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COMPREHENSIVE REVIEW AND A COMPARISON OF 

COMPLIANCE BASED TOPOLOGY OPTIMIZATION FOR SIMPLY 

SUPPORTED BEAMS 
 

NICHOLAS YAW ASARE OKAI 

 

CIVIL ENGINEERING 

 

ABSTRACT 

Traditional structures consume large amounts of raw materials including cementitious 

composites and steel, which subsequently contribute to the increase in greenhouse gases. 

Furthermore, the recycling process of construction materials is challenging due to high cost 

and complex processes that involve crushing of concrete and melting of steel to the 

required composition. Therefore, it is necessary to optimize the materials used as well as 

the structural geometry to achieve maximum efficiency (i.e., demand/capacity) and 

decrease the carbon footprint of structures. The development of sustainable structures and 

eco-friendly infrastructures aims to minimize materials and energy consumption without 

impeding the overall performance. Also, an optimized design will lead to a reduction in the 

total construction cost. Over the past few decades, researchers have investigated the use of 

topology optimization to achieve the required strength of a component by optimizing its 

shape given a specific load. 

Topology optimization is a mathematical method that seeks to optimize material 

layout within a specified design domain for a given set of boundary conditions and applied 

loads to achieve an efficient structure. Structural topology optimization can be classified 

into three categories including shape optimization, size optimization, and topology 

optimization. Size optimization usually deals with finding optimized cross-sectional 
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geometric properties of a member. Shape optimization seeks optimal shapes of a material 

domain without altering its topology; while topology optimization is an optimization 

technique that considers both size and shape in obtaining an optimal design. The 

methodologies for topology optimization include Solid Isotropic Material with 

Penalization (SIMP), and Evolutionary Topology Optimization (ETO). Both 

methodologies are based on the material distribution concept. In addition, the Level Set 

Method (LSM), is based on an implicit boundary description which is applied to track 

displacement and motions of the boundaries of a structure. Due to the computational 

requirements of topology optimization algorithms, it is usual to limit the optimization 

problem on a small structure that is subjected to a static load. 

In this research, a comparison of the three topology optimization methodologies will 

be presented for simple problem of a simply supported beam subjected to a point load. 

Initially, a detailed review of the development, applications and formulation of the 

topology optimization methodology would be conducted. Then, the best values for the 

optimization parameters would be investigated and analyzed. Finally, three main 

compliance minimization optimization algorithms (SIMP, ESO and LSM) will be 

implemented and compared. 

 

Keywords: topology optimization, compliance, SIMP, BESO, LSM
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Structural topology optimization (STO) has been extensively explored and employed 

in various industries over the past few decades due to its ability in saving material and 

minimizing cost. STO can be classified into three main categories: 1) shape optimization, 

2) size optimization, and 3) topology optimization. Shape optimization predicts the optimal 

shape or geometric features, while size optimization seeks the optimum structural cross-

sectional area. Topology optimization seeks to achieve an optimized material layout with 

enhanced mechanical behavior in a specific design domain [1]. Eschenauer et al. presented 

a detailed overview of the history and applications of topology optimization [2]. Figures 

1(a) to 1(c) illustrate the optimization of a beam using size, shape, and topology 

optimization, respectively [3]. 

Müller et al. compared the three methodologies of STO in optimizing truss structures 

[4]. Structures optimized with size optimization methodologies had the least weight. This 

was attributed to the restriction of material redistribution within each member of the 

structure. However, it was observed that size optimization requires a high computational 

time. Byun et al. implemented shape and topology optimization on high temperature 

superconductors taking into consideration the manufacturing limitations [5]. The results 
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indicated that the topology optimization method exhibited a high-performance in the 

layout design of superconductors.  

In general, it is suggested to implement a simultaneous optimization method to achieve 

an optimized structure with high performance. At early stages, topology optimization could 

be performed solely to determine an efficient design concept. While, at later stages, size 

and shape optimization could be used to refine the design [6]. Furthermore, topology 

optimization is a preferred methodology for designing structures as it does not require an 

initial guess of the optimal shape or size [7]. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 1. Illustrations of a beam optimized using (a) size optimization, (b) shape 

optimization, and (c) topology optimization[3] 

 

1.2 Objective 

The concept and numerical methods surrounding topology optimization has evolved over 

the past decade. However, most research was conducted to develop new methodology to 

address certain limitations and numerical issues with a specific topology optimization 
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methodology. Therefore, there is a lack of literature and understanding in the differences 

between the various methodologies implemented and their performance. The goal of this 

research is to review and determine the optimal parameters for each optimization method. 

Furthermore, a comparison in the performance of three main compliance minimization 

topology optimization was conducted. 

 

1.3 Organization of Thesis 

The remainder of this thesis is organized as follows. Chapter 2 presents a literature 

review on topology optimization. The history, development, concept, and applications of 

topology optimization are discussed. A general finite element analysis (FEA) is also 

presented together with other mathematical and numerical formulations implemented in 

the general topology optimization. The latter part of the chapter discusses numerical 

instabilities normally encountered and its resolutions. 

 Chapter 3 provides details on the material properties and load assigned to a simply 

supported beam. The displacement for a conventional beam (un-optimized) was calculated 

and set as a benchmark for optimized beams. Parameters used for all simulations and the 

objective of the group of simulations is also discussed.  

Chapter 4 focuses on the formulations and numerical implementation of the concepts 

discussed in chapter 2 for a simply supported beam with a point load mid-span.  

In chapter 5, a comparative study of optimal parameters among the methodologies is 

presented. The optimal parameters were further used to optimize the simply supported 

beam with three methodologies of compliance minimization-based topology optimization. 

Finally, chapter 6 presents the conclusions and recommendations.
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CHAPTER 2 

LITERATURE REVIEW 

2.1 History and Development of Topology Optimization 

In 1904, Michell investigated the analytical behavior of statically determined trusses 

and designed cost-efficient configurations by developing a methodology for structural 

topology optimization [8]. However, these configurations are not applicable for 

engineering practices due to its infinite number of elements [9]. In 1988, Bendsøe et al. 

enhanced the topology optimization algorithms for various structures [10]. This has led to 

the evolvement of the topology optimization in a number of diverse fields such as civil, 

aerospace and mechanical engineering.  

Figure 2 illustrates the schematic drawings of a drop nose rib of an Airbus A380 that 

has been designed using topology optimization [11]. Topology optimization is classified 

into three main categories: 1) continuum topology optimization (CTO), 2) truss topology 

optimization (TTO), and 3) truss-continuum topology optimization (TCTO) [12].
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Figure 2. Schematic drawings of the designed Airbus A380 droop nose using topology 

optimization[10] 

 

In CTO, the structure is modeled as a solid continuum of different topology and a 

material interpolation scheme is implemented for isotropic material [13, 14]. The primary 

advantage of CTO is the ability of free form designability on a global stage [12]. On the 

other hand, TTO is a discrete optimization method. In discrete optimization methods the 

structure is modeled with discrete elements. The TTO employs the strut-and-tie model to 

develop a practical design for reinforced concrete structures [14]. Amir et al. investigated 

the use of TTO for placing reinforcement in concrete structures [15]. Furthermore, they 

extended the concept for the design of prestressed concrete [16]. Zhou et al. investigated 
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the methodology for optimizing deep beams [17]. In TTO, the initial structure (ground 

structure) is modeled with all candidate nodes and elements.  

Figure 3(a) illustrates an example of a ground structure for a cantilever beam [14]. 

Depending on the implemented constraints, elements are removed from the ground 

structure to achieve the required objective functions.  

Figure 3b and 3c illustrate the general transition of the ground structure, and the 

final optimized structure, respectively. However, the structure could be unstable if many 

elements are removed. Also, due to the dependency on the mesh size, the ground structure 

approach could be computationally expensive [14, 18, 19]. 

 

  
(a) (b) 

 

 

(c)  
 

Figure 3. Structural models of TTO: (a) Ground structure[14], (b) Transition of ground 

structure, and (c) final optimized structure 

 

Smarslik et al. investigated the use of a hybrid TCTO by combining CTO and TTO to 

optimize a structure [20]. In the hybrid TCTO model, the CTO is used to consider the 

compressive strength. While the TTO is used to consider the tensile strength of the 
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concrete. Gaynor et al. implemented a hybrid bilinear TCTO to optimize a simply 

supported beam, a deep beam with a cutout, and a hammerhead pier [18]. Yang et al. 

extended the hybrid model of Gaynor et al.[21] to optimize three dimensional problems 

including: 1) a concrete block, 2) a pile cap, 3) a hammerhead pile, and 4) an anchorage 

zone of a prestressed beam [22]. In general, topology optimization approach can either be 

a gradient topology optimization (GTO) or a non-gradient topology optimization (NGTO). 

GTO utilizes both gradient of objective functions and constraint functions with respect to 

design variables (density) as opposed to NGTO which is gradient-free. Solid Isotropic 

Material/Microstructure with Penalization (SIMP), Evolutionary Topology Optimization 

(ETO) and Level-Set Method (LSM) are examples of GTOs. Examples of Non-gradient-

based topology (NGTO) include phase-field methods, and topological derivatives [23, 24]. 

Figure 4 illustrates the various gradient and non-gradient topology optimization methods. 

Wu et al. investigated a NGTO technique and suggested that the methodology 

performs better than SIMP that is a GTO methodology [25]. However, Andreassen et al. 

elaborated that NGTO methodologies do not necessarily converge to an optimum solution 

as they are using a global search [26]. Furthermore, for large structures NGTO techniques 

are time-consuming as the number of possible optimal solutions increase exponentially. 

Hare et al. compared GTO and NGTO techniques on structural engineering problems [27]. 

In general, the results suggest that GTP methodologies outperforms NGTO methodologies 

except for problems that a gradient method could not be defined. 
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Figure 4. Types of topology optimization methodologies 

 

2.2 Applications of Topology Optimization 

In topology optimization, the material distribution, arrangement, and layout within a 

structure are imperative for high performance and optimality. Classical topology 

optimization seeks optimal distribution in an isotropic material within the design domain. 

The mechanical properties of a material are usually classified as isotropic, anisotropic, or 

orthotropic. The material composition could be classified as homogenous or 
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heterogeneous. Thus, there is a need to incorporate the material properties relative to the 

length scale. This would enable the models to replicate the actual behavior of structures. 

There are two classes of approach in the conceptual process of topology optimization 

namely macro-structural (geometry) and micro-structural (material). In general topology 

optimization is considered an early-stage design approach as the manufacturing constraints 

are not factored in the optimization procedure [28, 29]. 

 

2.2.1 Macro-structural Applications 

The complexity of a structure can be significantly reduced by using homogenization 

methods to determine macroscopic material behavior. The basic concept of 

homogenization is to ‘smear-out’ microstructural behavior of periodic materials. Most 

structural topology optimization methods are implemented using basic elastic theories that 

are applicable at the macroscale. These methodologies assume that microscale dynamics 

are insignificant and could be ignored [30]. 

Topology optimization is significantly beneficial due to its production of lightweight 

structures and high mechanical performance systems. Nevertheless, it has a limited impact 

in real-life design problems due to the limitation of manufacturing complex shapes [7]. 

However, with the advancements in additive manufacturing (3D printing), researchers can 

experimentally investigate the performance of complex structures optimized using 

topology optimization. Gebisa et al. designed and experimentally investigated a 3D printed 

jet engine bracket using topology optimization algorithms [31]. Several researchers 

investigated the use of topology optimization for aerospace components that resist dynamic 
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loads and vibrations [32]. Munk et al. assessed the benefits of applying topology 

optimization in the structural design of aircraft components [7]. 

In the automotive industry, topology optimization has been implemented to achieve 

high-performing devices with the use of minimal materials [33-37]. The objective 

functions were to minimize mass while satisfying constraints in size and shape such as 

lower spokes radius, minimum casting thickness, symmetrical holes, and a lower casting 

area. Figures 5(a) and 5(b) display the initial and optimized design of a steering wheel for 

a Jaguar automobile [37]. Lee et al. designed a multicriteria optimized lightweight 

automotive parts based on a pareto-optimal to reduce noise, and vibrations [38]. Kim et al. 

implemented topology optimization by discretization of three-dimensional space for 

optimizing the suspension of a real vehicle [39]. 

 

 

 
(a) (b) 

 

Figure 5. Schematic drawings of the steering wheel of a Jaguar automobile: (a) initial 

design and (b) optimized design[37] 

 

In biomedical engineering, topology optimization has been used for designing 

prosthetic devices to replace fractured bones [40]. Figure 6 illustrates the conventional 

topology optimization for a femur bone [40]. Park et al. designed a mandibular 
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advancement device (MADs) using topology optimization methodologies. The optimized 

devices exhibited lower and evenly distributed stress than the conventional devices [41]. 

The optimized devices revealed good compatibility with the patients surrounding bone 

tissue. Milazzo et al. implemented topology optimization to design middle ear prostheses 

[42]. Vilardell et al. investigated the manufacturing of topology optimized lightweight 

complex structures using laser power bed fusion (an additive manufacturing technique) 

[43]. 

 

 

 

Figure 6. Topology optimization of a replacement to the femur bone[40] 

 

In civil engineering, structures can be optimized to have a better performance in 

resisting dynamic loads that may occur from earthquakes, tsunamis, and tornadoes. 

Furthermore, topology optimization enabled the design of efficient, low weight, and cost-
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efficient structures. Beghenin et al. revised the connections of members through structural 

optimization of modern structures [44]. The optimized structure had complex shapes that 

minimized the materials needed and maintained the required stiffness. This would lead to 

a lower cost of construction. Huang et al. presented a topology optimized footbridge that 

has a span of 65 meters and is planned to be constructed in Australia [45]. Figure 7 

illustrates a schematic diagram of an optimized conventional center in Qatar. Jewett 

conducted several numerical analysis and experimental work to ascertain the mechanical 

performance of topology optimized structures [46]. The results indicated that topology 

optimized structures outperformed conventional designs, specifically in the elastic range. 

It is worth noting that concrete structures are responsible for 5% of the global carbon 

emissions. Gan et al. illustrated that implementing topology optimization can reduce 

greenhouse gas emissions and contribute to the mitigation of the climate change 

phenomenon [47]. 

 

 

Figure 7. Qatar National Convention Center Optimized for Architecture Design 
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2.2.2 Micro-structural Applications 

Microstructures are small scale structures that are composed of multiple base 

materials. The mechanical and electrical properties including the electrostatic forces, 

Brownian motion, and Van-der-Waals forces vary greatly from a micro-level to a macro-

level [48]. It is worth noting that Allaire et al. indicated that the homogenization method 

could be implemented for materials with anisotropic behavior [49]. 

In 1995, Sigmund et al. implemented topology optimization on the microstructure of 

materials for tailoring the material properties (i.e., topology of material) by applying 

inverse of homogenization methodology [50]. Inverse homogenization involves the 

formulation of problem on a macroscopic level satisfying two conditions [51]. The first 

condition is that the homogenization problem formulated must be a tractable problem (i.e., 

it can be solved by a polynomial-time algorithm). The second condition is graded 

microstructures must be identifiable through the solution. Since then, topology complex 

mathematic problems that involves complicated geometric features, material properties and 

forces. In two-dimensional models, bilinear quadrilateral elements are used in the FEA. 

The global displacement (U) of a bilinear quadrilateral element can be approximated using 

Equation 1: 

𝑈 = 𝑁 × 𝑑 1 

{
𝑈(𝑥, 𝑦)

𝑉(𝑥, 𝑦)
} = [

𝑁1 0 𝑁2
0 𝑁1 0

    
0 𝑁3 0
𝑁2 0 𝑁3

    
𝑁4 0
0 𝑁4

]

{
 
 
 

 
 
 
𝑢1
𝑣1
𝑢2
𝑣2
𝑢3
𝑣3
𝑢4
𝑣4}
 
 
 

 
 
 

 2 
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where U(x,y) and V(X,y) describe the global displacements at any point with coordinates 

(xi, yi) in an element. ui and vi are the local nodal displacements of an element. Ni represents 

the shape function. The strain (𝜀) of an element can also be calculated as given in Equation 

3. 

𝜀 = {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} =

{
  
 

  
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦}
  
 

  
 

= 𝐵 × 𝑑 3 

where B represents the gradient matrix and d is the nodal displacements. B is computed in 

terms of the shape functions as given in Equation 4: 

[
 
 
 
 
 
 
𝜕𝑁1(𝑥, 𝑦)

𝜕𝑥
0

0
𝜕𝑁1(𝑥, 𝑦)

𝜕𝑦
𝜕𝑁1(𝑥, 𝑦)

𝜕𝑦

𝜕𝑁1(𝑥, 𝑦)

𝜕𝑥

𝜕𝑁2(𝑥, 𝑦)

𝜕𝑥
0

0
𝜕𝑁2(𝑥, 𝑦)

𝜕𝑦
𝜕𝑁2(𝑥, 𝑦)

𝜕𝑦

𝜕𝑁2(𝑥, 𝑦)

𝜕𝑥

   

𝜕𝑁3(𝑥, 𝑦)

𝜕𝑥
0

0
𝜕𝑁3(𝑥, 𝑦)

𝜕𝑦
𝜕𝑁3(𝑥, 𝑦)

𝜕𝑦

𝜕𝑁3(𝑥, 𝑦)

𝜕𝑥

𝜕𝑁4(𝑥, 𝑦)

𝜕𝑥
0

0
𝜕𝑁4(𝑥, 𝑦)

𝜕𝑦
𝜕𝑁4(𝑥, 𝑦)

𝜕𝑦

𝜕𝑁4(𝑥, 𝑦)

𝜕𝑥 ]
 
 
 
 
 
 

 4 

The stress-strain relationships of isotropic materials can either be plane-stress or plane-

strain. For plane-stress conditions, the material constitutive matrix De can be represented 

by Equation 5: 

𝐷𝑒 =
𝐸

1 − 𝑣2
[

1 𝑣 0
𝑣 1 0

0 0
1 − 𝑣

2

] 5 

where E and 𝑣 represent the elastic modulus and Poisson ratio of the bilinear quadrilateral 

element, respectively. For plane-strain stress conditions, De the stress-strain matrix or 

constitutive matrix is calculated by Equation 6. 

𝐷𝑒 =
𝐸

(1 + 𝑣)(1 − 2𝑣)
[

1 − 𝑣 𝑣 0
𝑣 1 − 𝑣 0

0 0
1 − 2𝑣

2

] 6 

The stress can be simplified as illustrated hereafter in Equation 7 and expanded based 

on the stress-strain relationship. 
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𝜎 = 𝐷𝑒 × 𝜀 7 
The element’s global stiffness matrix can be calculated by equations 8 and 9: 

𝐾𝐸 = ∫ 𝐵𝑇𝐷𝑒𝐵 𝑑𝑣
𝑉𝑒

 8 

{
 
 
 
 

 
 
 
 
𝑓1𝑥
𝑓1𝑦
𝑓2𝑥
𝑓2𝑦
𝑓3𝑥
𝑓3𝑦
𝑓4𝑥
𝑓4𝑦}
 
 
 
 

 
 
 
 

=

[
 
 
 
 
 
 
𝑘11 𝑘12
𝑘21 𝑘22
⋮ ⋮

 
⋯ 𝑘18
… 𝑘28
… ⋮

𝑘51 𝑘52
𝑘61 𝑘62
⋮ ⋮

 
⋯ 𝑘58
… 𝑘68
… ⋮

𝑘81 𝑘82 … 𝑘88]
 
 
 
 
 
 

{
 
 
 

 
 
 
𝑢1
𝑣1
𝑢2
𝑣2
𝑢3
𝑣3
𝑢4
𝑣4}
 
 
 

 
 
 

 9 

where fij represents the nodal force with i= (1,2,3,4) and j=(x, y). From the generalized 

Hooke’s Law, a strain can be calculated using Equations 10 and 11: 

𝜀 = 𝑆 × 𝜎 10 

[
𝜀𝑥𝑥 𝜀𝑥𝑦
𝜀𝑦𝑥 𝜀𝑦𝑦

] = [
𝑆11 𝑆12
𝑆21 𝑆22

] × [
𝜎𝜘𝑥 𝜎𝜘𝑦
𝜎𝑦𝜘 𝜎𝑦𝑦

] 11 

where S is the stiffness. The mean compliance can be calculated by Equation 12: 

𝐶 = 
1

𝑆
 12 

The mean compliance can also be defined as the strain energy (compliance) and computed 

using Equations 13 and 14: 

𝑈𝑐 =
1

2
∭{𝜀}𝑇{𝜎}𝑑𝑉

𝑉

 13 

𝑈𝑐 =
1

2
∭{𝜀}𝑇[𝐷ⅇ]{𝜀}𝑑𝑉

𝑉

 14 

The global stiffness matrix of the whole structure can be assembled by Equation 15: 

[𝐾] = ∑[𝐾𝐸]

𝑁

𝐸=1

 15 

The force and displacement on the structure are, therefore, computed using Equation 16: 

{𝐹} = [𝐾]{𝑑} 16 
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2.3.2 Objective Functions 

In optimization problems, an objective should be set for the numerical algorithms to 

solve and find an optimal solution. In the structural domain, the most common objective 

functions are minimization of compliance (i.e., minimization of strain energy) and stress-

based objective functions. Stress-based objective functions relate the applied stress to the 

yielding stress of the structural members.  

 

2.3.2.1 Compliance Minimization Problems 

In compliance minimization problems, the objective function is to minimize strains 

while maximizing the stiffness of a structure. In this formulation, the volume is a constraint 

and set to the desired amount of material to be used. The objective function can be 

formulated as given in Equation 17: 

min(𝑥) : 𝐶(𝑥) = 𝑈T𝐾𝑈 17 
subjected to a constraint of the desired volume in Equations 18 to 19: 

∑𝜌𝑒

𝑁

𝑒=1

≤ 𝑉𝑜 18 

0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 1 19 
where C represents compliance, 𝜌𝑒 is the design variable (density) of an element and 𝑉𝑜 is 

the volume constraint. The 𝜌𝑚𝑖𝑛 is a minimum density assigned voids to avoid non-

singularity and is often set as 0.001. 

 

2.3.2.2 Stress Based Problems 

In a practical approach, structural members are designed with high performance (i.e., 

each structural member should be optimized to the applied stress to lower construction 

cost). In stress-based problems, the structure is optimized in reference to the ratio of the 
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applied forces to each element’s strength. The most common failure criterion that is used 

in stress-based problems is the Von-Mises yield stress. In stress-based problems, the 

objective function is to minimize the volume of the material used while subjected to a stress 

constraint. The objective function can be formulated as elaborated in Equations 20 to 22: 

 

min(𝑥)   𝑉 =  ∑𝜌𝑒

𝑁

𝑒=1

 20 

subjected to a constraint of the stress limit: 

𝑔(𝑥𝑒) =  
𝜎𝑣𝑚

𝜎𝑦𝑖𝑒𝑙𝑑
< 1 21 

0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 1 22 
where V is the structural volume minimized, 𝜌𝑒 is the design variable, 𝜎𝑣𝑚 is the Von 

Mises stress in the element, and 𝜎𝑦𝑖𝑒𝑙𝑑 is the yield stress of the material. An element’s 

material is retained in the design domain provided that the constraint function is satisfied. 

The Von-Mises failure criterion is given by Equation 23: 

𝜎𝑣𝑚 = √𝜎𝑥𝑥2 + 𝜎𝑦𝑦2 − 𝜎𝑥𝑥𝜎𝑦𝑦 +−3𝜏𝑥𝑦2  23 

where 𝜎𝑥𝑥 represents the stresses along the x-x direction, 𝜎𝑦𝑦 is the stresses along the y-y 

direction, and 𝜏𝑥𝑦 is the shear-stress in the x-y direction. Beyond the yield stress the 

element’s material would fail. 

However, the constraint function defined by Equation 21, can cause stress singularities 

(i.e., a phenomenon of abnormalities due to infinite level of stresses). The stress 

singularities occur for elements with very low densities (i.e., near zero). To overcome this 

issue, Duysinx et al. introduced a stress relaxation technique [57]. This was inspired by the 

research work conducted by Cheng et al. [58]. The constraint function is redefined in 

Equations 24 and 25: 
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𝜌𝑒 (
𝜎𝑣𝑚

𝜌𝑒𝑃𝜎𝑦𝑖𝑒𝑙𝑑
− 1) ≤ ϵ − 𝜖𝜌𝑒 24 

ϵ ≤ 𝜌𝑒 ≤ 1 25 
where 𝜖, is a relaxation parameter and is greater than zero, P is a penalization exponential 

value greater than 1 is recommended. Also, an effective material modulus can be used to 

handle the stress singularities. The effective homogenized modulus (Ee) can be defined as 

given in Equation 26: 

𝐸𝑒 = 𝜌𝑒
𝑃𝐸𝑜 26 

where Eo is the elastic modulus of solids. The macroscopic stress based on the effective 

modulus can be calculated using Equation 27: 

𝜎𝑒 = 𝐷𝑒𝐸
𝑒𝜀𝑒 27 

To properly account for intermediate densities, the microscopic stress should be 

defined in-term of the macroscopic stress as given in Equation 28. It is worth noting that 

the penalization factor is used to preserve the stress behavior to account for material 

porosity [59]. 

𝜎(𝑥) =
𝜎𝑒 

𝜌𝑒𝑃
=
𝐷𝑒𝐸

𝑒𝜀𝑒
𝜌𝑒𝑃

 28 

 

2.3.3 Solid Isotropic Material/Microstructure with Penalization (SIMP) 

Solid Isotropic Material/Microstructure with Penalization (SIMP) is the most popular 

topology optimization method. SIMP implements a material density distribution approach 

that is based on the homogenization method. The homogenization method models the 

material composition with infinite microscopic voids within a design domain. The method 

eliminates the micro-portion of an element that has poor performance, rather than 

eliminating the whole element [10, 60]. However, the homogenization method is not 

widely used due to the fact that real structural applications consist of elements that are solid 
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or void in a specific design domain. In order to overcome this limitation, the SIMP was 

developed to optimize structures with porous properties [49]. Furthermore, SIMP could be 

used to define anisotropic materials [48, 49]. 

In SIMP, the structure’s volume is discretized into a grid of elements (isotropic solid 

microstructures) with each having a fractional density of the material. The structure can 

develop any density between 0 and 1. A lower bound (minimum density) closer to zero is 

selected to ensure stability in the formulation and prevention of singularity in the finite 

element analysis (FEA). Furthermore, elements with partial density are penalized. The 

penalization factor is an exponential parameter applied to significantly reduce the stiffness 

of elements with small partial densities as they are insignificant in resisting loads [61].  

Bendsøe et al. investigated and compared different approaches in relation to material 

interpolation scheme with the ability to produce densities varying from 0 to 1 [62]. A non-

linear interpolation scheme achieved the best optimized structures. The material elastic 

modulus and stress could be formulated using Equations 29 and 30, respectively: 

𝐸(𝜌) = 𝜌𝑃𝐸0 29 
 

𝜎𝑌(𝜌) = 𝜌𝑃𝜎0
𝑌 30 

where 𝐸(𝜌) is the effective elastic modulus, 𝜌 is the design variable, P is a penalization 

power usually > 1, 𝐸0 is the overall elastic modulus, 𝜎𝑌(𝜌) is the effective yield stress, and 

𝜎0
𝑌 is the overall yield stress.  

Figure 8 illustrates the effect of penalization factor on relative stiffness in terms of the 

material density. In 2005, Bruns et al. developed a SINH method (SINH is neither an 

acronym nor affiliated to a hyperbolic function) [63]. They reevaluated the SIMP method 

with filtering and alternative formulation for solid-void topology optimization. 
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Figure 8. Effect of Penalization Factor on the Effective Stiffness as a Function of Structural 

Density 

 

To measure the performance of a structures and determine the new design variable for 

the next iteration, sensitivity analysis is implemented. Sensitivity analysis is the derivative 

of the objective function with respect to the design variable. There are several approaches 

for implementing sensitivity analysis including but not limited to: 1) optimal criteria (OC), 

2) method of moving asymptotes (MMA), 3) sequential linear programming (SLP), 4) 

sequential quadratic programming (SQP), and 5) hybrid cellular automat (HCA) [64]. 

Fanni et al. compared the sensitivity analysis methods on optimizing structures with 

various meshing density and an objective function of minimizing compliance [65]. The 

results indicated that OC and MMA are the most efficient due to their computation cost 

and optimal structural results.  

Figure 9(a) and 9(b) illustrate the effect of the meshing density on the minimum 

compliance and number of iterations required [65]. 
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(a) (b) 

 

Figure 9. Effect of Mesh Density on the (a) Minimum Compliance and (b) Time Required 

to Optimize a Structure[65] 

 

2.3.3.1 Optimal Criteria (OC) 

The optimal criteria method is a classical approach for solving topology optimization 

method especially for compliance-based problems due to its efficiency. OC method is used 

in updating the design variables (densities) in the structure. The heuristic scheme for 

updating design variables is computed using Equation 31. 

𝑖𝑓 𝑥𝑒𝛽𝑒
𝜂
 ≤ 𝑚𝑎𝑥( 𝑥𝑚𝑖𝑛, 𝑥𝑒 −𝑚) 

𝑥𝑒
𝑛𝑒𝑤 = 𝑚𝑎𝑥( 𝑥𝑚𝑖𝑛, 𝑥𝑒 −𝑚) 

𝑖𝑓 𝑚𝑎𝑥( 𝑥𝑚𝑖𝑛, 𝑥𝑒 −𝑚)  < 𝑥𝑒𝛽𝑒
𝜂
≤ 𝑚𝑖𝑛( 1, 𝑥𝑒 +𝑚) 

𝑥𝑒
𝑛𝑒𝑤 = 𝑥𝑒𝛽𝑒

𝜂
 

𝑖𝑓 𝑚𝑖𝑛( 1, 𝑥𝑒 +𝑚) < 𝑥𝑒𝛽𝑒
𝜂

 
𝑥𝑒
𝑛𝑒𝑤 = 𝑚𝑖𝑛( 1, 𝑥𝑒 +𝑚) 

31 

where m is defined as a positive move limit (usually assigned as 0.2), η is a numerical 

damping coefficient which can be from zero to one (usually assigned as 0.5) to ensure 

stability of the iterations [66, 67]. βe is computed based on the objective function and 

constraint function from an optimality condition as defined in Equations 32 and 33 for 

compliance and stress-based problems, respectively. 
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𝛽𝑒 = 
−
𝜕𝑐
𝜕𝑥𝑒

𝜆
𝜕𝑉
𝜕𝑥𝑒

 32 

𝛽𝑒 = 

𝜕𝑣
𝜕𝑥𝑒

𝜆
𝜕𝑔
𝜕𝑥𝑒

 33 

where λ is a global Lagrangian multiplier obtaining through an iterative process by a bi-

sectioning algorithm. In the case of the compliance-based, the objective function is 

compliance minimization subjected to a volume constraint. While in the stress-based the 

objective function is volume minimization subjected to a stress constraint. ∂c and ∂g are 

the sensitivity of the objective functions (derivative of the objective functions) and are 

calculated by Equations 34 and 35, respectively: 

𝜕𝑐

𝜕𝑥𝑒
= −𝑝(𝑥𝑒)

𝑝−1𝑢𝑒
𝑇𝑘0𝑢𝑒 34 

𝜕𝑣

𝜕𝑥𝑒
= 𝜈𝑒 35 

where p is the penalization factor (usually ≥3) and 
𝜕𝑔

𝜕𝑥𝑒
 is the derivative of stress-constraint 

with respect to the design variable, calculated by Equation 36: 

𝜕𝑔

𝜕𝑥𝑒
= 
𝜕(𝜌𝑒

𝑃−𝑞)

𝜕𝑥𝑒

𝐷𝑜𝐵𝑒𝑢𝑒
𝜎𝑦𝑖𝑒𝑙𝑑

+
𝜌𝑒
𝑃−𝑞𝐷𝑜𝐵𝑒
𝜎𝑦𝑖𝑒𝑙𝑑

𝜕𝑢𝑒
𝜕𝑥𝑒

 36 

the right part of the derivate (
𝜕𝑢𝑒

𝜕𝑥𝑒
) can be solved using the adjoint method as defined in 

Equations 37 to 40 which represent an efficient way to evaluate the gradient of the 

constraint. 

𝜕(𝐾𝑈)

𝜕𝑥𝑒
=
𝜕𝐹

𝜕𝑥𝑒
 37 

𝜕𝐾

𝜕𝑥𝑒
𝑈 + 𝐾

𝜕𝑈

𝜕𝑥𝑒
= 
𝜕𝐹

𝜕𝑥𝑒
 38 

𝐾
𝜕𝑈

𝜕𝑥𝑒
=
𝜕𝐹

𝜕𝑥𝑒
−
𝜕𝐾

𝜕𝑥𝑒
𝑈 39 
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𝜕𝑈

𝜕𝑥𝑒
= 𝐾−1(

𝜕𝐹

𝜕𝑥𝑒
−
𝜕𝐾

𝜕𝑥𝑒
𝑈) 40 

however, 
𝜕𝐹

𝜕𝑥𝑒
 is 0 since the applied force is not dependent on the design variable (density), 

then the Equation 40 can be reduced to Equation 41. 

𝜕𝑈

𝜕𝑥𝑒
= −𝐾−1(

𝜕𝐾

𝜕𝑥𝑒
𝑈) 41 

The homogenized stiffness could then be computed by Equation42: 

𝜕𝐾

𝜕𝑝𝑒
= 𝑃𝑥𝑒

𝑃−1𝑘𝑒
0 42 

where 𝑓0 is the function of density. Thus, the derivative of macroscopic stiffness is 

computed by Equation 44: 

𝜕𝑢

𝜕𝑥𝑒
= −𝐾−1(𝑃𝑥𝑒

𝑃−1𝑘𝑒
0 )𝑈  43 

𝜕𝑢

𝜕𝑥𝑒
= −𝐾−1(𝑃𝑥𝑒

𝑃−1𝑘𝑒
0 )𝑈 44 

Therefore, 

𝜕𝑔(𝜌𝑥𝑒)

𝜕𝑥𝑒
=
(𝑃 − 𝑞)𝜌𝑒

𝑃−𝑞−1𝐷𝑜𝐵𝑒𝑢𝑒
𝜎𝑦𝑖𝑒𝑙𝑑

+
𝜌𝑒
𝑃−𝑞𝐷𝑜𝐵𝑒
𝜎𝑦𝑖𝑒𝑙𝑑

[−(𝑥𝑒
𝑝𝑘𝑒

0)−1(𝑃𝑥𝑒
𝑃−1𝑘𝑒

0 )𝑈] 45 

The OC method might be easier to implement, nonetheless, it has some deficiencies. 

The OC method is a non-general optimization method and has encountered converge issues 

for most constraints other than compliance. It also suffers from a couple of numerical 

instabilities and cannot handle problems with constraints that exceed the applied 

constraints [65]. 

 

2.3.3.2 Moving Method Asymptotes (MMA) 

In 1987, The MMA developed by Svanberg [68]. It is a non-linear programming 

technique based on a special convex approximation. The MMA methodology can handle 

general non-linear optimization problems with a denser mesh, and large number of design 
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variables. This is applicable given that the derivatives of the constraint functions with 

respect to the design variables can be analytically or numerically solved. The general 

minimization problem can be formulated based on Equations 46 to 49: 

𝑓0(𝑥) 46 
subjected to 

𝑓𝑖(𝑥) ≤ 𝑓𝑖  47 
for i=1, …., m and where m is the number of constraints for the constraint function, and 

𝑥𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑥𝑢𝑗 48 
for j=1, …, n and n is the number of design variables for a lower bound (xlj) and upper 

bound (xuj) of the design variable. MMA uses a sub-problem concept where a sub-problem 

P(k) is generated by substituting the constraint function with P through an explicit 

approximating function 𝑓𝑖
(𝑘)

. 𝑓𝑖
(𝑘)

 is derived through a first order Taylor expansion in a 

reciprocal elemental size (1/xj). 𝑓𝑖
(𝑘)

 is defined for a range of lower and upper moving 

asymptotes chosen for the number of variables as seen in Equation 49: 

𝐿𝑗
(𝑘) < 𝑥𝑗

(𝑘) < 𝑈𝑗
(𝑘) 49 

where j=1, …., n. The lower and upper moving asymptotes variables assist in achieving 

convergence during the iterative process. Also, the moving asymptotes stabilizes the 

oscillational behavior in the structure. 𝑓𝑖
(𝑘)

 is formulated as given in Equation 50: 

𝑓𝑖
(𝑘)
(𝑥) =  𝑟𝑖

(𝑘)
+∑(

𝑃𝑖𝑗
(𝑘)

𝑈𝑗
(𝑘)
− 𝑥𝑗

+
𝑞𝑖𝑗
(𝑘)

𝑥𝑗 − 𝐿𝑗
(𝑘)
)

𝑛

𝑗=1

 50 

where 

𝑃𝑖𝑗
(𝑘)
= 

{
 
 

 
 (𝑈𝑗

(𝑘)
− 𝑥𝑗

(𝑘)
)2  
𝜕𝑓𝑖
𝜕𝑥𝑗

, 𝑖𝑓 
𝜕𝑓𝑖
𝜕𝑥𝑗

> 0

0,                                 𝑖𝑓 
𝜕𝑓𝑖
𝜕𝑥𝑗

≤ 0

 51 
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𝑞𝑖𝑗
𝑘 = 

{
 
 

 
 0,                                            𝑖𝑓 

𝜕𝑓𝑖
𝜕𝑥𝑗

≥ 0

−(𝑥𝑗
(𝑘)
− 𝐿𝑗

(𝑘)
)2  
𝜕𝑓𝑖
𝜕𝑥𝑗

, 𝑖𝑓 
𝜕𝑓𝑖
𝜕𝑥𝑗

< 0

 52 

𝑟𝑖
(𝑘)
= 𝑓𝑖(𝑥

(𝑘)) − ∑(
𝑃𝑖𝑗
(𝑘)

𝑈𝑗
(𝑘)
− 𝑥𝑗

+
𝑞𝑖𝑗
(𝑘)

𝑥𝑗 − 𝐿𝑗
(𝑘)
)

𝑛

𝑗=1

 53 

  
 

2.3.4 Evolutionary Topology Optimization (ETO) 

There are two main methodologies of evolutionary topology optimization (ETO) 

including: 1) evolutionary structural optimization (ESO) and 2) Bi-evolutionary structural 

optimization (BESO). 

 

2.3.4.1 Evolutionary Structural Optimization (ESO) 

In 1992, the Evolutionary structural optimization (ESO) was first proposed by Xie et 

al [69]. It has been continuously developed over the last three decades in solving 

optimization problems. ESO is also known as a “hard-kill” method. In a hard kill method, 

discretized elements are assigned a density value of either one (solid) or zero (void) with 

no intermediate densities [61]. The general concept of ESO is the gradual removal of 

incompetent materials in a design domain [45]. The initial application of ESO was in 

relation to stresses in a design domain to retain elements with significant “stress capacity” 

[70]. 

In a stress-based problem, ESO removes elements with a stress value less than a prescribed 

stress limit after each optimization iteration. The stress limit is imposed using a rejection 

ratio based on a failure criterion such as the Von-Mises Stress [71]. The elimination process 
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removes elements with insignificant stress performance [45]. The formulae used for the 

removal of elements is given in Equation 54: 

𝜎𝑒
𝑣𝑚

𝜎𝑚𝑎𝑥
𝑣𝑚 < 𝑅𝑅𝑖  54 

The optimization iteration continues up to reaching a steady state. At steady state, no 

elements are further eliminated. The evolution ratio (ER) is used to update the rejection 

ratio at the end of each ith iteration. This is given by Equation 55: 

𝑅𝑅𝑖+1 = 𝑅𝑅𝑖 + 𝐸𝑅 55 

On the contrary, in compliance minimization problems, the total strain energy is 

computed by using Equation 56: 

𝐶 =
1

2
𝐹𝑇𝑢 56 

where {F} is the nodal forces, and {u} is the displacement forces. It is possible to derive 

the change in compliance of a structure using Equation 57: 

∆𝐾 = 𝐾𝑒 − 𝐾 = −𝐾𝑖  57 

where Ke is the effective stiffness of the structure after the elements are removed and Ki is 

stiffness of the ith element that is removed at the current iteration. Since, the eliminated 

elements are assumed to have insignificant impact on the load applied thus the change in 

displacement can be computed using Equations 58 to 60: 

𝑢 = 𝐾−1𝐹  58 

𝑢 = 𝐾−1𝐾𝑢 59 

∆𝑢 = −𝐾−1∆𝐾𝑢 60 

Therefore, the change in compliance can be computed by Equations 61 to 63: 
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∆𝐶 =
1

2
𝐹𝑇∆𝑢  61 

∆C = −
1

2
𝐹𝑇𝐾−1∆𝐾𝑢 62 

∆C =
1

2
𝑢𝑖
𝑇𝐾𝑖𝑢𝑖  63 

where ui
 is the displacement of the ith element. Hence, the sensitivity number for the mean 

compliance is defined by Equation 64: 

𝛼𝑖
𝑒 = ∆𝐶 =

1

2
𝑢𝑖
𝑇𝐾𝑖𝑢𝑖  64 

Chu et al. determined that the sensitivity is the most effective criterion for removing 

elements and to find an optimal design with the minimum compliance [70]. 

 

2.3.4.2 Bi-Evolutionary Structural Optimization (BESO) 

The BESO is capable of simultaneously adding and removing elements in each 

iterative stage. In 1996, Papadrakakis et al. introduced this concept of both additional and 

removal of elements [72]. Nonetheless, Querin et al. were the first to systematically explore 

it [73]. An additional ratio (AR) is introduced in BESO. The additional ratio re-introduces 

elements removed previously due to low sensitivity but are currently exhibiting high 

sensitivity even as voids. A simple compliance minimization problem can generally be 

defined by Equation 65: 

𝐶 =
1

2
𝐹𝑇𝑢 65 

subjected to a volume constraint given by Equation 66: 
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∑𝑉𝑖𝑋𝑖

𝑁

𝑖=1

= 𝑉𝑑 66 

where Vi is the element’s volume, Xi is the design variable, and Vd is the desired volume 

fraction. The volume constraint was introduced in BESO due to convergence issues in 

ESO. Therefore, the sensitivity of each element can be computed by Equation 67: 

𝛼𝑖
𝑒 = ∆𝐶 =

1

2
𝑢𝑖
𝑇𝐾𝑖𝑢𝑖  67 

However, for a problem with a non-uniform mesh, the sensitivity number can be computed 

using Equation 68: 

𝛼𝑖
𝑒 = e𝑖 =

(
1
2𝑢𝑖

𝑇𝐾𝑖𝑢)

𝑉𝑖
 68 

 

2.3.4.3 Element’s Removal and Addition Criteria 

The initial stage in the ESO and BESO algorithm is to specify a desired volume ratio 

(VD). The volume fraction of the optimized structure in the next iteration (i.e., k+1) by 

provided in Equation 69: 

𝑉𝑘+1 = {
𝑉𝑘(1 + 𝐸𝑅), 𝑖𝑓 𝑉𝑘 < 𝑉

𝐷

𝑉𝑘(1 − 𝐸𝑅), 𝑖𝑓 𝑉𝑘 > 𝑉
𝐷 69 

where ER is the evolution ratio, with a sensitivity threshold is set based on the ER. While 

the addition ratio (AR) is used to define the percentage of voids with high sensitivity to be 

filled. The elements added should consist of a sensitivity value above the sensitivity 

threshold. However, the elements added are subjected to a maximum percentage of 

elements to be added (ARmax). This process is repeated until the convergence criteria is met 

as defined by Equation 70: 
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|∑ 𝐶𝑘−𝑖+1
𝑁
𝑖=1 − ∑ 𝐶𝑘−𝑁−𝑖+1

𝑁
𝑖=1 |

∑ 𝐶𝑘−𝑖+1
𝑁
𝑖=1

≤ 𝜏 70 

where N is the number of iterations to be considered for computing the mean compliance 

of N iterations, and 𝜏 is the convergence tolerance [45]. 

 

2.3.5 Level Set Method (LSM)  

In 1988, Osher et al. introduced the level set methodology to model surfaces with 

moving curvatures [74]. In 1998, Haber et al. implemented the level set methodology for 

topology optimization [75]. The level set method (LSM) is an implicit boundary 

description method which defines material phase interfaces by a level set function (LSF) 

[76, 77]. LSM is an efficient way to represent and track the evolution of interfaces and 

surfaces. Contrary to explicit boundary description (e.g., splined-based), implicit boundary 

description has the capabilities to handle topological changes [77, 78]. The structure’s 

volume is represented by a Level Set Function (LSF). This is done by means of an auxiliary 

continuous function (ø) that consists of a number of variables which represent the number 

of spatial dimensions [76]. The Level Set Function (LSF) consists of the material interface 

(Γ), material domain (Ω), and void domain (D/Ω). It represents a closed curve that can be 

defined as given in Equation 71: 

𝛤 = {(𝑥, 𝑦, 𝑧)|ø(𝑥, 𝑦, 𝑧) = 0} 71 

𝛤 is represented as a zero-level set by the function and x, y, and z respecting its coordinates.  

Figure 10 is a graphical representation of a level set function [79]. The function ø is 

negative when outside the region delimit by the curve or surface and positive when inside 

the region as seen. 
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Figure 10. Graphical Representation of a Level Set Function[79] 

 

LSM utilizes the Eulerian approach. The Eulerian approach can perform numerical 

computations without parameterization. It has exhibited high performances in solving 

problems having complex surfaces and surface mesh extractions [80]. The implementation 

of partial differential equation (PDE) in the Eulerian approach assists in defining other 

property parameters such as velocity, temperature, and pressure with respect to time and 

space. 

Nonetheless, Fu et al. presented an effective parametric level set method (PLSM) [81]. 

The approach was developed for macro-periodic structures with sub-structuring such that 

a condensing linear system is to be solved. The parametric level set approach is an 

extension of the conventional LSM. PLSM is superior as there is no need for re-

initialization. This leads to numerical robustness and efficiency [82]. Due to its 

computational efficiency, LSM has been widely implemented during the past decade. 

Jiang et al. proposed a new parametric level set scheme for structural topology optimization 

[82]. They constructed a cardinal basis function based on the radial basis function (RBF). 
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The essence of applying cardinal basis function is to precisely specify the range of design 

variables. Delgado et al. optimized three-dimensional fully viscoelastic structures and two-

dimensional unconstrained layer damping (UCLD) using LSM [83]. Chen et al. presented 

a novel level set-based method using scanning path-optimization that enabled the 

development of a well-defined geometric parts [84]. This was accomplished by a layer-

wise continuous scanning of path-optimization. 

 

2.3.5.1 Parameterization 

A curve could be represented by a one-dimensional equation with other parameters 

that define the shape and its behavior. This is known as parameterization. The 

parameterization is used to define the details of the LSF and the nature of the optimization 

problem (i.e., nonlinearity and monotonicity) [77]. LSF parameterization can be 

distinguished by 1) support size of basis functions, 2) type of interpolation scheme, and 3) 

shape of basis function. 

The support size of a basis function defines the regions within a domain with a non-

zero function. There are three types of basis function: 1) local, 2) mid-range, and 3) global. 

For a local basis function, the non-zero part is a small portion of the design domain with a 

minimum overlap of functions. The downside of local basis function is the usage of several 

iterations to move boundaries significantly. This occurs when there is no smoothing 

regularization as changes in nodal values cannot displace material surfaces more than the 

size of a single element. Mid-range and global basis functions are similar to local basis 

function. However, mid-range function has a denser overlap and global basis function 

overlaps almost throughout the domain. Global basis function utilizes all design variables 
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in updating the surface of the material in the design domain. This leads to a faster rate of 

design change at the expense of higher computational cost. Despite its efficiency, finding 

an appropriate time step to prevent a larger change in the surface of the material is a 

challenge [77]. 

The optimization variable in LSF can also be defined in a scaling basis function or 

translating basis function. Scaling is widely used to parameterize LSF. It employs nodal 

values by applying a scale factor to the design variables. However, such interpolation 

scheme does not provide control over the LSF gradients when upper and lower bounds are 

not defined. Xing et al. proposed the translating basis function [85]. It provides basis 

function provides a fair control over the LSF gradient and length scale. 

One-dimensional coordinate elements can be transformed using linear, quadric, and 

cubic basis function. For two-dimensional elements, the coordinates of the elements can 

be transformed using linear, and quadratic basis functions. The basis function can also 

consist of sub-functions such as piecewise and bilinear interpolation. Wang et al. developed 

radial basis functions (RBF) to produce smooth surface contours and continuous spatial 

gradient of LSF. Gomes et al. introduced the application of spectral parameterization in 

topology optimization using the Fourier series expansion [86]. Design variables of surface 

were replaced with coefficients of the Fourier series expansion. One advantage of this 

parameterization is the nucleation of new holes in surfaces. This prevents the occurrence 

of numerical instabilities such as the checkerboard. Spectral parameterization has been 

observed to be very efficient in optimizing periodic structures [77].  

Figure 11 illustrates the various types if interpolation functions.  
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(a) (b) 

  
(c) (d) 

 

Figure 11. Various Types of Interpolation Functions: (a) Piecewise Linear Basis Function 

on 2D Domain Discretized by Triangles[77], (b) Bi-Linear Basis Function on 2D Domain 

Discretized by Squares[77], (c) Radial Basis Function Contour Plot[87], and (d) Spectral 

Contour Plot[88] 

 

2.3.5.2 Updating the Level Set Function (LSF) 

A general equation for motion of the LSF in three-spatial dimensions is defined by a 

mean curvature and represented in Equation 72: 

𝜙𝑡 + 𝐻(𝜙𝑥, 𝜙𝑦 , 𝜙𝑧) 72 

𝜙𝑡 is an implicit LSF with respect to time, 𝜙𝑥 , 𝜙𝑦, and 𝜙𝑧 represents LSF with respect to 

its x, y, and z coordinates. H can be a function of both space and time. 

To describe the motion of a function, a normal velocity field is constructed. The velocity 

fields are developed to move optimization processes toward an optimum point in the design 

domain within the boundaries defined. This is to ensure the convergence for numerical 

model. Different velocity extensions have been proposed for different types of problems 

[77]. The extensions include: 1) normal, 2) natural, 3) Hilbertian, and 4) Helmholtz velocity 
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extensions. Normal velocity extension is a component of the velocity in a constant 

direction. Nucleation of new holes in the surface above the boundaries is not possible in 

sensitivity based LSF when the normal velocity is applied. Natural velocity extension does 

not need to solve additional partial differential equations (PDE) as they are constructed 

from shape gradients. However, natural velocity extension supports new nucleation of 

holes provided that the motion of the surface above the boundaries would no signed-

distance re-initialized [77, 89]. In 2006, De Gournay proposed the Hilbertian velocity 

extension [90]. This method introduced a scalar product to calculate the descent direction 

to regularize the velocity of the LSF. Yamasaki et al. used Helmholtz-type PDE to 

smoothen sensitivities in the computation of normal velocities in the LSF [91]. Although 

the velocity extension associates velocity to the shape sensitivity, it does not support the 

nucleation of new holes. 

Hamilton-Jacobi equation is a common approach that is used to update LSF as it 

represents a general equation for motion by mean curvature defined in three-spatial 

dimensions. The first order differential of the Hamilton-Jacobi equation can be evaluated 

by Equation 73: 

𝜕𝜙

𝜕𝑡
+ 𝑉‖∇ϕ‖ 73 

𝜕𝜙 represents the change in LSF over a period of time (𝜕𝑡), V is a velocity field, and ‖𝛻𝜙‖ 

is the modulus of gradient. The gradient of the implicit LSF is defined as Equation 74: 

𝛻𝜙 = (
𝜕𝜙

𝜕𝑥

𝜕𝜙

𝜕𝑦

𝜕𝜙

𝜕𝑧
) 74 
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2.3.6 Numerical Instabilities 

In topology optimization problems several numerical instabilities may occur due to 

the complexity of the problems under consideration. The common numerical instabilities 

encountered could be classified into three categories: 1) checkerboard, 2) mesh 

dependency, and 3) local minima [92]. 

 

2.3.6.1 Checkerboard 

Figure 12 illustrates the formation of elements in a checkerboard pattern (i.e., an alternating 

solid and void pattern). Optimized structures with checkerboard patterns lack connectivity 

and cannot be manufactured. To solve the checkerboard instability several heuristic 

methods can be implemented such as: density filters [63], sensitivity filters [92], and 

perimeter control [93]. Huang et al. illustrated that choosing an appropriate perimeter 

control method is difficult [45]. Therefore, the sensitivity filter scheme represents the most 

preferable methodology due to its ease of implementation.  

 

 

 

Figure 12 Optimized beam with checkerboards 

The sensitivity filter on an element level is defined by Equation 75: 

𝜕𝑓̂

𝜕𝜌𝑘
 =  (𝜌𝑘)

−1
1

∑ 𝐻𝑖̂
𝑁
𝑖=1

∑𝐻𝑖̂

𝑁

𝑖=1

𝜌𝑖
𝜕𝑓

𝜕𝜌𝑖
 75 
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where 𝐻̂𝑖 is a convolution operator (weight factor) and is defined by Equation 76: 

𝐻𝑖̂ = 𝑟𝑚𝑖𝑛 − 𝑑𝑖𝑠𝑘(𝑘, 𝑖), {∈ N | dist(k, i) ≤ 𝑟𝑚𝑖𝑛  76 

where k = 1, …., N, dist(k,i) is the center-to-center distance between the kth and ith element. 

While rmin is filter scheme to account for neighboring elements affecting the sensitivity of 

an element. 

For ETO methodologies, the filtering scheme is applied on the nodal level. Therefore, 

the nodal sensitivity can be computed as the weighted average of the neighboring element’s 

sensitivity values as illustrated as given in Equation 77: 

α𝑗
𝑛 =∑𝑤𝑖𝛼𝑖

𝑒

𝑀

𝑖=1

 77 

where M is the number of elements surrounding the jth node, wi is the weight factor of the 

ith element (1 or 0.001). wi can be defined by Equation 78: 

𝑤𝑖 =
1

𝑀 − 1
(1 −

𝑟𝑖𝑗
∑ 𝑟𝑖𝑗
𝑀
𝑖=1

) 78 

where rij is the center-to-center distance between the ith element and the jth node. 

Equation 78 has a greater influence of the sensitivity number of elements with a small 

center-to-center distance. The filtering scheme is applied on the elements sensitivity by 

utilizing a length scale radius rmin. rmin is a constant value that is used to scan and identify 

neighboring nodes that affects the sensitivity of the ith element. A value of rmin greater than 

the mesh sizes is recommended to ensure more than one element is considered during 

smoothing. This is to consider the densities and sensitivities of the surrounding elements 

and eliminate any local extremes. The average sensitivity number of an element within the 

radius (rmin) is calculated by Equation 79:  
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α𝑖 =
∑ 𝑤(𝑟𝑖𝑗)𝛼𝑗

𝑛𝑘
𝑗=1

∑ 𝑤(𝑘
𝑗=1 𝑟𝑖𝑗)

 79 

where k is the total number of nodes with the region of the radius and w(rij) is the linear 

weight factor. The linear weight factor w(rij) can be computed by Equation 80: 

𝑤(𝑟𝑖𝑗) = 𝑟𝑚𝑖𝑛 − 𝑟𝑖𝑗 80 
  

 

2.3.6.2 Mesh Dependency 

In FEA, it is assumed that an increase in the mesh density of a numerical problem 

would lead to more accurate results. However, that is not the case in mesh dependency 

problems. Mesh dependency problem is the differences in layout of optimized domain 

(material distribution) due to differences in mesh densities for the same numerical problem. 

This leads to inaccurate results as the densities and structural stiffness is dependent on the 

number of elements used. 

Sensitivity filters and relaxation can be implemented to assist in eliminating the effect 

of the mesh density [10, 92, 94]. But these methodologies do not solve non-convergence 

issues. A numerical solution might not converge due to the oscillations that may occur in 

the calculations of the objective function. Huang et al. proposed averaging the element’s 

sensitivity number of current and previous iterations to attain stability in the optimization 

process. The averaging scheme is computed by Equation 81: 

α𝑖 =
𝛼𝑖
𝑘 + 𝛼𝑖

𝑘−𝑖

2
 81 

where k represents the current iteration. 
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2.36.3 Local Minima 

The local minima instability is similar to the mesh dependency instability; however, the 

inaccurate results would depend on the optimization parameters (such as: filter radius and 

moving limits in sensitivity). To ensure convergence of a gradient based optimization 

problem, the continuation method (i.e., varying density from 0 to 1) and a non-linear 

material interpolation scheme (with a penalization factor greater than 1, preferably 3) can 

be implemented [92]
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CHAPTER 3 

PROBLEM FORMULATION 

To compare the performance of the three most known compliance-based topology 

optimization algorithms (i.e., SIMP, BESO, and LSM), the Messerschmidt-Bölkow-Blohm 

(MBB) model was used. The MBB model is a well-known simply supported beam with a 

three-point loading configuration that is often used to benchmark topology optimization 

problems.  

Figure 13 illustrates a schematic drawing of the MBB beam. In all simulations, A992 

steel material properties were assigned, with an elastic modulus of 200GPa (29,000ksi), 

and a Poisson’s ratio (ν) of 0.3. The simulated beams had a length of 1000mm, and a height 

of 250mm. The impact of the thickness on the algorithm was also investigated by 

considering 20mm, 40mm and 60mm thick beams. A maximum load of 861.8kN was 

applied, representing a maximum displacement of 1.149mm, for the beam with a 60mm 

thickness.
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Figure 13. Illustration of the Messerschmidt-Bölkow-Blohm (MBB) model  

 

A total of 61 simulations were performed with 16 simulations for each optimization 

technique of SIMP and LSM. While 26 simulations were performed for beams optimized 

using the BESO. Group 1 which consisted of simulations 1 to 5, was considered to 

investigate the effect of mesh density with respect to the algorithms on the optimized 

structure. Group 2 that consisted of simulations 4, 6 and 7, was conducted to study the 

effect of the beam thickness on the optimized structure. Group 3, consisted of simulations 

4, 8 and 9, was used to investigate the effect of the filter radius on the optimized structure 

solved by SIMP and BESO. For the structures optimized using LSM, the effect of the size 

of holes that are nucleated was investigated. Group 4, that consisted of simulations 4, 10, 

and 11, was deployed to study the effect of the penalization factor on the performance of 

the optimization algorithms. Group 5, consisted of simulations 4, and 12 to 16, was used 

to study the effect of the desired volume fraction on the performance of the optimized 

structure. Group 6 that consisted of simulations 4, and 17 to 23 was implemented to 

investigate the effect of the removal and addition ratios for structures optimized by the 

BESO. Finally, Group 7 that consisted of simulation 4 and simulations 24 to 26 was 
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considered study the effect of the convergence criteria for structures optimized by BESO. 

For structures optimized with LSM, a time-step of 0.5, a delta (∆) of 10 iterations were 

used to update the velocities. A moving constant (𝜇) of 20 for reducing the volume was 

chosen for optimizing the structure using LSM. Finally, Table 1 provides the parameters 

used in each simulation
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Table 1. Simulation Parameters for MBB Optimized using SIMP, BESO and LSM 

Common Parameters 

SIMP and 

BESO only 

BESO  

only 

LSM 

only 

Simulation 

Elements 

in X 

Elements 

in Y 

Thickness 

(mm) Penal 

Volume 

Fraction Rmin ERR Armax Tau R_holes 

1 200 100 20 2 0.5 1 0.04 0.02 0.001 0.1 

2 200 75 20 2 0.5 1 0.04 0.02 0.001 0.1 

3 200 50 20 2 0.5 1 0.04 0.02 0.001 0.1 

4 150 50 20 2 0.5 1 0.04 0.02 0.001 0.1 

5 100 50 20 2 0.5 1 0.04 0.02 0.001 0.1 

6 150 50 40 2 0.5 1 0.04 0.02 0.001 0.1 

7 150 50 60 2 0.5 1 0.04 0.02 0.001 0.1 

8 150 50 20 2 0.5 1.5 0.04 0.02 0.001 0.2 

9 150 50 20 2 0.5 2 0.04 0.02 0.001 0.5 

10 150 50 20 4 0.5 1 0.04 0.02 0.001 0.1 

11 150 50 20 6 0.5 1 0.04 0.02 0.001 0.1 

12 150 50 20 2 0.6 1 0.04 0.02 0.001 0.1 

13 150 50 20 2 0.7 1 0.04 0.02 0.001 0.1 

14 150 50 20 2 0.75 1 0.04 0.02 0.001 0.1 

15 150 50 20 2 0.8 1 0.04 0.02 0.001 0.1 

16 150 50 20 2 0.9 1 0.04 0.02 0.001 0.1 

17 150 50 20 2 0.5 1 0.01 0.01 0.001  
18 150 50 20 2 0.5 1 0.05 0.05 0.001  
19 150 50 20 2 0.5 1 0.1 0.1 0.001  
20 150 50 20 2 0.5 1 0.05 0.02 0.001  
21 150 50 20 2 0.5 1 0.1 0.02 0.001  
22 150 50 20 2 0.5 1 0.02 0.05 0.001  
23 150 50 20 2 0.5 1 0.02 0.1 0.001  
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24 150 50 20 2 0.5 1 0.04 0.02 0.0001  
25 150 50 20 2 0.5 1 0.04 0.02 0.00001  
26 150 50 20 2 0.5 1 0.04 0.02 0.00001  
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CHAPTER 4 

NUMERICAL APPROACH 

4.1 Solid Isotropic Material/Microstructure with Penalization (SIMP) 

A MATLAB code developed by Sigmund et al. constituted the basis for the structures 

optimized using SIMP [67]. The MATLAB script utilizes optimal criteria (OC) sensitivity 

method together with a mesh-dependency filter. The script is initiated by assigning the 

design variables with a prescribed volume fraction. The FEA is then initiated to solve for 

displacements (U) and stiffnesses (K). After the computation of elements’ stiffnesses in 

Equation 8, the assembly equation used in Equation 15 is penalized to implement the 

penalization factor. Hence, the design variable (𝜌𝑒) becomes a factor of the stiffness as 

defined in Equation 82: 

𝐾𝑒(𝜌𝑒)  = 𝑥
𝑃[𝐾𝐸] 82 

𝐾𝑒 represents the element’s effective stiffness, 𝜌𝑒 is a design variable, 𝑥 is the element’s 

density, and KE is the global stiffness of the structure. As a result, the displacement {U} 

can be computed as given in Equation 83. 

{𝑈} =
𝐾𝑒(𝜌𝑒)

{𝐹}
 83 

Subsequently, the element’s compliance (objective function) can be then calculated by 

Equation 84
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𝐶𝑒 = 𝑥
𝑃𝑈𝑒

𝑇𝐾𝐸𝑈𝑒 84 

Ce is the element’s compliance, 𝑥 is the element’s density, P is the penalization factor, 𝑈𝑒
𝑇 

is the transpose of the element’s displacement. The sensitivity of the objective function can 

be calculated by Equation 84: 

∂C = −𝑃𝑥(𝑃−1)𝑈𝑒
𝑇𝐾𝐸𝑈𝑒 85 

The mesh-dependency filter was then applied to the sensitivity function using 

Equation 86: 

𝜕𝑐̂

𝜕𝜌𝑒
= (𝜌𝑒)

−1
1

∑ 𝐻𝑖̂
𝑁
𝑖=1

∑𝐻𝑖̂

𝑁

𝑖=1

𝜌𝑒
𝜕𝑐

𝜕𝜌𝑒
 86 

Finally, the design variables (i.e., densities) are updated using the optimal criteria 

scheme represented in Equation 31. This iterative process continues until the convergence 

criterion is satisfied. A flowchart of the procedure implemented in the algorithms is 

presented in Figure 14 
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Figure 14. Flowchart Representing the Procedure for SIMP 

 

4.2 Evolutionary Topology Optimization (ETO) 

4.2.1 Evolutionary Structural Optimization (ESO) 

The ESO optimization scheme is an application approach to achieve an optimized 

structure with a predefined compliance or a displacement limit. The iteration terminates 

upon reaching the predefined limit irrespective of the other factors. Evolutionary rejection 

ratio (ERR) is introduced prior to the initiation of the MATLAB script to implement the 

removal of elements. Likewise, the prescribed limit for either compliance or displacement 

is defined (i.e., a convergence limit). The design domain is assigned a volume of 1 (as 

elements will be gradually removed during each iteration). The assigned volume can be 

defined by Equation 87: 

𝑥(1: 𝑛ⅇ𝑙𝑦, 1: 𝑛ⅇ𝑙𝑥) = 1 87 

The mean compliance of each element is computed by Equation 88 after the 

calculation of the element’s stiffness and nodal displacements. Unlike SIMP, ETO is a 

discrete method (no intermediate densities). The sensitivity function of the objective 

function is calculated by Equation 89: 

 𝐶 =
1

2
𝑥𝑃𝑈𝑒

𝑇𝐾𝐸𝑈𝑒 88 

α𝑒 = −
1

𝑃

𝜕𝐶

𝜕𝑥𝑒
= {

1

2
× 𝑥𝑃 × U𝑒

𝑇
× KE × 𝑈𝑒 , 𝑤ℎⅇ𝑛 𝑥 = 1  

𝜌𝑚𝑖𝑛
𝑃−1

2
U𝑒

𝑇 × KE × 𝑈𝑒 , 𝑤ℎⅇ𝑛 𝑥 = 0

 89 

The mesh dependency filter defined in Equation 86 is implemented. Then the 

elements’ sensitivities are sorted in a descending order to eliminate elements with the 
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lowest sensitivities. The number of elements to be removed is determined by the pre-

defined ERR and can be calculated from Equation 90: 

𝐸𝑅𝑅 =
𝑛𝑢𝑚𝑏ⅇ𝑟 𝑜𝑓 ⅇ𝑙ⅇ𝑚ⅇ𝑛𝑡𝑠 𝑟ⅇ𝑚𝑜𝑣ⅇ𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏ⅇ𝑟 𝑜𝑓 ⅇ𝑙ⅇ𝑚ⅇ𝑛𝑡𝑠 𝑖𝑛 𝑖𝑛𝑡𝑖𝑎𝑙 𝑚𝑜𝑑ⅇ𝑙
 90 

ⅇ𝑙ⅇ𝑚ⅇ𝑛𝑡𝑠 𝑟ⅇ𝑚𝑜𝑣ⅇ𝑑 = 𝐸𝑅𝑅 × 𝑇𝑜𝑡𝑎𝑙  ⅇ𝑙ⅇ𝑚ⅇ𝑛𝑡𝑠 𝑖𝑛 𝑖𝑛𝑡𝑖𝑎𝑙 𝑚𝑜𝑑ⅇ𝑙 91 

Since ETO is a discrete method, a bilinear surface smoothing scheme based on nodal 

density and sub-element interpolation is applied to achieve a uniform density from 

elements to nodes. 

 

4.2.2 Bi-Evolutionary Structural Optimization (BESO) 

Unlike ESO, BESO simultaneously removes and adds elements. Solid elements with low 

sensitivity number are removed while void elements with high sensitivity numbers are 

added. Prior to the initiation of the MATLAB script, both ERR and ARmax are defined. For 

elements to be added, ARmax is assigned a value greater than 1%. The MATLAB script is 

initiated by defining design variables and structural volume as in Equations 92 and 93: 

𝑥(1: 𝑛ⅇ𝑙𝑦, 1: 𝑛ⅇ𝑙𝑥) = 1 92 

𝑣𝑜𝑙 = 1 93 

The volume fraction of the structure can be determined by Equation 94at the end of 

each iteration. 

𝑣𝑜𝑙𝑘 = {
𝑚𝑎𝑥 (𝑉𝑜𝑙(1 − 𝐸𝑅), 𝑉𝑜)

𝑚𝑖𝑛 (𝑉𝑜𝑙(1 − 𝐸𝑅), 𝑉𝑜)
 94 

volk is the structural volume of the kth iteration, ER is the evolutionary ratio, and Vo is the 

volume fraction. The FEA is then initiated to determine both elements stiffness and nodal 

displacements. The mean compliance can be then calculated using Equation 95: 
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𝐶 =
1

2
𝑥𝑃𝑈𝑒

𝑇𝐾𝐸𝑈𝑒 95 

 

The sensitivity function is then computed through Equation 96: 

𝛼𝑒 = −
1

𝑃

𝜕𝐶

𝜕𝑥𝑒
= {

1

2
𝑥𝑃𝑈𝑒

𝑇
𝐾𝐸𝑈𝑒 , 𝑤ℎⅇ𝑛 𝑥 = 1  

𝜌𝑚𝑖𝑛
𝑃−1

2
𝑈𝑒

𝑇𝐾𝐸𝑈𝑒 , 𝑤ℎⅇ𝑛 𝑥 = 0.001

 96 

α𝑒 is the sensitivity number, P is the penalization factor, and 𝑥 represents the design 

variable. The defined mesh dependency filter is applied followed by an averaging scheme 

as given in Equation 97: 

𝑑𝑐𝑘 =
𝑑𝑐𝑘−1 + 𝑑𝑐𝑘

2
 97 

To remove and add elements, a sensitivity threshold is defined by Equation 98: 

𝑑𝐶𝑠𝑜𝑙𝑖𝑑𝑠 = 𝑣𝑜𝑙𝑘 × 𝑑𝐶𝑎𝑙𝑙  98 

𝑑𝐶𝑠𝑜𝑙𝑖𝑑𝑠 is the number of elements with significant sensitivities greater than the threshold 

and 𝑑𝐶𝑎𝑙𝑙 represents the sensitivity of all elements. The volume density of the element is 

then defined by Equation 100: 

𝑖𝑓 𝑑𝐶𝑖 > 𝑑𝐶𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, , 𝑥𝑖 = 1 99 

ⅇ𝑙𝑠ⅇ, 𝑥𝑖 = 𝑥𝑚𝑖𝑛 100 

where 𝑑𝐶𝑖 and 𝑥𝑖 are the sensitivity and density of an element, respectively. 𝑥𝑚𝑖𝑛 is the 

minimum density, usually taken as 0.001 to represent a soft density for voids. At this point, 

there is a need to check if additional elements are required in the design domain in relation 

to a prescribed maximum addition ratio (ARmax). The number of elements to be added is 

equal to the difference between the current and previous number of solid elements in the 
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design domain. The process given in Equations 69 for checking the additional element 

added is repeated iteratively until convergence criterion is satisfied as defined in Equation 

70. A flowchart representing the iterative process of the BESO is presented in Figure 15. 

 

 

 

Figure 15. Flowchart Representing the BESO Algorithim Implemented 

 

4.2.3 Bilinear Interpolation 

In this scheme, the element densities are replaced with nodal densities using a bilinear 

interpolation scheme. Element nodes were group into three categories based on the location 

of the nodes as illustrated in  

Figure 16. The three categories are: 1) corner nodes such as N1, 2) edge nodes such 

as N2, and 3) center nodes such as N3. 
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Figure 16. Nodal Classification Based on Its Location in a Structure 

 

The nodal densities can be calculated by Equation 101: 

𝜌𝑛 =
∑ 𝜌𝑒𝑣𝑒
𝑛
1

∑ 𝑣𝑒
𝑛
1

, (𝑛 = 1,2,3,4) 101 

𝜌𝑛 is the nodal density, 𝜌𝑒 is the design variable (densities), 𝑛 is the number of adjacent 

elements to the node, and 𝑣𝑒 is the element’s volume. Therefore, each nodal density could 

be computed based on its location by Equations 102 to 104: 

Corner Node: 

𝜌𝑛 = 𝜌1𝑒 102 

Edge Node: 

𝜌𝑛 =
1

2
(𝜌1𝑒 + 𝜌2𝑒) 103 

Center Node: 

𝜌𝑛 =
1

4
(𝜌1𝑒 + 𝜌2𝑒 + 𝜌3𝑒 + 𝜌4𝑒) 104 
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For a structure that is subdivided into a 20-by-20 nodes, with 4-nodal elements would 

have the densities of the interior points calculated by Equations 105 and 106 using the bi-

linear interpolation. 

𝜌𝑐(𝜉, 𝜂) =∑ 𝑁𝑖(
4

𝑛=1
𝜉, 𝜂)𝜌𝑛𝑖(𝑥) 105 

ρc(𝜉, 𝜂)  = 𝑁1(𝜉, 𝜂)ρn1(𝑥)  + 𝑁2(𝜉, 𝜂)ρn2(𝑥) + 𝑁3(𝜉, 𝜂)ρn3(𝑥)

+ 𝑁4(𝜉, 𝜂)ρn4(𝑥) 
106 

where 𝜌𝑐 is the density at a point, 𝑁𝑖(𝜉, 𝜂) is the bilinear function for shape function, 

and 𝜌𝑛𝑖 is the nodal density. Song et al. investigated the effect of interpolation scheme on 

the results of topology optimization [95]. The results illustrated that extreme interpolation 

may remove essential elements, while soft interpolation may result into a highly dense 

structure with singularities.  

Figure 17 illustrates the effect of smoothening the surface using iso-line values ranging 

from 0.1 to 0.9 [95]. 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 17. Effect of surface smoothing with an iso-line value of: (a) 0.1, (b) 0.5, (c) 0.7 and 

(d) 0.9[95] 
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4.3 Level Set Method (LSM) 

The MATLAB script used in this section was based on the work of Wei et al. [96]. 

The adopted script uses the extended level set method proposed by Wang et al. [97]. The 

LSM scheme employs the radial basis function (RBF) to define the smoothness of the 

surfaces. The script was modified to consider the penalization factor. Since LSF utilizes 

nodes and not quad-linear elements, a “node-to-element” script has been written to map 

the nodal densities into elements densities for further analysis. The RBF can be expressed 

by Equation 107: 

φ𝑖(𝑥) = 𝜑(||𝑥 − 𝑥𝑖||), 𝑥𝑖𝜖𝐷 107 

where x is the position of the nodes. The implemented RBF uses the multiquadric 

interpolation scheme due to its excellent performance and can be expressed by Equation 

108: 

φi(𝑥) = √(𝑥 − 𝑥𝑖)2 + 𝐶𝑖
2 108 

where C is a constant shape parameter, normally assigned a smaller value to ensure stability 

of algorithm. The multiquadric spline is to interpolate the LSF (𝜙(𝑥)) which can be 

expressed by Equation 109: 

 

ϕ(x) =∑αi

N

i=1

𝜑𝑖(𝑥) + 𝑝(𝑥) 109 

where αi is the expansion coefficient of RBF and 𝑝(𝑥) is the 1st degree polynomial that is 

introduced to account for the linear and constant portions of ϕ(x). Also, it ensures the 

positive definiteness of the solution [98]. The 𝑝(𝑥) of the model is expressed by Equation 

110: 
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𝑝(𝑥) = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑦 + 𝑝3𝑧 110 

where 𝑝0, 𝑝1, and 𝑝2 are the coefficients of the polynomial. Therefore, Equation 109 can 

be re-written as given in Equation 111: 

𝐻α = f 111 

where α and f are expressed by Equations 112 and 113: 

α = [α1⋯α𝑁  𝑝0  𝑝1  𝑝2  𝑝3]
𝑇 ∈ ℝ𝑁+4 112 

𝑓 = [𝑓1  ⋯ 𝑓𝑁  0   0   0   0]
𝑇 ∈ ℝ𝑁+4 113 

The generalized expansion coefficients can then be expressed by Equations 114 and 

115: 

α = 𝐻−1𝑓 114 

𝐻 = [
𝐴 𝑃
𝑃𝑇 0

] ∈ ℝ(𝑁+4)×(𝑁+4) 115 

where A and P are computed by Equations 116 and 117: 

 

𝐴 =  [
𝜑1(𝑥1) … 𝜑𝑁(𝑥1)
⋮ ⋱ ⋮

𝜑1(𝑥𝑁) … 𝜑𝑁(𝑥𝑁)
] ∈ ℝ𝑁×𝑁 116 

𝑃 = [
1 𝑥1
⋮ ⋮
1 𝑥𝑁

   

𝑦1 𝑧1
⋮ ⋮
𝑦𝑁 𝑧𝑁

] ∈ ℝ𝑁×4 117 

Equation 109 can then be re-written to be expressed as given in Equation 118 based 

on the expansion coefficients. 

ϕ(x)  =  ϕ𝑇(x) α 118 

Expanding Equation 118 will result into Equation 119: 

ϕ(x)  =  [𝜑1(𝑥)⋯ 𝜑𝑁(𝑥) 1 𝑥 𝑦 𝑧]
𝑇 ∈ ℝ(𝑁+4)×1 119 
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The objective function (i.e., minimization of the compliance) can be then defined by 

Equation 120: 

J(u, ϕ) = ∫(𝜀(𝑢)): 𝐶: 𝜀(𝑢))𝐻(ϕ)
D

𝑑𝛺 120 

The objective function is subjected to some constraints as defined by Equations 121 

to 124: 

𝑎(𝑢, 𝑣, 𝜙) = 𝑙(𝑣, 𝜙) ∀(𝑣, 𝜙) 121 

𝐺(𝜙)  = ∫𝐻(
𝐷

𝜙)𝑑𝛺 − 𝑉𝑚𝑎𝑥 ≤ 0 122 

𝑢 = 𝑢0 123 

𝐶: 𝜀(𝑢) ⋅ n = τ 124 

where 𝑎(𝑢, 𝑣, 𝜙) and 𝑙(𝑣, 𝜙) represent the virtual work of the internal forces and the 

external surfaces, respectively. 𝐺(𝜙) is a shape gradient constraint to limit the material 

usage. H is the Heaviside function to define solids and voids. u represents nodal 

displacements, C is the Hook elasticity tensor, 𝜀 is the strain tensor, and τ is the surface 

traction. 

Since the LSM is an implicit boundary method, it involves the motion of evolving 

surfaces with respect to time. The Hamilton-Jacobi PDE using a capturing Eulerian 

approach for conventional LSF can be defined by Equation 125: 

𝜕𝜙

𝜕𝑡
+ 𝑣𝑛 ⋅ |∇𝜙| = 0 125 

where the normal velocity (vn) is defined by Equation 126: 

𝑣𝑛 = 𝑣 ⋅
∇𝜙

|∇𝜙|
 126 
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The RBF Equation 118 can be re-written in a time dependent format as expressed by 

Equation 127: 

𝝓 = 𝝓(𝑥, 𝑡) = 𝝓𝑻(𝑥)α(𝑡) 127 

Substituting Equation 127 into the Hamilton-Jacobi PDE. Equation 128 to 135 can be 

deduced: 

𝝓𝑻
𝒅α

𝒅𝑡
+ 𝑣𝒏|(∇𝜙)

𝑇α| = 𝟎 128 

|(∇𝜙)𝑇α| = [(
𝜕𝜙𝑇

𝜕𝑥
α)

𝟐

(
𝜕𝜙𝑇

𝜕𝑦
α)

𝟐

(
𝜕𝜙𝑇

𝜕𝑧
α)

𝟐

]

𝟏
𝟐⁄

 129 

𝜕𝜙

𝜕𝑥
= [

𝜕𝜑1
𝜕𝑥

⋯
𝜕𝜑𝑁
𝜕𝑥

𝟎 𝟏 𝟎 𝟎]
𝑻

∈ ℝ(𝑁+4)×1 130 

𝜕𝜙

𝜕𝑦
= [

𝜕𝜑1
𝜕𝑦

⋯
𝜕𝜑𝑁
𝜕𝑦

𝟎 𝟏 𝟎 𝟎]
𝑻

∈ ℝ(𝑁+4)×1 131 

𝜕𝜙

𝜕𝑧
= [

𝜕𝜑1
𝜕𝑧

⋯
𝜕𝜑𝑁
𝜕𝑧

𝟎 𝟏 𝟎 𝟎]
𝑻

∈ ℝ(𝑁+4)×1 132 

𝜕𝜑1
𝜕𝑥

=
𝑥 − 𝑥𝑖 

√(𝑥 − 𝑥𝑖)𝟐 + (𝑦 − 𝑦𝑖)𝟐 + (𝑧 − 𝑧𝑖)𝟐 + 𝑐𝒊
𝟐

, 𝒊 = 𝟏, . . . , 𝑁 
133 

𝜕𝜑1
𝜕𝑦

=
𝑦 − 𝑦𝑖 

√(𝑥 − 𝑥𝑖)𝟐 + (𝑦 − 𝑦𝑖)𝟐 + (𝑧 − 𝑧𝑖)𝟐 + 𝑐𝒊
𝟐

, 𝒊 = 𝟏, . . . , 𝑁 
134 

𝜕𝜑1
𝜕𝑧

=
𝑧 − 𝑧𝑖 

√(𝑥 − 𝑥𝑖)𝟐 + (𝑦 − 𝑦𝑖)𝟐 + (𝑧 − 𝑧𝑖)𝟐 + 𝑐𝒊
𝟐

, 𝒊 = 𝟏, . . . , 𝑁 
135 

The side constraints are then introduced to assure that the generalized coefficients α is 

solvable. The constraints are represented by Equation 136 taking into consideration time-

dependent interpolation. 
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∑α̇(t)

N

i=1

= 0,∑ α̇(t)𝑥𝑖 = 0,

N

i=1

 ∑ α̇(t)𝑦𝑖 = 0,

N

i=1

 ∑ α̇(t)𝑧𝑖 = 0  

N

i=1

 136 

Introducing the side constraints into Equation 111, the ordinary differential equation 

can be expressed as given in Equation 137: 

𝒅α

𝒅𝑡
+ 𝑩(𝛼) = 𝟎 137 

where 𝐵(𝛼) represents the updated velocity at a time step of the surface leading to the 

movement of surfaces in the LSM and can be computed by Equation 138: 

𝑩(𝛼) =

[
 
 
 
 
 
 
𝑣𝑛
𝑒(𝑥1)|(𝛻𝜙

𝑇(𝑥1))𝛼|
⋮

𝑣𝑛
𝑒(𝑥𝑁)|(𝛻𝜙

𝑇(𝑥𝑁))𝛼|
𝟎
𝟎
𝟎
𝟎 ]

 
 
 
 
 
 

∈ ℝ(𝑁+4)×1 138 

 

Figure 18 illustrates the “metamorphosis” of the LSM in solving a simple beam 

problem. In the scheme adopted, holes are nucleated at the initial stage of the 

iteration (iteration 1). The generative layout of the topology optimized beam is 

developed via the velocity of LSF and the movement of surfaces.  

 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

 

Figure 18. Illustration of the LSM procedure for solving a simple beam problem 
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 Mesh Density Effect 

Figure 20 illustrates the density plots of beams with different mesh densities. 

Structures optimized using SIMP revealed checkerboard numerical instabilities 

irrespective of the mesh density. Nonetheless, the design domain with a fine mesh provided 

the most accurate results (i.e., densities, compliance, and displacement). This reinforces 

the necessity of a well-dense domain discretization in order to reach an accurate and a 

representative solution. However, a dense mesh increases the computational cost (RAM 

usage) and does not always translate into computational time. Despite this, the mesh 

density exhibited an insignificant effect on the material distribution for structures 

optimized by the SIMP models as seen in Figure 19. 

It is worth noting that the smallest compliance was achieved for structures optimized 

using LSM. This can be attributed to the Hook elasticity tensor factor in the formulation of 

the compliance. The ratio of the compliance of the structures with the coarse mesh to 

structures with a dense mesh was 2.55%, 8.99% and 3.73%, for optimization using SIMP, 

BESO, and LSM, respectively. The results suggest that a coarse mesh can be used for 

acquiring good results with a small computational cost. It should be noted that models with 

999 iterations were terminated due to the oscillation of the numerical solution 
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(a) (b) 

  
(c) (d) 

 

Figure 19 Results plot for different number of discretized elements: (a) compliance 

(kNm), (b) displacement (mm), (c) volume fraction, (d) number of iterations of SIMP, 

BESO and LSM models  



6
0
 

 

SIMP BESO LSM 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

   
(m) (n) (o) 
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Figure 20 Plots of different mesh densities: (a), (b), and (c) represents 200×100 mesh 

densities of SIMP, BESO, and LSM, respectively. (d), (e), and (f) represents 200×75 mesh 

densities of SIMP, BESO, and LSM, respectively. (g), (h), and (i) represents 200×50 mesh 

densities of SIMP, BESO, and LSM, respectively. (j), (k), and (l) represents 150×50 mesh 

densities of SIMP, BESO, and LSM, respectively. (m), (n), and (o) represents 100×50 mesh 

densities of SIMP, BESO, and LSM, respectively. 

 

5.2 Effect of Section Thickness 

Figure 22 demonstrate that the change in thickness does not affect distribution of 

material for a structure optimized using SIMP and BESO. However, the thickness of the 

structure has an impact on the optimal solution reached by LSM. This can be contributed 

to the fact the LSM considers the boundaries and surfaces in a design domain. It was 

observed that the structure with a thickness of 60 mm had an excellent distribution of 

material for the load applied. Additionally, the performance (i.e., displacement and 

compliance) of all the optimized beams improved with increasing the thickness. The 

compliance values were the same for structures optimized using BESO and LSM. Also, 

structures optimized using SIMP and BESO recorded the same displacement values. 

 

 

  
(a) (b) 
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(c) (d) 

 

Figure 21 Results plot of section thickness: (a) compliance (kNm), (b) displacement (mm), 

(c) volume fraction, (d) number of iterations of SIMP, BESO and LSM models
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Figure 22 Topology optimized beams with different thicknesses: (a), (b), and (c) are optimized beams with thickness of 20mm for SIMP, 

BESO, and LSM, respectively. (d), (e), and (f) are optimized beams with thickness of 40mm for SIMP, BESO, and LSM, respectively. 

(g), (h), (i), are optimized beams with thickness of 60mm for SIMP, BESO, and LSM, respectively 

 

SIMP BESO LSM 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 
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5.3 Effect of Penalization Factor 

Theoretically, a higher values of penalization factor leads to the elimination of 

intermediates densities and improves the stiffness of the material. Nevertheless, the results 

suggest that there is a threshold for the penalization factor (~ 3 to 4) to attain a well-

optimized beam. On the other hand, the penalization factor had no significant effect on the 

structures optimized by LSM hence making it redundant as observed in all results illustrate 

in Figure 23 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 23 Results plot showing the effects penalization factor: (a) compliance (kNm), (b) 

displacement (mm), (c) volume fraction, and (d) number of iterations
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In general, an increase in compliance and displacement is observed for structures optimized using SIMP and BESO, with an 

increase in the penalization factor. Also, as seen in Figure 24(d), the penalization factor resolves the checkerboard numerical instabilities. 

It was observed that the structures optimized using BESO did not have checkerboard numerical instabilities as shown in Figure 24. This 

can be attributed to the implementation of the bilinear interpolation scheme. However, caution should be taken in implementing these 

smoothing techniques as they are applied at the end of the optimization algorithm. 

 

SIMP BESO LSM 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 
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Figure 24 Effect of penalization factor on beams: (a), (b), and (c) are penalization factor of 2 for SIMP, BESO, and LSM, respectively. 

(d), (e), and (f) are penalization factor of 4 for SIMP, BESO, and LSM, respectively. (g), (h), and (i) are penalization factor of 6 for 

SIMP, BESO, and LSM, respectively. 

 

5.4 Effect of Desired Volume 

Ideally, a prescribed volume fraction of 0.5 might be the best solution due to the reduced mass of the structure. However, the overall 

optimal performance in terms of compliance and displacement should be considered before concluding. From Figure 25(a) and Figure 

25(b), there is a gradual decrease in compliances and displacements. This implies better performance of beams with increasing density. 

The results suggests that a prescribed volume fraction of ranges 0.7 to 0.85 is optimal for structures optimized by any of the three 

optimization algorithms (i.e., SIMP, BESO, and LSM). 
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(a) (b) 

  
(c) (d) 

 

Figure 25 Effectiveness of prescribed volume fraction: (a) compliance (kNm), (b) 

displacement (mm), (c) volume fraction, and (d) number of iterations 
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SIMP BESO LSM 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

   
(m) (n) (o) 

   
(p) (q) (r) 

 

Figure 26 Optimized beams of different prescribed volume fractions: (a), (b), and (c) prescribed volume fraction of 0.5 for SIMP, BESO, 

and LSM, respectively. (d), (e), and (f) prescribed volume fraction of 0.6 for SIMP, BESO, and LSM, respectively. (g), (h), and (i) 

prescribed volume fraction of 0.7 for SIMP, BESO, and LSM, respectively. (j), (k), and (l) prescribed volume fraction of 0.75 for SIMP, 

BESO, and LSM, respectively. (m), (n), and (o) prescribed volume fraction of 0.8 for SIMP, BESO, and LSM, respectively. (p), (q) and 

(r) prescribed volume fraction of 0.9 for SIMP, BESO, and LSM, respectively
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5.5 Effect of Filter Radius 

Figure 27 illustrates the effect of applying mesh independent filters with varying 

filtering radius. The results indicated that for structures optimized using SIMP, a filter 

radius of 1 does not eliminate the checkerboard numerical instability. Furthermore, 

structures optimized by BESO with a filter radius of 1, did not result in applicable solutions 

as elements were disconnected abruptly. it should be noted that a bilinear interpolation 

scheme has been applied to structures optimized using BESO. This resolved the 

checkerboard numerical instabilities. Also, the results indicate that using a filter radius of 

2 had developed gray areas (i.e., elements with intermediate densities), which is not an 

ideal case for manufacturing of the material. Therefore, a filter radius of 1.5 is 

recommended based on the results. 

 

SIMP BESO 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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Figure 27 Effect of filter radius on topology optimized beams: (a) and (b) shows a filter 

radius of 1 for SIMP and BESO. (c) and (d) shows a filter radius of 1.5 for SIMP and 

BESO. (e) and (f) shows a filter radius of 2 

 

5.6 Effect of Element Rejection Ratio and Addition Ratio 

Figure 28 illustrates optimized structures with two approaches. The first approach had 

the structure optimized with equal element rejection ratio (ERR) and the maximum 

addition ratio (ARmax). In the second approach the structures were optimized with ERR to 

be different than the ARmax. It was observed that structures optimized using an ERR that is 

greater than ARmax led to unstable and distorted structures as seen in figure 28(e). A 5% 

removal and addition ratio of materials achieved an optimal solution in terms of density, 

compliance, displacement, and computational time. For structures optimized using the 

second approach, the recommended values for ERR and ARmax are 5% and 2%, 

respectively. 

 

1st Approach 2nd Approach 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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 (g) 

 

Figure 28. Effect of removal and additional ratio on BESO optimized beams: (a) ER and 

ARmax 0.01, (b) ER 0.05 and ARmax 0.02, (c) ER and ARmax 0.05, (d) ER 0.1 and 

ARmax 0.02, (e) ER and ARmax 0.10, (f) ER 0.02 and ARmax 0.05, and (g) ER 0.02 and 

ARmax 0.10. 

 

5.7 Effect of Convergence Criteria 

Figure 29 illustrates the final solution for structures optimized by BESO using various 

convergence criteria. The results suggest a minimal impact of the convergence criteria on 

the final solution. This is true when the convergence criteria are relatively small (i.e., 

<0.001). 

 

  
(a) (b) 

 
(c)  

 

Figure 29. Convergence limit check of topology optimized beams: (a) convergence criteria 

of 0.001, (b) convergence criteria of 0.0001, and (c) convergence criteria of 0.00001 
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5.8 Effect of Radius of Nucleated Holes 

Figure 30 illustrates the final solution for structures optimized by LSM using 

various radius of nucleated holes. The results suggest that using a large radius (i.e., greater 

than 20%) ratio would lead to a non-optimized structure. It is recommended to use a radius 

of 0.2 as it generates an optimal solution that can be easily manufactured. 

 

  
(a) (b) 

 
(c)  

 

Figure 30. Radius of nucleated holes: (a) 10% of No. of y-elements, (b) 20% of No. of y-

elements, and (c) 50% of No. of y-elements 

 

5.9 Preferred Parameters in Optimization of Beams 

In this section, the three topology optimization methodologies were implemented with 

the optimal values for the optimization parameters.  The parameters used for the 

optimization in this section are presented in Table 2. All models were set to have a 

maximum number of iterations of 300. 
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Table 2. Preferred parameters for simulation 

 

Figure 31(a) to Figure 31(c) illustrates the final solution for structures optimized using 

SIMP, BESO and LSM, respectively. A well-generated topology optimized layout was 

attained for all three models with SIMP and BESO having similar features. 

 

  
(a) (b) 

 
(c)  

 

Figure 31. Optimized beams using preferred parameters: (a) SIMP, (b) BESO, and (c) LSM 
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Figure 32(a) to Figure 32(c) display the compliance versus the number of iterations for 

structures optimized using SIMP, BESO and LSM, respectively. The compliance of SIMP 

was around 5kNm at the model initiation and reached 1.7661kNm at the 300th iteration. It 

should be noted that, the SIMP model was oscillating as seen in Figure 34(a). However, 

that did not affect the performance of the structure. The BESO model recorded a 

compliance of 2.5kNm at the initiation of the model and converged at the 15th iteration 

with a compliance of 0.9134kNm. In the case of structures optimized using LSM, it 

recorded a very high compliance at the model initiation. This is attributed to the nucleation 

of holes at the initial stage. However, the compliance reduced rapidly and reached 

0.8833kNm at the 300th iteration. 

  
(a) (b) 

 
(c)  
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Figure 32. Compliance plot of beams with preferred parameters: (a) compliance of SIMP, 

(b) compliance of BESO, (c) compliance of LSM 

 

Figure 33(d) to Figure 33(f) illustrate the displacement contour of the optimal solution by 

SIMP, BESO, and LSM, respectively. Table 3 presents a summary of the compliance and 

maximum displacement for the structures optimized using SIMP, BESO and LSM. The 

displacement of each model was analyzed with respect to the maximum displacement the 

conventional beam (i.e., completely solid) which was 1.14912mm (0.452in). The BESO 

model recorded the larges displacement of 2.0130mm (0.793in), with the SIMP model 

recording 1.9425mm (0.765in). The LSM model had a maximum displacement of 

0.9715mm (0.382in), which outperformed the conventional model. 

 

  
(a) (d) 



76 

 

  
(b) (e) 

  
(c) (f) 

 

Figure 33. Displacement contour plot of optimized beams using preferred parameters: (a) 

displacement of SIMP, (b) displacement of BESO, (c) displacement of LSM, (d) 

displacement contour plot of SIMP, (e) displacement contour plot of BESO, (f) 

displacement contour plot of LSM 

 

Table 3. Summary of Results from using Optimal Parameters for the Simulations 

 Compliance 

(kNm) 

Displacement 

(mm) 

No of 

iterations 

SIMP 1.7661 1.9425 300 

BESO 0.9134 2.0130 15 

LSM 0.8833 0.9715 300 
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Figure 34(a) to Figure 34(c) illustrate the variation in volume fraction with the number of 

iterations for structures optimized using SIMP, BESO and LSM. For the structure 

optimized by BESO, in the initial stages (i.e., in the first 5 iterations) elements are being 

removed. It is worth noting, that BESO might oscillate until it meets the convergence 

criteria after 15 iterations, only, as seen in Figure 34(b). In the LSM technique, initially 

holes are nucleated leading to a very small volume fraction as observed in Figure 34(c).  

 

  
(a) (b) 

 

 

(c)  

 

Figure 34. Volume Fraction Plot of Beams with Preferred Parameters Optimized with: (a) 

SIMP, (b) BESO, (c) LSM
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

In this thesis, the performance of three main compliance minimization optimization 

algorithms (SIMP, BESO and LSM) on optimizing a simply supported beam was analyzed. 

Initially, a review of the development and applications of topology optimization in the 

various fields was presented. It was followed by an explanation on the mathematical 

formulation and numerical implementation of the three topology optimization algorithms 

(SIMP, BESO and LSM). To identify the optimal range for the optimization parameters, 

several models were implemented and investigated with regards of the final optimal design, 

compliance and displacement performance. 

In general, models with a dense mesh results in an accurate model more than models 

with a coarse mesh. For models optimized using SIMP and BESO, a filter radius of 1.5 

results in a well-optimized structure and resolves numerical instabilities such as the 

checkerboard. Also, a penalization factor of 4 assist in minimizing the occurrence of the 

checkerboard numerical instabilities that might occur in models optimized by SIMP and 

BESO. A high penalization factor removed elements with intermediate densities and 

improved the stiffness of the structure. Additionally, utilizing a bilinear interpolation 

scheme as implemented in models optimized using BESO can eliminate elements with 

intermediate densities. However, precautions should be taken as it is a post-processing 

application. 
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Although mass minimization is a constraint as a light-weighted beam is sought, the 

smallest volume fraction is not the ideal volume fraction. The results indicated that models 

with a volume fraction ranging from 70% to 75% was optimal, in regard to the mechanical 

performance of the beam. Models optimized using BESO require the ERR to be greater 

than ARmax. Models optimized using LSM, should have a radius of holes to be nucleated 

within the range of 10% to 20%.  

LSM is an implicit boundary method which makes it unique compared to SIMP and 

BESO and performed excellently. Despite this, there are certain challenges which can make 

the LSM difficult to implement. One of these has to do with the period of creating holes 

within the domain and the time step required for updating the velocities. Importantly, this 

thesis considered compliance as its objective function and does not account for stress 

failure modes. It is necessary to include stress-constraint in future works of topology 

optimization [99-101].
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