60 Hz, 

120 Hz), and low pass filters (30 Hz) was applied. Data were then epoched (baseline, 

encoding, retrieval), and trials for each condition were averaged. A low pass filter at 

30Hz was applied once more following averaging trials(Litvak et al. 2011). Finally, 

artifact detection was employed with a threshold z-scored data detection algorithm (z=3), 

and individual channels with >80% of “bad” trials were declared as bad and excluded 

from further analysis.  

 Source space modeling of preprocessed data included head model creation, co-

registration using individual participant’s anatomical MRI, and forward modeling using a 

single-shell. There are many different algorithms that can be employed during the model 

inversion stage that vary in assumptions made regarding prior information. Here, we used 

a technique within an Empirical Bayesian framework, to evaluate source solutions 

underlying encoding and retrieval during the Sternberg task (Friston et al. 2008a; R. N. 

Henson et al. 2010). Advantages of the MSP approach include the ability to incorporate 

information from fMRI as spatial priors to guide, or constrain, MEG source estimations 

while still accounting for inconsistencies between the modalities (R. N. Henson et al. 

2011; López et al. 2014; Wang and Holland 2021).  
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 Source reconstruction was conducted for each condition using the Greedy Search 

MSP inversion type and constrained to the fMRI spatial prior (conjunction mask) for 

encoding and retrieval. In order to derive maps of spatial projections within the cortical 

mesh, inverse reconstruction was conducted in 50ms intervals, totaling thirteen time-

windows of interest for encoding between 1750ms and 2400ms peri-stimulus time, and 

ten time-windows for retrieval between 350ms and 850ms. Paired two-sample t-tests 

were conducted for each time-window within each condition to evaluate dynamic activity 

across time at the group level.   

 

RESULTS 

Group ICA: Task-related components from fMRI data 

Previous work evaluating neural correlates of working memory has found that 

signal intensity in contributing brain regions is modulated by load of stimuli through 

greater demands placed on individuals (Manoach et al. 1997). Studies have shown that 

the brain regions underlying encoding and retrieval are largely similar in spatial 

organization regardless of load (Gaston et al. 2020; Speer, Jacoby, and Braver 2003). 

Thus, we investigated encoding and retrieval irrespective of the load to identify whole-

brain networks associated with these related cognitive processes. For encoding, the 7 

components that met task-relatedness (seen in Figure 2a) are listed from highest to lowest 

correlation: The IC with the highest correlation with encoding (r = 0.083; IC7) spanned 

bilateral inferior frontal gyrus (IFG) and orbitofrontal cortex (OFC), followed by a right-

lateralized network including precentral and postcentral gyri, Rolandic operculum, and 

middle cingulate cortex (r = 0.082; IC3). A left-lateralized network across IFG, middle 
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temporal gyrus (MTG), insula, supramarginal gyrus (SMG), precentral gyrus, and 

supplementary motor area (SMA) was the third highest correlation (r = 0.080; IC15) with 

encoding. The final four components for encoding that met task-relatedness all showed 

bilateral activity: an IC spanning bilateral cuneus (r = 0.080; IC41), an IC spanning 

inferior parietal lobe (IPL) and postcentral gyrus (r = 0.079; IC20), a network across 

anterior cingulate cortex (ACC) and superior medial gyrus (r = 0.075; IC23), and an IC 

comprised of IFG, superior medial gyrus, left IPL and middle occipital gyrus (r = 0.071; 

IC27).  

The 6 ICs that met task-relatedness (seen in Figure 2c) for retrieval are as follows: 

a left-lateralized network displayed the highest correlation with retrieval (r = 0.081; 

IC21b), spanning angular gyrus, IPL, superior parietal lobe (SPL), IFG, middle and 

superior frontal gyrus, and middle orbital gyrus. A right-lateralized network with the 

second highest correlation (r = 0.079; IC14) included IPL, SPL, middle and superior 

frontal gyrus, superior medial gyrus, IFG, and middle orbital gyrus, followed by a left-

lateralized network across precentral and postcentral gyrus, IPL and SMA (r = 0.078; 

IC35). The final three components for retrieval that met task-relatedness all showed 

largely bilateral activity:  an IC spanning bilateral medial gyrus and ACC (r = 0.077; 

IC36), an IC across cuneus and precuneus (r = 0.077; IC21a), and a network comprised 

of bilateral precuneus and superior temporal gyrus (STG), along with right superior 

frontal gyrus and SMG (r = 0.071; IC3). 

Two conjunction masks were derived for both conditions, combining across 7 

encoding and 6 retrieval task-related components (seen in Figure 2b & 2d, respectively, 
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along with a list of brain areas and coordinates of center of mass for each cluster 

comprising the two conjunction maps in Table 1).  

 

Table 1 

Group level task-related ICs from fMRI, along with the location and MNI coordinates (x, 

y, z) for each cluster’s center of mass. L, left; R, right.  

location ICs x y z 
Encoding 

L superior medial gyrus IC23 -2 -39 39 
R precentral gyrus IC3 37 23 55 
L inferior frontal gyrus IC7, IC15, IC27 -47 -20 14 
R inferior frontal gyrus IC7, IC27 49 -27 15 
L middle temporal gyrus IC15 -56 40 4 
L inferior parietal lobe IC20, IC27 -51 29 45 
L superior parietal lobe IC15, IC27 -31 60 45 
L cuneus IC41 3 90 28 
R supplementary motor area  IC15 5 18 49 
L supramarginal gyrus IC15 -54 47 28 
R rolandic operculum IC3 47 18 16 

Retrieval  
L precuneus IC21a -5 51 50 
L middle cingulate cortex IC21b 2 -40 37 
L middle orbital gyrus IC21b -38 -50 -4 
R supramarginal gyrus IC14 58 25 24 
L superior temporal gyrus IC3 -58 31 20 
R middle orbital gyrus IC14 43 -52 -5 
L supplementary motor area IC35 -3 9 52 
R superior frontal gyrus IC14 25 5 68 
L cuneus IC21a -2 94 -19 
L inferior frontal gyrus IC21b -44 -38 13 
R superior temporal gyrus IC3 60 26 15 
R inferior frontal gyrus IC14 48 -36 11 
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MEG Source Reconstructions  

The two conjunction masks combining across task-related ICs for encoding and 

retrieval were used as fMRI spatial priors to constrain MEG source solutions using MSP 

in separate inverse reconstructions for each condition, all performed in standardized MNI 

space. Additionally, source reconstruction maps were generated without fMRI priors for 

encoding and retrieval to evaluate the impact of including fMRI priors during an event-

related Sternberg task.  

 

Encoding: With and Without fMRI Priors  

Source reconstructions for encoding with and without spatial priors are displayed 

for all time-windows with activity that met threshold at p<0.15 from 2050ms - 2450ms 

(Figure 3, Table 2). This threshold level was selected of visualize a broad pattern of 

activity rather than specific, focal areas of sustained activity across time. For the no fMRI 

priors approach, there was little to no activity in earlier time-windows (1750-2150ms), 

with sustained left MTG contributions beginning at 2150ms throughout all time-windows 

of interest. This activity was followed by sustained right STG from 2250ms-2400ms, and 

shortly by right IFG and left inferior OFC from 2300-2450ms. Activity across bilateral 

MTG, middle temporal pole, and STG was the most pronounced across the two time-

windows spanning 2300-2400ms.  

The MSP with fMRI priors approach using the IC conjunction mask to constrain 

source reconstruction for encoding yielded bilateral activity across middle temporal pole 

and MTG beginning at 2050ms, joined by left ITG at 2100ms, left SMG at 2150ms, and 

left IFG at 2200ms, all sustained until roughly 2250ms. From 2250ms onwards, there still  
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Table 2 

MEG source reconstruction results for encoding with and without fMRI priors. For each time window, the location and MNI 

coordinates (x, y, z) for each source location’s center of mass are provided. L, left; R, right.  

 
ENCODING: no priors  ENCODING: fMRI priors 

Time 
window 

(ms) Location  x y z  

Time 
window 

(ms) Location  x y z 
2050-
2100 none      

2050-
2100 L middle temporal pole -34 6 -42 

              R middle temporal pole 30 8 -40 
2100-
2150 none     

2100-
2150 L inferior temporal gyrus -34 6 -42 

       R middle temporal pole 30 10 -40 
2150-
2200 L middle temporal gyrus -58 -14 -20  

2150-
2200 L inferior temporal gyrus -32 8 -42 

       R middle temporal pole 30 8 -40 
          L supramarginal gyrus -52 -42 26 

2200-
2250 L middle temporal gyrus -60 -14 -16  

2200-
2250 L inferior temporal gyrus -36 4 -42 

       R middle temporal pole 30 8 -42 
       L inferior frontal gyrus -40 32 -4 
       R rolandic operculum 48 -18 18 
       L supramarginal gyrus -52 -42 26 

2250-
2300 L middle temporal gyrus -60 -14 -16  

2250-
2300 L middle temporal gyrus -50 -48 16 
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 R superior temporal gyrus 32 8 -32   R middle temporal pole 30 8 -42 
       L inferior frontal gyrus -38 32 -4 
       L inferior frontal gyrus, tri. part -36 32 14 
       R rolandic operculum 46 -16 18 

          L supramarginal gyrus -54 -34 32 
2300-
2350 R middle temporal pole 32 14 -36  

2300-
2350 R middle temporal pole 30 6 -42 

 R superior temporal gyrus 42 16 -28   R middle temporal pole 32 6 -38 
 L superior temporal gyrus -46 2 -26   L middle temporal gyrus -48 -4 -24 
 R inferior frontal gyrus 20 32 -18   R inferior orbitofrontal gyrus 44 36 -16 
 L middle temporal gyrus -60 -14 -18   L middle temporal gyrus -50 -48 20 

 
L inferior orbitofrontal 
gyrus -48 28 -10   L inferior orbitofrontal gyrus -42 32 -16 

       L supramarginal gyrus -52 -34 32 
2350-
2400 L middle temporal gyrus -46 0 -26  

2350-
2400 L middle temporal gyrus -50 12 -22 

 R superior temporal gyrus 42 16 -28   R superior temporal gyrus 48 14 -22 
 R inferior frontal gyrus 20 32 -18   R inferior frontal gyrus 20 40 -18 

 
L inferior orbitofrontal 
gyrus -48 26 -10   L inferior orbitofrontal gyrus -44 30 -16 

       R inferior orbitofrontal gyrus 44 40 -14 
       R inferior frontal gyrus, tri. part 52 24 0 

          L inferior frontal gyrus, tri. Part -36 32 14 
2400-
2450 R middle temporal pole 32 8 -38  

2400-
2450 R middle temporal pole 32 6 -38 

 L middle temporal gyrus -60 -14 -26   L middle temporal gyrus -58 -6 -26 
 R inferior frontal gyrus 16 14 -22   R inferior frontal gyrus 26 4 -14 
 L inferior orbitofrontal -48 28 -10   L inferior orbitofrontal gyrus -46 28 -14 
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gyrus 

       L superior orbitofrontal gyrus -20 46 -16 
       R middle orbitofrontal gyrus 20 40 -18 
       R inferior orbitofrontal gyrus 46 34 -14 

             L precentral gyrus -40 2 42 
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were substantial contributions from right MTG along with right Rolandic operculum, left 

IFG and SMG. There was a more robust pattern of activity within these areas in the 

following two time-windows, along with bilateral inferior OFC and left MTG activity 

(from 2300-2400ms), though left SMG is only seen until 2350ms.From 2350-2400ms, 

there was sustained left MTG and right middle temporal pole activity, along with 

increased activity across bilateral frontal areas (including bilateral inferior OFC, left IFG, 

right middle OFC, left superior OFC) and left precentral gyrus.  

 

Retrieval: With and without fMRI Priors 

MEG source reconstructions for retrieval with and without spatial priors are 

displayed for all time-windows of interest (p<0.15) from 350-850ms (Figure 4, Table 3). 

Source reconstruction maps without fMRI priors yielded early, robust activity within left 

IFG at 350ms until roughly 600ms, with some contributions from right-lateralized areas 

(amygdala from 450-500ms, parahippocampal gyrus and IFG from 500-600ms). This was 

followed by increased activity in right-lateralized brain areas including parahippocampal 

gyrus, IFG, superior OFC, and inferior OFC from 500-650ms. Sustained right 

parahippocampal gyrus activity was joined by left fusiform gyrus (700-800ms), left IFG 

(800ms), right inferior OFC (700ms), right IFG and right middle temporal pole (800ms) 

contributions until 850ms. 
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Table 3 

MEG source reconstruction results for retrieval with and without fMRI priors. For each time window, the location and MNI 

coordinates (x, y, z) for each source location’s center of mass are provided. L, left; R, right.  

 
RETRIEVAL: no priors  RETRIEVAL: fMRI priors 

Time 
window 

(ms) Location  x y z  

Time 
window 

(ms) Location  x y z 
350-
400 R parahippocampal gyrus 22 -10 -30  

350-
400 R superior temporal pole 48 14 -22 

 L inferior frontal gyrus -22 4 -16   
L inferior frontal gyrus, tri. 
part -50 32 -2 

 
R inferior frontal gyrus, 
tri. part 52 24 0   

R inferior frontal gyrus, tri. 
part 52 24 0 

       L superior temporal pole -50 12 -22 
       R amygdala 34 2 -26 

            L inferior orbitofrontal gyrus -28 16 -24 
400-
450 L parahippocampal gyrus -28 -16 -28  

400-
450 L superior temporal pole -50 12 -22 

 L inferior frontal gyrus -22 2 -14   
L inferior frontal gyrus, tri. 
part -48 26 -2 

       L inferior orbitofrontal gyrus -26 12 -22 
       R amygdala 34 2 -26 
       R inferior frontal gyrus 24 30 -12 

            
R inferior frontal gyrus, tri. 
part 52 24 0 
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450-
500 L fusiform gyrus -30 -18 -28  

450-
500     

 L inferior frontal gyrus -24 2 -14   L inferior frontal gyrus -26 4 -16 

 R amygdala 26 2 -14   
R superior orbitofrontal 
gyrus 22 26 -16 

       
R inferior frontal gyrus, tri. 
part 52 24 0 

       L inferior orbitofrontal gyrus -44 22 -12 

       
L inferior frontal gyrus, tri. 
part -48 26 -2 

500-
550 R parahippocampal gyrus 30 -12 -36  

500-
550 R parahippocampal gyrus 22 -6 -32 

 L inferior frontal gyrus -24 2 -14   L inferior frontal gyrus -24 4 -16 
 R inferior frontal gyrus 24 8 -16   R inferior frontal gyrus 22 4 -14 

             
R inferior frontal gyrus, tri. 
part 52 24 0 

550-
600 R parahippocampal gyrus 22 -10 -30  

550-
600 R parahippocampal gyrus 22 -6 -32 

 L amygdala -24 0 -14   
R superior orbitofrontal 
gyrus 18 18 -22 

 
R superior orbitofrontal 
gyrus 18 22 -20   R inferior orbitofrontal gyrus -24 24 -18 

       
R inferior frontal gyrus, tri. 
part 52 24 0 

600-
650 

R superior orbitofrontal 
gyrus 18 22 -20  

600-
650 

R superior orbitofrontal 
gyrus 22 26 -16 

  R parahippocampal gyrus 22 -10 -28            
650-
700 R parahippocampal gyrus 22 -6 -32  

650-
700 R middle temporal gyrus 46 0 -24 

700- R parahippocampal gyrus 24 -6 -32  700- R superior temporal pole 46 0 -24 
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750 750 

 
R inferior orbitofrontal 
gyrus 34 36 -14   R middle orbitofrontal gyrus 36 38 -14 

  L fusiform gyrus -40 -62 -12            
750-
800 R parahippocampal gyrus 24 -8 -32  

750-
800     

 
R inferior orbitofrontal 
gyrus 34 36 -14   R inferior orbitofrontal gyrus 44 34 -16 

 L fusiform gyrus -40 -62 -12   
L superior orbitofrontal 
gyrus -24 60 -4 

       L inferior orbitofrontal gyrus -38 34 -16 
800-
850 R parahippocampal gyrus 24 -8 -32  

800-
850 R parahippocampal gyrus 24 -4 -32 

 L inferior frontal gyrus -22 4 -16   L inferior orbitofrontal gyrus -40 38 -16 
 R middle temporal pole 40 10 -40   R superior temporal pole 48 14 -22 
 R inferior frontal gyrus 22 4 -14   R middle orbitofrontal gyrus 40 52 -10 

 
R inferior orbitofrontal 
gyrus 34 36 -14   R medial orbitofrontal gyrus 10 66 -2 

             L superior temporal pole -50 12 -22 
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 For MEG reconstructions using fMRI priors, there was early bilateral superior 

temporal pole activity (350-400ms), along with sustained activity across left IFG and 

inferior OFC areas (350-550ms), and right amygdala (350-450ms). This was  

accompanied by early activity in right frontal areas (IFG, inferior and superior OFC) 

sustained until roughly 650ms. After 700ms, there was a steady increase across bilateral 

OFC areas (left middle OFC from 700-750ms and 800-850ms, left superior OFC from 

750-800ms, left inferior OFC from 750-850ms, and right medial OFC from 800-850ms).  

 

DISCUSSION 

Our study employed a recently developed co-processing pipeline to investigate 

spatiotemporal characteristics of visual WM processes in healthy individuals using a 

modified Sternberg task (Gaston et al. 2020; Nair et al. 2021; Sternberg 1966). Group 

independent component analysis of fMRI data yielded 7 ICs for encoding (Figure 2a, b) 

and 6 ICs for retrieval (Figure 2c, d) that together implicate broad, fronto-parietal 

networks including various regions across temporal areas that are typical for this task 

(Gaston et al. 2020; Jimura et al. 2018; H. Kim 2011; Smith and Jonides 1997).  

The networks underlying encoding and retrieval derived from fMRI were then 

used as spatial priors to localize MEG neuronal activity using MSP, an approach aimed to 

highlight the spatial and temporal strengths of each modality (Friston et al. 2008b; R. N. 

Henson et al. 2019; Wang and Holland 2021).  Previous work examined spatial 

concordance between fMRI and MEG results and found consistencies and disagreements 

between the two modalities (Wang, Holland, and Vannest 2012). As fMRI and MEG are 

sensitive to different aspects of underlying brain activity, disparate patterns of activation 
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between the two modalities are expected and have been seen in other studies of 

multimodal approaches to high-level cognitive tasks (Vartiainen et al. 2011). Further 

work found that improvements, when constraining MEG source solutions with fMRI 

priors, were more pronounced when evaluating induced activity over during a high-order 

cognitive paradigm (Wang and Holland 2021). These authors attributed this benefit to the 

complexity of induced responses, as there is typically more variability across trials 

compared to evoked responses, which are phase-locked to trial onset.  

 

MEG results for Encoding 

MEG source reconstructions for encoding in Figure 3 revealed additional brain 

areas with the inclusion of fMRI spatial priors compared to without. The gains associated 

with the use of fMRI spatial priors on source reconstructions are more pronounced during 

encoding than retrieval. Areas where MEG results with fMRI spatial priors yield 

additional cortical contributions include the left precentral gyrus, SMG, inferior frontal 

gyrus, and inferior temporal gyrus during encoding and across bilateral fronto-temporal 

areas during retrieval. These gains, attributed to the use of fMRI spatial priors, are 

depicted by blue ellipses in Figures 3c and 5a for encoding, and highlight the potential 

advantages of this co-processing technique in high-order cognitive tasks.  

Involvement of the SMG and IPL during encoding, seen only in reconstructions 

with fMRI priors, suggests reliance on storage and retrieval of phonological information 

(R. N. A. Henson, Burgess, and Frith 2000) and rehearsal processes (Paulesu et al. 1997) 

(Figures 3c). The absence of any parietal activity from MEG only localizations suggest 

that the involvement of IPL may be difficult to detect without additional constraints. This 
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may be in part due to the temporal variability of induced activity across trials (Wang and 

Holland 2021), which is supported by the timing of SMG activity seen in the fMRI 

constrained approach. Additionally, the specific timing of SMG during encoding 

(between 2150ms-2250ms and then from 2300-2350ms, see Figure 5a) suggest dynamic 

communication between areas responsible for phonological storage and lexical-semantic 

processing (R. N. A. Henson, Burgess, and Frith 2000; Vandenberghe et al. 1996) and 

may be representative of storing task-relevant information. Meanwhile, consistent 

activity within left and right inferior frontal areas was more robust when constraining 

reconstructions with fMRI (Figure 5a), suggesting bilateral contributions underlying 

rehearsal and overall executive control during encoding that were not visible across 

reconstructions without priors (Huang et al. 2015).  

Overall, the pattern of neural activity following encoding revealed with fMRI 

constrained analyses showed sustained, bilateral temporal lobe activity characteristic of 

short-term storage of visual and object information (Smith and Jonides 1997), 

progressing towards left-lateralized fronto-parietal areas underlying attention 

(Christensen et al. 2012), manipulating stored information (C. Kim et al. 2015; Poort et 

al. 2015; Zhang et al. 2014), and followed by sustained inferior frontal contributions 

related to complexity of processing during semantic tasks (Moss et al. 2011).  

 

MEG results for Retrieval  

MEG source reconstructions across time windows for retrieval in Figure 4 

revealed additional contributing brain regions using a constrained approach. 

Improvements in estimating cortical generators underlying retrieval were seen largely 
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across left orbitofrontal cortex, right middle temporal gyrus, and bilateral superior 

temporal pole (Figures 4c and 5b, depicted by blue ellipses). OFC function has been 

largely understood as relevant in emotional decision making and reward-related 

behaviors (Adolphs 2002; Kringelbach 2005), but is also implicated in some studies of 

response selection (Duarte et al. 2010; Young and Shapiro 2011) and memory 

performance (Frey and Petrides 2002; Ranganath et al. 2005). Moreover, studies of 

nonhuman primates suggest there may be substantial communication between the OFC 

and medial temporal areas (Petrides 2007). Interestingly, bilateral temporal contributions 

were among the regions seen only within fMRI constrained analyses across early 

windows (350ms-450ms) and later time-windows (650ms-850ms). This activity is seen 

alongside bilateral OFC activity (Figure 5b), suggesting dynamic communication within 

these areas.  

These findings enhance our understanding of encoding and retrieval processes by 

elucidating relevant nodes of task-related networks (seen during encoding, Figure 3c), 

and by expanding on the communication between brain areas (seen during retrieval, 

Figure 5b). Taken together, the effects of fMRI priors on MEG data indicate the 

usefulness of this approach and ability to better characterize the spatiotemporal features 

of the memory encoding and retrieval processes.  

The effects of fMRI priors on MEG source solutions were also investigated in 

previous work of an associative learning task that developed the co-processing pipeline 

implemented here (Nair et al. 2021). Specific spatial gains associated with spatial priors 

are not as robust as seen here, though constrained solutions do produce more focused 

regions with a more detailed pattern of activity across time (Nair et al. 2021). Differences 
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in improvements associated with the use of fMRI spatial priors within the MSP 

framework may be attributed to the flexible nature of this inversion scheme: using 

empirical priors, this approach selects either a sparse solution or distributed sources 

automatically, yielding solutions largely dependent on the data itself (Friston et al. 

2008b). In sum, approaches applying fMRI priors to constrain MEG inverse solutions 

yield additional information in terms of contributing brain areas, but also specific timing 

of task-related activity and communication within relevant memory networks.  

 

Conclusions 

Spatial contributions to working memory processes implicate broad fronto-

parietal networks for encoding and retrieval, with encoding recruiting more bilateral and 

left-lateralized frontal areas and retrieval relying more on inferior parietal and superior 

temporal regions. In terms of dynamics, constraining MEG with fMRI priors for 

encoding after 2s showed a progression of activity from bilateral temporal areas to 

prefrontal areas, with consistent SMG involvement. For retrieval, source reconstructions 

after 350ms show activity moving from left-lateralized to right-lateralized orbitofrontal 

areas, with robust bilateral prefrontal and right temporal activity after 700ms. 

Additionally, specific brain areas and dynamic patterns of activity between nodes were 

noted only after constraining MEG inverse solutions with fMRI priors, suggesting the 

MSP approach is beneficial in evaluating spatiotemporal characteristics underlying 

working memory. Future work is needed to identify differences within these networks, or 

communication within relevant brain areas, among patients with epilepsy.  
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FIGURES 

 

Figure 1. Modified Sternberg task paradigm presentation during fMRI and MEG 
scanning sessions. For the fMRI session, the modified Sternberg task was presented 
across two consecutive runs of 9:38 minute each. Character strings of either 2 or 6 letters 
were presented on screen, followed by a jittered delay of either 4 or 12 seconds, and a 
single letter probe during retrieval totaling 64 trials across runs. The MEG paradigm 
slightly differed from the fMRI task design: alphanumeric strings were presented that 
were either 1, 3, 5, or 7 characters, followed by a delay of 2 or 2.5 seconds, and a single 
letter probe during retrieval totaling 200 trials. There were no repeated stimuli across 
sessions, and all stimuli were pseudorandomized across load, delay, and correct 
responses.  
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Figure 2. Task-related independent components derived from fMRI data. Images are 
presented in neurological orientation (right in the image is right in the brain). (A) and (C) 
are all task-related ICs for encoding and retrieval. Conjunction maps of all ICs for (B) 
encoding and (D) retrieval.  
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Figure 3. MEG source reconstructions using MSP without (A) and with (B) fMRI priors 
for encoding within eight time-windows of interest spanning 50ms each, from 2050ms-
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2450ms. (C) A diagram summarizing brain regions identified by source reconstructions 
across time-windows without fMRI priors (yellow ellipses), with fMRI priors (blue 
ellipses), and areas implicated across analyses (green ellipses). Brain regions within the 
left hemisphere are as follows: (1) precentral gyrus, (2) supramarginal gyrus, (3) inferior 
frontal gyrus, (4) orbitofrontal gyrus, (5) superior temporal gyrus, (6) middle temporal 
gyrus, (7) inferior temporal gyrus and (8) middle temporal pole. Brain regions within the 
right hemisphere are as follows: (9) Rolandic operculum, (10) superior temporal gyrus, 
(11) inferior frontal gyrus, (12) orbitofrontal gyrus and (13) middle temporal pole.  
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Figure 4. MEG source reconstructions using MSP without (A) and with (B) fMRI priors 
for retrieval within ten time-windows of interest spanning 50ms each, from 350ms-
850ms. (C) A diagram summarizing brain regions identified by source reconstructions 
across time-windows without fMRI priors (yellow ellipses), with fMRI priors (blue 
ellipses), and areas implicated across analyses (green ellipses). Brain regions within the 
left hemisphere are as follows: (1) inferior frontal gyrus, (2) amygdala, (3) 
parahippocampal gyrus, (4) orbitofrontal cortex, (5) superior temporal pole and (6) 
fusiform gyrus. Brain regions within the right hemisphere are as follows: (7) 
parahippocampal gyrus, (8) amygdala, (9) inferior frontal gyrus, (10) middle temporal 
gyrus, (11) superior temporal pole, (12) orbitofrontal cortex and (13) middle temporal 
pole.  
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Figure 5. Schematic of MEG source reconstructions across time, depicting regions 
identified by MEG only localizations (no priors), localizations incorporating fMRI spatial 
priors, and areas of overlap between the two approaches across (A) encoding and (B) 
retrieval.  
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CONCLUSIONS 

“Progress lies not in enhancing what is, but in advancing toward what will be.” 

 – Khalil Gibran 

 

 FMRI is a popular neuroimaging approach used to studying healthy cognition, 

identify biomarkers associated with health and disease, and monitor effects of therapy 

and intervention (Martin et al. 2019b; Gaston et al. 2019). Alongside its non-invasive 

nature and widespread availability, fMRI boasts excellent spatial resolution within the 

order of millimeters. However, in investigations of dynamic brain activity fMRI falls 

short. By their nature, hemodynamic techniques are limited by the delayed time-scale of 

the HRF in relation to brain activity (Buxton 2013; Buxton et al. 2004; Brown et al. 

2007). As large part of communication within the brain is characterized by electrical 

signaling, electrophysiological techniques able to preserve the timing of neuronal activity 

and are especially appropriate for studies that require higher temporal resolution 

(Hillebrand et al. 2005).  

High-level cognitive tasks involving language, decision making, and memory often 

involve distributed, interconnected networks characterized by dynamic communication 

within and between relevant brain areas. The poor temporal resolution offered by fMRI 

alone limits its use to determine directional information flow within a network, but a 

multimodal approach to MEG source reconstruction, implemented in Manuscripts 2 and 
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3, was able to reveal additional spatiotemporal characteristics of task-related brain areas 

and, thus, provide a more nuanced and compete picture of the networks underlying 

associative learning and nonverbal memory processes. The purpose of the present work 

was to characterize dynamics of brain networks underlying associative learning and 

working memory among healthy controls by integrating fMRI and MEG data. We aimed 

to maximize strengths from each method across spatiotemporal domains by constraining 

MEG source reconstruction with fMRI spatial priors using the flexible, data-driven 

framework of MSP.  

 First, we identified neural correlates of active and passive encoding using a large 

(n=174), existing dataset of healthy individuals. This work is outlined within the first 

chapter (manuscript 1). We employed a data-driven blind source separation technique, 

group independent components analysis (GIFT), to isolate task-related networks and 

examine any differences in spatial extent between sexes (male vs. female), handedness 

(atypical vs. right), and age (<50 vs. >50 years old).  

 Handedness is known to play a significant role in hemispheric language dominance 

(Szaflarski et al. 2002; Szaflarski et al. 2012), and differences between left- and atypical- 

handers were identified within the left angular gyrus. The angular gyrus has been long 

associated with language ability (Van Ettinger-Veenstra et al. 2016), semantic processing 

(Seghier 2012; Hartwigsen et al. 2016), and more recently, understood as playing an 

integrative role across domains, including attention and problem solving (Seghier 2012). 

During active generation, differential recruitment of the left angular gyrus among right-

handers may be related to increased reliance on left dominant brain areas, a pattern of 
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activity previously suggested by work revealing left-lateralized patterns of activity among 

right handed individuals during a semantic task of Chinese characters (Gao et al. 2015).  

 In terms of age, we found significant differences within memory of read (p=0.014) 

and generated (p=0.008) words among older (>50) and younger adults. These behavioral 

effects were accompanied by differences in spatial extent of networks underlying self-

generation and reading: Older adults showed reduced recruitment of left inferior frontal 

gyrus, bilateral insula, and middle occipital gyrus compared to younger adults. 

Specifically, findings of left IFG recruitment during active generation present among 

younger adults but absent among older adults support an existing model of age-related 

reduced lateralization underlying task-related activity (Roberto Cabeza 2002). The 

proposed hemispheric asymmetry reduction in older adults (HAROLD) model has been 

challenged by work evaluating the effects of age, sex and handedness on language 

lateralization (Nenert et al. 2017). Significant decreases in lateralization indices with age 

were only seen in right-handed men, and effects were limited to temporo-parietal brain 

areas (Nenert et al. 2017).  

 To further investigate the relationship between age, sex and associative learning, we 

used a linear mixed-effects modeling approach to examine the effect of age and sex 

differences across all task-related components. Several components showed age-related 

effects across self-generation and passive reading, indicating that as age increases, there 

are marked decreases in activity across specific frontal, temporal, and parietal brain areas. 

Additionally, sex and age  seemed to modulate activity within left supramarginal gyrus: 

as age increased males showed increased recruitment of left SMG during passive reading 

while females showed a decline in activity. These differences within SMG suggest 
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differential reliance on storage and retrieval of language-related information (Henson, 

Burgess, and Frith 2000; Vandenberghe et al. 1996), and partially support previous 

findings of sex modulating age-related differences in language-related brain areas (Nenert 

et al. 2017).    

 In sum, the work outlined in the first paper evaluated neural correlates of active and 

passive learning and yielded networks largely consistent with previous functional 

imaging studies (Kim 2011; Otten, Henson, and Rugg 2001; Vannest et al. 2012). This 

work also established an fMRI processing pipeline aimed to extract task-related brain 

areas using data acquired with HUSH, providing us with confidence in using ICA to 

evaluate spatial characteristics of networks derived from sparse acquisition datasets. 

Though there is correspondence within these networks with a wide body of associative 

learning and depth of processing literature, dynamics between relevant nodes are not well 

understood within a comprehensive model.  

 The remaining body of work aims to integrate fMRI and MEG to capitalize on the 

spatiotemporal strengths offered by both methods individually. We collected new fMRI 

and MEG data on a sample of healthy participants (n=24) during a range of tasks across 

two sessions.  

 In manuscript 2, we used group ICA to confirm the presence of these same verbal 

paired associate learning networks previously identified in manuscript 1, within in our 

smaller sample of individuals. Using fMRI alone, the four ICs meeting task-relatedness 

for active generation seemed to capture various aspects of active generation: the presence 

of bilateral parietal areas along with medial frontal areas suggests maintenance of 

cognitive attention, as well as internal monitoring of task demands and responses 
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(Rosner, Elman, and Shimamura 2013; Siegel et al. 2012; Rushworth, Krams, and 

Passingham 2001). Middle frontal and inferior frontal gyrus activity suggests demands 

associated with top-down modulation, integrating various sources of relevant information 

across the brain, and reorienting attention towards task demands (Christensen et al. 2012; 

Japee et al. 2015).  

 We then developed a data processing pipeline in SPM that integrates data across both 

modalities: We created masks from task-related ICs that were subsequently used as 

constraints during MEG inverse reconstruction within a data-driven, Parametric 

Empirical Bayesian framework. We used two approaches to isolate sources contributing 

to active learning: an ERP approach was used to identify early responses to active 

generation by averaging epoched trials to increase SNR across trials. An event-related 

theta power approach was also employed to preserve cognitive activity that is not likely 

time-locked across trials and may be lost via averaging approaches. 

 The ERP approach revealed early inferior and middle occipital activity within the first 

250ms that was followed by bilateral fronto-temporal contributions across priors. The 

timing of activity across left orbitofrontal cortex between 350ms-500ms seen in fMRI 

constrained reconstructions is in line with Halgren et al, where left-lateralized activity 

across anterior orbitofrontal areas was revealed around 400ms during a semantic 

congruency task (Halgren et al. 2002). With the theta power approach, we saw a clear 

progression of early activity from bilateral inferior temporal gyri to left orbitofrontal and 

middle temporal activity around 750m, followed by right IFG contributions after 900ms. 

This progression of activity across both approaches suggests a top-down, integrative role 
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of prefrontal areas in searching for target words using presented cues during active 

generation (Miller and Cohen 2001; Sharon L. Thompson-Schill et al. 1997).  

 Overall, in manuscript 2, we found that source solutions informed by fMRI yielded 

more focused regional activity compared to solutions without prior information from 

fMRI, which allowed for a more detailed understanding of information flow within task-

positive networks.  

 In manuscript 3, we tested the co-processing pipeline developed in manuscript 2 on 

fMRI and MEG data using a modified Sternberg working memory task to evaluate 

dynamics of encoding and retrieval processes (Gaston et al. 2020; Sternberg 1966). We 

also investigated the impact of fMRI priors on MEG source reconstructions across time 

for both conditions. Here, we found co-processing data produced additional brain regions 

underlying working memory and revealed communication between relevant areas. For 

example, recruitment of SMG during encoding was only visible in fMRI constrained 

source reconstructions, and intermittently within specific time-windows, suggesting 

dynamic correspondence between brain areas underlying phonological storage and 

lexical-semantic processing (R. N. A. Henson, Burgess, and Frith 2000; Vandenberghe et 

al. 1996). We also noted improvements in temporal visualization during retrieval using 

this co-processing approach: bilateral orbitofrontal cortex and temporal gyri contributions 

were noted only in reconstructions informed by fMRI. These gains are consistent with 

evidence of substantial connectivity between these areas during response selection 

(Young and Shapiro 2011; Duarte et al. 2010) and memory performance (Frey and 

Petrides 2002; Ranganath et al. 2005). Further, the progression of activity seen using 

fMRI priors compared to that without priors indicates that bilateral fronto-temporal 
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contributions are present at various stages of the retrieval process. The effects of fMRI 

priors on MEG data highlighting additional brain areas were seen clearly during 

encoding, and the impact of fMRI priors expanding on timing and communication 

between brain areas is especially evident during retrieval.  

 Across the two studies implementing this co-processing approach, we see 

improvements in spatiotemporal visualization of networks underlying associative 

learning and working memory. It is important to note that the MSP framework is a 

flexible, data-driven inversion scheme and improvements (or lack thereof) in source 

reconstruction are largely dependent on the quality and information to be gained from the 

prior data itself (Friston et al. 2008; Wang and Holland 2021). Though MSP will select a 

sparse or distributed solution automatically, previous study by Wang et al. found gains 

associated with fMRI priors were more pronounced when evaluating induced activity due 

to greater temporal variability across trials with induced responses compared to evoked 

responses (Wang and Holland 2021). Thus, suggesting this co-processing approach is 

especially useful in investigations of high-level cognitive functions.  

 We were able to characterize the dynamics of associative learning and working 

memory in healthy individuals using fMRI-informed MEG localizing techniques. 

Understanding healthy learning and memory circuits can inform abnormalities in clinical 

populations, for example how divergent persons with epilepsy may be from normative 

processing during memory encoding and retrieval. This work serves to further overall 

goals of the UAB Epilepsy Research Center by providing a flexible, multimodal 

framework to better assess dynamic characteristics of memory in disease states. Network-

based approaches to focal epilepsies provide a more comprehensive view of atypical 
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whole-brain neural synchronization, allowing the identification of regions beyond the 

ictal onset zone that may produce various neurological effects and/or behavioral deficits. 

Applying a network perspective to characterize deficits within these populations has the 

potential to inform intervention approaches that address difficulties with memory and 

thus improve quality of life among patients with such impairments.  

 Together, these experiments provide a greater understanding of the spatiotemporal 

underpinnings of associative learning and working memory. This work also provided an 

implementable framework to merge these datasets and shed light on what information 

may be gained by constraining MEG inverse solutions with fMRI spatial priors. Overall, 

this project provides support for the use of multimodal datasets within a hierarchical 

Bayesian model as an approach to evaluating spatiotemporal characteristics of task-

related networks. Some benefits to adding fMRI spatial information into MEG source 

reconstruction include the ability to detect additional contributing brain areas during 

learning and memory, and to better characterize information flow between relevant brain 

areas. During a time where clinical neuroimaging research has increased substantially 

over decades, it is especially important to approach studies of brain function with the aim 

to maximize the strengths of any selected modalities.  
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