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INCORPORATING SPATIAL STRUCTURE INTO BAYESIAN
VARIABLE SELECTION USING SPIKE-AND-SLAB PRIORS

WITH APPLICATION TO IMAGING DATA

JUSTIN M. LEACH

BIOSTATISTICS

ABSTRACT

Many applications in neuroscience, psychology, medicine, and public health require

collecting and analyzing imaging data. While fine resolution images may appear continuous

to the naked eye, they are in fact made up of measurements at discrete locations, either

pixels in 2D or voxels in 3D. These data may be treated as the scientific outcomes of interest,

or as predictors of outcomes of interest. Here, the concern is with the latter situation, which

involves converting images into formats amenable to a linear modeling framework; i.e., each

subject’s image is converted into a vector, and used to model the subject’s (scalar) outcome

of interest.

Imaging data can complicate statistical analyses because using images as predictors

can make traditional linear models invalid, or non-identifiable, for two reasons. First, images

usually contain as many or more pixels or voxels, i.e., predictors, as subjects. Second, the

measurements taken from images are usually highly correlated. Both situations violate the

assumptions of traditional linear models. In contrast, Bayesian linear models can circumvent

these issues but require principled approaches to selecting prior distributions. The primary

goal of this work is to explore and develop a class of priors that is relevant to modeling

scalar outcomes using images.

The outline of this work is as follows. After a review of literature, the first paper

develops and presents an R package, sim2Dpredictr, for simulating data in a situation

where images are used to model scalar outcomes; this package is freely available on

CRAN. The second paper extends the spike-and-slab lasso prior by generalizing it to the

spike-and-slab elastic net, and by incorporating spatial structure explicitly into variable
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selection using Intrinsic Autoregressions (IAR) as priors; an R package to fit the models,

ssnet, is available on github. We evaluate the proposed models with a simulation study by

generating data with sim2Dpredictr. The final paper demonstrates the practical utility

of the methods by applying them to classification problems using data from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI). Finally, we summarize the contributions of the

dissertation, and discuss future research directions.

Keywords: Bayesian GLM, Bayesian Variable Selection, EM Algorithm, Image Analysis,

Spike-and-Slab Lasso, Elastic Net
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LITERATURE REVIEW

1 Introducing the Problem

Consider the problem where a random sample of n subjects has a scalar outcome

Yi, i = 1, . . . , n, and predictors, or independent variables, consist of values at many spatial

locations. For example, suppose each subject has a scalar outcome and a 50 × 50 image.

Further, consider two wrinkles: Wrinkle 1 is that the subject images have spatial correlation

(association). That is, for example, the value of the image at location (i, j) is 1 is likely

not independent of the value of the image at location (i, j + 1). An example is displayed

in Figure 1, where the green pixels correspond to value 1 and the white pixels to value 0.

While the data are binary in this case, it is clear that 0/1 values are not uniformly distributed

in the two-dimensional space, and zeros are more likely to be surrounded by zeros than ones

and vice versa. Wrinkle 2 is that the area a good model should identify as associated with

the outcome is usually clustered, rather than disperse; an example is displayed in Figure 1,

where the orange pixels correspond to the area that is actually associated with an outcome

and the white pixels to the area that is not associated with the outcome. The question is how

to best use the images like that in Figure 1 to identify the orange area in Figure 1. While

the image in Figure 1 is presented as a matrix of zeros and ones, the problem at hand also

encompasses matrices or arrays with non-independent entries made up of any real numbers.

This document aims to explore solutions to the above problem and hopefully find a (as

much as possible) unique approach to improving or expanding the existing methods.

The rest of the document is organized as follows: Section 2 introduces and briefly

expounds upon the classical linear model framework. The general linear model and its

1



Figure 1: Example of a subject image matrix. Each box corresponds a location in the subject
image matrix. In this example, locations that are green indicate data value 1 and locations
that are white indicate data value 0; i.e. this is a matrix of spatially related binary predictors.

assumptions are elucidated and approaches for handling analyses when two key assumptions

have been violated is discussed. Finally, an answer is given to the question of whether

(in general) these models help with the problem described above.1 Section 3 introduces

Bayesian statistics by addressing its origin in the form of Bayes Theorem, and comparing

1It should come as no surprise that the answer is generally “No", or at the very least, not without some
severe and possibly dubious adjustments.
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Figure 2: Example of a spatially clustered parameters. Each box corresponds to a location
in the subject image matrix. The locations that are colored orange are locations that are truly
associated with the outcome of interest. Those that are white are not truly associated with
the outcome of interest.

and contrasting the differences in Classical vs. Bayesian estimation. We then discuss the

Bayesian approach to linear modeling and discuss how the inclusion of prior distributions

in the linear model setting can provide specific benefits in certain situations. Section 4

introduces the issue of multiple testing in statistics and distinguishes multiple testing from

multiple comparisons. The discussion includes the viability of hypothesis testing in the
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classical paradigm and the use of multiple testing procedures to control errors and discuss

the relationship between multiple testing issues and Bayesian statistics. Section 5 describes

a method from genetic research that employs Bayesian GLM’s with shrinkage priors, and

which holds promise for possibly being adapted to spatial data. This section discusses the

general estimation framework, shrinkage priors and their purpose, and multiple testing in

this particular Bayesian framework. Section 6 explores a recently developed method for

Bayesian variable selection that combines the strengths of spike-and-slab priors with the

LASSO, and discusses an adaptation of this approach to genetics.2 This section also includes

a brief discussion regarding the concept of penalized likelihoods, and spike-and-slab priors

more broadly. Section 7 discusses how to convert an image into a format appropriate for

a linear model and (attempts to) answer questions like “How does one incorporate spatial

information into the Bayesian GLM’s discussed in previous sections?”, “How would one

go about estimating the necessary parameters?” Section 8 provides an overview of some

useful spatial statistics that will aid us in our task. Note also that the ultimate goal is to

generalize the above problem in magnetic resonance images (MRI) applications, and so a

brief overview on neuroimaging and MRI in particular is found in Appendix A.

2 Linear Models

2.1 Basic Linear Models

Linear models have become nearly ubiquitous in research, particularly when one

desires to model how multiple variables, viewed together, affect a single outcome. That

is, for i = 1, . . . , n subjects with outcomes Yi and predictors Xi1, . . . , XiJ , employ the

following model:3

Yi = β0 +Xi1β1 + · · ·+XiJβJ + εi (2.1.1)

2This a mathematical discipline and so no one should be surprised that this approach was christened “The
Spike-and-Slab LASSO".

3Unless otherwise specified, the information in this section can be found in Myers and Milton (1998), but
basically any reputable linear models text will do just fine.
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where β0, . . . , βJ are parameters associated with the variables of interest and ei is the random

error. This model can be expressed in matrix form by stacking the elements of equation

(2.1.1) to obtain the n×1 outcome vector Y , the n× (J+1) design vectorX , a (J+1)×1

parameter and the n× 1 vector of random errors ε:

Y = Xβ + ε (2.1.2)

This is the form of a general linear model. The ordinary least squares (OLS) estimate, i.e.

minimizing the sum of squared errors4 of β can be shown to be:

β̂ = (X>X)−1X>y (2.1.3)

where y are the observed outcomes.5 Since the model assumes the random error has mean

0 and variance σ2I , it is only necessary to estimate σ2. The sample variance is given as

follows and can be shown to be unbiased for σ2:

s2 = (y−Xβ̂)>(y−Xβ̂)
n− (J + 1) (2.1.4)

The presence of the inverse in equation (2.1.3) means thatX must be full rank in order for

(X ′X)−1 to exist; this implies linearly independent columns in X . In practice this does

not imply that there exists no correlation between these columns, only that no columns

are a function of any collection of other columns. Generally, the correlation between

predictors is non-zero, if small. However, larger magnitude correlations can ultimately

cause problems, sometimes with identifiability and sometimes with interpreting parameter

estimates. Predictors can be confounding, or in some cases, measures of (nearly) the same

thing. Consider a model to study the association between lung function and footrace times:

4In practice, for observed data the sum of squared residuals is minimized.
5Following at least some people’s convention, capital letters shall herein refer to random variables and

lower case letters to observed values.
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including data on both 400m time and 500m time are likely to interfere with each other since

both are essentially measuring the same kind of fitness. Alternatively, consider modeling

lung function with 400m and smoking status; smoking status likely affects 400m and lung

function, and therefore one might expect a sizable correlation between these predictors,

which could muddle interpretation of parameters or cause the model to be non-identifiable.6

Otherwise, this approach requires only that the random errors ε have mean 0 and

variance σ2I , i.e. they are independent with common variance, in order for the estimator

β̂ to be a Best Linear Unbiased Estimator (BLUE) for β.7 However, further application,

e.g. inference, interval estimation, and maximum likelihood proofs require one to further

assume normality of the random errors. Normal random errors imply that the outcome is

also assumed to be normally distributed with meanXβ̂ and variance σ2I .

2.2 Generalized Linear Models (GLM)

Generalized linear models arise from the case where outcomes/errors are not nor-

mally distributed and/or do not have independent errors, but mostly the former, as a Gen-

eralized Least Squares estimate can be derived for non-independent errors.8 GLM’s are

generally appropriate for data that belong to an exponential family, and they do not model

the outcome explicitly, but rather model a function of the expectation, called the link function.

The link function transforms the expectation to obtain a linear model:

h(E(Yi|Xi1, . . . , XiJ)) = β0 +Xi1β1 + · · ·+XiJβJ (2.2.1)

6A related but different topic is the interaction between predictors in their association with an outcome.
For example, suppose lung function is the outcome, and age and smoking status (Yes or No) as predictors. It
could be the case the association between lung function and age is different depending on whether the subject

smokes or not. If in equation (2.1.1), Xi1 =
{

1 smoker
0 non-smoker

and Xi2 = subject age, then an interaction

term is given by Xi3 = Xi1 ∗Xi2, and has parameter β3. However, this does not immediately imply anything
about the relationship between smoking status and age.

7The is shown via proving the Gauss-Markov Theorem. See Myers and Milton (1998).
8The problem here is that if you do not know the form and magnitude of the correlation between errors,

then estimation is difficult and ultimately requires an approach different from that found in most introductory
linear models textbooks. See McCulloch et al. (2008) and section 2.3.
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where h(·) is the link function and the right hand side (RHS) is called the linear predictor,

often denoted ηi. Link functions differ from transformations in that link functions are

functions of the theoretical expectation, whereas a transformation is a function on the

raw data itself. Many of the most useful distributions in the exponential family have a

relationship between the mean and variance; that is, the variance is actually a function

of the mean. This is true for some of the most commonly used distributions such as the

Binomial, Poisson, and Gamma distributions.9 In one sense this simplifies the process in that

it (often) eliminates the need to estimate the variance separately, although it is possible to

estimate an over-dispersion parameter, commonly given as φ;10 however, when it comes time

to maximize the likelihood, the relationship between the mean and variance prevents the

existence of an analytic solution.11 The method of iterative weighted least squares (IWLS)

is an (obviously) iterative approach to solving for β to obtain β̂ that sidesteps the analytic

issues (McCulloch et al., 2008). This approach also has the added benefit of asymptotic

normality for the parameter estimates, allowing for Wald Tests to be used inference.12 Note

that ultimately similar concerns about the design matrix X arise in the case of the GLM

because one must still calculate an inverse that is a function of X , which implies that X

must be full rank. Ultimately, GLM’s are most commonly employed to address estimation

when the outcome of interest is binary13 or count data.14

9See Appendix C.
10The technical use of this parameter is apparently not well agreed upon. For some, it is a dispersion

parameter and thus naturally 1 for distributions such as the Binomial and Poisson distributions, but naturally
needs to be estimated for distributions such as the Gamma distribution. Others prefer to label φ as “over-
dispersion" so it is always something estimated in addition to that which is standard to a theoretical distribution.

11i.e. it is impossible to isolate β̂ as in equation (2.1.3). Rather, the result is an equation with β on both
sides with no (analytic/algebraic) way to get it by itself on one side of the equation.

12Other inference approaches are available; e.g. Likelihood Ratio Test. In addition, IWLS is not the only
approach to estimation. See McCulloch et al. (2008), chapter 5.

13e.g. Consider a model where the outcome is pass/fail on some test and the predictors are college major
and whether or not the subject took a Red Bull beforehand.

14e.g. Consider a model where the outcome is the number of hospital visits within a year and the predictors
are alcohol consumption and age.
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2.3 Correlated Errors

Normally distributed data

Section 2.1 briefly addressed non-normal random errors, and often this situation

implies a functional relationship between the mean and variance. While the reader is referred

to a textbook, McCulloch et al. (2008), for further details, it was claimed that parameter

estimates could be obtained via IWLS. Another common occurrence is correlated random

errors, which can arise when the same outcome is measured multiple times for a subject,

or alternatively, when subjects within some cluster can be assumed to have a correlation

in outcomes/random errors. When the outcome is normally distributed, the model is an

extension of equation (2.1.1) into a multivariate case:

Yi = Xiβ + εi (2.3.1)

where Yi is a ni × 1 vector of observations for subject/cluster i, with ni × (J + 1) design

matrix Xi, (J + 1) × 1 parameter vector β̂, and ni × 1 random error vector εi. Now,

assume that εi is normally distributed with mean 0 and covariance matrix Σi, which may

not be equal to a scalar multiplied by an identity matrix. Stacking equation (2.3.1) across all

i = 1, . . . , n obtains equation (2.1.2) with the difference being that the variance of ε is no

longer σ2I , but rather a block diagonal consisting of the εi from each subject, denoted Σ.

A correlation structure can be assumed for Σi, which may then be estimated and used for

inference. It is also common to partition the error into random effects and within subject

error which results in a model format known as a Linear Mixed Model (LMM). In the case

of longitudinal data, this partitioning allows that there are population level effects (the

“fixed effects” β), but that individuals or clusters actually have their own deviation from this

population level effect (the so-called random effect), from which they will vary due either to

measurement error and/or random error. Whatever approach one chooses (partitioning error

or not), estimation runs into similar issues as the GLM case in that the estimating of the
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(co)variance results in analytically intractable situations, requiring numerical methods for

obtaining solutions. Additionally, while estimation in the GLM case still relies on Maximum

Likelihood (and technically so can estimation here), an alternative approach known as

Restricted (Residual) Maximum Likelihood (REML) transforms the model to contain none of

the fixed effects and then performs maximum likelihood estimation to obtain (co)variance

estimates which may then be used to estimate a solution for β̂; this process reduces, but does

not eliminate, the bias in variance estimation that results when using maximum likelihood.15

As an example (and hopefully somewhat intuitive at that), consider a situation where

each subject runs 400 meters as fast as possible on 4 separate Saturdays in July. Subjects

are randomized to take either Red Bull, Beer, Coffee, or Water before their sessions (the

same beverage each time). The fixed effect accounts for population trajectories, i.e. for each

beverage group, on average did those subjects improve (or not) and by how much? The

random effects accounts for the fact that difference subjects are likely to individual specific

differences in trajectory of (hopefully) improvement. The within subject error accounts for

the fact that there is likely additional variation not accounted for by individual differences.

That is, there is some variation about a subject’s time that may be tied to neither individual

fitness nor beverage.

Non-Normal data with correlated errors

Non-normal data tends to be even more difficult to handle when errors, and thus

outcomes, are not independent. This is generally beyond the scope of this document, but

similar to LMM’s, one may attempt to model random effects or not, i.e. partition the random

error or not. If the random error is not partitioned it is common to employ Generalized

Estimating Equations, which depend on a kind of quasi-likelihood to specify the relationship

15See McCulloch et al. (2008) for theoretical details. Essentially, the problem is that the ML solution
estimates the variance components as if we know β, but we have estimated β, which introduces additional
variation that ML ignores. The beauty of REML is that the variance components are estimated without respect
to particular values of β, which alleviates the bias introduced by pretending we know β. In practice, this
does not often noticeably change the estimate β̂, but since variance estimates can be different, the results of
hypothesis tests can change noticeably.
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between mean and variance, and which employs an ad-hoc addition of a working correlation

matrix to account for dependence between observations (Liang and Zeger, 1986). One may

alternatively specify a Generalized Linear Mixed Model (GLMM), which combines the

LMM and GLM approaches described above; however, estimation methods are typically

more complicated and there is no general agreement about the best optimization approach

(Tuerlinckx et al., 2006).16

2.4 Application to the Question at Hand

None of the models as described will be able to handle the general data structure

described in Section 1. Why? The first issue is that in many situations the design matrix

will be non-identifiable, either because the number of predictors in the image will exceed

the number of subjects (J > n) or because the associations between the predictors may

be relatively strong in many cases. A second point is that the frameworks for handling

correlations discussed in this section are related to correlations between errors, which in

reality arise due to the correlated nature of the collected outcomes. These approaches cannot

immediately address image data unless the image is used as the outcome. Possible practical

goals in thinking about such a question might be using MRI images to predict disease

progression or to determine what areas of the brain are associated with some behavioral

outcome. However, a key difference between this situation is that the spatial structure of

the predictors and their parameters actually contain information about how likely it is that a

location is associated with the outcome of interest. If it is known that none of the locations

surrounding a particular location are associated with the outcome then that provides some

information about whether this particular location is associated with the outcome. Ultimately,

the intention is to use the available spatial information in inference. This will be the ultimate

task of this work; however, in order to address this task, we must first review Bayesian

approaches to statistics, as well as some aspects of established spatial statistics.

16Despite this difficulty, one should not be dissuaded from fitting the model one deems most appropriate.
Read Tuerlinckx (2006) or consult your friendly neighborhood statistician.
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3 Bayesian Approaches to Modeling

3.1 Basics Bayes

Bayesian statistics is built upon exploiting the rules of conditional probability. Fol-

lowing Casella and Berger, consider the definition of the conditional probability of event A

given event B from some set of possible events S:

Pr(A|B) = Pr(A ∩B)
Pr(B) (3.1.1)

It is straightforward to see that Pr(A ∩ B) = Pr(A|B) Pr(B) = Pr(B|A) Pr(A), which

may be incorporated into equation (3.1.1) to find:

Pr(A|B) = Pr(A|B) Pr(A)
Pr(B) (3.1.2)

The generalization of this insight is called Bayes’ Theorem. Let A1, A2, . . . be a partition of

the sample space, S and B be any set. Then for each i = 1, 2, . . . ,

Pr(Ai|B) = Pr(B|Ai) Pr(Ai)∑∞
j=1 Pr(B|Aj)P (Aj)

(3.1.3)

Note that in Bayesian modeling equation (3.1.3) can be generalized to the continuous case

such that the denominator contains an integral rather than a summation, and the probabilities

are replaced by probability densities.

3.2 Classical vs. Bayesian Estimation

Bayesian philosophy, hypothesis testing, and specification of priors

In its simplest form, the disagreement between Frequentists and Bayesians is best

understood by thinking about the assumptions placed on the parameters, θ, associated with

a particular distribution. Frequentists assume that this parameter vector contains constants,

which is estimated, and whose estimates shall have some variation requiring consideration;
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however, if the sample size went to infinity, the variation around these parameters would

disappear, resulting in the true and exact parameter values instead of an estimate. To be

clear, in frequentist approaches it is the parameter estimates that vary, not the parameters

themselves. The label “frequentist” is better understood through traditional probability

exercises, say a coin flip. The assumption is that if a coin is fair, then in a finite sample the

proportion of heads likely differ from the proportion of tails, but the longer the series of coin

flips the closer these proportions will get to 1/2, and an infinite series of coin flips would

produce 1/2 exactly. The parameter, in this case the probability of a heads (or equivalently, a

tails for a fair coin), is determined by the relative frequency of flips that ends on heads.

The Bayesian approach fundamentally rejects the idea that the parameters are con-

stants, with only their estimation varying on account of finite sample sizes. Bayesians

argue that parameters of interest, θ, themselves have distributions with constant parameters,

called hyperparameters;17 that is, θ is not a constant, but rather a random variable with a

distribution of its own.18 Bayesians prefer to think about probabilities less as frequencies

and more as approaches for measuring and quantifying “uncertainty”, particularly in cases

where the frequency framework requires mental gymnastics. For example, Jeffreys and

Berger describe probability in Bayesian terms as a “measure of plausibility of a hypothesis

or proposition” (Jeffreys and Berger, 1992); e.g., given some seismic data, what is the proba-

bility of an earthquake occurring? A frequentist might counter by asking, given this seismic

data, how often does an earthquake follow? However, interest is not always focused on the

large sample qualities of how often an earthquake follows, but rather on the probability that

an earthquake occurs in this particular case.

17(Depending on the depth of hierarchy, it may take a few levels to reach the constant parameters.
18Some authors, e.g., Greenland (2006), argue that it is incorrect to say that “parameters are treated as fixed

by the frequentist and as random by the Bayesian”. Nevertheless, mathematically speaking, this is exactly
the case; Bayesians estimate a parameter’s posterior distribution, while frequentists find a point estimate for
a parameter. What this distinction means for interpretation in practice may vary. In Greenland’s subjective
approach, the uncertainty is always around a parameter’s value, and not a “property” of the parameter, but the
mathematics do not confine us to this particular interpretation.
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In the simplest application of Bayesian probability, there exists a set of mutually

exclusive hypotheses, each of which is assigned a prior probability, collect data, and then

update the probabilities that each hypothesis is true; i.e., for i hypotheses Hi, and data y

there is the following application of Bayes theorem:

Pr(Hi|y) = Pr(y|Hi) Pr(Hi)
Pr(y) (3.2.1)

This differs from frequentist interpretations because a frequentist would say that the true

hypothesis has probability 1 after data have been collected, while all others have probability

0; the Bayesian, however, is giving each hypothesis a “probability” that attempts to quantify

the uncertainty about which hypothesis is true.19

However, simple framework of equation (3.2.1) is a rather poor description of (many)

modern applications of Bayesian statistics and has received much criticism.20 Gelman and

Shalizi (2013) explain in detail the common inadequate and inappropriate conceptions that

surround Bayesian methodology. Often, Bayesian statistics is described as assigning a

prior distribution, which incorporates the “prior beliefs” of the researchers into the model,

which may then be updated when new data is collected. The idea is then that over time the

updating shall converge upon the “true hypothesis” or true distribution of some parameters

θ. However, as is the case with other types of models, the model is virtually always false in

the strict sense and therefore to some degree misspecified. The degree to which the model is

misspecified determines whether the model may result in useful inference, or not.

19This particular application lines up fairly well with the interpretation of Greenland (2006), who we
maligned in a previous footnote. Here we assume that one of the hypotheses is true, we just do not know
which one. Our point is not that such an interpretation is always incorrect, but that it is not always implied by
using Bayesian statistics.

20See for example Mayo (1996), who argues strenuously against Bayesian approaches to hypothesis testing,
with particular focus on philosophy of science (Mayo, 1996). Many of the mathematical justifications and
arguments for Bayesian applications in experiment and hypothesis testing can be found in Berger and Wolpert
(1988), but this is largely beyond the scope of this document.
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A key objection to using equation (3.2.1) in practice is that it is possible for the prior

distribution to not include all possible truths. As in frequentist approaches, models can be

checked for goodness of fit, often by simulating from the posterior distribution to determine

whether the model would be likely to produce the observed data. Additionally, the role of

the prior distribution as representing the researchers’ “prior beliefs” is often misleading.

The prior is more similar to a regularization device, which causes fitted models to be less

sensitive to various details in the data. Prior distributions, in the course of model checking,

are as testable as any other aspect of the data. A better outlook is to take the perspective that

“ ‘the model’, for a Bayesian, is the combination of the prior distribution and the likelihood,

each of which represents some compromise among scientific knowledge, mathematical

convenience, and computational tractability” (Gelman and Shalizi, 2013). The general point

is that Bayesian models are not necessarily about “updating” one’s subjective beliefs, but

rather they are flexible tools for modeling uncertainty, which have assumptions that should

be stated and checked for accuracy.

Bayesian approaches are often useful in cases where classical approaches fail in

some way, but where the data still contain useful information; e.g., see Gelman et al. (2008),

whose weakly informative priors can help address the issue of complete separation in

logistic regression. That is not to say that there are not circumstances where equation

(3.2.1) can be a useful approach or that no one advocates the use of prior distributions

as a way to incorporate prior beliefs, but only that in many practical applications a more

nuanced approach is available. For example, Greenland (2006) shows how relatively simple

applications of “subjective” Bayesian statistics can be useful in epidemiology by exploring

how in many cases prior distributions can be represented directly as prior data, which

can inform reasonable prior distribution choices, and can aid interpretation of the strength

of results. Furthermore, Greenland discusses how the assumptions of many traditional

methods can fail in practice, and how Bayesian approaches can force a reckoning with the

assumptions researchers make in every day analysis. It may even be possible to evaluate
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model performance in somewhat of a traditional framework, e.g., in simulation studies

does a procedure obtain the correct answer with reasonable frequency? For example, if

the expression of some gene is associated with a particular disease, does the model tend to

discover that fact?

Estimation approaches

Classical, or Frequentist, approaches to estimation typically assume that a random

sample of observations is drawn from some distribution, from which the likelihood function

is constructed: L(θ|y), which is the joint distribution of the data, y, as function of some

set of parameters θ, given y. In the case of independent and identically distributed (i.i.d.)

random variables this is simply the product of the individual random variables; i.e. for

a sample of n i.i.d. random variables with probability distribution function f(y|θ), the

likelihood is given by:

L(θ|y) =
n∏
i=1

f(yi|θ) (3.2.2)

One then maximizes the likelihood as a function of θ, given the data y, in order to obtain an

estimate of θ, θ̂. This approach essentially tells us what the most likely parameter values

are, given the collected data. This is the essence of classical maximum likelihood estimation,

which assumes there exist unique constant values for all entries in θ; the uncertainty is

baked in the fact that we take a finite sample, and so we will not have θ̂ = θ.21

Bayesian statistics still use the likelihood function, but the addition of a prior

distribution changes the situation: the goal is now to estimate the distribution of θ given

the data y; i.e. the assumption is that θ is a vector containing random variables rather

than constants. What follows are some key ideas and concepts taken from Gelman et al.

21It is not implied that maximum likelihood estimation guarantees that estimates are unbiased, i.e., E(θ̂) = θ,
or consistent, i.e., that as the sample size goes to infinity θ̂ converges to θ. This is often the case, but one must
go through the proofs to be sure.
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(2013). Estimation is achieved by beginning with Bayes’ Theorem. Adopting the Bayesian

convention of p(·) to denote the probability density, the posterior distribution is given by:

p(θ|y) = p(θ,y)
p(y) = p(y|θ)p(θ)

p(y) ∝ p(y|θ)p(θ) (3.2.3)

The whole of Bayesian statistics arises from this relatively simple formulation.22 The

density function p(θ) is called the prior distribution. This may incorporate prior information

about the parameters or may be assigned to be "non-informative" or flat. The posterior

distribution is given by p(θ|y), and is the “updated” distribution of the parameters given the

observed data. While the notation has changed, notice that p(y|θ) is called the likelihood

as it actually has the same form as equation (3.1.3). Lastly, p(y) = ∑
θ p(θ)p(y|θ) is the

marginal distribution of y, and it is often treated as normalizing constant that does not

require attention; when distributions are continuous rather than discrete the summation is

replaced by an integral. Therefore, one often deals with the unnormalized posterior density,

as indicated by equation (3.2.3).

In general, the posterior distribution can be thought of as a compromise between the

information contained in the data and prior information (Gelman et al., 2013). Therefore,

the form of prior can matter to inference. If no prior information is available or trustworthy,

then the prior distribution should not affect inference; assigning flat or non-informative

priors is not always an easy task, especially for parameters who can take on any real value.

Consider that if the parameter space spans all R, then assigning a uniform prior will result

in an improper distribution, i.e., its pmf/pdf will not sum/integrate to one. These improper

priors may be used, but one must take care to assure that the posterior distribution is proper.

In some cases, the distributional form of prior has an obvious choice, whether or not

there exists information on its parameter values. For example, with the Binomial distribution,

22This does not imply that the resulting wing of statistics is simple; many posterior distributions lack closed
form and of those distributions that have closed form, the derivations are often quite nasty.
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whose parameter is a probability, it makes sense to use the beta distribution as a prior, since

its support is continuous and bounded between 0 and 1. An important concept relating

to prior specification is that of conjugacy, where the posterior distribution has the same

parametric form as its prior. This applies to the binomial model with a beta prior: both the

prior and posterior distribution of θ have a beta distribution and the beta prior distribution

is a conjugate family to the binomial likelihood. In general, any distributions that can be

expressed in the form of an exponential family have natural conjugate prior distributions. It

is also the exponential families that typically have closed form solutions for their posterior

distributions.

A further difference between Bayesian and Frequentist approaches is that of Hierar-

chical Models, where some confusion can arise. Hierarchical models arise in the general

scenario where Y |N ∼ fY (N, θ) where in addition N ∼ fN(λ). Note that in some cases N

may be a vector rather than a scalar, but for simplicity, let N, θ, λ be scalar quantities. This

situation can arise without Bayesian philosophy and where the marginal distribution of Y

can be calculated. A (fully) Bayesian approach would make two key changes. First, the

frequentist account can allow N to vary, but θ to remain an unknown constant; the Bayesian

account would require that θ take a prior distribution. Secondly, λ would not be treated

as a constant, but also have a prior distribution. Traditional examples of this setup often

involve Y being the number of surviving offspring in some group and N being the number

of offspring in that group; even without Bayesian accounting, one can see that both of these

quantities would be random variables in practice. The Bayesian says that additionally, for

any parameters, an additional layer of variability, or uncertainty, should be modeled. For

example, if θ is the probability of survival and λ is the mean number of offspring, a Bayesian

would reject the notion that this is or could be understood as a constant value.
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4 Multiple Testing Procedures (MTP)

When one simultaneously performs a large number of hypothesis tests, typically at

least some of these will result in rejecting the null hypothesis, even in cases where none

of the tests should have been rejected. Obviously, it is ideal to include no false positives,

and at least desirable to minimize the number of false positives included. Making matter

worse, the probabilities of obtaining false positives are less and less intuitive as the number

of tests arise. Multiple testing procedures are an attempt to quantify the expected number of

false positives under various (joint) null hypothesis formulations, and to correct the results

to minimize the probabilities that false positives are included in the results. In this section

we review statistical hypothesis testing and discuss several approaches to minimizing false

positives.

4.1 Hypothesis Testing Review

A return to the idea of the hypothesis test itself is necessary in order to understand

what purpose may be served by correcting for multiple hypothesis tests. Traditional hypoth-

esis testing is an outgrowth of classical (frequentist) statistics that assumes some distribution

f , which has parameter vector θ = (θ1, . . . , θk). In data collection the distribution from

which the data are drawn is often, though not always, clear. Parameter values for the distribu-

tion are then estimated and compared to some hypothesized parameter values to determine

whether these differ significantly from each other. In the case of a single parameter, this

consists of a null hypothesis H0 : θ = θ0 and an alternative hypothesis, generally one of the

following:

1. 2-sided: HA : θ 6= θ0

2. 1-sided: HA : θ > θ0 or HA : θ < θ0

These can also be generalized to test multiple parameters at once. The essence of hypothesis

testing is to assume the null hypothesis is true, i.e., determine what the world would/should
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look like if the null hypothesis were true, and then evaluate whether the results are consistent

with that hypothesis/worldview. If yes, then the test fails to reject the null hypothesis, but

notably has not shown there is no difference, but rather have said that at the very least the

results are not that inconsistent with what the world would look like if the null hypothesis

were true. If no, then the test rejects the null hypothesis in favor of the specified, usually

composite, alternative.

Generally, judgments regarding rejection proceed by first determining the distribution

of a test statistic underH0 and then calculating the probability of sampling a value as or more

extreme than the one observed; this is the infamous p-value. Before testing one specifies a

value, α, and rejects H0 when the p-value is less than α; that is, if the probability of drawing

a value as or more extreme under H0 is sufficiently low, then reject H0. One sets α based

an acceptable type I error rate: that is, the rate of false positives, or false rejections of the

null hypothesis, that is deemed acceptable. While the form of null distribution will vary and

in some cases become quite complicated, the basic idea is always essentially to compare

the sample estimates with some hypothesized value. Even if the hypothesized values are

true, sometimes the tests incorrectly determine that they are not the true values and it is

necessary to make some judgment on the likelihood of this having occurred, at least in the

long run. The other key error to avoid is failing to reject H0 when it is false; these are called

Type II errors, or false negatives. At a given sample size, one may not arbitrarily lower false

negative rates without increasing false positive rates, and vice versa. This language is often

confusing and results in incorrect interpretations of the p-value. It is important to understand

that false positive/negative rates are properties of the procedure rather than the sample; that

is, if α = 0.05, then a procedure that incorrectly rejects H0 5% of the time given that H0 is

true is deemed acceptable. This is not equivalent to a statement about the probability that

a particular sample has incorrectly rejected H0, i.e. the p-value is not the probability that

the result is a false positive. This latter probability is either 0 or 1, after sampling, whereas

the probability of drawing a sample that yields an incorrect rejection is 5%. In general, a
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procedure is good if when H0 is true, it says so, and when H0 is false it says so. The error

rates are properties of a particular hypothesis testing procedure in two different conditions;

given that the procedure could reasonably encounter both situations, it is necessary to tweak

the procedure so that it performs relatively well in either circumstance.

4.2 The Logic of Multiple Testing Procedures

Multiple testing and multiple comparisons situations arise when multiple hypothesis

tests are conducted simultaneously, or may be treated as such. Consider m independent

hypothesis tests, each of which is tested at level α. By the logic described in the previous

section, it is clear that α∗m tests are expected to be false rejections when allm tests are truly

null; e.g., for 20 tests where the null is true for each, on average 1 hypothesis test erroneously

rejected. Conversely, the probability of obtaining at least 1 false positive when all m are

true is 1 minus the probability of not rejecting any tests falsely, which under independence

is given by 1− (1− α)m; e.g., for 20 truly null tests, the probability of obtaining at least

1 false positive is 1− (0.95)20 = 64.15%.23 Thus, as the number of independent (and true

null) tests, m, increases the probability of including at least one false positive approaches

one.

Families of tests and error rates

Multiple testing focuses on families of tests. A useful definition of “family” is

given by Hochberg and Tamhane (1987) as “[a]ny collection of inferences for which it

is meaningful to take into account some combined measure of errors”. This idea will

be revisited in discussing when multiple comparisons procedures are necessary or useful.

Families of tests may consist of hypothesis tests related to multiple related outcomes (e.g., a

clinical trial with multiple endpoints), multiple categories within linear models (e.g., did any

of number of treatments outperform the placebo), or pairwise comparisons between many

23Strictly speaking, the probability is based on taking repeated samples such that if in each sample the 20
tests are independent then ∼ 64% of samples will contain at least one false positive.
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sets of categories (e.g., how do each of multiple treatments compare to each other). The key

insight is that families should consist of tests that make sense to be viewed together.

Error rates can be quantified in several ways, but for now, we focus on type I errors,

or false positives, since this is the error rate that increases in the presence of multiple tests.

How these procedures affect the type II error, or false negative rate, will be discussed

throughout.24 When there is a family of tests the error rate should be controlled, but what is

meant by such a term? In the case of a single test, false positives are controlled by selecting

a sufficiently low significance threshold, α, so that the null hypothesis is rejected in only

α% of samples where the null hypothesis is true.

The most basic error rate to control is the family-wise error rate (FWER), which is

the probability of at obtaining least one false positive in family of tests. For some family

of tests, F , and multiple comparison procedure, P , the formal definition of FWER is as

follows (Hochberg and Tamhane, 1987):

FWER(F ,P) = Pr(M(F ,P) > 0) (4.2.1)

where M(F ,P) is the number of wrong inferences, most commonly treated as the number

of false positives.25 Other alternatives include:

1. Per-family error rate (PFE), which is the expected number of false positives:

PFE(F ,P) = E(M(F ,P)) (4.2.2)

24Note that the power of a test to detect a particular deviation from the null hypothesis is one minus the
false negative rate. In many works, including this one, it is ultimately more intuitive to talk about power and
depending on the context, one or the other term is employed.

25Strictly speaking, the number of wrong inferences could involve false negatives, but this is not a standard
interpretation of the FWER.
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2. Per-comparison error (PCE) rate, which is the ratio of the PFE to the cardinality of

F , N(F):

PCE(F ,P) = E(M(F ,P))
N(F) (4.2.3)

Note that this error rate is what is controlled in classical hypothesis testing with no

MTP/MCP correction.

3. False Discovery Rate (FDR): The FDR, as well as methods for its control, was

introduced by Benjamani and Hochberg and is the expectation of the proportion of

incorrectly rejected null hypotheses (Benjamini and Hochberg, 1995). Define the

random variable Q = V
V+S where V = the number of incorrect rejections and S is

the number of correctly rejected null hypotheses. Then the FDR, Qe is E[Q]:

Qe = E[Q] = E
[ V
V + S

]
= E

[V
R

]
(4.2.4)

where R = V + S. In common parlance, the FDR is the expected proportion of false

positives in a set of rejected hypotheses.

It is clear that PCE ≤ FWER ≤ PFE. Infinite families are theoretically possible, but finite

families are nearly always sufficient in practical application. Under mutually independent

inferences and error rate α, PCE = α, PFE = αN(F), and

FWER = 1− (1− α)N(F) (4.2.5)

Note that (1− α)N(F) is the probability of obtaining no false positives.
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4.3 Controlling Error Rates

Family-wise error control

Following Nichols and Hayasaka (2003), suppose a subset of test statistics, T = {Ti},

is obtained for i ∈ V = {1, . . . , V } which is used to test the family of hypotheses

Hi =


1 Alternative Hypothesis is True

0 Null Hypothesis is True

That is, for each of V tests, the null hypothesis is either true (Hi = 0) or not (Hi = 1);

the task is to identify whether Hi = 0 or Hi = 1. Let H0 be the case where all V null

hypotheses are true, i.e. Hi = 0, ∀i = 1, . . . , V . An α-level test for test i is to reject when

Pr{Ti ≥ u|Hi = 0} ≤ α for rejection threshold u. FWER is controlled in one of two

senses:

1. Weak control requires control under the complete null hypothesis; that is, when the

null hypothesis is true for the entire family of hypotheses:

Pr
(⋃
i∈V
{Ti ≥ u}|H0

)
≤ α (4.3.1)

This means that if there is in reality no tests for which the null hypothesis is false,

then the probability of at least 1 false positive is less than or equal to α.

2. Strong control requires control for the false positives when the null hypothesis is true

for any subset of the family of hypotheses, V0 ⊂ V:

Pr
 ⋃
i∈V0

{Ti ≥ u}|Hi = 0, i ∈ V0

 ≤ α (4.3.2)

This means that if in reality the null hypothesis is true for some tests and false for

other tests within a family of tests, then the rate of false positives in the subset where
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the null hypothesis is true is less than or equal to α. It makes no explicit statement

about whether a procedure correctly identifies the tests where the null hypothesis is

truly false; i.e. in the extreme example, reject no tests at any level, which strongly

controls the FWER at α = 0, but fails to identify a single true positive.

The commonly termed “omnibus” test, e.g. the test of model significance compared to an

intercept only model in a regression, exhibits weak control, but strongly controlled tests

allow for rejections on individual tests, which is often exactly what is desired. That is, weak

control allows rejecting at least 1 test, but cannot necessarily say which one(s), while strong

control allows specification of which one(s) should be rejected.

The FWER is closely associated with the distribution of the maximum test statistic,

MT = maxi Ti, with the idea being that at least one test shall exceed a threshold if and only

if MT exceeds the threshold:

⋃
i

{Ti ≥ u} = {Mt ≥ u}

In order to control the FWER at level α, define µα0 = F−1
MT |H0

(1 − α), which defines the

100(1− α) percentile of the distribution of the maximum test statistic under the complete

null hypothesis, i.e., when the null hypothesis is true for all tests in the family. This results

in weak control of the FWER:

Pr
⋃

i

{Ti ≥ uα

∣∣∣∣∣∣H0}

 = Pr(MT ≥ uα|H0)

= 1− FMT |H0(uα) = α

Note also that uα has strong control of the FWER, assuming pivotality, which holds for a

family of tests if the null distribution of a subset of tests, V0 ⊂ V , is not dependent on the

state of other null hypotheses. That is, we have the following:
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Pr
 ⋃
i∈V0

{Ti ≥ uα

∣∣∣∣∣∣Hi = 0, i ∈ V0}

 = Pr
 ⋃
i∈V0

{Ti ≥ uα}|H0


≤ Pr

(⋃
i∈V
{Ti ≥ uα} ≥ uα|H0

)
= α

The maximal test statistic is an important part of permutation testing in neuroimaging, and

more generally in classical approaches to solving spatial problems similar to that presented

in section 1.

The Bonferroni correction

One of the most common multiple testing procedures is the Bonferroni correction.

This correction is based on the the heuristic “Union-Intersection” Method (Hochberg and

Tamhane, 1987). In such case, for a family of V tests the complete null hypothesis, H0 =

∩Vi=1H0i, which hypothesizes that the simultaneous truth of V hypotheses. This may be

compared to the alternative H1 = ∪Vi=1H1i, which says that if any one of the V hypotheses

is false then one broadly rejects H0.

For such a test to have level α,26 using appropriate test statistics, T = {Ti} for

i ∈ V = {1, . . . , V }, it must be the case that:

Pr
H0
{|Ti| > ξi, for some i = 1, . . . , V } ≤ α (4.3.3)

It is common to specify ξi = ξ for all i, which implies that individual rejection levels,

αi = PrH0i{|Ti| > ξi}, are also the same. Following Hochberg and Tamhane (1987), the

Bonferroni inequality is produced from the first order approximation of Boole’s formula.

26From Casella and Berger (2002), a test is of level α, α ∈ [0, 1], if the test’s power function, β(θ), satisfies
supθ∈θ0 β(θ) ≤ α, where θ ∈ θ0 define some parameter values under the null hypothesis. A size α test
changes the inequality to an equality and so if a test is a size α test then it is a level α test, but not necessarily
vice versa. In the case of a single test, the size of the test essentially specifies the probability that one would
find a test statistic whose absolute value is greater than some possible value, under the null hypothesis. This is
generalized to family of tests here.
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For some random events Ei, i = 1, . . . , k, Boole’s Formula is given by

1− Pr
(

k⋂
i=1
Ei
)

= Pr
(

k⋃
i=1
Eci

)

=
k∑
i=1

Pr(Eci )−
∑
i<j

Pr(Eci ∩ Ej) + · · ·+ (−1)k−1 Pr
(

k⋂
i=1
Eci

)
(4.3.4)

where Eci is the complement of Ei. The first order approximation is called the Bonferroni

inequality:

Pr
(

k⋂
i=1
Ei
)
≥ 1−

k∑
i=1

Pr(Eci ) (4.3.5)

Equivalently, this inequality is more commonly represented as follows:

Pr
(

k⋃
i=1
Ei
)
≤

k∑
i=1

Pr(Ei) (4.3.6)

and is sometimes referred to as Boole’s inequality; e.g. in Casella and Berger, which may

be consulted for a proof of the inequality represented in 4.3.6 (Casella and Berger, 2002).

The Bonferroni procedure simply instructs one to choose a desired α and divide the p-value

for each individual tests by the number of tests. The Bonferroni inequality can be used to

show that this procedure controls the FWER at level α. If Ei are p-values, pi, for V tests

where there are V0 true null hypotheses, and FWER control is desired at level α, and the

null hypothesis is stated in terms of the pi rather the test statistics, then:

Pr
 V0⋃
i=1
{pi ≤ α/V }

 ≤ V0∑
i=1

Pr({pi ≤ α/V }) = V0(α/V ) ≤ V (α/V ) = α (4.3.7)

which implies strong control of the FWER. However, the Bonferroni procedure is conserva-

tive, particularly for non-independent tests; i.e., when the rejection or failed rejection of a

test contains information about whether another test is likely to reject or fail to reject the

null hypothesis. In such cases the FWER is typically controlled well below the desired level.
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Bonferroni-type procedures

Bonferroni-type procedures include step-up and step-down tests. Both approaches

order p-values or test statistics from smallest to largest and compute a significance threshold

for each test based upon the number of tests and the rank of each p-value. Step-down

procedures begin with the smallest p-value and if it is less than its threshold move to the next

test, continuing until reaching a test that does not reject the null hypothesis. Step-up tests

reverse this process and begin with the largest p-value; if this value is above its threshold,

then continue to the next largest p-value and so on until reaching a test with a p-value

below its threshold, at which point one rejects the rest of the tests of lower rank. One of

the most common applications of a step-down procedure is the Holm step-down test (Holm,

1979). The process is to order the p-values and associated hypotheses as p(1), . . . , p(V ) and

H(1), . . . , H(V ), respectively, then reject all H(i) where i ≤ j when

p(j) ≤
α

V − j + 1 (4.3.8)

The Hochberg step-up test uses the same threshold as in 4.3.8, essentially reversing the

process and thereby increasing the power of the procedure (Hochberg, 1988). These and

related measures have either no assumptions or weak assumptions on dependence among

tests, and in doing so take no account of spatial structure or image smoothness, but are not

invalidated by the presence of dependence among tests. It can be shown that both these

procedures have strong FWER control (Hochberg, 1988).

FDR control

As shown by Benjamini and Hochberg, the FDR is equivalent to the FWER when all

null hypotheses are true (Benjamini and Hochberg, 1995); i.e. FWER control in the weak

sense, as described above. Otherwise, if some subset of tests V0 ⊂ V are truly null, then the

FDR≤FWER, but the FDR has greater potential for increases in power, i.e. better control
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of type II errors. The FDR arose out the idea that there are cases where the FWER is too

conservative a goal; it may often be acceptable to allow a greater number of false positives

in order to gain some power, so long as there exists some quantification of this trade-off.

Further, if a large number of rejections is expected and the interpretation of the analysis

will not be (greatly) affected by a single false positive, then FDR may be a better choice.

Benjamini and Hochberg considered several alternative formulations of the FDR before

focusing on the above formulation. However, the list of these discussed in Benjamini and

Hochberg (1995) is below for completeness:

1. One may desire control at the level of individual realizations, i.e. for a particular

test in a family, but when all hypotheses are true, then V /R = 1 for even a single

incorrect rejection; i.e. for a single test, if there is a false rejection then the number

of rejections is R = 1 and the number of false rejections is V = 1. Benjamini and

Hochberg show that P (R > 0) E(V/R|R > 0) may be controlled in this case, but

not E(V/R|R > 0).

2. Another alternative mentioned by Benjamini and Hochberg is found in Soric (1989),

which seeks to control Q′ = E[V]/r and runs into problems with control when all

null hypotheses are true.

3. Lastly, consider E[V]/E[R], which also has trouble when all hypotheses are true.

Setting aside these formulations, Benjamini and Hochberg’s procedure for controlling

Q = E[V/R] is as follows: Consider V hypotheses Hi, i = 1, . . . , V with corresponding

p-values, pi, i = 1, . . . , V , which may be ordered p(1) ≤ · · · ≤ p(V ) with hypotheses H(i)

corresponding to p(i). The procedure is variant of the Bonferroni multiple testing procedure,

where if k is defined by:

k = max
{
p(i) ≤

i

V
q
}

(4.3.9)
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then reject all H(i), for i = 1, . . . , k. Benjamini and Hochberg show that the procedure con-

trols the FDR at q for independent test statistics and any configuration false null hypotheses,

although independence is not strictly required. It is also shown that this procedure chooses

α to maximize the number of rejections at that level, r(α), subject to αV/r(α) ≤ q∗, which

allows simultaneous maximization of R and FDR control, post-experiment. The method

is shown to be more powerful than a number of FWER controlling methods, with power

improving with the number of non-null hypotheses.

In addition Benjamini and Yekutieli show that equation (4.3.9) is valid when the joint

distribution of p(1) < · · · < p(V ) (or the test statistics from which they came) have positive

regression dependency on each one from a subset (PRDS), where the subset consists of the

null hypotheses that are true (Benjamini and Yekutieli, 2001). A classic and widely used

example of PRDS is in data arising the multivariate normal distribution with non-negative

correlation terms; however, non-negative correlation does not imply PRDS in general. When

PRDS does not hold, Benjamini and Yekutieli (2001) show that one may replace q in

equation (4.3.9):

q∗ = q∑V
i=1

1
i

(4.3.10)

and control the FDR at ≤ V0
V
q ≤ q, where V0 is the number of true null hypotheses. This

adjustment tends to be more conservative than the former adjustment.

Additionally, it would be remiss to neglect recent alternative interpretations in the

use of the FDR to control false positive rates. One of the more influential metrics is the

positive false discovery rate (pFDR), which is defined as the expected proportion of false

positives in the set of rejections, given that the set of rejections is not empty:

pFDR = E

[
V

R

∣∣∣∣∣R > 0
]

(4.3.11)
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where V is the number of incorrect rejections and R is the total number of rejections.

This approach was introduced by Storey (2003), who shows that the pFDR has a Bayesian

interpretation as a posterior probability. Another common approach is the FDX , or tail

probability of the false discovery proportion (FDP):

tFDP (c) = Pr(FDP > c) (4.3.12)

which quantifies the probability that the FDP in a sample of tests exceeds c (Genovese and

Wasserman, 2006). While the weight of the literature in multiple testing procedures could

crush a mere mortal, Farcomeni (2008) provides an excellent overview of multiple testing

issues with particular focus on developments in FDR interpretation and application.

4.4 Multiple Testing in Neuroimaging

The data structure

Images consist of discrete units of measurement, pixels (2D) or voxels (3D). The

literature in neuroimaging statistics has long had to address multiple comparisons issues and

is useful in understanding classical/frequentist approaches in situations where the number

of parameters/predictors greatly exceeds the number of subjects. Neuroimaging data often

consists of structural MRI, with single intensity value measurements within each voxel, or a

functional MRI (fMRI), where a time series of intensities is associated with each voxel.27

While neuroimaging research is diverse in its statistical and mathematical methodology,

many research questions reduce to whether some brain region is associated with a cognitive

behavior, physiological response, or disease. Multivariate methods are often computationally

prohibitive, when they are possible at all; the number of data points is often in the hundreds

of thousands, which in practice always outnumbers the sample size, causing identifiability

issues.
27By no means is MRI the only modality, and even with MRI there is a wide range of options for both

obtaining and processing the images; however, such discussion is beyond the current section.
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A popular method designed to handle such large datasets is the “mass-univariate”

approach, which models each voxel separately. The result is a map of test statistics used

to perform voxel-level inference; Karl Friston introduced and pioneered this approach in

neuroimaging within the Statistical Parametric Mapping context, which has since become

ubiquitous in application and methodological development (Friston et al., 1991, 1994;

Worsley and Friston, 1995; Worsley et al., 1996) . In functional neuroimaging, one typically

seeks to answer whether a particular voxel is “activated”, although many modern modern

questions in neuroscience, psychology, and medicine are far more complicated (Ombao

et al., 2017). In the fMRI context, “activation” detection involves inferring neuronal activity

by detecting changes in blood flow. In structural MRI, higher-resolution images show a

snapshot of the brain, rather than change over time. At least some research questions using

structural MRI involve extracting meaningful inference from a large number of voxels such

that the mass-univariate approach can applied; for example, Voxel-based lesion-symptom

mapping (VLSM) variations on the mass-univariate approach to determine whether lesion

status is associated with a particular cognitive decline (Bates et al., 2003). This approach

allows for so-called “omnibus” tests, i.e. “is there activation anywhere in the brain?”, as well

as tests at individual voxels or subsets of voxels. However, while this approach is enticing in

its simplicity, performing so many tests inflates false positive rates; i.e., even if the brain is

nowhere activated, and one tests at the α = 0.05 level, then on average 5% of “activated"

voxels are expected to be spurious.28

However, there is another problem. Recall from section 4.3 that the Bonferroni

procedure is not a size α test if only a subset of tests is null, but rather is a level α test that is

permitted to control false positives at a rate equal to or below the specified α. Most images

exhibit spatial structure and hence pixel/voxel values and/or their associated test statistics

are not independent, leading the Bonferroni procedure to be more conservative than desired.

28It is reasonable to doubt that a living subject could have activation in no area of the brain, but the general
point remains: with so many tests one should expect a significant number of false positives in areas not
associated with the outcome or exposure of interest.
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In particular, if one voxel is “active" then this tells provides information about the likelihood

of finding other activated voxels nearby. Therefore, confidence in research findings require

addressing the multiple testing problem while accounting for, or at least circumventing, the

inherent spatial structure so as to avoid excessive conservatism in false positive control.

Nichols and Hayasaka (2003) provide a general FWER-control overview for neu-

roimaging contexts they identify three traditional approaches to FWER control in neuroimag-

ing:

1. Bonferroni-type Procedures

2. Random Field Procedures

3. Nonparametric methods, specifically permutation tests

Bonferroni-type procedures were covered in section 4.3 and are not re-covered here, but

note that their application tends to be conservative (Nichols and Hayasaka, 2003). FDR

control is briefly reexamined.

Random field theory

Keith Worsley and Karl Friston played a large role in bringing Random Field Theory

(RFT) into application for neuroimaging as a method to obtain valid inference by treating the

Statistical Parametric Maps as lattice approximations of random fields. Worsley et al. (1992)

introduced the methodology and subsequently, through collaboration with Karl Friston,

these researchers combined forces to marry SPM and RFT (Worsley et al., 1996).

The RFT approach is typically based on Gaussian random field, which should have 0

mean and unit variance under the null hypothesis. Regions with values above some threshold,

u, are known as excursion sets, from which one may calculate the Euler characteristic, a

topological measure. A formal treatment is beyond the scope of this work, but an intuitive

explanation is that the method counts the number of connected suprathreshold regions or

“clusters”, minus the number of “holes”, plus the number of “hollows”. Sufficiently high
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threshold typically avoid holes and hollows and so the Euler characteristic will simply be the

number of clusters. An accessible discussion can be found in either Nichols and Hayasaka

(2003) or Lindquist and Meija (2015). Those desiring all the gory mathematical details

should consult Worsley et al. (1992).

Resampling approaches

Resampling approaches follow RFT in that they seek to approximate the upper tail

of the distribution of the maximum test statistic, FMT
(t), but resampling avoids stringent

assumptions required of parametric methods by empirically estimating the distribution of

the maximum test statistic. Resampling procedures generally consist of either permutations,

which resamples the data without replacement, or bootstrapping, which resamples residuals

with replacement; both approaches construct a null distribution. Nichols and Hayasaka

(2003) differentiate between randomization tests, which justifies resampling by the random

selection inherent to a particular experimental design, and permutation tests, which simply

requires exchangeability under the null hypothesis. The difference is more philosophical

than practical; randomization tests explicitly refer to the sample at hand, while permutation

tests assume a population distribution so that inference may be made.

The permutation test as a concept deserves further elaboration. A permutation test

permutes labels, or equivalently data, and calculates a test statistic for each permutation.

This process assumes that labels are exchangeable under the null hypothesis. A set of

labels is exchangeable if the distribution of the statistic is invariant to labeling. The classic

permutation testing example is not related to multiple testing issues, but was intended to

address smaller sample sizes or situations where standard parametric assumptions appear

to fail or seem dubious. A classic example is the permutation test version of the 2-sample

t-test. The observed t-statistic is calculated as usual, but the t-distribution is not used to

obtain a p-value. Rather, the group labels are permuted about the subjects, with each

subject keeping their outcome value; equivalently, subjects could retain their group label
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and permute their outcome values. For each permutation the t-statistic is re-calculated, and

this set of permutation t-statistics creates an empirical null distribution, which is used to

calculate a p-value. If the number of possible permutations is too large, it is common to

sample a few thousand possibilities as an approximation to the complete empirical null

distribution. This approach is related to the bootstrap, but a more detailed discussion is

beyond our scope here. See Berry et al. (2002) or Long et al. (2007) for readable review

papers. Efron and Tibshirani (1993) or Davison and Hinkley (1997) are useful textbooks on

the bootstrap.

However, for images the process is slightly more complicated. The key insight is that

entire images are resampled. This insight is motivated by following Nichols and Holmes

(2001). If one assumes no autocorrelation, then permutation tests are permitted within

each voxel, assuming a time series is associated with each voxel location. For instance,

if the question pertains to whether particular voxels are associated with a specific motor

task, then it would suffice to find all subject label permutations, or else sample from the

possible permutations when the total is prohibitively large, and calculate or approximate

the relevant p-value. However, with an image, the voxels are not independent, but rather

have a spatial structure. If one permutes subject labels at each voxel then the results will be

invalid. Rather, the subject labels are permuted about entire images, which preserves spatial

structure. Then calculating the distribution of the maximum test statistic is straightforward

and one rejects the hypothesis of no activation for voxels whose p-value is less than the upper

α% of the distribution of the maximum test statistic. This approach has strong control over

the FWER; a formal proof is found in Holmes et al. (1996). This approach is well-founded

for most structural MRI or PET, where there is no times series and no autocorrelation,

respectively. Functional MRI time series, however, have temporal autocorrelation, run afoul

of the exchangeability restriction, and inflated false positives can result if this violation is

not addressed. One approach is decorrelate the images and then resample; this involves

estimating autocorrelation in the residuals, decorrelating the residuals, resampling, and
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finally recorrelating the resampled residuals (Nichols and Hayasaka, 2003). Lindquist and

Meija (2015) note that permutation tests have found greater use in group-level analysis

where exchangeability holds between subjects, but this is a less common approach for

subject-level data, given the trouble with temporal auto-correlation. Although details are not

given, presumably a simple variant on group level analysis is to calculate test statistics for

each individual and use permutations of group labels to make comparisons. Furthermore,

the approach is valid for various structural images, since each subject has one observation

per voxel, and therefore no temporal autocorrelation.

FDR in neuroimaging

The seminal paper for FDR use in neuroimaging is Genovese et al. (2002); as

described above, the idea is to control the proportion of rejected hypotheses that are falsely

rejected. It turns out that the initial procedures proposed for FDR control can be appropriate

for spatial data, and neuroimaging data in particular. The traditional Benjamini-Hochberg

approach in equation (4.3.9) holds under Gaussian noise with nonnegative correlation

between voxels; even if one felt uncomfortable with those assumptions, the modifications

made by Benjamini and Yekutieli (2001) would be valid (i.e., equation (4.3.10)). A key

benefit to this approach is that it avoids arbitrary thresholds and adapts to the signal strength.

Depending on the group analysis method employed, this approach also allows for the

thresholds to vary by subject. However, in application it is important to bear in mind that the

FDR is based on large sample theory in the sense that the approach controls FDR on average

over many many replications, so for a given data set the observed false discovery proportion

(FDP) may not be below the desired q.29 Relatedly, the FDR alone fails to tell us the exact

proportion of truly activated voxels detected; this would require the false non-discovery rate

(FNR), i.e. the proportion of active voxels a method failed to label as such, which is 0 if

29Consider the similarity to confidence intervals where a given interval may not contain the “true” parameter;
e.g. a 95% CI will contain the “true” value in 95% of samples, but this does not mean that a given interval has
a 95% chance of containing the “true” parameter.
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all voxels are labeled active. FDR is more conservative as correlations increase and thus

more powerful for un-smoothed data, this in contrast to random field theory, which are more

conservative for un-smoothed data.

4.5 On the Validity of Hypothesis Testing and MTP’s

Both traditional hypothesis testing and multiple testing procedures have variously

come under fire. This section is a response to several of the more pervasive criticisms in the

literature.

The relative merits of p-values and hypothesis testing

Misperceptions regarding statistical procedures are not particularly new. It is practi-

cally a right of passage for young statisticians to deliver a sermons to students, colleagues, or

both about p-values and their interpretation. Inevitably, after so many years have passed and

old habits resurface, statisticians must once again deliver such sermons in publications, many

of which are quite readable, e.g., Best et al. (2016) or Greenland et al. (2016). Periodically,

the misunderstanding turns into outright hostility, as when the Journal of Basic and Applied

Psychology outright banned p-values (Trafimow, 2014; Trafimow and Marks, 2015), which

then prompts a response from various outlets, including statisticians (Wasserstein and Lazar,

2016). It is largely our concern here to defend multiple testing procedures, but it seems this

requires defending the hypothesis testing framework itself.30

In defense of hypothesis testing and p-values

Hypothesis testing is based upon specifying a (null) hypothesis for a given vector of

unknown parameters, θ, and may or may not involve assuming an underlying distribution:

H0 : θ = θ0 (4.5.1)

30Which for better or worse involves an explanation beyond a well-placed name-drop.
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One then determines whether a given sample provides evidence to reject this hypothesis,

typically by calculating some test statistic, from which one derives a p-value; that is, the

probability of obtaining a test statistic of equal or more extreme value. For example, suppose

a statistical test results in some test statistic, t. If this is assumed to be a realization from

the random variable representing the distribution possible test statistics under the null

hypothesis, T , then the p-value is Pr(T > |t|) for a two-sided test. If this p-value is below a

pre-specified significance threshold, α, then one rejects H0; otherwise, one fails to reject

H0.31

There are some obvious limitations to such a procedure’s usefulness. For one, it must

be the case that the null hypothesis is plausible, but one typically knows it to be false, at least

in the strict sense. Especially when hypotheses involve differences between groups, which

they often do, most researchers would suspect scientific malpractice if a paper claimed the

difference between some groups was exactly zero. In addition, p-values are themselves

random variables and subject to variation, which makes assuming that a similar p-value

would be obtained in a subsequent study rather dubious, especially for small sample sizes.

If the strict null hypothesis is nearly always false and p-values fluctuate (sometimes wildly,

it seems) across samples, then why not abandon the approach entirely?32

One often ignored detail is that research hypotheses and statistical hypotheses

typically differ. Bradley (1968) lends some relevant insights in a text that is as useful

for thinking about the limitations of the central limit theorem in practice and hypothesis

testing in general as it is about its nominal subject (Distribution-free, or non-parametric,

statistical inference); that is, what to do when distributional assumptions about our data

31It may be argued that such a process is an unholy union between Neyman-Pearson hypothesis testing and
Fisher’s p-values (see Berger (2003) for an interesting perspective on the conflicting views of Fishern Neyman,
and Jeffreys). Fair enough. Nevertheless, opinions and interpretations notwithstanding, there is a theoretical
connection between these methods that can be reduced to straight-up mathematics, which may be seen in such
texts as Casella and Berger (2002).

32It may seem odd that a strident defense of traditional hypothesis testing is given here, since this dissertation
will ultimately focus on Bayesian methodologies. For now it shall suffice to point out that the author is what one
might call a statistical pluralist; i.e., different practical situations may call for different statistical approaches,
and reasonable people may sometimes disagree about which is best.
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run amok. There are two levels of null hypothesis, each of which have their corresponding

assumptions. One level is the null hypothesis in which the experimenter is actually interested,

for example something like “Is there a meaningful/scientific/practical difference between

or across groups?" To this question there is often, but not always, an answer properly

summarized as “Yes” or “No”. The other level pertains to how to test that hypothesis, which

is the domain of the statistical hypothesis. The statistical hypothesis converts the research

hypothesis into a form that can quantify and answer the question at hand and may or may

not involve distributional assumptions. The statistical formulation has a certain exactness

that the real world typically lacks, but this does not mean it is not, or cannot be a useful

tool in some circumstances. Note that this argument more formally favors some testing

criteria and need not depend explicitly upon a p-value to be a valid approach. Rather, it

is a reminder that statistical methods are in practice tools to answer scientific questions in

the face of uncertainty. While the formal mathematics may be rigorous, in practice we are

approximating reality.33

A deeper issue is that studies sample data, which involves inherent uncertainty, no

matter the measure. While Trafimow (an erstwhile editor for the Journal of Basic and

Applied Psychology) may dislike p-values because they cannot reliably tell us the truth,

given that they are subject to randomness, it no less true that an effect size can be due to

chance sampling variation, especially in small samples, and in fact this is exactly the kind

of thing that probabilistic modeling is supposed to protect against, however imperfectly;

different samples yield different results no matter the methodology, and incorrect inferences

in either direction are possible. In addition, if the assumptions about a sample are incorrect,

then no amount statistical witchcraft will tell you that you have in fact not discovered what

you think you have discovered, and attacking statistical methods is far easier than addressing

deficits in study design.34

33We simply cannot afford to dig further here, as we are treading dangerously close to finding ourselves
deep into the philosophy of science.

34This is not necessarily to attack (or exonerate) Psychology; study design is difficult and incorrect sampling
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The task is to quantify uncertainty relating to the employed procedure, for no

excorcist can cast out uncertainty from scientific studies. It is true that effect sizes, variances,

interval estimation, etc. are important considerations and capable researchers will consider

the data in a holistic manner so as to achieve some glimpse of scientific relevance and

accuracy. There is often a certain ridiculousness to the celebration/dejection dichotomy

when a test (fails to) fall(s) below the sacred α = 0.05 level. Given a large enough sample

size, significant differences can be obtained between means for any separation, no matter

how small; this is why one should consider whether the observed difference is clinically

meaningful and appropriate application of any statistical method(s) requires caution and the

patience to fully examine and describe the qualities of the data. Scientists should be able to

recognize cases where the significant difference is not scientifically relevant in both their

own and others’ work.

There are other approaches to testing and reporting results. Hubbard and Lindsay

(2008) argue against p-values and in favor of estimation via confidence intervals. For a

given α value, hypothesis test results will be the same, but confidence intervals can help

avoid some pitfalls of p-values, despite being subject to the same sampling variation issues

as p-values. Interval estimation often provides an easier outlet for determining the practical

import of a significant difference, allows for a more robust interpretation of the results than

a p-value alone, and can provide information regarding the quality of the obtained estimate.

Perhaps the most useful aspect of the confidence interval is that it provides a measure of

precision: one can easily see the range of “plausible” values. Consider the following 95%

CI for an odds ratio: [1.01, 1.02]. This interval does not contain 1, but it is very narrow and

just barely over 1; we may doubt whether this “significant” effect is meaningful, depending

on the context. In contrast, a 95% CI [0.97, 1.87] is not statistically significant, but it is also

not very precise, perhaps making it difficult to argue convincingly about the effect size.

assumptions finds its way into many studies involving humans. The scientific community as a whole, and
its sub-disciplines, has a responsibility to seriously address these issues. The Basic and Applied Psychology
situation is simply a well-publicized example in what the author considers misguided thinking.
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In conclusion, even in abandoning the hypothesis testing framework entirely, some

subjectivity remains in assigning increased value to some differences over others. Which of

these are large enough and how small a variance about those estimates should give provide

confidence in the obtained results? In many cases, one must judge whether or not a study

confirms a researcher’s intuitions, and this may require an answer: Yes or No? For example,

does a drug outperform placebo or not? There are grey areas and obtaining extreme samples

is possible, but for better or worse a substantial amount of research requires making decisions

in categorical manner, which requires a principled approach in decision making that should

go beyond eye-ball-testing descriptive statistics in order to have any relevance. A balance

between the need for clear-cut answers and broad holistic data inspection is necessary, and

these two goals are not mutually exclusive, especially when one is transparent about which

analyses were performed. Blind p-value worship may be anathema, but concerns regarding

hypothesis testing do not invalidate all inferential frequentist statistical methods and do not

mean that hypothesis testing can never be useful. Researchers should rectify themselves to

understanding that these are tools, based on assumptions that are at best approximate, seek

to understand how and when they fail, and embrace uncertainty.

A case study in confusion about multiple testing procedures

As it so happens, controversy over hypothesis testing also spreads into multiple

testing procedures. For example, Rothman (1990) argues against multiple testing procedures

in epidemiology, largely by winning subsequent battles against two strawmen. The first is

“Chance not only can cause unusual findings in principle, but it does cause many or most such

findings”. While he delves into an interesting discussion of what the term “chance” means,

he largely misses what a (bio)statistician is talking about:35 The discussion relates to distri-

butions of numbers and the chance involved in drawing (at least approximately) “randomly”

from these distributions. Random sampling involves no funny pseudo-philosophical view

35At least this one, anyway.
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that the values measured in some study subjects arise from anything other than deterministic

processes, which he rightly believes would obviate the whole of empirical research. Chance

is best understood in this context as randomness, or variability, that arises due to taking finite

samples. Random (or, in fact, non-random) sampling processes can result in samples that

are not indicative of the truth or representative of their underlying distributions/populations.

If a population is finite and one samples the entire population then there are no assumptions

involving chance or randomness in parameter estimation or differences between estimates;

on then possesses a census.

In some models, further considerations, such as random error, can also play a role.

Consider the unlikely scenario where one assembles the entirety of the American population

and subjects them to a 400 meter time trial; there is thus no sampling variation due to

sampling Americans, because they are all present. However, there are variations in run

times within an individual, and even if each person runs only once there is no certainty

that this is truly the fastest time possible or even that the time is representative of the

individual’s running ability.36 Therefore, testing group differences in time will still be

subject to randomness in the sense that individuals have variation about the time they can

run. In a simpler sense, one could sample 100 Americans and find group differences in run

time by “chance”, in that one could by “chance” obtain a sample that did not adequately

represent the groups, but this does not imply that the run times were causeless, only that

random or otherwise unexplained variation could account for why there existed a difference

between groups in the sample, and that the difference may then not be endemic to group

membership. The important point here is that due to finite samples, it is possible to be

severely mislead about causes and effects.

36This example highlights an issue with the idea of truly taking a census, and what it would mean to do
so. One could imagine that an individual’s 400m run times are themselves a random variable from which to
sample, so that a reasonable interpretation is that one first samples from a population of random variables (the
individual runner) and then sample from that random variable (the run times for that runner).
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Rothman’s second goal is to refute that “No one would want to earmark for further

investigation something caused by chance.” While the bulk of this section continues to

scrutinize definitions of chance, the fact remains that there is no conceivable reason that

anyone should want to waste time and money researching on a difference that arose due to

sampling variation and is not actually representative of the “true” underlying distribution,

if that is the case; time and attention, like samples, are finite and precious. However, this

complaint is as much about the kind of research one conducts as it is about the philosophy

of hypothesis testing. Hypothesis tests are always based on an arbitrary threshold, as is in

fact the “eyeball test”, which if hypothesis testing is microwaving an egg, then the “eyeball

test” is on the order of microwaving a fork.37 Thresholds can vary based upon study goals

and especially in early research phases more or less stringent thresholds may be required

depending on the consequences of false positives or negatives; sample size considerations

may also affect what is considered a reasonable threshold. Moderate findings are surely

worth examining further in many cases, but if the “truth” is that there is no scientifically or

medically relevant difference present in a study then beating the dead horse is as useless as

it ever was.38

Rothman also criticizes the manner in which multiple testing procedures depend on

the validity of the “universal null hypothesis”, defined as the hypothesis that “all associations

we observe (in a given body of data) reflect only random variation”, and its likelihood of

being true. However, multiple testing/comparison procedures are not in general based

only on the plausibility of all possible hypotheses in an experiment or data set being

true; much of the theory derived and discussed in the literature lends attention to strong

control of the FWER; that is, ensuring that the FWER is controlled when any subset of

hypotheses are truly null. Likewise, methods for controlling FDR are specifically designed

37The author is being hyperbolic - do not under any circumstances attempt to empirically discover the
effects of microwaving either object. The requisite studies have been performed and are available here.

38The author wishes to clarify that no individual should ever beat a horse, living or dead. There are better
outlets available for relieving stress.
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to account for situations where some hypotheses are truly null and others are not. While

early work and introductions focus on something like the “universal null hypothesis”, the

bulk of the literature is far more broad. A more appropriate critique would be that many

FWER methods are in general too conservative when the universal null hypothesis is not

a reasonable assumption. Correctly interpreted, this critique would mean advocating for

improved methods for controlling false positives, but would not obviate the underlying

intuitions about why multiple testing procedures are necessary in general.

Finally, perhaps the most egregious oversight is that Rothman avoids discussing

families of tests. While some subjectivity is involved in deciding what constitutes a family,

this distinction is more relative than arbitrary and should correspond reasonably to the

real world. This (somewhat) obviates concerns corresponding to “slippery slope” logic.

Reasonable thinking on what constitutes a family of tests can largely prevent one from

feeling obligated to extend multiple testing to every test on a dataset. An important subtext

is that multiple comparisons procedures and hypothesis testing procedures in general should

be viewed as modeling approaches with various large sample qualities. Neither process

is designed to ensure certainty about a particular question within a single dataset, but

rather speak to how well the approaches work upon multiple applications or else to provide

information about how different a result is from what one would expect if there were no

difference in the population (Mayo, 1996).

The reason that multiple testing becomes an issue is that the possible errors the

testing procedure can make change depending upon the number of tests. Many researchers

are bothered by penalizations for “peeking” at large numbers of tests; how could more

information be a bad thing? However, the concern is not actually that in a particular sample

the probability of a wrong inference on a particular test is increased, but rather that if one

adopts a “peeking procedure” in every dataset, or as a procedure in general, without any

correction for multiple testing then a large proportion of studies will report a spurious
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result; an uninhibited peeking procedure basically ensures that one finds the false positives

and reports them as interesting findings. The analysis procedure itself will produce false

positives with higher frequency because there are more ways to obtain a false positive.39

Multiple testing procedures are designed to improve the reliability and replicability of the

scientific process as a whole by addressing the nature of procedures when applied repeatedly.

While not specifically addressing multiple testing procedures, Chapter 9 of Deborah Mayo’s

book Error and the Growth of Experimental Knowledge, provides an extended discussion in

a philosophy of science context regarding why one should care about the changing error

characteristics of procedures as more tests are conducted (Mayo, 1996).

The intention is not to embarrass Rothman, insinuate that his arguments may not

have been somewhat refined since 1990, or even summarize the literature rebutting his

arguments.40 However, this paper still appears to carry some influence, and it seems

pertinent to understand why these seemingly reasonable arguments go astray. Furthermore,

the multiple testing problems are even trickier in more complex data and addressing these

objections helps identify misconceptions and thus think more clearly about the problems at

hand. To summarize:

1. Hypothesis testing is an inexact procedure, and can often be based on the quantifying

qualitative questions; e.g. Is there a meaningful gender difference in reaction to a

therapy? Research hypotheses and statistical hypotheses are related, but rarely exactly

the same.

2. P-values can be useful tools for hypothesis testing, but they should never be severed

from a holistic perspective on the data. At the very least, sample sizes, effect sizes, in-

39At the risk of belaboring the point, consider a simple example. If one tests a single truly null hypothesis in
repeated samples at level 0.05 then in the long run 0.05% of the time a spurious significant result is found. If
one tests 3 independent truly null hypotheses in repeated samples, each at the 0.05 level, then any combination
of the 3 tests could be spurious and so 1 − (1 − 0.05)3 ≈ 14% of the samples will contain at least 1 false
positive.

40In any case, the idea that a tenured professor would be all that concerned about a graduate student’s
criticism seems to be a null hypothesis no one should count on.
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terval estimation, and the potential consequences of false positives and false negatives

should all play a role in how results are reported. Blind trust in p-values is the wide

path that should be avoided, but it may not (yet) be necessary to entirely abandon the

tool.

3. Multiple testing procedures require at least some defensibly defined family of tests in

order to be interpretable or useful. Families should make sense in qualitative terms.

This prevents many inappropriate wanderings down "slippery slopes". Families of

tests can correspond to populations which could possibly be modeled by common

distribution (it is then the researcher’s job to determine whether this is the case).

However, this is not always the case. Multiple testing can arise in cases where the

various tests involve outcomes with different measures or scales and may not be

reasonably considered as having a common distribution under the null hypothesis;

e.g. consider studying differences in human brains based on imaging studies. Perhaps

a study considers changes in volume (sMRI), BOLD activity (fMRI), and electrical

activity (EEG). The outcomes could not reasonably be expected to have a common

distribution, but yet the three tests constitute a family. In simpler settings, if height

does not differ by sexual orientation, say 3 main groups heterosexual, homosexual,

and bisexual, then this means that it is reasonable to treat the 3 groups as being drawn

from a common distribution, or at least treated as having a common mean if the

variances are drastically different, and one may say that sexual orientation does not

yield any useful information about height. It is less clear why sexual orientation and

childhood diet (e.g. omnivore, vegetarian/vegan, or pescatarian) would constitute a

family of tests.

4. Hypothesis testing, p-values, and statistics in general can be conceived of as at-

tempts to quantify or handle uncertainty. Modern research are uses what amounts

to approximate methodology to answer scientific questions with real answers, but
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which are subject to variability, due at the very least to finite sampling from distribu-

tions/populations, to say nothing about other concerns like measurement error. Deeper

discussions on the definition of chance and randomness are left to philosophers and

quantum physicists.

5. Hypothesis testing and multiple testing procedures are designed to address the large

sample properties of statistical tests. It is important to bear in mind that for the

body of scientific research to be valid then the procedures employed must possess

certain qualities over many repeated applications. It is not always possible to generate

high confidence in the results within a particular sample, but concern should be with

how methods perform in the long run because it is those properties that validate the

scientific process.41

Multiple testing controversies in neuroimaging

As previously described, statistical controversies come out of the woodwork in

various forms and with various frequencies over time, but they often manifest similar

concerns, misconceptions, or philosophical bents. Previous sections discussed the arbitrary

nature of p-value thresholds, or in a spirit of transparency, thresholds in general. There is no

perfect threshold and a quick foray into any mathematical statistics textbook shall introduce

the reader to the tension between the ability to avoid false positives and false negatives

simultaneously; as a testing procedure improves one error type, the other becomes worse

(Casella and Berger, 2002).42

Lieberman and Cunningham (2009) provide an apparently common view of the

tension between power and false positive control, in both their legitimate and exaggerated

41Note that strictly speaking it is not necessary to take a repeated applications approach to justify hypothesis
tests, but ultimately one must bear in mind that a single sample can only be so informative.

42Note that this tension is within procedures; e.g., suppose procedure 1 has 40% power at the α = 0.05 level.
If α is lowered to 0.01, then procedure 1’s power must decrease. This does not mean that another procedure
for the same scientific question, say procedure 2, could not have 80% power at the α = 0.01 level. This is an
occasional task in mathematical statistics: to find the procedure that maximizes the power for a given α level.
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claims. To start with their legitimate concerns, it is quite defensible to worry that too

much concern is given to false positives, especially given the state of many sub-disciplines

in neuroscience; the field is relatively young and so researches may reasonably desire to

avoid overconfidence in any direction. Especially given the “fundable” sample size in

many imaging studies, there is concern that only large effects, e.g., motor effects, shall be

found while more moderate effects, e.g., what is expected in cognitive processes, will be

missed. Any hope of combining results into meta-analyses is certainly frustrated by the

fact that papers with useful non-significant information are rarely published, and modern

science desperately needs an avenue for publishing well-conducted science that fails to pass

pre-specified decision thresholds; publication bias skews the literature and robs science of

useful results (Joober et al., 2012). However, despite these legitimate concerns, what follows

is another case-study in misunderstanding the application of statistical methods.

One of the authors’ key complaints is that the behavioral science standards to

which cognitive neuroscience aspires to emulate are not required to correct for all their

tests, and in addition the old “gold standard” was p < 0.001, which was then adjusted to

account for spatial extent so that p < 0.005 and 10 voxel extent was deemed acceptable.

The authors present some simulations showing fairly reasonable results while decrying

a perceived demand for certainty. Perhaps some in their field demand certainty, but as

discussed, statistics is rather the endeavor to account for the exact opposite: uncertainty

lives and may even be immortal. While, generally speaking, scientists, and statisticians

in particular, should not be called to account for jokes that fall flat, a tired hyperbole is to

ask whether entire journals should adjust for all tests in their journal; this “joke” betrays

a misunderstanding about the underlying philosophy. For one, this ignores the meaning

of multiple tests; multiple testing procedures are relevant when a group of tests can be

reasonably regarded as a family. It is also little consolation that simulations appear to

reasonably control false positives; the multiple testing procedure philosophy is not to find

the perfect p-value threshold, but rather to help researchers understand and quantify the level
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at which the employed procedure controls false positives. There is no need to retroactively

apply a witch hunt to papers published with less than informative thresholds; a reasonable

balance is available.

In the same journal issue, Bennett et al. (2009) provide a more nuanced view and

lament the opposite problem: that too many researchers see no need to account for multiple

testing. They make an astute observation that is often lost amidst more pure statistical

theoretical terms: multiple testing procedures should not only to control false positives, but

provide information on their rate under various assumptions and conditions. It is important

to understand the directionality of the process: one often needs to quantify a procedure’s

over the long run, so that informed decisions about acceptable error rates are possible in

various contexts; at the very least one should understand how likely it is that a procedure

errs in its inference: a “principled correction... definitively identifies for the reader the

probability or proportion of false positives that could be expected in the reported results.”

While arbitrary thresholds are unavoidable in hypothesis testing, the underlying idea of

multiple testing says that a threshold does not mean the same thing in terms of error control

at different numbers of tests. A chief concern with arbitrarily lowering the thresholds as a

solution is that p < 0.001 is not really testing 10,000 and 6,000 voxels at the same level.

Methodology ranges from more to less conservative, and in practice more liberal

thresholds should sometimes be employed. False positives cannot be avoided in all studies

unless one rejects no hypotheses and so the balance between the false positives and false

negatives is one that must be considered, but this should be done by thinking about the level

at which one actually wishes to test and employing a multiple testing procedure to get there.

If examination shows that a false negative rate is to high for a given level of significance,

then this should be stated explicitly and thresholds assigned accordingly; the answer is not

to ignore a known statistical issue or to address the issue with another arbitrary threshold.
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The trouble with FWER control

There has been an element of polemic to this section, but this should not imply

an insensitivity to the difficulty researchers face in practice. Problems arise in attempting

FWER control, and especially when very large numbers of tests are necessary it does become

impractical, especially at something like the voxel level. Nichols and Hayasaka (2003)

note that most Bonferroni methods are far too conservative to be acceptable, especially

with non-independent data, and RFT is also fairly conservative, if much improved over

Bonferroni. Permutation tests have the distinction of least conservative, at least in practice

according to simulations and experience by Nichols and Hayasaka (2003).

It is no mystery why controlling the FWER is excessive in some cases: to control

the FWER is to control the probability of one or more false positives. In many cases, a few

false positives would not change the interpretation of the data and controlling the FWER

comes at the cost of missing true positives without much added protection against spurious

results at a relevant scientific level; that is, often somewhere in between a conservative

test and no test is desired, but one must still choose such a test in a principled way. An

example is Mirman et al. (2018), who strive for some balance in their study of Voxel-based

lesion-symptom mapping (VLSM). Mirman and colleagues are interested in the association

between lesion status at a voxel and cognitive deficit severity in structural MRI studies. It is

unlikely that a single voxel difference would be meaningful in this context and so a different

approach is needed to achieve a reasonable balance; they address multiple testing issues

in a creative way that avoids the extremes of FWER control or no correction, and provide

insight into the limitations of several common approaches; e.g. cluster-based thresholds and

FDR-correction.

Clusters are defined as a contiguous subset of voxels that all exceed some threshold

of statistical significance; researchers often set minimum cluster sizes to prevent excessive

type I errors. This approach is typically based on the idea that significantly activated brain
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activity is likely to have a spatial extent greater than a single or small number of voxels

(Lieberman and Cunningham, 2009). While setting a minimum cluster size accounts for

spatial dependence and that activation of any sort likely has a spatial extent, choosing the

appropriate spatial extent should not be arbitrary. A common approach is to choose a

primary threshold for significance along with a secondary threshold of voxel extent; e.g.

as mentioned above p < 0.001 and a minimum of 10 contiguous voxels (Lieberman and

Cunningham, 2009). However, using liberal primary thresholds along will give rise to larger

clusters and provide the illusion of robustness (Lindquist and Meija, 2015).

While none can escape the arbitrary nature of the primary threshold, Mirman et al.

(2018) escape further obfuscation by following Nichols and Holmes (2001) with a non-

parametric procedure for hypothesis testing. After applying the primary threshold to the data,

they compute the size of the largest supra-threshold voxel cluster; this is essentially the test

statistic. The permutation test comes into play when the behavioral data, i.e. the outcome of

interest, is permuted and analysis re-conducted many times to build a null distribution to

which the observed maximum cluster size is compared. For example, significant clusters are

those whose size exceed 95% the null distribution cluster sizes. While this methodology

is more nuanced than setting arbitrary cluster sizes, simulations showed that permissive

thresholds, 0.05 and 0.01, resulted in clusters too large to be anatomically meaningful, while

less permissive thresholds, 0.001, 0.0001, result in clusters that extended beyond the bounds

of the known significant area. The cluster-based method fails to avoid false positives in the

areas where they are the most likely, thus finding problems with even more sophisticated

cluster size methods.

The next approach is to apply the concept of k-FWER control, based on work by

Romano and Wolf (2007), who described methodology to control the probability of > k

false positives. When applied to permutations, this approach is fairly easy to apply in that

it is the same as traditional permutation except that rather than finding the maximum test
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statistic and creating a null distribution about it, one takes the v highest test statistic from

each permutation; e.g. if v = 5, then the null distribution is created from the 5th highest

test statistic from each image. This process is christened continuous permutation-based

FWER since it allows v > 1. While similar to FDR, the difference is that FDR controls the

expected proportion of false positives in the sample of rejected voxels, generally denoted q,

while a generalized version of FWER still controls the rate of a particular number of false

positives. Nominal q-values can be computed with this approach to compare methodology,

and determine which approaches actually do best in controlling FDR. In smaller samples,

traditional FDR-control methods were more variable than k-FWER, where direct FDR-

control becomes anti-conservative and the voxel dependence exaggerates the skew toward

smaller p-values in the presence of true signal; ultimately, continuous FWER tended to

outperform direct FDR-control in VLSM simulation studies, in terms of avoiding false

positives and detecting true signal, especially at sample sizes typical in those studies. The

authors believe that the inherent flexible thresholds of this methodology allows more ability

to describe the data and report multiple thresholds, thus avoiding dichotomous significance

statements, which should not be a problem so long as practitioners are transparent about

their choices.

Summary

This section presented a summary of the literature with respect to methodology for

handling multiple testing in neuroimaging, but also discussed controversies with respect to

p-values, hypothesis testing, and multiple testing procedure applications; it is hoped that the

reader will have been disabused of at least a few misconceptions in the literature. Statistics

is not an exercise in perfection, but rather the attempt to quantify inevitable uncertainty in

research questions. The application thereof requires some combination of mathematical

precision and artful application; a great scientist once said: “Sometimes science is more

art than science, Morty. A lot of people don’t get that.” Roiland (2014). Defending the
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usefulness of traditional methods is not to imply that they cannot or should not be improved,

nor does it imply that novel frameworks could not prove more useful than older ones.

However, many attacks on classical hypothesis testing and multiple testing procedures are

either misguided or represent partial truths; furthermore, multiple authors have provided

more nuanced approaches to its implementation. It is on such a foundation that better, more

reliable, science can be conducted.

4.6 Bayesian Perspectives on Multiple Testing

Given Bayesian statistics’ hesitancy about hypothesis testing in general, it may be

surprising to discover that there exists a literature on Bayesian approaches to multiple testing

problems. Nevertheless, such a literature exists, and we provide some exploration thereof in

the current section.

The traditional problem

In many cases an alternative framework for statistical modeling is the younger sibling

of frequentist statistics, Bayesian statistics, which is not particularly new, but required

significant computational advances to become viable in complicated practical situations. As

such, the Bayesian paradigm may ultimately play an increasing role in science. However,

Bayesian statistics requires a different stance towards multiple testing, and arguments for or

against multiple testing procedures thus differ from those in classical statistics. Berry and

Hochberg (1999) are followed throughout in motivating the problem, although their example

is generalized to k groups rather than two. Consider k random variables Yi, i = 1, . . . , k.

After sampling, one obtains vectors of observations yi, i = 1, . . . , k, whose length may not

be equal among groups. Let the k parameters representing means be denoted as θ1, . . . , θk.43

43It also makes sense to think of the θi as differences; i.e., suppose θ1 is a reference group mean and
θ2, . . . , θk represent the respective differences between groups 2, . . . , k and group 1, respectively. There is
also nothing stopping the generalization of θi from a scalar to vector, but for now we take a simpler approach.
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The posterior distribution is formulated as follows:

p(θ1, . . . , θk|y1, . . . ,yk) ∝ p(y1, . . . ,yk|θ1, . . . , θk)p(θ1, . . . , θk) (4.6.1)

This is the posterior distribution, but with the data partitioned according to some relevant

groups. Assuming that the observations are conditionally independent, then

p(y1, . . . ,yk|θ1, . . . , θk) = p(y1|θ1) . . . p(yk|θk)

Then if one assumes the θi are independent and condition on yi, the θi are also independent

in posterior distribution:

p(θ1, . . . , θk|y1, . . . ,yk) ∝ p(y1|θ1)p(θ1) . . . p(yk|θk)p(θk) ∝ p(θ1|y1) · · · p(θk|yk)

(4.6.2)

Consider carefully what equation (4.6.2) implies: If the θi are independent then there is no

need for multiple comparisons because information about θi, obtained via yi, provides no

information about θj , when i 6= j. Notice that this insight refers to the parameters, θi, and

not the data, yi. Therefore, when the parameters are independent of each other there is no

need for adjustments for multiplicities when comparing means.44

Extension to hierarchical models

However, very few studies allow for such a strong assumption a priori, especially

in hierarchical models, where one assumes that parameters are drawn from a common

distribution; e.g., should a shepherd assume that knowledge about the survival probability of

44In some sense this is analogous to the concept of families of tests. For example, suppose we want to know
about differences in height across many nationalities. The set of pairwise tests is a coherent family of tests,
and in some sense the distributions of heights for each nationality is still measuring humans. If an alien species
landed in Norway and measured the height of 100 Norwegians, this information about human height would tell
them something about what to expect if they then flew down to Australia to also measure height. In contrast,
this data would give them no information about mean circumference of pine trees across the fifty states of the
USA, which would be a separate family.
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lambs in one flock tells him/her/them absolutely nothing about the survival probability in

another flock? This is unlikely, because even if a large reason for the difference in survival

probability between two flocks is largely due to the shepherd’s competence, there will be

other measured or unmeasured factors that flocks may share in common that may affect

these survival probabilities. However, while independence is rarely a reasonable assumption

in these circumstances, exchangeability may or may not be a valid assumption; that is,

θ1, . . . , θk may be considered a random sample drawn from a population distribution, say

with mean θ0 and variance τ 2.45 In the case of hierarchical models the posterior distribution

for θi depends on data yi, but it also depends on the other data yj , i 6= j, because the θi all

give information about the population mean, θ0, which itself gives information about the θi;

the process thus “shrinks” the θi in each other’s direction.

Berry and Hochberg (1999) illustrate this discussion by example where the θi are

assumed to arise from a normal distribution with hyperparameters assigned by a Dirichlet

process prior distribution.46 Without getting too technical, the posterior distribution of θ0

and/or τ 2 given the data yi is a mixture of Dirichlet processes, which implies positive proba-

bility to θi = θj , i 6= j, so that one may find posterior probabilities that any combination of

the θi are equal to each other. Berry and Hochberg also argue that posterior probabilities

regarding whether some θi = θj should account for estimates of other parameters rather

than be calculated in isolation.

An application to DNA microarray data

While ultimately the focus of this work will turn to a generalized Hierarchical

modeling approach, it is helpful to consider the work of Scott and Berger (2006). Analysis

of DNA microarray data tests many thousands of genes for “activation”, i.e., over- or under-

45A truly Bayesian approach would likely assign vectors of hyperparameters to describe the prior distribu-
tions of θ0 and τ2.

46The details are beyond the scope of this text, note that the Dirichlet distribution is a multivariate general-
ization of the beta distribution. As the beta distribution is the conjugate prior to the binomial distribution, so is
the Dirichlet distribution to the multinomial distribution. A Dirichlet process is essentially a generalization of
the Dirichlet distribution (Teh, 2011).
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expression in the presence of stimuli. A basic approach to such modeling assumes that data

on expression for M genes, y = (y1, . . . , yM), arise from independent normal distributions,

i.e., yi ∼ N (µi, σ2); this implies that the yi are modeled as a “true mean” µi plus some

measurement error with variance σ2.47 Researchers then need to determine which genes are

active (µi 6= 0) or inactive (µi = 0). Define µ = (µ1, . . . , µM) and γi =


0 if µi = 0

1 if µi 6= 0
,

so that the full likelihood is

f(y|σ2, γ,µ) =
M∏
j=1

[
1√

2πσ2
exp

(
−(yj − γjµj)2

2σ2

)]
(4.6.3)

The following inference is of interest:

1. The posterior probability that µi = 0 given the data, i.e. that gene i is inactive.

2. The marginal posterior density of µi, given µi 6= 0.

3. The joint posterior distribution of the key hyperparameters.

Scott and Berger derive the relevant theory, introduce importance sampling for computation,

discuss posterior summaries, consider the implications of various prior distributions for

the probability that a particular gene is inactive, and discuss the application of decision

theory to the problem; these details are beyond the scope of this work, and here the

relevance of their approach is that one can see both the posterior probability that a gene

is inactive as well as a prediction for what the distribution would look like, given the

mean was non-zero. The relevant derivations depend upon a common prior probability

that the µi = 0 (are inactive), and that the µi are zero or not independently, i.e., whether

or not a particular gene is active does not depend on the active/inactive status any other genes.

47While Scott and Berger call this measurement error, it is not clear that some genes might be activated
due to process not necessarily related to the given stimulus, so it is conceivable to this author that errors may
encompass more than measurement error.
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The question relevant to the current endeavor is whether, when, and to what extent

do Bayesian methods automatically correct for multiple testing. Scott and Berger provide

some guidance and determine that under this particular set of distributional assumptions

some accounting of multiple comparisons occurs. In simulations, where 10 “signal” points

and n “noise” points were generated, at least some natural penalty seems to be imposed

in that the probabilities that a given gene is non-zero decrease as the number of “noise”

observations gets larger. This statistical phenomena arises from the fact that the posterior

distribution of the common probability of a gene being inactive nears one as the number of

noise observations grows, with the result that there is less evidence that a gene is active if

it occurs in a sea of noise; this is related to the Occam’s razor effect in Bayesian variable

selection, whereby models are penalized for complexity. However, there is a distinction

between the Occam’s razor effect and multiple testing corrections; this is more clearly

expounded upon in Scott and Berger (2010), to which we now turn.

Scott and Berger return: When and how does multiplicity correction occur?

Scott and Berger continued their research into Bayesian multiple comparisons correc-

tions and the result was a 2010 tome exploring the topic in the context of variable selection as

applied by Empirical-Bayes and Full-Bayes methodologies (Scott and Berger, 2010).48 The

paper is worth a full read, especially for those interested in discrepancies and convergences

between Empirical-Bayes and Full-Bayes methodology, but its relevance this work is their

contributions to understanding how and when Bayesian methodology automatically makes

corrections for multiple testing.

Multiple testing correction in a Bayesian framework occurs through prior specifica-

tion; while this fact was noted briefly in their previous work, the insight is more thoroughly

48Briefly, Empirical-Bayesian procedures treat hyperparameters in prior distributions as quantities to be
estimated from the data. Full Bayesian approaches assign the prior and sample from its distribution. In the
context of the cited paper, the priors of concern are the probabilities that any parameter is 0, and these arise
from prior probabilities that a model under consideration is the right one. Empirical-Bayes would estimate
these probabilities from the data while full Bayes would assign the priors.
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investigated and clearly explicated in their later paper. In the context of variable selection,

these priors relate to the prior probabilities that certain parameters are or are not zero,

which arise from prior probabilities that particular models are the correct one. However, an

important distinction must be made between multiple testing correction and the so-called

“Occam’s Razor” effect: The Occam’s razor effect is essentially a penalty for more com-

plex models, and results from integrating the likelihood over parameter spaces of higher

dimension, producing relatively more dispersed predictive distributions. That this is no

multiplicity correction can be seen intuitively by noting that Bayes Factors are invariant to

the number of other models under consideration.49

Not all prior specifications result in multiplicity adjustment; most importantly,

assigning a common prior probability of inclusion of 1/2 for each parameter provides no

multiple testing adjustment. One may subjectively adjust this prior to address beliefs about

the proportion of included variables in the correct model, but there is no prior that can be set

independently of the number of variables under consideration and still implement multiple

testing corrections. Note that Empirical-Bayes approaches confront multiple testing by the

fact that, given a fixed number of true inclusion variables, the estimated common probability

of inclusion shall approach 0 as the number of variables under consideration increases.

Using a uniform prior for probability of inclusion results in marginal inclusion probabilities

of 1/2, but this approach in not equivalent to simply setting the inclusion probabilities to

be 1/2 since the probability is not divided among models in the same way.50 The lesson is

that in variable selection problems, multiple testing correction occurs via the prior inclusion

probabilities, but the degree thereof is connected to the data.

49From Gelman et al. (2013), the Bayes factor is defined as the ratio of marginal densities under 2 models in
question; i.e. for data y, and 2 models H1, H2 with respective parameter vectors θ1,θ2, the Bayes Factor is
p(y|H2)
p(y|H2) =

∫
p(θ2|H2)p(y|θ2,H1) dθ2∫
p(θ1|H1)p(y|θ1,H1) dθ1

.
50The uniform prior is implemented via a beta distribution with both parameters equal to 1.
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Summary

Multiple testing is of no concern for the Bayesian in the simple example where the

joint posterior distribution can be factored into a product of marginal posterior distributions,

arising from independence of parameters. However, this is a poor assumption for most data,

and in particular is both philosophically and mathematically incoherent for hierarchical

models. An accounting for multiple testing in this scenario can be achieved by considering

all combinations of hypotheses containing the hypothesis of interest; e.g. if a shepherd wants

to know whether 2 flocks have equal survival probabilities for its lambs, then he should

consider all possible combinations of equality/inequality that contain this hypothesis. In

more complicated data, this kind of approach is perhaps infeasible, and while there exists a

penalty on model complexity inherent to Bayesian methodology, this is not equivalent to

multiple testing correction; such correction is tied to the choice of priors. While it is not

possible to go into detail here, note that Scott and Berger’s work provide both theoretical

and simulation-based justification for these arguments.

5 Bayesian Shrinkage Priors and Generalized Linear Models

5.1 Bayesian Generalized Linear Models

While linear models are commonly associated with classical statistics, they are also

ubiquitous in Bayesian applications; the difference is, of course, that Bayesian applications

explicitly incorporate prior distributions for the parameters in the models. One common

approach for including the priors is as “additional data points”, where a data point is added

for each parameter and the prior variance is included in the covariance matrix (Gelman et al.,

2008, 2013). This approach allows for fitting ill-posed models, as well as incorporating prior

distributions as prior information or tuning parameters. This section considers a particular

variation on this approach that was initially proposed for genetic research.
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5.2 The Basic GLM

In general, one begins with a vector of outcomes y = (y1, . . . , yn) which can be

divided into K ≥ 1 groups, Gk, k = 1, . . . , K where the Kth group contains Jk > 1

variables; in Yi et al. (2014) these are genetic predictor variables (Yi et al., 2014).51 Non-

grouped covariates may also be collected and incorporated into the analysis. The form of

the generalized linear model is as follows:

h(E(yi|Xi)) = β0 +
J0∑
j=1

xcijβ
c
j +

K∑
k=1

Jk∑
j∈Gk

xgijβ
g
j = Xiβ, i = 1, . . . , n (5.2.1)

where h is the link function, n is the number of individuals, β0 is the intercept, xcij, x
g
ij

are observed covariates and genetic variables, respectively, the coefficients βcj , β
g
j are the

non-genetic and genetic effects, respectively, j ∈ Gk indicates membership in group j,Xi is

an 1×J vector containing all variables, β is a J×1 vector containing all coefficients as well

as the intercept; i.e. Xi = (1, xi1, . . . , xiJ), and β = (β0, β1, . . . , βJ)′, and J = ∑K
k=0 Jk is

the total number of variables.52

Note that the term
∑K
k=1

∑Jk
j∈Gk x

g
ijβ

g
j can be adapted to also contain parameters for

at the group level (Yi et al., 2011):

K∑
k=1

gk

Jk∑
j∈Gk

xgijβ
g
j (5.2.2)

where gk is the group effect and αj are the weights of the j variants. Hierarchical prior

distributions are necessary here in order to obtain an identifiable model. Group effects are

particularly useful when the the effects of particular variants may be small or moderate but

yield a significant cumulative effect. This approach includes as special cases several other

methods in the literature regarding rare variants; further details are found in Yi et al. (2011).

51As a look ahead, these effects can be mapped from genes to pixels or voxels.
52As this a general formulation, note that the vectorXi could be extended to include multiple observations

for a given subject.
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The data distribution, or likelihood, is defined as

p(y|Xβ, φ) =
n∏
i=1

p(yi|Xiβ, φ) (5.2.3)

where this distribution can generally be allowed to take the form of any distribution that

can be expressed as an exponential family, and φ is the dispersion parameter. For some

distributions, e.g. Poisson, this parameter is not necessary and thus φ = 1.

Generalized linear models are usually fit via iterated weighted least squares, which

proceeds by constructing the pseudo-response zi and pseudo-weight wi for each data point

yi, given the current estimates (β̂, φ̂):53

zi = η̂i −
L′(yi|η̂i)
L′′(yi|η̂i)

wi = −L′′(yi|η̂i)

and the likelihood is thus approximated by the weighted normal likelihood:

p(yi|Xiβ, φ) ≈ N (zi|Xiβ, w
−1
i φ)

where η̂i = Xiβ, L(yi|η̂i) = log p(y|Xβ, φ = 1), L′(yi|ηi) = ∂L(yi|ηi)
∂ηi

, and L′′(yi|ηi) =
∂2L(yi|ηi)

∂η2
i

. An iterative process then updates the parameters (β, φ) until reaching convergence.

Normal linear regression has zi = yi and wi = 1, eliminating the need for iterations.

5.3 Hierarchical Models

Previous sections discussed hierarchical models in both the frequentist and Bayesian

perspectives, but following Yi et al. (2014), more details are explored. While classical gen-

eralized linear models with either too many or correlated coefficients can be nonidentifiable,

Bayesian inference has been used to circumvent such issues.

53See for example McCulloch et al. (2008).
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Let the coefficients be normally distributed with 0 mean and unique variance, τ 2
j :

βj|τ 2
j ∼ N (0, τ 2

j ), j = 1, . . . , J (5.3.1)

Let the intercept β0 and dispersion φ have noninformative priors; e.g. p(β0|τ 2
0 ) = N (0, τ 2

0 )

for τ 2
0 large and p(log φ) ∝ 1. Given τ 2

j , the conditional posterior distribution for β is

approximated by NJ(β̂, var(β̂)) where

β̂ = (X ′Σ−1
z X + Σβ)−1X ′Σ−1

z z

var(β̂) = (X ′Σ−1
z X + Σβ)−1φ

Σz = diag(w−1
1 , . . . , w−1

n )

Σβ = diag(τ 2
0 /φ, . . . , τ

2
j /φ)

Coefficients with prior variance equal to zero are shrunk to precisely zero, so that no infinities

shall be involved in calculations of the above estimates; alternatively, the prior variance

could be set to a very low value with very similar results. When φ 6= 1, it is updated by

φ̂ = (z−Xβ̂)′Σ−1
z (z−Xβ̂)/n

which results in well defined β̂ with finite variance, no matter whether the data have high

dimension or are highly correlated.

5.4 Shrinkage Priors

In general, shrinkage priors consist of using the variance parameter(s) in a prior

distribution to adaptively shrink parameters that are not important to the outcome of interest,

while leaving important parameters relatively unchanged; this is a particular variant of

Bayesian variable selection. In the previous section, the βj would be subject to shrinkage

on account of the τj values, and the adaptive nature of the process is tied to the hyperprior
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specifications of the τj . Yi and Ma (2012) discuss the use of shrinkage priors as well

as the limitations of other penalization approaches for handling correlation and/or high

dimensional data, and the competing approaches described therein tend to have one or more

of the following limitations:

1. Unique tuning parameters applied to all coefficients, which may result in over- or

under-shrinking of coefficients varying in importance.

2. Methods with varying penalty parameters have thus far tended to depend too heavily

on the quality of initial estimates.

3. Inadequate ability to include or handle hierarchical structures.

The variance parameters τ 2
j determine parameter shrinkage whereby τ 2

j = 0 results βj

shrinking to 0, τ 2
j =∞ does not shrink βj at all, thus it contributes 1 degree of freedom. It

is worth explaining why this is the case. Consider (4.3.7) to see that if τ 2
j = 0 then βj = 0

has no variance and is thus a constant. If τj =∞, or in practice is simply very large, then

the distribution of βj is so disperse that any value of βj is as believable as any other and

there is little reason to pull the estimate towards the prior mean.

The τ 2
j are assumed unknown and have variances themselves. Yi and Ma recommend

two priors: the half-Cauchy and exponential priors. Modeling the half-Cauchy prior requires

expression hierarchically as follows:

τ 2
j |sj ∼ Inv-χ2(ν, s2

j), s2
j |bk[j] ∼ Gamma(a, bk[j]), p(log bk) ∝ 1 (5.4.1)

Alternatively, an exponential prior for τ 2
j is given by

τ 2
j |sj ∼ Exponential(s2

j/2), sj|bk[j] ∼ Gamma(a, bk[j]) (5.4.2)
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where k[j] indexes the group k within which the jth group resides.54 Yi and Ma (2012)

discuss further details regarding selection of the hyperparameters for equations 5.4.1 and

5.4.2. The exponential approach leads to higher power and quicker convergence and is

therefore the general recommendation. The important detail is that the group specific bk

allow for pooling information within groups as well as different shrinkage among groups.

5.5 Computation

Computational implementation combines the Expectation-Maximization (EM) al-

gorithm with the iterated weighted least squares (IWLS) algorithm (EM-IWLS algorithm)

where the τ 2
j and their hyperparameters are treated as missing data so that (β, φ) are updated

by averaging over the missing data. The general process as described by Yi and Ma (2012)

is briefly summarized as follows:

1. Start with a crude parameter estimate.

2. For some number of iterations:

(a) E-step: Take conditional expectations with respect to the parameters τ 2
j , sj, bk.

(b) M-step: Calculate the pseudo-data and pseudo-weights, update the β estimates

via the augmented weighted normal linear regression, and update φ if necessary.

At convergence the estimates (β̂, φ̂) and var(β̂) obtained. P-values may be obtained for

hypotheses H0 : βj = 0 via the test statistic β̂j√
var(β̂j)

, which follows an approximate

standard normal when φ is not included or t-distribution with n degrees of freedom when φ

is included.55

54Modeling sj rather than s2
j allows easier computation of the posterior distribution.

55It may seem odd for a Bayesian method to use “traditional” p-values, but in practice the approach appears
to produce reasonable results, especially when combined with the hierarchical Bonferroni procedure described
below. See Yi et al. (2014).
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5.6 Effective Number of Effects

The effective number of parameters or degrees of freedom is an indication of Bayesian

hierarchical model complexity, defined by the posterior mean of deviance minus the deviance

at the posterior mean or mode (Gelman et al., 2013):

ρ = D̄(θ)−D(θ̂) (5.6.1)

where θ includes all parameters, D(θ) = −2 log{p(y|θ)}, D̄(θ) is the posterior mean

of D(θ), and θ̂ is the posterior mean or mode of θ. While this is generally obtained via

posterior simulation, Yi et al. (2014) approximately estimate equation (5.6.1) for any subset

of parameters conditional on the estimates of the other parameters from the EM-IWLS

algorithm.

Since the generalized linear likelihood is approximated by the weighted normal

likelihood, the expectation of D is taken with respect to the conditional posterior distribution

of genetic effects p(βg|β0,β
c, φ, τ 2) where βg,βc, τ 2 are the vectors of all genetic effects,

covariate effects, and variances, respectively, so that the conditional posterior distribution is

approximated by:

p(βg|β0,β
c, φ, τ 2) ∼ N (β̂g,Vg)

where Vg = (X ′gΣ−1
z φ−1Xg+Σ−1

βg )−1,Xg is the design matrix of βg, and Σβg is a diagonal

matrix consisting of the τ 2
j for genetic effects. Thus, D̄ = D(β̂) + Tr(X ′gΣ−1

z φ−1XgVg)

so that the effective number of genetic effects is

ρ = Tr(X ′gΣ−1
z φ−1XgVg) = Jg − Tr(Σ−1

βgVg) (5.6.2)

where Jg = ∑K
k=1 Jk is the total number of genetic effects; this has the interpretation as

being the effective number of tests in a hypothesis testing framework, which shall be more
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obvious when the hierarchical Bonferroni procedure is described in the next section. It is

straightforward to adjust equation (5.6.2) to determine the effective number of effects within

any subset of coefficients as well as the effective number of coefficients:

ρ = (J + 1)− Tr(Σ−1
β V )

where J + 1 is the total number of coefficients, Σβ = diag(τ 2
0 , . . . , τ

2
j ), and

V = (X ′Σ−1
z φ−1X + Σ−1

β )−1. It is clear that 0 ≤ ρ ≤ Jg so that Tr(ΣβV )

represents the reduction in the parameters and depends directly on the τ 2
j .

5.7 Hierarchical Bonferroni

Hierarchical modeling results in dependencies among parameters and lowers the

number of independent tests, which makes traditional Bonferroni too conservative; however,

the effective number of tests can be used to construct the hierarchical Bonferroni correction:

p′j = min(1, Jρ · pj) (5.7.1)

where Jρ = max(ρ, (ρ+ 0.05 · Jg)/2) and pj and p′j are the adjusted and initial p-values for

H0 : βj = 0, respectively.

6 The Spike-and Slab Lasso (SSL)

A relatively new development is the Spike-and-Slab Lasso, developed by Roc̆ková

and George (2018) and adapted for genetic research by Tang et al. (2017) and Tang et al.

(2018). This section describes these advances, as well as first covering background necessary

for full comprehension. Most of the background information is covered to some extent in

these cited works, but some topics deserve further description, given the relatively unlimited

nature of this document.56

56At least for now. It is the author’s hope that the document remain finite in both space and time.

65



6.1 Background: Lasso and Penalized Likelihood in Brief

Before tackling the spike-and-slab lasso, it is helpful to understand the “regular”

lasso. Here we provide an overview of the lasso, as well as a brief discussion of penalized

likelihood methods in general.

Lasso 1996

Robert Tibshirani originally developed the lasso as a biased estimation approach for

variable selection in linear models of the kind discussed in section 2.1. OLS estimates are

sometimes unsatisfactory in that while they are unbiased they can still have large variance,

which may result in poor prediction accuracy. Interpretation is often obfuscated by large

numbers of variables and a smaller subset of those exhibiting the strongest effects is often

desired. lasso was developed to address concerns in two other approaches: Ridge regression

and subset selection. Ridge regression adds a penalty to the likelihood and ultimately shrinks

coefficient values from their OLS values. Subset selection is a discrete process of removing

“unimportant” variables. The “Least Absolute Shrinkage and Selection Operator” (lasso)

approach was designed to keep the better aspects of Ridge Regression and Subset selection,

by shrinking coefficients (like ridge regression), some just a little and some to zero (unlike

ridge regression). The fact that some coefficients are shrunk to zero effectively removes

them from the model, performing a kind of variable selection. The lasso is given by:

β̂ = arg min


n∑
i=1

yi − β0 −
J∑
j=1

xijβj

2
 , subject to

J∑
j=1
|βj| ≤ t (6.1.1)

with all definitions the same as section 2.1.57 Tibshirani goes on to show the form of the lasso

estimates, algorithms for obtaining said estimates, and compares it to several competing

methods, all of which can be found in Tibshirani (1996). The insight here is that this

estimation approach can both improve the variance of estimates as well as (at least some

57Note that the difference between equation (6.1.1) and Ridge regression is that ridge regression is subject
to
∑J
j=1 β

2
j ≤ t.
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of the time) reduce “unimportant” variables to exactly zero, performing automatic variable

selection and in general avoiding the need for traditional hypothesis testing. A final benefit

is that the lasso also has a Bayesian interpretation as applying double exponential priors to

the βj , which makes it an attractive approach for both frequentists and Bayesians alike (Park

et al., 2012).

Penalized likelihoods

The lasso method maximizes a penalized likelihood. Standard maximum likelihood

maximizes the likelihood equation with respect to some parameter vector θ; penalized

likelihoods add a term to the objective function (likelihood) to “penalize” various undesirable

possibilities. For example, smoothing splines penalize roughness in estimation, and thereby

avoid overfitting. The general form of penalized optimization is given by:

θ̂ = arg max
θ

{L(θ|y) + λ pen(θ)} (6.1.2)

where L(·) is the likelihood, y is a vector of observations, λ is a tuning parameter, and

pen(θ) is a penalty function. Equation 6.1.2 can be generalized and re-expressed in this

form as follows:

β̂ = arg min


n∑
i=1

yi − β0 −
J∑
j=1

xijβj

2

+ λ pen(β)

 (6.1.3)

where, for example pen(β) = ∑J
j=1 β

2
j for ridge regression and pen(β) = ∑J

j=1 |βj| for

lasso. The nail through the foot is the tuning parameter λ, which needs to be selected by the

analyst. Once again, it is beyond the scope of this document to examine this topic in greater

detail, but note that several methods have been developed to avoid arbitrary λ selection,

most commonly some form of cross-validation. Various adaptations of generalized cross

validation or k-fold cross validation are common approaches to choosing λ (Craven and

Wahba, 1979; Efron and Tibshirani, 1993; Golub et al., 1979; Hastie et al., 2009).
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Note finally that the form penalized likelihood employed in Rockeva and George

primarily addresses the case of the linear model in equation (2.1.2) and gives the following

penalized estimated:

β̂ = arg max
β∈RJ

{
−1

2 ||Y −Xβ||
2 + penλ(β)

}
(6.1.4)

where they have chosen to simply index the penalty function by the parameter λ. It is

important to realize that equations 6.1.3 and 6.1.4 represent the same basic process; that is,

for a given penalty function the results would not differ between them.58

6.2 The Spike-and-Slab Lasso: Theory

Spike-and-slab priors

Spike-and-slab priors are fundamentally mixture priors, i.e., priors consisting of

mixture distributions. This prior formulation allows more flexibility in modeling/estimation

compared to traditional conjugate priors (Roc̆ková and George, 2018). Spike-and-slab priors

handle sparse data by creating a mixture containing a “slab” distribution, which has a wider

variance to model the effects of relatively larger magnitude, and a “spike” distribution, which

has a narrow variance to model effects that are relatively unimportant. The general idea

being that the slab distribution models parameters that should be included in the model, and

the spike distribution models parameters that should be excluded from the model.

Following the notation in Roc̆ková and George (2018), the spike-and-slab prior is

given by:

π(β|γ) =
J∏
j=1

[γjψ1(βj) + (1− γj)ψ0(βj)] , γ ∼ π(γ) (6.2.1)

58Key differences are: 1. The former notation actually performs a minimization and the latter a maximization,
which is accounted for by the choice of whether to include minus signs. 2. Presumably, using the notation
penλ allows for somewhat greater flexibility, but generally the chosen form still consists of multiplying a
penalty parameter by a penalty function. 3. The latter notation is in matrix, rather than scalar, form.
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where the slab distribution, ψ1(β), is diffuse to account for “signal” or large effects, and the

spike distribution, ψ0(β) is narrow to account for “noise” or small effects, depending on the

context. These are given double exponential distributions in Roc̆ková and George (2018):59

ψ1(β) = λ1

2 e
−λ1|β|

ψ0(β) = λ0

2 e
−λ0|β|

where generally λ0 >> λ1.60

While other priors for γ are possible, the one that concerns us here is that appropriate

for subset selection, i.e., the goal in mind is to separate signal from noise. Thus, prior

distribution for γ is Binomial:

π(γ|θ) =
J∏
j=1

θγj(1− θ)1−γj , θ ∼ π(θ) (6.2.2)

where θ = P (γj = 1|θ) denotes prior beliefs about the fraction of the βj that are signal

rather than noise.61

The SSL prior

The SSL prior builds a penalty from equations 6.2.1 and 6.2.2:

π(β|θ) =
J∏
j=1

[θψ1(βj) + (1− θ)ψ0(βj)] (6.2.3)

59These are also known as Laplace distributions, depending on which textbook you cut your teeth. The
author has no allegiance to either.

60Note that as λ increases the distribution becomes sharper, and as λ decreases the distribution becomes more
diffuse. Thus, large λ0 produces a spiky distribution and small λ1 produces a flatter distribution comparatively,
hence the names.

61This may appear to be quite arbitrary, but it may often be the case that the research question on hand gives
some indication of some appropriate ranges. For example, if the case that the predictors are pixels or voxels
from an MRI image and the outcome is some behavioral score, then coarser scores should employ large θ
compared to finer scores, because coarse scores should be expected to be associated with larger sub-volumes
of the brain, while finer measures should be expected to be associated with smaller sub-volumes.
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Equation 6.2.3 has margined out γ in equation (6.2.2) and may be incorporated as a penalty

directly into equation (6.1.4). This approach is ultimately a compromise between best subset

selection and the lasso, and collapses into each under certain circumstances. Best subset

selection is obtained when ψ0(βj) = I(βj = 0) (i.e. λ0 → ∞) and ψ1(βj) ∝ c > 0 (i.e.

λ1 → 0), while assigning ψ1(βj) = ψ0(βj) is equivalent to the traditional lasso described

above. However, a fully Bayesian approach treats θ as random as well, assigning it a prior

distribution; while the mathematics may become more difficult as a result, which is mostly

left to Roc̆ková and George (2018), there are several benefits, including but not limited to

greater ability to handle sparsity, potentially automatic multiple testing adjustments, and

avoiding the need for cross-validation with respect to θ.

Coordinate-wise optimization for fitting the SSL

Roc̆ková and George (2018) recommend coordinate-wise optimization for fitting the

SSL model. Most penalties in the literature are separable, but not the SSL penalty. However,

the similarity between approaches for the traditional Bayesian lasso and the SSL, along

with some theory shown in the original SSL paper, allows Rockeva and George to develop a

coordinate ascent algorithm.

6.3 The Spike-and-Slab Lasso Generalized Linear Model

Building off Roc̆ková and George (2018), Tang et al. (2017) apply the spike-and-slab

lasso to generalized linear models in a Bayesian framework of the GLMs in section 2.2;

i.e., the responses should able to be treated as arising from a distribution in the exponential

family, where the linear predictor is given by ηi = β0 +∑J
j=1 xijβj = h(E(Yi|Xi)) and h(·)

is a suitable link function. Thus, the data distribution (likelihood) is given as:

p(y|Xβ, φ) =
n∏
i=1

p(yi|Xiβ, φ) (6.3.1)
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where y is the n× 1 response vector, X is the n× J design matrix, β is the (J + 1)× 1

parameter vector, and φ is the dispersion parameter. We have previously mentioned the

inability of this kind of model to handle situations where J > n (non-identifiability), or

more generally when it is not the case that n >> J (over-fitting). The lasso and Bayesian

applications thereof have provided work-arounds to these problems by fitting lasso GLM’s

with the cyclic coordinate descent algorithm (Friedman et al., 2010). However, as mentioned

in section 6.2, the lasso has only one parameter, λ, and so cannot apply varying levels of

shrinkage to different parameters. Therefore, the benefits described in section 6.2 for the

general linear model case would apply to generalized linear models as well, if there were an

algorithm to fit the model.

The EM coordinate descent algorithm

In order to avoid confusion, notation is given to match Tang et al. (2017). Define

λ1 = 1/s1 and λ0 = 1/s0, so that

βj|γj, s0, s1 ∼
1

2Sj
e−|βj |/Sj (6.3.2)

where βj and γj are interpreted as in section 6.2 and Sj =


s1, γj = 1

s0, γj = 0
. The algorithm

developed combines the Expectation Maximization (EM) algorithm with the previously cited

coordinate descent algorithm and is aptly named the “EM Coordinate Descent Algorithm”.

The process is as follows:
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1. First, set up the log joint posterior distribution of (β, φ,γ, θ):

log p(β, φ,γ, θ|y) = log p(y|β, φ) +
J∑
j=1

log p(βj|Sj) +
J∑
j=1

log p(γj|θ) + log p(θ)

∝ `(β, φ)−
J∑
j=1

1
Sj
|βj|+

J∑
j=1

(γj log(θ) + (1− γj) log(1− θ))

(6.3.3)

Note that the algorithm needs starting values β0, φ0, θ0. In many cases φ = 1 as a

base assumption, but φ0 = 1 may still be an appropriate starting point if one wishes

or needs to estimate (over)dispersion. Similarly, β0 should often begin as a vector

of zeroes, absent strong prior knowledge. It is perhaps θ0 that is most interesting to

the author, but discussions of its choice are deferred until later. It is not clear that a

default starting value is appropriate for all situations.

2. E-Step: The values for the γj are unknown, so the algorithm treats them as “missing

data” and averages over their posterior distribution to estimate (β, φ, θ). The E-

step takes the expectation of equation (6.3.3) with respect to conditional posterior

distribution of the γj , which is derived as:

pj = p(γj = 1|βj, θ,y)

= p(βj|γj = 1, s1)p(γj = 1, θ)
p(βj|γj = 0, s0)p(γj = 0, θ) + p(βj|γj = 1, s1)p(γj = 1, θ) (6.3.4)

where θ = p(γj = 1, θ), 1 − θ = p(γj = 0, θ), and p(βj|γj = k, sk), k = 0, 1 are

given by equation (6.3.2). On account equation (6.3.4), it can be shown that the

conditional posterior expectation of S−1
j is as follows:

E(S−1
j |βj) = E

(
1

(1− γj)s0 + γjs1

∣∣∣∣∣βj
)

= 1− pj
s0

+ pj
s1

(6.3.5)
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Larger estimates for βj result correspondingly larger estimates for pj, Sj , so that

coefficients are not uniformly shrunk.

3. M-Step: Update (β, φ, θ) by maximizing equation (6.3.3) while using the posterior

expectations from the E-step for γj, S−1
j . The parameters (β, φ) and θ are updated

separately since they are included in separate terms in equation (6.3.3). The following

respective terms are then maximized with respect to the appropriate parameters:

Q1(β, φ) = `(β, φ)−
J∑
j=1

1
Sj
|βj| (6.3.6)

Q2(θ) =
J∑
j=1

[γj log(θ) + (1− γj) log(1− θ)] (6.3.7)

The second term in equation (6.3.6) functions as a lasso penalty with 1/Sj as the

penalty parameter. Recall that a Bayesian lasso GLM is appropriately maximized

via the cyclic coordinate descent algorithm; it is so here. Q2(θ) is maximized by

θ̂ = 1
J

∑J
j=1 pj .

4. Ultimately, a convergence criterion is necessary. Tang et al. (2017) use

|d(t) − d(t−1)|
0.1 + |d(t)|

< ε

where d(t) = −2 log `(β(t), φ(t)) is the deviance estimate at iteration t and ε is suitably

small.

6.4 Selecting Shrinkage Parameters

The general strategy for selecting shrinkage parameters is to fix s1, or equivalently λ1,

and perform analysis using a sequence of values for s0, or equivalently λ0. The formulation

used by Roc̆ková and George (2018) involves selecting a sequence {λ1
0 < · · · < λL0 }, where

λ1
0 is near or equal to λ1 while preserving λ0 ≥ λ1. Then an appropriate algorithm for fitting

the SSL is run with λ1
0 and starting point β0 = 0 such that an estimate for β obtained. This
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estimate for β is then used as the starting point for re-running the algorithm with λ2
0. This

process is continued until some L is reached where the solution is no longer affected by an

increase in λ0.

The formulation used by Tang et al. (2017) is similar, except that since they use Sj ,

the sequence is given as {s1
0 < · · · < sL0 } where s1

0 > 0 and sL0 < s1. From this sequence of

models one choose the best fitting model with any of the following measures:

1. Deviance: A goodness-of-fit measure appropriate for GLM’s and given by:

d = −2
n∑
i=1

log p(yi|Xiβ̂, φ̂) (6.4.1)

2. Mean Squared Error (MSE):

MSE = 1
n

(yi − ŷi)2 (6.4.2)

3. AUC and Misclassification: For logistic regression additional measures may be

appropriate: The area under the ROC curve (AUC) and misclassification, the latter of

which is defined as follows:

1
n

n∑
i=1

I(|yi − ŷi| > 0.5) (6.4.3)

where I(|yi − ŷi| > 0.5) =


1, |yi − ŷi| > 0.5

0, |yi − ŷi| ≤ 0.5
.

4. Pre-validated Linear Predictor Analysis: This approach uses the estimated linear

predictor η̂i as a continuous covariate in a univariate GLM and then examines relevant

statistics to assess predictive performance.
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7 Modeling Scalar Outcomes with Images as Predictors

In section 1 the problem of interest was briefly introduced, but the discussed lacked

a more precise mathematical framework for modeling beyond saying something like “How

can one determine what aspects of this image affect some scalar outcome?" In the preceding

sections many variations on the linear model were discussed, and linear models are often

the most natural framework for handling such questions. In this section the basic form of

the model is introduced before discussing its relation to the various estimation approaches

discussed above.

Assume that there is some n× 1 vector of outcomes Y , where n is the number of

subjects. Each subject has an accompanying image, which may consist any real numbers;

i.e. an A×B matrix given by:

Mi =



m11 m12 . . . m1B

m21 m22 . . . m2B

...
... . . . ...

mA1 mA2 . . . mAB


= {mab}A×B (7.0.1)

where mab ∈ R. While a matrix cannot be included in a linear model as stated in equation

(2.1.1), the matrixMi may be converted into a vector in a principled way by concatenating

the rows ofMi:
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X ′i =



xi1

xi2
...

xiJ


=



m11

m12

...

m1B

m21

...

m2B

...

mAB



(7.0.2)

where J = A ∗ B. In such a manner one can stack the Xi to create an n × J “design

matrix”X , which can be included in either a general linear model as in equation (2.1.2), or

a generalized linear model as in equation (2.2.1).

However, any image with a something resembling fine resolution is likely to result

in J >> n, since samples sizes are often in the hundreds or low thousands and images often

contain hundreds of thousands of pixels (2D) or voxels (3D). Thus, as mentioned in section

2, traditional methods are usually poor candidates for fitting such a model. However, as

mentioned in section 3, and explored more fully in sections 5 and 6, Bayesian approaches

can handle models where J > n, which mean the approaches discussed above are candidates

for answering our question from section 1. An additional wrinkle is how to account for the

correlation structure inherent in an image, which is one of the main goals of this work. We

discuss how to incorporate spatial structure into variable selection in Chapter ??, where

we extend the spike-and-slab lasso to incorporate spatial structure into prior probabilities

of model inclusion, but first we provide an overview of some relevant spatial statistical

concepts and outline how these might be used to extend the spike-and-slab lasso GLM.
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8 Spatial Statistics Overview

8.1 Introduction

The multivariate Normal distribution is often a useful tool for modeling spatial

dependence, but in many cases both interpretation and computation are aided by using a

conditional framework rather than the traditional multivariate specification. In Section 8.2

we define the Markov Random Field and the Gauss Markov Random Field. In Section

8.3 we introduce the CAR model and provide an intuitive introduction and comparison to

its improper cousin, the intrinsic autoregression (IAR). Section 8.4 describes the formal

structure of Intrinsic GMRF’s (IGMRF’s), and how IAR’s arise within such framework.

Section 8.5 shows how we can use GMRF’s to model probabilities in a spatial framework.

8.2 Gauss Markov Random Fields (GMRF’s)

A common and usually reasonable framework for modeling spatial correlation is

a Gaussian Markov Random Field (GMRF), because the multivariate Normal distribution

easily and intuitively incorporates spatial structure.62 We provide a definition of a Markov

Random Field from Cressie and Wikle (2011), before going on the discuss GMRF’s.

Markov Random Fields (MRF)

Suppose we have spatial locations j = 1, . . . , J , and the distribution for a random

variable X(sj) at location sj is defined conditional only on points within a neighborhood,

N(sj), of sj . That is, if X(−j) consists of the random variables for all other locations sk,

j 6= k, then:

p(X(sj)|X(−j)) = p(X(sj)|X(N(sj))) (8.2.1)

whereX(N(sj)) ≡ (X(u)|u ∈ N(sj))>.

62Note that Markov Random Fields (MRF) are not confined to the Normal distribution, even though we
limit our focus to such distributions here; see Cressie and Wikle (2011), chapter 4.2.2 for a more general
treatment of MRF’s.
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Definition of GMRF

GMRF’s confine equation (8.2.1) to the case whereX(sj) is normally distributed,

and often use graph notation to facilitate interpretation. Following Rue and Held (2005), a

random vector x = (x1, . . . , xn)> ∈ Rn is a GMRF with respect to graph G = (V , E) with

mean µ and symmetric positive definite precision matrixQ if and only if its density has the

form

p(x) = (2π)−n/2|Q|1/2 exp
{
− 1

2(x− µ)>Q(x− µ)
}

(8.2.2)

and Qij 6= 0⇐⇒ {i, j} ∈ E for all i 6= j. The precision matrixQ is equal to the inverse of

the covariance matrix; i.e.,Q = Σ−1. The marginal mean and precision are

E(xi|x−i) = µi −
1
Qii

∑
j:j∼i

Qij(xj − µj) (8.2.3)

Prec(xi|x−i) = Qii (8.2.4)

where j ∼ i indicates that xi and xj are neighbors, and the correlation between xi and xj

given x−ij is

Corr(xi, xj|x−ij) = − Qij√
QiiQjj

, i 6= j (8.2.5)

The beauty of the precision matrix

Standard multivariate statistics usually specify models with the covariance matrix, so

what is gained by specifying a conditional model in terms of the precision matrix? For one,

the interpretation of the precision matrix is in terms of conditional relationships, while the

covariance matrix is interpreted in terms of marginal relationships; i.e., the diagonal of the

precision matrix contains precisions conditional on all other variables, and the off-diagonal

contains conditional correlation information (after appropriate scaling). This means that
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Qij = 0 implies the xi and xj are independent, conditional on the rest of the variables.

In contrast, the diagonal of the covariance matrix holds marginal variances, while the off-

diagonal holds marginal covariances. Thus, if our interest is in conditional relationships,

then the precision matrix may better suit our purposes.

Additionally, while the covariance matrix is generally completely dense, the precision

matrix is often sparse, which lends computational benefits and aids interpretation, since the

conditional expectation in equation (8.2.3) explicitly shows how a realization of xi arises as

function of its surrounding neighbors. For example, consider an autoregressive process of

order one, abbreviated AR(1), for t = 1, . . . , n and unit variance:

xt = φxt−1 + εt, εt ∼ N (0, 1), |φ| < 1 (8.2.6)

The covariance matrix for the AR(1) process will be completely dense, and on its own will

not help us understand the relationship between random variables xi and xj . That is,

Σ = 1
1− φ2



1 φ φ2 . . . φn−1

φ 1 φ . . . φn−2

φ2 φ 1 . . . φn−3

...
...

... . . . ...

φn−1 φn−2 φn−3 . . . 1


(8.2.7)

However, the precision matrix will be sparse, specifically tridiagonal:

Q =



1 −φ

−φ 1 + φ2 −φ
. . . . . . . . .

−φ 1 + φ2 −φ

−φ 1


(8.2.8)
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Equation (8.2.8) clearly shows us the defining dependence structure of the AR(1) process:

that xt is conditionally dependent on the realization before and after it (i.e., xt−1 and xt+1).

An AR(1) process is reasonably well understood simply by considering equation (8.2.6),

but in more complex situations we may not have easily interpretable representations and

specifying and interpreting useful models will be aided by using the precision matrix and

conditional mean.

A final clarification: two variables can be correlated when they are not neighbors;

in fact, this is usually the case in temporal and spatial settings. This is made clear by

comparing equations (8.2.7) and (8.2.8). The AR(1) model has non-zero correlation between

all variables, even if this correlation is negligible after some temporal or spatial distance. It

is the dense nature of the covariance matrix that makes interpretation difficult; we can tell

whether variables are neighbors just by looking insideQ, but Σ only tells us whether the

correlation between variables is strong or not.

8.3 Conditional Autoregressions (CAR’s)

Conditional autoregressions (CAR) can be thought of as a particular generalization

of standard autoregressions in one dimension, and are used extensively in spatial statistical

research. Here we provide a brief overview, and connect them to GMRF’s.

Notation and basic properties

As alluded to in section 8.2, GMRF’s are often best understood through their con-

ditional properties rather than explicitly through the precision/covariance matrices,Q and

Σ. The resulting specifications are conditional autoregressions (CAR), which are slightly

reparameterized versions of equations (8.2.3) and (8.2.4) (Rue and Held, 2005; Cressie

and Wikle, 2011). Rather than explicitly specifying the Qij within Q, we adopt general
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parameters {βij, i 6= j} into the conditional mean and precision as

E(xi|x−i) = µi −
∑
j:j∼i

βij(xj − µj) (8.3.1)

Prec(xi|x−i) = τi (8.3.2)

where we require that

1. βij 6= 0↔ βji 6= 0,

2. Qii = τi and Qij = τiβij , and

3. symmetricQ, which implies τiβij = τjβji.

This parameterization results in a unique joint distribution that is multivariate Normal (Besag,

1974; Rue and Held, 2005).

While it is often easier to work with the full conditionals, it is also important to

verify that this specification results in a unique joint distribution; this is achieved via Brook’s

Lemma, which allows us to obtain the following joint multivariate normal distribution

(Besag, 1974; Banerjee et al., 2015):

p(x1, . . . , xn) ∝ exp

− 1
2(x− µ)>D−1(I− B)(x− µ)

 (8.3.3)

whereB = {βij} andD = diag
(

1
τi

)
, which implies that we can specify the precision and

covariance matrices asQ = D−1(I −B) and Σ = (I −B)−1D, respectively.63

In many cases it is useful to specify neighbor relations with a proximity or adjacency

matrix,W = {wij} (Banerjee et al., 2015; Brown et al., 2014). When wij 6= 0, then xi and

xj are neighbors (i ∼ j). In most cases wii = 0, and when wij = 1 for i ∼ j, W contains

only zeroes and ones, so that if xi and xj are neighbors then wij = 1 and otherwise wij = 0.

63Note that I is a J × J identity matrix.
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In more complicated cases, e.g., irregular lattices, the wij may be weights for neighbors

based on some distance between them. Generally speaking, the wij determine the structure

and weights of spatial connection between locations.

An informal introduction to intrinsic autoregressions (IAR’s)

Intrinsic GMRF’s (IGMRF) are GMRF’s that have precision matrices less than

full rank and thus improper joint distributions, while intrinsic autoregressions (IAR) are a

particular variant of IGMRF applied to CAR models (Besag and Kooperberg, 1995; Rue and

Held, 2005). It turns out that IAR’s have some practical use, and are especially flexible as

prior distributions in spatial applications. We discuss both formally in section 8.4; however,

it is often difficult to interpret IGMRF’s, and thus before discussing theoretical details

pertaining to CAR and IAR models we relate two common temporal models to CAR and

IAR frameworks to motivate their interpretation.

We first introduced the autoregressive process of order one, i.e., AR(1), in Section 8.2.

The AR(1) process is most intuitively represented by equation (8.2.6), but for a given sample

size, n, and assuming that εt has mean 0, an AR(1) can be specified as a multivariate normal

distribution with mean 0, variance σ2, and correlation between xs and xt, corr(xs, xt) =

φ|s−t|. The AR(1) is process is stationary, which implies that the mean is constant (here

zero), and whose covariance is dependent only on the distance between xs and xt, not their

specific values; hence, the distribution of the process is not dependent on t.64

A process related to the AR(1) is the random walk, which is obtained from equa-

tion (8.2.6) when φ = 1; i.e., for t = 1, 2, . . .

xt = xt−1 + εt, εt ∼ N (0, 1) (8.3.4)

64Stationarity is formally divided into strong and weak forms. Strong stationarity implies that the (finite)
joint distribution of the process at one location (temporal, spatial, or otherwise) is the same as that of “lagged”
locations; i.e., the joint distribution is the same everywhere. Weak stationarity simply requires finite variance,
constant mean, and covariance that only depends on some distance measure between locations (spatial,
temporal, or otherwise). See, e.g., Diggle (1990) or Cressie and Wikle (2011) for details.
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Note that strictly speaking both the AR(1) and random walk processes can have “noise” with

non-zero mean and non-unit variance; i.e., εt ∼ N (µw, σ2
w). In such case it can be shown

that mean, variance, and covariance of the process in equation (8.3.4) are all functions

of t; i.e. E(xt) = x0 + tµw, var(xt) = tσ2
w, and cov(xt, xs) = min(t, s)σ2

w. This means

that the random walk process is not stationary. Thus, while the AR(1) and random walk

processes are similar in initial structure, they will exhibit different behaviors; for example,

the AR(1) process will vary about the same mean no matter the value of t, but the random

walk is better understood as varying about a “local” mean determined by its neighbors; e.g.,

compare the behavior of an AR(1) process to a random walk for n = 2, 000 in figure 3. The

AR(1) process dances around its mean of zero, while the random walk wanders all over

the place, and does not vary around any specific mean, even though both processes have

noise εt ∼ N (0, 1). Note also that most AR(1) simulations look fairly similar to each other,

while random walk simulations vary wildly in their appearance, which is consistent with the

process not having a constant mean.

The spatial analog to the AR(1) process is the CAR model described in section 8.3,

both of which are stationary processes (Diggle, 1990; Rue and Held, 2005).65 While natural

ordering is no longer possible when the dimension is greater than 1, the correlation structure

of a CAR model decays in the same fashion as the AR(1) process, but in space rather than

time, and its mean and covariance is not dependent on location, although in finite lattices the

variances may depend on the distance of a point from the boundary (Besag and Kooperberg,

1995). In contrast, the spatial analog to the random walk is an intrinsic autoregression

(IAR). IAR’s, like random walks, are not stationary. In particular, neither process has a

constant mean about which the process varies; rather, the process varies about “local” levels,

rather than a global level. Also, like the random walk, while the process itself may not be

stationary, the increments are stationary (Künsch, 1987). That is, the distribution of xj − xi
65See Diggle (1990) for a broader discussion of the AR(1) process, and note that Rue and Held (2005)

(Chapter 2.6, p. 72) define conditional autoregression using by placing the restrictions on the form of spectral
density function of a stationary Gaussian process.
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Figure 3: AR(1) versus random walk. Both processes have noise εt ∼ N (0, 1). Notice how
the AR(1) process clearly varies about a constant mean, in this case zero. In contrast the
random walk jumps around and only “locally” resembles the AR(1) process.

is stationary for i < j; e.g., if ∆xi ∼ N (0, σ2
w), i = 1, . . . , n, then we have:

xj − xi ∼ N (0, (j − i)σ2
w), i < j (8.3.5)

8.4 Formal Descriptions of IGMRF’s and IAR’s

Having provided the intuition behind IGMRF’s and IAR’s via their analog in the

random walk, we now proceed to formal definitions of these processes.

IGMRF definition

In defining and discussing and IGMRF’s and IAR’s, we primarily follow Rue and

Held (2005) for formal definitions and Banerjee et al. (2015) for model interpretations; we

depend to a lesser extent on primary sources Besag and Kooperberg (1995) and Künsch

84



(1987).66 If Q is a symmetric positive semi-definite matrix of rank n − k > 0, then

x = (x1, . . . , xn)> is an improper GMRF of rank n − k with parameters (µ,Q)67, if its

density is

p(x) = (2π)−(n−k)/2(|Q|∗)1/2 exp
{
− 1

2(x− µ)>Q(x− µ)
}

(8.4.1)

where | · |∗ is a generalized determinant given by the product of non-zero eigenvalues; x is

an improper GMRF with respect to the graph G = (V , E), where

Qij 6= 0⇐⇒ {i, j} ∈ E , ∀i 6= j

and V is a set of vertices and E is a set of edges.

An IGMRF of first order is simply an IGMRF of rank n−1 with the linear constraint

Q1 = 0, which is to say that the
∑
j Qij = 0, ∀i. For example, when µ = 0 we have

E(xi|x−i) = − 1
Qii

∑
j:j∼i

Qijxj

where −∑j:j∼i
Qij
Qii

= 1, which implies that the the conditional mean of xi is a weighted

mean of its neighbors with no overall level (mean); this is true in general for IGMRF’s,

and is one of the model’s primary benefits in applications where it may not be realistic to

assume a constant global mean. Recall the comparison between AR(1) and random walk

processes; since the AR(1) process assumes a constant mean and the random walk does not,

they may not be appropriate models for the same applications. Note that not all IGMRF’s

are analogous to the (first order) random walk, in the same way that GMRF’s are more broad

66Rather confusingly, definitions and notation differ depending on the reference. We mean to say that
the definitions and notations in this work correspond to Rue and Held (2005), but this is not to imply any
favoritism towards any particular setup; we simply take the approach that it is simpler to accept the existing
notation within a textbook, rather than assemble our own from many papers and texts.

67Strictly speaking, the mean and precision no longer exist, although the interpretation of the parameters in
this framework is similar.
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than autoregressive models.68 Thus, IAR models are related to the broad class of IGMRF as

CAR models are related to the broad class of GMRF.

IAR definition

Rue and Held (2005) obtain a basic IAR model on a two dimensional lattice by first

considering the distribution of the “increments”, xi − xj for some locations i and j:

xi − xj ∼ N
(

0, 1
wijτ

)
(8.4.2)

where the wij are the weights from the proximity matrix, W , and which results in the

following joint density:

p(x) ∝ τ (n−1)/2 exp

−τ2 ∑
j:j∼i

wij(xi − xj)2

 (8.4.3)

The elements of the “precision” matrix,Q are now

Qij = τ



∑
k:k∼iwik i = j,

−wij i ∼ j,

0 otherwise,

(8.4.4)

and the respective expectation and precision are

E(xi|x−i, τ) =
∑
j:j∼i xjwij∑
j:j∼iwij

(8.4.5)

Prec(xi|x−i, τ) = τ
∑
j:j∼i

wij. (8.4.6)

When the locations are equally spaced (i.e., a regular lattice), it reasonable to set wij = 1,

68For example, CAR models are stationary processes by definition (see Chapter 2.6 in Rue and Held
(2005)), but GMRF’s can be proper and non-stationary. For example, we can easily imagine a GMRF on
a two-dimensional lattice that has constant mean vector µ, but where the correlation between two random
variables in the lattice is dependent on their location therein.
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which results in
∑
k:k∼iwik = ni, where ni is the number of neighbors to location i. Thus,

equation (8.4.4) becomes

Qij = τ



ni i = j,

−1 i ∼ j,

0 otherwise,

(8.4.7)

which implies that the conditional distribution of xi is

xi|x−i, τ ∼ N

 1
ni

∑
j:j∼i

xj,
1
niτ

 . (8.4.8)

Thus, we see how the conditional distribution is explicitly defined as varying about a local

mean, since the conditional expectation of any xj is defined as the mean of its neighbors.

When variable specific precision is desired, we replace τ with τi in equation (8.4.8).69 Note

that while we never explicitly specified thatQ1 = 0, this is in fact the case. Additionally,

we may express IAR’s by their (improper) “joint distribution”, i.e.,

p(x1, . . . , xn) ∝ exp
{
−τi2 x

>(Dw −W )x
}

(8.4.9)

whereW = {wij} is the proximity matrix as before,Dw = diag(wi+), and wi+ = ∑
j wij;

obviously,Q = Dw −W .

A unified framework for CAR and IAR models

As described in Banerjee et al. (2015), if it becomes necessary or desirable to

make an IAR proper while maintaining at least some of its other benefits, then a propriety

parameter, ρ, can be included such that Q = Dw − ρW . This will induce a proper

distribution when ρ ∈ (1/λ(1), 1/λ(n)) where λ(1) < · · · < λ(n) are the ordered eigenvalues

69It is also possible to include some “location” parameter, µ = {µi}, as is included in the definition of an
IGMRF (i.e., equation (8.4.1)). However, in practice usually µ = 0.
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ofD−1/2
w WD−1/2

w . Additionally, if we scaleW by wi+, i.e., W̃ ≡ diag(1/wi+)W , then

Q = M−1(I − αW̃ ), where M is diagonal, and if |α| < 1, then (I − αW̃ ) is nonsingular.

Including ρ in this manner leaves the conditional precision unchanged, but the conditional

mean in equation (8.4.5) becomes

E(xi|x−i, τ) = ρ×
∑
j:j∼i xjwij∑
j:j∼iwij

, (8.4.10)

which shows that whereas an IAR models the locations as varying about the (weighted)

mean of the neighbors, including a propriety parameter alters the model so that the locations

now vary about a proportion of the (weighted) mean of the neighbors. At least one issue with

this formulation is that including the propriety parameter can significantly affect strength

of association; when using the scaled adjacency matrix, α must often be very close to 1 to

obtain reasonable correlations, which is is at least one reason for preferring the improper

IAR model to the proper CAR model (Besag and Kooperberg, 1995; Banerjee et al., 2015).

8.5 Using CAR’s to Model Prior Probabilities

Suppose we want to model the probability that a parameter should be included in a

statistical model, but the parameters arise in a spatial framework and are reasonably assumed

to exhibit spatial clustering. This issue can be addressed indirectly by imposing a GMRF as

a prior for the probabilities of inclusion; however, probabilities are bounded at 0 and 1, so

we must transform the prior inclusion probabilities, θj , in order to use a GMRF to model the

spatial dependence among them. While θj ∈ [0, 1], ψj = logit(θj) = log θj
1−θj ∈ (−∞,∞),

which has the same support as the (multivariate) Normal distribution. After modeling the

ψj , we can find θj = logit−1(ψj).
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Section 8.4 revealed that a propriety parameter unifies the framework and inter-

pretation of CAR and IAR models. We thus specify the conditional prior distributions as

follows:

p(ψj|ψi, τ) = N
α ∑

j:j∼i

ψi
nj
, (τ 2nj)−1

 (8.5.1)

where nj is the number of neighbors for location j, and the
∑
j:j∼iwij = nj because we

specify wij = 1 if j ∼ i and 0 otherwise. We further specify a common precision parameter

τ so that the precision τ 2nj only varies based on the number of neighbors. The joint

distribution of this model then simplifies to the following (Jin et al., 2005; Banerjee et al.,

2015):

ψ = N
(
0, [τ 2(D − αW )]−1

)
(8.5.2)

whereD = diag(nj) andW = {wij} where wij =


1 j ∼ i

0 otherwise
.

This framework will allow us to set α = 1 so that we may obtain the IAR model,

set α manually, or impose a prior distribution on α while still conserving the same basic

interpretation of the model. Note that in this case the IAR is likely the preferable model

for several reasons. First, the CAR model assumes mean 0 and is often employed to model

spatial random effects. However, we are modeling prior probabilities, which cannot be

reasonably assumed to vary about 1/2.70 Second, it is not clear that the best way to model

prior probabilities is to assume a common mean at all; the IAR allows far more flexibility

in the structure of the prior probabilities and does not impose a common mean, which is

likely to align better with data acquired in the real world. Third, additional parameters

would be needed to make the proper CAR flexible enough to handle a wide variety of spatial

70If we assume ψj varies about 0, then θj varies about 1/2, since logit(1/2) = 0.
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structures; in particular, we would need to model the common mean. This process would

add more subjectivity and complexity to the model, and thus would open the process to

risks of overfitting and/or other errors. Finally, as mentioned above, the CAR model is

often incapable of imposing strong correlations, and so especially in cases where spatial

correlation is likely to strong, the IAR would be preferred.

9 Dissertation Outline

So far this work has focused primarily on statistical concerns already existing in the

literature, and while the introduction and preceding subsection provides a general idea of the

problem at hand, one may reasonably wonder where all this leads. This section provides an

outline of the proposed research direction and contains an informal (to the extent possible)

description regarding the goals of the dissertation.

Ultimately, we will need to be able to evaluate the performance of models. In order to

do so one must probe at the methodology, and simulations often provide a useful framework

for understanding the strengths and weaknesses of a model. The first paper presents an R

package, sim2Dpredictr, to simulate scalar outcomes using spatially dependent data.

This package is available for download on CRAN. This paper has been submitted to the

Journal of Statistical Software.

We presented two Bayesian methods, both of which were designed to shrink many

variables to zero and perform automatic variable selection. The approach presented in

section 5 uses an EM-IWLS algorithm to fit a Bayesian GLM, and in this context prior

distributions can be set to shrink many variables to zero, performing variable selection;

in addition, the hierarchical Bonferroni procedure could be used to correct for multiple

comparisons. However, in order to use spatial information in variable selection it would

be necessary to directly model the correlation among the parameters, βj , which would

require inverting a large covariance matrix when the number of predictors is large; this is

computationally undesirable. The approach presented in Section 6 uses spike-and-slab priors
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to model parameters as drawn from a mixture of distributions, one each for parameters that

should and should not be selected, respectively. Similar to the former approach, double

exponential priors are used to shrink some parameter estimates to zero and leave others

nearer to their initial estimates. Spatial information can be incorporated into variable

selection by modeling dependence among probabilities of inclusion, which avoids the need

to invert a large covariance matrix, and is more directly related to the task at hand: variable

selection. Using the latter methodology prevents us from directly applying any traditional

multiple testing procedures, but the computational and interpretative benefits of the spike-

and-slab lasso point to it being the more fruitful avenue for research. This path will shift

focus away from multiple testing procedures towards a more general concern about model

generalizeability; i.e., having selected a model, how well does it work when applied to

independent data?

In the second paper we describe how to extend the spike-and-slab lasso GLM by

placing IAR priors on the probabilities of inclusion, discuss how to incorporate a more

general shrinkage approach known as the elastic net, and present a simulation study to

explore the strengths and weaknesses of the model, with particular focus on the model’s

ability to generalize to independent data. The development version of an R package to fit the

model, ssnet, is available on github.

In the third paper we explore how the model performs in real-world data, by exploring

the prediction/classification potential of the model using data from the Alzheimer’s Disease

Neuroimaging Initiative (ANDI). This chapter is similar in spirit to the second paper, in that

we will still be concerned with generalizeability. However, it differs in that we shift focus

towards the classification potential of the algorithm, since (Bayesian) GLM’s can be also be

used to classify subjects by using logistic regression with a classification rule, which allow

us to probe the method’s potential usefulness in identifying disease status using imaging

data.
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1 Introduction

Images are ubiquitous in statistical analysis, both as outcomes of interest and predic-

tors, and as with other areas of statistical application, model evaluation involving images

can require statistical simulations. High resolution images often appear continuous to

the naked eye, but in reality they consist of discrete locations containing intensity values

(pixels in 2D, voxels in 3D) that can be treated as random variables in appropriate con-

texts. When images are used to predict or model outcomes, the statistical problem is one

of large-dimensional variable selection; e.g., presumably only a subset of brain locations’

intensity values are associated with or reliably predict cognitive ability or future disease

development, and good methods should find those locations without including too many

false positives and/or provide reliable prediction on independent data. The development and

evaluation of variable selection methods should begin in controlled and relatively simple

modeling/simulation frameworks where relative strengths and deficiencies are more easily

probed; if all goes well, testing will include gradually more complicated (e.g., real world)

settings. sim2Dpredictr provides tools for simulating spatially dependent data (predic-

tors) with specific dependence structures; these “predictors” are then used to generate scalar

outcomes. The simulated data can then be used to test the performance of variable selection

models; the flowchart in Figure 1 depicts the basic framework for such a simulation process.

For continuous intensity values, random fields are a useful starting place, and there

are several useful and well-documented tools available for simulating and modeling random

fields in R, particularly the R packages RandomFields and gstat. These tools generally

are designed with geostatistical-type problems in mind, where the outcome of interest is the

image itself, and the goal is to model and/or understand the process underlying the spatial
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data (Schlather et al., 2015; Gräler et al., 2016; Pebesma, 2004); similarly, neuRosim

provides many tools for simulations in fMRI contexts (Welvaert et al., 2011).

In contrast, our primary interest is in how spatial dependence among predictors af-

fects variable selection methodology, particularly in a (generalized) linear model (LM/GLM)

framework. In this setting the primary focus is on how spatially structured correlation

within the design matrix and clustering of non-zero parameters affects variable selection

methodology. Continuous predictors are often simulated using Gauss-Markov Random

Fields (GMRF), with a focus on their relation to the multivariate Normal distribution (MVN)

Rue (2001). However, the learning curve needed to use and manipulate such tools can

be steep, and if the primary concern is strength of correlation, then it is often more in-

tuitive to simulate directly within the MVN framework. Additionally,many applications

use images that have been binarized, e.g., lesion maps in the brain (Mirman et al., 2018);

flexible simulation of clusters in binary maps is not well-suited to a traditional GMRF or

MVN simulation framework. sim2Dpredictr provides image simulations that focus

on specific correlation strengths for continuous images following a simple random field or

MVN framework, and allows flexible simulation of binary maps via the Boolean Model,

which can generate irregularly shaped random sets in multiple dimensions (Cressie and

Wikle, 2011). sim2Dpredictr also contains the requisite tools to simulate full data sets;

we provide a function to automate generation of spatially clustered parameter vectors, and

subject images and outcomes can be generated within a single function.

In Section 2, we briefly overview the basic theoretical framework for simulation

in the LM/GLM realm. In Section 3, we introduce the relevant simulation functions and

describe their capabilities. In Section 4, we follow through a practical application of the

presented functions. Finally, in Section 5, we provide a brief summary and discussion.
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Determine image resolution and
specify non-zero parameters in β.

Choose dependence struc-
ture for subject images.

Simulate subject images, x>i .

Simulate subject outcome,
Yi = f(x>i β).

Sample multiple subjects
to generate a data set.

Fit models and perform inference.
Generate and ana-

lyze many data sets.

Assess model performance
based on the simulated data sets.

Figure 1: This flowchart describes the basic workflow. Although in many cases simulating a
dataset can be made more efficient than subject-by-subject generation, this format makes
the intuition behind sampling multiple subjects clear.

2 Theory Overview

2.1 Generating Scalar Outcomes with (Generalized) Linear Models

Suppose we want to model a scalar outcome using spatially dependent predictors in

two dimensions; i.e., an A×B lattice resulting in J = A ∗B predictors. If each univariate

outcome, Yi, is Normally distributed and the n outcomes are independent and identically

distributed, then a linear model for the ith subject has the form:

Yi = β0 +Xi1β1 + · · ·+XiJβJ + εi (2.1.1)

where Xij is the pixel intensity value at the jth location, βj , j = 1, . . . , J , is the parameter

corresponding to Xij , and εi ∼ N (0, σ2) is the Normally distributed random error. These
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equations can be represented in matrix formulation. Given a non-zero intercept, β0, we

obtain:

Y = Xβ + ε (2.1.2)

where Y is the n× 1 outcome vector,X is an n× (J + 1) design matrix, β is a (J + 1)× 1

parameter vector, and ε is the random error vector. The formulation in Equation 2.1.2 can be

used to directly simulate subject outcomes. Fortunately, once generated, correlation inX is

only an impediment to model estimation, not outcome generation; givenX and β, one only

needs to simulate ε to successfully generate Y .

Non-Normal outcomes are often represented in the generalized linear model (GLM)

framework, which is most commonly used to model binary or count data:

g(E(Yi)) = β0 +Xi1β1 + · · ·+XiJβJ (2.1.3)

where g(·) is an appropriate link function for modeling the expectation of the outcome. When

operating in this framework the expectation is obtained and then the relevant distribution can

be used to draw the subject-specific outcome values, although as we shall see some forms

of Non-Normal data can be easily obtained by transforming or thresholding draws using

Equation 2.1.2.

In order to test a new method for estimation and/or hypothesis testing/variable

selection, we need to be able to simulate a data set under these specifications (i.e., using

either Equation 2.1.2 or Equation 2.1.3), which requires the following steps:

1. Construct a parameter vector, β. In most spatial settings non-zero parameters are

clustered together, and the ordering of β should correspond appropriately to spatial

locations.
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2. Simulate images and convert them into design vectors, x>i = [Xi1, . . . , XiJ ], for each

subject according to desired distributional and dependence structures.

3. For continuous outcomes, select a random error variance; i.e., if εi ∼ N (0, σ2), then

select a value for σ2.

4. Use steps 1-3 to generate the outcomes, Yi.

This process is easily repeated to generate many data sets, which allows for evaluation of

variable selection methods. In the following sections we demonstrate how the functions in

sim2Dpredictr can make this workflow relatively painless, but first we overview the

basic theory needed to simulate the subject-specific images, x>i .

2.2 Generating Spatially Dependent Design Vectors

Continuous predictors: Drawing from the multivariate Normal distribution

Spatial dependence is often incorporated into models via Markov Random Fields,

which are characterized by local dependence structure; i.e., the distribution of a random

variable X(sj) with (location) index sj is specified based entirely by other random variables

that are within a neighborhood N(sj) of X(sj) (Cressie and Wikle, 2011). Gaussian

Markov Random Fields (GMRF) are Markov Random Fields with a Normal joint distribution

characterized by conditional correlation structure; i.e., X(sj) is conditionally independent

of random variables outside its neighborhood; note that this does not imply marginal

independence. An intuitive case of GMRF is the Conditional Autoregression (CAR), which

can be simplified into a particularly intuitive form (Banerjee et al., 2015):

p(Xj|Xi, τj, α) = N
α ∑

j:j∼i

Xi

nj
, (τ 2

j nj)−1

 (2.2.1)

where j ∼ i indicates Xi and Xj are neighbors, τj is the precision (inverse variance)

parameter, nj is the number of neighbors for the jth variable, and α ∈ [0, 1) controls the

level of dependence. This formulation allows for interpreting the mean of Xj as varying
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about a proportion of the mean of its neighbors. Note that while α = 0 implies independence,

α = 1 results in an improper distribution that cannot be used to generate data, and in general

α is not interpretable as a correlation (Besag and Kooperberg, 1995; Jin et al., 2005). The

joint distribution is then multivariate Normal:

X = N
(
0, [T (D − αW )]−1

)
(2.2.2)

where T = diag(τ 2
j ),D = diag(nj) andW = {wij} where wij =


1 j ∼ i

0 otherwise
.

Since GMRF’s are a particular manifestation of MVN’s, methods for simulating

MVN’s are applicable to simulating GMRF’s. Generating draws from an MVN is remarkably

straightforward. Following Ripley (1987), we may conjure MVN draws by transforming a

set of Standard Normal draws to have non-zero mean, non-unit variance, and a covariance

structure; we need do only the following:

1. Specify a mean vector for the MVN, µ.

2. Specify a covariance matrix, Σ, for the MVN.

3. Obtain the Cholesky factor of the covariance matrix; i.e., the lower triangular matrix

L in Σ = LL>.

Given that a set of random variables, Z = Z1, . . . , ZJ are drawn from the Standard Normal

distribution, it can be shown that:

X = µ+LZ ∼ N (µ,Σ) (2.2.3)

In R, standard Normal draws are obtained via rnorm(), and the Cholesky factor is obtained

with chol(). In addition, the function mvrnorm() in MASS draws from MVN using

eigendecomposition, which is more stable but slower for larger dimensions.
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When the dimension of the MVN is large and the conditional dependence structure

is sparse, then the precision matrixQ is sparse. We can exploit the sparseness ofQ to make

the Cholesky decomposion more efficient; e.g., we can quickly draw observations from

CAR models by permutingQ to be a band matrix before taking the Cholesky decomposition

Rue (2001). The process is slightly different from traditional MVN sampling since we take

the Cholesky decomposition of the precision matrix rather than the covariance matrix:

1. As before, specify a mean vector for the MVN, µ.

2. Specify the precision matrix,Q, for the MVN.

3. Obtain the Cholesky factor of the precision matrix matrix; i.e., the lower triangular

matrixQ inQ = LQL
>
Q.

4. Since we have taken the Cholesky decomposion of Q = Σ−1, we cannot directly

draw from an MVN as before, and must solve L>X = Z to obtain draws from the

MVN. However, this is easily solved via back substitution (Rue, 2001).

The function chol.spam() in the R package spam can permute the labels to obtain a

band matrix and the base R function backsolve() can be used to obtain the draws from

the MVN with rmvnorm.prec() (Furrer and Sain, 2010). The more challenging step is

to explicitly specify correlation structure in Σ orQ, which we implement in Section 3.1.

Binary predictors: Generating binary maps via the Boolean method

In general, the Boolean Model simulates a random set by “centering independent

realizations of a compact random set S in Rd at each point of a realization {ui} of a

homogeneous Poisson point process Z0 in Rd, and taking the union of all the centered

compact sets.” It is easy to generate binary maps by thresholding continuous data, but such

approaches constrain our freedom to control the size and shape of the clusters of 1’s and 0’s.

The Boolean Method generates random sets in a more precise manner and then maps the

sets from continuous space onto a lattice space to create a binary map (Cressie and Wikle,
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2011). This approach allows the user to exercise more control over the the binary maps

while still incorporating randomness into their creation. The Boolean model proceeds as

follows (Cressie and Wikle, 2011):

1. Take a realization {ui} from a homogeneous Poisson point process Z0 in Rd.

2. Take independent realizations {Si} from a compact random set S in Rd.

3. Center the realizations from S at the “events” in {ui}.

4. The union of the compact random sets is then itself a random set.

This random set can easily be discretized, i.e., mapped onto a lattice, to create a binary image.

Clustering tendencies in the images are controlled by altering the parameters that generate

the random sets {Si} and draw from the homogeneous Poisson point process Z0; further

flexibility is obtained by extending this framework to include inhomogeneous Poisson point

processes, e.g., in Cressie and Wikle (2011), such an extension is used to model tumor

growth.

3 Simulation Functions

3.1 Building Blocks

While specifying the precision matrix in a CAR model can often result in a sparse

matrix that enables fast draws from a MVN, it is often more intuitive to think about

dependence structures in terms of correlation functions, which require us to specify a

correlation matrix. sim2Dpredictr has several correlation functions built-in to allow

easy specification and interpretation of a covariance matrix. We discuss these in this section.

Constructing a correlation matrix

Most reasonable spatial correlation models decay as a function of distance; an

obvious option is a generalization of an auto-regressive of order one (AR(1)) correlation

structure that is common in time-series analysis, of which many spatial models are extensions
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(Diggle, 1990; Cressie and Wikle, 2011). Given correlation parameter ρ and suitable distance

measure d, the correlation between two locations is given by:

ρ(d) = ρd (3.1.1)

In many texts, e.g., Cressie and Wikle (2011), the correlation function in Equation (3.1.1)

is introduced in the context of time-series analysis, given as ρ|d|, and assumes d =

0,±1,±2, . . .. However, in this application we require only that d ≥ 0, since d repre-

sents spatial distance and not forward or backward in time.

The AR(1) structure is easily manipulated, but coarse; greater flexibility in decay

can be obtained using an exponential correlation model in which increasing φ > 0 results in

steeper decay (Diggle et al., 2002):

ρ(d) = exp(−φd) (3.1.2)

A Gaussian correlation model is the same as the exponential model, except that the distance,

d, is squared (Diggle et al., 2002):

ρ(d) = exp(−φd2) (3.1.3)

In the rare case that an image with a Compound Symmetric correlation structure is desired,

the correlation between any two points is given a single parameter and ρ(d) = ρ. One

can further restrict non-zero correlations to be above some specified level by creating a

neighborhood about each point to define marginal non-zero correlations. Simple approaches

to creating this neighborhood are circular regions defined by a radius, r, or rectangular

regions defined by respective width and height, w and h. If one simply desires to keep

non-zero correlations above a certain level, then that level can be set explicitly; e.g., if a

correlation is below 0.01, then set it to zero. This last approach can often have the effect of
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making a covariance matrix relatively sparse without losing significant correlations in the

image.

Each subject’s image is initially treated as a matrix and its coordinates are given by

the (row, column) position of a location. Thus, X`,m denotes the variable at the `th row and

mth column. For example, a subject’s realized value for a variable with coordinates (2, 3)

(i.e., X2,3 = x2,3)) is stored in the second row, third column. Similarly, the (Euclidean)

distance d and radius r are calculated using this coordinate system; i.e., the distance between

X`,m and Xu,v is given by:

d(X`,m, Xu,v) =
√

(`− u)2 + (m− v)2 (3.1.4)

Thus, then the correlation between locations X`,m and Xu,v is ρ(d(X`,m, Xu,v)); as men-

tioned above, we may threshold this value to avoid very small non-zero correlations and

improve computational efficiency.

However, while this notation is useful for understanding how correlation between

predictors is constructed, we need to index predictors such that the subscript corresponds to

predictors in Equation (2.1.1); i.e., X`,m needs to be converted to Xij , where (`,m) denotes

a location in two-dimensional space, while i denotes the subject index, and j indicates the

predictor index in Equation (2.1.1). We assign these indices “by row”; e.g., for a 4 × 4

image and dropping the subject index i, the variable indices for the subject design vectors

are organized as follows:

## [,1] [,2] [,3] [,4]

## [1,] "X_1" "X_2" "X_3" "X_4"

## [2,] "X_5" "X_6" "X_7" "X_8"

## [3,] "X_9" "X_10" "X_11" "X_12"

## [4,] "X_13" "X_14" "X_15" "X_16"
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For example, we see from matrix above that X4,3 in two-dimensional space becomes X15

in Equation (2.1.1). These image vector indices will correspond to the row/columns of the

correlation matrix; e.g., the correlation between X1 and X8 will be housed in cells (1, 8)

and (8, 1) of the correlation matrix.

For example, we can use correlation_builder() to construct the correlation

matrix for a 4× 4 image with AR(1) correlation structure (i.e., using Equation (3.1.1) with

ρ = 0.25, and correlations < 0.01 are set to 0):

S <- sim2Dpredictr::correlation_builder(

corr.structure = "ar1",

im.res = c(15, 15),

rho = 0.25, corr.min = 0.01)

Note that corr.structure = c("ar1", "exponential", "CS",

"gaussian") determines the correlation structure, im.res denotes the number of rows

and columns in the image (i.e., image resolution), respectively, rho is the correlation

parameter, ρ, and corr.min determines the smallest allowable correlation. When using

either exponential or Gaussian correlation functions, phi denotes φ in Equations (3.1.2)

and (3.1.3). See documentation for additional, if less commonly necessary, arguments.

Constructing a precision matrix

Alternatively, one may prefer to specify conditional dependence via a precision

matrix, especially for finer image resolutions where the conditional dependence struc-

ture is sparse, so that the sparseness can be exploited to speed up computation. The

precision_builder() constructs precision matrices. For example, we can construct a

precision matrix for a 15× 15 image, with unit precision parameter, and propriety parameter

α = 0.75:
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Q.ar1 <- sim2Dpredictr::precision_builder(

im.res = c(15, 15),

tau = 1, alpha = 0.75,

neighborhood = "ar1")

Here tau defines the precision parameters τj from Equation (2.2.1) and has length

equal to 1 for common precision or equal to prod(im.res) for variable specific preci-

sions. Note that since the precision depends on the number of neighbors, τj is not equal to

precision, but rather the precision is proportional to τj . The propriety parameter α is defined

by alpha and determines the strength of dependence, although again recall that α is not

directly interpretable as a correlation. The neighborhood argument determines which

other variables are neighbors. The default is "ar1", which defines locations directly above,

below, right, and left of a variable to be its neighbors. More complicated neighborhoods

can be created by using neighborhood = "round", which defines the neighborhood

about a location as all other variables with a radius r:

Q.rnd <- sim2Dpredictr::precision_builder(

im.res = c(15, 15),

tau = 1, alpha = 0.75,

neighborhood = "round", r = 3)

Rectangular neighborhoods can be constructed specifying neighborhood =

"rectangle" and w and h to specify the width and height of the neighborhood, re-

spectively:

Q.rec <- sim2Dpredictr::precision_builder(

im.res = c(15, 15),

tau = 1, alpha = 0.75,

neighborhood = "rectangle",
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w = 3, h = 4)

Note that some situations may call for a proximity matrix, W , that is not binary;

e.g., if the neighborhoods are larger we may want a proximity matrix that inversely assigns

weights to neighbors based on distance between them. This is possible by selecting weight

= "distance", which assigns neighbors weights equal to the inverse of Euclidean dis-

tance times a constant, which is specified by phi. The default is weight = "binary"

to obtain the adjacency matrix.

Constructing a parameter vector

Like correlation matrix construction, manual specifying clustered non-zero param-

eter locations and their values in β is a time-consuming and error-prone process. The

beta_builder() function handles this process automatically, and (obviously) assumes

the same indexing structure as for the predictor values; i.e by row. For a 4× 4 image the

spatial structure of the parameter indices is:

## [,1] [,2] [,3] [,4]

## [1,] "beta_1" "beta_2" "beta_3" "beta_4"

## [2,] "beta_5" "beta_6" "beta_7" "beta_8"

## [3,] "beta_9" "beta_10" "beta_11" "beta_12"

## [4,] "beta_13" "beta_14" "beta_15" "beta_16"

In most cases only a subset of locations will have non-zero parameter values, and the

non-zero parameter values need not equal each other. The beta_builder() function

offers several approaches to specify the locations and values for the non-zero parameters.

The argument index.type = c("manual", "rectangle", "ellipse",

"decay") determines how non-zero locations are assigned. All four of these require

specification of the arguments row.index and col.index, but the details on how to use

these arguments varies. Manual entry uses row.index and col.index as vectors of row
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and column coordinates, respectively, to specify non-zero locations; e.g., if row.index

= c(1, 3, 4) and col.index = c(4, 2, 4), then the parameters at locations

(1, 4), (3, 2), and (4, 4) are non-zero and all other locations have parameters equal to zero.

However, in many spatial contexts the non-zero parameters will be clustered,

and more efficient assignment is helpful. When index.type = "rectangle",

row.index and col.index are strictly increasing sequences of whole numbers that

define the rows and columns of the rectangular region of non-zero parameters; e.g., if

row.index = 1:3 and col.index = 2:5, then the rectangular region spanning the

first through third rows and second through fifth columns will have non-zero parameters.

Both elliptical (index.type = "ellipse") and decay index types use

row.index and col.index as coordinates for the center of the area of non-zero

parameter values in β. Elliptical neighborhoods additionally use the arguments w and h

define the width and height of the ellipse, respectively; e.g., if row.index = 2 and

col.index = 5 and w = 1 and h = 3, then the area of non-zero parameters will

be defined as the area within an ellipse of width 1, height 3, and center (2, 5). Finally,

index.type = "decay" treats the center coordinate as a “peak” parameter value, and

the parameter values decay with distance from the peak according to either an exponential

or Gaussian function of distance, as in correlation_builder(); the only difference

between the decay here and in the correlation function is that the decay functions in

Equations (3.1.2) and (3.1.3) are multiplied by the “peak” parameter value, so that the decay

is from the peak value rather than one.

Values for the non-zero parameters are given by B.values; if B.values is

a scalar, then all non-zero parameters are assigned that value unless index.type =

"decay" is specified, in which case it is the “peak” parameter value; otherwise parameter

values are assigned by row in the same way as the parameter indices. For example, in

a 4 × 4 image, if manually chosen locations (1, 1), (1, 2), and (4, 4) are non-zero and
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B.values = c(3, -1, 1/4), then β1 = 3, β2 = −1, and β16 = 1/4. However, a

32× 32 image with an elliptical non-zero parameter region, as seen in Figure 2, is probably

a more reasonable example. The code necessary to generate the non-zero parameters in

Figure 2 is as follows:

Bex <- sim2Dpredictr::beta_builder(

row.index = 8, col.index = 11,

im.res = c(32, 32),

B0 = 16, B.values = 3,

index.type = "ellipse",

h = 8, w = 8,

output.indices = FALSE)

Additionally, one draw parameters from a distribution with bayesian = TRUE,

which then treats the argument B.values as a vector of means. Distribution options

are specified with bayesian.dist = c"gaussian", "uniform" to draw from

a Normal or Uniform distribution, respectively. The scale of the distribution is specifed

by the list bayesian.scale. To specify unique spreads the first element of the list is

"unique" and the second element is a vector of standard deviations (Normal) or widths

(Uniform). Otherwise, the first element is "binary" and the second element is a vector

of length 3 that specifies the scale for the intercept, non-zero (important) parameters, and

zero (non-important) parameters, respectively. For example, we can convert the framework

described above where non-zero parameters were set to 3. These now have Normal distribu-

tions with means equal to 3 and standard deviation 1, while the “zero” parameters are drawn

from a Normal distribution with standard deviation 1/3. Setting the scale to 0 has the effect

of drawing some parameters from a distribution, but not others. Here, the intercept is set

equal 16, declining to draw its value randomly by setting its scale to 0:
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Figure 2: The blue pixels denote spatial locations with non-zero parameter values; i.e.,
βj 6= 0.

Bex.bayes <- sim2Dpredictr::beta_builder(

row.index = 8, col.index = 11,

im.res = c(32, 32),

B0 = 16, B.values = 3,

index.type = "ellipse",

h = 8, w = 8,
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bayesian = TRUE, bayesian.dist = "gaussian",

bayesian.scale = list("binary", c(0, 1, 1/3)),

output.indices = FALSE)

We can visualize what this situation looks like in Figure 3, where darker colored

pixels are the ones drawn from the “important” distribution. Note that the default output of

beta_builder() is a list whose first element is a vector of index values for non-zero

parameters and whose second element is the desired parameter vector; this encourages the

user to double-check that the parameter vector generated in fact corresponds to the desired

locations, but can be disabled with output.indices = FALSE.

3.2 Drawing Spatially Dependent Continuous Predictors From an MVN

Cholesky decomposition

We noted in Section 2 that GMRF’s are MVN’s, and that simulating draws from

an MVN requires the Cholesky decomposition of the distribution’s covariance or precision

matrix. The base R function chol() is sufficient in many cases, but for large sparse

matrices chol_spam() from the R package spam uses more efficient methods; if the gen-

erated matrix has many zeros, then it is recommended to use spam (Furrer and Sain, 2010).

chol_s2Dp() constructs the desired covariance or precision matrix by specifying one of

matrix.type = c("cov", "prec"), respectively, and takes the Cholesky decom-

position of that matrix; it contains the same arguments as correlation_builder()

and precision_builder(), plus additional arguments for Cholesky decomposition

options. The argument use.spam = c(TRUE, FALSE) determines whether base

R or spam is used to take the Cholesky decomposition, triangle = c("upper",

"lower") determines whether to output the Cholesky factor as lower triangular (i.e., L

in Equation 2.2.3) or upper triangular (i.e., L> in Equation 2.2.3), and sigma or tau

specifies the standard deviations or precision parameters for each variable. If sigma or tau

is scalar, then common variance or precision parameter is assumed; otherwise, sigma and
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Figure 3: Darker pixels denote spatial locations with larger parameter values.

tau should be the same length as the number of parameters and contain parameter values

for each variable by row, to match the indexing structure in Sections 3.1 and 3.1. Selecting

return.cov = TRUE or return.prec = TRUE will tell to return a list whose first

element is the covariance or precision matrix and whose second entry is the Cholesky factor

of that matrix; this is the default setting.
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Predictor generation (MVN)

Armed with the Cholesky factor, generating draws from an MVN requires only a

vector of standard Normal draws Z1, . . . , ZJ and vector of variable means, µ. sim_MVN_X

generates N draws from a spatially correlated MVN given a Cholesky factor (specified by

either L (lower triangular) or R (upper triangular)) and vector of means, mu. Like sigma

in chol_s2Dp, if mu is a single scalar value then a common mean is assumed; otherwise,

mu should be the same length as the number of parameters and contain means for each

variable according the indexing structure in Sections 3.1 and 3.1. When using spam, we

incorporate the functions, rmvnorm.spam() and rmvnorm.prec() to generate draws

using covariance or precision matrices, respectively. These functions require us to include

the covariance or precision matrix, but they also allow us to specify the Cholesky factor so

that time is not wasted recomputing the Cholesky factor for successive calls. It does not

matter whether L or R is used to specify the Cholesky factor, but whichever is specified

must correspond correctly to a lower or upper triangular matrix, respectively; i.e., if L

is specified then the matrix should be lower triangular. The arguments S and Q take the

covariance or precision matrix, respectively. Figure 4 displays the first image from a sample

of N = 30 32× 32 standardized images that have AR(1) correlation structure with ρ = 0.9

and minimum correlation = 0.01. The code necessary to produce Figure 4 is as follows:

set.seed(26378)

Lex <- sim2Dpredictr::chol_s2Dp(

corr.structure = "ar1", matrix.type = "cov",

im.res = c(32, 32), use.spam = TRUE,

rho = 0.9, sigma = 1, corr.min = 0.01,

triangle = "lower")

X <- sim2Dpredictr::sim_MVN_X(

N = 30, mu = 0,

111



L = Lex$L, S = Lex$S)

rotate = function(x){

t(apply(x, 2, rev))

}

image(matrix(X[1, ], byrow = TRUE, nrow = 32), axes = FALSE)

box()

3.3 Binary Images Via the Boolean Model

Why not threshold GMRF’s?

While perhaps less common, some applications require spatial dependence for

predictors whose values are not continuous; e.g., lesion maps in structural brain images

are binary, that is, the values are either 0 (no lesion at the location) or 1 (yes lesion at the

location) (Bates et al., 2003; Mirman et al., 2018). In this section we present the Boolean

model as a useful approach, but one may wonder why simply thresholding GMRF’s is so

undesirable as to require using the Boolean model. The answer is that the Boolean model

is much more flexible and allows greater control over the size and shape of the clusters in

the image, while thresholding GMRF’s leaves us at the mercy of unconstrained and often

unpredictable clustering patterns with potentially no resemblance to practical applications

in mind.

Nevertheless, we have included arguments in sim_MVN_X() that al-

low for thresholding GMRF’s to create categorical images; these are specified

using X.categorical = TRUE, X.category.type = c("manual",

"percentile"), and X.num.categories. X.num.categories determines

the number of categories to generate. A vector of manual thresholds is specified with

X.manual.thresh. Alternately, one can use X.percentiles to manually specify

percentiles for thresholds; otherwise equally spaced percentiles are created using the number
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Figure 4: Here lies the simulated “image” for subject # 1. Looping over X by row with
image() will allow for visualizing each of the 30 subjects’ simulated images in succession.
Note that Lex is a lower triangular Cholesky factor and X is a matrix whose rows are subject
images.

of desired categories. These options may well prove useful to some users, especially those

who are not concerned with the specifics of clustering. However, users interested in greater

control over the size and shape of clusters will prefer the Boolean method.
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Methodology

Thresholding a Gaussian Markov Random Field (GMRF) limits the ability to control

the shape, size, and general qualities of the clustering. In addition, there is no such thing as

a generalized multivariate Binomial distribution from which to generate dependent binary

random draws, necessitating more creative approaches. The Boolean Model described in

Section 2.2 is one such approach (Cressie and Wikle, 2011). The application of the Boolean

Model here is as follows:

1. Define the dimensions of a space; in most cases the unit square suffices.

2. Use a Homogeneous Poisson Point Process (HPPP) with intensity/mean parameter λ

to generate random spatial “events”.

3. Randomly draw a number of radii equal to number of events; center circles with their

respective radii at each event.

4. The union of the area within the circles is taken as the random set.

5. Map the random set onto a lattice/image space where locations within the random

set/area to assigned values of 1, and locations outside the random set/area are assigned

values of 0.

This approach can be tuned to produce greater flexibility in the observed qualities of random

sets generated. The most obvious tuning approaches are to change the intensity/mean param-

eter λ and change the distribution of the random radii; tweaking only these parameters opens

a world of clustering shapes, sizes, and densities exhibited by the random set. Choosing

random sub-areas upon which to apply the HPPP allow even greater control; appropriately

sized random sub-areas combined with careful selection of λ and radii distribution can

result in mostly contiguous random sets. We implement this approach in the function

sim2D_binarymap(); example images are shown in Figures 5 and 6.
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Basic arguments

While its options are wide-ranging, sim2D_binarymap() can be run with a

bare minimum of arguments. The default limits for the 2D space are xlim = c(0, 1)

and ylim = c(0, 1); unless there is an obvious reason to alter the default limits it

is recommended to leave them as standardized. The sample size, i.e., number of images

to be generated, is defined with N. As in other functions, image resolution is defined by

im.res. The random radii are selected from a uniform distribution with lower and upper

bounds defined by the first and second elements of radius.bounds, respectively. The

intensity/mean parameter λ is defined by lambda, with default lambda = 50. A final

option is store.type = c("list", "matrix"), which determines whether each

lattice/image is stored as is in a list, or is vectorized and stored in a matrix such that each

row is the vectorized image for a single subject; the default is store.type = "list".

Random sub-areas

Random sub-areas upon which to apply the Boolean model greatly increase the

ability to create desired clustering patterns, and can be combined with tuning lambda

and radius.bounds to generate contiguous random sets. When sub.area = TRUE,

random sub-areas are chosen over which to apply the Boolean Model. These sub-areas

are rectangular in shape and can be tuned by altering min.sa and max.sa, which define

the dimensions of the minimum and maximum possible sub-areas. The defaults, min.sa

= c(0.1, 0.1) and max.sa = c(0.3, 0.3), indicate the random sub-areas can

take any dimensions between 0.10× 0.10 and 0.30× 0.30; note that these sub-area bounds

should be within the image bounds specified with xlim and ylim and should always

be positive; e.g., the default is the unit square, in which case sub-areas cannot exceed

1× 1. When using random sub-areas it is also useful to specify radius bounds for both the

minimum and maximum sub-areas, which is done with radius.bounds.min.sa and

radius.bounds.max.sa. These values are used to scale the radius bounds for a given
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Figure 5: An example of a binary image generated by sim2D_binarymap() where the
HPPP is applied to the entire area.

random sub-area based on the size of that sub-area. Tweaking these parameters allows for

much greater flexibility in size and shape of the random sets.

Random lambda

A final option is to allow the intensity mean lambda (λ) to vary by subject by

specifying random.lambda = TRUE, which places a prior distribution on lambda (λ).

In this case lambda is the mean and lambda.sd is the standard deviation of the of the
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Figure 6: An example of a binary image generated by sim2D_binarymap() where
the HPPP is applied to a randomly selected sub-area. In this particular case, the chosen
parameter settings result in a single relatively small cluster.

prior distribution. Distributional options are specified by prior = c("gaussian",

"gamma") to use either a Normal or Gamma distribution to draw subject-specific λ; the

default is prior = "gamma".

Additionally, one may desire to place accept/reject boundaries on the random λ,

which can be done with lambda.bound, a 2-element vector whose first and second entries

are the lower and upper bounds, respectively. If a drawn value is outside these bounds then
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it is discarded and another draw taken; this is continued until a draw is taken that results in a

value within the bounds.

3.4 Outcome Generation

Methodology

With subject images and parameter vectors in hand, scalar outcomes for each sub-

ject can now be generated. We incorporate sim_MVN_X() into sim_Y_MVN_X() and

sim2D_binarymap() into sim_Y_binary_X(), respectively, in order to first gener-

ate the predictor images and from these images generate a scalar outcome for each subject;

we create separate functions to minimize argument overload, but the basic structure of both

functions are the same, with only design matrix generation arguments differing; i.e., both

sim_Y_MVN_X() and sim_Y_binary_X() retain the arguments from their respective

design matrix-generating functions, but the outcome-level arguments described below are

the same.

Currently, there are three options for outcomes: Normal/Gaussian (continuous)),

binary, and count. These options are specified using dist = c("gaussian",

"binomial", "poisson"), respectively. All outcomes generated are independent

of each other, i.e., subjects do not have repeated measures, and are assumed to have

measurements independent of each other. Additionally, it is necessary to specify a parameter

vector, β, which is easily obtained using beta_builder() as described in Section 3.1.

If the desired outcome is Normally distributed, then the only remaining relevant argument is

rand.err, which specifies the variance of the random error; i.e., for the data appropriate

for the forms in Equations (2.1.1) and (2.1.2), the random error is assumed to follow a

Normal distribution with zero mean and random error variance, σ2
i ; i.e., εi ∼ N (0, σ2

i ).

However, as usual when departing from Normality, the options are more varied for

generating binary or count data. The primary reason for this is that when the individual

outcomes are Normally distributed, matrix algebra is available to generate all the outcomes
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in a single operation using matrix algebra with Equation (2.1.2). However, binary and count

data are often assumed to follow Binomial and Poisson distributions, respectively, and these

distributions are most intuitively modeled in the framework of Generalized Linear Models

of Equation (2.1.3). Unfortunately, the link functions g(·) appropriate for Binomial and

Poisson distributions are not amenable to comparatively elegant matrix algebra approaches.

Thus, if we insist upon using the GLM framework to draw directly from Binomial or Poisson

distributions, then we must settle for subject-by-subject outcome generation. Each subject’s

expectation is calculated:

E(Yi) = g−1(β0 +Xi1β1 + · · ·+XiJβJ) (3.4.1)

Since the variances of the Binomial and Poisson distributions are functions of the expec-

tation, once Equation (3.4.1) is used to find the subject-specific expectation, one can draw

directly from either Binomial or Poisson random number generators (e.g., rbinom() and

rpois()). This is the default approach implemented (i.e., threshold.method =

"none").

Alternatively, we can draw in the usual manner from a Normal distribution as

in Section 3.2, then use various thresholding rules to obtain binary outcomes or counts.

sim_Y_MVN_X() has two alternative approaches to binary outcome generation. Both

approaches obtain a threshold, equal or below which, Yi = 0, and above which Yi = 1. The

first approach is to specify threshold.method = "manual" and use Y.thresh

to specify a raw threshold value. The second approach is the threshold.method

= "percentile" and use Y.thresh to specify the percentile used to determine the

threshold; e.g., if Y.thresh = 0.80, then the function calculates the 80th percentile of

the values drawn from the Normal distribution and sets all those equal or less than the 80th

percentile to 0, and those above to 1.
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Similarly, count data can be obtained using draws from a Normal distribution.

Here, we use a simple approach were values below or equal 0 are set to 0 and all positive

values are rounding to the nearest whole number; this approach is implemented when

threshold.method = "round". Note that while this approach will result in count

data, the distribution counts will often not resemble a Poisson distribution, so we recommend

drawing directly from the Poisson distribution when one desires the draws to resemble the

Poisson distribution.

Generating outcomes with spatially correlated predictors: example

As an example, consider simulating data for N = 15 subjects with 5× 5 predictor

images. After obtaining the Cholesky factor Lex$L and parameter vector Bex$B, we can

easily use simY_MVN_X() to generate both the predictor images and scalar outcomes for

all 15 subjects. Note that since the same seed was used to generate both data sets, we can

verify that the 75th percentile cutoff is binarizing the outcomes in the desired fashion.

Lex <- sim2Dpredictr::chol_s2Dp(

corr.structure = "ar1",

im.res = c(15, 15),

matrix.type = "cov",

corr.min = 0.01,

return.cov = TRUE,

rho = 0.5, sigma = 1,

triangle = "lower",

use.spam = TRUE)

Bex <- sim2Dpredictr::beta_builder(

row.index = c(1, 1, 2),

col.index = c(1, 2, 1),
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im.res = c(15, 15),

B0 = 16, B.values = 3,

index.type = "manual")

set.seed(26378)

gdat <- sim2Dpredictr::sim_Y_MVN_X(

N = 15, mu = 0,

L = Lex$L, S = Lex$S,

use.spam = TRUE,

B = Bex$B, dist = "gaussian")

set.seed(26378)

bdat <- sim2Dpredictr::sim_Y_MVN_X(

N = 15, mu = 0,

L = Lex$L, S = Lex$S,

B = Bex$B, dist = "binomial",

use.spam = TRUE,

threshold.method = "percentile",

Y.thresh = 0.75)

## The 75 th Percentile (threshold) is 20.10668 .

cbind(Y.gauss = gdat$Y, bdat)[, 1:6]

## Y.gauss Y X1 X2 X3 X4

## 1 20.88971 1 1.4377010 0.0222133 0.609156 0.564409

## 2 15.89933 0 0.1136221 -0.4097131 -0.872702 -0.484842

## 3 5.69438 0 -0.8288431 -0.8558688 -0.402442 0.237785

## 4 14.48040 0 0.0178685 -0.0395599 0.493261 0.393154
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## 5 16.94924 0 -0.4917191 0.3245071 -0.589253 -1.889405

## 6 34.30102 1 1.9701192 1.0458329 0.566728 -0.473586

## 7 10.76760 0 -0.4065059 -0.6840246 -0.245032 -0.892260

## 8 20.10668 0 1.2675565 0.5662275 0.348832 1.639263

## 9 10.00988 0 -1.0704018 -0.1633097 0.816867 0.656865

## 10 19.63775 0 0.2881544 0.9854223 0.470944 2.312622

## 11 21.87931 1 -0.2644823 0.3734159 0.537972 -0.154805

## 12 17.14722 0 0.1477454 -0.6276245 0.857566 -0.100071

## 13 3.01856 0 -1.0164985 -2.3074985 -1.683845 -1.278653

## 14 15.70094 0 0.4390649 -0.4550332 0.889365 1.934803

## 15 21.81999 1 0.3978131 -0.0493428 -1.419200 -0.305921

3.5 Extracting Simulation Results

Simulations are generally intended to evaluate or explore the qualities of a statistical

method; variable selection methods are judged according to whether they identify variables

with non-zero parameters (i.e., Power) without carrying along variables with zero-valued pa-

rameters (i.e., false positives); the false discovery rate (FDR), family-wise error rate (FWER),

and Power are some of the more useful metrics in such situations. Note that here we use

“Power” to refer to a generalization: sample “Power” will refer to the proportion of non-zero

parameters identified as non-zero. The average of these “Power proportions” will provide

an estimate for the asymptotic “Power proportion”. The function sample_FP_Power()

provides sample summaries, i.e., sample false discovery proportion (FDP), family-wise error

(FWE), and proportion of “true” non-zero parameters discovered (Power), given a vector of

rejected hypothesis indicators (1 for rejection; 0 otherwise) and corresponding parameter

vector, specified by the arguments rejections and B, respectively. If one has a vector of

test statistics, then rejections can be calculated internally with the test.statistic

argument, which is a vector of test statistics, e.g., F statistics or p values. The first ele-
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ment of list argument reject.threshold is the threshold used to determine rejections,

while the second element is one of c("greater", "less", "2-tailed"), which

determines whether the reject for values above or below the threshold, or to perform a

2-tailed test, whose upper and lower thresholds are computed internally. While usually

unnecessary, false positive and true positive vectors can be manually included with FP and

TP, respectively. B.incl.B0 = c(TRUE, FALSE) and indicates whether B includes

the intercept. Rarely does a vector of rejections contain an intercept, but quite often the

parameter vector used to generate the data does; when B.incl.B0 = TRUE, the intercept

is assumed to be the first element of B, and it is removed. Finally, full.summary =

TRUE will additionally output total numbers of rejections, false positives, true positives,

and non-zero parameters. Consider the following example, where rejex is a vector of

rejections and Bex is a parameter vector:

rejex <- c(1, 0, 1, 1, 0, 0, 1, 1, 0, 0)

Bex <- c(15, 4.22, 3.16, 0, 0.98, 0, 0, 2.91, 0, 1.78, 0)

sim2Dpredictr::sample_FP_Power(

rejections = rejex, B = Bex,

B.incl.B0 = TRUE,

full.summary = TRUE)

## NumNonzeroB NumReject NumFP NumTP FDP FWE Power

## 1 5 5 2 3 0.4 1 0.6

We also demonstrate the a 2-tailed test using Z statistics and a cutoff of 1.96

and −1.96, and where the vector of parameters, not including the intercept, is β =

{0, 0, 4, 1,−2}:

zstat <- c(-0.5, 1.98, 2.01, 1.45, -1.99)

sim2Dpredictr::sample_FP_Power(
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test.statistic = zstat,

reject.threshold = list(1.96, "2-tailed"),

B = c(0, 0, 4, 1, -2), B.incl.B0 = FALSE,

full.summary = TRUE)

## NumNonzeroB NumReject NumFP NumTP FDP FWE Power

## 1 3 3 1 2 0.33333 1 0.66667

3.6 Visualizing Results

inf_2Dimage() is a simple function for visualizing inference results from a

simulated data set and/or verifying that β corresponds to the desired spatial area; it was used

to generate Figures 2, 3, and 7. It allows concurrently viewing the spatial extents of non-zero

parameters and rejected parameters, thereby making it possible to see the spatial extents

of true and false positives. As in sample_FP_Power, rejections is a vector of

ordered rejected hypotheses corresponding to the same indices as the parameter vector, B; as

before, the rejection vector can also be created internally by using test.statistic and

reject.threshold. As in other functions, im.res is a vector whose first and second

entries are the number of rows and columns of the image, respectively, while B.incl.B0

determines whether the function expects the first entry of B to be an intercept. New arguments

include binarize.B, which when set to TRUE will binarize the parameter vector B so

that the non-zero parameters will all show up as the same color, and grid.color, which

specifies the color of the grid on the plot. The legend labels denote true negatives (TN),

false negatives (FN), true positives (TP), and false positives (FP).

4 Practical Application

4.1 Example: Lasso Analysis

A common variable selection method for large dimensional data is the lasso, a

penalized regression introduced by Tibshirani (1996), which subjects parameter estimates
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Figure 7: Here we see an example of model performance when the true non-zero parameters
are known. Note that the area of “true” non-zero parameters is the same as in Figure 2.

to the constraint
∑J
j=1 |βj| ≤ t. Another formulation is to add the term λ

∑J
j=1 |βj| to the

objective function, which allows us to interpret λ directly as a penalty parameter where

larger values induce stronger shrinkage. Furthermore, the lasso has a Bayesian interpretation

as placing a double exponential prior on the βj , making it a useful tool in both Frequentist

and Bayesian philosophical settings (Park and Casella, 2008). The lasso is particularly

useful because it can fit models where the number of subjects is much smaller than the
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number predictors, and can handle significant correlation between predictors. In addition,

the lasso performs automatic variable selection by shrinking many parameters to exactly zero.

Generalized linear models using the lasso penalty are easily fit using pathwise coordinate

decent via the package glmnet (Friedman et al., 2007, 2010). Here we provide a short

simulation using the lasso to show the capabilities of the functions introduced in previous

sections.

4.2 Data Generation

We generate 15× 15 (225 pixels) subject images with mean 0, standard deviation

1, and correlation function using Gaussian decay with φ = 0.75 as in Equation (3.1.3);

correlations less than 0.01 are set to 0, which allows for a relatively sparse matrix since only

about 8% of correlations are non-zero (see Table 1). We also use a decay function to set the

non-zero βj resulting in a decay from βj = 0.5 to βj = 0.0249 (see Table 2 and Figure 8).

This results in 29 (12.89%) non-zero parameters.

sim.res <- c(15, 15)

L <- sim2Dpredictr::chol_s2Dp(

im.res = sim.res,

corr.structure = "gaussian",

use.spam = TRUE,

phi = 0.75, corr.min = 0.01,

triangle = "lower")

Sm <- as.matrix(L$S)

B <- sim2Dpredictr::beta_builder(

im.res = sim.res,
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Figure 8: Darker colors represent larger magnitude parameters; the closer the color gets to
white, the closer the magnitude is to zero, with white pixels indicating zero parameters.

row.index = 5, col.index = 4,

B.values = 0.5, index.type = "decay",

decay.fn = "gaussian",

phi = 1/3, max.d = 3,

output.indices = FALSE)

We then generate M = 1, 000 datasets of N = 100 subjects each with binary outcomes:

127



set.seed(1383352)

sim.N <- 100

M <- 1000

dat <- list()

for (m in 1:M) {

dat[[m]] <- sim2Dpredictr::sim_Y_MVN_X(

N = sim.N, B = B,

L = L$L, S = L$S,

dist = "binomial",

threshold.method = "none",

incl.subjectID = FALSE)

}

Table 1: Summaries for the correlation imposed to generate images (Xi) and parameter
vector (β).

Correlation β
% Non-Zero Maximum % Non-Zero # Non-Zero
0.0806914 0.4723666 0.1288889 29

Table 2: Frequencies for each non-zero parameter value in β.
Value of βj 0.0249 0.0347 0.0944 0.1318 0.2567 0.3583 0.5
Frequency 4 4 8 4 4 4 1
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4.3 Results

We analyze the datasets with cv.glmnet(), which uses k-fold cross validation to

choose the optimal penalty parameter λ according to some prediction error criteria. We use

5-fold cross validation and choose model whose value of λ maximizes cross validated AUC.

set.seed(28623)

for (m in 1:M) {

dat.m <- dat[[m]]

gm <- glmnet::cv.glmnet(

x = as.matrix(dat.m[, -1 ]),

y = dat.m$Y, family = "binomial",

type.measure = "auc",

nfolds = 5)

gm.c <- glmnet::coef.glmnet(gm, s = gm$lambda.min)

rej.m <- rep(0, prod(sim.res))

rej.m[as.vector(gm.c)[-1] != 0] <- 1

results.m <- cbind(

auc = gm$cvm[gm$lambda == gm$lambda.min],

lambda = gm$lambda.min,

sim2Dpredictr::sample_FP_Power(

B = B,

rejections = rej.m))

if (m > 1) {

results <- rbind(results, results.m)

} else {

results <- results.m

}

}
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The full results are summarized in Table 3, where we find that for the generated

data, on average the lasso identifies just under 20% of the non-zero parameters while about

31% of estimated non-zero parameters are spurious; futhermore, these observed values

vary noticeably over the datasets, with standard deviations not too far off from the means.

Nevertheless, the lasso performs well in this case with respect to cross validated AUC,

averaging near 80% with standard deviation of about 6%. We can also see from Figure 9 that

the distributions of the statistics are not generally symmetric; AUC is slightly left skewed

and λ slightly right skewed, while FDP and Power are arguably mixture distributions; note

that 37% of the time the lasso includes no false positives.

Table 3: Summaries of lasso performance.

Summary AUC lambda (λ) FDP FWE Power
Mean 0.7953072 0.1030760 0.3109088 0.6300000 0.1996207
Median 0.0639995 0.0576828 0.2879007 0.4830459 0.1187947
SD 0.8006691 0.0996856 0.2857143 1.0000000 0.1724138
IQR 0.0794124 0.0732538 0.5714286 1.0000000 0.1724138

5 Summary and Discussion

The R package sim2Dpredictr is designed to make simulating scalar outcomes

from spatially correlated predictors and spatially clustered parameters straightforward

and user-friendly. The available functions allow users to flexibly and intuitively modify

correlation structures in images and clustering in non-zero parameters. While other available

packages, e.g., RandomFields, gstat, and neuRosim, offer simulation functions for

spatial settings, we believe that sim2Dpredictr meets a different need in that it allows

simulations that are tailored to using images as predictors rather than as outcomes, and in

addition does not require significant background knowledge in specific practical applications

or statistical theory in order to use effectively. The package is not intended to have a steep

learning curve, and can often be used with a minimum of arguments; nevertheless, more
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Figure 9: Distribution of performance statistics for the lasso over 1,000 datasets.

complex arguments are available for those who require their use, and the code is freely

available so that it can be easily modified by others to suit different needs. Furthermore, the

Boolean Method can offer far more flexibility than thresholding methods to generate binary

images that resemble the practical application on hand, and sim2Dpredictr allows

simulating either continuous or binary spatial predictors in addition to continuous, binary,

or count outcomes within a single unified framework so that users can spend their time

focusing on developing variable selection methods rather than fighting with code.
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Computational Details

The results in this paper were obtained using R version 3.6.2.
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1 Introduction

Variable selection for linear models is a long-standing statistical problem tackled

by both classical and Bayesian statisticians, and is useful for at least two reasons. The first

reason is to select which variables are associated with an outcome or set of outcomes with

the intention of providing an explicit scientific interpretation that relates the predictor(s)

to the outcome. Variable selection is particularly useful when there are large numbers

of potential predictors, since including all possible variables in a model may result in an

excellent fit to the data on hand, but perform miserably when applied to an independent

data set. It is thus especially important to apply some variable selection approach when the

primary purpose of a model is to predict outcomes or generalize to new data.

Classical statistics often relies on hypothesis testing to select parameters that should

remain in a (generalized) linear model (GLM), but due to the variability in the final model

selected, prediction performance is often unacceptably poor, resulting in models that do not

generalize well, despite removing many “noise” variables. Such issues helped to motivate the

lasso model (Tibshirani, 1996). The lasso is a penalized approach to GLMs that decreases the

variability of the selected model compared to, e.g., subset selection and stepwise approaches.

Unlike other penalized approaches, e.g., ridge, the lasso can shrink parameter estimates to

exactly zero and thus perform automatic variable selection. Another benefit of penalized

approaches like the lasso is their ability to fit models when the number of predictors exceeds

the number of the observations, whereas traditional GLMs are not identifiable in such cases.

Furthermore, while the lasso was initially developed in a classical framework, it has

a naturally Bayesian interpretation as placing a double exponential prior on the parameters
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of interest Park and Casella (2008). Bayesian variable selection has often relied on so-called

spike-and-slab priors, which assume that the distribution of parameters can be modeled as a

mixture of two distributions: a wide “slab” distribution to model “important” parameters that

should be included in the model and a narrow “spike” distribution to model “unimportant”

parameters that should be excluded from the model (Mitchell and Beauchamp, 1988; George

and McCulloch, 1993). Roc̆ková and George (2018) combine these approaches into the

spike-and-slab lasso, which places double exponential priors on both the spike and slab

distributions and thus allows for much greater flexibility in variable selection by trading a

single penalty for an adaptive penalty based on the probabilities of inclusion. While the

initial spike-and-slab lasso was proposed and described for regression, Tang et al. (2017)

demonstrated a novel computational approach to using the spike-and-slab lasso prior to

estimate parameters in GLMs, and showed the model improved prediction performance

compared to the traditional lasso.

An additional benefit of penalized and/or Bayesian linear models is that they can

provide estimates even when the predictors are highly correlated. However, in their most

basic forms they do not model correlation among predictors, nor do they account for situa-

tions where clustering of non-zero parameters is expected. Specifically, when the predictors

are vectorized images associated with subjects, it is reasonable to expect “important” and

“unimportant” parameters will cluster near each other, respectively. In the language of

variable selection, we should expect that the probability a parameter should remain in the

model will be similar to the respective probabilities of spatially adjacent parameters.

However, the lasso has two primary downsides. The first is that when the number of

predictors is much larger than the number of subjects, the number of non-zero parameters

cannot exceed the number of subjects. The second is that when predictors are correlated it

tends to select one predictor and discard the rest. In part, these issues inspired the elastic net,

which proposed a compromise between ridge and lasso penalties (Zou and Hastie, 2005).
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Unlike the ridge penalty, the elastic net solution is sparse, but unlike the lasso penalty it can

include more non-zero parameters where appropriate. This flexibility may be desirable when

images are used as predictors, where solutions should often be sparse, i.e., the number of

“important” predictors is much smaller than entire set of predictors examined but still near to

or larger than the number of subjects. In addition, images tend to exhibit strong correlation,

and thus the lasso may select only a few out of the entire set of “important” predictors.

In what follows we extend the spike-and-slab lasso to a spike-and-slab elastic net

that can explicitly incorporate spatial information into variable selection. Section 2 reviews

the spike-and-slab lasso GLM and outlines the EM-algorithm used to fit the model. Section

3 introduces an extension of the spike-and-slab lasso GLM that generalizes the model to

the elastic net and uses a variant of conditional autoregressions to model spatial structure.

Section 4 details a small simulation study to demonstrate the potential of the proposed

method and examine its properties. Finally, Section 5 summarizes the findings and discuss

their implications.

2 Spike-and-Slab Lasso for GLM

2.1 Theory Overview

GLM’s can model outcomes that are non-normal, and include the traditional linear

model as a special case. The standard form of a GLM is given by:

g(yi) = Xiβ = β0 +
J∑
j=1

xijβj = ηi, i = 1, . . . , N (2.1.1)

where g(·) is an appropriate link function,Xi is a 1× J subject-specific design vector, β is

a J × 1 parameter vector, β0 is an intercept, J is the total number of predictors in the model,

and N is the number of observations.

GLMs become Bayesian by assigning prior distributions to parameters. Recall that

the classical lasso model introduced by Tibshirani (1996) is equivalent to placing double
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exponential priors on the βj (Park and Casella, 2008). Thus, the spike-and-slab lasso prior

is incorporated as a mixture of double exponential distributions, where the narrow spike

distribution shrinks “unimportant” parameters more severely than the wider slab distribution,

which allows “important” parameters to remain nearer to their initial estimates. The explicit

formulation of the spike-and-slab lasso is given by (Roc̆ková and George, 2018):

βj|γj, s0, s1 ∼ (1− γj)DE(βj|0, s0) + γjDE(βj|0, s1) (2.1.2)

where γj indicates whether the jth variable is included in the model (γj = 1) or not (γj = 0),

and s1 > s0 > 0; we can further simplify as follows:

βj|γj, s0, s1 ∼ DE(βj|0, Sj) = 1
2Sj

exp
(
−|βj|
Sj

)
(2.1.3)

where Sj = (1− γj)s0 + γjs1.

2.2 The EM-Coordinate Descent Algorithm

Bayesian and Classical models traditionally differ in that Bayesian models provide

inference about posterior distributions for parameters that are inherently variable, whereas

Classical models provide point estimates for theoretical fixed parameters. However, for

very large numbers of predictors even relatively fast MCMC draws from the posterior

distribution can impose prohibitive costs. Optimization approaches resulting solely in

parameter estimates may be preferred in some practical settings, especially when the goal of

the analysis is prediction and/or variable selection and not the posterior distribution. It is

possible to fit GLM’s with lasso, ridge, or elastic net penalties using the coordinate descent

algorithm, which is much faster than MCMC for large dimensional data (Zou and Hastie,

2005; Friedman et al., 2007, 2010).

While spike-and-slab priors have an intuitive interpretation, various implementations

and practical settings can require novel approaches to model fitting, and the Expectation
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Maximization (EM) algorithm is a common model fitting paradigm; e.g., see Roc̆ková and

George (2014). Tang et al. (2017) use an EM algorithm to fit the spike-and-slab lasso by

treating the model inclusion indicators γj as missing parameters. The log posterior density

is given by:

log p(β, φ,γ, θ|y) = log p(y|β, φ) +
J∑
j=1

log p(βj|Sj) +
J∑
j=1

log p(γj|θ) + log p(θ)

∝ `(β, φ)−
J∑
j=1

1
Sj
|βj|+

J∑
j=1

(γj log θ + (1− γj) log(1− θ)) (2.2.1)

where `(β, φ) = log p(y|β, φ). The algorithm proceeds by taking the expectation with

respect to the γj conditional on the other parameters (E-step), inputs these conditional

expecations into equation (2.2.1), and then maximizes over the remaining parameters (M-

step), iterating over these steps until convergence. We now give explicit details regarding

both the E- and M-step.

E-Step

It can be shown that the expectation of the log joint posterior density with respect to

the conditional distributions of the γj is as follows (Tang et al., 2017):

pj = p(γj = 1|βj, θ,y)

= p(βj|γj = 1, s1)p(γj = 1|θ)
p(βj|γj = 0, s0)p(γj = 0|θ) + p(βj|γj = 1, s1)p(γj = 1|θ) (2.2.2)

It follows that the conditional posterior expectation of the jth scale/penalty parameter S−1
j

is as follows:

E(S−1
j |βj) = E

(
1

(1− γ)s0 + γjs1

∣∣∣∣∣βj
)

= 1− pj
s0

+ pj
s1

(2.2.3)
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It is important to note that no matter the form of the pj , once their values are obtained the

conditional expectation of the S−1
j immediately follows.

M-step

Equation (2.2.1) shows that (β, φ) and θ are never within the same term simultane-

ously, and so can be updated separately by maximizing each the following expressions:

Q1(β, φ) = `(β, φ)−
J∑
j=1

1
Sj
|βj| (2.2.4)

Q2(θ) =
J∑
j=1

(γj log θ + (1− γj) log(1− θ)) (2.2.5)

Q1(β) can be updated via the cyclic coordinate descent algorithm, because Q1(β) is equiva-

lent to the lasso penalty with γj and S−1
j traded for their conditional posterior distributions;

e.g., by using the R package glmnet. By simple calculus, we update θ with θ = 1
J

∑J
j=1 pj .

2.3 Extending the EMCD Algorithm to Incorporate Spatial Information

While the approach produced by Tang et al. (2017) can handle both ill-posed data

and situations where predictors are highly correlated, it does not model the structure of

correlation among parameter estimates and only allows for lasso penalties. While this

approach may be appropriate when no assumptions can be made about the structure of

correlation, spatial data are amenable to spatially structured priors because in such cases it

is reasonable to expect that parameter values will exhibit spatially clustering. In addition,

the expected correlation among predictors in spatial settings may make the lasso undesirable

since it tends to pick one predictor and ignore the rest. In what follows we extend the

spike-and-slab lasso GLM to address both of these issues.
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3 The EMCD-IAR Model

3.1 The Spike-and-Slab Elastic Net

The elastic net penalty has a Bayesian interpretation as a mixture of normal and

double exponential distributions (Zou and Hastie, 2005):

p(βj|λ) ∝ exp
[
−λ{(1− ξ)β2

j + ξ|βj|}
]

(3.1.1)

The elastic net is easily extended to a spike-and-slab framework:

p(βj|γj, s0, s1) = EN(βj|0, Sj) ∝ exp
[
− 1
Sj
{(1− ξ)β2

j + ξ|βj|}
]

(3.1.2)

where Sj = (1− γj)s0 + γjs1 and ξ ∈ [0, 1]. ξ = 0 would correspond to a “spike-and-slab

ridge” penalty, while ξ = 1 produces the spike-and-slab lasso described by equation (2.1.3).

3.2 CAR and IAR Spatial Models for Inclusion Probabilities

The most direct approach to incorporating spatial structure into parameter estimates

is to impose a correlation structure within the prior distributions for the βj . However, this

approach ultimately requires inverting a very large covariance matrix, which is computa-

tionally expensive and may be impractical for large sets of spatial predictors. In the context

of Bayesian variable selection, a more subtle approach is to impose dependence upon the

prior inclusion probabilities, which indirectly imposes spatial dependence on the estimates

of βj through the penalty E(S−1
j |βj), since the conditional expectation in equation (2.2.3)

is a function of pj = p(γj = 1|βj, θj,y), which is a function of the estimate for θj .

A common framework for modeling spatial structure is a special case of Gaussian

Markov Random Fields (GMRF) known as conditional autoregressions (CAR); CAR models

are multivariate Normal distributions specified by a conditional structure and have been used

extensively in spatial modeling, and more relevant to our purposes, to impose spatial structure
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via prior distributions (Banerjee et al., 2015; Brown et al., 2014; Cressie and Wikle, 2011;

Rue and Held, 2005). The prior probabilities of inclusion, θj , must be transformed in order

to use GMRF’s to model their spatial dependence, since the multivariate Normal distribution

has support on all real numbers, while probabilities are bounded between zero and one. The

logit of the probabilities of inclusion, θj ∈ [0, 1], ψj = logit(θj) = log θj
1−θj ∈ (−∞,∞),

has the same support as the (multivariate) Normal distribution. Thus, after modeling the ψj ,

we can obtain θj = logit−1(ψj).

We impose conditional prior distributions of the ψj using the following CAR param-

eterization (Jin et al., 2005; Banerjee et al., 2015):

p(ψj|ψi, τ) = N
α ∑

j:j∼i

ψi
nj
, (τ 2nj)−1

 (3.2.1)

where nj is the number of neighbors for location j and τ is a common precision parameter

so that the precision τ 2nj only varies based on the number of neighbors. The precision is the

inverse of the variance, and is useful for two reasons. The first is that entries in the precision

matrix describe conditional dependence structures, so that zero entries imply conditional

independence between variables. The second reason follows in part from the first: the

precision matrix is often sparse for CAR models because most common usages assume

the vast majority variables are conditionally independent, which suggests computational

benefits in many cases (Rue, 2001; Rue and Held, 2005). The parameter α is called a

“propriety parameter”, because it controls the degree of dependence in the ψj , where α = 0

implies independence and α→ 1 produces increasingly stronger dependence (Besag and

Kooperberg, 1995; Banerjee et al., 2015). The joint distribution of this model then simplifies

to the following (Jin et al., 2005; Banerjee et al., 2015):

ψ = N
(
0, [τ 2(D − αW )]−1

)
(3.2.2)
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whereD = diag(nj) contains the number of neighbors for each location andW = {wij}

is the adjacency matrix where wij =


1 j ∼ i

0 otherwise
.

Setting α = 1 results in an Intrinsic Autoregressive model (IAR) (Banerjee et al.,

2015; Besag and Kooperberg, 1995). The IAR does not have a proper joint distribution

and one consequence is that the random variables do not vary about a global constant

mean, but rather each is interpreted as varying about the mean of its neighbors.71 This

interpretive quality is one benefit of the IAR, but the IAR is often required for modeling

stronger correlation among random variables, since values exceedingly close to α = 1 are

required to model correlations near 1 for spatially adjacent variables. While the IAR cannot

be used as a data generating model, it has been especially useful as a prior distribution in

spatial models (Besag and Kooperberg, 1995; Banerjee et al., 2015; Rue and Held, 2005).

The IAR model is often formulated as a pairwise difference, which has both interpretive and

computational benefits (Besag and Kooperberg, 1995; Morris et al., 2019a):

log p(ψ) ∝ −τ
2

2

∑
j:j<i

(ψj − ψi)2

 (3.2.3)

3.3 Derivation of the Log Joint Posterior Distribution

The EM algorithm proceeds by taking the expectation of the “missing”

data/parameters, replacing those parameters with their conditional expectation in

the joint log likelihood, and then maximizing that likelihood to obtain estimates for the

parameters of interest. Thus, we first obtain the joint posterior distribution:

p(β, φ,γ,ψ, τ, α|y) = p(y|β, φ)
J∏
j=1

p(βj|Sj)
J∏
j=1

p(γj|θj)p(ψ|τ−1, α)p(α)p(τ−1)

(3.3.1)

71Strictly speaking, the mean and covariance do not exist, but the precision matrix does exist. See Banerjee
et al. (2015) for more details.
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The log joint posterior will therefore look like equation (2.2.1), but with extra terms to

account for the spatial dependence among inclusion probabilities. If we set α = 1 to obtain

the IAR model, then obviously the terms containing α drop out. In addition, while we might

prefer to model τ directly, it is not always computationally feasible, and in practice it often

suffices to set τ = 1, e.g., as in Morris et al. (2019a). Adding spatial structure via the IAR

prior on the prior inclusion probabilities and incorporating the elastic net prior for the βj

alters the joint posterior as follows:

log p(β, φ,γ,ψ, τ, α) ∝ `(β, φ)︸ ︷︷ ︸
log likelihood

−
J∑
j=1

1
Sj
{(1− ξ)β2

j + ξ|βj|}︸ ︷︷ ︸
log prior for β

+
J∑
j=1

γj log θj + (1− γj) log(1− θj)︸ ︷︷ ︸
log prior for γ

− 1
2

∑
j:j<i

(ψj − ψi)2


︸ ︷︷ ︸

log prior for ψj=logit(θj)

(3.3.2)

We now show what changes must be made to the EM-algorithm to obtain parameter estimates

when using an IAR prior on the probabilities of inclusion.

3.4 The Structure of the EM Algorithm

E-Step

Since we are treating the γj as missing parameters, we must take the conditional

expectation of the γj given the other parameters in the model. Similar to Tang et al. (2017),

by application of Bayes’ Rule the conditional probability that a variable should be included

the model is as follows:

pj = p(γj = 1|βj, θj,y)

= p(βj|γj = 1, s1)p(γj = 1|θj)
p(βj|γj = 1, s1)p(γj = 1|θj) + p(βj|γj = 0, s0)p(γj = 0|θj)

(3.4.1)
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where p(γj = 1|θj) = θj , p(γj = 0|θj) = 1 − θj , p(βj|γj = 1, s1) = EN(βj|0, s1), and

p(βj|γj = 1, s1) = EN(βj|0, s0). Given pj , the conditional posterior expectation of S−1
j is

the same as in Tang et al. (2017):

E(S−1
j |βj) = E

(
1

(1− γj)s0 + γjs1

)

= 1− pj
s0

+ pj
s1

(3.4.2)

Therefore, the E-step differs from Tang et al. (2017) primarily in that rather than a single

prior probability of model inclusion, θ, there are now J prior probabilities of inclusion, θj .

The M-step then progresses by maximizing equation (3.3.2) with γj and S−1
j exchanged for

their conditional expectations.

M-Step

Once we have obtained the conditional expectation of the missing indicators for

model inclusion, we can plug these into the joint log posterior distribution and maximize the

expression. As before, we can divide the maximization into convenient pieces. Regardless

of the spatial model, the first piece is still Q1(β, φ), similar to equation (2.2.4), except that

now the full range of elastic net priors specified by ξ ∈ [0, 1] is allowed; Q1(β, φ) can

thus be maximized via cyclic coordinate descent as before, e.g., by using the R package

glmnet. However, now that the θj have spatial dependence, Q2 must now also update the

logit of prior inclusion probabilities ψ, and incorporate the spatial structure of the IAR

model, respectively:
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Q1,EN = `(β, φ)︸ ︷︷ ︸
log likelihood

−
J∑
j=1

1
Sj
{(1− ξ)β2

j + ξ|βj|}︸ ︷︷ ︸
log prior for β

(3.4.3)

Q2,IAR =
J∑
j=1

γj log θj + (1− γj) log(1− θj)︸ ︷︷ ︸
log prior for γ

− 1
2

∑
j:j<i

(ψj − ψi)2


︸ ︷︷ ︸

log prior for ψj=logit(θj)

(3.4.4)

We replace the γj with their conditional expectations and maximize to find parameter

estimates for (ψ, τ), and adapt the stan model from Morris (2017) and Morris et al.

(2019a) to perform the maximization of Q2,IAR using the R package rstan. We then iterate

the E- and M-steps until convergence, and follow Tang et al. (2017) to assess convergence

by the criterion:

|d(t) − d(t−1)|
(0.1 + |d(t)|) < ε (3.4.5)

where d(t) = −2 log `(β(t), φ(t)) is the estimated deviance at iteration t. A development

version of an R package to fit these models is available on github.

4 Simulations

4.1 Simulation Framework

We performed simulations in a limited setting to demonstrate the methodology and

show its potential for improved prediction. The simulations consist of 5,000 data sets

containing N = {25, 50, 100} subjects.72 Each subject design vector arises from a 32× 32
72These sample sizes were chosen due to our interest in prediction performance in smaller samples. The

monte carlo standard errors (MCSE) for AUC, MSE, MAE, misclassification, and proportion of true parameters
selected were under 0.001 in nearly all cases. The MCSE for FDR were all under 0.01. We did not choose the
simulation sizes to optimize MCSE below a set value, but comment here on their estimates to give interested
readers an idea of the variability of the simulation study results inherent to taking simulation samples. See,
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two dimensional image generated from a multivariate Normal distribution with zero mean

and unit variance; a correlation structure was imposed such that the correlation between two

variables was given by:

corr(Xij, Xik) = 0.90d(Xij ,Xik), j, k = 1, . . . , J ; i = 1, . . . , N

where d(Xij, Xik) is the Euclidean distance between Xij and Xik. An example of a subject

image is shown in Figure 1. When predictors exhibit spatial correlation it is often reasonable

to expect “important” parameters to exhibit spatial clustering. We therefore generated

parameter vectors clustered in two-dimensional space before vectorization, as in Figure 2.73

We simulated binary outcomes for each of i = 1, . . . , N subjects from a Bernoulli(Xiβ)

distribution for two scenarios: βj = 0.5 and βj = 0.1. Thus, the βj = 0.5 and βj = 0.1

data sets correspond to a 64.87% and 10.51% increase in odds of an “event” occurring,

respectively. The data were generated using the R package sim2Dpredictr, which is

available on CRAN.

We analyze each dataset with both elastic net (ξ = 0.5; a halfway compromise

between ridge and lasso) and lasso (ξ = 1) priors under the traditional framework, the

spike-and-slab framework without spatial structure, and the spike-and-slab framework with

spatial structure, using a combination of the R packages glmnet, BhGLM, and ssnet.

We employ 10-fold cross validation for N = {50, 100} and 5-fold cross validation for

N = 25 to estimate measures of model fit/variable selection criteria. For the traditional

elastic net models we allow cv.glmnet() to internally select the optimal parameter, and

for the spike-and-slab lasso models we set the slab scale parameter to s1 = 1 and manually

choose the sequence s0 = {0.01, 0.02, 0.03, . . . , 0.3} over which to choose the value of

spike parameter that minimizes cross-validated prediction error.

e.g., Koehler et al. (2009) or Morris et al. (2019b).
73Note that in principle Figure 2 does not follow from Figure 1. For example, we can conceive of various

sizes and shapes for the parameter cluster(s). It also is possible to conceive of theoretical situations where
measurements were uncorrelated in space, but parameter values were spatially clustered, or vice versa.
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We report several metrics to evaluate two aspects of model performance, prediction

and variable selection. Prediction accuracy is assessed with cross-validated measures of

deviance, mean square error (MSE), mean absolute error (MAE), area under the ROC curve

(AUC), and misclassification (MC).74 False discovery rate (FDR) and Power are used to

evaluate variable selection performance. FDR is the average proportion of parameters true

value was zero out of all those whose estimates were non-zero. We define Power here as

the average proportion of true non-zero parameters discovered.75 Well performing models

will have lower values for deviance, MSE, MAE, MC, and FDR, and will have higher

values for AUC and Power. In all cases we choose the model whose penalty minimizes the

cross-validated Deviance. Note that Deviance in this case is defined as −2 times the log

likelihood, but with respect to the held-out data, not the training data; i.e., it is an estimate

of model fitness to independent data, rather than observed data, which can help prevent

overfitting models that generalize poorly.

4.2 Simulation Results

As seen in Tables 1 and 2, over the 5,000 simulated data sets for each sample size

the models with spatially structured priors have the best cross-validated prediction error

compared to models without spatially structured priors, and that this is the case for both

effect sizes whether we use elastic net with ξ = 0.5 or the lasso. While the spike-and-slab

elastic net (SSEN) with IAR priors tends to outperform the spike-and-slab lasso (SSL) with

IAR priors, this difference is less noticeable than that exhibited by including the spatial

structure versus not; i.e., most of the improvement in prediction error appears to be the result

of the IAR priors as opposed to compromising between ridge and lasso priors/penalties. The

SSEN with IAR priors consistently has the lowest deviance, mean squared error (MSE), and

74Misclassification is defined as 1
n

∑n
i=1 I(|yi − ŷi| > 0.5) where I(·) is an indicator function whose value

is 1 when the argument is true, and zero otherwise.
75Usually Power is the average proportion of the time that a model would identify a parameter as non-zero,

given that it really was non-zero. Here we simply generalize to a set of non-zero parameters we want to
discover. We use “Power” for ease of interpretation.
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misclassification, as well as the highest AUC; when βj = 0.1, it also has the lowest mean

absolute error (MAE), but the SSL with IAR priors has the lowest MAE when βj = 0.5.

With respect to variable selection, the traditional elastic net captures the highest

proportion of true non-zero parameters for all scenarios, and for any given scenario the

elastic net captures a higher proportion of true non-zero parameters compared to the lasso.

However, in most scenarios examined, the traditional elastic net had the highest estimated

FDR. In general, it appears to be the case as well that including the IAR priors compromises

between the traditional elastic net/lasso and the spike-and-slab elastic net/lasso in that it

tends to have FDR and proportion of non-zero parameters discovered in between the other

two frameworks. However, in general it was the case for all models considered that FDR and

proportion of true non-zero parameters is far from what most researchers would consider

optimal.

Table 1: Model Performance for βj = 0.5
N Model s0 Dev.† AUC MSE MAE MC‡ FDR Power

25

Lasso 0.0487 18.94 0.8926 0.1225 0.2401 0.1805 0.6786 0.0990
EN 0.0646 17.68 0.9049 0.1143 0.2290 0.1671 0.7162 0.4293
SSL 0.1575 11.03 0.9751 0.0609 0.1701 0.0700 0.2422 0.0293
SSEN 0.2032 15.33 0.9596 0.0883 0.2370 0.1012 0.5122 0.2192
SSL (IAR) 0.1968 9.37 0.9882 0.0483 0.1488 0.0485 0.3033 0.0301
SSEN (IAR) 0.1375 9.31 0.9939 0.0448 0.1538 0.0347 0.4109 0.0405

50

Lasso 0.0232 24.93 0.9563 0.0788 0.1667 0.1144 0.6532 0.1756
EN 0.0357 25.58 0.9564 0.0804 0.1709 0.1146 0.6926 0.5744
SSL 0.1464 18.99 0.9791 0.0547 0.1379 0.0698 0.2265 0.0452
SSEN 0.1310 21.24 0.9824 0.0585 0.1649 0.0663 0.3875 0.1512
SSL (IAR) 0.2004 13.50 0.9929 0.0351 0.1054 0.0385 0.3059 0.0535
SSEN (IAR) 0.1387 13.41 0.9959 0.0324 0.1096 0.0290 0.3733 0.0729

100

Lasso 0.0149 39.24 0.9750 0.0611 0.1316 0.0869 0.6402 0.2657
EN 0.0230 40.11 0.9749 0.0621 0.1356 0.0876 0.6863 0.6877
SSL 0.1267 29.52 0.9874 0.0429 0.1051 0.0564 0.2053 0.0718
SSEN 0.1004 31.57 0.9888 0.0440 0.1195 0.0539 0.3282 0.1458
SSL (IAR) 0.1927 21.94 0.9945 0.0297 0.0832 0.0353 0.3235 0.0842
SSEN (IAR) 0.1286 21.34 0.9963 0.0271 0.0847 0.0286 0.3773 0.1135

†Deviance
‡Misclassification
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Table 2: Model Performance for βj = 0.1
N Model s0 Dev.† AUC MSE MAE MC‡ FDR Power

25

Lasso 0.1248 28.11 0.7602 0.1918 0.3639 0.3038 0.7039 0.0543
EN 0.1956 27.20 0.7698 0.1854 0.3554 0.2923 0.7314 0.2161
SSL 0.1858 20.50 0.8560 0.1329 0.2932 0.1973 0.5125 0.0292
SSEN 0.2116 22.80 0.8452 0.1484 0.3260 0.2162 0.7041 0.1653
SSL (IAR) 0.1966 14.55 0.9473 0.0863 0.2117 0.1089 0.5612 0.0206
SSEN (IAR) 0.1283 13.73 0.9618 0.0786 0.2076 0.0928 0.6480 0.0242

50

Lasso 0.0799 48.35 0.8318 0.1607 0.3253 0.2407 0.6951 0.1003
EN 0.1394 49.35 0.8270 0.1641 0.3306 0.2452 0.7023 0.3048
SSL 0.1189 38.26 0.8999 0.1216 0.2561 0.1716 0.3338 0.0313
SSEN 0.1039 38.80 0.9005 0.1231 0.2698 0.1731 0.5569 0.0834
SSL (IAR) 0.1796 28.72 0.9453 0.0878 0.1945 0.1191 0.6071 0.0337
SSEN (IAR) 0.1198 25.63 0.9608 0.0762 0.1820 0.0993 0.6791 0.0422

100

Lasso 0.0592 91.22 0.8611 0.1493 0.3087 0.2180 0.6490 0.1557
EN 0.1072 92.17 0.8593 0.1509 0.3129 0.2203 0.6522 0.3890
SSL 0.0912 77.79 0.9003 0.1243 0.2542 0.1777 0.3285 0.0497
SSEN 0.0722 76.97 0.9029 0.1229 0.2553 0.1748 0.5147 0.0756
SSL (IAR) 0.1501 62.06 0.9368 0.0969 0.1982 0.1361 0.6499 0.0504
SSEN (IAR) 0.1050 52.56 0.9563 0.0805 0.1743 0.1107 0.7509 0.0617

†Deviance
‡Misclassification

It is reasonable to wonder why the cross validated prediction error is in such contrast

to the traditional variable selection measures. Some insight is gained by focusing on the

parameter estimates themselves. Consider figure 3, which displays average parameter

estimates by sample size and model when true non-zero parameters are equal to 0.5. In

general, all the models tend to prioritize one parameter over the others, as evidenced by the

peaks in each plot, and often there are several clusters beneath this peak. As advertised,

the spike-and-slab framework shrinks parameters deemed “important”, i.e., true non-zero

parameters in the simulation setting, are noticeably less than the the traditional frameworks,

and the peaks for the traditional methods are all obviously lower compared to the spike-and-

slab models, which peak closer to the true value for non-zero parameters.

The spike-and-slab models without the IAR prior on inclusion probabilities tend to

have the highest peaks, so why do the models with spatial structure tend to have better fits?
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One explanation is that the models with spatially structured priors tend to keep more true

non-zero parameters closer to the peak, even if that peak is slightly lower as a result. Notice

also that for each analysis there are several clusters of non-zero variables. The models with

spatially structured priors tend to have more concentrated clustering, and aside from the

peak, the center, i.e. the mean value, of these clusters are slightly above the center of the

clusters for the models without spatially structured priors, which indicates that on average

those models are providing estimates closer to the true values for non-zero parameters.

While the results are somewhat more complicated for the βj = 0.1, the general trends are

similar. For N = 25, the SSL, SSL (IAR), and SSEN (IAR) models are peaking near 0.1.

At N = 50, these 3 models plus SSEN peak near 0.15, while the traditional lasso and EN

are closer to 0.075. By N = 100, the traditional models are peaking near 0.1, while the

spike-and-slab models peak closer to 0.2. Thus, for the smaller effect size, the models are

over-shooting the effect size considerably, at least for the largest parameters.

However, more insight is gained by considering summaries for estimates of zero and

non-zero parameters, as shown in tables 3 and 4 and figures 5 and 6, which show the mean

and standard deviations for estimates of non-zero and zero parameters, respectively. Not

surprisingly, the average parameter estimates increase as the sample size increases. With

respect to non-zero parameters, we can see that in fact adding spatially structured priors to

the model increases the average estimate for every sample size and for both the elastic net

and lasso priors. This is an interesting contrast to the proportion of true non-zero parameters

captured, where the traditional methods appeared to have the best performance. With respect

to the true zeroes, as was often the case with FDR, the models with spatial structure were

not as low as the spike-and-slab models without spatial structure, but they were lower than

the traditional models. This sheds light on how the spatial structure is leading to improved

prediction error - presumably the spike-and-slab models are providing closer to the “true”

non-zero parameter values. The average parameter values for the true zero parameters are

also fairly close to zero, and so even when they are included, i.e., and leading to higher FDR,
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they are small enough compared to the estimates for true non-zero parameters that they do

not introduce as much noise to the prediction; this is another benefit of the spike-and-slab

framework, where again as advertised the spike prior shrinks “unimportant” parameters

more than “important” parameters, at least on average.

However, the mean parameter estimates do not necessarily show how the elastic with

spatial structure is outperforming the spike-and-slab lasso with spatial structure, especially

when the true non-zero parameters are equal to 0.5. This might be explained by considering

the variation in these estimates. Compared to the average estimates, their standard deviations

are relatively large, often larger than the average estimate. Narrowing in on the comparison

betwen the SSL (IAR) and SSEN (IAR) models, we see that the variation about the former

is quite a bit larger than the latter. It appears that a bias-variance tradeoff may explain the

improved performance for larger effect size, especially for the larger effect sizes, and that

the lower variance in general contributes to better prediction.

5 Discussion

We have presented a novel approach to using the spike-and-slab prior on the elastic

net when predictors exhibit spatial structure. The elastic net can be preferred to the lasso

in circumstances where the number of predictors far exceeds the sample size and when the

predictors exhibit strong correlations and since both the lasso and elastic net are expressible

in a Bayesian framework they are reasonably amenable to a spike-and-slab prior framework,

e.g., as explored in Roc̆ková and George (2014) and Roc̆ková and George (2018). Our

primary contribution has been to show how to further incorporate spatial information into

the model fitting process by placing intrinsic autoregressive priors on the logit of the

probabilities of inclusion and to fit this model for GLMs by extending the EM algorithm

presented in Tang et al. (2017).

Furthermore, through a simulation study, we have explored some of the properties

of this model. While this simulation study was limited to only a few effect sizes and binary
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Table 3: Average Parameter Estimates
βj = 0.5

True Non-Zero Parameters
N Lasso SSL SSL (IAR) EN SSEN SSEN (IAR)
25 0.07101 0.08100 0.08538 0.06513 0.04920 0.06789
50 0.11791 0.13124 0.14007 0.10597 0.10002 0.11935
100 0.16498 0.19382 0.20738 0.14959 0.16303 0.18240

True Zero Parameters
25 0.00196 0.00062 0.00091 0.00244 0.00090 0.00102
50 0.00211 0.00049 0.00112 0.00254 0.00067 0.00120
100 0.00209 0.00063 0.00144 0.00243 0.00067 0.00147

βj = 0.1
True Non-Zero Parameters

N Lasso SSL SSL (IAR) EN SSEN SSEN (IAR)
25 0.02617 0.03868 0.04847 0.02483 0.02609 0.04027
50 0.03834 0.06476 0.07274 0.03407 0.05494 0.06820
100 0.04713 0.07711 0.09168 0.04253 0.07501 0.09410

True Zero Parameters
25 0.00116 0.00084 0.00132 0.00138 0.00103 0.00129
50 0.00108 0.00059 0.00143 0.00117 0.00069 0.00144
100 0.00091 0.00055 0.00130 0.00098 0.00059 0.00142

outcomes, several important lessons can be extracted. First, we have demonstrated the

potential for spike-and-slab models with spatially structured priors to improve upon their

spatially unstructured counterparts; it is also noteworthy that the spike-and-slab models

in general outperformed the traditional models with respect to cross validated prediction

error, showing also that this prior framework may be a fruitful one for spatial data. While at

least in the settings examined, the FDR and proportion of true non-zero parameters captured

is not impressive for any model, and larger sample sizes would be necessary to achieve

reasonable results on these metrics, the summaries for the parameter estimates themselves

lend insight into why the spike-and-slab models with spatial structure are better fit. That

is, in general the spike-and-slab models with spatially structured priors tend to produce

estimates closer to the “true” values for “important” parameters and correspondingly shrink

“unimportant” parameter estimates more strongly than do the traditional methods, which
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Table 4: Standard Deviations for Parameter Estimates
βj = 0.5

True Non-Zero Parameters
N Lasso SSL SSL (IAR) EN SSEN SSEN (IAR)
25 0.07402 0.15189 0.15015 0.01573 0.08740 0.08898
50 0.10151 0.26354 0.20648 0.02059 0.17889 0.12286
100 0.10313 0.26443 0.21328 0.02181 0.18733 0.13153

True Zero Parameters
25 0.02578 0.03858 0.03925 0.01058 0.01775 0.03029
50 0.02441 0.03013 0.03847 0.01166 0.02065 0.03151
100 0.02274 0.03275 0.04040 0.01204 0.02432 0.03316

βj = 0.1
True Non-Zero Parameters

N Lasso SSL SSL (IAR) EN SSEN SSEN (IAR)
25 0.03369 0.07671 0.07713 0.00951 0.04135 0.05482
50 0.03661 0.11648 0.10305 0.01185 0.09836 0.07802
100 0.03840 0.12757 0.11375 0.01430 0.11191 0.09366

True Zero Parameters
25 0.01665 0.03381 0.03558 0.00669 0.01472 0.02596
50 0.01345 0.02974 0.03126 0.00643 0.02258 0.02478
100 0.01025 0.02204 0.02530 0.00582 0.01995 0.02196

demonstrates the power of combining spike-and-slab models with shrinkage penalties.

While larger sample sizes may be desirable, many if not most real-world scenarios

using images do not have very large sample sizes. Thus, it is relevant to probe how methods

perform with smaller sample sizes and to understand what we can expect to learn in such

circumstances. This approach to modeling thus has many possible future directions and

possible applications. Since the model is fit for GLM, it is amenable to the full range of non-

linear outcomes ordinarily analyzed with GLM’s, and thus applications beyond Gaussian

outcomes, or as shown here binary outcomes, is immediately possible without revision to

the model. Given the strong performance with respect to cross validated prediction error,

the algorithm may also be useful in classification problems and may be extended to handle

more complex spatial relationships to better address difficult classification problems.
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Appendix: Figures

Figure 1: Example of a subject image before being vectorized into a row of the design
matrix.
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Figure 2: Example of clustered non-zero parameters. The blue pixels represent βj 6= 0.
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Figure 3: Average parameter estimates for each model when true non-zero βj = 0.5. Each
dot is an average parameter estimate for a specific parameter.
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Figure 4: Average parameter estimates for each model when true non-zero βj = 0.1. Each
dot is an average parameter estimate for a specific parameter.
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Figure 5: Collective average estimates for true non-zero parameters. Each dot is the summary
measure of all estimates for true non-zero parameters.
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Figure 6: Collective average estimates for true zero parameters. Each dot is the summary
measure of all estimates for true zero parameters. The βj labels in this case correspond to
the simulation scenario, but the true value for the parameters estimated here is zero.

162



REFERENCES

Banerjee, Sudipto; Carlin, Bradley P., and Gelfand, Alan E. Hierarchical Modeling and

Analysis for Spatial Data. Chapman & Hall/CRC, Boca Raton, Florida, 2nd edition, 2015.

Besag, Julian. Spatial interaction and the statistical analysis of lattice systems. Journal of

the Royal Statistical Society. Series B (Methodological), 36(2):192–236, 1974.

Besag, Julian and Kooperberg, Charles. On conditional and intrinsic autoregressions.

Biometrika, 82(4):733–746, 1995. doi: 10.1093/biomet/82.4.733.

Brown, D. Andrew; Lazar, Nicole A.; Datta, Gauri S.; Jang, Woncheol, and McDowell,

Jennifer. Incorporating spatial dependence into bayesian multiple testing of statistical

parametric maps in functional neuroimaging. NeuroImage, 84:97–112, 2014. doi:

10.1016/j.neuroimage.2013.08.024.

Cressie, Noel and Wikle, Christopher K. Statistics for Spatio-Temporal Data. John Wiley &

Sons, Hoboken, New Jersey, 2011.

Dempster, A.P.; Laird, N.M., and Rubin, D.B. Maximum likelihood from incomplete data

via the em algorithm (with discussion). J. Roy. Statist. Soc. Ser. B, 39:1–38, 1977.

Friedman, J.; Hastie, T., and Tibshirani, R. Regularization paths for generalized linear

models via coordinate descent. Journal of Statistical Software, 33:1–22, 2010. doi:

10.18637/jss.v033.i01.

Friedman, Jerome; Hastie, Trevor; Höfling, Holger, and Tibshirani, Robert. Pathwise

coordinate optimization. The Annals of Applied Statistics, 1(2):302–332, 2007. doi:

10.1214/07-AOAS131.

George, Edward I. and McCulloch, Robert E. Variable selection via gibbs sampling. Journal

of the American Statistical Association, 88:881–889, 1993. doi: 10.1080/01621459.1993.

10476353.

163



George, Edward I. and McCulloch, Robert E. Approaches for bayesian variable selection.

Statistica Sinica, 7:339–373, 1997.

Hastie, Trevor; Tibshirani, Robert, and Friedman, Jerome. The Elements of Statistical

Learning. Springer, 2009.

Jin, Xiaoping; Carlin, Bradley P., and Banerjee, Sudipto. Generalized hierarchical multi-

variate car models for areal data. Biometrics, 61(4):950–961, 2005. doi: 10.1111/j.1541-

0420.2005.00359.x.

Koehler, Elizabeth; Brown, Elizabeth, and Haneuse, Sebastien. On the assessment of monte

carlo error in simulation-based statistical analyses. The American Statistician, 63(2):

155–162, 2009. doi: 10.1198/tast.2009.0030.

Künsch, Hans R. Intrinsic autoregressions and related models on the two-dimensional lattice.

Biometrika, 74(3):517–524, 1987. doi: 10.2307/2337341.

Leach, Justin M. and Aban, Inmaculada. sim2dpredictr: An r package for simulating scalar

outcomes with spatially dependent predictors. Unpublished, 2020.

Mitchell, T.J. and Beauchamp, J.J. Bayesian variable selection in linear regression. Journal

of the American Statistical Association, 83(404):1023–1032, 1988. doi: 10.1080/016214

59.1988.10478694.

Morris, Mitzi. Spatial models in stan: Intrinsic auto-regressive models for areal data.

Stan Case Studies, 4, 2017. URL https://mc-stan.org/users/documentation/case-

studies/icar_stan.html.

Morris, Mitzi; Wheeler-Martin, Katherine; Simpson, Dan; Mooney, Stephen J.; Gelman,

Andrew, and DiMaggio, Charles. Bayesian hierarchical spatial models: Implementing the

baseg york mollié model in stan. Spatial and Spatio-temporal Epidemiology, 31, 2019a.

doi: 10.1016/j.sste.2019.100301.

164

https://mc-stan.org/users/documentation/case-studies/icar_stan.html
https://mc-stan.org/users/documentation/case-studies/icar_stan.html


Morris, Tim P.; White, Ian R., and Crowther, Michael J. Using simulation studies to evaluate

statistical methods. Statistics in Medicine, 38:2074–2102, 2019b. doi: 10.1002/sim/8086.

Park, Trevor and Casella, George. The bayesian lasso. Journal of the American Statistical

Association, 103(482):681–686, 2008. doi: 10.1198/016214508000000337.

R Core Team, . R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria, 2017. URL https://www.R-project.org/.

Roc̆ková, Veronica and George, Edward. Emvs: The em approach to bayesian variable

selection. Journal of the American Statistical Association, 109(506):828–846, 2014. doi:

10.1080/01621459.2013.869223.

Roc̆ková, Veronica and George, Edward. The spike and slab lasso. Journal of the American

Statistical Association, 113:431–444, 2018. doi: 10.1080/01621459.2016.1260469.

Rue, Håvard. Fast sampling of gaussian markov random fields. J.R. Statist. Soc. B, 63:

325–338, 2001.

Rue, Håvard and Held, Leonhard. Gaussian Markov Random Fields: Theory and Applica-

tions. Chapman & Hall/CRC, Boca Raton, Florida, 2005.

Tang, Zaixiang; Shen, Yueping; Zhang, Xinyan, and Yi, Nengjun. The spike and slab lasso

generalized linear models for prediction and associated genes detection. Genetics, 205:

77–88, 2017. doi: 10.1534/genetics.116.192195.

Tibshirani, Robert. Regression shrinkage and selection via the lasso. J.R. Statist. Soc., 58

(1):267–288, 1996. doi: 10.1111/j.2517-6161.1996.tb02080.x.

Zou, Hui and Hastie, Trevor. Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society. Series B (Methodological), 67:301–320, 2005.

doi: https://doi.org/10.1111/j.1467-9868.2005.00503.x.

165

https://www.R-project.org/


THE SPIKE-AND-SLAB ELASTIC NET AS A CLASSIFICATION TOOL
IN ALZHEIMER’S DISEASE

JUSTIN M. LEACH, LLOYD EDWARDS, RAJESH KANA, KRISTINA VISSCHER,

NENGJUN YI, AND INMACULADA ABAN

In preparation for Statistics in Medicine

Format adapted for dissertation

166



1 Introduction

1.1 Alzheimer’s Disease Overview

Dementia has a long history as a scourge on the quality of life for aging persons,

and in recent decades has been a leading cause of death. The medical research community

has thus devoted considerable time and effort to understanding dementia’s leading cause,

Alzheimer’s disease (AD). In consequence, the understanding of AD, and dementia in

general, has developed significantly in the last century, and is evolving still (Bondi et al.,

2017).

Early stages of dementia have received increasing research attention in the most

recent several decades. These prodromal stages of neurodegenerative disease, more com-

monly known as mild cognitive impairment (MCI), are characterized by memory loss that is

worse than would be expected given an individual’s age, but not severe enough to meet the

criteria of dementia. There are five general criteria for classification as MCI: the subject has

subjective memory complaints, objective memory impairment that is advanced given the

subject’s age, relatively unaffected general cognition, unaffected daily activities, and is not

diagnosed with dementia.

However, MCI also has many subtypes, and diagnosing MCI is not so straightforward

as these criteria suggest, especially given that there appear to be substantial issues with false

positives in diagnosing MCI; Bondi et al. (2017) provides a more general overview of these

issues. Nevertheless, studies focusing on, or including, MCI can be useful for understanding

the development of dementia in its early stages, as well as for identifying individuals who

are at greater risk developing dementia.
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Biomarker research has progressed alongside an increased understanding of AD’s

etiology. AD pathology is characterized primarily by amyloid plaques and neurofibrillary

tangles (Lane et al., 2018). One influential theory, the amyloid cascade hypothesis, proposes

that amyloid deposits underlie the generation of abnormal tau protein aggregation, which

then leads to the neurofibrillary tangles that damage neurons and thus results in the observed

deficits in cognitive and functional ability (Jack et al., 2010, 2013). However, subsequent

research casts significant doubt on the viability of this hypothesis, specifically related to its

temporal assumptions, and alternative theories have arisen, but a stable consensus is not

obtained (Braak et al., 2011; Braak and Del Tredici, 2014; Crary et al., 2014). Given this

uncertainty, temporal agnosticism is the current norm with respect to biomarker-related

risks, e.g., see Jack et al. (2016a) and Bondi et al. (2017).

The popularity of the amyloid cascade hypothesis drove significant focus on amyloid-

pathology-related imaging approaches, but doubt surrounding the hypothesis’ validity,

and evidence that tau-pathology more closely aligns with disease severity, created an

interest in imaging approaches that capture tau protein pathology (Brosch et al., 2017).

To date, Positron Emisson Tomography (PET) imaging with the tracer [18F]AV-1451, or

flortaucipir, is the most widely image modality for tau protein imaging. Another important

biomarker, brain atrophy, predates the amyloid cascade hypothesis, indicates the extent

of neurodegeneration, and is correlated with both tau deposition and neuropsychological

deficits (Frisoni et al., 2010). Brain atrophy is not confined to AD, and should generally not

be used in isolation to diagnose AD, but nevertheless patterns of brain atrophy have been

useful in AD research.

1.2 Classification and Model Selection

The availability of neuroimaging-based biomarkers resulted in research on algo-

rithmic approaches to classification of, and prediction of progression to, MCI and AD

(Arbabshirani et al., 2017; Bondi et al., 2017; Rathore et al., 2017). Often the task is binary
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classification, i.e., imaging data is input to the algorithm/model, which classifies the subject

as either having or not having the disease. For a given classification paradigm, we need to

both select the “optimal” model, and provide an objective description of how well the model

distinguishes between subjects with or without the disease. These are related issues since

the criteria for the optimal model/classifier is how well the classifier classifies subjects it has

not yet seen. The general process, as shown in figure 1, is to divide data into “training” and

“test” sets. The subjects in the training set are used to fit the model, and then the model is

used to predict the classes for subjects in the test set, after which we evaluate the classifier’s

performance.

Many classifiers have free/tuning parameters that must be chosen by the investiga-

tor.76 Classification problems require wariness towards overfitting models, because to be

useful a model must generalize to new data. Thus, free/tuning parameter value choices

should be based on corresponding estimates of expected prediction error. Prediction error

estimates can be obtained via k-fold cross validation (Hastie et al., 2009). K-fold cross

validation divides the subjects into k independent sets, and fits the model k times, each

time holding out a different set as the test set. The average prediction error across the sets

provides an estimate for the expected prediction error, and parameter values that minimize

the estimate of expected prediction error are used to fit the classifier/model using all available

data. Since many datasets have too small a sample size to hold out a separate test set, and

since k-fold cross validation provides estimates of expected prediction error, it also allows

for evaluating model performance while making use of all available data to build the model.

Improvement in the accuracy of these algorithms has the potential to allow for earlier

detection of MCI and/or AD, and if sufficiently accurate in predicting progression, may

allow researchers to identify patients who are at high risk for progression to AD. While

many algorithms used thus far have shown promise, statistical learning approaches continue

76In Bayesian contexts, free/tuning parameters usually correspond to the hyperparameters in prior distribu-
tions.
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to advance, and it is beneficial to apply, extend, and evaluate these algorithms with respect

to MCI/AD classification. In this work we add to the classification literature by applying

and evaluating the performance of the spike-and-slab elastic net with spatially informative

priors as a classifier. First, we review several relevant statistical methods that build up to the

methods used in this paper.

Obtain sample of subjects, some
of which are healthy, and some

of which have the disease.

Obtain imaging data; e.g., Cortical
thickness measures from structural MRI

Randomly choose subsets
of healthy and diseased

subjects as the “training” set.

Using the training set
to build a model that

uses imaging data
to classify subjects.

Subjects not chosen for
the “training” set are in

the “test” set and are not
used to train the model.

Use the “trained” model to
classify the “test” subjects.

Evaluate classifica-
tion performance

Figure 1: This flow chart describes the basic process of building and evaluating a classifier.

1.3 Penalized and Bayesian Generalized Linear Models

Penalized linear models are a useful approach to statistical learning, the most well-

known of which are the ridge, lasso, and elastic net; the latter compromises between the

first two (Tibshirani, 1996; Zou and Hastie, 2005). All three of these models have Bayesian

interpretations, and in particular the latter two are useful for variable selection, because they

tend to produce sparse solutions, i.e., applying the penalty results in many, if not most, of
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the parameter estimates being zero, which allows for variable selection without resorting to

null hypothesis significance testing (NHST).

The primary benefit of the elastic net is that it avoids the pitfalls of both the ridge

and lasso. The ridge cannot provide automatic variables selection because all parameter

estimates are non-zero, and when the number of predictors far outnumbers the number of

subjects, the number of non-zero estimates allowed from the lasso is capped at the number of

subjects; a related issues is when predictors are highly correlated, the lasso tends to choose

one and discard the rest. In contrast, the elastic net can provide sparse solutions while

leaving more parameter estimates non-zero, which makes it an attractive approach when

using images as predictors, since there are often more predictors than subjects, and “relevant”

predictors may often spatially cluster and be highly correlated. While penalty parameters, or

prior distributions, must be chosen by the researcher, cross validation provides a principled

approach to penalty parameter selection. These models can also produce estimates under

ill-posed data, i.e., situations where there are more predictors than subjects or observations.

While penalized models produce biased estimates, the trade-off is typically substan-

tial reduction in variance around the parameter estimates and predicted outcomes, which can

improve the generalizeability of the models. The elastic net framework is thus attractive for

both variable selection and prediction, and can be adapted to classification problems, e.g.,

by applying classification rules to a penalized/Bayesian logistic regression. An interesting

consequence of the elastic net is that the sparse solutions produced by the initial model mean

that the classifier will remove “unnecessary” predictors/features during the model fitting

process by shrinking their estimates to zero, so that only a subset of the initial set of possible

predictors/features is used in the classifier; the automatic variable selection of elastic net

models equates to automatic feature selection in a statistical learning context.

The Bayesian interpretation of these models allows for useful extensions with

respect to variable selection. In particular, the spike-and-slab lasso of Roc̆ková and George

171



(2018) combines the lasso penalty with a common Bayesian approach to variable selection:

the spike-and-slab prior, which models parameters are arising from a mixture of two

distributions, one each for parameters that are and are not relevant to modeling the outcome

of interest, respectively (Mitchell and Beauchamp, 1988; George and McCulloch, 1993).

This approach extends the lasso such that there is stronger shrinkage imposed on parameters

that are irrelevant and weaker shrinkage applied to relevant parameters, which leaves the

final estimates of relevant parameters closer to their initial estimates, and drives estimates of

irrelevant parameters to zero.

1.4 Outline

The elastic net is applicable to a wide range of problems, including imaging data,

especially since it can perform variable/feature selection in cases where there are many more

possible predictors than subjects. The elastic net has been used in other AD classification

studies (de Vos et al., 2018; Schouten et al., 2016; Teipel et al., 2017; Trzepacz et al.,

2016); however, the combination of spike-and-slab priors with the elastic net framework

is a relatively new methodology, and to our knowledge it has not yet been explored in

AD classification. The primary aim of this work is to demonstrate the potential of the

methodology to AD classification, and by extension, to neuroimaging-based classification

in general.

In previous work, we extended the spike-and-slab lasso to accommodate the elastic

net penalty and explicitly model dependence among predictors (Leach et al., 2020). This

class of models contains (Bayesian) logistic regression as a special case, and by using

thresholding rules we can create a classifier. That is, the parameter estimates from a logistic

regression can be used to obtain estimated/predicted probabilities of subjects having the

disease; we can then use a threshold, say 0.5, above which subjects are classified as having

the disease. In what follows, we show how this class of models can classify subjects by

disease status; specifically, cognitive normal (CN) versus MCI, CN versus AD, and MCI
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versus AD. The outline is as follows: In section 2, we briefly describe the ADNI data, discuss

specific methods and outcomes used for classification, review the statistical details relevant

to understanding the classifiers, and discuss several metrics used to evaluate classification

performance. In section 3, we classify subjects’ disease status using cortical thickness and

tau PET images as predictors, and compare the results across several classifiers built from

the methods presented in Section 2. Finally, in section 4, we discuss the implications of the

results, outline future research directions, and address limitations in the present study.

2 Methods

2.1 ADNI Methods

Data used in the preparation of this article were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.

Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance

imaging (MRI), positron emission tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined to measure the progression of mild

cognitive impairment (MCI) and early Alzheimer’s disease (AD).77

As mentioned in section 1.1, brain atrophy is a useful metric for studying AD. A

related measure is cortical thickness, which can be assessed in a cross sectional setting,

whereas true atrophy measures would require longitudinal measures. Cortical thickness

measures have been used as classification features throughout the literature (Rathore et al.,

2017). However, cortical thickness is not trivial to measure because the topology of the

cortex is that of a densely folded 2D sheet, and manual measurement is both laborious

and error-prone. Nevertheless, reasonably accurate assessments of the properties of the

cortical surface, whether surface area, volume, or thickness, can be obtained by “unfolding”

the cortex. In companion papers, Dale et al. (1999) and Fischl et al. (1999) present an

77This is directly lifted from ADNI’s manuscript citations document - they require this language in
manuscripts/publications that use ADNI data.
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approach to do just this by first segmenting white and grey matter voxels, then estimating

the white/grey boundary at the subvoxel level using a triangular tessellation, and finally

“inflating” that boundary out towards the pial surface to obtain the outer boundary, all the

while minimizing metric distortions. Accurate cortical thickness measures may then be

obtained by finding the distance between these two surfaces at a given point (Fischl and

Dale, 2000). This entire process can be performed with FreeSurfer software, which results

in a wide array of data, including surface area, volume, and cortical thickness measures

(Fischl, 2012). FreeSurfer-processed ADNI data is available as summaries for brain regions

specified by Desikan-Killiany atlas (Desikan et al., 2006).78

In addition to MRI, ADNI-3, the most recent renewal of the ongoing ADNI study,

also has [18F]AV-1451 Positron Emisson Tomography (PET) imaging; in fact, one of the

motivations of ADNI-3 was to incorporate “innovative technologies”, which includes a focus

on tau PET imaging (Weiner et al., 2017). In ADNI tau PET images have been processed

with Freesurfer, and SUVR summaries are available by regions of the Desikan-Killiany

atlas.

Since both cortical thickness and tau PET images can be reasonably expected to

provide information regarding AD status, in the present work we pursue two separate paths

of analysis: one using cortical thickness summaries as features, and the other using tau PET

SUVR summaries as features.

2.2 Statistical Methods

Logistic regression arises from a generalized linear model (GLM) where outcomes

are binary; subject-specific probabilities of being in one class or the other can be extracted

from such models, and we can then apply thresholding rules to build a classifier.79

78This paper contains a “high level” summary of the most relevant FreeSurfer methods. A more technical
summary is found on the FreeSurferWiki, as a more detailed description is beyond the scope of this document;
nevertheless, the several papers most relevant to this process are contained in the references.

79A technical detail: strictly speaking, GLM’s model E(yi), and so when we assume yi arises from a
binomial distribution, the observed yi will be 0 or 1, but the expectation E(yi) will be a probability, i.e., take
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The mathematical form of a GLM is as follows:

g(yi) = Xiβ = β0 +
J∑
j=1

xijβj = ηi, i = 1, . . . , N (2.2.1)

where for the ith subject, yi is an observed outcome,Xi is 1× (J + 1) vector of measured

predictors, β is a (J + 1) × 1 vector of unknown parameters, and g(·) is an appropriate

link function; for logistic regression, g(·) is the logit function. In this work, the outcome

is disease class, e.g., whether the subject is CN or has dementia, and the predictors are the

subject’s average cortical thickness or tau disposition measures for each region in Desikan-

Killiany atlas. Thus, each subject will have a single outcome indicating disease status, and

sixty-eight predictors, one for atlas region.

Roc̆ková and George (2018) introduced the spike-and-slab lasso, which combines

spike-and-slab priors with the lasso penalty. This model penalizes estimates for “irrelevant”

parameters more strongly than those of “relevant” parameters, and so shrinks more “irrele-

vant” parameter estimates to zero, while allowing “relevant” parameter estimates to remain

larger. While Roc̆ková and George (2018) focus on linear models, Tang et al. (2017) de-

scribe how to fit the spike-and-slab lasso for GLM’s by using an Expectation-Maximization

Coordinate Descent algorithm. As discussed in Section 1.3, the lasso may have downsides

when predictors arise from images, and so we construct a spike-and-slab elastic net. As

shown in Leach et al. (2020), the spike-and-slab lasso can be generalized to a spike-and-slab

elastic net, which can still be fit by the Expectation-Maximization Coordinate Descent

algorithm. The spike-and-slab elastic net prior is as follows:

p(βj|γj, s0, s1) ∝ exp
[
− 1
Sj
{(1− ξ)β2

j + ξ|βj|}
]

(2.2.2)

where Sj = (1− γj)s0 + γjs1, s1 is the slab scale, s0 is the spike scale, s1 > s0 > 0, and

on some value between 0 and 1.
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ξ ∈ [0, 1].80 A spike-and-slab ridge is obtained when ξ = 0 and spike-and-slab lasso when

ξ = 1. The γj ∈ {0, 1} are indicator variables for model inclusion, and are assigned a

Bernoulli distribution with unknown probability of inclusion given by θj .81

Spatial information is often relevant to determining which parameters affect an

outcome; i.e., we expect relevant parameters to cluster spatially.82 Unlike classical GLM’s,

Bayesian GLM’s will provide solutions when predictors are highly correlated, but will not

incorporate spatial information into model selection unless explicitly included in the prior

distributions. It is conceivable to explicitly model correlation among the parameters, βj , in

their prior distributions, but a more computationally viable approach is to model correlation

among the prior probabilities of inclusion, θj , whose conditional estimates affect the degree

of shrinkage applied to parameters; correlation among these estimates mean that a given

estimate for βj depends in part upon the shrinkage applied to its neighbors’ estimates. A

variant of Conditional Autoregressions (CAR) known as Intrinsic Autoregressions (IAR)

have been used to incorporate spatial information into a wide range of practical applications,

and can be used as a prior distribution on the logit probabilities of inclusion (Banerjee et al.,

2015; Besag, 1974; Besag and Kooperberg, 1995; Rue and Held, 2005). Below is the prior

distribution for the logit of probabilities of inclusion:

log p(ψj|ψi, τ) ∝ −τ
2

2

∑
j:j<i

(ψj − ψi)2

 (2.2.3)

where ψj = logit(θj).83 Note that in practice, we often set τ = 1, which is the convention

applied in this work (Morris et al., 2019).

80The slab distribution is wide, to allow parameters to take larger values, while the spike distribution is
narrow, to shrink estimates severely toward zero. This is why s1 > s0.

81The γj are treated as missing data by the EM algorithm; their conditional expectations are estimated and
plugged into the joint posterior distribution, which is the maximized over the remaining parameters. This
iterative approach continues unto convergence.

82For example, many multiple testing procedures in neuroimaging explicitly make this assumption by taking
into account the size, extent, and general properties of clusters of statistically significant voxels.

83Since θj ∈ [0, 1], the multivariate Normal distribution, of which the CAR model is a special case, is not a
valid prior for θj ; however, logit(θj) ∈ R, which is the same support as the multivariate Normal distribution,
making the CAR a valid prior for logit(θj).
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2.3 Classification and Model Evaluation

The goal of this work is to examine the classification ability of the spike-and-slab

elastic net class of models. There are therefore two levels of statistical concern. The first

is that the spike-and-slab elastic net has several “free” parameters, which must be selected

by the user.84 K-fold cross validation techniques provide a principled way to make such

choices, by providing reasonable estimates of prediction error, as assessed by cross-validated

estimates of metrics like model deviance, mean-squared error, or area under the ROC curve

(AUC) (Hastie et al., 2009). We fit the model for several values of each free parameter and

compare their prediction error estimates.85 We can then select the model with the lowest

prediction error estimates.86 This is often a useful approach to model selection, even as the

goals of various models differ by circumstance. Figure 2 shows how we apply k-fold cross

validation in this work.

In many applications logistic regression is employed to obtain estimates for effects

of predictors on an outcome, typically odds ratios with corresponding interval estimates, and

evaluation of the model would revolve around those estimates. However, in this work we are

not explicitly focused on such “effect” estimates; rather, we need to apply a classification

rule to the estimated probabilities arising from the logistic regression. Since the predicted

outcomes obtained from a logistic regression are probabilities, one may apply a threshold

to classify subjects as either having or not having the disease. While in theory any value

between zero and one can be used as a threshold, in practice subjects are typically placed in

the class for which they have the highest predicted probability, which in binary classification

means if the predicted probability is great than one half, they are classified as having the

84In this case, we must choose ξ, which determines the compromise between ridge and lasso penalities, as
well as the spike (s0) and slab (s1) scales. However, this process applies in general for other situations with
different “free” parameters.

85At this point, which measure is used is not important; what matters for the sake understanding this process
is that we estimate prediction error, which provides an idea of how well the model would generalize. See Hastie
et al. (2009), Chapter 7 for more details on the relationship between prediction error and cross validation.

86In contrast to most prediction error estimates, when using AUC we choose the model with highest value;
however, generally speaking, higher cross-validated AUC estimates correspond to smaller prediction errors.
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disease. Thus, the usefulness of the model with respect to classification is not in the accuracy

or interpretation of odds ratios, but whether after applying a threshold to the subjects’

predicted outcomes, the result is accurate classification, both of the current subjects and of

subjects the model has not yet seen, i.e., independent data.

Assessing classifiers requires evaluation with respect to several metrics in order to

avoid being deceived. An obvious concern is the classifier’s accuracy, that is, what is the

probability that the algorithm correctly classifies a subject. However, this metric can be

misleading, especially in situations where the sample sizes for each class are unbalanced.87

Thus, in addition to accuracy, it is important to estimate and consider several other metrics

in evaluating classification performance:

1. Sensitivity: the probability that the subject is classified as having the disease, given

that the subject has the disease.

2. Specificity: the probability that the subject is not classified as having the disease, given

that the subject does not have the disease.

3. Positive Predictive Value (PPV): the probability that a subject has the disease, given

that the subject was classified as having the disease.

4. Negative Predictive Value (NPV): the probability that the subject does not have the

disease, given that the subject is classified as not having the disease.

In the authors’ experience, PPV and NPV are often neglected, but neglecting these metrics

makes the same mistake as only reporting accuracy, because these metrics can also be

deceiving, especially under unbalanced data.88 Ideally, all five metrics should be near

87For example, consider a sample of 1,000 subjects, 950 of which are healthy, and 50 of which have the
disease. A classifier that assigns “healthy” to all subjects no matter their characteristics would have 95%
accuracy, but miss every disease case. This is clearly an undesirable classifier, despite its high accuracy.

88Let us return to the case where 950 subjects do not have a disease and 50 do. Suppose the sensitivity and
specificity are both 90%, meaning 45/50 subjects with the disease and 855/950 subjects without the disease
are so classified. Now, 855/860 (99.42%) of those who tested negative were actually disease free, but only
45/140 (32.14%) of subjects who tested positive actually had the disease, which means roughly 2/3 of positive
tests impose undue anxiety in their recipients.
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Choose a set of values for
each free/tuning parameter.

K-fold CV: For each combination
of free parameter values, divide

data into K independent sets/folds.

For each of
k = 1, . . . , K folds:

Remove fold k from
data & fit Bayesian
logistic regression.

Obtain predicted
outcomes, ŷkv, for

each of v = 1, . . . , nk
subjects in fold k.

Obtain prediction
error estimates for
fold k; e.g., model
deviance or AUC.

Classify subjects in
fold k by thresholding

the estimated
probabilities, ŷkv.

Obtain classification
error estimates for

fold k; e.g., Accuracy.

Save estimates from fold k.

Go to next fold

Obtain average model fitness
estimates over all K folds.

Compare performance across all
combinations of free/tuning pa-
rameters, and select the model

with optimal performance.

Figure 2: This flowchart describes application of k-fold cross validation employed in this
paper.
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one if the classifier is performing well, and these metrics should be estimated within a

cross-validation process, just like measures of prediction error before applying the classifier,

because we are most concerned with estimating what these metrics would be if we applied

the classifier to independent data. Therefore, as we move on to the analyses, it is important

the bear in mind that we will be assessing the models’ performance on two levels: the first

is in basic model selection, that is, regardless of the classification rule, how well do we

predict the initial model would generalize. Secondly, after applying the classification rule

to create a classifier, how well do we predict the classifier would classify new subjects?

These two levels are the heart of the present examination, with a particular focus on the

latter, classification ability.

3 Analysis

3.1 Analysis Framework

Two cross sectional datasets were employed for classification, one contained cortical

thickness measures and one contained standardized uptake value ratios (SUVR) from tau

PET images.89 The cortical thickness data set included 234 (60.15%) cognitively normal

(CN) subjects, 116 (29.82%) with MCI, and 39 (10.03%) with dementia. The tau PET

dataset included 262 (60.93%) cognitively normal (CN) subjects, 127 (29.53%) with MCI,

and 41 (9.53%) with dementia. For each data set, we evaluate the algorithm’s ability to

classify CN vs. MCI, CN vs. dementia, and MCI vs. dementia.

We fit two sets of Bayesian logistic regression models. The first set of models is

fit with the traditional lasso (ξ = 1), spike-and-slab lasso (SSL), and spike-and-slab lasso

with IAR priors on the inclusion probabilities (SSL-IAR). The second set of models is a

halfway compromise between the ridge and lasso (ξ = 0.5), resulting in what we refer to as

the traditional elastic net (EN), spike-and-slab elastic net (SSEN), and spike-and-slab elastic

net with IAR priors on the inclusion priors (SSEN-IAR). Recall that including IAR priors

89See, e.g., Vemuri et al. (2017) for details regarding SUVR in AD research.
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on inclusion probabilities is how we explicitly model spatial structure; thus, the three levels

of models can be seen as gradually extending the elastic net from its traditional form to

spike-and-slab form to a spike-and-slab form with an explicit modeling of spatial structure.

For a given model and set values of s1 and s0 we obtain model fits and prediction error

statistics via 5-fold cross validation; since the resulting held-out sets were relatively small,

we performed 5-fold cross validation 10 times each case in order to obtain more stable

estimates.

Prior scale values, i.e., s1 and s0, must be selected in a principled way. The tra-

ditional models have that s1 = s0, in which case a single parameter value must be cho-

sen. We use the R package glmnet to fit a grid of models and select the model whose

scale parameter minimizes the cross-validated deviance.90 When using spike-and-slab

priors we fit models on a grid of spike priors, s0 = {0.01, 0.02, . . . , 0.5}, and slab priors,

s1 = {1, 2, 3, 4, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30} and select the model that

minimizes the cross-validated deviance. That is, we perform 5-fold cross validation to

obtain parameter and prediction error estimates at each combination of values for s0 and s1,

and then choose the values of s0 and s1 that minimize the prediction error as measured by

cross-validated deviance. While models are selected using deviance, for the final six models

in each case we report the mean squared error (MSE), mean absolute error (MAE), area

under the ROC curve (AUC), and misclassification (MC)91 to enable comparison across

models.

Classification is performed in each case by placing an observation in the class that has

the highest probability; e.g., when comparing CN and MCI, if the estimated probability is >

0.5, then the subject is classified as MCI. Classification performance estimates are obtained

90Without going into great detail, the key distinction between cross validated deviance and model deviance
is that the typical model deviance measures the fit of a model with the data used to fit the model, i.e., the
training error, whereas in the context of k-fold cross-validation we can see how well a model fits the held out
set in each of the k models, by using deviance, MSE, etc. This process provides us with a better estimate of
prediction error. See Hastie et al. (2009), Chapter 7, for details.

91Misclassification is defined as 1
n

∑n
i=1 I(|yi − ŷi| > 0.5) where I(·) is an indicator function whose value

is 1 when the argument is true, and zero otherwise.
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within the cross validation process. Following Section 2.3, we evaluate the classification

performances of each model using estimates for accuracy, sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV).

3.2 Analysis Results

Cortical thickness

Table 1 shows the estimated prediction error statistics when using cortical thickness

as features. For each classification scenario, SSEN-IAR had the lowest model deviance,

but in each case was closely followed by SSL-IAR, and occasionally SSL-IAR slightly

outperformed SSEN-IAR on other metrics, e.g., MSE for CN vs. dementia, AUC for CN

vs. MCI, and misclassification for CN vs. dementia. In general, model performance varied

widely across classification scenario. The most noticeable variation was with AUC, which

was above 0.94 for CN vs. dementia, between 0.62 and 0.68 for CN vs. MCI, and between

0.79 and 0.86 for MCI vs. dementia; see also figure 3. Similar differences by classification

scenario were present for MSE, MAE, and misclassification (MC).

Classification performance, as shown in table 2 and the left-hand side of figures 5,

6, and 7, presents a more complicated story. Accuracy, specificity, PPV, and NPV were

generally very similar across models within a given classification scenario. Nevertheless,

the spike-and-slab models tended to have slightly higher accuracies and predictive values

by about 1% to 3%. With respect to sensitivity, the spike-and-slab models noticeably

outperformed the traditional models between roughly 7% and 19%.

There were noticeable differences in model performance across classification sce-

narios. For CN vs. dementia, all models had accuracy above 0.93 (max: SSEN, 0.952),

specificity above 0.98 (max: SSEN, 0.985), PPV above 0.86 (max: SSEN, 0.898), and NPV

above 0.94 (max: SSEN, 0.966). Sensitivity had the most obvious differences across models,

with SSEN having the highest (0.79), the other spike-and-slab models above 0.75, and the

traditional models below 0.70. See figure 5, left-hand side.
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For CN vs. MCI, accuracy (max: SSEN, 0.733) and NPV (max: SSL-IAR, 0.736)

were both above 0.71 for all models. Specificity was above 0.91 (max: EN, 0.974). The

best sensitivity was SSL (IAR) at 0.335, while the other spike-and-slab models were above

0.29, and the traditional models around 0.23. PPV was higher for the traditional models

(near 0.80), while the spike-and-slab models were between 0.64 and 0.75. See also figure 6,

left-hand side.

For MCI vs. dementia, accuracy was above 0.81 for the spike-and-slab models (max:

SSEN-IAR, 0.832) and below 0.80 for the traditional models. Specificity was above 0.91

for all models (max: EN, 0.939). SSEN-IAR had the highest NPV (0.862), while the other

spike-and-slab models were above 0.84, and the traditional models below 0.82). SSEN-IAR

had the highest sensitivity (0.559), while the other spike-and-slab models were above 0.50,

and the traditional models below 0.40. SSEN-IAR also had the highest PPV (0.712), with

SSEN and SSL-IAR near 0.69, SSL and EN near 0.67, and traditional lasso at 0.64. See

also figure 7, left-hand side.

Tau PET imaging

Table 3 shows the estimated prediction error statistics when using tau PET imaging

as features. Unlike with cortical thickness, no specific model consistently outperformed

all others, but the spike-and-slab models always outperformed the traditional models; by

deviance the best fits were SSL for CN vs. dementia, SSL-IAR for CN vs. MCI and

SSEN-IAR for MCI vs. dementia.

Similar to cortical thickness, model performance differed considerably by classifica-

tion scenario, and again the most noticeable metric was AUC, which was greater than 0.89

for all models under CN vs. dementia (max: SSL, 0.933), above 0.68 for CN vs. MCI (max:

SSEN-IAR, 0.728), and above 0.68 for MCI vs. dementia (max: SSEN-IAR, 0.785); it is

also noticeable that for MCI vs. Dementia, the models with IAR priors were around 0.78,

the spike-and-slab models without IAR priors just under 0.74, and the traditional models
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under 0.70. ROC curves for tau PET are shown in figure 4, which highlights the differing

performances of the models by classification scenario.

Table 4 displays the classification performance when using tau PET measures as

features. As with cortical thickness, the accuracy, specificity, and NPV were fairly similar

across models within a classification scenario, but the spike-and-slab models outperformed

the traditional models with respect to accuracy and NPV in every case by approximately

1% to 4%. While sensitivity was lower for tau PET compared to cortical thickness, the

spike-and-slab models noticeably outperformed the traditional models by approximately 6%

to 15%. PPV was higher for the spike-and-slab models for both CN vs. dementia (4%− 7%)

and MCI vs. dementia (10%− 17%), but fairly similar with mixed results for CN vs. MCI.

As with cortical thickness, there were noticeable differences across classification

scenarios. For CN vs. dementia, accuracy was above 0.91 (max: SSL, 0.936), specificity

above 0.97 (max: SSEN-IAR, 0.985), and NPV above 0.92 (max: SSL, 0.947). SSL

had the highest sensitivity at 0.651, with the other spike-and-slab models near 0.60 and

the traditional models a little above 0.5. SSEN (IAR) had the highest PPV (0.861), with

the other spike-and-slab models above 0.83, and the traditional models at or below 0.80.

Accuracy was around 0.93 for the spike-and-slab models and 0.91 for the traditional models.

See figure 5, right hand side.

For CN vs. MCI, specificity was above 0.92 for all models. SSL (IAR) had the

highest accuracy and NPV (both 0.765), while the other spike-and-slab models were above

0.74, and the traditional models about 0.73. SSL (IAR) had the highest sensitivity (0.406),

while the other spike-and-slab models were between 0.33 and 0.37, and the traditional

models below 0.30. PPV was highest for SSL (0.766), and all other models were above 0.71.

See figure 6, right hand side.

For MCI vs. dementia specificity was above 0.94 for all models (max: SSEN 0.967).

The spike-and-slab models had NPV of approximately 0.82 (max: SSEN-IAR, 0.822), while
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the traditional models were approximately 0.79. Similarly, accuracy was approximately 0.81

for all spike-and-slab models (max: SSL and SSEN, 0.811) and approximately 0.77 for the

traditional models. PPV was highest for the spike-and-slab models without spatial structure

with SSEN being the highest (0.761), while the models with IAR priors were approximately

0.69, and the traditional models less than 0.60. SSEN (IAR) had the highest sensitivity

(0.363), while the other spike-and-slab models were above 0.32 and the traditional models

below 0.20. See figure 7, right hand side.

3.3 Conclusion

When classifying CN vs. demented subjects, all the algorithms tend to perform

well with respect to accuracy, specificity, and NPV (all > 0.90), regardless of the imaging

modality, and while the spike-and-slab models tended to outperform the traditional models

on these measures, the differences were generally not extreme. The similarity across models

with respect to accuracy, specificity, and NPV continues with CN vs. MCI and MCI vs.

dementia, but performance is considerably weaker for accuracy and NPV. Specificity remains

above 0.90 for all models, but accuracy and NPV drop to between 0.70− 0.76 for CN vs.

MCI and 0.75− 0.86 for MCI vs. dementia. It is worth noticing that accuracy appears to be

driven by NPV, since these metrics are nearly indistinguishable in every case, as visualized

in figures 5, 6, and 7.

However, accuracy can be misleading, especially with unbalanced data. When we

turn attention to sensitivity and PPV, clear differences emerge between both models and

imaging modality. Sensitivity is consistently lower, and has a larger range, than the other

metrics (0.18 < sensitivity < 0.79) in all cases), and for CN vs. dementia and MCI vs.

dementia, cortical thickness has higher sensitivity compared to tau PET. In all cases except

CN vs. dementia using cortical thickness, a model using the IAR prior had the highest

sensitivity; in this exception the SSEN model had the highest sensitivity. In every scenario

the spike-and-slab models noticeably outperformed the traditional models with respect the
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sensitivity. PPV was consistently higher than sensitivity, in most cases above 0.60. When

using tau PET images and for CN vs. dementia and MCI vs. dementia, PPV was noticeably

higher for the spike-and-slab models; this was true to a lesser extent with cortical thickness.

There was not a clear trend for CN vs. MCI with respect to PPV.

In conclusion, all the models tend not to classify subjects as being at a later stage

than they are, i.e., avoiding false positives even when classifying subjects who are more

similar to each other. When classifying dementia vs. either CN or MCI, a positive result

from the spike-and-slab models is more likely to be correct compared to the traditional

models, and usually with acceptably high probability, especially for CN vs. dementia.

However, especially for comparisons other than CN vs. dementia, the models tend to miss

many subjects who have progressed further. While the spike-and-slab and/or IAR priors

helped to improve sensitivity, the improvement did not always result in sensitivity values

that would be considered desirable.

4 Discussion

In this work we have applied the spike-and-slab elastic net as a classifier in ADNI

data. While this is not the first paper to apply the elastic net to neuroimaging data related to

AD, it is to our knowledge the first attempt to apply the spike-and-slab prior framework to

classification in AD data; an additional novelty is the explicit modeling of spatial information

within the spike-and-slab elastic net framework. In the analyses presented, the classifiers had

greatest success in classifying CN vs. dementia, followed by MCI vs. dementia, and lastly

CN vs. MCI, regardless of the imaging modality. Classification ability drops off noticeably

when MCI enters the picture, but this is perhaps not too surprising since presumably the

difference between CN and MCI subjects and MCI and dementia subjects will tend to be

less than that between CN and dementia subjects, and in addition MCI diagnoses are known

to be subject to false positive issues (Bondi et al., 2017).
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The classification accuracy estimates presented here are often comparable to that

of other classification methods in the literature, e.g., see table 2 in Rathore et al. (2017),

which suggests that the presented algorithms may prove useful in wider contexts. While the

models using spike-and-slab priors tended to outperform traditional models with respect

to accuracy, specificity, PPV, and NPV, the difference across models within a classification

scenario was often relatively small. The clearest benefit of the spike-and-slab elastic net

framework was with respect to sensitivity. While in many cases, especially CN vs. MCI,

the sensitivities still low enough to be undesirable, the models using spike-and-slab models

always outperformed the traditional models, and most cases including the IAR prior on

inclusion probabilities yielded an additional benefit to sensitivity.

There are several limitations related to the data used in the current study, several of

which point towards ways in which model performance may be improved. As described in

Rathore et al. (2017), many classification approaches use atlases to reduce the dimension of

the predictors/features. However, given the ability of the presented class of models to handle

high dimensional spatial data, restricting analyses to data averaged within each region of the

Desikan-Killiany atlas, which process reduces thousands of measurements to 68 per subject,

may reduce the effectiveness of the models used in this work. While dimension reduction

is necessary to fit many models in the first place, variants of the elastic net can handle

situations where there are many more predictors/features than subjects, and the addition

of the IAR prior on inclusion probabilities can also incorporate spatial information into

variable/feature selection. Another concern with atlas use is that important areas that overlap

several atlas regions may not be detectable after reduction to the atlas, which may harm

model performance.

Despite our intuitions regarding dimension reduction, algorithms that use reduced

features tend to perform better than those based on voxel or vertex level data (Park et al.,

2012). However, even if vertex or voxel level data is too noisy to improve performance,
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there are a wide range of dimension reduction methods available, and it is possible that

an approach to dimension reduction yielding many more than 68 features would improve

model performance, and take greater advantage these methods’ strengths. Given that the

spike-and-slab elastic net framework is specifically designed to handle “noisy” situations,

we may reasonably expect the difference in performance between the spike-and-slab and

traditional elastic net to be larger as the number of variables/features increases. More flexible

approaches to dimension reduction may also yield different, and potentially more relevant,

feature sets for tau PET imaging and cortical thickness data sets, which may also improve

model performance. We also restricted analysis to cross sectional data, but it would useful

to perform a study to determine whether the algorithm could predict whether subjects would

progress from CN to MCI, MCI to dementia, or even CN to dementia.

While there are several limitations to the current study, the spike-and-slab elastic

net models tended to outperform the traditional elastic net models across several metrics,

noticeably improved sensitivity estimates, and showed comparable classification accuracy to

other algorithms in the literature. In addition, there are many future directions for extending

the model to incorporate flexible dimension reduction as a step before applying the spike-

and-slab elastic net, which may allow one to create a feature set that better exploits the

strengths of the model.
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Appendix: Tables

Table 1: Cortical Thickness: Prediction Error Estimates
Cross-Validated Average

Model s0 s1 Dev. AUC MSE MAE MC
Lasso 0.003 0.003 96.199 0.946 0.049 0.096 0.061
SSL 0.250 7.500 78.079 0.966 0.038 0.068 0.052

CN vs. SSL-IAR 0.250 10.000 71.314 0.972 0.034 0.062 0.048
Dem. EN 0.001 0.001 87.383 0.955 0.044 0.088 0.060

SSEN 0.150 12.500 84.156 0.956 0.040 0.082 0.043
SSEN-IAR 0.260 20.000 70.646 0.973 0.035 0.068 0.049
Lasso 0.007 0.007 421.441 0.625 0.204 0.409 0.275
SSL 0.140 7.500 414.751 0.657 0.200 0.393 0.285

CN vs. SSL-IAR 0.140 10.000 404.155 0.681 0.194 0.383 0.276
MCI EN 0.009 0.009 420.883 0.627 0.204 0.409 0.273

SSEN 0.070 4.000 413.268 0.658 0.199 0.397 0.267
SSEN-IAR 0.140 7.500 404.120 0.679 0.194 0.385 0.273
Lasso 0.013 0.013 140.356 0.796 0.148 0.290 0.217
SSL 0.140 5.000 124.898 0.841 0.129 0.248 0.186

MCI vs. SSL-IAR 0.150 4.000 124.109 0.845 0.128 0.243 0.175
Dem. EN 0.012 0.012 135.041 0.812 0.142 0.280 0.203

SSEN 0.140 5.000 124.198 0.843 0.128 0.254 0.180
SSEN-IAR 0.140 5.000 121.553 0.851 0.125 0.244 0.168
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Table 2: Cortical Thickness: Classification Performance
Cross-Validated Average

Model s0 s1 Accu. Sens. Spec. PPV NPV
Lasso 0.003 0.003 0.939 0.672 0.984 0.874 0.947
SSL 0.250 7.500 0.948 0.751 0.981 0.870 0.960

CN vs. SSL-IAR 0.250 10.000 0.952 0.769 0.982 0.880 0.962
Dem. EN 0.001 0.001 0.940 0.685 0.982 0.864 0.949

SSEN 0.150 12.500 0.957 0.790 0.985 0.898 0.966
SSEN-IAR 0.260 20.000 0.951 0.751 0.984 0.885 0.960
Lasso 0.007 0.007 0.725 0.233 0.969 0.788 0.718
SSL 0.140 7.500 0.715 0.309 0.916 0.645 0.728

CN vs. SSL-IAR 0.140 10.000 0.724 0.335 0.917 0.667 0.736
MCI EN 0.009 0.009 0.727 0.228 0.974 0.812 0.718

SSEN 0.070 4.000 0.733 0.290 0.952 0.750 0.730
SSEN-IAR 0.140 7.500 0.727 0.328 0.925 0.684 0.735
Lasso 0.013 0.013 0.783 0.315 0.941 0.642 0.803
SSL 0.140 5.000 0.814 0.508 0.916 0.673 0.847

MCI vs. SSL-IAR 0.150 4.000 0.825 0.554 0.916 0.690 0.859
Dem. EN 0.012 0.012 0.797 0.374 0.939 0.672 0.817

SSEN 0.140 5.000 0.820 0.505 0.926 0.697 0.848
SSEN-IAR 0.140 5.000 0.832 0.559 0.923 0.712 0.862

Table 3: Tau PET Imaging: Prediction Error Estimates
Cross-Validated Average

Model s0 s1 Dev. AUC MSE MAE MC
Lasso 0.002 0.002 142.133 0.895 0.065 0.125 0.086
SSL 0.440 17.500 110.925 0.933 0.051 0.097 0.064

CN vs. SSL-IAR 0.160 7.500 118.995 0.919 0.054 0.105 0.070
Dem. EN 0.001 0.001 136.890 0.904 0.062 0.123 0.083

SSEN 0.270 30.000 117.081 0.916 0.053 0.107 0.070
SSEN-IAR 0.470 30.000 113.763 0.926 0.052 0.106 0.067
Lasso 0.003 0.003 442.126 0.685 0.191 0.383 0.263
SSL 0.270 20.000 425.962 0.726 0.181 0.359 0.255

CN vs. SSL-IAR 0.250 15.000 423.400 0.727 0.178 0.352 0.235
MCI EN 0.002 0.002 443.969 0.682 0.192 0.383 0.269

SSEN 0.110 20.000 427.318 0.719 0.182 0.365 0.256
SSEN-IAR 0.270 20.000 424.092 0.728 0.181 0.361 0.253
Lasso 0.010 0.010 172.852 0.683 0.168 0.324 0.229
SSL 0.200 12.500 158.931 0.739 0.147 0.288 0.189

MCI vs. SSL-IAR 0.170 7.500 154.885 0.778 0.145 0.279 0.195
Dem. EN 0.022 0.022 170.016 0.690 0.165 0.326 0.230

SSEN 0.190 12.500 158.446 0.738 0.148 0.294 0.189
SSEN-IAR 0.300 22.500 153.490 0.785 0.145 0.280 0.195
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Table 4: Tau PET Imaging: Classification Performance
Cross-Validated Average

Model s0 s1 Accu. Sens. Spec. PPV NPV
Lasso 0.002 0.002 0.914 0.522 0.975 0.770 0.929
SSL 0.440 17.500 0.936 0.651 0.980 0.840 0.947

CN vs. SSL-IAR 0.160 7.500 0.930 0.600 0.982 0.837 0.940
Dem. EN 0.001 0.001 0.917 0.507 0.981 0.809 0.927

SSEN 0.270 30.000 0.930 0.588 0.984 0.852 0.938
SSEN-IAR 0.470 30.000 0.933 0.602 0.985 0.861 0.940
Lasso 0.003 0.003 0.737 0.294 0.952 0.750 0.735
SSL 0.270 20.000 0.745 0.365 0.929 0.715 0.751

CN vs. SSL-IAR 0.250 15.000 0.765 0.406 0.940 0.766 0.765
MCI EN 0.002 0.002 0.731 0.277 0.952 0.737 0.730

SSEN 0.110 20.000 0.744 0.330 0.945 0.746 0.744
SSEN-IAR 0.270 20.000 0.747 0.354 0.939 0.737 0.749
Lasso 0.010 0.010 0.771 0.198 0.957 0.597 0.787
SSL 0.200 12.500 0.811 0.346 0.961 0.739 0.820

MCI vs. SSL-IAR 0.170 7.500 0.805 0.359 0.950 0.698 0.821
Dem. EN 0.022 0.022 0.770 0.188 0.957 0.589 0.785

SSEN 0.190 12.500 0.811 0.327 0.967 0.761 0.817
SSEN-IAR 0.300 22.500 0.805 0.363 0.948 0.696 0.822
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Appendix: Figures

Figure 3: Estimated ROC curves for cortical thickness as features/predictors.
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Figure 4: Estimated ROC curves for tau PET as features/predictors.
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Figure 5: Model classification performance for cognitive normal vs. demented subjects.
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Figure 6: Model classification performance for cognitive normal vs. MCI subjects.
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Figure 7: Model classification performance for MCI vs. demented subjects.

196



5 Acknowledgements

Data collection and sharing for this project was funded by the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904)

and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI

is funded by the National Institute on Aging, the National Institute of Biomedical Imag-

ing and Bioengineering, and through generous contributions from the following: AbbVie,

Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; Bio-

Clinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai

Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La

Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO

Ltd.;Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & John-

son Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co.,

Inc.;Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis

Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical

Company; and Transition Therapeutics. The Canadian Institutes of Health Research is

providing funds to support ADNI clinical sites in Canada. Private sector contributions are

facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The

grantee organization is the Northern California Institute for Research and Education, and

the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University

of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging

at the University of Southern California.

REFERENCES

Arbabshirani, Mohammad R.; Plis, Sergey; Sui, Jing, and Calhoun, Vince D. Single subject

prediction of brain disorders in neuroimaging: Promises and pitfalls. NeuroImage, 145:

137–165, 2017. ISSN 10959572. doi: 10.1016/j.neuroimage.2016.02.079.

Banerjee, Sudipto; Carlin, Bradley P., and Gelfand, Alan E. Hierarchical Modeling and

197

www.fnih.org


Analysis for Spatial Data. Chapman & Hall/CRC, Boca Raton, Florida, second edition,

2015.

Besag, Julian. Spatial interaction and the statistical analysis of lattice systems. Journal of

the Royal Statistical Society. Series B (Methodological), 36(2):192–236, 1974.

Besag, Julian and Kooperberg, Charles. On conditional and intrinsic autoregressions.

Biometrika, 82(4):733–746, 1995. doi: 10.1093/biomet/82.4.733.

Bondi, Mark W.; Edmonds, Emily C., and Salmon, David P. Alzheimer’s disease: Past,

present, and future. Journal of the International Neuropsychological Society, 23:818–831,

2017. ISSN 14697661. doi: 10.1017/S135561771700100X.

Braak, Heiko and Del Tredici, Kelly. Are cases with tau pathology occurring in the absence

of Aβ deposits part of the AD-related pathological process? Acta Neuropathologica, 128

(6):767–772, 2014. ISSN 14320533. doi: 10.1007/s00401-014-1356-1.

Braak, Heiko; Thal, Dietmar R.; Ghebremedhin, Estifanos, and Del Tredici, Kelly. Stages of

the pathologic process in alzheimer disease: Age categories from 1 to 100 years. Journal

of Neuropathology and Experimental Neurology, 70(11), 2011. ISSN 00223069. doi:

10.1097/NEN.0b013e318232a379.

Brosch, Jared R.; Farlow, Martin R.; Risacher, Shannon L., and Apostolova, Liana G. Tau

Imaging in Alzheimer’s Disease Diagnosis and Clinical Trials. Neurotherapeutics, 14:

62–68, 2017. ISSN 18787479. doi: 10.1007/s13311-016-0490-y.

Crary, John F.; Trojanowski, John Q.; Schneider, Julie A.; Abisambra, Jose F.; Abner,

Erin L.; Alafuzoff, Irina; Arnold, Steven E.; Attems, Johannes; Beach, Thomas G.; Bigio,

Eileen H.; Cairns, Nigel J.; Dickson, Dennis W.; Gearing, Marla; Grinberg, Lea T.; Hof,

Patrick R.; Hyman, Bradley T.; Jellinger, Kurt; Jicha, Gregory A.; Kovacs, Gabor G.;

Knopman, David S.; Kofler, Julia; Kukull, Walter A.; Mackenzie, Ian R.; Masliah,

Eliezer; McKee, Ann; Montine, Thomas J.; Murray, Melissa E.; Neltner, Janna H.;

198



Santa-Maria, Ismael; Seeley, William W.; Serrano-Pozo, Alberto; Shelanski, Michael L.;

Stein, Thor; Takao, Masaki; Thal, Dietmar R.; Toledo, Jonathan B.; Troncoso, Juan C.;

Vonsattel, Jean Paul; White, Charles L.; Wisniewski, Thomas; Woltjer, Randall L.;

Yamada, Masahito, and Nelson, Peter T. Primary age-related tauopathy (PART): a

common pathology associated with human aging. Acta Neuropathologica, 128(6):755–

766, 2014. ISSN 14320533. doi: 10.1007/s00401-014-1349-0.

Dale, Anders M. and Serano, Martin I. Improved localization of cortical activity by

combining eeg and meg with mri cortical surface reconstruction: A linear approach.

Journal of Cognitive Neuroscience, 5(2):162–176, 1993. doi: 10.1162/jocn.1993.5.2.162.

Dale, Anders M.; Fischl, Bruce, and Sereno, Martin I. Cortical surface-based analysis:

I. Segmentation and surface reconstruction. NeuroImage, 9(2):179–194, 1999. ISSN

10538119. doi: 10.1006/nimg.1998.0395.

de Vos, Frank; Koini, Marisa; Schouten, Tijn M.; Seiler, Stephan; va der Grond, Jeroen;

Lechner, Anita; Schmidt, Reinhold; de Rooij, Mark, and Rombouts, Serge A.R.B. A

comprehensive analysis of resting state fmri measures to classify individual patients with

alzheimer’s disease. NeuroImage, 167:62–72, 2018. doi: 10.1016/j.neuroimage.2017.11

.025.

Desikan, Rahul S.; Ségonne, Florent; Fischl, Bruce; Quinn, Brian T.; Dickerson, Bradford C.;

Blacker, Deborah; Buckner, Randy L.; Dale, Anders M.; Maguire, R. Paul; Hyman,

Bradley T.; Albert, Marilyn S., and Killiany, Ronald J. An automated labeling system for

subdividing the human cerebral cortex on mri scans into gyral based regions of interest.

NeuroImage, 31(3):968 – 980, 2006. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2006.

01.021.

Edmonds, Emily C.; Eppig, Joel; Bondi, Mark W.; Leyden, Kelly M.; Goodwin, Bailey;

Delano-Wood, Lisa, and McDonald, Carrie R. Heterogeneous cortical atrophy patterns in

199



MCI not captured by conventional diagnostic criteria. Neurology, 87(20), 2016. ISSN

1526632X. doi: 10.1212/WNL.0000000000003326.

Fischl, Bruce. FreeSurfer. NeuroImage, 62(2):774–781, 2012. ISSN 10538119. doi:

10.1016/j.neuroimage.2012.01.021.

Fischl, Bruce and Dale, Anders M. Measuring the thickness of the human cerebral cortex

from magnetic resonance images. Proceedings of the National Academy of Sciences

of the United States of America, 97(20):11050–11055, 2000. ISSN 00278424. doi:

10.1073/pnas.200033797.

Fischl, Bruce; Sereno, Martin I., and Dale, Anders M. Cortical surface-based analysis: II.

Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2):195–207,

1999. ISSN 10538119. doi: 10.1006/nimg.1998.0396.

Fischl, Bruce; Liu, Arthur, and Dale, Anders M. Automated manifold surgery: Constructing

geometrically accurate and topologically correct models of the human cerebral cortex.

IEEE Transactions on Medical Imaging, 20(1):70–80, 2001. ISSN 02780062. doi:

10.1109/42.906426.

Fischl, Bruce; Salat, David H.; Busa, Evelina; Albert, Marilyn; Dieterich, Megan; Hasel-

grove, Christian; van der Kouwe, Andre; Killiany, Ron; Kennedy, David; Klaveness,

Shuna; Montillo, Albert; Makris, Nikos; Rosen, Bruce, and Dale, Anders M. Whole brain

segmentation: Automated labeling of neuroanatomical structures in the human brain.

Neuron, 33:341–355, 2002. doi: 10.1016/s0896-6273(02)00569-x.

Friedman, J.; Hastie, T., and Tibshirani, R. Regularization paths for generalized linear

models via coordinate descent. Journal of Statistical Software, 33:1–22, 2010. doi:

10.18637/jss.v033.i01.

Friedman, Jerome; Hastie, Trevor; Höfling, Holger, and Tibshirani, Robert. Pathwise

200



coordinate optimization. The Annals of Applied Statistics, 1(2):302–332, 2007. doi:

10.1214/07-AOAS131.

Frisoni, Giovanni B.; Fox, Nick C.; Jack, Clifford R.; Scheltens, Philip, and Thompson,

Paul M. The clinical use of structural MRI in Alzheimer disease. Nature Reviews

Neurology, 6(2), 2010. ISSN 17594758. doi: 10.1038/nrneurol.2009.215.

George, Edward I. and McCulloch, Robert E. Variable selection via gibbs sampling. Journal

of the American Statistical Association, 88:881–889, 1993. doi: 10.1080/01621459.1993.

10476353.

George, Edward I. and McCulloch, Robert E. Approaches for bayesian variable selection.

Statistica Sinica, 7:339–373, 1997.

Hastie, Trevor; Tibshirani, Robert, and Friedman, Jerome. The Elements of Statistical

Learning. Springer, 2009.

Jack, Clifford R.; Knopman, David S.; Jagust, William J.; Shaw, Leslie M.; Aisen, Paul S.;

Weiner, Michael W.; Petersen, Ronald C., and Trojanowski, John Q. Hypothetical model

of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet Neurology,

12(2):207–216, 2010. ISSN 14744422. doi: 10.1016/S1474-4422(09)70299-6.

Jack, Clifford R.; Knopman, David S.; Jagust, William J.; Petersen, Ronald C.; Weiner,

Michael W.; Aisen, Paul S.; Shaw, Leslie M.; Vemuri, Prashanthi; Wiste, Heather J.;

Weigand, Stephen D.; Lesnick, Timothy G.; Pankratz, Vernon S.; Donohue, Michael C.,

and Trojanowski, John Q. Tracking pathophysiological processes in Alzheimer’s disease:

An updated hypothetical model of dynamic biomarkers. The Lancet Neurology, 12(2):

207–216, 2013. ISSN 14744422. doi: 10.1016/S1474-4422(12)70291-0.

Jack, Clifford R.; Bennett, David A.; Blennow, Kaj; Carrillo, Maria C.; Feldman, Howard H.;

Frisoni, Giovanni B.; Hampel, Harald; Jagust, William J.; Johnson, Keith A.; Knopman,

David S.; Petersen, Ronald C.; Scheltens, Philip; Sperling, Reisa A., and Dubois, Bruno.

201



A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers.

Neurology, 87(5):539–547, 2016a. ISSN 1526632X. doi: 10.1212/WNL.000000000000

2923.

Jack, Clifford R.; Knopman, David S.; Chételat, Gaël; Dickson, Dennis; Fagan, Anne M.;

Frisoni, Giovanni B.; Jagust, William; Mormino, Elizabeth C.; Petersen, Ronald C.;

Sperling, Reisa A.; van der Flier, Wiesje M.; Villemagne, Victor L.; Visser, Pieter J., and

Vos, Stephanie J. B. Suspected non-Alzheimer disease pathophysiology — concept and

controversy. Nature Reviews Neurology, 12(2):117–124, 2016b. ISSN 1759-4758. doi:

10.1038/nrneurol.2015.251. URL http://www.nature.com/articles/nrneurol.2015.251.

Lane, C. A.; Hardy, J., and Schott, J. M. Alzheimer’s disease. European Journal of

Neurology, 2018. ISSN 14681331. doi: 10.1111/ene.13439.

Leach, Justin M.; Aban, Inmaculada, and Yi, Nengjun. Incorporating spatial structure into

inclusion probabilities for bayesian variable selection. Unpublished, 2020.

Mitchell, T.J. and Beauchamp, J.J. Bayesian variable selection in linear regression. Journal

of the American Statistical Association, 83(404):1023–1032, 1988. doi: 10.1080/016214

59.1988.10478694.

Morris, Mitzi; Wheeler-Martin, Katherine; Simpson, Dan; Mooney, Stephen J.; Gelman,

Andrew, and DiMaggio, Charles. Bayesian hierarchical spatial models: Implementing the

baseg york mollié model in stan. Spatial and Spatio-temporal Epidemiology, 31, 2019.

doi: 10.1016/j.sste.2019.100301.

Park, Hyunjin; Yang, Jin Ju; Seo, Jongbum, and Lee, Jong Min. Dimensionality reduced

cortical features and their use in the classification of Alzheimer’s disease and mild

cognitive impairment. Neuroscience Letters, 529(2):123–127, 2012. ISSN 03043940.

doi: 10.1016/j.neulet.2012.09.011.

Park, Trevor and Casella, George. The bayesian lasso. Journal of the American Statistical

202

http://www.nature.com/articles/nrneurol.2015.251


Association, 103(482):681–686, 2008. doi: 10.1198/016214508000000337.

Petersen, R. C.; Aisen, P. S.; Beckett, L. A.; Donohue, M. C.; Gamst, A. C.; Harvey, D. J.;

Jack, C. R.; Jagust, W. J.; Shaw, L. M.; Toga, A. W.; Trojanowski, J. Q., and Weiner,

M. W. Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization.

Neurology, 74:201–209, 2010. ISSN 1526632X. doi: 10.1212/WNL.0b013e3181cb3e25.

Plant, Claudia; Teipel, Stefan J.; Oswald, Annahita; Böhm, Christian; Meindl, Thomas;

Mourao-Miranda, Janaina; Bokde, Arun W.; Hampel, Harald, and Ewers, Michael.

Automated detection of brain atrophy patterns based on MRI for the prediction

of Alzheimer’s disease. NeuroImage, 50:162–174, 2010. ISSN 10538119. doi:

10.1016/j.neuroimage.2009.11.046.

Rathore, Saima; Habes, Mohamad; Iftikhar, Muhammad Aksam; Shacklett, Amanda, and

Davatzikos, Christos. A review on neuroimaging-based classification studies and associ-

ated feature extraction methods for Alzheimer’s disease and its prodromal stages. Neu-

roImage, 155:530–548, 2017. ISSN 10959572. doi: 10.1016/j.neuroimage.2017.03.057.

R Core Team, . R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria, 2017. URL https://www.R-project.org/.

Roc̆ková, Veronica and George, Edward. The spike and slab lasso. Journal of the American

Statistical Association, 113:431–444, 2018. doi: 10.1080/01621459.2016.1260469.

Rue, Håvard and Held, Leonhard. Gaussian Markov Random Fields: Theory and Applica-

tions. Chapman & Hall/CRC, Boca Raton, Florida, 2005.

Schouten, Tijn M.; Koini, Marisa; De Vos, Frank; Seiler, Stephan; Van Der Grond, Jeroen;

Lechner, Anita; Hafkemeijer, Anne; Möller, Christiane; Schmidt, Reinhold; De Rooij,

Mark, and Rombouts, Serge A.R.B. Combining anatomical, diffusion, and resting state

functional magnetic resonance imaging for individual classification of mild and moderate

203

https://www.R-project.org/


Alzheimer’s disease. NeuroImage: Clinical, 11:46–51, 2016. ISSN 22131582. doi:

10.1016/j.nicl.2016.01.002.

Segonne, Florent; Dale, Anders M.; Busa, Evelina; Glessner, Maureen; Salat, David H.;

Hahn, Horst K., and Fischl, Bruce. A hybrid approach to the skull stripping problem in

mri. NeuroImage, 22(3):1060–1075, 2004. doi: 10.1016/j.neuroimage.2004.03.032.

Segonne, Florent; Pacheco, Jenni, and Fischl, Bruce. Geometrically accurate topology-

correction of cortical surfacces using nonseparating loops. IEEE Transactions on Medical

Imaging, 26(4):518–529, 2007. doi: 10.1109/TMI.2006.887364.

Sled, John G.; Zijdenbos, Alex P., and Evans, Alan C. A nonparametric method for automatic

correction of intensity nonuniformity in mri data. IEEE Transactions on Medical Imaging,

17(1):87–97, 1998. doi: 10.1109/42.668698.

Tang, Zaixiang; Shen, Yueping; Zhang, Xinyan, and Yi, Nengjun. The spike and slab lasso

generalized linear models for prediction and associated genes detection. Genetics, 205:

77–88, 2017. doi: 10.1534/genetics.116.192195.

Teipel, Stefan J.; Grothe, Michel J.; Metzger, Coraline D.; Grimmer, Timo; Sorg, Christian;

Ewers, Michael; Franzmeier, Nicolai; Meisenzahl, Eva; Kloppel, Stephan; Borchardt,

Viola; Walter, Martin, and Dyrba, Martin. Robust detection of impaired resting state

functional connectivity networks in alzheimer’s disease using elastic net regularized

regression. Frontiers in Aging Neuroscience, 8(318), 2017. doi: 10.3389/fnagi.2016.003

18.

Tibshirani, Robert. Regression shrinkage and selection via the lasso. J.R. Statist. Soc., 58

(1):267–288, 1996. doi: 10.1111/j.2517-6161.1996.tb02080.x.

Trzepacz, Paula T.; Hochstetler, Helen; Yu, Peng; Castelluccio, Peter; Witte, Michael M.,

and Degenhardt, Grazia Dell’Agnello Elisabeth K. Relationship of hippocampal volume

204



to amyloid burden across diagnostic stages of alzheimer’s disease. Dementia and Geriatric

Cognitive Disorders, 41:68–79, 2016. doi: 10.1159/000441351.

Vemuri, Prashanthi; Lowe, Val J.; Knopman, David S.; Senjem, Matthew L.; Kemp,

Bradley J.; Schwarz, Christopher G.; Przybelski, Scott A.; Machulda, Mary M.; Pe-

tersen, Ronald C., and Jr., Clifford R. Jack. Tau-pet uptake: Regional variation in

average suvr and impact of amyloid deposition. Alzheimer’s and Dementia: Diagnosis,

Assessment and Disease Monitoring, 6:21–30, 2017. doi: 10.1016/j.dadm.2016.12.010.

Weiner, Michael W.; Veitch, Dallas P.; Aisen, Paul S.; Beckett, Laurel A.; Cairns, Nigel J.;

Green, Robert C.; Harvey, Danielle; Jack, Clifford R.; Jagust, William; Morris, John C.;

Petersen, Ronald C.; Salazar, Jennifer; Saykin, Andrew J.; Shaw, Leslie M.; Toga,

Arthur W., and Trojanowski, John Q. The Alzheimer’s Disease Neuroimaging Initiative 3:

Continued innovation for clinical trial improvement, 2017. ISSN 15525279.

Wyman, Bradley T.; Harvey, Danielle J.; Crawford, Karen; Bernstein, Matt A.; Carmichael,

Owen; Cole, Patricia E.; Crane, Paul K.; Decarli, Charles; Fox, Nick C.; Gunter, Jeffrey L.;

Hill, Derek; Killiany, Ronald J.; Pachai, Chahin; Schwarz, Adam J.; Schuff, Norbert;

Senjem, Matthew L.; Suhy, Joyce; Thompson, Paul M.; Weiner, Michael, and Jack,

Clifford R. Standardization of analysis sets for reporting results from ADNI MRI data.

Alzheimer’s and Dementia, 9(3):332–337, 2013. ISSN 15525279. doi: 10.1016/j.jalz.201

2.06.004.

Zou, Hui and Hastie, Trevor. Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society. Series B (Methodological), 67:301–320, 2005.

doi: https://doi.org/10.1111/j.1467-9868.2005.00503.x.

205



CONCLUSIONS AND FUTURE DIRECTIONS

1 General Summary and Conclusions

This work has covered a wide range of statistical topics, but the central theme

throughout is that of modeling scalar outcomes using spatial data. Specifically, we have

focused on the role of Bayesian variable selection when the predictors/variables are spatial

measurements. Bayesian variable selection has often been employed using so-called spike-

and-slab priors, which models parameter values as arising from a mixture distribution of

“relevant” or “irrelevant” parameters, whose indicators are assumed drawn from a binomial

distribution with some probability of inclusion in the model. Alternatively, penalized

approaches, such as the lasso can perform automatic variable selection by shrinking many

estimates to exactly zero (Tibshirani, 1996). Roc̆ková and George (2018) combined the

spike-and-slab prior framework with the lasso penalty, which allows one to adaptively shrink

parameter estimates such that parameters with relatively lower probabilities of inclusion

have their estimates shrunk more aggressively than parameters with comparatively higher

probabilities of inclusion.

Our primary contribution was to extend the spike-and-slab lasso to better handle

situations where parameter values can be expected to cluster spatially, which is generally the

case when imaging data are used as predictors. The primary extension explicitly incorporated

spatial structure into variable selection by placing an Intrinsic Autoregressive (IAR) prior

on the logit of probabilities of inclusion. The practical effect of the IAR prior on the logit of

inclusion probabilities is that the shrinkage applied to a given estimate will in part depend on

the shrinkage applied to spatially proximate parameters. We fit this model by extending the
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EM algorithm in Tang et al. (2017), which was proposed to fit spike-and-slab lasso GLM’s.

In addition, we tweaked this algorithm to handle the full range of the elastic net, of which

the lasso is a special case. The models can be fit using the R package ssnet, which builds

upon the R packages BhGLM and glmnet.

We also built an R package, sim2Dpredictr, which can flexibly simulate a wide

range of spatial data using variations on the multivariate Normal distribution (MVN) to

generate continuous-valued images, and an adaptation of the Boolean method to generate

a wide range of binary images. The images are then used to generate data within a GLM

framework, and there are additionally functions that allow one to easily obtain estimates

of FDR, FWER, and Power from a set of simulations, and functions for creating spatially

clustered “true” parameter values. This package allowed us to conduct a simulation study

tailored to our exact research questions, and we believe it will be useful to other researchers

interested in similar problems.

We used sim2Dpredictr to run a simulation study where “relevant” parameters

were clustered spatially, and found that compared to traditional elastic net and spike-and-slab

models without IAR priors, the models that included IAR priors had consistently lower

average prediction error estimates, as estimated by 10-fold cross validation. AUC estimates

were consistently higher for the models with spatial structure, and more noticeably so when

the “true” magnitude of parameters was relatively small; this is important because many

practical situations will have relatively small effects for changes in measures at each spatial

location. Raw estimates for false discovery rate (FDR) and the proportion of “relevant”

parameters (Power) kept in the model were generally poor, but on average estimates for

“irrelevant” parameters were very close to zero (< 0.003 in all cases), and the majority of

parameter were shrunk to zero in any given case, which helped limit noise, and allowed

the “relevant” parameters that were included in a model to dominate the predicted values

for any given set of predictors. The spike-and-slab elastic net models also tended to shrink
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“irrelevant” parameter’s estimates more severely than traditional methods, while on average

producing estimates for “relevant” parameters that were closer to the “true” values. Finally,

while on average the spike-and-slab elastic net models were more biased, the estimates

were less variable than the spike-and-slab lasso estimates, which likely accounts for the

comparatively superior prediction errors and shows the utility of generalizing the spike-and-

slab lasso to the spike-and-slab elastic net when predictors are spatial measurements.

The results of the simulation study led us to focus less on traditional measures of

variable selection, e.g., controlling FDR and maximizing Power, and more on the ability

of proposed methods to generalize well, as evidenced by the high estimates for AUC and

low estimates for prediction error, e.g., model deviance or mean squared error (MSE). A

statistical problem that prioritizes generalizeability of models is classification. GLM’s

contain logistic regression as special case, and for any given set of predictors and parameter

estimates, one can obtain predicted probabilities, e.g., the probability that a subject has a

disease. These probabilities can then be thresholded to classify subjects as either having or

not having the disease.

We used neuroimaging data from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) to compare the classification ability of the traditional elastic net, the spike-and-slab

elastic net without spatial structure, and the spike-and-slab elastic net with IAR priors.

Across several classification scenarios, cognitive normal (CN) vs. dementia, CN vs. mild

cognitive impairment (MCI), and MCI vs. dementia, all models performed best for CN vs.

dementia. While the spike-and-slab models tended to outperform the traditional models

with respect to accuracy, specificity, positive predictive value (PPV), and negative predictive

value (NPV), the performance was not drastically different across models. However, the

spike-and-slab models showed noticeably higher sensitivity in each case examined, and the

models that additionally had IAR priors had the highest sensitivity for a given scenario in

most cases, although the difference between the spike-and-slab and traditional models was
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generally larger than that between the spike-and-slab models with and without IAR priors

on the inclusion probabilities.

These analyses show that compared to traditional elastic net classifiers, the spike-and-

slab elastic net can improve classification performance, especially with respect to sensitivity.

In addition, the data used consisted of measurements on the Desikan-Killiany atlas, which

contains only 68 regions. Since the spike-and-slab elastic net with IAR priors is specifically

designed to handle high dimensional data and given the results of the simulation study, it is

reasonable to predict that the models with IAR priors would have greater separation from

the other models for data with higher dimensionality.

2 Future Directions

There are several future research directions available, and we detail a few of them

here. In terms of explicitly statistical directions, we only applied our extensions to GLM’s,

but these priors could be applied to survival analysis or multinomial regression, both of which

would require adapting related algorithms. The latter situation, multinomial regression,

may have specific potential in classification problems. When limited to a Bayesian logistic

regression, we have to model each pair separately, but a multinomial regression would allow

to simultaneous classification of, say CN, MCI, and demented subjects.

In addition, this dissertation has only scratched the surface of potential practical

applications of the developed methods. As mentioned above, we used average measurements

within regions of the Desikan-Killiany atlas, which reduces several thousand measurements

to 68 per subject. We learned useful lessons analyzing this data, but the methods are

designed to be able to handle higher dimensional data. Thus, it would be beneficial to

explore the methods’ performance using data that has not been reduced to an atlas, or at

the very least has been reduced such that there are still several thousand, or even several

hundred, measurements. It is possible, if not likely, that the spike-and-slab elastic net with

IAR priors on logit inclusion probabilities would reveal their full potential in such a setting.
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Another practical application we did not explore was predicting progression to a

more severe disease state based on current neuroimaging biomarkers. It is possible that the

current methods would prove useful in this setting. Especially in this setting, it is possible

that adapting the methods to handle longitudinal data would be useful in predicting disease

progression.

3 Final Comment

In summary, the overall contribution of this dissertation is to show that the spike-

and-slab elastic net, and its extensions with IAR priors on the logit probabilities of inclusion,

have the potential to improve the generalizeability of models applied to problems in imaging

statistics. In addition, there are many practical future directions of research to improve and

apply the methods.
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1 Introduction

The study of the brain, and in particular the human brain, incorporates a wide range

of disciplines and has become increasingly complex as research increasingly focuses on

the analysis of images taken from the brains of live subjects. Applications of physics and

engineering resulted in Magnetic Resonance Imaging (MRI) machines, which can obtain

snapshots of the the brain’s structure or even follow brain activity over time. Like all images,

these brain images are the result of discrete intensity values than can be thought of as

the average intensity within a particular area or volume; in two dimensions we call these

locations pixels and in three dimensions we call them voxels. The biological correlate to the

intensities depends upon the image medium, but these intensity values can be used to learn

about brain structure, development, function, and so forth.1 Psychology, the burgeoning

discipline of Neuroscience, and medical practitioners spur biological research questions

related to brain function as it relates to cognition, healthy and diseased brain activity and

structure, as well as general brain development. Intersections of mathematics, statistics,

and engineering aim to improve the analysis of the data arising from brain images and

understand the functions and interactions of various brain regions. Navigating the literature

requires some dedication to an understanding of these intersections; it is neither wise nor

particularly useful to attempt an application of statistical or mathematical methodology

without at least a rudimentary understanding of how brain images are obtained; henceforth,

one may begin to understand the methodology that has arisen to handle analysis of these

images. There are computational issues in analyzing massive datasets along with statistical

1The most common imaging mediums are Magnetic Resonance Images (MRI), Electroencephalograms
(EEG), Positron Emission Tomography (PET), and Magnetoencephalography (MEG). A detailed explanation
of each is beyond the scope of this document.
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issues in accounting for non-independence of data. The literature on neuroimaging data

analysis is vast and often difficult to compile into a coherent whole, but textbooks are now

arriving on the scene. In particular, The Handbook of Neuroimaging Data Analysis provides

an excellent overview of current techniques (Ombao et al., 2017); we cite further works as

needed, but much of this document is distilled from this resource. In this overview, we aim

to provide some basic facts about the human brain, the basic ideas inherent to obtaining

images, and some relevant history of at least a few prominent analysis techniques.

2 The Human Brain

2.1 Basic Facts

The human brain weighs on average 1.5 kg, but varies by gender, age, body size,

etc. (Ombao et al., 2017). Brain cells are broadly divided into neurons and glia, the first

of which process information, and the second of which play supporting roles. The brain

also divides into 3 rather distinct types of tissue: Grey matter (GM), consisting of cell

bodies and dendrites, white matter (WM), consisting of myelinated axons connecting the

cell bodies, and cerebrospinal fluid (CSF), contained within the ventricles and subarachnoid

spaces. The distinction between these 3 types of tissue is often visibly obvious in images,

although some voxels will not strictly contain 1 tissue type; this latter problem is called the

partial volume effect. More generally, the brain is parcellated into the cerebrum, cerebellum,

and brain stem. The cerebrum, consisting of grey matter, is split into hemispheres, which

are connected by the corpus callosum, consisting of white matter. Many studies focus on

aspects of either grey or white matter. The question of whether a brain area is implicated in

some task generally refers to cell behavior in grey matter, and in particular the outer, folded

layer of the cerebrum known as the the cerebral cortex. The folds of the cerebral cortex are

described by cortical ridges and depressions, called gyri and sulci, respectively. Studies of

white matter commonly consists of mapping white matter that connects the various regions

of the cerebral cortex. Other studies may focus on volume changes or lesions in various
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brain areas. This is, however, only a sample of the many creative ways neuroscience is using

to learn more about the brain and human cognition and disease.

2.2 Levels of Abstraction

While the vast portion of this document shall address analyses intended primarily

to apply to variations on Magnetic Resonance Imaging (MRI), it is helpful to differentiate

between various levels of neuroscience research because the kind of data extracted, and

therefore the kinds of appropriate analyses, vary by level of abstraction. The levels of

abstraction can be seen as a kind of continuum describing behavior at the molecular level

and extending all the way to organism behavior. Disciplinary expertise may vary by the

scale or question of interest. While not exhaustive, disciplines intersecting in brain research

include physics, biology, mathematics, statistics, psychology, medicine, and of course

neuroscience.

We do not intend to provide an overview of all neuroscience research here, but rather

distinguish the kinds of data one might in practice. In the most basic sense, one may study

either individual neurons or populations of neurons. Due to ethics conerns, capturing data

from neural firings in response to some stimuli is usually performed on animals rather than

humans and often the data consists of times that the neuron fires. More detailed studies may

investigate more complicated biological processes and the data may then consist of types of

action potentials (sodium- versus calcium-based), the number of action potentials generated

(i.e. spike trains), or perhaps changes in synaptic efficiency (Häusser and Mel, 2003;

Trappenberg, 2010). Detailing the types of data possible in neuroscience would probably

necessitate a book of near infinite length, but we highlight these levels of abstraction in

order clarify the importance of understanding the form of data to be analyzed.

Generally speaking, most human research is not at the level of individual neurons, or

even networks of neurons at the resolution of individual neurons. Many studies use electrical

signals (EEG, MEG); for example, EEG is commonly used to study and diagnose epilepsy
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(Rosenow et al., 2015; Saini and Dutta, 2017). However, we shall focus on MRI, whose

methodology is summarized below. MRI takes advantage of the fact that after neurons fire,

blood flow increases to the region where firing transpired. MRI is therefore a method of

using blood oxygen levels to either distinguish between tissue types or infer activity. The

data obtained consists of an array of voxels, a generalization of pixels to three dimensions,

within each of which an intensity value is measured. These arrays create a fine resolution

structural image or a time series of intensities describing blood oxygen levels within a voxel.

For functional MRI, higher intensity shall correspond to neural firing and for structural

MRI, intensity differences shall distinguish between tissue classes. Therefore, what we are

measuring is blood flow and not the firing of individual neurons.

3 MRI

3.1 General Types of MRI Techniques

There are three primary MRI techniques:

1. Structural MRI (sMRI) results in a single three dimensional volume for each subject.

2. Diffusion MRI (dMRI) (usually) maps white matter tracts.

3. Functional MRI (fMRI) consists of a series of three dimensional volumes in short

succession and are used to infer brain activity by analyzing time series of blood flow

within sampled voxels.

For each of these techniques there are four general steps to analyzing the data:

1. MRI Scan: The subject is scanned in the MRI machine and data is obtained and

transformed into magnitude and phase images; usually magnitude images are of

primary research interest.

2. Preprocessing: Regardless of technique, raw data is not appropriate for analysis.

Adjustments must be made for confounding factors such as subject movement and
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inhomogeneities in the magnetic fields; adjustments for field inhomogeneities is

commonly referred to as “inhomogeneity correction". Structural images typically

require removing the skull from images and distinguishing between white matter, grey

matter, and cerebrospinal fluid; removing the skull from the image is often called

“masking" or “skull stripping". Time series acquired from fMRI typically require

adjustments for breathing and heart rate. Both sMRI and fMRI require correcting for

subject movement and often must be warped into a template to enable comparisons

among subjects. The literature on preprocessing is vast, but largely beyond the scope

of the current work. We note, however, that in the course of data analysis, the analyst

should ensure appropriate preprocessing takes place.

3. Subject Analysis: Statistical analysis can be conducted at the subject level. At the

most basic level, we may ask whether a particular voxel is “activated", or we may

map an individual subject’s white matter tracts via Diffusion Tensor Imaging.

4. Group Analysis: Statistical analysis can be conducted on a sample of subjects. For

instance, we may ask whether activation in some brain region of interest varies by

treatment or disease status. At the most basic level, we can look at a particular voxel

and ask whether activation differs between some groups.

3.2 MRI Physics

3.2.1 General Description

Complete description of MRI physics is beyond the scope of this work, but it is

useful and perhaps indispensable to have some intuition about the process. We give a short

description here based on Lindquist (2008) and Ombao et al. (2017). MRI is a re-naming of

Nuclear Magnetic Resonance (NMR) and the 3-D volume obtained is not obtained at once,

but arises from interpolating a sequence of 2-D slices.

We now describe the relevant physics. Water is ubiquitous in the body and is made
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up of 2 hydrogen atoms and one oxygen atom. Atomic nuclei with odd numbers of protons

or neutrons have angular momentum. Since hydrogen atoms have only 1 proton, the angular

momentum of hydrogen atoms can be employed to measure the density of those hydrogen

atoms. Protons may be represented as positively charged spheres, spinning about their axes

and producing a net magnetic moment along the direction of the spins. The net magnetization

is defined as the average angular momenta from all nuclear spins and may be described

as a vector with a longitudinal component parallel to the magnetic field and a transverse

component perpendicular to the magnetic field. The net magnetization is the source of MR

signal.

Absent a magnetic field, the nuclei have random orientation and there is no net

magnetization. The MR machine introduces a powerful external magnet, usually between

1.5-7 Tesla, which coerces the spin axes into orientations either parallel or anti-parallel to the

magnet. The spin axes then precess around the magnet’s axis at the Larmor frequency with a

net magnetization in the direction of the magnetic field. A radio frequency electromagnetic

field (RF) pulse is then employed to change the spin orientations; the angle of this change is

determined by amplitude of the RF pulse. Afterwards, the system of nuclei briefly precess

in phase and the net magnetization is detected by receiver coils. Essentially, the RF pulse

aligns the phase of the nuclei and rotates them into the transverse plane, after which the

spin axes begin to recede back into alignment with the scanner magnetic field; this is

called longitudinal relaxation, and the rate of relaxation is described by the time constant

longitudinal relaxation time, T1. After the RF pulse ends, the spins also fall out of phase,

called transverse relaxation. The time constant transverse relaxation time, T2, describes

how quickly the spins fall out of phase. Both T1 and T2 vary by tissue, which allows for

well defined structural images. Lastly, we note that local inhomogeneity in the magnetic

field may result in some nuclei de-phasing quicker than others; the inhomogeneity is often

due to blood flow changes and oxygenation. A variation on T2 relaxation, T ∗2 is often used

to counteract these ill effects. It is useful to summarize the key parts of the MRI scanner and
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their respective purposes:

1. Strong Super-Conducting Electromagnet: This magnet is present throughout the

scanning process and aligns spin axes parallel to its direction along the longitudinal

plane; in mathematical formulations it is often denoted β0.

2. Radio Frequency Coils: Located near the head of the subject, these are turned on

and off to alter the orientation of the nuclei’s spins. When turned on, the spin axis

orientations are disrupted out of alignment with the super-conducting magnet. When

turned off, the spin axis orientations gradually return to alignment with the super-

conducting magnet.

3. Electromagnetic Gradient Coils: Theses create specific spatial variation in magnetic

field strength and is necessary for obtaining spatial information in addition to signal.

3.2.2 Image Contrasts

Image contrast results from the frequency with which we disrupt the nuclei’s spins

out of alignment with the super-conducting magnet. Time to repetition (TR) is the frequenct

of disruption or excitation of the nuclei and Time to echo (TE) is when we measure net

magnetization. The measured signal is approximately represented as follows:

S(T1, T2) = M0(1− e−TR/T1)e−TE/T2 (3.2.1)

where M0 is the initial net magnetization prior to exciting the nuclei. The following are

common image contrasts:

1. Proton Density: Long TR, Short TE. This yields a signal which is approximately M0

and thus proportional to the density of protons in the tissue. Grey matter will appear

white, while white matter is dark and is generally not well distinguished from CSF.

2. T1-Weighted: Moderate TR, Short TE (≈ 20 ms). T1-weighted images are typically

238



employed in structural MRI (sMRI) to highlight anatomical structure. White matter is

bright, grey matter is dark grey, and CSF black.

3. T2-Weighted: Long TR, Moderate/Long TE. Also typically employed in structural

MRI. CSF and grey matter are bright while air is dark.

4. T∗2-Weighted: As mentioned above, adjustments for magnetic field inhomogeneities

are possible by employing particular pulse sequences with magnetic gradients. T ∗2 -

weighted images are key in functional MRI (fMRI) due to sensitivity to blood flow

and oxygenation.

Notice how the definition of each corresponds to the definition of signal above; e.g., T1-

weighted images make TR larger and therefore the TR term, e−TR/T1 , will be further from

1, increasing the influence of the time constant T1, while the shrinking TE will make

e−TE/T2 → 1, allowing less influence for the time constant T2.

3.2.3 Image Acquisition

As mentioned above, gradient coils allow for spatial partitioning of net magnetization

signal. We shall not go into great detail, but it is important to understand the origin of the

data to be analyzed. We follow Ombao et al. (2017), Chapters 6 and 8. We have briefly

mentioned that MRI data are acquired as 2-D slices which are the interpolated to construct a

3-D image. The gradient coils sequentially control spatial homogeneity in each slice and

each measurement is represented as a Fourier transformation of the spin density at a point in

the frequency domain, or k-space. Therefore, the MR signal at time tj is described as

S(tj) =
∫
x

∫
y
M(x, y)e−2πi(kx(tj)x+ky(tj)y dx dy (3.2.2)

where M(x, y) is the spin density at point (x, y) and kx(tj), ky(tj) is a discrete location in

k-space. Note that the "i" in equation 3.2.2 is not an index, but rather denotes the complex

number such that i2 = −1. Also, while equation 3.2.2 is a continuous Fourier transform, in
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practice one generally uses a discrete Fourier transform, since the data are sampled discretely.

Examples of points in k-space include:

kx(tj) = γ

2π

∫ tj

0
Gx(τ) dτ

ky(tj) = γ

2π

∫ tj

0
Gy(τ) dτ

where xGx(tj)+yGy(tj) = Bz(r, tj) is the gradient coil change, for r2 = x2 +y2 and some

constant γ. Note that points in k-space have no one-to-one correspondence with points in

the image space; rather, points near the edges of k-space contribute more to image resolution

while points near the center contribute more to image contrast, and thus choices about where

and how to sample from k-space affect the resulting image in terms of both resolution

and contrast. The locations of sampled data in k-space are determined by the strength of

the frequency and phase-encoding gradients, with stronger gradients resulting in sampling

further from the center of k-space; a third gradient determines the relevant characteristics of

the sampled slice (e.g. location, orientation, and thickness), but this gradient is not affected

by k-space considerations; for a detailed discussion on k-space and how its manipulation

affects the result image see Mezrich (1995). The most common sampling technique is

echo-planar imaging (EPI), which employs uniform sampling about its origin. EPI ensures

that we may use the Fast Fourier Transform (FFT) in image reconstruction. The raw k-space

data is complex valued and measurement error for both the real and imaginary components

is assumed to be Gaussian. Once the data is transformed into image space via the inverse

Fourier transform, the measurements are separated into magnitude and phase images, after

which the magnitude images follow a Rice distribution rather than a normal distribution.2

Most analyses use only the magnitude images.

2The Rice distribution has the following probability density function: P (Z) =
Z
σ2 exp

(
−Z

2+|V |2

2σ2

)
I0

(
Z|V |
σ2

)
where I0(z) is a modified Bessel function of the first kind, z, σ > 0,

and when |V | = 0 the distribution is known as the Rayleigh distribution.
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4 Modeling fMRI Time Series

4.1 The Basic Idea: BOLD Contrast

Functional MRI consists of taking multiple 3-D MRI volumes of a subject in one

session, so that each subject has a time series of 3-D images; more specifically, each voxel

has a corresponding time series of intensity values. The most common contrast for fMRI

is Blood-Oxygen-Level-Dependent (BOLD) contrast, which is based on differences in

magnetic properties between oxygenated and deoxygenated hemoglobin. Increasing neural

demands correspond to increasing metabolic demands for oxygen. Neural firing extracts

oxygen from hemoglobin in the blood, from which follows that hemoglobin will become

paramagnetic. The magnetic field distortions result in decreased T ∗2 signal, i.e. faster signal

decay, which implies a local decrease in BOLD signal. An over-compensation in blood

flow follows, increasing the density of oxygenated hemoglobin, which then manifests as

increased BOLD signal in the region. BOLD fMRI essentially uses hemodynamic response

to neural firing to infer neuronal activity.

4.2 The Hemodynamic Response Function

The hemodynamic response function (HRF) describes the increase and subsequent

decrease in blood flow and is characterized by a signal increase approximately 1-2 seconds

post-neural activity, peaking approximately 5-8 seconds post-neural activity, followed by

the signal falling to below baseline from which it takes approximately 10 seconds to recover.

This last is called the post-stimulus undershoot, which occurs because blood flow decreases

quicker than blood volume so that deoxygenated hemoglobin has a higher concentration.

Explicit modeling of the HRF is primarily necessary under experimental paradigms; that is,

some stimulus is presented and the response modeled. The HRF is commonly modeled in

one of the following ways:

1. Balloon Models: This approach is a non-linear physiologically based model described

by ordinary differential equations. Changes in blood volume, blood inflow, deoxyhe-
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moglobin, and flow inducing signals are explicitly modeled to describe changes in the

observed BOLD signal. While the Balloon model is perhaps the most biologically

plausible model, it requires the estimation on many parameters, has difficulty in

estimating parameters in the presence of noisy data, and lacks a direct framework for

inference.

2. Linear Time Invariant (LTI) Models: This approach simplifies the biology so that the

neuronal activity is the input (impulse) and the HRF is the response function. The

signal at time t, x(t) is modeled by the convolution of the stimulus function, v(t), and

the HRF, h(t):

x(t) = (v ∗ h)(t) (4.2.1)

where the form and complexity of h(t) is determined by the researcher. The LTI

system has the following qualities/assumptions:3

(a) Scaling: Scaling the input by a factor b results in scaling the BOLD signal by b;

this assumption allows us to assume that amplitude differences reflect differences

in neuronal activity.

(b) Superposition: The sum of individual responses to two stimuli shall describe the

response when the stimuli are applied simultaneously.

(c) Time-invariance: Shifting a stimulus in time by amount ∆t results in a response

shifted in time by ∆t.

We must also assume the following:

(a) A linear BOLD response assumption is necessary for the convolution framework

in equation 4.2.1 to be a valid approach (Lindquist, 2008).

3We say assumptions because while this modeling framework has these qualities, the underlying phenomena
must reasonably be approximated by the modeling framework.
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(b) The neural activity function is correctly modeled; i.e., the experimental paradigm

makes sense.

(c) The HRF is correctly modeled, or at least approximated to an acceptable degree

of accuracy.

The HRF under LTI assumptions usually takes one of the following forms:

(a) Canonical HRF: This form is a linear combination of two gamma functions:

h(t) = c

(
tα1−1βα1

1 e−β1t

Γ(α1)

)(
tα2−1βα2

2 e−β2t

Γ(α2)

)
(4.2.2)

where α1 = 6, α2 = 16, β1 = β2 = 1, c = 1/6 and Γ denotes the gamma

function. These values are based on empirical research in the visual cortex,

but the HRF is known to vary in its parameters by brain region (Aguirre et al.,

1998; Schacter et al., 1997). The canonical HRF is a popular choice in fMRI

data analysis, but it lacks flexibility, and using empirical results from only one

region of the brain makes it susceptible to mis-modeling signal (Loh et al., 2008).

Flexibility can be improved by modeling the HRF along with its temporal and

dispersion derivatives, which allows differences in onset and width.

(b) Temporal Basis Function Models: Here the HRF is modeled as a linear combi-

nation of basis functions:

h(t) =
m∑
i

βifi(t) (4.2.3)

where i = 1, . . . ,m is the number of basis functions. Then the BOLD response

model is still the convolution of the stimulus function and the HRF:

x(t) =
m∑
i

βif(s ∗ fi)(t) (4.2.4)
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where βi is the weight of the ith component. This approach is far more flexible

than the canonical HRF and accommodates models as complex as the Finite Im-

pulse Response (FIR) model, which consists of a basis set with 1 free parameter

for every time point following stimulation and allows for arbitrary HRF shapes

in each voxel (Glover, 1999; Goutte et al., 2000).

4.3 Statistical Parametric Maps (SPM)

The size of datasets, i.e., number of voxels to be analyzed often frustrates the appli-

cation of multivariate methods. Early work from Karl Friston developed and popularized

the use of “mass-univariate" approaches in neuroimaging, whereby voxel-specific statistics

are obtained (Friston et al., 1991, 1994, 1995; Worsley and Friston, 1995; Worsley et al.,

1996). The voxel level statistics can be based on t-, F-, or Z-statistics depending on the

context and complexity of modeling and analysis. These are generally based on time-series

within-voxel. As mentioned above, these may correspond to within-subject or group-level

inferences. SPM approaches are known to have multiple testing issues. This is a difficult

issue, but many approaches have been developed in an attempt to control for false positives

while allowing a reasonable ability to detect true signal (Lindquist and Meija, 2015; Nichols

and Hayasaka, 2003).

4.4 Conclusion

This is summary has by no means been exhaustive. As mentioned EEG and MEG

are also important in many studies, but in addition alternative approaches to modeling fMRI

time series can also be found in the literature. For example, Dinov et al. (2005) proposed

using wavelets in statistical analyses of fMRI data. Correspondingly, statistical approaches

are vast and vary by both across and with research questions. However, this summary

provides a reasonable overview of the literature with the caveat that a complete review

would be textbook length.
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APPENDIX B

THE EM ALGORITHM
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1 Motivation

The EM algorithm and much of its relevant theory was established by Dempster

et al. (1977), although some of the groundwork had already been laid. The approach was

developed specifically to handle incomplete data, although what counts as “incomplete data”

is quite broad. One application is when data is missing, but one still wants to estimate

parameters without excluding subjects. However, the approach has found application in

a wide range of analytically difficult situations where it makes sense to assume some

parameters exist and are missing or hidden (Bilmes, 1998). The iterative process consists

of two steps: expectation (E-step) and maximization (M-step). Generally, one defines a

likelihood function that is a function of the parameters of interest, the observed data, and the

missing data/parameters. The E-step takes the expectation of the (log of) this function in

terms of the missing data/parameters, given an estimate for the parameters of interest and

the observed data. The M-step then maximizes the expectation from the E-step in terms of

the parameters of interest. The process continues iteratively until convergence.

Generally, consider sample spaces, X ,Y and a many to one mapping from X → Y .

We observe data y, a realization from Y and must infer about x ∈ X , which is not

observed. There are then two associated density functions: the complete-data, f(x|θ) and

incomplete, g(y|θ), where importantly both distributions depend upon the same r×1 vector

of parameters of interest, θ. These distributions are related to each other by:

g(y|θ) =
∫
X (y)

f(x|θ) dx (1.1)

This is to say that we must use the observed y to find θ, but while we do not have access to
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x we can use information contained in the structure of the distribution function f(x|θ).

2 Exponential Families

We begin with the simpler case of exponential families. If f(x|θ) is a regular

exponential family and θ are the natural parameters, then

f(x|θ) = b(x) exp{t(x)θ}/a(θ) (2.1)

where t(x) is the 1× r vector of sufficient statistics and θ is restricted to an r-dimensional

convex set Θ such that equation 2.1 is a probability density function for all θ ∈ Θ. The EM

algorithm in this framework is then:

1. E-Step: Estimate the complete-data sufficient statistic, t(x), for the pth iteration via

t(p) = E(t(x)|y,θ(p)) (2.2)

2. M-Step: Estimate θ(p+1) by solving for θ in

E(t(x)|θ) = t(p) (2.3)

Notice that equation 2.3 has the form of the likelihood equations for maximum likeli-

hood when data arises from an exponential family; i.e., the solution θ(p) is a maximum

likelihood estimator for θ. Repeating these steps results in a value θ∗ that maximizes

L(θ) = log g(y|θ). After some relevant manipulation, one may differentiate L(θ) to obtain

DL(θ) = −E(t|θ) + E(t|y,θ). In the limit as p → ∞, if θ(p) = θ(p+1) = θ∗, then

E(t|θ∗) = E(t|y,θ∗)→DL(θ) = 0 at θ = θ∗.
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3 Generalized EM Algorithm

The EM algorithm is generalizable beyond exponential families. Define

Q(θ′|θ) = E(log f(x|θ′)|y,θ) (3.1)

which is assumed to exist for all pairs (θ′,θ) and f(x|θ) > 0 almost everywhere in X for

all θ ∈ Θ. Then we have

1. E-Step: Compute Q(θ|θ(p)).

2. M-Step: Find θ(p+1) = arg max
θ∈Θ

{
Q(θ|θ(p))

}
.

That is, we compute an expectation and then maximize that expectation. Dempster et al.

(1977) show that this process increases the log-likelihood with respect to θ, L(θ), at each

step and converges to (at least) a local maximum; further details are found in Dempster et al.

(1977), but these are beyond the scope of this work.
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APPENDIX C

PROBABILITY DISTRIBUTIONS
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Beta Distribution

1. Probability Density Function: fY (y) = 1
B(α,β)y

α−1(1− y)β−1

2. Support/Parameters: y ∈ [0, 1]; α > 0, β > 0

3. E(Y ) = α
α+β

4. var(Y ) = αβ
(α+β)2(α+β+1)

Binomial Distribution

1. Probability Mass Function: fY (y) =
(
n
y

)
θy(1− θ)n−y

2. Support/Parameters: y = 1, . . . , n; θ ∈ [0, 1]

3. E(Y ) = nθ

4. var(Y ) = nθ(1− θ)

Double Exponential (Laplace) Distribution

1. Probability Density Function: fY (y) = λ
2e

λ|y−µ|

2. Support/Parameters: y ∈ R; µ ∈ R, σ > 0

3. E(Y ) = µ

4. var(Y ) = 2
λ2
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Gamma Distribution

1. Probability Density Function: fY (y) = 1
Γ(α)βαy

α−1e−y/β

2. Support/Parameters: y ∈ R; α > 0; β > 0

3. E(Y ) = αβ

4. var(Y ) = αβ2

Normal Distribution

1. Probability Density Function: fY (y) = 1
σ
√

2πe
−(y−µ)2/2σ2

2. Support/Parameters: y ∈ R; µ ∈ R, σ2 > 0

3. E(Y ) = µ

4. var(Y ) = σ2

Poisson Distribution

1. Probability Mass Function: fY (y) = e−λλy

y!

2. Support/Parameters: y = 1, 2, . . . ; λ ≥ 0

3. E(Y ) = λ

4. var(Y ) = λ
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