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DEVELOPMENT AND EVALUATION OF A FUNCTIONAL HUMAN CARDIAC 

TISSUE EQUIVALENT FABRICATED FROM MULTI-LINEAGE HUMAN 

INDUCED PLURIPOTENT STEM CELL DERIVED CELLS 

 

DANIELLE PRETORIUS 

 

BIOMEDICAL ENGINEERING 

 

ABSTRACT  

The human heart is an exceptionally complex muscular organ that is vital for sur-

vival. Electrical impulses signal activation of mechanical contractions, pumping blood 

through the entire body and allowing for oxygen-exchange to occur. Unfortunately, cer-

tain disease states or traumatic injuries such as myocardial infarctions hamper the heart’s 

efficiency and function by damaging its structure. Ideal treatment would allow for the re-

placement or regeneration of the damaged tissue with cells and material harvested from 

the patient, thus avoiding the potential for immune rejection. Engineered cardiac tissues 

fabricated from human induced pluripotent stem cells have shown great promise for re-

storing function in infarcted left ventricular myocardium, and since these induced plu-

ripotent stem cells originate from reprogrammed somatic cells, they also skirt the ethical 

issues associated with the use of embryonic stem cells. 

For engineered cardiac tissue constructs to reach their translational potential, they 

need to be of a clinically relevant volume and thickness, while also being capable of gen-

erating synchronous and forceful contraction to assist the pumping action of the recipient 

heart. Design requirements necessitate a thickness sufficient to produce a useful contrac-

tile force, prevascularization to overcome diffusion limitations and sufficient structural 
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development to allow for optimal cell communication. Previous attempts to meet these 

requirements have been hampered by diffusion limits of oxygen and nutrients, which oc-

cur within 100-200 µm of the boundary conditions, resulting in necrosis. Herein we de-

velop a viable three dimensional engineered cardiac tissue model of the left ventricular 

myocardium fabricated from multi-lineage human induced pluripotent stem cell-derived 

cells. A novel layer-by-layer fabrication method will be employed to mimic the native 

myocardium in both form and function, while also minimizing the potential for necrosis. 

The engineered constructs will be evaluated and characterized in terms of cell fate and 

migration, extracellular matrix development, viscoelastic properties, ultrastructure devel-

opment as well as their electrophysiological properties. 
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CHAPTER 1 

INTRODUCTION 

Through this piece of work, we have developed a viable three dimensional (3D) 

engineered cardiac tissue model of the left ventricular (LV) myocardium in both form 

and function, fabricated from multi-lineage human induced pluripotent stem cell (hiPSC) 

derived cells. The model is dynamic and has the ability to demonstrate various character-

istics associated with the form and function of viable LV myocardial tissue, including, 

but not limited to extracellular matrix (ECM) composition, cellular representation, visco-

elastic properties, vascularization, ultrastructure development, as well as the development 

of physiologically relevant conduction velocities. The overarching goal of the develop-

ment of this in vitro model was to recapitulate the cellular architecture and ECM makeup 

of native human myocardium with hiPSC-derived cells while also reproducing the re-

sponse to mechanical and electrical stimuli experienced in vivo. 

Precision healthcare 

In 2015, President Barack Obama announced that the United States (US) would 

embark on a government funded precision medicine initiative that would enroll over 1 

million people. This approach to the diagnosis and treatment of diseases shifts the focus 

from a one-size-fits-all treatment approach to tailoring the medical treatment to the indi-

vidual characteristics of each patient 1. The power of precision medicine, thus, lies in its 



2 

 

ability to guide health care decisions toward the most effective treatment for a given pa-

tient, and subsequently improve care quality, while reducing the need for unnecessary di-

agnostic testing and therapies.  

Of special interest is the potential for reducing and even elimination of allograft 

immune responses and potential rejection 2, 3. Internationally, there is an annual donor or-

gan shortage, compounded by the prerequisites for donor-recipient matching associated 

with many organs and systems 4-7 with only around 2000 heart transplants performed in 

the US annually 8. Certain cases could potentially allow for the use of artificial or bio-ar-

tificial organ use, but even then, limitations exist, including the potential for rejection and 

limited lifespans associated with most biocompatible materials 9, 10. Current advance-

ments in cell harvesting and reprogramming have, however, made it possible to utilize 

patient-specific cells and with the advancements in precision medicine as well as tissue 

engineering, might make it possible to fabricate a whole, functioning organ from a pa-

tient’s own cells within the next decade or two, especially considering the fact that re-

searchers are fabricating vascularized, complex structures at this point 11. Unfortunately, 

the heart is an extremely complex organ with regard to its structure and heterogonous cell 

population, making it a particularly challenging task to reproduce as a fully functional 

bio-artificial organ.  

The human heart 

Structure and function 

A healthy human heart consists of four distinct chambers, each with its own 

unique function – two thin-walled atrial chambers, and two thick-walled ventricular 

chambers. The cellular makeup of these chambers differ by the type of chamber and its 
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function, with fibroblasts (FBs) and cardiomyocytes (CMs) for example, specific to each 

chamber possessing distinct properties, including but not limited to electrical conduction, 

metabolic properties and mechanical force generation 12-15. These distinct electrical and 

mechanical properties are vital, since the heart functions as an electrically excitable pump 

in the body, circulating blood, and subsequently oxygen and nutrients through the sys-

temic circuit.  

To induce normal (sinus) rhythms in the heart, electrical excitation is generated in 

the sinoatrial node (SAN), located in the right atrium. Along with the cardiac conduction 

system, consisting of the atrioventricular node (AVN), and the His-Purkinje system, the 

SAN is seen as the primary pacemaker system of the heart 16. Activation of the SAN initi-

ates the contraction of the atria, pumping blood into the ventricles. There is a delay be-

tween atrial and ventricular systole due to decreased AVN conduction facilitating the fill-

ing of the ventricles before contracting, finally pumping the blood throughout the body 17. 

Further complication is added to this already complex organ by the fact that the 

heart wall consists of three distinct layers. The inner and outer layers, both specialized 

forms of mesothelial tissue, known as the endocardium and epicardium, respectively, 

sandwich the much thicker layer of cardiac muscle tissue known as the myocardium (Fig-

ure 1) 18. Moreover, muscle fiber bundles in the ventricular myocardium are arranged in 

three separate sublayers, allowing for the unique push-pull-torque movements associated 

with the heart 19.  
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Cardiovascular disease 

Reduced efficiency in the transport of oxygenated blood by the heart through the 

circuitry of the body, whether due to unhealthy habits like smoking, being overweight or 

genetic issues, can have dire results. Cardiovascular disease (CVD) is one of the leading 

causes of death worldwide annually 20, 21, with more than 840 000 deaths in the US alone 

being attributed to CVD in 2016 22. The majority of CVD-associated deaths, a staggering 

49.8%, is more specifically associated with ischemic heart disease, also known as coro-

nary heart disease 21. Ischemic heart disease occurs when one or more branches of the 

heart’s coronary arteries become inflamed or blocked, subsequently decreasing or pre-

venting consistent supply of oxygen-rich blood to the muscular tissue of the heart. This 

imbalance between the supply and demand in oxygen results in localized cell death, 

known as a myocardial infarction (MI), or more commonly, a heart attack 23. 

 

Heart Wall Cardiomyocytes

Endocardium Pericardium

Myocardium

Extracellular matrix

Cardiomyocyte

Gap junction

Figure 1: Organizational levels of the heart, from organ to structural to cellular 

level. Representative schematic of a healthy heart, its wall structure, as well as the car-

diomyocytes, extracellular matrix and gap junctions in healthy, well-organized myocar-

dial tissue. 
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Myocardial infarction (MI) and its prognosis 

Arterial blockage caused by plaque build-up or thrombi are some of the primary 

causes of MI’s 24. This arterial blockage not only leads to a loss of oxygen, but also trig-

gers downstream cascades associated with inflammatory responses, leading to further 

damage of the oxygen-starved area 25. Furthermore, due to the limited proliferative ability 

of the terminally differentiated cardiomyocytes in adult mammalian hearts, the ability of 

the heart to regenerate is hampered further 26-28. Cardiac remodeling, post-MI, is primar-

ily fibrotic in nature, leading to the formation of a collagenous scar 25, 29, and eventually 

ventricular dilatation over time 30-32. This dilatation process is, more often than not, also 

associated with an increase in wall stress, further burdening the already traumatized cells 

in the infarcted region as well as the border-zone region 33, 34. Further complications, in-

cluding but not limited to arrhythmias, cardiogenic shock, inflammation of the ventricular 

wall, cardiac ruptures, or secondary MI’s can occur, depending on the size and location 

of the original MI, enhancing the chances for long-term heart failure (HF) 35-38. 

Standard of care and current limitations 

One of the major advancements in care used to re-establish blood flow to the in-

farcted area of the heart was the development of reperfusion therapy. Due to the complex 

cellular mechanisms induced after reperfusion, this treatment was not readily employed 

by physicians until the mid-to-late 1970’s, even though compelling arguments were made 

by Fletcher et al.39 in 1958 in favor of its use. Even though reperfusion, relieves or at 

least greatly reduces ischemia, it also results in a complex group of phenomena, which 

may initially appear to be deleterious. Some of these phenomena include accelerating ne-

crosis of injured myocytes, cell swelling and bulging, hemorrhagic myocardial infarction, 
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production of free radicals which induce oxidative stress, as well as electrophysiological 

changes that could lead to arrhythmias 40-43. Predictions have been made that, if this tech-

nique is utilized properly and in a timely fashion, it could salvage approximately 50% of 

severely ischemic myocardium 44, while prevention of lethal myocardial reperfusion in-

jury should prevent the necrosis of an additional 40% 45, showing why this method of 

care is still widely employed. 

Additional interventions to re-establish adequate blood flow, include various com-

binations of pharmacological and/or surgical interventions 46-48. One of the most readily 

used surgical approaches is the coronary bypass, where a vascular graft is used as a 

bridge between the aorta and the area downstream of the ischemic injury, thus bypassing 

the blockage. This surgery yields optimal results when pharmacological interventions 

such as antithrombotic agents, antiplatelet therapies and/or lipid management strategies 

are employed 49. Another surgical approach that can be considered, if vessel occlusion di-

agnosis occurs at an early stage, is angioplasty implantation of a vascular stent 50. Unfor-

tunately, certain patients would not benefit from any intervention aside from a full heart 

transplant, and as mentioned earlier (see Precision healthcare), there is a massive shortage 

of these organs available for donation, with donor-recipient matches being even more 

scarce. While great advances are being made in both the fields of precision health care as 

well as biomedical engineering, we are simply not yet capable of replacing an entire pa-

tient-specific organ. At the moment, the best solution to be offered while a patient waits 

for a heart transplant match, is supporting their failing heart to effectively buy time until 

their match becomes available. Presently, left ventricular assist devices (LVADs) are 

used to aid patients in end-stage HF, yet these systems are riddled with their own set of 
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complications, including bleeding, thrombosis, strokes and device malfunctions to name 

a few 51. The potential to harvest a patient’s own cells and/or tissue with the aid of mod-

ern technological advances, in addition to pharmacological and optimized tissue engi-

neering approaches have brought us a few steps closer to achieving the ultimate goal of 

regenerating or even replacing complex failing organs such as the heart.  

Tissue engineering approaches to support a failing heart 

Over the past few decades, tissue engineers have made great strides in improving 

the fate of the failing heart, whether done mechanically, electrically, or with the aid of 

cellular incorporation in attempts to restore function to the damaged tissue.  

Use of materials only 

Supplying mechanical support to a failing heart suffering from dilatation is vital, 

whether in cases where high-risk patients are undergoing life-saving surgeries, or in cases 

where it might be best therapeutic solution for the specific patient 52-54.  

Cardiac meshes. The concept of ventricular containment by a synthetic mesh, 

usually some polyester, came to light between 1999 and 2001 55-57. These meshes, also 

known as Cardiac Support Devices (CSDs), are placed, surgically, around the heart to 

provide end-diastolic ventricular support. The mesh is intended to reduce wall stress and 

CM overstretching induced during the end-diastole and periodic volume overload condi-

tions. By reducing these key remodeling stimuli, the remodeling process may be halted or 

potentially even reversed 58. More recently, with the incorporation of conductive compo-

nents like silver nanowire networks into synthetic biocompatible polymers such as sty-
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rene-butadiene-styrene rubber, epicardial meshes that are soft, elastic, and highly conduc-

tive have been created, supporting the heart on both an electrical as well as a mechanical 

front 59. 

Synthetic and bio-based polymer supports. Of the various myocardium “patching” 

strategies, many are based on either a synthetic or a bio-based polymer. Both types of 

materials have their advantages and disadvantages, with the primary design outcome usu-

ally dictating the choice between synthetic versus bio-based. Properties to consider dur-

ing the selection of the scaffold base material of choice, include but are not limited to bi-

ocompatibility, biodegradability mechanical properties as well as the ease with which any 

properties can be tailored 60, 61.  

In the 1980’s Dacron, also known as polyethylene terephthalate (PETE), was used 

as an in vivo myocardial patch post-MI in four patients 62. Though this approach initially 

seemed very promising, the relatively low levels of bioactivity of PETE limits its poten-

tial use in regenerative tissue engineering approaches 63. Another readily used polyester is 

poly(lactic-co-glycolic acid) or PLGA. Approved by the Food and Drug Administration 

(FDA) in the 1970s due to its exceptional biodegradation capabilities and biocompatibil-

ity, PLGA is arguably the most widely used synthetic polymer in the biomedical industry. 

Multi-layered adenosine loaded PLGA/gelatin patches have been shown to not only have 

minimal inflammatory effects when implanted in porcine models, but have also been 

deemed to have a cardioprotective function 64. Some of the more readily used bio-based 

polymers in cardiac tissue engineering approaches include collagen (and its heat-treat-

ment derivative gelatin) as well as fibrin. Both collagen and fibrin occur naturally in the 

mammalian body and would lead to minimal foreign-body responses if transplanted, with 
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fibrin having the added benefit of autologous sourcing (see Precision healthcare) 65-68. Fi-

brin-associated characteristics, including but not limited to thickness and length of fibers, 

extent of branching, and pore size, can easily be tailored by modifying the polymerization 

conditions with different factors such as ionic strength, pH, concentration of fibrin mono-

mer, and hydrophobicity of the polymerization surface 69. Not only does fibrin have the 

ability to incorporate both cells and their mediators (e.g. growth factors), but even in the 

absence of growth factors fibrin has been known to have angiogenic properties 70-72. En-

hancement of patch application methods has also received attention more recently, with 

innovative approaches such as the idea of a “spray-on” fibrin patch deviating from tradi-

tional attachment to the epicardium with sutures 73. 

Decellularized scaffolds. Xenogeneic ECMs have been used successfully to re-

place and/or repair various tissues and organs in both preclinical animal studies and hu-

man clinical applications for more than the past three decades 74-77. Decellularization of 

rat hearts via coronary perfusion with ionic surfactants was first described in 2008 by Ott 

et al. 78. This groundbreaking study laid the groundwork for more than 20 years’ worth of 

work by specialists in the field, like Dr. Doris Taylor, in the hopes of retaining the ideal 

cardiac and vascular architecture of a cadaveric or donor heart, while having the ability to 

replace the damaged or dead cells with those from the recipient host 79.  

Incorporating cells 

Since the late 1990s, research in the cardiac tissue engineering field has mainly 

involved the use of neonatal or embryonic CMs to create three-dimensional (3D) heart 

tissue surrogates for use in in vitro experimental studies 80-84 and, more recently, for the 

treatment of MI in animal models 85-88. For maximal regenerative capabilities, healthy, 
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functional cells need to be supplied to the damaged myocardium for remuscularization 

and to aid in revascularization 78, 89-91. Post-treatment, cell integration and paracrine sig-

naling will allow for remuscularization and revascularization of the myocardium, 

reducing and even replacing the necrotic cells post-MI (Figure 2).  

In vivo, ECM composition is represented by a complex mixture of functional and 

structural molecules that affect a variety of cell fates and activities. Living cells are con-

stantly exposed to mechanical stimuli arising from the surrounding ECM or from neigh-

boring cells. The concept of this “dynamic reciprocity” between the ECM and the resi-

dent cells 92 should be kept in mind when designing a therapeutic system, especially one 

as complex as the heart. An ideal and versatile cell candidate would be one that can pro-

liferate or regenerate as needed while also yielding the heterogeneous cell phenotypes re-

quired to form a functional and complex organ or piece of tissue. Except in isolated cases 

where organ-specific cell types can be isolated, derived, expanded in vitro, and utilized, 

the most likely candidate to fulfill these demands is either a stem or progenitor cell 93-96. 

Figure 2: Remuscularization and revascularization of the infarcted myocardium 

using exogenous cells. Ideally, treatment of the damaged myocardium with cardiac-

committed cells (cardiomyocytes), along with specific supportive cells (endothelial, fi-

broblasts and smooth muscle cells) will result in optimal regeneration, reducing necrosis 

induced post-MI. 

Infarcted myocardium, with necrotic cells Repaired myocardium

Healthy 

CM

Necrotic
CM

Vasculature
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Although slight, the difference between stem cells and progenitor cells, in theory, mostly 

arises from the most basic definition of a stem cell, i.e. a cell which possesses unlimited 

self-renewal capabilities, can clone itself, and can developmentally give rise to tri-lineage 

cells (pluripotency). Progenitor cells, on the other hand, have already committed to a spe-

cific germ lineage and can proliferate and mature into precursors within this lineage, 

which for cardiac cells include, cardiomyocytes (CMs), vascular smooth muscle (SMCs) 

or endothelial cells (ECs), depending on the characteristics of the starting progenitor cell 

97, 98. Due to their diverse nature and potential applications, the remainder of the section 

will focus on stem cells. 

Stem cells. Defining what, exactly, constitutes a true stem cell has been the focus 

of numerous controversies in literature over the past two decades. Arguably, stem cells 

can be classified into three main categories – adult stem cells, embryonic stem cells and 

induced stem cells. Adult stem cells not only rare, but seemingly more specialized than 

other real stem cells 99. Their primary functions are to maintain homeostasis and, in very 

specialized environments, replace diseased or damaged cells. An example of this includes 

hematopoietic stem (HSCs), which have the ability to regenerate a functional hematopoi-

etic system (blood-forming cells or mature blood cells) 99, 100.  Embryonic stem cells 

(ESCs), the other naturally occurring stem cells, derived from the undifferentiated inner 

mass cells of a blastocyst or early stage embryo, were originally identified in mice in 

1981 101, and in humans in 1998 102. ESCs differ from adult stem cells in that they fulfil 

all the requirements of a stem cell, though their culturing in vitro requires very strict 

monitoring for potential clustering which would result in phenotypic aberrations and 

spontaneous differentiation 103. The use of ESCs has been steeped in ethical questions, as 
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their harvest and subsequent differentiation comes at the cost of a fertilized embryo. The 

questions raised regarding the ethical use of ESCs, led to the development of the third 

type of stem cell, the induced pluripotent stem cell (iPSC). These cells were isolated from 

mice in 2006 104, humans in 2007 105 and allowed scientists to induce stem cell properties 

in somatic cells. The successful induction relies on the transfer of transcriptional factors, 

associated with the pluripotency of ESCs, into the desired donor cells 106, effectively re-

programming the somatic donor cell. This discovery and the development of these scien-

tific methods have made many previous precision medicine approaches, specifically in 

the patient-specific domain of tissue and organ replacement, more realistic. 

Following their respective discoveries and development, all three types of stem 

cells (adult, embryonic and induced) have been readily employed in attempts to regener-

ate the damaged and failing heart. Unfortunately, HSCs which were some of the first 

stem cells studied for cardiac regeneration, have limited transdifferentiation capabilities, 

and are not capable of differentiating into CMs for remuscularization when implanted 

post-MI 107, 108. HSCs do, however, possess the ability to function as supportive cells 

post-MI, by way of their potential to stimulate angiogenesis and neovascularization via 

paracrine signaling 109 and have subsequently shown improvement in cardiac function in 

early clinical studies 110, 111. Due to their limited transdifferentiation capabilities, the tis-

sue engineering field focused more effort on developing approaches for myocardial re-

generation from ESCs and later iPSCs. Cardiogenic stem cells, such as ESCs and iPSCs, 

have been catapulted into the forefront of the regenerative cardiac tissue engineering in-

dustry with their abilities of generating large numbers of contractile CMs that are thought 

to enhance cardiac function through direct electromechanical coupling with host cells, not 
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only potential paracrine signaling 112, 113. Potential therapeutic benefits are primarily asso-

ciated with substantial remuscularization of the infarct or peri-infarct area as opposed to 

revascularization alone 114. Aside from potential ethical questions raised in the use of 

ESCs, these cells and their derivatives are generally classified as allogeneic, and disposed 

to immune rejection 115. iPSCs on the other hand have the potential for autologous trans-

plantation when utilizing cells harvested from a patient directly 116, 117. 

iPSCs in cardiac tissue engineering. iPSCs are known sources of various cardiac 

cell types, including CMs, ECs, SMCs as well as cardiac fibroblasts (FBs) 118-121. iPSC-

derived cells have been used in various tissue-based approaches to mimic the native myo-

cardium 15, 122-125, but also as therapeutic aids to attenuate damage caused during MI, 

ranging from seeding decellularized scaffolds 126 to numerous cardiac patches laden with 

cells 118, 127-129. These tissue-based approaches afford the opportunity to study mechanistic 

interactions between the cells as well as the relationship between the cells and the ECM 

in a more representative 3D environment compared to 2D culture.  

Engineered tissues, furthermore, not only provide a stable, protective method of 

cell delivery, but also the additional benefit of supplying mechanical support to a weak-

ened heart wall. Whether the therapeutic value in a cardiac engineered tissue patch is 

mostly due to paracrine signaling from the implanted cardiogenic cells, or active mechan-

ical forces that support cardiac function by enhancing contractile capabilities, or perhaps 

some combination of these actions remains to be seen. What has been shown, however, is 

that even when non-CM-containing patches were implanted in rats post-MI, improve-

ments in infarct sizes were noted, though these improvements did not accompany subse-

quent improvements in LV ejection fraction 128. These results were in stark contrast with 
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rats from the same study, where CM-containing patches were implanted, and cardiac out-

put as a function of ejection fraction, was similar to those noted in sham-operated ani-

mals. Human induced pluripotent stem cell-derived CMs (hiPSC-CMs) and their support-

ing cells, hiPSC-ECs and hiPSC-SMCs, were transplanted via an in situ fibrin patch over 

the infarction site in swine hearts, resulting in reduced in myocardial wall stress, im-

proved metabolic turnover, enhanced contractile performance, enhanced vascularization, 

and importantly a lack in ventricular arrhythmias 130. Incorporation of hiPSC-CMs, -ECs, 

and –SMCs into a gelatin matrix, via 3D bioprinting allowed for the incorporation of 

high-resolution features into human cardiac muscle patch (hCMP), prior to its implanta-

tion into a murine MI-model 131. Implantation of the 3D printed hCMP structures resulted 

in enhanced cardiac function, reduced infarct sizes, increased vasculogenesis, as well as 

reduced apoptosis when compared with control animals that had a cell-free scaffold im-

planted. 

 Limitations of hiPSC-CM use 

  In vitro culture. Though the development and understanding of hiPSC-CMs have 

made major advances since the late 2000s, the field still faces hurdles that hamper the op-

timal use of these cell. One such hurdle, relates to the generation of hiPSC-CMs in vitro. 

The majority of production and optimization protocols yield heterogonous populations of 

hiPSC-CMs, which are not chamber-specific, unlike the CMs found in the native heart 

132-135. This cellular heterogeneity may significantly hamper the use of the hiPSC-CMs 

for many of the applications, due to differences in metabolism, conduction potential as 

well as mechanical contractile capabilities. 
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In vivo engraftment and survival. Despite the vast regenerative and therapeutic 

potential that hiPSC-CMs and their resulting tissues hold, in vivo applications have been 

hampered due to cellular engraftment and cell survival due to limited vasculature in and 

around the ischemic, infarcted region 89, 90, 130, 131, 136, 137. Following an infarction, the re-

gion experiences an inflammatory response, followed by ECM remodeling and further in-

flammatory responses to the subsequent ECM remodeling finally resulting in fibrous scar 

formation 138. After four weeks in vivo, few studies show engraftment rates surpassing 

10%, with some of the most promising studies (those yielding 10-12% engraftment rates) 

being those with cardiac patch structures that contain at least one supporting cell type in 

addition to hiPSC-CMs, i.e. hiPSC-ECs or hiPSC-SMCs 118, 130, 131. 

hiPSC-CM structural maturity and associated gene expression levels. Following 

differentiation, hiPSC-CMs resemble human fetal CMs in terms of gene expression levels 

139 and morphology 140-143. Similar to fetal CMs, hiPSC-CMs possess a round morphol-

ogy, a single nucleus and take up around one tenth the surface area that mature, adult 

CMs do 143, 144. Mature, adult CMs on the other hand possess an elongated rod-like shape, 

with up to 30% of the cells being binucleated 145. Ultrastructure disorganization, associ-

ated with sarcomeric length, alignment, organization and abundance, is also common in 

hiPSC-CMs, becoming more organized during CM maturation, which is vital in generat-

ing physiologically relevant contractions. Average sarcomere lengths in adult CMs range 

between 2.0-2.2 µm 146, and around 1.8 µm in fetal human CMs 147. hiPSC-CM-associ-

ated sarcomeres are up to 25-30% shorter than adult CMs and up to 6-11% shorter (meas-

ured at 1.6-1.7 µm) and less wide than fetal CMs 148. Further structural deficits include 

cellular junctions such as the intercalated discs which can be found at the Z-lines of the 
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sarcomeres, gap junctions including connexin 43 (Cx43) as well as adherens including N-

caderin (N-Cad), all of which function by enhancing communication as well as mechani-

cal and/or electrical function throughout the contractile apparatus as a whole 144, 149. De-

spite the lack in structural machinery, certain genes and proteins associated with cardiac 

contractile capabilities, such as alpha- and beta-myosin heavy chains (α-MHC and β-

MHC) as well as chamber-specific myosin light chain 2 (MLC2v and MLC2a) are pre-

sent in both hiPSC-CMs and mature CMs, but in different ratios 13, 15, 150, 151. Unfortu-

nately, many of the inadequacies related to cellular maturity greatly affect the functional 

performance, as measured by conduction velocity (CV), metabolic turnover, mechanical 

contractility, as well as cellular integration capabilities in vivo 152-155.  

hiPSC-CM functional maturity and associated gene expression levels. One of the 

key indicators of CM functional maturity at the tissue level is the ability to support fast 

action potential conduction. Fast CVs are indicative of well-aligned and highly stratified 

tissue constructs that possess polarized gap junctions. Conduction velocities (CVs) of ge-

netically purified hiPSC-CMs cultured and tested in 2D format have been reported as 

high as ~21 cm/s 156, while more complex hiPSC-CM-based 3D systems still lag behind 

with CVs around 14 cm/s 118, with the potential of reaching up to 25 cm/s when highly 

organized 131. However promising, the CVs reported for hiPSC-derived tissue still fall 

short of those observed in native adult LV tissue (~30-100 cm/s 141, 157), indicating the 

lack of junction development and alignment required for optimal signal transfer between 

cells. In addition to the reduced CV, hiPSC-CM contractions tend to be spontaneous and 

asynchronous, a behavior that has been noted in fetal CMs as well 158. These spontaneous 

contractions are associated with the deficient calcium handling machinery, including but 
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not limited transverse tubules (T-tubules), sarcoplasmic reticulum (SR), and transmem-

brane proteins such as L-type calcium channels 159. In 3D cultures, active contraction 

forces generated by hiPSC-CMs are roughly 1% of those generated by adult CMs, i.e. 

they differ by two orders of magnitude, and more closely resemble fetal CMs 147, 160. Met-

abolically, hiPSC-CMs also resemble fetal CMs, as their primary energy is acquired via 

glycolysis, whereas mature CMs acquire energy via fatty acid β-oxidation 161, 162.  

The modular tissue fabrication approach 

The ventricular wall is thickest near the cardiac base (> 10 mm) and thins to 1-2 

mm at the apex 163, 164. Cardiac tissue intended for regenerative purposes or even as re-

placement tissue, especially those intended to not only function as a temporary cellular 

delivery vehicle but also as a mechanical support structure should arguably be at least as 

thick as the LV wall. Considering the low engraftment rates expected post-MI, the struc-

tures should also be able to deliver a large number of viable and functional cells to allow 

for optimal potential outcomes 89. 

The layer-by-layer concept. The layer-by-layer (LbL) fabrication (LbL) approach, 

is a method in which sequential layers of a material of interest are deposited individually 

in a bottom-up fashion. Over the past five decades, many LbL fabrication techniques 

have been developed, including but not limited to dipping, spin-coating, spray-coating 

and electromagnetic processes 165-167. These processes have made notable contributions to 

various fields, such as the pharmaceutical and cosmetic industries as well as optics, en-

ergy and separations technologies 168, 169. This unique fabrication method allows for a 

high degree of control over and tailoring of physicochemical properties, including con-

struct architecture, permeability, and Young’s (elastic) modulus 170-174. 
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LbL fabrication in cardiac tissue engineering. Cardiac tissue engineering utilizing 

modular fabrication such as the LbL approach surfaced in the early 2000s, with studies 

where CMs were seeded in confluent sheets on temperature-responsive (poly(N-isoprop-

ylacrylamide)) PIPAAm-coated dishes 175. This technique exploits the lower critical solu-

tion temperature (LCST) of PIPAAm, 32 °C, above which a conformational phase transi-

tion from swollen hydrated state (hydrophilic) to a shrunken dehydrated state (hydropho-

bic) occurs within the polymeric matrix 176, 177. Cells are seeded and cultured at 37 °C, 

then cooled to 32 °C, upon which allowing for confluent sheets of cells to be released 

without the digestion of their ECM or the disruption of cellular alignment, and accompa-

nying intercellular connections, including gap junctions required for electronic signal 

transduction between neighboring CMs (Figure 3).   

 

These early studies showed the layers were not only capable of being detached 

from their 2D culturing environment and fusing, but sheets layered or stacked together 

are able to fuse into a more representative 3D structure, and subsequently conduct electri-

cal signals synchronously 175, 178, 179. In vivo utilization of cell sheets fabricated from 

Figure 3: Exploitation of PIPAAm LSCT to create cell sheets. Confluent cell sheets 

can be released from petri dishes coated with PIPAAm by reducing the temperature from 

37 °C to around or below the LCST of PIPAAm, which is 32 °C. 
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hiPSC-CMs in a porcine MI-model showed significant improvements in cardiac function 

as well as LV remodeling, yet still low engraftment rates were noted 180. Incorporation of 

supportive cells, such as ECs and SMCs, have allowed for the creation of the necessary 

vasculature in these thick structures, preventing hypoxia and subsequent necrosis when 

stacking more than three or four layers of muscle cells on each other. It has been demon-

strated that incorporation of these supportive cells, in combination with gelatin beads as a 

separation layer to allow for fluid penetration, resulted in viable tissue exceeding 40 

stacked cell layers with a total thickness of around 800 µm, which survived in vivo for up 

to 12 weeks 181. 

With the degree of control over high-resolution aspects of designs, computer-

aided 3D bioprinting has become of great interest to the field of cardiac tissue engineer-

ing 182. Layering of cell-laden scaffolds and the use of scaffold-free designs have become 

more prevalent over the past five years, especially in the cardiac field 183-187. Utilizing a 

3D printing approach provides a large degree of control over cellular and ECM align-

ment, or in the case of scaffold-free printing, the opportunity to have the cellular fusion 

and ECM production without the prerequisite matrix remodeling associated when using a 

bio-ink. The most readily used scaffold-free design at present requires the preparation of 

cells in spheroid format for later deposition onto an array of needles, which will allow for 

spheroid fusion and subsequent tissue generation.  

Modular cardiac tissue fabrication limitations 

Aside from a few method-specific hurdles 188-191, modular cardiac tissue fabrica-

tion methods are hampered by many of the same issues that limit the functional scale-up 

of all cardiac engineered tissues. 
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Vascularization and nutrient-limitations. Current production of engineered tissue 

is hampered due to 3D tissues lacking adequate vascularization become necrotic within 

100-200 μm of the boundary regions 192-196. Supplying the tissue constructs with the re-

quired supportive cells allow for neovascularization in vitro and angiogenesis in vivo, yet 

due to oxygen- and nutrient-limitations brought on by deficient vascular density, engi-

neered cardiac tissue constructs surpassing 250 µm in thickness are rarely seen without 

substantial degrees of necrosis, especially in long-term cultures lacking perfusion systems 

80, 195, 197-200.  

Host coupling. Depending on the time lapse that occurs post-MI and therapeutic 

interventions such as engineered cardiac tissue application, ECM remodeling and poten-

tial fibrotic scar formation can occur. This remodeling can severely impact the efficacy of 

the cell therapy, reduce electromechanical coupling between the engineered cardiac tissue 

and the host and potentially lead to arrhythmias caused by conduction blocks 201-204.   

Summary and Objectives 

Herein we aimed to generate a viable 3D engineered cardiac tissue model of the 

human LV myocardium in both form and function, fabricated from multi-lineage hiPSC-

derived cells. These cells are of particular interest and value in the biomedical engineer-

ing and clinical fields due to their diverse differentiation capabilities and autologous na-

ture. The LbL fabrication process will yield a tissue model that demonstrates various 

characteristics associated with the form and function of thick, viable LV myocardial tis-

sue, including, but not limited to ECM composition, cellular representation (hiPSC-CM, -

ECs, and -FBs), viscoelastic properties, vascularization, ultrastructure development, as 

well as the development of physiologically relevant conduction velocities.  
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Although various in vitro fabrication and culturing processes have been developed 

for engineered cardiac tissues, few have been able to generate viable constructs in excess 

of 1 mm in thickness, with the thickest recorded tissue measuring in at 1.25 mm after one 

week in culture 118. Through the utilization of a fabrication process that allows for the se-

quential deposition of specialized cells as opposed to depositing large volumes of co-cul-

tured cells, LbL fabrication has the ability to yield more organized, stratified tissue con-

structs that are more representative of the native myocardium, without becoming nutrient-

limited and necrotic. 
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ABSTRACT  

Cardiac tissue surrogates show promise for restoring mechanical and electrical 

function in infarcted left ventricular (LV) myocardium. For these cardiac surrogates to be 

useful in vivo, they are required to support synchronous and forceful contraction over the 

infarcted region. These design requirements necessitate a thickness sufficient to produce 

a useful contractile force, an area large enough to cover an infarcted region, and prevas-

cularization to overcome diffusion limitations. Attempts to meet these requirements have 

been hampered by diffusion limits of oxygen and nutrients (100-200 µm) leading to ne-

crotic regions. This study demonstrates a novel layer-by-layer (LbL) fabrication method 

used to produce tissue surrogates that meet these requirements and mimic normal myo-

cardium in form and function. Thick (1.5-2 mm) LbL cardiac tissues created from human 

induced pluripotent stem cell-derived cardiomyocytes and endothelial cells were as-

sessed, in vitro, over a four week period for viability (< 5.6 ± 1.4 % necrotic cells), cell 

morphology, viscoelastic properties and functionality. Viscoelastic properties of the car-

diac surrogates were determined via stress relaxation response modeling and compared to 

native murine LV tissue. Viscoelastic characterization showed that the generalized Max-

well model of order 4 described the samples well (0.7 < R2 < 0.98). Functional perfor-

mance assessment showed enhanced T-tubule network development, gap junction com-

munication as well as conduction velocity (16.9 ± 2.3 cm/s). These results demonstrate 

that LbL fabrication can be utilized successfully in creating complex, functional cardiac 

surrogates for potential therapeutic applications.   

Keywords: layer-by-layer, tissue engineering, stem cell, viscoelasticity, vascularization, 

cardiac regeneration 
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INTRODUCTION 

Cardiac tissue engineering strategies focusing on recellularization and functional 

restoration after acute myocardial infarction (AMI) have shown promise to improve the 

clinical outcomes for patients 1-3. Clinically, AMI is associated with contractile cell-loss, 

particularly in the left ventricle (LV), resulting in increased risks of arrhythmia and post-

infarction LV remodeling. Cell therapies using the products of human induced pluripotent 

stem cells (hiPSCs) have been examined, pre-clinically 4, as a viable therapeutic option 

with their ability to produce patient-specific cardiac cells 5, 6. In light of these results, the 

search continues for an effective method of restoring function of the AMI damaged heart, 

which is necessary for a successful therapeutic application. Furthermore, mechanical sta-

bilization of the damaged region is also required to prevent excessive ventricular dilata-

tion 7, 8.  

A healthy myocardium maintains its structure and function under billions of 

pumping cycles. Much is known about the mechanics of myocardium as a hyperviscoe-

lastic tissue undergoing large deformations during filling and pumping 9-11 but the me-

chanics of tissue surrogates is highly understudied. At present, there is a gap in 

knowledge related to how tissue surrogates function in both the short- as well as the long-

term as true functional support structures to infarcted hearts. In addition, passive mechan-

ical mismatch in compliance has the potential to induce further damage via maladaptive 

remodeling. Wang et al. 12 found that scaffolds with mismatched stiffness, compared to 
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the native myocardium, were unable to reduce infarcted myocardial wall stress. Further-

more, mismatched scaffold flexibility adversely affected active mechanical properties, 

specifically failing to mimic active myocardial contraction and expansion. Engineered 

surrogates that closely capture the mechanical properties of the host myocardium have 

been shown to support the direction and propagation of progenitor cells associated with 

tissue regeneration 13, 14. In addition, viscoelastic parameters, like creep and stress relaxa-

tion, that describe the time and rate dependency of the mechanical response to defor-

mation have been shown to be vital for a tissue-engineered replacements to be successful 

15. 

One promising fabrication method is the layer-by-layer (LbL) approach, in which 

sequential layers of material are deposited individually. Many LbL fabrication methods 

have been developed over the past five decades 16-18, making notable contributions to var-

ious fields, including the pharmaceutical and cosmetic industries 19, 20. In a functional my-

ocardium CMs are typically found adjacent to one another as opposed next to the smooth 

muscle cells (SMCs), fibroblasts (FBs) or endothelial cells (ECs). The mixing of cardiac 

cells in engineered cardiac tissue, likely prevents the hiPSC-CMs from coalescing into a 

fully interconnected contractile apparatus and may partially explain why force-generation 

measurements in these co-cultured tissues remained lower than in native heart tissue 21. 

LbL fabrication allows for a high degree of control over physicochemical properties, in-

cluding construct architecture, permeability, and Young’s (elastic) modulus 22-26. When 

engineering tissue like the myocardium, this technique has the potential to enhance con-

struct performance, as it allows for the sequential deposition of specialized cells as op-

posed to depositing large volumes of co-cultured cells. This is especially important for 
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functional aspects such as contractile function and electromechanical connectivity for ex-

ample 27. Unfortunately, current production of thick implantable engineered tissue is 

hampered by the fact that 3D structures lacking adequate vascularization generally be-

come necrotic within 100-200 µm of the boundary regions 28-30. EC presence in the myo-

cardium is not limited to providing vascularization but is vital to adult cardiomyocyte 

(CM) function, including CM organization and contractile force generation 31-37. Numer-

ous strategies have aimed to optimize vascularization in engineered tissue using varia-

tions of LbL techniques 38-41, yet due to oxygen- and nutrient limitations 42, 43 cardiac sur-

rogates thicker than 250 µm are rarely seen without significant degrees of necrosis. These 

previous LbL approaches have, however, allowed for the production of, albeit thin, native 

tissue-like metabolically active structures that possessed blood vessels. Studies on tem-

perature-responsive (poly(N-isopropylacrylamide)) PIPAAm-sheets seeded with CMs 

showed that the layers were not only capable of being detached from their 2D culturing 

environment and fusing, but post-fusion, were able to conduct electrical signals synchro-

nously 44. These synchronous conduction capabilities can be attributed to factors like cel-

lular alignment and coupling, along with the maturation of calcium-handling machinery 

like T-tubule networks as expressed by markers for junctophilin-2 (JP2) and ryanodine 

receptor (RyR) 45, 46. In total, the current LbL techniques for fabricating cardiac surro-

gates have not yielded a clinically viable alternative.  

In the present study, we aimed at developing a thick, viable cardiac tissue surro-

gate from hiPSC-derived cells. The cardiac surrogates were characterized at various time 

points in order to inform future decisions, including optimal implantation time post-fabri-
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cation as well as material composition. Characterization included 1) histology and im-

munostaining to analyze the cellular and structural morphology, 2) immunostaining to 

quantify viability, 3) immunostaining of 2D and 3D structures to analyze cell migration 

and vascularization, 4) stress relaxation tests and subsequent model fitting of the re-

sponses to determine the viscoelastic properties, 5) immunostaining and quantification of 

ECM remodeling and how it’s related to the viscoelastic properties of the cardiac surro-

gates, 6) electron microscopy to examine the ultrastructure of the tissue and 7) optical 

mapping to determine the action potential and conduction velocity spectra to assess func-

tionality. It was hypothesized that utilizing a modular fabrication approach, such as LbL 

deposition, would not only allow for the production of thicker tissues but also increase 

their robustness in terms of long-term culturability.  

Materials and methods 

Cell culture and characterization 

Human induced pluripotent stem cells (hiPSCs) were reprogrammed from human 

cardiac fibroblasts, and subsequently differentiated into iCMs, as previously reported 4, 47, 

48. Generally, spontaneous contractions were observed in the iCM cultures between days 

7 and 10 after the differentiation protocol commenced, with beating numbers increasing 

up to day 12. Metabolic purification of iCMs via glucose deprivation (RPMI 1640 with-

out glucose, supplemented with sodium DL-lactate and B27+, Gibco) for 3-6 days, initi-

ated at day 11, allowed for a population of iCMs that was at least 95% cTnT positive. 

hiPSCs were maintained at optimal conditions, as previously described 49, on 6-well 

plates coated with Matrigel (Corning), using mTeSR 1 maintenance media (STEMCell 

Technologies, Canada). hiPSC-endothelial cells (iECs) were differentiated as described 
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previously 21, 50, 51. Briefly, undifferentiated hiPSCs were seeded into a 0.5 mL fibrin 

scaffold and treated with CHIR99021 and U46619 in EBM2 medium (Lonza, USA) sup-

plemented with B27- for 24 h. The medium was replaced with EBM2 supplemented with 

B27-, vascular endothelial growth factor (VEGF), erythropoietin (EPO), and transforming 

growth factor β1 (TGFβ1), and then cultured for 96 hours with a media change halfway 

through. Finally, the scaffold was released and cultured in EGM2-MV medium (Lonza, 

USA) supplemented with B27+, VEGF, SB-431542, with media changes every two days. 

hiPSC-ECs were purified and enriched by collecting cells positive for CD31 using fluo-

rescence-activated cell sorting device (FACSAria II). Antibodies used for selection along 

with dilutions are listed Supplemental Table S1. See Supplemental Figure S1 for cell 

characterization and Supplemental Figure S2 for the proliferation assay performed in to 

prove the lack of tumorigenic properties of the iCMs utilized.  

Fibrin matrix composition 

The supporting fibrin matrix (per milliliter) used for each alternating layer of the 

cardiac tissue fabrication consisted of the following components as was defined previ-

ously 21: 0.12 mL fibrinogen (25 mg/mL, Sigma-Aldrich, CAS# 9001-32-5), 0.02 mL 

Matrigel (Corning, # 356235), 0.56 mL of HEPES (20 mM, pH 7.4, Corning), 0.001 mL 

CaCl2 (2 M), 0.3 mL DMEM (Gibco, High glucose, #11965-118), 0.006 mL thrombin 

(80 U/mL, MP Biomedicals). 

Polydimethylsiloxane (PDMS) stilts 

PDMS stilts were fabricated by mixing PDMS (Dow Corning Sylgard 184 Sili-

cone, Product # 2065622) in a 10:1 elastomer:curing agent ratio and poured into a 

100 mm diameter Pyrex Petri dish (Corning, # 3160102). These were cured at 75 °C for 2 
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hours in an oven, after which custom stilts of 10 mm x 5 mm (2.5 mm thick) were cut. 

All PDMS structures were autoclaved prior to use in tissue fabrication. 

Optimized tissue surrogate fabrication 

Following cell differentiation, cardiac tissue fabrication commenced (Figure 1). 

Petri dishes (BioLite Cell Culture Treated Dishes, Thermo Scientific) were coated with a 

5 % pluronic F-68 solution (Gibco, # 24040032) and incubated at 4 °C overnight. The 

pluronic solution was removed, and a sterile polycarbonate frame (internal area: 1 x 2 

cm2) was attached with a 2 % agarose solution. Note that the frames were modified with 

channels to allow for maximal media contact following tissue fabrication. iCMs were dis-

sociated (STEMdiff Cardiomyocyte Dissociation Medium, STEMCell) and mixed with 

the fibrin matrix at a concentration of 10x106 cells/mL. Note that the deposition of the 

iCM layer denotes “D0” for the remainder of the fabrication process. 400 µL of this solu-

tion was quickly deposited into each mold to produce the first layer. Following complete 

polymerization, the culture medium was added (STEMdiff Cardiomyocyte Support Me-

dium, 2 mg/mL Ɛ-aminocaproic acid) and incubated at 37 °C (5 % CO2) for 2 days. The 

next layer, comprised of iECs, was made in a similar fashion, with the following excep-

tions: iECs were dissociated using trypsin (0.25 % trypsin, 0.1 % EDTA, Corning, # 

25053CI) and then mixed with the fibrin matrix at a concentration of 10x106 cells/mL. 

200 µL of this solution was quickly deposited into each mold, yielding a 2:1 ratio of 

iCMs:iECs 21. Fresh culture medium (10 % fetal bovine serum, 2 % B27+, and 2 mg/mL 

Ɛ-aminocaproic acid, 10 µM ROCK inhibitor in DMEM) was added, following layer 

polymerization. After 24 h, the frame containing the cardiac tissue surrogate was lifted 
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off of the dish surface and placed on top of custom-cut PDMS stilts, allowing for the tis-

sue to be fully suspended in fresh culture media (2 % fetal bovine serum, 2 % B27+, and 

2 mg/mL Ɛ-aminocaproic acid in DMEM). Incubation continued for the desired period of 

time (1-4 weeks in total), with media replacement once per week. 

 

Tissue preservation 

Samples were fixed in 4 % formaldehyde (Pierce, Thermo Scientific, # 28906) for 

1 hour prior to embedding in either optimal cutting temperature compound (OCT com-

pound, Fisher Health Care, USA) or paraffin for histological analysis (10 µm sections). 

Whole-mount samples were stored in PBS until staining.  

Histochemistry 

Deparaffinized and rehydrated sections were stained in hematoxylin solution 

(Mayer’s, Merck, 3 min) then working eosin Y solution (2 min). Following dehydration 

Figure 1: Basic description of optimized cardiac tissue surrogate fabrication process, 

allowing for extended culturing of thick tissue structures. The first layer of cells is de-

posited and cultured for 48 hours, after which the second layer is deposited using LbL ap-

proach. The second layer of cells is deposited, allowed to polymerize, and the entire 

structure contained in its frame is then lifted off of the dish surface and placed ontop of 

PDMS platforms. Thick, viable, multi-layered tissue can be cultured for the desired 

amount of time (1-4 weeks) 
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sampled were mounted in Permount and imaged with a bright field microscope (Olympus 

IX83 epifluorescent microscope). 

Immunohistochemistry 

OCT embedded sections were blocked and permeabilized for 30 min in 10 % don-

key serum, 3 % BSA, and 0.05 % Triton-X. Primary antibodies were incubated for 1 h at 

room temperature (Supplementary Table S1). Following PBS wash (3 x 5 min), second-

ary antibodies labeled with fluorescent tags and 4′, 6-diamidino-2-phenylindole (DAPI, 

100 ng/ml) were added for 1 h at room temperature (Supplementary Table S1). Sections 

were mounted in VECTASHIELD Antifade Mounting Medium and visualized by confo-

cal laser scanning (Olympus FV3000 confocal microscope). 

Whole-mount staining 

Fixed whole-mount samples were blocked and permeabilized in 10 % donkey se-

rum, 10 % Tween-20, 3 % BSA, 0.05 % Triton-X, and 0.02 % sodium azide in PBS over-

night at 4 °C. Primary antibodies were incubated overnight at 4 °C (Supplementary Table 

S1). Samples were washed in PBST (3 x 10 min) then fluorescently labeled secondary 

antibodies were added overnight at 4 °C with the addition of DAPI. Following washing, 

tissue was cleared according to the previously described protocol 52 with a 3 hour incuba-

tion in Ce3D clearing agent. Whole-mount constructs were transferred to an Ibidi µ-Slide 

(# 80286), covered with VECTASHIELD Antifade Mounting Medium, and visualized by 

confocal laser scanning. 
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Determination of structure viscoelastic properties 

All sample specimens, including PDMS, fresh murine heart tissue and cardiac tis-

sue surrogates were treated with the same procedure described here. Specimen size meas-

urements (surface area, A) used in the determination of the stress from the forces meas-

ured (σ = F/A) were determined with a digital caliper (Mitutoyo 500-196-30, Digimatic). 

Stress relaxation responses, stress (σ) vs. time (t), were characterized using a generalized 

Maxwell model 53 of order 4 (Figure 2 c) in MATLAB (MathWorks, R2018, see Supple-

mental Information for the code). All specimens were transported from the incubator or 

sacrificed animal in chilled PBS and tested immediately. Stress relaxation testing in com-

pression 54 was done using a Low Force Testbench (TA Instruments, New Castle, DE), 

where a 10 % strain (ε) was applied and held for 4 minutes on each sample. Samples were 

strained (ε) at 10 % by varying the applied deformation with thickness. Force (F) was 

measured with a 250 g load cell (Figure 2 a, b). 

The generalized Maxwell model was defined using the following equations, 

where Ei and ηi represent the modulus and viscosity of the ith elements, and σ the meas-

ured stress: 

𝑴𝒐𝒅𝒆𝒍:  𝝈(𝒕) = 𝜺𝜠𝟎 + 𝜺𝜠𝟏 (𝒆
−

𝑬𝟏
𝜼𝟏

𝒕
) + 𝜺𝜠𝟐 (𝒆

−
𝑬𝟐
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𝒕
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𝒕
) +  𝜺𝜠𝟒 (𝒆

−
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𝒕
)   Eq. 1 

For each curve fit, the instantaneous modulus could be determined by the summa-

tion of each elastic modulus term (t=0), whereas the equilibrium modulus was determined 

at t→∞ where E0=σ/ε. Viscosity was determined as the summation of each viscosity ele-

ment (ηi). 
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𝑰𝒏𝒔𝒕𝒂𝒏𝒕𝒂𝒏𝒆𝒐𝒖𝒔 𝒀𝒐𝒖𝒏𝒈’𝒔 𝒎𝒐𝒅𝒖𝒍𝒖𝒔 (𝑷𝒂)  =  𝜠𝟎 +  𝜠𝟏 +  𝜠𝟐 +  𝜠𝟑 +  𝜠𝟒    Eq. 2 

𝑬𝒒𝒖𝒊𝒍𝒊𝒃𝒓𝒊𝒖𝒎 𝒀𝒐𝒖𝒏𝒈’𝒔 𝒎𝒐𝒅𝒖𝒍𝒖𝒔 (𝑷𝒂)  =  𝜠𝟎  Eq. 3 

𝑽𝒊𝒔𝒄𝒐𝒔𝒊𝒕𝒚 (𝑷𝒂 · 𝒔)  =  𝜼𝟏 + 𝜼𝟐 + 𝜼𝟑 + 𝜼𝟒          Eq. 4 

Prior to performing tests on the engineered tissue samples, the validity of this 

method was tested using PDMS of different crosslinking densities. Moduli and viscosity 

obtained from these validation experiments were used to confirm the goodness-of-fit for 

the Maxwell model of order 4 (Figure 2 d). The generalized Maxwell model of order 4 

allowed for a good fit to the experimentally obtained data (R2 > 0.98). 
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Animal studies: murine heart samples 

Studies were performed using healthy murine hearts as a control sample in viscoe-

lastic testing for cardiac tissue surrogates that were generated during this study. All ani-

mal procedures were performed in accordance with the guidelines for animal experimen-

tation set forth and approved by Institutional Animal Care and Use Committee (IACUC, 

Figure 2: The experimental setup used to quantify the viscoelastic properties of the 

engineered cardiac tissue. (a) Shows an image of the compression clamp and the submer-

sion chamber, whereas (b) shows a schematic of the experimental setup. (c) Generalized 

Maxwell model of order 4 schematic. Ei and ηi represent the modulus and viscosity of the 

ith elements, and σ is the measured stress, with (d) showing the stress relaxation response 

(“Data”) and modeling (“Fit”) of PDMS crosslinked at an elastomer:curing agent ratio of 

34:1, showing the goodness-of-fit for the generalized Maxwell model of order 4 (R2>0.98) 
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APN 20216), School of Engineering, University of Alabama at Birmingham; and con-

formed to the Guidelines for the Care and Use of Laboratory Animals published by the 

US National Institutes of Health (2011). Control tissue samples from SCID mouse left 

ventricles were obtained after perfusion with saline and arrested in diastole by injection 

with 25 mM potassium chloride (KCl). Animals were gender-randomized.   

Transmission electron microscope (TEM) imaging 

Ultrastructural analysis of the thick cardiac tissue surrogates was done via TEM 

imaging. After culturing for the required amount of time (1-4 weeks), the tissue surro-

gates were fixed in a 2.5 % glutaraldehyde solution for 1 h at 4 °C prior to being deliv-

ered to the UAB High-Resolution Imaging Facility for further processing. Sample blocks 

were sectioned using a diamond knife for clean and even sections. Samples were 

mounted and viewed using a Tecnai Spirit T12 Transmission Electron Microscope. Im-

ages were collected for analysis at each time point of interest (1 week, 2 weeks, and 4 

weeks of tissue culture). 

Four-electrode micro-impedance spectra (4EMS) 

To assess intercellular coupling in the tissue surrogates, we used systems of very 

small and closely spaced electrical sensors custom-fabricated into linear arrays that are 

integrated with adjacent instrumentation to provide low-amplitude stimulation current to 

the interstitial compartment of 15 preparations. Within each array, alternating current 

stimuli were delivered between the outer pair of electrodes at frequencies of 10 Hz to 

4000 Hz as described previously 21, 55, 56. Each stimulus established a three-dimensional 

interstitial potential field that was then sensed as a voltage difference between sensors 
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that formed an inner pair of electrodes that in turn allowed the identification of a micro-

scopic composite impedance (µCI) that included both real (tissue resistivity) and imagi-

nary  (tissue reactivity) components. At relatively low frequencies, supplied current re-

mains primarily interstitial, and as a consequence, the current-to-voltage ratio provides 

information regarding the strength of interstitial electrical coupling. As frequency in-

creases, supplied current shunts to the intracellular compartment via membrane capaci-

tance and intracellular coupling strength becomes essential in assessing the response. Tis-

sue resistivity and reactivity were identified during four sequential acquisition intervals in 

each preparation. 

Optical mapping 

To assess action potential duration, conduction velocity, and minimum pacing cy-

cle length, LbL tissue surrogates were stained with a voltage-sensitive dye RH-237 (2.5 

μM) for 10 minutes, transferred to a perfusion chamber mounted on an inverted micro-

scope. Samples were perfused with Hank’s balanced salt solution (HBSS) at approxi-

mately 37 ˚C. Sample pacing/stimulation was done with a bipolar electrode consisting of 

a glass pipette filled with HBSS and a silver wire coiled around its tip. The electrode tip 

was positioned at the sample’s edge using a micromanipulator. Rectangular stimulation 

pulses were used, with a duration of 2 ms and current strength 1.5-times the excitation 

threshold. Fluorescence was excited with a 200-W Hg/Xe arc lamp and recorded with a 

16×16 photodiode array (Hamamatsu) at a spatial resolution of 110 μm per diode as pre-

viously described 57. Excitation light was filtered at 532–587 nm, and emitted fluores-

cent light was filtered at > 650 nm. To eliminate motion artifacts caused by the sample’s 
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spontaneous contractions, the perfusion solution was supplemented with 5 μM of blebbi-

statin. Isochronal maps of the activation spread were constructed from activation times 

measured at 50 % of the maximum action potential amplitude. Conduction velocity was 

calculated at each recording site from local activation times and averaged across the 

whole mapping area. Action potential duration was measured at 50 % and 80 % of signal 

recovery (APD50) and (APD80), respectively.  

Image analyses 

All image quantification analyses were performed with ImageJ. Where indicated, 

arbitrary units (A.U) are representative of a pixel count and intensity for each sample. 

Statistical analyses 

For statistical analysis, data are shown in the form mean ± SEM. Significance was 

chosen as p < 0.05. This was determined using either Student’s t-test or ANOVA where 

applicable. One sample Wilcoxon tests (α = 0.05) were used in the viscoelastic statistical 

analyses of between cardiac tissue surrogates (n = 3) and native murine LV tissue (n = 5). 

These analyses were performed utilizing GraphPad Prism8 data analysis software pack-

age.   
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Results 

LbL fabrication produces thick, synchronously beating, fused tissue surrogates 

Tissue surrogates produced with the optimized method described in Figure 1 

yielded structures of 1.73 ± 0.075 mm in thickness after one week in culture (Figure 3 a). 

Following the first 24 h post-iCM layer deposition (on D1), the beating-rate (per min) of 

each tissue surrogate was determined (Figure 3 b). This yielded a rate of 74 ± 8.4 

beats/min (bpm). On the second day, the beat-rate lowered significantly (p = 0.01) to 63 ± 

5.8 bpm. After iEC layer addition on D3 and an additional three days of culture (D6), the 

beating-rate on the sixth day had decreased further to 29 ± 4.1 bpm (p = 0.0008). 

Whether this significant decrease in bpm is due to paracrine signaling from the iECs or 

whether the internal cardiac pacemaker system become somewhat quiescent, remains to 

be seen. 
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Alterations in ECM composition between weeks one and four were observed via 

H&E staining (Figure 3 c-h). Histology suggests increases in structural ECM compo-

nents such as collagen (increased intensity as well as the distribution of eosinophilic 

staining, Figure 3 c-h). With increased culture time, compaction of the structures became 

more apparent (Figure 3 f), and structures, although initially somewhat disorganized, re-

sembled in vivo muscle. Structure coupling was confirmed by not only the synchronous 

macroscopic beating of the tissue surrogates (Figure 3 b) but also through the fusion of 

the two layers as visualized on H&E sections. Another observation was the iEC migration 

out of their originally deposited layer into the resident iCM layer as is clear from the 

somewhat acellular appearance of the top layer of the tissue surrogate (Figure 3 c-h), 

Figure 3: LbL production yields thick, synchronously beating, fused tissue surro-

gates. (a) Confocal micrograph of fabricated LbL cardiac tissue surrogates showing cell 

distribution and tissue surrogates thickness after 1 week in culture (n = 4). (b) LBL tis-

sue surrogates beat-rate over the first 6 days during culture, p < 0.05, (n = 11). H&E 

staining of LbL tissue surrogates at Day 7 (c-e), and Day 28 (f-h) of culturing 
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Cell migration from the iEC later into the iCM resulted in a localized elevated concentra-

tion of iECs near the layer-fusion site, and was primarily evident during the initial culture 

stages (after 1 week, Figure 3 c-e) as opposed to later culture stages (week 4, Figure 3 f-

h). Due to the difficulty in distinguishing between the different cells and their distribution 

throughout the structure based on H&E alone, further specific immunofluorescent stain-

ing was completed and quantified (Figure 5). The effect of this migration on the viability 

of the cardiac surrogates was determined via immunofluorescent staining and subse-

quently quantified. It should be noted that structures visualized here via H&E staining ap-

pear thinner than those preserved in OCT. This difference in overall tissue thickness is 

attributed to the multiple dehydration-related steps required during the H&E processing 

of the hydrogel structures leading to decreased preservation of the original architecture. 

LbL fabrication yields highly viable tissue 

The viability of the tissue was determined with pMLKL staining (Figure 4), 

which specifically stains for cell necroptosis 58 and is associated with inflammatory mark-

ers 59. The pMLKL-positive cells were quantified as a percentage (%) of the total number 

of cells present (i.e., normalized to the DAPI staining). No significant differences were 

found in the degree of necrotic staining for any of the time points analyzed. The necrotic 

staining was quantified (Figure 4 c) as 4.5 ± 2.3 % after one week, 4.3 ± 1.1 % after two 

weeks, and 5.6 ± 1.4 % after four weeks in culture (see Supplemental Figure S3 for stain-

ing at week 4). These values were comparable with the ~4 % pMLKL positive staining 

obtained by Gao et al. previously for their large tri-lineage iPSC-derived thick (1.25 mm) 

cardiac muscle patches after 1 week in culture 21. 
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Cell migration and tissue vascularization  

Imaging of the fluorescently stained sections (Figure 5) showed iEC migration 

into the iCM region of the dual-layered tissue surrogates. Evidence of migration was ini-

tially seen after day five and continued throughout the culture period. This migration pro-

cess continued over the four weeks of culture, with clear integration into the iCM layer 

observed from the 2D sections by the 4th week (Figure 5 a). In order to confirm vascula-

ture formation as well as establish a timeline for the formation process, whole-mount 

staining was employed. Staining of samples after two weeks of culture (Figure 5 c) 

Figure 4: Degree of necrosis identified in cardiac tissue surrogates via pMLKL 

marker. Confocal micrograph of LbL tissue surrogates displaying necrotic cells identi-

fied by the necrosis marker phosphorylated MLKL (Ser358, pMLKL) at week 1 (a) and  

week 2 (b) of culture. (c) Percentage of necrotic cells in LbL tissue surrogates, (n = 4) 
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showed branching vascular networks. Whole-mount staining further confirmed the obser-

vations regarding iEC integration and elucidated that iCM orientation was random and 

did not yet present with the degree of cell alignment seen in native myocardial tissue 

(Figure 5 c). Clear delineation of cell distribution can be seen in Supplemental Figure S4. 

Quantification of each cell type at weeks one, two and four, respectively, showed that the 

amount of CD31 expression relative to cTnT expression remained stable over the 4 week 

period with no statistically significant differences between the expression ratios at each 

time point (n = 3, Supplemental Figure S4 c).  Furthermore, no statistically significant 

differences between the cTnT expression relative to the DAPI expression was noted ei-

ther (n = 3, Supplemental Figure S4 d). 

  

Figure 5: Temporal cellular migration and vascularization. Fluorescent staining with 

cTnT and CD31 showing developing vasculature in tissue cultured for (a) 4 weeks, along 

with (b) whole-mount staining of a 2-week tissue surrogate. Scale bars for the zoomed-in 

images are 20 µm and 10 µm for (a) and (b) respectively. 
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Use of the viscoelastic model in compression mode 

Engineered tissue modeling over the four weeks yielded excellent fits to the ex-

perimentally obtained results, as R2 > 0.7 for all samples from weeks 1 and 2 respec-

tively, while R2 > 0.88 for samples from week 4 (Figure 6 a). Instantaneous moduli of 

4.72 ± 0.84 kPa, 5.82 ± 0.47 kPa, and 4.85 ± 0.16 kPa were measured for week 1, week 

two, and week four samples, respectively (Figure 6 b). The standard deviation in the 

samples decreased as the culture time increased from 1 week to 2 weeks to 4 weeks. Vis-

cosity modeling yielded values of 8.03x104 ± 2.42x103 Pa•s, 3.35x104 ± 6.31x103 Pa•s, 

and 6.70x104 ± 2.14x104 Pa•s respectively. Tissue surrogate viscoelastic properties (n = 

3 for each group) were compared to those of healthy LV tissue from SCID mice (n = 5). 

Mouse LV tissue instantaneous modulus was measured at 6.43 ± 1.13 kPa, while viscos-

ity was 2.00x105 ± 8.32x104 Pa•s. Equilibrium moduli of 1.08 ± 0.31 kPa, 1.31 ± 0.37 

kPa, and 0.40 ± 0.10 kPa were obtained for week 1, week two, and week four samples, 

respectively (Figure 6 c). The equilibrium modulus for the control mouse LV samples 

was observed at 2.81 ± 0.48 kPa. Non-parametric tests (one sample Wilcoxon) showed 

that there were no statistically significant differences between the viscoelastic properties 

of the cardiac tissue surrogate and the healthy murine LV tissue (α = 0.05), even with the 

differences in properties noted for the tissue surrogates at different time points.  
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Dynamic ECM evolution  

During the 4-week culturing period, the ECM underwent multiple phases of re-

modeling. The degree to which this very dynamic process occurs was monitored and 

quantified in vitro through analysis of individual matrix component degradation and dep-

osition. For ECM analyses, 3 samples were analyzed at each time point, with at least five 

images per matrix component. Since the fibrin used in the matrix fabrication consisted of 

both bovine thrombin and fibrinogen, an antibody targeting a bovine specific epitope was 

Figure 6: Viscoelastic characterization of native mouse tissue and engineered car-

diac tissue surrogates. (a) Stress relaxation response (“Data”) and modeling (“Fit”) of 

a 4-week tissue surrogate as well as (b, c) the quantification of the modeling results for 

all samples over 4 weeks (n = 3 for all groups of tissue surrogates; n = 5 for control 

mice; *p < 0.05). 
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used in its analysis. An antibody with a fibrinogen β-chain that matched the β-chain sec-

tion of the fibrinogen used to fabricate the fibrin matrix was used to stain and analyze the 

evolution of fibrin over four weeks in culture (Figure 7 a). Analysis showed discernable 

degradation of the fibrin matrix over this period. Since the engineered tissue remained 

structurally intact and previous research has shown that ECM remodeling occurs during 

iCM culturing 60, 61, samples were analyzed for additional ECM components, including 

collagen 1 (Col1), collagen 3 (Col3), collagen 4 (Col4), laminin (Lam) and fibronectin 

(FN) (Figure 7 b). Quantification showed a nearly 3-fold increase in collagen one pro-

duction from weeks 1 to 4. A general trend was observed in basal membrane component 

production, i.e., the relative amounts of both collagen four, as well as laminin, decreased 

from week 1 to week 2, to week 4. The variations in structural ECM components, like 

collagen 1, affect the overall stiffness of the tissue surrogates, whereas dense basement 

membrane components, including laminin and collagen 4, play more of a role in viscous 

properties 62-64. The decreasing viscosity of the tissue surrogates (Figure 6 b) is likely 

linked to the reduction in basement membrane ECM components. Furthermore, week 2 

saw a notable increase for fibronectin, which is highly expressed in the heart during early 

stages of embryogenesis and has also been shown to be vital in the vasculogenesis pro-

cess 65. The enhanced expression of fibronectin noted after two weeks in culture may be 

linked to the formation of the branched vessel-like structures noted in Figure 5 c. In addi-

tion to altering viscosity properties of the structure, collagen 4 likely has another func-

tional role, specifically that of an anti-angiogenic signaling cue 66, 67. The statistically sig-

nificant increase in collagen 4 in week 2 coincides with an even more notable statistically 

significant increase in fibronectin expression (Figure 7 b). This phenomenon can most 
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likely be attributed to an “on-off” switch regulating the vessel formation process 

occurring in the tissue surrogate. 

Ultrastructure development is suggestive of tissue maturation 

Alterations noted in the ECM via H&E and immuno-fluorescent staining (Figure 

3 c-h) were also confirmed via TEM (Figure 8). As culture-time increased from one to 

four weeks (Figure 8 a vs. Figure 8 c vs. Figure 8 e), there was an increase in the num-

Figure 7: Representative images and subsequent quantification of ECM evolution 
over a 4-week period, with (a) showing the degradation of fibrin and (b) showing the 

deposition of Collagen 1, Collagen 3, Fibronectin (FN), Collagen 4 and Laminin at week 

4. Scale bars = 100 µm, n = 5, *p < 0.05 
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ber of gap junctions (GJ) observed between the cells (Figure 8 d). Increases in the num-

ber of GJ (see Supplemental Figure S5 for immunofluorescent staining of connexin 43 as 

well as its quantification), along with the statistically significant increase in sarcomere 

length (distance between z-bands) from 1.53 ± 0.02 to 1.68 ± 0.12 μm between week one 

and two, with a further increase to 1.70 ± 0.02 μm at week four (Figure 8 g) suggest that 

the fabrication method along with the extended culturing promote a degree of functional 

maturation 68. These sarcomere lengths are physiologically relevant and compare with 

those observed in both neonatal rats and sheep (1.5 – 1.9 µm) 69, 70. 
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Functional performance of bi-layered tissue surrogates 

Functional performance was assessed by t-tubule formation, intracellular gap 

junction formation (4EMS) as well as optical mapping to determine conduction velocities 

through the tissue. All mapping of surrogates was performed after 1 week in culture. 

Staining and subsequent quantification of the tissue surrogates for both junctophilin (JP2, 

Figure 8: TEM of bi-layered tissue surrogates (a) 1 week after fabrication, showing al-

terations in ECM composition as well as cardiomyocyte Z-lines (ZL); (b) higher magnifica-

tion with collagen fibers clearly distinguishable from other ECM components; (c) 2 weeks 

after fabrication, showing more distinct Z-lines as well as (d) higher magnification with gap 

junctions (GJ) between cells; (e) 4 weeks after fabrication, showing further alterations in 

ECM deposition, as well as (f) higher magnification with mitochondria (MC) starting to ar-

range along the contractile elements. (g) Sarcomere length comparison (n = 33) between 

structures cultured for 1 week, 2 weeks and 4 weeks; **p < 0.0001. 
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Figure 9 a, Supplemental Figure S6) and ryanodine receptor (RyR, Figure 9 b, Supple-

mental Figure S6) expression suggested that there was a significant increase in the num-

ber of t-tubules formed between the first and fourth week of tissue culture. Resistivity-

reactivity spectra (Figure 9 c) compared favorably with spectra from our earlier report 

with rabbit left ventricular myocardium 55, supporting gap junction intracellular commu-

nication (GJIC) developed in these cardiac tissue surrogates to an extent similar to that in 

native myocardium. The heatmap generated from optical mapping (Figure 9 d) shows a 

lack of arrhythmogenicity in the bi-layered structures. Furthermore, structures showed 

conduction velocities of 16.9 ± 2.3 cm/s, with the ability to be paced to 300 ms (3.33 Hz) 

from 800 ms (1.25 Hz), before being recovered to 800 ms pacing. ADP50 and ADP80 were 

noted as 128 ± 12.0 and 186 ± 17.7 ms, respectively. 
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Discussion 

Mimicking the myocardium in both form and function has been a goal for re-

searchers in the cardiovascular field for decades. Not only is the heart a cellularly com-

plex organ, but a structurally sophisticated one at that, and mimicking it as a living, elec-

trical, mechanical structure is no easy feat. In this study, a new fabrication method using 

hiPSC derived cardiac cells for producing engineered cardiac tissue was developed and 

characterized. This method was based on a bottom-up LbL concept, to allow for en-

hanced viability and robustness over a 4-week period, as well as the development of 

Figure 9: Functional analyses of bi-layered cardiac tissue surrogates. Expression of 

(a) JP2 and (b) RyR in the cardiac tissue surrogate structures over the different culture 

periods, *p < 0.05 (n = 3). (c) Tissue reactivity and resistivity shown as a function of 

stimulation frequency, (n = 15). (d) Summary of tissue optical mapping, with repre-

sentative signal propagation heatmap as well as pacing at both 300 ms (red) and 800 ms 

(blue) (n = 10). 
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physiologically relevant structures on a cellular and microstructure level. This study is 

the first to our knowledge to show large and easily scalable (1 x 2 cm2) hiPSC-derived 

cardiac tissue surrogates that are thick (~1.73 mm), viable and prevascularized without 

significant necrosis/apoptosis during 4-weeks following up assessments. Not only have 

we demonstrated that these structures show minimal necrosis (< 5.4%) over a 4 week pe-

riod, but also that they develop enhanced myocyte maturation as evidenced by character-

istics in subcellular structure , electrophysiology,  and calcium-handling capabilities. 

Quantification of the temporal stability of the relative expression of CD31 to cTnT as 

well as the relative expression of cTnT to DAPI further supported the findings showing 

minimal necrosis throughout the structures (Supplemental Figure S4). Additionally, this 

study quantified the temporal changes that occur during ECM remodeling in the engi-

neered tissue surrogates via immunofluorescent staining, as well as modeling of viscoe-

lastic properties. 

Increases in the elastic modulus of engineered cardiac tissue surrogates cultured 

over four weeks were noted, but not as significant as was expected. Significant changes 

in the viscosity of the engineered tissue surrogates were noted after two weeks in culture. 

Due to the dynamic nature of ECM remodeling, it is difficult to discern which ECM com-

ponent was mostly responsible for the reduction in viscosity noted in week 2, but general 

trends suggested reduced laminin could be responsible. Furthermore, the increase in fi-

bronectin expression observed in week two coincided with the notable formation of 

branched vessel-like structures in the cardiac tissue surrogates. As fibronectin is highly 

expressed in the heart during early stages of embryogenesis and has been shown to be vi-

tal in the vasculogenesis process 65 these observations are likely linked. Regulation of 
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vessel formation via an “on-off” switch was likely achieved via the expression of Col4 at 

week 2 66, 67. 

The temporal viscoelastic properties of the engineered tissue surrogates were 

compared to those of healthy mouse LV tissue. The elasticity moduli reported in this 

study ranged between ~4.7-5.8 kPa, while the control mouse samples were 6.4 kPa, sug-

gesting that the engineered tissue designed in this study had viscoelastic properties com-

parable to healthy LV tissue. Comparable elasticity values can be difficult to obtain in the 

literature due to variations in testing methods; however, healthy rat heart tissue elasticity 

has been reported to be 18 ± 2 kPa 71, while embryonic mouse epicardial tissue has been 

reported to have an elastic modulus of 12 ± 4 kPa 72. Equilibrium moduli values for the 

bi-layered engineered tissue fell short when compared to healthy mouse LV tissue, 

though not by a statistically significant amount. This could, in part, be because primary 

structural ECM deposition was dependent on iCMs alone, whereas native cardiac tissue 

consists of known structural ECM-producing cells specifically, fibroblasts. 

Cardiac cells are under constant, self-generated cyclic mechanical stress, which 

can affect their differentiation, development as well as maturation.  Additional loading of 

CMs has shown to be an effective tool in advancing certain maturation markers, like the 

upregulation of connexin 43, in these cells. Stretching has been demonstrated to directly 

affect the activity of ion channels and increase gap junction-mediated cell coupling 73-76. 

The bi-layered tissue surrogate developed during this study did not undergo any addi-

tional mechanical or electrical loading, yet was still able to develop physiologically rele-

vant ultrastructural attributes like increased sarcomere length and mitochondrial align-

ment along the contractile elements.  The mechanical forces, however faint, that the iCMs 
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cyclically generate, are also a source of constant fluidic motion and convection within the 

culture environment and may contribute to the system’s ability to remain viable for 

weeks with minimal cell necrosis. Normal functions of cardiomyocytes require the endo-

thelial cells in the microenvironment, which likely contribute to the novel fabricated 

thicker and functional cardiac tissue surrogates in the present study. In addition to the 

natural motion of the tissue surrogate, the formation of branched vessel-like structures 

may enhance the oxygen and nutrients delivery to the center of the thicker engineered 

cardiac tissue.   

Cardiac transverse tubules (T-tubules) (Figure 9 a & b) are highly branched in-

vaginations of cardiomyocyte sarcolemma that are rich in ion channels essential for exci-

tation-contraction  coupling, maintenance of resting membrane potential, action potential 

initiation and regulation, and signaling transduction. Mature T-tubule networks are pre-

sent in mammalian ventricular cardiomyocytes, with the transverse components of t-tu-

bules occurring near sarcomeric z-discs. Cardiac T-tubules contain membrane micro-do-

mains, enriched with ion channels and signaling molecules, and as such, are vital signal-

ing hubs in the regulation of cardiomyocyte function. Dyads formed at the junctions be-

tween the T-tubule membrane and neighboring sarcoplasmic reticulum (SR) are vital in 

calcium signaling and EC coupling necessary for beat-to-beat cardiac contraction. The 

juxtaposition of the L-type Ca channel (LTCC) located in the T-tubule membrane with 

the ryanodine receptor (RyR2), the major cardiac SR Ca2+ release channel, is necessary 

for the initiation of the proper calcium transients required following each beat-to-beat ac-

tion potential. These systems are thought to promote the synchronous activation of the 
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whole depth of the cell despite the fact that the signal to contract is relayed across the ex-

ternal membrane. The importance of the T-tubule network should not be underestimated, 

as it is responsible for one-third of the capacitance of the membrane, along with most of 

the influx of Ca2+ that triggers the release of intracellular SR Ca2+ enters across the T-tub-

ular fraction 77. Increases in the expression of T-tubule markers like JP2 are indicative of 

improved calcium handling abilities 78, 79. Conduction velocities that approach those seen 

in native LV tissue (30-100 cm/s 80) have rarely been achieved in 3D structures with 

hiPSC-CMs. Structures consisting of cells from neonatal rats have, however, been shown 

to reach velocities of up to ~32 cm/s 81. The LbL cardiac tissue surrogate produced in the 

current study (Figure 1) does, however, outcompete its predecessors with its 16.9 ± 2.3 

cm/s, compared to 14.1 ± 1.0 cm/s 21. The ability of the bi-layered structures to be paced 

to 300 ms without becoming arrhythmogenic was a further indication of their robustness 

and capability to perform under high-stress conditions 82.  

It should be noted that, even though this 3D in vitro study was performed over an 

extended period (4 weeks), it only represents a brief moment in time in terms of the char-

acteristics of a larger ensemble.  In order to better understand the system and continue op-

timization, longer-term culture studies, along with implantation success, have to be as-

sessed. Furthermore, incorporating directional tissue maturation techniques, using a per-

fusion system as opposed to static culture 83, including electrical or mechanical stimula-

tion 68, 82, 84, 85, could further enhance tissue performance and allow for viscoelastic engi-

neered tissue surrogates that further resembles the native myocardium.  
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Conclusions 

Here we have shown how modular fabrication methods, like LbL, can be utilized 

and optimized to yield thick (~1.73 mm), viable, easy-to-scale-to clinically relevant sized 

cardiac tissue surrogates. In vitro characterization showed tissue structures resembling 

those of native cardiac tissue, both structurally and functionally. Well-developed cal-

cium-handling machinery, minimal arrhythmogenic potential, and promising conduction 

velocities were observed. Viscoelastic characterization and comparison with native 

mouse LV tissue showed that the Generalized Maxwell model of order 4 described the 

samples very well. The viscoelastic characterization also suggested that the addition of 

structural ECM producing cells, specifically fibroblasts, may allow for production of car-

diac tissue equivalents that further mimic native myocardial tissue.  

Future work will focus on the incorporation of additional cells like fibroblasts, 

yielding further biomimetic structures and allowing for the expansion of potential 

theranostic applications.  In vivo studies in a large animal model will also commence in 

order to assess the potential clinical application of these larger, thicker, cardiac tissue 

equivalents. Assessment of improvement will include the engraftment rate of transplanted 

cells, LV dilatation, LV wall stress, infarct size, and arrhythmogenic potential.    
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Supplemental Material and Methods 

Flow cytometry analysis 

Flow cytometry analysis was performed as described previously 50-52. Briefly, 

cells were dissociated using 0.25 % trypsin and resuspended as single cells, permea-

bilized in 0.1 % Triton X-100 at 4 °C for 10 min, then incubated with primary and sec-

ondary antibodies for 30 min at 4 °C with 3 x 5 min wash in between. Finally, cells were 

resuspended in 2 % fetal bovine serum/phosphate-buffered saline (FBS/PBS) containing 

5 μL of propidium iodide (10 μg/mL) and evaluated with a FACS Aria instrument (BD 

Biosciences, USA). Antibodies used, along with dilutions, are listed Supplemental Table 

S1.  

Cardiomyocyte proliferation assay 

Cardiomyocyte proliferation was tested using a proliferation assay from 

CyQUANT Direct Cell Proliferation Assay Kit (Invitrogen, Cat# C35011). Briefly, CM 

proliferation was determined via green fluorescent nucleic acid staining of the nucleus, 

after which the fluorescence intensity of the readout was obtained 120 min after reagent 

addition via microplate reader. Based on the results, there was no significant difference 

between the proliferation of 28-day-old and 42-day-old hiPSC-CMs (see Supplemental 

Figure S2). Student t-test was performed, p = 0.6565 (n = 6). 
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Table S1: Antibodies used for flow cytometry, FACS, and immunofluorescent staining. 

 

 

Antibody Name Application Company Catalog 

Number 

Alexa Fluor® 647 Mouse Anti-Human 

CD31  

FACS BD Bio 

sciences 

561654 

Cardiac Troponin T Monoclonal Anti-

body (13-11) 

Flow Analysis Invitrogen MA5-12960 

Rabbit Anti-Cardiac Troponin T anti-

body [EPR3695] 

Immunofluorescent Staining Abcam 91605 

Mouse Anti-Cardiac Troponin T anti-

body [1F11] 

Immunofluorescent Staining Abcam 10214 

Goat anti-Mouse IgG Secondary Anti-

body, Alexa Fluor 555 

Immunofluorescent Staining Invitrogen A32727 

Donkey anti-Mouse IgG Secondary 

Antibody, Alexa Fluor 488 

Immunofluorescent Staining Invitrogen A21202 

Donkey anti-Rabbit IgG Secondary 

Antibody, Alexa Fluor 488 

Immunofluorescent Staining Invitrogen A21206 

Donkey anti-Rabbit IgG Secondary 

Antibody, Alexa Fluor 555 

Immunofluorescent Staining Invitrogen A31572 

Rabbit Anti-Collagen I antibody Immunofluorescent Staining Abcam 34710 

Mouse Anti-CD31 antibody [JC/70A] Immunofluorescent Staining Abcam 9498 

Rabbit Anti-Fibrinogen beta chain anti-

body 

Immunofluorescent Staining Abcam 137830 

Rabbit Anti-Collagen III antibody Immunofluorescent Staining Abcam 7778 

Rabbit Anti-Fibronectin antibody Immunofluorescent Staining Abcam 2413 

Rabbit Anti-Collagen IV antibody Immunofluorescent Staining Abcam 6586 

Rabbit Anti-Laminin antibody Immunofluorescent Staining Abcam 11575 

Rabbit Anti-VE Cadherin Immunofluorescent Staining Abcam 33168 

Mouse Anti-VWF Antibody (F8/86) Immunofluorescent Staining Santa Cruz  

Biotech 

53466 

Rabbit Anti-N-Cadherin Immunofluorescent Staining Abcam 18203 

Anti-Alpha Actinin Immunofluorescent Staining Sigma A7811 

Anti-Connexin 43 / GJA1 antibody - 

Intercellular Junction Marker 

Immunofluorescent Staining Abcam 11370 

Mouse Anti-Ryanodine Receptor anti-

body [C3-33] 

Immunofluorescent Staining Abcam 2827 

JPH2 Polyclonal Antibody Immunofluorescent Staining Thermo 

Fisher 

40-5300 
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Supplemental Figures 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Negative control 

hiPSC-CMs 
(following metabolic purification) 

a1  a2  

b1  b2  

Figure S1: Characterization of hiPSC-derived cells. Characterization data confirm-

ing differentiation and purification for iECs (a) and iCMs (b) using immunofluorescent 

staining (1) and flow cytometry (2) analysis. 
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Figure S2: Fluorescence-based cell proliferation assay. (a) Standard curve and (b) 

the resulting measurements at Day 28 (12 hours) of hiPSC-CMs culture in 96-well 

plate (15,000 cells/well) as well as measurements at Day 42 (14 days). p = 0.6565 (n 

= 6) 

Figure S3: Cardiac surrogate viability. Immunofluorescent staining showing pres-

ence of DAPI and phosphorylated MLKL (Ser358, pMLKL) after 4 weeks in culture.  
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Figure S4: Cell fate during culture process. Immunofluorescent staining showing pres-

ence of DAPI, cTnT and CD31 after (a) 1 week in culture and (b) 4 weeks in culture. 

Quantification of expression intensity and subsequent expression ratios for all 4 weeks 

for (c) CD31/cTnT expression as well as (d) cTnT/DAPI. No statistically significant dif-

ference noted between groups for (c) or for (d), n = 3. 
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Figure S5: Gap junction development. Immunofluorescent staining showing connexin 

43 (Cx43) gap junction presence after (a) 1 week in culture and (b) 2 weeks in culture, 

along with the (c) quantification of the ratio of Cx43/DAPI fluorescence expression. *p < 

0.05, with n = 4 
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All videos associated with this work, clips 1-5, are available online at: https://iop-

science.iop.org/article/10.1088/1748-605X/abc107 

 

 

 

 

 

 

Figure S6: T-tubule network development. Confocal micrograph of junctophilin 

(JP2) and ryanodine receptor (RyR) expression levels in cardiac tissue surrogates after 

(a) 7 days, and (b) 28 days in culture, respectively.  
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Supplemental Matlab code: Generalized Maxwell model of order four 

%% Load datasets 
% Raw data sheets used in this file/program should only consist of numbers 
% Delete the graphs and the titles in all the columns or MatLab won't 
% recognize the file 
% convert the Excel file to a .csv if necessary 
% Ensure that all the files are in the same folder 
% Ensure the directory is set (left click the tab at the top to 
% set directory) 
%% 
  
load('PDMS6edit.csv') % loads the Raw data file generated with Low Force Testbench into MatLab 
Do = 2.830*10^-3;          % Sample thickness - sample-dependent (meters) 
PlotOn = 1; % 1 = plot, 0 = don't plot 
%FileName = 'DataSet02';     % creates a new destination to store results 
  
%% 
%   Section converts the load obtained from instrument to Stress measurements, 
%   and identifies point were sample strain was introduced 
  
Force = PDMS6edit(:,7); % Load value in gram-force 
  
Force = Force/101.971621;   %Gram-force to Newton 
  
Area = 4.165*10^-5; % Area of sample (in m2) 
  
Stress = Force / Area; % Y-Values in Graph (Stress) 
  
Time = PDMS6edit(:,2); % Elapsed Time (s) (temporarily uses entire Time column before selecting for the 
desired range) 
  
%plot (Time, Stress) 
  
Ep = 0.1;    % 10 percent sample strain 
  
[StressVal, StressPos] = max(Stress(:));   %find max Y-value 
  
%%  
%create new matrix - only consider data points relevant to 10 percent 
%strain  
  
NewMat = [Time, Stress];    %assign Time to column1 and Stress to column2 of NewMatrix 
k = 1; 
  
for i = StressPos:size(NewMat, 1) 
    maxT(k) = Time(i) - Time(StressPos); 
    maxS(k) = Stress(i); 
     
    k = k+1; 
end 
  
max_mat = [maxT', maxS'];   %this is the new matrix containing only the experimental data relevant to the 
strain experiment 
  
%plot (maxT, maxS) 
  
%%  
opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); 
ft = fittype( 'a + b0*exp(-c0*x) + b1*exp(-c1*x) + b2*exp(-c2*x) + b3*exp(-c3*x)', 'independent', 'x', 'dependent', 
'y');  %model fitting 
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opts.DiffMaxChange = 100000;     %how much the coefficients of each a, b0, c0 etc. changes with ongoing 
iterations 
opts.DiffMinChange = 1e-10; 
opts.Display = 'Off'; 
opts.Lower = [0 0 0 0 0 0 0 0 0];  %lower limits of exponents should be zero at minimum 
opts.MaxFunEvals = 10000; 
opts.MaxIter = 100000;        %number of iterations 
opts.Robust = 'LAR';        %LAR refers to least absolute residuals - ensures more robust fit of model 
opts.StartPoint = [36000 3500 4500 4500 1800 0.002 1e-04 1e-05 1e-06]; 
opts.Upper = [100000 10000 10000 10000 10000 10000 10000 10000 10000];     %ceiling of a, b0, c0 etc 
  
[fitresult, gof] = fit(maxT', maxS', ft, opts); 
  
% Plot fit with data. 
Name = 'Result %d'; 
  
%figure( 'Name', sprintf(Name)); 
h = plot( fitresult,  maxT', maxS' ); 
  
set(h,'LineWidth',2) 
  
legend( h, 'Data', 'Fit', 'Location', 'NorthEast' ); 
% Label axes 
xlabel Time 
ylabel Stress 
grid on 
  
%% This is using the fit parameters  
for i = 1 : 4 
         a(i) = fitresult.a; 
         b0(i) = fitresult.b0; 
         c0(i) = fitresult.c0; 
        
         b1(i) = fitresult.b1; 
         c1(i) = fitresult.c1; 
         b2(i) = fitresult.b2; 
         c2(i) = fitresult.c2; 
         b3(i) = fitresult.b3; 
         c3(i) = fitresult.c3; 
          
         R2_Value(i) = gof.rsquare;     %gof -goodness of fit 
end 
  
for i = 1:4 
    E0(i) = a(i)/Ep; 
    E1(i) = b0(i)/Ep; 
    n1(i) = E1(i)/c0(i); 
     
    E2(i) = b1(i)/Ep; 
    n2(i) = E2(i)/c1(i); 
     
    E3(i) = b2(i)/Ep; 
    n3(i) = E3(i)/c2(i); 
     
    E4(i) = b3(i)/Ep; 
    n4(i) = E4(i)/c3(i); 
     
end 
  
%%  

 



73 

 

LAYER-BY-LAYER FABRICATION OF LARGE AND THICK HUMAN CARDIAC 

MUSCLE PATCH CONSTRUCTS WITH SUPERIOR ELECTROPHYSIOLOGICAL 

PROPERTIES 

 

 

 

by 

 

 

 

DANIELLE PRETORIUS, ASHER M. KAHN-KRELL, XI LOU, VLADIMIR G. 

FAST, JOEL L. BERRY, TIMOTHY J. KAMP, JIANYI ZHANG 

 

 

 

 

Frontiers in Cell and Developmental Biology 

Danielle Pretorius, Asher Kahn-Krell, Xi Lou, Vladimir Fast, Joel Berry, Timothy Kamp, 

Jianyi Zhang, (2021), doi: 10.3389/fcell.2021.670504 

 

 

Copyright 2021 

by 

The Authors 

 

 

Used by permission 

Format adapted and errata corrected for dissertation



74 

 

ABSTRACT  

Engineered cardiac tissues fabricated from human induced pluripotent stem cells 

(hiPSCs) show promise for ameliorating damage from myocardial infarction, while also 

restoring function to the damaged left ventricular (LV) myocardium. For these constructs 

to reach their clinical potential, they need to be of a clinically relevant volume and thick-

ness, and capable of generating synchronous and forceful contraction to assist the pump-

ing action of the recipient heart. Design prerequisites include a structure thickness suffi-

cient to produce a beneficial contractile force, prevascularization to overcome diffusion 

limitations and sufficient structural development to allow for maximal cell communica-

tion. Previous attempts to meet these prerequisites have been hindered by lack of oxygen 

and nutrient transport due to diffusion limits (100-200 μm) resulting in necrosis. This 

study employs a layer-by-layer (LbL) fabrication method to produce cardiac tissue con-

structs that meet these design prerequisites and mimic normal myocardium in form and 

function. Thick (> 2 mm) cardiac tissues created from hiPSC-derived cardiomyocytes, -

endothelial cells and -fibroblasts were assessed, in vitro, over a 4-week period for viabil-

ity (< 6 % necrotic cells), cell morphology and functionality. Functional performance as-

sessment showed enhanced t-tubule network development, gap junction communication 

as well as previously unseen, physiologically relevant conduction velocities (> 30 cm/s). 

These results demonstrate that LbL fabrication can be utilized successfully to create 

prevascularized, functional cardiac tissue constructs from hiPSCs for potential therapeu-

tic applications. 

Keywords: hearts, tissue engineering, layer-by-layer fabrication, stem cell, electrophysi-

ology
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INTRODUCTION 

The use of engineered cardiac muscle patch constructs focusing on repair and 

functional restoration following an acute myocardial infarction (AMI), have shown prom-

ise in improving clinical outcomes for patients 1-3. Clinically, AMI is associated with 

postinfarction LV remodeling and heart failure 4, 5. Cell therapy approaches utilizing 

products associated with human induced pluripotent stem cells (hiPSCs) have been exam-

ined pre-clinically as a viable therapeutic option 6-8. Despite these promising results, the 

search continues for an effective method of restoring both mechanical and electrical func-

tion to the AMI damaged region of the heart, which is necessary for a successful thera-

peutic application. Furthermore, electrical function is largely dependent upon the electri-

cal excitability of the cells and subsequently the engineered tissue. Unfortunately, due to 

their immature phenotype, hiPSC-derived cardiomyocytes (iCMs) tend to have reduced 

electrical excitability compared to mature, adult CMs found in the native myocardium 9, 

10.  

One of the key indicators for CM functional maturity at the tissue level is the ca-

pacity to support fast action potential (AP) conduction. In cardiac tissue, AP represents 

the time-dependent changes in the transmembrane electrical potential in CMs, which oc-

cur during each heartbeat, and are functions of highly coordinated, time- and voltage-de-

pendent changes in activity of various ion channels and transporters 11. Conduction veloc-

ities (CVs) of genetically purified iCMs in monolayer format have been reported as high 
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as ~21 cm/s 12, with more complex 3D systems still lagging behind at reported CVs 

around 14 to 17 cm/s 13, 14 with the potential of reaching up to 25 cm/s when highly orga-

nized 15. However promising, the CVs reported for hiPSC-derived tissue still fall short of 

those observed in native adult LV tissue (~30 – 100 cm/s 16, 17). Some of the highest CVs 

reported for engineered cardiac tissue have been obtained with neonatal rat CMs, and was 

recorded at 32.3 ± 1.8 cm/s, yet at their thickest, these structures were recorded to only be 

100 µm 18. 

Utilization of promising fabrication strategies which yield highly organized struc-

tures, such as the layer-by-layer (LbL) approach, allow for superior control over a range 

of physicochemical properties. In a previous study, we demonstrated that our LbL fabri-

cation method yields thick, vascularized engineered cardiac tissue, with CVs ranging be-

tween 17 – 19 cm/s, as well as viscoelastic properties that were similar to native murine 

myocardial tissue 14, yet this study only utilized CMs and endothelial cells (ECs). It is 

known, however, that fibroblasts (FBs) play key roles in the healthy native adult mamma-

lian heart. FBs contribute to general heart function, homeostasis, and structure, most no-

tably during the production and remodeling of extracellular matrix (ECM). Culturing 

CMs in the presence of FBs has also been shown to affect the electrophysiological prop-

erties of the CMs 19.  

In the present study, we aimed at developing a LbL approach to engineer large 

and thick tri-lineage (CM, EC and FB) cardiac tissue constructs. The engineered cardiac 

tissue was characterized at various time points, over a 4 week period, in order to qualify 

and quantify the changes that occur in the structures in vitro, which ultimately lead to a 

better potential understanding of the remodeling that these structures undergo in vivo. We 
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hypothesized that by mimicking the cellular composition of the native myocardium, i.e. 

utilizing CMs, ECs and FBs, with a LbL fabrication process would not only allow for the 

production of thicker tissues but also increase their ability to mimic the native myocar-

dium more closely in terms of form and function.  Characterization included 1) histology 

and immunostaining to analyze the cellular and structural morphology, 2) immunostain-

ing to quantify viability, 3) immunostaining of 2D cryosections and 3D structures to ana-

lyze cell migration, potential vascularization and final cellular fate, 4) immunostaining 

and quantification of ECM remodeling, 5) RNA analysis to quantify and corroborate the 

results obtained from immunostaining and 6) optical mapping to determine the action po-

tential and conduction velocity to assess functionality. 

Materials and Methods 

Cell culture and characterization 

Human cardiac fibroblast induced pluripotent stem cells (hiPSCs) were reprogrammed 

from human cardiac fibroblasts, and subsequently differentiated into hiPSC-cardiomyo-

cytes (iCMs), as previously reported 8, 20, 21. Generally, spontaneous iCM contractions 

were observed between days 7 and 10 after commencement of the differentiation proto-

col, with beating numbers increasing up to day 12. Metabolic purification of iCMs was 

achieved via glucose deprivation (RPMI 1640 without glucose, supplemented with so-

dium DL-lactate and B27+, Gibco) for 3-6 days, initiated at day 9, allowed for a popula-

tion of iCMs that yielded a minimum of 95% cTnT positive. hiPSCs were maintained at 

optimal conditions, as previously described 22, on 6-well plates coated with Matrigel 

(Corning), using mTeSR 1 maintenance media (STEMCell Technologies, Canada).  
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hiPSC-endothelial cells (iECs) were differentiated as described previously 13, 23, 24. 

Briefly, undifferentiated hiPSCs were seeded into 0.5 mL fibrin scaffolds and treated 

with CHIR99021 and U46619 in EBM2 medium (Lonza, USA) supplemented with B27- 

for 24 hrs. The medium was then replaced with EBM2 which was supplemented with 

B27-, vascular endothelial growth factor (VEGF), erythropoietin (EPO), and transforming 

growth factor β1 (TGFβ1), and then cultured for an additional 96 hours with a media 

change midway through. Finally, the scaffolds were released and cultured in EGM2-MV 

medium (Lonza, USA) supplemented with B27+, VEGF, SB-431542, with media changes 

every two days. hiPSC-ECs were purified and enriched via collection of cells positive for 

CD31 using fluorescence-activated cell sorting (FACSAria II). Antibodies used for selec-

tion and cell characterization are listed Supplementary Table S1. See Supplementary Fig-

ure S1 for cell characterization and Supplementary Figure S2 for the proliferation assay 

showing the lack of tumorigenic properties of the iCMs utilized in this study.  

hiPSC-FB (cFB) differentiation commenced using hiPSC-line DF19-9-11T with cells at 

100% confluence (day 0) 19. The hiPSC culture medium was changed to RPMI/B27- and 

supplemented  with 12 μM CHIR99021, with cells treated in this medium for 24 hrs (day 

1). Medium was changed once again to RPMI/B27- for another 24 hrs (day 2). Within 24 

hrs (before day 3), the medium was changed to cardiac fibroblast differentiation basal 

medium (CFBM, see Supplementary Table S2) supplemented with 75 ng/ml bFGF 

(WiCell Research Institute). Cells were then cultured with CFBM + 75 ng/ml bFGF 

every other day up to day 20 when they were utilized for flow cytometry analysis and 

passaged for subsequent use in tissue fabrication. 
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Fibrin matrix composition 

The fibrin matrix used (per milliliter) used for the differentiation of the iECs as well as 

for the construction of each alternating layer of the cardiac tissue during the modular fab-

rication process consisted of the following components as was defined previously 13: 0.12 

mL fibrinogen (25 mg/mL, Sigma-Aldrich, CAS# 9001-32-5), 0.02 mL Matrigel (Corn-

ing, # 356235), 0.56 mL of HEPES (20 mM, pH 7.4, Corning), 0.001 mL CaCl2 (2 M), 

0.3 mL DMEM (Gibco, High glucose, #11965-118), 0.006 mL thrombin (80 U/mL, MP 

Biomedicals). 

Polydimethylsiloxane (PDMS) platforms 

PDMS platforms were fabricated by mixing PDMS (Dow Corning Sylgard 184 Silicone, 

Product # 2065622) in a 10:1 elastomer:curing agent ratio and poured into a 100 mm di-

ameter Pyrex Petri dish (Corning, # 3160102). These were cured at 75 °C for 2 hours in 

an oven, after which custom platforms of 10 mm x 5 mm (2.5 mm thick) were cut. Prior 

to their use in the tissue fabrication and culture process, all PDMS structures were auto-

claved. 

Optimized LbL engineered tissue fabrication 

Following cell differentiation, cardiac tissue fabrication commenced (Figure 1). Petri 

dishes (BioLite Cell Culture Treated Dishes, Thermo Scientific) were coated with a 5 % 

pluronic F-68 solution (Gibco, # 24040032) and incubated at 4 °C overnight. The plu-

ronic solution was removed, and a sterile polycarbonate frame (internal area: 1 x 2 cm2) 

was attached with a 2 % agarose solution. Note that the frames were modified with chan-

nels to allow for maximal media contact following tissue fabrication. iCMs were dissoci-

ated (STEMdiff Cardiomyocyte Dissociation Medium, STEMCell) and mixed with the 
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fibrin matrix at a concentration of 10x106 cells/mL. Note that the deposition of the iCM 

layer denotes “D0” for the remainder of the fabrication process. 400 µL of this solution 

was quickly deposited into each mold to produce the first layer. Following complete 

polymerization, the culture medium was added (STEMdiff Cardiomyocyte Support Me-

dium, 2 mg/mL Ɛ-aminocaproic acid) and incubated at 37 °C (5 % CO2) for 2 days. The 

next layer, comprised of iECs, was made in a similar fashion, with the following excep-

tions: iECs were dissociated using trypsin (0.25 % trypsin, 0.1 % EDTA, Corning, # 

25053CI) and then mixed with the fibrin matrix at a concentration of 10x106 cells/mL. 

200 µL of this solution was quickly deposited into each mold, yielding a 2:1 ratio of 

iCMs:iECs 13. Fresh culture medium (10 % fetal bovine serum, 2 % B27+, and 2 mg/mL 

Ɛ-aminocaproic acid, 10 µM ROCK inhibitor in DMEM) was added, following layer 

polymerization. After 24 hours, the frame containing the engineered cardiac tissue was 

lifted off of the dish surface and placed on top of custom-cut PDMS stilts, allowing for 

the tissue to be fully suspended in fresh culture media (2 % fetal bovine serum, 2 % 

B27+, and 2 mg/mL Ɛ-aminocaproic acid in DMEM). After a further 48 hours, the next 

layer, comprised of cFBs, was made in a similar fashion, with the following exceptions: 

cFBs were dissociated using TrypLE (Gibco, # 12604013) and then mixed with the fibrin 

matrix at a concentration of 10x106 cells/mL. 100 µL of this solution was quickly depos-

ited into each mold, yielding a 2:1:0.5 ratio of iCMs:iECs:cFBs 13, 25. Incubation contin-

ued for the desired period of time (1-4 weeks in total), with media replacement once per 

week. 

 

 



81 

 

 

Tissue preservation 

Fabricated tissue samples were fixed in 4 % formaldehyde (Pierce, Thermo Scien-

tific, # 28906) for 1 hour prior to embedding in either optimal cutting temperature com-

pound (OCT compound, Fisher Health Care, USA) or paraffin for histological analysis. 

Histological analyses were performed on 10 µm sections. Whole-mount samples were 

stored in PBS until staining.  

Histochemistry 

Deparaffinized and rehydrated sections were stained with hematoxylin solution 

(Mayer’s, Merck, 3 min) followed by working eosin Y solution (2 min). Following subse-

quent dehydration, all samples were mounted with Permount and imaged using a bright 

field microscope (Olympus IX83 epifluorescent microscope). 

 

Cell differentiation 

and culture

Modular tissue construction 

& optimized culture

Thick, viable, tri-lineage 

cardiac tissue

hiPSCs
iECs

iCMs

Suspend cells 

(iCM or iEC or cFBs) 

in fibrin matrix

Deposit cells 

in fibrin matrix 

(LbL) into 

frame

Lift frame 

containing patch 

& place on PDMS 

platforms

PDMS 

platforms

Fused, multi-

layered cardiac 

tissue

Culture for 

desired time 

(1-4 weeks)
hPSCs cFBs

2 cm
1 cm

2 mm

Figure 1: Basic description of optimized cardiac tissue surrogate fabrication pro-

cess, allowing for extended culturing of thick tissue structures. The first layer of cells 

is deposited and cultured for 48 hours, after which the second layer is deposited using 

LbL approach. The second layer of cells is deposited, allowed to polymerize, and the 

entire structure contained in its frame is then lifted off of the dish surface and placed 

ontop of PDMS platforms. The third layer of cells is deposited in a similar fashion. 

Thick, viable, multi-layered tissue can be cultured for the desired amount of time (1-4 

weeks) 
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Immunohistochemistry 

Fixed OCT embedded sections were blocked and permeabilized for 30 min in 

10 % donkey serum, 3 % BSA, and 0.05 % Triton-X. Following addition of primary anti-

bodies, samples were incubated for 1 h at room temperature (Supplementary Table S1). 

Samples were washed in PBS (3 x 5 min), and subsequently labeled with secondary anti-

bodies with fluorescent tags and 4′, 6-diamidino-2-phenylindole (DAPI, 100 ng/ml) and 

incubated for at room temperature for 1 h (Supplementary Table S1). Sections were 

mounted with VECTASHIELD Antifade Mounting Medium and visualized by confocal 

laser scanning (Olympus FV3000 confocal microscope). 

Whole-mount staining 

Fixed whole-mount samples were blocked and permeabilized in 10 % donkey se-

rum, 10 % Tween-20, 3 % BSA, 0.05 % Triton-X, and 0.02 % sodium azide in PBS over-

night at 4 °C. Then, primary antibodies were added and samples were incubated over-

night at 4 °C (Supplementary Table S1). Samples were washed in PBST (3 x 10 min) and 

fluorescently labeled secondary antibodies along with DAPI were added followed by an-

other overnight incubation at 4 °C. Following washing, tissue was cleared according to 

the previously described protocol 26 with 3 hr incubation in Ce3D clearing agent. Whole-

mount constructs were transferred to an Ibidi µ-Slide (# 80286), covered with VEC-

TASHIELD Antifade Mounting Medium, and visualized via confocal laser scanning 

(Olympus FV3000 confocal microscope). 
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RNA isolation and analyses 

Samples for RNA analysis were suspended in TRIZOL (Invitrogen) and homoge-

nized. RNA extraction was completed using Direct-zolRNA MiniPrep Plus (Zymo Re-

search Corporation) according to the manufacturer’s protocol. Following concentration 

measurement on the Nanodrop device, 1 μg of RNA was converted into complementary 

DNA (cDNA) through the reverse transcription reaction using the SuperScript IV VILO 

Master Mix (Thermo Fisher Scientific) then diluted to a final concentration of 5 ng/μL. 

qPCR analysis of each sample was performed on a QuantStudio 3 real-time PCR system 

using PowerUp SYBR Green Master Mix (Thermo Fisher Scientific). Quantification of 

relative expression was done by normalizing to sample GAPDH expression. Primers used 

for RT-qPCR analysis are included in Supplementary Table S3. 

Optical mapping 

To assess action potential duration (APD), conduction velocity (CV), and mini-

mum pacing cycle length, engineered LbL tissue samples were stained with a voltage-

sensitive dye RH-237 (2.5 μM) for 10 minutes and transferred to a perfusion chamber 

mounted on an inverted microscope. Control samples consisted of iCM:iEC bilayered tis-

sue, while test samples consisted of iCM:iEC:cFBs. Samples were constantly perfused 

with Hank’s balanced salt solution (HBSS) at approximately 37 ˚C. Pacing/stimulation of 

all samples was done with a bipolar electrode consisting of a glass pipette filled with 

HBSS and a silver wire coiled around its tip. A micromanipulator was used to position 

the electrode tip at the sample’s edge. Rectangular stimulation pulses, with a duration of 

2 ms and current strength 1.5-times the excitation threshold were used. Fluorescence was 
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excited with a 200-W Hg/Xe arc lamp and recorded with a 16×16 photodiode array (Ha-

mamatsu) at a spatial resolution of 110 μm per diode as previously described 27. Excita-

tion light was filtered at 532–587 nm, and emitted fluorescent light was filtered at > 650 

nm. The perfusion solution was supplemented with 5 μM of blebbistatin to eliminate po-

tential motion artifacts caused by the samples’ spontaneous contractions. Isochronal maps 

of the activation spread were constructed from activation times measured at 50% of the 

maximum action potential amplitude. Conduction velocity was calculated at each record-

ing site from local activation times and averaged across the whole mapping area. Action 

potential duration was measured at 50% and 80% of signal recovery (APD50) and 

(APD80), respectively. 

Statistical analyses 

All results are reported as mean ± standard error (mean ± SEM). Significant dif-

ferences between two mean values were determined via the Student's Two-Tailed t-Test; 

and ANOVA or repeated ANOVA with the Tukey post hoc test were used for multiple 

(more than 2 groups) comparisons or repeated measurements.  p-values of less than 0.05 

were considered statistically significant. These analyses were performed utilizing 

GraphPad Prism8 data analysis software package. 

Results 

LbL fabrication produces thick, synchronously beating, fused engineered cardiac tissue 

Engineered cardiac tissue produced with the optimized method described in Fig-

ure 1 yielded structures of 2.12 ± 0.083 mm and 1.38 ± 0.019 mm in thickness after one 

week and four weeks in culture, respectively (Figure 2 a, n = 4). The statistically signifi-

cant (p < 0.005) reduction in tissue thickness between week 1 and week 4 are most likely 
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due to compaction caused by the contractile forces exerted by both the iCMs as well as 

the cFBs. Following the deposition of the iCMs, synchronization of the iCM layer in all 

samples was noted after 48 hours (on Day 2). The resulting beating-rate (per min) of each 

engineered tissue was determined (Figure 2 b), yielding a rate of 109 ± 11.5 beats/min 

(bpm). Following the iEC layer addition on Day 3 and an additional two days of culture 

(Day 5), the beating-rate on the fifth day of culture, prior to cFB deposition had de-

creased significantly, to 47 ± 2.0 bpm. Following the deposition of the cFBs, and an addi-

tional 24 hours of culture (Day 6), the beating-rate of the tissues was noted at 51 ± 3.9 

bpm. After 4 weeks in culture, the beating-rate of the constructs were noted at 55 ± 1.8 

bpm. 

Modification to the ECM composition between weeks one and four were ob-

served via H&E staining (Figure 2 c-d). Histology shows increases in structural ECM 

components such as collagen (increased intensity as well as the distribution of eosino-

philic staining, Figure 2 c-d). As sample time in culture increased, compaction of the 

structures the degree of compaction increased (Figure 2 d), and structures, although ini-

tially somewhat disorganized (Figure 2 c), began resembling in vivo muscle. The altera-

tions in the ECM composition, specifically those associated with collagen deposition 

were attributed to both the culture of iCMs as well as the addition of cFBs, based on the 

strong eosinophilic staining noted in both the bottom as well as the top layers of the struc-

ture at week 4 (Figure 2 d). Fusion and coupling of the structure layers was confirmed by 

not only the synchronous macroscopic beating of the engineered tissue (Figure 2 b) but 

also via H&E staining. Another observation made via H&E was that of cell migration 

over the culture period. As with a previous study by this group 14, it was noted that iECs 
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initiated migration and re-arrangement out of their originally deposited layer into the resi-

dent iCM layer within less than 48 hours post-deposition, as is clear from the somewhat 

acellular appearance of the middle layer of the engineered tissue (Figure 2 c). The degree 

of cell migration and potential iEC re-arrangement was confirmed with cell-specific im-

munofluorescent markers (Figure 4 a). It should be noted that structures visualized here 

via H&E staining appear thinner than those preserved in OCT or when measured with a 

caliper. This difference in overall tissue thickness is attributed to the multiple dehydra-

tion-related steps required during the H&E processing of the hydrogel structures leading 

to decreased preservation of the original architecture. 
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Figure 2: Macroscopic information describing tri-lineage engineered cardiac 

tissue. (a) Change in tissue thickness between week1 and week4, measured with a 
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< 0.005. H&E staining of LbL engineered tissue at (c) Day7, and (d) Day28 of cul-

turing 
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LbL fabrication results in engineered tissue with limited necrosis markers 

 Tissue viability was determined via pMLKL staining (Figure 3), which 

specifically stains for cell necroptosis 28 and is associated with inflammatory markers 29. 

The pMLKL-positive cells were quantified as a percentage (%) of the total number of 

cells present (i.e., normalized to the DAPI staining, n = 4 with a minimum of 5 images 

taken per sample). The initial degree of necrosis noted in the engineered tissues was very 

low, and quantified at 1.17 ± 0.06 %. After an additional week of in vitro culture, the 

degree of necrosis increased to 1.96 ± 0.19 %, while the degree of necrosis after four 

weeks in culture was observed to be 5.73 ± 0.95 %. Even though the percentage of 

pMLKL positive cells increased significantly from week 1 to week 2 and week 4, 

respectively, it still compared well with previously published data from our group, 

showing 5.6 ± 1.4 % after four weeks in culture of engineered structures that were 

initially ~1.73 mm thick at week 1 14. 

 

 

Figure 3: Tri-lineage structure viability. Confocal micrograph of LbL tissue surro-

gates displaying necrotic cells identified by the necrosis marker phosphorylated MLKL 

(Ser358, pMLKL) at (a) week 1 of culture, with (b)  the  percentage of necrotic cells in 

LbL engineered cardiac tissue, (n = 4, *p < 0.05). Border indicated with short dashed 

line 
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Cellular migration and fate 

Imaging of the fluorescently stained sections (Figure 4 a, i) showed migration of 

the iECs as well as the cFBs towards their iCM counterparts within a number of days af-

ter these layers had been deposited. The migration process continued over the four weeks 

of culture, yet leaving no area of the engineered structure completely acellular (Figure 4 

a, ii).  

Expression levels of various cell markers were monitored over the culture period, 

i.e. cTnT for iCMs, CD31 for iECs as well as α-SMA (alpha smooth muscle actin), peri-

ostin, vimentin and FAP (fibroblast activation protein) for cFBs (Figure 4 b). At each 

time point, at least 3 tissue samples were used to determine the respective expression lev-

els. No statistically significant differences were noted in the expression levels of CD31, 

α-SMA, periostin, vimentin or FAP, suggesting that the expression levels of these factors 

were stable throughout the culturing period. The slight decrease noted in vimentin ex-

pression can potentially be attributed to senescence of the cFB line, which is known to 

occur in vitro after a specific number of cell divisions and/or passages 19. The slight in-

creases in factors such as periostin, rather, could potentially be suggestive of an environ-

ment that is conducive to cellular motility 30. The only statistically significant difference 

was noted in the expression level of cTnT when comparing week 1 to week 4. This in-

crease could more likely than not be attributed to the maturation of the iCMs in the engi-

neered tissue, since iCMs are terminally differentiated cells and minimal proliferation is 

observed in these cell populations (see Supplementary Figure S2). To further investigate 

the potential maturation of the iCMs in the engineered tissues, the expression levels of 
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known maturation markers as well as chamber-specific markers were examined (Figure 

5). 

Developmental and hormonal factors control the expression of alpha- and beta-

myosin heavy chain (MHC), two functionally distinct, species-dependent cardiac MHC 

isoforms 31, 32. Not only have these isoforms been shown to be correlated with contractile 

capabilities, but alterations in expression levels are also age-, and species-dependent 33. 

Switches in expression from one isoform to another have been highly referenced in litera-

ture in developing systems, with increases in β-MHC and more specifically β-

MHC:αMHC, being a key indicator of CM maturation 16, 34-37.  During the culturing pe-

riod, there was a statistically significant decrease in the expression levels of alpha-MHC 

(α-MHC), noted when comparing the expression levels of week 1 and week 2 as well as 

week 1 and week 4, respectively. Week 2 also saw an almost 3-fold increase (p < 0.05) in 

the expression level of beta-MHC (β-MHC) when compared to week 1. Analysis of this 

ratio showed an 8-fold increase from week 1 to week 2 (p < 0.05), and a 19-fold increase 

from week1 to week 4 (p < 0.005). 

Expression levels for chamber-specific markers, i.e. atrial (MLC2a) and ventricu-

lar (MLC2v), were also compared 38. Analysis showed no statistically significant differ-

ences in MLC2a or MLC2v between any of the time points. Interestingly enough, when 

comparing the expression levels of ventricular:atrial markers, i.e. MLC2v:MLC2a, a 2.7-

fold increase (p < 0.05) was noted between week 1 and week 2, while a 3.3-fold increase 

(p < 0.005) was observed between week 1 and week 4. With MI affecting the LV more 

prominently, having cells with a more ventricular-like phenotype present in the engi-

neered tissues is highly advantageous. 
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Figure 4: Cellular fate monitoring and quantification. (a) Fluorescent staining with 

cTnT, CD31 and TE-7 showing tri-lineage engineered tissue after (i) one and (ii) four 

weeks in culture, respectively, along with (b) expression levels of cell-specific markers 

at weeks one, two and four, respectively, (n = 4, *p < 0.05, **p < 0.005) 
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Dynamic ECM evolution 

Throughout the 4-week culturing period, the engineered cardiac tissue structure 

ECM underwent remodeling to various degrees. As demonstrated in a previous study, due 

to fibrinolysis, the majority of the fibrin matrix degrades within the first two weeks 14 

(see Supplementary Figure S3). For this study, the degree to which the remodeling oc-

curs, and how the addition of the cFBs affected potential matrix deposition compared to 

our previous study, was monitored and expression levels quantified via RNA analysis. 
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Figure 5: Expression levels of CM-specific maturation and phenotypic markers. Tis-

sue samples taken at weeks one, two and four, respectively, (n = 4 for week1 and week2, n 

= 3 for week4, *p < 0.05, **p < 0.005). 
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For this analysis, at least three tissue samples were used per time point. With knowledge 

obtained from prior studies regarding the ECM remodeling during the culturing of iCMs 

14, 36, 37, samples were again analyzed for additional ECM components, including collagen 

1 (Col1), collagen 3 (Col3), collagen 4 (Col4), laminin (Lam) and fibronectin (FN) (Fig-

ure 6). Samples were also analyzed for elastin due to the incorporation of iECs and cFBs 

as well as the potential for vessel formation 38, 39. Quantification showed a nearly 5-fold 

increase in collagen 1 production from weeks 1 to 4. This trend compared well with our 

previous studies, where bi-layered structures consisting of only iCMs and iECs yielded a 

3-fold increase in collagen 1 production 14. It is known that cFBs are vital in synthesizing 

ECM proteins, including, but not limited to, fibrillar collagen types 1 and 3, basement 

membrane type 4 collagen, fibronectin, and laminin 40. Interestingly enough, the increas-

ing trends in collagen 1 production were also associated with the upregulation trends in 

periostin (Figure 4 b), a known proponent of collagen fibrillogenesis and ECM remodel-

ing 41, 42. Similarly, there was an upregulation trend in the expression levels of FAP. Pre-

vious studies have shown that collagen induces FAP expression via binding of α3β1 in-

tegrin 43. 

Statistically significant increases were observed in the expression levels of colla-

gen 3 when comparing week 1 to week 2 (p < 0.005) and week 1 to week 4 (p < 0.05), re-

spectively. Expression of collagen 4 levels increased at both week 2 and week 4 com-

pared to week1, though this increase was not statistically significant. An almost 10-fold 

increase in the expression level of fibronectin was noted when comparing week 1 to week 

4. Statistically significant increases in the expression levels of laminin was noted between 
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week 1 and week 2 (p < 0.05). An almost 70-fold increase in the expression level of elas-

tin was observed from week 1 to week 2, followed by a decrease at week 4. One potential 

cause of this sharp decrease in the elastin expression level could be linked to bFGF pro-

duction by the iECs in the engineered constructs 47. Previous studies have shown that 

free bFGF decreases the expression levels of elastin at the transcriptional level in culture 

48.Statistically significant increases were observed in the expression levels of collagen 3 

when comparing week 1 to week 2 (p < 0.005) and week 1 to week 4 (p < 0.05), respec-

tively. Expression of collagen 4 levels increased at both week 2 and week 4 compared to 

week1, though this increase was not statistically significant. An almost 10-fold increase 

in the expression level of fibronectin was noted when comparing week 1 to week 4. Sta-

tistically significant increases in the expression levels of laminin was noted between 

week 1 and week 2 (p < 0.05). An almost 70-fold increase in the expression level of elas-

tin was observed from week 1 to week 2, followed by a decrease at week 4. One potential 

cause of this sharp decrease in the elastin expression level could be linked to bFGF pro-

duction by the iECs in the engineered constructs 47. Previous studies have shown that free 

bFGF decreases the expression levels of elastin at the transcriptional level in culture 48. 
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Functional performance of tri-lineage engineered tissue 

Expression levels of factors associated with functional performance were assessed 

by RNA analysis (Figure 7) of developmental transcription factor Tbx20, calcium han-

dling machinery (JP2, RyR2, Cx43, SERCA, CACNA1C) and optical mapping (Figure 

8) to determine conduction velocities through the tissue. All mapping was performed 

over the four week culture period. From week1 to week2, there was a 2-fold increase in 

the expression level of RyR2, suggesting that some of the calcium handling machinery, 

specifically some of the machinery associated with  sarcoplasmic reticulum (SR)-associ-

ated calcium release, improved 49. A significant increase in Tbx20 expression was noted, 

with a 1.7-fold increase and a 2.5-fold increase observed from week1 to week 2 and week 

1 to week 4, respectively. 

Figure 6: ECM evolution as a result of remodeling over four weeks in culture. Repre-

sentative images and subsequent quantification of ECM evolution over a 4-week period, 

showing the deposition of Collagen 1, Collagen 3, Collagen 4, Fibronectin (FN), Laminin 

(LAM) and Elastin at week 4. Expression levels of each ECM marker was determined via 

RNA analysis. Scale bars = 100 µm, n = 4 for week 1 and week 2, n = 3 for week 4, *p < 

0.05, **p < 0.005 
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 The conduction capabilities of the tri-lineage engineered cardiac tissues were 

evaluated over the 4 week period and compared to bilayered samples fabricated in a 

similar fashion, without any fibroblasts (Figure 8). Conduction velocities were recorded 

between pacing cycle lengths of 200 to 800 ms, and average conduction velocities are 

noted at the respective pacing cycle length in Figure 8 a. The average conduction 

velocity trends show that increased time in culture, i.e. 2 weeks vs. 1 week, and 4 weeks 

vs. 2 weeks, allows for enhanced conduction capabilities. This trend holds true over the 

entire pacing frequency range, up to 200 ms (5 Hz). Maximum conduction velocities 

Figure 7: Protein expression of CM-specific markers. (a) Expression levels of CM-spe-

cific functional markers at weeks one, two and four, respectively, (n = 4 for week1 and 

week2, n = 3 for week4, *p < 0.05, **p < 0.005). (B) Representative confocal micrograph 

of tri-lineage engineered cardiac tissue at week 2 stained for Cx43 and JP2, respectively. 
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noted at each time point, regardless of the pacing cycle length it was obtained at, are 

shown in Figure 8 b. The maximum conduction velocity noted for each run was 25.6 ± 

2.47 cm/s and 21.8 ± 0.97 cm/s for week 1, 37.3 ± 1.65 cm/s and 36.8 ± 2.59 cm/s for 

week 2, and 39.8 ± 4.35 cm/s and 30.0 ± 1.36 cm/s for week 4, for the tri-lineage and 

bilayered cardiac tissue structures respectively. Of particular note was that CVs as high as 

49 cm/s were obtained after 4 weeks in culture (Figure 8 b). The tri-lineage structures 

showed significant increases in conduction velocity from week 1 to week 2, as well as 

week 1 to week 4, with an overall increasing trend. Bilayered structures also showed a 

significant increase in the conduction velocity when comparing values obtained at week 1 

to week 2, and week 1 to week 4, but overall maximum conduction velocities were 

obtained after 2 weeks in culture. Tri-lineage engineered tissue structure APD values 

were obtained as functions of pacing cycle length (Figure 8 c). Isochronal activation 

maps show uniform signal propagation across the engineered cardiac tissue after 1 week 

of culture at pacing cycle lengths of 200 and 800 ms (Figure 8 d). Isochronal activation 

maps of engineered tissues paced at weeks two and four also show uniform conduction 

(Supplementary Figure S4). The lack of observed conduction heterogeneity or conduction 

blocks suggests low arrhythmic risk of the constructs. 
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Discussion 

In this study, a modular LbL fabrication method was developed to fabricate car-

diac muscle constructs from three cardiac cell types derived from human pluripotent stem 

cell lines. Over a 4 week period in culture, it was shown that these large and thick cardiac 

tissue constructs were functionally superior to previously reported engineered structures 

from the perspective of their larger, thicker nature, as well as superior action potential du-

ration (APD) conduction velocity. This study is the first to our knowledge to demonstrate 

Figure 8: Summary of the electrophysiological results. Optical mapping results show-

ing (a) the average conduction velocity of the tri-lineage engineered cardiac tissue at over 

the 4-week culture period as a function of pacing cycle length (n = 4), (b) the maximum 

conduction velocity of the tri-lineage engineered cardiac tissue compared to bilayered 

control engineered cardiac tissue, at each time point respectively (n = 4 with *p < 0.05), 

(c) APD50 and APD80 of the tri-lineage engineered cardiac tissue as a function of pacing 

cycle length, (n = 4). (d) Representative isochronal electrical activation maps of engi-

neered cardiac tissue, with representative optical action potentials at locations indicated on 

maps  pacing at 200 ms (red) and 800 ms (blue) cycle lengths after 1 week in culture. 
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robust (1 x 2 cm2) hiPSC-derived engineered cardiac tissues that surpass 2 mm in thick-

ness (~2.12 mm), without significant apoptosis/necrosis.  The physiologically relevant 

conduction velocities ranging from around 25 cm/s after 1 week in culture to velocities as 

high as 49 cm/s after 4 weeks in culture, all lacking arrhythmogenic properties, demon-

strate the significant clinical relevance of these cardiac muscle constructs. Previously, the 

best achievable thickness of engineered cardiac tissue constructs with this level of con-

duction velocity was only 100 µm 18.  Quantification of the temporal stability of the ex-

pression of cTnT, CD31, α-SMA, periostin, vimentin and FAP suggested that all three 

cell populations (iCM, iEC and cFBs) were stable. Additionally, this study also consid-

ered the temporal changes that occur during ECM remodeling in these engineered tissues, 

via immunofluorescent staining and RNA expression levels. 

We have recently reported 13 that a novel dynamically cultured engineered human 

cardiac muscle patch (hCMPs) demonstrated a significant advancement in the field of 

myocardial tissue engineering, due to its clinically relevant dimensions (2 cm × 4 cm x 

1.2 mm) as well as contractile force generation capabilities were substantially greater 

than had been previously achieved 45-47. However, these hCMPs were manufactured by 

mixing hiPSC-CMs, -ECs, and -SMCs into a single layer of cells. In functional myocar-

dium, CMs are typically adjacent to one another as opposed next to the SMCs, fibroblasts 

(FBs) or ECs, with the mixing of cardiac cells in engineered cardiac tissue likely prevent-

ing the hiPSC-CMs from coalescing into a fully interconnected contractile apparatus in 

the past. This might partially explain why force generation measurements remained lower 

than in native heart tissue. In the current study with an hCMP composed of layers of 

hiPSC-CMs, -ECs, -FBs sandwiched in a LbL fashion, compared to a single layer of 
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hiPSC-CMs, the three-layered patch generated approximately twice the APD conduction 

velocity compared to the previous study, suggesting a significantly improved physiology 

using this LbL approach. 

Cardiac fibroblasts are known to contribute significantly to the normal extra cellu-

lar matrix (ECM) formation. During the four weeks in culture, ECM remodeling occurs. 

The increases in collagen 3 (Figure 6) are likely a precursor to collagen 1 in this case, as 

it is known to play a vital role in collagen 1 fibrillogenesis and is crucial for normal car-

diovascular development 48. Fibronectin, is highly expressed in the heart during the early 

stages of embryogenesis and has furthermore been shown to be vital in the vasculogene-

sis process 49. It has also been suggested that increases in fibronectin expression, as noted 

at week 4 could be related to the regulation of vessel formation in similar engineered car-

diac tissues 14. Even though laminin is known to be a basal lamina protein and more 

closely associated with cellular differentiation, migration and adhesion, it has been sug-

gested that manipulation of the ECM laminin content may be an effective means of in-

ducing structural and functional changes at a cellular level by altering the cardiac titin 

isoform ratio 50. Laminins and other proteins are connected to the cell surface by costa-

meres, which are in turn assembled by a combination of integrins and dystroglycans, and 

serve as a structural and functional bridge. These costameres and their subsequent integ-

rins contribute to signal transduction, transmitting force signals between the contractile 

apparatus and ECM via interactions with primarily titin and other Z-line associated struc-

tures 51. This process not only supports the mechanical integrity of the sarcolemma, con-

tributes to mechanical signaling but also provides spatial prompts for muscle fiber organi-

zation 52. The upregulation in the levels of laminin observed in the tri-lineage tissues 



101 

 

could, thus, likely be associated with the structural and functional maturation of the 

iCMs, as well as the enhanced tissue compaction and alignment noted in Figure 2 c-d. 

Increases in periostin are associated with significant increases in elastin production by 

cardiac-specific cell, and more specifically those cells negative for CD31 and CD45 53. 

Furthermore, the increased expression of elastin could likely be attributed to cellular mi-

gration and re-arrangement of the endothelial cells into more organized structures as well 

54.     

Even though the increases in junctophilin (JP2), sarco/endoplasmic reticulum 

Ca2+-ATPase (SERCA), calcium voltage-gated channel subunit alpha1 C (aka Cav1.2, en-

coded by CACNA1C) and connexin 43 (Cx43) were not statistically significant, there 

were clear trends hinting at the development of the calcium handling machinery in the tri-

lineage tissues (Figure 7). The multi-chambered mammalian heart has its origin from a 

simple tubual structure via polar elongation, myocardial differentiation and morphogene-

sis. The large family of T-box (Tbx) transcription factors have been shown to be vital in 

their role as distinct subprograms during cardiac regionalization 55, 56. Tbx20 plays a cen-

tral role in these pathways, and has important activities in both cardiac development and 

adult function, specifically affecting chamber differentiation and overexpression of 

Tbx20 has been shown to lead to increased expression of Cx43, and subsequent increases 

in conduction velocities in vivo 57. The expression of Tbx20 has also been associated with 

the activation of and maturation-associated genes in iCMs such as those recorded in Fig-

ure 5 58. The tri-lineage LbL cardiac engineered tissues fabricated here are the first, to 

our knowledge, to be fabricated from hiPSC-CMs that have not only generated physio-

logically relevant conduction velocities in excess of 30 cm/s 16, but generated velocities 
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close to 50 cm/s with these cells (Figure 8 b). Whether this increase in structure function-

ality is a function of cell-cell communication and paracrine signaling, a function of in-

creased culturing time, or a combination of these factors remains to be seen. It has been 

shown, however, that cFBs do affect the maturation of hiPSC-CMs through secretion of 

growth-related cytokines when co-cultured 59. These data suggest that superior electro-

physiological function of the current LbL approach may be in part caused by the addition 

of the cFB layer.   

It should be noted that, even though this 3D in vitro study enhanced our 

knowledge-base of thick, engineered cardiac tissue structures and some of their electro-

physiological capabilities, further studies are required to better understand the mechanical 

aspects of the system. In order to better understand, model future system and avoid me-

chanical mismatch when implanting these structures, their viscoelastic properties need to 

be determined and related to the dynamic properties of the ECM 60-63. 

Conclusions 

Here we have shown that a modular fabrication method, like LbL assembly, can 

be utilized to produce thick (~2.12 mm), viable engineered cardiac tissues from hiPSCs. 

The incorporation of cardiac FBs into the LbL assembly method allowed for superior, 

previously unobtainable conduction velocities (> 30 cm/s) along with a lack in ar-

rhythmogenic potential, with tissues having the ability to be paced to 5 Hz (200 ms). In 

vitro characterization showed engineered tissue structures resembling those of native car-

diac tissue along with minimal necrosis, even after four weeks in culture. Considering 

that the tissues engineered for this study have not undergone any form of maturation, nor 
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have they been exposed to any external stimuli, suggests that their performance capabili-

ties could be enhanced even further.   

Future work will include the mechanical testing of the engineered cardiac tissues 

to determine viscoelastic properties to ultimately prevent mechanical mismatch between 

the engineered tissues and future host.  In vivo studies in a large animal model will also 

commence in order to assess the potential clinical application of these larger, thicker, en-

gineered cardiac tissues in preventing LV dilatation of hearts with postinfarction LV re-

modeling. 
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Supplementary Material 

Flow cytometry analysis 

Flow cytometry analysis was performed as described previously 13, 19. Briefly, 

cells were dissociated using 0.25 % trypsin and resuspended as single cells, permea-

bilized in 0.1 % Triton X-100 at 4 °C for 10 min, then incubated with primary and sec-

ondary antibodies for 30 min at 4 °C with 3 x 5 min wash in between. Finally, cells were 

resuspended in 2% fetal bovine serum/phosphate-buffered saline (FBS/PBS) containing 5 

μL of propidium iodide (10 μg/mL) and evaluated with a FACS Aria instrument (BD Bi-

osciences, USA). Antibodies used, along with dilutions, are listed Supplementary Table 

S1. 

Cardiomyocyte proliferation assay 

Cardiomyocyte proliferation was tested using a proliferation assay from 

CyQUANT Direct Cell Proliferation Assay Kit (Invitrogen, Cat# C35011). Briefly, CM 

proliferation was determined via green fluorescent nucleic acid staining of the nucleus, 

after which the fluorescence intensity of the readout was obtained 60 min after reagent 

addition via microplate reader in a 96-well plate (10 000 cells/well). Based on the results, 

there was no significant difference between the proliferation of 6-hour-old and 14-day-

old hiPSC-CMs (see Supplementary Figure S2). Student t-test was performed, p = 0.783 

(n = 9). 
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Image analyses 

All image quantification analyses were performed with ImageJ. Where indicated, 

arbitrary units (A.U) are representative of a pixel count and intensity for each sample. All 

samples were stained and imaged under similar conditions to allow for a comparative 

study. 

Tube-formation assay 

Tube-formation in thick LbL engineered cardiac tissue was analyzed by incubat-

ing tissue in their optimized DMEM media with 0.05% FBS for 2 hours at 37 °C. Follow-

ing incubation, media was removed and replaced with normal optimized DMEM media 

containing 2% FBS + Dil-Ac-LDL (10 µg/mL final concentration, Thermo Fisher # 

L35354) and incubated for 4 hours at 37 °C. Tube formation was then visualized using 

confocal microscope. 
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Supplementary Tables 

Table S1: Antibodies used for flow cytometry, FACS, and immunofluorescent staining. 

Antibody Name Application Company Catalog Number 

Alexa Fluor® 647 Mouse Anti-Hu-

man CD31  

FACS BD Biosciences 561654 

Cardiac Troponin T Monoclonal An-

tibody (13-11) 

Flow Analysis Invitrogen MA5-12960 

Anti-alpha smooth muscle Actin anti-

body 

Immunofluorescent 

Staining 

Abcam 21027 

Rabbit Anti-Cardiac Troponin T anti-

body [EPR3695] 

Immunofluorescent 

Staining 

Abcam 91605 

Mouse Anti-Cardiac Troponin T anti-

body [1F11] 

Immunofluorescent 

Staining 

Abcam 10214 

Goat anti-Mouse IgG Secondary An-

tibody, Alexa Fluor 555 

Immunofluorescent 

Staining 

Invitrogen A32727 

Donkey anti-Mouse IgG Secondary 

Antibody, Alexa Fluor 488 

Immunofluorescent 

Staining 

Invitrogen A21202 

Donkey anti-Rabbit IgG Secondary 

Antibody, Alexa Fluor 488 

Immunofluorescent 

Staining 

Invitrogen A21206 

Donkey anti-Rabbit IgG Secondary 

Antibody, Alexa Fluor 555 

Immunofluorescent 

Staining 

Invitrogen A31572 

Rabbit Anti-Collagen I antibody Immunofluorescent 

Staining 

Abcam 34710 

Mouse Anti-CD31 antibody [JC/70A] Immunofluorescent 

Staining 

Abcam 9498 

Rabbit Anti-Fibrinogen beta chain an-

tibody 

Immunofluorescent 

Staining 

Abcam 137830 

Rabbit Anti-Collagen III antibody Immunofluorescent 

Staining 

Abcam 7778 

Rabbit Anti-Fibronectin antibody Immunofluorescent 

Staining 

Abcam 2413 

Rabbit Anti-Collagen IV antibody Immunofluorescent 

Staining 

Abcam 6586 

Rabbit Anti-Laminin antibody Immunofluorescent 

Staining 

Abcam 11575 

Rabbit Anti-VE Cadherin Immunofluorescent 

Staining 

Abcam 33168 

Mouse Anti-VWF Antibody (F8/86) Immunofluorescent 

Staining 

Santa Cruz  

Biotech 

53466 

Rabbit Anti-N-Cadherin Immunofluorescent 

Staining 

Abcam 18203 

Anti-Alpha Actinin Immunofluorescent 

Staining 

Sigma A7811 

Anti-Connexin 43 / GJA1 antibody - 

Intercellular Junction Marker 

Immunofluorescent 

Staining 

Abcam 11370 

Mouse Anti-Ryanodine Receptor anti-

body [C3-33] 

Immunofluorescent 

Staining 

Abcam 2827 

JPH2 Polyclonal Antibody Immunofluorescent 

Staining 

Thermo Fisher 40-5300 

Recombinant Anti-Cardiac Troponin 

T antibody 

FACS Abcam 91605 



115 

 

 

 

 

  

Mouse anti-Human CD144 FACS BD Biosciences 560410 

Anti-Fibroblasts Antibody FACS Millipore Sigma CBL271 
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Table S2: Formulation of cardiac fibroblast differentiation basal medium (CFBM) 

Components Final concentration 

DMEM, high glucose (4.5 g/L) basal medium 

HLL Supplement: HSA (human serum al-

bumin), linoleic acid and lecithin 

HSA: 500 µg/mL 

Linoleic Acid: 0.6 µM  

Lecithin: 0.6 µg/mL 

Ascorbic Acid 50 μg/mL 

GlutaMAX 7.5 mM 

Hydrocortisone Hemisuccinate 1.0 μg/mL 

rh Insulin 5 μg/mL 
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Table S3: Primers used for RNA analyses 

Target Gene Forward Primer  Reverse Primer  

cTnT TTCACCAAA-

GATCTGCTCCTCGCT 

TTATTACTGGTGTGGAG-

TGGGTGTGG 

CD31 TCAGACGTGCAGTACACGGA GGGAGCCTTCCGTTCTAGAGT 

Alpha SMA TATCCCCGGGACTAAGACGG CACCATCACCCCCTGATGTC 

Periostin AGGTCACCAAGGTCAC-

CAAATTC 

CTCACGGGTGTGTCTCCCTG 

Vimentin CCTCCGGGAGAAATTGCAGG TCAAGGTCAAGACGTGCCAG 

FAP AGGGATGGTCATTGCCTTGG ATCCTCCATAGGACCAGCCC 

Alpha MHC CTCCGTGAAGGGATAACCAGG TTCACAGTCACCGTCTTCCC 

Beta MHC ACCAACCTGTCCAAGTTCCG TCATTCAAGCCCTTCGTGCC 

MLC2a GGAGTTCAAAGAA-

GCCTTCAGC 

AAAGAGCGTGAGGAAGACGG 

MLC2v ACATCATCACCCACGGAGAA-

GAGA 

ATTGGAACATGGCCTCTG-

GATGGA 

Collagen 1 TGACGAGACCAAGAACTGCC GCACCATCATTTCCACGAGC 

Collagen 3 GGATGGTTGCACGAAACACAC GGTAGTCTCACAGCCTTGCG 

Collagen 4 GGCAGATTCGGACCACTAGG GCGTCTGTGGCAATACTAGC 

Fibronectin TCGTGCTTTGACCCCTACAC CGGGAATCTTCTCTGTCAGCC 

Laminin ACTTGAGTATGAAA-

GCAAGGCCAG 

GGAGAGCTCCACAAAACCAGG 

Elastin GTGTCTGCAGGTGCGGTG CTGGGTATACACCTGGCAGC 

SERCA TCACCTGTGAGAATTGACTGG AGAAAGAGTGTGCAGCGGAT 

RyR2 TTGGAAGTGGACTCCAAGAAA CGAAGACGAGATCCAGTTCC 

CACNA1C TGATTCCAACGCCACCAATTC GAGGAGTCCATAGGCGATTACT 

JPH2 CCAAGTATGAGGGCACCTGG GCCTTGGTACGTCCCTCCAT 

Cx43 GGTGACTGGAGCGCCTTAG GCGCACATGAGAGATTGGGA 

Tbx20 ATTCCTATGCACGCTCACCC TGTTGTAAAGGCTGACCCTCG 
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Supplementary Figures 

 

 

 

  

 

TE-7/Vimentin/DAPI TE-7/a-SMA/DAPI

CD31/DAPI VWF/DAPI

cTnT/a-actinin/DAPI cTnT/Cx43/DAPI

Figure S1: Characterization of hiPSC-derived cells. Characterization data confirming 

differentiation and purification of iCMs (a), iECs (b) and cFBs (c) using immunofluores-

cent staining (1) and flow cytometry (2) analysis. 
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Figure S2: Fluorescence-based cell proliferation assay. (a) Standard curve and (b) the 

resulting measurements at 6 hours of hiPSC-CMs culture in a 96-well plate (10,000 

cells/well) as well as measurements after 14 days of culture. p = 0.783, n = 9 
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Figure S3: Fibrin degradation. Representative confocal images of fibrin degradation 

over a 4-week period, with (a) showing fibrin expression levels at week 1, (b) showing fi-

brin expression levels at week 2, and (c) showing quantification of relative expression lev-

els at each time point (n = 4, ***p < 0.001) 
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Figure S4: Optical mapping results. Representative isochronal maps of engineered 

tissue conduction capabilities, with representative signal propagation as well as pac-

ing at both 200 ms (red) and 800 ms (blue) for (a) week 2, and (b) week 4 samples 
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Figure S5: Ac-LDL assay showing vessel-like structures. These structures formed 

throughout the thick LbL engineered tissue after 10 days in culture. 
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Figure S6: Image of the thick 1x2 cm2 thick LbL engineered cardiac tissue 

outside of its frame 
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All videos associated with this work, clips 1 and 2, are available online under doi: 

10.3389/fcell.2021.670504 

Figure S7: Tri-lineage structure viability at 2 weeks. Representative confocal mi-

crograph of engineered LbL cardiac tissue displaying necrotic cells identified by the 

necrosis marker phosphorylated MLKL (Ser358, pMLKL) at week 2 of culture. 

Border indicated with short dashed line 
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CHAPTER 4 

DISCUSSION 

Project Summary and Future Directions 

In vitro models using hiPSC-derived cells that accurately mimic the native myo-

cardium are exceptionally valuable tools for mechanistic studies, allowing for the model-

ling of complex interaction between cells as well as cells and their dynamic ECM sur-

roundings. Moreover, these models are also promising therapeutic agents, though their 

full clinical potential is yet to be reached due to limitations associated with engineered 

tissue thickness, related to inadequate vascularization and subsequent nutrient limitations, 

mechanical mismatch between engineered tissues and the host environment and the im-

mature nature of hiPSC-CMs, all of which contribute to structures that are not physiologi-

cally competitive. Herein, the development and characterization of a novel in vitro car-

diac tissue engineering fabrication method utilizing hiPSC-derived cells has been de-

scribed (see Chapters 2 for experimental setup), resulting in thick, viable cardiac tissue 

surrogates up to four weeks in culture. Full characterization of engineered cardiac tissue 

included histological analysis, determination of viscoelastic properties, analysis of tissue 

surrogate ultrastructure, as well as functional analysis via optical and electromechanical 

mapping.  
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In Chapter 3, additional the cellular representation of the native myocardium was 

mimicked further with the addition of cardiac FBs generated from hiPSCs (cFBs). Utiliz-

ing the LbL fabrication process developed and optimized in Chapter 2, the addition of 

cFBs yielded engineered cardiac tissue structures that surpassed any previously published 

reports in terms of thickness (~ 2.12 mm after 1 week in culture), while showing minimal 

evidence of necrosis (< 6 % after 4 weeks in culture). Furthermore, this fabrication 

method allowed for the generation of physiologically relevant conduction velocities, with 

velocities in excess of 40 cm/s recorded after 2 weeks in culture, finally almost reaching 

50 cm/s after 4 weeks in culture (the highest ever recorded in 3D hiPSC-derived cellular 

structures).  

A great deal of the future clinical success of cardiac patch treatments can, how-

ever, be broken up into the following subcategories: system optimization, relevant in vivo 

studies and their implications, and large scale manufacturing (see Figure 1). 

 

 

 

 

 

 

Future 
clinical 
success

System 
optimization

Large scale 
manufacturing

In vivo
studies

Figure 1: Considerations for future clinical success of cardiac patch treatments. 
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 To further optimize the LbL system developed here and maximize its clinical po-

tential, the immature nature of hiPSC-CMs needs to be addressed, certain mechanisms 

need to be elucidated, system mechanical properties need to be characterized further, and 

the potential in vivo implications of implanting this system need to be considered. 

hiPSC-CM maturation 

hiPSC-CM maturation can generally be achieved by either one or a combination 

of the following methods: mechanical stimulation, electrical stimulation, addition of 

small molecules, culturing in 3D/ECM interactions and extending culture periods 123, 148, 

155, 160, 205-207. Employing physical stimulation, whether through mechanical or electrical 

means, can accelerate hiPSC-CM maturation by promoting expression of contractile pro-

teins and structural organization 123 , similar to what has been observed during natural de-

velopment 208.  

Mechanical stimulation. Tissues are commonly stimulated physically via either 

passive (also referred to as resistance to deformation) or active strain. Over the past dec-

ade, the application of passive stain has varied in approach, with one of the most readily 

used approaches being the mounting of fabricated tissues on top of posts with varying 

elasticity and ultimately resist deformation 209-211. It has been shown that passive strain 

treatment of hiPSC-CM 3D engineered cardiac tissue promoted cell- and ECM align-

ment, enhanced myofibrillogenesis and sarcomeric banding, while also enhancing con-

tractile protein expression, and force generation in comparison to control tissues 160. In-

creasing the strain experienced by the engineered tissues in a stepwise fashion post-fabri-

cation, also referred to as afterload, has been shown to further enhance engineered car-

diac tissue conditioning yielding hypertrophic models 123, 212, 213. These hypertrophic 
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models are associated with enhanced twitch force, sarcomeric length, CM size in terms of 

length and area as well as overall improvements in calcium handling ability.  

Another method of mechanically stimulating cardiac tissue, to more closely 

mimic the repeated stresses experienced in vivo, is to employ cyclic strain and actively 

stimulate the structures. Numerous strains and frequencies have been applied to improve 

the maturation of hiPSC-CMs and their derived tissues 154, 214. Devices and bioreactors 

have been designed to optimize hemodynamic loads experienced in vivo to more accu-

rately recapitulate pressure/volume changes associated with heart development 215, 216. 

These cyclic straining experiments have yielded enhancements in cellular and ECM 

alignment, significant enhancement in genes associated with physiological hypertrophy 

and ventricular CM development, enhanced ultrastructure development as well as poten-

tial changes to cellular metabolism.   

Electrical stimulation. A vital property of CMs is their electromechanical excita-

bility, where mechanical contraction and force generation are triggered by electrical de-

polarization 217.  Further mimicking of physical in vivo environments includes electrical 

stimulation, as these electrical signals are present throughout early development and later 

stages in life 218, 219.  

To enhance cellular coupling and overall maturity of iPSC-CMs in engineered 

cardiac tissues, varying magnitudes and regimens of electrical stimulation have been in-

vestigated 220-222. This electrical stimulation, or pacing, has been shown to be a very use-

ful tool in manipulating the electrophysiological properties of cardiomyocytes, such as 

action potential, beat rate, action potential duration and conduction velocity 223. Pacing 
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during in vitro culturing has been noted be of both structural and functional benefit to en-

gineered cardiac tissue structures. hiPSC-CMs in 3D embryoid body format were stimu-

lated for 7 days at frequencies ranging between 0.5 and 2 Hz, with unstimulated struc-

tures used as controls 223.  Electrically stimulated CM structures showed enhances gap 

junction expression levels, sarcomeric structure development, while also possessing the 

ability to tolerate rapid electrical pacing. The effect of electrical stimulation on some var-

iations of thick cardiac engineered tissues, around 1 mm at the initiation of the stimula-

tion protocol, has also been recorded. These constructs were exposed to progressively in-

creasing stimulation frequencies over a 7-day period, from 1 Hz to 3 Hz (low frequency) 

or from 1 Hz to 6 Hz (high frequency) distinguish between any potential differences that 

stimulation rate may have on CM maturation 224. Results obtained from the progressive 

increase from 1 to 6 Hz yielded the optimal results regarding cellular alignment, func-

tional properties related to electrophysiology (conduction velocity, maximum capture 

rate) and subsequent calcium handling machinery, as well as ultrastructure development, 

demonstrating the causal relationship between stimulation rate and cardiac maturation. 

Combined stimulation approaches. Under physiological conditions, cardiomyo-

cytes experience cardiac electrical and mechanical stimuli as a result of various well-or-

chestrated physiological cues 225. Combinations of these stimuli-based maturation regi-

mens have been employed to optimize cardiac maturation past the capabilities of a single 

technique or approach, yielding more physiologically relevant CM morphologies, cardiac 

gene expression levels and force generation profiles 155, 226, 227. Passive mechanical stimu-

lation of thick cardiac engineered tissue (1.8 mm in diameter initially) in combination 

constant stimulation (2 Hz) or intensity training (initiated at 2 Hz, increased to 6 Hz over 
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a 3 week period) was compared to no stimulation 155. Tissues from the intensity-training 

group showed compact and well-defined cardiac muscle structures as well as and signifi-

cant changes in gene expression levels associated with more mature electrophysiological 

properties, including calcium handling machinery and subsequent conduction velocities. 

Ruan et al. 154 have also demonstrated combined approaches, specifically in the form of 

static stress conditioning combined with electrical stimulation, resulting in enhanced con-

tractile function and maturation protein expression levels. 

With this in mind, preliminary experiments were performed, using the LbL 

method, to fabricate thick (> 2 mm) hiPSC-CM-only cardiac engineered tissue as a plat-

form for future, faster, more robust maturation approaches. Here we utilized passive me-

chanical stimulation (resistance to deformation) along with chronic biphasic electrical 

stimulation (C-Pace, IonOptix) 228-230 over a 7 day period, post tissue fabrication, to en-

hance the maturation of the hiPSC-CMs as well as the tissue overall. Four groups were 

evaluated, a control group (no stimulation), a stretch group (resistance to deformation 

only), a stretch + low voltage group (2 ms pulses, 2 Hz, 15 V) and a stretch + high volt-

age group (2 ms pulses, 2 Hz, 22 V). These relatively high voltages were employed to en-

sure signal capturing. Passive mechanical stimulation was achieved by mounting tissue 

(2 x 1 cm2 in surface area) on to an array of stainless steel needles mounted in a PDMS 

base (Figure 2 a). Tissue thickness post-fabrication was measured with a caliper (Figure 

2 b, n = 5), protein expression levels were qualified via confocal microscopy and whole-

mount staining (See Chapters 2 and 3 for Materials and Methods), maturation markers 
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and relative protein expression levels were quantified via RT-PCR, while ultrastructure 

analysis was done through TEM.  

Whole-mount staining showed structural alignment and protein expression were 

maximized with a combination of both resistance to deformation (stretch) and high volt-

age electrical stimulation treatment (Figure 3 d). Sarcomeres became more delineated as 

indicated by cTnT and alpha actinin staining (Figure 3), suggestive of maturation.   
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Figure 2: Maturation of thick, layered, hiPSC-CM-only tissue. (a) Passive mechanical 

stimulation of engineered cardiac tissues measuring 2x1 cm2 can easily achieved by 

mounting onto highly flexible stainless steel needles. (b) hiPSC-CM-only tissue thickness 

post-fabrication, prior to initiation of maturation regimen, n = 5.  
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Preliminary RNA analysis was performed on control samples as well as samples 

exposed to stretch + high voltage stimulation (n = 3 each, Figure 4). Quantitative com-

parison between these samples yielded significant improvement associated with stretch 

+ high voltage treatment with respect to protein levels associated with muscle structure 

cTnT alpha act MergeDAPI/cTnT/alpha act

DAPI/cTnT/alpha act cTnT alpha act Merge

cTnT alpha actDAPI/cTnT/alpha act Merge

DAPI/cTnT/alpha act cTnT alpha act Merge

a

b

c

d

Figure 3: Whole-mount staining of thick hiPSC-CM-only tissue with DAPI, cTnT 

and alpha actinin of respective maturation approaches. (a) Control tissue, (b) re-

sistance to deformation (stretch) tissue, (c) stretch + low voltage and (d) stretch + high 

voltage treatment. 
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development and contractility (Figure 4 a), the development of calcium handling ma-

chinery and gap junctions (Figure 4 b), as well as certain metabolic markers (Figure 4 

c). Specifically, decreased expression in α-MHC, along with enhancement in the ratio of 

β-MHC:α-MHC were noted, suggesting slower stronger contractions 150, 151. Further phe-

notypic alterations were recorded with the downregulation of MLC2a and subsequent rel-

ative increase in the expression of MLC2v:MLC2a, showing a switch from a more atrial 

to a more ventricular phenotype 13, 15. Upregulation of electromechanical coupling pro-

teins such as N-cadherin was noted, suggesting enhanced maturation 153, 231. Enhanced 

calcium handling machinery was evident in the stimulated engineered tissues by the in-

creases in the expression levels of calsequestrin as well as the inward-rectifier potassium 

ion channel Kir2.1, expressed by the gene KCNJ2 232-234. Even though there weren’t statis-

tically significant differences in the metabolic activity of the stimulated tissues (Figure 4 

c), the notable increased expression in PPARα (peroxisome proliferator activated receptor 

α), a fatty acid oxidation activator, is associated with cardiomyocyte maturation 161, 235, 

236. 
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Functional analysis of the thick hiPSC-CM-only structures included ultrastructure 

analysis via TEM (Figure 5, n = 25). Qualitatively, stimulation, both mechanically and 

electrically, yielded enhanced structural alignment and ECM production. Quantitative 

analysis showed that the stimulation treatments all resulted in enhanced sarcomeric 

lengths as well, with control samples yielding 1.64 ± 0.02 µm, stretch samples 1.78 ± 

0.06 µm, with both low and high voltage samples yielding physiologically relevant sarco-

meric lengths 146, 147 at 1.80 ± 0.04 µm and 1.91 ± 0.02 µm, respectively (Figure 5 e). In 

Figure 5, ZL represents Z-Lines, MC the mitochondria, GJ the gap junctions and N the 

nucleus. 

 

Figure 4: Protein expression levels of hiPSC-CM-only samples in control tissue ver-

sus tissue exposed to stretch + high voltage stimulation. The protein expression panels 

show the relative expression levels of each component normalized to GAPDH for (a) mus-

cle structure and contractility associated proteins, (b) calcium handling machinery and jap 

junction development and, (c) metabolic markers, (n = 3, *p < 0.05, ***p < 0.005) 
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Moving forward, incorporation of supporting cell types, such as ECs, will be uti-

lized to enhance vascularization potential of the tissues prior to employment of matura-

tion regimens. Immunofluorescent staining for cell migration, cellular fate and system vi-

ability will be done to determine what the optimal maturation protocol for the LbL sys-

tem is, and the degree of functional maturation as will be assessed by way of optical map-

ping, electromechanical mapping, and force generation capabilities. 

Cell and molecular mechanisms 

Further studies are, however, required to develop a better understanding of cellu-

lar interactions and how each cell type influences the engineered cardiac tissue, its devel-

opment and remodeling as a whole 237-239.  Cardiac development is greatly influenced by 

supportive non-cardiac cells, such as FBs, ECs, SMCs, neural cells and immune cells, all 

Figure 5: TEM analysis from respective hiPSC-CM-only maturation approaches. 

(a) Control tissue, (b) resistance to deformation (stretch) tissue, (c) stretch + low voltage, 

(d) stretch + high voltage treatment, and (e) the sarcomeric lengths of each treatment (n 

= 25, *p < 0.05, ***p < 0.005, ****p < 0.0001). ZL represents Z-Lines, MC the mito-

chondria, GJ the gap junctions and N the nucleus. 
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of which actively contribute to CM maturation through various cell-cell interactions 

and/or paracrine signaling 240-246. Cardiac FBs, for example, have been shown to have 

stage-specific functions: early embryonic FBs promote CM proliferation via secretion of 

ECM factors, such as fibronectin, collagen and periostin, whereas adult FBs induce CM 

hypertrophy and sarcomere organization by secreting growth-related cytokines, such as 

interleukin 1 alpha (IL-1α) 241. Co-culture of ECs with CMs has been shown to induce the 

upregulation of certain miRNAs in CMs 247. When a cocktail of these miRNAs were in-

troduced to human embryonic stem cell derived CMs, a more mature phenotype was in-

duced. Tri-lineage 3D microtissues consisting of hiPSC-CMs, -ECs and -FBs have been 

used to study some of the cellular mechanisms between cardiac FBs, cardiac ECs and 

their specific effects on hiPSC-CMs 246. Cultures containing cardiac FBs demonstrated 

enhanced sarcomeric structures with T-tubules, improved contractility and mitochondrial 

respiration and were also more electrophysiologically mature than those without cardiac 

FBs. Interactions allowing for this maturation included coupling between hiPSC-CMs 

and FBs via Cx43 gap junctions as well as upregulated intracellular cyclic AMP (cAMP, 

cyclic adenosine monophosphate). Not only are the exact molecular mechanisms that dis-

tinguish the LbL fabrication method from co-culture methods still unknown, but so too 

are the exact mechanisms driving the enhanced performance behind this optimized fabri-

cation method. Moving forward, the potential paracrine signaling from hiPSC-ECs and 

hiPSC-FBs on thick 3D hiPSC-CM structures will be assessed via the addition of condi-

tioned media from respective EC-only, FB-only, EC/FB, EC/CM, FB/CM, or CM/EC/FB 

cultures 248-251. 
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Mechanical testing and modeling 

The mechanical properties of the heart can be studied and modeled under both 

passive and active conditions. In order to understand and model the active contractions of 

this complex organ – or even a subsection of the organ, such as one of its ventricle walls 

effectively – a clear understanding must first be gained under passive conditions 252. Ide-

ally, tissue engineered structures must exhibit tissue-like functional properties, including 

mechanical behavior comparable to the native tissues they are intended to replace. More-

over, the ability to reversibly undergo large strains can help to promote and guide tissue 

growth, and prevent potential mechanical mismatch 253. Soft tissues consisting mostly of 

collagen, especially collagen 1, exhibit an exponential-like stress-strain response 254, pri-

marily due to the straightening of the collagen fibers under increasing loads, with elastin 

contributing to the load-bearing in the low-strain region 255. With the major increases 

noted in collagen production with the tri-lineage LbL engineered cardiac tissue, future in 

ex vivo mechanical testing and viscoelastic modeling will be performed through utiliza-

tion of stress-relaxation tests in tension-mode 256-259.   

In vivo whole-heart mechanical properties under active conditions, pre- and post-

implantation of engineered cardiac tissue, will be assessed via pressure-volume (PV) loop 

measurement, by inserting a PV catheter into the ventricle lumen 260. Chamber compli-

ance, defined as the ratio of ventricular volume change over pressure change during a 

cardiac cycle (ΔV/ΔP) will be used to describe ventricular stiffness 261-263.   

In vivo implications 

During the culturing process, stresses exerted by iCMs and cFBs allow for com-

paction and alignment in the LbL engineered cardiac tissues. This alignment, although 
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optimal for tissue maturation, could influence the outcome of the structures when em-

ployed in vivo. Previous studies have shown that inappropriate transplantation methods 

yield regional heterogeneity and myofiber misalignment between the host and the im-

planted cells, resulting in lethal arrhythmia 264, 265. The degree of alignment, or lack 

thereof, when implanted has also been found to greatly affect the degree of therapeutic 

improvement associated with cardiac muscle patches 266. CMs and ECs were seeded on 

non-biodegradable nanofibrous electrospun patches created in two formats, one aligned 

with the direction of the heart’s myofibers and one randomly oriented (Figure 6).  

Analysis via atomic force microscopy (AFM) showed that CMs seeded on the 

aligned patches demonstrated enhanced beating frequency and amplitude than those 

seeded on randomly seeded patches. Implantation of these structures into an MI-mouse 

model showed that even though both structures provided mechanical support, alleviating 

cardiac remodeling, aligned patches resulted in significantly smaller infarct sizes 2 

Infarcted heart showing 

anisotropic architecture

ECsCMs

Aligned patches
Randomly-oriented 

patches

Implant alignment 

relative to heart 

anisotropy 

Figure 6: The anisotropic nature of the heart and how the architecture of im-

planted structures can affect it.   
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months post-MI. Further functional importance of alignment was demonstrated with ex 

vivo electrophysiological studies 7 days post-MI. Implantation of aligned patches pre-

served not only the anisotropic electro-conduction pattern, but also the conduction veloc-

ity, while randomly oriented patches resulted in conduction blocks between the host myo-

cardium and the implanted tissue. Additionally, pacing of randomly oriented patch ani-

mals also resulted in ventricular tachycardia more frequently than animals with aligned 

patches.  

Enhanced cellular and ECM alignment have not only been associated with en-

hanced electrophysiological properties, such as conduction velocities and action potential 

propagation, but also with enhanced isometric twitch force generation capabilities 267, 268. 

Similar to the effect that tissue alignment has on the functional outcome and therapeutic 

success of the implanted structure, the effect of implantation orientation in terms of force 

generation needs to be considered as well, especially considering the complex anisotropic 

nature of the heart as a contractile organ.  

Large scale manufacturing 

In order to make engineered cardiac tissue patches a more economical solution in 

the future, certain considerations such as large scale production and long-term storage ca-

pabilities need to be considered. The use of cell-products, such as growth factors, RNAs 

and exosomes for example, as opposed to livings cells in these structures may offer one 

solution to some of the restrictions faced in this regard at present (Figure 7). 
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By employing cell-products rather than cells, the potential for contamination and 

immune responses are reduced, the host’s native cells can be recruited to the site of in-

jury, and the engineered tissue constructs would be easier to store.  

Conclusions 

CVD is the leading cause of deaths globally, with patients suffering MIs repre-

senting almost 50 % of those deaths. At present, limited long-term viable treatment op-

tions exist for patients, yet with the discovery of and subsequent development of stem 

cell-based therapies, potential to remuscularize and revascularize the damaged myocar-

dium has become more realistic and attainable.  

Despite major strides made in the field of tissue engineering, the ability to gener-

ate tissues of a clinically relevant thickness has been hampered by diffusion limits of oxy-

gen and nutrients, with tissue becoming necrotic within 100 – 200 µm of the boundary 

Endocardium Pericardium

Myocardium
Acellular patch

Human-derived 

factors

Figure 7: Acellular cardiac patch impregnated with human-derived factors en-

hances the possibilities of large scale manufacturing    
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conditions. Employing a LbL fabrication method, has however allowed for the produc-

tion of cardiac tissue constructs from hiPSC-derived cells that exceed 2 mm in thickness 

with minimal necrosis (< 6 % after weeks in culture), while also mimicking the native 

myocardium in both form and function. Tri-lineage engineered cardiac tissues consisting 

of hiPSC-CMs, -ECs, and -FBs yielded physiologically relevant conduction velocities (> 

30 cm/s) after 2 weeks in culture, with samples generating velocities as high as 49 cm/s 

after 4 weeks in culture. 

 Future directions associated with this research involve 1) the maturation of 

these hiPSC-derived structures with a combination of both electrical and mechanical 

stimulation, 2) elucidating the cellular and molecular mechanisms behind the enhanced 

electrophysiological performance observed with the addition of cFBs to the system, 3) 

determining the viscoelastic properties of the structures in vitro and how they are affected 

in vivo, 4) determining whether alignment and implantation orientation affect active me-

chanical properties such as twitch force generation capabilities and then determining 

what the optimal implantation orientation of these structures would be in vivo and 5) de-

veloping methods that would allow for large scale production of these engineered con-

structs. 
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