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CUBIC SYMMETRIC LAMINATIONS

SANDEEP CHOWDARY VEJANDLA

APPLIED MATHEMATICS

ABSTRACT

To study the parameter space of all polynomials of degree d with connected Julia

sets, Thurston proposed studying the space of all σd-invariant laminations, where

σd : S→ S is the degree d covering map of the unit circle defined by σd(z) = zd. A

lamination is a family of chords in the unit disk satisfying the following property. No

two chords in a lamination intersect inside the disk. Thurston built a topological

model for the space of quadratic polynomials f(z) = z2 + λ using a parametrization

of the space of quadratic invariant laminations. He completed this approach for the

space of quadratic polynomials but the case of higher degree has remained elusive.

Our goal is to gain a better understanding of the space of cubic polynomials

f(z) = z3 + bz2 + λz. We have studied a particular slice of the space of cubic

polynomials. We call polynomials of the form f(z) = z3 + λ2z cubic symmetric

polynomials. In the same spirit as Thurston’s work, we will parametrize space of cubic

symmetric laminations which will provide a model for the space of cubic symmetric

polynomials.
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CHAPTER 1

INTRODUCTION

Studying the structure of polynomial families is one of the central problems of

complex dynamics. The first non-trivial case here is that of the quadratic polynomial

family Pc(z) = z2 + c. The Mandelbrot set M2 is defined as the set of the parameters

c such that the trajectory of the critical point 0 of Pc does not escape to infinity

under iterations of Pc. Equivalently, this is the set of all parameters c such that the

Julia set J(Pc) of Pc is connected.

Thurston [10] constructed a combinatorial model forM2, which can be interpreted

as follows. Laminational equivalence relations are closed equivalence relations ∼

on the unit circle S in the complex plane C such that all classes are finite and the

convex hulls of all classes are pairwise disjoint. A laminational equivalence relation

is said to be (σd-) invariant if it is preserved under the map σd(z) = zd : S → S

(precise definitions are given in the next section; if no ambiguity is possible, we will

simply talk about invariant laminational equivalence relations). The map σd induces

a topological polynomial f∼ : S/ ∼→ S/ ∼ from the topological Julia set J∼ = S/ ∼

to itself. If J(Pc) is locally connected, then Pc|J(Pc) is conjugate to f∼ for a specific

laminational equivalence relation ∼. If d = 2, then corresponding laminational

equivalence relations, topological polynomials and Julia sets are said to be quadratic.

A q-lamination can be viewed as a geometric object consisting of all chords in the

boundaries of the convex hulls (in the closed unit disk) of all equivalence classes of

∼. Thurston constructed a suitable topology on the set of all quadratic topological

polynomials using q-laminations as follows. Call a chord a d-critical leaf if σd identifies
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its endpoints. Hence 2-critical leaves are diameters. The space of all the 2-critical

leaves is called the space of critical portraits for the map σ2. The set of σ2 images of

all diameters parameterizes the space of all critical portraits for the map σ2. This

space is clearly a circle and we denote it by another unit circle T in the complex

plane C. It is known in the quadratic case that for every point in the space of

critical portraits T, there exists a unique q-lamination and hence a unique quadratic

topological polynomial. However there are multiple points in T which correspond to

the same q-lamination. Thurston studies the family of q-laminations to construct a

quotient space of the space of critical portraits so that the quotient space corresponds

to the family of all quadratic topological polynomials as follows.

Let f be a topological polynomial defined through the equivalence relation ∼f . There

is one special topological polynomial f0 (related to the unique complex polynomial

which has a parabolic fixed point with derivative 1) for which the laminational

equivalence relation ∼f0 has only degenerate classes. The topological polynomial f0

corresponds to a single point (1, 0) in the space of critical portraits T. Now, let f be

any other topological polynomial other than f0. By considering all outer edges of

the convex hulls of all equivalence classes of ∼f we get a geometric object, called the

q-lamination, Lf . Call the closure of a component of D \ Lf a gap of Lf .

Given the q-lamination Lf , let Cf be either the unique gap or the unique critical

leaf which contains the origin O of D. We have the following possibilities:

(1) If Cf is a critical leaf, let σ2(Cf ∩ S) = mf . Then mf is a single point and

mf is the only point in the space of critical portraits T which corresponds

to the q-lamination Lf . The point mf is called the degenerate minor of the

q-lamination Lf .

2



Figure 1.1. The Mandel-
brot set M2

Figure 1.2. The quadratic
minor lamination LQML

(2) If Cf is a gap and Cf ∩ S is finite, let mf be the convex hull of σ2(Cf ∩ S).

Then mf is the minor gap of Lf and all the points of the set mf ∩ S in the

space of critical portraits T correspond to the same q-lamination Lf .

(3) If Cf is periodic and the first return map has degree 2 (then Cf is called a

Fatou gap of Lf ). Let M1 and M2 be the two longest edges on the boundary

of Cf (these are called majors). Then the convex hull of σ2(M1 ∩ S) =

σ2(M2 ∩ S) = mf is a chord called the minor of Lf . In this case both the

points of the set mf ∩ S in T correspond to the same q-lamination Lf .

The collection of all minors forms a q-lamination which Thurston calls QML

(for quadratic minor lamination). If we collapse the space of critical portraits by

identifying all points which are in the same leaf or a gap in QML, we get a locally

connected continuum MComb
2 which is called the combinatorial Mandelbrot set. It is

conjecturally homeomorphic to the boundary ∂(M2) of the Mandelbrot setM2. It is

at least a good model for this space since it is known that there exist a continuous

monotone function π : ∂(M2)→MComb
2 (a map π is monotone if π−1(y) is connected

for all y).
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The case of a similar model for Md for d > 2 is much harder and, even after

intense interest by many, is still open. For a σd map, d > 2, the choice of d-critical

leaves has to be in such a way that they should not cross, i.e they should not intersect

inside the open disk D. It is easy to see that if d = 3, there are at most 2 non-crossing

critical chords (except when they touch in which case we can add one more to obtain

a triangle of 3-critical chords). The space of all non-crossing critical chords, called the

space of 3-critical portraits, is already much more complicated. It can be described

as follows.

For any pair of non-crossing critical chords {c, d} that do not share an endpoint,

let A be the shortest component of S \ {c, d}. In general A is unique but it is

possible that there are two such components (in that case the two critical chords

are parallel). Let MA be the midpoint of A and let LA be the length of A. If A is

unique, then the point (MA, LA) ∈ S× (0, 1
6
) uniquely determines the given critical

portrait (here we normalize the total length of the circle to be 1). If A is not unique,

there are two shortest components A and B of S \ {c, d} and the critical leaves c

and d are parallel here. In this case, the lengths of A and B are 1
6
, MA = −MB and

(MA, LA), (MB, LB) ∈ S×{1
6
}. Also each of the points (MA,

1
6
) and (MB,

1
6
) uniquely

determines the given critical portrait of parallel critical leaves. Thus, the points (x, 1
6
)

and (−x, 1
6
) in S× {1

6
} must be identified.

If the pair of non-crossing critical chords {c, d} share an endpoint x, then let

MA = x and LA = 0. The point (MA, LA) ∈ S × {0}. Since two critical leaves c

and d that share a common endpoint x are part of a critical triangle, the points

(x, 0), (x+ 1
3
, 0) and (x+ 2

3
, 0) in S× {0} must be identified.

Hence, the space of critical portraits for the σ3 map is a quotient of the annulus

S × [0, 1
6
] where (i) the points (x, 1

6
) and (−x, 1

6
) are identified and (ii) the points

(x, 0), (x+ 1
3
, 0) and (x+ 2

3
, 0) are identified.
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The special role of symmetric (i.e. parallel) critical chords justifies the study

of the corresponding cubic symmetric laminations (i.e., cubic invariant laminations

which are invariant under 1800 rotation).

In this paper we study cubic symmetric laminations. They correspond to affine

conjugacy classes of complex polynomials of the form P (z) = z3 + λ2z. We call such

polynomials cubic symmetric polynomials since they correspond to cubic symmetric

laminations. The results we obtain are similar to the quadratic case but the arguments

are different. We show that all cubic symmetric laminations have a rotational central

symmetric gap (or leaf). They do not admit wandering triangles but can have two

orbits on the boundary of a finite periodic gap. The boundary of the connectedness

locus in the parameter space of all cubic symmetric laminations is 1-dimensional.

Rather than using minors to parametrize this space we will use the notion of comajors

(siblings of the major with the same image). The collection of all comajors is a

q-lamination called the cubic symmetric comajor lamination CsCL. No comajor is

periodic but we show that the collection of comajors of pre-period 1 is dense in CsCL.

Finally we produce an algorithm which produces all comajors of pre-period 1. This

allows us to produce meaningful pictures of CsCL.

In a subsequent joint paper we will show that the quotient spaceMComb
3 of CsCL,

which collapses all chords of CsCL to points is a good model for the boundary

∂(Ms
3) of the space of affine conjugacy classes of cubic symmetric polynomials with

connected julia sets Ms
3 since there exists a continuous and monotone function

π : ∂(Ms
3)→MComb

3 .
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CHAPTER 2

LAMINATIONS: CLASSICAL DEFINITIONS

2.1. Laminational equivalence relation

Let C be the complex plane and Ĉ be the Riemann sphere. Let D ⊂ C be the

open unit disk.

Let P be a complex polynomial of degree d ≥ 2.

Definition 2.1.1 (The basin of infinity and the Julia set). The basin of infinity

is defined as the set of complex numbers ’z’ that converge to infinity upon multiple

iterations of complex polynomial P , i.e

ΩP = {z ∈ C | P ◦n(z)→∞ (n→∞)}

Julia set is the boundary of the basin of infinity. J(P ) = ∂ΩP .

Remark 2.1.1. (1) Julia set is completely invariant under P , P−1(J(P )) =

P (J(P )) = J(P ).

(2) J(P) is the closure of a set of repelling periodic points.

(3) J(P) is the boundary of the filled-in Julia set ; that is, those points whose

orbits under iterations of P remain bounded.

From the Riemann mapping theorem, there exists a conformal map Ψ : Ĉ \ D→

Ĉ \ K, where K is the filled-in Julia set (i.e., the complement of the unbounded

component of J(P ) in C). One can choose Ψ so that Ψ′(∞) > 0 and P ◦Ψ = Ψ ◦ θd,
6



where θd(z) = zd and d is the degree of P .

Ĉ \ D Ĉ \ D

Ĉ \K Ĉ \K

-
θd

?

Ψ

?

Ψ

-P

We choose polynomials P such that Julia set J(P ) is locally connected so that Ψ

extends over the boundary S of D.

Let ψ = Ψ|S. Let S = Bd(D) be the unit circle identified with R/Z and define an

equivalence relation ∼P on S by x ∼P y if and only if ψ(x) = ψ(y). Define a map

σd : S→ S by σd(z) = dz mod 1, d ≥ 2.

Since Ψ defined above conjugates θd and P , the map ψ semi-conjugates σd and

P |J(P ), which implies that ∼P is invariant. Equivalence classes of ∼P have pairwise

disjoint convex hulls. The topological Julia set S/ ∼P= J∼P
is homeomorphic to

JP , and the topological polynomial f∼P
: J∼P

→ J∼P
, induced by σd, is topologically

conjugate to P |JP .

S/ ∼P S/ ∼P

J(P ) J(P )

-
f∼P

? ?
-P

An equivalence relation ∼ on the unit circle, with similar properties to those of

∼P above, can be introduced abstractly without any reference to the Julia set of a

complex polynomial.

7



Figure 2.1. The Julia set
of f(z) = z2 − 1

Figure 2.2. The topolog-
ical Julia set of z2 − 1 ob-
tained by pinching the end-
points of chords.

Definition 2.1.2 (Laminational equivalence relation). An equivalence relation ∼

on the unit circle S is called a laminational equivalence relation if it has the following

properties:

(E1) the graph of ∼ is a closed subset in S× S;

(E2) convex hulls of distinct equivalence classes are disjoint;

(E3) each equivalence class of ∼ is finite.

For a closed set A ⊂ S we denote its convex hull by CH(A). Then by an edge of

CH(A) we mean a closed segment I of the straight line connecting two points of the

unit circle such that I is contained in the boundary Bd(CH(A)) of CH(A). By an

edge of a ∼-class we mean an edge of the convex hull of that class.

For the purpose of axiom D3 let an arc ã b of the circle S be represented as (a, b).

Definition 2.1.3 (Invariance). A laminational equivalence relation ∼ is (σd-)in-

variant if:

(I1) ∼ is forward invariant: for a class g, the set σd(g) is a class too;

8



(I2) ∼ is backward invariant : for a class g, its pre-image σ−1
d (g) = {x ∈ S : σd(x) ∈ g}

is a union of classes;

(I3) for any ∼-class g with more than two points, the map σd|g : g → σd(g) is a

covering map with positive orientation, i.e., for every connected component (s, t) of

S \ g the arc in the circle (σd(s), σd(t)) is a connected component of S \ σd(g);

2.2. Invariant Laminations

In the preceding section, we introduced the notion of a laminational equivalence

relation on the unit circle S based on the identifications of a polynomial map on its

locally connected and therefore connected Julia set. In this section ,we will define

the notion of an invariant lamination on a more abstract level, which in turn gives

rise to a laminational equivalence relation.

Definition 2.2.1. A lamination L is a set of chords in the closed unit disk D,

called leaves of L, if it satisfies the following conditions:

(L1) leaves of L are disjoint, except possibly at their endpoints;

(L2) the union of L is closed.

We say two leaves/chords cross each other if they intersect inside the open disk D.

Thus, (L1) can be interpreted as the condition that no two leaves of a lamination can

cross each other. A degenerate “leaf” is a point on S. Given a leaf ` = ab ∈ L, let

σd(`) be the chord with endpoints σd(a) and σd(b). If σd(a) = σd(b), call ` a critical

leaf. Let L∗ = ∪`∈L` and σ∗d : L∗ → D be the linear extension of σd over all the leaves

in L. It is not hard to check that σ∗d is continuous. Also, σd is locally one-to-one on

S, and σ∗d is one-to-one on any given non-critical leaf. Note that if L is a lamination,

then L∗ is a continuum.

9



Definition 2.2.2 (Gap). A gap G of a lamination L is the closure of a component

of D \ L∗; its boundary leaves are called edges (of a gap).

For each set A ⊂ D we denote A ∩ S by ∂(A). If G is a leaf or a gap of L, it

follows that G coincides with the convex hull of ∂(G). If G is a leaf or a gap of L we

let σd(G) be the convex hull of σd(∂(G)). Also, by Bd(G) we denote the topological

boundary of G. Notice that Bd(G) ∩ S = G ∩ S = ∂(G). We call ∂(G) the vertices

of G. A gap G is called infinite if and only if ∂(G) is infinite. Similarly G is called

finite if and only if ∂(G) is finite, in particular the gap G is called triangular gap if

∂(G) consists of three points.

Let L be a lamination. The equivalence relation ∼L induced by L is understood

by declaring that x ∼L y if and only if there exists a finite concatenation of leaves of

L joining x to y.

Definition 2.2.3 (q-lamination). A lamination L is called a q-lamination if the

equivalence relation ∼L is a laminational equivalence relation and L consists exactly

of boundary edges of the convex hulls of ∼L classes.

Remark 2.2.1. Since a q-lamination L consists of boundary edges of the convex

hulls of ∼L classes, if two leaves of L share an endpoint, they must form sides of a

common gap. It follows that no more than two leaves of a q-lamination can share an

endpoint.

Definition 2.2.4 (Invariant lamination). A lamination L is (σd-)invariant if,

(D1) L is forward invariant. For each ` ∈ L either σd(`) ∈ L or σd(`) is a point in S

and

(D2) L is backward invariant.

(1) For each ` ∈ L there exists a leaf `′ ∈ L such that σd(`
′) = `.

10



(2) For each ` ∈ L such that σd(`) is a non-degenerate leaf, there exists d

disjoint leaves `1, ......`d in L such that ` = `1 and σd(`i) = σd(`) for all i.

Definition 2.2.5 (Siblings). The d disjoint leaves from the above definition are

part of what we call a sibling collection of leaves as they all map onto the same leaf

under σd.

Definition 2.2.6 (Monotone Map). Let X, Y be topological spaces and f : X →

Y be continuous. Then f is said to be monotone if f−1(y) is connected for each y ∈ Y .

It is known that if f is monotone and X is a continuum then f−1(Z) is connected for

every connected Z ⊂ f(X).

Definition 2.2.7 (Gap-invariance). A lamination L is gap invariant if for each

gap G , σd(G) is either a gap or a leaf or a single point of L with the following rule:-

σ∗d|Bd(G) : Bd(G)→ Bd(σd(G)) must map as the composition of a monotone map

and a covering map to the boundary of the image gap, with positive orientation i.e,

as you move through the vertices of G in clockwise direction around Bd(G), their

corresponding images in σd(G) must also be aligned clockwise in Bd(σd(G)).

Definition 2.2.8 (Degree). ∀x ∈ Bd(σd(G)), number of components of (σ∗d)
−1(x)

in Bd(G) is defined as the degree of the map σ∗d|Bd(G) : Bd(G)→ Bd(σd(G)).

In other words, if every leaf of σd(G) has k pre-image leaves in G, then the degree of

the map σ∗d is k. A gap G is called critical gap if k > 1.

The following important results about the invariant laminations are proved in [2].

Theorem 2.2.2 ( [2]). Every (σd-)invariant lamination is gap invariant.

Theorem 2.2.3 ( [2]). The space of all σd-invariant laminations is compact.

11



Figure 2.3. A σ2 invariant lamination called Douady rabbit lamination.
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CHAPTER 3

CUBIC SYMMETRIC LAMINATIONS

3.1. Cubic polynomials of the form z 7→ z3 + λ2z.

Consider a σ3-invariant laminational equivalence relation ∼ corresponding to the

map z 7→ z3 + λ2z. Apart from satisfying the axioms (I1)-(I3) of Definition 2.1.3, the

laminational equivalence relation ∼ satisfies one additional property. Since the map

z 7→ z3 + λ2z is an odd function, ∼ has the property that for any equivalence class g

in ∼, the equivalence class −g is also in it (note that the class g is understood as a

subset of the unit circle S = R/Z). In other words, ∼ has a symmetry of rotation by

180◦ with respect to the center of the circle S. We will study σ3-invariant laminations

obtained from such laminational equivalence relations.

The unit circle S = R/Z can be parametrized as [0,1) for the study of lamina-

tions. Under this parametrization, two endpoints of a diameter of S differ by 1
2
. It

follows that if a leaf `′ is obtained by rotating a leaf ` by 180◦ with respect to the

center of the circle S, then their endpoints would differ by 1
2
.

Now, we define a specific kind of σ3 invariant laminations called cubic symmetric

laminations with the additional property mentioned above as follows.

Definition 3.1.1 (Cubic symmetric lamination). A σ3-invariant lamination L is

called a cubic symmetric lamination if:

(D3) for each ` ∈ L there exists a leaf `′ ∈ L such that `′ and ` are symmetric with

respect to the center of the circle S, i.e ∂(`′) = ∂(`) + 1
2

(note that ∂(`) = Bd(`) ∩ S).

13



We will show in the later sections that this property of cubic symmetric laminations

leads to similar results that were obtained for quadratic (σ2-invariant) laminations.

The current and the following two chapters are dedicated to a detailed study of cubic

symmetric laminations and their parameter space.

3.2. Cubic symmetric lamination: Basic properties

Below are a few basic definitions concerning periodic and (pre)periodic leaves/gaps.

Definition 3.2.1 (Preperiodic and (pre)periodic points). A point x ∈ S is said

to be (pre)periodic if σm+k
3 (x) = σm3 (x) for some m ≥ 0, k ≥ 1. Then, for the smallest

m and k that satisfy the above equation, we call m the preperiod and k the period of

x. The point x is said to be preperiodic if m > 0 or periodic (of period k) if m = 0.

(1) Preperiodic and (pre)periodic leaves. Let ` be a leaf of a cubic symmetric

lamination L. The leaf ` is said to be (pre)periodic of preperiod m and

period k, if the endpoints a and b of ` are (pre)periodic of preperiod m and

period k. The leaf ` is said to be preperiodic if m > 0 or periodic (of period

k) if m = 0.

(2) Preperiodic and (pre)periodic gaps. Let G be a gap of a cubic symmetric

lamination L. The gap G is said to be (pre)periodic if σm+k
3 (G) = σm3 (G) for

some m ≥ 0, k ≥ 1. Then, for the smallest m and k that satisfy the above

equation, we call m the preperiod and k the period of G. The gap G is said

to be preperiodic if m > 0 or periodic (of period k) if m = 0. If the period

of G is 1, then G is said to be invariant.

(3) (pre)critical gaps. Similarly we can define a (pre)critical gap G if σk3(G) is

critical gap for some k ≥ 0.
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Similar to an invariant gap, a leaf ` is said to be invariant under the map σk3 if

σk3(`) = `. It is not hard to see that invariant leaves (under the σk3 map) are periodic

of period 1 or period 2. Period of an invariant leaf ` is 1 when its endpoints are fixed

and the period is 2 when the endpoints map to each other. For the map σ3, the leaves

01
2

and 1
4

3
4

are the only invariant leaves. The leaf 01
2

is periodic of period 1 and the

leaf 1
4

3
4

is periodic of period 2.

The first two evident properties that are observed in cubic symmetric laminations are

listed in the following proposition. Usually when we use the word ’symmetric’, we

mean symmetric with respect to the center of the circle S.

Proposition 3.2.1. (1) The set of chords obtained by rotating the leaves of

a cubic symmetric lamination L by 90◦ is a cubic symmetric lamination.

(2) Every cubic symmetric lamination has an invariant gap or leaf which is

symmetric with respect to the center of the circle S.

Proof. (1) Let L be a cubic symmetric lamination and L′ be obtained by

rotating the leaves of L by 90◦. Consider a leaf ` ∈ L and its endpoints,

denoted by ∂(`) from the previous chapter. Let `′ ∈ L′ be obtained by rotating

the leaf ` ∈ L by 90◦. Rotating a leaf ` by 90◦ is equivalent to adding 1
4

to

its endpoints, i.e if ∂(`) = {a, b}, then ∂(`′) = {a+ 1
4
, b+ 1

4
} = ∂(`) + 1

4
.

Claim1. (D1) L′ is forward invariant:

Consider the image leaves of ` and `′ denoted by ˜̀ = σ3(`) and σ3(`
′)

respectively. The leaf σ3(`′) has the endpoints σ3({a+ 1
4
, b+ 1

4
}) = σ3({a, b})+

3
4

= ∂(˜̀) + 3
4

= ∂(˜̀) + 1
2

+ 1
4
.

Using the property (D3) of cubic symmetric lamination L, there exists a

leaf ˆ̀∈ L such that ˆ̀ and ˜̀ are symmetric with respect to the center of the

circle, i.e ∂(ˆ̀) = ∂(˜̀) + 1
2
. It implies that σ3(`′) has the endpoints ∂(ˆ̀) + 1

4
.
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Thus, `′ ∈ L′ maps to ˆ̀′ ∈ L′ making L′ forward invariant.

Note that the angle between the leaves ` and `′ grows from 90◦ to 270◦ under

the σ3 map:

` ˜̀

`′ ˆ̀′

-σ3

?

90◦x
?

270◦x

-σ3

Claim2. (D2) L′ is backward invariant:

We use the argument in claim1 to find pre-image leaves of `′ ∈ L′. First using

the property (D2) of cubic symmetric lamination L, we obtain three disjoint

pre-image leaves, say, `1, `2, `3 of ` ∈ L, i.e σ3(`1) = σ3(`2) = σ3(`3) = `.

Using (D3) now, let { ˆ̀
1, ˆ̀

2, ˆ̀
3} be the leaves of L symmetric to {`1, `2, `3}

respectively. There exists corresponding leaves { ˆ̀
1

′
, ˆ̀

2

′
, ˆ̀

3

′
} in L′.

Sub-claim. { ˆ̀
1

′
, ˆ̀

2

′
, ˆ̀

3

′
} are pre-image leaves of `′ in L′:

Leaves { ˆ̀
1, ˆ̀

2, ˆ̀
3} map to a leaf ˆ̀ symmetric to leaf ` in L. Correspondingly,

leaves ˆ̀′ and `′ are symmetric pair of leaves in L′.

In claim1, it is clearly seen that if ` maps to σ3(`), then `′ maps to the

leaf symmetric to σ3(`)
′ in L′. Thus, leaves { ˆ̀

1

′
, ˆ̀

2

′
, ˆ̀

3

′
} map to the leaf

symmetric to ˆ̀′ which is `′.

{ ˆ̀
1, ˆ̀

2, ˆ̀
3} ˆ̀

{ ˆ̀
1

′
, ˆ̀

2

′
, ˆ̀

3

′
} `′

-σ3

?

90◦x

?

270◦x

-σ3
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Claim3: (D3) L′ is symmetric:

For every pair of symmetric leaves ` and ˆ̀ in L, corresponding leaves `′ and

ˆ̀′ are also symmetric with respect to the center of the circle in L′.

(2) For the cubic symmetric lamination L, there exists either a gap G having

center of the circle in its interior or a diameter of S as a leaf of L. We will

consider the case when it is a gap. The case of leaf is similar.

(a) From Definition 3.1.1 (D3), there exists a gap −G containing leaves that

are symmetric to the leaves in the gap G. We claim that G coincides

with −G. If gaps G and −G are distinct gaps in the lamination L, they

would intersect resulting in leaves of the lamination L crossing each

other. Thus, G is symmetric with respect to the center of the circle S.

(b) We claim that if a gap G is symmetric, then its image gap σ3(G) is

also symmetric. Consider a pair of symmetric vertices p and p + 1
2

of G. We observe that {p, p + 1
2
} ∈ ∂(G) implies σ3({p, p + 1

2
}) =

{σ3(p), σ3(p + 1
2
)} = {σ3(p), σ3(p) + 1

2
} ∈ ∂(σ3(G)). Hence σ3(G) is a

symmetric gap, too. Now, since both G and σ3(G) are symmetric gaps,

they share the center of the circle in its interior. It follows that both G

and σ3(G) should coincide, for otherwise they would intersect resulting

in the same contradiction that leaves of the lamination L cross each

other. Thus, G is an invariant gap.

�

The gap G obtained in Proposition 3.2.1 (2) is called the central symmetric gap

of the lamination L. Similarly, we call the leaf `, a central symmetric leaf if it is

invariant and symmetric. It is easy to see that, 01
2

and 1
4

3
4

are the only possible

diameters of S which are invariant under the σ3 map. Thus, the set of all possible
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central symmetric leaves of cubic symmetric laminations is {01
2
, 1

4
3
4
}. We usually

only talk about central symmetric gaps in the current and the next chapter, but all

the statements that are true for central symmetric gaps also hold true for central

symmetric leaves 01
2

and 1
4

3
4
. The formal definition of a central symmetric gap is as

follows.

Definition 3.2.2. If a gap G has center of the circle S in its interior and its

vertices ∂(G) consist of pairs of diametrically opposite points, then we call it a central

symmetric gap.

From the above proposition, every cubic symmetric lamination contains an invari-

ant central symmetric gap. In the next section, we will show that the degree of the

map σ3 acting on the central symmetric gap G has to be 1. Definition 2.2.6 part(2)

tells us that order has to be preserved on the image of a gap. For a periodic/invariant

gap G with the first return map g (g(G) = G) of degree 1, the order-preserving

property translates to what we call as exhibiting to rotational (formal Definition 4.1.2)

behavior. In particular all central symmetric gaps are rotational. Their rotational

aspects are discussed in detail in the next chapter.

There are two properties of a cubic symmetric lamination namely Short Strip

Lemma and No Wandering Triangles which resemble results that hold for quadratic

laminations. These are quiet essential in understanding gaps of the cubic symmetric

lamination and also help prove key results for the parameter space of the cubic

symmetric laminations.

Let L be a cubic symmetric lamination. We define the length ‖`‖ of a leaf ` in L to

be the distance between its endpoints, measured along the circle in units of radians
2π

.

Thus, the maximum length of a leaf is 1
2
.

Let us characterize leaves of L into three categories by their lengths as follows-
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Definition 3.2.3. A short leaf is a leaf ` such that 0 < ‖`‖ < 1
6
,

a medium leaf is a leaf ` such that 1
6
≤ ‖`‖ < 1

3
and

a long leaf is a leaf ` such that 1
3
< ‖`‖ ≤ 1

2
.

A leaf of length 1
3

is a critical leaf. Every leaf ` of L has siblings (Definition

2.2.5). It is easy to see that following are the only possible kinds of leaves in a sibling

collection of `.

(a) {`, ˆ̀, ˜̀} are all short leaves.

(b) {`, ˆ̀, ˜̀} are all medium leaves.

(c) {`, ˆ̀, ˜̀} are long,medium and short leaves respectively.

Note that in a sibling collection, if two leaves are of the same kind, they have the

same length. For a cubic symmetric lamination L, we claim that the collection (b)

is not possible. First thing we observe that the leaves in both the triplets, {`, ˆ̀, ˜̀}

and {−`,−ˆ̀,−˜̀} are all disjoint from each other and they have the same length.

They have the same length because either they are siblings or they are symmetric to

each other. Any two symmetric leaves in the two triplets map to disjoint symmetric

images σ3(`) and −σ3(`), hence disjoint from each other. And any two sibling leaves

are clearly disjoint from each other. It follows that in the collection (b), if all the

leaves have length bigger than 1
6
, then the sum of lengths of the leaves in {`, ˆ̀, ˜̀} and

{−`,−ˆ̀,−˜̀} would add up to a number bigger than 1. Clearly, a contradiction.

If all of them have the length exactly 1
6
, then we would get a finite gap G with all

of the above six leaves as sides. It implies that the image gap σ3(G) contains leaves

σ3(`) and −σ3(`) which are of length 1
2

each. Clearly, a contradiction since no gap of

L can contain two diameters of the circle S on its boundary.

Thus, collections (a) and (c) are the only ones that are possible. Let us focus on

collection (c). If a leaf ` is a medium or a long leaf, then there exists a long or a
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medium leaf ˆ̀ as its sibling. Consider the closed subset of the closed disk D bounded

by the leaves ` and ˆ̀ that does not contain the center of S. Let us call that region

C(`).

0 1
2

1
2

1
6

1
3

(1
4
,1
4
)

y = |3x− 1|y = 3x

Figure 3.1. Graph of the length function. Length of the leaf (‖`‖)
on x-axis and length of the image leaf (‖σ3(`)‖) on the y-axis.

Remark 3.2.2. (1) Length of the image leaves of the σ3 map :-

‖σ3(`)‖ =

3‖`‖ 0 ≤ ‖`‖ ≤ 1
6
,

|3‖`‖ − 1| 1
6
< ‖`‖ ≤ 1

2

(2) If 1
4
< ‖`‖ < 1

2
, we have ‖σ3(`)‖ < ‖`‖ and ‖σ3(`)‖ ≥ ‖`‖ otherwise. Any

leaf of length smaller than 1
4

grows and leaves of length bigger than 1
4

shrink

and a leaf of length 1
4

will have the image leaf of same length.

(3) Among leaves of length bigger than 1
4
, the closer the leaves get to a critical

chord (of length 1
3
) of the circle, shorter their images get.

Proposition 3.2.3. Let L be a cubic symmetric lamination. Let ` be a medium

or a long leaf. If k is minimal such that `k = σk3(`) intersects the region C(`)∪−C(`),

then `k is either a long or a medium leaf.
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Proof. Consider the sequence of lengths Li = ‖`i‖ of the forward images `i =

σi3(`) of the leaf `. Let L = ‖`‖. We have two cases here.

(i) If L < 1
4
.

From Remark 3.2.2 (2), the leaf `1 is bigger than the leaf `. We claim that

the leaf `1 intersects the region C(`) ∪ −C(`). Consider the long sibling ˆ̀ of

the leaf `. We have σ3(`) = σ3(ˆ̀) = `1. Using Remark 3.2.2 (2) again, we

deduce that the leaf `1 is smaller than the leaf ˆ̀. It follows that the leaf `1

intersects the region C(`)∪−C(`) and `1 is clearly either a long or a medium

leaf. In other words k in the lemma is equal to 1.

(ii) If L ≥ 1
4
.

Claim. The leaf `1 is shortest among the forward images of the leaf ` until

the leaf `k+1.

From Figure 3.1, we can deduce that if L = 1
3
, then `1 is a point, L1 = 0.

If L = 1
4
, then all the forward images `i have the same length 1

4
. It follows

that in both the above sub-cases, claim is trivial.

Let L ∈ (1
4
, 1

3
) ∪ (1

3
, 1

2
).

Using the length function in Remark 3.2.2 (1), length of the leaf `1 is

‖σ3(`)‖ = L1 = |1 − 3L|. Let us consider minimal j such that j > 1 and

Lj < L1. Since j is minimal, Lj−1 > Lj. The leaf `j−1 could not have been

a short leaf as short leaves only grow (Remark 3.2.2 (2)). And using Remark

3.2.2 (3), we have that the long/medium leaf `j−1 is more closer to a critical

chord of S than `, i.e |Lj−1 − 1
3
| < |L − 1

3
|. It follows that the leaf `j−1

intersects the region C(`) ∪−C(`). As j is minimal, it we can conclude that

`k = `j−1, i.e j − 1 = k.

21



Note that the width of each strip in the region C(`) ∪ −C(`) is 1
3
∗ L1.

So, for a short leaf to intersect the region C(`)∪−C(`), it has to have length

smaller than 1
3
∗ L1. And from the above claim, none of the forward images

of the leaf ` till the leaf `k+1 can have a length smaller than L1. Thus, `k is

either a long or a medium leaf.

�

Definition 3.2.4. Short Strips - Given a medium or a long leaf ` in the cubic

symmetric lamination L, we call the region C(`)∪−C(`) as its Short Strips and each

of the connected component, a Short Strip.

Remark 3.2.4. Few things to be noted about Short Strips of ` are-

(a) Both the Short Strips are bounded by a pair of medium and a long leaf.

Short Strip C(`) is bounded by ` and its sibling ˆ̀ and Short Strip −C(`) is

bounded by −` and its sibling −ˆ̀.

(b) If a critical chord of S has to be drawn without crossing any of the four leaves

{`, ˆ̀,−`,−ˆ̀} bounding the Short Strips, then it has to lie inside them.

(c) Any leaf or a gap of L in the complementary components of Short Strips

map 1− 1 onto its image.

A useful corollary to Proposition 3.2.3 is as follows:

Corollary 3.2.5. (Short Strip Lemma). If a leaf ` is such that it is closest

to the critical chord (length of ` closest to 1
3
) among its forward images, then no

forward image of ` can enter its Short Strips C(`) ∪ −C(`).

Proof. First,we observe that as every leaf on forward iterates of σ3 grows to

a leaf of length at least 1
4

in the future, the leaf ` closest to a critical chord of the
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C(l)

−C(l)

l

Figure 3.2. Short Strip of the leaf l : C(l) ∪−C(l). Dashed line is a
critical chord inside the strip.

circle has to have length at least 1
4
. There are no long or medium leaves `i among the

forward images of leaf ` satisfying |‖`i‖ − 1
3
| < |‖`‖ − 1

3
|. In other words, there are

no long or medium leaves `i intersecting the Short Strips C(`) ∪ −C(`). This is a

trivial condition in Proposition 3.2.3 and it follows that no forward image of ` can

enter the Short Strips C(`) ∪ −C(`). �

Theorem 3.2.6. (No Wandering Triangles). Let L be a cubic symmetric

lamination and G be a triangular gap of L. If G does not eventually map to a leaf

under the map σ3, then G is (pre)periodic.

Proof. Let us assume by the way of contradiction that G is not (pre)periodic.

Then there exists an infinite sequence of gaps {Gi}∞i=0 where Gi = σi3(G) and G0 = G.

Let di be the length of the shortest leaf in Gi. As G does not eventually map to a leaf

under the σ3 map, di 6= 0 ∀i. We can show that the euclidean area in D is bounded

below in terms of di. And since the total area of D is finite, di → 0. It implies that
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there are infinitely many di that are smaller than all previous di and all of them

get arbitrarily close to zero. Such short leaves cannot be the images of short leaves.

It follows from Remark 3.2.2(3) that they must be the images of leaves of lengths

converging to 1
3
. It follows that gaps Gi converge to a critical leaf ` ∈ L.

From property (D3), it follows that there exists gaps −Gi that coexist with gaps Gi

in the cubic symmetric lamination L. Clearly, gaps −Gi also should wander. Thus

for the contradiction to work, the sequences of gaps Gi and −Gi should converge to

the pair of critical leaves ` and −` respectively in L. Let `i be the leaf of Gi closest

to `. In other words, length Li = ‖`i‖ is closest to 1
3

among all sides of Gi.

Claim1. First we claim that every gap Gi has a short leaf. In other words,

di <
1
6
∀i.

If all the leaves of Gi have length more than 1
6
, then there exists at least one leaf in

Gi having length bigger than 1
3
. Similar thing happens with −Gi. It follows that the

critical leaves ` and −` run in the interior of Gi and −Gi resulting in leaves of the

lamination L crossing each other. If di = 1
6

and other leaves of Gi have length bigger

than 1
6
, then, too, we would have a leaf in Gi having length bigger than 1

3
and the

same argument works.

If two leaves of Gi have length 1
6
, the third side would be a critical leaf which means

Gi collapses to a leaf contradicting the hypothesis.

Consider two gaps Gm and Gk in the sequence of gaps {Gi}∞i=0 satisfying the following

conditions.

(a) There are three conditions for Gm as follows. (i) Gm has a side `m closest to a

critical leaf than any side of any Gi with i < m, i.e |Lm− 1
3
| < |Li− 1

3
| ∀i < m,

(ii) |Lm − 1
3
| < d0 and (iii) Lm ≥ 1

4
. We can make sure such a gap exists in

the sequence because the gaps Gi converge to a critical leaf ` ∈ L.
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(b) Let k > m be minimal so that Gk is more closer to a critical leaf than Gm

or in other words Gk has a side `k inside the short strips C(`m) ∪ −C(`m)

such that |Lk − 1
3
| < |Lm − 1

3
| (there exists such k since the gaps Gi have to

get closer to `).

Note that the whole triangle Gk has to be inside C(`m) ∪−C(`m) which implies that

dk ≤ |13 − Lm|.

Claim2. di > |3Lm − 1| ∀1 ≤ i ≤ k and i 6= m.

Note that no gap in the sequence {Gi}∞i=0 can map to a gap in the sequence {−Gi}∞i=0

because it would result in the infinite sequences becoming finite. If Gi cannot map

to −Gj, then Gi cannot map to its sibling gap −”Gj, too. Combining these two

arguments, we can now conclude that ∀i < k and i 6= m, Gi is outside the short strips

C(`m) ∪ −C(`m), i.e |Lm − 1
3
| < |Li − 1

3
| ∀i < k and i 6= m.

Claim1 says there will be at least one short leaf for every Gi. The shortest leaf of Gi

is either obtained by image of either a leaf closer to a critical chord or image of a

short leaf of Gi−1. It implies that di = min{3di−1, |3Li−1 − 1|}.

We have ∀i < k and i 6= m; |Lm − 1
3
| < |Li − 1

3
| =⇒ |3Li − 1| > |3Lm − 1|.

We will prove the claim2 by induction up to number k.

(a) i = 1 :- d1 =min{3d0, |3L0 − 1|}. From the construction of Gm, we have

3d0 > |3Lm−1| and from the earlier inequality for i = 0, we have |3L0−1| >

|3Lm − 1|.

Thus, d1 > |3Lm − 1|.

(b) Induction step: i→ i+1. Let us assume di > |3Lm−1|. Since, ∀i < k; |3Li−

1| > |3Lm − 1|, it implies that di+1 =min{3di, |3Li − 1|} > min{3|3Lm −
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1|, |3Lm − 1|} > |3Lm − 1|.

Note that the last induction step is k − 1→ k.

Now from the claim2, we have |3Lm − 1| < dk and preceding claim2, we have the

inequality dk ≤ |3Lm−1|
3

. Combining both inequalities, we get |3Lm − 1| < |3Lm−1|
3

giving us the contradiction. �

The above theorem tells us that every gap G of a cubic symmetric laminations is

either (pre)critical or (pre)periodic (or both).

3.3. Classification of gaps

Using the results obtained in the previous section, we shall make a qualitative

analysis of gaps for cubic symmetric laminations. Recall the notion of degree of the

map σ∗d|Bd(G) : Bd(G)→ Bd(σd(G)) from the Definition 2.2.8.

Theorem 3.3.1. Let L be a cubic symmetric lamination and G be a gap of L.

Then either

(a) G eventually collapses to a leaf or

(b) G eventually maps to a periodic gap G̃ and the first return map g on G̃

(g(G̃) = G̃) is either of degree 1 ,2 or 4.

Proof. From the No Wandering Triangles Theorem 3.2.6, it is clear that G

eventually collapses to a leaf or maps to a periodic gap G̃.

Consider the periodic gap G̃ and the first return map g on it (g(G̃) = G̃). The

possible degrees for the map g can be either 1,2,3 or 4. If a gap in the periodic orbit

of G̃ has both the critical chords of the circle in their interior, then the degree of g is

3. If two of the gaps in the periodic orbit of G̃ has a critical chord of the circle each

in their interior, then the degree of g is 4. Clearly, degree of g cannot be more than 4
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as there cannot be more than two critical chords in a circle. If only one of the gaps

in the periodic orbit of G̃ contain a critical chord in its interior, then degree of g is 2.

If none of the gaps in the periodic orbit of G̃ have a critical chord in their interior,

then degree of g is 1.

The thing left to prove is that there cannot be a periodic gap G̃ with the first

return map g of degree 3. Let the gap G̃ contain two critical chords in its interior.

From the property (D3) of a cubic symmetric lamination L, there should be a gap

−G̃ symmetric to G̃ in the lamination L. It is clear that like G̃, -G̃ also contains two

critical chords in its interior. It follows that the only way for the gaps G̃ and −G̃ to

coexist in L is if both G̃ and −G̃ coincide, i.e for every leaf ` in Bd(G̃) there exists a

symmetric leaf −` in Bd(G̃).

Now consider the biggest leaf ` in Bd(G̃). Clearly, ` has to be the biggest leaf in its

orbit as any chord of S bigger than ` would intersect the interior of G̃. It follows that

‖`‖ > 1
4

(see Remark 3.2.2 (2)). Also both the two siblings ˆ̀ and ˜̀ of leaf ` are in

Bd(G̃) and have the same length bigger than 1
4
. From the earlier discussion following

Definition 3.2.3, it is clear that the leaves in the triplets {`, ˆ̀, ˜̀} and {−`,−ˆ̀,−˜̀}

are all disjoint from each other and have the same length bigger than 1
4
. It follows

that the six disjoint leaves add up to a sum of lengths bigger than 6
4

= 3
2
> 1. Clearly,

a contradiction. �

From the above theorem, it is clear that every gap is either a (pre)periodic gap or

a collapsing quadrilateral or eventually maps to a collapsing quadrilateral. For the

rest of the section, we will study periodic gaps. A lot of observations can be made

about periodic gaps using the Short Strip Lemma, which will be used as the main

criterion to classify gaps. Let G be a periodic gap in a cubic symmetric lamination L.
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From property (D3) of a cubic symmetric lamination it follows that for every gap G

there is a gap −G in L symmetric to G.

Periodic gaps G are of two kinds:

(1) Gaps with symmetric orbits. If a gap G eventually maps to the gap −G,

i.e there exists k such that σk3(G) = −G, then we say G is a gap with a

symmetric orbit. For a gap G with symmetric orbit, the gaps G and −G are

in the same orbit of gaps because if σk3(G) = −G, then σk3(−G) = G, too.

(2) Gaps without symmetric orbits: If a gap G never maps to the gap −G under

any forward iterate, i.e σk3(G) 6= −G ∀k, then we say G is a gap without a

symmetric orbit. For a gap G without symmetric orbit, it follows that the

gaps G and −G have two disjoint orbits.

As we have seen in the proof of the Theorem 3.3.1, for the first return map g to have

degree 4, the periodic gap G with a critical chord ` in its interior has to map to −G

having a critical chord −` in its interior. In other words, G needs to be a gap with

symmetric orbit. There are other kinds of periodic gaps which have symmetric orbits.

By Proposition 3.2.1, central symmetric gap G is a gap with symmetric orbit since G

is invariant and both G and −G coincide.

Definition 3.3.1 (Primary major). Let G be a periodic gap of a cubic symmetric

lamination L. Consider the collection of all leaves in the boundaries of the gaps in

the orbit of G. We call the closest leaf/leaves in the above collection to a critical

chord of S, primary majors of the orbit of G.

In the later section, we will show that there can be 1, 2 or 4 primary majors of an

orbit of periodic gaps. Now, we need a few basic lemmas concerning periodic gaps

before proceeding on to classify gaps of a cubic symmetric lamination. Let G̃ be the
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gap containing a primary major P of the orbit of G in L. Clearly, P is a medium or

a long leaf having length bigger than 1
4

(see Remark 3.2.2 (2)).

Let ` and `′ be two disjoint chords of S. There are 3 complementary components

to ` ∪ `′ in D. The component bounded by ` and `′ is called the strip between the

chords ` and `′. We denote it by Sb(`, `
′).

Lemma 3.3.2. If P is not a critical leaf, then there is exactly one other medium

or a long leaf Q in G̃.

Proof. We have two cases here.

(i) If G̃ is a Central Symmetric gap. Then there exists a leaf −P in G̃ symmetric

to the leaf P . The leaves P and −P are of the same length. Thus, we have

Q = −P .

(ii) If G̃ is not a Central Symmetric gap. We have two sub-cases here, when G̃

is critical and otherwise.

(a) G̃ is critical: From the discussion following Definition 3.2.3, there exists

a long or a medium sibling leaf P̂ of the leaf P in the cubic symmetric

lamination L. And because G̃ is critical, a critical chord of S can be

found in the interior of G̃ without crossing the leaves of G̃. It follows

that P̂ is in G̃. Thus, we have Q = P̂ .

(b) G̃ is non-critical: By Proposition 3.2.1 (2), L has a central symmetric

gap S or a central symmetric leaf s. We will first consider the case when

L has a central symmetric gap S.

Consider two longest leaves M and −M in the gap S. Consider the

Short Strips C(M) ∪ −C(M) bounded by the leaves M,−M and their

siblings.
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Claim. The gap G̃ is inside the Short Strips C(M) ∪ −C(M).

Consider a symmetric pair of critical chords of S that do not cross the

boundary leaves of the Short Strips C(M) ∪ −C(M). They have to lie

inside the Short Strips C(M) ∪−C(M) (see Remark 3.2.4 (c)). Clearly,

a long leaf ` of L is in a strip between such critical chords. It follows that

every long leaf ` of L is either in the Short Strips C(M)∪−C(M) or in

the strip Sb(M,−M) between the leaves M and −M . Since the central

symmetric gap S is in the strip Sb(M,−M), the long leaf ` cannot be in

it too, without crossing the leaves of S. Thus, every long leaf ` of L is

in the Short Strips C(M)∪−C(M). We can now argue that one among

the leaves P and P̂ in L is inside the Short Strips C(M) ∪ −C(M). It

follows that the gap G̃ is inside the short strips C(M) ∪ −C(M).

As the gap G̃ is inside the Short Strips C(M) ∪ −C(M), there exists

exactly one other medium or a long leaf Q in G̃. Either, both the leaves

P and Q are long or both are medium depending on whether they are

closer to the leaf M or its sibling M̂ .

�

If P is a critical leaf, there are examples of periodic gaps containing no other

medium or a long leaf and there are periodic gaps which contain exactly one other

medium or a long leaf Q.

Lemma 3.3.3. If Q exists, each side ` ∈ Bd(G̃) eventually maps into the set

{P,−P,Q} and Q eventually maps to P or −P or it is invariant under the first

return map g. If Q does not exist, each side ` ∈ Bd(G̃) eventually maps to P or −P .

Proof. Note that the first return map g of the periodic gap G̃ is an iterate of

σ3. We will consider two cases when G̃ is a gap with symmetric orbit and otherwise.
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Consider a short leaf ` on G̃, it eventually lands on a leaf of length at least 1
4

by some

forward iterate of σ3. Among all such leaves on the orbit of `, consider the leaf ˆ̀

closest to a critical chord of the circle S. We will first assume that the leaf Q exists.

(a) G̃ does not map to −G̃ under any iterate of σ3. We claim that ˆ̀ has to be

either P or Q. Let us assume that ˆ̀ is neither P nor Q. It implies that ˆ̀

is not a side of G̃. By the definition of primary major, either P is closer to

a critical chord of S than the leaf ˆ̀ or both the leaves P and ˆ̀ are at the

same distance away from a critical chord. The only leaves that can be at

the same distance away from a critical chord as the primary major P are

the leaves −P and −Q of the gap −G̃. As G̃ does not map to −G̃ under

any iterate of σ3, ˆ̀ can be neither −P nor −Q. It follows that both P and

Q are closer to a critical chord of S than the leaf ˆ̀. Thus, the Short Strips

C(ˆ̀) ∪ −C(ˆ̀) strictly cover the gap G̃. Recall that the leaf ˆ̀ is a forward

image of the short leaf ` on G̃. It implies that ˆ̀ has to eventually map to a

side of G̃ ⊂ C(ˆ̀)∪−C(ˆ̀) giving us the contradiction of Corollary 3.2.5 Short

Strip Lemma. Thus, ˆ̀ is either P or Q and each side ` ∈ Bd(G̃) eventually

maps to P or Q.

We claim that Q eventually maps to P or it is invariant under the first

return map g. Consider the Short Strips C(Q) ∪ −C(Q). It is not hard to

see that the gap G̃ lies in the Short Strip C(Q). Either Q is invariant under

the first return map g or Q maps to a side of G̃ ⊂ C(Q) under the map g.

By Proposition 3.2.3, if Q is not invariant under g, g(Q) is a long leaf in

C(Q). It follows that g(Q) = P .

(b) G̃ maps to −G̃ under some iterate of σ3. In this case, ˆ̀can be any of the leaves

in the set {P,−P,Q,−Q} as G̃ eventually maps to −G̃. Using the same
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arguments as before, if ` is neither of the leaves in the set {P,−P,Q,−Q}, we

get a contradiction of Corollary 3.2.5 Short Strip Lemma. Thus, ` ∈ Bd(G̃)

eventually maps into the set {P,−P,Q,−Q}.

Consider the leaf −Q in Bd(−G̃). We claim that the leaf −Q eventually

maps to P or Q. We already know from the arguments before that the gap

G̃ lies in the Short Strip C(Q) ∪ −C(Q). As G̃ maps to −G̃ under some

iterate of σ3, the leaf −Q has to a map to a side in Bd(G̃) before getting

back to itself. By Proposition 3.2.3, it can be only a long leaf. Thus, −Q

eventually maps to P or Q. Hence, each side ` ∈ Bd(G̃) eventually maps

into the set {P,−P,Q}.

Using the same arguments in the last paragraph of case (a), we can

conclude that Q eventually maps to P or −P or it is invariant under the

first return map g.

Finally, if P is a critical leaf, Q may not exist and using the same exact arguments

as before, we can show that all the non-critical leaves of G̃ eventually map to P or

−P . �

The following few lemmas are about periodic gaps with the first return map g of

degree 1.

Lemma 3.3.4. Let G be a periodic gap with the first return map g of degree 1. All

the periodic points of the map g in the set ∂(G) have the same period.

Proof. Consider two distinct periodic orbits {gi(a)}m−1
i=0 and {gi(b)}n−1

i=0 of periods

m and n respectively. Arrange the m points in the periodic orbit of a around the

circle S counterclockwise. They divide the circle into m arcs. There exists a point

bk = gk(b) in one of the m arcs. Let the two adjacent points of the periodic orbit of a

on either side of bk in the above arc are a and as = gs(a). By Definition 2.2.7, the
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circular order of the points a, bk and as are preserved by the map g and its iterates.

It follows that all the points {gi(bk)}m−1
i=0 of the periodic orbit b are sandwiched in

between two adjacent points of the periodic orbit of a. In other words, the points

{gi(bk)}m−1
i=0 occupy the m arcs mentioned above. The point gm(bk) will be in the

same arc ā as in which the point bk lies.

Now we can repeat the same process for the point gm(bk) until we exhaust all points

of the periodic orbit of b. At the end of the process, we get the same number of points

of the periodic orbit of b in each of the m arcs. Thus, we conclude that n should be a

multiple of m.

We can do the same exact argument starting with the periodic orbit of b and a point

aj in the periodic orbit of a. It gives us a similar conclusion that m should be a

multiple of n. Combining both the arguments, we get m = n.

�

Now, we will prove an important result about fixed return triangles using Short

Strip Lemma. Consider a triangle T formed by three chords of S. We say T is a fixed

return triangle under the map g = σk3 if it satisfies the following conditions.

(i) There exists a map g = σk3 that fixes all the three vertices of the triangle T

and no image of T under a smaller iterate σi3, 0 < i < k coincides with T ,

(ii) the circular order of the vertices of T is preserved by all iterates of the σ3

map and

(iii) two distinct forward images of T under the map σ3 can only meet at a side

or a vertex.

If both T and −T are fixed return triangles under the map g = σk3 , then we call the

pair {T,−T} as symmetric fixed return triangles under the map g = σk3 . Note that

the last two conditions mentioned above make sure that the fixed return triangles
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behave like gaps of a cubic symmetric lamination. So without the abuse of notation,

we will refer to the fixed return triangles as gaps and its sides as leaves.

Proposition 3.3.5 (No fixed return triangles). There does not exist a pair of

symmetric fixed return triangles under the map g = σk3 for all k.

Proof. By the way of contradiction, let us assume that there exists a pair of

symmetric fixed return triangles {T,−T}. Consider the gap T̃ that contains the

primary major ` of the orbit of gaps of T . Similarly, we have the gap −T̃ that contains

the primary major −` of the orbit of gaps of −T .

Clearly, there exists at least one short leaf m on T̃ . As every leaf under forward

iterates of the map σ3 grows to a leaf of length at least 1
4

in the future, there exists

a medium or a long leaf in the forward orbit of the leaf m having length at least 1
4
.

Among all such leaves in the orbit of m, consider the leaf M closest to a critical chord

of S. Note that since the leaf m is periodic it maps to M and vice-versa. Also, leaf

M cannot be an edge of T̃ as m under the first return map g maps to itself. We have

two cases.

(a) T̃ does not map to −T̃ under any iterate of σ3. Since T̃ does not eventually

map to −T̃ , leaf M cannot be an edge of −T̃ , too. It implies that M has to

lie outside the Short Strips C(`) ∪ −C(`). Now, consider the Short Strips

of leaf M , C(M) ∪ −C(M). It is not hard to see that the gap T̃ is inside

the region C(M) ∪ −C(M), particularly the short leaf m. As noted above,

the leaf M has to eventually map to m which is inside its Short Strips

C(M) ∪ −C(M) giving us the contradiction of Corollary 3.2.5 (Short Strip

Lemma).

(b) T̃ maps to −T̃ under some iterate of σ3. As σk3(T̃ ) = T̃ , using the basic notion

of symmetry, we can deduce that σ
k
2
3 (T̃ ) = −T̃ . We claim that σ

k
2
3 (`) = −`
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and σ
k
2
3 (m) = −m. If that is not the case, the implication is that T̃ rotates

by one or two clicks when it maps to −T̃ . It follows that −T̃ undergoes the

same amount of clicks when it maps to T̃ and as a result, we have the first

return map g = σk3 that doesn’t fix the vertices of T̃ , a contradiction.

It follows that the leaf M cannot be an edge of −T̃ here, too. Now, using

the same exact argument as in part(a) we get the required contradiction.

�

Corollary 3.3.6. Let G be a periodic gap with the first return map g of degree

1. Then ∂(G) can contain at most two periodic orbits (under the first return map g

of G).

Proof. By the way of contradiction, let us assume that there exists three distinct

periodic orbits {gi(a)}m−1
i=0 , {gi(b)}m−1

i=0 and {gi(c)}m−1
i=0 on ∂(G). Note that by Lemma

3.3.5, all the three periodic orbits have the same period. Arrange the points from all

the three periodic orbits around the circle S counterclockwise. Consider a triangle

T formed by any three adjacent points in the set ∂(G). We claim that T is a fixed

return triangle under the map gm.

(i) Let the vertices of T be denoted by x, y and z. Clearly all the points x, y

and z are fixed by the map gm as the points are chosen from the periodic

orbits of the same period m.

We claim that any three adjacent vertices of the set ∂(G) belong to one

each of the three periodic orbits. This is because of the same argument used

in the proof of Lemma 3.3.4. Two adjacent points from distinct periodic

orbits stay adjacent all along their periodic orbits. It can be applied to three

periodic orbits taken two at a time and the claim follows.

It follows that no images of T under the map gi 0 < i < m coincide with T .
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Also since G is a gap of cubic symmetric lamination, forward images of G

meet only at a side or a vertex. We can combine the above two arguments

and conclude that none of the forward images of T under a smaller iterate

of the σ3 when compared with the map g coincide with T .

(ii) Since G is a periodic gap with the first return map g of degree 1, circular

order of any three points in the set ∂(G) are preserved by the map σ3 and

its iterates. Thus, the circular order of the vertices of T is also preserved by

the iterates of the σ3 map.

(iii) As forward images of G meet only at a side or a vertex, forward images of T

meet only at a side or a vertex, too.

Similarly we get a fixed return triangle −T in the gap −G. Thus, there is a pair

of symmetric fixed return triangles under the map gm contradicting Proposition

3.3.5. �

3.3.1. Finite gaps. Consider a finite gap G of a cubic symmetric lamination L.

By Theorem 3.3.1,

(a) Either G eventually maps on to a collapsing quadrilateral and then collapse

on to a leaf or

(b) G is (pre)periodic.

We call a finite periodic gap of cubic symmetric lamination, a periodic polygon.

Lemma 3.3.7. Let G be a periodic polygon, then the degree of the first return map

g is one. And either,

(a) g permutes the sides of G transitively as a rational rotation. We call such a

gap 1-transitive rotational gap

(or)
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(b) sides of G form two disjoint periodic orbits and on each orbit, g permutes

the sides of G transitively. We call such a gap 2-transitive rotational gap. A

2-transitive rotational gap G eventually maps to the gap −G. If ` and `′ are

two adjacent sides of G, then the leaf ` eventually maps to the side −`′ of

−G.

Proof. Let G̃ be the gap that contains the primary major P of the orbit of G.

Clearly P is not a critical leaf, otherwise σ3(G̃) would contain one point less than G̃

and G̃ can never come back to itself. Similarly, if the degree of the first return map g

is bigger than 1, then images of G have less vertices than G and G cannot return to

itself. Hence the degree of the first return map g is equal to one.

By Lemma 3.3.3, there exists exactly one other medium or a long leaf Q in G̃. First,

we claim that no leaf ˜̀ of G̃ is invariant under the map g. If g fixes both the endpoints

of ˜̀, it would have to fix all the vertices of G̃ because the circular order of any three

vertices of G̃ is preserved by the σ3 map and its iterates. It follows that we get a

fixed return triangle T inside G̃ and a similar triangle −T inside −G̃, a contradiction

with Proposition 3.3.5. The map g cannot reverse the two endpoints of ˜̀, again

because the circular points of the vertices of the gap G̃ will not be preserved by g. In

particular, Q cannot map back to itself under the map g.

Thus, by Lemma 3.3.3, we conclude that the leaf Q eventually maps to P or −P . It

follows that every leaf of G̃ eventually maps to P or −P .

By the Corollary 3.3.7, ∂(G̃) contains at most two periodic orbits (under the first

return map g) which leads us to the following cases.

(i) ∂(G̃) contains one periodic orbit. It follows that there is one orbit of leaves

of G̃ under the map g. Thus, from the above discussion, every side of G̃

(including Q) eventually maps to P . In other words, g permutes the sides
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of G transitively. Since the circular order of the vertices of G̃ has to be

preserved by the map g, it follows that the action of g on leaves of G is

rotational (Definition 4.1.2) in the sense that every leaf skips a certain fixed

number of leaves while mapping on to its image leaf under the map g. We

call such a gap 1-transitive rotational gap.

(ii) ∂(G̃) contains two periodic orbits. It follows that there are two disjoint orbits

of leaves of G̃ under the map g. By the earlier argument, we can conclude

that half of the leaves of G̃ eventually map to P and the other half eventually

map to −P and the leaves P and −P are in two disjoint orbits. On each

of the two orbits separately, action of g is rotational and transitive similar

to what we observed in case(i). We call such a gap 2-transitive rotational

gap. Since half of the leaves of G̃ eventually map to −P , it implies that at a

certain point on its orbit, G̃ maps to −G̃ before returning back to itself. In

other words, G̃ is a gap with symmetric orbit.

We have already seen that every two adjacent vertices of ∂(G̃) are a part

of two disjoint periodic orbits of vertices. It follows that if ` and `′ are two

adjacent sides of G, then they are in two disjoint orbits of leaves, too. One

orbit of leaves contains P and the other orbit contains the leaf −P . Let us

say the leaf ` is in the orbit that contains the leaf P , and the leaf `′ of is in

the orbit that contains the leaf −P . It follows that the leaf −`′ of will be in

the orbit that contains the leaf P . We can conclude that leaves ` and −`′

are in the same periodic orbit. Thus, the leaf ` eventually maps to the leaf

−`′ of −G.

Note that the conclusions obtained for the gap G̃ hold for all the gaps on the orbit of

G, since all of them are conjugate under the σ3 map. �
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Below are the two important properties about (pre)periodic polygons resulting

from the above lemma.

Corollary 3.3.8. Let G be a finite gap of a cubic symmetric lamination L such

that G is not (pre)critical. No diagonal of the polygon G can be a leaf of any cubic

symmetric lamination.

Proof. Let ` be a diagonal of G. Note that for ` to be part of a cubic symmetric

lamination, −` also has to exist in L along with it.

By Theorem 3.2.6, G is a (pre)periodic gap. Also ` does not map to a critical leaf

and collapse to a point as G is not (pre)critical. Let G̃ = σi3(G) be the periodic gap

and ˜̀= σi3(`) be the corresponding diagonal leaf in G̃. By Lemma 3.3.7, G̃ is either

a 1-transitive rotational gap or a 2-transitive rotational gap. In both the cases, we

shall prove that a forward image of ˜̀ will either cross itself or cross the leaf −˜̀ .

(a) G̃ is a 1-transitive rotational gap. The leaf ˜̀ splits the gap G̃ into two

polygons. One polygon may contain more vertices of G̃ than the other one. If

that is the case, consider the polygon G0 having fewer vertices of G̃. Choose

a point p ∈ ∂(G0) such that it is not an endpoint of the leaf ˜̀. Since, G̃ is

a 1-transitive rotational gap, all the vertices of G̃ are in one periodic orbit

under the first return map g (g(G̃) = G̃). It follows that there exists an

iterate gi such that the leaf gi(˜̀) has p as one of the endpoints. We claim

that the leaf gi(˜̀) crosses the leaf ˜̀. Like the leaf ˜̀, the leaf gi(˜̀) also splits

the gap G̃ into two polygons with unequal number of vertices. Consider the

sub-gap G1 with fewer vertices of G̃. Since, the circular order of the vertices

of G̃ is preserved by the map g and its iterates, we can argue that both the

sub-gaps G0 and G1 have the same number of vertices. Notice that p is the

common vertex to both the sub-gaps G0 and G1. It follows that the polygons
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G0 and G1 are not disjoint and their interiors intersect. Thus, leaves gi(˜̀)

and ˜̀ cross each other.

If both the polygons have the same vertices of G̃, then choose a point

p ∈ ∂(G̃). Any iterate gk(˜̀) splits the polygon into equal parts. It follows

that the leaf gk(˜̀) crosses the leaf ˜̀ for any k.

(b) G̃ is a 2-transitive rotational gap: For a 2-transitive rotational gap, things

get slightly complicated because two adjacent vertices on such a gap G̃ are

not part of 1 orbit, but two disjoint orbits. Like case (a), the leaf ˜̀ splits the

gap G̃ into two polygons. If both the polygons have an unequal number of

vertices, consider the polygon G0 having fewer vertices of G̃. If the number

of vertices of the polygon G0 is more than 3, then we proceed in a similar

way as before. Choose a point p ∈ ∂(G0) such that there is exactly one point

in ∂(G0) between itself and one of the endpoints (say q) of the leaf ˜̀. Since,

G̃ is a 2-transitive rotational gap, the points p and q are in one periodic

orbit. It follows that there exists an iterate gi such that the leaf gi(˜̀) has p

as one of the endpoints. Using the similar arguments as in case (a), we can

show that the leaves gi(˜̀) and ˜̀ cross each other.

If the number of vertices of the polygon G0 is exactly 3, we do the

following. Choose a point p ∈ ∂(G0) such that it is not an endpoint of the

leaf ˜̀. Now, as discussed in the proof of Lemma 3.3.7, ∂(G̃) contains two

disjoint periodic orbits. The periodic orbit of the point p is disjoint from the

periodic orbit containing the endpoints of the leaf ˜̀. Also, the leaves ˜̀ and

−˜̀ are in two disjoint periodic orbits of leaves. It follows that there exists

an iterate σi3 such that the leaf gi(−˜̀) has p as one of the endpoints. Clearly,

the leaves σi3(−˜̀) and ˜̀ cross each other.

If both the polygons have the same vertices of G̃, then choose a point
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p ∈ ∂(G̃). Any iterate gk(˜̀) splits the polygon into equal parts. It follows

that the leaf gk(˜̀) crosses the leaf ˜̀ for any k.

Since there are crossings of leaves among the forward images of ` and −`, they cannot

be leaves of a cubic symmetric lamination. �

Corollary 3.3.9. Any two different (pre)periodic polygons have disjoint sets of

vertices, unless both are preperiodic and share a common boundary leaf that eventually

maps to a critical leaf.

Proof. By Corollary 3.3.8, it is clear that no two periodic polygons can share a

side. So, it suffices to prove that two periodic polygons cannot share a vertex. If a

periodic polygon G has a common vertex with another periodic polygon G′, then by

the transitive (1-transitive or 2-transitive) action each vertex of G must be a vertex

of a polygon on the orbit of G′, and each vertex of G′ must be a vertex of a polygon

on the orbit of G. This forces infinitely many further periodic polygons on the orbits

of G and G′, a contradiction.

Since we just proved that two periodic polygons cannot share a vertex, any two

(pre)periodic polygons G and G′ sharing a vertex have to eventually map to a single

polygon Ĝ for otherwise when both G and G′ become periodic they would be still be

sharing a common vertex.

Preperiodic polygons whose image polygon is Ĝ share a critical leaf on their boundaries.

Which means that both of the (pre)periodic polygons G and G′ have to be preperiodic

and share a common boundary leaf that eventually maps to the critical leaf. �

Corollaries 3.3.8 and 3.3.9 are used in a few important lemmas in chapter 5. Here

is a useful lemma about gaps which eventually map onto collapsing quadrilaterals.
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Lemma 3.3.10. Let {G,−G} be the collapsing quadrilaterals of a cubic symmetric

lamination and s be the length of their shorter sides. Then any gap which eventually

maps to G or −G has a pair of opposite sides of length at most s/3.

Proof. The other two sides of G (and −G) have length 1
3
− s, and all sides of G

map to a single leaf of length 3s.

Consider a leaf ` with length greater than s/3. During its forward orbit, ` can never

get closer to a critical chord than the long leaves of G. It implies that no forward

image of ` (barring ` itself) can get shorter than the leaf m of length 3s.

Thus, we can conclude that no leaf with length greater s/3 can ever land on a short

leaf of G (and −G). It follows that every eventually collapsing quadrilateral has a

pair of opposite sides with length no more than s/3. �

3.3.2. Infinite gaps. Consider infinite periodic gaps of cubic symmetric lamina-

tions. We will be using the following standard topological result about locally strictly

expanding maps for studying infinite gaps.

Theorem 3.3.11. Any locally strictly expanding map on an infinite compact

metric space is non-injective.

Proof. Locally strictly expanding- A map f : X → X on a compact met-

ric space X such that ∀x ∈ X there is an open neighborhood Ux of x such that

d(f(u), f(v)) > d(u, v),∀u, v ∈ Ux is said to be a locally strictly expanding map.

Let f be an injective locally strictly expanding continuous map , then we will

prove that X is finite. First, since f is a continuous injection from a compact metric

space, it is a homeomorphism onto its image f(X). Hence, {f(Ux), x ∈ X} is an

open cover of f(X). Since f(X) is compact, ∃ Lebesgue number δ > 0 such that for

every y ∈ f(X) there is x ∈ X such that B(y, δ) ⊂ f(Ux). This implies, since f is
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locally strictly expanding map, if d(y, z) < δ, then d(f−1(y), f−1(z)) < d(y, z), where

y, z ∈ f(X).

Claim. ∃N ∈ N : f(X) can be covered by N sets of diameter at most δ
2n

, ∀ n ∈ N.

We will prove this inductively.

(1) The case n = 1 . Since f(X) is compact, there exists finite number N sets

of diameter at most δ
2

covering it. It is important to notice that all of these

sets are inside the members of the cover {f(Ux), x ∈ X}.

(2) Inductive assumption. Assume that f(X) = U1 ∪ ... ∪ UN , where Ui are of

diameter at most δ
2n

. Again, all of the sets {Ui}Ni=1 are inside the members

of the cover {f(Ux), x ∈ X}.

(3) Inductive step. Consider Ui, we have ∀ (y, z) ∈ Ui, d(f−1(y), f−1(z)) <

d(y, z).

For Ui, we can have ∃α ∈ (0, 1) : ∀ (y, z) ∈ Ui, d(f−1(y), f−1(z)) ≤ αd(y, z).

Since clearly f is surjective onto f(X), {f−1(Ui)}Ni=1 cover X , thereby f(X)

too.

And from above, f−1(Ui) are all of diameter at most α δ
2n

. Let V 1
i = f−1(Ui)∩

f(X).

Proceeding like this, we can get sets {V m
i }Ni=1 in f(X), all of diameter at

most αm δ
2n
< δ

2n+1
. This completes the proof of claim.

Hence, it is clear from the above claim that f(X) is finite. As f is a homeomorphism

onto f(X), X is injective too! �

Using the above theorem, we can deduce the following lemma about infinite gaps.

Lemma 3.3.12. Orbit of every infinite periodic gap has a critical gap or a gap

with a critical leaf on its boundary.
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Proof. Every infinite periodic gap G is clearly a compact subset of D. And the

map σ3 and its iterates are locally strictly expanding. Consider the first return map

g = σk3 of G. By Theorem 3.3.11, the map g has to be non-injective. Thus, there

exists a gap Ĝ in the orbit of G such that σ3|∂(Ĝ) is not one-to-one onto its image.

It follows that the gap Ĝ is either a critical gap or a gap with a critical leaf on its

boundary. �

Suppose that G is an infinite gap. By Theorem 3.3.1, G is (pre)periodic and from

the above lemma, G eventually maps to a periodic gap G̃ which is either a critical

gap or a gap with a critical leaf on its boundary.

Definition 3.3.2 (Fatou gaps). We call an infinite periodic gap G, a Fatou gap

if ∂(G) is uncountable and G is critical.

Definition 3.3.3 (Siegel gaps). We call an infinite periodic gap G, a Siegel gap

if ∂(G) is uncountable and the degree of the first return map g (g(G) = G) is 1. Note

that G must have a critical leaf on its boundary.

Definition 3.3.4. We call an infinite periodic gap G, a caterpillar gap if ∂(G) is

countable.

Lemma 3.3.13 (Fatou gaps). Let G be a periodic gap such that the primary major

P of the orbit of G is not a critical leaf.

(i) If the first return map g is of degree two, then G is a Fatou gap without

symmetric orbit that intersects the circle in a Cantor set.

(ii) If the map g is of degree four, then G is a Fatou gap with symmetric orbit

that intersects the circle in a Cantor set.
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Proof. Consider the gap G̃ that contains the primary major P of the orbit of G.

The conclusions obtained for G̃ hold for all the gaps on the orbit of G, too, since all

of them are conjugate under the map σ3.

(i) The first return map g̃ : G̃→ G̃ has degree two.

Clearly G̃ is a critical gap with a critical chord in its interior. As the degree of the

map g̃ is two, G̃ does not map to −G̃ under any iterate of the σ3 map. By Lemma

3.3.3, each side of G̃ eventually maps to P where P is chosen such that it is invariant

under the map g̃. Let P̂ be the long or a medium sibling of P . We have g̃(P̂ ) = P .

Note that the first return map g̃ acts on Bd(G̃) as a double covering. Since every

side of G̃ eventually lands on P , all sides of G̃ can be obtained by taking pre-images

of P under iterates of g̃. As leaves of any invariant lamination are dense on the circle,

it follows that G̃ touches the circle in a cantor set obtained by removing a countable

dense sequence of open intervals determined by the pre-images of P . Thus, ∂(G̃) is

an uncountable set and G̃ is a Fatou gap.

Finally, G̃ is a gap without symmetric orbit because G̃ does not map to −G̃ under

any iterate of the σ3 map.

(ii) g̃ : G̃→ G̃ has degree 4:

As the degree of the map g̃ is 4, G̃ eventually maps to −G̃ under the σ3 map. Thus,

G̃ is a gap with symmetric orbit.

The first return map g̃ acts on Bd(G̃) as a four fold covering. By Lemma 3.3.3, each

side of G̃ eventually maps to P or −P , where P is chosen such that it is invariant

under the map g̃. Also because G̃ is a gap with symmetric orbit, −P has to eventually

map to a side of G̃. By Short Strip Lemma, it has to be a long leaf and we conclude

that −P eventually maps to P . In other words, leaves P and −P are in the same

periodic orbit of leaves. It follows that each side of G̃ eventually maps to P and sides

of G̃ can be obtained by taking pre-images of P under iterates of g̃ as in case (i).
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The difference here is that every leaf in G̃ will have four pre-images under the map g.

Similar to the case (i), we can argue that intersection of G̃ with the circle is a Cantor

set. �

Lemma 3.3.14 (Siegel and caterpillar gaps). Let G be a periodic gap such that

the primary major P of the orbit of G is a critical leaf. Then, the degree of the first

return map g is one and

(i) if ∂(G) does not have periodic points, then G is a Siegel gap that intersects

the circle in a cantor set. The map g acts on Bd(G) as an irrational rotation.

(ii) if ∂(G) has periodic points, then G is a Caterpillar gap that intersects the

circle in a countable set of points. Furthermore, at most one side S of G

is fixed by g. Except for S, all sides of G eventually collapse to points, and

they are connected to each other by one-sided infinite chains.

Proof. Consider the gap G̃, that contains the primary major P of the orbit of

G. If the primary major P is a critical leaf, then the first return map g̃ maps the

sides of G̃ other than P bijectively to the sides of G̃. Therefore the degree of the map

g̃ is one and G̃ has infinite sides.

(i) (Siegel case) Vertices of G̃, ∂(G̃) does not have periodic points. In the

absence of periodic points, no side can ever return to itself. By Lemma 3.3.3

that every side of G̃ including Q (if it exists) eventually maps to P or −P .

We claim that no two sides of G̃ can touch. If two sides of G̃ meet at a

common endpoint p, there exists two distinct forward iterates of p that are

same as the image of the critical leaf P (or −P ). It follows a forward image

of the point p is periodic, a contradiction with the fact that ∂(G̃) does not

contain periodic points.

There are two kinds of Siegel gaps as follows.
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If G̃ is a gap without a symmetric orbit, then every side of G̃ eventually

maps to P under the map g̃. Sides of G̃ are obtained by taking the pre-

images of critical leaf P under iterates of g̃. Since leaves of an invariant

lamination are dense on the circle, we can conclude that G̃ touches the circle

in a cantor set obtained by removing a countable dense sequence of open

intervals determined by the pre-image leaves.

Consider the quotient space of Bd(G̃) obtained by the equivalence relation

which collapses each leaf to a point. It is a circle on which g̃ induces a

homeomorphism h. As discussed above, pre-images of critical leaf P under g̃

are dense in Bd(G̃), and hence h has a dense backward orbit. A standard

topological result is that any homeomorphism of a circle that has a dense

orbit is conjugate to an irrational rotation.

We conclude that g̃ acts on Bd(G̃) as an irrational rotation along the backward

orbit of critical leaf P .

If G̃ is a gap with a symmetric orbit, then every side of G̃ eventually

maps to P or −P . Note that both the critical leaves P and −P cannot map

to each other because it would result in one of the endpoints of the critical

leaf being a periodic point. Thus, Bd(G̃) contains two disjoint infinite orbits

of leaves, symmetric with respect to the center of the circle S. Sides of G̃ are

obtained by taking the pre-images of critical leaves P under the iterates of g̃

and the pre-images of the critical leaves −P under the iterates of g̃
1
2 . Since

leaves of an invariant lamination are dense on the circle, we can conclude

that G̃ touches the circle in a cantor set obtained by removing a countable

dense sequence of open intervals determined by the pre-image leaves.

Similar to the above case, g̃ acts on Bd(G̃) as an irrational rotation along

each of the two disjoint backward orbits of critical leaves P and −P .
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(ii) (Caterpillar case) Bd(G̃) has periodic points. By Lemma 3.3.4, all the

periodic points have the same period. We have two cases.

(a) Periodic points of G̃ are fixed points under the map g̃. We claim that

there is either exactly one fixed point or one fixed leaf on Bd(G̃). There

cannot be three or more fixed points in Bd(G̃), because it would result

in a fixed return triangle T . We get a similar fixed return triangle −T

in Bd(−G̃), thereby contradicting Proposition 3.3.5. Two fixed points

in Bd(G̃) can always be joined to form a new fixed leaf and construct a

new cubic symmetric lamination. We will use that approach in the last

chapter.

By Lemma 3.3.3, all the non-fixed leaves eventually map to the critical

leaf P or −P . Thus, there is at least one fixed point of the map g̃ which

is an endpoint of the critical leaf P . There is a possibility of one more

fixed point which makes Q a fixed leaf. One interesting observation

about the action of g̃ on G̃ is that the leaves form a one-sided infinite

collapsing chain. Consider the endpoint x of a non-fixed leaf in Bd(G̃)

and its image point g̃(x). Now, consider the arc of S containing points

x and g̃(x) not containing the fixed point of g̃. If G̃ is a gap without

symmetric orbits, this arc has to eventually map to an arc under the

critical leaf P in a 1-1 fashion. It follows that the arc cannot contain any

other point of ∂(G̃). Thus, all the non-fixed leaves of G̃ form a one-sided

infinite collapsing chain, eventually collapsing on to the critical leaf P

under the map G̃. We will show in the last chapter that there are two

fixed points of g̃ in ∂(G̃). It follows that the backward orbit of P under

the map G̃ converge to a second fixed endpoint in ∂(G̃) and the fixed

leaf Q is formed by joining the two fixed points.
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For a gap with symmetric orbit, there can be one other vertex of Bd(G̃)

in the arc of S containing points x and g̃(x). It is because of the fact

that there are exactly two disjoint symmetric orbits of leaves in Bd(G̃)

determined by the critical leaves P and −P . The two non-fixed adjacent

leaves of G̃ belong to the two disjoint orbits. When a non-fixed leaf

maps to P , its adjacent one maps to −P . This does not change the fact

that the leaves of G̃ form a one-sided infinite collapsing chain. It is also

interesting to note that both the endpoints of the critical leaves P and

−P are in the same orbit because when G̃ eventually maps to −G̃, the

only place P can map in Bd(−G̃) is the fixed endpoint of −P .

It is also clear now that in both the cases the vertices of gap G̃, being

the pre-images of endpoints of P and −P are countably infinite.

(b) Periodic points of G̃ are of period q > 1 under the map g̃. We will

construct a new lamination and reduce it to the above case where

periodic points of g̃ are fixed points. Consider the boundary of the

convex hull L of all periodic points of g̃. By adding L and its pre-

images under the map σ3, original cubic symmetric lamination L can

be subdivided. If q > 2, then the convex hull L of the periodic points

is a finite gap. By Lemma 3.3.7 L is a 1-transitive or a 2-transitive

rotational gap. Thus, the gap L should consist of all the q-period points

of the periodic orbit. In other words, the convex hull L of the periodic

points must have exactly q sides. Similarly if q = 2, convex hull L is a

leaf.

In the new subdivided lamination, the original gap G̃ has been split into

‘q+ 1’ sub-gaps namely the gap L and the q gaps {G̃i}qi=1. Each of the q

gaps {G̃i}qi=1 share a leaf with L which is the fixed boundary leaf under
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their first return map g̃q. Note that all of them are in the same periodic

orbit of gaps. There exists a gap G̃k among them with a critical leaf P

on its boundary, and a fixed leaf on its boundary under the map g̃q. It

follows now from case(a) that the sides of G̃k form a one-sided infinite

collapsing chain.

�

Below is a theorem about Siegel and Fatou gaps. We have briefly alluded to it in

the previous lemma. Proof of it is left to the reader.

Theorem 3.3.15 (Siegel gaps and Fatou gaps of degree k > 1). . Suppose that G

is a periodic infinite gap of period n such that ∂(G) is uncountable. Then there exists

a monotonic map ψG : Bd(G)→ S such that it collapses all edges of G to points. ψG

semi conjugates σn3 |Bd(G) to a map σ̂G = σ̂ : S→ S so that either

(1) σn3 |Bd(G) is of degree k ≥ 2 and σ̂ = σk : S→ S (G is a Fatou gap), or

(2) σn3 |Bd(G) is of degree 1 and σ̂ is an irrational rotation. (G is a Siegel gap)

We summarize all the previous lemmas about finite and infinite gaps in Theorem

3.3.16.

Theorem 3.3.16 (Classification of gaps). A gap G of a cubic symmetric lamina-

tion intersects S in either a finite set of points, a Cantor set, or a countable set of

points.

If G is not periodic under σ3, then either

(a) it maps by some iterate of σ3 to a periodic gap or

(b) it is a triangle or quadrilateral which eventually collapses.

If G is periodic under σ3, then either
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(a) If the first return map g is of degree one, then G may intersect the circle in

i (Periodic polygon) a finite number of points, in which case G is a

finite-sided polygon. g acts as a homeomorphism on G, and leaves of G

from one or two disjoint orbits of leaves under g. g permutes the sides

of G transitively on the orbits(as a rational rotation).

ii (Siegel gap) a Cantor set, g acts on ∂G as an irrational rotation.

iii (Caterpillar gap) a countable set of points. At most one side S of G

is fixed by g; except for S, all sides of G eventually collapse to points,

and they are connected to each other by one-sided infinite chains.

(b) if the first return map g is of degree two (Fatou gap without symmetric

orbit), in which case G may intersect the circle in a Cantor set.

(c) if the first return map g is of degree four, (Fatou gap with symmetric

orbit), in which case G may intersect the circle in a Cantor set.

We provide some pictures for the gaps mentioned in the previous theorem in

figures 3.3-3.5.
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(a) (b)

Figure 3.3. Cubic symmetric laminations illustrating gaps in the
cases of Theorem 3.3.16.
(a) An invariant central symmetric gap, (b) a pair of symmetric periodic
polygons. The shaded gaps are invariant.

(c) (d)

Figure 3.4. Cubic symmetric laminations illustrating gaps in the
cases of Theorem 3.3.16.
(c) a Fatou gap that maps to itself as a degree two covering, (d) a
caterpillar gap with countable number of sides.
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(e) (f)

Figure 3.5. Cubic symmetric laminations illustrating gaps in the
cases of Theorem 3.3.16.
(e) A pair of symmetric Siegel gaps. The shaded gaps are invariant. (f)
A pair of collapsing quadrilaterals- gaps with the blue critical chords
(not part of the lamination) inside them.
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CHAPTER 4

CENTRAL SYMMETRIC ROTATIONAL GAPS

4.1. Basic definitions

Definition 4.1.1. Let A be a subset of the unit circle S = R/Z and f be a map

from A → S (not necessarily continuous). We say that f is order-preserving if for

each triple (a,b,c) in A the triple (f(a),f(b),f(c)) lies in the same cyclic order around

S, or else is degenerate (i.e. two, or all three, of the points coincide)

Definition 4.1.2. A subset A ⊂ S is invariant under f : S→ S iff f(A) = A. An

invariant set A is rotational under f if and only if A is closed and f is order-preserving

on A.

Definition 4.1.3. Any order-preserving map f : S→ S of the circle has a well

defined rotation number

ρ(f) = lim
n→∞

f̃n(x̂)− x̂
n

(mod 1)

where f̃ : R→ R is any lift satisfying f̃(x̂+ 1) = f̃(x̂) + 1,∀x̂ ∈ R.

Corollary 4.1.1. If A ⊂ S is rotational under f , then A has a well-defined

rotation number ρ(A) given by

ρ(A) = ρ(F ) = lim
n→∞

F̃ n(â)− â
n

(mod 1)
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where F̃ is any lift of an order-preserving extension F of f |A satisfying F̃ (x̂+ 1) =

F̃ (x̂) + 1,∀x̂ ∈ R.

Note that â is the lift of a point in A.

4.2. Rotational orbits

Let the circle S = R/Z be parametrized by [0,1) and â b denote the arc between

the two points determined by the numbers a and b along counter clockwise direction.

So whether a < b or a > b, â b always denotes the arc along a counterclockwise

direction from points a to b. And we can associate a point x on the arc â b with a

number in [0,1).

4.2.1. Quadratic map. First, we will try to understand the rotational behavior

of the map σ2. The following results about the σ2 map rotational orbits are based on

ideas from [5] and serve as a basis for our work in the rest of the section.

Proposition 4.2.1. A is rotational under the map σ2 if and only if A is a subset

of a closed semi circle.

Proof. If (a, b, c) is contained in a closed semicircle, then (σ2(a), σ2(b), σ2(c))

also has the same cyclic order as (a, b, c) since σ2 doubles the length. Conversely,

if (a, b, c) are not contained in a closed semicircle, then (a, b + 1
2
, c) are, and hence

(σ2(a), σ2(b), σ2(c)) = (σ2(a), σ2(b+ 1
2
), σ2(c)) has the same cyclic order as (a, b+ 1

2
, c)

which is opposite to that of (a, b, c). �

Let X = {x, σ2(x), σ2
2(x), σ3

2(x), ....} denote the forward orbit of a point x ∈ S.

Let X be contained in a semi-circle. We will consider ‘a’ to be the point having the

lowest value assigned in the interval [0, 1) among the closed set of points X. Now, it

is not hard to see that X is contained in the semi-circle ˝�a a+ 1
2
. We want to find
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out a way to compute the rotation number ρ(X). Let us define the lift F̃ required,

as mentioned in the Corollary 4.1.1.

F̃ (t) =



2a 0 ≤ t ≤ a

2t a < t ≤ a+ 1
2

2a+ 1 a+ 1
2
< t < 1

And it is extended to the rest of real numbers using the property F̃ (t+ 1) = F̃ (t) + 1.

It is easy to see that F̃ is the lift of the σ2 map acting on X. Let â ∈ R be the lift of a.

From the above definition â = 2a. Also we can observe that 0 ≤ F̃ n(â)− F̃ n−1(â) < 1.

So the (mod1) in the formula in Corollary 4.1.1 is not needed. Let F̃ n(â) = ân, a = a0

and σn2 (a0) = an. Clearly, ân is the lift of an.

ρ(X) = lim
n→∞

F̃ n(a)− 2a

n
= lim

n→∞

[F̃ n(a)− 2a]

n
= lim

n→∞

[ân − 2a]

n
.

where [x] denotes the integer part of x. [ân− 2a] increases at most by 1 as n increases

by 1. Thus, [ân − 2a] is the number of times that happens. Now, we will define a

sequence called crossing over sequence which helps us to track this behaviour in the

orbit X.

Definition 4.2.1. In the above forward orbit X = {a0, a1, a2, a3, ....}, if 0 ∈˚�aj aj+1, then we associate bit 1 with aj, otherwise we associate bit 0. The sequence

{yj}∞j=0 obtained is called the crossing over sequence of the orbit of a.

In other words, the crossing over sequence is assigned ‘1’ whenever the orbit crosses

over ‘0’ and is ‘0’ if it does not cross over.
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We can now see from the above discussion and the definition of the crossing over

sequence {yj}∞j=0 that whenever yj is 1, [âj − 2a] increases by 1. This leads to the

following proposition.

Proposition 4.2.2. Let X = {x, σ2(x), σ2
2(x), σ3

2(x), ....} denote the forward orbit

of a point x ∈ S. Let a be the lowest point among the closed set of points X. If

the binary expression of the point a is denoted by {bi}∞i=1 where bi ∈ {0, 1} and

a = (b1, b2, b3, .....) =
∞∑
i=1

bi
2i

Let pj(a) = b1 + ....+ bj. Then the rotation orbit of X is

ρ(X) = lim
j→∞

pj(a)

j

Proof. Let a = a0 and σn2 (a0) = an. If 0 ∈ ˚�aj aj+1, it implies that aj+1 = 2aj − 1

or in other words aj ∈ 1̃
2

0 (lower half of the circle). It follows that the ‘j’th bit of

crossing over sequence yj is same as the ‘1’st bit of aj or the ‘j’th bit of a, i.e yj = bj .

And from the above discussion, we have seen that [âj − 2a] increases by 1 whenever

yj increases by 1. �

Crossing over sequences are very important in computing rotation numbers. For

the next section we will use them to obtain results about the rotation numbers of

central symmetric gaps. For the σ2 map, whenever the rotational orbit comes to the

lower half of the circle 1̃
2

0, at the next stage the orbit crosses over 0 and ‘finishes’ a

wrap around circle. For a periodic orbit, it is demonstrated below.

Also for points on the circle in the binary expansion, the σ2 map becomes the shift

map for the representation. For a rational rotation number, the numerator can be

understood as the number of clicks an orbit rotates or the number of wraps around

the circle during the full movement of points along the orbit. As shown in the figure

below for the orbit of 01011 = 11
31

under the map σ2, number of wraps are 3, hence

the rotation number 3
5
.
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A

B

C

DE

01/2

Figure 4.1. Periodic orbit of 01011 = 11
31

(A− > B− > C− > D− >

E) under the map σ2 having rotation number 3
5
. Numerator of the

rotation number is equal to the number of points on the blue arc.

It can be observed that during every wrap, a unique point of the orbit in the lower

half of the circle moves past the point zero (point O) to a point of lesser value (note

that circle is parametrized by the quotient space [0, 1]/(0 ∼ 1). The number of wraps

can be associated with the number of distinct points of the orbit on the lower half

of the circle. In the figure 2.1, points B,D and E are on the lower half making the

rotation number to be 3
5

for the periodic orbit determined by the point 01011 = 11
31

.

In general, the number of distinct points on the lower half of the circle are the number

of 1’s in a repeating block of the binary expansion of x.

Hence, for σ2 map, rotation number is the frequency with which the digit ’1’ occurs

in the binary expression of a point in the periodic orbit. For example, 00101 has

rotation number 2
5
.

The following important result is proved in [5]. We shall provide it without proof

here, but it is useful for our results in the next section.
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Theorem 4.2.3. For each ν ∈ [0, 1) there exists a unique minimal σ2−invariant

rotational subset Aν ⊂ S.

4.2.2. Cubic map.

Proposition 4.2.4. A is rotational under the map σ3 if and only if S\A contains

one interval of length at least 2
3

or two disjoint intervals of length at least 1
3

as its

components.

Proof. ⇐= Let M be an interval of length 2
3

or union of two disjoint intervals

of length 1
3

inside S \ A as the statement suggests. Clearly S \M is connected or

contains two components. In either of the cases it is not hard to see that S \M maps

one to one monotonically onto the full circle under σ3. It is obvious now that σ3

preserves order of any tuple in S \M . As A ⊂ S \M , σ3|A is order-preserving.

=⇒ Conversely, let us assume three distinct points {a, b, c} ∈ A are such that

S \ {a, b, c} does not contain an interval of length 2
3

or two disjoint intervals of

length 1
3
. Now (σ3(a), σ3(b), σ3(c))= (σ3(a), σ3(b ± 1

3
), σ3(c ± 1

3
)). One of the four

combinations of (a, b± 1
3
, c± 1

3
) lie in an interval of length 1

3
and hence has the same

order as (σ3(a), σ3(b), σ3(c)) from above. It is clear now that cyclic orders of (a, b, c)

and (σ3(a), σ3(b), σ3(c)) do not match. �

Remark 4.2.5. As it can be seen there are two kinds of order-preserving periodic

orbits possible under σ3 map, one lying inside an interval of length 1
3

and the other

having two disjoint intervals of length at least 1
3

in its complement. We will study

both of them in the paper.

Consider points on the circle in the ternary expansion i.e x ∈ S can be represented

as b1b2b3.... where bi ∈ {0, 1, 2} and x =
∞∑
i=1

bi
3i

. σ3 then becomes a shift map. Now
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similar to the previous section, it is natural to explore the question of how to compute

the rotation number for σ3 rotational orbits, given a point in the ternary expansion.

A

B

C

D

E

01/2

1/3

2/3

Figure 4.2. Periodic orbit of 02021 = 61
242

(A− > B− > C− > D− >

E) under the map σ3 having rotation number 3
5
. Numerator of the

rotation number is equal to the number of points on the blue arcs.

Lemma 4.2.6. Rotation number of the orbit of ‘x’, X = {x, σ3(x), σ2
3(x), ....} is

given by

ρ(X) = lim
n→∞

S(n)

n

where S(n) is the number of points of the set {x, σ3(x), ....σn3 (x)} on the arcs 1̄
3

1
2
∪ 2̄

3
0.

Proof. Consider the crossing over sequence {yi}∞i=1 of X = {x, σ3(x), σ2
3(x), ....}.

During every wrap as in the case of σ2-rotational orbits, whenever the orbit “crosses

over 0”, a unique point moves past point zero to a point of lesser value. Thus,

potential regions on the circle containing those points are determined by solving the

inequalities 1 < 3x < x+ 1 and 2 < 3x < x+ 2 which imply x ∈ (1
3
, 1

2
)∪ (2

3
, 1). Thus,

the crossing over sequence is ‘1’ whenever the orbit is on the arcs 1̃
3

1
2

and 2̃
3

0, i.e
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yi = 1 if and only if σi3(x) ∈ 1̄
3

1
2
∪ 2̃

3
0. And similar to the argument for the σ2 map,

the number of ‘1’s in the crossing over sequence is the numerator of the limit fraction

in the rotation number formula. �

The figure above demonstrates the case of a finite rotational orbit under the σ3

map. In the figure below, points B, D are on the arc 2̃
3

0 and point E is on the arc

1̃
3

1
2
, making the rotation number to be 3

5
for the periodic orbit determined by the

point 02021 = 61
242

(in ternary expansion).

Let x ∈ S be represented in ternary expression as {ai}∞i=1 where ai ∈ {0, 1, 2}

and x = (a1, a2, a3, .....) =
∞∑
i=1

ai
2i

. Then, we claim that S(n) is related to the ternary

expression {ai}∞i=1 as S(n) = #{1 ≤ i ≤ n|ai = 2 or (ai = 1 and aj = 0 where j =

min(i < k < i+ n|ak 6= 1))}, where #A denote the cardinality of A.

For the points of the orbit X on the arc 2̃
3

0 (one of the blue arcs), their first bit in

the ternary expansion is ‘2’. Thus, points on the arc 2̃
3

0 can be characterized by the

number of ‘2’s in (a1, a2, a3, .....).

For the other arc 1̄
3

1
2
, it is slightly more complicated. The first bit is a ‘1’ which

eventually gets followed by a ‘0’ before a ‘2’(eg: 1102 ∈ 1̄
3

1
2
, 1201 6∈ 1̄

3
1
2
). Hence in

computing the rotation number, count only the ‘1’s which will lead to a ‘0’ before a

‘2’.

4.3. Small rotational gaps

Definition 4.3.1. Small rotational orbits. Small rotational orbits are

defined as the kind of rotational σ3 periodic orbits contained inside an interval of

length 1
3
.
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Convex-hull of small-rotational orbits form gaps of cubic invariant laminations. We

call them Small rotational gaps.

We will focus on studying small-rotational orbits first which in turn helps us in

studying central symmetric rotational gaps later. Note that the point x forms a

rotational orbit if and only if x± 1
2

also forms a rotational orbit.

Proposition 4.3.1. Small rotational gaps are of two kinds:

i) Upper small rotational gaps. small rotational gaps that lie in the upper

semi-circle 0̄ 1
2

and

ii) Lower small rotational gaps. small rotational gaps that lie in the lower

semi-circle 1̄
2

0.

Proof. A simple fact about the small-rotational orbit of a point x ∈ S is that it

has only two bits among {0, 1, 2} in its ternary expansion, since if there were all the

three bits in x = (a1, a2, ....)

,then ∃i, j, k : σi3(x) = xi = (0..........) and σj3(x) = xj = (1..........), σk3(x) = xk =

(2..........) which implies that the points {xi, xj, xk} of the orbit do not lie inside an

interval of length 1
3
.

Thus we have three possible cases now for the point x ∈ S :

(i) x is made of the bits {0, 1}.X = {x, σ3(x), σ2
3(x), ....} never enters 2̃

3
0. It

follows that X should be a subset of the cantor set obtained by removing

the 2̃
3

0 and its iterated pre-images under the σ3 map from the unit circle

S. Also it is not hard to see that the cantor set ⊂ 0̃ 1
2
. Thus, in this case

X = {x, σ3(x), σ2
3(x), ....} lies in the upper-semicircle 0̃ 1

2
. We call X as an

upper small rotational orbit and the convex hull of X is called an upper

small rotational gap.
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(ii) x is made of the bits {1, 2}. Note that the point x− 1
2

diametrically opposite

to x is made of the bits {0, 1} now. From the above case, the forward orbit

of x− 1
2

is a small-rotational orbit lying in the upper semi-circle. Thus, the

original orbit X lies in the lower-semicircle 1̃
2

0 and we call X as a lower

small rotational orbit. Convex hull of X is called a lower small rotational

gap. Lower and upper small rotational gaps always exist in symmetric pairs.

(iii) x is made of the bits {0, 2}. We claim that this case does not exist. There

exists at least one bit combination of ‘20’ in the ternary expansion of x.

In other words, there exists a point σk3(x) = xk = (2, 0, ...) in the orbit

X = {x, σ3(x), σ2
3(x), ....}. xk ∈ 2̃

3
0 and xk+1 ∈ 0̃ 1

3
.

Let δ be the length of the arc 2̆
3
xk. Then the length of the arc ˚�0 xk+1 is 3δ.

Remember for X to be a small-rotational orbit, the complement of X, S \X

should consist of an arc of length 2
3
. And we know that X does not enter the

arc 1̄
3

2
3
. It follows that S \X ⊂ ¸�xk+1 xk. But the length of the arc ¸�xk+1 xk

from the above is 2
3
− 2δ smaller than 2

3
. Thus, it is not possible for X to be

a small-rotational orbit.

�

Lemma 4.3.2. There exists exactly two small rotational gaps symmetric to each

other for every rotation number.

Proof. By Theorem 4.2.3, for each ν ∈ R there exists a unique minimal

σ2−invariant rotational subset Aν ⊂ S. If we interpret the points of the set Aν

in ternary expansion, we get an upper small-rotational orbit having the same rotation

number ν. That is because from the above proposition, the upper small rotational

orbits are made of the bits {0, 1}. Thus, we get a 1-1 correspondence between

σ2−invariant rotational sets and upper small-rotational sets. The convex hull of the
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upper small-rotational set gives us the upper small rotational gap Gν . The symmetric

gap −Gν is a lower small rotational gap and has the same rotation number ν. �

Recall the definition of central symmetric gaps from the Definition 3.2.2 in the

previous chapter. Central symmetric gaps have two disjoint symmetric intervals of

length 1
3

at least. So they are rotation of a different kind as mentioned in remark

4.2.5. The main focus of this chapter is to study the rotational behavior of central

symmetric gaps. It turns out small rotational gaps are very useful for that purpose.

Also recall the following from the earlier chapter.

(1) The central symmetric gap G is 1-transitive if G has one periodic orbit on

its boundary.

(2) The central symmetric gap G is 2-transitive if G has two periodic orbits on

its boundary.

The main relation between central symmetric and small rotational gaps is based on

the fact that A is a σ3 periodic orbit iff σ2(A) is periodic under σ3 since

a1
// a2

// ..... an
ss

⇐⇒

2a1
// 2a2

// ..... 2an
ss

Note that σ2(A) is either n periodic if A is 1-transitive central-symmetric gap or n
2

periodic if A is 2-transitive central-symmetric gap.

A similar thing is true for infinite orbits too.

Lemma 4.3.3. Gap G is a central symmetric gap if and only if σ2(G) is a small

rotational gap. And if ρ(G) = α, ρ(σ2(G) = β. Then α = β
2

or α = 1
2

+ β
2
.
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Proof. Let us prove the first part of the lemma.

The σ2 map linearly stretches any arc of S having length less than 1
2
. Thus, if G is

the central symmetric gap, the σ2 map stretches the two disjoint symmetric arcs of

at least length 1
3

each in two components of S \ ∂(G) to form an arc of length at

least 2
3

in a component of S \ ∂(σ2(G)) making σ2(G) a small rotational gap. On the

other hand if we have σ2(G) = G̃ a small rotational gap, then the full pre-image of

∂(G̃) under the σ2 map consists of pairs of diametrically opposite points. And the

full pre-image of the two-third length arc in a component of S \ ∂(G̃) consists of two

disjoint symmetric arcs of length 1
3

each in two components of S \ ∂(G). Thus, G is a

central symmetric gap.

To understand the relation between the rotation numbers of G and σ2(G), we need to

understand the relation between their respective lifts used in the definition of rotation

number.

The rotational action of σ3 : G → G can be extended to f : S → S and then lifted

to the universal cover F̃ : R→ R which determines the rotation number ρ(G) = α.

Similarly we can do the same thing for the small rotational gap σ2(G) and get its

corresponding lift G̃ : R→ R which determines ρ(σ2(G)) = β. Now using the path

lifting property we get that the maps F̃ and G̃ are conjugated by the lift of the

σ2 map which is x → 2x acting on the universal cover R as shown in the diagram.

G σ2(G)

G σ2(G)

-σ2

?

αx

?

βx

-σ2

R R

R R

-x→2x

?
F̃

?
G̃

-x→2x

The actual expressions for the lifts F̃ and G̃ are provided in the remarks after the

lemma.
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Now ,

ρ(G) = α = lim
n→∞

F̃ n(x)− x
n

(mod 1), ρ(σ2(G)) = β = lim
n→∞

G̃n(x)− x
n

(mod 1).

And from the above commutative diagram F̃ (x) = 1
2
G̃(2x).

=⇒ F̃ 2(x) = F̃ (F̃ (x)) = 1
2
G̃[2(F̃ (x))] = 1

2
G̃[21

2
G̃(2x)] = 1

2
G̃2(2x).

Inductively we can prove F̃ n(x) = 1
2
G̃n(2x).∀n ∈ N.

lim
n→∞

F̃ n(x)− x
n

= lim
n→∞

G̃n(2x)
2
− x

n
= lim

n→∞

G̃n(2x)− 2x

2n
=

1

2
lim
n→∞

G̃n(2x)− 2x

n
.

Now we can conclude that (2α − β) mod 1 = 0, i.e 2α − β should be an integer.

As both 0 ≤ α, β < 1, we have −1 < 2α − β < 2. It follows that 2α − β = 0 or

2α− β = 1. Thus, α = β
2

or α = 1
2

+ β
2
. �

Remark 4.3.4. (1) Let G be a central symmetric gap. There will be two

symmetric sides on G having the same length, bigger than any other side of

G. Let a pair of endpoints of one such side be {a, a+ 1
2
} such that 0 ≤ a ≤ 1

2
.

We will define the lift F̃ map as follows:

F̃ (t) =



3a t ∈ [0, a]

3t t ∈ (a, a+ 1
6
)

3a+ 1
2

t ∈ [a+ 1
6
, a+ 1

2
]

3t− 1 t ∈ (a+ 1
2
, a+ 2

3
)

3a+ 1 t ∈ [a+ 2
3
, 1)

For real numbers lying outside [0, 1) we extend using the relation F̃ (t+ 1) =

F̃ (t) + 1. The small rotational gap σ2(G) has ‘2a’ as one of its vertices. We
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will define the lift G̃ map for it as follows:

G̃(t) =



6a t ∈ [0, 2a]

3t t ∈ (2a, 2a+ 1
3
)

6a+ 1 t ∈ [2a+ 1
3
, 1)

For real numbers lying outside [0, 1) we extend using the relation G̃(t+ 1) =

G̃(t) + 1.

(2) It is easy to see that F̃ and G̃ are order-preserving extensions of σ3|G and

σ3|σ2(G) respectively.

(3) And also G̃(x) = 2F̃ (x
2
).

Lemma 4.3.5. Let G be a central symmetric gap. Then ∂(G) has two possibilities.

(a) ∂(G) ∈ 0̄ 1
4
∪ 1̄

2
3
4
. In which case ρ(G) = 1

2
ρ(σ2(G)).

(b) ∂(G) ∈ 1̄
4

1
2
∪ 3̄

4
0. Here ρ(G) = 1

2
+ 1

2
ρ(σ2(G)).

Leaves 01
2

and 1
4

3
4

are the only central symmetric gaps (degenerate) which are in both

the above regions.

Proof. By the above Lemma, σ2(G) is a small rotational gap. Using the Propo-

sition 4.3.1, when σ2(G) is an upper small rotational gap, we have ∂(G) ∈ 0̃ 1
4
∪ 1̄

2
3
4

and when σ2(G) is a lower small rotational gap, we have ∂(G) ∈ 1̄
4

1
2
∪ 3̃

4
0.

Now we will show that for the central symmetric gaps lying in the first region rotation

numbers are smaller than 1
2

and for the gaps lying in the second region rotation

numbers are bigger than 1
2
.

(a) ∂(G) ∈ 0̃ 1
4
∪ 1̄

2
3
4
. Consider a point x ∈ ∂(G) ∈ 0̃ 1

4
∪ 1̄

2
3
4
. Let us look at the

crossing over sequence {yn}∞n=0 for the orbit of x, X = {x, σ3(x), σ2
3(x), ....}.

We claim that there cannot be two consecutive ‘1’s in the sequence yn.
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Clearly yk = 1 if and only if xk = σk3(x) ∈ 2̄
3

3
4

because that’s the only way

X can cross over 0. And xk+1 ∈ 0̃ 1
4

as σ3 linearly stretches the arc 2̄
3

3
4

to

the arc 0̃ 1
4
. Thus yk = 1 =⇒ yk+1 = 0. It implies that at least half of the

bits in the crossing over sequence yn are ‘0’s. And ρ(G) is nothing but the

“frequency” of ‘1’s in the sequence yn. Thus, ρ(G) ≤ 1
2

and from the above

Lemma ρ(G) = 1
2
ρ(σ2(G)).

(b) ∂(G) ∈ 1̄
4

1
2
∪ 3̃

4
0. In this case, there cannot be two consecutive ‘0’s in the

sequence yn. yk = 0 if and only if xk = σk3(x) ∈ 1̄
4

1
3

and xk+1 ∈ 3̃
4

0 as σ3

linearly stretches the arc 1̄
4

1
3

to the arc 3̃
4

0. The points on the arc 3̃
4

0 will

cross over ‘0’. Thus yk = 0 =⇒ yk+1 = 1. It implies that at least half of

the bits in the crossing over sequence yn are ‘1’s. And ρ(G) is nothing but

the “frequency” of ‘1’s in the sequence yn. Thus, ρ(G) ≥ 1
2

and by the above

Lemma ρ(G) = 1
2

+ 1
2
ρ(σ2(G)).

�

We provide the pictures of 1-transitive and 2-transitive finite central symmetric

gaps below. The pictures show the relation between the rotation numbers of central

symmetric gaps and small rotational gaps.
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σ2−→A

-A

B

-B

C

-C

01/2

1/3

2/3

A

B

C

01/2

1/3

2/3

Figure 4.3. On the left, a 1-transitive central symmetric gap formed
by the periodic orbit of 000112 = 1

52
(A− > B− > C− > −A− >

−B− > −C) having rotation number 1
6
. On the right, an upper small

rotational gap formed by the periodic orbit of 001 = 1
26

(A− > B− > C)

having rotation number 1
3
.

σ2−→
A

-A

B

-B
C

-C

01/2

1/3

2/3

A

B

C

01/2

1/3

2/3

Figure 4.4. On the left, a 2-transitive central symmetric gap formed
by two periodic orbits of 002 = 1

13
(A− > B− > C) and its symmetric

one 012 = 5
26

(−A− > −B− > −C) each having rotation number 1
3
.

On the right, an upper small rotational gap formed by the periodic
orbit of 011 = 2

13
(A− > B− > C) having rotation number 2

3
.
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σ2−→

A

-A

B

-B

C

-C

01/2

1/3

2/3

A

B

C

01/2

1/3

2/3

Figure 4.5. On the left, a 2-transitive central symmetric gap formed
by two periodic orbits of 021 = 7

26
(A− > −B− > C) and its symmetric

one 202 = 5
26

(−A− > B− > −C) each having having rotation number
2
3
. On the right, a lower small rotational gap formed by periodic orbit

of 112 = 7
13

(A− > B− > C) having rotation number 1
3
.

σ2−→

A

-A

B

-B

C

-C

01/2

1/3

2/3

A

B

C

01/2

1/3

2/3

Figure 4.6. On the left, a 1-transitive central symmetric gap formed
by the periodic orbit of 022211 = 17

52
(A− > −B− > C− > −A− >

B− > −C) having rotation number 5
6
. On the right, a lower small

rotational gap formed by the periodic orbit of 001 = 17
26

(A− > B− > C)

having rotation number 2
3
.
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And finally we have the main result of the section.

Theorem 4.3.6. There exists a unique central symmetric gap for every rotation

number.

Proof. Follows by Lemma 4.3.2 and Lemma 4.3.5. �

The family of central symmetric gaps also helps us in understanding the parameter

space of cubic symmetric laminations. In the next chapter a whole subsection is

devoted to that. Central symmetric gaps will be understood in relation to the critical

chords of the circle S. Note that every cubic symmetric lamination is obtained

by taking the closure of pre-images of leaves. And critical chords are necessary

to determine the three inverse branches of the σ3 map which helps us in taking

pre-images of leaves.
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CHAPTER 5

CUBIC SYMMETRIC COMAJOR LAMINATION CsCL

5.1. Comajors and their properties

In the previous two sections, we gained some insight into properties of leaves and

gaps of cubic symmetric laminations. In the current section, we will work towards

understanding the structure of the family of cubic symmetric laminations.

Every cubic symmetric lamination has three important leaves: major, comajor

and minor. They tell us all the information needed to build the lamination. Formal

definitions are given below. Consider a cubic symmetric lamination L for the rest of

the chapter.

Definition 5.1.1. Major - A leaf ` of L such that |‖`‖ − 1
3
| has the least value

among all the leaves of L, or in other words the leaf closest to the critical chord of

the circle is defined as a major of L. Let us denote a major of L as M . There are

multiple major leaves corresponding to L since,

(1) Long/medium sibling ”M of leaf M also satisfy the above definition and

(2) Symmetric pair of leaves −M and −”M also satisfy the above definition.

Definition 5.1.2. Comajor - The short sibling c of the major leaves M and”M is defined as the comajor of the lamination L. Similarly, the short sibling −c of

the other two major leaves −M and −”M is also a comajor. {c,−c} form a pair of

symmetric comajors of L.
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Definition 5.1.3. Minor - Images of the majors are defined as the minors of

the lamination. Similar to the comajors, there are two symmetric minors {m,−m}

of a cubic symmetric lamination.

Below are some useful results about these leaves.

Lemma 5.1.1. Consider the minor leaves {m,−m} of the cubic symmetric lami-

nation L. We can make the following conclusions.

(i) No forward image of m (and −m) is shorter than m.

(ii) Any leaf ` of L shorter than m also possesses the same property that no

forward image of ` is shorter than `.

(iii) If a leaf ` of L is such that it is longer than m, then no forward image of

the leaf ` can be smaller than m.

Proof. (i) The length of the minor leaf m = σ3(M) is ‖m‖ = |1− 3‖M‖|.

Consider the forward images of the minor leaf {mi}∞i=1 in L. By the way of

contradiction, let us assume that the first time a forward image of m gets

shorter than m is leaf mk. As all short leaves expand by a factor of three,

the pre-image leaf mk−1 of mk has to be a long/medium leaf for otherwise

mk would not be the first time a forward image gets shorter than m. Thus,

‖mk‖ = |1− 3‖mk−1‖|.

We know that no leaf of L gets closer to the critical chord of length 1
3

than

the major leaf M . In particular it is true for the leaf mk−1, i.e |‖mk−1‖− 1
3
| ≥

|‖M‖ − 1
3
|. It follows that |3‖mk−1‖ − 1| ≥ |3‖M‖ − 1| =⇒ ‖mk‖ ≥ ‖m‖

giving us a contradiction. We get a similar contradiction with the other

minor leaf −m.

(ii) We will prove the second statement of the lemma in a similar manner.

Consider a leaf ` which is shorter than minor leaf m, i.e ‖`‖ < ‖m‖. Consider
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the forward images of the leaf `, {li}∞i=1 in L. By the way of contradiction,

let us assume that the first time a forward image of ` gets shorter than ` is

the leaf `k. Similar to the argument above, `k−1 has to be a long/medium

leaf, i.e ‖`k‖ = |1 − 3‖`k−1‖|. |‖`k−1‖ − 1
3
| ≥ |‖M‖ − 1

3
|. It follows that

|3‖`k−1‖−1| ≥ |3‖M‖−1| =⇒ ‖`k‖ ≥ ‖m‖ =⇒ ‖`‖ > ‖`k‖ ≥ ‖m‖ giving

us a contradiction.

(iii) By the way of contradiction, let us assume that the first time a forward

image of ` gets shorter than m is the leaf `k. Similar to the argument above,

`k−1 has to be a long/medium leaf, i.e ‖`k‖ = |1− 3‖`k−1‖|. As, ‖`k‖ < ‖m‖,

it follows that |‖`k−1‖ − 1
3
| < |‖M‖ − 1

3
|. But major leaves M and −M are

the closest leaves to a critical chord of S in the lamination L giving us a

contradiction.

�

Corollary 5.1.2. Non-degenerate comajor leaves are non-periodic.

Proof. The only way for a non-degenerate comajor leaf to be periodic would

be if a minor leaf maps to comajor leaf in the future. We know that comajor leaves

are short leaves and the length of a minor equals 3∗length of comajor. By the above

lemma, the forward images of minor leaves have to be at least as long as the minor

leaves. It follows that there is no possibility of a minor leaf mapping to a comajor

leaf in the future. Thus, non-degenerate comajor leaves cannot be periodic. �

Lemma 5.1.3. The endpoints of a non-degenerate comajor leaf of a cubic symmetric

lamination L are both preperiodic with the same preperiod (and the same period) or

both not eventually periodic. In the latter case, the comajor leaf is approximated from

both sides by leaves of L that have no common endpoints with the comajor.
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Proof. Consider a cubic symmetric lamination L with a non-degenerate comajor

leaf c. It follows that L has two symmetric critical gaps G and −G bounded by the

major leaves M ,”M ,−M and −”M . By Theorem 3.3.15, G (and −G) is either a Fatou

gap (with or without a symmetric orbit) or a finite gap.

(1) If G (and −G) is a Fatou gap with or without a symmetric orbit: By the

Lemma 3.3.12, one of the major leaves M and ”M are invariant under the

first return map of G or, in other words, a major leaf is periodic, which

makes the comajor leaf c preperiodic with both endpoints having the same

preperiod 1 and the same period.

(2) If G (and −G) is a finite gap with at least 6 sides: By the No Wandering

Triangles lemma, it follows that G and its image gap must be preperiodic.

By Lemma 3.3.7, all the vertices of periodic polygons are in one periodic

orbit or two symmetric periodic orbits. In both cases, the adjacent vertices

of a periodic polygon stay adjacent within their periodic orbits, and have

the same period. It follows that both the endpoints of the major leaf M

have the same preperiod which is at least 2 and the same period. Same is

the case with the comajor leaf c.

(3) If G (and −G) is a collapsing quadrilateral. We distinguish three sub-cases

here:

(a) The major leaf M is adjacent to a finite gap with at least 6 sides:

Proceeding the same way as we have done in case(2), the finite gap G

attached to M is (pre)periodic and we get that the endpoints of the

major leaf M have the same preperiod and period. Here major leaves

can be periodic. Thus, we can conclude that both the endpoints of
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comajor leaf c are preperiodic with the same preperiod (at least 1) and

the same period.

(b) The major leaf M is adjacent to an eventually collapsing quadrilateral

G′. G′ eventually maps to collapsing quadrilaterals G or −G.

Let us first consider the case when G′ eventually maps to G. Consider

the minor leaf m on σ3(G′), m should eventually map to a boundary leaf

of G. By Lemma 5.1.1, the minor leaf m cannot map to the short leaves

of G which have a third of its length. It follows that the minor leaf

m returns to one of the two major leaves {M,”M} on G, which makes

the minor leaf periodic. Thus, the comajor leaf c, one of the pre-image

leaves of minor leaf is preperiodic with both endpoints having the same

preperiod (at least 1) and the same period.

The other case is when G′ eventually maps to −G not G. Using the

same argument as above, the minor leaf m = σ3(M) has to map to one

of the two major leaves {−M,−”M} on −G. Which means that the

minor leaf m eventually maps to the other minor leaf −m. It follows

that both the minor leaves m and −m will be in one periodic orbit.

Thus, in this case too, the comajor leaf, one of the pre-image leaves

of minor leaf is preperiodic with both the endpoints having the same

preperiod (at least 1) and the same period.

(c) Major leaf M is adjacent to no other gap. This means that the major

leaf M is a limit of other leaves. Let ` be a short boundary leaf of G.

If ` is adjacent to a finite gap with at least 6 sides, we conclude as case

(2).

If ` is adjacent to an eventually collapsing quadrilateral, then we may

erase the short edges {`, ˆ̀} on G and their corresponding symmetric
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leaves on −G together with their backward orbits, and obtain a lamina-

tion with the same minor leaves {m,−m}. The symmetric critical gaps

of the new lamination are Fatou gaps. Now we conclude as case (1).

We may thus assume that ` is a limit of other leaves as well. It turns

out that the leaves approximating M and ` have no common endpoints

with G.

If all leaves approximating M (or those approximating `) have a common

endpoint with G and thus with M (or with `), then a vertex of G is an

isolated vertex of infinitely many gaps accumulating at a side of G. The

lengths of two adjacent sides of these gaps are close to the length of M

(or `). By Lemma 3.3.10, it follows that none of the accumulating gaps

can be eventually collapsing quadrilaterals.

The accumulating gaps as mentioned above cannot be preperiodic poly-

gons either, since by Corollary 3.3.9, two different preperiodic polygons

have disjoint sets of vertices, unless they share a common boundary leaf

that eventually maps to a critical leaf (which we don’t have here).

We now conclude that both M and ` are limits of leaves that have no

common endpoints with G. Thus, the comajor leaf c is a limit of leaves

from both sides by leaves that have no common endpoints with the

comajor. This case happens when comajor leaves have non-periodic

endpoints, since a wandering leaf cannot be part of any gap, it stays

non-isolated.

�
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Our goal is to describe the set of cubic symmetric laminations in terms of their

comajor leaves. This goal is complicated by the fact that it is possible for two different

laminations to have the same comajor leaf.

Given a pair of chords or boundary points {c,−c} of the disk, when can they be

the comajor leaves of a cubic symmetric lamination?

Lemma 5.1.4. There exists a cubic symmetric lamination L(c) with the pair of

boundary points {c,−c} ∀c ∈ S as degenerate comajors.

Proof. Consider the pair of symmetric critical leaves {`,−`} such that σ3(`) =

σ3(c) and σ3(−`) = σ3(−c). We will try to construct a cubic symmetric lamination

L(c) out of these critical leaves.

Critical leaves {`,−`} split the open disk D into three regions. Unit circle S is split

among the boundaries of the three regions equally as two arcs of length 1
3

on the left

and the right and a union of two symmetric arcs of length 1
6

in the middle. Thus, a

branch of the inverse map σ−1
3 can be defined on each of the three regions of S above.

The inverse map σ−1
3 , thus obtained can be extended to leaves and gaps similar to the

extension of map σ3 on leaves and gaps(definition 2.2.7). Now consider the collection

C of pre-images of the critical leaves {σ−i3 (`), σ−i3 (−`)}∞i=1. We observe two different

scenarios here.

(a) The critical leaves ` and −` do not have periodic endpoints. Pre-images at

every stage in the collection C do not share an endpoint with the critical

leaves ` and −` since the leaves {`,−`} do not have periodic endpoints i.e

∀i ∈ N, σ−i3 (±`) ∩ ±` = ∅. Thus the pre-images are unambiguously defined

and no leaf ` in the collection C crosses with the leaf ` or −`.

Let Ln =
⋃n
i=0{σ−i3 (`), σ−i3 (−`)}⋃∞m=0{σm3 (c), σm3 (−c)}. Clearly, Ln is for-

ward invariant. Finally, we define L(c) =
⋃∞
n=0 Ln.
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It is clear that no two leaves in L(c) cross each other since no two leaves of Ln

cross each other ∀n ∈ N. It is also not hard to see that L(c) is both forward

(D1) and backward invariant (D2)(Definition 2.2.4). Forward invariance fol-

lows easily because it is satisfied at each stage, whereas backward invariance

needs some work to show. Symmetric condition (D3)(definition 3.1.1) also

follows easily from the fact that it is satisfied at each stage. Thus, we obtain

a cubic symmetric lamination L(c) with the pair of comajors {c,−c}.

(b) The critical leaves ` and −` have periodic endpoints. Let {p,−p} be the

periodic endpoints of the critical leaves ` and −` respectively of period k.

We have two subcases here.

(i) The points p and −p have disjoint orbits. Collections of pullback leaves

containing pre-images {σ−i3 (`)} and {σ−i3 (−`)} are clearly defined for

all i from 0 to k − 1. When i = k, i.e for the collections {σ−k3 (`)}

and {σ−k3 (−`)}, there will be two possible pre-image leaves sharing an

endpoint with the critical leaf `, one long and one short leaf. Similarly

there will be two possible leaves sharing an endpoint with −`. We shall

consider only the two short pull back leaves attached to ` and −`.

It is clear to see that all the pull back leaves {σ−i3 (`)} and {σ−i3 (−`)} are

uniquely defined for i > 1. Let Ln =
⋃n
i=0{σ−i3 (`), σ−i3 (−`)}⋃∞m=0{σm3 (c), σm3 (−c)}.

Clearly, Ln is forward invariant. Finally, we define L(c) =
⋃∞
n=0 Ln.

It is clear that no two leaves in L(c) cross each other since no two leaves

of Ln cross each other ∀n ∈ N. It is also not hard to see that L(c)

is both forward(D1) and backward invariant(D2). Forward invariance

follows easily because it is satisfied at each stage, backward invariance

needs some work to show. Symmetric condition (D3)(definition 3.1.1)

also follows easily from the fact that it is satisfied at each stage. Thus,
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we obtain a cubic symmetric lamination L(c) with {c,−c} as a pair of

degenerate comajors.

(b) p and −p are part of one periodic orbit. In such a case, there will be

pullback leaves in the collection {σ−
k
2

3 (`)} sharing an endpoint with the

critical leaf −`. Same as the earlier case, there will be two choices,

one long and one short. We shall only use the short leaf. Similar

thing is done for the collection {σ−
k
2

3 (−`)}. The rest of the construction

follows exactly as the previous case and we proceed to construct a

cubic symmetric lamination L(c) with {`,−`} as a pair of degenerate

comajors.

�

Proposition 5.1.5. Suppose that a pair of non-degenerate leaves {c,−c} satisfies

the following conditions:

(a) all forward images of c and −c have disjoint interiors,

(b) the length of all forward images of c(and −c) is never less than 3*length of c,

(c) c must be a short leaf (of length at most 1/6) and all leaves on the forward

orbit of c are disjoint from the interiors of the two sibling leaves of c of length

at least 1/4 (these would be major leaves). Similar conditions for leaf −c.

Then, there exists a cubic symmetric lamination L(c) with the pair of comajors

{c,−c}.

Proof. Condition (a) guarantees that the set
⋃∞
m=0{σm3 (c), σm3 (−c)} does not

contain any crossing leaves.

Condition (b) is in compliance with the Lemma 5.1.1 that the minor leaf m = σ3(c)

has to be the shortest leaf in its orbit.

Condition (c) helps us to build major leaves and its pre-images thereof needed to
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build the lamination. Since c cannot have length greater than 1/6, the four siblings

to endpoints of c can be joined in pairs in exactly one way by leaves M and ”M of

length at least 1/4. Similarly from −c, we can get the pair of leaves −M and −”M
symmetric to the ones above. These will be the major leaves of the lamination.

Construction of L(c) is very similar to what we did in the previous lemma. Imagine

a set of critical chords {`,−`} inside the short strips C(M) ∪ −C(M) from one

endpoint of the major leaf M (and −M) to the other endpoint of its sibling ”M
(and −”M). These critical chords split the open disk D into three regions. Similar

to the construction in the previous lemma, a branch of the inverse map σ−1
3 can

be defined on each of the three corresponding regions of S and later extend to the

leaves and gap. Now consider the collection C of pre-images of the major leaves

{σ−i3 (M), σ−i3 (”M), σ−i3 (−M), σ−i3 (−”M)}∞i=1. Condition (c) gives us that no leaf ` in

the collection C crosses with the major leaves because a pre-image of a major leaf

crossing a major leaf would imply forward image of a comajor leaf crossing one of the

major leaves contradicting (c). We observe two different scenarios here.

(i) The major leaves do not have periodic endpoints. Like the case(a) of the

previous lemma, pre-images are unambiguously defined

We define Ln =
⋃n
i=0{σ−i3 (M), σ−i3 (”M), σ−i3 (−M), σ−i3 (−”M)}⋃∞m=0{σm3 (c), σm3 (−c)}

and L(c) =
⋃∞
n=0 Ln.

Using very similar arguments as that of the above lemma, we can show that

L(c) is a cubic symmetric lamination with the pair of comajors {c,−c}.

(ii) The major leaves have periodic endpoints. Similar to the previous lemma,

we have two sub-cases where {p,−p}, the endpoints of the major leaves M

and −M have disjoint orbits or the endpoints belong to one periodic orbit.

We will take the short pullbacks at the first stage and then the pullbacks
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become unique. Details are left to the reader.

It follows from the similar arguments as that of the previous lemma that

L(c) constructed in this fashion is a cubic symmetric lamination with the

pair of comajors {c,−c}.

�

We call the cubic symmetric lamination L(c) as pull-back lamination. Pull-back

laminations are useful in helping us to parametrize all cubic symmetric laminations.

For a non-diameter chord n = ab, the smaller of the two arcs into which n divides

S, is denoted by H(n).

Definition 5.1.4. Let us denote the closed subset of the disk D bounded by n

and H(n) as R(n). Given two comajors m and n, we write m � n if n ⊂ R(m), and

say that n is under m.

The partial order � has the property that if m � n and m′ � n for leaves m′ 6= m,

then either m � m′ or m′ � m, that is to say that the set of comajors greater than

any given comajor is linearly ordered. If ` � m � n, we say that m separates ` and n.

Lemma 5.1.6. Let {c,−c} and {c′,−c′} be two distinct pairs of comajors of two

different cubic symmetric laminations. If c′ � c, then c′ ∈ L(c).

Proof. Let us first take the case when the comajor leaf c is non-degenerate.

First, we claim that the leaf c′ does not intersect any leaf in the cubic symmetric

lamination L(c). Let C(c) and C(c′) be the critical strips in the laminations L(c)

and L(c′) respectively. As c′ � c, we have C(c) ⊂ C(c′). By the Short Strip Lemma,

Corollary 3.2.5, no image of c′ enters the strip C(c′). It follows that no image of c′

enters the strip C(c) too, which means that no image of c′ crosses the major leaves of

L(c). As the pull-backs of major leaves are dense in L(c), we can now conclude that
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the leaf c′ does not intersect any leaf in the lamination L(c).

So c′ has to be either a leaf of L(c) or a diagonal in a finite gap G in L(c). By the

No Wandering Triangles Theorem, Theorem 3.2.6, every finite gap is (pre)periodic

or (pre)critical. We have already established that c′ does not enter critical strips

of L(c). It follows that finite gap G is not (pre)critical. We can now use Corollary

3.3.8 to conclude that c′ cannot be a diagonal in the (pre)periodic polygon G of L(c).

Therefore, c′ is a leaf in L(c).

The proof for the degenerate case is similar and we leave it to the reader. �

Theorem 5.1.7. Comajors of distinct cubic symmetric laminations do not cross.

Proof. Consider two distinct pairs of comajors {c1,−c1} and {c2,−c2} of two

distinct cubic symmetric laminations L1 and L2 respectively. Without loss of gener-

ality, let us assume c1 and c2 lie within a semicircle. Clearly, if H(c1) ∩H(c2) = ∅,

then c1 does not cross c2.

Let us assume that H(c1) ∩ H(c2) 6= ∅. Now, using the fact that periodic points

of the σ3 map are dense in the circle, we can find a periodic point p in the region

H(c1) ∩H(c2).

By Proposition 5.1.4, there exists a cubic symmetric lamination L(p) with the

points {p,−p} as degenerate periodic comajors. Note that from the choice of selection

of point p, it follows that c1 � p and c2 � p. By Lemma 5.1.6, c1 and c2 are leaves of

the lamination L(p). Thus, the comajors c1 and c2 do not cross. �

The following result follows by Theorem 5.1.7 and Theorem 2.2.3.

Theorem 5.1.8. The space of all cubic symmetric laminations is compact. The

set of all their comajors is a lamination.
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Proof. By Theorem 2.2.3 if a sequence of cubic symmetric laminations converges,

then the limit is a σ3- invariant lamination. Now we need to check the symmetric

property (D3). Consider a sequence of cubic symmetric laminations Li converging to

L. For every leaf ` ∈ L, there exists a sequence of leaves `i ∈ Li such that `i → `.

Since all of the laminations Li satisfy property (D3), there exists leaves −`i ∈ Li.

Finally, it is obvious that −`i → −` as `i → ` which implies that −` should be in the

limit lamination, −` ∈ L.

Now, to prove the second claim of the theorem, what remains is to prove that the

comajors of cubic symmetric laminations form a closed family of chords. Indeed, if

a sequence of comajors converges to a chord c, then we can choose a subsequence

so that the corresponding cubic symmetric laminations converge too. Their limit

lamination has c as its comajor and by the first claim of the theorem, a cubic

symmetric lamination. This proves the theorem. �

The next definition is similar to Thurston’s definition of QML.

Definition 5.1.5. The set of all chords in D which are comajors of some cubic

symmetric lamination is a lamination called the Cubic symmetric Comajor Lamination,

denoted by CsCL.

Note that CsCL satisfies symmetric property (D3) as all comajors come in

symmetric pairs.

5.2. Properties of CsCL

5.2.1. CsCL is a q-lamination. We will first prove that Cubic symmetric

Comajor Lamination CsCL is a q-lamination. In order to do that we need to prove

a few more things about comajor leaves. By Corollary 5.1.2, all non-degenerate

comajor leaves are non-periodic. Hence, there are three kinds of non-degenerate
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comajor leaves: preperiodic of preperiod 1, preperiodic of preperiod bigger than 1 and

not eventually periodic. We will talk about each case separately.

Lemma 5.2.1. Comajor leaves of preperiod 1 are disjoint from all other comajors

in CsCL.

Proof. By Theorem 5.1.7, as comajors do not cross, the only way they can

intersect is if they share an endpoint. And by Lemma 5.1.3, if two comajors share

an endpoint, they have the same preperiod and period. Thus, a comajor leaf of

preperiod 1 can only share an endpoint with a comajor of the same kind. By the

way of contradiction, let us assume that there exists two distinct pairs of comajors

{c,−c} and {c′,−c′} of preperiod 1 and period k that share an endpoint in CsCL.

By Proposition 5.1.5, let L(c) and L(c′) be the pull-back laminations of the pairs

of comajors {c,−c} and {c′,−c′} respectively. As comajors are of preperiod 1, the

minor leaves m and m′ of L(c) and L(c′) respectively, are periodic of period k and

share an endpoint, too. We observe two cases here.

(a) If the leaves m and m′ belong to the same periodic orbit, then consider the

leaf (or a pair of symmetric leaves) on their orbit closest to a critical chord

of S. This particular leaf has to be the major leaf (or a pair of symmetric

major leaves) of the lamination and it has to be the same for both L(c) and

L(c′). So there is a clear contradiction that L(c) and L(c′) are two distinct

cubic symmetric laminations having the same set of majors but different

comajors.

(b) If the leaves m and m′ do not belong to the same periodic orbit, we have

two possibilities here.

First possibility is when all the three endpoints of m and m′ are in three

disjoint orbits. Consider a triangle T formed by the three endpoints of m and
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m′ and the map g = σk3 . As the map g fixes all the three endpoints of m and

m′, we have g(T ) = T . Also, the images of T under smaller iterates of the σ3

map compared to the map g are disjoint from T , i.e σi3(T )∩T = ∅ ∀1 ≤ i < k.

It follows that we get a fixed return triangle T . Similarly we get the triangle

−T . The presence of the pair of symmetric fixed return triangles {T,−T}

contradicts Proposition 3.3.5.

The other possibility is that the three endpoints of m and m′ form two

disjoint orbits with the common endpoint in a different orbit than the orbit

containing the other two endpoints. We have two cases here.

(i) If c and c′ are � comparable. Without loss of generality, let us assume

that c′ � c. Then by Lemma 5.1.6, c′ ∈ L(c). It follows that the leaf

m′ is also in L(c). We know that the leaves m and m′ are periodic of

period k and the three endpoints of m and m′ form two disjoint orbits.

It follows that the leaves m and m′ form a 2-transitive periodic polygon

in L(c). By Lemma 3.3.7 part(b), the leaf m eventually maps to the leaf

−m′ and the leaf −m eventually maps to m′. In other words, the minor

leaves {m,−m} of L(c) eventually map into the minor leaves {−m′,m′}

of L(c′) respectively and vice-versa. We can now conclude that all

the four leaves {m,m′,−m,−m′} are present in both the laminations

L(c) and L(c′). Using a similar argument as case (a), there is a clear

contradiction that L(c) and L(c′) are two distinct cubic symmetric

laminations having the same set of majors but different minors.

(ii) If c and c′ are not � comparable. Consider the pair of major leaves

{M,−M} and {M ′,−M ′} of the laminations L(c) and L(c′) respectively.

As comajors share an endpoint, major leaves also share an endpoint,

too. Let us denote the endpoints of major leaves as follows: ∂(M) =

86



{a, p}, ∂(M ′) = {b, p} and ∂(−M) = {a + 1
2
, p + 1

2
}, ∂(−M ′) = {b +

1
2
, p+ 1

2
}.

It is not hard to see that if c and c′ are not � comparable, the major

leaves M and M ′ are located in the open disk D in such a way that there

is a critical chord ` of the circle S coming out of their common endpoint

p ‘separating’ them, i.e M and M ′ are in two different components of

D \ `. In other words, one of the major leaves {M,M ′} has to be a long

leaf and the other one has to be a medium leaf.

Because of the presence of the critical chord ` between M and M ′, the

circular order of their endpoints gets reversed in their images, i.e if

the endpoints of M and M ′ are arranged around the circle S in the

anticlockwise direction as {a→ b→ p} (from left to right), then their

images in the anticlockwise direction of S will be {σ3(b) → σ3(a) →

σ3(p)} (from left to right).

We will arrive at the contradiction just by following the circular order

of the endpoints {a, b, p} in the periodic orbit of the leaves M and M ′.

Consider the endpoints {σi3(a), σi3(b), σ
i
3(p)} of the leaves σi3(M) and

σi3(M ′) in the orbit. The circular order of the points {σi3(a), σi3(b), σi3(p)}

can be reversed in their images only if there is a critical chord of S

’separating’ the leaves σi3(M) and σi3(M
′). And clearly, the above

situation happens only when the leaves σi3(M) and σi3(M
′) are major

leaves themselves. Also, because the major leaves M and M ′ are periodic,

they have to reverse the circular order of their endpoints at least once

more in the above mentioned orbit in order to get back to themselves.

From the earlier argument, the reversal of the circular order can happen

at the most two times.
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It follows that the major leaves M and M ′ have to eventually map

to the major leaves −M and −M ′ before getting back to themselves.

The circular order of the leaves M and M ′ is {a → b → p} followed

by their images {σ3(b) → σ3(a) → σ3(p)}. The circular order of the

endpoints of the leaves −M and −M ′ is {a+ 1
2
→ b+ 1

2
→ p+ 1

2
} which

if represented as the images of the endpoints of the leaves M and M ′

will be {σ
k
2
3 (b)→ σ

k
2
3 (a)→ σ3(p)} (same as {σ3(b)→ σ3(a)→ σ3(p)}).

Thus, σ
k
2
3 (b) = a + 1

2
and σ

k
2
3 (a) = b + 1

2
. It follows that the leaf M

eventually maps to the leaf −M ′ and the leaf M ′ eventually maps to the

leaf −M . Finally, using the same argument as case (i), we get a similar

contradiction that L(c) and L(c′) are two distinct cubic symmetric

laminations having the same set of majors but different comajors.

�

Now, to study not eventually periodic comajors, we need to explore the conditions

when a leaf of the pull-back lamination L(c) could be comajor of a cubic symmetric

lamination. Let us call a leaf of a lamination a stand-alone leaf if it is not a part of

any gap. For instance, not eventually periodic comajors are stand-alone leaves. There

could be periodic and preperiodic stand-alone leaves of a lamination.

We will prove an important result that if a comajor c is a stand-alone leaf in a cubic

symmetric lamination L(c), then it is a stand-alone leaf in the Cubic symmetric

Comajor Lamination CsCL, too. The following two lemmas describe situations when

a comajor leaf c in CsCL is approximated by other comajor leaves in CsCL.

Lemma 5.2.2. Let c ∈ CsCL be a non-degenerate comajor. If there is a sequence of

leaves ci ∈ L(c) with c � ci and ci → c, then ∃N ∈ N such that ∀n > N, cn ∈ CsCL.
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Proof. Consider a leaf ` in the sequence of leaves ci ∈ L(c) such that ‖`‖ > ‖c‖
3

.

We will show that leaves {`,−`} satisfy the three conditions of Proposition 5.1.5 to

be a pair of comajors of a cubic symmetric lamination.

(a) Clearly all forward images of ` and −` have disjoint interiors as they are

leaves of cubic symmetric lamination L(c).

(b) As c is a short leaf, ` is a short leaf too. It follows that ‖σ3(`)‖ = 3‖`‖. And

as leaf ` is shorter than the comajors c and −c, σ3(`) is shorter than the

minor leaves of L(c). We can use Lemma 5.1.1, to deduce that no forward

image of σ3(`) is shorter than σ3(`). Thus, no forward image of ` has length

smaller than 3‖`‖.

(c) Consider the long and medium sibling leaves M` and M̂` of ` of length at

least 1
4
. These leaves cannot be a part of a cubic symmetric lamination L(c)

because they are closer to the critical chord of S than the majors {M, .−M}

of L(c). Also note that M` and M̂` would have to stay inside the short strips

C(M) ∪ −C(M).

Now as all forward images of ` have length at least 3‖`‖ > ‖c‖, they cannot

intersect the short strips C(M) ∪ −C(M) which are ‖c‖ wide. Thus, the

leaves on the forward orbit of ` cannot intersect the interior of sibling leaves

M` and M̂` either.

Thus, there exists a cubic symmetric lamination L(`) with the pair of comajors

{`,−`}. In other words ` ∈ CsCL.

Now we consider all those leaves in the sequence of leaves ci ∈ L(c) having length at

least ‖c‖
3

and conclude the lemma. �
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The situation when a comajor leaf is approximated from the other side is slightly

trickier.

The following lemma is a simplification of Proposition 5.1.5 under certain conditions.

Lemma 5.2.3. Let L be a cubic symmetric lamination with {c,−c} as a pair of

comajors. If there exists a short leaf `s ∈ L satisfying the conditions below.

(i) `s � c,

(i) the leaf `m = σ3(`s) does not ever map under itself, i.e `m 6� σk3(`m) for all

k and

(ii) the leaf `m = σ3(`s) does not ever map under the leaf −`m i.e −`m 6� σk3(`m)

for all k.

Then, there exists a cubic symmetric lamination L(`s) with {`s,−`s} as a pair of

comajors.

Proof. (a) All forward images of `s and −`s are in L and hence disjoint.

(b) Consider the siblings of the short leaf `s in the cubic symmetric lamination

L. The siblings either will be both short or one long and one medium leaf.

Since `s � c, a short sibling leaf of `s would intersect the major leaves of

L. Thus, the sibling leaves of `s are long and medium. It follows that all

leaves on the forward orbit of `s are disjoint from the interiors of the long

and medium sibling leaves of `s.

(c) Let us assume that a forward image σk3(`s) of `s has length smaller than

3∗length of `s. It implies that σk−1
3 (`s) is closer to a critical chord of S than

the long and medium sibling leaves of `s. It follows that the leaf σk3(`s)

is under the leaf `m = σ3(`s) or the leaf −`m = σ3(−`s) contradicting the

conditions given in the lemma.
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Thus, by Proposition 5.1.5, we can conclude that there exists a cubic symmetric

lamination L(`s) with {`s,−`s} as a pair of comajors. �

Definition 5.2.1. Let ` be a leaf of a cubic symmetric lamination L such that

σk3(`) 6= ` for some k. Then we have the following two possibilities:

If the leaf σk3(`) is under `, then we say that the leaf ` moves in under the map σk3

and if σk3(`) is not under `, then we say that the leaf ` moves out under the map σk3 .

Let `′ 6= ` be a leaf of L such that `′ � ` and σk3(`′) 6= `′ for the same k as before.

If both the leaves ` and `′ move in or both move out under the map σk3 , then we say

that the leaves are moving in the same direction. And if one among the pair of leaves

{`, `′} moves in and the other leaf moves out, then we say that the leaves are moving

in opposite directions. Following are the two possible ways in which leaves ` and `′

can move in opposite directions.

(a) If the leaf ` moves out and the leaf `′ moves in, then we say that the leaves `

and `′ move towards each other.

(a) If ` moves in and `′ moves out, then we say that the leaves ` and `′ move

away from each other.

We will show that if two leaves of a cubic symmetric lamination move in opposite

directions under an iterate of the σ3 map (with a few extra conditions), then there

exists an invariant leaf separating them. Idea is that there exists a leaf in between

where the direction of the movement switches.

In the following lemma we will consider the case when two leaves move towards each

other. Recall the definition of strip between the disjoint chords ` and `′ from chapter

3 (before Lemma 3.3.2). The closed subset of D bounded by both the leaves ` and `′

is denoted by Sb(`, `
′), i.e Sb(`, `

′) = R(`) ∩ R(`′). The strip Sb(`, `
′) is bounded by
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the leaves ` and `′ and two arcs of S. We will define the width of the strip Sb(`, `
′) to

be the length of the shorter arc among the two arcs bounding the strip.

Lemma 5.2.4. Let `′ 6= ` be two non-periodic leaves in a cubic symmetric lamina-

tion L such that `′ � `. If the following conditions are true,

(i) L has a non-degenerate pair of comajor leaves {c,−c},

(ii) The leaves ` and `′ move towards each other under the map σk3 ,

(iii) Neither the leaves ` and `′ nor a leaf separating them can map into the arcs

of the strip Sb(`, `
′).

Then, there exists a periodic leaf y (under the map σ3) that separates ` and `′.

Proof. Consider the family of leaves C in L that separates ` and `′. Let the

leaves ` and `′ be also included in C. We claim that the C has at least one leaf that

separates ` and `′ and C is a closed subset of D. If there is no leaf in C that separates

` and `′, then there exists a gap G of L with ` and `′ on its boundary. It is given in

the lemma that the leaves ` and `′ cannot map into the arcs of the strip Sb(`, `
′). It

follows that σk3(`) = `′ and σk3(`′) = `, otherwise the gap σk3(G) would strictly cover

the gap G, which is a contradiction. Now, it is clear that σ2k
3 (`) = ` and σ2k

3 (`′) = `′,

a contradiction with the fact that the leaves ` and `′ are non-periodic. Thus, C has

at least one leaf that separates ` and `′.

It is not hard to see that C is closed, since if there is a sequence of leaves {`i}∞i=1 in C,

then the limit leaf `∞ is either ` or `′ or a leaf that separates the leaves ` and `′ in L.

Let us consider a subset A of leaves in C as follows. Every leaf m in the set A

moves out under the map σk3 . And for every leaf m ∈ A, if a leaf n separates the

leaves ` and m, then n also moves out under the map σk3 . In other words, all the

leaves in A move in the same direction as the leaf `.
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There are clearly two leaves in Bd(A), one is leaf ` and the other, say a leaf y

(y � `). By continuity, either the leaf y moves out like the leaves of A or it is invariant.

If it is the latter, we are done.

Let us say y moves out under the map σk3 . We claim that y should be part of a gap G

in L such that y is the smallest side of G in the sense of �. If there were a sequence

of leaves ti in C approaching y such that ti � y, all of them would move in (if they

are chosen close enough to the leaf y) as opposed to the leaf y which is moving out.

That is because none of the leaves ti are in A or in Bd(A). By continuity, the limit

leaf t = y of the leaves ti cannot move out as y does, a contradiction. Thus, there

exists a gap G with the sides y and t in the collection C such that t � y.

If the leaf t is invariant, we are done. Let us assume t is not invariant, it follows that

t has to move in. Now, like the argument in the first paragraph as the leaves y and

t cannot map into the arcs of the strip Sb(`, `
′), we can argue that σk3(y) = t and

σk3(t) = y. It follows that σ2k
3 (y) = y and σ2k

3 (t) = t and we get our desired periodic

leaves.

One last thing to consider about the periodic leaf y we got is that it can be an

eventually collapsing leaf and map to one of its endpoints. In a sense, y doesn’t move

in or move out and is still invariant. However, the above case can happen only if y

eventually maps to a critical leaf. And by the first condition in the lemma that L

has a non-degenerate pair of comajor leaves {c,−c}, it follows that L has no critical

leaves in it. Thus, y cannot be (pre)critical and y is indeed a periodic leaf. �

Lemma 5.2.5. Let c ∈ CsCL be a non-degenerate comajor such that c is either

not eventually periodic or preperiodic of preperiod bigger than 1. If there is a sequence

of leaves ci ∈ L(c) with ci � c and ci → c, then c is the limit of preperiodic comajors

c′j of preperiod 1 with c′j � c for all j.
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Proof. Let {m,−m} and {M,−M} be the pairs of minors and majors of L(c)

respectively. As c is either not eventually periodic or preperiodic of preperiod bigger

than 1, we have that minor leaves m and −m are not periodic. Consider the sequence

of leaves mi ∈ L(c) such that mi = σ3(ci). By continuity, we get that mi → m

and also mi � m for all i. We know that pre-images of major leaves are dense in

a pull-back lamination. In particular, we can choose mi’s such that all of them are

pre-images of the major leaf M . Hence, there exists a sequence of numbers ki →∞

such that σ
kj
3 (mj) = m for all j. Because no forward image of m can be shorter

than m, it is clear that σ
kj
3 (m) cannot be under m. Also, since m is not periodic,

σ
kj
3 (m) 6= m for all j. Thus, we conclude that σ

kj
3 maps mj and m towards each

other.

Also we can choose the leaves in the sequence {mj}∞j=1, close enough to m such

that the width of the strip Sb(m,mj) is less than ‖m‖ for all j. We claim that neither

the leaf m nor the leaf mj maps into the arcs of the strip Sb(m,mj). Clearly, by

Lemma 5.1.1(i) as m is the shortest leaf in its orbit, it cannot map into the arcs of

the strip Sb(m,mj). And by Lemma 5.1.1(iii), no forward image of mj can be smaller

than m. It follows that mj cannot map into the arcs of the strip Sb(m,mj) either.

Clearly mj is not a periodic leaf. All the conditions needed for the previous lemma

are met. By Lemma 5.2.4, there exists a periodic leaf yj that separates m and mj . Let

us choose the shortest leaf y′j in the orbit of yj. Consider the short leaf c′j = σ−1
3 (y′j).

Clearly as y′j is the shortest leaf in its orbit, it can neither map under itself nor under

the leaf −y′j.

By Lemma 5.2.3, c′j is a comajor. Thus, we obtain a sequence of preperiodic comajors

of preperiod 1, {c′j}∞j=1 converging to c such that c′j � c for all j. �
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Corollary 5.2.6. Every not eventually periodic comajor c is a stand-alone leaf

in the Cubic symmetric Comajor Lamination CsCL. The leaf c can be approximated

by both sides by a sequence of comajors in CsCL. None of the leaves in CsCL share

an endpoint with c, in particular aforementioned approximating leaves.

Proof. We know that by Lemma 5.1.3, every not eventually periodic comajor

c is a stand-alone leaf in L(c) approximated by other leaves of L(c) not sharing an

endpoint with c. It also follows that no leaf of L(c) shares an endpoint with c. Now

using Lemmas 5.2.2 and 5.2.5, we can conclude that c can be approached from both

sides by a sequence of comajors in CsCL too. The approximating leaves in CsCL also

do not share an endpoint with c because they are all part of the original lamination

L(c). Thus, we can conclude that none of the leaves in CsCL share an endpoint with

c. �

Now, the final kind of comajors are preperiodic of preperiod bigger than 1. We

claim that they are either stand-alone leaves and behave exactly like not eventually

periodic ones or they are a side of a finite gap in CsCL with leaves approaching from

all sides.

Lemma 5.2.7. Every preperiodic comajor c of preperiod bigger than 1 is a side of

a finite gap or a stand-alone leaf in CsCL. In the case we have a gap, the sides of it

are approximated by a sequence of comajors in CsCL that do not share an endpoint

with c.

Proof. Consider the cubic symmetric lamination L(c). First, we claim that the

critical gaps G and −G of L(c) have to be finite gaps. They cannot be Fatou gaps

because in that case comajors c and −c will be of preperiod equal to 1. They cannot
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be Siegel gaps either because c is non-degenerate. Thus, G and −G are finite. Note

that the entire lamination L(c) contains only finite gaps.

(i) If G and −G have at least six sides each. Then, the corresponding sibling

gaps Ĝ and −Ĝ containing c,−c have at least 3 sides each. We shall prove

that every side of Ĝ (and −Ĝ) is a comajor of a cubic symmetric lamination.

Consider ` ∈ Ĝ. There are two sibling leaves to ` in G. With these two

sibling leaves, let us form a quadrilateral inside G by adding two long leaves.

In other words, we subdivide G by adding a collapsing quadrilateral. We

do a similar construction for −G. Now, by adding all pre-images of these

new leaves inside the pre-images of G, we obtain a new cubic symmetric

lamination with ` and −` as comajors. We can do the similar process for all

the n sides of Ĝ by adding a collapsing quadrilateral in G in n ways. Observe

that one of these subdivisions has the same comajor leaves as L.

Now, we claim that the leaves of Ĝ (and −Ĝ) indeed form a gap of CsCL

since by Corollary 3.3.8, no diagonal of the polygon Ĝ can be a leaf (let alone

comajor!) of a cubic symmetric lamination.

For the second part of the theorem, we notice that all the sides of Ĝ (and

−Ĝ) are non-isolated and have to be approached by leaves of L(c). That is

because if there was another finite gap attached to the sides of Ĝ, we would

contradict Corollaries 3.3.8 and 3.3.9. Thus using Lemmas 5.2.2 and 5.2.5, all

the sides of Ĝ (and −Ĝ) are approximated by a sequence of leaves in CsCL,

too. Finally, we claim that none of these approximating comajors share an

endpoint with sides of Ĝ (and −Ĝ). If they did, they would all have the same

preperiod and same period by Lemma 5.1.3. Now, consider the situation

when Ĝ becomes periodic and shares an endpoint with an approximating
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leaf (say `). We can make a fixed return triangle with ` and the side of the

periodic gap it is sharing an endpoint with, contradicting Proposition 3.3.5.

(ii) If G and −G have four sides each. Then we observe two scenarios.

(a) If G and −G are isolated. It would mean that there are finite gaps

attached to G and −G. Consider the biggest finite gaps containing G

and −G in L(c). The bigger sides of G and −G (majors of L(c)) are

inside this larger finite gaps and by deleting them and their pre-images

in L(c), we get a new cubic symmetric lamination L′ with central gaps

now containing more than 6 sides each. We return to case (i).

(b) If G and −G are not isolated. In this case, the comajor leaf c would

remain non-isolated too in L(c). Now, using the Lemmas 5.2.2, 5.2.5

and Proposition 3.3.5 again as it is done in case (i), we conclude that c

is a stand-alone leaf and is approximated by a sequence of comajors in

CsCL that do not share an endpoint with c.

�

Finally the main theorem of the section is as follows.

Theorem 5.2.8. Cubic symmetric Comajor Lamination CsCL is a q-lamination.

Proof. By Lemma 5.2.1, Corollary 5.2.6 and Lemma 5.2.7, it is clear that

no more than two comajors meet at a single point in CsCL. Hence, CsCL is a

q-lamination. �

5.2.2. Cubic symmetric main cardioid CsMC. This subsection is devoted

to understanding the properties of a special gap of the Cubic symmetric Comajor

Lamination CsCL called as Cubic symmetric main cardioid CsMC. It is understood

to represent the set of the first group of laminations called canonical laminations in
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the family of cubic symmetric laminations. Every other gap G of CsCL will be under

this gap CsMC. That is why they are considered “first” in the sense of �.

Let L be a cubic symmetric lamination with a non-degenerate comajor c. There can

be many possible cubic symmetric laminations with c as a comajor leaf. Pull-back

lamination L(c) as discussed in the previous section is one among those laminations.

Let us denote the union of the symmetric critical gaps in the lamination L by C(L).

As discussed in Lemma 5.1.3, C(L) is either a pair of Fatou gaps (with or without a

symmetric orbit) or a pair of finite gaps, each of them with at least 6 sides, or a pair

of collapsing quadrilaterals. The following lemma is a different way to approach the

result obtained in Lemma 5.2.7.

Lemma 5.2.9. If C(L) is a pair of symmetric finite gaps each of them having

at least 6 sides, then the collection ÷C(L) containing the sibling leaves to the gaps of

C(L) is a pair of symmetric gaps of CsCL.

Proof. Consider a critical gap G of C(L). The gap G is a polygon of 2n sides,

where n ≥ 3. The corresponding sibling gap Ĝ of ÷C(L) has n sides.

First, we shall prove that every side of Ĝ (and −Ĝ) is a comajor of a cubic symmetric

lamination. Consider ` ∈ Ĝ. There are two sibling leaves to ` in G. With these two

sibling leaves, let us form a quadrilateral inside G by adding two long leaves. In

other words, G has been subdivided by adding a collapsing quadrilateral. We can

do similar construction for −G. Now, by adding all pre-images of these new leaves

inside the pre-images of G, we obtain a new cubic symmetric lamination with ` and

−` as comajors. We can do the similar process for all the n sides of Ĝ by adding a

collapsing quadrilateral in G in n ways. Observe that one of these subdivisions has

the same comajor leaves as L.

Finally, we claim that the leaves of Ĝ (and −Ĝ) indeed form a gap of CsCL. By
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Corollary 3.3.8, no diagonal of the polygon Ĝ can be a leaf(let alone comajor!) of a

cubic symmetric lamination. Thus, the gaps Ĝ (and −Ĝ) cannot be further subdivided

in CsCL. It follows that they are gaps of CsCL. �

The case when C(L) is a pair of symmetric Fatou gaps (with or without symmetric

orbit) is a little trickier as a Fatou gap G can be subdivided into smaller Fatou gaps

using the help of the map ψG in Theorem 3.3.15 in many different ways. The process is

complicated and will yield infinitely many cubic symmetric laminations with distinct

Fatou gaps. We will instead focus on studying a subset of cubic symmetric laminations

with a specific kind of symmetric Fatou gaps.

The following lemma helps us in understanding a subset of the cubic symmetric

laminations in relation to the pair of symmetric critical chords {`,−`} on circle S.

For the chords {`,−`}, let us denote S \ (H(`) ∪H(−`)) as S(`). Note that S(`) is

composed of two disjoint symmetric arcs in the circle S.

Lemma 5.2.10. Let {`,−`} be a pair of symmetric critical chords. Then there

exists a unique symmetric rotational set I(`) ⊂ S(`). And there exists a cubic

symmetric lamination L` which contains the convex hull G(`) of I(`) as its central

symmetric gap.

Proof. We will consider two different cases here when critical chords {`,−`}

have periodic endpoints or not.

(a) The critical chords ` and −` do not have periodic endpoints. Consider the

set of points I(`) that stay forever in S(`), i.e I(`) = {p ∈ S(`) |σk3(p) ∈

S(`) ∀k ∈ N}. I(`) is clearly a forward invariant set because for every point

p that stays forever in S(`), i.e p ∈ I(`), its image σ3(p) also stays forever

in S(`), i.e σ3(p) ∈ I(`). The set I(`) is backward invariant too. Since

σ3(∂(S(`))) = S, it follows that for every p ∈ I(`), σ−1
3 (p) is in S(`), and
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thereby in I(`). By Proposition 4.1.1, I(`) is rotational under the map σ3

since S \ I(`) contains two disjoint intervals H(`) and H(−`) of length 1
3

each. By Corollary 4.1.3, the set I(`) has a well-defined rotation number

ρ(`). If I(`) is finite, ρ(`) is rational and if I(`) is infinite, ρ(`) is irrational.

Also we claim that I(`) is symmetric with respect to the center of the circle

i.e ∀p ∈ I(`), −p is also in I(`). Since orbits of p and −p under the σ3 map

are always symmetric with respect to the center of the circle S, it implies

that if orbit of p stays forever in S(`), then orbit of −p has to stay in a

region symmetric to S(`) which is S(`) itself. Thus, the point −p is also in

the set I(`).

We have three possibilities for the set I(`). If I(`) is finite, we can use the

argument used in Corollary 3.3.6 and deduce that I(`) can contain at most

two periodic orbits. First possibility is I(`) is made of one single periodic

orbit. The second possibility is that when I(`) contains two periodic orbits,

both the orbits are symmetric with respect to the center of the circle and

they combine to form a symmetric rotational set. The last case is when

I(`) is infinite, it contains two disjoint orbits. This case is similar to the

Lemma 3.3.14 case (i) Siegel gaps. So, here too, both the disjoint orbits

combine to form a symmetric rotational set. We can conclude that the set

I(`) is minimal in the sense that no proper subset of it can be a symmetric

rotational set.

Finally, I(`) is unique since if there was any other symmetric rotational

subset I ′(`) of S(`), then just like the points of I(`), the points of the set

I ′(`) would stay forever in S(`). It follows that I ′(`) would have to be a

proper subset of I(`) contradicting the above argument.

Consider the convex hull G(`) of I(`). From the above discussion, G(`) is
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an invariant rotational closed subset of D and the sides of G(`) form a part

of one periodic orbit or two disjoint periodic orbits or two disjoint infinite

orbits under the σ3 map. We will try to build a cubic symmetric lamination

L` with G(`) as its central symmetric gap.

Consider the longest edges M and −M of G(`). They are also closest to the

critical leaves ` and −`. Short sibling leaves {c,−c} to M and −M can be

constructed in R(`) ∪ −R(`). We claim that the leaves {c,−c} satisfy all

conditions of Proposition 5.1.5.

(i) Forward images of {c,−c} being the same as images of the leaves M and

−M are part of the sides of G(`). Thus, forward images have disjoint

interiors.

(ii) Consider the leaves m = σ3(M) = σ3(c) and −m = σ3(−M) = σ3(−c)

on G(`). We claim that m and −m are the shortest edges of G(`). No

forward image of leaves m and −m can get shorter than themselves

because for a leaf `′ to become shorter than m (and −m), its pre-image

σ−1
3 (`′) has to get closer to the critical leaves ` and −` than M(and

−M) which cannot be the case.

The leaves m and −m have 3 times the length of leaves c and −c. Thus,

the length of forward images of c(and −c) is never less than 3*length of

c.

(iii) The leaves c and −c are chosen to be short leaves among the part of

full sibling collection {M,”M} and {−M,−”M} respectively. Clearly the

leaves on the forward orbit of c (and −c) being sides of G(`) are disjoint

from the interior of the sibling leaves {M,”M}(and {−M,’−M})
Thus, by Proposition 5.1.5, there exists a cubic symmetric lamination L(c).

Finally, we claim that L(c) has G(`) as its central symmetric gap. All sides
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of G(`) are either in the forward or in the backward orbit of leaves c and −c.

Thus, sides of G(`) are the leaves of lamination L(c).

If G(`) has finitely many sides, we use the argument in Corollary 3.3.8

to claim that no diagonal `′ of G(`) can be a leaf of a cubic symmetric

lamination. In other words G(`) cannot be subdivided or G(`) is the central

symmetric gap of L(c). From the earlier discussion, it follows that G(`)

either can be a 1-transitive rotational gap or a 2-transitive rotational gap.

If the sides of G(`) are a part of two disjoint infinite orbits, then critical

chords ` and −` have to be part of G(`) (Lemma 3.3.12) and all other sides

of G(`) eventually map to them and collapse. In other words, G(`) is the

Siegel gap. Thus, G(`) is the central symmetric gap of L(c).

L` = L(c) is the cubic symmetric lamination we referred to in the statement

of the lemma.

(b) The critical chords ` and −` have periodic endpoints.

We need to consider two sub cases here.

If all points on the periodic orbit of the critical chords ` and −` do not stay

in S(`), then we define the rotational set I(`) ⊂ S(`) in the same way as

case (a) and proceed to get the corresponding cubic symmetric lamination

L`.

In the case where all points on the periodic orbits of the critical chords ` and

−` stay in S(`), we need to discard some points in forming the rotational

set I(`) ⊂ S(`). Among all points which stay forever in S(`), there will be

preperiodic points mapping to the endpoints of the critical leaves {`,−`},

we discard them because they do not exhibit rotational behavior. Consider

the set I(`) = {p ∈ S(`) |σk3(p) ∈ S(`) ∧ {p is periodic}, ∀k ∈ N}. Once we

get the rotational set I(`), cubic symmetric lamination L` is constructed in
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the same way as in case (a).

Note that in both subcases of case (b), the central symmetric gap G(`) is

finite. Every infinite (Siegel) gap has the critical leaves on their boundary

and the endpoints of the critical leaves are a part of two disjoint infinite

orbits. In case (b), the endpoints of the critical leaves ` and −` are a part of

periodic orbits.

�

Lemma 5.2.10 gives us a correspondence between the family of critical chords

{`,−`} and the cubic symmetric laminations L`. We call L`, the canonical lamination

of critical chords {`,−`}. Let us denote the comajors of the canonical lamination L`

by {c(`),−c(`)}. The following corollary, however, shows that there is a whole interval

of critical chords corresponding to the same canonical cubic symmetric lamination.

Corollary 5.2.11. Consider a pair of symmetric critical chords {`,−`} and its

corresponding cubic symmetric lamination L` with its majors {M(`),−M(`)}. For any

pair of symmetric critical chords {`′,−`′} inside the short strips C(M(`))∪−C(M(`)),

the corresponding canonical cubic symmetric lamination L`′ is the same as L`.

Proof. If the leaves {`′,−`′} are inside the short strips C(M(`))∪−C(M(`)), it

means the original symmetric rotational set I(`) is a subset of S(`′), too. By Lemma

5.2.10, the symmetric rotational sets are unique, which forces I(`) to be the same as

I(`′). Thus, both canonical cubic symmetric laminations L`′ and L` are the same. �

Definition 5.2.2. Comajors of canonical cubic symmetric laminations are called

prime comajors. If G(`) is a finite gap then the corresponding comajors are said to

be rational. If G(`) is a Siegel gap then the corresponding degenerate comajors are

said to be irrational.
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Note that the rational prime comajors are non-degenerate and preperiodic of

preperiod 1 whereas irrational prime comajors are degenerate and not eventually

periodic. Let us denote the set of prime comajors in the Cubic symmetric Comajor

Lamination CsCL, Cubic symmetric Main Cardioid CsMC. We shall prove that

CsMC is a gap of CsCL. The following lemma about the location of prime comajors

is useful in doing that.

Lemma 5.2.12. The set of prime comajors CsMC forms the boundary of a closed

convex set in D. Moreover, ∂(CsMC) is a Cantor set.

Proof. First we claim that prime comajors are pairwise disjoint. By Theorem

5.1.7, the only way two comajors intersect is when they have a common endpoint.

Clearly, rational prime comajors are disjoint with irrational prime comajors as one of

them is preperiodic and the other one is not. Let us assume that two rational prime

comajors c and c′ have a common endpoint. Then, it follows that there will be a set

of corresponding majors M and M ′ that are meeting at a common endpoint, say p,

too. We can draw a pair of symmetric critical chords {`,−`} coming out of p and −p

such that they are inside both short strips C(M)∪−C(M) and C(M ′)∪−C(M ′). By

Corollary 5.2.11, the critical chords {`,−`} should correspond to a unique canonical

cubic symmetric lamination L` with the pair of prime comajors {c(`),−c(`)}. It

follows that c = c′ = c(`).

Using a similar argument, we will prove that prime comajors are pairwise non-

comparable in the sense of �. Let us assume that there exists two prime comajors c

and c′ such that c � c′. Consider the corresponding majors M and M ′. The short

strips C(M)∪−C(M) will contain the short strips C(M ′)∪−C(M ′) in their interior.

We can draw a pair of symmetric critical chords {`,−`} inside the smaller short

strips C(M ′)∪−C(M ′). Again by Corollary 5.2.11, the critical chords {`,−`} should
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correspond to a unique canonical cubic symmetric lamination L` with the pair of

prime comajors {c(`),−c(`)}. It follows that c = c′ = c(`).

Let us show that every point p ∈ S is either an irrational prime comajor, or has a

rational prime comajor c such that p ∈ H(c). Consider the pair of symmetric critical

chords {`,−`} whose endpoints have the same images as that of points p and −p,

i.e σ3(`) = σ3(p) and σ3(−`) = σ3(−p). Consider the corresponding canonical cubic

symmetric lamination L`. If its central symmetric gap G(`) is infinite, then the critical

chords {`,−`} are major leaves of L` and the comajors {c(`),−c(`)} are the same as

points {p,−p}. If G(`) is finite, the major leaves of L` are disjoint from the critical

chords {`,−`} with the endpoints in S(`). It follows that comajors {c(`),−c(`)} are

located in such a way that p ∈ H(c) and −p ∈ H(−c). This proves the fact that

CsMC forms the boundary of a closed set in D. Since the prime comajors are both

pairwise non-comparable and pairwise disjoint, we can now claim that they form the

boundary of a closed convex set in D.

Finally, we claim that ∂(CsMC), the union of irrational prime comajors and the

endpoints of rational prime comajors is a Cantor set. If a sequence of prime comajors

converges to a point p ∈ S, then by the above paragraph, either p is an irrational

prime comajor or there exists a rational prime comajor c such that p ∈ H(c). The

point p cannot be in the interior of H(c) otherwise there would exist a prime comajor

c′ in the converging sequence close to p such that c′ is also in the interior of H(c)

resulting in c � c′ contradicting the above claim that prime comajors are pairwise

non-comparable in the sense of �. Thus, either p is an irrational prime comajor or p

is an endpoint of a rational prime comajor c. It follows now that ∂(CsMC) is closed.

There are no isolated points in ∂(CsMC) because it would mean two rational prime

comajors meeting at a point. The set ∂(CsMC) cannot contain sub-segments either.

Thus, ∂(CsMC) is a Cantor set. �
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Theorem 5.2.13. The set of prime comajors CsMC is a gap of CsCL.

Proof. To show that CsMC is a gap of CsCL, it suffices to show that there are

no comajors inside CsMC. By the way of contradiction, let us suppose that there

exists a comajor c inside CsMC. Which means that there is a prime comajor smaller

than c in the sense of � and also as prime comajors are pairwise non-comparable in

the sense of �, there does not exist any prime comajors bigger than c in the sense of

�.

Let us denote the symmetric majors of the pull-back cubic symmetric lamination

L(c) as M and −M . To avoid confusion, let us assume that when we talk about

the major leaves, we talk about the long leaves (not medium) close to the center

of the circle S. Imagine a pair of symmetric critical chords {`,−`} inside the short

strips C(M) ∪ −C(M) such that ` (and −`) share an endpoint p (and −p) with the

major leaf M (and −M) essentially splitting each short strip into two halves. Let the

other endpoint of major leaf M not shared by the critical chord ` be q. By Lemma

5.2.10, there exists a unique canonical cubic symmetric lamination L` with the pair of

prime comajors {c(`),−c(`)}. Both the pairs of majors {M,−M} of L(c) and majors

{M(`),−M(`)} of L` lie in between the critical chords {`,−`}. And by Theorem

5.17, as comajors do not cross, it implies in this particular scenario that majors also

do not cross because both sets of majors lie in between the same critical chords. It

follows that either M �M(`) or M(`) �M . If M(`) �M , it follows that c(`) � c

which contradicts the fact that there does not exist any prime comajors bigger than

c in the sense of � (see the first paragraph). Thus, M � M(`) and the only way

that happens is if the leaf M(`) shares the endpoint p with M (and `). Also, it is

clear that M(`) and M are two distinct leaves as c is not a prime comajor. And by

Corollary 3.3.8, the leaf M cannot be a diagonal in the central symmetric gap G(`).
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In other words, the other endpoint q of the leaf M is not a vertex of the gap G(`).

We can now conclude that all forward images of the endpoint p stay forever in S(`),

but the forward images of the other endpoint q of M does not. That is, there exists

a natural number N such that σN3 (q) 6∈ S(`). For this choice of N , we get the

contradiction since the leaf σN3 (M) crosses the leaf M . �

Lemma 5.2.10 tells us that all prime comajors of the Cubic symmetric Main

Cardioid CsMC can be characterized by central symmetric gaps G(`). And in Chapter

4, we have seen that every central symmetric gap has a unique rotation number. Thus,

the first gap CsMC of the parameter space CsCL can be characterized by rotation

numbers of central symmetric gaps of canonical cubic symmetric laminations.

5.3. Constructing CsCL

In the final section of our work, we provide an algorithm that generates a dense

subset of CsCL. We need to prove a few lemmas before setting up the algorithm.

The following two lemmas give us more insight into the preperiodic leaves of CsCL

that have endpoints of preperiod 1.

Lemma 5.3.1. Every preperiodic point p ∈ S of preperiod 1 is an endpoint of a

non-degenerate comajor c of a cubic symmetric lamination L.

Proof. Consider the following things: a preperiodic point p ∈ S of preperiod 1

and period k, the cubic symmetric lamination L(p) with {p,−p} as a pair of degener-

ate comajors and the critical leaves {`,−`} whose images are same as the images of

{p,−p}, respectively.

By modifying the lamination L(p), we obtain the required lamination L in the lemma.

Note that as we have seen in Lemma 5.1.4 case (b), all the pre-images to the critical

leaves −` (and `) are connected to each other in one-sided infinite chains in L(p) as
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follows. The leaves adjacent to the critical leaf ` (and `) in the chain are chosen to be

a pair of short leaves {`s, ˆ̀
s} and all other leaves of the chain are uniquely determined

by the inverse map σ−1
3 . Let us call the infinite chain of leaves attached to the critical

leaf ` as C(`). Similarly we get C(−`).

Claim: The leaves in C(`) converge to a point x ∈ S which is not an endpoint

of the critical leaf `.

Proof. Clearly, the leaves in C(`) converge to a point x ∈ S as there are infinitely

many of them forming a chain in a finite arc of S. The interesting argument is that

the leaves in C(`) do not go all the way back and converge to one of the endpoints of

the critical leaf `. By the way of contradiction, let us say that happens, i.e the leaves

in C(`) converge to an endpoint of the critical leaf `.

Since every cubic symmetric lamination has a central symmetric gap, L(p) has such

a gap G, too. Note that this is same as the gap G(`) discussed in the Lemma 5.2.9.

The two sibling gaps ’G(`) and −’G(`) are also present in L(p). Let us say the gap’G(`) lies in the region R(`). As the leaves in the chain C(`) converge to an endpoint

of the critical leaf `, there should be a medium leaf `m in C bigger than all leaves of’G(`) in the sense of �. Same is the case with the chain C(−`) and the gap ◊�−G(`),

and we get a similar medium leaf −`m.

We obtain the contradiction as follows:

Consider the short strips C(`m)∪−C(`m) bounded by the leaves {`m,−`m} and their

long sibling leaves. Note that the only other long leaves of L(p) inside the short strips

C(`m) ∪ −C(`m) are critical leaves ` and −`.

The adjacent sides of the chains C(`)∪−C(`) behave as follows. Consider two adjacent

leaves m and n in the chain C(`) with the leaf n more closer to the critical leaf `

than the leaf m. We know that the leaf m eventually maps to either the leaf n or −n

108



before it can map to any other leaves in the chains C(`) ∪ −C(`). It is the case for

every pair of adjacent leaves in the chains C(`) ∪ −C(`).

It follows that the leaf `m eventually maps to one of the leaves among {`s,−`s} before

they map to the critical leaf ` or −`. In other words, the medium leaf `m is mapping

inside its short strips C(`m) ∪ −C(`m) as short leaves before mapping as a long leaf

contradicting Proposition 3.2.3.

Now, going ahead with the rest of the proof of the lemma, we observe that the

point x obtained from the above process is periodic and it has the same period k as

one of the endpoints of critical leaves. Now, we can construct our required lamination

L as follows: Join the points x and the periodic endpoint of the critical leaf `. By

the above claim, x is closer to the non-periodic endpoint than the periodic endpoint,

so we get a medium leaf M . We do the same thing with −x and −` to obtain the

leaf −M . We can build a cubic symmetric lamination by taking the pre-images of

the leaves M and −M inside the gaps of the original lamination L(p). Finally, we

obtain a new collection of leaves L by removing the critical leaves ` and −` and all

its pre-images from the above lamination. It is not hard to see that L is a cubic

symmetric lamination with {M,−M} as its periodic majors. The short siblings to

{M,−M} in L form a non-degenerate pair of preperiodic comajors of preperiod 1

{c,−c}. Also the leaves c and −c share endpoints with the original points p and −p

respectively. �

Definition 5.3.1. We say a gap G ‘separates’ two leaves `1 and `2 if `1 and `2

are in two different components of S \ G. Similarly we say a leaf ` ‘separates’ two

leaves `1 and `2 if `1 and `2 are in two different components of S \ `

Lemma 5.3.2. Preperiodic comajors of preperiod 1 are dense in CsCL.
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Proof. Consider a non-degenerate comajor c ∈ CsCL. We will assume that the

leaf c is not a preperiodic comajors of preperiod 1. We have two cases here.

(a) If there is a sequence of leaves ci ∈ L(c) such that ci � c and ci → c. Then,

by Lemma 5.2.5, c is the limit of preperiodic comajors c′i of preperiod 1 such

that c′i � c.

(b) If the leaf c is not the limit of leaves ci ∈ L(c) such that ci � c, then by

Corollary 5.2.6, c cannot be an eventually periodic comajor. It follows that

the leaf c is a preperiodic comajor of preperiod bigger than 1 and c is an

edge of a finite preperiodic gap G of preperiod bigger than 1 in the cubic

symmetric lamination L(c). Also note that there are no leaves under c in

the gap G. We can now use Lemma 5.2.7 and show that c is approached by

the leaves ci ∈ L(c) such that c � ci for all i and ci → c. And by Lemma

5.2.2, all of the leaves ci can be chosen to be comajors themselves. Thus, we

get ci ∈ CsCL all of which are ‘under’ c, i.e c � ci for all i.

Lemma 5.2.7 also tells us that each ci ∈ L(c) does not share an endpoint with

c. It follows that there are infinitely many leaves ‘separating’ each ci and c

in the lamination L(c). For a particular i, consider the sequence of leaves

{ci(j)}∞j=1 such that c � ci(j) � ci and ci(j) ∈ L(c) for all j. And the leaves

ci(j) → ci. Now, we use the previous argument given by Lemma 5.2.5 to show

that the comajor ci in itself is a limit of the sequence of preperiodic comajor

leaves {c′i(j)}∞j=1, each of preperiod 1 such that c′i(j) ∈ L(c) and c � c′i(j) � ci

for all j.

Using the argument above we can build a sequence of preperiodic comajor

leaves {c′i(j)}∞j=1 of preperiod 1 such that c � c′i(j) � ci ∀j and c′i(j) →
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ci for all i. Now consider the following sequence of preperiodic comajor

leaves {c′1(1), c
′
2(2), c

′
3(3), ....}. Each leaf c′n(n) in the above sequence satisfies

the following conditions, c � c′n(n) and c′n(n) is preperiodic comajor leaf of

preperiod 1. Finally, it is not hard to see that c′n(n) → c. Thus, even in

this case we get c as limit of preperiodic comajor leaves {c′n(n)}∞n=1, each of

preperiod 1.

�

The goal is to provide an algorithm to construct all preperiodic comajor leaves of

preperiod 1. By the previous lemma, they are dense in CsCL. The quadratic version

of this algorithm was given by Lavaurs in [6]. We need a few more lemmas before

setting up the algorithm.

Lemma 5.3.3. For every preperiodic point p ∈ S of preperiod bigger than 1, there

exists a cubic symmetric q-lamination L such that either p is a degenerate comajor in

CsCL and L = L(p) or the following is true:

(a) L has a pair of finite critical gaps ∆ and −∆.

(b) L has finite sibling gaps “∆ and −“∆ with p and −p as one of the vertices

respectively.

(c) “∆ and −“∆ are gaps in CsCL.

Proof. Consider the pull back lamination L(p) and the critical chords ` and

−` of the circle S that have the same images as the points p and −p respectively.

It follows that ` and −` are leaves of the lamination L(p) and their endpoints are

preperiodic as the points p and −p are preperiodic of preperiod bigger than 1 . If

the critical leaves ` and ,−` are stand-alone leaves in L(p), then L(p) is q-lamination

itself and the required lamination L = L(p) and p is a degenerate comajor in CsCL.
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If the critical leaves ` and −` are part of the gaps G and −G in L(p) respectively, then

the gaps G and −G have to be preperiodic, too, as the critical leaves are themselves

preperiodic. By Theorem 3.3.16, G and −G have to be finite gaps. We claim that no

side of the gap G ever maps to the critical leaf ` or −` under a forward iterate of the

map σ3. Clearly the leaf ` cannot map to the leaf −` as the endpoints of the leaves

`,−` are not periodic. Consider a side m of G other than the critical leaf `. Note that

the gap σ3(G) has one one fewer vertices than any of the four gaps {G, Ĝ,−G,−Ĝ},

where Ĝ and −Ĝ are the other two gaps sharing critical leaves ` and −` on their

boundaries with the gaps G and −G respectively. Now, the leaf m cannot ever map

to the critical leaves ` or −` because no forward image of the gap σ3(G) can ever

intersect any of the four gaps {G, Ĝ,−G,−Ĝ}.

We will try to build a cubic symmetric lamination L by cleaning out critical leaves

`,−` and their pre-images, i.e L = L(p) \ ⋃∞i=0{σ−i3 (`), σ−i3 (−`)}. From the earlier

argument about the sides of G and −G, it follows that L is a non-empty collection of

chords in S. We got L by taking a full pre-image collection from L(p). Hence, it is

not hard to see that L is a cubic symmetric lamination. And L has a pair of finite

critical gaps ∆ and −∆ obtained by merging the gaps on either side of the critical

leaves ` and −` respectively. Also, two of the vertices of ∆ being the endpoints of

` have the same image as p. Same is the case with −∆ and −p. Thus, L has finite

sibling gaps “∆ and −“∆ with p and −p as one of the vertices respectively. By Lemma

5.2.9, it follows that “∆ and −“∆ are gaps in CsCL.

Finally we have to prove that L is a q-lamination. Note that L(p) has only finite

gaps in it. So if there were three leaves sharing an endpoint in L(p), then at least

one of them has to be a diagonal of a finite gap. We claim that every diagonal of a

finite gap in L(p) eventually maps to the critical leaf ` or −`. There are broadly two

kinds of leaves in L(p), the pre-image leaves that eventually map to the critical leaves
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` and −` and the limit leaves that are obtained by the accumulation of pre-image

leaves. Clearly, limit leaves cannot be in the interior of a gap. Thus, all diagonals

of finite gaps in L(p) eventually map to the critical leaves and during the cleaning

process, we remove all such diagonal leaves and end up with a q-lamination L. �

Recall the notion of leaves moving in and out from Definition 5.2.1. When two

leaves move towards each other, Lemma 5.2.4 proved the existence of periodic leaves

separating them. We will consider the case now when the leaves move away from

each other. The proofs are mostly similar. The following lemma is very useful in

proving the main theorem of the current section.

Lemma 5.3.4. Let `′ 6= ` be two leaves in a cubic symmetric lamination L such

that `′ � `. If the following conditions are true,

(i) the leaves ` and `′ move away from each other under the map σk3 and

(ii) no leaf separating ` and `′ maps to a critical chord of S under the map σk−1
3 .

Then, there exists a periodic leaf y of period k under the map σ3 that separates ` and

`′.

Proof. Consider the family of leaves C in L that separate ` and `′. Let the

leaves ` and `′ be also included in C. We claim that the C has at least one leaf that

separates ` and `′ and C is a closed subset of D. If there is no leaf in C that separates

` and `′, then there exists a gap G of L with ` and `′ on its boundary. It follows that

the gap σk3(G) would strictly cover the gap G, which is a contradiction. Thus, C has

at least one leaf that separates ` and `′.

It is not hard to see that C is closed, because if there is a sequence of leaves {`i}∞i=1

in C, then the limit leaf `∞ is either ` or `′ or a leaf that separates the leaves ` and `′

in L. Let us consider a subset A of leaves in C as follows. Every leaf m in the set A

113



moves in under the map σk3 . And for every leaf m ∈ A, if a leaf n separates the leaves

` and m, then n also moves in under the map σk3 . In other words, all the leaves in A

move in the same direction as the leaf `.

There are clearly two leaves in Bd(A), one is leaf ` and the other, say a leaf y

(y � `). By continuity, either the leaf y moves in like the leaves of A or it is invariant.

We claim that the case when the leaf y moves in is not possible. Let us assume that

y moves in under the map σk3 . We claim that y should be part of a gap G in L such

that y is the smallest side of G in the sense of �. Note that as y is in Bd(A), y is

locally maximal (in the sense of �) leaf that moves in. Since y is maximal, there

exists a sequence of leaves ti in C approaching y such that ti � y and all the leaves ti

move out. But then by continuity, the limit leaf t = y of the leaves ti would also have

to move out, a contradiction. It follows that there exists a gap G with the sides y

and t in the collection C such that t � y.

Now, the gap σk3(G) would strictly cover the gap G, which is a contradiction.

Thus, the leaf y is invariant under the map σk3 , i.e σk3(y) = y. We claim that the

map σk3 actually fixes the endpoints of the leaf y. By the way of contradiction, let us

assume that σk3(a) = b and σk3(b) = a where a and b are the endpoints of the leaf y.

In other words, σk3 flips the leaf y. We have two sub-cases here.

If y is a stand-alone leaf, choose a leaf t ∈ A very close to the leaf y. Since the map

σk3 flips the leaf y, the leaf t would move out under the map σk3 contradicting the fact

that t ∈ A.

If y is part of a gap G, then the gap G′ = σk3(G) also shares the leaf y because of the

fact that σk3 flips the leaf y. In other words, the gaps G and G′ are on both sides

of the leaf y. Now, we can find a leaf t ∈ A in the gap G or G′ and get a similar

contradiction as before.
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One last thing to consider about the periodic leaf y we got is that it can be an

eventually collapsing leaf and map to one of its endpoints. In a sense, y doesn’t move

in or move out and is still invariant. However, the above case can happen only if y

maps to a critical chord of S under the map σk−1
3 . And by the second condition in

the lemma, no leaf in C maps to a critical chord of S under the map σk−1
3 . Thus, y is

a periodic leaf of period k under the map σ3. �

Comajors of preperiod 1 have periodic majors in their pull-back laminations. It

follows that they have Fatou gaps as their critical gaps. In complex dynamics, cubic

polynomials with Fatou gaps of degree 4 are said to be of type B (Bi-transitive) and

cubic polynomials with Fatou gaps of degree 2 are said to be of type D (Disjoint).

We classify comajors of preperiod 1 in the similar fashion as follows:

Definition 5.3.2. Preperiodic comajor c of preperiod 1 is said to be of type B if

L(c) has a pair of symmetric Fatou gaps of degree 4 and c is said to be of type D if

L(c) has a pair of symmetric Fatou gaps of degree 2.

Note that for a Fatou gap of degree 4 in L(c), the major leaf M maps to −M

such that the endpoints a and b of M eventually map to the endpoints −a and −b of

−M respectively . In other words, majors rotate by a 180◦ when they get to their

symmetric counterparts.

And for a Fatou gap of degree 2 in L(c), the orbits of major leaves are disjoint from

each other. We assign a number to type B and type D comajors as follows:

Definition 5.3.3. A preperiodic comajor c of preperiod 1 of type D is said to be

of number n if the leaf σ3(c) is periodic of period n. And a comajor c of type B is

said to be of number n if the leaf σ3(c) maps to the leaf −σ3(c) under the map σn3 .
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We can similarly define type B and type D periodic minors of a cubic symmetric

lamination. A type B periodic minor m of number n in the cubic symmetric lamination

L is such that σn3 (m) = −m. The idea here is to look at type B periodic minors and

type D periodic minors of a given number n in a similar vein.

Consider the rotation map of the unit circle: π(x) = x+ 1
2
∀x ∈ S. The map π rotates

points on the unit circle by 180◦. π can be extended to the leaves and gaps of the

lamination as follows.

π(`) = −` ∀` ∈ L, π(G) = −G. Note that π is clearly a bijection from L to itself,

which motivates us to look at the following class of continuous maps from L to itself.

Let g = π : L → L. Note that the forward images of a leaf ` ∈ L under the map

σ3 not only cross each other, also do not cross the leaf −` and its forward images.

It follows that, like the map σ3, the map g is also clearly defined on L. Also, L is

clearly both forward and backward invariant under the map g.

For the map σ3, let us define gk = π ◦ σk3 : L → L for some k. We would like to use

the map gk in further exploring the parameter space CsCL.

The following lemma is an equivalent to the Lemma 5.3.4 for the map gk. The

proof is exactly the same. We state without proof.

Lemma 5.3.5. Let `′ 6= ` be two leaves in a cubic symmetric lamination L such

that `′ � `. If the following conditions are true,

(i) the leaves ` and `′ move away from each other under the map gk = π ◦ σk3
and

(ii) no leaf separating ` and `′ maps to a critical chord of S under the map

gk−1 = π ◦ σk−1
3 .

Then, there exists a periodic leaf y of period 1 under the map gk = π◦σk3 that separates

` and `′.
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Now, the main theorem needed for the algorithm is as follows.

Theorem 5.3.6. If two preperiodic comajors of preperiod 1, c and c′ satisfy the

following conditions:

(i) c � c′,

(ii) c and c′ are of the same type (both are either of type B or type D) and

(iii) c and c′ have the same number n.

Then there exists a preperiodic comajor d of preperiod 1 separating c and c′ (c � d � c′)

such that d is of a number j < n.

Proof. Choose a preperiodic point p of preperiod bigger than 1 and period

bigger than n in the arc H(c′). We can find infinitely many such points in any arc

of S. By Lemma 5.3.3, there exists a cubic symmetric q-lamination L with a pair

of finite critical gaps {∆,−∆} or a pair of critical leaves as critical gaps. We will

assume that L has ∆ and −∆ as their critical gaps for the rest of the discussion.

Same exact argument works when they are critical leaves. Note that the sibling gaps“∆ and −“∆ in L contains p and −p as one of their vertices respectively. By Lemma

5.1.6, c and c′ are leaves of L.

Consider the leaves m = σ3(c) and m′ = σ3(c
′). As c � c′, we have m � m′, too.

Both m and m′ have periodic orbits. We claim that somewhere along their periodic

orbits, at least one among the finite gaps ∆ and −∆ separate a forward image of m

and m′.

If not, we get the contradiction as follows- The assumption implies that there are

no pre-images of ∆ and −∆ separating m and m′. We also know that pre-images of

finite critical gaps ∆ and −∆ are dense in L. Thus, it follows that the convex hull of

m and m′ should be a part of a gap G in L. As ∆ and −∆ never separate a forward

image of m and m′, we have that the four endpoints of the periodic leaves m and
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m′ always stay in the same circular order along their periodic orbit. It implies that

the gap G has to be a periodic gap and it has to be finite because L has only finite

gaps. By Lemma 3.3.7, if G is 1-transitive, then the leaf m will eventually map to the

leaf m′, contradicting that m is the shortest leaf in its orbit. And if G is 2-transitive,

then the leaf m will eventually map to the leaf −m′, again contradicting that m is

the shortest leaf in its orbit.

Now we need to consider two cases.

(i) If c and c′ are of type D. Then the periodic orbits of m and −m are disjoint

and have the period n. Same things can be said about the leaves m′ and −m′.

Let k be the smallest number between 0 and n such that at least one among

the finite gaps ∆ and −∆ separates the leaves σk3(m) and σk3(m′). First thing

is to see that k cannot be equal to n− 1. If k = n− 1, the circular order of

the four endpoints of m and m′ is preserved by their corresponding images in

the leaves σn−1
3 (m) and σn−1

3 (m′). Now at the last stage in the orbit, i.e for

leaves σn3 (m) and σn3 (m′), exactly one of the two leaves flip because of the

presence of critical gap between them. Without loss of generality, let us say

the leaf σn−1
3 (m) flips its endpoints when it maps to the leaf m = σn3 (m). Let

∂(m) = {a, b} and ∂(σn−1
3 (m)) = {σn−1

3 (a), σn−1
3 (b)}. The above situation

forces the point σn−1
3 (a) to map to the point b. It follows that σn3 (a) = b, a

contradiction with the fact that the leaf m is of period n under the map σ3.

Thus, 0 < k < n− 1. Now we have two sub-cases.

(a) If ∆ separates the leaves σk3(m) and σk3(m′). All the leaves and gaps

separatingm andm′ map 1-1 in the region of the closed diskD separating

the leaves σk3(m) and σk3(m′). It follows that there exists a pre-image

∆∗ = σ−k3 (∆) separating m and m′. It follows that σk+1
3 (∆∗) = σ3(∆) is
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Figure 5.1. Cubic symmetric lamination L with its gaps ∆,−∆ and
∆∗ separating the leaves m and m′ illustrating the proof of case (i) part
(a).

under the leaf m′, i.e m′ � σk+1
3 (∆∗). Let `∗ be the side of ∆∗ closest

to the leaf m. Clearly, `∗ separates the leaves m and m′ and it moves in

under the map σk+1
3 .

We claim that the leaves m and `∗ move away from each other under

the map σk+1
3 . The leaf σk+1

3 (m) is neither under the leaf m nor under

the leaf −m because of the fact that minor is always the shortest leaf in

its orbit. It follows that m moves out under the map σk+1
3 . Thus, the

leaves m and `∗ move away from each other under the map σk+1
3 .

Let us check the condition (ii) in the Lemma 5.3.4 statement. Note that

the leaf `∗ is mapping to the major of the lamination L (say M) under

the map σk3 . And all the leaves that separate `∗ and m in the strip

Sb(`
∗,m) map 1-1 to the leaves that separate M and σk3(m) in the strip
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Sb(M,σk3(m)) under the map σk3 . As there are no critical chords of S in

the strip Sb(M,σk3(m)), no leaf separating `∗ and m maps to a critical

chord of S under the map σk3 . Hence, by Lemma 5.3.4, there exists a

periodic leaf y of period k + 1 < n in the lamination L that separates

m and `∗. Let C be the collection of all the leaves that separate m and

m′. Consider two sub-collections in C as follows.

Let C1 be the collection of all periodic leaves of period smaller than n

under the map σ3 in C.

Let C2 be the collection of all fixed leaves under the map gk = π ◦ σk3
where k can be any number smaller than n in C. Let us associate k as

the iterate number with all fixed leaves under the map gk in C. Every

leaf in C2 can be associated with an iterate number.

We have shown above that y ∈ C1. Thus, C1 is non-empty but C2 could

very well be empty.

Let us choose a periodic leaf y1 of the least period j1 in C1. Clearly

j1 ≤ k + 1 < n. Moreover, we may assume that y1 is chosen among all

such leaves to be closest to the leaf m in the lamination L.

Similarly, let us choose a fixed leaf y2 under the map gj2 = π ◦ σj23 in C1

such that j2 is the smallest iterate number of all leaves in C1. Moreover,

we may assume that y2 is chosen among all such leaves to be closest to

the leaf m in the lamination L.

If j1 < j2, then we claim that the short leaf d = σ−1
3 (y1) in L is the

desired comajor of number j = j1 < n. By Lemma 5.2.3, it suffices to

prove that the leaf y1 neither maps under itself nor under the leaf −y1

under the map σi3 where i can be any number smaller than j1.
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(1) If the leaf y1 maps under itself under the map σi3 , i < j1, then the

leaves y1 and m move away from each other under σi3. By Lemma

5.3.4, we get a periodic leaf y′1 (under the map σ3) of period i

(i < j1) separating m and y1. This is in contradiction with the

fact that j1 is the smallest such period.

(2) If the leaf y1 maps under the leaf −y1 under the map σi3 , i < j1, it

implies that the leaf gi(y1) is under the leaf y1. Now, the leaves y1

and m move away from each other under gi = π ◦ σi3. By Lemma

5.3.5, we get a fixed leaf y′1 under the map gi = π◦σi3 separating m

and y1. Clearly y′1 separates m and m′, too. The iterate number

for this fixed leaf is i where i < j1 < j2 . This is in contradiction

with the fact that j2 is the smallest such iterate number.

Thus, the short leaf d = σ−1
3 (y1) in L is the desired comajor of number

j = j1 < n.

Similarly if j2 < j1, then we get that the short leaf d = σ−1
3 (y2) in L is

the desired comajor of number j = j2 < n.

Finally, there is a possibility that both the critical sets ∆ and −∆

separate the leaves σk3(m) and σk3(m′). We can get the gap ∆∗ = σ−k3 (∆)

using the same argument as before. And all other arguments proceed

exactly like before. So this case is not essentially different from what

we discussed earlier.

(b) If ∆ does not separate the leaves σk3(m) and σk3(m′) but −∆ does. We

use the same arguments as in case (a) and get the gap ∆∗ = σ−k3 (−∆)

separating m and m′. In this case we have the gap σk+1
3 (∆∗) going under

the leaf −m′. The only difference in the arguments is that we use Lemma

5.3.5 first to get a leaf y separating m and m′ such that gk+1(y) = y.
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Figure 5.2. Cubic symmetric lamination L with its gaps ∆,−∆ and
∆∗ separating the leaves m and m′ illustrating the proof of case (i) part
(b).

Thus, the collection C2 is non-empty here whereas collection C1 could

be empty. Rest of the argument follows exactly as before and we end

up with a comajor d between c and c′ of a number j < n.

(ii) c and c′ are of type B. The leaves m and m′ are now periodic of period

p = 2n and have symmetric orbits, i.e the orbits of m and −m are the same.

Similarly, the orbits of the leaves m′ and −m′ are the same as well. Proofs

in this case are very similar to that of case (i).

First, we will show that there exists a number k such that 0 < k < n−1 such

that at least one among the gaps {∆,−∆} separate the leaves σk3(m) and

σk3(m′). Let k be the smallest number between 0 and p = 2n such that one

among the finite gaps ∆ and −∆ separate the leaves σk3(m) and σk3(m′). As

the orbits of both the leaves m and m′ are symmetric, the strips formed by
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the leaves σk3(m) and σi3(m′) where 0 < i ≤ n− 1 are symmetric to the strips

formed by the leaves σr3(m) and σr3(m′) where n ≤ r < 2n. It follows that

for the first time, separation by one of the critical gaps ∆ and −∆ happens

during the first half of the orbit itself, i.e 0 < k ≤ n− 1.

We claim that k cannot be equal to n. The circular order of the four endpoints

of m and m′ are preserved in the leaves σn−1
3 (m) and σn−1

3 (m′) and exactly

one of them flips because of a critical gap between them. Without loss

of generality, let us say the leaf σn−1
3 (m) flips its endpoints when it maps

to the leaf −m = σn3 (m). Let ∂(−m) = {a + 1
2
, b + 1

2
} and ∂(σn−1

3 (m)) =

{σn−1
3 (a), σn−1

3 (b)}. The above situation forces the point σn−1
3 (a) to map to

the point b+ 1
2
. It follows that σn3 (a) = b+ 1

2
. But we know that the type B

leaf m is of number n, In other words, the point σn−1
3 (a) should map to the

point a+ 1
2

not the point b+ 1
2
. Thus, 0 < k < n− 1. We have two subcases

here similar to the case (i).

(a) If ∆ separates the leaves σk3(m) and σk3(m′). Then, following the similar

arguments as in case(i) part(a), we get a comajor leaf d separating the leaves

c and c′ of a number j < k + 1 = n.

(b) If ∆ does not separate the leaves σk3(m) and σk3(m′) but −∆ does. Then,

following the similar arguments as in case(i) part(b), we get a comajor leaf d

separating the leaves c and c′ of a number j < k + 1 = n.

�

For the rest of this section, whenever we refer to comajor leaves, we mean comajor

leaves of preperiod 1.

Proposition 5.3.7. All type D comajor leaves of the odd number n = 2p+ 1 can

be obtained by rotating all type B comajors leaves having the same number n by 90◦.
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Proof. Consider a type D comajor leaf c of number n = 2p+ 1. Let a leaf d be

obtained by rotating the leaf c by 90◦, i.e ∂(d) = ∂(c) + 1
4
.

Note that σ2p+1
3 (1

4
) = 3

4
and σ2p

3 (1
4
) = 1

4
. Consider two points a, b ∈ S that are 90◦

apart , i.e, the arc ã b is of the length 1
4
. It follows that there will be an arc of length

1
4

joining the points σk3(a) and σk3(b) in S for every iterate σk3 . It follows that every

forward image σk3(d) of the leaf d can either be obtained by rotating the corresponding

image σk3(c) of the leaf c by 90◦ either clockwise or anti-clockwise. Same is the case

with the backward iterates σ−k3 (c) and σ−k3 (d).

Thus, if we rotate the leaves of pull-back lamination L(c) by 90◦, we get a collection

of chords of S that is a pull-back cubic symmetric lamination L(d) with {d,−d} as a

pair of comajor leaves.

Consider the minor leaves m = σ3(c) and m′ = σ3(d). We have σ2p+1
3 (m) = m, it

follows that σ2p+1
3 (m′) = −m′ because of the fact that ∂(d) = ∂(c) + 1

4
. Thus, the

comajor leaves d and −d are of type D and is of the number n = 2p+ 1.

On the other hand if we start with a pair of type B comajor leaves of number

n = 2p+ 1 and rotate them by 90◦, we can show that we get a pair of type D comajor

leaves of the same number n = 2p+ 1 by using similar arguments. �

Based on Theorem 5.3.5 and Proposition 5.3.6, the algorithm for Cubic symmetric

Comajor Lamination CsCL can be stated as follows:

(1) Level 1: At the end of this level all comajor leaves of number 1 will be

constructed.

(a) Type D leaves. Consider the angles in S of preperiod 1 and period(number)

1 (namely, 1
3
, 1

6
, 2

3
, 5

6
).
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Figure 5.3. Comajors of numbers 1 and 2. Type D leaves are shown
blue in color and type B leaves are shown red in color.

As all the comajor leaves are short leaves having length smaller than 1
6
,

there is only one way to connect them and we get the leaves 1
6

1
3

and 2
3

5
6
.

(b) Type B leaves. As we are in odd number level, rotate type D leaves by

90◦ (adding 1
4

to the endpoints) to obtain type B leaves 5
12

7
12

and 11
12

1
12

.

(2) Level 2: At the end of this level all comajor leaves of number 2 will be

constructed.

(a) Type D leaves. Consider the angles in S of preperiod 1 and period

(number) 2. Some of them are 1
24
, 5

24
, 7

24
, 11

24
.... Connect the new angles

pairwise as follows. Start at a lowest unused angle bigger than 1
12

and

connect it to the lowest angle that can be reached without crossing the

leaves that have already been constructed. Some of them are shown in

Figure 5.3.

(b) Type B leaves. To find the angles θ for this case, we do the following.

1) First let us compute the periodic angles x satisfying the condition
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σ2
3(x) = x+ 1

2
or 32x = x+ 1

2
(mod1). More specifically x = 2n+1

16
where

n varies from 0 to 7.

Now, we need preperiodic images of x, i.e θ = σ−1
3 (x) and θ has to be

preperiodic. For every periodic angle x, there will be two pre-images of

x which are preperiodic and one pre-image will be periodic. We need to

ignore the periodic angle. In total there are 16 type B angles of number

2. Some of them are 1
48
, 5

48
, 7

48
, 11

48
... Repeat the same process used in

case (a) to connect new angles. Some of them are shown in Figure 5.3.

(3) Level k: Assume that all comajors of preperiod 1 and number less than

k − 1 are constructed.

(a) Type D leaves. Consider the new angles in S of preperiod 1 and period

(number) k. Connect them by leaves as follows:

Start at a lowest unused angle bigger than 1
12

and connect it to the

lowest angle that can be reached without crossing the leaves that have

already been constructed.

(b) Type B leaves. If k is odd, rotate type D leaves by 90◦, otherwise do

the following.

The type B angles θ of preperiod 1 in S of number k are obtained by

taking the preperiodic images of the angles x satisfying the condition

3kx = x+ 1
2

(mod1).

Repeat the same process used in case (a) to connect new angles.

At every stage, the new set of leaves that are added form a collection which is invariant

by 90◦ rotation. It also makes sense for that to be the case as we know that the

parameter space CsCL is invariant by 90◦ rotation.

126



Theorem 5.3.8. The above proposed algorithm generates all comajors of preperiod

1 in Cubic symmetric Comajor Lamination CsCL.

Proof. By Lemma 5.1.4, every point of S is either an endpoint of a non-degenerate

comajor leaf or a degenerate comajor in CsCL. Consider a periodic point p ∈ S of

preperiod 1. By Lemma 5.1.3, p is either an endpoint of a non-degenerate preperiodic

comajor leaf of preperiod 1 or a degenerate comajor in CsCL. By Lemma 5.3.1, p

must be an endpoint of a non-degenerate preperiodic comajor leaf of preperiod 1, in

other words p has to be connected to a preperiodic point q 6= p ∈ S of preperiod 1 to

form a comajor leaf pq. By Lemma 5.2.1, the point q is unique. In other words, there

is exactly one point q 6= p ∈ S such that the leaf pq is a preperiodic comajor leaf of

preperiod 1.

Suppose that all preperiodic comajors of preperiod 1 up to level n− 1 denoted

by COn−1 have been constructed using the algorithm and they coincide with actual

comajors of CsCL up to number n − 1. Assume without loss of generality, that

algorithm fails at some preperiodic point p of type D and number n, i.e p is a

preperiodic point of preperiod 1 and period n. Then p is located in a component

U of D \ C ′n−1. Since comajors cannot cross, the actual comajor c = pq connects

the point p to a point q ∈ S in U . And as we assumed the algorithm fails at the

point p, there exists a point q′ ∈ S ∩ U of preperiod 1 and period n which is under c.

From the earlier arguments, q′ has to be connected to an available preperiodic point

q′′ ∈ S ∩ U of preperiod 1 to form a comajor leaf c′ = qq′′. As comajors do not cross,

it is clear that c � c′. Since all the points {p, q, q′, q′′} are in U , it is clear that there

are no comajors of type D and smaller numbers between c and c′, a contradiction

with Theorem 5.3.6.

A similar contradiction exists with a type B comajor of number n. �
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