
University of Alabama at Birmingham University of Alabama at Birmingham 

UAB Digital Commons UAB Digital Commons 

All ETDs from UAB UAB Theses & Dissertations 

2020 

Gene–Environment Interaction In Parkinson Disease: The Gut Gene–Environment Interaction In Parkinson Disease: The Gut 

Microbiome Microbiome 

Zachary D. Wallen 
University of Alabama at Birmingham 

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection 

 Part of the Medical Sciences Commons 

Recommended Citation Recommended Citation 
Wallen, Zachary D., "Gene–Environment Interaction In Parkinson Disease: The Gut Microbiome" (2020). All 
ETDs from UAB. 705. 
https://digitalcommons.library.uab.edu/etd-collection/705 

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is 
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be 
directed to the UAB Libraries Office of Scholarly Communication. 

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/664?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/705?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc


 

 1 

GENE–ENVIRONMENT INTERACTION IN PARKINSON DISEASE:  
THE GUT MICROBIOME 

 
 
 
 
 

by 
 

ZACHARY D. WALLEN 
 
 
 

DAVID G. STANDAERT, COMMITTEE CHAIR 
ELLIOT J. LEFKOWITZ 

HAYDEH PAYAMI, MENTOR 
ERIK D. ROBERSON 
HEMANT K. TIWARI 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

A DISSERTATION 
 

Submitted to the graduate faculty of The University of Alabama at Birmingham, 
in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 
 

BIRMINGHAM, ALABAMA 
 

2020  



 

 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Copyright by 

Zachary D. Wallen 
2020



 

 iii 

GENE–ENVIRONMENT INTERACTION IN PARKINSON DISEASE:  
THE GUT MICROBIOME 

 
ZACHARY D. WALLEN 

 
GENETICS, GENOMICS, AND BIOINFORMATICS 

 
ABSTRACT 

 
Parkinson disease (PD) is a progressive neurodegenerative disease with no cure. 

Majority of cases are idiopathic, and the cause is unknown. Studies have been conducted 

in human and animals to identify PD risk factors, resulting in a list of genetic and 

environmental factors that modestly increases risk of PD. Still, no individual risk factor 

fully explains the cause of PD, and neither has the combination of these factors. 

Additional avenues of research are being investigated to find potential triggers of PD, and 

factors that might modify the progression of PD. This includes research into the gut 

microbiome, as gut health perturbations are frequently documented and studies have 

shown a dysbiotic gut microbial community in PD. This also includes the search for 

genetic modifiers of PD onset, which might provide a mechanism to modify disease 

progression and prolong onset of PD. This dissertation focuses on both of the 

aforementioned areas of PD research.  

We first sought to identify genetic modifiers for idiopathic PD by performing a 

genome-wide association study (GWAS) of age at PD diagnosis using 2,000 PD patients. 

Then, we performed a microbiome-wide association study (MWAS) in two additional 

cohorts to characterize gut microbial alterations observed in PD. We then investigated if 

opportunistic pathogens found enriched in PD gut might interact with genetic 

susceptibility of PD.   
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 From our GWAS of age at PD diagnosis, we detected two potentially independent 

signals associated with an earlier PD diagnosis of ~6 years in a gene involved in neuronal 

plasticity and response to injury. Our MWAS of the PD gut microbiome revealed 15 

bacterial genera significantly associated with PD, three of which were opportunistic 

pathogens, enriched in PD, that were part of a poly-microbial group of correlated genera, 

also enriched in PD. We detected potential interaction between these opportunistic 

pathogens and genetic susceptibility of PD conferred by genetic variants at the 3′ end of 

SNCA, the gene most highly associated with PD risk, which codes for the pathological 

hallmark of PD. Results provide potential leads for further research in humans and 

animals to see if findings have biological implications for PD disease progression. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Keywords: Parkinson disease, GWAS, gut microbiome, age at diagnosis, opportunistic 
pathogens,  SNCA
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GENERAL INTRODUCTION 

Parkinson disease 

Overview 

 Parkinson disease (PD) is a common, progressive, and debilitating 

neurodegenerative disease affecting approximately 1% of the population over the age of 

60 [de Lau & Breteler 2006]. The direct and indirect costs of PD including medical 

treatment, payments from social security, and lost income due to the inability for 

individuals to work is estimated to be around $14.4 billion dollars every year in the U.S. 

alone [Kowal et al. 2013]. PD is an age related disease with age being the largest risk 

factor for developing PD [Pange et al. 2019]. As the population ages, the economic 

burden of PD will continue to grow in the next 20 years. By 2037, PD prevalence has 

been projected to increase to 1.6 million in the United States with an economic burden 

greater than $79 billion [Yang et al. 2020]. 

 Parkinson disease is primarily considered a movement disorder due to the core 

clinical features of PD involving deficits in motor function. The cardinal motor 

symptoms, used in the diagnostic criteria for PD, includes bradykinesia, resting tremor, 

and rigidity [Obeso et al. 2017]. Postural instability is also a common motor symptom of 

PD, but it is not used as part of the core diagnostic criteria as it usually occurs at later 

stages in the disease course [Obeso et al. 2017]. Motor symptoms of PD are usually 

caused by reduced levels of dopamine from loss of dopaminergic neurons in the 

substantia nigra pars compacta of the brain [Obeso et al. 2017]. The most widely used 
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therapy to date for managing the motor symptoms of PD is levodopa, which is converted 

in the body to dopamine, and is used to replace the dopamine lost to neuronal cell loss. 

This therapy has its own drawbacks, however, as long term use of this drug causes its 

own motor dysfunctions and other non-motor issues [Obeso et al. 2017], and it does not 

modify the disease progression, only the motor symptoms experienced by a patient. The 

mechanisms causing dopaminergic neuronal cell loss is still unknown, therefore, a 

disease modifying therapy is still not available for use with PD. Neuronal cell death may 

be due to the dysfunction in a number of cellular pathways including misfolding of a key 

pathological protein in PD called α-synuclein [Michel, Hirsch & Hunot 2016]. The 

pathological hallmarks of idiopathic PD are inclusions of misfolded α-synuclein in 

neuronal cell bodies or neuronal processes, collectively referred to as Lewy pathology 

(LP) [Dickson et al. 2009]. The presence of LP in conjunction with dopaminergic 

neuronal cell loss in the substantia nigra is used at autopsy for post-mortem confirmation 

of a PD diagnosis [Kalia & Lang 2015]. Although LP and its main component α-

synuclein are key pathological features of PD, the role they play in the initiation and/or 

progression of PD is still under investigation. 

Once thought to be solely a disease of the brain, it is now appreciated that PD is a 

systemic condition that affects multiple areas of the human body. Multiple non-motor 

symptoms have been documented regularly in the course of PD progression, some of 

which occur years before onset of motor symptoms, and therefore, are thought to be part 

of a prodromal phase of PD. Conditions and symptoms such as rapid eye movement 

(REM) sleep behavioral disorder, constipation, and hyposmia (decreased sense of smell) 

are some of the earliest manifestations of PD, having been documented to occur 2 to >15 
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years before onset of motor symptoms with an estimated relative risk for PD of 50, 2.5, 

and 5 respectively [Pont-Sunyer et al. 2015; Obeso et al. 2017]. The prevalence of these 

non-motor manifestations are common in prodromal PD with REM sleep behavior 

disorder, constipation, and hyposmia affecting approximately 40 – 60% of PD patients 

before onset of motor symptoms [Pont-Sunyer et al. 2015]. Other non-motor 

manifestations of PD that might occur earlier or later in the disease course include 

cognitive impairment such as mild cognitive impairment and dementia, anxiety, 

depression, apathy, hallucinations, and autonomic dysfunction, some of which may be 

caused by the actual dopamine replacement therapies currently used in PD [Obeso et al. 

2017].  

Although the mechanism behind the initiation and progression of idiopathic PD is 

still unknown, multiple factors have been identified through human and animal studies 

that associate with risk of PD. Through epidemiological and experimental animal studies, 

multiple environmental factors have been associated with increased risk of PD including 

exposure to pesticides, chlorinated solvents, head injury, and polychlorinated biphenyls 

as well as certain occupations, environments, and activities such as farming, rural living, 

and well water consumption [Tanner 2010; Obeso et al. 2017]. Through the same study 

mechanisms, environmental factors have also been associated with decreased risk of PD 

including lifestyle factors such as consumption of caffeinated coffee and/or tea, smoking, 

lower cholesterol levels, certain dietary patterns, physical activity, and use of non-

steroidal anti-inflammatory drugs [Tanner 2010; Obeso et al. 2017], some of which have 

been shown to have a combinatory effect on PD risk [Powers et al. 2008]. Through large 

meta-analyses of genome-wide association studies (GWAS) of PD risk, upwards of 90 
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genetic susceptibility loci have been identified for PD, the most significant being located 

near the α-synuclein gene, SNCA [Chang et al. 2017; Nalls et al. 2019]. Performing gene-

environment interaction studies in both human and animals have also revealed 

combinations of genetic variants and environmental exposures that influence the risk of 

PD [Cannon & Greenamyre 2013; Hamza et al. 2011; Hill-Burns et al. 2013; Biernacka 

et al. 2016]. Unfortunately, no identified environmental or genetic factor, individually or 

in combination, has fully explained the cause of PD, therefore, the investigation for a 

triggering event of PD is ongoing. 

 

Genetics of risk 

 In respect to genetics, PD is usually referred to as monogenic or idiopathic. 

Monogenic PD refers to PD that is caused by highly penetrant, rare variants that are 

sufficient to cause disease on their own [Blauwendraat, Nalls & Singleton 2020]. This 

form of PD is rare, as all monogenic forms of PD combined only make up 30% of 

familial PD cases and 3% to 5% of sporadic PD cases [Kumar, Djarmati-Westenberger & 

Grunewald 2011]. Genetic variants linked to monogenic forms of PD with high 

confidence includes missense mutations in SNCA, PRKN, PINK1, DJ-1, ATP13A2, 

FBXO7, PLA2G6, and VPS35, which are inherited in either a autosomal dominant 

(SNCA, VPS35) or recessive (PRKN, PINK1, DJ-1, ATP13A2, FBXO7, PLA2G6 ) 

manner [Blauwendraat, Nalls & Singleton 2020]. Duplications and triplications of the 

SNCA gene are also causes of monogenic, autosomal dominant PD with an increasing 

phenotype severity with number of gene copies [Klein & Schlossmacher 2006]. All 

mutations referenced above most likely result in the loss of function of the encoded 



 

 5 

protein, except for mutations and multiplications in SNCA, which cause a gain of function 

or overexpression of α-synuclein [Blauwendraat, Nalls & Singleton 2020]. Mutations in 

the genes LRRK2 and GBA have also been reported to cause an autosomal dominant form 

of PD, but these differ from the previously mentioned mutations as they are common 

variants with an incomplete penetrance [Hernandez, Reed & Singleton 2016; 

Blauwendraat, Nalls & Singleton 2020]. Mutations in LRRK2 are currently considered 

the most common genetic causes of late-onset PD, found in approximately 10% of 

autosomal dominant familial PD cases and 4% of sporadic PD cases [Hernandez, Reed & 

Singleton 2016]. Majority of genes linked to monogenic forms of PD seem to revolve 

around similar biological pathways that play roles in vesicular trafficking, mitochondrial 

function and health, endosome-lysozome pathway, and cellular response to stress 

[Hernandez, Reed & Singleton 2016]. 

 Idiopathic PD, also called sporadic PD, refers to cases of PD that have no known 

cause, which make up ~95% of PD cases and will be the focus of this dissertation. 

Although the cause of PD is still unknown, we now have a long list of genetic risk factors 

that may predispose someone to develop PD [Nalls et al. 2019]. Unlike the variants 

discovered for monogenic forms of PD, discovered through the study of families, 

common genetic risk factors for idiopathic PD have been identified through large 

GWASs and meta-analyses [Hernandez, Reed & Singleton 2016]. The largest meta-

analysis of PD risk to date was performed in 2019, when Nalls and colleagues meta-

analyzed 17 different datasets from previous PD GWASs totaling 37,688 PD cases, 

18,618 UK Biobank “proxy-cases” (subjects who did not have PD, but had an afflicted 

first degree relative), and 1.4 million control subjects [Nalls et al. 2019]. This brought the 
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total number of identified genetic risk factors to 90, which span the entire genome across 

78 genomic regions and 305 genes leaving chromosome 22 as the only autosome without 

a PD genetic risk factor according to the European Bioinformatics Institute’s (EBI) 

GWAS catalog (https://www.ebi.ac.uk/gwas/efotraits/EFO_0002508, accessed 

8/20/2020) [Nalls et al. 2019]. Genomic regions containing SNCA, LRRK2, MAPT, and 

TMEM175 were among the top most associated with PD risk, with SNCA being the 

highest signal. Other regions contained genes previously associated with other diseases 

such as NOD2 previously associated with Crohn’s disease [Nalls et al. 2019]. The 

identification of these susceptibility loci and their functionally relevant genes provides 

evidence for biological pathways involved in PD and leads for functional studies. The 

issue remains, however, that no identified genetic risk factor(s) fully explain the cause of 

PD as all have modest effect sizes individually (odds ratios = 1.1 – 2, excluding rarer 

LRRK2 variants), and in combination (odds ratio = 3.7 – 6.3) [Nalls et al. 2019]. It has 

also been estimated that the currently identified genetic variants only explain 16 – 36% of 

the heritable risk of PD, and provide an area under the curve and balanced accuracy of 

0.6 – 0.7 when used in a genetic predictive model of PD [Nalls et al. 2019]. This suggests 

that there is a large portion of PD risk that is not being accounted for, and requires further 

investigation into the genome, and elsewhere, to find that missing portion. 

 

Genetics of age at onset 

 The vast majority of genetic studies in PD have focused on finding modifiers of 

PD risk, however, most of these genetic risk factors do not explain the highly variable 

nature of age at PD onset or diagnosis [Blauwendraat et al. 2019]. Age at onset and 
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diagnosis of PD varies greatly from person to person ranging from the teens to within the 

10th decade of life. Previous studies, some performed even before the advent of GWAS, 

have shown substantial evidence for the involvement of genetic factors in the age at onset 

of motor symptoms and age at diagnosis of PD, estimating the heritability of age at PD 

onset to be upwards of 98% [Zareparsi et al. 1998; Maher et al. 2002; McDonnell et al. 

2006; Hamza et al. 2010; Nalls et al. 2015]. Even with such high heritability, GWASs of 

age at onset or diagnosis of PD have been given less attention than risk, with only ~10% 

of the current GWASs listed in the EBI GWAS catalog for “parkinson’s disease” 

focusing on age at onset or diagnosis (https://www.ebi.ac.uk/gwas/efotraits/EFO_ 

0002508, accessed 8/20/2020). Even still, a handful of GWASs have provided evidence 

for putative genetic variants and genes that might play a role in the inter-individual 

variation in age at onset or diagnosis seen in the broader PD population [Hill-Burns et al. 

2016; Wallen et al. 2018; Blauwendraat et al. 2019].  

In one of the earliest and largest genome-wide age at onset studies, Hill-Burns et 

al. performed an age at onset GWAS on 431 familial (at least one affected first or second 

degree relative) and 1,544 non-familial PD cases recruited as part of the NeuroGenetics 

Research Consortium (NGRC) [Hill-Burns et al. 2016]. An additional 737 familial and 

2,363 non-familial PD cases from seven additional cohorts were used for replication. In 

familial PD, they detected two genome-wide significant signals that replicated robustly in 

the replication dataset and were associated with earlier onset of PD motor symptoms by 

9.3 – 15.3 years. Neither signal was associated with risk of PD, suggesting these variants 

might not play a role in risk of  developing PD, but affect the progression of it once it has 

been triggered. These signals mapped to two genes, LHFPL2 and TPM1, neither of which 
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were associated with age at onset in non-familial PD, or when all PD subjects were 

combined. No genome-wide significant signals were detected for non-familial and all PD 

combined. 

A follow-up study to Hill-Burns et al. was performed by Wallen et al., who 

performed an age at diagnosis GWAS on 1,950 PD cases from NGRC, the same cohort 

analyzed by Hill-Burns et al [Wallen et al. 2018]. An additional 726 PD cases from the 

Parkinson's, Genes and Environment (PAGE) study [Chen et al. 2010] were used for 

replication. This study is detailed in the first chapter of this dissertation under the title 

“PLASTICITY-RELATED GENE 3 (LPPR1) AND AGE AT DIAGNOSIS OF 

PARKINSON DISEASE”. Briefly, GWAS revealed two association signals that tagged 

two, seemingly independent linkage disequilibrium (LD) blocks of variants inside the 

LPPR1 gene. Only one of these blocks had a genome-wide significant hit, but gene-based 

analysis confirmed LPPR1 as it reached multiple testing corrected significance. One LD 

block replicated robustly, while the other only replicated in a subset of the replication PD 

cases. Both signals were associated with earlier diagnosis of PD by ~6 years, and 

contained functionally relevant variants that potentially act to destabilize the LPPR1 

protein, and alter the expression of another gene GRIN3A. 

The most recent and largest GWAS of age at onset of PD to date was performed 

by Blauwendraat et al. where they performed a hybrid age at onset and diagnosis GWAS 

followed by meta-analysis on 28,568 PD cases from 17 cohorts in the International 

Parkinson’s Disease Genomics Consortium (IPDGC) and one cohort from 23andMe 

[Blauwendraat et al. 2019]. Age at onset was used for the outcome of IPDGC GWASs 

unless not available, then age at diagnosis was used. Age at diagnosis was used for all 



 

 9 

subjects in the 23andMe GWAS. Meta-analysis resulted in two genome-wide significant 

associations that mapped to the 3′ end of SNCA, which is the most highly associated 

region for PD risk, and a coding variant in exon 11 of TMEM175. Both signals were 

associated with earlier onset, or diagnosis, by ~0.6 years. Nominal signals were detected 

for other loci associated with PD risk (BST1, INPP5F/BAG3, FAM47E/SCARB2, 

MCCC1), but to the author’s surprise no significance was detected for well-established 

PD risk loci including RAB7L1/NUCKS1 (PARK16), GCH1, and MAPT. Regardless, the 

authors state associations detected in this study provide evidence for a dual role of a 

subset of PD risk loci in both increasing PD risk and modulating PD progression. 

 

Gut microbiome 

Overview 

 The human body is home to trillions of microbial cells including bacteria, 

archaea, viruses, and eukaryotic microbes such as fungi, whose collective genomes are 

referred to as the human microbiome. These microbes have co-evolved with humans to 

form complex niches on and within our bodies, resulting in numerous body-area-specific 

ecosystems that can adapt to changing host physiology and exposures. For the most part, 

it is a symbiotic relationship between host and microbial needs as humans provide 

commensal microbes with the environment and nutrients they need to survive while 

commensals perform critical roles in keeping our bodies healthy. However, a disbalance 

in the composition of the microbiome has been associated with numerous diseases 

ranging from diseases of the gastrointestinal tract to neurological conditions [Lloyd-

Price, Abu-Ali & Huttenhower 2016]. Due to its importance in human health and disease, 
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and the rapid rate at which methods for studying the microbiome have become available, 

microbiome research has exploded into many areas of biomedical research where the 

most studied microbial community of the human body has been that of the gut 

microbiome. 

 The gastrointestinal tract houses the largest and most diverse collection of 

microbes on, or in, the human body. Microbes in the gut provide assistance with many 

essential activities needed for a healthy body including digestion and nutrient uptake, 

defense against infection from foreign microbes, detoxification of ingested compounds, 

development and priming of the immune system, and mediation of diseases [Liang et al. 

2018]. Unfortunately in disease, if the lining of the gut is breached, usually harmless 

commensal microbes can become a source of inflammation to surrounding tissues and 

can lead to immune system perturbations [Segata et al. 2012], or potentially more 

systemic damage. Because of this dual nature of the gut microbiome, it is important to 

understand and characterize it in both healthy and diseased states. Our understanding of 

what organisms reside in the gut, their functional characteristics, and how they influence 

human health and disease has been growing at a rapid pace, largely facilitated by an 

exponential increase in computational tools and sequencing technologies that allows 

access to the gut microbiome, which is largely unculturable. These advanced tools and 

technologies have been, and are currently being used to establish and build important 

facets of gut microbiome research including (1) compilation of reference data for both 

taxonomic identities and gene content of gut microbiota, (2) associations between 

abundances of microbes and microbial genes with host factors, disease and environmental 

exposures, (3) functional characterization of microbial associations with host or external 
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factors through a wider breadth of methodologies such as multi-omics or experimental 

manipulations, and (4) translation of gained knowledge into biomedical applications such 

as gut microbiome modulation for disease therapies [Schmidt, Raes & Bork 2018]. 

Studies of the gut microbiome outlined in this dissertation will pull from, or contribute to, 

1-3 of the above list. 

 

Methods for analyzing the gut microbiome 

  Two forms of sequencing technology are commonly used to assess the presence 

and abundance of microbes in the gut: shotgun metagenomic sequencing and amplicon 

sequencing of marker gene fragments (usually 16S rRNA gene fragments for 

bacteria/archaea and 18S rRNA/ITS gene fragments for fungi). Both methods have their 

utilities, pros, and cons. Although referred to as shotgun metagenomics, this technique is 

actually standard whole genome sequencing that is applied to a sample of DNA from a 

mixed community of microorganisms [Venter et al. 2004]. As with whole genome 

sequencing of a singular organism, DNA from the mixed community of microorganisms 

is sheared into tiny fragments and sequenced individually resulting in DNA sequence 

reads that can be aligned to reference genomes to determine what microbes are present in 

the sample and the relative abundance of each [Sharpton 2014]. Untargeted sequencing of 

DNA that can span across the genomes of microorganisms has key advantages over 

marker gene amplicon sequencing including the ability to detect all organisms present in 

a sample across multiple domains (Bacteria, Archaea, Eukaryota, viruses) at high 

resolutions (down to strain level) and gain functional insight by sequencing different gene 

coding portions of the genomes [Sharpton 2014]. Even with these benefits, shotgun 
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metagenomic sequencing has drawbacks that keep it from becoming the main sequencing 

technique for surveying the gut microbiome. These include the increased cost of shotgun 

metagenomics when compared to amplicon sequencing as it can be 10x more expensive 

to perform than amplicon sequencing, the increased computational resources and 

expertise needed to process the massive amount of complex data resulting from shotgun 

metagenomics, and the lack of a comprehensive list of reference genomes to apply to 

sequenced microbial DNA [Sharpton 2014], although this is continually being improved 

upon by a number of large collaborative studies such as the MetaHIT consortium [Qin et 

al. 2010; Li et al. 2014] and Human Microbiome Project [Nelson et al. 2010; Human 

Microbiome Project Consortium 2012]. On the other hand, amplicon sequencing of 

marker gene fragments require much less funds to perform, have a much smaller data 

storage footprint than shotgun metagenomics, require less computational resources 

(although analysis of many samples will still require a fair amount), and have more 

comprehensive and specialized reference databases, of which the largest and most widely 

used is the SILVA database [Quast et al. 2013; Yilmaz et al. 2014; Balvočiūtė & Huson 

2017].  

The most popular choice of marker gene is the bacterial/archaeal 16S rRNA gene 

as it has a good balance between conservation among bacteria and archaea, but contains 

hypervariable regions that are more prone to genetic variation, which makes it an 

informative marker for taxonomical and phylogenetic differentiation [Pace et al. 1986; 

Hugenholtz & Pace 1996]. In amplicon sequencing of the 16S rRNA gene, extracted 

microbial DNA is submitted to a polymerase chain reaction (PCR) using primers 

targeting a specific hypervariable region (commonly used regions include hypervariable 
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region 4 (V4) or hypervariable region 3 and 4 (V3-4)), then amplicons of the 

hypervariable region are sequenced. These sequences are then bioinformatically 

processed to infer what microorganisms are present in a sample and at what relative 

abundance [Sharpton 2014]. Two main methods are used for the detection of unique 

organisms, or unique clusters of closely related organisms, in a sequenced sample: 

clustering unique sequences into operational taxonomic units (OTUs) based on a 

particular sequence similarity threshold (97% commonly used) or inference of high 

resolution, exact sequence variants (referred to as amplicon sequence variants (ASVs)) 

representing unique microorganisms that can differ by as little as one nucleotide 

[Callahan, McMurdie & Holmes 2017]. Both methods are still used in the literature, 

however, leaders in the field have suggested replacing the use of OTUs with ASVs as 

ASVs provide a higher resolution for microorganism detection and are more biologically 

relevant and reproducible between studies as their identity corresponds to the exact 

microorganism sequence detected within a sample instead of a synthetic grouping of 

similar sequences based on an arbitrary similarity threshold with an arbitrary ID 

[Callahan, McMurdie & Holmes 2017; Boleyn et al. 2019]. After detection of 

OTUs/ASVs, taxonomic identities are assigned via a taxonomic classifier, which usually 

assigns identities from kingdom to genus taxonomic levels. Species level taxonomic 

assignments might be achievable for a subset of detected OTUs/ASVs, but classifications 

at the species level usually cannot be confidently made with 16S rRNA amplicon 

sequencing [Johnson et al. 2019], or produce ties between multiple species as the gene 

fragment sequenced does not contain enough genetic variation to distinguish between two 

or more species. An optional step in the bioinformatic processing of 16S rRNA amplicon 
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data is the creation of a phylogenetic tree of OTUs/ASVs, but this is usually done only if 

a phylogenetic study is being performed, or if statistical methods will be implemented 

downstream that use phylogenetic relatedness in their analyses (e.g. the widely used 

UniFrac distances for measuring inter-individual variation in microbiome compositions) 

[Lozupone et al. 2005; Chen et al. 2012]. At this point a sample by feature (OTUs/ASVs 

or higher taxonomic levels) table with per sample feature abundances has been produced 

with accompanying taxonomic assignments and potentially phylogenetic tree, and is the 

main input, along with sample metadata (host factors such as disease status, age, and sex 

or technical variables such as collection method and sample storage), for further 

downstream statistical analyses. Before statistical analyses are conducted, however, 

sample by feature abundance tables are usually, and should be, processed further to 

account for inter-sample variation in sequencing depth. A number of methods have been 

developed to account for unequal sequencing depth between samples ranging from 

simple data transformations as the widely used relative abundance (dividing each feature 

count by the total sample count, also referred to as total sum scaling) to more intricate 

methodologies that calculate size factors for scaling feature counts such as those used in 

RNA-seq methods DESeq2 and edgeR [Robinson & Smyth 2008; Love, Huber & Anders 

2014]. 

Statistical analyses implemented in study of the gut microbiome differ based on 

study goals, but one of the most commonly used analyses in gut microbiome research is 

differential abundance analysis [Thorsen et al. 2016]. Differential abundance testing has 

been especially useful when studying the gut microbiome and disease as a number of 

diseases have been associated with alterations of individual taxa in the gut microbiome 
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using differential abundance testing [Schmidt, Raes & Bork 2018]. Differential 

abundance testing involves the use of serial univariate statistical tests to determine if 

certain taxa are significantly different between groups [Thorsen et al. 2016]. Numerous 

differential abundance testing methods exist and include classical statistical tests (e.g. 

Kruskal-Wallis rank sum test), methods developed to detect differential expression of 

gene transcripts in RNA-Seq data (e.g. DESeq2, edgeR), methods specifically designed 

for detecting differentially abundant taxa in microbiome data (e.g. metagenomeSeq), and 

methods designed to detect differentially abundant features in compositional data (e.g. 

ALDEx2). Choice of differential abundance method can greatly influence what, and how 

many, differentially abundant taxa are detected in a disease state, and most, if not all, 

methods will respond differently to microbiome data due to differences in their 

underlying characteristics. Multiple studies have previously assessed and compared the 

performance of popularly used differential abundance testing methods, measuring their 

false positive rates, false discovery rates, sensitivities, and/or specificities from simulated 

data [McMurdie & Holmes 2014; Thorsen et al. 2016; Weiss et al. 2017; Hawinkel et al. 

2019], with only one of these studies testing different methods on real data [Weiss et al. 

2017]. The literature lacks examples of the use of different differential abundance testing 

methods on real gut microbiome datasets, therefore, a study detailed later in this 

dissertation (chapter “APPLICATION OF SIXTEEN DIFFERENTIAL ABUNDANCE 

METHODS TO TWO LARGE PARKINSON DISEASE GUT MICROBIOME 

DATASETS”) applied 16 differential abundance testing methods to two large PD-gut 

microbiome datasets to compare results between these methods when performed on real, 

complex disease datasets. 
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Other statistical analyses commonly used in gut microbiome research include 

visualization and/or testing of inter-individual variations in overall gut microbiome 

compositions and co-occurrence network analysis to detect groups of correlated taxa.  

Inter-individual variation in microbiome composition (also referred to as β-

diversity) can be visualized and tested in a variety of ways. Methods such as principal 

component analysis, principal coordinate analysis, and non-metric multidimensional 

scaling are commonly used ordination tools to observe patterns of sample clustering 

based on within and between group differences in microbiome composition [Buttigieg & 

Ramette 2014]. Obvious clustering between groups of samples might indicate a strong 

effect size of the grouping variable on composition of the microbiome. Differences 

between groups can then be tested using permutational multivariate analysis of variance 

(PERMANOVA), which tests if between group differences in microbiome composition 

are significantly larger than within group differences signifying that a separation between 

groups is occurring based on microbiome compositional differences [Anderson 2001]. 

Co-occurrence network analysis provides a way to infer biological interactions in 

silico through construction of a correlation network between taxa of interest [Friedman & 

Alm 2012]. A number of methods exist to construct co-occurrence networks, but the 

main workflow includes calculation of pairwise correlations between taxa abundances, 

and then plotting correlations in a network framework followed by clustering of network 

nodes (taxa) using some form of clustering algorithm to visually observe different 

communities of correlated taxa. Community detection algorithms can be used to test if 

what is being observed visually are actually distinct correlated communities [Blondel et 

al. 2008]. Similar to how LD is used in GWAS for associated genetic variants, using this 
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technique can be informative for observing whether or not taxa associations detected via 

differential abundance testing are in fact independent, or part of a correlated group of 

taxa. It may also provide leads for additional candidate taxa to study that may not have 

been detected via differential abundance testing. 

 

Complications of gut microbiome analysis 

Even with an expansive list of tools, analysis of the gut microbiome still has its 

difficulties ranging from the initial collection of data and samples to the end statistical 

analyses. Composition of the gut microbiome is influenced by a myriad of factors from 

the host, environment, and gut microbiome itself [Schmidt, Raes & Bork 2018]. Through 

large population studies of 2,000 subjects combined, gut microbiome composition was 

shown to be influenced by approximately 130 different host intrinsic and life-style factors 

including, but not limited to, stool consistency, body mass index, age, metabolite levels, 

gender, diet, presence of gastrointestinal diseases, and medication use [Falony et al. 2016; 

Zhernakova et al. 2016]. Even still, one study estimated that the identified host factors 

only explained 18.7% of the variation in inter-individual differences in microbiome 

composition, suggesting that the majority of factors affecting gut microbiome 

composition have yet to be identified [Zhernakova et al. 2016]. The large range of host 

factors that influence the gut microbiome makes subject data collection difficult at the 

onset of a gut microbiome study, and also complicates later statistical analyses when 

trying to detect potential confounding variables. In addition to host factors, numerous 

technical factors also influence detected gut microbiome compositions including choice 

of sample storage method [Choo, Leong & Rogers 2015], DNA extraction method 
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[Mackenzie, Waite & Taylor 2015], and 16S rRNA gene region [Yu et al. 2008; 

Klindworth et al. 2013; Yang, Wang & Qian 2016]. Even after molecular processing, 

biases of what gut microbes are detected from a sample can be introduced through choice 

of bioinformatic pipeline [Prodan et al. 2020], and taxonomic reference database 

[Balvočiūtė & Huson 2017]. 

Performing statistical analyses on gut microbiome data is, in itself, difficult due to 

multiple underlying characteristics of the data. The majority of microbiome data is 

heavily skewed toward zero (80 – 95% of the counts equal to zero) and over-dispersed 

(variances are larger than their means) [Thorsen et al. 2016], usually following a 

negative-binomial distribution. This makes microbiome data difficult to analyze using 

standard statistical methods that expect the data to be normally distributed with no over-

dispersion, requiring the use of specialized methods, or transformations to try and bring 

the data closer to a normal distribution. As mentioned earlier, usually there is large 

variation in sequencing depth, or total sample count, between samples, which must be 

accounted for by normalizing individual taxa counts by the total sample count, or by 

including total sample count in the statistical model. Microbiome sequencing data is also 

compositional in nature, meaning that all sequence counts given to individual taxa within 

a sample adds up to a particular constant, whether that constant is 1 when data is 

transformed to relative abundances, or 100,000 if data is raw abundances [Gloor et al. 

2016]. This translates to all taxa within a sample being, at least, somewhat correlated 

with one another just from technical artifact. In order to break this compositionality, 

ratios of one taxon to others can be used to capture the relationships between individual 

taxa without the compositionality constraint [Gloor et al. 2017]. Taking the log of these 
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ratios, hence why this transformation is referred to as log-ratio, makes the data more 

symmetrical and analyzable by standard statistical methods [Gloor et al. 2017]. Log-

ratios are used in the differential abundance method ANCOM (Analysis of composition 

of microbiomes) [Mandal et al. 2015], while another differential abundance method, 

ALDEx2, uses the centered-log ratio transformation (log-ratio transformation with the 

denominator being the geometric mean of the sample) [Fernandes et al. 2014]. 

  

Parkinson disease and gut connection 

 Multiple lines of evidence from previous studies point to the involvement of the 

gut and gut microbiome in PD. As stated previously, some of the first non-motor 

symptoms of PD, occurring well in advance of motor symptom onset, are gastrointestinal 

disturbances, including constipation [Cersosimo et al. 2013; Chen et al. 2015]. Presence 

of α-synuclein has been shown in the gastrointestinal tract of persons with early PD 

[Shannon et al. 2012], Lewy body disease [Breen, Halliday & Lang 2019], and rapid eye 

movement disorder [Knudsen et al. 2018], which has a high conversion rate to PD. 

Presence of α-synuclein in the gut was also found in conjunction with increased intestinal 

permeability in early stage PD [Forsyth et al. 2011]. Large epidemiological studies have 

suggested a reduction in PD risk for those who have undergone truncal vagotomy years 

before PD onset [Svensson et al. 2015; Liu et al. 2017], and a study in mouse saw that 

truncal vagotomy and endogenous α-synuclein deficiency prevented gut to brain spread 

of injected preformed α-synuclein fibrils and development of PD-like neurodegeneration 

and behavioral deficits [Kim et al. 2019]. Studies in human have shown a role of α-

synuclein in pathogen response where infection of the gut or olfactory system triggered 
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α-synuclein expression, which in turn mobilized the immune system to respond to the 

infection [Stolzenberg et al. 2017; Tomlinson et al. 2017]. Experimentally, it has been 

shown in a Pink1 knockout mouse model of PD that intestinal infection may act as a 

trigger for dopaminergic cell loss and motor impairment through activation of T cells in 

the periphery [Matheoud et al. 2019]. A hypothesis that has gained popularity in recent 

years, termed “Braak’s hypothesis”, states that non-inherited forms of PD may be caused 

by a yet to be identified pathogen that invades the gastrointestinal tract and, through the 

enteric nervous system, makes its way to the brain [Braak et al. 2003; Braak et al. 2003]. 

This hypothesis has been further modified to state that it may not be an actual pathogen 

making its way to the brain, but pathogenic species of α-synuclein initiated in the gut by a 

pathogen, or altered microbial state, and traveling to the brain. Multiple studies in human 

have associated a dysbiotic gut microbiome with PD, all finding individual 

microorganisms significantly enriched or depleted in PD, albeit with varying results 

[Gerhardt & Mohajeri 2018; Boertien 2019]. One experimental study showed enhanced 

neuro-inflammation and motor symptoms in germ free α-synuclein overexpressing when 

colonized with gut microbiota derived from PD patients compared to mice colonized with 

control microbiota [Sampson et al. 2016].  

Even with an overwhelming amount of evidence pointing to gut and gut 

microbiome involvement in PD, it is still under investigation whether or not the gut is a 

site involved in the initiation of PD, or gut and gut microbiome perturbations are just a 

byproduct of disease, an unhealthy gut, or weakened immune system. 
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Aims, rationale, and brief description of dissertation 

 
 It is clear that a large portion of age at onset and diagnosis of PD is heritable, 

therefore, our overarching hypothesis is that there is a genetic component to the 

variability in age at onset and diagnosis of PD. Genome-wide association studies have 

mostly focused on PD risk while only a handful of genome-wide studies have been 

performed for age at onset of PD. This has resulted in 90 genetic risk loci being detected 

for PD, while only ~5 genetic loci have been nominated through genome-wide methods 

as potential age at onset or diagnosis modifiers in PD. More genetic studies targeting age 

at onset and diagnosis are needed to continue characterizing the genetic component of 

age at onset and diagnosis. To this end, the aim of the first chapter of this dissertation was 

to continue identifying genetic modifiers of age at diagnosis of PD. To do this, we 

performed a GWAS for age at diagnosis of PD using 1,950 PD patients. Through both 

SNP and gene-based GWAS, we identified an additional putative age at diagnosis 

modifier gene, which added to the relatively short list of current genes. Functional 

annotation of SNPs underlying the detected GWAS signal revealed an additional 9 brain 

expressed genes that might be candidates for further functional studies to determine if 

they play a role in modifying the progression of PD. 

 The remaining parts of this dissertation focus around PD and the gut microbiome: 

first testing and comparing the behavior of different differential abundance testing 

methods on real microbiome data, then characterizing the PD gut microbiome in two 

large cohorts, and finally performing a candidate taxa, candidate gene study to see if 

abundances of certain taxa found enriched in PD and genetic variants in the SNCA locus 

influenced one another’s associations with PD.  
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As methods for microbiome analysis are constantly evolving and updating, and no 

example is available in the literature for the comparison of different differential 

abundance methods on gut microbiome datasets of real, complex disease, we took it upon 

ourselves to perform 16 differential abundance testing methods on two large PD-gut 

microbiome datasets and compare their results. This study makes up the second chapter 

of the dissertation, which aimed to compare results between 16 differential abundance 

methods when performed on two large, real gut microbiome datasets that were created for 

study of a complex disease. We hypothesized inter-method variation in results would be 

evident as has been previously shown [McMurdie & Holmes 2014; Thorsen et al. 2016; 

Weiss et al. 2017; Hawinkel et al. 2019], but the degree to which method results would 

differ from one another was unknown to us. Indeed, a wide range of inter-method 

variation in results was observed, but some methods (mainly those previously shown to 

have low false positive and discovery rate) resulted in higher overall concordances than 

others. Despite differences observed between methods, a group of PD-microbe 

associations were found to be agreed upon by the majority of methods in both datasets. 

This study gave us a better understanding of how different differential abundance 

methods behaved with real, complex disease gut microbiome data and provided a unique 

method comparison study currently missing from the literature. 

With increased understanding on how different differential abundance testing 

methods behave on our datasets, we then moved to perform a study characterizing the gut 

microbiome of PD in the largest PD-gut microbiome datasets to date, which is detailed in 

the third chapter of this dissertation. Similarly to previous PD-gut microbiome studies, 

we hypothesized that there is enrichment and/or depletion of certain microbes in the gut 
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of persons with PD, but unlike previous studies we did not assume associations of gut 

microbes with PD would be independent, rather, might be correlated with one another as 

a whole or in part. For this chapter, we aimed to identify reproducible signals of 

association between PD and gut microbiota by using larger sample sizes, adjustment for 

potential confounding variables, robust statistical methods, stringent statistical criteria, 

and a replication paradigm, which has been lacking in previous PD-gut microbiome 

studies. Performing a hypothesis-free microbiome-wide association study at the genus 

level resulted in detection of robust associations between PD and 15 bacterial genera. 

Detected associations were not independent, but represented three clusters of co-

occurring microorganisms, which, per literature search, included a group of opportunistic 

pathogens, short-chain fatty-acid producing bacteria, and supposed probiotic bacteria. 

Results from this study confirmed previous evidence for alterations of short-chain fatty-

acid producing and probiotic bacteria in PD, while detecting novel associations with 

potential opportunistic pathogens that might be of interest for further functional studies 

and were the focus of the final chapter of this dissertation. 

As mentioned earlier in the introduction, previous literature points to immune 

involvement of α-synuclein, and pathological α-synuclein has been observed in the gut of 

PD patients [Stolzenberg et al. 2017; Tomlinson et al. 2017; Shannon et al. 2012].  With 

this, and Braak’s hypothesis in mind (also mentioned earlier in the introduction) [Braak et 

al. 2003; Braak et al. 2003], we posited that the opportunistic pathogens associating with 

PD in chapter three of this dissertation might be connected to aberrant α-synuclein 

presence in the gut as both were found to be enriched in PD previously. To begin 

investigating whether a potential relationship exists between overabundance of 
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opportunistic pathogens in the PD gut and α-synuclein, we performed a genetic study 

(detailed in chapter 4 of this dissertation) to test if a potential interaction existed between 

opportunistic pathogens reported in chapter three and genetic variation in and around the 

SNCA gene. Not only is the SNCA region the highest peak in GWAS of PD risk [Nalls et 

al. 2019], but genetic variants in this region have been previously associated with 

increased expression of SNCA [GTEx Consortium 2015; Soldner et al. 2016; Emelyanov 

et al. 2016]. As both presence of pathogens in the gut and genetic variants in and around 

SNCA have been previously shown to increase SNCA expression, and increasing dosages 

of SNCA is important in PD pathogenesis as seen in SNCA duplication and triplication 

cases [Devine, Gwinn, Singleton & Hardy 2011], we hypothesized that the combination 

of both opportunistic pathogens in the gut and genetic variation in the SNCA region might 

increase the risk of PD. In order to establish a putative connection between previously 

detected opportunistic pathogens in PD and genetic variation in the SNCA region, the aim 

of the fourth chapter of this dissertation was to investigate whether or not genetic 

variation in the SNCA region moderated the associations between PD and opportunistic 

pathogens reported in chapter 3, and then, if presence of opportunistic pathogens 

enhanced the detected genetic variants’ associations with PD. Interaction analyses 

resulted in detection of two variants that showed an obvious genotype effect on PD and 

opportunistic pathogen associations. Then, associations between detected genetic variants 

and PD were found to be enhanced when testing in subjects who were positive for 

opportunistic pathogens of chapter 3. While results from this study only provides a 

suggestive connection between opportunistic pathogens in the PD gut and genetic 

variation in the SNCA region, it is the first study to investigate the interaction between 
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host genetics and gut microbiome in relation to PD, and provides further leads for testing 

the involvement of these gut microbes in functional studies of PD including animal 

models that overexpress α-synuclein.
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ABSTRACT 

The objective of this study was to identify modifiers of age at diagnosis of 

Parkinson disease (PD). We performed a genome-wide association study (GWAS) that 

included 1,950 individuals with PD from the NeuroGenetics Research Consortium 

(NGRC) study. Replication was conducted in the Parkinson’s, Genes and Environment 

study, including 209 prevalent (PAGEP) and 517 incident (PAGEI) PD cases. Cox 

regression was used to test association with age at diagnosis. Individuals without 

neurologic disease were used to rule out confounding. Gene-level analysis and functional 

annotation were conducted using Functional Mapping and Annotation of GWAS platform 

(FUMA). GWAS revealed 2 linked, but seemingly independent association signals that 

mapped to LPPR1 on chromosome 9. LPPR1 was significant in gene-based analysis (P = 

1E-8). The top signal (rs17763929, hazard ratio [HR] = 1.88, P = 5E-8) replicated in 

PAGEP (HR = 1.87, p = 0.01), but not in PAGEI. The second signal (rs73656147) was 

robust with no evidence of heterogeneity (HR = 1.95, P = 3E-6 in NGRC; HR = 2.14, P = 

1E-3 in PAGEP + PAGEI, and HR = 2.00, P = 9E-9 in meta-analysis of NGRC + PAGEP 

+ PAGEI). The associations were with age at diagnosis, not confounded by age in patients 

or in the general population. The PD-associated regions included variants with Combined 

Annotation Dependent Depletion (CADD) scores = 10–19 (top 1%–10% most deleterious 

mutations in the genome), a missense with predicted destabilizing effect on LPPR1, an 

expression quantitative trait locus (eQTL) for GRIN3A (false discovery rate [FDR] = 4E-

4), and variants that overlap with enhancers in LPPR1 and interact with promoters of 

LPPR1 and 9 other brain-expressed genes (Hi-C FDR < 1E-6). Through association with 

age at diagnosis, we uncovered LPPR1 as a modifier gene for PD. LPPR1 expression 
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promotes neuronal regeneration after injury in animal models. Present data provide a 

strong foundation for mechanistic studies to test LPPR1 as a driver of response to damage 

and a therapeutic target for enhancing neuro-regeneration and slowing disease 

progression. 

 

INTRODUCTION 

The underlying neurodegenerative process that causes Parkinson disease (PD) 

begins decades before the disease is diagnosed.1 The current view is that following an 

initial insult (e.g., toxicity, trauma, or genetic), the disease starts with an asymptomatic 

phase of unknown duration, followed by development of prodromal nonmotor symptoms 

such as constipation, anosmia, and sleep disorders. Years later, cardinal motor signs 

appear, at which point a diagnosis of PD is made. Age at onset of motor signs, and 

therefore the age at diagnosis of PD, is highly variable, ranging from teen ages to the 10th 

decade of life. The reason for this variation is unknown, and understanding it will likely 

shed light on factors that affect the rate of disease progression. 

There is substantial evidence that genetic factors play a major role in age at onset 

of motor signs and age at diagnosis of PD.2-6 Genome-wide studies have identified 

numerous loci that associate with the risk of developing PD,7 but the risk factors do not 

explain the variation in age at onset.8-10 Three loci have been nominated as modifiers of 

age at onset in familial PD.11,12 The present study was aimed at identifying genetic 

modifiers for common idiopathic PD. We hypothesized that identification of the genetic 

basis to interindividual variability in age at diagnosis will provide insights into the 

intrinsic mechanisms that determine the rate of deterioration during preclinical disease. 



 

 29 

METHODS 

This study was a case-control GWAS, followed by replication and functional 

annotation. 

 

Standard protocol approvals, registrations, and patient consents 

 The study was approved by the institutional review boards at all participating 

institutions. Written informed consent was obtained from all patients and controls for 

participation in the study. 

 

Participants 

The study included 2 data sets. The NeuroGenetics Research Consortium (NGRC) 

data set13 was used for the discovery GWAS, gene-based test, and functional annotations. 

The Parkinson's, Genes and Environment (PAGE) study14 was used for replication. 

Participants' characteristics are shown in table 1 and figure e-1 

(links.lww.com/NXG/A66).  

NGRC is a case-control study of genetically unrelated participants, including 

2000 PD cases and 1986 controls.13 Patients were enrolled sequentially from movement 

disorder clinics in Portland (OR), Seattle (WA), Albany (NY), and Atlanta (GA). 

Controls were spouses of patients or community volunteers, self-reported as being free of 

neurologic disease. The eligibility criterion for cases was diagnosis of PD by a movement 

disorder specialist according to the UK Brain Bank criteria.15 The eligibility criteria for 

controls were no neurologic disease and genetically unrelated to patients. Age was 

defined as age at study entry. Age at diagnosis was extracted from medical records or 

ascertained by self-report. Age at onset of the first motor sign was obtained using a self-
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administered questionnaire. Age at onset and age at diagnosis were highly correlated in 

the NGRC (r2 = 0.91, P < 2E-16). All participants were whites of European descent.13 

 

Table 1. Data sets and participants’ characteristics. Data on the NGRC participants were collected at enrollment: 
patients already had the diagnosis of PD and controls were free of neurologic disease.  NGRC participants were 
enrolled at four sites: Oregon, Washington, New York and Georgia. Age at onset mean ± SD were Oregon=56.6 ± 12.8, 
Washington=58.7 ± 11.8, New York=59.4 ± 11.5, Georgia=58.7 ± 11.1. Age at diagnosis mean ± SD were 
Oregon=59.6 ± 11.7, Washington=60.7 ± 11.6, New York=60.9 ± 11.1, Georgia=60.3 ± 10.6.  PAGE participants were 
originally enrolled in the longitudinal NIH-AARP diet study in 1995-1997. Their PD status was investigated in 2004-
2006. Participants who had the diagnosis of PD before 1998 were classified as prevalent PD (PAGEP), participants who 
were diagnosed with PD during follow-up (between 1998 and 2006) were classified as incident PD (PAGEI), and 
participants who did not have PD were designated as controls. Since PAGE participants were of similar age at entry, 
the method of classifying the participants into prevalent vs. incident cases inevitably assigned earlier ages-at-diagnosis 
to the prevalent group and later diagnoses to the incident group. Abbreviations: NA = not available; NGRC = 
NeuroGenetics Research Consortium; NR = not relevant; PAGE = Parkinson’s, Genes, and Environment. Participants 
were non-Hispanic whites and genetically unrelated.  
 

 
 
 
 PAGE is a cross-sectional study nested in the longitudinal NIH-American 

Association of Retired Persons Diet and Health Study.14 Participants were enrolled in 

1995–1997 (irrespective of PD) via a food frequency questionnaire mailing16 and in the 

2004–2006 follow-up visit were asked if they had been diagnosed with a major chronic 

  Discovery (NGRC)  Replication (PAGE) 

  PD Control  PAGEP PAGEI Controls 

N  2,000 1,986  209 517 1,549 

Male / Female  1,346 / 654 769 / 1,217  164 / 45 396 / 121 1,213 / 336 

Age at enrollment mean ± SD  67.3 ± 10.7 70.3 ± 14.1  62.6 ± 4.9 63.2 ± 4.9 63.4 ± 4.9 

Age at follow-up mean ± SD  NR NR  73.9 ± 4.9 74.5± 4.9 74.0 ± 4.9  

N with age at onset data    1,999 NR  0 0 NR 

Age at onset mean ± SD  58.3 ± 11.9 NR  NA NA NR 

N with age at diagnosis data   1,950 NR   209  517 NR 

Age at diagnosis range  25 - 90 NR  42 - 72 53 - 81 NR 

Age at diagnosis mean ± SD   60.4 ± 11.4 NR  59.9 ± 6.6 69.4 ± 5.4 NR 
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disease including PD. Participants who had been diagnosed with PD before enrollment 

(before 1998) were designated as prevalent PD (PAGEP, N = 209), participants who were 

diagnosed during follow-up (1998–2006) were designated as incident PD (PAGEI, N = 

517), and participants who did not have PD were designated as controls (N = 1,549). All 

participants in this study were non-Hispanic whites. 

 

Genotyping 

 NGRC participants were genotyped on Illumina HumanOmni1-Quad v1-0 B array 

and Immunochip array. Genotypes and samples were filtered by call rate, minor allele 

frequency (MAF) < 0.01, Hardy-Weinberg, and cryptic relatedness, as described before.13 

Imputation was performed using IMPUTE v2.3.0,17 with the 1000G Phase3 integrated 

variant set (October 2014) as reference. Imputed single nucleotide polymorphisms 

(SNPs) with info score < 0.9 or MAF < 0.01 were excluded. A total of 8.5 million SNPs 

(900,000 genotyped and 7.6 million imputed) were used in the analysis. 

 PAGE participants were genotyped for rs73656147 (block 1) and rs17763929 

(block 2). SNPs were chosen based on statistical significance and availability of 

predesigned validated TaqMan assay from Thermo Fisher (rs73656147 assay number = 

C__97534229_10; rs17763929 assay number = C__34297681_10). 

 

Population structure 

 Principal component (PC) analysis18 is used to infer population-specific genetic 

differences, which arise from ancestry differences in allele frequencies and can obscure 

genetic association studies if not accounted for. NGRC PC analysis was conducted using 
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a pruned subset of 100K SNPs from the GWAS as previously described.13 The top 3 PCs 

(effect sizes PC1 = 0.2%, PC2 = 0.06%, and PC3 = 0.06%) were included in the GWAS 

and adjusted for in all downstream analyses involving the NGRC. The PAGE data sets 

used for replication did not have ancestry informative markers (AIMs); however, a subset 

of the participants (396 of 726 PD cases) was previously genotyped with the Immunochip 

array. We conducted PC analysis using a pruned set of 20K SNPs from the Immunochip 

array, using PLINK. Tests were conducted once using the full PAGE data set, with no PC 

adjustment, and again with a PAGE subset, adjusting for PC1-3 (effect sizes PC1 = 

0.48%, PC2 = 0.20%, and PC3 = 0.17%). NGRC and PAGE cluster with Europeans in 

the 1000G_Phase_3 global data set (figure e-2, links.lww.com/NXG/A67). 

 

Statistics 

 For discovery, GWAS was conducted using PD cases only (1,950 NGRC 

participants with known age at diagnosis). Association between 8.5M SNPs and age at 

diagnosis was tested using Cox regression in ProbABEL v0.5.0.,19 specifying an additive 

genetic model, treating age at diagnosis as a quantitative trait, and adjusting for PC1-3. 

The statistical outcome of Cox regression was hazard ratios (HRs) and corresponding P 

values. Statistical significance was set at P < 5E-8. Manhattan plots and quantile-quantile 

(QQ) plots were generated using FUMA v1.3.0.20 Genomic inflation factor (λ) was 

calculated using the estlambda function in GenABEL v1.8 in R.21 LocusZoom22 was used 

to visualize the chr9:103,865,000–104,055,000 region (GWAS peak). Haploview v4.223 

was used to generate linkage disequilibrium (LD) plots of D′ and r2 for SNPs in the 

chr9:103,865,000–104,055,000 region with GWAS P < 1E-4. LD between 2 SNPs was 
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calculated using 1000G Phase3 v5 in LDlink.24 Linear regression was used to estimate 

and test differences in mean age at diagnosis (β). Conditional analysis was performed 

using coxph function in the survival v2.41 R package. Moving average plots (MAPs) 

were generated using the freqMAP v0.2 R package.25 Gene-based analysis was conducted 

using summary statistics from the GWAS and LD from the 1000G Phase3 EUR to map 

the GWAS SNPs to 18,985 protein-coding genes (hg19 build) and to calculate gene-

based P values, using MAGMA v1.06,26 as implemented in FUMA v1.3.0.20 Statistical 

significance was set at Bonferroni-corrected P < 2.6E-6 (0.05/18,985). 

 For replication, Cox regression (coxph function in the survival v2.41 R package) 

was used to replicate the association of 2 SNPs with age at diagnosis. We used the same 

model as the NGRC (additive genetic model, treating age at diagnosis as a quantitative 

trait). Because of the availability of PCs only in a subset of PAGE, analyses were 

conducted twice: using the full PAGE data set without PC adjustment and using the 

subset that had AIMs and adjusting for PC1-3. PAGEI and PAGEP were treated 

separately and were combined using meta-analysis after testing for heterogeneity. If P of 

heterogeneity was <0.1, the random-effect model was used. Meta-analysis was performed 

using the metagen function in the meta v4.8 R package. 

 

Functional annotation 

 Functional annotation was conducted in FUMA v1.3.0,20 using SNPs with GWAS 

P < 1E-6 and all variants in r2 ≥ 0.6 with them, and included CADD analysis,27 eQTL 

mapping,28 3D chromatin interaction mapping (Hi-C),29 annotation of enhancers,30 tissue-

specific expression of genes identified via Hi-C and eQTL mapping,28 and their age-
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specific expression in the brain (BrainSpan.org). The false discovery rate (FDR) was used 

to correct for multiple testing. STRUM was used to predict the effect of a missense on the 

structural stability of a protein.31 

 

Data availability 

 NGRC genotype and phenotype data are available at dbGaP 

(ncbi.nlm.nih.gov/gap; accession number phs000196.v3.p1). 

 

RESULTS 

GWAS 

 In SNP-based GWAS, the most significant signal for association, at P = 5E-8, 

mapped to LPPR1 on chromosome 9q31.1 (figure 1, A and B). In the gene-based test, 

LPPR1 achieved P = 1E-8, surpassing the genome-wide statistical significance threshold 

of P < 2.6E-6 (figure 1, C and D). The P values were not inflated (λ = 1.007 SNP based, 

λ = 1.04 gene based). Analysis of LD in the region revealed 2 haplotype blocks with 

seemingly independent signals for association (figure 1, E and F). There was strong LD 

among SNPs in each block, but weak LD between the blocks (r2 ≤ 0.2) because of a 

recombination hot spot between them (figure 1F). The 2 blocks were in a ∼200 Kb region 

inside LPPR1. Block 1 consisted of 51 SNPs with MAF∼0.01, which yielded HR = 2.02–

1.88, with P = 9E-7 to 2E-5 for association with age at diagnosis. Block 2 consisted of 39 

SNPs with MAF∼0.02, which yielded HR = 1.88–1.85, with P = 5E-8 to 7E-7. We chose 

1 SNP to represent each block for replication: rs73656147 for block 1 (MAF = 0.01, HR  
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Figure 1: Results of genome-wide association study for age at diagnosis of PD. 
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Genome-wide association was tested between 8.5 million SNPs and age at diagnosis in 
1,950 PD cases from the NGRC, using the Cox hazard ratio regression method and 
adjusting for principal components (PC1-3). (A) Manhattan plot of SNP-based GWAS. 
Tallest peak, at P = 5E-8, was on chromosome 9q31.1. (B) QQ plot of SNP-based 
GWAS. The observed P values were not inflated (λ = 1.007). (C) Manhattan plot of gene-
based GWAS. LPPR1 was at P = 1E-8. Statistical significance threshold was P < 2.6E-6, 
which is Bonferroni corrected for the 18,985 protein-coding genes tested. (D) QQ plot of 
gene-based GWAS. The observed p values were not inflated (λ = 1.04). (E) r2 (top panel) 
and D' (bottom panel). Linkage disequilibrium (LD) across the SNPs that gave P < 1E-4 
for association with age at diagnosis reveals 2 blocks represented by rs73656147 (left 
triangle) and rs17763929 (right triangle). (F) Magnified map of the associated region 
(chr9:103,865,000–104,055,000), showing that PD-associated SNPs map to LPPR1 and 
form 2 haplotype blocks separated by recombination hot spots (blue spikes). (G) 
Chromatin state of LPPR1 (Roadmap 111 Epigenomes), showing that active enhancers 
(yellow), transcription start site (red), and transcripts (green) of LPPR1 are seen only in 
stem cells and the brain and that the GWAS SNPs align with regulatory elements. ESC = 
embryonic stem cell; iPSC = induced pluripotent stem cell; TssA = active transcription 
start site (TSS); TssAFlnk = flanking active TSS; TxFlnk = transcription at gene 5′ and 
3′; Tx = strong transcription; TxWk = weak transcription; EnhG = genic enhancers; Enh 
= enhancers; ZNF/Rpts = zinc-finger genes and repeats; Het = heterochromatin; TssBiv = 
bivalent/poised TSS; BivFlnk = flanking bivalent TSS/enhancer; EnhBiv = bivalent 
enhancer; ReprPC = repressed polycomb; ReprPCWk = weak repressed polyComb; 
Quies = quiescent. 
 

 

= 1.95, P = 3E-6) and rs17763929 for block 2 (MAF = 0.02, HR = 1.88, P = 5E-8), both 

in Hardy-Weinberg (P > 0.3), with little correlation between them (r2 = 0.2). Conditional 

analysis conducted to determine whether the 2 blocks were tagging the same or different 

disease-associated variants was inconclusive because although the signals were weakened 

when adjusted for each other, neither was abolished when conditioned on the other (table 

e-1, links.lww.com/NXG/A69). 

There are 2 caveats in interpreting statistical evidence for association with age at 

diagnosis. First, age at diagnosis is correlated with age (r2 = 0.74, P < 2E-16), which can 

result in spurious conclusions if the driving force responsible for the association is not 

identified. Second, tests of age at diagnosis are conducted using patients only without the 



 

 37 

benefit of controls. For example, an SNP that appears to be associated with earlier PD 

diagnosis may in fact be associated with an age-related event unrelated to PD. To 

interpret the statistical evidence for association with age at diagnosis, we examined 

whether and how allele frequencies vary by age in cases or in controls. Allele frequencies 

were plotted in a moving average window as a function of age (figure e-3, 

links.lww.com/NXG/A68). Starting at age 45 years, allele frequencies were the same in 

cases and controls. In controls, allele frequencies remained the same across the age 

spectrum, whereas in cases, they decreased sharply and significantly by age and by age at 

diagnosis. The effect was therefore in cases and not in controls. Next, conditional 

analysis was conducted to tease age from age at diagnosis (table 2). The minor alleles of 

rs73656147 and rs17763929 were associated with age, as was expected, given their 

association with age at diagnosis. However, the association with age at diagnosis 

persisted when adjusted for age, but the association with age was abolished when 

adjusted for age at diagnosis. Hence, age at diagnosis was the driving force, and 

association with age was a by-product of the correlation. 

To gauge robustness of the association signals with age at diagnosis and to test for 

heterogeneity, we stratified the data by 8 PD-relevant variables, tested the association of 

each SNP with age at diagnosis within each stratum, and compared the results across 

strata for evidence of heterogeneity (table e-2, links.lww.com/NXG/A70). The 8 

categories of stratification were family history, sex, cigarette smoking, caffeine intake, 

nonsteroidal anti-inflammatory drugs use, recruitment site, Jewish heritage, and the 

European country of ancestral origin. The association signal for rs73656147 (block 1) 

was robust across all strata. rs17763929 (block 2) showed evidence of heterogeneity as a  
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Table 2. Association of LPPR1 variants with age and age at diagnosis is driven by age at diagnosis.  The associations were tested in the NGRC dataset using Cox 
regression, and the effect sizes were estimated using linear regression (LR). HR= hazard ratio, is the age-for-age increase in the odds of event per copy of the minor allele, 
as estimated using Cox regression. ß is the difference in years in age at diagnosis between carriers of one minor allele vs. no minor allele, as estimated using linear 
regression. Age at diagnosis was the primary outcome of the study. Minor alleles of rs73656147 and rs17763929 were associated with higher HR and younger age at 
diagnosis (Ia). The association was not influenced by sex (Ib), which was expected because, unlike PD risk which is significantly associated with sex (OR=3.26, P<2E-
16), age at diagnosis is not associated with sex (HR=0.99, P=0.83).  Minor alleles were also associated with younger ages in cases (II), but not in controls (III). Since age 
and age at diagnosis were correlated (r2= 0.74, P<2E-16), an association with one will show as an association with both. In conditional analysis, the association with age 
at diagnosis persisted when adjusted for age (IV), but the association with age was abolished when adjusted for age-at-diagnosis (V), suggesting age at diagnosis was the 
driving force and association with age was a by-product of the correlation. Abbreviations: CI = confidence interval; HR = hazard ratio; LR = linear regression; ß = effect 
size on age at diagnosis (in years) per copy of minor allele. 

 
   Block 1 rs73656147  Block 2 rs17763929 
 

N 
 Cox   LR  Cox   LR 

  HR P  ß [95% CI]  HR P  ß [95% CI] 
Ia. Association with age at diagnosis in cases 1,950  1.95 3E-6  -6.00 [-9.18 to -2.83]  1.88 5E-8  -5.65 [-8.20 to -3.11] 
Ib. Association with age at diagnosis in cases adjusted for sex 1,950  1.95 3E-6  -5.98 [-9.16 to -2.81]  1.88 6E-8  -5.61 [-8.16 to -3.07] 
II. Association with age in cases 2,000  1.48 5E-3  -4.19 [-7.1 to -1.3]  1.53 2E-4  -3.56 [-5.9 to -1.2] 
III. Association with age in controls 1,986  0.83 0.08  2.34 [-0.6 to 5.2]  0.84 0.07  2.37 [-0.3 to 5.1] 
IV. Association with age at diagnosis in cases, adjusted for age 1,950  1.45 0.01  -2.30 [-3.9 to -0.7]  1.26 0.05  -2.11 [-3.4 to -0.8] 
V. Association with age in cases, adjusted for age at diagnosis 1,950  0.92 0.56  0.78 [-0.8 to 2.3]  0.99 0.96  0.68 [-0.6 to 1.9] 
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function of recruitment site and the European country of ancestral origin. Given these 

results, we tested the association of the 2 SNPs with PCs. rs17763929 was associated 

with PC1 (P = 7E-6) and PC3 (P = 8E-3), and rs73656147 was not (P > 0.05 for PC1-3), 

indicating the presence of population structure in block 2, but not in block 1. 

 

Replication 

 In comparison to NGRC, which had a 65-year range for age at diagnosis, the 

PAGE data sets had a narrower range of less than 30 years. Because PAGE participants 

were of similar age at study entry, the method of classifying the participants into 

prevalent PD (diagnosis before entry) vs incident PD (diagnosis after entry) inevitably 

assigned earlier ages at diagnosis to the prevalent group (PAGEP) and later diagnoses to 

the incident group (PAGEI). Mean age at diagnosis in PAGEP was 59.9 ± 6.6 years, 

which was similar to the NGRC (60.4 ± 11.4). PAGEI participants were on average 10 

years older at diagnosis (69.4 ± 5.4, range 53–81 years). Given the disparity in the range 

and mean ages at diagnosis, we analyzed PAGEP and PAGEI separately. 

 Association of rs73656147 (block 1) with age at diagnosis replicated robustly 

(table 3). There was no evidence of heterogeneity between PAGEI and PAGEP in the 

association of rs73656147 with age at diagnosis, although the signal was stronger in 

PAGEP than in PAGEI, which is not surprising, given that the former is enriched in cases 

with earlier age at diagnosis. Nor was there evidence of heterogeneity between PAGE 

and NGRC for the association of rs73656147 with age at diagnosis. Meta-analysis 

yielded HR = 2.14, P = 1E-3 for replication and HR = 2.00, P = 9E-9 for replication and 

discovery. Mean difference in age at diagnosis per copy of rs73656147 minor allele was  
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Table 3.  Replication. Two SNPs with signals for association with age at diagnosis of PD in the NGRC data set (discovery) were genotyped and tested for association with age at 
diagnosis of PD in the PAGE dataset (replication). PAGE participants were designated as prevalent (PAGEP) if they were diagnosed before study entry, or incident (PAGEI) if they 
were diagnosed during the study. Cox regression was used to test association of SNP (additive model) with age at diagnosis (quantitative trait) and to calculate hazard ratios (HR) 
and corresponding significance (P).  NGRC was adjusted for principal components (PC1-3) in GWAS and meta-analyses. Only a subset of PAGE had ancestry informative 
markers for which PC could be calculated; thus, results are shown for the full PAGE dataset without PC adjustment, and for PAGE subsample with PC adjustment.   P values are 
two-sided for NGRC, and one-sided for PAGE due to the directionality of the hypothesis being replicated.  Meta-analysis A: NGRC (PC1-3 adjusted), and PAGE (all data without 
PC adjustment). Meta-analysis B: NGRC (PC1-3 adjusted), and PAGE (subset of data adjusted for PC1-3). rs73656147 replicated robustly with no evidence of heterogeneity 
across datasets. rs17763929 replicated in PAGEP and showed significant heterogeneity between PAGEI and PAGEP or NGRC. Meta-analysis was conducted using the fixed effects 
model if there was no evidence for heterogeneity (P≥0.1), and the random effects model if there was heterogeneity (P<0.1). Abbreviations: HR = hazard ratio; NGRC = 
NeuroGenetics Research Consortium; ns = not statistically significant; PAGE = Parkinson’s, Genes and Environment; PC = principal component; PD = Parkinson disease. 
 

    Age-at -diagnosis  Block 1 rs73656147   Block 2 rs17763929  

Datasets  N PD cases  Mean ± SD  HR P  HR P 
NGRC (discovery)  1,950  60.4 ± 11.4  1.95 3E-6  1.88 5E-8 

PAGEP (replication)  209  59.9 ± 6.6  2.88 7E-4  1.87 0.01 

PAGEP with PC1-3   113  59.9 ± 6.8  2.17 0.05  3.03 4E-3 

PAGEI (replication)  517  69.4 ± 5.4  1.62 0.07  1.04 0.41 

PAGEI with PC1-3  283  69.2 ± 5.3  1.48 0.16  1.03 0.45 

Meta-analysis A  Heterogeneity rs73656147  Heterogeneity rs17763929       

PAGEP & PAGEI  ns  0.08  2.14 1E-3  1.34 0.31 

NGRC & PAGEP  ns  ns  2.08 2E-8  1.88 4E-9 

NGRC & PAGEI  ns  0.01  1.90 9E-7  1.42 0.23 

NGRC & PAGEP & PAGEI  ns  0.02  2.00 9E-9  1.53 0.04 

Meta-analysis B           

PAGEP & PAGEI  ns  0.02  1.73 0.07  1.67 0.34 

NGRC & PAGEP  ns  ns  1.97 6E-7  1.95 3E-9 

NGRC & PAGEI  ns  0.02  1.89 2E-6  1.43 0.23 

NGRC & PAGEP & PAGEI  ns  0.02  1.91 5E-7  1.68 0.05 

 
 
 



 

 41 

−6.0 (95% confidence interval: −9.18 to −2.83) years in the NGRC, −5.53 (−9.72 to 

−1.34) in PAGEP, −0.84 (−4.22 to 2.55) in PAGEI, and −4.08 (−7.45 to −0.70) in the 

meta-analysis of the 3 data sets. 

Association of rs17763929 (block 2) with age at diagnosis showed significant 

heterogeneity between PAGEI and PAGEP (table 3), as it had within the NGRC (table e-

2, links.lww.com/NXG/A70). The association with rs17763929 replicated in PAGEP but 

not in PAGEI. There was significant heterogeneity between PAGEI and NGRC, but not 

between PAGEP and NGRC. Meta-analysis of PAGEP and NGRC yielded HR = 1.88, P 

= 4E-9 for full PAGE data and HR = 1.95, P = 3E-9 for the PAGE subsample adjusted 

for PC1-3. Including PAGEI with PAGEP and NGRC in a random-effects meta-analysis 

diluted the effect size to HR = 1.53, P = 0.04. Mean difference in age at diagnosis per 

copy of rs17763929 minor allele was −5.65 (−8.20 to −3.11) years in the NGRC, −3.62 

(−7.23 to −0.02) in PAGEP, and 0.62 (−1.34 to 2.58) in PAGEI.  

 

Functional annotation 

 Hi-C analysis showed significant (FDR < 1E-6) chromatin interaction 

between the PD-associated LPPR1 SNPs and promoters of LPPR1 and several genes on 

chromosome 9 (figure 2, A). Some of the SNPs that were significant in Hi-C mapped to 

enhancers in the brain (table 4 and figure 1, G). Eleven of the genes identified through 

Hi-C are expressed in the brain: LPPR1, SEC61B, MSANTD3-TMEFF1, TMEFF1, 

GALNT12, MURC, GRIN3A, NR4A3, ALG2, MRPL50, and ZNF189 (figure 2, B and C). 

The expression of LPPR1 in the brain is the strongest in early prenatal stage and 

decreases with developmental stage and increasing age (figure 2, C).  
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Figure 2: Functionally significant genes. 
 
(A) 3D chromatin interaction (Hi-C) and eQTL analysis. Hi-C revealed significant 
interaction between GWAS variants in LPPR1 and 17 other genes on chromosome 9 
(FDR < 1E-6, shown in orange). An SNP in LPPR1 was associated with the expression of 
GRIN3A (FDR = 4E-4, shown in green). (B) Tissue-specific expression of LPPR1, 
GRIN3A, and genes in Hi-C with LPPR1. Colors reflect average expression (log2 
transformed) from highest (red) to lowest/absent (blue). (C) Age-specific expression of 
the genes in the brain. LPPR1 expression decreases with age. 
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Table 4. Functionally significant variants. Functional annotation was conducted on SNPs with GWAS P<1E-6 and 
SNPs that were in high LD with them (r2>0.6). Variants are shown if they are the lead SNP (most significant) for the 
block, or an eQTL (FDR=4E-4), or had a CADD score >10, or had both significance evidence for 3D chromatin 
interaction (Hi-C, FDR<1E-6) and overlapped with an enhancer in the brain.   Block 1 is single block of SNPs in high 
LD. Block 2 has a complex LD structure with at least three sub-haplotypes (figure e1-C).  Variants are shown with their 
rs accession number, chromosome position and the two alleles (major:minor), GWAS P value for association with age 
at diagnosis of PD, and their correlation (r2) with the lead SNP of the block. eQTL: a SNP that is associated with gene 
expression, in this case, rs117451395 was associated with gene expression levels at GRIN3A (FDR=4E-4). CADD: a 
predictive score for the deleteriousness of a variant. A CADD score of 10 usually means the variant is among the top 
10% of deleterious mutation in the genome. A CADD score of 20 puts the variant among the top 1% of deleterious 
mutations. Hi-C: SNPs with significant (FDR<1E-6) evidence for interacting with the promoter region of LPPR1 or of 
another gene (see figure 2 for the genes). Hi-C/EnhBrain: the subset of Hi-C SNPs that map to enhancer regions of 
LPPR1 in brain according to the Roadmap 111 epigenomes. 
a One SNP shown to represent several variants in high LD (r2>0.9) with similar MAF, GWAS P and Hi-C/EnhBrain 
evidence.  
b This mutation yielded ∆∆G= -1.2 which predicts a destabilizing effect on the protein structure of LPPR1. 
 
 

 

Block GWAS SNP position:alleles  GWAS P r2 eQTL CADD Hi-C/EnhBrain 

1 rs77351585 9:103874925:C:T  2E-06 1 - 18 Hi-C/EnhBrain 

1 rs73495940 9:103875807:G:C  9E-07 Lead - - Hi-C 

1 rs150164200 9:103875896:A:C  2E-06 1 - 10.4 - 

1 rs117583993a 9:103876647:G:A  3E-06 1 - - Hi-C/EnhBrain 

1 rs148874623 9:103939117:A:C  9E-06 1 - 12.1 - 

1 rs117451395 9:103941039:C:T  1E-05 1 GRIN3A - Hi-C 

1 rs41296085 9:103947810:T:G  2E-05 1 - 18 (missense)b Hi-C 

1 rs117900237 9:103959240:G:A  2E-05 1 - 10.5 Hi-C 

2 rs17763929 9:103984900:A:G  5E-08 Lead - - Hi-C 

2 rs61188842 9:103988006:C:T  8E-05 0.6 - - Hi-C/EnhBrain 

2 rs117058418 9:104011717:T:C  2E-07 1 - 10.4 Hi-C 

2 rs117314512 9:104014244:G:A  2E-07 1 - 12.4 Hi-C 

2 rs149155028 9:104032402:TTC:T  1E-05 0.7 - 18.6 Hi-C 
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CADD analysis, a scoring system for deleteriousness of genetic variants, 

identified 5 SNPs in block 1 and 3 in block 2, with CADD = 10–19 (table 4), which 

places them among the top 10% (CADD > 10) to 1% (CADD > 20) of most deleterious 

mutations in the genome.27 rs41296085 (CADD = 18, in block 1) is a missense 

(p.Ser12Ala) in exon 2, predicted to structurally destabilize the LPPR1 protein (∆∆G = 

−1.2). The remainder of the variants with high CADD scores are in introns. eQTL 

analysis revealed an association between rs117451395 (block 1) with expression levels of 

GRIN3A (FDR = 4E-4). 

DISCUSSION 

 There has been intense research on PD risk factors, which so far has resulted in 

identification of numerous causative genes, 40 susceptibility loci, several environmental 

factors, and a few genes that interact with the environmental factors to increase or reduce 

the risk of developing PD. In contrast, we know little about factors that affect the rate of  

disease progression. In this study, we attempted to identify genetic modifiers of age at 

diagnosis, a reflection of rate of progression, using an unbiased genome-wide approach, 

followed by independent replication, and functional annotation. 

 We uncovered evidence for association of genetic variants in neuronal plasticity-

related gene 3 (LPPR1) with age at diagnosis of PD. Two signals of association were 

detected, each representing a haplotype block of SNPs. The variants that were associated 

with earlier age at diagnosis had low allele frequencies (MAF = 0.01–0.02), as were the 

variants that were previously found for age at onset of familial PD.11 The low allele 

frequencies may be one reason why modifier genes have been more difficult to detect 

than common variants that associate with risk. 
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 The association with block 1 replicated robustly in both PAGEP and PAGEI. 

Block 2 signal replicated in PAGEP, but not in PAGEI. Block 2 has a complex LD 

structure, with evidence of population substructure, which limits generalizability of 

results. Failure to capture a signal for block 2 in PAGEI may be because we had genotype 

on only 1 SNP in block 2 for PAGE, which did not fully capture the complexity of block 

2. PAGEI participants being significantly older than NGRC and PAGEP participants may 

also be a factor. LPPR1 promotes neuroregeneration,32–34 but its expression diminishes 

with age to nearly undetectable level by age 40 years (figure 2C). One can speculate that 

some detrimental variants may not have an effect after a certain age when the gene is no 

longer expressed. 

 Functional annotation of the PD-associated variants in LPPR1 revealed the 

presence of several variants with predicted deleterious effects, including a missense that 

destabilizes the structure of LPPR1, a regulatory element that associates with expression 

levels of GRIN3A, and enhancers that interact with promoters of LPPR1 and several other 

genes in the brain. Some of the candidate genes that were identified via interaction with 

LPPR1 play key roles in pathways that are implicated in PD, including GRIN3A (which 

encodes a subunit of NMDA receptor involved in the glutamate-regulated ion channels in 

the brain), SEC61B (protein transport apparatus of the endoplasmic reticulum 

membrane), MURC (Rho kinase signaling), and MRPL50 (mitochondrial ribosomal 

protein). 

 LPPR1 is one of the 5 members of a brain-specific gene family that modulates 

neuronal plasticity during development, aging, and after brain injury.32–34 LPPR1 is the 

strongest driver of axonal outgrowth in the gene family. Studies in mice have shown that 
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after neuronal injury, overexpression of LPPR1 enhances axonal growth, improves motor 

behavior, and promotes functional recovery.33,34 Extrapolating to our findings, we 

propose that LPPR1 is involved, not necessarily in the cause of PD, rather in response to 

damage, and influences the efficacy of regeneration and the subsequent rate of 

deterioration in preclinical PD. The actual cause of injury and neuronal death is not 

stipulated in this hypothesis; it could be head trauma, environmental toxins or genetic, 

but once the initial damage is incurred, it is the efficacy of intrinsic mechanisms of repair 

that determine the rate of disease progression. Present findings provide a strong 

foundation for mechanistic studies to investigate the role of LPPR1 in PD and determine 

its potential as a therapeutic target to impede disease progression. 
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ABSTRACT 

When studying the relationship between the microbiome and a particular disease, 

a common question asked is what individual microbes are differentially abundant 

between a disease and healthy state. Numerous differential abundance testing methods 

exist and range from standard statistical tests (e.g. Kruskal-Wallis rank sum test) to 

methods specifically designed for microbiome data (e.g. metagenomeSeq). Choice of 

differential abundance method can greatly influence what, and how many, significant 

differential abundance signatures are detected. To compare results of different differential 

abundance testing methods in our own data, we performed differential abundance 

analysis in two large Parkinson disease (PD)-gut microbiome datasets using 16 methods. 

We found 16 differential abundance testing methods from the literature, tested 

association of PD with genera in two datasets (N=333 and 507) using all 16 methods, 

then compared results of each method within and across datasets. Concordances were 

calculated between each pair of method results and visualized using heatmaps. 

Hierarchical clustering was performed to determine if any groups of PD-genus 

associations were being agreed (or disagreed) upon by all or a subset of methods. 

Pairwise concordances between method results ranged from 0.46-0.99 with the 

mean concordance being 0.76 per dataset. Mean concordance significantly dropped to 

0.63 when incorporating information on which PD-genus associations replicated in both 

datasets. Variable effect of data filtering was observed for one method (ANCOM) when 

removal of rarer and unclassified genera before analysis drastically reduced the number 

of signals detected. Hierarchical clustering revealed three groups of PD-genus 

associations that were (1) more likely to be replicated by the majority of methods, (2) 
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replicated by little to no methods, and (3) more likely to be replicated by a subset of 

potentially more sensitive methods and included rarer genera enriched in PD. 

Variation between method results was evident, especially when comparing results 

across two datasets. We observed that filtering taxonomic data before analysis has an 

opposite effect on ANCOM as compared to other methods, drastically decreasing the 

number of detected associations instead of increasing them. We found methods with 

previously reported low false positive rate (FPR) and false discovery rate (FDR) tended 

to be more similar to one another and replicated PD-genus associations more likely to be 

backed up by other methods. A subset of methods that included some previously shown 

to have high FPR/FDR, but also high sensitivity, detected and replicated a group of rarer 

genera, mostly enriched in PD, that might be of interest for future investigations. 

 

INTRODUCTION 

 Microbiome research has gained immense traction in recent years driven 

primarily by technological advances in sequencing and exponential increase in 

computational resources and tools. The availability of these new tools and technologies 

have solidified a place for microbiome research in many fields of research including the 

biomedical research community where a large portion of the research effort is targeted at 

the gut microbiome [Schmidt, Raes & Bork 2018]. A number of diseases have been 

associated with alterations of individual taxa in the gut microbiome [Schmidt, Raes & 

Bork 2018], and these associations are usually made through a statistical analysis 

commonly referred to differential abundance testing [McMurdie & Holmes 2014]. 

Differential abundance testing involves the use of serial univariate statistical tests to 
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determine if certain taxa are significantly different between groups [Thorsen et al. 2016]. 

Numerous differential abundance testing methods exist and include classical statistical 

tests (e.g. Kruskal-Wallis rank sum test), methods developed to detect differential 

expression of gene transcripts in RNA-Seq data (e.g. DESeq2, edgeR), methods 

specifically designed for detecting differentially abundant taxa in microbiome data (e.g. 

metagenomeSeq), and methods designed to detect differentially abundant features in 

compositional data (e.g. ALDEx2). Choice of differential abundance method can greatly 

influence what, and how many, differentially abundant taxa are detected in a disease 

state, and most, if not all, methods will respond differently to microbiome data due to 

differences in their underlying characteristics. Multiple studies have previously assessed 

and compared the performance of popularly used differential abundance testing methods, 

measuring their false positive rates (FPR), false discovery rates (FDR), sensitivities, 

and/or specificities from simulated data [McMurdie & Holmes 2014; Thorsen et al. 2016; 

Weiss et al. 2017; Hawinkel et al. 2019], with only one of these studies testing different 

methods on real data [Weiss et al. 2017].  

There is little literature on how different differential abundance methods behave 

when performed on real, complex disease oriented gut microbiome datasets, therefore, we 

performed differential abundance testing using a variety of methods on two, large 

Parkinson disease (PD) – gut microbiome datasets in order to compare their results. We 

found 16 differential abundance testing methodologies from the literature, and used them 

to test for differentially abundant genera between PD and neurologically healthy controls 

in both datasets. We compared their results within and across datasets and found that 

concordances between methods varied as has been previously shown in method 
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comparison studies. Methods that were previously shown to have lower FPR/FDR had 

the highest concordances on average, especially with one another. These methods also 

detected and replicated PD-genus associations more likely to be replicated by the 

majority of methods on average. Methods previously shown to have high FPR/FDR, but 

also higher sensitivity, produced the least concordant results on average with other 

methods, but managed to detect and replicate a subset of rarer genera enriched in PD that 

the lower FPR/FDR methods did not replicate. 

 

METHODS 

Subjects, metadata, gut microbiome 

Study was approved by institutional review boards at all participating institutions. 

Subjects, metadata, and gut microbiome data of datasets 1 and 2 have been previously 

described [Hill-Burns et al. 2017; Wallen et al. 2020]. We enrolled subjects and collected 

metadata and fecal samples from 212 PD and 136 neurologically healthy control subjects 

for dataset 1, and 323 PD and 184 neurologically healthy controls for dataset 2. Dataset 1 

subjects were enrolled in Seattle, WA, Albany, NY, and Atlanta, GA, while all dataset 2 

subjects were enrolled in Birmingham, AL. Methods for enrollment and collection of 

metadata and fecal samples were uniform across enrollment sites. PD was diagnosed 

according to the UK Brain Bank criteria by movement disorder specialists. Controls were 

self-reported free of neurological disease. Metadata were collected using questionnaires, 

or extracted from medical records. Stool samples were collected at home using 

DNA/RNA-free sterile swabs and mailed through U.S. postal service. All subjects 

provided written informed consent for their participation in the study. 
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DNA was extracted from stool samples using the automated MoBio PowerMag 

Soil DNA Isolation Kit (dataset 1) or manual MoBio PowerSoil DNA Isolation Kit 

(dataset 2). Hypervariable region 4 (V4) of the 16S rRNA gene was amplified with 

primers 515F-806R. Paired-end 150 bp (dataset 1) or paired-end 250 bp (dataset 2) 

sequencing was performed on V4 amplicons using Illumina MiSeq. Fifteen samples in 

dataset 1 resulted in low sequence count and were excluded.  

Bioinformatic processing of sequences was performed separately for each dataset. 

Primers were trimmed from sequences using cutadapt v 1.16 [Martin 2011]. DADA2 v 

1.8 was used for quality trimming and filtering sequences, de-replicating sequences, 

inferring amplicon sequence variants (ASVs), merging of forward and reverse sequences, 

and detection and removal of chimeras [Callahan et al. 2016]. Final ASV tables for 

dataset 1 and dataset 2 contained 6,844 unique ASVs for 201 PD and 132 controls 

samples and 12,198 unique ASVs for 323 PD and 184 control samples respectively. 

Taxonomy was assigned to ASVs using DADA2’s native implementation of the 

Ribosomal Database Project naïve Bayesian classifier with SILVA v 132 as reference and 

a bootstrap confidence of 80% [Wang et al. 2007]. Phylogenetic trees were constructed 

by first performing a multiple sequence alignment with DECIPHER v 2.8.1 [Wright et al. 

2015], then building a phylogenetic tree with phangorn v 2.8.1 [Schliep et al. 2011]. 

Phyloseq v 1.24.2 was used to create a phyloseq object for each dataset containing their 

respective ASV table, taxonomy classifications, phylogenetic trees, and subject metadata 

[McMurdie & Holmes 2013]. To agglomerate ASV level phyloseq objects to genus level, 

the tax_glom function in phyloseq was used without removal of unclassified genera. 
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Total number of genera detected in dataset 1 was 445. Total number of genera detected in 

dataset 2 was 561. 

 

Differential abundance testing 

  We tested for association between genera and PD in dataset 1 and 2 separately 

using 16 differential abundance methods. Method characteristics and parameters chosen 

for each method that differed from default can be found in Tables 1 and 2 respectively. 

Analyses using each method was performed as follows: 

 

Kruskal-Wallis rank sum test [Kruskal & Wallis 1952]: Genera counts were transformed 

to relative abundance ( !"#$%	'($#)
)()*+	%*,-+"	'($#)	(.	*++	!"#"/*), then unclassified genera, and genera 

present in < 10% of samples were excluded. The kruskal.test function from the stats R 

package was used to test for significant differences in genera relative abundances 

between PD and controls. P values were corrected for multiple testing using Benjamini-

Hochberg (BH) false discovery rate (FDR) method implemented in the p.adjust function 

from stats package. 

 

Welch’s t-test with log transformation (log t-test) [Welch 1947]: Genera counts with a 

pseudo-count of 1 added were log transformed, then transformed to relative abundance. 

Unclassified genera, and genera present in < 10% of samples were excluded. The t.test 

function from the stats R package was used to test for significant differences in genera 

relative abundances between PD and controls. P values were corrected for multiple 

testing using BH FDR method from the p.adjust function. 
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Negative binomial generalized linear model with and without zero-inflation (GLM 

NBZI): Total sequence count was calculated for each sample. Unclassified genera, and 

genera present in < 10% of samples were then excluded. Using raw counts, a negative-

binomial generalized linear model with and without a zero-inflation component was fitted 

for each genus with the glmmTMB R package v 0.2.2.0 using log(total sequence count) 

as an offset variable, and PD vs control as the independent variable. Results were 

extracted from the model with the lowest Akaike information criterion. P values were 

calculated using the base summary function in R and corrected for multiple testing using 

BH FDR method implemented in the p.adjust function from stats package. 

 

Generalized linear model with centered log ratio transformed data (GLM CLR): Genera 

counts with a pseudo-count of 1 added were centered log ratio (clr) transformed, then 

unclassified genera, and genera present in < 10% of samples were excluded. A standard 

linear regression model using Gaussian distribution was fitted for each genus with the 

glm function from the R stats package with PD vs control as the independent variable. P 

values were calculated using the base summary function in R and corrected for multiple 

testing using BH FDR method implemented in the p.adjust function from stats package. 

 

Analysis of Composition of Microbes (ANCOM) [Mandal et al. 2015]: ANCOM was ran 

twice, once excluding unclassified genera, and genera present in < 10% of samples 

(ANCOM filtered), and again using all genera (ANCOM unfiltered), due to the drastic 

decrease in significant signals observed for ANCOM when filtering genera before 

analysis. Raw counts of genera were used as input to the ANCOM.main function from 

the ANCOM v 2 R code (downloaded from 
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https://sites.google.com/site/siddharthamandal1985/research). PD vs control was 

specified as the main variable. The taxa-wise FDR option (multcorr=2) was chosen for 

the multiple testing correction method. An FDR significance threshold of 0.05 was 

chosen for calculation of W statistics. W statistics greater than or equal to 80% of the total 

number of genera tested were considered significant. 

 

metagenomeSeq fitZIG [Paulson et al. 2013]: Cumulative sum scaling (CSS) was applied 

to genera counts using the cumNorm function in metagenomeSeq R package v 1.22.0. 

Unclassified genera, and genera present in < 10% of samples were then excluded. A zero-

inflated Gaussian model was fitted for each genus using function fitZig in 

metagenomeSeq. P values were corrected for multiple testing using BH FDR method 

implemented in the MRfulltable function in metagenomeSeq. 

 

metagenomeSeq fitFeatureModel [Paulson et al. 2013]: CSS was applied to genera counts 

using cumNorm function in metagenomeSeq. Unclassified genera, and genera present in 

< 10% of samples were then excluded. A zero-inflated log-normal model was fitted for 

each genus using function fitFeatureModel in metagenomeSeq. P values were corrected 

for multiple testing using BH FDR method implemented in the MRfulltable function in 

metagenomeSeq. 

 

edgeR exactTest-TMM (edgeR TMM) [Robinson & Smyth 2008]: Using raw genera 

counts, normalization factors were calculated with the trimmed mean of M-values 

(TMM) method using the calcNormFactors function in edgeR R package v 3.22.5. 

Common and tagwise dispersions were then estimated using estimateCommonDisp and 
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estimateTagwiseDisp functions in edgeR. Unclassified genera, and genera present in < 

10% of samples were then excluded. Testing for differential relative abundance between 

PD and controls was performed using exactTest function in edgeR. P values were 

corrected for multiple testing using BH FDR method implemented in the topTags 

function in edgeR. 

 

edgeR exactTest-RLE (edgeR RLE) [Robinson & Smyth 2008]: Using genera counts with 

a pseudo-count of 1 added, normalization factors were calculated with the relative log 

expression (RLE) method using the calcNormFactors function in edgeR. The remaining 

steps were the same as exactTest-TMM. 

 

DESeq2 nbinomWaldTest [Love et al. 2014]: Using raw genera counts, normalization 

factors were calculated using the function estimateSizeFactors in DESeq2 R package v 

1.20.0 specifying type=”poscounts”. Unclassified genera, and genera present in < 10% of 

samples were then excluded. Testing for differential relative abundance between PD and 

controls was performed using the DESeq function in DESeq2 with default parameters. P 

values were corrected for multiple testing using BH FDR method implemented in the 

results function in DESeq2. 

 

limma-voom [Ritchie et al. 2015]: Using raw genera counts, TMM values were calculated 

using the calcNormFactors function in edgeR. Log2 counts per million transformation 

and mean-variance trend estimation was performed using the voom function in limma R 

package v 3.36.5. Unclassified genera, and genera present in < 10% of samples were then 

excluded. Testing was performed by first fitting a linear model for each genus using 
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function lmFit in limma, then testing for differential relative abundance between PD and 

controls using the eBayes function in limma. P values were corrected for multiple testing 

using BH FDR method implemented in the topTable function in limma. 

 

baySeq [Hardcastle & Kelly 2010]: Total sequence count was calculated for each sample. 

Unclassified genera, and genera present in < 10% of samples were then excluded. PD and 

control designations were used as the replicate structure. A list of two group structures 

was created where one group structure specified all subjects belonged to the same group, 

and the other specified PD and control groups. The replicate structure, list of group 

structures, and raw genera counts were combined into a countData object. Total sequence 

counts were supplied to the countData object. Priors were estimated from a negative 

binomial distribution using the function getPriors.NB in baySeq R package v 2.14.0, then 

likelihoods were estimated using function getLikelihoods in baySeq. FDR values were 

calculated using the topCounts function in baySeq.  

 

ALDEx2 [Fernandes et al. 2014]: Unclassified genera, and genera present in < 10% of 

samples were excluded. Raw genera counts were then used as input for the aldex function 

in ALDEx2 R package v 1.12.0 specifying 1000 Monte Carlo samples. Both Wilcoxon 

(ALDEx2 Wilcoxon) and t-test (ALDEx2 t-test) were used for testing differences in 

genera relative abundances between PD and controls.  P values were corrected for 

multiple testing using BH FDR method implemented in the aldex function. 

 

SAMseq [Li & Tibshirani 2013]: The SAM method for normalization of sequence counts 

was applied to genus counts using the samr.norm.data function in the samr R package v 
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3.0. Normalized values were rounded to the nearest integer. Unclassified genera, and 

genera present in < 10% of samples were excluded. Normalized genera counts were then 

used as input for the SAMseq function in the samr R package specifying “Two class 

unpaired” as the response type and the fdr.output as “1” in order to get full result list. 

FDR q-values were extracted from “siggenes.table” in the SAMseq output. 

 

Linear discriminant analysis Effect Size (LEfSe) [Segata et al. 2011]: Genera counts were 

transformed to relative abundance, then unclassified genera, and genera present in < 10% 

of samples were excluded. Sample IDs, case/control class designations, and genera 

relative abundances were exported from R and used as input for LEfSe v 1.0.8.post1 

(downloaded using LEfSe bioconda recipe 

https://bioconda.github.io/recipes/lefse/README.html). Only genus level taxonomy 

designations were included in the LEfSe input. The LEfSe input was formatted using the 

lefse-format_input.py script specifying the normalization value to be 1E6. LEfSe analysis 

was then ran on the formatted data using the run_lefse.py script with default parameters. 

Since LEfSe only outputs uncorrected P values for features that it finds significant, 

LEfSe analysis was ran again, but this time specifying parameters that would output all P 

values. The full range of LEfSe P values were multiple testing corrected using BH FDR 

method implemented in the p.adjust function from stats package. These corrected P 

values were substituted for the uncorrected P values outputted by the default LEfSe run. 

 

After exclusion of unclassified genera and genera found in <10% of subjects, 109 

and 163 genera remained for differential abundance testing in dataset 1 and 2 

respectively, with 106 genera in common between both datasets. Unless otherwise  



 

 63 

Table 1. Method characteristics. 
 a Thorsen et al. Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome 
studies. Microbiome. 2016 Nov 25;4(1):62. 
b Hawinkel et al. A broken promise: microbiome differential abundance methods do not control the false discovery rate. Brief Bioinform. 2019 Jan 18;20(1):210-221. 
c Weiss et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017 Mar 3;5(1):27. 
d McMurdie PJ, Holmes S (2014) Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Comput Biol 10(4): e1003531. 
*Results are for Wilcoxon rank sum test. Kruskal-Wallis rank sum test was not implemented in the comparison studies that measured FPR,a and FDR.b,c 
**Results are for negative binomial GLM without zero-inflation component. Zero-inflation was not implemented in comparison study that measured FPR.a 

GLM: generalized linear model; RLE: relative log expression; TMM: trimmed mean of M-values; CLR: centered log ratio; CPM: counts per million; TSS: total sum scaling, also 
referred to as relative abundance; CSS: cumulative sum scaling; Covar: can method handle covariates; Perm: does method use permutations or Monte Carlo simulations; FPR: 
False positive rate. Data for FPRs were derived from Figure 2 of ref a; FDR: False discovery rate. Data for FDRs were derived from Figure S16 of ref b and Additional file 7: 
Figure S6 of ref c, and is the approximate range of the FDRs or average FDRs given in the figures. For both figures, focused on FDRs from the same normalization method as used 
in the present study when possible; AUC: area under the curve 
 

Differential 
abundance 
method 

Parametric 
 or non-
parametric 

Pseudo-
count 
added 

Data transform 
Normalization 
for total 
sequence depth 

Accounts 
for 
compositio-
nality  

Predictor 
variable 
types 

Covar Perm Error rates AUCs 

ALDEx2 
t-test parametric Yes CLR CLR Yes Two-class No Yes FPR=0 a 

FDR~0 b 
0.55<AUC<0.65 a 
0.52<AUC<0.8 b 

ALDEx2 
Wilcoxon 

non-
parametric Yes CLR & rank CLR Yes Two-class No Yes FPR=1E-3 a 0.55<AUC<0.63 a 

ANCOM non-
parametric Yes Log ratio & 

rank Log ratio Yes 
Two-class 
Multi-class 
Quantitative 

Yes No FDR<0.05 c - 

Kruskal-Wallis 
rank-sum test 

non-
parametric No rank None (used TSS 

in current study) No Two-class 
Multi-class No No 

FPR=0.03 a* 
FDR≤0.15 b* 
FDR≤0.05 c* 

0.55<AUC<0.65 a* 
0.5<AUC<0.65 b* 

metagenome-
Seq fitFeature-
Model 

parametric No 

None, assumes 
zero-inflated 
log normal 
distribution 

CSS No Two-class No No FPR=0.02 a 
FDR≤0.05 c 0.57<AUC<0.7 a 

Welch's t-test 
with log 
transform 

parametric Yes Log None (used TSS 
in current study) No Two-class No No FPR=0.03 a 0.45<AUC<0.65 a 

DESeq2 
nbinomWald 
Test 

parametric No None, assumes 
negative 

Calculation of 
scaling factors No 

Two-class 
Multi-class 
Quantitative 

Yes No 
FPR=0.04 a 
FDR≤0.1 b 
FDR<0.1 c 

0.6<AUC<0.7 a 
0.5<AUC<0.69 b 
0.56<AUC<0.9 d 
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binomial 
distribution 

using median of 
ratios method 

limma-voom parametric Yes log2 CPM log2 CPM No 
Two-class 
Multi-class 
Quantitative 

Yes No FDR<0.1 b 
FDR≤0.05 c 0.5<AUC<0.72 b 

Negative 
binomial GLM 
with and 
without zero-
inflation 

parametric No 

None, assumes 
negative 
binomial 
distribution 
with or without 
zero-inflation 

None (used 
log[total 
sequence count] 
as offset 
variable in 
current study) 

No 
Two-class 
Multi-class 
Quantitative 

Yes No FPR=0.13 a** 0.58<AUC<0.74 a 

baySeq parametric Yes 

None, assumes 
negative 
binomial 
distribution 

Total sequence 
count used as 
scaling factor 

No Two-class 
Multi-class No No FPR=0.5 a 0.45<AUC<0.7 a 

edgeR 
exactTest with 
RLE 

parametric Yes 

None, assumes 
negative 
binomial 
distribution 

Calculation of 
scaling factors 
using RLE 
method 

No Two-class No No FDR≤0.5 c 0.56<AUC<0.99 d 

edgeR 
exactTest with 
TMM 

parametric No 

None, assumes 
negative 
binomial 
distribution 

Calculation of 
scaling factors 
using TMM 
method 

No Two-class No No FPR=0.31 a 
0.6<FDR<0.9 b 

0.6<AUC<0.78 a 
0.55<AUC<0.8 b 

metagenome- 
Seq 
 zero-inflated 
Gaussian 

parametric No 

None, assumes 
zero-inflated 
Gaussian 
distribution 

CSS No 
Two-class 
Multi-class 
Quantitative 

Yes No 
FPR=0.42 a 
0.6<FDR<0.8 b 
FDR≤0.6 c 

0.58<AUC<0.75 a 
0.51<AUC<0.75 b 
0.5<AUC<0.99 d 

SAMseq non-
parametric No rank 

Anscombe 
transformation 
then divide by 
square root of 
sequencing 
depth 

No 
Two-class 
Multi-class 
Quantitative 

No Yes FDR≤0.9 b - 

GLM with 
CLR transform parametric Yes CLR CLR Yes 

Two-class 
Multi-class 
Quantitative 

Yes No - - 

LEfSe non-
parametric No rank None (used TSS 

in current study) No Two-class 
Multi-class No No - - 
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Table 2. List of chosen parameters for each function within each method that either differed from default, or did not have a set default. AIC: Akaike information criterion; FDR: 
False discovery rate; TMM: Trimmed mean of M-values; RLE: Relative log expression; LDA: Linear discriminant analysis 
 
 

Method Function Role of function Parameter Parameter definition Default or 
recommended 
option for 
parameter 

Parameter 
choice for 
current study 

Reasoning for parameter 
choice 

KW kruskal.test Performs Kruskal-
Wallis rank sum 
test. 

no change of parameters from default 

log_t t.test Performs Welch's t-
test. 

no change of parameters from default 

GLM_NBZI glmmTMB Performs negative-
binomial 
generalized linear 
model fitting with 
and without zero-
inflation. 

family The underlying 
distribution of the data. 

"gaussian" "nbinom2" Need to change 
distribution from 
gaussian to negative 
binomial distribution to 
run a negative binomial 
generalized linear 
model. 

      ziformula Formula for the zero-
inflation model. 

~0 (no zero-
inflation) 

~0 (no zero-
inflation) 

& 
~1 (zero-

inflation for all 
observations) 

Both zero and non-zero 
inflation was used and 
model fits compared 
using AIC, then model 
fit with lowest AIC was 
used. 

GLM_CLR glm Performs 
generalized linear 
model fitting. 

no change of parameters from default 

ANCOM ANCOM.main Performs full 
ANCOM workflow 
including data 
filtering, data 
transformation and 
normalization, then 
statistical testing. 

multcorr  FDR multiple testing 
correction. Options are  
1 (all tests: N taxa*[N 
taxa-1]),  
2 (Taxa-wise: N taxa), or  
3 (none). 

2 2  Recommended option 
per ANCOMv2 
documentation.  
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      sig  The level of significance. 
Used when calculating W 
statistics. Numeric value 
from 0-1.  

None 0.05  Commonly used 
significance level cutoff 
and used in example of 
ANCOM in ANCOMv2 
documentation  

      prev.cut  Taxa with proportion of 
zeroes greater 
than prev.cut excluded. 
Numeric value from 0-1. 

None 1 Causes all genera in the 
sample to be used for 
ANCOM analysis, 
ensuring the 
full sampling of 
the ecosystem is used for 
log ratio transformations 
and W statistic 
calculations. If this is 
lowered to 0.9 as shown 
in an example in 
ANCOMv2 
documentation, results 
are drastically more 
conservative.  

fitZIG cumNorm Performs 
cumulative sum 
scaling 
normalization. 

no change of parameters from default 

  fitZig Performs zero-
inflated gaussian 
model fitting. 

no change of parameters from default 

fitFeatMod cumNorm Performs 
cumulative sum 
scaling 
normalization. 

no change of parameters from default 

  fitFeatureModel Performs zero-
inflated log-normal 
model fitting. 

no change of parameters from default 

edgeR_TMM calcNormFactors Calculates 
normalization 
factors to scale the 
raw library sizes 
by. 

no change of parameters from default 
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  estimateCommonDisp Estimates the 
common negative 
binomial dispersion 
value across all 
taxa, used in 
testing. 

no change of parameters from default 

  estimateTagwiseDisp Estimates the taxa 
specific negative 
binomial dispersion 
values, used in 
testing. 

no change of parameters from default 

  exactTest Peforms edgeR's 
exact test for 
differential 
abundance. 

no change of parameters from default 

edgeR_RLE calcNormFactors Calculates 
normalization 
factors to scale the 
raw library sizes 
by. 

method The normalization method 
to be used. 

"TMM" "RLE" In order to run edgeR 
exactTest with ratio log 
expression 
normalization, needed to 
change "TMM" to 
"RLE" to perform ratio 
log expression 
normalization. 

  estimateCommonDisp Estimates the 
common negative 
binomial dispersion 
value across all 
taxa, used in 
testing. 

no change of parameters from default 

  estimateTagwiseDisp Estimates the taxa 
specific negative 
binomial dispersion 
values, used in 
testing. 

no change of parameters from default 

  exactTest Peforms edgeR's 
exact test for 
differential 
abundance. 

no change of parameters from default 
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DESeq2 estimateSizeFactors Calculates 
normalization 
factors to scale the 
raw library sizes 
by. 

type The method to be used for 
calculating normalization 
factors. Default is "ratio" 
(median ratio method 
introduced in original 
DESeq paper). 

"ratio" "poscounts" Default method "ratio" 
cannot deal with zeros, 
which is rapant in 
metagenomic data, but 
"poscounts" has been 
designed to deal with 
zeros, evolving from 
cases where DESeq2 
was being used to 
analyze metagenomic 
samples.  

  DESeq Performs full 
DESeq2 workflow 
including 
estimation of size 
factors (ignored 
here because it is 
done prior to 
running function), 
estimation of 
negative binomial 
dispersions, then 
performance of the 
negative binomial 
Wald test for 
differential 
abundance. 

no change of parameters from default 

voom calcNormFactors 
(edgeR package) 

Calculates 
normalization 
factors to scale the 
raw library sizes 
by. Not part of 
limma package, but 
recommended to be 
done by limma-
voom authors. 

no change of parameters from default 
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  voom (limma package) Transform data to 
log2-counts per 
million and 
estimates mean-
variance 
relationship to 
compute taxa 
weights, making 
data ready for 
linear models. 

no change of parameters from default 

  lmFit (limma package) Performs linear 
model fitting. 

no change of parameters from default 

  eBayes (limma 
package) 

Calculates statistics 
for assessing 
significance of 
fitted model. 

no change of parameters from default 

baySeq getPriors.NB Estimates 
parameters for the 
underlying 
negative binomial 
distributions of 
taxa to be used in 
analysis. 

cl Object describing how to 
parallelize the analysis. 

None NULL No parallelizing needed, 
function runs fast 
enough without it. 

  getLikelihoods Calculates 
likelihood of taxa 
belonging to a 
model of 
differential 
abundance. 

cl Object describing how to 
parallelize the analysis. 

None NULL No parallelizing needed, 
function runs fast 
enough without it. 

ALDEx2 aldex Performs full 
ALDEx2 workflow 
including centered 
log-ratio 
transformation of 
data followed by 
statistical testing. 

mc.samples Number of Monte Carlo 
samples to use to estimate 
the underlying 
distributions. 

128 1000 Per ALDEx2 
documentation, 128 or 
more mc.samples for the 
t-test is recommended, 
1000 mc.samples for a 
rigorous effect size 
calculation. 
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SAMseq samr.norm.data Normalizes data to 
look roughly like a 
Gaussian 
distribution with 
each sample having 
equal sequencing 
depth. 

no change of parameters from default 

  SAMseq Performs the 
statistical test for 
differential 
abundance. 

resp.type What type of data is the 
response variable. No 
default. Options are 
"Quantitative", "Two class 
unpaired", "Survival", 
"Multiclass", or "Two 
class paired" 

None "Two class 
unpaired" 

The response variable 
(case vs control) is two 
classes and is not paired. 

      fdr.output False Discovery Rate 
cutoff for output in 
significant genes table. 

0.2 1 Changed to 1 to ensure 
all results for all genera 
tested were outputted 
from analysis. Our 
cutoff for significance 
was FDR < 0.05. 

LEfSe run_lefse.py Peforms statistical 
testing for 
differential 
abundance and 
calculates LDA 
effect sizes. 

-a Alpha value for the Anova 
test. 

0.05 (a) 1 
(b) 0.05 

Performed two runs: 
Run (a) to capture 
results for all genera, 
and (b) to identify 
method designated 
significant genera.  

      -w Alpha value for the 
Wilcoxon test. 

0.05 (a) 1 
(b) 0.05 

      -l Threshold for the absolute 
value of the logarithmic 
LDA score. 

2 (a) 0 
(b) 2 
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mentioned above, significance was set at FDR < 0.05. PD – genus associations were 

considered replicated if they reached multiple testing corrected significance in both 

dataset 1 and 2. 

 

Comparison of significant results for differential abundance methods 

To measure similarity between method results, pairwise concordances were 

calculated between results for each method. For each dataset, a binary genus by method 

matrix was created with values denoting which methods did (1), or did not (0), detect a 

significant association between a genus and PD. Summing the two individual dataset 

matrices together resulted in a combined genus by method matrix with values denoting 

which methods detected a significant association between a genus and PD in no datasets 

(0), one dataset (1), or both datasets (2), effectively capturing information on replicated 

associations. Associations that had the same effect direction across datasets were then 

given a value of 3 to differentiate them from associations that were significant across 

datasets, but resulted in opposite effect directions (although significant in both datasets, 

not true replications since they have opposite direction of effects). Only tested genera that 

were in common between both datasets were included in the combined matrix (106 

genera). For each genus by method matrix, a matrix of pairwise concordances between 

methods was calculated in R by summing the number of PD-genus associations that were 

called the same between two methods (i.e. both calling an association significant or not 

significant for individual datasets, or significant in either no datasets, one dataset, both 

datasets with opposite effect directions, or both datasets with same effect direction for 

combined results) and dividing by the total number of genera tested. Concordances were 
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visualized as a heatmap using the heatmap.3 function (R code downloaded from 

https://raw.githubusercontent.com/obigriffith/biostar-

tutorials/master/Heatmaps/heatmap.3.R on 10/21/2019).  

To determine if any groups of PD-genus associations were being agreed (or 

disagreed) upon by all or a subset of methods, hierarchical clustering was performed to 

group genera based on similarities in association results between methods. A genus by 

method matrix of combined results was first created as stated above, then hierarchical 

clustering was performed and visualized in a heatmap using the heatmap.3 function with 

the default distance function, but specifying the hierarchical clustering function 

(hclustfun) to be diana from the cluster v 2.1.0 R package. DIANA performs a divisive 

hierarchical clustering algorithm [Kaufman & Rousseeuw 1990], which, in this situation, 

attempts to group genera based on the similarities in associations being detected in either 

no datasets, one dataset, both datasets with opposite effect directions, or both datasets 

with same effect direction between methods. The PD to control mean relative abundance 

ratios (MRAR) and control mean relative abundances (MRA) for each genus were also 

plotted next to the heatmap. MRARs were given a color gradient from red (lowest 

MRAR) to white (MRAR ~ 1) to blue (highest MRAR). Control MRAs were given a 

color gradient from white (lowest MRA) to dark green (highest MRA). 

 

RESULTS 

Method characteristics 

Methods included in the present study span the fields of traditional statistics, 

RNA-Seq analysis, and microbiome analysis, and have varying underlying 
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characteristics. A summary of method characteristics for the 16 differential abundance 

methods can be found in Table 1. The majority of methods included here utilized 

parametric statistical tests (assumes the data has some form of underlying distribution). 

Of these, the most commonly assumed data distribution was the negative binomial 

distribution (DESeq2, baySeq, edgeR RLE, edgeR TMM, GLM NBZI). No data 

transformations were performed for negative binomial methods, or metagenomeSeq 

methods, to try and bring the data to normality as non-normality of data is taken into 

account in their statistical models. The remaining parametric methods (ALDEx2 t-test, 

log t-test, limma-voom, GLM CLR) all used statistical tests that assumed a Gaussian 

distribution of the data, therefore, transformations were needed before analysis that 

included a log transform of some kind. Five methods (ALDEx2 Wilcoxon, ANCOM, 

Kruskal-Wallis, SAMseq, LEfSe) were considered non-parametric (assumes no 

underlying distribution of data) as they used statistical tests that transformed data to 

ranks.  Methods also differed in what techniques were used to account for varying 

sequence depth between samples. Four of the five negative binomial methods (DESeq2, 

baySeq, edgeR RLE, edgeR TMM) calculated scaling factors for each sample to account 

for uneven sequence count. Cumulative sum scaling was used for both metagenomeSeq 

methods. Relative abundance transformations (also referred to as total sum scaling) were 

performed for three methods that did not have a built in technique to account for varying 

sequence depth (Kruskal-Wallis, log t-test, LEfSe) as it is a widely used normalization 

technique and recommended as the normalization technique of choice by LEfSe authors 

[Segata et al. 2011].  Log ratio transformations were used for ALDEx2 methods, GLM 

CLR, and ANCOM, which, in addition to normalizing to total sequence count, takes the 
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compositionality of the data into account. The remaining 3 methods (limma voom, GLM 

NBZI, SAMseq) did not share normalization techniques with any other methods. 

 

Pairwise concordances of significant PD-genus association calls between methods 

The majority of the 16 methods being compared here have had their performances 

previously measured and compared on simulated microbiome data [McMurdie & Holmes 

2014; Thorsen et al. 2016; Weiss et al. 2017; Hawinkel et al. 2019], therefore, it was of 

interest to see if similarities/dissimilarities in significant PD-genus association calls 

between methods obtained from analyses on our data reflected similarities/dissimilarities 

in previously reported performance metrics. On average, association calls between 

methods were moderately concordant, with pairwise concordances between method calls 

ranging from 0.46-0.99 with the mean concordance being 0.76 per dataset (Figure 1, 

Table 3). For both datasets, baySeq, GLM NBZI, fitZIG, limma voom, edgeR, and 

SAMseq made association calls that had the lowest concordances on average with other 

methods (mean concordance = 0.61-0.76). Kruskal-Wallis, log t-test, GLM CLR, 

fitFeatureModel, ALDEx2, DESeq2 and LEfSe made calls that had the highest 

concordances on average with other methods (mean concordance = 0.78-0.82). 

Interestingly, the lower concordant group of methods contained methods previously 

shown to have higher FPR and FDR, while the higher concordant group contained 

methods previously shown to have lower FPR and FDR (Table 1) [Thorsen et al. 2016; 

Weiss et al. 2017; Hawinkel et al. 2019]. When combining method calls for both datasets, 

effectively incorporating information on what significant association calls replicated in 

both datasets (see METHODS), the average overall concordance between 



 

 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 1: Pairwise concordances between method results. 
 
Pairwise concordances were calculated between method results for (A) 109 genera in 
dataset 1, (B) 163 genera in dataset 2, and (C) combined results for 106 genera in 
common between both datasets. Values in heatmap cells correspond to the concordance 
between two methods. Concordances were calculated by summing the number of PD-
genus associations that were called the same between two methods (i.e both calling an 
association significant or not significant for (A) and (B), or significant in either no 
datasets, one dataset, both datasets with opposite effect directions, or both datasets with 
same effect direction for (C)) and dividing by the total number of genera tested. 
Concordances for ANCOM_unfiltered were calculated after removing results for genera 
not tested by the other methods (those found in <10% of samples, and unclassified at 
genus level). Cells are colored by a red (lower concordance) to yellow (higher 
concordance) color gradient. Methods are ordered from lowest (bottom, left) to highest 
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(top, right) mean concordance. KW: Kruskal-Wallis; GLM_CLR: generalized linear 
model with centered log ratio transformation; ALDEx2_Wil: ALDEx2 with Wilcoxon 
rank-sum test; log_t: Welch’s t-test with log transformation; ALDEx2_t: ALDEx2 with t-
test; fitFeatMod: fitFeatureModel from metagenomeSeq; edgeR_TMM: edgeR exact test 
with trimmed mean of M-values; GLM_NBZI: generalized linear model assuming 
negative binomial distribution with, or without, zero-inflation; edgeR_RLE: edgeR exact 
test with relative log expression 
 
 
Table 3. Summary statistics for pairwise concordances between method results. Mean, minimum, and maximum 
concordance was calculated for each method in dataset 1, dataset 2, and when results across dataset 1 and 2 were 
combined. Methods are ordered by mean concordance for combined results (same order as rows in Figure 1, C). SD: 
Standard deviation 
 
 
 Dataset 1  Dataset 2  Combined results 
Method Mean SD Min Max   Mean SD Min Max   Mean SD Min Max 

KW 0.82 0.10 0.64 0.99  0.82 0.10 0.59 0.99  0.71 0.12 0.51 0.97 

LEfSe 0.82 0.10 0.65 0.99  0.81 0.10 0.58 0.99  0.70 0.12 0.49 0.97 

GLM 
CLR 0.82 0.11 0.66 0.99  0.80 0.11 0.59 0.94  0.69 0.13 0.55 0.92 

ANCOM 
unfiltered 0.82 0.10 0.64 0.96  0.80 0.12 0.56 0.96  0.68 0.13 0.51 0.92 

ALDEx2 
Wilcoxon 0.80 0.11 0.55 0.96  0.81 0.12 0.60 0.97  0.68 0.13 0.44 0.92 

Log t-test 0.81 0.09 0.71 0.94  0.82 0.09 0.64 0.91  0.68 0.12 0.53 0.87 

ALDEx2 
t-test 0.79 0.12 0.51 0.96  0.81 0.12 0.58 0.97  0.68 0.14 0.40 0.92 

fitFeature-
Model 0.80 0.08 0.63 0.91  0.80 0.11 0.58 0.92  0.67 0.11 0.48 0.81 

DESeq2 0.79 0.09 0.53 0.87  0.78 0.06 0.67 0.86  0.64 0.08 0.44 0.73 

ANCOM 
filtered 0.75 0.12 0.46 0.94  0.75 0.12 0.50 0.87  0.61 0.14 0.28 0.81 

edgeR 
TMM 0.76 0.08 0.55 0.90  0.75 0.06 0.62 0.85  0.60 0.09 0.37 0.81 

GLM 
NBZI 0.73 0.08 0.58 0.90  0.73 0.07 0.60 0.85  0.60 0.08 0.42 0.81 

baySeq 0.72 0.06 0.61 0.81  0.74 0.08 0.58 0.84  0.59 0.09 0.37 0.71 

SAMseq 0.73 0.09 0.61 0.85  0.73 0.07 0.58 0.83  0.58 0.08 0.45 0.72 

voom 0.70 0.06 0.59 0.78  0.64 0.07 0.55 0.83  0.55 0.06 0.48 0.68 

edgeR 
RLE 0.70 0.05 0.63 0.80  0.61 0.05 0.50 0.74  0.52 0.04 0.42 0.58 

fitZIG 0.61 0.07 0.46 0.72   0.67 0.06 0.53 0.74   0.47 0.08 0.28 0.55 
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method calls decreased (mean concordance = 0.63±0.1). As seen in individual datasets, 

baySeq, GLM NBZI, fitZIG, limma voom, edgeR, and SAMseq had the least similar calls 

on average with other methods (mean concordance = 0.47-0.60), and Kruskal-Wallis, log 

t-test, GLM CLR, fitFeatureModel, ALDEx2, DESeq2 and LEfSe had the most similar 

calls on average with other methods (mean concordance = 0.64-0.71). No significant 

difference between datasets was found for the average overall concordance between 

method calls (t-test P value=0.78), but the decrease in concordance between method calls 

when merging calls from both datasets was significant (t-test P value < 3E-6). 

 

Variable effect of taxa filtering for ANCOM 

 When performing analyses with ANCOM on filtered genera data (referred to as 

ANCOM filtered here), we noticed that very few significant PD-genus associations were 

being detected, even in the larger, arguably more powered dataset 2. Association calls for 

ANCOM filtered also resulted in some of the lowest concordances observed among the 

methods, landing it in the lower concordant group of methods mentioned above for both 

datasets and when method calls of both datasets were combined (Figure 1). We found this 

odd as ANCOM was previously reported to have low FDR [Weiss et al. 2017], and 

shares similar characteristics with other low FPR/FDR methods included in this study 

(Table 1), therefore, we would expect it to be included with the other low FPR/FDR 

methods in the higher concordant group. We posited that this might be a result of taxa 

filtering before analysis. To investigate the effect of taxa filtering on ANCOM results, we 

performed ANCOM again using all genera in the analysis (referred to as ANCOM 

unfiltered here). In both datasets, comparing significant results between ANCOM filtered 
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and ANCOM unfiltered showed a drastic reduction in significant associations when 

filtering genera before analysis (82% reduction in dataset 1 and 79% reduction in dataset 

2, Table 4). As this was the opposite effect we expected to happen when filtering taxa  

 

Table 4. Variable effect of taxa filtering for ANCOM in datasets 1 and 2. ANCOM was performed twice, once for 
genera that passed filtering criteria (present in at least 10% of samples and classified at genus level), and again for all 
genera to compare the effect of filtering vs not filtering on detection of significant signals. We observed the opposite 
effect from what we expected (should gain more significant signals when filtering, but actually produced less), 
therefore, we investigated effect of filtering on results of two other standard statistical methods (GLM CLR and 
Kruskal-Wallis) by performing each on filtered and unfiltered data. Column "Filter" contains significant results when 
implementing the 10% and unclassified genera filtering, while column "Unfilt" contains significant results when there 
was no filtering of genera. 201 PD patients and 132 controls were included in all analyses.  
Hyphen ( - ); indicates that a genus did not result in a significant association with PD under that filtering condition.  
NT; not tested due to removal of that genus during filtering. 

 

ANCOM W     GLM CLR     Kruskal-Wallis     

  Significant W 
statistics   Significant 

FDR q-values   Significant 
FDR q-values 

Genera Filter Unfilt Genera Filter Unfilt Genera Filter Unfilt 

Dataset 1                 

Agathobacter 106 442 Lachnospiraceae_
ND3007_group 1E-04 4E-04 Lachnospiraceae_

ND3007_group 2E-04 1E-03 

Roseburia 96 431 Lactobacillus 1E-04 4E-04 Lactobacillus 2E-04 1E-03 

Lachnospira 92 429 Agathobacter 1E-04 5E-04 Agathobacter 2E-04 1E-03 

Bifidobacterium 89 422 Blautia 1E-04 6E-04 Bifidobacterium 1E-03 5E-03 
Lachnospiraceae_
ND3007_group 88 423 Lachnospira 2E-03 7E-03 Cloacibacillus 1E-03 6E-03 

Blautia - 425 Cloacibacillus 2E-03 8E-03 Faecalibacterium 1E-03 6E-03 

Faecalibacterium - 419 Bifidobacterium 2E-03 8E-03 Hungatella 1E-03 6E-03 

Akkermansia - 410 Hungatella 2E-03 8E-03 Lachnospira 1E-03 6E-03 

Fusicatenibacter - 408 Porphyromonas 2E-03 8E-03 Megasphaera 1E-03 6E-03 

Lactobacillus - 408 Roseburia 3E-03 0.01 Porphyromonas 1E-03 6E-03 

Anaerostipes - 404 Megasphaera 6E-03 0.03 Blautia 2E-03 9E-03 

Butyricicoccus - 401 Coprobacillus 7E-03 0.03 Coprobacillus 4E-03 0.01 

Porphyromonas - 399 Lachnospiraceae_
NK4B4_group NT 0.03 Roseburia 4E-03 0.01 

Prevotella - 393 Prevotella 7E-03 0.03 Prevotella 6E-03 0.02 

UBA1819 - 391 Faecalibacterium 7E-03 0.03 Akkermansia 7E-03 0.03 
Lachnospiraceae_
UCG-004 - 390 Fusicatenibacter 7E-03 0.03 Butyricicoccus 7E-03 0.03 

Hungatella - 387 Butyricicoccus 9E-03 0.03 UBA1819 8E-03 0.03 

Oscillospira - 382 Anaeroplasma NT 0.04 Ruminococcaceae
_unclass NT 0.04 

Coprococcus_3 - 376 Lachnospiraceae_
UCG-004 0.01 0.04 Mobiluncus NT 0.04 
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Cloacibacillus - 371 Tannerellaceae_u
nclass NT 0.04 Varibaculum 0.01 0.04 

Ruminococcaceae
_unclass - 369 Haemophilus 0.01 0.05 Corynebacterium

_1 0.01 0.04 

Ezakiella - 366 UBA1819 0.01 0.05 Ruminococcaceae
_UCG-004 0.01 - 

Desulfovibrio - 362 Akkermansia 0.01 - Fusicatenibacter 0.02 - 
Corynebacterium
_1 - 361 Anaerostipes 0.02 - Lachnospiraceae_

UCG-004 0.02 - 

Haemophilus - 360 Anaerotruncus 0.04 - Oscillospira 0.02 - 

Megasphaera - 360 Bilophila 0.04 - Anaerostipes 0.02 - 
Ruminococcaceae
_UCG-004 - 360 Coprococcus_3 0.03 - Desulfovibrio 0.02 - 

Coprobacillus - 358 Corynebacterium
_1 0.02 - Anaerotruncus 0.03 - 

      Desulfovibrio 0.04 - Methanobrevibact
er 0.03 - 

      Ezakiella 0.02 - Ezakiella 0.03 - 

      Methanobrevibact
er 0.02 - Haemophilus 0.03 - 

      Oscillospira 0.01 - Bacteroides 0.04 - 

      Ruminococcaceae
_UCG-004 0.02 - Bilophila 0.05 - 

      Varibaculum 0.04 -       

Dataset 2                 

Bifidobacterium 153 551 Lachnospiraceae_
UCG-004 2E-06 8E-06 Bifidobacterium 6E-07 2E-06 

Agathobacter 150 548 Blautia 2E-06 8E-06 Lachnospiraceae_
UCG-004 1E-05 5E-05 

Roseburia 145 543 Ruminococcaceae
_UCG-013 2E-06 8E-06 Agathobacter 6E-05 2E-04 

Faecalibacterium 143 541 Anaerostipes 4E-06 1E-05 Roseburia 3E-04 9E-04 
Lachnospiraceae_
UCG-004 143 541 Agathobacter 6E-06 2E-05 Eubacterium 3E-04 9E-04 

Lachnospiraceae_
ND3007_group 139 537 Roseburia 2E-05 6E-05 Lachnospiraceae_

ND3007_group 6E-04 2E-03 

Anaerostipes 137 536 Lachnospiraceae_
ND3007_group 7E-05 2E-04 Ruminococcaceae

_UCG-013 7E-04 2E-03 

Lachnospira 136 535 Bifidobacterium 9E-05 3E-04 Anaerostipes 1E-03 5E-03 
Ruminococcaceae
_UCG-013 - 539 Eubacterium 2E-04 7E-04 Lawsonella 3E-03 0.01 

Fusicatenibacter - 530 Butyricicoccus 5E-04 2E-03 Faecalibacterium 3E-03 0.01 

Ruminococcus_2 - 523 Lawsonella 2E-03 5E-03 Erysipelotrichace
ae_unclass NT 0.01 

Blautia - 522 Faecalibacterium 2E-03 5E-03 Turicibacter 6E-03 0.02 

Eubacterium - 521 Oscillospira 2E-03 5E-03 Pseudomonas 8E-03 0.02 

Pseudomonas - 520 Lachnospiraceae_
unclass NT 6E-03 UBA1819 8E-03 0.02 

Oscillospira - 513 Lachnospiraceae_
UCG-001 3E-03 0.01 Corynebacterium

_1 8E-03 0.02 

Desulfovibrio - 510 Lachnospira 4E-03 0.01 Erysipelotrichace
ae_UCG-003 9E-03 0.03 

Ruminococcus_1 - 505 Erysipelotrichace
ae_UCG-003 4E-03 0.01 Anaerococcus 0.01 0.03 
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Butyricicoccus - 504 Fusicatenibacter 5E-03 0.02 Lachnospiraceae_
UCG-001 0.01 0.03 

Methanobrevibact
er - 503 DTU089 5E-03 0.02 Desulfovibrio 0.01 0.04 

Lachnospiraceae_
UCG-001 - 503 Ruminococcus_2 7E-03 0.02 Chloroplast_uncla

ss NT 0.04 

Turicibacter - 501 Lachnoclostridiu
m 8E-03 0.03 Lactobacillus 0.01 0.04 

Corynebacterium
_1 - 500 Turicibacter 8E-03 0.03 Lachnospira 0.01 0.04 

Ruminiclostridiu
m_6 - 495 Erysipelotrichace

ae_unclass NT 0.03 Oscillospira 0.01 0.04 

DTU089 - 493 Chloroplast_uncla
ss NT 0.03 Varibaculum 0.01 0.04 

Lawsonella - 493 Acinetobacter NT 0.04 Peptoniphilus 0.01 0.04 

Anaerococcus - 480 Candidatus_Solea
ferrea 0.01 0.04 Hungatella 0.02 0.05 

Lactobacillus - 479 Ruminococcus_1 0.01 0.04 Acinetobacter NT 0.05 

Prevotella - 477 Prevotella 0.01 0.04 Methanobrevibact
er 0.02 - 

Erysipelotrichace
ae_unclass NT 474 Parvimonas 0.01 0.04 Delftia 0.02 - 

Erysipelotrichace
ae_UCG-003 - 473 Desulfovibrio 0.02 0.05 Streptococcus 0.02 - 

Porphyromonas - 472 Corynebacterium
_1 0.02 0.05 Porphyromonas 0.02 - 

Lachnospiraceae_
unclass NT 469 Delftia 0.02 - Prevotella 0.02 - 

Ruminococcaceae
_UCG-014 - 466 Porphyromonas 0.02 - Fusicatenibacter 0.03 - 

Veillonella - 463 Anaerococcus 0.02 - Anaerotruncus 0.03 - 
Candidatus_Solea
ferrea - 460 Ruminiclostridiu

m_6 0.02 - Ruminococcus_2 0.03 - 

Bacteroides - 459 Methanobrevibact
er 0.02 - Parvimonas 0.03 - 

Varibaculum - 452 Pseudomonas 0.02 - Mobiluncus 0.04 - 
Phascolarctobacte
rium - 449 Bacteroides 0.02 - Actinomyces 0.04 - 

      Veillonella 0.03 - Finegoldia 0.04 - 

      S5-A14a 0.03 - S5-A14a 0.04 - 

      Varibaculum 0.03 - Blautia 0.04 - 

      Victivallis 0.03 - Murdochiella 0.04 - 

      Peptoniphilus 0.04 - Ezakiella 0.04 - 

      Lactobacillus 0.04 - DTU089 0.04 - 

      Phocea 0.04 -       

      Ezakiella 0.04 -       

      Ruminococcaceae
_UCG-014 0.04 -       

      Family_XIII_UC
G-001 0.04 -       
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data before analysis (expected to gain more significant signals when filtering), we 

investigated effect of filtering on results of two other standard statistical methods (GLM 

CLR and Kruskal-Wallis) by performing each on filtered and unfiltered data. In both 

datasets, results for these methods behaved as expected, producing more significant 

associations when data was filtered before analysis compared to when all genera were 

included in analysis (Table 4). The change in significant associations between analyses 

on filtered and unfiltered data were much less severe than ANCOM’s with GLM CLR 

and Kruskal-Wallis gaining ~29% and ~33% more significant associations with filtered 

data in both datasets respectively. Concordances between association calls made by 

ANCOM unfiltered and other methods were also higher on average than those seen with 

ANCOM filtered, placing ANCOM unfiltered among the group of lower FPR/FDR 

methods with higher mean concordances (Figure 1, Table 3). Because ANCOM 

unfiltered behaves more like what we observed from other lower FPR/FDR methods, and 

has higher concordance to other methods on average, we used results from ANCOM 

unfiltered in place of ANCOM filtered for further comparisons between method results. 

 

Hierarchical clustering of genera based on similarity in significant association calls 

between methods 

To observe what groups of genera either all, or subsets, of methods were agreeing 

upon, we performed hierarchical clustering of genera based on similarities in significant 

PD-genus association calls between methods and visualized associations (both 

unreplicated and replicated) for all methods via heatmap (Figure 2).  

The degree at which methods agreed upon PD-genus associations depended on 

the level, and tactic, used to observe the convergence of method results. At the most 
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conservative level, only a minority of PD-genus associations were agreed upon by all 16 

methods (3-4% of genera). The genera that were associated with PD by all 16 methods 

included Agathobacter, Lachnospiraceae_ND3007_group, and Lactobacillus in dataset 1 

and Agathobacter, Anaerococcus, Bifidobacterium, Lachnospiraceae_UCG-004, 

Porphyromonas, Prevotella, and Roseburia in dataset 2. Only Agathobacter’s association 

was detected by all 16 methods in both datasets. At a more liberal threshold, 26 and 36 

genera were associated with PD by >50% of methods in dataset 1 and dataset 2 

respectively (22-24% of total genera). Of these genera, 17 were associated with PD by 

>50% of methods in both datasets and included Agathobacter, 

Lachnospiraceae_ND3007_group, Lactobacillus, Bifidobacterium, 

Lachnospiraceae_UCG-004, Porphyromonas, Prevotella, Roseburia, Fusictenibacter, 

Lachnospira, Faecalibacterium, Butyricicoccus, Anaerostipes, Methanobrevibacter, 

Blautia, Ezakiella, and Hungatella. At the most liberal threshold, 83 and 131 genera were 

associated with PD by at least one method in dataset 1 and dataset 2 respectively (76-

80% of total genera). Of these genera, 49 were associated with PD by at least one method 

in both datasets, which is approximately half of the genera that were in common between 

datasets and eligible for replication.  

Using hierarchical clustering, genera were clustered into three clear groups: (1) 24 

genera (23% of genera in common between datasets) that were more likely to be  

associated with PD across methods in both datasets (10±3 methods on average; Figure 2, 

group 1), (2) 67 genera (63% of genera in common between datasets) that were 

associated with PD in both datasets by little to no methods (<1 methods on average; 

Figure 2, group 2), and (3) 15 genera (14% of genera in common between datasets),  
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Figure 2: Hierarchical clustering of genera based on similarity in association results between methods. 
 
Hierarchical clustering was performed to group genera (rows) based on similarities in association results between methods 
(columns) and was visualized via heatmap. Three obvious groups of genera were revealed by hierarchical clustering: (1) genera 
more likely to be replicated by majority of methods, (2) genera who were replicated by little to no methods, and (3) rarer genera 
enriched in PD who were replicated by a subset of methods, some of which were previously shown to have high sensitivity. Only 
results for genera tested and in common between datasets (106 genera) were included in hierarchical clustering and heatmap. 
Cells correspond to an association that was detected in no datasets (value=0, color=light gray), one dataset (value=1, 
color=gray), both datasets with opposite effect directions (value=2, color=dark grey), or both datasets with same effect directions 
(value=3, color=black). Mean relative abundance ratios for genera in dataset 1 (MRAR_1) and dataset 2 (MRAR_2) were plotted 
next to the heatmap, and given a color gradient from red (lowest MRAR) to white (MRAR ~ 1) to blue (highest MRAR). Control 
mean relative abundances for dataset 1 (Control_MRA_1) and dataset 2 (Control_MRA_2) were also plotted next to the 
heatmap, and given a color gradient from white (lowest MRA) to dark green (highest MRA). KW: Kruskal-Wallis; GLM_CLR: 
generalized linear model with centered log ratio transformation; ALDEx2_Wil: ALDEx2 with Wilcoxon rank-sum test; log_t: 
Welch’s t-test with log transformation; ALDEx2_t: ALDEx2 with t-test; fitFeatMod: fitFeatureModel from metagenomeSeq; 
edgeR_TMM: edgeR exact test with trimmed mean of M-values; GLM_NBZI: generalized linear model assuming negative 
binomial distribution with, or without, zero-inflation; edgeR_RLE: edgeR exact test with relative log expression
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mostly enriched in PD, who were more likely to be associated with PD by a specific 

subset of methods (4±2 methods on average; Figure 2, group 3). Group 1 included genera 

both enriched and depleted in PD that had a wide range of control MRAs and effect sizes 

ranging from highly prevalent genera with moderate effect sizes (e.g. Agathobacter, 

control MRA = 0.02-0.04, absolute fold change = 1.8 – 1.9) to rarer genera with larger 

effect sizes (e.g. Prevotella, control MRA = 6E-4 – 2E-3, absolute fold change = 2.6 – 

4.4) with a mean control MRA of 6E-3 – 7E-3 and absolute fold change of 1.9 – 2.6. On 

average, group 2 included more prevalent genera (mean control MRA = 0.01) with 

smaller effect sizes (mean absolute fold change =  1.3 – 1.5). Group 3 was interesting as 

it contained genera mostly enriched in PD (mean absolute fold change for group = 3.2 – 

4.5) and were made up of genera with very low control MRAs (mean control MRA = 6E-

4 – 7E-4). The majority of PD-genus associations in group 3 were replicated by a subset 

of methods that have been previously shown to have high FPR/FDR, but also higher 

sensitivity [McMurdie & Holmes et al 2014; Thorsen et al. 2016; Weiss et al. 2017; 

Hawinkel et al. 2017]. 

 

Comparison of method results across datasets 

Datasets differed in size and had significant heterogeneity in microbiome 

composition [Wallen et al. 2020], therefore, we tested differences between method calls 

across datasets to see if there were any significant dataset differences in the number or 

proportion of genera being associated with PD by the 16 methods. For both datasets, 

approximately 80% of genera within each dataset were significantly associated with PD 

by at least one method (mean method per association = 6±5 dataset 1, 6±5 dataset 2). 
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Approximately 22-24% of genera were associated with PD by >50% of the methods 

(mean method per association = 12±2 dataset 1, 13±2 dataset 2), and 3-4% were 

associated with PD by all 16 methods. No significant difference was found between 

datasets for the average number of methods that detected a PD-genus association (t-test P 

value=0.67). For dataset 1, the maximum number of PD-genus associations detected was 

64 (fitZIG, encompassing 59% of genera), the minimum detected was 11 (ALDEx2 t-test, 

encompassing 11% of genera), and the mean per method was 31±14 (encompassing on 

average 28% of genera). For dataset 2, the maximum number of PD-genus associations 

detected was 90 (edgeR RLE, encompassing 55% of genera), the minimum detected was 

30 (ALDEx2 t-test, encompassing 18% of genera), and the mean per method was 50±21 

(encompassing on average 31% of genera). Methods on average detected a significantly 

higher number of PD-genus associations in the larger dataset 2 (t-test P value=0.007), but 

no significant difference was found between datasets when the association count for each 

method was normalized by the number of genera tested in analysis (t-test P value=0.72). 

Overall, despite differences in the size of datasets and heterogeneity in microbiome 

composition, we observed no significant differences between datasets in the proportion of 

genera being associated with PD on average. The number of genera being associated with 

PD was significantly increased in dataset 2, which is to be expected since it is the larger, 

and potentially more powered dataset. 
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DISCUSSION 

 In summary, we found 16 differential abundance testing methods in the literature 

and used them to detect differentially abundant genera in PD patients versus healthy 

controls in two large PD-gut microbiome datasets. Methods spanned multiple fields and 

had both common and unique characteristics when compared to other methods. 

Significant PD-genus associations were detected by all methods and the number of 

associations detected by each method ranged from a small subset of genera to over half of 

the genera tested. Concordances between significant method calls varied overall. 

Methods previously shown to have lower FPR/FDR consistently resulted in higher 

overall concordances with other methods, while methods previously shown to have 

higher FPR/FDR consistently resulted in lower overall concordances with other methods. 

For one method (ANCOM), we detected an unorthodox effect of taxa filtering, where 

filtering of genera before analysis drastically reduced the number of significant PD-genus 

associations compared to when all genera were included in the analysis. When grouping 

genera based on similarities in significant PD-genus association calls between methods, 

we found that three clear groups of genera were formed: (1) those more likely to be 

replicated in both datasets by the majority of methods, (2) those associated with PD in 

both datasets by little to no methods, and (3) those more likely to be associated with PD 

by a specific subset of methods with potentially higher sensitivity. Although datasets 

were heterogeneous in microbiome composition, we observed no significant differences 

between datasets in the proportion of genera being associated with PD on average. 

 The variation between method results reported here aligns with the variation 

between differential abundance testing method performances previously reported in 
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method comparison studies [Thorsen et al. 2016; Weiss et al. 2017; Hawinkel et al. 

2019].  Although performance of methods could not be assessed here, as analyses were 

conducted on real datasets where the true answers are unknown, we observed that 

methods with similar previously reported performance metrics seemed to group together 

based on their concordances with one another and the PD-genus associations they 

detected. Methods with previously reported low FPR/FDR (i.e. group of methods 

containing Kruskal-Wallis, log t-test, ALDEx2, fitFeatureModel, ANCOM, DESeq2) not 

only had the highest average concordances across methods, but also had the highest 

concordances among each other (mean concordance ~ 0.9 per dataset). This observation 

makes logical sense for two reasons: (1) methods with lower FPR/FDR have also been 

previously reported to be conservative in their performance [Thorsen et al. 2016], 

detecting less taxa as differentially abundant compared to higher FPR/FDR methods 

(which we also observed in our data), and (2) they seemed to detect and replicate more 

robust PD-genus associations (e.g. genera shown in Figure 2, group 1 that were more 

likely to be agreed upon by the majority of methods). Taken together, we can extrapolate 

that methods with lower FPR/FDR would be more likely to converge on the same taxa 

because they are detecting less taxa as differentially abundant overall, and the signatures 

they do detect are those that tend to be more robust to methodological variation. 

 A surprising finding from this study was the variable effect of taxa filtering prior 

to testing with ANCOM. Usually, filtering of taxa before analysis would increase the 

number of significant associations detected by a method, mostly due to the decreased 

burden of multiple testing correction at the FDR calculation step. However with 

ANCOM, filtering of taxa before analysis greatly decreased the number of significant 
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associations. This might be due to the different statistics used by ANCOM compared to 

the standard FDR q-value. To determine significance, ANCOM calculates a W statistic, 

which is the number of times the log ratio of a taxon with every other taxon being tested 

was detected to be significantly different across groups (in this case PD vs control) 

[Mandal et al. 2015]. Because W statistics are based on pairwise comparisons between all 

taxa being tested, they will automatically decrease overall if less taxa are included in the 

analysis, and the threshold range for significant W statistics will also decrease. On top of 

that, if low prevalent taxa are being removed, this will not only decrease the W statistics 

overall, but now W statistic calculation might become more conservative since higher 

prevalent, potentially more stable taxa have been selected for, the ratios of which might 

not differ enough to be detected as significant at a particular W statistic threshold. 

 A finding from this study that not only helped illustrate the behavior of the 

methods on our data, but is relevant to PD itself was the detection of two groups of 

genera that were converged upon by either the majority or subset of methods used here. 

Hierarchical clustering of genera based on similarity in method results showed one group 

of genera that were more likely to be replicated by the majority of methods on average 

(Figure 2, group 1). Theoretically, this group might be looked at as the “high confidence” 

group, as methods from across the spectrum tended to not only detect, but replicate the 

associations in both datasets. This group included genera previously associated with PD 

such as Bifidobacterium, Lactobacillus, and short-chain fatty-acid producing bacteria  

Faecalibacterium, Roseburia, Blautia, and other members of the Lachnospiraceae 

family. Hierarchical clustering also revealed a second group of genera that were only 

detected and replicated by a subset of methods (fitZIG, edgeR, limma-voom, baySeq, 
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SAMseq, GLM NBZI, DESeq2; Figure 2, group 3). This group is intriguing because it 

mostly contains genera enriched in PD that have low control MRAs, higher effect sizes 

on average, and was more likely to be replicated by methods previously reported to have 

higher sensitivity [McMurdie & Holmes 2014; Thorsen et al. 2016; Weiss et al. 2017; 

Hawinkel et al. 2019]. Without the use of more sensitive methods, this group of genera 

would have been missed, arguing that, although these methods were previously reported 

to have higher FPR/FDR, they might be useful in detecting rarer taxa. As done here, the 

use of a second replication dataset could help curve the number of false positives these 

methods might detect. 

 One of the biggest limitations of this study is the lack of ability to test the actual 

performance of these methods, as no simulations were performed and only real data was 

used, so the true answers are unknown. As a proxy, we attempted to match patterns seen 

in our data to performance metrics previously reported in the literature [McMurdie & 

Holmes 2014; Thorsen et al. 2016; Weiss et al. 2017; Hawinkel et al. 2019]. 

Unfortunately, not all methods implemented in this study had previously reported 

performance metrics (i.e. LEfSe, GLM CLR), therefore, we can only superimpose 

previously reported performance metrics from methods they were most concordant with. 

A methodological limitation of this study is the choice of parameters used for each 

method. Each method contains multiple functions with multiple parameters, and it was 

beyond the scope of this study to try different combinations of parameters to fully 

optimize each method. We attempted to make parameter choices based on what was 

default for the method and/or what was recommended for the method especially in the 

context of microbiome data analysis, but this process is inherently biased as we did not 
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attempt to try every combination of parameter choice possible for each method. Also, the 

genera detected in this study provide interesting leads for future studies in PD, but should 

be interpreted with caution as the goal of this study was mainly to compare different 

differential abundance methods in our data, and did not take into account any 

confounding variables that might drive false signals. 

 In conclusion, we performed 16 differential abundance testing methods in two 

large PD-gut microbiome datasets and compared their results. We found results varied 

between methods, but methods previously reported to have lower FPR/FDR tended to 

have higher overall concordance. Filtering of taxa before analysis with ANCOM 

drastically reduces the number of significant associations detected, most likely due to the 

way W statistics are calculated and used for significance. This suggests it might be more 

advantageous to supply ANCOM with unfiltered taxa abundances for higher taxonomic 

levels such as genus, and only filter out very rare taxa (that is most likely just noise) for 

lower taxonomic levels such as OTUs/ASVs. The majority of methods converged on a 

group of PD-genus associations that seemed more robust to inter-methodological 

differences, while a subset of higher sensitivity methods converged on a smaller, second 

group of rarer genera enriched in PD. This study fills a void in the literature on how 

different differential abundance methods behave when performed on real, complex 

disease oriented gut microbiome datasets, and we hope that it helps to inform future 

studies looking to perform these types of analyses. 
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ABSTRACT 

In Parkinson’s disease (PD), gastrointestinal features are common and often 

precede the motor signs. Braak and colleagues proposed that PD may start in the gut, 

triggered by a pathogen, and spread to the brain. Numerous studies have examined the 

gut microbiome in PD; all found it to be altered, but found inconsistent results on 

associated microorganisms. Studies to date have been small (N = 20 to 306) and are 

difficult to compare or combine due to varied methodology. We conducted a 

microbiome-wide association study (MWAS) with two large datasets for internal 

replication (N = 333 and 507). We used uniform methodology when possible, 

interrogated confounders, and applied two statistical tests for concordance, followed by 

correlation network analysis to infer interactions. Fifteen genera were associated with PD 

at a microbiome-wide significance level, in both datasets, with both methods, with or 

without covariate adjustment. The associations were not independent, rather they 

represented three clusters of co-occurring microorganisms. Cluster 1 was composed of 

opportunistic pathogens and all were elevated in PD. Cluster 2 was short-chain fatty acid 

(SCFA)-producing bacteria and all were reduced in PD. Cluster 3 was carbohydrate-

metabolizing probiotics and were elevated in PD. Depletion of anti-inflammatory SCFA-

producing bacteria and elevated levels of probiotics are confirmatory. Overabundance of 

opportunistic pathogens is an original finding and their identity provides a lead to 

experimentally test their role in PD. 
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INTRODUCTION 

Parkinson’s disease (PD) is a common, progressive, and debilitating disease, 

which currently cannot be prevented or cured. With the exception of rare genetic forms, 

the cause of PD is unknown. Many susceptibility loci1 and environmental risk factors2 

have been identified, but each has a modest effect on risk and none is sufficient to cause 

disease. Gene–environment interaction studies have not been able to identify a causative 

combination3,4,5,6. The triggers that cause PD are unknown. 

The emerging information about the importance of the gut microbiome in human 

health and disease7, together with the well-established connection between PD and the 

gut including common and early occurrence of constipation8, inflammation9, and 

increased gut membrane permeability10, have raised the possibility that microorganisms 

in the gut may play a role in PD pathogenesis and prompted a fast growing literature on 

studies conducted in humans and animal models11-30. Every study that has compared the 

global composition of the gut microbiome in PD vs. controls found it to be significantly 

altered; in contrast, attempts to identify PD-associated microorganisms have produced 

inconsistent results31,32. Low reproducibility has been attributed to small sample sizes 

(missing true associations due to low power), relaxed statistical thresholds (inflating 

false-positive results), and publishing without a replication dataset (required for genomic 

studies). Differences in methods of sample collection, transportation and storage, DNA 

extraction, sequencing, bioinformatics, and statistics can all contribute to inter-study 

variations. The choice of taxonomic resolution for analysis (PD has been tested at all 

levels from phylum to species) and the inconsistent taxonomic assignments and 

nomenclature used in various reference databases add to the confusion when comparing 
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results. Last but not least is confounding by heterogeneity in the populations that were 

studied: PD is heterogenous and so is the microbiome. PD subtypes cannot be readily 

identified; thus, patient populations are inevitably varied. A myriad of factors can affect 

the microbiome ranging from diet, health, and medication to cultural habits, lifestyles, 

race, and geography33,34. 

Identifying microorganisms involved in the dysbiosis of the microbiome is 

essential for understanding their role in disease. We conducted a hypothesis-free 

microbiome-wide association study (MWAS) modeled after and using the standards of 

rigors that are used in genome-wide association studies (GWAS), but with analytic 

methods that are appropriate for the high-dimensionality and compositionality of the 

microbiome data. We used two datasets to allow internal replication. The sample sizes in 

prior PD-microbiome studies have ranged from 10 to 197 PD cases and 10 to 130 

controls32. The largest published study (197 cases and 130 controls) is the dataset 1 in the 

present study, re-analyzed here with a more advanced bioinformatics pipeline than we 

previously published16. In addition, we present an unpublished independent dataset with 

323 cases of PD and 184 controls, analyzed in parallel to dataset 1. Two large datasets 

allowed for internal replication and power to detect both rare and common signals. We 

standardized data collection and processing as much as possible across the two datasets, 

and for variations that could not be handled in study design, we used statistical 

techniques to make appropriate adjustments. We used two different statistical tests for 

MWAS and focused only on results that were reproducibly significant across methods 

and across datasets. We employed correlation network analysis to infer interactions 

among PD-associated microorganisms. We were able to confirm some of the previously 
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reported associations with common taxa, and, in addition, identified associations with 

rare microorganisms that are commensal, but can become opportunistic pathogens in 

immune-compromised hosts. 

 

RESULTS 

Dramatic difference between datasets 

 We discovered a remarkable difference between the two datasets, despite efforts 

to standardize data collection and analysis (Fig. 1). All subjects lived in the United States. 

Diagnosis, subject selection, and data collection were performed by the NeuroGenetics 

Research Consortium (NGRC) investigators at the four NGRC-affiliated movement 

disorder clinics, using standardized methods. Dataset 1 (212 PD and 136 controls) was 

collected in Seattle, WA, Albany, NY, and Atlanta, GA, in 2014. Dataset 2 (323 PD and 

184 controls) was collected in Birmingham, AL, during 2015–2017. We used uniform 

protocols for sample collection, transportation, and storage for the two datasets. Stool 

was collected using the same kit, DNA was extracted using the same chemistry, and the 

16S rRNA gene V4 region was sequenced using the same primers, but in different 

laboratories, resulting in 10× greater sequence depth in dataset 2 than dataset 1. The same 

pipeline was used on the two datasets to process the sequences and assign taxonomic 

classification. Yet, principal component analysis (PCA)35 revealed the composition of the 

microbiome of the samples to be strikingly different in the two datasets (Fig. 1) and the 

difference was statistically significant (P < 1E − 5, tested using permutational 

multivariate analysis of variance (PERMANOVA)). The separation of datasets was 

evident in cases and in controls, in the same pattern. Greater sequence depth in dataset 2 
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was a significant contributor to this disparity, but not the sole explanation, because the 

difference between datasets was still significant once sequence depth was adjusted for 

(PERMANOVA P < 1E − 5). For all statistical tests (global composition, MWAS, 

correlations, and network analysis), the two datasets were analyzed separately for two 

reasons: (i) for independent validation and (ii) to avoid confounding by mixing two 

clearly different datasets. 

 

 
 
Figure 1: The gut microbiome compositions of the two dataset differed significantly. 

 
Principal component (PC) analysis was used to generate the graphs for PD cases (left, 

N = 522), controls (middle, N = 316), and cases and controls combined (right, N = 838), 
where each point represents the composition of the gut microbiome of one individual and 

distances indicate degree of similarity to other individuals. Percentages on the x-axis and 
y-axis correspond to the percent variation in gut microbiome compositions explained by 

PC1 and PC2. The difference between dataset 1 and dataset 2 was formally tested using 
PERMANOVA and was significant (P < 1E-5). Dataset 1: red (Albany, NY), purple 

(Seattle, WA), and green (Atlanta, GA). Dataset 2: blue (Birmingham, AL). 
 

 
 

Metadata and confounders 

Metadata were collected using two self-administered questionnaires and medical 

records (Supplementary Table 1). An Environmental and Family History Questionnaire 
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(EFQ)4,36 was used to collect data relevant to PD. A Gut Microbiome Questionnaire 

(GMQ)16 was completed immediately after stool collection and gathered data relevant to 

the microbiome including diet, gastrointestinal problems, medical conditions, and use of 

medications. PD medications that subjects were taking at the time of stool collection were 

extracted from medical records by clinical investigators. The aim of this study was to 

identify reproducible signals of association between PD and microbiota, and to that end, 

metadata were used as potential confounders, not as research questions. For example, we 

did not set out to test the effects of constipation, levodopa, or any of the 47 variables 

listed in Supplementary Table 1 on the microbiome, because, although of interest, that 

was not the primary aim of the study and doing so would have reduced the power for the 

primary aim. 

To identify which of the variables might confound the study, we tested the 

distribution of each variable in cases vs. controls and those that differed at a conservative 

uncorrected P < 0.05 in at least one dataset were tagged as potential confounders 

(Supplementary Table 1). These included, most notably, constipation in the past 3 months 

(more common in PD, P = 6E − 16 dataset 1, P = 6E − 10 dataset 2) and gastrointestinal 

discomfort on the day of stool collection (more common in PD, P = 2E − 9 dataset 1, 

P = 4E − 6 dataset 2), as well as sex and age, body mass index (BMI), weight loss, fruits 

or vegetable intake, alcohol use, and stool sample travel time. These variables and 

geographic site were tested along with case–control status in PERMANOVA (global 

composition test) and those that were significant were used as covariates in analysis of 

composition of microbiomes (ANCOM) (differential abundance test for MWAS). Thus, 

the results on both the global composition test and PD-associated taxa in MWAS have 
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been adjusted for known potential confounders, except PD medications, which had to be 

handled differently because of collinearity with PD (see section on “Cause of disease or 

consequence of medication”). 

 

Global composition of microbiome 

 First, we tested the difference between PD and controls in the global composition 

of the gut microbiome (β-diversity, Table 1). Case vs. control status was tested once by 

itself, once with all potential confounders in the model in a marginal test where each 

variable was tested while being adjusted for all others in the model, and once stratified by 

PD medication (Table 1). To gauge the effect of distance metric on the results, all tests 

were repeated with Aitchison35, generalized UniFrac (GUniFrac)37, and Canberra38 

distances. Tests were conducted using PERMANOVA39 with 99,999 permutations 

limiting maximum achievable significance to P = 1E − 5. 

 PD microbiomes differed significantly from control microbiomes, in both 

datasets, with every distance metric measured (P < 1E − 5, Table 1). The PD effect was 

significant and independent of all analyzed confounders, including geography, 

constipation, gastrointestinal discomfort, sex, age, BMI, fruit or vegetable intake, alcohol 

use, and stool sample travel time. 

 Results were in agreement with population studies in detecting significant effects 

of sex, age, BMI, gastrointestinal issues, and diet on the microbiome33,34, and with other 

PD studies in detecting evidence for dysbiosis in PD11-30. 
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Table 1. Effect of PD and other key variables on the global composition of gut microbiome. Model A tested PD vs. control without any other variable in the model. Sample size for 

Model A was 201 cases and 132 controls in dataset 1 and 323 cases and 184 controls in dataset 2. Model B included 11 variables (including case/control) and each variable was 

tested while adjusting for the other 10, without priority. Model B included subset of samples that had complete data on all 11 variables: N = 160 cases and 111 controls in dataset 1 

and 283 cases, and 167 controls in dataset 2. For Model C, patients were stratified by each PD medication they were taking at the time of stool collection; those not on medication 

(varying N for different medications, see Supplementary Table 1) were tested against controls (N = 132 in dataset 1 and 184 in dataset 2). Power was low for patients not on L-

dopa (N patients <50) and patients not on any PD medication (<20) due to small sample sizes, but not for other medications (N patients not on medication = 88–179 in dataset 1 

and 153–312 in dataset 2). All analyses were repeated with three different distance measures: Aitchison, Canberra, and GUniFrac (generalized UniFrac). % var was the inter-

individual variation explained by each variable. P value was calculated using 99,999 permutations, setting the highest achievable significance at P = 1E − 05. 

 

 

  Dataset 1  Dataset 2  

  Aitchison GUniFrac Canberra  Aitchison GUniFrac Canberra 

  %var P %var P %var P  %var P %var P %var P 

Model A. All PD vs Control  0.71 <1E-05 1.38 <1E-05 0.57 <1E-05  0.56 <1E-05 0.89 <1E-05 0.38 <1E-05 

Model B. PD and confounders 
              

Geography (Seattle, Atlanta, Albany)  0.99 2E-03 1.10 0.02 0.84 2E-03  - - - - - - 

PD (case vs. control)  0.58 1E-03 1.12 7E-05 0.53 4E-05  0.48 <1E-05 0.62 9E-05 0.32 2E-05 

Sex (male vs female)  0.51 9E-03 0.52 0.08 0.49 2E-04  0.48 2E-05 0.49 2E-03 0.34 2E-05 

Age (continuous)  0.45 0.04 0.76 5E-03 0.43 0.01  0.45 <1E-05 0.62 1E-04 0.34 3E-05 

GI discomfort on day of stool collection (yes vs no)  0.45 0.04 0.40 0.26 0.43 9E-03  0.24 0.2 0.22 0.39 0.23 0.2 

Fruits or vegetables daily (yes vs no)  0.38 0.3 0.55 0.05 0.42 0.02  - - - - - - 

Constipation in the past three months (yes vs no)  0.34 0.77 0.38 0.35 0.37 0.39  0.26 0.06 0.38 0.02 0.24 0.05 

BMI (continuous)  0.40 0.21 0.48 0.12 0.39 0.13  0.33 3E-03 0.34 0.04 0.27 6E-03 

Drinks alcohol (yes vs no)  0.35 0.66 0.31 0.64 0.37 0.35  0.26 0.07 0.28 0.15 0.24 0.1 

Lost >10 pounds in past year (yes vs no)  0.34 0.71 0.36 0.42 0.36 0.64  0.20 0.87 0.15 0.91 0.21 0.71 

Stool sample travel time (continuous)  0.35 0.66 0.70 0.01 0.36 0.58  0.23 0.26 0.3 0.09 0.24 0.11 

Model C. Removing PD medications 
              

PD not on levodopa vs control  0.93 0.01 1.12 0.04 0.78 0.02  0.48 0.17 0.54 0.16 0.47 0.11 

PD not on COMT inhibitors vs control  0.66 9E-05 1.27 <1E-05 0.56 <1E-05  0.55 <1E-05 0.88 <1E-05 0.38 <1E-05 

PD not on anticholinergics vs control  0.73 <1E-05 1.31 <1E-05 0.58 <1E-05  0.57 <1E-05 0.92 2E-05 0.39 <1E-05 
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PD not on MAO-B inhibitors vs control  0.81 <1E-05 1.50 3E-05 0.66 <1E-05  0.71 <1E-05 1.07 <1E-05 0.45 <1E-05 

PD not on dopamine agonists vs control  0.81 2E-04 1.51 3E-05 0.70 <1E-05  0.57 1E-04 0.80 3E-04 0.44 4E-05 

PD not on amantadine vs control  0.73 3E-05 1.37 <1E-05 0.60 <1E-05  0.48 3E-05 0.74 3E-05 0.37 <1E-05 

PD not on any PD drug vs control  1.00 0.07 0.89 0.22 0.82 0.06  0.48 0.58 0.52 0.37 0.48 0.79 
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Identification of PD-associated microorganisms 

 To identify PD-associated microorganisms, we conducted MWAS, testing 

differences between cases and controls in the relative abundances of genera. We 

conducted MWAS on each dataset separately to test whether results replicate and also to 

avoid confounding by the heterogeneity between datasets. Each dataset was tested with 

two methods to test analytic concordance: once using ANCOM40 and again using 

Kruskal–Wallis (KW) rank sum test41. We chose ANCOM, because among the numerous 

methods that have been proposed, ANCOM singularly met three key criteria: 

incorporates compositionality of the eco-system, allows covariate adjustment, and keeps 

false-positive rate low while maintaining power40,42. Differential abundance was tested 

hypothesis-free microbiome-wide: ANCOM included all 445 genera detected in dataset 1 

and 561 genera in dataset 2; KW included 109 genera in dataset 1 and 163 in dataset 2 

(excluding unassigned genera and genera present in <10% of samples). In ANCOM, 

dataset-specific covariates were included and adjusted for (see MWAS section in 

Methods). Resulting significance metrics were corrected for multiple testing, using false 

discovery rate (FDR)-corrected P-values to calculate W in ANCOM and Benjamini–

Hochberg FDR in KW. 

 We detected association signals for 15 genera that were microbiome-wide 

significant by both methods and reproduced robustly in the two datasets, with or without 

covariate adjustment (Table 2 and Fig. 2). Five genera had higher abundances in PD than 

in controls: Porphyromonas, Prevotella, Corynebacterium_1, Bifidobacterium, and 

Lactobacillus. Ten genera had lower abundances in PD than controls: Faecalibacterium, 

Agathobacter, Blautia, Roseburia, Fusicatenibacter, Lachnospira, Butyricicoccus,
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Table 2. PD-associated genera identified via MWAS. MWAS was conducted in two datasets independently, testing differential abundance of genera in PD vs. controls, using two 
statistical methods (ANCOM and KW). The 15 genera shown are those that achieved microbiome-wide significance for association with PD in both datasets and by both methods, 
with (ANCOM) and without (KW) covariate adjustment (see “METHODS” for covariates). Sample size: ANCOM included subset of subjects for whom complete data were 
available on all covariates tested: N = 171 cases and 117 controls in dataset 1 and 306 cases and 177 controls in dataset 2. KW included all subjects: N = 201 cases and 132 controls 
in dataset 1, and 323 cases and 184 controls in dataset 2. Clusters were identified hypothesis-free using correlation network analysis (Fig. 3). PubMed search was conducted after 
analyses were completed using genus and species name as search term (Supplementary Table 6). Function (opportunistic pathogen, SCFA, probiotic) was taken strictly from 
PubMed and is likely oversimplified. Microbiota have been studied under a narrow lens of what is already known about them. Opportunistic pathogens are often looked for in 
clinical specimen with infection, SCFA bacteria are studied intensively for their anti-inflammatory and other protective effects, and probiotics are understudied but highly 
advertised. The full function of the microbiota are not yet fully understood. In comparing results across published studies, note that a “genus” classified by one study may not be 
the same as the genus by the same name in another study. Taxonomic classifications and nomenclature are not standardized across reference databases, e.g., “Prevotella”, as 
annotated in some databases including NCBI, is further divided by SILVA (used here) into several non-monophyletic groups that SILVA calls, Prevotella_2, Prevotella_6, 
Prevotella_7, Prevotella_9, and Prevotella (see Discussion). 
ANCOM analysis of composition of microbiomes. FC fold change in patients (MRA in patients/MRA in controls). FDR Benjamini–Hochberg false discovery rate (multiple testing 
corrected P-value). KW Kruskal–Wallis. MWAS microbiome-wide association study. MRA mean relative abundance in controls. NC not uncultured (uncharacterized). Opp path 
opportunistic pathogen (often commensal microorganism that can become pathogenic in immune-compromised individuals). Probiotic carbohydrate-metabolizing bacteria 
commonly known as probiotics. SCFA short-chain fatty acid-producing bacteria. W ANCOM score indicating the number of times a genus achieved FDR 0.05 as compared with 
other genera (maximum W possible: 444 in dataset 1, 560 in dataset 2, threshold 0.8 was used for significance, all shown genera were above significance threshold). 
 
 

PD-associated genera 
MWAS significant  

in Dataset 1 
 

MWAS significant   

in Dataset 2 
 

Cluster PubMed 

Phylum Class Order Family Genus MRA FC 
ANCOM 

(W) 

KW 

(FDR) 
 MRA FC 

ANCOM 

(W) 

KW 

(FDR) 
 

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas 0.001 4.20 406 1E-03  0.001 2.94 468 2E-02  1 Opp path 

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella 0.002 2.56 400 6E-03  0.001 4.39 463 2E-02  1 Opp path 

Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium_1 0.001 1.96 360 1E-02  0.002 2.53 465 8E-03  1 Opp path 
                 
Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium 0.06 0.63 411 1E-03  0.04 0.66 535 3E-03  2 SCFA 

Firmicutes Clostridia Clostridiales Lachnospiraceae Agathobacter 0.04 0.53 441 2E-04  0.02 0.56 545 6E-05  2 SCFA 

Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 0.02 0.68 410 2E-03  0.02 0.79 533 4E-02  2 SCFA 

Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia 0.02 0.48 391 4E-03  0.01 0.60 541 3E-04  2 SCFA 

Firmicutes Clostridia Clostridiales Lachnospiraceae Fusicatenibacter 0.004 0.56 388 2E-02  0.005 0.69 521 3E-02  2 SCFA 

Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospira 0.004 0.80 426 1E-03  0.005 0.68 521 1E-02  2 SCFA 

Firmicutes Clostridia Clostridiales Ruminococcaceae Butyricicoccus 0.002 0.66 382 7E-03  0.002 0.68 505 6E-02  2 SCFA 
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Firmicutes Clostridia Clostridiales Lachnospiraceae 
Lachnospiraceae 

_ND3007 
0.001 0.37 418 2E-04  0.001 0.59 538 6E-04  2 NC 

Firmicutes Clostridia Clostridiales Lachnospiraceae 
Lachnospiraceae 

_UCG-004 
0.001 0.48 384 2E-02  0.001 0.38 544 1E-05  2 NC 

Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira 6E-4 0.65 367 2E-02  5E-4 0.64 525 1E-02  2 NC 
                 
Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 0.01 1.83 410 1E-03  0.01 2.72 553 6E-07  3 Probiotic 

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 4E-4 6.61 407 2E-04  0.004 1.57 458 1E-02  3 Probiotic 
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Fig. 2: Differential abundances of 15 PD-associated genera replicated in two datasets. 
 
Relative abundances in PD cases (blue) and controls (orange) were plotted as log10 scale on the y-axis. Sample size was 201 cases and 
132 controls in dataset 1, and 323 cases and 184 controls in dataset 2. Each dot represents a sample, plotted according to the relative 
abundance of the genus in the sample. The notch in each box indicates the confidence interval of the median. The bottom, middle, and 
top boundaries of each box represent the first, second (median), and third quartiles of the relative abundances. The whiskers (lines 
extending from the top and bottom of the box and ending in horizontal cap) extend to points within 1.5 times the interquartile range. 
The points extending above the whiskers are outliers.
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Lachnospiraceae_ND3007_group, Lachnospiraceae_UCG-004, and Oscillospira. 

Complete MWAS results are in Supplementary Tables 2–5. 

 

Correlation network analysis 

We questioned whether the 15 association signals were independent. We used 

hypothesis-free correlation network analysis43 to infer ecological networks of interacting 

organisms microbiome-wide (Fig. 3 and Supplementary Fig. 1). The PD-associated 

genera mapped to three polymicrobial clusters. Porphyromonas, Prevotella, and 

Corynebacterium_1, which were elevated in PD, mapped to a community of highly 

correlated organisms, which we denoted as cluster 1. Cluster 1 was the most distinct 

cluster in the microbiome with correlations reaching r = 0.82 (P < 3E − 4), the highest in 

the microbiome in our data. The ten genera that were depleted in PD formed cluster 2, 

where eight of them clustered at r ≥ 0.4 (P < 3E − 4), and the remaining two (Oscillospira 

and Lachnospiraceae_UCG-004), clustered with the others at r = 0.25 (P < 3E − 4) and 

r = 0.35 (P < 3E − 4). Lactobacillus and Bifidobacterium, both elevated in PD, were 

correlated with each other at r = 0.33 (P < 3E − 4), which we denoted as cluster 3. 

Correlations within each cluster were all in the positive direction, i.e., members of 

clusters 1 tended to increase in abundance together, cluster 2 decreased together, and 

cluster 3 increased together. 

Functional characteristics 

 Analyses so far were all hypothesis-free, data-driven, and blind to the functional 

relevance of the microorganisms. Having identified the associations and their  
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Figure 3: Correlation network analysis mapped PD-associated genera to three 
polymicrobial clusters. 
 
Pairwise correlations in relative abundances were calculated for all genera microbiome-
wide and were used to detect clusters of co-occurring microorganisms. To display, we 
used an arbitrary correlation coefficient threshold at r ≥ |0.4| to connect the genera that 
were correlated. All correlations noted were significant at P < 3E − 4 (the limit for 3000 
permutations). Here we show the result for PD cases in dataset 2, because it had larger 
sample size (N = 323 cases) and greater sequencing depth than dataset 1 (see 
Supplementary Fig. 1 for cases and controls in dataset 1 and dataset 2). (a) Algorithm-
detected clusters shown in different colors. (b) The algorithm-detected clusters, as in a 
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but shown in gray, and PD-associated genera highlighted in blue (if increased in PD) or 
red (if decreased in PD). (c) Zoomed in version of (b). The 15 PD-associated genera fell 
in three clusters. Cluster 1 was a tightly correlated cluster of microorganisms (r 
approaching 0.8), which included Porphyromonas, Prevotella, and Corynebacterium_1 
(all elevated in PD). Cluster 2 included the ten genera that were reduced in PD, eight of 
which are shown connected at r ≥ 0.4, and two are unconnected but correlated 
significantly (P = 3E − 4) with the others in the cluster at r = 0.25 and r = 0.35. 
Lactobacillus and Bifidobacterium (correlated at r = 0.33 (P < 3E − 4)) were denoted 
cluster 3. For unconnected genera (r < 0.4), the proximity between nodules does not 
imply relatedness, e.g., Oscillospira (M) falls closer to Lactobacillus (N) than to 
Roseburia (G) but it is correlated significantly with Roseburia (r = 0.25, P < 3E − 4) and 
not with Lactobacillus (r = 0.04, P = 0.44). 
 
 
 
corresponding clusters, we broke the blind by searching PubMed. PubMed results on 

functional characteristics converged on clusters defined by agnostic network analysis. 

PubMed results suggest genera in cluster 1 are opportunistic pathogens. 

Porphyromonas and Prevotella are anaerobic, Gram-negative bacteria with 

lipopolysaccharides (endotoxins) in their outer membrane. They are commensal to the 

human gastrointestinal and urogenital tracts. Corynebacterium are aerobic, Gram-

positive, and have a higher abundance in the skin microbiota than the gut. Although 

commensal and often harmless, Porphyromonas, Prevotella, and Corynebacterium are 

opportunistic pathogens capable of causing infections in immune-compromised 

individuals or if they gain access to sterile sites via compromised membranes, post 

surgery, bites, or wounds44,45,46. 

 Many, but not all species of Porphyromonas, Prevotella, and Corynebacterium 

are pathogens. Corynebacterium diphtheriae is the leading cause of diphtheria. 

Porphyromonas gingivalis causes periodontal disease. We did not detect C. diphtheriae 

and P. gingivalis was extremely rare in our samples. We were interested in knowing the 

species that made up these three genera in our PD samples. The bioinformatic pipeline 



 

 112 

used in our study (DADA2 with SILVA as reference database) assigned the detected 

sequences (amplicon sequence variants (ASVs)) to species if the sequences were 100% 

identical; otherwise, the ASV was unassigned to species. To confirm and expand on 

DADA2-SILVA assignments, we blasted all the ASVs that made up each of the three 

genera against the NCBI 16S rRNA database, focusing only on matches that were >99–

100% identical to a species with high statistical confidence. In PD patients, we found that 

80% of Corynebacterium_1 was composed of one unique ASV with 100% identity to 

Corynebacterium amycolatum and Corynebacterium lactis; 96% of Porphyromonas was 

composed of ASVs that matched Porphyromonas asaccharolytica, Porphyromonas 

bennonis, Porphyromonas somerae, or Porphyromonas uenonis with >99–100% identity, 

and 98% of Prevotella was composed of ASVs that matched Prevotella bivia, Prevotella 

buccalis, Prevotella disiens, or Prevotella timonensis with >99–100% identity (83% of 

Prevotella matched P. bivia, P. buccalis, P. disiens, or P. timonensis at 100% identity). 

We conducted a PubMed search for each of these ten species, using genus and species 

name as the key word (ex. Corynebacterium amycolatum), with search filters as follows: 

Humans, English, and Title/Abstract. Excluding method papers, PubMed returned 104 

articles that addressed function, characteristics, or relevance to human health, and every 

article was about the microorganism (search term) as a pathogen in clinical specimens 

from various infections (Supplementary Table 6). 

 Clinical specimen from chronic wounds, infections, and inflammations are often 

polymicrobial44,45,46. Porphyromonas, Prevotella, Corynebacterium, and other members 

of cluster 1 are often observed together in these polymicrobial infections44,45,46. With the 

newly acquired knowledge on the potential biological significance of cluster 1, we 
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questioned whether this polymicrobial group as a whole may be relevant to PD. The co-

occurring organisms in cluster 1 (defined by correlation r ≥ 0.4) were Anaerococcus, 

Campylobacter, Ezakiella, Finegoldia, Murdochiella, Peptoniphilus, Porphyromonas, 

Prevotella, and Varibaculum in dataset 1, and Anaerococcus, Campylobacter, 

Corynebacterium_1, Ezakiella, Fastidiosipila, Finegoldia, Lawsonella, Mobiluncus, 

Mogibacterium, Murdochiella, Negativicoccus, Peptoniphilus, Porphyromonas, 

Prevotella, Prevotella_6, S5-A14a, Varibaculum, and unclassified Corynebacteriaceae in 

dataset 2. Most of these organisms are rare and may have been missed in MWAS. We 

conducted another MWAS where we collapsed the nonsignificant members of cluster 1 

into one group (partial cluster 1), leaving Porphyromonas, Prevotella, and 

Corynebacterium_1 as individual genera along with the rest of the genera in MWAS. As 

expected, we recaptured all 15 PD-associated genera, as well as an additional signal for 

the partial cluster 1 that was ANCOM and KW significant in both datasets (dataset 1: 2.9-

fold increased abundance in PD, ANCOM W = 392, KW FDR = 0.03; dataset 2: 2.5-fold 

increased abundance in PD, ANCOM W = 480, KW FDR = 0.002). 

 Most (possibly all) genera in cluster 2 produce short-chain fatty acids (SCFAs). 

Of the ten PD-associated genera in cluster 2, three (Oscillospira, Lachnospiraceae_UCG-

004, and Lachnospiraceae_ND3007_group) have been detected only by sequencing and 

not yet been cultured. The rest (Agathobacter, Blautia, Butyricicoccus, Faecalibacterium, 

Fusicatenibacter, Lachnospira, and Roseburia) are all anaerobic, Gram-positive bacteria 

in the Ruminococcaceae and Lachnospiraceae families. They are best known for 

producing SCFAs, mainly butyrate, which help maintain integrity of the gut membrane 

and have anti-inflammatory properties47,48. 
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 The literature on genera in cluster 3 suggest they are probiotic, but with the 

potential of becoming opportunistic pathogens and immunogenic. Lactobacillus49 and 

Bifidobacteria50 are anaerobic Gram-positive bacteria. They are among the ubiquitous 

inhabitants of the human gastrointestinal microbiome. They metabolize carbohydrates in 

plants and dairy, and are considered probiotic for their health benefits51,52, although they 

have also been implicated as cause of infection and excessive immune stimulation in 

susceptible individuals52,53. 

 

Cause of disease or consequence of medication 

 Human association studies are powerful tools for identifying disease-relevant 

leads and to generate hypotheses that can then be tested experimentally. Even if we find a 

strong candidate that blurs the line between association and causality, we cannot prove 

that it preceded PD, because there are decades of preclinical and prodromal disease, and 

we do not know when it all begins. Although cause cannot be proven in these studies, we 

can sometimes tease out consequence. 

 Medications have profound effects on the microbiome33. Levodopa is the most 

commonly used PD medication (>85% of PD patients were on varying doses of 

levodopa). To gauge if the association of PD with any of the 15 genera was a 

consequence of levodopa treatment, we tested whether the change in the differential 

abundance of the 15 genera correlated with increasing levodopa dose. 

 We found no significant evidence to suggest that the increasing abundance of 

Porphyromonas, Prevotella, or Corynebacterium_1 (cluster 1) correlated with levodopa 

therapy. We did find significant evidence (two-sided P value < 0.05) in dataset 2 to 
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suggest that increasing doses of levodopa were correlated with decreasing levels of 

SCFA-producing organisms (Faecalibacterium P = 0.01, Agathobacter P = 0.02, Blautia 

P = 5E − 4, Roseburia P = 0.02, Fusicatenibacter P = 0.01, Lachnospira P = 5E − 3, 

Lachnospiraceae_ND3007_group P = 5E − 3, Lachnospiraceae_UCG-004 P = 0.03). A 

similar pattern was present in dataset 1, albeit most did not reach statistical significance 

possibly due to the smaller sample size of dataset 1. We also detected significant 

correlation between increasing levodopa dose and increasing levels of Bifidobacterium 

(dataset 1 P = 5E − 3, dataset 2 P = 2E − 6) and Lactobacillus (dataset 2 P = 4E − 3). 

These data suggest that the increase in abundance of cluster 1 (opportunistic pathogens) 

is independent of levodopa, but that the reduction in cluster 2 (SCFA) and increase in 

cluster 3 (probiotics), if not solely a consequence of medication, worsen with increasing 

doses of levodopa. 

 

DISCUSSION 

 To summarize, we first confirmed that the gut microbiome is altered in PD and 

showed that the PD effect on the global composition of the gut microbiome is 

independent of the effects of sex, age, BMI, constipation, gastrointestinal discomfort, 

geography, and diet. Next, using hypothesis-free microbiome-wide association studies we 

identified 15 PD-associated genera that achieved microbiome-wide significance in both 

datasets, with two methods, and with or without covariate adjustment. The 15 association 

signals were robust to the dramatic population-specific differences in the composition of 

microbiomes of the two datasets. We used hypothesis-free correlation network analysis to 

infer interactions and to identify communities of co-occurring microorganisms. Using 
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this agnostic approach, we learned that the 15 PD-associated genera represent three 

polymicrobial clusters. Review of the literature revealed that the clusters, as defined by 

agnostic network analysis, also share functional characteristics. Our results suggest the 

gut microbiomes of persons with PD can present with (1) an overabundance of a 

polymicrobial cluster of opportunistic pathogens, (2) reduced levels of SCFA-producing 

bacteria, and/or (3) elevated levels of carbohydrate metabolizers commonly known as 

probiotics. 

 Our data align with and expand on PD-microbiome literature. Reduced levels of 

SCFA-producing bacteria12,14,16,18,19,21,26,27 and elevated levels of probiotic bacteria in 

PD14,16,18,21,25,26,27 have been reported before, and thus are confirmatory. Overabundance 

of opportunistic pathogens, however, had not been reported before. We suspect the 

reason we were able to detect these microorganisms is because they are rare (Fig. 2) and 

we had a much larger sample size and power than prior studies. The microorganisms 

identified in prior PD studies were among the more abundant microorganisms in the gut. 

There have been two systematic reviews of PD-microbiome studies, which clearly show 

the vast disparity in the findings, but also reveal few findings that have emerged in more 

than one study31,32. The most recent review highlighted six associations that were 

significant in more than one study: Faecalibacterium, Roseburia, Bifidobacterium, 

Lactobacillus, Akkemansia, and Prevotella32. We confirmed the reduction in 

Faecalibacterium and Roseburia (cluster 2), and the increase in Bifidobacterium and 

Lactobacillus (cluster 3). We also confirmed increased Akkermansia in both datasets but 

it was only significant in dataset 1. Prevotella results are interesting, with Scheperjans et 

al.11 and Petrov et al.18 reporting it decreased in PD, whereas we find it elevated in both 
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datasets. The apparent inconsistency may be simply because what is being referred to as 

“Prevotella” is not the same in these studies. We all used different taxonomic 

classification: Scheperjans et al.11 reported at the family level (Prevotellaceae), we at 

genus level (Prevotella), and Petrov et al.18 at species level (Prevotella copri). The 

SILVA database we used here, classified family Prevotellaceae into 11 genera. The more 

common genera in the Prevotellaceae family (Paraprevotella, Prevotella_9, and 

Prevotella_7) did in fact have lower frequencies in PD than in controls, as Scheperjans et 

al.11 observed, but the difference was not significant in our datasets (FDR > 0.6 in both 

datasets). Species P. copri, which Petrov et al.18 found reduced in PD, was the main 

species of the Prevotella_9 genus, which was reduced in our PD samples as well but not 

significantly (FDR > 0.8 in both datasets). We found instead elevated levels of the less 

common genus Prevotella (FDR = 0.006 in dataset 1 and FDR = 0.02 in dataset 2). These 

findings suggest family Prevotellaceae may be heterogenous in its association with PD. 

When comparing studies, another important consideration is the reference database: there 

are many and they have varied phylogenetic resolution and nomenclature. For example, 

genus Corynebacterium in NCBI is divided into two non-monophyletic genera in SILVA: 

Corynebacterium_1 and Corynebacterium. Similarly, what is called genus Prevotella in 

NCBI, is divided into multiple non-monophyletic genera in SILVA (we detected 

Prevotella, Prevotella_2, Prevotella_6, Prevotella_7, and Prevotella_9). The varying 

resolution at which the tests are conducted and the reference databases used cause 

confusion in the literature. 

 The evidence for overabundance of opportunistic pathogens in PD gut 

microbiome was potentially the most exciting finding of this study. Braak et al.54,55 
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originally hypothesized that non-inherited forms of PD are caused by a pathogen that can 

pass through the mucosal barrier of the gastrointestinal tract and spread to the brain 

through the enteric nervous system. Although many aspects of Braak’s hypothesis have 

gained support in recent years, there is no direct evidence that a pathogen is involved. 

Presence of α-synuclein in the gastrointestinal tract has been documented in persons with 

established Lewy body disease56, as well as those with rapid eye movement sleep 

behavior disorder, which is considered prodromal PD57. Epidemiological studies suggest 

that truncal vagotomy if conducted decades before onset of PD reduces risk of 

developing PD58,59. In a mouse model, α-synuclein fibrils injected into the gut induced α-

synuclein pathology which spread to the brain resulting in Parkinsonian 

neurodegeneration and behavioral phenotype; whereas truncal vagotomy and α-synuclein 

deficiency prevented the gut-to-brain spread and the associated neurodegeneration60. 

Human studies unrelated to PD have shown that infection in the gut or the olfactory 

system induce α-synuclein expression, and the increased abundance of α-synuclein 

mobilizes the immune system to fight the pathogen61,62. It was also shown in a genetic 

model of PD (Pink1 knockout mice) that intestinal infection by pathogens elicits 

activation of cytotoxic T cells in the periphery and the brain, and leads to deterioration of 

dopaminergic cells and motor impairment, suggesting that intestinal infection acts as a 

triggering event in PD63. Despite the increasing evidence linking the gut, α-synuclein, and 

inflammation to PD, there was no direct evidence that a pathogen is responsible for the 

pathology. Here, we present evidence from human samples indicating an overabundance 

of opportunistic pathogens in the gut microbiome of persons with PD. The three genera 

that rose to significance (Porphyromonas, Prevotella, or Corynebacterium_1) represented 
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a larger polymicrobial cluster of opportunistic pathogens that co-occur in controls as well 

as in patients (although at much lower abundances in healthy gut). Per literature, these 

opportunist pathogens are often harmless, but can grow and cause infections if the 

immune system is compromised or if they penetrate sterile sites through, e.g., 

compromised membranes44,45,46. The exciting question is whether these are Braak’s 

pathogens capable of triggering PD, or they are irrelevant to PD but are able to penetrate 

the gut and grow, because the gut lining is compromised in PD. We re-emphasize that no 

claims can be made on function based solely on association. The knowledge on the 

function of microorganisms in the gut is currently limited. Although there may be a large 

body of literature, each organism has been studied with a narrow lens. Organisms that are 

known to be opportunistic pathogens are being looked for in clinical specimen, whether 

they have other critical functions is not known. The identity of these microorganisms will 

enable experimental studies to determine if and how they play a role in PD. 

 Our second main finding was a polymicrobial cluster of ten genera whose relative 

abundances were reduced in PD. All ten genera belong to the Lachnospiraceae and 

Ruminococcaceae families, well-known for producing SCFA. Several studies had found 

reduced levels of different SCFA-producing bacteria in PD patients12,14,16,18,19,21,26,27. Our 

finding is therefore confirmatory and expands on the list of PD-associated genera in these 

two taxonomic families. We and others noted that the decreasing levels of 

Lachnospiraceae correlate with increasing daily dose of levodopa, disease duration12, 

disease severity and motor impairment26, which suggest SCFA-producing 

microorganisms diminish as a consequence of medication and/or advancing disease. 

SCFA promote gastrointestinal motility, maintain integrity of the gut lining, and control 



 

 120 

inflammation in the gut and the brain47,48,64,65,66, all of which are compromised in PD. It is 

important to note, however, that reduced levels of SCFA in the gut has been documented 

in many inflammatory disorders67,68,69,70,71, and is not specific to PD. 

 We also found elevated levels of Bifidobacterium and Lactobacillus in PD, which 

are generally considered as probiotics. Increased Bifidobacterium and Lactobacillus have 

been noted in some of the prior PD studies, albeit not consistently14,16,18,21,25,26,27. Both are 

ubiquitous inhabitants of human gut and metabolize carbohydrates derived from plants 

and dairy49,50. We found a significant correlation between increasing levodopa dose and 

increasing Bifidobacterium and Lactobacillus levels. Lactobacillus produce a bacterial 

enzyme that metabolizes levodopa into dopamine before it can reach the brain, reducing 

efficacy of the drug and requiring higher doses, which in feedback causes further growth 

of the bacteria72,73. Ironically, Bifidobacterium and Lactobacillus are sold in stores as 

probiotics, and a clinical trial has reported fermented milk, which contained 

Bifidobacterium, Lactobacillus, and fiber, among other active ingredients, improved 

constipation in PD74. Although generally believed to be safe, and possibly beneficial for 

the healthy population, they can act as opportunistic pathogens and cause infection and 

excessive immune stimulation in immune-compromised individuals52,53. It is important to 

understand why Bifidobacterium and Lactobacillus are elevated in PD and if they are 

beneficial (a compensatory mechanism to overcome the dysbiosis) or detrimental 

(feedback of levodopa). 

 There were limitations in this study that should be considered in designing follow-

up studies. The sample size, although the largest PD-microbiome study to date, was not 

sufficiently powered to detect rare microorganisms. If PD is indeed associated with 
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polymicrobial clusters of rare opportunistic pathogens, larger sample sizes are needed to 

tease out the microorganisms individually. In addition to larger sample size, identifying 

the microorganisms will require shotgun metagenomic sequencing. The 16S amplicon 

sequencing used here was sufficient for exploratory MWAS, but did not provide the 

resolution to species, strain and gene level. We also lacked ability to detect viruses and 

fungi. Since this study was launched in 2014, the field has advanced rapidly. To maintain 

uniformity in data collection, we did not change the method of stool collection mid-study 

from sterile swabs to preservative solutions, but employed the latest advances if they 

could be applied to both datasets uniformly, notably in bioinformatics and statistics, and 

took analytic measures to identify potential confounders. We made certain decisions for 

data analyses, such as using stringent criteria to declare significance, and the choice of 

parameters used to define networks and clusters. We have made both the raw data and 

summary statistics publicly available so they can be analyzed with any methods and 

specifications. 

 In conclusion, we uncovered robust and reproducible signals, which reaffirm 

(SCFA and probiotics) and generate leads (opportunistic pathogens) for experimentation 

into cause and effect, disease progression, and therapeutic targets. This study was limited 

by its singular and precise focus and intentionally conservative analytic execution. There 

is more to be learned with larger sample sizes with greater power, longitudinal studies to 

track change from prodromal to advanced disease, and by next-generation metagenome 

sequencing to broaden the scope from bacteria and archaea to include viruses and fungi, 

and improve the resolution to strain and gene level. 
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METHODS 

Subjects and data collection 

 The study was approved by institutional review boards for ethical conduct of 

human subject research at all participating institutions, namely New York State 

Department of Health, University of Alabama at Birmingham, VA Puget Sound Health 

Care System, Emory University, and Albany Medical Center. All subjects provided 

written informed consent for their participation. 

 Subjects characteristics are provided in Supplementary Table 1. Subjects were 

enrolled by NGRC investigators, using standardized methods, at four NGRC-affiliated 

movement disorder clinics in the United States. Dataset 1 was collected in Seattle, WA, 

Albany, NY, and Atlanta, GA, in 2014 and included 212 persons with PD and 136 

controls16. Dataset 2 was collected in Birmingham, AL, during 2015–2017 and included 

323 PD and 184 controls (unpublished). PD was diagnosed by a movement disorder 

specialist using UK Brain Bank criteria75, and controls were self-reported free of 

neurological disease. Each individual represents a distinct and unique data point (no 

repeated measurements were used). 

 Metadata are provided in Supplementary Table 1. Data were collected using two 

self-administered questionnaires: an EFQ and GMQ4,16,36. EFQ covered sex, age, 

ancestry, and lifetime exposure data on PD-related risk factors. GMQ covered 

information pertinent to microbiome analysis and was filled out immediately after stool 

sample collection. PD medications that subjects were taking at the time of sample 

collection were extracted from medical records by clinical investigators. 
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 Stool samples were collected by the subjects at home using DNA/RNA-free 

sterile cotton swabs (BD BBL CultureSwab Sterile/Media-free Swabs, Fisher Scientific, 

Pittsburgh, PA). The sample was collected from excreted stool (the kit was not a rectal 

swab), thus minimizing contamination by skin microbiota, water, and urine. The stool 

samples were shipped immediately via standard US postal service at ambient temperature 

and stored at −20 °C upon arrival. The collection kit chosen was the most reasonable 

option at the time (2014). We did not use stabilizing solution, because collection kits with 

stabilizing solutions (e.g., OMNIgene GUT by DNA Genotek) were first introduced in 

2015–2016. Immediate freezing was not feasible because we could not collect stool from 

over 800 participants, most of whom suffer constipation, while in clinic, nor was it 

acceptable to the participants to place their stool in their home freezer before shipping. 

We tested the effect of stool sample travel time on the results as follows. Subjects 

recorded the collection date and we recorded when it was placed in −20 °C freezer, the 

difference was calculated as the stool sample travel time. We tested the stool sample 

travel time in cases vs. controls (Supplementary Table 1). We adjusted the 

PERMANOVA and MWAS for stool sample travel time. 

 

DNA extraction and sequencing 

 DNA extraction and sequencing of datasets were done in different laboratories 

(the Knight Lab at University of California San Diego for dataset 116 and HudsonAlpha 

Institute for Biotechnology for dataset 2), keeping methods uniform as possible. Negative 

controls were included in both datasets. DNA was extracted using MoBio PowerMag Soil 

DNA Isolation Kit for dataset 1 and MoBio PowerSoil DNA Isolation Kit for dataset 2, 
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both kits using equivalent chemistries (MoBio Industries, Carlsbad, CA). Case and 

control samples were randomized on plates for sequencing to avoid batch effect. 

Hypervariable region 4 (V4) of the bacterial/archaeal 16S rRNA gene was PCR amplified 

using primers 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-

GGACTACHVGGGTWTCTAAT-3′) and sequenced using Illumina MiSeq. For dataset 

1, paired-end 150 bp was used and all samples were sequenced in one run. For dataset 2, 

paired-end 250 bp was used and samples were sequenced in six runs. Sequence files were 

de-multiplexed using QIIME2 (core distribution 2018.6)76 for dataset 1 and Illumina’s 

BCL2FASTQ software on BaseSpace for dataset 2. Fifteen samples in dataset 1 had low 

sequencing counts and were excluded for present analysis. 

 

Bioinformatics 

 Forward and reverse primers were trimmed from the 5′-end of sequences using 

cutadapt v 1.1677. After primer trimming, only sequences with lengths of 147–151 bp in 

dataset 1 and 230–233 bp in dataset 2 were retained. DADA2 R package v 1.878 was used 

for the remaining bioinformatics with default parameters unless when specified. 

Sequences were quality trimmed and filtered using the filterAndTrim function: trimming 

3′-ends to 147 bp (forward) and 147 bp (reverse) in dataset 1, and 228 bp (forward) and 

203 bp (reverse) in dataset 2, and removing sequences if they exceeded a maximum of 

two expected errors. 

 ASVs were inferred and ASV tables were constructed as follows. For each 

sequencing run (a) a model for sequencing error was constructed using the learnErrors 

function specifying that all bases in all sequences be used for constructing the model, (b) 
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sequences were de-replicated to find unique sequences using the derepFastq function, (c) 

ASVs were inferred from de-replicated sequences using the dada function, (d) forward 

and reverse sequences were merged using the mergePairs function, and (e) sequences 

with <250 bp or >256 bp were removed. This resulted in one ASV table for dataset 1 and 

six ASV tables for dataset 2. The six ASV tables of dataset 2 were merged using the 

mergeSequenceTables function. Chimeras were detected and removed using the 

removeBimeraDenovo function. 

 The following data transformation procedures were used to account for variable 

sequence depth. Sequence counts were normalized to relative abundances (calculated by 

dividing the number of sequences that were assigned to a unique ASV or to a genus by 

the total sequence count in the sample) for PERMANOVA when using Canberra or 

GUniFrac distance, for MWAS when using KW, and for testing correlation with 

levodopa drug dose. Centered-log ratio (clr) transformation (using the transform function 

of the microbiome v 1.2.1 R package (http://microbiome.github.com/microbiome)) was 

used for PCA and for PERMANOVA when using Aitchison distance. Log ratios 

(implemented internally in ANCOM and SparCC) were used when using ANCOM for 

MWAS and for correlation network analysis. Earlier microbiome studies (including our 

first study conducted with dataset 1)16 often used rarefaction to normalize the sequence 

count. Although not as efficient as the other methods due to data loss79, for added 

assurance, we rarefied the data, repeated the MWAS with ANCOM and were able to 

recover all 15 significant PD-associated genera. 

 Taxonomic assignments were made using SILVA (v 132) in DADA2. MWAS 

and correlation network analysis were conducted at genus level. To define genera, first 
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each unique ASV was assigned to a genus using the assignTaxonomy function, which 

performs DADA2’s native implementation of the Ribosomal Database Project naive 

Bayesian classifier80, using SILVA v 132 as reference and a bootstrap confidence of 

80%. Then, each genus (including the unclassified genera) was formed by agglomerating 

all ASVs that were assigned to that genus using the tax_glom function in phyloseq. 

 Post MWAS, we explored PD-associated genera at the species level. DADA2 

pipeline assigns ASVs to species only if the sequences match 100%. We used the 

addSpecies function in DADA2 with SILVA as reference and addMultiple=TRUE, first 

finding 100% matches, then filtering out those matches that did not correspond to the 

genus given by the assignTaxonomy function. To confirm and expand on DADA2-

SILVA species assignments, we BLASTed ASVs against the NCBI 16S rRNA gene 

sequence database (downloaded on 12/3/2019), and extracted taxonomic designations 

with the most significant E value. Nucleotide BLAST search was performed using the 

BLAST + executables v 2.9.0 with default parameters81 

(ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/). 

 A phylogenetic tree of ASVs was constructed for each dataset, as described by 

Callahan et al.82. Briefly, multiple sequence alignment of ASVs was performed using the 

AlignSeqs function from the DECIPHER R package v 2.8.183. Aligned ASVs were then 

used to build a phylogenetic tree using the phangorn R package v 2.5.384. 

 A phyloseq object was created for each dataset for use in conducting statistical 

analyses. For each dataset, the ASV table, taxonomic assignments, phylogenetic tree and 

metadata were merged into a single file, using phyloseq function in phyloseq R package v 

1.24.285. 
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Data analysis and statistics 

 PCA was performed on the clr transformed ASV data35 using the ordinate 

function in phyloseq. PC1 and PC2 were plotted using the plot_ordination function in 

phyloseq (Fig. 1). 

 We interrogated 47 variables as potential confounders (Supplementary Table 1). 

In each dataset, we first tested the distribution of each variable in cases vs controls, using 

Fisher’s exact test (fisher.test function in R) for categorical variables, and Mann–Whitney 

U (wilcox.test function in R) for quantitative variables. Variables that differed between 

cases and control at uncorrected two-sided P < 0.05 were tagged as potential confounders, 

and were then included in PERMANOVA, along with case–control status, and tested for 

their effects on microbiome composition (Table 1). As PERMANOVA was conducted 

using marginal effects model without rank (see below), simultaneous inclusion of case–

control and other variables allowed testing the association of each variable with 

microbiome composition while adjusting for all other variables in the model. Thus, PD 

effect on microbiome composition (β-diversity) was adjusted for variables that differed 

between cases and controls. Next, variables that were associated with microbiome 

composition at PERMANOVA P < 0.05 were included as covariates in MWAS. Thus, 

variables that could have led to spurious taxa-disease association because they differed 

between cases and controls and were also associated with microbiome, were adjusted for 

in MWAS. 

 PD medications (also potential confounders) were present only in PD cases and 

could not be included as covariates in PERMANOVA or MWAS. To gauge the effect of 

PD on β-diversity independent of each medication, we performed PERMANOVA using 
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cases not on PD medication vs. controls (Table 1). The potential confounding effect of 

medication on differential abundance of genera was tested post MWAS. For each genus 

whose relative abundance was associated with PD, we tested the correlation between 

relative abundance of the genus with daily dose of levodopa (mg/day) using Spearman 

correlation (two-sided P value) implemented in the cor.test function in R. 

 To investigate changes in the global composition of microbiome (β-diversity) 

PERMANOVA was used to identify variables that had a significant effect on β-diversity 

(Table 1). Tests were conducted using adonis2 function in vegan v 2.5.3 

(https://CRAN.R-project.org/package=vegan). P values were generated by 99,999 

permutations which caps at P < 1E − 5 as highest significance. Three models were tested 

as follows: 

 (Model A) PD vs. control: [Distance ~ case/control] 

 (Model B) PD vs. control and all variables tagged as potential confounders: 

 Dataset 1: [Distance ~ case/control + sex + age + geography + BMI + loss of 

10 lbs in past year + gastrointestinal discomfort on day of stool 

collection + constipation in past 3 months + alcohol use + fruits or 

vegetables daily + stool sample travel time] 

 Dataset 2: [Distance ~ case/control + sex + age + BMI + loss of 10 lbs in 

past year + gastrointestinal discomfort on day of stool 

collection + constipation in past 3 months + alcohol use + stool sample 

travel time] 

(Model C) Subset of PD cases not on a given PD medication vs controls: 

[Distance ~ case/control] 
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where distance (a measure of (dis)similarity between pairs of samples), age (in years), 

BMI (kg/m2), and stool sample travel time (in days) were continuous variables and the 

remaining variables were categorical. We tested marginal effects, so that each variable 

was tested while being adjusted for all others in the model, without priority. 

 To gauge the effect of the distance measure on the results, all three models were 

tested using Aitchison35, GUniFrac37, and Canberra38 distances. Aitchison distances were 

calculated by first transforming the ASV data using clr, and then calculating the 

Euclidean distances using the vegdist function. To calculate GUniFrac distances, 

unrooted ASV phylogenetic trees were rooted using the root function in the ape v 5.3 R 

package86 specifying the unique ASV with the highest raw count as the root, then data 

were transformed to relative abundances and distances were calculated using the 

GUniFrac function in the R package GUniFrac v 1.137, specifying α to be 0.5. To 

calculate Canberra distances, data were transformed to relative abundances and distances 

were calculated using the vegdist function in vegan. 

 We conducted MWAS to identify the genera whose abundances differed in cases 

vs. controls. We chose genus classification, because it is the highest resolution attainable 

with high confidence from 16S sequencing. For statistical analysis of MWAS, we used 

ANCOM (Table 2 and Supplementary Tables 2–3). We chose ANCOM, because it 

incorporates compositionality of the microbiome data, has low false-positive rate, and 

allows covariate adjustment40,42. ANCOM was run using ANCOM.main function from 

the ANCOMv2 R code (https://sites.google.com/site/siddharthamandal1985/research). 

All genera that were detected in each dataset were included in ANCOM MWAS. 

Sequence counts were transformed to log ratios, as implemented in ANCOM. 
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Case/control status was specified as the main variable. For each dataset, the variables that 

were significant at P < 0.05 in PERMANOVA were included as covariates to be adjusted, 

as follows: 

 Dataset 1: [Genus ~ case/control + sex + age + geography + gastrointestinal 

discomfort on day of stool collection + fruits or vegetables daily + stool sample 

travel time] 

 Dataset 2: [Genus ~ case/control + sex + age + BMI + constipation in past 3 

months] 

where genus (ASV counts assigned to a genus, transformed to log ratios by ANCOM), 

age (in years), BMI (kg/m2), and stool sample travel time (in days) were continuous 

variables and the remaining variables were categorical. We used the taxa-wise FDR 

option (multcorr = 2) and set significance level to FDR < 0.05 to generate W statistics, 

and threshold of 0.8 for declaring an association as significant. 

 For comparison, we repeated the MWAS using KW as statistical test (Table 2 and 

Supplementary Tables 4–5). For KW, genera counts were transformed to genera relative 

abundances. Unclassified genera, and genera present in <10% of samples were excluded 

from KW MWAS. KW does not allow covariate adjustment. The kruskal.test function 

from the stats R package was used to test for significance. P values were two-sided and 

corrected for multiple testing using Benjamini–Hochberg FDR method implemented in 

the p.adjust function from stats package. 

 To visualize the distribution of genera that were significant in MWAS (Fig. 2), 

boxplots were created using ggplot2 v 3.1.0 (https://ggplot2.tidyverse.org) with a pseudo-
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count of 1 added to counts before transforming to relative abundances to avoid taking the 

log of zero during plotting. 

 Correlation network analysis was performed for each dataset, and for cases and 

controls separately (Fig. 3 and Supplementary Fig. 1). Pairwise correlations were 

calculated between all genera, microbiome-wide, using log-ratio transformed relative 

abundances as implemented in the SparCC43 (https://bitbucket.org/yonatanf/sparcc). 

Significance of each correlation was determined by pseudo P values based on 3000 

permutations. Correlation networks were visualized by plotting all genera, microbiome-

wide, and connecting correlated genera with an edge, using the program Gephi v 0.9.287. 

We chose a minimum correlation (r) of 0.4 to connect two genera with an edge to create 

the graphic. All correlations r ≥ 0.4 were significant at P < 3E − 4, which is the maximum 

significance attainable with 3000 permutations. To better visualize networks of connected 

genera, we first used the force-directed algorithm, Force Atlas 288, then a community 

detection algorithm89 as implemented in Gephi’s modularity function. 
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ABSTRACT 

 Parkinson disease (PD), a progressive, neurodegenerative disease with no current 

treatments, has been associated with a dysbiotic gut microbiome by a number of studies 

in human. We recently performed the largest PD-gut microbiome study to date where we 

detected significant enrichment of three bacterial genera in PD (Corynebacterium_1, 

Porphyromonas, Prevotella) who were part of a highly correlated poly-microbial group 

of genera also enriched in PD. These genera were defined as potential opportunistic 

pathogens through literature search. As both presence of pathogens in the gut and genetic 

variants in and around the SNCA gene have been previously shown to increase SNCA 

expression, and increasing dosages of SNCA is important in PD pathogenesis as seen in 

SNCA duplication and triplication cases, we hypothesized that the combination of both 

opportunistic pathogens in the gut and genetic variation in the SNCA region might 

increase the risk of PD. To establish a connection between previously reported 

opportunistic pathogens and genetic variation in the SNCA region, we aimed to detect 

genetic variation in the SNCA region that moderates the associations between PD and 

previously reported opportunistic pathogens, and then, test if presence of opportunistic 

pathogens enhanced the detected genetic variants’ associations with PD. 

 Using two PD-gut microbiome datasets with both gut microbiome data and 

human genotype data (N = 319 and 486), we performed a genetic scan of the SNCA 

region in search of candidate SNPs that moderate the association between PD and the 

three previously detected opportunistic pathogens, and their poly-microbial group, 

followed by meta-analysis of results. We then tested candidate SNPs for association with 
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PD in individuals who were positive for these genera, and in those negative for genera, to 

determine if SNP associations with PD were enhanced in the presence of targeted genera. 

 Top hits for candidate SNPs were identified in the 3′ end of SNCA for all 

microbial groups tested. Visualization and quantification of the interactions between 

SNPs, PD, and tested microbial groups showed obvious interactions for three out of the 

four microbial groups tested. Testing association of SNPs with PD in the presence or 

absence of these microbial groups showed an increase in association strength of SNPs 

with PD in subjects positive for microbes.  

 

INTRODUCTION 

 Parkinson disease (PD) is a progressive, neurodegenerative disease with currently 

no disease modifying treatments. Mendelian forms of PD exist, caused by rare mutations 

in a number of genes, but the vast majority of PD cases are idiopathic. Both genetic 

[Chang et al. 2017; Nalls et al. 2019] and environmental [Tanner 2010] factors have been 

identified that associate with increased risk of PD, but none have large enough effect 

sizes individually, or in combination, to fully explain the cause of PD. Interaction 

between genetic and environmental factors have also been explored in PD, but these also 

have failed to fully encapsulate the cause of PD [Hamza et al. 2011; Cannon & 

Greenamyre 2013; Hill-Burns et al. 2013; Biernacka et al. 2016]. The search continues 

for the cause of idiopathic PD. 

 One area of research that the PD field has turned to recently is the gut 

microbiome. Multiple studies in human have associated a dysbiotic gut microbiome with 

PD, all finding individual microorganisms significantly enriched or depleted in PD, albeit 
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with varying results [Gerhardt & Mohajeri 2018; Boertien 2019]. Recently, we performed 

a gut microbiome-wide association study of PD in two of the largest PD-gut microbiome 

datasets to date where we detected and replicated 15 PD-microorganism associations 

across the two datasets [Wallen et al. 2020]. Three of the associations were with the 

bacterial genera Corynebacterium_1, Porphyromonas, and Prevotella (as defined by 

SILVA v 132 reference database) who were enriched in PD, and, through literature 

search, were defined as opportunistic pathogens. These genera belonged to a larger poly-

microbial group of correlated genera (termed “cluster 1”), which on its own was found to 

be significantly enriched in PD. Detection of overabundance of opportunistic pathogens 

in the PD gut was an interesting finding as it harks back to Braak’s hypothesis that a yet 

to be identified pathogen is responsible for causing non-familial forms of PD by invading 

the brain through the gastrointestinal tract and enteric neurons [Braak et al. 2003; Braak 

et al. 2003]. This still begs the question of how pathogens in the gut might cause, or at 

least increase the risk of, PD. 

 We hypothesized that the combination of both opportunistic pathogens in the gut 

and genetic variation in and around the SNCA gene might increase the risk of PD. Genetic 

variants in and around SNCA, which codes for α-synuclein, the pathological hallmark of 

PD, are the most highly associated variants with increased PD risk [Chang et al. 2017; 

Nalls et al. 2019], and have been shown to increase the expression of SNCA [GTEx 

Consortium 2015; Soldner et al. 2016; Emelyanov et al. 2016]. This provides a plausible 

mechanism of interaction between gut pathogens and genetic risk in the SNCA region, as 

overexpression of α-synuclein has also been seen with infections unrelated to PD 

[Stolzenberg et al. 2017; Tomlinson et al. 2017]. SNCA dosage is important in PD 
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pathogenesis as seen in PD cases with SNCA duplications and triplications [Devine, 

Gwinn, Singleton & Hardy 2011], therefore, having two hits of overexpression of α-

synuclein (one from gut, the other from host genetic variation) might increase the risk of 

disease. 

To investigate connections between genetic variation in the SNCA region, our 

previously detected opportunistic pathogens, and PD, we first identified candidate single 

nucleotide polymorphisms (SNPs) by investigating if any SNPs in the SNCA region 

moderated the association between PD and Corynebacterium_1, Porphyromonas, 

Prevotella, or cluster 1, then tested those SNPs for association with PD in the presence or 

absence of Corynebacterium_1, Porphyromonas, Prevotella, or cluster 1. Following this 

schema, we detected SNPs at the 3′ end of SNCA whose associations with PD were 

strengthened when subjects were positive for target genera compared to those who were 

negative, or the sample population as a whole, providing the first evidence for a potential 

gene-gut microbiome interaction in PD. 

 

METHODS 

Study approval and participant consents 

The study of both human genetic and microbiome data was approved by the 

institutional review boards at all participating institutions. Written informed consent was 

obtained from all participants in this study. 
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Subjects and data collection 

 This study included two cohorts of PD patients and neurologically healthy 

controls (referred to as dataset 1 and dataset 2) enrolled as part of the NeuroGenetics 

Research Consortium (NGRC). Subjects were enrolled from four NGRC-affiliated 

movement disorder clinics using standardized protocols. For dataset 1, 212 PD patients 

and 136 controls were enrolled from movement disorder clinics and surrounding areas in 

Atlanta, GA, Albany, NY, and Seattle, WA in 2014 [Hill-Burns et al. 2017; Wallen et al. 

2020]. For dataset 2, 323 PD patients and 184 controls were enrolled from the movement 

disorder clinic at the University of Alabama at Birmingham and surrounding area 

[Wallen et al. 2020]. PD was diagnosed using UK Brain Bank criteria by a movement 

disorder specialist [Gibb & Lee 1988]. Controls were self-reported free of neurological 

disease.  

 A summary of metadata collected for dataset 1 and 2 subjects has been previously 

reported [Wallen et al. 2020; Supplementary Table 1]. Metadata were collected using two 

questionnaires filled out by each subject: a Gut Microbiome questionnaire (GMQ) and an 

Environmental and Family History questionnaire (EFQ) [Hill-Burns et al. 2017; Hamza 

et al. 2011; Powers et al. 2008]. The GMQ, completed shortly after stool sample 

collection, collected information on variables that might influence results in microbiome 

analysis including dietary information and gastrointestinal health, while the EFQ 

collected information on exposure to environmental factors related to PD-risk, family 

history of PD, and ancestry. Both questionnaires collected basic demographics such as 

sex and age. Information on PD medication use at the time of stool sample collection was 

extracted from patients’ medical records by clinical investigators. 
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 Data used in this study were derived from two sample types collected from 

subjects: stool samples to derive data on gut microbial abundances, and blood/saliva 

samples to derive human genotype data. Stool samples were collected by subjects at 

home, swabbing excreted stool with a DNA/RNA-free, sterile cotton swab (BD BBL 

CultureSwab Sterile/Media-free Swabs, Fisher Scientific, Pittsburgh, PA), then 

immediately shipping the sample via United States Postal Service in ambient 

temperature. Stool samples were immediately placed in −20 °C upon arrival, and stored 

there until DNA extraction.  

 

Extraction and sequencing of microbial DNA 

 Extraction and sequencing of microbial DNA for datasets 1 and 2 were completed 

in different laboratories, but methods used were matched to the best of our ability to 

minimize any technical variation. For dataset 1, the MoBio PowerMag Soil DNA 

Isolation Kit (optimized for KingFisher) was used for extraction of DNA from stool, 

while the MoBio PowerSoil DNA Isolation Kit was used for dataset 2 extractions 

(MoBio Industries, Carlsbad, CA). Both kits have equivalent chemistries. To avoid any 

batch effects from sequencing, samples from PD patients and control subjects were 

randomized when prepping for sequencing. Sequencing was performed on the MiSeq 

platform (Illumina, San Diego, CA) targeting PCR amplicons of the bacterial/archaeal 

16S rRNA gene hypervariable region 4 (V4; using primers 515F and 806R). Paired end 

150bp and 250bp sequencing was used for dataset 1 and 2 respectively. Samples for 

dataset 1 were all sequenced in one run, while samples for dataset 2 were sequenced in 6 

runs resulting in ~10x greater sequencing depth per sample in dataset 2 when compared 
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to dataset 1 samples. QIIME2 (core distribution 2018.6) [Boleyn et al. 2019] and 

BCL2FASTQ (Illumina, San Deigo, CA) were used to demultiplex pooled sequence files 

for dataset 1 and 2 respectively. Fifteen samples in dataset 1 resulted in too low of 

sequences to analyze, therefore, they were excluded before beginning bioinformatics of 

sequences. 

 

Bioinformatics of microbial amplicon sequences 

 The bioinformatic pipeline for processing dataset 1 and 2 16S rRNA V4 

amplicons has been previously described in detail [Wallen et al. 2020]. Bioinformatics 

were performed separately for each dataset. The major bioinformatic steps for processing 

amplicon sequences to unique amplicon sequence variants (ASVs) and corresponding 

abundances included the following: (1) removal of remaining PCR primers from 

sequences using cutadapt v 1.16 [Martin 2011], (2) quality trimming and filtering of 

sequences using the filterAndTrim function from DADA2 v 1.8 [Callahan et al. 2016], 

(3) inference of unique ASVs and their abundances using the learnErrors, derepFastq, and 

dada functions from DADA2, (4) merging of forward and reverse sequence pairs using 

mergePairs function from DADA2, (5) filtering merged sequences for those between 

250-256 bp in length, and (6) removal of chimeric sequences using the 

removeBimeraDenovo function from DADA2. Unique ASVs were then given taxonomic 

assignments via the assignTaxonomy function from DADA2 using SILVA v 132 as a 

reference. For each dataset, unique ASV abundances, taxonomy assignments, subject 

metadata, and a phylogenetic tree of unique ASVs (created using DECIPHER v 2.8.1 

[Wright 2015] and phangorn v 2.5.3 [Schliep 2011]) were merged into a single phyloseq 
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object file using the phyloseq function from phyloseq v 1.24.2 [McMurdie & Holmes 

2013].  

All analyses reported in this study were performed at the genus level for three 

specific genera (Corynebacterium_1, Porphyromonas, and Prevotella) and one poly-

microbial group of correlated genera (previously defined in Wallen et al. 2020) that will 

be referred to as “cluster 1”. Members of cluster 1 for dataset 1 included Porphyromonas, 

Prevotella, Anaerococcus, Ezakiella, Varibaculum, Campylobacter, Peptoniphilus, 

Murdochiella, and Finegoldia. Members of cluster 1 for dataset 2 included genera listed 

for dataset 1 and additionally Corynebacterium_1, Fastidiosipila, Lawsonella, 

Mogibacterium, Negativicoccus, Mobiluncus, S5-A14a, Prevotella_6, and unclassified 

Corynebacteriaceae. To define genera, unique ASVs and their corresponding abundances 

were agglomerated into their assigned genus using the tax_glom function from phyloseq 

without removal of unclassified genera. Then, genera abundances with a pseudo-count of 

1 added were either transformed using the centered-log ratio (clr) transformation 

[Aitchison 1986] when performing interaction analyses with genotype data, or 

transformed to relative abundances when creating plots. The clr transformation was 

chosen for interaction analyses because it accounts for multiple characteristics of 

microbiome data that make it difficult to analyze with standard statistical methods (non-

normality, inter-sample variation in sequencing depth, compositionality) [Gloor et al. 

2017]. Downstream statistical analyses were then performed for Corynebacterium_1, 

Porphyromonas, Prevotella, and cluster 1 separately (see sub-section “Statistical 

analysis”). 
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Human genotype data and quality control 

 Genome-wide genotypes were generated for dataset 1 and 2 subjects from human 

DNA extracted from blood or saliva samples using three different genotyping arrays: 

HumanOmni1-Quad_v1-0_B BeadChip, Infinium Multi-Ethnic EUR/EAS/SAS-8 Kit, 

and Infinium Global Diversity Array-8 v1.0 Kit (Illumina, San Diego, CA). Genotyping 

and quality control (QC) of SNP genotypes are described below for each of the array 

groups separately. Unless otherwise specified, QC was performed using PLINK 1.9 

(v1.90b6.16) [Chang et al. 2015]. 

 

HumanOmni1-Quad_v1-0_B BeadChip: Approximately 70% of dataset 1 subjects 

(N=244; referred to as dataset 1.1) were previously genome-wide genotyped using the 

HumanOmni1-Quad_v1-0_B BeadChip for a GWAS of PD in 2010 resulting in 

genotypes for 1,012,895 SNPs after removal of failed SNPs [Hamza et al. 2010]. In 

addition to this, subjects were also genotyped using the Illumina Immunochip resulting in 

genotypes for 202,798 SNPs. Genotyping for both arrays was performed at the Johns 

Hopkins Center for Inherited Disease Research (CIDR). Quality control of genotype data 

had been previously performed using PLINK v1.07 [Hamza et al. 2010], therefore, this 

process was redone using an updated version of PLINK (v1.9). The mean non-Y 

chromosome call rate for samples in both arrays was 99.9%. Calculation of identity-by-

descent in PLINK using HumanOmni genotypes revealed no cryptic relatedness between 

samples (PI_HAT > 0.15). A subset of SNP mappings were in NCBI36/hg18 build, and 

were converted to GRCh37/hg19 using the liftOver executable and 

hg18ToHg19.over.chain.gz chain file from UCSC genome browser (downloaded from 
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https://hgdownload.soe.ucsc.edu/downloads.html). SNP filtering for both HumanOmni 

and Immunochip genotypes included removal of SNPs with call rate < 99%, Hardy-

Weinberg equilibrium (HWE) P value < 1E-6, minor allele frequency (MAF) < 0.01, and 

MAF difference between sexes > 0.15. HumanOmni and Immunochip data were then 

merged, and SNPs with significant differences in PD patient and control missing rates (P 

< 1E-5) and duplicate SNPs were removed. To remove duplicate SNPs, we first checked 

the genotype concordance between duplicated SNPs. If duplicate SNPs were concordant, 

we took the SNP with the lowest missing rate, or the first listed SNP if missing rates were 

the same. If duplicate SNPs were discordant, we removed both SNPs as we do not know 

which SNP is correct. After QC, the remaining number of SNPs for dataset 1.1 was 

910,083 with a mean call rate of 99.8%. 

 

Infinium Multi-Ethnic EUR/EAS/SAS-8 Kit: (Illumina, San Diego, CA) Approximately 

30% of dataset 1 subjects (N=90; referred to as dataset 1.2) were not included in the 2010 

PD GWAS. These samples were genome-wide genotyped at a later time using the 

Infinium Multi-Ethnic EUR/EAS/SAS-8 array at HudsonAlpha Institute for 

Biotechnology. Raw genotyping intensity files were received from the genotyping 

laboratory and uploaded to GenomeStudio v 2.0.4 (Illumina, San Diego, CA) where 

genotype cluster definitions and calls were determined for each SNP using intensity data 

from all samples. The GenCall (genotype quality score) threshold for calling SNP 

genotypes was set at 0.15, and SNPs that resulted in a genotype cluster separation < 0.2 

were zeroed out for their genotype. Genotypes for 1,649,668 SNPs were then exported 

from GenomeStudio using the PLINK plugin v 2.1.4, and converted to PLINK binary 
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files for further QC. The mean non-Y chromosome call rate for samples was 99.8%. 

Calculation of identity-by-descent revealed no cryptic relatedness among samples 

(PI_HAT < 0.15). A subset of SNP mappings were in GRCh38/hg38 build, and were 

converted to GRCh37/hg19 using the liftOver executable and hg38ToHg19.over.chain.gz 

chain file. The same SNP filtering criteria was implemented here as it was for dataset 1.1 

genotypes: call rate < 99%, HWE P value < 1E-6, MAF < 0.01, MAF difference between 

sexes > 0.15, significant differences in PD patient and control missing rates (P < 1E-5), 

and duplicate SNPs. The remaining number of SNPs for dataset 1.2 was 749,362 with a 

mean call rate of 100%. To avoid batch effects due to differences in the genotyping array 

used for dataset 1.2, we did not attempt to merge genotype data for dataset 1 subjects and 

instead analyzed them separately for analyses involving genotype data as dataset 1.1 and 

dataset 1.2. Results from these two groups, along with dataset 2, were later combined 

together through meta-analyses. 

 

Infinium Global Diversity Array-8 v1.0 Kit: (Illumina, San Diego, CA) A subset of 

dataset 2 subjects (N=486) were genotyped at CIDR using the Infinium Global Diversity 

Array, the newest genome-wide genotyping array from Illumina and the commercial 

version of the microarray chosen by the All of Us Research Program 

(https://allofus.nih.gov/). Genotype clusters were defined using GenomeStudio v 2011.1 

and 99% of the genotyped samples. Genotypes were not called for SNPs with GenCall 

score <0.15, and failure criteria for autosomal and X chromosome SNPs included the 

following: call rate < 85%, MAF ≤ 1% and call rate < 95%, heterozygote rate ≥ 80%, 

cluster separation < 0.2, any positive control replicate errors, absolute difference in call 
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rate between genders > 10% (autosomal only), absolute difference in heterozygote rate 

between genders > 30% (autosomal only), and male heterozygote rate greater than 1% (X 

only). All Y chromosome, XY pseudo-autosomal region (PAR), and mitochondrial SNPs 

were manually reviewed. Genotypes for 1,827,062 SNPs were released in the form of 

PLINK binary files. The mean non-Y chromosome call rate for samples was 99.2%. 

Calculation of identity-by-descent showed two subjects were genetically related as a 

parent and offspring (PI_HAT = 0.5), which we had already noted previously. We 

decided not to exclude these subjects from the study as the target genera of this study, 

and the majority of the gut microbiome as a whole, were not found to have high 

heritability in a recent, large meta-analysis of the gut microbiome and human genetics 

[Kurilshikov et al. 2020], therefore, analyses would most likely not be affected by the 

genetic relationship between these two subjects. The same SNP filtering criteria was 

implemented here as it was for dataset 1 genotypes: call rate < 99%, HWE P value < 1E-

6, MAF < 0.01, MAF difference between sexes > 0.15, significant differences in PD 

patient and control missing rates (P < 1E-5), and duplicate SNPs. The remaining number 

of SNPs for dataset 2 was 783,263 with a mean call rate of 99.9%.  

 

After QC, three genotype datasets were available for analysis and will be referred 

to as dataset 1.1 (dataset 1 subjects genotyped using HumanOmni1-Quad_v1-0_B 

BeadChip and Immunochip), dataset 1.2 (dataset 1 subjects genotyped using the Infinium 

Multi-Ethnic EUR/EAS/SAS-8 array), and dataset 2 from this point on. 

Principal component analysis (PCA) with 1000 Genomes Phase 3 reference 

genotypes was performed separately for datasets 1.1, 1.2, and 2 genotypes in order to 
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determine genetic ancestry of subjects, and to view any potential outlying samples. Study 

genotypes were first merged with 1000 Genomes Phase 3 genotypes (previously filtered 

for non-triallelic SNPs and SNPs with MAF > 5%) using GenotypeHarmonizer v 1.4.23 

[Deelen et al. 2014] and PLINK. Merged genotypes were then linkage disequilibrium 

(LD) pruned as previously described [Hamza et al. 2010], resulting in a mean LD pruned 

subset of SNP of ~148,000. Principal components were then calculated using pruned 

SNPs and the top two PCs were plotted for each genotype dataset using ggplot2 (Figure 

1). PCA reflected what was previously recorded for subject’s self-reported race [reported 

in Wallen et al. 2020, Supplementary Table 1]. All samples fell within a defined 1000 

Genomes superpopulation with no evident outlying samples. No samples were removed 

based on PCAs as the majority of samples fell within the European superpopulation and 

the remaining samples (1% of the total samples across datasets), although differing in 

ancestral origin, were unlikely to have a significant influence on results, again, due to the 

low heritability of the gut microbiome [Kurilshikov et al. 2020]. 

 

Imputation of genotypes 

 To increase the breadth of SNPs available for analysis, genotypes for each 

genotyping dataset were submitted for imputation of additional SNP genotypes using the 

Trans-Omics for Precision Medicine (TOPMed) Imputation Server 

(https://imputation.biodatacatalyst.nhlbi.nih.gov), which uses the newest and largest 

reference panel to date derived from the TOPMed program [Taliun et al. 2019], and is 

based off of the widely used Michigan Imputation Server that implements Minimac4 for 

imputation [Das et al. 2016]. The TOPMed reference panel only included autosomal and 
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Figure 1. Principal component analysis of study genotypes with 1000 Genome Phase 3 superpopulations. 
 
Principal component analysis was performed on merged, LD pruned study and 1000 Genome Phase 3 genotypes for dataset 1.1 
genotypes (A), dataset 1.2 genotypes (B), and dataset 2 genotypes (C). All study subjects fall within a defined 1000 Genome Phase 3 
superpopulation with no obvious outlying samples. AFR: African superpopulation from 1000 Genomes; AMR: Admixed American 
superpopulation from 1000 Genomes; EAS: East Asian superpopulation from 1000 Genomes; EUR: European superpopulation from 
1000 Genomes; SAS: South Asian from 1000 Genomes; Study: study genotypes from either dataset 1.1, 1.2, or 2.
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X chromosomes, therefore, for each genotype dataset, SNPs in the PAR of chromosome 

X were merged with the rest of the X chromosome SNPs. Coordinates for SNPs in all 

datasets were converted to GRCh38/hg38 using the liftOver executable and 

hg19ToHg38.over.chain.gz chain file as the TOPMed reference panel is only available in 

GRCh38/hg38 coordinates. SNP mappings were then checked and corrected for use with 

TOPMed reference panels using the utility scripts HRC-1000G-check-bim.pl (v4.3.0) and 

CreateTOPMed.pl (downloaded from https://www.well.ox.ac.uk/~wrayner/tools/), and a 

TOPMed reference file ALL.TOPMed_freeze5_hg38_dbSNP.vcf.gz (downloaded from 

https://bravo.sph.umich.edu/freeze5/hg38/download). Running of these utility scripts 

resulted in a series of PLINK commands to correct genotypes files for concordance with 

TOPMed by excluding SNPs that did not have a match in TOPMed, mitochondrial SNPs, 

palindromic SNPs with frequency > 0.4, SNPs with non-matching alleles to TOPMed, 

indels, and duplicates. Genotype files were then converted to variant call format (VCF) 

for submission to the TOPMed Imputation Server. 

Genotype VCF files were submitted to the TOPMed Imputation Server using the 

following parameters: reference panel TOPMed version r2 2020, array build 

GRCh38/hg38, r2 filter threshold 0.3, Eagle v2.4 for phasing, skip QC frequency check, 

and run in QC & imputation mode. With these parameters, the imputation server first 

performed quality control of SNPs excluding those that contained invalid alleles, 

duplicates, indels, monomorphic sites, those with allele mismatches between TOPMed 

panel and submitted data, and those with < 90% call rate. Phasing was then performed 

using Eagle v2.4 [Loh et al. 2016], which estimated haplotype phases using the 

Haplotype Reference Consortium reference panel [McCarthy et al. 2016], followed by 
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imputation using Minimac4 [Howie et al. 2012] with TOPMed reference panel. Imputed 

SNPs were then filtered based on imputation quality score (r2), removing those with r2 < 

0.3, which is a commonly used exclusion threshold and the chosen threshold to use in the 

original manuscript introducing this quality metric [Li et al. 2010]. As stated in the 

original manuscript, at an r2 threshold of 0.3 we can expect to remove the majority of low 

quality imputed SNPs (approximately 70% of these SNPs) while minimizing the removal 

of higher quality imputed SNPs (approximately 0.5% of these SNPs) [Li et al. 2010]. 

VCF files with genotypes and imputed dosage data were then outputted by the imputation 

server and used in statistical analyses. Imputation was successful for all chromosomes in 

all genotype datasets, and after applying the quality score filter, resulted in 12.3 – 20.7 

million imputed SNPs for datasets. Imputed SNPs for all datasets were of high quality, 

the majority reaching r2 > 0.9 for every chromosome (Table 1). 

 

Statistical analysis 

 We performed per dataset interaction analyses followed by meta-analysis and 

visualization of detected interactions to determine if the association of PD with 

Corynebacterium_1, Porphyromonas, Prevotella, or cluster 1 was moderated by any 

SNCA SNP genotypes. Subjects that had both microbiome and genotype data available 

were included in the analysis (dataset 1.1 N=231, dataset 1.2 N=88, dataset 2 N=486). 

The genomic region defined for analysis was 89.6 Mb – 89.9 Mb on chromosome 4 

(GRCh38/hg38), which covers the entire SNCA gene with a base pair window of 

approximately ±100 kb. Only SNPs that had an MAF > 5% in their respective datasets 

were included in the analysis.  
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Table 1. Total and per chromosome SNP counts for genotype datasets. Chr: Chromosome; r2: imputation quality metric given by Minimac4 ranging from 0-1. 
 
 

 Total Chr 1 Chr 2 Chr 3 Chr 4 Chr 5 Chr 6 Chr 7 Chr 8 Chr 9 Chr 10 Chr 11 Chr 12 
Dataset 1.1 
Genotyped 873695 73275 72203 57398 49564 52849 66283 45095 45911 39249 45753 42929 42503 
Imputed 17211150 1310484 1414385 1195271 1207220 1081065 1053226 977740 916364 723813 829887 824277 806591 

r2>0.9 14554014 
(81%) 

1115623 
(81%) 

1213095 
(82%) 

1029277 
(82%) 

1017706 
(81%) 

934039 
(82%) 

928528 
(83%) 

823327 
(80%) 

783219 
(81%) 

623382 
(82%) 

707514 
(81%) 

703123 
(81%) 

694564 
(82%) 

Dataset 1.2 
Genotyped 692382 53665 58103 49621 45196 41287 48519 37460 36480 29781 34048 33404 31264 
Imputed 12339948 943298 999942 857059 867918 778730 782916 698809 660634 516650 621891 594311 571269 

r2>0.9 8679157 
(67%) 

672217 
(67%) 

706478 
(67%) 

621337 
(69%) 

621403 
(68%) 

549126 
(67%) 

589973 
(71%) 

486654 
(66%) 

467481 
(67%) 

363325 
(66%) 

455885 
(70%) 

425640 
(68%) 

407154 
(68%) 

Dataset 2 
Genotyped 719329 53738 59816 51004 46822 42748 50850 38326 36809 30280 34167 34074 32193 
Imputed 20669655 1592836 1702791 1409899 1424937 1298273 1261069 1165353 1098577 866215 1002198 959592 966973 

r2>0.9 12149004 
(57%) 

926485 
(56%) 

1016912 
(58%) 

839488 
(57%) 

850086 
(58%) 

760159 
(57%) 

783657 
(60%) 

684569 
(57%) 

645088 
(57%) 

495860 
(55%) 

611749 
(59%) 

564539 
(57%) 

571512 
(57%) 

           
Chr 13 Chr 14 Chr 15 Chr 16 Chr 17 Chr 18 Chr 19 Chr 20 Chr 21 Chr 22 Chr X 
 
30265 27986 24134 26713 23824 23597 17923 23134 11916 12694 18497 
608089 542240 476909 525051 456912 477747 381351 373846 229128 235107 564447 
525879 
(82%) 

465342 
(82%) 

398931 
(80%) 

428496 
(78%) 

368867 
(77%) 

402920 
(80%) 

311048 
(78%) 

313053 
(79%) 

190176 
(79%) 

187950 
(76%) 

387955 
(67%) 

 
24490 22084 20678 22592 19467 20236 13735 17036 9557 9577 14102 
438352 395185 341479 358551 321148 345824 277987 269257 167402 167744 363592 
313262 
(68%) 

283530 
(68%) 

240111 
(66%) 

236104 
(62%) 

222619 
(65%) 

246122 
(67%) 

178859 
(61%) 

185955 
(65%) 

116154 
(66%) 

112689 
(64%) 

177079 
(47%) 

 
25355 22398 20868 22365 19403 20831 13658 17142 9766 9565 27151 
743888 651082 590920 619413 567004 573486 461103 450835 277712 289980 695519 
449237 
(58%) 

390528 
(58%) 

352109 
(58%) 

334629 
(52%) 

320353 
(55%) 

339817 
(57%) 

252753 
(53%) 

257520 
(55%) 

162150 
(56%) 

171819 
(57%) 

367985 
(51%) 
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For each genotype dataset separately, linear regression was performed to test the 

interaction effect between case/control status and SNP genotype dosages on 

Corynebacterium_1, Porphyromonas, Prevotella, or cluster 1 adjusting for sex, age, and 

main effects of case/control status and SNP genotype dosages. PLINK 2’s --glm function 

was used to perform the analysis specifying the model to be the following: 

 [Taxon ~ SNP + sex + age + case/control + SNP x case/control] 

where taxon (clr transformed abundances of either Corynebacterium_1, Porphyromonas, 

Prevotella, or cluster 1), SNP (additive model; dosages of the minor allele ranging from 0 

– 2), and age (in years) were continuous variables and the remaining variables were 

categorical. PLINK 2 (v2.3 alpha) was used instead of PLINK 1.9 due to PLINK 1.9 not 

being able to handle genotype dosages with its --linear function. Results for the SNP x 

case/control interaction variable were extracted from PLINK result outputs, including 

both betas (β) and corresponding standard errors, in order to be used as input for meta-

analysis. Per dataset interaction analyses were then repeated using the same parameters 

and model specification with the exception of treating SNP genotypes as a dominant 

genetic model (coded as 0 for homozygous major allele and 1 for minor allele carrier). 

Once per dataset interaction tests were completed, meta-analyses for 

Corynebacterium_1, Porphyromonas, Prevotella, and cluster 1 were performed on SNP x 

case/control interaction betas and standard errors of the three genotype datasets using 

METASOFT v2.0.1. Both fixed- and random-effects models based on inverse-variance-

weighted effect size were performed along with an additional random-effects model 

optimized for detecting associations when there is heterogeneity between studies [Han & 

Eskin 2012]. Heterogeneity estimates (Cochran’s Q and P value and I2) were also 
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calculated and outputted with the meta-analysis results. To visualize results and top 

interactions of the meta-analyses, results were uploaded to LocusZoom [Pruim et al. 

2010] using fixed-effects model results if no evidence for heterogeneity between studies 

was present (Cochran’s Q P ≥ 0.1), else random-effects model results were uploaded. 

Linkage disequilibrium between visualized SNPs in LocusZoom was based on the 

“EUR” LD population. Pairwise LD estimates between top meta-analysis SNPs was 

performed using the LDpair tool with 1000 Genome phase 3 European data from LDlink 

v4.1 [Machiela & Chanock 2015]. 

 To visualize the interaction between case/control status, SNP genotype, and 

Corynebacterium_1, Porphyromonas, Prevotella, or cluster 1, boxplots of PD and control 

relative abundances stratified by the number of minor allele copies (for additive model) 

or presence/absence of the minor allele (dominant model) were created for top meta-

analysis interactions using ggplot2 v3.1.0. Boxplots were created for datasets 1 and 2, 

and for datasets pooled together. Due to the low relative abundance of genera included in 

this study [Wallen et al. 2020], and reduced concern of batch effects for analyses with 

single SNPs, all dataset 1 subjects were included in the same plot to aid in visualization 

of the interactions. A pseudo-count of 1 was added to genera and cluster 1 counts before 

transforming to relative abundances to avoid taking the log of zero during plotting. Hard 

call genotypes were extracted from VCF files for each SNP using PLINK in order to have 

discrete genotype groups for stratification of boxplots. For each SNP x case/control 

group, the geometric mean and its standard error were calculated and superimposed over 

the boxplots. The geometric mean was chosen instead of the standard arithmetic mean as 

it more accurately describes the central tendency of heavily skewed data, and in practice 
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has shown to be more robust to outlying datapoints [Clark-Carter 2010]. To quantitate 

any visual differences observed between PD and control groups in the boxplots, the mean 

relative abundance ratio (MRAR) between PD and control groups was calculated for each 

genotype group. Wilcoxon rank sum tests were used to test differences between PD and 

control relative abundances within each genotype group. 

 To test if genotypes of SNPs in top meta-analysis hits associated with PD 

irrespective of Corynebacterium_1, Porphyromonas, Prevotella, or cluster 1, Firth’s 

penalized logistic regression was performed using the following model: 

 [case/control ~ SNP + sex + age] 

where SNP (additive model; hard call genotypes ranging from 0 – 2 copies of the minor 

allele) and age (in years) were continuous variables and the remaining variables were 

categorical. To test if the association between PD and top meta-analysis SNP genotypes 

were moderated by presence or absence of Corynebacterium_1, Porphyromonas, 

Prevotella, or cluster 1, subjects were stratified into two groups: those whose samples 

were positive for Corynebacterium_1, Porphyromonas, Prevotella, or cluster 1 and those 

whose samples were negative for the same. Firth’s penalized logistic regression was then 

performed for each group using the same model as stated above. This process was 

repeated treating SNP genotypes as a dominant genetic model. To maximize power, as 

testing a dichotomous outcome tends to have lower power than testing a quantitative 

outcome [Altman & Royston 2006], all logistic regressions were performed using pooled 

datasets. 
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RESULTS 

Genetic interaction analyses 

 For all genera and cluster 1, the top meta-analysis hits detected in the 89.6 Mb – 

89.9 Mb region of chromosome 4 were located in the 3′ region of SNCA, which is the 

region of SNCA most highly associated with risk of idiopathic PD [Nalls et al. 2019]. The 

most significant top hit using an additive genetic model belonged to Corynebacterium_1 

and rs356229 (βdataset 1.1 = 0.71, Pdataset 1.1 = 0.02; βdataset 1.2 = 0.48, Pdataset 1.2 = 0.23; βdataset 2 

= 0.52, Pdataset 2 = 0.15; βmeta = 0.59, Pmeta = 3E-3), followed by Porphyromonas and 

rs10029694 (βdataset 1.1 = 1.06, Pdataset 1.1 = 0.08; βdataset 1.2 = 1.22, Pdataset 1.2 = 0.09; βdataset 2 = 

0.79, Pdataset 2 = 0.14; βmeta = 0.98, Pmeta = 5E-3), cluster 1 and rs10029694 (βdataset 1.1 =  

1.58, Pdataset 1.1 = 0.06; βdataset 1.2 = 0.77, Pdataset 1.2 = 0.44; βdataset 2 = 0.88, Pdataset 2 = 0.13; 

βmeta = 1.05, Pmeta = 0.01), and Prevotella and rs356183 (βdataset 1.1 = -0.61, Pdataset 1.1 = 

0.08; βdataset 1.2 = -0.37, Pdataset 1.2 = 0.49; βdataset 2 = -0.42, Pdataset 2 = 0.2; βmeta = -0.49, Pmeta 

= 0.03) (Figure 2). All meta-analysis results were also confirmed by the additional Han & 

Eskin random-effects meta-analysis performed by METASOFT. Interaction analyses 

using a dominant genetic model resulted in the same top meta-analysis hits as additive 

model with similar effect sizes and P values. An exception to this was Prevotella, whose 

meta-analysis of dominant model results resulted in a different SNP being tagged as a top 

hit (rs356228; meta-analysis β = 0.82, P = 0.02) (Figure 3). This SNP had an opposite 

effect direction from the SNP tagged when using the additive model, potentially showing 

some heterogeneity in the interaction between PD and SNPs in this region on Prevotella 

relative abundance. SNPs that were tagged in top meta-analysis hits for  
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Figure 2: Top hits for interaction meta-analyses in 3′ SNCA region under an additive 
genetic model. 
 
Under an additive model for SNP genotypes, per dataset linear regression was performed 
to test the interaction effect between case/control status and SNP genotype dosages on 
Corynebacterium_1 (A), Porphyromonas (B), Prevotella (C), or cluster 1 (D) followed 
by meta-analysis. Sex, age, and main effects of case/control status and SNP genotype 
were adjusted for in the analyses. Total sample size for the meta-analyses was 513 cases 
and 292 controls. Results for meta-analyses were visualized using LocusZoom, where 
each dot represents a SNP plotted according to its -log10(P value) and base pair position. 
Colors of dots correspond to the level of LD (r2) shared with the top SNP (marked with a 
diamond), and is detailed in the left legend of each plot. The red dotted line marks the 
point on the x-axis where P = 0.05. LD: linkage disequilibrium; Mb: Megabase; P value: 
P value from meta-analysis; β: beta coefficient from meta-analysis; SE (β): standard error 
of the meta-analysis beta coefficient; rsID: reference SNP ID for the marked SNPs 
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Figure 3: Top hits for interaction meta-analyses in 3′ SNCA region under a dominant 
genetic model. 
 
Under a dominant model for SNP genotypes, per dataset linear regression was performed 
to test the interaction effect between case/control status and SNP genotype on 
Corynebacterium_1 (A), Porphyromonas (B), Prevotella (C), or cluster 1 (D) followed 
by meta-analysis. Sex, age, and main effects of case/control status and SNP genotype 
were adjusted for in the analyses. Total sample size for the meta-analyses was 513 cases 
and 292 controls. Results for meta-analyses were visualized using LocusZoom, where 
each dot represents a SNP plotted according to its -log10(P value) and base pair position. 
Colors of dots correspond to the level of LD (r2) shared with the top SNP (marked with a 
diamond), and is detailed in the left legend of each plot. The red dotted line marks the 
point on the x-axis where P = 0.05. LD: linkage disequilibrium; Mb: Megabase; P value: 
P value from meta-analysis; β: beta coefficient from meta-analysis; SE (β): standard error 
of the meta-analysis beta coefficient; rsID: reference SNP ID for the marked SNPs 
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Corynebacterium_1 and Prevotella were common (MAF = 0.4 – 0.49) and in LD with 

one another (D′ = 0.74 – 0.97, r2 = 0.42 – 0.69). The same SNP was tagged in the top 

meta-analysis hits for Porphyromonas and cluster 1. This SNP was more uncommon 

(MAF ~ 0.1), and was in LD with rs356228 tagged in dominant model for Prevotella (D′ 

= 1, r2 = 0.16), but not in LD with the other top SNPs (D′ = 4E-3 – 0.57, r2 = 0 – 0.05) 

indicating that this might be a second, but slightly correlated, 3′ SNCA signal not only 

involving the top SNP (rs10029694), but five additional SNPs with similar effect sizes 

and P values (rs3857048, rs3910106, rs59923547, rs3906628, rs3857050) the majority of 

which were in perfect LD with the top SNP (D′ = 1, r2 = 1). One round of LD pruning of 

SNPs in the targeted genomic region resulted in 28 independent SNPs in common 

between genotype datasets, therefore, a multiple testing corrected study-wide significance 

threshold for each genus and cluster 1 would be approximately P < 1.8E-3 (0.05 / 28 

independent tests). No top meta-analysis hit surpassed this threshold, therefore, the 

interaction results described here should be considered suggestive as they require further 

replication. 

 

Visualization of interactions and stratified analysis 

 Boxplots of interactions between case/control status, SNP genotypes, and genera 

or cluster 1 relative abundances showed obvious interactions between case/control status 

and SNP genotype (under both additive and dominant models) on the relative abundances 

of Corynebacterium_1, Porphyromonas, and cluster 1 (Figure 4, A,B,D; Figure 5, 

A,B,D). In all boxplots, differences between cases and controls in the relative abundances 

of Corynebacterium_1, Porphyromonas, and cluster 1 seemed to be exacerbated with 
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increasing copies of the minor allele, with cases usually having an increase in relative 

abundances of these taxa with increasing copies of the minor allele, and controls having a 

decrease. Indeed, quantification of observed differences for each genotype group showed 

an increase in the MRAR of these taxa between cases and controls with increasing minor 

allele copies (Table 2) or just for being a carrier of the minor allele (Table 3). The only 

obvious exception was for dataset 1 relative abundances of cluster 1, where the MRAR of 

homozygous minor allele cases and controls was actually similar to that of homozygous 

major allele cases and controls, but this might have been due to extremely low numbers 

in these groups (N = 2 cases and 1 control) as the dominant model showed an almost 4x 

increase in MRAR of minor allele carrying cases and controls (Table 3). Unlike the 

MRARs, the significance of case and control differences, tested using Wilcoxon rank  

sum tests, did not always increase with increasing copies of the minor allele, which might 

have been due to lower numbers and higher variances in the homozygous minor allele 

groups. When carriers of minor alleles were collapsed into one group under a dominant 

model, differences between cases and controls always resulted in a more significant P 

value than the homozygous major allele groups (Table 3). 

For Prevotella, both additive and dominant model tagged SNPs did not show an 

obvious interaction when stratified under an additive model (Figure 4, C), which was 

reflected in the quantifications of MRARs (Table 2). A slight interaction was observed 

when stratified under a dominant model for dataset 1 and pooled datasets (Figure 5, C; 

Table 3), but dataset 2 actually goes in the opposite direction. This again emphasized the 

potential for heterogeneity in interactions with 3′ SNCA genetic variants for Prevotella. 
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Figure 4: Case and control relative abundances of Corynebacterium_1, Porphyromonas, 
Prevotella, and cluster 1 stratified by copies of the minor allele of SNPs in top meta-
analysis hits. 
 
Case (blue) and control (orange) relative abundances for Corynebacterium_1 (A), 
Porphyromonas (B), Prevotella (C), and cluster 1 (D), stratified by minor allele copy 
number of top meta-analysis SNPs for each respective genus or cluster 1, were plotted to 
visualize interactions. Relative abundances were stratified for SNPs rs356229 (A), 
rs10029694 (B and D), and rs356183 (C). Plots for Prevotella’s top SNPs (rs356183 and 
rs356228) were very similar, therefore, only plots stratified by rs356183 minor allele 
copies are shown as it was the top hit for additive model meta-analysis. Relative 
abundances (y-axis) were plotted on log10 scale. Sample size was 201 cases and 118 
controls for dataset 1, 312 cases and 174 controls for dataset 2, and 513 cases and 292 
controls for pooled datasets. Each dot corresponds to a single subject, plotted according 
to the relative abundance of either Corynebacterium_1, Porphyromonas, Prevotella, and 
cluster 1 in their stool sample. The top, middle, and bottom horizontal lines in the boxes 
represent the first, second (median), and third quartiles of the groups relative abundances. 
The lines extending from the top and bottom of the boxes (ending in a horizontal cap) 
reach to the furthest point that is within 1.5x the interquartile range. Any points outside of 
the lines are considered outliers. Red dots correspond to the geometric means of groups, 
and are connected by either a solid line (cases) or dashed line (controls). The vertical 
lines extending from the red dots represent the standard error of the geometric means. 
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Figure 5: Case and control relative abundances of Corynebacterium_1, Porphyromonas, 
Prevotella, and cluster 1 stratified by presence or absence of the minor allele for SNPs in 
top meta-analysis hits. 
 
Case (blue) and control (orange) relative abundances for Corynebacterium_1 (A), 
Porphyromonas (B), Prevotella (C), and cluster 1 (D), stratified by presence/absence of 
the minor allele for top meta-analysis SNPs for each respective genus or cluster 1, were 
plotted to visualize interactions. Relative abundances were stratified for SNPs rs356229 
(A), rs10029694 (B and D), and rs356228 (C). Plots for Prevotella’s top SNPs (rs356183 
and rs356228) were very similar, therefore, only plots stratified by rs356228 minor allele 
presence/absence are shown as it was the top hit for dominant model meta-analysis. 
Relative abundances (y-axis) were plotted on log10 scale. Sample size was 201 cases and 
118 controls for dataset 1, 312 cases and 174 controls for dataset 2, and 513 cases and 
292 controls for pooled datasets. Each dot corresponds to a single subject, plotted 
according to the relative abundance of either Corynebacterium_1, Porphyromonas, 
Prevotella, and cluster 1 in their stool sample. The top, middle, and bottom horizontal 
lines in the boxes represent the first, second (median), and third quartiles of the groups 
relative abundances. The lines extending from the top and bottom of the boxes (ending in 
a horizontal cap) reach to the furthest point that is within 1.5x the interquartile range. 
Any points outside of the lines are considered outliers. Red dots correspond to the 
geometric means of groups, and are connected by either a solid line (cases) or dashed line 
(controls). The vertical lines extending from the red dots represent the standard error of 
the geometric means. 
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Table 2. Quantification of differences in relative abundance between PD and controls stratified by copies of the minor allele of top meta-analysis SNPs. For each genus or cluster 
1, mean relative abundance ratios (MRAR) between PD and controls were calculated for each genotype group using the geometric means of the groups. Differences in relative 
abundance between PD and controls were tested using Wilcoxon rank sum test. Both top SNPs for Prevotella had similar results, therefore, only SNP rs356183 is shown for 
Prevotella as it was the top hit for additive model meta-analysis. PD: Parkinson disease; N: number of subjects; MRAR: mean relative abundance ratio; P: P value derived from 
Wilcoxon rank sum test. 
 
 

 No copies of the minor allele  One copy of the minor allele  Two copies of the minor allele 
  PD N Control N MRAR P   PD N Control N MRAR P   PD N Control N MRAR P 
Corynebacterium_1 and rs356229 
Dataset 1 65 53 1.08 0.57  90 48 1.85 0.09  46 17 3.84 0.02 
Dataset 2 107 66 1.55 0.34  150 80 3.58 8E-04  55 28 3.28 0.05 
Pooled 172 119 1.28 0.39  240 128 2.79 1E-04  101 45 3.82 3E-03 
Porphyromonas and rs10029694 
Dataset 1 156 95 1.75 0.02  43 22 4.27 2E-03  2 1 43.47 0.67 
Dataset 2 251 142 2.01 6E-03  57 28 4.09 0.02  4 4 39.38 0.06 
Pooled 407 237 1.85 2E-03  100 50 4.11 1E-03  6 5 50.18 2E-02 
Prevotella and rs356183 
Dataset 1 42 41 0.95 0.99  104 51 3.56 5E-06  55 26 1.97 0.24 
Dataset 2 83 52 3.55 2E-03  158 86 2.45 4E-03  71 36 1.58 0.55 
Pooled 125 93 1.76 0.07  262 137 2.92 1E-05  126 62 1.80 0.17 
Cluster 1 and rs10029694 
Dataset 1 156 95 1.93 0.03  43 22 7.56 1E-03  2 1 2.70 1.00 
Dataset 2 251 142 2.30 3E-03  57 28 6.44 2E-03  4 4 12.96 0.11 
Pooled 407 237 2.15 2E-04   100 50 6.94 2E-05   6 5 11.69 0.08 
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Table 3. Quantification of differences in relative abundance between PD and controls stratified by presence or absence 
of the minor allele for top meta-analysis SNPs. For each genus or cluster 1, mean relative abundance ratios (MRAR) 
between PD and controls were calculated for those with and without the minor allele of the associated SNP using the 
geometric means of the groups. Differences in relative abundance between PD and controls were tested using Wilcoxon 
rank sum test. Both top SNPs for Prevotella had similar results, therefore, only SNP rs356228 is shown for Prevotella 
as it was the top hit for additive model meta-analysis. PD: Parkinson disease; N: number of subjects; MRAR: mean 
relative abundance ratio; P: P value derived from Wilcoxon rank sum test. 
 
 

 Minor allele absent  Minor allele present 
  PD N Control N MRAR P   PD N Control N MRAR P 
Corynebacterium_1 and rs356229 
Dataset1 65 53 1.08 0.57  136 65 2.32 6E-03 
Dataset2 107 66 1.55 0.34  205 108 3.49 1E-04 
Pooled 172 119 1.28 0.39  341 173 3.04 2E-06 
Porphyromonas and rs10029694 
Dataset1 156 95 1.75 0.02  45 23 4.73 8E-04 
Dataset2 251 142 2.01 6E-03  61 32 4.86 7E-03 
Pooled 407 237 1.85 2E-03  106 55 4.85 2E-04 
Prevotella and rs356228 
Dataset1 45 43 1.03 0.70  156 75 2.92 3E-05 
Dataset2 81 55 2.88 7E-03  231 119 2.30 2E-03 
Pooled 126 98 1.64 0.08   387 194 2.59 9E-06 
Cluster 1 and rs10029694 
Dataset1 156 95 1.93 0.03  45 23 7.25 2E-03 
Dataset2 251 142 2.30 3E-03  61 32 6.69 8E-04 
Pooled 407 237 2.15 2E-04   106 55 6.90 8E-06 
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Association of SNCA genetic variants with PD modified by gut microbiome 

 When testing SNP association with PD in pooled datasets, all but one SNP 

(rs10029694) was associated with increased risk of PD (OR > 1) when tested irrespective 

of Corynebacterium_1, Porphyromonas, Prevotella, and cluster 1 presence or absence 

(Table 4). These SNPs (rs356229, rs356183, and rs356228) have been previously 

associated with increased risk of PD in a large GWAS meta-analysis of PD risk (odds 

ratio (OR) ~ 1.3, P = 3E-50 – 3E-32; pdgene.org) whose results matched the ORs we 

detected in the current dataset. SNP rs10029694 resulted in ORs > 1 suggesting a trend 

towards increased risk of PD, but the effect sizes were small (ORadditive = 1.1, ORdominant = 

1.2) and associations were not significant (P > 0.39) (Table 4). For all genera and cluster 

1, again with the exception of Prevotella, testing SNP association with PD in the 

presence of each genus or cluster 1 resulted in an increased OR for both additive and 

dominant models corresponding to a 20 – 50% increase in PD risk per copy of the minor 

allele, or a 30 – 70% increase in risk for being a minor allele carrier, compared to results 

obtained irrespective of Corynebacterium_1, Porphyromonas, and cluster1 (Table 4). P 

values for associations stayed relatively the same for rs356229 in the presence of 

Corynebacterium_1, while P values for association of rs10029694 with PD became 

significant in the presence of Porphyromonas.  Although an increase in ORs was 

observed for both additive and dominant models for cluster 1, the associations did not 

reach significance (P < 0.05) raising the hypothesis that not all members of cluster 1 

might be needed to see an association with PD, and including all members might actually 

be washing out a significant association signal. Indeed, when removing members  
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Table 4. Association of top meta-analysis SNPs with PD stratified by presence or absence of Corynebacterium_1, 
Porphyromonas, or cluster 1. Firth’s penalized logistic regression was performed for SNP association with PD in 
pooled datasets irrespective of genera or cluster 1, and stratified by genera or cluster 1 presence/absence. Analyses 
were adjusted for age and sex. Analyses were performed once using an additive model for SNP genotype and once 
using a dominant model for SNP genotype. N: number of subjects; OR: odds ratio from Firth’s logistic regression; CI: 
confidence interval; P: P value from Firth’s logistic regression; PD: Parkinson disease 
 
 

 Total 
N 

Copies of the 
minor allele 

 Additive model  Dominant model 

    0 1 2   OR  
[95% CI] P   OR  

[95% CI] P 

Corynebacterium_1 and rs356229 
Association of rs356229 with PD risk irrespective of Corynebacterium_1 
PD 513 172 240 101  1.3  

[1.0-1.6] 0.02 
 1.4  

[1.0-1.9] 0.03 
 

Control 292 119 128 45    

Association of rs356229 with PD risk in the presence of Corynebacterium_1 
PD 235 79 111 45  1.5  

[1.0-2.2] 0.03 
 1.7  

[1.0-2.8] 0.04 
 

Control 94 44 38 12    

Association of rs356229 with PD risk in the absence of Corynebacterium_1 
PD 278 93 129 56  1.2  

[0.9-1.6] 0.17 
 1.3  

[0.9-1.9] 0.19 
 

Control 198 75 90 33     
Porphyromonas and rs10029694 
Association of rs10029694 with PD risk irrespective of Porphyromonas 
PD 513 407 100 6  1.1  

[0.8-1.6] 0.43 
 1.2  

[0.8-1.7] 0.39 
 

Control 292 237 50 5    

Association of rs10029694 with PD risk in the presence of Porphyromonas 
PD 276 210 60 6  1.6  

[1.0-2.7] 0.05 
 1.9  

[1.1-3.4] 0.03 
 

Control 119 100 16 3    

Association of rs10029694 with PD risk in the absence of Porphyromonas 
PD 237 197 40 0  0.7  

[0.4-1.2] 0.19 
 0.7  

[0.4-1.2] 0.25 
 

Control 173 137 34 2     
Cluster 1 and rs10029694 
Association of rs10029694 with PD risk irrespective of cluster 1 
PD 513 407 100 6  1.1  

[0.8-1.6] 0.43 
 1.2  

[0.8-1.7] 0.39 
 

Control 292 237 50 5    

Association of rs10029694 with PD risk in the presence of cluster 1 
PD 427 335 86 6  1.3  

[0.9-2.0] 0.12 
 1.5  

[1.0-2.3] 0.07 
 

Control 222 185 32 5    

Association of rs10029694 with PD risk in the absence of cluster 1 
PD 86 72 14 0  0.5  

[0.2-1.2] 0.14 
 0.5  

[0.2-1.2] 0.14 
 

Control 70 52 18 0       
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of cluster 1 one by one and retesting association between rs10029694 and PD, reducing 

cluster 1 down to Porphyromonas, Prevotella, Varibaculum, Anaerococcus, 

Peptoniphilus, and Lawsonella (dataset 2 only) increased the ORs by ~ 13% (ORadditive = 

1.5 [1.0-2.2], ORdominant = 1.7 [1.1-2.7]) and lowered the P values for additive model to 

borderline significance (P = 0.06) and dominant model to significance (P = 0.03). When 

SNPs were tested for association with PD in the absence of Corynebacterium_1, 

Porphyromonas, and cluster 1, ORs either decreased or stayed relatively the same  

compared to those derived from testing irrespective of Corynebacterium_1, 

Porphyromonas, and cluster 1, and associations were not significant (Table 4).  

For Prevotella, stratifying by Prevotella presence or absence did not result in an 

obvious decrease or increase in ORs for additive or dominant model top SNPs, and  

testing in the Prevotella positive group usually resulted in non-significant associations 

compared to testing in Prevotella negative group and irrespective of Prevotella. 

 

DISCUSSION 

 Numerous studies have been performed in human on the association of gut 

microbiome or genetic variants with PD, but this is the first, to our knowledge, that has 

attempted to study the interaction between the two. This study was a candidate gene, 

candidate taxa study where we used prior knowledge of gut opportunistic pathogens that 

associated with PD in a previous study [Wallen et al. 2020] and searched for genetic 

modifiers of these associations in the top genomic locus associated with PD risk through 

large genetic studies [Nalls et al. 2019]. Performing a statistical genetic scan of the SNCA 

gene and surrounding area, we uncovered evidence for potential genetic modifiers of the 
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association between Corynebacterium_1, Porphyromonas, and cluster 1 with PD in the 3′ 

SNCA region. Differences in the relative abundances of Corynebacterium_1, 

Porphyromonas, and cluster 1 between PD and control subjects increased with increasing 

copies of the minor allele of these genetic variants. Increasing differences were usually 

due to an increase in relative abundances in PD and either a decrease or relatively stable 

level in controls with increasing copies of the minor allele. We tested association of SNPs 

with PD in the presence or absence of Corynebacterium_1, Porphyromonas, or cluster 1 

and found that the strength of association between these SNPs and PD were increased in 

subjects where Corynebacterium_1, Porphyromonas, or cluster 1 was detected in their 

stool samples. Results might be a reflection of a higher risk of PD when both the minor 

alleles of these SNPs and Corynebacterium_1, Porphyromonas, and cluster 1 are present, 

but also might be driven by the disease itself, consequences of underlying genetic 

variation, or a combination of both. This study is only associative in nature, therefore, 

causal inference cannot be made here, which would require further functional and 

longitudinal studies. 

 This study was motivated by the hypothesis that the presence of both pathogens 

(opportunistic or not) in the gut and overexpression of α-synuclein, which has been 

associated with genetic variants in the 3′ SNCA region, might increase risk of PD. This 

stems from several previous studies showing connections between the gut and α-

synuclein, and α-synuclein involvement in response to pathogens. Presence of α-

synuclein has been shown in the gastrointestinal tract of persons with early PD [Shannon 

et al. 2012], Lewy body disease [Breen, Halliday & Lang 2019], and rapid eye movement 

disorder [Knudsen et al. 2018], which has a high conversion rate to PD. Large 
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epidemiological studies have suggested a reduction in PD risk for those who have 

undergone truncal vagotomy years before PD onset [Svensson et al. 2015; Liu et al. 

2017], and a study in mouse saw that truncal vagotomy and endogenous α-synuclein 

deficiency prevented gut to brain spread of injected preformed α-synuclein fibrils and 

development of PD-like neurodegeneration and behavioral deficits [Kim et al. 2019]. 

Studies in human have shown a role of α-synuclein in pathogen response where infection 

of the gut or olfactory system triggered α-synuclein expression, which in turn mobilized 

the immune system to respond to the infection [Stolzenberg et al. 2017; Tomlinson et al. 

2017]. Experimentally, it has been shown in a Pink1 knockout mouse model of PD that 

intestinal infection may act as a trigger for dopaminergic cell loss and motor impairment 

through activation of T cells in the periphery [Matheoud et al. 2019]. A hypothesis that 

has gained popularity in recent years, termed “Braak’s hypothesis”, states that non-

inherited forms of PD may be caused by a yet to be identified pathogen that invades the 

gastrointestinal tract and, through the enteric nervous system, makes its way to the brain 

[Braak et al. 2003; Braak et al. 2003]. This hypothesis has been further modified to state 

that it may not be an actual pathogen making its way to the brain, but pathogenic species 

of α-synuclein initiated in the gut by a pathogen, or altered microbial state, and traveling 

to the brain. We previously detected a significant enrichment of three genera 

(Corynebacterium_1, Porphyromonas, Prevotella) and a poly-microbial group of genera 

in PD that, per the literature, are often harmless, commensal members of the gut and oral 

microbiome, but can become pathogenic in certain scenarios [Wallen et al. 2020; Citron 

et al. 2007; Wagner et al. 2017; Choi et al. 2019]. Here, we attempted to connect the 

overabundance of these opportunistic pathogens to the most highly associated portion of 
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the genome with increased risk of PD, and in the end, found evidence that the presence of 

at least a subset of these genera in the gut might increase the risk of PD in conjunction 

with genetic variants tied to α-synuclein. In addition, the minor allele of at least one of 

these variants (rs356229) was found previously to be associated with higher expression of 

SNCA (P = 9E-5; https://www.gtexportal.org/home/snp/rs356229), which might provide 

a lead on the mechanism of how PD risk may be escalated in the presence of these genera 

and 3′ SNCA genetic variants. However, as this study is only associative in nature, the 

opposite also might be true, where changes in relative abundances of genera studied here 

are actually due to variables relating to the disease itself (e.g. compromised gut lining 

and/or immune system allowing these genera to increase in number), underlying 

consequences of genetic variation (e.g. dysfunctional α-synuclein that is unable to 

perform normal duties related to immunity), or a combination of both. Further 

experimental functional studies in PD animal models and potentially longitudinal studies 

in human would be required to confirm any of the above mentioned scenarios.  

 The obvious limitation of this study was the sample size. Sample sizes for genetic 

studies, and meta-analyses of such, usually range in the thousands whereas here we 

analyzed samples from approximately 800 subjects. This is most likely the reason no 

interactions for meta-analysis reached the study-wide multiple corrected threshold for 

significance, and why interactions detailed here should be considered suggestive. 

Additional analyses need to be performed on larger samples sizes to replicate and 

confirm these findings in human. Additionally, experimental studies should be conducted 

to tease out if there is a true biological interaction between genera targeted in this study, 

α-synuclein, and/or overexpression of SNCA. Another limitation of this study is the 
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nature of the interaction and association analyses performed. In this study, we have 

merely provided suggestive evidence for an interaction between targeted genera, PD, and 

SNCA genetic variants. Although we can specify statistical models a certain way (with 

genera as outcome, or PD as outcome) this does not imply true causation, therefore, we 

can only speculate about what may be occurring biologically. The changes in relative 

abundances of genera studied here might not be involved in the pathogenesis of disease, 

but a response to disease, and/or the biological effect produced by the genetic variants. 

Regardless, this study provides interesting leads for follow-up investigations in both 

human and in experimental models. 

 In conclusion, we detected potential genetic modifiers for the associations 

between Corynebacterium_1, Porphyromonas, and a group of poly-microbial 

opportunistic pathogens and PD in a highly relevant genomic region for risk of 

developing PD. Differences in relative abundances of these genera between PD and 

controls were increased with increasing copies of the minor allele of detected SNPs. We 

then provided evidence for a potential increase in genetic risk of PD when both the minor 

allele and genera were present compared to the sample population as a whole, or when 

genera were absent. These results provide interesting leads for future human and animal 

studies. 

 

DATA AVAILABILITY 

For microbiome data, individual-level raw sequences and basic metadata are 

publicly available at NCBI Sequence Read Archive (SRA) BioProject ID PRJNA601994. 

Genotypes will be deposited in dbGaP once data has been accepted for publication. 
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 No custom codes were used. All software and packages, their versions, relevant 

specification and parameters are stated in the “METHODS” section. 
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SUMMARY AND DISCUSSION 
 

 This dissertation addressed two areas of ongoing PD research: the identification 

of age at diagnosis modifiers in PD and continued characterization of gut microbiome 

changes in PD and their potential role in PD risk. We first were able to identify two new 

genetic modifiers of age at diagnosis of PD that accounted for an earlier age at diagnosis 

of about 6 years. Within these genetic signals, we uncovered functionally relevant 

variants that might have a deleterious effect on a putative PD modifier gene LPPR1 and 

influence the expression of another gene GRIN3A. We next tested and compared 16 

differential abundance testing methods on two large PD-gut microbiome datasets, 

providing, to our knowledge, the first example of a differential abundance comparison 

study performed on real gut microbiome data from a complex disease. We then 

performed a study characterizing the PD gut microbiome in two of the largest PD-gut 

microbiome datasets to date, using larger sample sizes, robust statistical methods, 

stringent statistical criteria, and a replication paradigm to detect robust associations 

between PD and 15 bacterial genera who belonged to 3 poly-microbial groups of 

correlated genera. Lastly, we investigated interaction between PD, genetic variants in the 

SNCA locus, and three genera and one poly-microbial group of genera, found enriched in 

PD and to be opportunistic pathogens. We uncovered that genetic variants at the 3′ end of 

SNCA moderated the associations between PD and these genera, and associations 

between detected genetic variants and PD were enhanced when tested using subjects 
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positive for genera, potentially reflecting an increase in PD risk when both are present. 

Results presented in this dissertation provide novel insights into age at diagnosis 

modification in PD and potential interaction between the gut microbiome, PD, and 

genetic risk of PD. Results will hopefully be useful in guiding future research in both 

humans and animals to replicate, confirm, and tease apart the biology behind these 

findings. 

 

LPPR1, a potential target for modifiying PD disease progression? 

In the first chapter, we uncovered evidence for association of genetic variants in 

neuronal plasticity-related gene 3 (LPPR1) with age at diagnosis of PD. Two signals were 

detected, each tagging a block of SNPs in high LD. These variants had low allele 

frequencies (MAF = 0.01–0.02), similarly to previously found variants for age at onset of 

familial PD [Hill-Burns et al. 2016]. The first LD block of SNPs replicated robustly in 

both prevalent PD cases (PAGEP) and incident PD cases (PAGEI) in PAGE. The second 

LD block replicated in PAGEP, but not in PAGEI showing some potential heterogeneity 

in PAGE subjects. Functional annotation of the PD-associated variants in LPPR1 

revealed several variants had predicted deleterious effects, including a missense that 

destabilizes the structure of LPPR1, a regulatory element that associates with expression 

levels of GRIN3A, and enhancers that interact with promoters of LPPR1 and several other 

genes in the brain. LPPR1 is one of 5 members of a brain-specific gene family that 

modulates neuronal plasticity during development, aging, and after brain injury 

[Savaskan, Brauer & Nitsch 2004; Broggini et al. 2016; Fink et al. 2017]. LPPR1 is the 

strongest driver of axonal outgrowth in the gene family. Studies in mice have shown that 
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after neuronal injury, overexpression of LPPR1 enhances axonal growth, improves motor 

behavior, and promotes functional recovery [Broggini et al. 2016; Fink et al. 2017]. 

Extrapolating to our findings, we posit that LPPR1 is not necessarily involved in the 

cause of PD, but might be involved in the response to neuronal damage, and influences 

how well neuronal cells respond to injury and the rate at which neurons deteriorate in 

preclinical PD. The actual cause of neuronal death in PD may be initiated by 

environmental exposures such as toxins, genetics, or a combination of both, but once the 

initial insult has occurred the rate of neuronal deterioration and disease progression is 

dependent upon how well intra-neuronal mechanisms of repair are able to mitigate the 

damage done by the initial insult(s).  

How LPPR1 elicits its protective effects is still poorly understood, but it might be 

through promotion of cell adhesion and inhibition of GTPase RhoA activity to resist 

neurite outgrowth inhibition [Broggini et al. 2016; Iweka et al. 2019]. LPPR1 was 

previously shown to reduce activity of RhoA through interaction with PIP2 

(Phosphatidylinositol 4,5-bisphosphate) [Broggini et al. 2016], and a Rho family-specific 

guanine nucleotide dissociation inhibitor (RhoGDI) [Iweka et al. 2019] when RhoA 

activating molecules were introduced to neural cells. Activation of RhoA, which 

primarily acts upon the cytoskeleton of a cell, has been previously implicated in the 

formation of stress fibers and focal adhesions and, through growth cone collapse, can 

inhibit neurite outgrowth [Kalpachidou, Spiecker, Kress & Quarta 2019]. While this 

dissertation describes the first study to directly connect LPPR1 to PD, evidence exists for 

potential RhoA involvement in the pathogenesis of PD. RhoA activity was previously 

shown to be increased by a number of mechanisms relevant to PD including exposure to 
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toxins such as rotenone and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 

[Villar-Cheda et al. 2012; Mattii et al. 2019], recombinant human α-synuclein through 

binding of integrin CD11b (which can also bind to other damaging molecules such as 

bacterial lipopolysaccharide and amyloid beta) [Hou et al. 2018], deficiency in Parkin 

expression (mutations in which cause a recessively inherited form of PD) [Bogetofte et 

al. 2019], and can even be activated by certain bacterial toxins [Musilli et al. 2016]. In 

these same studies, inhibition of RhoA activity through various mechanisms was able to 

rescue detrimental phenotypes including MPTP induced dopaminergic cell death and 

microglial activation [Villar-Cheda et al. 2012], α-synuclein based activation of reactive 

oxygen species forming enzyme NOX2 [Hou et al. 2018], enhanced neuronal migration 

and neurite outgrowth deficiency caused by mutated Parkin [Bogetofte et al. 2019], and 

rotenone induced damage and morphological changes to dopaminergic neurons [Mattii et 

al. 2019]. These studies show a beneficial effect of RhoA inhibition in a variety of PD 

related pathogenesis routes, induced by toxins to genetics, therefore, if upregulation of 

LPPR1 truly has an inhibitory effect on RhoA activity, it could potentially be a useful 

therapy in a wide variety of PD cases.  

A lot of ground needs to be covered before deciding if LPPR1 is a good candidate 

to pursue as a potential PD therapeutic. The function of LPPR1 and its role in 

neuroprotection still remains largely uncharacterized, and it’s supposed neuroprotective 

effects have not been experimentally tested in a PD relevant model system. Even if 

LPPR1 is eventually shown to have neuroprotective effects in respect to PD, there still is 

the issue that, so far, no report in the literature exists of a compound that increases 

expression of LPPR1. This means time would need to be spent screening for potential 
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compounds that influence LPPR1 expression in neuronal cells, or designing a safe and 

effective viral construct for delivery of a more active LPPR1 gene, which has shown to 

be possible for other potential targets for PD therapeutics [Axelson & Woldbye 2018]. 

More characterization of interacting partners of LPPR1 is also needed to get a fuller 

picture of the potential systemic effects that modulation of LPPR1 expression would 

cause, and to reveal other potential therapeutic targets such as we have with GRIN3A. 

However, even with the obvious hurdles, based on previous literature and results from 

our study, we believe LPPR1 is a promising lead for future investigations into its 

therapeutic benefits for PD. 

 

Differential abundance methods vary in results, but can still come to agreements 

The next chapter detailed a comparison study of 16 differential abundance testing 

methods on a real gut microbiome dataset derived from a complex, heterogeneous 

disease.  We detected variations between method results, which aligned with the variation 

between differential abundance testing method performances previously reported in 

method comparison studies [Thorsen et al. 2016; Weiss et al. 2017; Hawinkel et al. 

2019].  Although we could not assess method performance due to the true answers being 

unknown, we found methods with similar previously reported performance metrics 

grouped together based on their concordances with one another, and the PD-genus 

associations they detected. Methods with previously reported low FPR/FDR had the 

highest average concordances across methods, and the highest concordances among each 

other. We found a variable effect of taxa filtering for ANCOM, which might be due to the 

different statistics used by ANCOM compared to the standard FDR q-value. We also 
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detected two groups of genera through hierarchical clustering based on similarity in 

method results. One group of genera were more likely to be replicated by the majority of 

methods on average and included genera previously associated with PD such as 

Bifidobacterium, Lactobacillus, and short-chain fatty-acid producing bacteria  

Faecalibacterium, Roseburia, Blautia, and other members of the Lachnospiraceae 

family. The second group of genera were only detected and replicated by a subset of 

methods (fitZIG, edgeR, limma-voom, baySeq, SAMseq, GLM NBZI, DESeq2). This 

group mostly contained genera enriched in PD that had low control MRAs, higher effect 

sizes on average, and were more likely to be replicated by methods previously reported to 

have higher sensitivity [McMurdie & Holmes 2014; Thorsen et al. 2016; Weiss et al. 

2017; Hawinkel et al. 2019]. Although the two PD-gut microbiome datasets used in this 

study were found to be heterogeneous in microbiome composition, we observed no 

significant differences between datasets in the proportion of genera being associated with 

PD on average. 

In previous method comparison studies, variation in results between different 

differential abundance testing methods was evident [Thorsen et al. 2016; Weiss et al. 

2017; Hawinkel et al. 2019], which aligns with our results, but we also observed some 

similarities between methods through calculation of method result concordances. Method 

performances could not be assessed in this study as analyses were performed on real data 

where true answers are unknown, but by using performance metrics calculated in 

previous studies as a proxy [Thorsen et al. 2016; Weiss et al. 2017; Hawinkel et al. 2019], 

we observed that methods with similar performance metrics showed similar patterns in 

their concordances with one another. Methods that were previously reported to have 
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lower FPR and FDR, which included the group of methods containing Kruskal-Wallis, t-

test with log transform, ALDEx2, fitFeatureModel, ANCOM, and DESeq2, had the 

highest average concordances across all methods, and had even higher average 

concordances among each other (a mean concordance of ~0.9 per dataset compared to the 

overall concordance average of 0.76 per dataset). Methods that were previously reported 

to have a higher FPR and FDR, which included the group of methods containing baySeq, 

GLM NBZI, fitZIG, and edgeR, had the lowest average concordances across all methods. 

These observations make sense, as methods with lower FPR/FDR were more likely to 

agree on the same PD-genus associations. They detected less overall significant 

associations compared to higher FPR/FDR methods, and, for the most part, only detected 

and replicated PD-genus associations that seemed to be robust to inter-method variation. 

This would naturally increase the odds of lower FPR/FDR methods converging on the 

same differential abundance signatures compared to higher FPR/FDR methods, who 

detected more overall significant associations, a larger number of which were not agreed 

upon by the majority of methods. 

A finding of this study that was not expected was the variable effect of taxa 

filtering prior to analysis with ANCOM. Decreasing the number of taxa that is included 

in a differential abundance analysis, to a certain extent, usually results in increased 

number of significant associations detected by a method. This is usually due to the 

decreased burden of multiple testing correction when calculating FDR q-values. With 

ANCOM, however, filtering of taxa before analysis greatly decreased the number of 

significant associations. The reason behind this unorthodox effect of taxa filtering might 

be due to the statistics used by ANCOM to determine significance, which differs from the 
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standard FDR correction used by the other methods included in this study. ANCOM 

calculates a W statistic, which is the number of times the log ratio of a taxon with every 

other taxon being tested was detected as significantly different across groups [Mandal et 

al. 2015]. Because ANCOM’s W statistics are based off of pairwise combinations 

between all taxa tested, they will automatically decrease overall if less taxa are being 

analyzed, which may also decrease the range of significant W statistics at a particular 

threshold. If lower prevalent taxa are being removed, this might make the W statistic 

calculation more conservative since more prevalent, and potentially stable, taxa have 

been selected for whose ratios with one another might not differ enough to be detected as 

significant at a particular significance threshold. These findings suggest that it might be 

beneficial to perform ANCOM using all detected taxa, or at least the majority of detected 

taxa, only removing very rare taxa (those whose detection was most likely due to 

technical errors) to reduce noise. 

Although methods overall varied in the PD-genus associations they detected, two 

groups of genera seemed to be converged upon by the majority or a subset of methods 

used in this study. Through hierarchical clustering of genera based on similarities in 

method results, a group genera was revealed whose associations with PD seemed to be 

more robust to inter-method variation as they were more likely to be replicated by the 

majority of methods on average. This group contained genera previously associated with 

PD including Bifidobacterium, Lactobacillus, Faecalibacterium, Roseburia, Blautia, and 

other members of the Lachnospiraceae family. This might suggest that at least some of 

the PD-genus associations placed into this group were more robust to inter-method 

variation not just because they were strong associations or ideally met the assumptions of 



 

 194 

multiple methods in our data, but because they are biologically associated with PD. 

Regardless of why these PD-genus associations were able to be detected across the 

spectrum of methods implemented in this study, it shows that even with obvious 

differences in results between methods, different differential abundance methods, even 

with their different underlying characteristics, can converge on the same answers 

especially when utilizing a second dataset for replication of associations. Hierarchical 

clustering also revealed a second group of genera whose associations with PD were only 

replicated by a subset of methods that were previously shown to have higher sensitivities 

(fitZIG, edgeR, limma-voom, baySeq, SAMseq, GLM NBZI, DESeq2) [McMurdie & 

Holmes 2014; Thorsen et al. 2016; Weiss et al. 2017; Hawinkel et al. 2019]. This group 

was interesting because it contains only genera increased in PD (with the exception of 

one) who had lower control mean relative abundances and resulted in higher fold changes 

on average when compared to other genera. This group of genera was not replicated by 

any of the more conservative lower FPR/FDR methods, therefore, without the use of 

more sensitive methods, this group of PD-genus associations would have gone unnoticed. 

This potentially argues that, although some of these methods were previously reported to 

have high FPR/FDR, they could prove useful for detecting rarer taxa. The use of a second 

dataset, as done with this study, might help to mitigate some of the potential false 

positives detected by these methods. 
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Characterization of gut microbiota dysbiosis in PD resulted in detection of familiar 

signatures, and generation of new leads 

The final two chapters of the dissertation dealt with characterizing the gut 

microbiome of PD patients in two large datasets of PD and control subjects, followed by 

an interaction analysis between three genera and a poly-microbial group of genera, PD, 

and genetic variants in the SNCA locus. In the characterization study, 15 genera were 

detected as significantly associated with PD, but the majority of these associations were 

confirmatory and had been previously detected enriched (Bifidobacterium, Lactobacillus) 

or depleted (SCFA producing bacteria) in PD. The novel finding was three genera 

enriched in PD who, through literature search, were found to be opportunistic pathogens 

in the right conditions (Porphyromonas, Corynebacterium_1, Prevotella). These three 

genera then mapped to a poly-microbial cluster of correlated genera whose members 

were also found to be majorly opportunistic pathogens. This was of interest to us as it 

harks back to Braak’s hypothesis that states a yet to be identified pathogen enters the 

gastrointestinal tract and invades the brain to cause PD [Braak et al. 2003; Braak et al. 

2003]. We decided these genera might be the most relevant to increasing PD risk and 

carried them forward to interaction analysis. To decide on the genomic region for 

interaction analysis, we referred back to the literature detailing the involvement of 

pathological α-synuclein in the gut and how α-synuclein might play a role in the immune 

response to infection [Stolzenberg et al. 2017; Tomlinson et al. 2017]. We posited that 

combined presence of opportunistic pathogens in the gut with genetic risk of PD in the 

SNCA locus might interact together to increase risk of PD. Through interaction analysis 

of SNCA SNPs, PD, and genera, we detected SNPs at the 3′ end of SNCA that moderated 
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the associations between PD and these genera. We then found associations between 

detected SNPs and PD were enhanced when tested using subjects positive for genera. As 

stated in the last chapter, no interaction analyses reached a multiple testing corrected 

significance, so results are considered suggestive and need to be replicated in larger 

cohorts.  

 Multiple PD-gut microbiome studies in human have previously associated 

decreased SCFA producing bacteria with PD [Keshavarzian et al. 2015; Unger et al. 

2016; Hill-Burns et al. 2017; Petrov et al. 2017; Li et al. 2017; Lin, A et al. 2018; 

Pietrucci et  al. 2019; Aho et al. 2019], which our findings confirmed. The ten genera we 

detected reduced in PD belonged to the bacterial families Lachnospiraceae and 

Ruminococcaceae, whose members have been among those detected in previous PD-gut 

microbiome studies, and four of which were even confirmed in a recent meta-analysis of 

five PD-gut microbiome studies [Nishiwaki et al. 2020]. In chapter 3 of this dissertation 

(and its corresponding publication Wallen et al. 2020) and in previous work by our group, 

we reported correlation between decreased genera of the Lachnospiraceae family and 

increasing daily dose of levodopa [Wallen et al. 2020] and disease duration [Hill-Burns et 

al. 2017]. Others have also found correlations between decreased members of this 

bacterial family and disease duration [Keshavarzian et al. 2015], along with disease 

severity and motor impairment [Pietrucci et al. 2019]. This might suggest SCFA 

producing bacteria are depleted in PD as a consequence of disease and/or use of disease 

related medication. However, this does not mean that reduction of SCFA producing 

bacteria has no potential role in disease pathogenesis. SCFAs have been previously 

shown to help with reducing inflammation in the gut and brain, enhancing gut epithelial 
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health, and promoting increased gastrointestinal motility [Hamer et al. 2008; Canani et al. 

2011; Park et al. 2019; Haase et al. 2018; Furusawa et al. 2013], all of which are issues 

observed in PD. The absence of SCFA producing bacteria might not be playing a large 

role in the initiation of PD, but could play a role in enhancing disease progession, and/or 

symptoms, which might be improved by replenishing SCFA producing bacterial 

numbers, or supplementation with SCFAs. Pre-clinical work has already been ongoing to 

see if there is any benefit to supplementation with SCFAs, mainly butyrate. More 

research into the role of SCFAs in PD is needed, however, as some studies report 

beneficial effects of SCFAs in PD model systems [St. Laurent et al. 2013; Paiva et al. 

2017; Zhou et al. 2011; Kidd et al. 2010; Salama et al. 2015], while others have 

associated them with worse PD relevant outcomes [Sampson et al. 2016] and actually 

found some SCFAs to be increased in PD patients [Shin et al. 2020]. It is also important 

to note that deficiency in SCFA producing bacteria is not specific to PD, rather, it has 

been found in multiple disorders that have an inflammatory component [Kang et al. 2017; 

Sun et al. 2019; Qin et al. 2012; Guo et al. 2016; Yamada et al. 2015] including other 

neurological diseases such as multiple systems atrophy [Engen et al. 2017], multiple 

sclerosis [Cantarel et al. 2015; Tremlett et al. 2016; Jangi et al. 2017], and amyotrophic 

lateral sclerosis [Fang et al. 2016], therefore, decrease of SCFA bacteria might be a 

general signature for diseases involving inflammation. 

 Other PD-gut microbiome signatures that have been replicated in a number of 

previous studies, including our own, have been enrichment of Bifidobacterium [Unger et 

al. 2016; Hill-Burns et al. 2017; Petrov et al. 2017; Barichella et al. 2018; Lin, A et al. 

2018; Aho et al. 2019; Wallen et al. 2020] and Lactobacillus (or its family classification 
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Lactobacillaceae) [Hasegawa et al. 2015; Hill-Burns et al. 2017; Petrov et al. 2017; Aho 

et al. 2019; Lin CH, et al. 2019; Wallen et al. 2020; Scheperjans et al. 2015; Hopfner et 

al. 2017; Barichella et al. 2018; Pietrucci et al. 2019; Nishiwaki et al. 2020], although 

some heterogeneity exists between different populations for the association of 

Lactobacillus [Qian et al. 2018; Li, C et al. 2019]. Bacteria belonging to both of these 

taxa are commonly referred to as probiotics, and are normal inhabitants of the gut who 

assist with digestion of carbohydrates from plants and dairy [O’Callaghan & O’Toole 

2013; O’Callaghan & van Sinderen 2016]. Similarly to SCFA producing bacteria, we 

found both genera significantly correlated with daily levodopa dose, increasing in 

abundance with increasing doses of levodopa [Wallen et al. 2020], which again suggests 

that alterations of these genera might be a consequence of disease progression and/or PD 

medication use. Interestingly, Lactobacillus species have been shown previously to 

produce an enzyme, bacterial tyrosine decarboxylase, that can metabolize levodopa into 

dopamine before it reaches the brain [Zhang & Ni 2014; van Kessel et al. 2019]. 

Metabolic activity of this enzyme on levodopa reduces its bioavailability, which hinders 

its effectiveness and requires higher doses of levodopa to reach intended therapeutic 

effects [van Kessel et al. 2019; Maini Rekdal et al. 2019]. In addition, the human DOPA 

decarboxylase inhibitor carbidopa was ineffective at inhibiting the activity of bacterial 

tyrosine decarboxylase [van Kessel et al. 2019; Maini Rekdal et al. 2019], therefore, 

current regiments of carbidopa/levodopa do not influence bacterial metabolic activity on 

levodopa. Based on the above evidence for Lactobacillus involvement in levodopa 

metabolism, increased levels of Lactobacillus could prove to be a key explanatory factor 

for PD patients needing increased carbidopa/levodopa dosages. Ironically, Lactobacillus, 
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along with Bifidobacterium, are commonly included in food products as probiotics, and a 

clinical trial using fermented milk containing Lactobacillus, Bifidobacterium, fiber, and 

other active ingredients showed benefits for constipation in PD [Barichella et al. 2016]. 

In certain scenarios, Lactobacillus and Bifidobacterium can act as opportunistic 

pathogens, resulting in infection and excessive immune system stimulation in immune-

compromised individuals [Suez et al. 2019; Doron & Snydman 2015]. Clearly more work 

needs to be completed to fully understand the role of increased levels of Bifidobacterium 

and Lactobacillus in PD and if they play a beneficial role (potentially as compensatory 

mechanisms to overcome an unhealthy gut), and/or detrimental role (creating a need for 

further increases in levodopa dose). 

 The most novel findings from the final two chapters of this dissertation involved 

the detection of overabundance of opportunistic pathogens in the PD gut [Wallen et al. 

2020], and the establishment of a potential connection between detected opportunistic 

pathogens and genetic variation in the 3′ end of SNCA. These results are intriguing as 

they hark back to Braak’s hypothesis, that non-inherited forms of PD are caused by a 

pathogen that can pass through the gastrointestinal tract lining and spread to the brain 

[Braak et al. 2003; Braak et al. 2003], and its derivative that gut infection, and/or 

imbalance in the gut microbiota, might attribute to formation of pathogenic α-synuclein 

that travels from the gut to the brain via the vagal nerve. These hypotheses have gained 

traction in recent years with continued evidence supporting a connection between 

pathogenic manifestations in the gut and brain in PD, but direct evidence for gut 

pathogen involvement in PD and/or interaction with α-synuclein has been lacking. 

Presence of α-synuclein has been shown in the gastrointestinal tract of persons with early 
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PD [Shannon et al. 2012], Lewy body disease [Breen, Halliday & Lang 2019], and rapid 

eye movement disorder [Knudsen et al. 2018], which has a high conversion rate to PD. 

Large epidemiological studies conducted in Scandinavia have suggested a reduction in 

PD risk for those who have undergone truncal vagotomy years before PD onset 

[Svensson et al. 2015; Liu et al. 2017]. The protective effect of truncal vagotomy was 

experimentally supported by a study in mouse that observed truncal vagotomy and 

endogenous α-synuclein deficiency prevented gut to brain spread of injected preformed 

α-synuclein fibrils and development of PD-like neurodegeneration and behavioral deficits 

[Kim et al. 2019]. Studies in human have shown a role of α-synuclein in pathogen 

response where infection of the gut or olfactory system triggered α-synuclein expression, 

which in turn mobilized the immune system to respond to the infection [Stolzenberg et al. 

2017; Tomlinson et al. 2017]. Connections between pathogenic manifestations in the gut 

and brain in PD have also been supported experimentally through multiple studies in 

mice. It has been shown in a Pink1 knockout mouse model of PD that intestinal infection 

may act as a trigger for dopaminergic cell loss and motor impairment through activation 

of T cells in the periphery [Matheoud et al. 2019]. Mice overexpressing a pathogenic 

mutation in α-synuclein (A53T) showed earlier age at onset of motor dysfunction, and 

exacerbated dopaminergic neuron death and α-synuclein pathology when mild chronic 

gut inflammation was induced compared to the same mice without gut inflammation 

[Kishimoto et al. 2019]. Inoculation of the mouse duodenal intestinal lining with α-

synuclein preformed fibrils induced formation of phosphorylated α-synuclein inclusions 

and promoted inflammation in the gut, disrupted enteric nervous system connectivity, and 

promoted progression of α-synuclein pathology from the gut to the brain in aged mice 
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[Challis et al. 2020]. Despite the increasing evidence for a connection between the gut, α-

synuclein, and PD, no direct evidence in human has been shown for pathogen 

involvement. In our studies, we provide direct evidence from human samples that a 

subset of PD gut microbiomes present with an overabundance of opportunistic pathogens 

and that the presence of these opportunistic pathogens might increase the risk of PD in 

combination with genetic variation in the 3′ SNCA region. The three genera that we 

detected as overabundant in PD included Corynebacterium_1, Porphyromonas, and 

Prevotella, which represented an even larger polymicrobial cluster. The co-occurrence of 

these taxa, who per literature search were deemed to be opportunistic pathogens, were 

also found to co-occur in control subjects at a much lower abundance, suggesting that 

they can be naturally present in healthier guts, but become overabundant in the right 

scenarios. Indeed, these taxa have been shown to grow and cause infections if the 

immune system is compromised or if they are able to penetrate into sterile sites through, 

for example, compromised membranes [Citron et al. 2007; Wagner Mackenzie et al. 

2017; Choi et al. 2019]. As shown in the last chapter of this dissertation, genetic variation 

in the SNCA region might contribute another scenario that allows for overabundance of 

these opportunistic pathogens as differences between PD patients and healthy individuals 

in abundances of these taxa were exacerbated with additional copies of particular alleles. 

Although an initial connection has been made between opportunistic pathogens, α-

synuclein, and PD, it is important to emphasize that no claims can be made to the true 

functional role of these opportunistic pathogens in PD as all analyses performed in these 

studies are associative in nature, and therefore, do not imply a causal direction. The 

knowledge on the function of microorganisms in the gut in respect to PD, and in general, 
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is still currently limited, and these microorganisms are usually studied under narrow 

lenses (e.g. SCFA producing bacteria are deemed anti-inflammatory, therefore, are 

studied for their beneficial properties, while bacteria deemed opportunistic pathogens are 

looked for in clinical specimens for potential infections). Finding the identities of these 

opportunistic pathogens will enable future experimental studies to determine if they play 

a functional role in PD. Uncovering a connection between these opportunistic pathogens 

and genetic variation in the SNCA region provides the first specific lead for follow up 

studies in human to confirm these observations, and in experimental models of PD to 

determine if a true biological interaction between these taxa and genetic variants exist 

and what the direction of effect is. Hopefully with future experimental studies we can 

answer trailing questions: Do these opportunistic pathogens play a role in the 

pathogenesis of PD, and if so, do they influence the progression of PD and its 

pathological manifestations? Does enrichment of these opportunistic pathogens in 

conjunction with genetic variation in SNCA region make PD initiation more likely? Is 

increase in these opportunistic pathogens a consequence of disease or disease related 

factors? Is the increase due to the biological implications of genetic variation in the SNCA 

region, and/or the disease in which the genetic variants make an individual more prone 

to? 

 

Conclusion 

 The main theme throughout the studies performed in this dissertation is the 

generation of new leads for further study, completed for both the variability in PD disease 

progression (i.e. newly identified genetic modifiers of age at diagnosis) and role of the 
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gut microbiome in PD (i.e. detection of overabundance of opportunistic pathogens in PD 

gut and establishment of a connection between these taxa and genetic variation in the 

SNCA region in PD). While going into each study with our own hypotheses, we 

uncovered new leads and additional hypotheses by implementing mostly unbiased, 

hypothesis-free methodology that allowed signals to reveal themselves to us in absence of 

our influence. Results described here have importance for both the basic understanding of 

potential mechanisms for resistance against disease progression, and understanding of the 

alterations reproducibly occurring in the gut microbiome of PD and potential interactions 

those alterations have with host genetics. Results from these studies have implications for 

potential future therapeutics of PD (e.g. increasing neuronal resistance to damage and 

neuronal regeneration through upregulation of LPPR1, or mitigating changes in gut 

microbiota alterations through supplementation of SCFA bacteria and/or specific 

antibiotic targeting of opportunistic pathogens) and potential biomarkers for PD 

prediction (e.g. input of microbiome alterations in conjunction with subject data and host 

genetic information to machine learning algorithms for predicting likelihood of 

developing PD). As with most research, much has been learned, but even more questions 

have now been generated that needs answering. There is more knowledge available for 

unraveling using additional human studies with even larger sample sizes to increase 

power and allow analysis of genetic variants genome-wide with gut microbes 

microbiome-wide, longitudinal studies in both human and animal to track changes in 

prodromal to advanced disease, experimental studies to assess and tease apart biological 

functions, and more advanced methodologies (such as shotgun metagenomics, 

metatranscriptomics, and metabolomics) to broaden the scope of study to other 
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microorganisms (viruses and eukaryotes) and functional outputs (active transcription of 

microbial genes and metabolite production) as well as improving resolution of microbial 

detection to strain and gene level. A lot of work is still left to be done, but the potential 

for new, important discoveries seems to become increasingly more tangible as the work 

pushes on. 
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Table e-1. Assessing interdependence of the two association signals using conditional analysis 
 

Main effect Conditional effect 

   Test SNP  HR P  Covariate SNP HR P 

 
NGRC 

 
Block 1 rs73656147 

 
1.95 3E-6 

 
rs17763929 1.35 0.10 

  Block 2 rs17763929  1.88 5E-8  rs73656147 1.62 1E-3 

   
Block 1 

 
rs73656147 

  
2.88 

 
7E-4 

  
rs17763929 

 
4.75 

 
3E-3 

PAGE Prevalent Adj PC1-3  2.17 0.05  Adj PC1-3 1.88 0.23 
  Block 2 rs17763929  1.87 0.01  rs73656147 0.94 0.44 
   Adj PC1-3  3.03 4E-3  Adj PC1-3 2.24 0.10 

   
Block 1 

 
rs73656147 

  
1.62 

 
0.07 

  
rs17763929 

 
1.66 

 
0.07 

PAGE Incident Adj PC1-3  1.48 0.16  Adj PC1-3 1.50 0.16 
  Block 2 rs17763929  1.04 0.41  rs73656147 0.96 0.42 
   Adj PC1-3  1.03 0.45  Adj PC1-3 0.97 0.45 

Main effect is the association of test SNP with age-at-diagnosis. Conditional effect is the association of test SNP with 
age-at-diagnosis adjusted for covariate SNP. HR (hazard ratio) is the age-for-age increase in the odds of event (PD 
diagnosis) per copy of the minor allele estimated using Cox regression, with its associated significance (P). NGRC was 
adjusted for PC1-3. PAGE had ancestry informative markers (AIMs) for about half of the participants. For PAGE, the 
first row for each SNP is using the total sample size without adjusting for PCs, and the second row for each SNP is 
using the subset of samples with AIMs and adjusting for PC1-3. P values are two- sided for NGRC, and one-sided for 
PAGE. 
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Table e-2. Investigating robustness and heterogeneity in the association signals. 

     Block 1 

rs73656147 

   Block 2 

rs17763929 

 

  N  MAF HR P P Het  MAF HR P P Het 
All  1950  0.013 1.95 3E-06   0.022 1.88 5E-08  
PD-associated risk factors             
Familial  424  0.013 1.84 0.05   0.023 2.09 3E-03  

Sporadic  1526  0.013 2.00 2E-05 0.81  0.022 1.84 4E-06 0.65 
Male  1312  0.012 2.24 8E-06   0.020 1.81 9E-05  
Female  638  0.015 1.59 0.05 0.25  0.028 1.94 2E-04 0.77 
Smokers  724  0.016 1.83 4E-03   0.027 1.89 2E-04  
Non-smokers  852  0.012 1.87 6E-03 0.94  0.019 1.74 5E-03 0.76 
Coffee High  610  0.014 1.88 0.01   0.027 1.69 6E-03  
Coffee Low  828  0.013 1.86 4E-03 0.98  0.020 2.07 2E-04 0.47 
OTC NSAIDs - ever  963  0.015 2.05 2E-04   0.026 1.70 7E-04  
OTC NSAIDs - never  582  0.011 1.63 0.08 0.50  0.016 1.79 0.02 0.86 
Recruitment site             
New York  410  0.016 2.86 2E-04   0.024 2.83 1E-05  
Oregon  473  0.012 2.39 5E-03   0.025 1.88 4E-03  
Georgia  230  0.024 1.17 0.62   0.027 0.89 0.71  

Washington  837  0.010 1.93 9E-03 0.11  0.019 2.04 3E-04 3E-03 
Ashkenazi Jewish             
Yes  88  0.017 2.88 0.09   0.069 1.24 0.51  
No  1862  0.013 1.95 6E-06 0.54  0.020 2.05 7E-09 0.15 
Paternal or maternal ancestry 
Great Britain  527  0.009 2.67 3E-03   0.014 2.59 7E-04  
Germany / Austria  434  0.012 1.88 0.05   0.022 2.54 1E-04  
Ireland  245  0.019 1.22 0.57   0.038 1.37 0.22  
Scandinavia  223  0.005 1.83 0.38   0.013 2.28 0.09  

Eastern Europe  91  0.027 4.37 3E-03   0.033 2.39 0.06  
Italy  89  0.034 4.45 1E-03   0.041 4.14 6E-04  
France  80  0.016 4.79 0.03   0.028 5.53 2E-03  
Russia  62  0.008 4.28 0.16 0.35  0.049 0.69 0.44 1E-04 

The NGRC dataset was stratified by variables relevant to PD, association of each SNP with age-at-diagnosis was tested 
within each stratum adjusted for PC 1-3, using Cox regression to generate hazard ratio (HR) and significance (P). The 
results across strata were then compared for evidence of heterogeneity (P Het). Association signal for block 1 
(rs73656147) was relatively consistent across strata with so significant evidence for heterogeneity (this block was also 
robustly replicated in PAGE dataset with no evidence of heterogeneity). The signal for block 2 (rs17763929) varied 
significantly as a function of geographic origin of participants, both for their current residence within US and their 
European country of origin (this SNP was significantly associated with PC1 and PC3, and gave evidence for 
heterogeneity in PAGE dataset as well). MAF=minor allele frequency. HR=hazard ratio using Cox regression. 
P=statistical significance of HR. P Het=statistical significance of heterogeneity across strata. Early-onset PD: age ≤50 
years at onset of motor symptom. Late-onset PD: age >50 years at onset of motor symptom. Smoker: ≥100 cigarettes in 
lifetime. Coffee: Number of cups of caffeinated coffee drank per day multiplied by the number of years of 
consumption; high and low divided at the median in NGRC participants with PD. OTC NSAIDs: Ever or never use of 
over the counter non-steroidal anti-inflammatory drugs. Jewish/Non-Jewish: Defined by self-report, and verified by 
principal component analysis (the core of the Jewish cluster was defined within 0.04≤PC1≤0.055 and 
0.001≤PC2≤0.013). Recruitment site: US states where participants were recruited from. Paternal or maternal ancestry: 
Self reports of the countries from which ancestors immigrated to US. 
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Figure e-1. Distribution of age-at-diagnosis. 

 
 
NGRC (discovery)                                       PAGE all (replication) 

 
PAGE Prevalent cases                                       PAGE Incident cases 
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Figure e-2. Principal Component Analysis (PCA) plots. 
 
A. NGRC and PAGE cluster with Europeans in 1000G_Phase_3. 
 
PC1 vs. PC2 (left panel) and PC1 vs. PC3 (right panel) were plotted for NGRC 
participants with PD (top row, N=1950, using 100K pruned SNPs), and for subset of 
PAGE participants for whom PCs could be calculated (bottom row, N=396, using 
20K pruned SNPs). Blue: NGRC (first row) or PAGE (second row). Pink: European. 
Yellow: Americas. Green: South Asia. Red: East Asia. Grey: African. 
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B. PCA of NGRC by Jewish ancestry, European country of origin, and US enrollment 
site. 

 
First row shows clustering of Jewish ancestry (red) in NGRC. The core of the Jewish 
cluster was defined within 0.04≤PC1≤0.055 and 0.001≤PC2≤0.013. Second row is the 
self-reported European country of ancestry, which follows the map of Europe. In the 
third row, NGRC participants are colored according to the state where they were 
enrolled, showing no particular clustering for enrollment site. 
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C. Sub-haplotypes & ancestral origins.  
 

As there seems to be an ancestral effect, we check whether different sub- haplotypes are 
present in these blocks for the different ancestral groups in NGRC participants with PD. 
Block 1 (left triangle in the haploview) is a single block (LD>0.9) represented by 
rs73495940. Block 2 (right triangle in the haploview) is composed of several sub-
haplotypes (LD≤0.7). To tag these haplotypes, while incorporating functional 
information, we used the 5 variants in block 2 that had significant evidence for 
functional relevance (either HiC FDR<1E-6 and enhancer in brain, or CADD>10, or 
eQTL with FDR=4E-4 see table 4). As shown in the LD table below, 3 of the 5 variants 
are in close LD (r2>0.95) which can be tagged by one SNP (rs17763929). We defined 3 
sub-haplotypes in block 2 represented by rs17763929, rs6118842, and rs149155028. We 
identified the individuals who carried the minor allele of each variant, and mapped them 
to PC1 vs. PC2 (top row) and PC1 vs. PC3 (bottom row). There is no pattern that would 
suggest sub- haplotypes cluster with different ancestral group. 
 

LD in Block 2 rs17763929 rs61188842 rs117058418 rs117314512 rs149155028 
rs17763929 - 0.58 0.96 0.96 0.66 
rs61188842  - 0.57 0.57 0.39 
rs117058418   - 1 0.7 
rs117314512    - 0.7 
rs149155028     - 
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Figure e-3. Moving average allele frequency plots (MAP) of PD-associated variants in 
LPPR1 

 
A. Age in cases (red) vs. age in controls          B. Age at diagnosis in cases (red) vs. age 
     (blue), N=2000 PD, 1986 controls                   in controls (blue), N=1950 cases, 1986  
                                                                               controls 
Block 1 rs73656147 
 

 
 
 
 
 
 
 
Block 2 rs17763929 
 
 
 
 
 
 
 
 
To visualize the dynamics of allele frequency changes as a function of age and age-
at-diagnosis, average minor allele frequencies (MAF) were plotted in a moving 
window across the age spectrum, using MAP software (freqMAP_v_0.2 in R). NGRC 
dataset was used. Average MAF (and 95% central posterior interval) was plotted by 
age in controls (blue circles, N=1986), and age (panel A, N=2000) or age-at-diagnosis 
(panel B, N=1950) in patients (red triangles). Ages and ages-at-diagnosis ≤45 were 
collapsed to 45, and ≥80 were collapsed to 80. Significance of difference in MAF 
between cases and controls is shown by a light gray bar (≥95% posterior probability) 
or dark gray bar (≥99% posterior probability). The patterns show minor allele 
frequencies declined by increasing age and age-at-diagnosis in cases, but not in 
controls, which is consistent with pattern expected for a modifier. Specifically, the 
MAF for rs73656147 started at ~0.02 at age 45 in both cases and controls and 
declined steadily as a function of age and age-at-diagnosis in cases, but not in 
controls, ending at age 80, with MAF~0.009 in cases and MAF~0.028 in controls. 
The MAF for rs17763929 started at ~0.03 in cases and ~0.02 in controls, decreased 
by age and age-at-diagnosis in cases but not in controls, ending by age 80 at 
MAF~0.01 in cases and ~0.03 in controls. Based on statistics (grey bars here, and 
conditional analysis in table 2), the decline in MAF is significant in cases for both 
SNPs, is driven by age-at-diagnosis, and retains significance when adjusted for age. 
Conditional analysis (table 2) suggests the primary driver of allele frequency decline 
is the association with age- at-diagnosis, and that the age effect in cases is a by-
product of the correlation between age and age-at-diagnosis.
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Supplementary Table 1. Subject Data   
 
 
 
 

 

    Dataset 1 

 

Dataset 2 

   

PD Control 

  

PD Control 

 

   
N with 

data 

Summary 

statistics 

N with 

data 

Summary 

statistics 

P 

 
N with 

data 

Summary 

statistics 

N with 

data 

Summary 

statistics 

P 

    

Number of subjects enrolled 

with complete data 

212 - 136 - -   323 - 184 - - 

 

Microbiome 

Number of subjects whose 16S 

sequences passed QC 

201 - 132 - - 

 

323 - 184 - 

 

 
Number of unique ASVs 

detected 

201 4,863 132 3,315 - 

 

323 9,188 184 6,667 

 

  Number of genera detected 201 404 132 333 -   323 527 184 441   

  Metadata 

Number of subjects who passed 

sequence and metadata QC 

199 - 132 - -   323 - 184 -   

1 

Age & Sex 

Age 199 68.3±9.2 132 70.2±8.6 0.04 

 

323 67.7±9.0 184 66.4±8.3 0.05 

2 Sex (N & % male) 199 133 (67%) 132 52 (39%) 1E-06   323 206 (64%) 184 55 (30%) 2E-13 

3 Geography 

Seattle, WA 199 93 132 58 - 

 

323 0 184 0 - 

Albany, NY 

 

75 

 

62 - 

  

0 

 

0 - 

Atlanta, GA 

 

31 

 

12 - 

  

0 

 

0 - 

Birmingham, AL   0   0 -     323   184 - 

4   Stool sample travel time in days 190 3.3±1.9 129 2.6±1.5 2E-03   314 5.2±3.3 183 5.0±2.6 0.73 

5 Race Race (N & %White) 199 196 (98%) 132 132 (100%) 0.28 

 

321 317 (99%) 184 183 (>99%) 0.66 

6 

Weight 

BMI 192 26.6±5.5 128 28.3±5.7 0.02 

 

312 27.4±5.0 180 27.9±5.9 0.62 

7 Lost >10 pounds in past year  195 45 (23%) 126 15 (12%) 0.01 

 

316 79 (25%) 181 21 (12%) 3E-04 

8 Gained >10 pounds in past year  196 26 (13%) 129 10 (8%) 0.15   309 45 (15%) 179 20 (11%) 0.33 

9 

Diet 

Fruits or vegetables daily  194 151 (78%) 131 116 (89%) 0.02 

 

- - - - - 

10 Meat, fish, poultry daily  193 110 (57%) 131 82 (63%) 0.36 

 

- - - - - 

11 Nuts daily  194 43 (22%) 130 36 (28%) 0.29 

 

- - - - - 

12 

Yogurt at least a few times a 

week 

191 68 (36%) 128 57 (45%) 0.13 

 

- - - - - 

13 Grains daily 192 132 (69%) 129 86 (67%) 0.72 

 

- - - - - 

14 Alcohol 194 116 (60%) 131 93 (71%) 0.05 

 

320 133 (42%) 181 101 (56%) 3E-03 

15 Tobacco 196 14 (7%) 131 5 (4%) 0.24 

 

321 13 (4%) 183 13 (7%) 0.15 

16 Caffeine 193 137 (71%) 131 100 (76%) 0.31   319 273 (86%) 183 161 (88%) 0.50 
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17 

GI Health 

Constipation (no bowel 

movement) in ≥3 days prior to 

stool collection 

196 29 (15%) 129 2 (2%) 3E-05 

 

302 54 (18%) 176 8 (5%) 2E-05 

18 

Diarrhea on the day of stool 

collection  

196 6 (3%) 129 2 (2%) 0.49 

 

301 12 (4%) 178 5 (3%) 0.61 

19 

GI pain on the day of stool 

collection 

164 14 (9%) 120 8 (7%) 0.66 

 

303 27 (9%) 179 3 (2%) 1E-03 

20 

Excess gas on the day of stool 

collection 

196 27 (14%) 130 2 (2%) 9E-05 

 

303 47 (16%) 180 8 (4%) 2E-04 

21 

Bloating on the day of stool 

collection 

197 20 (10%) 131 3 (2%) 7E-03 

 

305 36 (12%) 179 9 (5%) 0.01 

22 

GI discomfort on the day of 

stool collection (yes to any item 

17-21) 

183 104 (57%) 119 26 (22%) 2E-09 

 

305 103 (34%) 176 26 (15%) 4E-06 

23 

Constipation (<3 bowel 

movements per week) in the past 

3 months  

191 82 (43%) 130 6 (5%) 6E-16 

 

312 138 (44%) 180 31 (17%) 6E-10 

24 Diarrhea in the past 3 months 189 32 (17%) 127 28 (22%) 0.31 

 

306 80 (26%) 181 54 (30%) 0.40 

25 Colitis 192 9 (5%) 130 2 (2%) 0.21 

 

316 54 (17%) 180 24 (13%) 0.31 

26 IBS 191 14 (7%) 130 8 (6%) 0.82 

 

312 17 (5%) 178 14 (8%) 0.34 

27 Crohn's disease 193 4 (2%) 131 1 (1%) 0.65 

 

314 3 (1%) 180 0 (0%) 0.56 

28 IBD 193 5 (3%) 130 2 (2%) 0.71 

 

307 9 (3%) 178 4 (2%) 0.78 

29 Ulcers 192 18 (9%) 130 9 (7%) 0.54 

 

314 6 (2%) 180 4 (2%) 1.00 

30 SIBO - - - - - 

 

305 0 (0%) 177 0 (0%) 1.00 

31 Celiac - - - - - 

 

314 0 (0%) 177 0 (0%) 1.00 

32 GI cancer - - - - - 

 

315 1 (<1%) 179 1 (<1%) 1.00 

33 

Intestinal disease (yes to any 

item 25-32) 

193 38 (20%) 131 19 (15%) 0.24   298 80 (27%) 173 41 (24%) 0.51 

34 

Medications 

Currently taking digestive 

medication 

192 60 (31%) 126 22 (17%) 6E-03 

 

- - - - - 

35 Currently taking antibiotics 193 8 (4%) 130 3 (2%) 0.54 

 

315 13 (4%) 179 7 (4%) 1.00 

36 

Taken antibiotics in past 3 

months 

190 24 (13%) 130 22 (17%) 0.33 

 

308 63 (20%) 170 33 (19%) 0.81 

37 

Currently taking anti-

inflammatory drugs 

190 77 (41%) 128 56 (44%) 0.64 

 

- - - - - 

38 Currently taking probiotics 184 42 (23%) 128 33 (26%) 0.59   - - - - - 

39  Disease duration in years 199 13.8±6.7 - - -  323 9.2±7.1 - - - 

40 Parkinson 

Disease 

Patients on carbidopa/levodopa 187 170 (91%) - - - 

 

313 266 (85%) - - - 

41 Levodopa dose, mg/day 181 764±574 - - - 

 

313 563±443 - - - 
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42 Duration &  

Medications 

Patients on dopamine agonist 187 99 (53%) - - - 

 

303 153 (50%) - - - 

43 Patients on MAO-B inhibitor 187 71 (38%) - - - 

 

318 86 (27%) - - - 

44 Patients on amantadine 187 49 (26%) - - - 

 

315 60 (19%) - - - 

45 Patients on COMT inhibitor 187 37 (20%) - - - 

 

320 13 (4%) - - - 

46 Patients on anticholinergics 187 8 (4%) - - - 

 

322 10 (3%) - - - 

47 Patients not on PD medication 187 3 (2%) - - -   316 17 (5%) - - - 

Column “N with data” shows the number of individuals for whom data on the specified variable was available; for all metadata, only subjects who passed both sequence and 

metadata quality control (QC) were considered. “Summary statistics” for metadata are shown as mean±SD for quantitative traits, and number and percentage of individuals with 

positive response (yes) for dichotomous traits. 15 samples (all in dataset 1) yielded no or too few 16S sequences to be analyzed and were removed.  Two subjects had unreliable 

self-reported metadata; they were included in analyses that required only sequences and case-control status but were excluded from all analyses that required any metadata (these 

subjects are identified as 10122.FP0016201 and 10122.GMWA.1090 in the dataset on NCBI SRA). P-values are two-sided testing the difference in the distribution of each variable 

in PD vs. control.  Variables that differed in PD vs. control at a conservatively uncorrected two-sided P<0.05 were carried forward and included with case-control status in 

PERMANOVA and tested for their effects on inter-individual differences in microbiome composition (b diversity).  Constipation (no bowel movement) in ³3 days prior to stool 

collection, GI pain on day of stool collection, Excess gas on day of stool collection, and Bloating on day of stool collection were captured by GI discomfort on day of stool 

collection, hence only GI discomfort on day of stool collection was carried forward to PERMANOVA. Currently taking digestive medication (mainly laxatives or antacid) was not 

carried to PERMANOVA because it was no longer significant when adjusted for GI discomfort on day of stool collection. 
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Supplementary Table 2. MWAS of dataset 1 conducted using ANCOM 

 

Sample size for ANCOM included subset of samples that had complete data on all covariates tested: N= 171 cases and 117 controls in dataset 1. 

W= ANCOM score indicating the number of times a genus achieved FDR<0.05 as compared to other genera (maximum W possible: 444 in dataset 1, 560 in dataset 2).  

0.8= Threshold at which results were considered significant (TRUE).  

 

W 0.8 Kingdom Phylum Class Order Family Genus 

441 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Agathobacter 

426 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospira 

418 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_ND3007_group 

411 TRUE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium 

410 TRUE Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 

410 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 

407 TRUE Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 

406 TRUE Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas 

400 TRUE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella 

393 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Hungatella 

391 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia 

388 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Fusicatenibacter 

384 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_UCG-004 

382 TRUE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Butyricicoccus 

378 TRUE Bacteria Firmicutes Clostridia Clostridiales Family_XI Ezakiella 

376 TRUE Bacteria Synergistetes Synergistia Synergistales Synergistaceae Cloacibacillus 

374 TRUE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Megasphaera 

372 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus_3 

368 TRUE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Coprobacillus 

367 TRUE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira 

365 TRUE Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Akkermansiaceae Akkermansia 

360 TRUE Bacteria Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium_1 

356 TRUE Bacteria Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus 

347 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Anaerostipes 

331 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae NA 

327 FALSE Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobrevibacter 

326 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae UBA1819 

323 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-013 
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319 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Anaerococcus 

318 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-004 

306 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Anaerotruncus 

302 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Varibaculum 

293 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae NA 

275 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Mobiluncus 

263 FALSE Bacteria Firmicutes Clostridia Clostridiales NA NA 

252 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_NK4B4_group 

249 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Peptoniphilus 

65 FALSE Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae NA 

31 FALSE Bacteria Tenericutes Mollicutes Anaeroplasmatales Anaeroplasmataceae Anaeroplasma 

20 FALSE NA NA NA NA NA NA 

19 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Fournierella 

17 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Alcaligenes 

16 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotellaceae_UCG-001 

15 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_6 

15 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales NA NA 

15 FALSE Bacteria Firmicutes Bacilli Lactobacillales Aerococcaceae NA 

14 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae NA 

14 FALSE Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Bilophila 

14 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Peptoclostridium 

14 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae CHKCI002 

14 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Paenalcaligenes 

14 FALSE Bacteria Bacteroidetes Bacteroidia Sphingobacteriales env.OPS_17 NA 

14 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Pseudocitrobacter 

14 FALSE Bacteria Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc 

14 FALSE Bacteria Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Nocardioides 

14 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium 

14 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Pelomonas 

14 FALSE Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Enhydrobacter 

14 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Erysipelothrix 

14 FALSE Bacteria Dependentiae Babeliae Babeliales Vermiphilaceae NA 

14 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Intrasporangiaceae Ornithinimicrobium 

14 FALSE Bacteria Firmicutes Bacilli Lactobacillales Enterococcaceae Melissococcus 



 

 231 

14 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Methylophilaceae Methylobacillus 

14 FALSE Bacteria Actinobacteria Actinobacteria Corynebacteriales Nocardiaceae Rhodococcus 

14 FALSE Bacteria Firmicutes Clostridia Clostridiales Eubacteriaceae Anaerofustis 

14 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Tannerellaceae NA 

13 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Alistipes 

13 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Sellimonas 

13 FALSE Bacteria Bacteroidetes Bacteroidia Flavobacteriales Crocinitomicaceae NA 

13 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Yersinia 

13 FALSE Bacteria Actinobacteria Actinobacteria Streptosporangiales Nocardiopsaceae Nocardiopsis 

13 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Hafnia-Obesumbacterium 

13 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Micrococcaceae Glutamicibacter 

13 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Parvimonas 

13 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Xylophilus 

13 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Pseudoclavibacter 

13 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotellaceae_Ga6A1_group 

13 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae Bradyrhizobium 

13 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Leucobacter 

13 FALSE Bacteria Actinobacteria Actinobacteria Pseudonocardiales Pseudonocardiaceae Pseudonocardia 

13 FALSE Bacteria Actinobacteria Actinobacteria NA NA NA 

13 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Micrococcaceae Paenarthrobacter 

13 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Marinifilaceae NA 

13 FALSE Bacteria Actinobacteria Actinobacteria Frankiales Geodermatophilaceae Blastococcus 

13 FALSE Bacteria Firmicutes Bacilli Bacillales Family_X Thermicanus 

13 FALSE Bacteria Bacteroidetes Bacteroidia Flavobacteriales Weeksellaceae Empedobacter 

13 FALSE Eukaryota NA NA NA NA NA 

13 FALSE Bacteria Firmicutes Bacilli Lactobacillales Enterococcaceae NA 

13 FALSE Bacteria Proteobacteria Deltaproteobacteria NA NA NA 

13 FALSE Bacteria Entotheonellaeota Entotheonellia Entotheonellales Entotheonellaceae NA 

13 FALSE Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae NA 

13 FALSE Bacteria Cyanobacteria Melainabacteria Obscuribacterales NA NA 

12 FALSE Bacteria Firmicutes Clostridia NA NA NA 

12 FALSE Bacteria Epsilonbacteraeota Campylobacteria Campylobacterales Campylobacteraceae Campylobacter 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Comamonas 

12 FALSE Bacteria Firmicutes Bacilli Bacillales Paenibacillaceae Paenibacillus 
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12 FALSE Bacteria Proteobacteria Alphaproteobacteria Paracaedibacterales Paracaedibacteraceae Candidatus_Odyssella 

12 FALSE Bacteria Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Lawsonella 

12 FALSE Bacteria Bacteroidetes Bacteroidia Sphingobacteriales Sphingobacteriaceae NA 

12 FALSE Bacteria Firmicutes Bacilli Bacillales Bacillaceae NA 

12 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Catenisphaera 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Rhodocyclaceae NA 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Methylophilaceae Methylophilus 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Herminiimonas 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Phocea 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XIII Family_XIII_UCG-001 

12 FALSE Bacteria Bacteroidetes Bacteroidia Sphingobacteriales Sphingobacteriaceae Pedobacter 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Moryella 

12 FALSE Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Altererythrobacter 

12 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Mitsuokella 

12 FALSE Bacteria Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Cetobacterium 

12 FALSE Bacteria Proteobacteria Deltaproteobacteria Bdellovibrionales Bdellovibrionaceae Bdellovibrio 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_FCS020_group 

12 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae 

Allorhizobium-Neorhizobium-

Pararhizobium-Rhizobium 

12 FALSE Bacteria Proteobacteria Deltaproteobacteria Bdellovibrionales Bacteriovoracaceae Peredibacter 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-008 

12 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotellaceae_UCG-003 

12 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Actinotignum 

12 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Ochrobactrum 

12 FALSE Bacteria Firmicutes Bacilli Lactobacillales Aerococcaceae Facklamia 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Salinisphaerales Solimonadaceae Nevskia 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Simplicispira 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Peptostreptococcus 

12 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Enterorhabdus 

12 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Rikenella 

12 FALSE Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae NA 

12 FALSE Bacteria Tenericutes Mollicutes NA NA NA 

12 FALSE Bacteria Lentisphaerae Oligosphaeria Oligosphaerales Oligosphaeraceae Z20 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Herbinix 
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12 FALSE Bacteria Bacteroidetes Bacteroidia Flavobacteriales Weeksellaceae Elizabethkingia 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Helcococcus 

12 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae NA 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Rhodocyclaceae Methyloversatilis 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Heliobacteriaceae Hydrogenispora 

12 FALSE Bacteria Cyanobacteria Oxyphotobacteria Chloroplast NA NA 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Verticia 

12 FALSE Bacteria Spirochaetes Brachyspirae Brachyspirales Brachyspiraceae Brachyspira 

12 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Anaerovibrio 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Bordetella 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Robinsoniella 

12 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Micrococcaceae NA 

12 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Arcanobacterium 

12 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Brucella 

12 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Micrococcaceae Nesterenkonia 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae GCA-900066755 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria JTB23 NA NA 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XIII Anaerovorax 

12 FALSE Bacteria Kiritimatiellaeota Kiritimatiellae WCHB1-41 NA NA 

12 FALSE Bacteria Bacteroidetes Bacteroidia Cytophagales Spirosomaceae Dyadobacter 

12 FALSE Bacteria Bacteroidetes Rhodothermia Rhodothermales Rhodothermaceae NA 

12 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Amnibacterium 

12 FALSE Bacteria Firmicutes Bacilli Lactobacillales Carnobacteriaceae Granulicatella 

12 FALSE Bacteria Firmicutes Bacilli Lactobacillales NA NA 

12 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Trueperella 

12 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Promicromonosporaceae Cellulosimicrobium 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Harryflintia 

12 FALSE Bacteria Patescibacteria Saccharimonadia Saccharimonadales Saccharimonadaceae NA 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Neisseriaceae Neisseria 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Epulopiscium 

12 FALSE Bacteria Bacteroidetes Bacteroidia Flavobacteriales Weeksellaceae NA 

12 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Micrococcaceae Micrococcus 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Clostridioides 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Cuneatibacter 
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12 FALSE Bacteria Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae NA 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Acetanaerobacterium 

12 FALSE Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae NA 

12 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Paenochrobactrum 

12 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Shinella 

12 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Atopobiaceae NA 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Candidatus_Soleaferrea 

12 FALSE Bacteria Bacteroidetes Bacteroidia Chitinophagales Saprospiraceae NA 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Parapusillimonas 

12 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Acidaminococcaceae Succiniclasticum 

12 FALSE Bacteria Verrucomicrobia Verrucomicrobiae Opitutales Puniceicoccaceae NA 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Ralstonia 

12 FALSE Bacteria Firmicutes Bacilli Bacillales Paenibacillaceae Ammoniphilus 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales NA NA 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Thermomonas 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptococcaceae Desulfotomaculum 

12 FALSE Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobacterium 

12 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Dermabacteraceae Dermabacter 

12 FALSE Bacteria Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae NA 

12 FALSE Bacteria Firmicutes Bacilli Bacillales Staphylococcaceae Jeotgalicoccus 

12 FALSE Bacteria Planctomycetes Planctomycetacia Pirellulales Pirellulaceae Rhodopirellula 

12 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Neorhizobium 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI NA 

12 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Beijerinckiaceae Methylobacterium 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Paeniclostridium 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Aeromonadaceae Tolumonas 

12 FALSE Bacteria Chloroflexi Dehalococcoidia SAR202_clade NA NA 

12 FALSE Bacteria Firmicutes Bacilli Bacillales Bacillaceae Oceanobacillus 

12 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Dysgonomonadaceae Proteiniphilum 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Eubacteriaceae Pseudoramibacter 

12 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae NA 

12 FALSE Bacteria Firmicutes Bacilli Lactobacillales Aerococcaceae Aerococcus 

12 FALSE Bacteria Firmicutes Bacilli NA NA NA 

12 FALSE Bacteria Bacteroidetes NA NA NA NA 
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12 FALSE Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Rhodanobacteraceae Rhodanobacter 

12 FALSE Bacteria Bacteroidetes Bacteroidia Flavobacteriales Weeksellaceae Moheibacter 

12 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales NA NA 

12 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Selenomonas_4 

12 FALSE Bacteria Proteobacteria Alphaproteobacteria NA NA NA 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Defluviitaleaceae NA 

12 FALSE Bacteria Bacteroidetes Bacteroidia Flavobacteriales Flavobacteriaceae NA 

12 FALSE Bacteria Proteobacteria Deltaproteobacteria Myxococcales mle1-27 NA 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Syntrophomonadaceae NA 

12 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Actinobaculum 

12 FALSE Bacteria Bacteroidetes Bacteroidia Cytophagales Spirosomaceae Rhabdobacter 

12 FALSE Bacteria Actinobacteria NA NA NA NA 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Pseudoflavonifractor 

12 FALSE Bacteria Patescibacteria Saccharimonadia Saccharimonadales NA NA 

12 FALSE Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae NA 

12 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Asteroleplasma 

12 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Mesorhizobium 

12 FALSE Bacteria Proteobacteria Alphaproteobacteria Rickettsiales Mitochondria NA 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Rhodocyclaceae Dechloromonas 

12 FALSE Bacteria Bacteroidetes Bacteroidia Chitinophagales Chitinophagaceae Flavihumibacter 

12 FALSE Bacteria Verrucomicrobia Verrucomicrobiae NA NA NA 

11 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Providencia 

11 FALSE Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Aeromonadaceae Aeromonas 

11 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Achromobacter 

11 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XIII S5-A14a 

11 FALSE Bacteria Epsilonbacteraeota Campylobacteria Campylobacterales Arcobacteraceae Arcobacter 

11 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae UC5-1-2E3 

11 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Micrococcaceae Pseudoglutamicibacter 

11 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Shuttleworthia 

11 FALSE Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingopyxis 

11 FALSE Bacteria Actinobacteria Actinobacteria Streptomycetales Streptomycetaceae Streptomyces 

11 FALSE Bacteria Synergistetes Synergistia Synergistales Synergistaceae Synergistes 

11 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Anaerosporobacter 

11 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Massilia 
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11 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Pseudochrobactrum 

11 FALSE Bacteria Bacteroidetes Bacteroidia Sphingobacteriales Sphingobacteriaceae Nubsella 

11 FALSE Bacteria Firmicutes Bacilli Lactobacillales Leuconostocaceae Weissella 

11 FALSE Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Gardnerella 

11 FALSE Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Caulobacter 

11 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Solobacterium 

11 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Senegalimassilia 

11 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-011 

11 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Cupriavidus 

11 FALSE Bacteria Firmicutes Clostridia Clostridiales Defluviitaleaceae Defluviitaleaceae_UCG-011 

11 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Micrococcaceae Rothia 

11 FALSE Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Novosphingobium 

11 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Aquabacterium 

11 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Microbacteriaceae NA 

11 FALSE Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales NA NA 

10 FALSE Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Succinivibrionaceae Succinivibrio 

10 FALSE Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Succinivibrionaceae NA 

10 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptococcaceae NA 

10 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Tyzzerella_3 

10 FALSE Bacteria Firmicutes Bacilli Bacillales Planococcaceae Lysinibacillus 

10 FALSE Bacteria Fusobacteria Fusobacteriia Fusobacteriales Leptotrichiaceae Sneathia 

10 FALSE Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingobium 

10 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Caproiciproducens 

10 FALSE Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Alloscardovia 

10 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Adlercreutzia 

10 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Millionella 

10 FALSE Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae_1 Sarcina 

10 FALSE Bacteria Lentisphaerae Lentisphaeria Victivallales NA NA 

10 FALSE Bacteria Synergistetes Synergistia Synergistales Synergistaceae Pyramidobacter 

10 FALSE Bacteria Synergistetes Synergistia Synergistales Synergistaceae Jonquetella 

10 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Atopobiaceae Olsenella 

10 FALSE Bacteria Firmicutes Bacilli Bacillales Family_XI Gemella 

10 FALSE Bacteria Elusimicrobia Elusimicrobia Elusimicrobiales Elusimicrobiaceae Elusimicrobium 

10 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paracoccus 
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10 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Acidaminococcaceae NA 

10 FALSE Bacteria Firmicutes Negativicutes Selenomonadales NA NA 

10 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Cosenzaea 

10 FALSE Bacteria Actinobacteria Actinobacteria Corynebacteriales NA NA 

10 FALSE Bacteria Proteobacteria NA NA NA NA 

10 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae NA 

10 FALSE Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae NA 

9 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 

9 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Alloprevotella 

9 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_UCG-003 

9 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae Coprobacter 

9 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Murdochiella 

9 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Ottowia 

9 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Merdibacter 

9 FALSE Bacteria Firmicutes Clostridia DTU014 NA NA 

9 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Anaerofilum 

9 FALSE Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanosphaera 

9 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae NA 

9 FALSE Bacteria Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium 

8 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-005 

8 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Variovorax 

8 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Oligella 

8 FALSE Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae NA 

8 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Muribaculaceae CAG-873 

8 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae NA 

8 FALSE Bacteria Firmicutes Bacilli Bacillales Paenibacillaceae Brevibacillus 

8 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Oxalobacter 

8 FALSE Bacteria Firmicutes Clostridia Clostridiales Christensenellaceae NA 

8 FALSE Bacteria Firmicutes Bacilli Bacillales Planococcaceae Rummeliibacillus 

8 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Faecalicoccus 

8 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-009 

8 FALSE Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae_1 Clostridium_sensu_stricto_13 

8 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Cellulosilyticum 

8 FALSE Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Mailhella 
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8 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Gordonibacter 

8 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Oribacterium 

8 FALSE Bacteria Firmicutes Bacilli Bacillales Staphylococcaceae Nosocomiicoccus 

8 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales NA NA 

8 FALSE Bacteria Lentisphaerae Lentisphaeria Victivallales Victivallaceae NA 

8 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Allobaculum 

8 FALSE Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 

8 FALSE Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae_1 NA 

7 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea 

7 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotellaceae_NK3B31_group 

7 FALSE Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio 

7 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Erysipelotrichaceae_UCG-004 

7 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Candidatus_Stoquefichus 

7 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Holdemania 

7 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Acidovorax 

7 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae GCA-900066575 

7 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI W5053 

7 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Negativicoccus 

7 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Anaeroglobus 

7 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Marinifilaceae Sanguibacteroides 

7 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae NA 

6 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Intestinimonas 

6 FALSE Bacteria Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae NA 

6 FALSE Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Pediococcus 

6 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Fastidiosipila 

6 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Gallicola 

6 FALSE Archaea Euryarchaeota Thermoplasmata Methanomassiliicoccales Methanomassiliicoccaceae Methanomassiliicoccus 

5 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoclostridium 

5 FALSE Bacteria Bacteroidetes Bacteroidia Flavobacteriales Flavobacteriaceae Flavobacterium 

5 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae NA 

5 FALSE Bacteria Firmicutes Clostridia Clostridiales Clostridiales_vadinBB60_group NA 

5 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Megamonas 

5 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Erysipelatoclostridium 

5 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae NA 
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5 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Dysgonomonadaceae Dysgonomonas 

5 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Terrisporobacter 

5 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-010 

5 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae NA 

5 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae GCA-900066225 

5 FALSE Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Pseudoxanthomonas 

5 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Marvinbryantia 

5 FALSE Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus 

5 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae NA 

5 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Angelakisella 

5 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Allisonella 

5 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptococcaceae Peptococcus 

5 FALSE Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae NA 

5 FALSE Archaea Euryarchaeota Thermoplasmata Methanomassiliicoccales Methanomethylophilaceae NA 

5 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Howardella 

5 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Brevibacteriaceae Brevibacterium 

5 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Actinomyces 

5 FALSE Bacteria Firmicutes Clostridia Clostridiales Eubacteriaceae Eubacterium 

5 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Atopobiaceae Atopobium 

5 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Slackia 

4 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillibacter 

4 FALSE Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae_1 Clostridium_sensu_stricto_1 

4 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Finegoldia 

4 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XIII Family_XIII_AD3011_group 

4 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae CAG-56 

4 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Dielma 

4 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_1 

4 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XIII NA 

4 FALSE Bacteria Bacteroidetes Bacteroidia Sphingobacteriales Sphingobacteriaceae Sphingobacterium 

4 FALSE Bacteria Bacteroidetes Bacteroidia NA NA NA 

4 FALSE Bacteria Lentisphaerae Lentisphaeria Victivallales Victivallaceae Victivallis 

4 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriales_Incertae_Sedis NA 

4 FALSE Bacteria Bacteroidetes Bacteroidia Flavobacteriales Weeksellaceae Cloacibacterium 

4 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Hydrogenoanaerobacterium 
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4 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Eggerthella 

4 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae NA 

4 FALSE Bacteria Firmicutes NA NA NA NA 

4 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XIII Mogibacterium 

4 FALSE Bacteria Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus 

4 FALSE Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae NA 

3 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Proteus 

3 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Acidaminococcaceae Acidaminococcus 

3 FALSE Bacteria Firmicutes Clostridia Clostridiales Christensenellaceae Christensenellaceae_R-7_group 

3 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-003 

3 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Morganella 

3 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae 

Ruminococcaceae_NK4A214_gro

up 

3 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Marinifilaceae Odoribacter 

3 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Intestinibacter 

3 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae CAG-352 

3 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_7 

3 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Rikenellaceae_RC9_gut_group 

3 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Catenibacterium 

3 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus_2 

3 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Faecalitalea 

3 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Marinifilaceae Butyricimonas 

3 FALSE Bacteria Bacteroidetes Bacteroidia Flavobacteriales Weeksellaceae Chryseobacterium 

3 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_2 

3 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Veillonella 

3 FALSE Bacteria Firmicutes Bacilli Bacillales Planococcaceae NA 

3 FALSE Bacteria Firmicutes Bacilli Bacillales NA NA 

3 FALSE Bacteria Lentisphaerae Lentisphaeria Victivallales vadinBE97 NA 

3 FALSE Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae NA 

2 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Acidaminococcaceae Phascolarctobacterium 

2 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Romboutsia 

2 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_5 

2 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Turicibacter 

2 FALSE Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Stenotrophomonas 
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2 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_UCG-001 

2 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae DTU089 

2 FALSE Bacteria Proteobacteria Gammaproteobacteria NA NA NA 

1 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Tannerellaceae Parabacteroides 

1 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Dialister 

1 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-002 

1 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Parasutterella 

1 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Butyrivibrio 

1 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_NK4A136_group 

1 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Eisenbergiella 

1 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Holdemanella 

1 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Collinsella 

1 FALSE Bacteria Tenericutes Mollicutes Izimaplasmatales NA NA 

1 FALSE Bacteria Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

1 FALSE Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Brevundimonas 

1 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus_1 

1 FALSE Bacteria Cyanobacteria Melainabacteria Gastranaerophilales NA NA 

1 FALSE Bacteria NA NA NA NA NA 

0 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia/Shigella 

0 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae NA 

0 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus_2 

0 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Subdoligranulum 

0 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_9 

0 FALSE Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

0 FALSE Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter 

0 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Tyzzerella_4 

0 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Klebsiella 

0 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_6 

0 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus_1 

0 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Erysipelotrichaceae_UCG-003 

0 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Flavonifractor 

0 FALSE Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus 

0 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Tyzzerella 

0 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Delftia 
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0 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Sutterella 

0 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae Barnesiella 

0 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales NA NA 

0 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_9 

0 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-014 

0 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Paraprevotella 

0 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Negativibacillus 

0 FALSE Bacteria Tenericutes Mollicutes Mollicutes_RF39 NA NA 

0 FALSE Bacteria Firmicutes Bacilli Lactobacillales Enterococcaceae Enterococcus 

0 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Muribaculaceae NA 

0 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_UCG-010 
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Supplementary Table 3. MWAS of dataset 2 conducted using ANCOM 

 

Sample size for ANCOM included subset of samples that had complete data on all covariates tested: N= 306 cases and 177 controls in dataset 2. 

W= ANCOM score indicating the number of times a genus achieved FDR<0.05 as compared to other genera (maximum W possible: 444 in dataset 1, 560 in dataset 2).  

0.8= Threshold at which results were considered significant (TRUE).  

 

W 0.8 Kingdom Phylum Class Order Family Genus 

553 TRUE Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 

545 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Agathobacter 

544 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_UCG-004 

541 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia 

541 TRUE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-013 

538 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_ND3007_group 

536 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Anaerostipes 

535 TRUE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium 

533 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 

530 TRUE Bacteria Firmicutes Clostridia Clostridiales Eubacteriaceae Eubacterium 

525 TRUE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira 

524 TRUE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus_2 

521 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Fusicatenibacter 

521 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospira 

521 TRUE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_6 

521 TRUE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus_1 

505 TRUE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Butyricicoccus 

505 TRUE Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

503 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_UCG-001 

496 TRUE Bacteria Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Lawsonella 

493 TRUE Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio 

493 TRUE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Turicibacter 

491 TRUE Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobrevibacter 
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479 TRUE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae DTU089 

477 TRUE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Erysipelotrichaceae_UCG-003 

468 TRUE Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas 

465 TRUE Bacteria Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium_1 

463 TRUE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella 

459 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoclostridium 

458 TRUE Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 

458 TRUE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-014 

454 TRUE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Veillonella 

452 TRUE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae NA 

449 TRUE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Candidatus_Soleaferrea 

440 FALSE Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter 

439 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae 
NA 

438 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Intestinimonas 

433 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_9 

428 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Anaerococcus 

425 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Erysipelatoclostridium 

422 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XIII Family_XIII_UCG-001 

411 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Phocea 

408 FALSE Bacteria Cyanobacteria Oxyphotobacteria Chloroplast NA NA 

408 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XIII S5-A14a 

407 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 

405 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Holdemania 

399 FALSE Bacteria Firmicutes Bacilli Lactobacillales Carnobacteriaceae Granulicatella 

395 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Cuneatibacter 

388 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_UCG-003 

386 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae GCA-900066575 

364 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Delftia 
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356 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Peptoniphilus 

350 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_UCG-008 

348 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Parvimonas 

344 FALSE Bacteria Firmicutes Bacilli Bacillales Family_XI Gemella 

307 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Varibaculum 

299 FALSE Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Stenotrophomonas 

268 FALSE Bacteria Firmicutes Bacilli Bacillales Bacillaceae Bacillus 

218 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Selenomonas_3 

209 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Asteroleplasma 

62 FALSE Bacteria Lentisphaerae Lentisphaeria Victivallales Victivallaceae Victivallis 

58 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Atopobiaceae Olsenella 

54 FALSE Bacteria Actinobacteria Actinobacteria Propionibacteriales Propionibacteriaceae 
Tessaracoccus 

50 FALSE Bacteria Epsilonbacteraeota Campylobacteria Campylobacterales Campylobacteraceae Campylobacter 

49 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Ezakiella 

47 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Beijerinckiaceae Bosea 

47 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Beijerinckiaceae Methylobacterium 

46 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae NA 

44 FALSE Bacteria Actinobacteria Actinobacteria Propionibacteriales Propionibacteriaceae Cutibacterium 

44 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae NA 

43 FALSE Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae_1 Clostridium_sensu_stricto_13 

41 FALSE Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Pediococcus 

40 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Fastidiosipila 

40 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Mobiluncus 

40 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Pseudoclavibacter 

39 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Gallicola 

39 FALSE Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae NA 

38 FALSE Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae NA 

38 FALSE Bacteria Bacteroidetes Bacteroidia Sphingobacteriales Sphingobacteriaceae Sphingobacterium 
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37 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Murdochiella 

37 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-009 

37 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-011 

37 FALSE Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Scardovia 

36 FALSE Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingopyxis 

35 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae 
Achromobacter 

35 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Clostridioides 

35 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Dermabacteraceae Dermabacter 

35 FALSE Bacteria Synergistetes Synergistia Synergistales Synergistaceae Jonquetella 

34 FALSE Bacteria Bacteroidetes Bacteroidia Flavobacteriales Weeksellaceae Chryseobacterium 

34 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-008 

33 FALSE Bacteria Tenericutes Mollicutes Anaeroplasmatales Anaeroplasmataceae Anaeroplasma 

32 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Anaerotruncus 

32 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Finegoldia 

32 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Hafnia-Obesumbacterium 

31 FALSE Bacteria Firmicutes Bacilli Lactobacillales Carnobacteriaceae Carnobacterium 

31 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Howardella 

31 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Hungatella 

30 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriales_Incertae_Sedis Raoultibacter 

30 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae UBA1819 

29 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Anaerosporobacter 

29 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Citrobacter 

29 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Cryptobacterium 

29 FALSE Bacteria Actinobacteria Acidimicrobiia Microtrichales NA NA 

29 FALSE Bacteria Actinobacteria Actinobacteria Corynebacteriales Nocardiaceae Rhodococcus 

29 FALSE Bacteria Proteobacteria Alphaproteobacteria Acetobacterales Acetobacteraceae Roseomonas 

28 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae 28-4 

28 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Acetatifactor 
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28 FALSE Bacteria Actinobacteria Actinobacteria Propionibacteriales Propionibacteriaceae 
Acidipropionibacterium 

28 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Acidovorax 

28 FALSE Bacteria Firmicutes Bacilli Bacillales Paenibacillaceae Ammoniphilus 

28 FALSE Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Brevundimonas 

28 FALSE Bacteria Firmicutes Bacilli Bacillales Paenibacillaceae Cohnella 

28 FALSE Bacteria Firmicutes Bacilli Bacillales Planococcaceae Domibacillus 

28 FALSE Bacteria Firmicutes Bacilli Lactobacillales Aerococcaceae Facklamia 

28 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Kerstersia 

28 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_UCG-006 

28 FALSE Bacteria Actinobacteria Actinobacteria Micromonosporales Micromonosporaceae Micromonospora 

28 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Muribaculaceae Muribaculum 

28 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales NA NA 

28 FALSE Bacteria Proteobacteria Alphaproteobacteria Acetobacterales Acetobacteraceae NA 

28 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Atopobiaceae NA 

28 FALSE Bacteria Firmicutes Bacilli NA NA NA 

28 FALSE Bacteria Verrucomicrobia Verrucomicrobiae Opitutales NA NA 

28 FALSE Bacteria Cyanobacteria Oxyphotobacteria Phormidesmiales Nodosilineaceae NA 

28 FALSE Bacteria Firmicutes Negativicutes Selenomonadales NA NA 

28 FALSE Bacteria Actinobacteria Actinobacteria Corynebacteriales NA NA 

28 FALSE Bacteria Acidobacteria FFCH5909 NA NA NA 

28 FALSE Bacteria Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Nocardioides 

28 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Paraclostridium 

28 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Beijerinckiaceae Psychroglaciecola 

28 FALSE Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae SN8 

28 FALSE Bacteria Firmicutes Bacilli Bacillales Bacillaceae Terribacillus 

28 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Trueperella 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Aeromonadaceae Aeromonas 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales Alcanivoracaceae Alcanivorax 
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27 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Allobaculum 

27 FALSE Bacteria Firmicutes Bacilli Lactobacillales Carnobacteriaceae Alloiococcus 

27 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Aminobacter 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Succinivibrionaceae Anaerobiospirillum 

27 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae 
Anaerocolumna 

27 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Arcanobacterium 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae ATCC-39006 

27 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Aureimonas 

27 FALSE Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Blastomonas 

27 FALSE Bacteria Spirochaetes Brachyspirae Brachyspirales Brachyspiraceae Brachyspira 

27 FALSE Bacteria Firmicutes Clostridia Clostridiales Caldicoprobacteraceae Caldicoprobacter 

27 FALSE Bacteria Proteobacteria Alphaproteobacteria Caedibacterales Caedibacteraceae Candidatus_Nucleicultrix 

27 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Centipeda 

27 FALSE Bacteria Firmicutes Clostridia Clostridiales Christensenellaceae Christensenella 

27 FALSE Bacteria Cyanobacteria Oxyphotobacteria Nostocales Chroococcidiopsaceae Chroococcidiopsis_SAG_2023 

27 FALSE Bacteria Bacteroidetes Bacteroidia Flavobacteriales Weeksellaceae Cloacibacterium 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Cosenzaea 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Cupriavidus 

27 FALSE Bacteria 

Deinococcus-

Thermus 

Deinococci Deinococcales Deinococcaceae Deinococcus 

27 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Denitrobacterium 

27 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptococcaceae Desulfitibacter 

27 FALSE Bacteria Proteobacteria Deltaproteobacteria Desulfobacterales Desulfobulbaceae Desulfobulbus 

27 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Devosiaceae Devosia 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Rhodanobacteraceae Dokdonella 

27 FALSE Bacteria Bacteroidetes Bacteroidia Cytophagales Spirosomaceae Dyadobacter 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Enhydrobacter 

27 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Faecalicoccus 

27 FALSE Bacteria Firmicutes Bacilli Bacillales Bacillaceae Fictibacillus 
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27 FALSE Bacteria Chloroflexi Anaerolineae Anaerolineales Anaerolineaceae Flexilinea 

27 FALSE Bacteria Synergistetes Synergistia Synergistales Synergistaceae Fretibacterium 

27 FALSE Bacteria Firmicutes Bacilli Lactobacillales Aerococcaceae Globicatella 

27 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Micrococcaceae 
Glutamicibacter 

27 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Haematobacter 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas 

27 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Helcococcus 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Hydrogenophaga 

27 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Hyphomicrobium 

27 FALSE Bacteria Firmicutes Bacilli Lactobacillales Aerococcaceae Ignavigranum 

27 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Intrasporangiaceae Janibacter 

27 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Johnsonella 

27 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoanaerobaculum 

27 FALSE Bacteria Bacteroidetes Bacteroidia Chitinophagales Chitinophagaceae Lacibacter 

27 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Leucobacter 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Massilia 

27 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Merdibacter 

27 FALSE Bacteria Actinobacteria Actinobacteria Propionibacteriales Propionibacteriaceae Micropruina 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Moraxella 

27 FALSE Bacteria Actinobacteria Actinobacteria Corynebacteriales Mycobacteriaceae Mycobacterium 

27 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI NA 

27 FALSE Bacteria Firmicutes Bacilli Bacillales Paenibacillaceae NA 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales NA NA 

27 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae NA 

27 FALSE Bacteria Firmicutes Clostridia Clostridiales Syntrophomonadaceae NA 

27 FALSE Bacteria Chloroflexi Chloroflexia Thermomicrobiales JG30-KF-CM45 NA 

27 FALSE Bacteria Actinobacteria Actinobacteria Propionibacteriales Propionibacteriaceae NA 

27 FALSE Bacteria Verrucomicrobia Verrucomicrobiae NA NA NA 
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27 FALSE Bacteria Actinobacteria Actinobacteria Micromonosporales Micromonosporaceae NA 

27 FALSE Bacteria Actinobacteria Actinobacteria Streptomycetales Streptomycetaceae NA 

27 FALSE Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae NA 

27 FALSE Bacteria Proteobacteria Alphaproteobacteria NA NA NA 

27 FALSE Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae NA 

27 FALSE Bacteria Actinobacteria Actinobacteria NA NA 
NA 

27 FALSE Bacteria Proteobacteria Alphaproteobacteria Micavibrionales NA NA 

27 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales NA NA 

27 FALSE Bacteria Chloroflexi Chloroflexia Kallotenuales NA NA 

27 FALSE Bacteria Tenericutes Mollicutes NA NA NA 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Rhodocyclaceae NA 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Neisseriaceae NA 

27 FALSE Eukaryota NA NA NA NA NA 

27 FALSE Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales NA NA 

27 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Micrococcaceae NA 

27 FALSE Bacteria Bacteroidetes Bacteroidia Flavobacteriales Weeksellaceae NA 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Neisseriaceae Neisseria 

27 FALSE Bacteria Actinobacteria Actinobacteria Streptosporangiales Nocardiopsaceae Nocardiopsis 

27 FALSE Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Novosphingobium 

27 FALSE Bacteria Bacteroidetes Bacteroidia Sphingobacteriales Sphingobacteriaceae Nubsella 

27 FALSE Bacteria Bacteroidetes Bacteroidia Sphingobacteriales Sphingobacteriaceae Pedobacter 

27 FALSE Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Phenylobacterium 

27 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Phyllobacterium 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Pigmentiphaga 

27 FALSE Bacteria Planctomycetes Planctomycetacia Pirellulales Pirellulaceae Pirellula 

27 FALSE Bacteria Firmicutes Clostridia Clostridiales Eubacteriaceae Pseudoramibacter 

27 FALSE Bacteria Firmicutes Bacilli Bacillales Planococcaceae Psychrobacillus 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Pusillimonas 
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27 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Pygmaiobacter 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Ralstonia 

27 FALSE Bacteria Proteobacteria Alphaproteobacteria Reyranellales Reyranellaceae Reyranella 

27 FALSE Bacteria Firmicutes Bacilli Bacillales Planococcaceae 
Rummeliibacillus 

27 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Selenomonas 

27 FALSE Bacteria Firmicutes Bacilli Bacillales Planococcaceae Solibacillus 

27 FALSE Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 

27 FALSE Bacteria Bacteroidetes Bacteroidia Cytophagales Spirosomaceae Spirosoma 

27 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Stomatobaculum 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Succinivibrionaceae Succinivibrio 

27 FALSE Bacteria Firmicutes Bacilli Lactobacillales Enterococcaceae Tetragenococcus 

27 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Tissierella 

27 FALSE Bacteria Spirochaetes Spirochaetia Spirochaetales Spirochaetaceae Treponema_2 

27 FALSE Bacteria Tenericutes Mollicutes Mycoplasmatales Mycoplasmataceae Ureaplasma 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Cardiobacteriales Wohlfahrtiimonadaceae Wohlfahrtiimonas 

27 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae Xanthobacter 

27 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae XBB1006 

27 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Rhodocyclaceae Zoogloea 

26 FALSE Bacteria Firmicutes Bacilli Lactobacillales Aerococcaceae Abiotrophia 

26 FALSE Bacteria Proteobacteria Gammaproteobacteria Gammaproteobacteria_Incertae_Sedis Unknown_Family Acidibacter 

26 FALSE Bacteria Actinobacteria Actinobacteria Streptosporangiales Thermomonosporaceae Actinomadura 

26 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Actinomyces 

26 FALSE Bacteria Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Aeromicrobium 

26 FALSE Bacteria Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Aggregatibacter 

26 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Alcaligenes 

26 FALSE Bacteria Firmicutes Bacilli Lactobacillales Carnobacteriaceae Allofustis 

26 FALSE Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Altererythrobacter 

26 FALSE Bacteria Firmicutes Bacilli Bacillales Bacillaceae Anaerobacillus 
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26 FALSE Bacteria Firmicutes Bacilli Bacillales Paenibacillaceae Aneurinibacillus 

26 FALSE Bacteria Epsilonbacteraeota Campylobacteria Campylobacterales Arcobacteraceae 
Arcobacter 

26 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Atopobiaceae Atopobium 

26 FALSE Bacteria Bacteroidetes Bacteroidia Flavobacteriales Weeksellaceae Bergeyella 

26 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae Bradyrhizobium 

26 FALSE Bacteria Bacteroidetes Bacteroidia Cytophagales Amoebophilaceae Candidatus_Amoebophilus 

26 FALSE Bacteria Bacteroidetes Bacteroidia Flavobacteriales Flavobacteriaceae Capnocytophaga 

26 FALSE Bacteria Proteobacteria Gammaproteobacteria Cardiobacteriales Cardiobacteriaceae Cardiobacterium 

26 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Catenisphaera 

26 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Cellulomonadaceae Cellulomonas 

26 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Cellulosilyticum 

26 FALSE Bacteria Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Cetobacterium 

26 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae CHKCI002 

26 FALSE Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae_1 Clostridium_sensu_stricto_11 

26 FALSE Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae_1 Clostridium_sensu_stricto_7 

26 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Atopobiaceae Coriobacteriaceae_UCG-003 

26 FALSE Bacteria Actinobacteria Actinobacteria Corynebacteriales Dietziaceae Dietzia 

26 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Neisseriaceae Eikenella 

26 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Ensifer 

26 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae F0332 

26 FALSE Bacteria Bacteroidetes Bacteroidia Cytophagales Spirosomaceae Flectobacillus 

26 FALSE Bacteria Firmicutes Bacilli Bacillales Bacillaceae Geobacillus 

26 FALSE Bacteria Firmicutes Bacilli Bacillales Bacillaceae Gracilibacillus 

26 FALSE Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae_1 Hathewaya 

26 FALSE Bacteria Firmicutes Bacilli Bacillales Staphylococcaceae Jeotgalicoccus 

26 FALSE Bacteria Firmicutes Bacilli Bacillales Thermoactinomycetaceae Kroppenstedtia 

26 FALSE Bacteria Verrucomicrobia Verrucomicrobiae Chthoniobacterales Chthoniobacteraceae LD29 

26 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Leifsonia 
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26 FALSE Bacteria Fusobacteria Fusobacteriia Fusobacteriales Leptotrichiaceae Leptotrichia 

26 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Atopobiaceae Libanicoccus 

26 FALSE Bacteria Firmicutes Bacilli Bacillales Staphylococcaceae 
Macrococcus 

26 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Mesorhizobium 

26 FALSE Bacteria Tenericutes Mollicutes Mycoplasmatales Mycoplasmataceae Mycoplasma 

26 FALSE NA NA NA NA NA NA 

26 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae NA 

26 FALSE Bacteria Firmicutes Bacilli Lactobacillales Enterococcaceae NA 

26 FALSE Bacteria Actinobacteria Actinobacteria Corynebacteriales Nocardiaceae NA 

26 FALSE Bacteria Proteobacteria Alphaproteobacteria Rickettsiales Mitochondria NA 

26 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Microbacteriaceae NA 

26 FALSE Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae NA 

26 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Dysgonomonadaceae NA 

26 FALSE Bacteria Actinobacteria NA NA NA NA 

26 FALSE Bacteria Verrucomicrobia Verrucomicrobiae Opitutales Puniceicoccaceae NA 

26 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae NA 

26 FALSE Bacteria Firmicutes Bacilli Bacillales Staphylococcaceae NA 

26 FALSE Bacteria Spirochaetes Spirochaetia Spirochaetales Spirochaetaceae NA 

26 FALSE Bacteria Firmicutes Bacilli Lactobacillales Carnobacteriaceae NA 

26 FALSE Bacteria Bacteroidetes Bacteroidia Sphingobacteriales Sphingobacteriaceae NA 

26 FALSE Bacteria Proteobacteria Gammaproteobacteria NA NA NA 

26 FALSE Bacteria Kiritimatiellaeota Kiritimatiellae WCHB1-41 NA NA 

26 FALSE Bacteria Synergistetes Synergistia Synergistales Synergistaceae NA 

26 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Tannerellaceae NA 

26 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Neorhizobium 

26 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Papillibacter 

26 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Paraeggerthella 

26 FALSE Bacteria Firmicutes Bacilli Bacillales Bacillaceae Paucisalibacillus 
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26 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Pectinatus 

26 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Pelomonas 

26 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Plesiomonas 

26 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Pluralibacter 

26 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotellaceae_Ga6A1_group 

26 FALSE Bacteria Actinobacteria Actinobacteria Propionibacteriales Propionibacteriaceae Propioniferax 

26 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Pseudochrobactrum 

26 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae 
Pseudoflavonifractor 

26 FALSE Bacteria Actinobacteria Actinobacteria Propionibacteriales Propionibacteriaceae Pseudopropionibacterium 

26 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Pseudorhodoferax 

26 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Robinsoniella 

26 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Selenomonas_4 

26 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Shinella 

26 FALSE Bacteria Proteobacteria Alphaproteobacteria Azospirillales Azospirillaceae Skermanella 

26 FALSE Bacteria Spirochaetes Spirochaetia Spirochaetales Spirochaetaceae Sphaerochaeta 

26 FALSE Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingobium 

26 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Sporobacterium 

26 FALSE Bacteria Firmicutes Bacilli Bacillales Planococcaceae Sporosarcina 

26 FALSE Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Succinivibrionaceae Succinatimonas 

26 FALSE Bacteria Firmicutes Clostridia Clostridiales Syntrophomonadaceae Syntrophomonas 

26 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Tepidimonas 

26 FALSE Bacteria 

Deinococcus-

Thermus 

Deinococci Thermales Thermaceae Thermus 

26 FALSE Bacteria Firmicutes Bacilli Lactobacillales Enterococcaceae Vagococcus 

26 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Variovorax 

26 FALSE Bacteria Firmicutes Bacilli Bacillales Bacillaceae Virgibacillus 

26 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI W5053 

26 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Xylophilus 

26 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Yersinia 
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25 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae 
Actinotignum 

25 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae 

Allorhizobium-Neorhizobium-

Pararhizobium-Rhizobium 

25 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XIII Anaerovorax 

25 FALSE Archaea Euryarchaeota Thermoplasmata Methanomassiliicoccales Methanomethylophilaceae 

Candidatus_ 

Methanomethylophilus 

25 FALSE Bacteria Patescibacteria Saccharimonadia Saccharimonadales Saccharimonadaceae Candidatus_Saccharimonas 

25 FALSE Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae_1 Clostridium_sensu_stricto_2 

25 FALSE Bacteria Firmicutes Bacilli Lactobacillales Aerococcaceae Eremococcus 

25 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Erysipelotrichaceae_UCG-004 

25 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Erysipelotrichaceae_UCG-006 

25 FALSE Bacteria Bacteroidetes Bacteroidia Flavobacteriales Flavobacteriaceae Flavobacterium 

25 FALSE Bacteria Actinobacteria Actinobacteria Corynebacteriales Nocardiaceae Gordonia 

25 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Herbaspirillum 

25 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoclostridium_10 

25 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Lautropia 

25 FALSE Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Mailhella 

25 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Mitsuokella 

25 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae NA 

25 FALSE Bacteria Proteobacteria NA NA NA NA 

25 FALSE Bacteria Lentisphaerae Lentisphaeria Victivallales NA NA 

25 FALSE Bacteria Firmicutes Bacilli Lactobacillales NA NA 

25 FALSE Bacteria Bacteroidetes NA NA NA NA 

25 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae NA 

25 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Acidaminococcaceae NA 

25 FALSE Bacteria Firmicutes Bacilli Bacillales Staphylococcaceae Nosocomiicoccus 

25 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Ochrobactrum 

25 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Oribacterium 

25 FALSE Bacteria Firmicutes Bacilli Bacillales Bacillaceae Ornithinibacillus 

25 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paracoccus 
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25 FALSE Bacteria Actinobacteria Actinobacteria Propionibacteriales Propionibacteriaceae Propionimicrobium 

25 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae 

Ruminococcaceae_V9D2013 

_group 

25 FALSE Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae_1 Sarcina 

25 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Shimwellia 

25 FALSE Bacteria Fusobacteria Fusobacteriia Fusobacteriales Leptotrichiaceae 
Sneathia 

25 FALSE Bacteria Synergistetes Synergistia Synergistales Synergistaceae Synergistes 

24 FALSE Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Actinobaculum 

24 FALSE Bacteria Firmicutes Bacilli Lactobacillales Aerococcaceae Aerococcus 

24 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Alloprevotella 

24 FALSE Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Alloscardovia 

24 FALSE Bacteria Firmicutes Clostridia Clostridiales Eubacteriaceae Anaerofustis 

24 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Anaeroglobus 

24 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Muribaculaceae CAG-873 

24 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Promicromonosporaceae Cellulosimicrobium 

24 FALSE Bacteria Verrucomicrobia Verrucomicrobiae Opitutales Puniceicoccaceae Cerasicoccus 

24 FALSE Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae_1 Clostridium_sensu_stricto_3 

24 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Comamonas 

24 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae DNF00809 

24 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Enorma 

24 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Herbinix 

24 FALSE Bacteria Proteobacteria Gammaproteobacteria Cardiobacteriales Wohlfahrtiimonadaceae Ignatzschineria 

24 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Kosakonia 

24 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Microbacterium 

24 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XIII Mogibacterium 

24 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae NA 

24 FALSE Bacteria Lentisphaerae Lentisphaeria Victivallales Victivallaceae NA 

24 FALSE Bacteria Firmicutes Bacilli Lactobacillales Aerococcaceae NA 

24 FALSE Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Succinivibrionaceae NA 
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24 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae 
NA 

24 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Paeniclostridium 

24 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotellaceae_UCG-001 

24 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Micrococcaceae Pseudoglutamicibacter 

24 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Rikenella 

24 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-007 

24 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XI Sedimentibacter 

23 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Allisonella 

23 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Dysgonomonadaceae Dysgonomonas 

23 FALSE Archaea Euryarchaeota Thermoplasmata Methanomassiliicoccales Methanomassiliicoccaceae Methanomassiliicoccus 

23 FALSE Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae_1 NA 

23 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Peptostreptococcus 

23 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Rikenellaceae_RC9_gut_group 

23 FALSE Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus 

22 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Dielma 

22 FALSE Bacteria Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

22 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Holdemanella 

22 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae NA 

22 FALSE Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae NA 

22 FALSE Bacteria NA NA NA NA NA 

22 FALSE Bacteria Lentisphaerae Lentisphaeria Victivallales vadinBE97 NA 

22 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Marinifilaceae Sanguibacteroides 

22 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Tyzzerella_4 

21 FALSE Bacteria Firmicutes Clostridia Clostridiales Defluviitaleaceae Defluviitaleaceae_UCG-011 

21 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Enterorhabdus 

21 FALSE Bacteria Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus 

21 FALSE Bacteria Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae NA 

21 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Negativicoccus 
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21 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptococcaceae Peptococcus 

21 FALSE Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Pseudoxanthomonas 

21 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Salmonella 

21 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Senegalimassilia 

21 FALSE Bacteria Actinobacteria Actinobacteria Streptomycetales Streptomycetaceae Streptomyces 

20 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Dermabacteraceae Brachybacterium 

20 FALSE Bacteria Firmicutes Bacilli Bacillales Paenibacillaceae 
Brevibacillus 

20 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Eisenbergiella 

20 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Moryella 

20 FALSE Archaea Euryarchaeota Thermoplasmata Methanomassiliicoccales Methanomethylophilaceae NA 

20 FALSE Bacteria Firmicutes Clostridia Clostridiales Christensenellaceae NA 

20 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Oligella 

20 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Providencia 

20 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_1 

20 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Solobacterium 

19 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Brevibacteriaceae Brevibacterium 

19 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae CAG-352 

19 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Epulopiscium 

19 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Hydrogenoanaerobacterium 

19 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_6 

19 FALSE Bacteria Synergistetes Synergistia Synergistales Synergistaceae Pyramidobacter 

18 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Catenibacterium 

18 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Edwardsiella 

18 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae GCA-900066225 

18 FALSE Bacteria Firmicutes Bacilli Bacillales Planococcaceae Lysinibacillus 

18 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Micrococcaceae Micrococcus 

18 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae NA 

18 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_2 
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18 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Sellimonas 

17 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae Coprobacter 

17 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Megasphaera 

17 FALSE Bacteria Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae NA 

17 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Muribaculaceae NA 

17 FALSE Bacteria Firmicutes Clostridia DTU014 NA NA 

17 FALSE Bacteria Firmicutes Bacilli Bacillales Bacillaceae 
Pseudogracilibacillus 

17 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Terrisporobacter 

16 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Acidaminococcaceae Acidaminococcus 

16 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Marinifilaceae Butyricimonas 

16 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Butyrivibrio 

16 FALSE Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Gardnerella 

16 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptococcaceae NA 

15 FALSE Bacteria Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium 

15 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Faecalitalea 

15 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Micrococcaceae Kocuria 

15 FALSE Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanosphaera 

15 FALSE Bacteria Firmicutes Clostridia Clostridiales NA NA 

15 FALSE Bacteria Actinobacteria Actinobacteria Propionibacteriales Propionibacteriaceae Propionibacterium 

15 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-005 

14 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Acetanaerobacterium 

14 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Anaerofilum 

14 FALSE Bacteria Synergistetes Synergistia Synergistales Synergistaceae Cloacibacillus 

14 FALSE Bacteria Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc 

14 FALSE Bacteria Firmicutes Clostridia NA NA NA 

14 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Peptoclostridium 

14 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_5 

14 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Acidaminococcaceae Succiniclasticum 
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13 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Brucella 

13 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lactonifactor 

13 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae NA 

13 FALSE Bacteria Patescibacteria Saccharimonadia Saccharimonadales NA NA 

13 FALSE Bacteria Tenericutes Mollicutes Mollicutes_RF39 NA NA 

13 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae 
Prevotellaceae_NK3B31_group 

13 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Angelakisella 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Caproiciproducens 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Christensenellaceae Catabacter 

12 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Coprobacillus 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae GCA-900066755 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_NK4B4_group 

12 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae NA 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XIII NA 

12 FALSE Bacteria Tenericutes Mollicutes Izimaplasmatales NA NA 

12 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Oxalobacter 

12 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-004 

12 FALSE Bacteria Firmicutes Bacilli Lactobacillales Leuconostocaceae Weissella 

11 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Adlercreutzia 

11 FALSE Bacteria Firmicutes Clostridia Clostridiales Christensenellaceae Christensenellaceae_R-7_group 

11 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Gordonibacter 

11 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Harryflintia 

11 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_FCS020_group 

11 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_UCG-010 

11 FALSE Bacteria Firmicutes NA NA NA NA 

11 FALSE Bacteria Bacteroidetes Bacteroidia NA NA NA 

11 FALSE Bacteria Actinobacteria Actinobacteria Micrococcales Micrococcaceae Rothia 
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11 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Shuttleworthia 

10 FALSE Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus 

10 FALSE Bacteria Firmicutes Bacilli Bacillales Bacillaceae NA 

10 FALSE Bacteria Firmicutes Bacilli Bacillales Paenibacillaceae Paenibacillus 

10 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae 
Slackia 

9 FALSE Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Candidatus_Stoquefichus 

9 FALSE Bacteria Firmicutes Clostridia Clostridiales Family_XIII Family_XIII_AD3011_group 

9 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Megamonas 

9 FALSE Bacteria Patescibacteria Saccharimonadia Saccharimonadales Saccharimonadaceae NA 

9 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriales_Incertae_Sedis NA 

9 FALSE Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae NA 

9 FALSE Bacteria Firmicutes Bacilli Bacillales Bacillaceae Oceanobacillus 

9 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillibacter 

9 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Romboutsia 

9 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Sutterella 

8 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Eggerthella 

8 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Flavonifractor 

8 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Morganella 

8 FALSE Bacteria Firmicutes Bacilli Bacillales Planococcaceae NA 

8 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales NA NA 

8 FALSE Bacteria Cyanobacteria Melainabacteria Gastranaerophilales NA NA 

8 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Tyzzerella_3 

7 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus_1 

7 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Marvinbryantia 

7 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_7 

7 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-010 

7 FALSE Bacteria Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus 

7 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae UC5-1-2E3 
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6 FALSE Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Bilophila 

6 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae CAG-56 

6 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus_2 

6 FALSE Bacteria Firmicutes Clostridia Clostridiales Clostridiales_vadinBB60_group NA 

6 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Tannerellaceae 
Parabacteroides 

6 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_9 

5 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Alistipes 

5 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Dialister 

5 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea 

4 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_NK4A136_group 

4 FALSE Bacteria Firmicutes Negativicutes Selenomonadales Acidaminococcaceae Phascolarctobacterium 

3 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia/Shigella 

3 FALSE Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales NA NA 

3 FALSE Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Parasutterella 

2 FALSE Bacteria Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Collinsella 

2 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Fournierella 

2 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Klebsiella 

2 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Marinifilaceae Odoribacter 

2 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Paraprevotella 

1 FALSE Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae_1 Clostridium_sensu_stricto_1 

1 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus_3 

1 FALSE Bacteria Firmicutes Bacilli Lactobacillales Enterococcaceae Enterococcus 

1 FALSE Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Intestinibacter 

1 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Negativibacillus 

1 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Proteus 

1 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae 

Ruminococcaceae_NK4A214_ 

group 

1 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-003 

0 FALSE Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Akkermansiaceae Akkermansia 
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0 FALSE Bacteria Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae Barnesiella 

0 FALSE Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae NA 

0 FALSE Bacteria Firmicutes Bacilli Bacillales NA NA 

0 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-002 

0 FALSE Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Subdoligranulum 

0 FALSE Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Tyzzerella 
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Supplementary Table 4. MWAS of dataset 1 conducted using Kruskal-Wallis 

 

Sample size for KW included all samples: N= 201 cases and 132 controls in dataset 1.  MRA= mean relative abundance, FC=fold change in patients (PD MRA/control MRA), P= 

unadjusted significance, FDR (BH)= false discovery rate, adjusted significance. Unclassified genera and genera present in <10% of subjects were excluded from this analysis. 

 

PD  

MRA 

Control 

MRA 

FC P 

FDR  

(BH) 

Kingdom Phylum Class Order Family Genus 

0.0005 0.0012 0.37 4E-06 2E-04 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_ND3007_group 

0.0027 0.0004 6.61 2E-06 2E-04 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 

0.0191 0.0362 0.53 7E-06 2E-04 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Agathobacter 

0.0153 0.0084 1.83 5E-05 1E-03 Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 

0.0008 0.0001 13.03 8E-05 1E-03 Bacteria Synergistetes Synergistia Synergistales Synergistaceae Cloacibacillus 

0.0353 0.0564 0.63 9E-05 1E-03 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium 

0.0036 0.0004 8.14 9E-05 1E-03 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Hungatella 

0.0029 0.0037 0.80 1E-04 1E-03 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospira 

0.0047 0.0012 3.77 1E-04 1E-03 Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Megasphaera 

0.0034 0.0008 4.20 1E-04 1E-03 Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas 

0.0140 0.0205 0.68 2E-04 2E-03 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 

0.0017 0.0001 12.72 4E-04 4E-03 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Coprobacillus 

0.0077 0.0160 0.48 4E-04 4E-03 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia 

0.0038 0.0015 2.56 7E-04 6E-03 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella 

0.0541 0.0218 2.48 1E-03 7E-03 Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Akkermansiaceae Akkermansia 

0.0012 0.0019 0.66 1E-03 7E-03 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Butyricicoccus 

0.0045 0.0023 1.95 1E-03 8E-03 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae UBA1819 

0.0005 0.0001 4.95 2E-03 0.01 Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Varibaculum 

0.0020 0.0010 1.96 2E-03 0.01 Bacteria Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium_1 

0.0006 0.0003 1.76 3E-03 0.01 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-004 

0.0021 0.0038 0.56 3E-03 0.02 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Fusicatenibacter 
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0.0003 0.0007 0.48 4E-03 0.02 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_UCG-004 

0.0004 0.0006 0.65 4E-03 0.02 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira 

0.0027 0.0040 0.69 5E-03 0.02 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Anaerostipes 

0.0015 0.0013 1.16 5E-03 0.02 Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio 

0.0006 0.0002 2.86 6E-03 0.03 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Anaerotruncus 

0.0006 0.0004 1.37 7E-03 0.03 Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobrevibacter 

0.0071 0.0021 3.32 8E-03 0.03 Bacteria Firmicutes Clostridia Clostridiales Family_XI Ezakiella 

0.0003 0.0017 0.17 9E-03 0.03 Bacteria Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus 

0.2148 0.2479 0.87 0.01 0.04 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 

0.0043 0.0029 1.47 0.01 0.05 Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Bilophila 

0.0014 0.0018 0.77 0.02 0.07 Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae_1 Clostridium_sensu_stricto_1 

0.0008 0.0013 0.64 0.02 0.07 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus_3 

0.0006 0.0005 1.13 0.03 0.09 Bacteria Firmicutes Clostridia Clostridiales Family_XIII Family_XIII_AD3011_group 

0.0012 0.0009 1.32 0.03 0.10 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-010 

0.0013 0.0014 0.95 0.03 0.10 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-013 

0.0021 0.0014 1.42 0.04 0.10 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Eisenbergiella 

0.0023 0.0009 2.58 0.04 0.10 Bacteria Firmicutes Clostridia Clostridiales Family_XI Peptoniphilus 

0.0008 0.0002 3.81 0.04 0.10 Bacteria Epsilonbacteraeota Campylobacteria Campylobacterales Campylobacteraceae Campylobacter 

0.0003 0.0001 2.12 0.04 0.11 Bacteria Firmicutes Clostridia Clostridiales Family_XI Murdochiella 

0.0052 0.0079 0.66 0.04 0.12 Bacteria Firmicutes Negativicutes Selenomonadales Acidaminococcaceae Phascolarctobacterium 

0.0060 0.0092 0.65 0.04 0.12 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoclostridium 

0.0020 0.0005 4.09 0.05 0.13 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_6 

0.0009 0.0011 0.86 0.06 0.15 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Intestinimonas 

0.0302 0.0233 1.29 0.07 0.15 Bacteria Bacteroidetes Bacteroidia Bacteroidales Tannerellaceae Parabacteroides 

0.0070 0.0067 1.05 0.06 0.15 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-005 

0.0006 0.0001 5.47 0.07 0.16 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Sellimonas 
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0.0015 0.0004 3.31 0.08 0.17 Bacteria Firmicutes Clostridia Clostridiales Family_XI Anaerococcus 

0.0020 0.0031 0.67 0.08 0.17 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Erysipelotrichaceae_UCG-003 

0.0036 0.0032 1.14 0.08 0.17 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillibacter 

0.0015 0.0022 0.69 0.09 0.20 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-003 

0.0002 0.0002 0.80 0.11 0.23 Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Eggerthella 

0.0002 0.0001 3.08 0.11 0.23 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Hydrogenoanaerobacterium 

0.0020 0.0016 1.28 0.12 0.24 Bacteria Bacteroidetes Bacteroidia Bacteroidales Marinifilaceae Butyricimonas 

0.0032 0.0014 2.30 0.13 0.25 Bacteria Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

0.0027 0.0014 1.96 0.13 0.25 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Holdemanella 

0.0038 0.0024 1.60 0.14 0.27 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_5 

0.0039 0.0022 1.74 0.15 0.27 Bacteria Firmicutes Negativicutes Selenomonadales Acidaminococcaceae Acidaminococcus 

0.0058 0.0034 1.69 0.15 0.27 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Tyzzerella_4 

0.0386 0.0337 1.15 0.16 0.28 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Alistipes 

0.0015 0.0004 3.79 0.16 0.28 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Faecalitalea 

0.0003 0.0001 4.63 0.16 0.28 Bacteria Lentisphaerae Lentisphaeria Victivallales Victivallaceae Victivallis 

0.0003 0.0005 0.57 0.17 0.29 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae CAG-56 

0.0006 0.0009 0.64 0.18 0.30 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_UCG-010 

0.0161 0.0109 1.48 0.19 0.32 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-002 

0.0010 0.0007 1.45 0.24 0.39 Bacteria Firmicutes Clostridia Clostridiales Family_XI Finegoldia 

0.0002 0.0003 0.65 0.25 0.40 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae GCA-900066225 

0.0065 0.0046 1.41 0.26 0.42 Bacteria Firmicutes Clostridia Clostridiales Christensenellaceae Christensenellaceae_R-7_group 

0.0004 0.0001 3.97 0.27 0.42 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Dielma 

0.0072 0.0071 1.02 0.28 0.44 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus_1 

0.0024 0.0029 0.83 0.29 0.45 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea 

0.0002 0.0003 0.75 0.31 0.48 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae DTU089 

0.0015 0.0013 1.15 0.32 0.48 Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Intestinibacter 
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0.0038 0.0032 1.19 0.32 0.48 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae 

Ruminococcaceae_NK4A214_ 

group 

0.0033 0.0040 0.82 0.34 0.50 Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Sutterella 

0.0077 0.0082 0.94 0.36 0.52 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-014 

0.0023 0.0023 0.99 0.39 0.55 Bacteria Bacteroidetes Bacteroidia Bacteroidales Marinifilaceae Odoribacter 

0.0004 0.0004 0.94 0.43 0.59 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Holdemania 

0.0015 0.0012 1.26 0.43 0.60 Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Romboutsia 

0.0006 0.0005 1.19 0.44 0.60 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus_1 

0.0087 0.0126 0.69 0.45 0.60 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter 

0.0005 0.0008 0.66 0.45 0.60 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Erysipelatoclostridium 

0.0003 0.0005 0.51 0.47 0.61 Bacteria Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae Coprobacter 

0.0020 0.0018 1.10 0.47 0.61 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Negativibacillus 

0.0010 0.0029 0.35 0.46 0.61 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_7 

0.0042 0.0054 0.79 0.49 0.62 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae 

Lachnospiraceae_NK4A136_ 

group 

0.0040 0.0023 1.72 0.50 0.63 Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus 

0.0064 0.0058 1.12 0.52 0.64 Bacteria Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae Barnesiella 

0.0121 0.0133 0.90 0.52 0.64 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Subdoligranulum 

0.0007 0.0005 1.44 0.56 0.68 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Turicibacter 

0.0024 0.0026 0.90 0.58 0.69 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Paraprevotella 

0.0010 0.0009 1.10 0.59 0.70 Bacteria Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Collinsella 

0.0026 0.0024 1.08 0.60 0.70 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_9 

0.0012 0.0006 1.95 0.61 0.70 Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Veillonella 

0.0008 0.0005 1.45 0.62 0.71 Bacteria Firmicutes Bacilli Lactobacillales Enterococcaceae Enterococcus 

0.0001 0.0002 0.82 0.63 0.72 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Angelakisella 

0.1131 0.1351 0.84 0.64 0.72 Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia/Shigella 

0.0021 0.0014 1.47 0.64 0.72 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Tyzzerella 
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0.0017 0.0010 1.74 0.74 0.81 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae CAG-352 

0.0211 0.0155 1.37 0.78 0.85 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

0.0079 0.0090 0.89 0.81 0.86 Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Dialister 

0.0024 0.0026 0.92 0.81 0.86 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Flavonifractor 

0.0039 0.0047 0.83 0.82 0.86 Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Parasutterella 

0.0115 0.0080 1.45 0.81 0.86 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus_2 

0.0040 0.0052 0.76 0.85 0.88 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_6 

0.0006 0.0007 0.81 0.88 0.90 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_UCG-001 

0.0106 0.0155 0.68 0.88 0.90 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_9 

0.0002 0.0002 0.94 0.91 0.92 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae GCA-900066575 

0.0020 0.0015 1.36 1.00 1.00 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus_2 
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Supplementary Table 5. MWAS of dataset 2 conducted using Kruskal-Wallis 

 

Sample size for KW included all samples: N= 323 cases and 184 controls in dataset 2.  MRA= mean relative abundance, FC=fold change in patients (PD MRA/control MRA), P= 

unadjusted significance, FDR (BH)= false discovery rate, adjusted significance. Unclassified genera and genera present in <10% of subjects were excluded from this analysis. 

MRA values of 0.0000 correspond to MRAs that were <0.0001. 

 

PD  

MRA 

Control 

MRA 

FC P 

FDR 

(BH) 

Kingdom Phylum Class Order Family Genus 

0.0239 0.0088 2.72 4E-09 6E-07 Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 

0.0004 0.0011 0.38 2E-07 1E-05 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_UCG-004 

0.0097 0.0172 0.56 1E-06 6E-05 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Agathobacter 

0.0047 0.0078 0.60 7E-06 3E-04 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia 

0.0002 0.0001 2.19 8E-06 3E-04 Bacteria Firmicutes Clostridia Clostridiales Eubacteriaceae Eubacterium 

0.0007 0.0011 0.59 2E-05 6E-04 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_ND3007_group 

0.0013 0.0018 0.73 3E-05 7E-04 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-013 

0.0039 0.0050 0.78 7E-05 1E-03 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Anaerostipes 

0.0003 0.0001 4.43 2E-04 3E-03 Bacteria Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Lawsonella 

0.0276 0.0416 0.66 2E-04 3E-03 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium 

0.0006 0.0003 2.11 4E-04 0.01 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Turicibacter 

0.0208 0.0258 0.81 6E-04 0.01 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

0.0036 0.0026 1.38 7E-04 0.01 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae UBA1819 

0.0039 0.0015 2.53 7E-04 0.01 Bacteria Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium_1 

0.0001 0.0002 0.58 8E-04 0.01 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Erysipelotrichaceae_UCG-003 

0.0017 0.0007 2.56 1E-03 0.01 Bacteria Firmicutes Clostridia Clostridiales Family_XI Anaerococcus 

0.0003 0.0007 0.39 1E-03 0.01 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_UCG-001 

0.0015 0.0008 1.81 1E-03 0.01 Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio 

0.0056 0.0036 1.57 1E-03 0.01 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 

0.0036 0.0053 0.68 2E-03 0.01 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospira 

0.0003 0.0005 0.64 2E-03 0.01 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira 

0.0005 0.0003 1.79 2E-03 0.01 Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Varibaculum 

0.0027 0.0012 2.14 2E-03 0.01 Bacteria Firmicutes Clostridia Clostridiales Family_XI Peptoniphilus 

0.0015 0.0008 1.77 2E-03 0.02 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Hungatella 

0.0045 0.0028 1.61 3E-03 0.02 Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobrevibacter 

0.0022 0.0000 220.2 3E-03 0.02 Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Delftia 

0.0085 0.0086 0.99 3E-03 0.02 Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus 
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0.0026 0.0009 2.94 3E-03 0.02 Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas 

0.0025 0.0006 4.39 3E-03 0.02 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella 

0.0031 0.0046 0.69 0.01 0.03 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Fusicatenibacter 

0.0008 0.0005 1.69 0.01 0.03 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Anaerotruncus 

0.0079 0.0101 0.78 0.01 0.03 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus_2 

0.0001 0.0000 34.45 0.01 0.03 Bacteria Firmicutes Clostridia Clostridiales Family_XI Parvimonas 

0.0003 0.0002 1.72 0.01 0.04 Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Mobiluncus 

0.0005 0.0003 1.45 0.01 0.04 Bacteria Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Actinomyces 

0.0012 0.0005 2.60 0.01 0.04 Bacteria Firmicutes Clostridia Clostridiales Family_XI Finegoldia 

0.0003 0.0001 2.69 0.01 0.04 Bacteria Firmicutes Clostridia Clostridiales Family_XIII S5-A14a 

0.0187 0.0237 0.79 0.01 0.04 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 

0.0005 0.0002 2.25 0.01 0.04 Bacteria Firmicutes Clostridia Clostridiales Family_XI Murdochiella 

0.0048 0.0015 3.18 0.01 0.04 Bacteria Firmicutes Clostridia Clostridiales Family_XI Ezakiella 

0.0004 0.0005 0.78 0.01 0.04 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae DTU089 

0.0000 0.0000 2.06 0.01 0.05 Bacteria Actinobacteria Actinobacteria Propionibacteriales Propionibacteriaceae Cutibacterium 

0.0013 0.0019 0.68 0.02 0.06 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Butyricicoccus 

0.0000 0.0000 2.91 0.02 0.07 Bacteria Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Scardovia 

0.0034 0.0053 0.64 0.02 0.07 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_6 

0.0034 0.0044 0.79 0.02 0.07 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus_1 

0.0000 0.0000 0.72 0.02 0.07 Bacteria Firmicutes Bacilli Bacillales Family_XI Gemella 

0.0004 0.0001 2.58 0.03 0.09 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Fastidiosipila 

0.0038 0.0063 0.61 0.03 0.09 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-014 

0.0037 0.0018 2.09 0.03 0.09 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Eisenbergiella 

0.0008 0.0007 1.23 0.03 0.09 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-004 

0.0007 0.0002 4.09 0.03 0.09 Bacteria Epsilonbacteraeota Campylobacteria Campylobacterales Campylobacteraceae Campylobacter 

0.0027 0.0045 0.61 0.03 0.09 Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Veillonella 

0.0002 0.0000 11.43 0.03 0.10 Bacteria Lentisphaerae Lentisphaeria Victivallales Victivallaceae Victivallis 

0.0000 0.0001 0.59 0.04 0.12 Bacteria Firmicutes Bacilli Lactobacillales Carnobacteriaceae Granulicatella 

0.0000 0.0000 0.95 0.04 0.13 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Cuneatibacter 

0.0001 0.0001 1.45 0.04 0.13 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-009 

0.0000 0.0000 1.58 0.05 0.13 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-011 

0.0001 0.0001 0.86 0.05 0.14 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Candidatus_Soleaferrea 

0.0001 0.0002 0.73 0.05 0.14 Bacteria Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus 

0.0000 0.0000 0.51 0.05 0.14 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-008 
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0.0001 0.0004 0.40 0.06 0.14 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Tyzzerella_3 

0.0004 0.0003 1.40 0.06 0.15 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae GCA-900066225 

0.0001 0.0002 0.58 0.06 0.16 Bacteria Actinobacteria Actinobacteria Micrococcales Brevibacteriaceae Brevibacterium 

0.0002 0.0001 1.42 0.06 0.16 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Howardella 

0.0023 0.0017 1.37 0.07 0.16 Bacteria Bacteroidetes Bacteroidia Bacteroidales Marinifilaceae Butyricimonas 

0.0002 0.0001 2.00 0.07 0.17 Bacteria Firmicutes Clostridia Clostridiales Family_XIII Mogibacterium 

0.0000 0.0000 1.46 0.07 0.17 Bacteria Firmicutes Clostridia Clostridiales Eubacteriaceae Anaerofustis 

0.0001 0.0001 0.75 0.07 0.17 Bacteria Firmicutes Clostridia Clostridiales Family_XIII Family_XIII_UCG-001 

0.0096 0.0047 2.06 0.07 0.17 Bacteria Firmicutes Negativicutes Selenomonadales Acidaminococcaceae Acidaminococcus 

0.0003 0.0002 1.33 0.07 0.17 Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Anaeroglobus 

0.0001 0.0001 0.82 0.08 0.17 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Phocea 

0.0001 0.0002 0.76 0.08 0.18 Bacteria Firmicutes Clostridia Clostridiales Peptococcaceae Peptococcus 

0.0373 0.0460 0.81 0.08 0.18 Bacteria Firmicutes Negativicutes Selenomonadales Acidaminococcaceae Phascolarctobacterium 

0.0000 0.0000 0.72 0.09 0.19 Bacteria Firmicutes Clostridia Clostridiales Defluviitaleaceae Defluviitaleaceae_UCG-011 

0.0007 0.0004 1.68 0.10 0.20 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Sellimonas 

0.0041 0.0032 1.31 0.10 0.21 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-005 

0.0000 0.0000 0.65 0.10 0.21 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-007 

0.0001 0.0001 0.79 0.10 0.21 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Erysipelatoclostridium 

0.0036 0.0008 4.50 0.10 0.21 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Tyzzerella_4 

0.0055 0.0040 1.36 0.10 0.21 Bacteria Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Collinsella 

0.1610 0.1887 0.85 0.12 0.23 Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia/Shigella 

0.0000 0.0000 0.98 0.12 0.23 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Holdemania 

0.0028 0.0028 0.99 0.14 0.26 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea 

0.0003 0.0003 0.90 0.15 0.28 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae CAG-56 

0.0004 0.0009 0.40 0.17 0.32 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus_2 

0.0051 0.0040 1.26 0.17 0.33 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_5 

0.0002 0.0003 0.86 0.18 0.33 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae GCA-900066575 

0.0032 0.0034 0.93 0.19 0.35 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_NK4A136_group 

0.0001 0.0001 1.63 0.20 0.37 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Faecalitalea 

0.0032 0.0033 0.99 0.23 0.41 Bacteria Firmicutes Clostridia Clostridiales Christensenellaceae Christensenellaceae_R-7_group 

0.0199 0.0149 1.34 0.24 0.42 Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Akkermansiaceae Akkermansia 

0.0018 0.0080 0.22 0.24 0.43 Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Klebsiella 

0.0031 0.0032 0.98 0.26 0.46 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_9 

0.0001 0.0001 1.04 0.27 0.47 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Shuttleworthia 
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0.0001 0.0000 3.41 0.28 0.48 Bacteria Actinobacteria Coriobacteriia Coriobacteriales Atopobiaceae Atopobium 

0.0104 0.0114 0.91 0.30 0.50 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoclostridium 

0.0058 0.0051 1.14 0.32 0.53 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillibacter 

0.0001 0.0001 1.54 0.32 0.53 Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus 

0.1960 0.2043 0.96 0.33 0.53 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 

0.0006 0.0006 0.93 0.34 0.54 Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Eggerthella 

0.0044 0.0033 1.35 0.34 0.55 Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Parasutterella 

0.0020 0.0021 0.93 0.35 0.55 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-003 

0.0000 0.0001 0.37 0.35 0.55 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium 

0.0008 0.0007 1.16 0.35 0.55 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_UCG-010 

0.0001 0.0001 1.53 0.36 0.55 Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Negativicoccus 

0.0042 0.0015 2.80 0.36 0.55 Bacteria Synergistetes Synergistia Synergistales Synergistaceae Cloacibacillus 

0.0018 0.0017 1.08 0.37 0.55 Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Bilophila 

0.0026 0.0027 0.98 0.37 0.55 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_NK4A214_group 

0.0001 0.0001 0.67 0.37 0.55 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_FCS020_group 

0.0053 0.0037 1.45 0.38 0.56 Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Dialister 

0.0006 0.0003 1.97 0.40 0.58 Bacteria Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

0.0002 0.0001 2.54 0.41 0.59 Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Terrisporobacter 

0.0015 0.0009 1.67 0.41 0.59 Bacteria Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Sutterella 

0.0222 0.0199 1.11 0.41 0.59 Bacteria Bacteroidetes Bacteroidia Bacteroidales Tannerellaceae Parabacteroides 

0.0020 0.0024 0.83 0.42 0.59 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Intestinimonas 

0.0006 0.0002 2.78 0.43 0.60 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_6 

0.0018 0.0020 0.92 0.43 0.60 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Negativibacillus 

0.0086 0.0035 2.48 0.43 0.60 Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Megasphaera 

0.0001 0.0001 0.41 0.45 0.61 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae_NK4B4_group 

0.0000 0.0001 0.76 0.45 0.61 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Coprobacillus 

0.0138 0.0112 1.24 0.46 0.62 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-002 

0.0076 0.0131 0.58 0.49 0.64 Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Proteus 

0.0027 0.0020 1.39 0.49 0.64 Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Romboutsia 

0.0001 0.0000 1.32 0.49 0.64 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Anaerofilum 

0.0008 0.0004 2.10 0.50 0.64 Bacteria Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae Coprobacter 

0.0006 0.0005 1.29 0.52 0.67 Bacteria Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus 

0.0000 0.0000 1.08 0.52 0.67 Bacteria Firmicutes Clostridia Clostridiales Christensenellaceae Catabacter 

0.0000 0.0000 1.19 0.53 0.67 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae GCA-900066755 
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0.0004 0.0003 1.56 0.54 0.68 Bacteria Synergistetes Synergistia Synergistales Synergistaceae Pyramidobacter 

0.0001 0.0000 2.06 0.55 0.68 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_1 

0.0001 0.0000 1.58 0.55 0.68 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Candidatus_Stoquefichus 

0.0004 0.0003 1.20 0.57 0.69 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Angelakisella 

0.0007 0.0006 1.26 0.57 0.70 Bacteria Firmicutes Clostridia Clostridiales Family_XIII Family_XIII_AD3011_group 

0.0009 0.0010 0.89 0.58 0.70 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus_3 

0.0032 0.0033 0.97 0.59 0.71 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Flavonifractor 

0.0000 0.0000 1.12 0.62 0.73 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Acetanaerobacterium 

0.0002 0.0001 1.31 0.62 0.73 Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Slackia 

0.0001 0.0001 0.63 0.62 0.73 Bacteria Actinobacteria Actinobacteria Micrococcales Micrococcaceae Rothia 

0.0000 0.0000 3.20 0.63 0.73 Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Dielma 

0.0041 0.0055 0.75 0.64 0.74 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_9 

0.0005 0.0002 2.14 0.65 0.75 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Marvinbryantia 

0.0004 0.0005 0.92 0.66 0.75 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Fournierella 

0.0004 0.0003 1.30 0.67 0.75 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus_1 

0.0007 0.0007 0.93 0.68 0.77 Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae Intestinibacter 

0.0001 0.0001 2.34 0.70 0.78 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Hydrogenoanaerobacterium 

0.0052 0.0044 1.18 0.72 0.80 Bacteria Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae Barnesiella 

0.0000 0.0000 1.48 0.73 0.80 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lactonifactor 

0.0001 0.0001 1.16 0.74 0.80 Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Gordonibacter 

0.0016 0.0017 0.98 0.74 0.80 Bacteria Firmicutes Bacilli Lactobacillales Enterococcaceae Enterococcus 

0.0003 0.0002 1.25 0.75 0.80 Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Adlercreutzia 

0.0002 0.0002 0.79 0.75 0.80 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae UC5-1-2E3 

0.0170 0.0159 1.07 0.79 0.84 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Subdoligranulum 

0.0028 0.0015 1.82 0.80 0.84 Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae_1 Clostridium_sensu_stricto_1 

0.0015 0.0011 1.33 0.88 0.92 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_7 

0.0202 0.0206 0.98 0.88 0.92 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Alistipes 

0.0006 0.0005 1.05 0.91 0.95 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae_UCG-010 

0.0000 0.0000 1.34 0.95 0.98 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Caproiciproducens 

0.0002 0.0002 1.32 0.95 0.98 Bacteria Firmicutes Bacilli Lactobacillales Leuconostocaceae Weissella 

0.0014 0.0009 1.51 0.96 0.98 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Tyzzerella 

0.0000 0.0000 1.23 0.98 0.99 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Harryflintia 

0.0053 0.0049 1.09 0.98 0.99 Bacteria Bacteroidetes Bacteroidia Bacteroidales Marinifilaceae Odoribacter 

0.0012 0.0015 0.80 0.99 0.99 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Paraprevotella 



 

 274 

Supplementary Table 6. PubMed search results for Porphyromonas, Prevotella, or Corynebacterium_1 
 
Species that comprised each genus (and accounted for at least 80% of the ASVs in the genus) were identified based on 100% sequence identity using DADA2-SILVA reference 

database or 100% or >99% identity and high statistical confidence using NCBI 16S rRNA database.  Then each species was searched in PubMed using “genus species” as search 

term.  Search filters: Humans, English, Title/abstract. The citations were tabulated for articles that addressed function, characteristics or relevance to human health; method papers 

were omitted.  All infections are in human samples, except C. lactis (newly discovered) was found in an abscess in a companion dog.   

 

Search term PubMed Return Subject matter 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/10342655 septic arthritis 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/10482033 surgical or catheter related infection, pilonidal cyst 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/11749760 endocarditis 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/12235925 blood cultures 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/12439810 mastitis 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/12565065 infective endocarditis 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/15315020 opportunistic infections 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/15786829 Peritonitis 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/17284316 endocarditis 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/18174873 infections in pediatric oncology 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/18809563 endocarditis 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/19153032 response to antibiotic tigecycline 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/19876565 predominant species in infections in cancer patients 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/20624090 resistance to antibiotic macrolide 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/22361761 clinical diphtheroid samples 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/23806703 surgical site infection 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/26324578 vaginosis 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/28011352 blood stream infection 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/28264610 breast abscess 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/28700261 infection of orbital implant 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/29793964 respiratory infection after lung transplant 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/30102894 Bloodstream and venous catheter-related infections 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/30248572 cystic neutrophilic granulomatous mastitis 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/30803027 bacteremia 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/8727888 clinical isolates, multiple sources 
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Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/8874085 sepsis 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/9157120 neonatal sepsis fatal in premature infant 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/9488824 wound, bloodstream, and urinary tract infections 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/9505178 infection after orthopedic surgery 

Corynebacterium amycolatum https://www.ncbi.nlm.nih.gov/pubmed/9868692 Cardioverter-Lead Electrode Infection 

Corynebacterium lactis https://www.ncbi.nlm.nih.gov/pubmed/25937144 Infection in companion dog 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896039/ colorectal cancer 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247719/ causes Lemierre's syndrome 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/15528728 clinical isolates 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/15722627 Clinical isolates, multiple sources 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/15888469 predominant in polymicrobial flora in 48 inflamed sinuses 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/15897651 Lemierre's syndrome 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/16887693 liver abscess 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/19390440 causes Lemierre's syndrome  

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/21407153 tubo-ovarian abscess 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/23435719 causes Lemierre's syndrome (acute otopjaryngeal infection) 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/23474186 pleural empyema in immunocompetent diabetic patient 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/24679105 polymicrobial foot infection 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/7548548 extraoral infections 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/7752213 418 children with infection, found in infections across body sites 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/7857230 cause chest wall abscess in one woman 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/8126176 bacterial vaginosis 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/8518760 male and female genital ulcers 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/8907604 female genital tract infection 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/9200028 intravenous catheter related bacteremia in child with cancer 

Porphyromonas asaccharolytica https://www.ncbi.nlm.nih.gov/pubmed/9772922 infected cardiac myxoma 

Porphyromonas bennonis https://www.ncbi.nlm.nih.gov/pubmed/19542133 identification and characterization in clinical specimen from various body sites 

Porphyromonas somerae https://www.ncbi.nlm.nih.gov/pubmed/16145091 chronic skin, soft tissue and bone infections 

Porphyromonas somerae https://www.ncbi.nlm.nih.gov/pubmed/30541687 abscesses, biopsies, wounds 

Porphyromonas uenonis https://www.ncbi.nlm.nih.gov/pubmed/15528728 identification as pathogen 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/10823756 enhanced HIV expression 
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Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/10875323 septic arthritis 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/11368254 bacterial vaginosis 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/11707013 septic arthritis 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/14532256 Paronychia 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/15722627 Clinical specimens 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/16192439 abdominal cutaneous ulcer 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/16316686 Lemierre's syndrome 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/17367470 virulence 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/1747864 bacterial vaginosis 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/17982605 penile abscess 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/18237241 Chorionic plate inflammation 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/19053926 Oral lichen planus 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/19271076 septic arthritis 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/19283879 chest wall abscess 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/20711427 bacterial vaginosis in HIV infected women 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/21214658 amniotic fluid infection 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/21376823 Skin and soft tissue infection 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/22375046 inguinal bubo 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/23001520 Abdominal wall phlebitis following renal transplant 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/24452170 empyema 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/24787738 Pelvic inflammatory disease 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/25114266 Necrotizing fasciitis 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/28008411 Proctitis 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/28903767 bacterial vaginosis 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/28931859 bacterial vaginosis 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/29772525 bacterial vaginosis 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/29860038 multi-center survey of multi-drug resistant isolates 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/8013486 endocarditis 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/8205934 obstetrics gynecology specimen 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/8270797 association with cervical cancer 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/8324131 bacterial vaginosis in pregnant women 
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Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/8677085 bacteremia after C-section 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/8907604 female genital tract infection 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/9003606 dog/cat bite wound 

Prevotella bivia https://www.ncbi.nlm.nih.gov/pubmed/9745330 Periodontal abscesses 

Prevotella buccalis https://www.ncbi.nlm.nih.gov/pubmed/14662931 urinary tract infection after renal transplant 

Prevotella buccalis https://www.ncbi.nlm.nih.gov/pubmed/24565649 Endodontic infections 

Prevotella buccalis https://www.ncbi.nlm.nih.gov/pubmed/9266340 Periodontitis 

Prevotella disiens https://www.ncbi.nlm.nih.gov/pubmed/15508748 Periodontitis 

Prevotella disiens https://www.ncbi.nlm.nih.gov/pubmed/1747864 bacterial vaginosis 

Prevotella disiens https://www.ncbi.nlm.nih.gov/pubmed/19161595 bacterial vaginosis 

Prevotella disiens https://www.ncbi.nlm.nih.gov/pubmed/24565649 Endodontic infections 

Prevotella disiens https://www.ncbi.nlm.nih.gov/pubmed/26183701 cranioplasty infection 

Prevotella disiens https://www.ncbi.nlm.nih.gov/pubmed/8205934 obstetrics gynecology specimen 

Prevotella disiens https://www.ncbi.nlm.nih.gov/pubmed/8324131 bacterial vaginosis in pregnant women 

Prevotella disiens https://www.ncbi.nlm.nih.gov/pubmed/8907604 female genital tract infection  

Prevotella timonensis https://www.ncbi.nlm.nih.gov/pubmed/17392225 breast abscess 

Prevotella timonensis https://www.ncbi.nlm.nih.gov/pubmed/29307650 various sites mostly genital and wound 
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Supplementary Figure 1. Correlation Network Analysis. 
 
 
Dataset 2 Cases 
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Dataset 2 Controls 
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Dataset 1 Cases 
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Dataset 1 Controls 
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We calculated pairwise correlations in relative abundances for all genera microbiome-wide, for each dataset and in cases and controls 
separately. Sample size: dataset 1 cases= 201, dataset 1 controls=132, dataset 2 cases= 323, dataset controls =184. To display, we set 
an arbitrary threshold of correlation coefficient at r³|0.4| to connect genera that were correlated. At r³|0.4| all correlations were 
significant at P<3E-4 (the limit for 3,000 permutations). The graphics denoted by “a” display the algorithm-predicted clusters in 
different colors. Graphics denoted by “b” are identical to their “a” counterpart except algorithm generated colors are now shown in 
grey and PD-associated taxa are highlighted in blue (if increased in PD) or red (if decreased in PD). Dataset 2 has more power due to 
larger sample size, and has greater resolution due to deeper sequencing, nonetheless, the general patterns are similar in the two 
datasets. Generally, the 15 PD-associated genera fall in 3 clusters. As best seen in dataset 2 cases, which has the largest sample size 
and power, Porphyromonas, Prevotella, and Corynebacterium_1 co-occur in cluster 1. Eight of the 10 in cluster 2 also connect at 
r³|0.4|, the other two, Oscillospira connects to cluster 2 at r=0.25 (P<3E-4) and Lachnospiraceae_UCG-004 connects at r=0.35 
(P<3E-4). Lactobacillus and Bifidobacterium connect to each other (cluster 3) at r=0.33 (P<3E-4). 
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