
University of Alabama at Birmingham University of Alabama at Birmingham

UAB Digital Commons UAB Digital Commons

All ETDs from UAB UAB Theses & Dissertations

2010

FraSPA: A Framework for Synthesizing Parallel Applications FraSPA: A Framework for Synthesizing Parallel Applications

Ritu Arora
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

Recommended Citation Recommended Citation
Arora, Ritu, "FraSPA: A Framework for Synthesizing Parallel Applications" (2010). All ETDs from UAB.
1039.
https://digitalcommons.library.uab.edu/etd-collection/1039

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F1039&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/1039?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F1039&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

FRASPA: A FRAMEWORK FOR SYNTHESIZING PARALLEL APPLICATIONS

by

RITU ARORA

PURUSHOTHAM BANGALORE, COMMITTEE CHAIR
IOANA BANICESCU

JEFF GRAY
MARJAN MERNIK

ANTHONY SKJELLUM

A DISSERTATION

Submitted to the graduate faculty of The University of Alabama at Birmingham,
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

BIRMINGHAM, ALABAMA

2010

Copyright by
Ritu Arora

2010

iii

FRASPA: A FRAMEWORK FOR SYNTHESIZING PARALLEL APPLICATIONS

RITU ARORA

COMPUTER AND INFORMATION SCIENCES

ABSTRACT

Scientists, engineers and other domain-experts have computational problems that

are growing in size and complexity, thereby, increasing the demand for High

Performance Computing (HPC). The demand for reduced time-to-solution is also

increasing and simulations on high performance computers are being preferred over

physical prototype development. Though HPC is gradually becoming indispensible for

business growth, the programming challenges associated with HPC application

development are a key bottleneck to embracing it on a massive scale. Current high-level

approaches for generating HPC applications are either domain-dependent or do not

leverage from existing applications.

Message Passing Interface (MPI) is the most popular standard for writing parallel

applications for distributed memory HPC platforms. The development of parallel

applications using MPI often begins with working sequential applications that undergo

major rewrites to incorporate appropriate calls to MPI routines. Writing efficient parallel

applications using MPI is a complex task due to the extra burden on programmers

(including domain-experts) to manually and explicitly handle all the complexities of

message-passing (viz., data distribution and load-balancing). Invasive manual

reengineering of existing applications is also required for making them checkpointed to

overcome resource-failures in distributed environments.

iv

A Framework for Synthesizing Parallel Applications (FraSPA) has been

developed in this research with the goal of reducing the complexities associated with the

process of developing checkpointed message-passing applications. FraSPA is capable of

doing automatic code instrumentation for parallelization and checkpointing on the basis

of the high-level specifications provided by the end-users. The high-level specifications

are provided by domain-specific languages developed in this research. For the selected

test cases, there is more than 90% of reduction in the end-user effort in terms of the

number of lines of code written manually while requiring no explicit changes to the

existing code. The performance of the generated code is within 5% of that of the

manually-written code. FraSPA was developed using a combination of modern software

engineering techniques (viz. generative programming and model-driven engineering) and

has the potential of being extended to support heterogeneous architectures, multiple

programming languages, and various parallel programming paradigms.

v

DEDICATION

Gururev Brahma, Gururev Vishnu,

Gururev Devo, Maheshwara,

Gururev Shakshat Param Brahma,

Tasmayi Shree Guruveh, Namoh Namah!

This work is dedicated to my advisor, Dr. Purushotham Bangalore – Thanks for

imparting the knowledge that I needed to be where I want to be in life!

vi

ACKNOWLEDGEMENTS

I am very grateful to my advisor, Dr. Purushotham Bangalore, for accepting me as

his Ph.D. student and giving me a chance to reach this far. Because of his liberal and

progressive approach, he has created a positive impact on my personality such that today,

I am confident of being a successful researcher in both collaborative and independent

research environments. With his immense knowledge in the field of High Performance

Computing, he has very calmly and patiently guided me in the Ph.D. program. I shall

always be indebted to him for his able guidance that made this work possible.

I am very thankful to my role-model, Dr. Jeff Gray, for providing me the required

training on modern software engineering techniques through his courses. His timely

support and able guidance on several issues has helped me in accomplishing my research

and career goals. I am especially thankful to him for the opportunity to collaborate with

the members of his laboratory and mentoring me on the art of writing high-quality

research papers. It was a great learning experience to work with him and I shall always

strive to match-up to his standards.

I am very grateful to Dr. Marjan Mernik for mentoring me in the area of Domain-

Specific Languages. He has taken great interest in my work and has always been

available to advise me. I am extremely grateful to him for all the efforts that he has made

in helping me understand the topics that I have found difficult and in improving the

quality of our papers. I am very thankful to him for his valuable feedback in improving

this dissertation.

vii

I am thankful to Dr. Ioana Banicescu and Dr. Anthony Skjellum for very kindly

accepting the invitation to serve on my graduate study committee and for providing their

valuable feedback for improving this dissertation.

I would like to thank Dr. Frédéric Jouault for letting me attend his lectures on

model-driven engineering and helping me understand the basics of the AMMA platform

used in this research. I am grateful to my colleague and mentor, Dr. Suman

Roychoudhury, for guiding me through the initial work done for this research – thanks

for understanding me and being there for me during tough times! My expertise-level in

RSL and PARLANSE wouldn’t have been the same without his help. I am sincerely

thankful to Dr. Ira Baxter for his timely help on the questions related to DMS. He has

very patiently understood my questions and has answered them in great depth and with

care. I am grateful to my mentor, Dr. Kai Shen, for showing me the new directions in

which this dissertation research can be applied.

I would like to thank Dr. Elliot Lefkowitz and all the members of his laboratory –

especially Jim Moon, Curtis Hendrickson, Don Dempsey, and Catherine Galloway – for

giving me the opportunity to work them on the Viral Bioinformatics Resource Project.

The work experience that I gained through my association with them has made me a

well-rounded software engineer and has given me the required exposure to the American

work-culture. I have not only improved my attention-to-detail by working with them but

have also learnt the art of demystifying complex problems.

viii

I am thankful to all the faculty members of the Computer and Information

Sciences Department at UAB for the courses they have offered. Their courses have

helped me in broadening my knowledge and in passing the qualifying exams, without

which it would have not been possible to advance in the graduate program.

I am extremely grateful to my colleague and friend, Dr. Vetria Byrd, for her

incessant encouragement and company in tough times – you have been such a great

listener and my rock-solid-support-system! To my other colleagues at UAB - Yu Sun,

Zekai Demirezen, Ferosh Jacob, and Saraswathi Mukkai – I enjoyed working with you

all. I will carry the wonderful memories of the time we spent together working on tough

and not-so-tough problems for the rest of my life. I am very grateful to Janet, Kathy, and

John for their kind help, care and support. Janet and Kathy have always been there for me

as great listeners and guides. This dissertation work would not have been complete

without the timely support from the IT staff in the Computer and Information Sciences

Department and I am very thankful to them. I would also like to thank UAB and the

Computer and Information Sciences Department for the computing resources and for

employing me as a graduate assistant for majority of the duration of my graduate study.

I am grateful to Dr. David Young at the Alabama Supercomputing Center for

helping me in using their computational resources. I am grateful to my counselor,

Consuelo Click, for her kind help and support. I appreciate the kind assurance and advice

from Dr. Jeff Engler and Susan Banks – it meant a lot to me! In the end, I am thankful to

ix

my family for keeping me motivated and helping me overcome all the hurdles during the

course of my graduate study – thank you for your financial, moral, and spiritual support!

x

TABLE OF CONTENTS

Page

ABSTRACT... iii

DEDICATION...v

ACKNOWLEDGEMENTS... vi

LIST OF TABLES... xiii

LIST OF FIGURES ... xiv

LIST OF ABBREVIATIONS.. xviii

CHAPTER

1 INTRODUCTION ..1

1.1 Challenges in HPC Application Development ...1
1.1.1 Problem of Plenty ..2
1.1.2 Modern Computing Platforms ..2
1.1.3 Predicament of Programmers...4
1.1.4 Summary of the Challenges and Discussion....................................5

1.2 Scope of the Research and Research Statement ...7
1.3 Key Contributions...14
1.4 Broader Impact..15
1.5 Overview of the Dissertation ..16

2 BACKGROUND AND RELATED WORK ...17

2.1 Aspect-Oriented Programming ...18
2.2 Invasive Software Composition..23
2.3 Generative Programming ..25

2.3.1 Template Metaprogramming ...26
2.3.2 Program Transformation..26

2.4 Domain-Specific Languages...31
2.5 Model-Driven Engineering ...32
2.6 Checkpointing ...34

xi

TABLE OF CONTENTS (Continued)

Page
CHAPTER

2.7 Related High-Level Programming Approaches..38
2.7.1 New Parallel Programming Languages ...39
2.7.2 Pattern-Based Approaches ...42
2.7.3 Domain-Specific Approaches ..44
2.7.4 Library-Based Approaches ..46
2.7.5 Other Related Work ...46

2.8 Related Approaches for Fault-Tolerance Through Checkpointing..............48
2.9 General Discussion ..50

3 DESIGN AND IMPLEMENTATION OF FRAMEWORK53

3.1 Overview of the Approach..56
3.2 Framework Design...60

3.2.1 Hi-PaL – DSL for Parallelization ...64
3.2.2 DALC – DSL for Application-Level Checkpointing........................69
3.2.3 Rule Generator ..78

3.3 Framework Implementation..79
3.4 Summary...86

4 EXPERIMENTAL EVALUATION...88

4.1 Test Cases ...88
4.1.1 Prime number Generation ...91
4.1.2 Circuit Satisfiability..93
4.1.3 Possion Solver...96
4.1.4 Game of Life ...100
4.1.5 Image Processing ..106
4.1.6 Mandelbrot Set..107
4.1.7 Genetic Algorithm for Content-Based Image Retrieval108

4.2 Evaluation and Experimental Setup..115
4.3 Results and Analysis ...116
4.4 General Discussion and Summary ..125

5 CONCLUSION...129

6 FUTURE WORK...134

LIST OF REFERENCES...140

xii

TABLE OF CONTENTS (Continued)

Page

APPENDIX

A HI-PAL METAMODEL SPECIFICATIONS ..149

A.1 Hi-PaL Metamodel KM3 Specification ...150

A.2 Hi-PaL TCS Specification ...152

B DALC METAMODEL SPECIFICATIONS...156

B.1 DALC KM3 Specification ..157

B.2 DALC TCS Specification...159

C MODEL TRANSFORMATION FOR Hi-PaL AND DALC......................162

C.1 ATL Rule for Setting the MPI Environment in Hi-PaL...................163

C.2 ATL Rule for Translating DALC code into RSL code172

D RSL RULES FOR TRANSFORMATION...178

D.1 RSL Rule Generated by the Rule Generator in FraSPA179

E BACKEND TRANSFORMATION FUNCTIONS181

E.1 PARLANSE Function for Searching the Return Statement............182

E.2 PARLANSE Function for Including Helper Files183

xiii

LIST OF TABLES

Table Page

4-1 Parallel operations applied on the test cases ..91

4-2 Performance comparison of various test cases...117

4-3 Comparing the LoC for various test cases..123

4-4 Reusability metrics for some of the design templates for code generation124

4-5 Effort estimation in terms of LoC for developing FraSPA125

xiv

LIST OF FIGURES

Figure Page

1-1 Usual process of writing a parallel program using MPI...9

1-2 Percentage of duplicate lines of code that applications share11

2-1 Aspect weaving Process ...19

2-2 C++ code snippet..21

2-3 AspectC++ code for printing method signature ...21

2-4 Source-to-Source transformation process using a PTE..28

2-5 High-Level approaches for parallel program generation52

3-1 High-Level idea behind the working of FraSPA..57

3-2 Steps for generating a checkpointed parallel application using FraSPA................60

3-3 Three layered diagram of the FraSPA..62

3-4 General structure of the Hi-PaL code...64

3-5 Excerpt of the production rules in Hi-PaL ...65

3-6 Excerpt of the Hi-PaL API ...67

3-7 Sample Hi-PaL code showing the broadcast operation specification68

3-8 One-to-one mapping of the Hi-PaL structural elements into the sample code68

3-9 Excerpt of the features identified in the ALC-Domain ..69

3-10 Excerpt of the API in DALC..71

3-11 Basic Structure of the DALC Code for checkpointing mechanism74

3-12 Basic Structure of the DALC Code for restart mechanism74

xv

3-13 Function to compute the value of ...74

3-14 Sample DALC code for checkpointing ..75

3-15 Sample DALC code for restart ...76

3-16 Checkpointed function to compute the value of ..76

3-17 Wizard for generating the DALC code ..77

3-18 Excerpt of the KM3 code for modeling the ParReduce grammar rule80

3-19 Excerpt of the TCS code for modeling the ParReduce grammar rule81

3-20 Extraction and injection of models in FraSPA...82

3-21 DSL code mapped into KM3 model...84

3-22 ATL code snippet ...85

3-23 RSL rule snippet ...86

4-1 Code snippet of the sequential prime number generation application92

4-2 Hi-PaL code for parallelizing the prime number generation application...............93

4-3 Code snippet of the generated parallel prime number generation application93

4-4 Code snippet from the sequential circuit satisfiability application94

4-5 Hi-PaL code for parallelizing the circuit satisfiability application95

4-6 Code snippet from the generated parallel circuit satisfiability application95

4-7 Checkpointing specifications for circuit satisfiability application96

4-8 Restart specifications for circuit satisfiability application96

4-9 Code snippet of the checkpointed circuit satisfiability application........................97

4-10 Code snippet from the sequential version of the Poisson Solver98

4-11 Hi-PaL code snippet for parallelizing the Poisson Solver98

xvi

4-12 Code snippet from the generated parallel version of the Poisson Solver99

4-13 DALC code snippet for describing checkpointing in Poisson Solver100

4-14 DALC code snippet for describing the restart mechanism in Poisson Solver100

4-15 Code snippet of the checkpointed Poisson Solver ...102

4-16 Code snippet from the sequential game of life application103

4-17 Hi-PaL code for parallelizing game of life application104

4-18 Code snippet from the generated parallel game of life application.....................105

4-19 Code snippet of the sequential image processing application.............................106

4-20 Code snippet of the Hi-PaL code for the image processing application106

4-21 Code snippet of the generated parallel image processing application.................107

4-22 Code snippet of the sequential Mandelbrot Set application108

4-23 Hi-PaL Code for parallelizing the Mandelbrot Set ..108

4-24 Code snippet of the generated Mandelbrot Set application109

4-25 Code snippet from the main function of sequential GA111

4-26 Code snippet from the evaluatePop function in the sequential GA111

4-27 Hi-PaL code for parallelizing the evaluatePop function in the GA112

4-28 Code snippet of the parallelized evaluatePop function in GA113

4-29 Code snippet of the parallelized main function of GA114

4-30 Checkpointing specifications for the GA ...114

4-31 Restart specifications for the GA ...115

4-32 Code snippet of the checkpointed parallel GA..115

4-33 Runtime and Speedup – Prime Numbers ...117

4-34 Runtime and Speedup – Circuit Satisfiability ..118

xvii

4-35 Runtime and Speedup – Poisson Solver ..118

4-36 Runtime and Speedup – Game of Life ...118

4-37 Runtime and Speedup – Image Processing ..119

4-38 Runtime and Speedup – Mandelbrot Set ...119

4-39 Runtime and Speedup – Genetic Algorithm...119

4-40 Runtime comparison of checkpointed Circuit Satisfiability application 120

4-41 Runtime comparison of the checkpointed Poisson Solver application121

4-42 Runtime comparison of the checkpointed Genetic Algorithm.............................121

xviii

LIST OF ABBREVIATIONS

ALC Application-Level Checkpointing

ANT Another Neat Tool

AMMA ATLAS Model Management Architecture

AOP Aspect-Oriented Programming

API Application Programming Interface

AST Abstract Syntax Tree

ATL Atlas Transformation Language

CaR Checkpointing and Restart

CBIR Content Based Image Retrieval

CFD Computational Fluid Dynamics

CPU Central Processing Unit

DALC DSL for Application-Level Checkpointing

DMS Design Maintenance System

DPnDP Design Patterns and Distributed Process

DSL Domain-Specific Language

DSM Domain-Specific Modeling

EBNF Extended Backus-Naur Form

EMF Eclipse Modeling Framework

EMOF Essential Meta-Object Facility

xix

FraSPA Framework for Synthesizing Parallel Applications

GA Genetic Algorithm

GPL General-Purpose Language

GPGPU General-Purpose Graphical Processing Unit

GUI Graphical User Interface

Hi-PaL High-Level Parallelization Language

Hi-Spade Hierarchy-Savvy parallel algorithm design

HPC High Performance Computing

ISC Invasive Software Composition

LOC Lines of Code

MAP3

MDE Model-Driven Engineering

S MPI Advanced Pattern-Based Parallel Programming System

MIMD Multiple Instruction Multiple Data

MOF Meta-Object Facility

MPI Message Passing Interface

OCL Object Constraint Language

PARLANSE PARallel LANguage for Symbolic Expressions

PTE Program Transformation Engine

RMS Root Mean Square

RSL Rule Specification Language

SQL Structured Query Language

SSC Source-to-Source Compiler

TCS Textual Concrete Syntax

1

CHAPTER 1

INTRODUCTION

With the advancement in science and technology, the computational problems are

growing in size and complexity, thereby, resulting in the increase in the demand for High

Performance Computing (HPC) resources. To keep up with the competitive pressure, the

demand for reduced time-to-solution is also increasing and simulations on high

performance computers are being preferred over physical prototype development and

testing. Recent studies have shown that though HPC is gradually becoming indispensible

for business growth, the programming challenges associated with the development of

HPC applications (e.g., lack of HPC experts, learning curve and system manageability)

are key deterrents that stop companies from embracing HPC on a massive scale.

Therefore a majority of companies are stalled at the desktop-computing level [1, 2]. The

challenges associated with the development of HPC applications are further elaborated in

Section 1.1.

1.1 Challenges in HPC Application Development

The general challenges associated with the HPC application development are

presented in this section. These challenges were the main motivating factors behind the

research done for this dissertation and were found across several application-domains.

2

1.1.1 Problem of Plenty

Scientific (or HPC) applications are often written in C/C++ or FORTRAN and are

run on HPC platforms using a parallel programming paradigm. Because there are

multiple types of HPC platforms available today, there are multiple parallel programming

paradigms available, each best-suited for a particular platform (or architecture). For

example, Message Passing Interface (MPI) [3] is best suited for developing parallel

programs for distributed memory architectures, whereas, OpenMP [4] is widely used for

developing applications for shared memory architectures. It is a difficult task to write

portable and performance-oriented parallel programs that are scalable across multiple

HPC platforms and the programmers are often required to reengineer their applications as

per the underlying HPC architecture. This challenge is closely related to the challenges

presented in Sections 1.1.2 and 1.1.3.

1.1.2 Modern Computing Platforms

The tremendous progress in the computer architecture discipline over the last few

decades has lead to the development of fast personal computers that are capable of

providing theoretical peak performance of more than 100 gigaFLOPS - equaling the

performance of some of the advanced supercomputers from about a decade ago [5, 6, 7].

Even though the advancement in the area of computer architecture has resulted in such

high theoretical peak performance for the latest personal computers, it is difficult to

effectively exploit the full potential of these architectures due to the slow rate of

advancement in the area of parallel programming environments. To understand this

problem at the grass root-level, one must realize that modern computers are immensely

3

complex and have different characteristics as compared to their predecessors such that the

process of determining the performance of applications on modern architectures has also

undergone a transition [7]. As noted in [5], on today’s modern architectures, loading and

storing the data in memory can be slower (200 clocks) than doing a multiply operation (4

clock cycles). However, in the previous years, the speed of doing a multiply operation

was considered as an important performance characteristic. Modern day platforms’

microarchitectural features (viz. memory hierarchy, register sets, and special instruction

sets) crucially determine the performance of an application, which implies that, with

every new HPC platform, the programmer must re-optimize the application to achieve

maximum performance. A code that is optimal for a particular architecture might not

depict the same performance on a different architecture. If the highest performance is

required, the applications are likely to be hand-tuned and hand-written in assembly

language (example, Intel’s Integrated Performance Primitives) [7]. It is expensive to re-

optimize, re-tune or re-implement hand-written code to adapt it for the latest architecture.

A gradual shift from homogeneous architectures to complex heterogeneous

architectures is also being observed [5]. The combination of CPUs, cell processors, field-

programmable gate arrays, and graphical processing units is being touted as the next

evolution in HPC (e.g., IBM’s Roadrunner and ORNL’s Jaguar). At the core of this

evolution is Moore’s Law, which has accurately predicted for over three decades that the

density of transistors on a chip will double every 18 months. Thus, modern multi-core

and many-core architectures feature hundreds of cores on a chip [5]. The heterogeneity in

modern architectures and the constant increase in the number of processors in a parallel

system have lead to complex systems with a short Mean Time Between Failures (MTBF)

4

[7]. The execution time of computational science applications running on such complex

systems might be greater than the MTBF of the underlying resources. It is therefore

imperative to develop a portable and distributed fault-tolerance mechanism to support the

parallel applications developed for such complex systems [8]. The fault-tolerance

mechanism would save time in restarting the application in the event of any failure in the

underlying platform. The applications are migrated from the failed resource to a healthy

one, and are restarted from the latest saved state instead of being restarted from scratch.

Due to memory constraints, it is important to avoid taking the core dumps of the

execution states of the applications. A lean-and-mean approach for fault-tolerance is

therefore essential.

1.1.3 Predicament of Programmers

It is also important to understand the role of key players in the process of HPC

application development. HPC applications are traditionally developed by domain-

experts and computer scientists. The domain-experts, as being referred to here, are the

scientists who lack formal training in computer science discipline but are likely to have

engineering, physics, chemistry, or biology backgrounds. They tend to be researchers

who are more interested in achieving accurate results than in learning how the

applications were developed [9]. Due to lack of access to computer scientists (or HPC

experts), researchers often develop their own applications and spend quality time to learn

new programming paradigms or to understand the latest architectures [1, 2]. They seldom

have time to hone their performance-programming skills. On the other hand, computer

scientists are from the traditional computer science background and are knowledgeable

5

about programming languages and computer architectures. Yet, to develop the optimal

solution for the scientific problem at hand, they must develop an understanding of the

problem domain and must accurately interpret the requirements of domain-experts. When

working in conjunction with a computer scientist, a domain-expert is responsible for

interpreting the results and mapping the source of any errors to either the specifications or

the code developed by the computer scientist. Therefore, domain-experts and computer

scientists must climb the learning curve and spend quality time before developing

scalable and performance-oriented applications that give accurate results. It has also been

observed that many programmers implement and optimize similar functionality for

multiple platforms without considering the reusability-quotient of their applications [7,

9]. As explained earlier, they often repeat the process of application implementation,

optimization and tuning when a new architecture emerges [7]. In short, HPC application

development has emerged as an interdisciplinary task requiring that the programmer be

knowledgeable not only in algorithms and programming languages but also in computer

architectures [7].

1.1.4 Summary of Challenges and Discussion

A summary of the challenges presented so far in this chapter is as follows:

1. There are multiple parallel programming platforms and hence multiple parallel

programming paradigms. Each programming paradigm has a learning curve

associated with it.

6

2. It is increasingly hard to harness the peak performance provided by the modern

HPC platforms due to the slow rate of advancement in the area of parallel

programming environments.

3. Adapting the applications to new architectures is a time-consuming activity

because it might require re-tuning, re-optimization, or re-implementation.

4. HPC application development has become an interdisciplinary task requiring that

programmers not only have the knowledge of programming languages,

algorithms, and architectures but also clearly understand the problem domain [7].

5. The heterogeneity in architecture and the constant increase in the number of

processors in HPC platforms are likely to produce complex parallel computing

platforms with short MTBF. The execution time of the applications running on

such platforms might be longer than the MTBF of the platform and therefore, a

fault-tolerance mechanism is required.

In the light of the aforementioned challenges related to fast changing, increasingly

complex, and diverse computing platforms, key questions that arise are:

1. Is it feasible to achieve portability and optimal performance with reasonable

effort?

2. Can efficient parallel programs be automatically generated by computers?

3. Can we bring scalability and performance to domain-experts in the form of

parallel computing without any need to learn low-level parallel programming?

4. Can we facilitate the transition of HPC from the realms of specialized and

scientific application development into mainstream business?

7

5. Can we mitigate the negative impact of the reduced MTBF of the complex

parallel computing platforms on the execution time of the applications?

Most of these questions are associated with the accidental complexities related to the

HPC application development process while some questions can be mapped to the

essential complexities. Fred Brooks [10] identified two complexities associated with the

application development process – essential and accidental. Essential complexities are

related to the problem space and are deep-seated domain challenges [10]. Accidental

complexities are related to the solution space, i.e., the tools and techniques used for

implementing the solution to a problem. Brooks also mentioned in [10] that there is no

single silver bullet (or no single approach) to alleviate all the complexities associated

with the software development process. Therefore, only through an effective combination

of multiple modern software engineering techniques, can one attack the challenges

associated with the development of HPC applications.

1.2 Scope of Research and Research Statement

While geared towards tackling the challenges associated with the development of

HPC applications, this dissertation’s main focus was to address the aforementioned

challenges in the context of distributed memory architectures. The rest of this chapter will

therefore provide an overview of the niche area of this dissertation, which is, cost-

effective explicit parallelization for distributed memory architectures.

HPC applications for distributed memory architectures can either be developed

using methods of implicit parallelization or explicit parallelization. Implicit

parallelization is achieved by using pure implicitly parallel languages (e.g., X10 [11],

8

Orca [12], SISAL [13], Fortress [14]). The parallelism is characteristic of the language

itself and therefore the language compiler or interpreter is able to automatically

parallelize the computations on the basis of the language constructs used. This method of

parallelization enables the programmer to focus on the problem to be solved instead of

worrying about the low-level details of how the parallelization is achieved. However,

there are some disadvantages associated with this mode of parallelization and some of

them are: the code must be developed from scratch, existing legacy applications written

in C/C++/FORTRAN cannot benefit from this approach, programmer might have limited

flexibility to experiment with different algorithm-design options, and debugging is

difficult because it is unclear which code construct might be causing performance loss

[15].

Explicit parallelization is achieved by using specialized libraries for

parallelization in conjunction with the programming language of the programmer’s

choice. With this approach the programmer inserts the library calls in the existing

application at the points where parallelization is desired. This approach gives substantial

amount of flexibility to the programmer by letting them make a choice about the portions

of their program that should run in parallel and the way they should be parallelized. This

approach also helps the programmer to leverage from their existing sequential

applications. Though this approach is very popular due to the control, flexibility, and

performance it provides, it puts the burden of parallelization on the programmer in terms

of time and effort required to achieve the goals. The programmer is responsible for

understanding the parallelism in his application and expressing it intelligently in order to

gain maximum performance. Due to its advantages in terms of performance, the focus of

9

this dissertation is on explicit parallelization. The specific advantages and disadvantages

of explicit parallelization in context of this dissertation are further explored in the

following paragraphs.

Figure 1-1 - Usual process of writing a parallel program using MPI

Under the category of explicit parallelization, MPI is regarded as the most popular

standard for writing portable and scalable parallel applications for distributed memory

architectures by embedding calls to MPI-routines in sequential applications. The process

of developing a parallel application using MPI is pictorially depicted in Figure 1-1. As

can be noticed from Figure 1-1, often, programmers develop parallel applications using

MPI by taking working sequential applications, identifying concurrency in them, and

then expressing the concurrency in terms of data or task distribution amongst the

available processors. In order to express the concurrency explicitly, the programmers

often restructure the existing sequential applications and insert calls to MPI-routines. The

programmers have to bear the burden of explicitly mapping the tasks to the processors,

manually orchestrating the exchange of messages, load-balancing and synchronization.

The parallel version generated by inserting the MPI-routines in the sequential application

Reengineering

Reengineering

10

is further optimized as per the machine architecture, to obtain maximum efficiency or

speedup. The most common optimization techniques are related to arrays and memory

management, loops, arithmetic operations, and data input or output. The manual

optimization of the code might involve several iterations of code changes. Overall,

developing, debugging, and maintaining parallel programs using MPI is a challenging

task. The process of explicit parallelization using the MPI standard eventually becomes

an intrusive reengineering activity that puts extra burden on programmers to handle too

many low-level details manually (including handling errors and race conditions). Also,

the MPI layer provides a poor level of abstraction as it deals with explicit buffers and

message transfers and therefore exposes data structure details to the programmer [16, 17].

Not only is manual intrusive reengineering for explicit parallelization a complex

and error-prone activity involving critical resources (viz. time and effort), but it also

makes code maintenance difficult due to the cross-cutting concerns [18]. Cross-cutting

concerns are the concerns that are spread across multiple methods within multiple

modules of an application [18]. These cross-cutting concerns lead to scattered or tangled

code. In order to make a single change in a cross-cutting concern, it becomes necessary to

replicate the changes at multiple places. Examples of cross-cutting concerns in parallel

applications are communication, synchronization, load-balancing, and checkpointing.

The software development process using explicit parallelization leaves little scope

for code reuse because it involves ad-hoc design decisions [17]. In case a programmer

wants to set-up communication between the processors, there are multiple options

available, each with specific trade-offs (e.g., synchronous/asynchronous, point-to-

point/one-sided/collective) but there are no well-established rules or design patterns to

11

select one option over the other. There are some mechanical steps for setting up the MPI

environment that can be found in every MPI program. Analyses of code samples from

diverse domains (see Figure 1-2) also show replicated code constructs for tasks other than

setting-up the MPI environment. Such commonalities (replicated code constructs)

indicate that there is definitely a scope of reducing the effort involved in developing HPC

applications by promoting code reuse.

Figure 1-2 – Percentage of duplicate lines of code that applications share

Despite the challenges mentioned in this chapter, MPI is the most widely used

standard for writing parallel applications and it has been implemented for several

distributed memory architectures. The main advantages of MPI are its speed and

portability. Hence, to effectively exploit the HPC power of low-cost distributed memory

architectures, parallel programming based on the most widely used parallel programming

standard (i.e., MPI) should be made less complex (through abstractions). In the light of

the aforementioned issues, the main goal of this research was to raise the level of

12

abstraction of parallel programming using MPI, such that, the effort involved in

developing a parallel application by manually reengineering an existing sequential

application, is significantly reduced. The reduction in effort can be quantified in terms of

the reduction in the number of lines of code the programmer has to write manually. The

generative programming [19] approach adopted in this research was helpful in

developing a framework that employs reusable code components for synthesizing parallel

programs for a wide range of application-domains. This framework, called FraSPA

(Framework for Synthesizing Parallel Applications), is useful for developing parallel

applications for distributed memory models without the burden of learning or using MPI.

However, the programmers using FraSPA still need to identify concurrency in the

application and express it in a very succinct manner. Therefore, FraSPA employs a user-

guided approach to synthesize optimized parallel programs from existing sequential

programs.

A high-level, declarative and platform-independent Domain-Specific Language

(DSL) called High-level Parallelization Language (Hi-PAL) has been developed in this

research for obtaining the concurrency-specifications from the programmers. A set of

guidelines can be provided to the end-users for helping them in expressing the

concurrency in their applications through Hi-PaL. These guidelines would also be useful

for explaining the key steps for analyzing the sequential application and the best practices

to achieving a parallel code with high performance. In summary, in order to

automatically synthesize parallel applications through FraSPA, the programmers are

required to:

understand the concept of concurrency,

13

follow the guidelines provided for expressing concurrency, and

install the required tools on their machines.

Thus, with a minimum investment, the programmers can synthesize parallel applications

using FraSPA without getting involved in the complexities associated with MPI. This

research, therefore, raises the level of abstraction of the scientific application

development process. If the programmers wish to make the synthesized applications

checkpointed (one of the techniques required for making the applications fault-tolerant),

they can do so with the help of the DSL for Application-Level Checkpointing (DALC)

that was developed as a part of this research. Similar to the process of generating parallel

applications on the basis of the Hi-PaL specifications provided by the end-user, FraSPA

uses the DALC specifications to make the existing applications checkpointed. The

FraSPA generates the desired code for parallelization and checkpointing for a wide range

of applications using reusable code components, design-templates, program

transformation system, domain-specific languages, and glue code. The details of the

implementation of the framework are provided in Chapter 3. FraSPA can be extended to

provide support for additional functionality and helps in the incremental development of

applications with multiple alternatives. In short, FraSPA bolsters the claim made by the

following research statement:

“An extensible and flexible framework can be developed for non-invasively synthesizing

scalable, MPI-based, performance-oriented and checkpointed parallel applications in a

user-guided manner with the goal of reducing the complexities associated with explicit

parallelization without compromising the performance or accuracy of results.”

14

1.3 Key Contributions

The key contributions made to the field of HPC through the design and

implementation of FraSPA are summarized in this section. These contributions are the

solutions to some of the challenges related to the HPC application development in

general, and explicit parallelization using MPI in particular. FraSPA,

1) Brings performance and scalability to domain-experts in the form of parallel

computing without the need to learn low-level parallel programming or to do

intrusive reengineering.

2) Separates parallel and sequential concerns to reduce the code complexity and

improve the maintainability of the application.

3) Promotes code reuse and code correctness through the usage of design-templates.

4) Provides support for generating checkpointed applications that can be used in

combination with resources for fault-detection in order to develop fault-tolerant

solutions.

5) Can parallelize applications from diverse domains (e.g., image processing,

computational fluid dynamics, and evolutionary algorithms).

6) Increases the programmer productivity in terms of the decrease in the number of

lines of code written manually.

7) Reduces the time-to-solution due to the reusable nature of its code components.

In summary, FraSPA hides the challenges associated with the low-level parallel

programming from the domain-experts. It also helps them by reducing the time involved

in parallelizing their applications by utilizing reusable code components.

15

1.4 Broader Impact

FraSPA demonstrates a methodology for composing optimized HPC applications

from reusable components and hence is an ideal example of amalgamation of modern

software engineering techniques with HPC application development. This research has

the potential of bridging the complexity gaps between scientific application development

and complex hardware platforms [5]. FraSPA can be extended to provide support for

multiple parallel programming models (e.g., support for synthesizing parallel applications

for shared memory paradigms and multi-core architectures) and hence multiple parallel

programming platforms. Apart from extending FraSPA to provide support for multiple

programming paradigms, it can also be extended to support the automatic parallelization

of sequential applications written in other legacy languages (e.g., FORTRAN) and

dialects. The likelihood of major manual rewrites in the event of any change in the

application requirements, HPC platform, or implementation algorithms, is speculated to

decrease with the usage of the approach presented in this dissertation. FraSPA has the

potential of lowering the barriers to the adoption of HPC [1, 2] by domain-experts who

do not have any exposure to low-level parallel programming. FraSPA can also be adopted

by instructors for teaching the process of developing MPI-based parallel programs

incrementally and at a conceptual-level before going into the low-level details of MPI-

programming. The overall principle behind the working of FraSPA can be applied to

develop a domain-specific modeling language for specifying parallel computations in

specific domains such that the domain-experts can provide the specifications once and

generate code in several base languages including those for implicit parallelization (viz.

16

X10, Fortress, or SISAL) by using language-specific interpreters.

The checkpointing mechanism developed in this research is useful for making

both parallel and sequential applications checkpointed and can be incorporated with the

strategies for fault-detection to develop fault-tolerant solutions. This approach has the

potential of being adapted to develop fault-tolerant applications for multi-core and many-

core architectures as well. In future, if the support for fault-tolerance is available as a part

of the MPI library, the approach developed in this research can be used for automatically

and non-invasively reengineering the existing parallel applications for embedding the

calls to the latest MPI routines. As a consequence of this research, stronger interactions of

HPC researchers, software engineers, and scientists can be fostered across different

domains.

1.5 Overview of the Dissertation

The background and the related research work are discussed in Chapter 2 of this

dissertation. The Generative Programming [19] tools and techniques that were used for

implementing FraSPA are also described in detail in Chapter 2. These techniques obviate

some of the barriers that scientists face in adopting high-level abstractions. Chapter 3 is

related to the design and development of FraSPA. The case-studies and results are

discussed in Chapter 4. The potential future work is presented in Chapter 5 and

conclusion is presented in Chapter 6.

17

CHAPTER 2

BACKGROUND AND RELATED WORK

This dissertation demonstrates the effective application of modern software

engineering techniques to automate the process of HPC application generation. The main

tangible contribution of this research is a framework that enables the automatic synthesis

of MPI-based, checkpointed parallel applications from high-level specifications and

existing sequential applications. The framework is implemented by using the

combination of Generative Programming (GP) techniques [19] and a set of Domain-

Specific Languages (DSLs) [20]. Design-templates have also been used in this research

to capture the most commonly used data distribution, communication, and

synchronization patterns in MPI-based programs. Model-Driven Engineering (MDE) [21]

was used to make the framework extensible and flexible. Application-Level

Checkpointing (ALC) technique was used to make the generated applications fault-

tolerant [22].

This chapter will provide a background discussion of the technologies used in this

dissertation research and the related work. Section 2.1 presents a discussion on Aspect-

Oriented Programming (AOP) [18] and its usage in the initial work done for this

research. Section 2.2 gives a brief overview of an alternative to AOP-based approach for

program synthesis, which is called, Invasive Software Composition (ISC) [23]. The

generative programming tools and techniques used in this research are explained in

18

Section 2.3. DSLs are explained in Section 2.4. MDE and its usage in this research are

explained in Section 2.5. The checkpointing mechanism for making the HPC applications

fault-tolerant is explained in Section 2.6. A discussion of the work related to high-level

parallel programming is presented in Section 2.7. A discussion of the work related to

checkpointing (and hence fault-tolerance) is presented in Section 2.8. A general

discussion is provided in Section 2.9.

2.1 Aspect-Oriented Programming

When a concern or functionality is spread across multiple methods within

multiple modules of an application (e.g., profiling and logging), it is known as a

crosscutting concern [18]. Such concerns are difficult to modularize using traditional

languages because each concern is scattered across modularity boundaries, making it hard

to maintain and reuse. To make a single change in a crosscutting concern, it is necessary

to replicate the changes at multiple places. Therefore, crosscutting concerns lead to

tangled or scattered code [18] and it is advantageous to capture the functionality of each

concern in a separate module.

AOP offers a new modular construct that cleanly separates crosscutting concerns

(or secondary functionality) from the core computations, thereby leading to an improved

quality of code in terms of improved cohesion, coupling, and code reuse. A crosscutting

concern is isolated in a modular unit, called aspect, which can be woven into an

application as needed. Each aspect, thus, leads to the localizing of the description of a

crosscutting concern in a single place. It should be noted that, by itself, AOP is only a

concept. There are several AOP languages that materialize the AOP concepts and extend

19

the traditional programming languages. AOP languages (e.g., AspectC++ [24] and

AspectC [25]) overcome the limitations of traditional programming languages by

extending them with constructs for programming aspects. The programmers write a base

code in a traditional language (e.g., C++ or C) and aspect code in the relevant AOP

language (e.g., AspectC++ or AspectC) so that the aspect code affects the execution of

specific code in the base program. The aspect code is combined with the base program

with a tool called aspect weaver that finally generates the transformed code. The

transformed code has the desired functionality (as specified in the aspect code) at the

desired number of places added to the base program. It can be compiled and run like a

normal program. This weaving process is pictorially depicted in Figure 2-1.

Figure 2-1: Aspect weaving process

Some of the common constructs in AOP languages are as follows:

Join Point: A location in a program where a crosscutting concern emerges - for

example, method call and method execution.

Match Expression: A search pattern in string format. It may specify the type,

namespace, class, function, or template in the base program which should be used as

a handle for weaving the aspect code.

Pointcut: Determines the condition on which the aspect code would be executed. It is

a “set of join points and are described by a pointcut expression” [18].

Base Program

Aspect Code

Aspect
Weaver

Transformed
Code

Compiler

Executable

20

Pointcut Expression: Composed of match expressions (that are used to find the set

of join points), pointcut functions (for filtering specific join points), and algebraic

operators (used for combining pointcuts).

Advice: Captures the implementation of a crosscutting concern and defines actions to

be performed at associated join points. It can also be used to introduce a new function

or an attribute or a type at join point and is of the types: before, after, and

around.

Aspect: Implements a crosscutting concern and hence, localizes its functionality in a

separate module. An aspect in AspectC++ is similar to a class in C++ and is defined

by pointcut expressions and advice. It may contain attributes, methods, and advice

declarations. Like classes, an aspect can inherit from other classes and aspects.

Consider the C++ code shown in Figure 2-2 that does simple addition, subtraction,

multiplication and division. It is desired to print the signature of every method in Figure

2-2 for debugging and testing purposes without making any changes to the existing code

(shown in Figure 2-2). This can be achieved through a printing aspect (aspect printing

at line # 4 of Figure 2-3) written using AspectC++ and shown in Figure 2-3. As can be

noticed from line # 5 of the code in Figure 2-3, this printing aspect prints the method

signature before the method is executed. In general, the ‘*’ represents a wildcard, and

‘...’ represents any number of parameters or class type or function name. Therefore, the

advice on line # 5 of Figure 2-3 means that the printing aspect should be woven

before the execution of any function of any class with any return type. The match

expression in the advice code (i.e., ("% ...::%(...)")) specifies that any function of

any class with any return type should be treated as a join point because it uses ‘...’ . In

21

general, the before (or after) type of advice enables specific actions to be performed

before (or after) a join point. The around type of advice enables the execution of specific

actions (the code in the body of the advice) in place of the code at the join point.

1.
2.

#include<stdio.h>

3.

void A(int x, int y){

4.
printf("\nSum: %d\n",(x+y));

5. void B(int x, int y){
}

6. printf("\nDiff: %d\n",(x-y));
7. }
8. void C(int x, int y){
9. printf("\nProduct: %d\n",(x*y));
10. }
11. void D(int x, int y){
12. printf("\nDivision: %d",(x/y));
13. }
14. int main(){
15. A(3,2);
16. B(3,2);
17. C(2,2);
18. D(4,2);
19. return 0;
20. }

Figure 2-2: C++ code snippet

1. #ifndef _APGA_AH_
2. #define _APGA_AH_
3. #include <stdio.h>
4. aspect printing{
5. advice execution("% ...::%(...)") : before() {
6. printf("\nFollowing Function is about to be Called\n");
7. printf("%s",JoinPoint::signature());
8. printf("\n");
9. }
10. };
11. #endif

Figure 2-3: AspectC++ code for printing method signature

As can be inferred from the printing aspect example (aspect printing), a

crosscutting concern (here, printing the method signature) can be captured in a separate

module, called aspect, thereby leading to untangled code. This improves software quality

and maintainability by isolating the code for secondary functionality from the core

computation and by reducing the size of the base program.

22

During the initial phase of this research, AOP was used to study the impact of

separation of concerns (e.g., separation of MPI-code for data distribution,

communication, and synchronization from the sequential base applications) on the

performance of the HPC applications. In particular, AspectC++ (the AOP language for

C++) was used to weave the checkpointing and parallelization concerns (e.g., MPI-code

for data distribution, communication, and synchronization) into the existing C/C++

sequential applications to generate their checkpointed and parallel versions [26, 27]. The

usual process of explicit parallelization requires manual insertion of library calls (e.g.,

MPI function calls) into the existing sequential applications. By using AOP, manually

inserting the library calls at multiple places can be automated while isolating the required

changes (parallelization code) within aspect advice [26]. Similarly, for making the

applications fault-tolerant via checkpointing, the desired code for ALC is encapsulated

within aspects and woven into the existing sequential or parallel applications [27].

The initial study concluded that the separation of concerns or the usage of

AspectC++ did not result in any significant degradation in the performance of generated

parallel or checkpointed applications [26, 27]. The main advantages of using AOP to

generate parallel applications are:

Non-invasive reengineering of sequential applications to generate parallel

applications.

Separation of concerns, thereby leading to improved software quality,

maintainability, and reusability.

Multi-person development of HPC applications, wherein experts in

parallel programming and fault-tolerance can focus on developing the

23

code for parallelization and checkpointing concerns and the domain-

experts can focus on expressing the core computations through the

sequential program.

The main challenges of using the AOP approach in the initial research and some

observations are:

Difficulty in expressing for-loops as join points [28, 29].

Aspect weavers are available only for few languages (e.g., Java, C/C++)

and there is no mature and robust support for FORTRAN which is a very

popular language in the HPC community.

A large number of legacy sequential applications are non-modular and in

order to apply AOP techniques on them, they should first be refactored.

It is difficult to debug the aspect-oriented program because the woven

code is not shown to the programmer [30].

Transformed code is difficult to understand and modify [30].

Due to the aforementioned limitations associated with AOP languages, this dissertation

research adopted a more general approach for transforming sequential applications into

their parallel versions (and also making the sequential/parallel applications checkpointed)

by using a powerful combination of generative programming approach and MDE

technique.

2.2 Invasive Software Composition

ISC is a software composition approach that helps a programmer to overcome the

limitations imposed by other composition techniques like AOP. ISC allows programmers

24

to extend the techniques as desired. ISC involves code transformation at specific change

points (hooks) in components in order to adapt or extend the functionality of the

components themselves. Compared to AOP, ISC, based on static metaprogramming,

provides a stronger model for join points.

Reuseware [31] is an implementation of ISC used for developing semi-parallelized

scientific code. Though Reuseware is not a full-fledged compiler in itself, it does works

at the Abstract Syntax Tree (AST) level and falls under the category of source-to-source

engines [32]. It allows the programmer to define the code blocks that should be

transformed by the Reuseware engine and the action that needs to be performed by these

blocks. To begin using the system, the programmer must build the composition

environment by providing the grammar of the traditional language (C/C++/FORTRAN)

in which the sequential program is written and the programmer must provide

specifications of the composition interfaces (the extensions of the traditional language).

The grammar needs to be expressed as metamodel [31, 32]. The composition interfaces

are added through a reuse language that is provided as a grammar in EBNF. There are

two basic composers that Reuseware provides for handling composition interfaces and

join points: bind and extend. These composers are used to replace a composition interface

or to insert fragments at specific points and can be used to build a complex composer. As

noted in [32], Reuseware does not support semantic checks and does not support full-

fledged pattern-matching on syntax trees.

This approach, if used without any abstraction on top of it, is low-level and invasive.

The programmer must specify the MPI functions and the new variables that are to be

woven in the sequential program. The programmer must be aware of all the low-level

25

details related to MPI-based parallelization. As noted in [32], increasing the complexity

of parallelization inevitably increases the complexity of the parallelizing composers

involved in the Reuseware system that involves ISC. The pattern-matching capability and

the overall usage of ISC for parallelizing sequential applications still need to be made

general [32] (currently it seems to be application-specific). In this research, due to the

complexity involved (from the programmer’s perspective) and scalability concerns,

instead of adopting ISC as an intermediate component/tool, abstractions were built upon

a more mature tool (source-to-source transformation engine).

2.3 Generative Programming

GP is a software development approach for modeling and developing software

families such that a software system can be automatically generated from a given set of

specifications and reusable components [19]. The GP-based approach adopted in this

research obviates the necessity to adapt the applications to any generic interface, supports

incremental integration of components, and does not require code restructuring according

to any fixed guidelines. The already existing components and patterns are assembled on

the basis of the high-level specifications and metadata to generate a domain-specific

solution. A powerful GP-tool (source-to-source compiler that is capable of doing term-

rewriting) can be used for code assembly and transformation. Several off-the-shelf

source-to-source compilers are available and two such mature systems are Design

Maintenance System [33, 34] and ROSE [35]. This research has used another GP-

technique, template metaprogramming, to capture the patterns in data distribution,

communication and synchronization. As a note, a source-to-source compiler is also

26

known as a program transformation engine and both terms are used interchangeably in

this dissertation.

2.3.1 Template Metaprogramming

A metaprogram is a program that can manipulate or generate other programs [19]. In

C++, metaprogramming can be done using templates and is based on partial-evaluation of

templates at compile-time. Templates are functions or classes that are written for one or

more types that are not specified at the time of writing the program. In this research, C++

template metaprogramming was used to define generic templates (type-independent) for

algorithms for data distribution, synchronization, and load-balancing. These were helpful

in capturing the general design pattern of parallel tasks so that they can be reused across

multiple applications being developed by the framework. Templates are also helpful in

optimizing code at compile-time such that the run-time overheads are saved and memory

footprint is reduced. However, heavy-usage of template metaprogramming has the

potential of increasing the compilation-time of applications and might lead to portability

issues.

2.3.2 Program Transformation Engine

A Program Transformation Engine (PTE) is a powerful source-to-source

transformation tool that works at the AST level and was used in this dissertation to

overcome some of the limitations posed by the current AOP languages. A PTE uses

pattern-matching and term-rewriting to carry out complex transformations. Term-

rewriting is a paradigm in which rewrite rules are used to define the expected

27

modifications in the code structure by specifying a match-pattern and the expected effect

after the rules are applied. With this approach, the source code is combined with

languages and tool definitions for doing automatic analysis, enhancement, and cross-

platform migration of software systems. In general, as compared to AOP, PTEs are

helpful in carrying out more complex and flexible transformations because any arbitrary

line of code can be specified as a join point.

The Design Maintenance System (DMS) [33, 34] is a mature and robust PTE used in

this research. A major advantage in using a mature PTE like DMS is that the tool support

(e.g., Lexer, Parser, and Pretty Printer) is available for more than 20 languages, including

FORTRAN and C/C++. Therefore, unlike the ISC technique, the programmer is free

from the burden of providing the grammar of the traditional language and the grammar

for creating the composition interfaces. Also, unlike the ISC technique, DMS offers

powerful pattern-matching capability and can do semantic checks. The DMS is

implemented in a parallel language known as PARLANSE [33, 34] and therefore, tree

traversal and the transformation process are scalable to tens of thousands of files [33, 34].

As mentioned earlier, this dissertation research used DMS to transform sequential

applications (base applications) into parallel and checkpointed ones (see Figure 2-4). The

transformation is carried out in the DMS on the basis of the rewrite rules written in Rule

Specification Language (RSL) [33, 34] and PARLANSE. The transformation rules

required for this research were implemented using RSL. The external functions for

complex pattern-matching required for fine-grained transformations were written using

PARLANSE. These PARLANSE functions are being called from within the RSL rules

and they are reusable.

28

rruullee aadddd__ssttmmtt((ss:: ssttaatteemmeenntt__sseeqq))::
ffuunnccttiioonn__bbooddyy -->> ffuunnccttiioonn__bbooddyy ==
"" {{ \\ss }} "" -->>
""{{\\ppaatttteerrnn11\\((\\));; {{ \\ss }} \\ppaatttteerrnn22\\((\\));;}}""..

Figure 2-4: Source-to-Source transformation using a PTE

The RSL code consists of primitives (e.g., pattern declaration, rules, conditions and

rule sets) that are required for describing the desired source-to-source transformations.

The main elements for writing RSL code are:

Patterns: Used to describe the parts of the syntax tree that are of interest in

the transformation process.

Rule: The specification of the desired AST transformation on the basis of

some conditions. It has a left-hand side, which is the source syntax expression,

and a right-hand side, which is the target syntax expression.

Conditions: The named boolean-valued expressions that are used to set

constraints on the rules and patterns.

Rule Set: Used for grouping a set of rules.

Default Domain: The domain for which the rules are being written (e.g., the

dialect of C++ language).

Syntax Tree Expressions: These are the expressions that compose trees.

29

The general format for specifying an RSL rule is as follows:

rule name_of_the_rule (parameter_list):
non-terminal -> non-terminal =
"match_pattern" -> "replacement_pattern"
if condition.

The words in boldface (rule, if) are the keywords. Each rule has a name defined by the

programmer (name_of_the_rule). The pattern to be matched (match_pattern) is

specified on the left-hand side of the rule, and the desired substitution in the syntax tree

(replacement_pattern) is specified on the right-hand side of the rule. Constraints

(condition), if any, are added to the rule following the keyword if. As a part of the

syntax of specifying a rule, it is required that the syntax tree type (non-terminal) is also

specified (e.g., arithmetic expression, statement, and identifier). The formal parameters to

the rules, patterns and conditions are optional and are represented by parameter_list in

the general format shown above.

The transformation rule shown in Figure 2-4, transforms the body of all the functions

(note that the non-terminal is function_body) in the program on which it is applied. The

match pattern in this rule consists of a set of all the statements (statement_seq) inside

the function body and is specified as a block ‘{ \s }’. The variable s is the formal

parameter of the rule and ‘\’ is the RSL escape character. The replacement pattern in this

rule is the sequence of original statements in the function body preceded by a set of

statements specified by the pattern ‘pattern1\(\)’ and succeeded by a set of statements

that are specified by ‘\pattern2\(\)’.

Apart from the ready-made tool support for Lexer, Parser, and Prettyprinter, DMS

also provides automatically generated Rule Applier and Refiner. The Rule Applier helps

in experimenting with rule sets for a single domain - it parses the input file for a domain,

30

applies the designated rules, and prints the results. Refiner is useful for experimenting

with rules written in multiple domains. DMS also provides AST interface to support the

traversal of the syntax trees that represent string-based languages. Some of the important

operations on ASTs provided by DMS are finding a child node with a specific property,

finding a parent node with a specific property, getting the Nth child node from a parent

node, etc.

For all the test cases used in this research, the performance of the PTE-generated code

was similar to the manually written code. The generated code is the same as the manually

written code and the PTE does not introduce any artifacts. However, it is difficult to learn

and use the PTE (DMS in particular). The rewrite rules are difficult to write and the

ambiguity errors during the transformation process are hard to understand and resolve.

Also, the rewrite rules are very domain-specific, grammar-specific and PTE-specific. A

rule written in a particular dialect of C++ (e.g., Microsoft’s Visual6 C++) might not work

with another dialect (e.g., GNU C++). If, for example, the DMS is replaced by another

PTE, the already written RSL-rules would become useless. Certain search patterns are too

complex to express through RSL code and therefore external functions should be called

by the RSL rules for pattern-matching and syntax tree manipulation. Such external

functions are written in PARLANSE which is a functional language that is difficult to

learn due to lack of extensive documentation and the need to manually handle the syntax

tree traversal and transformation. Lastly, the DMS is a costly commercial tool and might

not be available to all the developers participating in the application development

lifecycle. These limitations were the motivating factors behind exploring techniques for

abstracting out the code transformation process from the programmer. The intent was to

31

benefit from the power and robustness of a PTE while reducing the accidental

complexities associated with its usage.

2.4 Domain-Specific Language

DSLs are specialized languages written for a particular application-domain [20]. They

raise the level of abstraction of programming and enable the domain-experts to work in a

language closer to their problem domain. As compared to the General-Purpose

Languages (GPLs), DSLs are more expressive in a given domain but have limited

features and applicability. Like any GPL, a DSL has a concrete syntax, abstract syntax,

and well defined semantics. Because the DSLs are more specialized and expressive than

other GPLs, they are easy to learn and use. The usage of a DSL increases productivity

and decreases software development time and cost [20]. An excellent example of a DSL

is Structured Query Language (SQL) which is related to the database domain.

The first step in developing a DSL is analyzing the domain for which it is being

designed. During the domain analysis phase of developing the DSLs required for this

dissertation, technical literature and existing implementations were surveyed to obtain an

overview of the terminologies and concepts related to the domains of concern.

Commonly used terms and their relationships were used to develop the domain lexicons.

Feature-Oriented Domain Analysis (FODA) [19] was used for further domain analysis.

FODA is often used to develop generic domain products by employing abstraction and

refinement. The specific applications from a domain are analyzed and a layer of

abstraction is added to hide the differences between the applications. The generic product

can then be refined to generate a specific application [19]. A feature model represents the

32

commonalities and differences between various features of an application. As advocated

in [36], only the necessary and relevant features were modeled. The next steps for

developing the DSL are domain design and implementation. Already existing notations

were adopted for the DSLs developed for this research and new terms and jargon were

avoided. The concepts and constructs of the DSLs developed in this research have some

resemblance to the AOP language concept (the join-point model [18]) and constructs

(e.g., before, after, and around). The implementation of the DSLs was done using the

MDE technique.

2.5 Model-Driven Engineering

MDE is a software engineering paradigm that involves abstraction of real-world

entities or concepts as models. With the help of a translator or an interpreter, the actual

code can be automatically generated from the models. Hence, MDE raises the level of

abstraction of programming in high-level languages and helps in expressing domain-

specific concepts efficiently. The MDE technique was used in this research for

developing the DSLs that are required for obtaining the specifications for parallelization

and checkpointing from the programmer. The DSLs (and hence the MDE paradigm) were

helpful in making the framework flexible and extensible so that multiple traditional

languages and parallel programming paradigms can be supported with minimum effort

[37]. Some of the MDE-concepts are defined as follows:

Model: A model is a representation of a system and can be of three types - a

terminal model, a metamodel or a metametamodel.

Terminal Model: A model whose reference model is a metamodel.

33

MetaModel: A model that defines a language for expressing other models. It

describes different contained model elements and the relationship between them.

It conforms to a metametamodel and Meta-Object Facility (MOF) is an example

of a metametamodel. The MOF metametamodel is self-defined.

MegaModel: A megamodel is a model that records the global information on

tools, services and other models.

The MDE platform used in this research is called Atlas Model Management

Architecture (AMMA) [38] and is implemented on top of the Eclipse/EMF framework.

AMMA provides a set of facilities for processing models and consists of the following

main blocks [39]

Kernel MetaMetaModel (KM3): It is an implementation-independent, textual

domain-specific language for defining the abstract syntax of the DSLs in the form

of metamodels [40]. KM3 resembles the Ecore terminology [41] and uses

concepts like package, class, attribute, reference, and primitive data type.

Textual Concrete Syntax (TCS): TCS [42] is itself a DSL and can be used to

specify the textual concrete syntax of other DSLs by attaching syntactic

information to metamodels. TCS-specifications are used to automatically generate

tools for model-to-text (by generating ANTLR grammar) and text-to-model

transformations (by using a Java-based extractor) [42].

Atlas Transformation Language (ATL): A model transformation language

transforms a set of source models into a set of target models on the basis of the

defined rules [43]. ATL has its abstract syntax defined as a metamodel and every

ATL transformation is itself considered as a model. The language consists of rules

34

and expressions (based on OCL [44]). Each rule consists of a source pattern on its

left-hand side and a target pattern on the right-hand side. The source pattern

consists of model element types from the source metamodels and the boolean

expressions. The target pattern consists of the model element types from the target

metamodel. A set of binding is attached to each rule for specifying the way in

which the properties of the target elements should be initialized.

Atlas MegaModel Management (AM3): Provides support for global resource

management in a model-engineering environment. The main features of AM3 are

management of megamodels, management of various relations between artifacts

(e.g., models, metamodels, transformations, and semantic correspondences),

sharing and exchanging of megamodel elements, and user interfaces for viewing

megamodel elements [45, 46]. Because the AM3 supported megamodels allow the

manipulation of other resources such as XML documents, database tables or flat

files as well, the notion of artifacts is used in general.

2.6 Checkpointing

Checkpointing is a mechanism by which an application is made resilient to failures by

periodically saving its state to the secondary storage medium. Scientific applications that

take an enormous amount of time to execute (e.g., simulation for protein structure

prediction [47] or climate modeling [48]) and are run in distributed, dynamic and

heterogeneous environments, like a grid, can benefit considerably from checkpointing. In

case of failures or changes in the availability of underlying resources, instead of restarting

the application from the beginning, the programmer can restart the application from the

35

latest checkpoint. This is achieved by recreating the pre-failure application state from the

saved data on the disk. Checkpointing is also an essential component for writing self-

healing applications. These applications can monitor their own state, detect faults, and

recover from the faults automatically. Checkpointing or a similar mechanism (e.g.,

logging) is required to recover from the fault and continue execution without having to

restart the whole application.

Writing and reading the application state are the major steps involved in

checkpointing. Through the rest of this dissertation, these steps are referred to as

Checkpointing and Restart (CaR). The main types of checkpointing techniques,

depending upon the level of transparency, are: hardware-level [49], system-level [50],

user-level [51], application-level [52, 53, 54], and hybrid approaches [55].

In the hardware-level checkpointing, specialized hardware (e.g., redundant arrays

of inexpensive disks, custom-designed directory controller, and cache memory)

can be integrated into the processors for saving the state of the application.

The system-level checkpointing is performed external to the application with the

support of the operating system and involves periodically saving the execution

state of the entire application. Typically, this requires changes to the operating

system’s kernel and the entire process state is saved since the operating system

does not have knowledge about the application semantics.

The user-level checkpointing process is often accomplished by linking the

checkpointing libraries to the application code. The programmer is free from the

burden of making any changes to the code and no additional code is required to be

36

installed in the kernel as compared to the system-level checkpointing. This

approach is usually architecture-dependent.

In the Application-Level Checkpointing (ALC) an application is made reliable by

inserting the fault-tolerance mechanism directly into it. Only the critical variables

and data structures are saved to the disk during ALC.

A Hybrid Approach is a combination of multiple checkpointing techniques. A

hybrid of system-level checkpointing and ALC is presented in [55]. The authors

claim that this combination results in higher reliability in real-time systems.

Although ALC requires more end-user involvement than any other form of

checkpointing, it has several advantages [56]. As compared to other types of

checkpointing techniques, ALC involves lesser storage space (core-dumps are taken in

system-level checkpointing), offers the end-user more control for selective checkpointing

and is useful for writing portable applications for different operating systems. As

mentioned in [56], the ALC schemes are language-independent “provided that the base

language constructs are present” [56].

One major problem with the current techniques for ALC is that the current techniques

require invasive reengineering of existing applications to insert the checkpointing code

(typically done by inserting macros in the source code) and thus make software

maintenance challenging. If the application code is large, and the number of critical

variables is huge, there may be multiple places where the end-user must make changes in

the existing application to make it fault-tolerant via checkpointing. Because ALC

involves extra read and write operations, the checkpointed version of the application

might take substantially longer time to run than the non-checkpointed one. When

37

performance is more critical than fault-tolerance, the stakeholder might want to have the

facility to turn-off the checkpointing feature. For the convenience of code maintenance

and evolution, it is important to avoid creating multiple versions of the application (with

and without checkpointing). Also, the solution space for ALC is constantly evolving.

Many checkpointing libraries and techniques exist and each has some special merits over

the others [50, 56]. With the emergence of many-core and multi-core architectures, more

solutions for fault-tolerance are expected to emerge. Given such a widespread and an

evolving solution space, the end-users should not be forced to reengineer their application

to switch from one solution to another. Due to all these reasons, it is desirable that the

existing application should not undergo any invasive reengineering in order to become

fault-tolerant and the CaR mechanism (to enable ALC) should exist as a pluggable

feature.

In this dissertation, the checkpointing mechanism is ALC-centric. This work is

relevant for both uniprocessor and multiprocessor systems. At a coarse-grain level, it can

be said that the ALC-approach developed in this research is selective (core-dump of the

processor's state is not taken), periodic (checkpoints are always taken at a particular

frequency), and static (because the checkpoints are known before the program is run).

This approach applies to checkpointing both sequential and parallel programs. When

checkpointing parallel applications with this approach, depending upon the end-user’s

choice, checkpointing can be centralized (only one processor initiates the checkpoint) or

distributed (each processor participates in the checkpointing process). Because while

taking centralized checkpoints with this approach, it is important that the processors are

in a synchronized state, this approach is a coordinated one. However, synchronizing the

38

processors is not a part of the approach. It is the end-user’s responsibility to manually

ensure this.

This research’s focus is to raise the level of abstraction of ALC so that the end-user is

not responsible for manually reengineering the existing application to insert the

checkpointing code. Instead of writing the optimized ALC code by hand or inserting any

library calls in the code (which could lead to code tangling), the end-user provides the

CaR-specifications (what should be checkpointed and where, along with the frequency of

checkpointing) using the DSL developed in this research. The necessary code is then

generated and inserted into the existing application using a set of domain-specific

optimizations (i.e., transformations) [19]. This approach solves the problems related to

versioning and maintenance (described above) and allows the end-users to take advantage

of the latest tools and techniques for ALC. Other advantages of this high-level approach

include: enhanced code reuse, absence of code restructuring, and highly

comprehensible/readable code for the CaR mechanism. This research also provides the

facility to checkpoint code at arbitrary points in the application. The applications that

were checkpointed through the technique demonstrated in this research produce results

with the same accuracy and precision as the non-checkpointed code or the manually

checkpointed code. The performance of the application checkpointed by this technique is

comparable to the manually checkpointed version of the application.

2.7 Related High-Level Parallel Programming Approaches

There have been several research efforts in the past to raise the level of

abstraction of parallel programming. Various libraries, toolkits, languages, and language

39

extensions have been developed and a detailed discussion on these can be found in [57,

58, 59, 60, 61, 62, and 63]. Most of these techniques demonstrate the significance of

abstractions and component-based HPC application development. It has been noted in

these papers that the reasons behind the failure of some high-level approaches from the

past are lack of flexibility, performance, and extensibility [57, 58, and 59]. In other

words, in order to be widely accepted and adopted, any high-level approach should

guarantee a reasonable amount of performance while providing the flexibility to modify

the generated application. It should also be extensible enough to support multiple

platforms.

Some of the efforts for raising the level of abstraction (those that use design

patterns and templates [60], Invasive Software Composition (ISC) [30, 32, and 61],

Aspect-Oriented Programming (AOP) [26, 27, 28, 29, and 62] and skeleton-oriented

frameworks [63]) have successfully demonstrated the advantages of keeping parallel and

sequential concerns separate in order to reduce code complexity and thereby augmenting

code reuse and making the process of code maintenance easy. The lessons learned from

these approaches are reflected in this dissertation research. A discussion on some of the

techniques that are complementary to FraSPA is presented in the following subsections.

2.7.1 New Parallel Programming Languages

Partitioned Global Address Space (PGAS) languages like UPC [64], Co-Array

Fortran [65], X10 [11], Chapel [66] and Titanium [67] do have advantages over MPI, for

instance, they offer better performance for fine-grained communication, yet they are still

evolving. In order to use these languages (or language extensions), legacy applications

40

must be reengineered invasively and the application developer must be familiar with

these new programming paradigms. Some other parallel programming languages that fall

under the category of fine-grained mechanisms for parallel computations are Orca [12],

SISAL [13], and Fortress [14].

As noted in [15], the disadvantage of new parallel languages for implicit

parallelization, like SISAL, is that the programmer might have limited flexibility to

experiment with different algorithm-design options. Debugging for performance is also

difficult because it is unclear which code construct might be contributing to the loss in

performance. That is because the compiler is in control of parallelization [15]. Legacy

code, and demand for Fortran/C-based languages make these new languages impractical

options.

One concern with the new programming languages is the steep learning curve for

the programmers. Another concern is that the programmers have to rewrite the

applications in the new language, do the required testing and debugging, thus making the

process time consuming and expensive. Many applications that are already in production

have considerable amount of time and money already invested in them. It is not a trivial

task to rewrite them from scratch. Instead, libraries for parallelization (e.g., MPI) help

programmers to take advantage of the existing code. Therefore, a layer of abstraction

built on top of such popular libraries has a potential of reducing the effort involved in

parallelization without involving any steep learning curve. A discussion of some of the

techniques that have the objectives closely related to this research (MPI-based, high-

level, generative programming-based, applicable to a wide range of application domains,

and performance-oriented) is provided below.

41

CHARM++ [68] is an explicit parallel language and adaptive runtime system that

is based upon the object-oriented programming paradigm having its roots in C++. The

execution model of CHARM++ is asynchronous and message-driven (or event-driven).

The programmer must decompose the computation into small virtual message-driven

processes called as chares. The data mapping to processors, fault-tolerance and load-

balancing is done by the system. The programmer must also write an interface file to

provide the methods of the chare object that can be invoked by other chare objects. The

language can be used for writing Multiple-Instruction Multiple Data (MIMD) parallel

programs for both shared memory and distributed memory applications and handles the

portability issues really well. This approach provides separation of sequential and parallel

concerns and is best-suited for applications meant to be written from scratch. A steep

learning curve is associated with the usage of CHARM++. FraSPA provides support for

most of the features for parallelization that are supported by CHARM++ including fault-

tolerance, and is best suited for reengineering legacy sequential applications.

Sequoia [69] is a programming language designed for the development of the

memory-hierarchy aware portable parallel programs. The generic algorithmic expression

and machine-specific optimization are kept strictly separate to enable portability without

compromising on performance [69]. In Sequoia, the application developer abstractly

describes the hierarchies of tasks and then maps these hierarchies to the memory system

of a target machine. This process entails a complete rewrite of the existing application to

take advantage of the abstraction provided by Sequoia. Unlike in Sequoia, FraSPA does

not necessitate the rewrite of the existing application for parallelizing it. As in Sequoia,

42

the FraSPA provides the separation of machine-specific optimization and generic code

constructs.

High Performance FORTRAN (HPF) [70] is a high-level language extension of

FORTRAN 90 used to annotate the FORTRAN code with directives for data

decomposition, specifying data parallel operations and mapping data to the processors.

The high-level language developed in this research has the potential to support

parallelization of languages written in multiple programming languages including

FORTRAN.

2.7.2 Pattern-Based Approaches

Design Patterns and Distributed Process (DPnDP) [60] and MPI Advanced

Pattern-Based Parallel Programming System (MAP3S) [71] are pattern-based systems for

developing parallel applications. These systems are extensible, flexible and demonstrate

the advantages of keeping the sequential and parallel concerns separate in an application

(and thereby reducing code complexity) while promoting code reuse and correctness. The

DPnDP system generates the code skeleton depending upon the parameters (e.g., master-

slave pattern and the number of processors) specified by the programmer. The

programmer is then required to edit the generated files that contain code skeletons to

insert the sequential entry procedures into the skeleton. The MAP3S system demonstrates

that generative pattern systems can be successfully implemented using the combination

of MPI and C. The system uses customization and tuning parameters provided by the

programmer to develop efficient parallel code templates. The programmer is also

required to provide macros for packing the processing elements into MPI packets.

43

However, low-level specifications, like the maximum size of packet that can be

transmitted between the processors or the timing for synchronization, place the burden on

the programmer to understand the limitations of the MPI. Compared to DPnDP and

MAP3S, FraSPA does not involve any intrusive reengineering of the existing code and

the programmer is not required to specify any low-level parameters. Also, DPnDP and

MAP3

Tracs [72], developed at the University of Pisa, provides design pattern

components from which an actual application can be built. Tracs requires that all design

patterns be expressed graphically. However, this is its major limitation because not all the

design patterns can be expressed graphically (e.g., divide and conquer).

S systems seem to be better suited for applications that are meant to be written

from scratch. FraSPA is better suited for reengineering existing sequential applications in

order to parallelize them.

MPIBuddy [59], a portable design pattern based system for parallel programming

implemented in Java, provides a level of abstraction above MPI and is an extensible

system. MPIBuddy has a graphically rich front-end written in Java and uses Java Native

Interface (JNI) methods to use C and MPI code. The interface programming offers the

advantages of both the efficient low-level code (C and MPI) and easy graphical

development through Java. This approach provides a skeleton that should be manually

fleshed out with application-specific code. The user should be aware of parallel

programming constructs and APIs (e.g., MPI APIs). In contrast, the users of the FraSPA

are not required to know the intricacies of parallel programming except identifying

concurrency and selecting the right type of functionality (e.g., distribute data, gather

data).

44

2.7.3 Domain-Specific Approaches

Spiral [7] is a domain-specific library generation system that generates HPC code

for some domains (e.g., linear transformations) using the high-level specifications. It

supports a wide range of platforms for complete automation of implementing and

optimizing libraries. The basic idea behind Spiral is to capture the algorithm at a high-

level and use rewrite systems to generate the executable. Spiral uses a feedback

mechanism for exploring the solution space (set of candidate solutions) in order to pick

the highly optimized solution for a particular platform. Unlike Spiral that generates

optimized libraries, this research aims to generate complete parallel applications from

existing sequential applications. Architecture-specific optimizations for any particular

domain are beyond the current scope of this research.

Catanzaro et al. [73] are developing a set of DSLs for different application-

domains (a different DSL for each application domain under study) to simplify the

process of developing applications for heterogeneous architectures. Though their research

goal (generating parallel code from high-level languages for improving end-user

productivity) seems to be similar to that of FraSPA, there are major differences in the

details associated with the two efforts. FraSPA is useful for synthesizing optimized

parallel applications in a non-invasive and domain-neutral manner, i.e. it can parallelize

sequential applications from diverse domains. A single DSL has been developed in this

research to capture the specifications of parallel tasks per se (e.g., reduce data, gather

data, and distribute data) and the end-users are not required to specify their core-

computations in any particular fashion (or in conformance to any standard interface). In

contrast, the set of DSLs from Catanzaro et al. capture the domain-specific computations

45

(for mesh-based PDE, physics library PhysBAM, and machine-learning), promise to

deliver optimized parallel solutions, and seem to be suitable for applications that are to be

written from scratch. Their framework seems to be still under development and they have

yet to develop mechanisms that provide communication and synchronization with low

overhead [73]. The current scope of FraSPA is limited to providing the facility for

parallel code-generation for homogeneous architectures, and the optimal solutions are

generated through the usage of design patterns and templates.

Google’s “MapReduce is a programming model and an associated

implementation for processing and generating large data sets. Programs written in this

functional style are automatically parallelized and executed on a large cluster of

commodity machines. The run-time system takes care of the details of partitioning the

input data, scheduling the program's execution across a set of machines, handling

machine failures, and managing the required inter-machine communication. This allows

programmers without any experience with parallel and distributed systems to easily

utilize the resources of a large distributed system.” [74] MapReduce is an abstraction that

is helpful in expressing simple computations without getting into the details of

parallelization, fault-tolerance, data distribution, and load-balancing. It seems to separate

the computation concerns from the parallelization concerns to some extent but there is

not much information publically available on this. In FraSPA, the end-user if not required

to write the computations according to a particular model.

Similar in functionality to Google’s MapReduce, an open-source project called as

Hadoop also provides a MapReduce Framework [75] for performing computations in

parallel. Hadoop also provides a distributed file system for storing data on compute nodes

46

and node failures are handled by the framework itself. MapReduce has two phases of

computation – a map phase and a reduce phase. In the map phase, the input data set is

split into multiple fragments and distributed to compute nodes by the framework. A key-

value pair is provided as input to each map task which produces an intermediate key-

value pair as output by invoking the user-defined map function. The intermediate results

are sorted and each key can have multiple results associated with it. These intermediate

results are consumed by the reduce task that invokes the user-defined reduce function for

generating an output of key-value pairs.

2.7.4 Library-Based Approaches

Application-specific libraries and toolkits for parallelization (e.g., PBLAS [76],

POOMA [77], PETSc [78] and BlockSolve [79]) provide high-level and fine-grained

mechanism for parallelization. These libraries provide a very application-specific parallel

solution. With toolkits or library, the user writes the main body of the application and

inserts calls to reusable routines (that the toolkits and the libraries provide). However,

with FraSPA, the end-user is not supposed to make any changes to the existing sequential

application and has the flexibility to generate applications from diverse domains.

2.7.5 Other Related Work

Chamberlain et al. have shown an approach for designing and developing an

environment for authoring and deploying applications on hybrid systems [80]. Their

solution involves the use of a coordination language to specify dataflow style

interconnections between compute blocks, and native languages and tool sets for the

47

development of the compute blocks themselves. The application performance is

evaluated early in the design cycle. Due to the environment support, the compute blocks

are mapped to the computational resources in a semi-automated way. The environment

also supports block-to-block communication both within and between computational

resources [80]. With this approach the user is responsible for writing the compute blocks

for all the different architectures participating in the hybrid system. This is an excellent

approach for writing applications from scratch. The experts in the languages and tools for

each type of architecture can write their implementations individually and can later

integrate the different implementations via the glue code provided by the coordination

language. FraSPA is different from this approach because it automatically synthesizes an

MPI application from an existing sequential application on the basis of the high-level

specifications provided by the end-user.

Roychoudhury et al. [37, 81] have demonstrated a technique for constructing

aspect-weavers for general-purpose programming languages by combining model-driven

engineering with a program transformation system. In their technique, the aspect-

specifications are captured in an abstract manner such that there is no dependency on any

one particular program transformation system. Their framework for constructing aspect-

weavers has influenced the design-decisions of FraSPA in a manner that the high-level

specifications for parallelization and checkpointing are decoupled from the low-level

implementation details.

48

2.8 Related Approaches for Fault-Tolerance Through Checkpointing

Bronevetsky et al. [52, 53, and 54] have proposed a preprocessor-based approach for

ALC. Their work is relevant for both shared memory and distributed memory

architectures and their approach consists of two components: a pre-processor, and a

checkpointing library. With their approach, the programmer invasively changes the

existing application to insert the calls to a predefined function for checkpointing, at the

points in the program where checkpointing is desired. An optimized approach to

automated ALC is presented in [54], which is helpful for asynchronously checkpointing

an application.

Ramkumar et al. [82] have used a source-to-source compilation technique for creating

portable checkpoints. In their approach too, the end-user has to instrument the existing

code by renaming functions and by inserting the call to the checkpointing library

function. The frequency of checkpointing is controlled using a timer that triggers

checkpointing. The state of the program is stored on stacks and this approach doubles the

memory requirement for running an application. In case the DRAM cannot hold the data

on the stack, then the stack is mapped to a local disk and thus extra checkpointing

overheads are introduced.

Jiang et al. [83] proposed an ALC technique for shared-memory architectures which

they call MigThread. This technique consists of a LEX-based preprocessor and a runtime

support module. The preprocessor scans the code and inserts the thread migration

primitives, renames the functions and variables and inserts other code required for thread

migration [83]. In this technique, parts of computation are assigned to different threads,

49

the computation is paused, the state of the threads (process, computation,

communication) is migrated to a different node, and the computation is resumed.

In [84], Czarnul et al. have proposed a user-guided approach for inserting calls to

their checkpointing library, either through a dedicated master processor or collectively by

all the processors, and call it PARUG. This approach offers the flexibility of selective

checkpointing to the end-user but is invasive.

The major differences between the checkpointing approach developed in this

research and other related work are the non-invasive reengineering of existing

applications, separation of the checkpointing concern from the existing application, and

the readability/comprehensibility of the generated code. However, the onus is on the end-

user to identify the places in the code where checkpointing is required and to specify the

checkpointing-frequency. As compared to Bronevetsky et al.’s approach, the research

presented in this dissertation is non-invasive but semi-automatic and the end-user is

responsible for ensuring that the processors are in a consistent state before taking the

checkpoint. As compared to Ramkumar et al’s approach, the research presented in this

dissertation is at a very high-level of abstraction, gives control to the end-user to select

the critical program variables to checkpoint and to select the frequency of checkpointing.

As compared to MigThread, the research presented in this paper is relevant for different

types of architectures and the transformed code is more comprehensible to the end-user

because the original structure is maintained as is with the exception of checkpointing

code inserted at the specified places in the application. The work done in this dissertation

can be extended to support non-invasive ALC of applications written in several base

languages, including FORTRAN [37, 81].

50

2.9 General Discussion

Out of all the approaches presented in Sections 2.7 and 2.8, at the time of writing

this dissertation only FraSPA, CHARM++, and MapReduce, provide a high-level

approach for developing fault-tolerant parallel applications. Amongst the three, FraSPA

is best-suited for the scenarios in which the legacy applications already exist and the end-

users intend to transform these applications to parallelize them or make them fault-

tolerant via checkpointing. Both CHARM++ and MapReduce are suitable for the

scenarios in which the applications are being written from scratch. While both FraSPA

and CHARM++ can be used to develop parallel and fault-tolerant applications from

diverse domains, MapReduce has limited functionality because not all the applications

can be solved by the MapReduce algorithm. MapReduce is best suited for data-parallel

applications which process vast amounts of data. While FraSPA and CHARM++ support

the notion of separation of concerns, in case of MapReduce, the functionality for map and

reduce operations could be intertwined with the core computations – though the

parallelization is hidden from the end-user, but the end-user is still required to implement

map and reduce functions in their applications in conformance to standard interfaces.

The high-level approaches that are closely related to this dissertation are loosely

classified in Figure 2-5. There are five criteria according to which the classification has

been done in Figure 2-5 and they are:

Approaches that are language-based - either application domain-specific

(e.g., Spiral, MapReduce and Catanzaro et al.) or application domain-

neutral (e.g., UPC, Orca, CHARM++, and FraSPA).

51

Design pattern-based approaches (e.g., DPnDP, MAP3

Approaches that support separation of concerns (e.g., DPnDP, MAP

S, Tracs,

MPIBuddy, and FraSPA).

3

Approaches that support generation of applications for heterogeneous

architectures (e.g., Spiral, Catanzaro et al., and Chamberlain et al.).

S,

CHARM++, and FraSPA).

Approaches that provide support for fault-tolerance (e.g., MapReduce,

CHARM++, and FraSPA).

Only MapReduce, Spiral and Catanzaro et al.’s work can be classified as application

domain-specific. Most of the other approaches are application domain-neutral. Given the

current scope of FraSPA, it meets four out of five classification-criteria and has the

potential of being extended to meet the fifth criterion as well - which is, providing

support for synthesizing applications for heterogeneous architectures. The DSLs (Hi-PaL

and DALC) developed as part of FraSPA are application domain-neutral. FraSPA clearly

supports separation of concern and fault-tolerance via checkpointing. It uses design-

templates that are codified design patterns for data-distribution, load-balancing and

synchronization for distributed memory HPC platforms.

52

Figure 2-5: High-Level approaches for parallel program generation

High-Level Approaches for Program Generation

Language-Based Approaches

Domain-Specific Domain-Neutral

Spiral Catanzaro et al.

MapReduce

FraSPA
(Hi-Pal)

CHARM++

PGAS Languages
(UPC, Titanium, X10)

Implicit Parallelization
(Orca, SISAL, Fortress)

Design Pattern-Based Approaches

DPnDP MAP3S

FraSPA
(Design-Templates)

MPIBuddy

Tracs

Separation of Concerns

FraSPA CHARM++

MAP3SDPnDP

Heterogeneous Architectures

Spiral Catanzaro et al. Chamberlain et al.

Support for Fault-Tolerance

FraSPA MapReduce CHARM++

FraSPA
(Hi-Pal)

FraSPA
(Design-Templates)

FraSPA

FraSPA

53

CHAPTER 3

DESIGN AND IMPLEMENTATION OF FRAMEWORK

As described in Chapter 1, the goal of this research was to raise the level of

abstraction of generating performance-oriented, checkpointed parallel applications from

existing sequential applications. This would reduce the effort and complexities associated

with developing HPC applications for distributed memory platforms. As explained in

Chapter 2, during the initial phase of this research, multiple approaches were explored to

achieve this goal. It was found that no single approach or tool can address all the

requirements alone. Only through a combination of modern software engineering tools

and techniques can the major challenges associated with achieving the dissertation’s goal

be solved. As evident from the related work sections in Chapter 2, developing high-level

parallel programming environments is an actively researched area. The lessons learned

from the success and limitations of the complementary approaches have guided the

development of a framework, named FraSPA, in this research. The main limitations of

the complementary approaches in the light of the goal of FraSPA are their application

domain-specific nature and the requirement to write the applications from scratch. The

main lesson learned from the complementary approaches is that a widely accepted

framework should provide support for separation of concerns, fault-tolerance mechanism,

flexibility and extensibility. The lessons learned are embodied in the form of FraSPA

which is an application domain-neutral, component-based framework for generating

54

checkpointed parallel applications from existing sequential applications and high-level

specifications. FraSPA supports separation of concerns and does not entail any manual

reengineering of existing applications to achieve the objectives of parallelization or fault-

tolerance via checkpointing.

Currently the scope of FraSPA is limited to the generation of checkpointed

parallel applications for homogeneous HPC platforms. To obtain the bigger goal of

extending the framework for generating checkpointed parallel applications for

heterogeneous architectures and multiple programming languages (C/C++/FORTRAN),

it was required that the framework be extensible and flexible. If the framework is

extensible, the support for generating applications for heterogeneous architectures can be

added in the future without making any changes to the existing code. Currently, FraSPA

supports the synthesis of applications that are written in C/C++ as base languages.

However, because of its extensible nature, it can be extended to support generation of

applications written in FORTRAN as well. Through their work on generic aspect

weavers, Roychoudhury et al. [37, 81] have demonstrated a technique for achieving

extensibility in a framework. Because similar design principles are adopted for the

development of FraSPA, it can be inferred that FraSPA has the desired property of

extensibility to support other languages.

FraSPA is flexible and by using various components in isolation or together, it

can support the composition of parallel and checkpointed applications. For example, the

API for distributing the data amongst various processors can be used in conjunction with

the API for gathering the results or reducing the results without any restrictions. This

approach gives the end-user the flexibility to experiment with multiple communication

55

patterns and algorithms. However, the onus is on the end-user to correctly choose the

parallel operations to be inserted at a particular place in the base application.

The terms framework, extensibility, and flexibility as used in this dissertation are

defined below:

Framework: A framework is a software system that abstracts selected common

functionality in the form of generic code which can be specialized according to

the end-user’s needs. In essence, it is a consolidation of various generic code

components (e.g., rule generator, templates for communication patterns, and Ant

Scripts for invoking the PTE) for achieving the desired abstraction. The flow of

control (which component to use and when on the basis of the high-level

specifications) is automated and is not in the control of the user of the framework.

Extensibility: The property of the framework which allows the user to add extra

functionality at a later stage is called extensibility. In context of FraSPA,

extensibility is desired so that the support for multiple programming models (e.g.,

OpenMP, and OpenCL) and languages can be provided in future.

Flexibility: The property of the framework that allows the user to compose their

own design patterns from the existing components by assembling them in any

order is called flexibility. In the context of FraSPA, this means that there is no

restriction in the order of specifying the API for different parallel operations.

Also, there is no restriction imposed by FraSPA on the combination of various

parallel operations.

The rest of this chapter describes the overall approach, architecture, design, and

implementation of FraSPA. An overview of the overall approach for synthesizing

56

checkpointed parallel applications is presented in Section 3.1. Design details and the

high-level architecture of FraSPA are presented in Section 3.2 and the implementation of

FraSPA is described in Section 3.3. A detailed description of the main components,

concepts, and tools related to the design and implementation of FraSPA has already been

presented in Chapter 2. A summary of the chapter is presented in Section 3.4. The terms

“Source-to-Source Compiler” and “Program Transformation Engine” are used

interchangeably in this chapter.

3.1 Overview of the Approach

This research involves source-to-source transformation by the means of high-level

specifications provided by the end-user in the form of DSL code. As shown in Figure 3-1,

the DSL code is parsed by the Rule Generator to generate intermediate code. The

intermediate code is a set of rules (Generated Rules in Figure 3-1) that the Source-to-

Source Compiler (SSC) can comprehend. These rules contain the precise information

about the modifications desired by the end-user, and the place in the Existing Code where

these modifications should take effect. By applying the Generated Rules and other

optional code components (e.g., Design-Templates) the SSC transforms the Existing

Code into Transformed Code. In this research, both the Existing Code and Transformed

Code have the same base language (C/C++) but even if they were in different languages,

this approach would still work [33, 34].

The complete work-flow - from the first step, which is the parsing of the input

DSL code, to the last step, in which the transformed code is generated - is part of

FraSPA. The set of DSLs developed in this research serve as the interface between the

57

end-user and FraSPA. The end-users analyze their existing applications and can express

the transformations that they desire by the means of the DSL. The other steps responsible

for transformations are like a “black-box” to the end-users. Therefore, the approach used

in this research can be used to raise the level of abstraction of source-to-source

transformations. Through this approach, the end-users (including domain experts) can

express the specifications of what they intend to do (explicit parallelization and

checkpointing for fault-tolerance), and are freed from the burden of how their intentions

are materialized because low-level programming and source-to-source transformation

details are hidden from them.

Figure 3-1- High-Level idea behind the working of FraSPA

Approaches similar to the one used in this research, are being adopted by other

researchers [7, 73] who realize that the DSL-route has the potential to reduce both the

time-to-solutions and the complexities associated with HPC application development.

Most of the challenges identified in Chapter 1, can be mitigated with the approach

presented in Figure 3-1 because this high-level approach does not entail invasive manual-

reengineering of existing applications, is platform-independent, and also base-language-

independent. Unlike the approaches in [7 and 73], the approach adopted in this research is

application-domain neutral.

58

Before reaching the current DSL-based design of FraSPA, direct usage of source-

to-source transformations techniques for generating checkpointed parallel applications

was also explored. AOP has the potential for doing the desired code-weaving and

transformation. However, due to the limitations of the current implementations of AOP

languages (described in Chapter 2), a robust PTE was chosen in this research to carry out

the required transformations. Because the PTE is capable of doing non-invasive

transformation by itself, it could have also been used directly to transform the existing

application into a parallel or a checkpointed one. This would have obviated the extra

effort spent in developing the DSLs. However, PTEs are complex and difficult to learn

and use.

The PTE used in this research, described in Chapter 2, is DMS [33, 34]. The end-

user has to climb a steep learning curve in order to use DMS. It is also required to

develop an understanding of the base language grammar and the various tools available

through DMS. Of the many features and tools associated with DMS, the end-users should

at least have an understanding of RSL, PARLANSE, and the usage of AST API provided

with DMS in order to begin using the system for source-to-source transformations. The

debugging facility provided in DMS is very basic and the error messages are often

difficult to understand (e.g., foreign exceptions and ambiguity errors at runtime). Some

search patterns are difficult to specify directly in RSL rules. Hence, external patterns in

PARLANSE should be written and called from within the RSL rules.

To leverage the powerful source-to-source transformation capabilities of DMS

(in-built Lexer, Parser, Rule Analyzer and Pretty Printer), while avoiding the

complexities associated with its usage, an extra layer of abstraction in the form of DSLs

59

in the front-end was absolutely necessary. In summary, using DSLs in this research not

only helps in non-invasive reengineering of existing applications, platform-independence,

and base-language-independence, but also mitigates the complexities involved with

source-to-source transformation techniques.

To fulfill the requirements in the current and future scope of this research, the

framework had to be extensible and flexible. In case, a concept or a feature is missing

from the framework, it should be possible to later add that to the framework without

modifying the existing code. FraSPA currently supports the abstractions for some

commonly used MPI primitives. The support for various parallel operations (viz.

distribute, gather, and reduce) was incrementally added to the framework. If support for

additional parallel operations is required in future, the same can be added to FraSPA

without modifying the code for the supported parallel operations.

The components in the FraSPA design are decoupled from each other so a

component in a particular layer can be replaced with another without impacting the

components in other layers. For example, if DMS in the back-end is replaced with

another PTE, it will not impact the implementation of the DSL in the front-end. Likewise,

if the implementation scheme of the DSL changes, it will not impact the implementation

of the rules for the PTE in the backend. However, the mapping between the front-end and

the backend (i.e., the middle layer) will require changes if either the front-end or the

backend undergoes a change. This decoupling between the components allows the

framework to evolve with the evolving solution space and will be useful when FraSPA

needs to be extended.

60

3.2 Framework Design

A set of DSLs has been developed in this research to provide a high-level

interface between the end-users and FraSPA. These DSLs are meant for obtaining the

specifications of desired parallel operations and ALC from the end-users. The DSLs are

known as Hi-PaL (High-Level Parallelization Language) and DALC (DSL for

Application-Level Checkpointing). As it can be noticed in Figure 3-2, the process of non-

invasively generating checkpointed (and hence fault-tolerant) parallel applications

through FraSPA involves three steps that the end-user should undertake:

1. Identify the concurrency in the sequential application and express it using Hi-PaL.

2. Obtain the parallelized version of the application from FraSPA.

3. Analyze the parallel application and provide the specifications for CaR through

the DALC.

Figure 3-2- Steps for generating a checkpointed parallel application using FraSPA

61

To identify the concurrency in their application, the end-users should know the

logic of the existing sequential application. They should know the usual terminology used

in the parallel programming domain – e.g., distribute, gather, and reduce. A set of

guidelines has been developed for assisting the end-user in selecting the standard parallel

operations available through FraSPA and expressing concurrency through Hi-PaL. In

case the end-users are not interested in making their generated applications fault-tolerant

via checkpointing, they might not want to proceed to step 3. However, if they wish to

make the generated or existing parallel applications fault-tolerant via checkpointing, they

must analyze the application and provide the CaR-specifications through DALC.

The mechanism for translating the Hi-PaL and DALC code into the actual code

for parallelization and checkpointing is the same. As a summary – the rule generator

translates Hi-PaL or DALC code into the rules for a SSC. The generated rules, design-

templates (codified design patterns for inter-process communication, data distribution,

synchronization etc.) and the existing (sequential or parallel) application are passed as

inputs to the compiler at the back-end. The compiler modifies the AST of the existing

application so that the parallel and/or checkpointed version of the application can be

generated while keeping the existing application intact.

Figure 3-3 provides an overview of the internal components of FraSPA. As noted

in Figure 3-3, FraSPA has a three-layered architecture comprising of front-end, middle-

layer and backend. A description of each of the layers is as follows:

1. Front-End: This is the primary interface between the end-user and FraSPA. It

comprises of the:

62

a. abstractions for expressing the specifications for explicit

parallelization. (Hi-PaL)

b. abstractions for expressing the specifications for

checkpointing. (DALC)

2. Middle Layer: This layer is not visible to the end-user and is used for

translating the high-level abstractions obtained from the front-end into the

intermediate code to be used by the backend. (Rule Generator)

3. Backend: This layer is also hidden from the end-user and is required for code

instrumentation – that is, for inserting the code for parallelization and

checkpointing into the existing sequential or parallel application on the basis

of the intermediate code generated by the middle layer. (PTE)

Figure 3-3- Three layered diagram of the FraSPA

63

In the following lines, the overall work-flow of FraSPA is explained again in

context of its internal components and the layers of FraSPA. The Hi-PaL code provided

by the end-user is translated into the rules by the means of a Rule Generator. These rules

are analyzed by the SSC (also known as PTE) for generating and weaving the desired

code for parallelization or checkpointing in the existing sequential or parallel application.

The Rule Generator consists of templates written in ATL [43] and Ant Scripts. The

generated rules are specific to the application that the end-user wants to parallelize and

have the required C/C++/MPI code for parallelization and checkpointing.

The code in the rules is in the form of the nodes of abstract syntax tree so that the

PTE, without any manual intervention, can analyze and transform the sequential

application into a parallel one. The glue code, also written as Ant Scripts, is responsible

for invoking the PTE and making the generated code (parallel or checkpointed) available

to the end-user (step 2 and 4 in Figure 3-2). The design-templates that are a part of

FraSPA are codified design patterns for inter-process communication, data distribution,

and synchronization. The PTE infers which design-template to include in the process of

parallelization on the basis of the generated rules and the template can be backtracked to

the mappings available in the rule generator. The checkpointed parallel application thus

obtained can be compiled and run like any manually-written parallel application. Figure

3-3 shows the abstractions for expressing the specifications for explicit parallelization

and checkpointing that have been built in FraSPA through Hi-PaL and DALC. Instead of

any particular application-domain the domains of these DSLs are explicit parallelization

and ALC per se. Hi-PaL is described in Section 3.2.1, DALC is described in Section

64

3.2.2, and the rule generator is described in Section 3.2.3. All other components have

been described in Chapter 2.

3.2.1 Hi-PaL - DSL for Parallelization

A DSL for specifying parallel computations has been developed in this research

and is called Hi-PaL. Because the specifications for parallel computations can vary from

application to application, different application-domains (e.g., image processing,

evolutionary algorithms, and stencil-based computations) were evaluated to build the key

abstractions in the form of a DSL. The general structure of the Hi-PaL is shown in Figure

3-4. The mandatory structural elements of the Hi-PaL code are shown in bold-face in

Figure 3-4. The italicized elements inside angular brackets are the variable structural

elements of the Hi-PaL code (e.g., APIs for parallelization, and statements for pattern

matching). The “&&” operator is used for creating powerful match expressions. The Hi-

PaL code will not compile if any of the mandatory keywords are missing and appropriate

error messages are generated. An excerpt of the production rules of Hi-PaL grammar is

shown in Figure 3-5.

Parallel section begins <hook type> (<hook pattern>) mapping is
<mapping type> {
<operation along with the arguments> <hook>
&& in function (<function name>)
}

Figure 3-4- General structure of the Hi-PaL code

It can be noticed from the grammar in Figure 3-5 that the specification for

parallelization (PARSPECS) consists of a parallel task (PARTASK) and the constraints

(PARCONDITION) for parallelization. The parallel tasks defined in this grammar consist of a

subset of the standard operations provided through MPI. For example, reducing the data

65

(PARREDUCE, PARALLREDUCE), gathering the data from the processors (PARGATHER), and

distributing the data amongst the processors (PARDISTRIBUTE). Each parallel task can be

broken down further into the basic elements of the grammar. As an example, consider the

rule for reducing the data. According to the Hi-PaL grammar, the specification of the

reduction operation (PARREDUCE) consists of the specification of the type of reduction

operation (REDTYPE), the data type of the variable being reduced (DATATYPE) and the name

of the variable to be reduced (REDVARIABLE).

PARSPECS ::= PARTASK PARCONDITION

PARCONDITION ::= {&& HOOK PATTERN}

HOOK ::= HOOKTYPE HOOKELEMENT

HOOKTYPE ::= before|after|around|in

HOOKELEMENT ::= statement|FCT

FCT ::= function_call|function_execution

PARTASK ::= PARCOMPUTE|PARREDUCE|PARALLREDUCE|PARFOR|PARGATHER|

PARDISTRIBUTE|PAREXCHANGE|PARBROADCAST|PARWRITE|PARREAD

PARREDUCE ::= REDTYPE DATATYPE “(“ REDVARIABLE “)”

REDTYPE ::= REDUCESUM|REDUCEPRODUCT|REDUCEMINVAL|REDUCEMAXVAL

PARFOR ::= FORINITSTATEMENT; FORCOND; FOREXPRESSION

FORINITSTATEMENT ::= INITSTATEMENT|ANYSTATEMENT

INITSTATEMENT ::= FORVAR OPERATOR LIMIT

OPERATOR ::= LESSTHANEQUAL|GREATERTHANEQUAL|EQUALTO|LESSTHAN|GREATERTHAN

FORCOND ::= FORCONDPRESENT|FORNOCOND|ANYCOND

FORCONDPRESENT ::= FORVAR OPERATOR LIMIT

LIMIT ::= PARCOMPUTELIMITS

FORLOOPEXPRESSION ::= LOOPEXPRESSION|ANYEXPRESSION

LOOPEXPRESSION ::= FORVAR STRIDE

STRIDE ::= PLUSPLUS|MINUSMINUS

PARCOMPUTELIMITS ::= LOWERLIMIT|UPPERLIMIT|VARIABLEASLIMIT

Figure 3-5- Excerpt of the production rules in Hi-PaL

66

Currently, support for a subset of reduction operations is provided in FraSPA and

those are MPI_SUM (REDUCESUM), MPI_PRODUCT (REDUCEPRODUCT), MPI_MAX

(REDUCEMAXVAL), and MPI_MIN (REDUCEMINVAL). Additional operations can be added by

extending the abstract and concrete syntax of Hi-PaL.

The end-users using Hi-PaL need not have any understanding about its grammar.

The grammar-level details of Hi- Pal are only important for programmers who wish to

extend the language. With Hi-PaL, without knowing anything about MPI API or its

usage, end-users can specify the tasks required for parallelizing the existing sequential

applications at a very high-level. Therefore, a set of Hi-PaL API has been developed for

the commonly used parallel tasks like data distribution, data collection, reading or writing

the data in parallel, parallelizing a for-loop, etc.

An excerpt of some of the Hi-PaL API and their brief description (type of MPI

routine or the parallelization code associated with the API) is shown in Figure 3-6. The

API-names are descriptive enough to explain their purpose. For example,

ReduceMaxValInt(<variable name>), means that the variable specified by <variable

name> is of type integer and it needs to be reduced on one node (by default the node with

the rank equal to zero) such that while reducing, the maximum value of the variable

calculated by the individual processors is selected (MPI_MAX operation). Detailed

guidelines can be provided to the end-users to help them select the appropriate API and to

simplify the process of learning and using Hi-PaL. The end-users are, however, expected

to be familiar with the logic of the sequential application and should be well acquainted

with the concept of concurrency.

67

Hi-PaL API Description
ReduceSumInt(<variable name>) MPI_Reduce with sum operation

ReduceMaxValInt(<variable name>) MPI_Reduce with max operation

AllReduceSumInt(<variable name>) MPI_Allreduce with sum operation

DistributeVectorInt(<vector name>,
<num of rows>)

MPI_Scatterv to distribute the
vector

Gather2DArrayInt(<array name>, <num of
rows>, <num of columns>)

MPI_Gatherv to collect the data

BroadCast2DArrayInt(<array name>, <num
of rows>, <num of columns>)

MPI_Broadcast to broadcast the
data

Exchange2DArrayInt(<array name>, <num
of rows>, <num of columns>)

Exchange neighboring values in
stencil-based computations

Parallelize_For_Loop where
(<for_init_stmt>;<condition>;<stride>)

Parallelize for-loop with
matching initialization
statement, condition and stride

Figure 3-6- Excerpt of the Hi-PaL API

The syntax of Hi-PaL is similar to the syntax of other aspect languages [18]. The end-

user needs to specify the hooks in the sequential application where the parallel operation

needs to take effect. The complete hook definition includes the specification of hook type

along with a search pattern (which is a statement in the sequential application). There are

three types of hooks- before, after, and around- and every syntactically correct statement

in a sequential application can qualify as a search pattern in Hi-PaL. In contrast to Hi-

PaL, various language extensions of AOP (e.g., AspectC++ and AspectC) only allow for

the specification of function call, function execution, object construction, and object

destruction for search purposes. The program statement specified as a hook serves as an

anchor before or after which the code for parallelization needs to be woven. With the

around hook type, the end-user gets the flexibility to delete or modify a particular

statement in the sequential application. For example, if a print statement in the sequential

application is not desired in the parallel version of the application, but needed as an

anchor to weave some code for parallelization, the end-user can use an around type of

68

hook on that statement. The generated code will have the print statement replaced by the

code for parallelization.

In addition to the hook, the end-user is also required to specify the desired type of

data mapping in the parallel application. Data mapping means the mapping of arrays to

the memories of processors and it can impact the performance of applications [70]. Some

examples of the data distribution schemes are block (or linear), cyclic, block-cyclic [70].

Figure 3-7 shows a sample program written in Hi-PaL. This sample code demonstrates

the method of specifying the broadcast operation on a matrix named life in function

main. A one-to-one mapping of the general structure of Hi-PaL code (Figure 3-4) and a

sample Hi-PaL code (Figure 3-7), is presented in Figure 3-8. This one-to-one mapping

illustrates the simplicity of Hi-PaL. The standard structural elements (e.g., Parallel

section begins after) are going to remain the same in all the Hi-PaL programs. More

examples of the usage of Hi-PaL are presented in Chapter 4.

Parallel section begins after ("SEED = atoi(argv[4]);") mapping is
Linear{
ParBroadCast2DArrayInt(life, M, N) after statement
("life = initMatrix<int>(life, M, N);") && in function ("main")
}

Figure 3-7- Sample Hi-PaL code showing the broadcast operation specification

General Structure of Hi-PaL code
(Figure 3-4)

Sample Hi-PaL code
(Figure 3-7)

Parallel section begins Parallel section begins
<hook type> After
(<hook pattern>) ("SEED = atoi(argv[4]);")
mapping is mapping is
<mapping type> Linear
{ {
<operation along with the arguments> ParBroadCast2DArrayInt(life,M,N)
<hook> after statement ("life = …)
&& in function && in function
<function name> ("main")
} }

Figure 3-8- One-to-one mapping of the Hi-PaL structural elements into the sample code

69

3.2.2 DALC- DSL for Application-Level Checkpointing

The first step in developing any DSL is analyzing the domain (in this case ALC) for

which it is being designed. During the domain analysis phase of developing the DALC, a

survey of technical literature and existing implementations [49-56, 82-84] was done to

obtain an overview of the terminologies and concepts related to the ALC-domain.

Commonly used terms and their relationships were used to develop the domain lexicon.

Commonalities and differences were observed in the process of implementing the CaR

mechanism across applications in various domains and these are referred to as features

from this point onward in this chapter. Some of the features in the ALC-domain and their

relationships are shown as expressions in Figure 3-9.

ChckptgPack: all(Checkpoint, Restart)

Checkpoint: all (CheckPointCondition, CheckPointCode)

CheckPointCondition: all(Hook,Pattern,Frequency, loopVar?,CaRType)

CaRType: one-of(Centralized, Distributed, Sequential)

CheckPointCode: all(SaveVarType, saveVarArg)

SaveVarType: one-of (SaveInt, SaveDouble, SaveChar, …)

Restart: all (RestartCondition, RestartCode)

RestartCondition: all(Hook, Pattern)

RestartCode: all(ReadVarType, restartVarArg)

ReadVarType: one-of (ReadIntVarFromFile, ReadDoubleVarFromFile, …)

Hook: all (HookType, HookElement)

HookType: one-of(afterHookType, beforeHookType, aroundHookType)

HookElement: one-of(Call, Execution, Statement)
Figure 3-9- Excerpt of the features identified in the ALC-Domain

As shown in Figure 3-9, the feature ChckptgPack indicates that this DSL package

allows two activities, Checkpoint and Restart. If the end-user wants to Checkpoint an

application then the checkpoint condition, CheckPointCondition, and the code that

should be checkpointed, CheckPointCode, are specified. The CheckPointCondition

70

includes the specification of the points where the code for checkpointing should be

inserted (Hook and Pattern). It also includes the frequency of checkpointing

(Frequency) and the type of CaR (CaRType). The expression Hook is made up of

HookType and HookElement. Together with the Pattern (which is a search string),

these two syntax elements identify the places in the application code where the

checkpointing code should be inserted.

In case, checkpointing is required inside a loop, the name of the loop variable,

loopVar, should also be specified. This is an optional feature and is represented by “?”.

The type of the desired CaR (Centralized, Distributed or Sequential) should also

be specified as a part of CheckPointCondition.The CheckPointCode includes the

specification of the type and name of the variable or data structure to be checkpointed.

Depending upon the variable or data structure, the end-user is expected to specify a list of

parameters. For example, if the end-user intends to save an integer variable, SaveInt is

selected from the list of SaveVarType. The other parameters required from the end-user

in this case would be the name of the variable, and the name of the file in which the

variable needs to be saved.

An excerpt of the API developed for capturing the details about the variable or

data-structure to be saved is presented in Figure 3-10. If the end-user intends to save a

two dimensional array of type integer (specified by SaveIntArray2D), then apart from

the name of the array and the file name, the dimension of the array also needs to be

specified. Likewise, during the restart phase, as per the expression for the feature

Restart, the end-user should specify the RestartCondition and the RestartCode. As

in the case of CheckPointCondition, the RestartCondition includes the specification

71

of the Hook and Pattern. The Hook and Pattern are used together to identify the place

where the restart code should be inserted. The RestartCode specification includes the

description of the variable or data structure being read, the name of the variable to be

initialized with the value stored in the restart file and the name of the restart file. If the

restart file exists, then the variable is initialized by the value stored in the restart file, else,

the program proceeds with the normal initialization process.

SaveInt(<variable name>, <file name>)

SaveIntArray1D(<array name>, <number of columns>, <file name>)

SaveIntArray2D(<array name>, <number of rows>, <number of columns>,

<file name>)

ReadIntVarFromFile(<variable name>, <file name>)

ReadIntArray1DFromFile(<array name>, <number of columns>, <file name>)

ReadIntArray2DFromFile(<array name>, <number of rows>, <number of

columns>, <file name>)

Figure 3-10- Excerpt of the API in DALC

The DALC was designed from scratch with no commonality with the existing

language. However, like Hi-PaL, DALC also borrows some concepts and constructs from

the AOP techniques. Similar to the concept of advice in AOP, the DALC has a notion of

a well-defined Hook (shown in Figure 3-9) which is used as a handle to a specific point in

the program flow. A Hook can be of one of the following types: after, before, and around.

A Hook of type after has the same significance as an after advice in AOP. The before and

around type correspond to the before advice and the around advice in AOP. It should be

noted here that the around advice is implemented differently from its implementation in

the Hi-PaL code. In Hi-PaL, the join point specified in the around advice gets entirely

deleted, whereas in the DALC, the statement is preceded or succeeded with other code

(see the Poisson Solver test case in Chapter 4). This advice is especially useful while

72

providing the code for restart mechanism because it is required to weave an if-else

statement around the statement that is marked as the Hook for around advice and not to

delete it. The mechanism for deleting a line might not be required for doing CaR and

therefore no extra functionality for deleting a statement has been provided currently in

DALC. Apart from the type, a hook definition also includes the specification of the

pointcut

Unlike many language extensions of AOP, in this DSL any syntactically correct

program statement can be specified as a join point. A partial list of the type of join points

that can be specified using this DSL are: function call, function execution, expression

statement, compound statement, selection statement, and iteration statement. These

different join points give different granularity of control to the end-user. For example, in

case the join point is of type function execution, then the end-user gets control of the

execution point of the function such that the behavior and structure of the entire code in

the function body can be modified if desired. As opposed to function execution, if any

one particular statement in the function needs to be modified, the join point should be of

type statement (examples of allowed statement types are expression statement and

iteration statement).

.

Based on the way the function execution and function call join points are

implemented, they can differ in the scope of action. The scope of function call type of

join point starts with the call to the function and lasts tills the program control returns

from the function. The scope of function execution type of join point starts with the

execution of the code in the body of the function and lasts till the last line of the code in

the function body. The DSL keywords for expressing a pointcut are call, execution, and

73

statement along with a search pattern. An example of a Hook

around statement ("start = 0;")

definition along with the

search pattern would be:

In this example, the statement, ("start = 0;"), serves as a join point of type around

One of the most important steps during the design stage was choosing a structure for

DALC code constructs. In DALC, the user specifies the variant features and the editor

automatically generates the constant features (through the means of a wizard explained

later in this chapter). As per the design, the conditions and the code for checkpointing

should be provided by the end-user in the code block following the keyword

beginCheckpointing. The conditions and the code for restart should be provided by the

end-user in the code block following the keyword beginInitialization.

.

Apart from deciding the structure of the language constructs, the valid and invalid

combinations of the features were also identified in the design phase. For example, any

attempt to specify the code pertaining to the restart mechanism (e.g.,

ReadIntVarFromFile) should not be allowed in the block following the keyword

beginCheckpointing. Therefore, beginCheckpointing and ReadIntVarFromFile are

invalid combinations of the DSL features. The valid and invalid combination of features

is called configuration knowledge [19] and is required during the DSL implementation

phase.

The basic structure of the DALC code for checkpointing is shown in Figure 3-11. The

place-holder for the variant part, provided by the end-user, is depicted by “< >”. The

Hook is a statement or function call or function execution before, after or around which

the checkpointing or restart functionality is desired. The Pattern of the Hook and the

74

Frequency of checkpointing, which is an integer value, are also required as a part of

the CaR-specification. The “&&” operator is used to create a powerful expression for CaR-

specifications. The loopVar shown in Figure 3-11 is an optional structural element and is

used only if the variable or data structure meant to be checkpointed is inside a loop. The

datastructures and variables to be checkpointed are specified within “{” and “}”.

beginCheckpointing:

<Hook> <Pattern> && (Frequency = "<#>") &&(loopVar ="<>")

&& <CaRType>{

<checkpointing code>

}

Figure 3-11- Basic structure of the DALC code for checkpointing mechanism

The basic structure of the DALC code for restart is shown in Figure 3-12. The

code block for restart requires the specification of Hook and Pattern. The datastructures

and variables to be read from a file are specified within “{” and “}”.

beginInitialization:

<Hook> <Pattern> {

<restart code>

}

Figure 3-12- Basic structure of the DALC code for restart mechanism

1. double computepi(int start, int end, double h) {

2. double mysum = 0.0;

3. for (int i=start; i<=end; i++) {

4. double x = h * ((double)i - 0.5);

5. mysum += 4.0 / (1.0 + x*x);

6. }

7. return h*mysum;

8. }

Figure 3-13- Function to compute the value of

75

A simple function, computepi, for computing the value of pi (i.e.,

is shown in Figure 3-13 to illustrate the DALC code to be provided. If the variable mysum

needs to be checkpointed after the execution of the statement at line # 5, at a frequency of

every 10 iterations of the for-loop at line # 3 of Figure 3-13, then the corresponding

DALC code for specifying this intention is shown in Figure 3-14. The keyword

beginCheckpointing: at line # 1 of the code marks the beginning of the checkpointing

block and is compulsory. The code at line # 2-4 of the Figure 3-14 expresses the

checkpointing condition which in this case is to save the value of the variable mysum,

every 10th

1. beginCheckpointing:

iteration, wherever the initialization variable in the for-loop is i. The code at

line # 6 of Figure 3-14 means that the variable named mysum of type double is being

saved in a file named restartMysum. The iteration number is also stored in the restart

file.

2. after statement("mysum += 4.0 / (1.0 + x*x);")
3. && (frequency = 10)
4. && (loopVar = "i")&& (CaRType = Sequential)
5. {
6. SaveInt(i, "restartMysum")
7. SaveDouble(mysum, "restartMysum")
8. }

Figure 3-14- Sample DALC code for checkpointing

During the restart phase, the variable mysum and the starting value of iteration

count, start, are initialized from latest checkpoint stored in the file restartMysum. The

DALC code for specifying this intent is shown in Figure 3-15. The keyword

beginInitialization: at line # 1 of the code is compulsory. As per the DSL design, if

the end-user attempts to provide the CaR-specifications without providing the necessary

keywords, the parser will complain about it and the code generation process will not

proceed.

76

1. beginInitialization:
2. after statement ("double mysum = 0.0;")
3. {
4. ReadDoubleVarFromFile (mysum, "restartMysum")
5. ReadIntVarFromFile (start, "restartMysum")
6. }

Figure 3-15- Sample DALC code for restart

The DALC code needs to be translated into the source code of an existing

language, usually called the base language. The DALC code in this research is

transformed into the base language source code, which is C/C++, via DMS and

transformation languages. First, the DALC code is translated into an intermediate code

for the DMS via ATL. Using the intermediate code (generated rules), the DMS generates

the code in the base language and inserts it automatically into the base application. The

example code shown in Figure 3-13 is checkpointed by FraSPA, on the basis of the

specifications provided in Figures 3-14 and 3-15. The output is shown in Figure 3-16.

The code to save the values of the critical variables is on line # 8-13 of the code of Figure

3-16.

1. double computepi(int start, int end, double h) {
2. FILE* newInputFile;
3. /*other code*/
4. double mysum = 0.0;
5. for (int i=start; i<=end; i++) {
6. double x = h * ((double)i - 0.5);
7. mysum += 4.0 / (1.0 + x*x);
8. if (i % 10 == 0){
9. newInputFile = fopen("restartMysum", "w");
10. fprintf(newInputFile, "%d", i);
11. fprintf(newInputFile, "\n");
12. fprintf(newInputFile, "%lf", mysum);
13. fclose(newInputFile);
14. }
15. }
16. return h*mysum;
17. }

Figure 3-16- Checkpointed function to compute the value of

With minimum effort, the DSL can be extended to add the facility to checkpoint

additional data structures that are currently not covered in its present scope. In order to

77

promote code correctness and to reduce coding complexity, a wizard-driven GUI for

DALC code generation (Figure 3-17) has been developed. The end-user can enter the

CaR-specifications through the GUI instead of typing them manually. For example, the

end-user can select one of the features from the list of ReadVarType features and provide

the parameters (like variable name, restart file name). The corresponding DALC code,

with the API and parameters, is generated automatically. On the basis of the selections

made in the panel for providing checkpointing-specifications, the panel for restart-

specifications can be generated dynamically. An outline of the workflow involved in

providing the CaR-specifications is shown in the panel on the left-hand-side of the GUI.

A summary page showing the CaR-specifications can be presented to the end-user in the

end for the purpose of overview.

Figure 3-17- Wizard for generating the DALC code

This GUI was developed using the API and user-interface from SwingLabs, a

subproject supported by Open source Java projects, an open source initiative from Sun

78

Microsystems and hosted at https://wizard.dev.java.net/quickstart.html. Because wizard

content needs to vary dynamically (contents on the next panel depends upon the contents

of the previous panel/panels), nesting of wizards within wizards was done. Input

validation can be easily programmed and the process of developing this wizard-driven

GUI was itself wizard-driven! This wizard can be run from any platform that has a java

virtual machine installed. A similar GUI can be developed for making the process of

obtaining the Hi-PaL specifications from the end-users wizard-driven. The benefits of

using the DALC are summarized below:

1. Non-invasive ALC of existing applications.

2. Mitigation of the complexity associated with the usage of a PTE.

3. High-level of abstraction for source-to-source transformation.

4. Decoupling of the problem and solution space, i.e., the CaR-specifications are

decoupled from the actual implementation of the CaR mechanism.

5. Prevention of code tangling and thus reduction in the effort involved in software

maintenance.

3.2.3 Rule Generator

A Rule Generator lies in the middle-layer of FraSPA and is required for dynamically

generating the rules for the DMS in the backend. It translates the Hi-PaL or DALC code

provided by the end-user into the RSL rules that the DMS can analyze. These generated

rules are then used by the DMS for doing the code instrumentation – that is inserting the

relevant C/C++/MPI code for parallelization and checkpointing into the existing

applications. The Rule Generator not only contains the domain-knowledge [19] for

generating the appropriate rules from the Hi-PaL and DALC code, but also does the task

79

of invoking the DMS, handling the input to DMS, and getting the output from the DMS

to the end-user workspace. It comprises of ATL code, Object Constraint Language (OCL)

code, metamodel and textual concrete syntax of RSL, and Ant Scripts. A description of

each of these elements has been provided in Chapter 2.

3.3 Framework Implementation

Both Hi-PaL and DALC were implemented using a MDE platform called AMMA

(refer Chapter 2). The AMMA platform was preferred for DSL development due to the

familiarity with the same. AMMA provides KM3 and TCS for writing the abstract and

concrete syntax of the DSL – while KM3 itself is like a DSL for writing new DSLs, TCS

is like a grammar-template that needs to be extended. The usage of AMMA-based front-

end further makes the process of extending FraSPA convenient. The extension of this

MDE-based front-end might entail embedding the new grammar rules of the DSL being

extended in the form of classes and templates in KM3 and TCS respectively. The already

existing classes and templates will not require any modifications.

Each production rule in the Hi-PaL and DALC grammar was coded as classes in

KM3 and templates in TCS. A snippet of the KM3 code for modeling the grammar rule

for PARREDUCE (refer Figure 3-5) in Hi-PaL is shown in Figure 3-18. It can be noticed

from Figure 3-18 that ParTask is defined as an abstract class. All the classes for

specifying MPI tasks (e.g., reduce, gather, and distribute) are required to extend this

abstract class. The ParReduce class extends ParTask and contains references to other

classes - RedVarType, and RedVarArg. Because there are multiple options available for

the type of reduction operation, the class RedVarType is modeled as an abstract class.

80

Hence, the classes modeling the different types of reduction operation (e.g., MPI_MAX

or MPI_MIN) are required to extend the RedVarType class. In essence, if there are

multiple values possible for a particular element in a grammar rule, then that element is

modeled as an abstract class and a separate class (which can be either abstract or

concrete) extending this abstract class is written for every possible value that the element

can take.

class ParSpecs extends LocatedElement {
reference parTask [*] container : ParTask;
reference parCond[*] container : ParCond;

}
abstract class ParTask extends LocatedElement {
}
class ParReduce extends ParTask {

reference redVarType container : RedVarType;
reference varArgs[*] container : RedVarArg;

}

class RedVarArg extends LocatedElement {
attribute argument : String;

}

abstract class RedVarType extends LocatedElement {
}
class ReduceSumInt extends RedVarType {
}

Figure 3-18- Excerpt of the KM3 code for modeling the ParReduce grammar rule

While the KM3 metamodel provides the abstract syntax of the language being

developed, the concrete syntax of the language is specified in a separate model that is

expressed using TCS. In a TCS model, of main interest to a language developer are the

“Class templates” and the “Operator table”. For every class represented in the KM3

specification, it is required to have a corresponding template definition in TCS. The

“Operator table” is used for defining the syntax of DSL using operators. The terminal

tokens, like separators and brackets, are a part of the TCS model. If the default lexer is

not satisfactory, then the “Primitive template” in TCS can be modified as per the

81

requirement. If additional symbols are required then the class for “Special symbols”

should be modified. An excerpt of the concrete syntax of Hi-PaL, as defined in TCS, is

shown in Figure 3-19. The keyword template is used as a part of the definition of all the

KM3 classes as templates. The name of the KM3 class (ParReduce) is specified along

with the name of the class elements (redVarType and varArgs) defined in the KM3

model. The “,” is to be used as a separator between the arguments, then the same is

specified as follows:

{separator = ","}

In the template definition of ParReduce note the specification of "(" and ")". These

tokens could not be a part of KM3 model but are necessary for specifying the structure of

the grammar rule and hence are a part of the TCS template definition.

template ParSpecs
: parTask parCond {separator = "&&"}
;

template ParTask abstract;

template ParReduce
: redVarType "(" varArgs{separator = ","} ")"
;

template RedVarArg
: argument
;

template RedVarType abstract;

template ReduceSumInt
: "ReduceSumInt"
;

Figure 3-19- Excerpt of the TCS code for modeling the ParReduce grammar rule

Apart from using AMMA platform for developing the front-end (i.e., Hi-PaL and

DALC), it was also used for capturing the semantics of the RSL (used in the backend by

the DMS) as a metamodel. This step was required for doing the metamodel-to-metamodel

translation by using the ATL (part of Rule Generator in FraSPA) in the AMMA toolsuite.

82

Roychoudhury et al. have also demonstrated the usage of AMMA platform alongside

DMS and as mentioned in Chapter 2, the design of FraSPA is influenced by the design of

their framework for generic aspect weaving [37, 81]. In summary, the fundamental nature

of Hi-PaL and DALC used in the front-end, and the RSL used in the backend is captured

through metamodels written in KM3 and TCS. The metamodels for the Hi-PaL and

DALC in the front-end are known as “source metamodels” whereas the metamodel for

the RSL to be used in the backend is called the “target metamodel”. The high-level

specifications provided by the end-user, in the form of Hi-PaL or DALC code, are first

injected into the DSL metamodel. These high-level specifications can be considered as a

terminal model in the MDE parlance. The specifications are validated against the

metamodel during the process of injection. With the help of the ATL transformations and

Ant Scripts, the code injected in the DSL metamodel is translated into the RSL terminal

model (RSL rules). The process of obtaining the RSL terminal model from the RSL

metamodel is called extraction. The RSL rules thus generated are used by the DMS for

weaving the parallelization or checkpointing code into the existing application. All these

steps result in the transformed code (parallel or fault-tolerant) and the complete workflow

of the process of transformation through models is pictorially shown in Figure 3-20.

Figure 3-20- Extraction and injection of models in FraSPA

83

The mapping of the elements of the DALC into the metamodel elements is

pictorially shown in Figure 3-21. The KM3 classes corresponding to the syntactic

elements of the DALC code are shown on the left hand-side of Figure 3-21. There are

three concrete classes for the hook type (before, after, around) and the DALC code for

checkpointing shown in Figure 3-21 uses an around type of hook on a statement. Each

variable or data structure that should be checkpointed is mapped into a ChkStmt class.

The data members of this class are the type and the name of the variable or data structure

to be used, and additional parameters like the name of the restart file or the dimensions of

the array. In the example code in Figure 3-21, the line SaveInt(k, restart)of the

DALC code implies that a variable of type integer is being checkpointed and the variable

type is mapped into the KM3 class called as SaveInt. The parameter k is the name of the

variable that should be checkpointed and the parameter restartK is the name of the file

in which the checkpointing data should be saved.

The set of ATL rules (ATL + OCL code), Ant Scripts, and RSL metamodel make

the Rule Generator. A snippet of the ATL rule is shown in Figure 3-22. As can be noticed

from Figure 3-22, the ATL rule consists of the description of the source metamodel

(DSL) and the target metamodel (RSL) along with the mapping of the syntactic elements

from the source metamodel to the target metamodel. The source and target metamodels

are specified as from and to in the rule. Each type of RSL rule (e.g., for modifying a for-

loop, for setting up the MPI environment, and for performing the gather operation), is

modeled as a separate ATL rule using the elements of ATL syntax and OCL expressions.

84

Figure 3-21- DSL code mapped into KM3 model

The ATL rule snippet that is shown in Figure 3-22 is meant for generating the

RSL rule for automating the insertion of the MPI code for reduce operation in the

existing sequential application. The compulsory elements of the RSL rule (e.g.,

‘statement_seq' and 'add_var') are hard-coded in the ATL rule. The variable parts

that are application-specific are automatically derived from the terminal model (or the Hi-

PaL code) provided by the end-user. It can be observed from the code snippet shown in

Figure 3-22 that the OCL expressions are used for traversing the nodes of the terminal

model for obtaining the values of the variables in the ATL rule. The OCL expressions

shown in Figure 3-22 are meant to derive the name of the variable to be reduced from the

terminal model. A suffix “_Fraspa” is added to the name thus obtained from the front-

end specifications. The data type of the variable to be reduced is also derived from the

85

terminal model. Both these derived values are used for declaring a variable in which the

global value of the MPI operation (e.g., MPI_SUM or MPI_MIN) is stored during the

reduce operation.

module PSDL2RSL;
create OUT : RSL from IN : PDSL;
rule PSDL2RSL {

from
s : PDSL!PDSL
to
t : RSL!RSL (

domain <- dom,
rslelems <- Sequence {pat1, expat1, rule1, pat2, pat3, expat2, rule2},
ruleset <- rs

),
dom : RSL!Domain(

dname <- 'Cpp'
),
rs : RSL!RuleSet (

rsname <- 'r',
rname <- Sequence {'extend_decl', 'add_statements'}

),
pat1 : RSL!Pattern(

phead <- ph,
ptoken <- 'statement_seq',
ptext <- pt

),
ph : RSL!PatternHead (

name <- 'add_var'
),
pt : RSL!SimplePatternText (

ptext <- s.parSpecs->iterate(parSpec; c : String = ''| c +
if
(parSpec.parTask->first().oclIsKindOf(PDSL!ParReduce))

then
if
(parSpec.parTask->first().redVarType.oclIsTypeOf(PDSL!ReduceMaxValInt)
or parSpec.parTask->first().redVarType.oclIsTypeOf(PDSL!ReduceSumInt)
or ...)
then
'\\>Cpp\\:[simple_declaration = decl_specifier_seq

init_declarator_list\';\'] int
\\>Cpp\\:[declarator_id = id_expression]'

+ parSpec.parTask->first().varArgs->first().argument + '_Fraspa
\\<\\:declarator_id ;

\\<\\:simple_declaration'
else if (...

Figure 3-22- ATL code snippet

The Ant Scripts are used in FraSPA for saving the KM3 model in the Ecore

format, transforming the source model to target model on the basis of the specified ATL

rule, serializing the target model into text, and for debugging purposes. They are also

86

used as the glue code for copying the files (RSL rules and sequential code) from AMMA

platform to the required folders in the DMS installation, for invoking the DMS engine for

code weaving, and for copying the generated parallel code back to AMMA platform.

Therefore, the Ant Scripts are used for automating the complete workflow in FraSPA. A

snippet of the RSL rule generated by FraSPA for extending the variable declaration

section in the existing sequential application is shown in Figure 3-23. An example of

using this new variable can be in storing the global result of performing a reduce

operation.

default base domain Cpp~VisualCpp6.
pattern add_var() : statement_seq =
"\>Cpp~VisualCpp6\:[simple_declaration = decl_specifier_seq

init_declarator_list';'] int
\>Cpp~VisualCpp6\:[declarator_id = id_expression]

norm_Fraspa
\<\:declarator_id

;
\<\:simple_declaration ".

external pattern addVars(tu : translation_unit, stmt_seq : statement_seq) :
translation_unit
= 'addVars' in domain Cpp~VisualCpp6.

rule extend_decl(tu : translation_unit):
translation_unit->
translation_unit
=
tu ->
addVars(tu, add_var())
if tu ~= addVars(tu, add_var()).

Figure 3-23- RSL rule snippet

3.4 Summary

The process of developing Hi-PaL and DALC was explained in this chapter. The

sample code for KM3 metamodel and TCS grammar for Hi-PaL are presented in

Appendix A and that for DALC are presented in Appendix B. Sample ATL rule is shown

in Appendix C. A sample of RSL rule generated by FraSPA is presented in Appendix D

and samples of PARLANSE code are provided in Appendix E. The DSLs required in this

87

research were written using AMMA platform and are used as the front-end of FraSPA.

The middle-layer of FraSPA comprises of the Rule Generator (ATL rule templates, Ant

Scripts and the RSL metamodel). For both the DSLs developed in this research, the target

RSL metamodel remained the same and is similar to the one developed by Roychoudhury

et al. [37, 81]. The DMS was used for weaving the code for parallelization and

checkpointing in the existing applications. The current implementation of the FraSPA

supports the transformation of code written in C/C++ but it can be extended for code

written in other languages as well. Support for a limited set of C/C++ grammar rules and

MPI API is provided in the current implementation of FraSPA.

Besides DMS, there are other PTEs that are available today. Some of them are

ROSE [35], TXL [85], Stratego [86], and ASF + DSF [87]. DMS was preferred over

these open-source projects because it is a mature and scalable tool that has tool support

(Lexer, Parser, Pretty Printer, Rule Analyzer) available for over 20 domains. Due to the

decoupling between the components in the different layers of the FraSPA, the DMS can

be swapped with a better PTE should there be one available in future. As mentioned in

Section 3.1, changing the PTE in the backend would not necessitate any changes in the

front-end. However, it will require that the new mappings are written between the front-

end and the backend, thereby, necessitating changes in the rule generator component.

88

CHAPTER 4

EXPERIMENTAL EVALUATION

The applications generated through FraSPA were evaluated for performance,

accuracy, scalability, and fault-tolerance (through checkpointing). The framework itself

was evaluated for the amount of reusable code components and the amount of effort

involved in generating applications belonging to various domains. The aim of the

experiments run in this research was to compare the code generated through FraSPA with

its manually-written counterpart. The test cases used for evaluating FraSPA are described

in Section 4.1 of this chapter. The experimental set-up and evaluation of FraSPA are

described in Section 4.2. The results and analysis are presented in Section 4.3. A general

discussion and summary are presented in Section 4.4.

4.1 Test Cases

The various test cases used to study the behavior of FraSPA are presented in the

following subsections. These test cases had already existing manual implementations of

sequential, parallel, and checkpointed versions written in C/C++/MPI. Only those test

cases were selected that added value in highlighting the usability of FraSPA and the

features that are currently available (e.g., gathering, distributing, and reducing the data) –

that is, the selected test cases depict diverse combination of parallel operations. The

existing sequential applications were used to embed the code for parallelization and

89

checkpointing such that the generated parallel versions and checkpointed versions had

communication patterns similar to their manually-written counterparts. The selected test

cases were useful in evaluating the performance, accuracy, scalability, and reliability of

the applications generated through FrasPA, and successfully demonstrated these

following properties:

it is application-domain-neutral,

it reduces the programmer effort through code reuse, and

it reduces the application development time by reducing the number of

lines of code that the programmer has to write.

For parallelizing the applications through FraSPA, the programmers should be

familiar with the logic of the corresponding applications, must be aware of the hotspots

for parallelization (they can profile their applications for this purpose), and must express

the specifications for the desired parallelization through the Hi-PaL code. Likewise, for

automatically checkpointing the applications, the programmers must identify the main

data structures or variables from which the entire execution state of the application can be

recreated in case of a failure. Since the checkpointing approach developed in this research

falls under the category of ALC, it involves saving the state of the critical data structures

or variables to a secondary storage medium, and it can incur extra run-time overheads.

Therefore, the frequency at which the checkpoint is taken is also important and should be

specified by the programmer. The place in the application where the checkpoint should

be taken can affect the accuracy of the results in case of the restart. Therefore, for doing

both parallelization and checkpointing (for fault-tolerance) through FraSPA, the

programmer must specify where code insertions are performed. The process of making

90

the applications fault-tolerant via checkpointing is demonstrated in three test cases. Only

three test cases are needed because there are no significant differences in the process of

checkpointing the other test cases. A summary of parallel operations applied on each test

case and whether or not the test case was made fault-tolerant through checkpointing is

presented in Table 4-1. The communication patterns exhibited by the selected test cases

are also shown in Table 4-1. The classification of test cases as per the communication

pattern they exhibit is done according to the guidelines provided in [88]. A brief

description of these patterns is as follows:

Embarrassingly Parallel: This pattern describes the concurrent execution

of a collection of independent tasks (having no data dependencies).

Implementation techniques include parallel loops and Manager-Worker.

o Parallel Loop: If the computation fits the simplest form of the

pattern such that all tasks are of the same size, and are known a

priori then they can be computed by using a parallel loop that

divides them as equally as possible amongst the available

processors.

o Manager-Worker: Also known as task queue, this pattern involves

two set of processors – Manager and Worker. There is only one

Manager that creates and manages a collection of tasks (task

queue) by distributing it amongst the available Workers and

collecting the results back from them.

91

Mesh: Also known as “stencil-based computations”, this pattern involves a

grid of points in which new values are computed for each point in the grid

on the basis of the data from the neighboring points in the grid.

Pipeline: This pattern involves the decomposition of the problem into

ordered group of data-dependent tasks. The ordering of tasks does not

change during the computation.

Replicable: This pattern involves multiple sets of operations that need to

be performed using a global data structure and hence having dependency.

The global data is replicated for each set of operations and after the

completion of operations, the results are reduced

Table 4-1- Parallel operations applied on the test cases
Test Case Parallel

Operation
Communication
Pattern

Checkpointing

Prime Number For-Loop,
Reduce Sum,
Reduce Max

Embarrassingly
Parallel
(Parallel Loop)

No

Circuit
Satisfiability

For-Loop,
Reduce Sum

Embarrassingly
Parallel
(Parallel Loop)

Yes

Poisson Solver Exchange,
AllReduce

Mesh Yes

Game of Life Distribute,
Exchange,
AllReduce

Mesh No

Image
Processing

Distribute,
Reduce Sum,
Gather

Manager-Worker No

Mandelbrot Set Distribute,
Gather

Manager-Worker No

Genetic
Algorithm

Distribute,
Gather, Reduce
Sum, For-Loop

Pipeline,
Replicable

Yes

4.1.1 Prime Number Generation

The Sieve of Eratosthenes algorithm is used for finding the prime numbers

between 1 to N, where N is any natural number. The code snippet in Figure 4-1 is from

92

the sequential implementation of the application. If the intention is to parallelize the for-

loop at line # 4 of Figure 4-1, find the global sum of the variable pc, and find the largest

prime number in a given range, then the required Hi-PaL code is shown in Figure 4-2. As

can be noticed from the Hi-PaL code, the for-loop with the (n=1; n<=LIMIT; n++)

pattern should be parallelized and two reduce operations are required (lines #3-4 of

Figure 4-2), one to find the global sum of the variable pc and the other one to find the

largest prime number in a given range. The line # 1 of the code in Figure 4-2 means that

the code for setting up the MPI environment should be inserted after the statement

t1=gettime(); in the sequential code (line # 2 in Figure 4-1). The code snippet from

the generated parallel code is shown in Figure 4-3. The code for all the required

variables, API, and files to include (e.g., mpi.h) is generated automatically from the Hi-

PaL code in Figure 4-2. To avoid any naming conflicts between the generated and user-

defined variables, the generated variables have a different namespace (*_Fraspa). The

parallelized for-loop is shown at line # 6 of Figure 4-3 and the statements for computing

the values of lower_limit_Fraspa and upper_limit_Fraspa are inserted automatically

but not shown in the code snippet presented here.

1. //other code
2. t1= gettime();
3. pc=0;
4. for (n=1; n<=LIMIT; n++) {
5. if (isprime(n)) {
6. pc++;
7. foundone = n;
8. printf("%d\n",foundone);
9. }
10. if (n>2){
11. n=n+1;
12. }
13. }
14. t2= gettime();
15. //other code
Figure 4-1- Code snippet of the sequential prime number generation application

93

1. Parallel section begins before ("t1=gettime();") mapping is
Linear {

2. Parallelize_For_Loop where (n=1; n<=LIMIT; n++)
after statement ("pc=0;") && in function ("main");

3. ReduceSumInt(pc) in function ("main");
4. ReduceMaxValInt(foundone) in function ("main")
5. }
Figure 4-2- Hi-PaL code for parallelizing the prime number generation application

1. //other code. Files included & Variable declaration section
//extended.

2. t1= MPI_Wtime();
3. pc=0;
4. MPI_Init(NULL, NULL);
5. //other code
6. for (n = lower_limit_Fraspa; n <= upper_limit_Fraspa;n++)
7. {
8. if (isprime(n)) {
9. pc++;
10. foundone = n;
11. printf("%d\n",foundone);
12. }
16. if (n>2){
17. n=n+1;
18. }
13. }
14. {
15. MPI_Reduce(&pc, &pc_Fraspa, 1, MPI_INT, MPI_SUM,…);
16. MPI_Reduce(&foundone, &foundone_Fraspa, 1, MPI_INT,

MPI_MAX,…);
17.
18. pc = pc_Fraspa ;
19. foundone = foundone_Fraspa;
20. }
21. t2= MPI_Wtime();
22. //other code

Figure 4-3- Code snippet of the generated parallel prime number generation application

4.1.2 Circuit Satisfiability

This embarrassingly parallel application is adapted from Michael Quinn’s book

on “Parallel programming in C with MPI and OpenMP” [89]. The application simulates

the actual circuit and determines whether a combination of inputs to the circuit of logical

gates produces an output of 1. The application involves an exhaustive search of all the

possible combinations of the specified number of bits in the input. For example, for a

94

circuit having 30 bits of input, the search space would involve 230 combinations of the

bits, which is 1,073,741,824 possibilities. A code snippet from the sequential version of

the application is shown in Figure 4-4. In this code snippet, the computation being done

in the for-loop (line # 6-13) can be done in parallel and the results of the computation can

be reduced after the for-loop. If the programmer wants to begin the parallel section after

the statement on line # 3 of Figure 4-4, wishes to parallelize the for-loop on line # 6, and

wants to reduce the results before line # 14, then this intention is expressed through the

Hi-PaL code shown in Figure 4-5. As noted in Figure 4-5, the && operator is used to

create a powerful match expression in line # 2. If the programmer does not specify the

function name and place in the code where the for-loop needs to be parallelized, then

everywhere (in any function or module) a matching for-loop is found in the application, it

will get parallelized. This scenario will happen in the case of statements that cut through

multiple modules. A snippet from the generated parallel code is shown in Figure 4-6.

Like the previous test case, the code for all the required variables, API, and files to

include (e.g., mpi.h and design templates) is generated automatically from the Hi-PaL

specifications.

1. //other code
2. ilo = 0;
3. ihi = pow(2, n);
4. solution_num = 0;
5. t1 = gettime();
6. for (i=ilo; i<ihi; i++){
7. //other code
8. value = circuit_value (n, bvec);
9. if (value == 1) {
10. solution_num = solution_num + 1;
11. //other code
12. }
13. }
14. t2 = gettime();

Figure 4-4- Code snippet from the sequential circuit satisfiability application

95

1. Parallel section begins after ("ihi=pow(2,n);") mapping is
Linear {

2. Parallelize_For_Loop where (i=ilo; i<ihi; i++)
3. after statement ("ihi=pow(2,n);") && in function "main");
4. ReduceSumInt(solution_num) before statement
5. ("t2=gettime();") && in function ("main")
6. }

Figure 4-5- Hi-PaL code for parallelizing the circuit satisfiability application

1. //other code. Files included & Variable declaration section
//extended.

2. ilo = 0;
3. ihi = pow(2, n);
4. MPI_Init(NULL, NULL);
5. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);
6. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);
7. lower_limit_Fraspa = rank_Fraspa *((ihi - ilo)…;
8. upper_limit_Fraspa=((rank_Fraspa==(size_Fraspa - 1))?...;
9. solution_num = 0;
10. t1 = MPI_Wtime();
11. for (i=lower_limit_Fraspa; i<=upper_limit_Fraspa;i++){
12. value = circuit_value (n, bvec);
13. if (value == 1) {
14. solution_num = solution_num + 1;
15. //other code
16. }
17. }
18. MPI_Reduce(&solution_num,&solution_num_Fraspa,...)
19. solution_num = solution_num_Fraspa;
20. t2 = MPI_Wtime();

Figure 4-6- Code snippet from the generated parallel circuit satisfiability application

The parallel code in Figure 4-6 can be made fault-tolerant by inserting the CaR

mechanism in it. The first step towards achieving this goal is to identify the critical

variables in the application from which the complete execution state can be recreated.

The critical variables for this application are upper_limit_Fraspa, the iteration number

which is i, and the number of solutions found (which is solution_num in the code). For

brevity, solution_num is not considered for the illustration of the checkpointing

technique and only the values of upper_limit_Fraspa and i are being shown to be

saved. It is best to insert the checkpointing code after lines # 8 and 14 of the code in

Figure 4-6. The DSL code for checkpointing this application is shown in Figure 4-7.

96

Because this involves a Distributed checkpoint, each processor is responsible for

saving the state of the critical variables in separate files. The restart code in Figure 4-8

illustrates the usage of after statement type of Hook. The instrumented code is shown

in Figure 4-9. As can be noticed from this code, the file names for saving and reading the

critical variables are generated dynamically for the Distributed CaR type by calling the

function named fileName_Fraspa.

1. beginCheckpointing:
2. after statement("upper_limit_Fraspa =((rank==(size - 1))?…")
3. && (frequency = 1) && (CaRType = Distributed){
4. SaveLong (upper_limit_Fraspa, restartUpperLimit)
5. }

6. beginCheckpointing:
7. after statement("solution_num = solution_num + 1;") &&

(frequency = 100) && (loopVar="i") && (CaRType = Distributed){
8. SaveLong (i, restartLowerLimit)
9. }

Figure 4-7- Checkpointing specifications for circuit satisfiability application

1. beginInitialization:
1. before statement ("lower_limit_Fraspa = rank*((ihi - ilo)… "){
2. ReadLongVarFromFile(ilo, "restartLowerLimit")

3. ReadLongVarFromFile(ihi, "restartUpperLimit")

4. }

Figure 4-8- Restart specifications for circuit satisfiability application

4.1.3 Poisson Solver

Solving second-order partial differential equations is one of the most common

computational tasks performed in the Computational Fluid Dynamics (CFD) domain. The

Poisson Solver is a representative application that illustrates the communication and

computation patterns in a typical CFD application. In this particular case-study we are

considering a solution to a two-dimensional Poisson problem with a five-point stencil

97

[90, 91]. The solution involves iterative computation of values at each point in the

computational domain using the neighboring cells from the previous iteration. This is

done till the convergence criterion is satisfied.

1. //other code. Files included & Variable declaration section
//extended.

2. char fname1[20] = "restartLowerLimit";
3. char fname2[20] = "restartUpperLimit";
4. char *addString1, *addString2;
5. //other code
6. ilo = 0;
7. ihi = pow(2, n);
8. MPI_Init(NULL, NULL);
9. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);
10. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);
11. addString1 = fileName_Fraspa(fname1, rank_Fraspa);
12. addString2 = fileName_Fraspa(fname2, rank_Fraspa);
13. inputfile1 = fopen(addString1, "r");
14. if(inputfile1 !=NULL){
15. fscanf(inputfile1 , "%lld", &ilo);
16. fclose(inputfile1);
17. }
18. inputfile2 = fopen(addString2, "r");
19. if(inputfile2 !=NULL){
20. fscanf(inputfile2, "%lld", &ihi);
21. fclose(inputfile2);
22. }
23. lower_limit_Fraspa = rank_Fraspa *((ihi - ilo)…;
24. upper_limit_Fraspa=((rank_Fraspa==(size_Fraspa - 1))?...;
25. solution_num = 0;
26. t1 = MPI_Wtime();
27. for (i=lower_limit_Fraspa; i<=upper_limit_Fraspa;i++){
28. value = circuit_value (n, bvec);
29. if (value == 1) {
30. solution_num = solution_num + 1;
31. //other code
32. }
33. }
34. MPI_Reduce(&solution_num,&solution_num_Fraspa,...)
35. solution_num = solution_num_Fraspa;
36. t2 = MPI_Wtime();

Figure 4-9- Code snippet of the checkpointed circuit satisfiability application

A code snippet of the sequential version of Poisson Solver is shown in Figure 4-

10. For parallelizing this application, the matrices a and b should be blocked and the cells

at the border of the blocks should exchange values with their neighbors after the

initialization is complete. The neighboring blocks should exchange the value of the

98

border-cells of matrix b in every iteration of the for-loop starting at line # 10 of Figure 4-

10. Apart from exchanging values, the value of the norm computed in every iteration of

the for-loop should also be reduced. All these steps for parallelization are specified

through the Hi-PaL code in Figure 4-11. A code snippet from the generated code is

shown in Figure 4-12. The code inserted by FraSPA is shown in bold-face. The code for

calling including the function template for exchanging the desired values of the matrices

is at line # 21, 22 and 27 of Figure 4-12.

1. //other code
2. NTIMES = atoi(argv[3]);
3. a = allocMatrix<double>(a, M, N);
4. b = allocMatrix<double>(b, M, N);
5. f = allocMatrix<double>(f, M, N);
6. start = 0;
7. //other code
8. printMatrix<double>(a, M, N);
9. t1 = gettime();
10. for (k = start; k < NTIMES && norm >= tolerance; k++) {
11. b = compute(a, f, b, M, N);
12. ptr = a;
13. a = b;
14. b = ptr;
15. norm = normdiff(b, a, M, N);
16. }
17. t2 = gettime();//other code

Figure 4-10- Code snippet from the sequential version of the Poisson Solver

1. Parallel section begins after ("NTIMES = atoi(argv[3]);")
mapping is Linear{

2. ParExchange2DArrayDouble (a, M, N) before statement
("printMatrix<double>(a, M, N);") && in function ("main");

3. ParExchange2DArrayDouble (b, M, N) before statement
("printMatrix<double>(a, M, N);") && in function ("main");

4. ParExchange2DArrayDouble (b, M, N) after statement
("b=compute(a, f, b, M, N);") && in function ("main");

5. AllReduceSumInt(norm) after statement
("norm = normdiff(b, a, M, N);") && in function ("main")

6. }
Figure 4-11- Hi-PaL code snippet for parallelizing the Poisson Solver

To make the code shown in Figure 4-12 fault-tolerant, the programmer needs to

provide the CaR specifications via DALC as shown in Figure 4-13. The critical variables

99

and data structures for this application are matrices a and f, the number of iterations

which is k, and the norm. The checkpointing code in this application should be inserted

before line # 26 of the code in Figure 4-12. The code at line # 2 of Figure 4-13 is the

Hook specification (line # 26 of the code in Figure 4-12) and is required for pattern

matching in the abstract syntax tree of the application code. The intent of writing the

variables and data structures to appropriate files is expressed in line # 5-8 of Figure 4-13.

1. //other code
2. NTIMES = atoi(argv[3]);
3. MPI_Init(NULL, NULL);
4. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);
5. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);
6. create_2dgrid(MPI_COMM_WORLD, &comm2d_Fraspa,…);
7. create_diagcomm(MPI_COMM_WORLD, size_Fraspa, …);
8. rowmap_Fraspa.init(M, P_Fraspa, p_Fraspa);
9. colmap_Fraspa.init(N, Q_Fraspa, q_Fraspa);
10. myrows_Fraspa = rowmap_Fraspa.getMyCount();
11. mycols_Fraspa = colmap_Fraspa.getMyCount();
12. M_Fraspa = M;
13. N_Fraspa = N;
14. M = myrows_Fraspa;
15. N = mycols_Fraspa;
16. a = allocMatrix<double>(a, M, N);
17. b = allocMatrix<double>(b, M, N);
18. f = allocMatrix<double>(f, M, N);
19. start = 0;
20. //other code
21. a = exchange<double>(a, myrows_Fraspa + 2, mycols_Fraspa +

2,…);
22. b = exchange<double>(b, myrows_Fraspa + 2, mycols_Fraspa +

2,…);
23. printMatrix<double>(a, M, N);
24. t1 = MPI_Wtime();
25. for (k = start; k < NTIMES && norm >= tolerance; k++) {
26. b = compute(a, f, b, M, N);
27. b = exchange<double>(b, myrows_Fraspa + 2, mycols_Fraspa

2,…);
28. ptr = a;
29. a = b;
30. b = ptr;
31. norm = normdiff(b, a, M, N);
32. MPI_Allreduce(&norm, &norm_Fraspa, 1, MPI_INT, MPI_SUM,…);
33. norm = norm_Fraspa;
34. }
35. t2 = MPI_Wtime();
36. //other code

Figure 4-12- Code snippet from the generated parallel version of the Poisson Solver

100

1. beginCheckpointing:
2. before statement ("b = compute(a, f, b, M, N);")
3. && (frequency = 10)
4. && (loopVar="k") && (CaRType = Centralized){
5. SaveDoubleArray2D(a,M,N,restartA)
6. SaveDoubleArray2D(f,M,N,restartF)
7. SaveDouble (norm,restartNorm)
8. SaveInt (k,restartK)
9. }
Figure 4-13- DALC code snippet for describing checkpointing in Poisson Solver

The DALC code for specifying the restart mechanism for this application is

shown in Figure 4-14. Lines # 3-4 of the code imply that the matrices a and f should be

initialized from the values read from the files restartA and restartF. In case these

restart files are not present, the matrices are initialized by calling initMatrix <double>

(a, N, N, value) and initMatrix<double>(f, N, N, value) respectively. The

inserted CaR code is shown in lines # 19-28 and 31-50 of Figure 4-15.

1. beginInitialization:
2. around statement ("start = 0;"){
3. ReadDoubleArray2DFromFile (a,M,N,"restartA") |

initMatrix <double>(a, M, N, value)
4. ReadDoubleArray2DFromFile (f,M,N,"restartF") |

initMatrix<double>(f, M, N, value)
5. ReadDoubleVarFromFile (norm,"restartNorm")
6. ReadIntVarFromFile (start,"restartK")
7. }

Figure 4-14- DALC code snippet for describing the restart mechanism in Poisson Solver

4.1.4 Game of Life

The Game of Life is a board game that consists of a two-dimensional array of

cells. Each cell can hold an organism and has eight neighboring cells (left, right, top,

bottom, top-left, bottom-right, top-right, and bottom-left). Each cell can be in two states:

alive or dead. The game starts with an initial state and cells either live, die or multiply in

the next iteration (generation) according to the following rules:

101

1. If a cell is alive in the current generation, then depending on the state of its

neighbors, in the next generation the cell will either live or die based on the

following conditions:

Each cell with one or no neighbor dies, as if by loneliness.

Each cell with four or more neighbors dies, as if by overpopulation.

Each cell with two or three neighbors survives.

2. If a cell is dead in the current generation but if there are exactly three

neighbors alive then it will change to the alive state in the next generation, as

if the neighboring cells gave birth to a new organism.

The rules of the game are applied at each iteration (generation) so that the cells

evolve or change state from generation to generation. Also all cells are affected

simultaneously in a generation (i.e., for each cell you need to use the value of the

neighbors in the current iteration to compute the values for the next generation). This

application is an example of stencil-based computation. A code snippet from the

sequential version of the application is shown in Figure 4-16. One way to parallelize this

application would be to block and distribute the two-dimensional life matrix amongst the

available processors and let each of the processors do the computation on their respective

block of the matrix. After distributing the life matrix, it is required to exchange the initial

values of the cells at the borders of the neighboring blocks in every iteration, and collect

the information about the number of cells that are alive in each block of the matrix.

102

1. //other code
2. NTIMES = atoi(argv[3]);
3. MPI_Init(NULL, NULL);
4. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);
5. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);
6. create_2dgrid(MPI_COMM_WORLD, &comm2d_Fraspa,…);
7. create_diagcomm(MPI_COMM_WORLD, size_Fraspa, …);
8. rowmap_Fraspa.init(M, P_Fraspa, p_Fraspa);
9. colmap_Fraspa.init(N, Q_Fraspa, q_Fraspa);
10. myrows_Fraspa = rowmap_Fraspa.getMyCount();
11. mycols_Fraspa = colmap_Fraspa.getMyCount();
12. M_Fraspa = M;
13. N_Fraspa = N;
14. M = myrows_Fraspa;
15. N = mycols_Fraspa;
16. a = allocMatrix<double>(a, M, N);
17. b = allocMatrix<double>(b, M, N);
18. f = allocMatrix<double>(f, M, N);
19. if (!restart) {
20. start = 0;
21. initMatrix<double>(a, M, N, value);
22. initMatrix<double>(f, N, N, value);
23. } else { // read a, f, norm and start from restart file
24. readMatrix(a,M,N, "restartA");
25. readMatrix(f,N,N, "restartF",);
26. readVar(&norm, "restartNorm");
27. readVar(&start, "restartK");
28. }
29. /*other code*/
30. for (k = start; k < NTIMES && norm >= tolerance; k++){
31. if(k % 10 == 0){
32. inputfile1 = fopen("restartA", "w");
33. inputfile2 = fopen("restartF", "w");
34. inputfile3 = fopen("restartNorm", "w");
35. inputfile4 = fopen("restartK", "w");
36. for (ii = 0; ii < M; ii++){
37. for (jj = 0; jj < N; jj++){
38. fprintf(inputfile1, "%lf ", a[ii][jj]);
39. fprintf(inputfile2, "%lf ", f[ii][jj]);
40. }
41. fprintf(inputfile1, "\n");
42. fprintf(inputfile2, "\n");
43. }
44. fprintf(inputfile3, "%lf ", norm);
45. fprintf(inputfile4, "%d ", k);
46. fclose(inputfile1);
47. fclose(inputfile2);
48. fclose(inputfile3);
49. fclose(inputfile4);
50. }
51. b = compute(a, f, b, M, N);
52. b = exchange<double>(b, myrows_Fraspa + 2, mycols_Fraspa + 2,…);
53. ptr = a;
54. a = b;
55. b = ptr;
56. norm = normdiff(b, a, M, N);
57. MPI_Allreduce(&norm, &norm_Fraspa, 1, MPI_INT, MPI_SUM,…);
58. norm = norm_Fraspa;
59. }
60. t2 = MPI_Wtime();
61. //other code

Figure 4-15- Code snippet of the checkpointed Poisson Solver

103

1. //other code
2. SEED = atoi(argv[4]);
3. //other code
4. initMatrix<int>(life, M, N, value);
5. //other code
6. printMatrix<int>(life, M, N);
7. //other code
8. std::cout << "No. of cells alive initially = ";
9. count = cellsAlive(life, M, N) ;
10. std::cout << count << std::endl;
11. // Play the game of life for given number of iterations
12. t1=gettime();
13. for (k = 0; k < NTIMES; k++) {
14. // compute new matrix
15. temp = compute(life, temp, M, N);
16. // swap old and new matrices
17. ptr = temp;
18. temp = life;
19. life = ptr;
20. }
21. t2= gettime();
22. // Display the life matrix after NTIMES
23. std::cout << "Life after " << NTIMES << " iterations:" <<

std::endl ;
24. printMatrix<int>(life, M, N);
25. std::cout<< "No. of cells alive after " << NTIMES << "

iterations = ";
26. count = cellsAlive(life, M, N);
27. std::cout << count << std::endl;
28. //other code

Figure 4-16- Code snippet from the sequential game of life application

The steps to parallelize this application are expressed in the form of the Hi-PaL

code shown in Figure 4-17. The line # 2 of Figure 4-17 expresses the intent that the two-

dimensional integer-type matrix life with M rows and N columns that occurs in function

("main") should be distributed (or scattered) amongst different processors around the

statement initMatrix<int>(life, M, N, value); (line # 4 of Figure 4-16). The code

at line # 4 of Figure 4-17 means that the integer-type variable named count should be

reduced (to collect the information about the number of cells that are alive in each block)

and that this operation needs to take place at multiple places in function ("main")-

which means, everywhere the specified search pattern is found in function main. If the

keyword multiple is not specified as an argument to the API then the code for reduce

104

operation will be inserted at only one place, which is the first occurrence of the specified

search pattern in function ("main"). Therefore, multiple can manipulate cross-cutting

concerns within a single module. The code at line # 3 and line # 5 expresses the intent to

exchange the updated values of the border-cells of the blocks of matrices life and temp.

1. Parallel section begins after ("SEED = atoi(argv[4]);") mapping
is Linear{

2. ParDistribute2DArrayInt(life, M, N) around statement
("initMatrix<int>(life, M, N, value);") && in function
("main");

3. ParExchange2DArrayInt (life, M, N) before statement
("printMatrix<int>(life, M, N);") && in function ("main");

4. AllReduceSumInt(count, multiple) after statement
("count = cellsAlive(life, M, N);") && in function ("main");

5. ParExchange2DArrayInt (temp, M, N) before statement ("ptr =
temp;") && in function ("main")

6. }
Figure 4-17- Hi-PaL code for parallelizing game of life application

A code snippet from the generated parallel application is shown in Figure 4-18.

As noted from it, the code for reducing the count variable is inserted at two places - after

line # 28 and line # 48 - because the keyword multiple was specified in the code at line

4 of Figure 4-17 (AllReduceSumInt(count, multiple)). Because an around type of

hook was specified at line # 2 of Figure 4-17, the statement that was specified as a search

pattern in the hook definition (initMatrix<int>(life, M, N, value);) was deleted.

The usage of around type of hook saved the extra time in initializing the life matrix in

the generated code because it is going to be set to the block of data from the matrix

life_Fraspa (see line # 21 of Figure 4-18) - this happens due to the distribute (or scatter)

operation specified at Line # 2 of Figure 4-17.

105

1. //other code. Files included & declaration section extended.
2. SEED = atoi(argv[4]);
3. MPI_Init(NULL, NULL);
4. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);
5. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);
6. create_2dgrid(MPI_COMM_WORLD, &comm2d_Fraspa, &rowcomm_Fraspa,…);
7. create_diagcomm(MPI_COMM_WORLD, size_Fraspa, p_Fraspa,…);
8. rowmap_Fraspa.init(M, P_Fraspa, p_Fraspa);
9. colmap_Fraspa.init(N, Q_Fraspa, q_Fraspa);
10. myrows_Fraspa = rowmap_Fraspa.getMyCount();
11. mycols_Fraspa = colmap_Fraspa.getMyCount();
12. M_Fraspa = M;
13. N_Fraspa = N;
14. M = myrows_Fraspa;
15. N = mycols_Fraspa;
16. //other code
17. if (rank_Fraspa==0){
18. life_Fraspa = allocMatrix<int>(life_Fraspa, M_Fraspa,

N_Fraspa);
19. initMatrix<int>(life_Fraspa, M_Fraspa, N_Fraspa, value);
20. }
21. life = split<int>(life_Fraspa, life, M_Fraspa, N_Fraspa,…);
22. //other code
23. life = exchange<int>(life, myrows_Fraspa + 2,…);
24. printMatrix<int>(life, M, N);
25. //other code
26. std::cout << "No. of cells alive initially = ";
27. count = cellsAlive(life, M, N) ;
28. MPI_Allreduce(&count, &count_Fraspa, 1, MPI_INT,…);
29. count = count_Fraspa;
30. std::cout << count << std::endl;
31. // Play the game of life for given number of iterations
32. t1= MPI_Wtime();
33. for (k = 0; k < NTIMES; k++) {
34. // compute new matrix
35. temp = compute(life, temp, M, N);
36. temp = exchange<int>(temp, myrows_Fraspa + 2,…);
37. // swap old and new matrices
38. ptr = temp;
39. temp = life;
40. life = ptr;
41. }
42. t2= MPI_Wtime();
43. // Display the life matrix after NTIMES
44. std::cout << "Life after " << NTIMES << " iterations:" <<

std::endl ;
45. printMatrix<int>(life, M, N);
46. std::cout<< "No. of cells alive after " << NTIMES << "

iterations = ";
47. count = cellsAlive(life, M, N);
48. MPI_Allreduce(&count, &count_Fraspa, 1, MPI_INT,…);
49. count = count_Fraspa;
50. std::cout << count << std::endl;
//other code

Figure 4-18- Code snippet from the generated parallel game of life application

106

4.1.5 Image Processing

A test case from the image processing domain for performing the contrast

operation [91] was considered. To perform the contrast operation, the image is read from

a file and the pixel values are stored in an unsigned integer array. The root mean square

(RMS) value of all the pixel values is calculated and this RMS value is then used to

update the value of each pixel. The updated array is finally written to a file. The base

code snippet of the sequential application is shown in Figure 4-19. In order to parallelize

this application, the 1-dimensional array masterbuf should be distributed across the

available processors and the results (the variable mysum) should be collected via reduce

operation. The results of the contrast operation performed individually by the processors

should be collected in another array via gather operation. The Hi-PaL code to express this

intension is shown in Figure 4-20. The code snippet from the generated parallel code is

shown in Figure 4-21. The MPI API for distributing, reducing and gathering the values

are shown inserted at lines # 19, 21, and 29 of Figure 4-21.

1. //other code
2. t1 = gettime();
3. masterbuf = allocvector(masterbuf, N);
4. initvector(masterbuf, N, 0);
5. mysum = computerms(masterbuf, N);
6. //contrast operation
7. t2 = gettime();
8. //other code

Figure 4-19- Code snippet of the sequential image processing application

1. Parallel section begins before ("t1=gettime();") mapping is
Linear {

2. ParDistribute1DArrayDouble(masterbuf, N) after statement
("initvector(masterbuf, N, 0);") && in function ("main");

3. ReduceSumDouble(mysum) after statement
4. ("mysum = computerms(masterbuf, N);") && in function ("main")
5. ParGather1DArrayDouble(masterbuf, N) before statement

("t2=gettime();") && in function ("main");
6. }
Figure 4-20- Code snippet of the Hi-PaL code for the image processing application

107

1. //other code
2. MPI_Init(&argc, &argv);
3. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);
4. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);
5. LinearMapping<int> mapping(N, size, 0, 1);
6. counts_Fraspa = mapping_Fraspa.getCounts();
7. displacements_Fraspa = mapping_Fraspa.getDisplacements();
8. mycount_Fraspa = counts_Fraspa [rank_Fraspa];
9. start_Fraspa = mapping_Fraspa.getStart();
10. end_Fraspa = mapping_Fraspa.getEnd();
11. N_Fraspa = N;
12. N = mycount_Fraspa;
13. if (rank_Fraspa == 0)
14. {

masterbuf_Fraspa = allocvector(masterbuf_Fraspa, …);
initvector(masterbuf_Fraspa, N_Fraspa, …);

15. }
16. t1 = MPI_Wtime();
17. masterbuf = allocvector(masterbuf, N);
18. initvector(masterbuf, N, 0);
19. MPI_Scatterv(masterbuf_Fraspa, counts_Fraspa,…);
20. mysum = computerms(masterbuf, N);
21. MPI_Reduce(&mysum, &mysum_Fraspa, 1, MPI_DOUBLE, MPI_SUM,…);
22. mysum = mysum_Fraspa;
23. N = N_Fraspa;
24. if (rank == 0)
25. {
26. printf("\n Reduced Values is: %lf ", mysum);
27. }
28. //contrast operation
29. MPI_Gatherv(masterbuf, mycount_Fraspa,…);
30. t2 = MPI_Wtime();
31. //other code
Figure 4-21- Code snippet of the generated parallel image processing application

4.1.6 Mandelbrot Set

The Mandelbrot Set is a commonly used example from the domain of complex

dynamics and it involves fractals (objects that involve similar components at various

scales). Generation of this set involves iteratively solving an equation of complex

numbers. Any number belonging to the Mandelbrot Set is depicted in colors, whereas, the

numbers that do not belong to the set are colored as white. The code snippet of the

sequential version of the Mandelbrot Set generation application is shown in Figure 4-22,

the Hi-PaL code for parallelizing the same is shown in Figure 4-23, and the generated

108

parallel code is shown on Figure 4-24. This test case involves the distribution and

gathering of data in a 2-dimensional array and as can be noticed from Figure 4-24, the

generated code has calls to function templates for splitting and gathering the data in the

2-dimensional array (line # 35 and 46).

1. //other code
2. N= 1000;
3. //other code
4. bigmat = allocarray(bigmat, M+2, N+2);
5. for(y=0; y < M+2; y++) {
6. for(x=0; x < N+2; x++) {
7. bigmat[y][x] = 55;
8. }
9. }
10. t1 = gettime();
11. for(y=0; y < M+2; y++) {
12. for(x=0; x < N+2; x++) {
13. c.real = ((float) x - 500.0)/250.0;
14. c.imag = ((float) y - 500.0)/250.0;
15. color = compute(c, maxiter);
16. bigmat[y][x]=color;
17. }
18. }
19. t2=gettime();

Figure 4-22- Code snippet of the sequential Mandelbrot Set application

1. Parallel section begins after ("N= 1000;") mapping is Linear{
2. ParDistribute2DArrayInt(bigmat, M, N) before statement

("t1=gettime();") && in function ("main");
3. ParGather2DArrayInt(bigmat, M, N) after statement

("t2=gettime();") && in function ("main")
4. }

Figure 4-23- Hi-PaL Code for parallelizing the Mandelbrot Set

4.1.7 Genetic Algorithm for Content-Based Image Retrieval

Unlike the previous test cases, the test case presented in this section is a real

world application. The Content-Based Image Retrieval (CBIR) technique is used to

search images in large databases on the basis of the image content instead of the image

captions [92]. The images are sliced into smaller semantic regions and are stored as blobs

in the database. Each segment represents an individual semantic region of the original

109

image (e.g., grass, tiger, and butterfly). The next step involves the extraction of features

(color, texture, shape) for each image segment.

1. //other code
2. N= 1000;
3. MPI_Init(NULL, NULL);
4. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);
5. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);
6. create_2dgrid(MPI_COMM_WORLD, &comm2d_Fraspa,…);
7. create_diagcomm(MPI_COMM_WORLD, size_Fraspa, p_Fraspa,...);
8. rowmap_Fraspa.init(M, P_Fraspa, p_Fraspa);
9. colmap_Fraspa.init(N, Q_Fraspa, q_Fraspa);
10. myrows_Fraspa = rowmap_Fraspa.getMyCount();
11. mycols_Fraspa = colmap_Fraspa.getMyCount();
12. M_Fraspa = M;
13. N_Fraspa = N;
14. M = myrows_Fraspa;
15. N = mycols_Fraspa;
16. if (argc != 2) {
17. printf("Usage: %s <outputfile>\n", argv[0]);
18. exit(-1);
19. }
20. if ((fp = fopen(argv[1],"w")) == NULL) {
21. printf("Unable to open file %s for write\n", argv[1]);
22. exit(-1);
23. }
24. bigmat = allocarray(bigmat, M+2, N+2);
25. for(y=0; y < M+2; y++) {
26. for(x=0; x < N+2; x++) {
27. bigmat[y][x] = 55;
28. }
29. }
30. if (rank_Fraspa == 0)
31. {
32. bigmat_Fraspa = allocMatrix<int>(bigmat_Fraspa,…);
33. initMatrix<int>(bigmat_Fraspa, M_Fraspa, N_Fraspa, value);
34. }
35. bigmat = split<int>(bigmat_Fraspa, bigmat, M_Fraspa,…);
36. t1 = MPI_Wtime();
37. for(y=0; y < M+2; y++) {
38. for(x=0; x < N+2; x++) {
39. c.real = ((float) x - 500.0)/250.0;
40. c.imag = ((float) y - 500.0)/250.0;
41. color = compute(c, maxiter);
42. bigmat[y][x]=color;
43. }
44. }
45. t2= MPI_Wtime();
46. bigmat_Fraspa = collect<int>(bigmat, bigmat_Fraspa,…);
47. //other code

Figure 4-24- Code snippet of the generated Mandelbrot Set application

110

Because the amount of image data is large, clustering is used to preprocess the

data and reduce the search space in the image retrieval process. The clustering is

performed on image segments and therefore if a segment belongs to the cluster so does

the image containing the segment. The clustering performed here is based on a Genetic

Algorithm (GA). A typical experiment involved using 9,800 images with 82,556 regions

and these image regions were divided into 100 clusters. Additional details and steps

involved in the CBIR procedure can be found in [92].

In this experiment, if the GA is run for 100 generations or greater, it produces

better quality of clusters. The MATLAB-based implementation of the GA took more than

4 hours to execute for 100 generations [92]. The MATLAB code was first converted to

C/C++ code and then parallelized using MPI. The GA for CBIR is an excellent test case

because it is computation-intensive. The code snippet of the sequential version of the GA

is shown in Figure 4-25. Each generation of the GA involved 50 chromosomes, with 100

centroids on each chromosome. The centroids are the identification number associated

with each image segment stored as a group of features, and as mentioned earlier, there are

82,556 image segments or regions involved in this experiment. The fitness value

associated with each chromosome is the inverse of the sum of the minimum distances of

each image segment from the centroids on each chromosome [92]. There are

(82,556)*(100)*(50) computations involved in calculating the fitness values of the

chromosomes in each population. The function in which the fitness value of the

chromosome is calculated (evaluatePop) is therefore very time-consuming and

application profiling showed that the application spends more than 90% of its execution

time in this function. This function is therefore an ideal candidate for parallelization.

111

1. /*other code*/
2. evaluatePop(popcurrent,mydata,fitness);
3. for(i=0;i<numGenerations;i++){
4. printf("Gen: %d ", i);
5. pickchroms(fitness,popcurrent,popnext);
6. mutation(popnext,popcurrent);
7. equate(popcurrent, popnext);
8. evaluatePop(popcurrent,mydata,fitness);
9. printGenFit(popcurrent,fitness,(int)time1);
10. }
11. /*other code*/

Figure 4-25- Code snippet from the main function of sequential GA

The code snippet of evaluatePop function is shown in Figure 4-26. The for-loop

on line # 4 of Figure 4-26, iterates over 82,556 image segments to compute the distance

of each image segment from the centroid on each chromosome (popcurrent[k][j]). To

split the task of the calculation of the distances amongst multiple processors, the

computations in this for-loop should be split amongst multiple processors.

1. /*other code*/
2. for(k=0;k<numChrom;k++){
3. sumDist=0.0;
4. for(i=0;i<numofRecords;i++){
5. min=maximVal;
6. for(j=0;j<numCentroid;j++){
7. z=popcurrent[k][j];
8. eDist=0.0;
9. for(l=0;l<=numVector;l++){
10. eDist=eDist+(mydata[z][l]-mydata[i][l])*(…);
11. }
12. if(min>eDist){
13. min=eDist;
14. }
15. min_d[i]=min;
16. }
17. sumDist=sumDist+sqrt(min_d[i])
18. }
19. fitness[k]= (1.00/sumTotal);
20. }
21. /*other code*/
Figure 4-26- Code snippet from the evaluatePop function in the sequential GA

The code snippet shown in Figure 4-27 shows the Hi-PaL code for parallelizing

this for-loop which is outside the function main - (in function ("evaluatePop")) and

112

collecting the results of the computations in the for-loop by reducing the value of

sumDist before computing the fitness value. The code snippet of the parallelized

evaluatePop function is shown in Figure 4-28. The MPI API for setting up the MPI-

environment and other code for parallelization is inserted in the function main but is

omitted here.

1. Parallel section begins before ("t1=gettime();") mapping is
Linear{

2. Parallelize_For_Loop where (i=0;i<numOfrecords;i++) before
statement ("min=maximVal;") && in function ("evaluatePop");

3. ReduceSumInt(sumDist) before statement
("fitness[k]= (1.00/sumDist)") && in function ("evaluatePop")

4. }

Figure 4-27- Hi-PaL code for parallelizing the evaluatePop function in the GA

Because the GA can get stuck in local optima, it should be run for a large number

of generations to obtain the globally optimal results. Therefore, it is imperative to

checkpoint the application, especially when it is run in a dynamic and distributed

environment. For checkpointing, depending upon the implementation scheme (type of

load-balancing and design pattern) of the GA and the end-user’s preference, the

population and the fitness value of the chromosomes can be saved after certain number of

generations or even during the last generation. The state of the executing GA application

depends upon the current or initial population, and the seed value of the random-number

generator function. For making this application fault-tolerant through checkpointing, the

current population and the value of the seed used to initialize the random number

generator function are stored in a file. The time of the day is passed as the seed value to

the random number generator function in this application. To restart the program from

any point in execution, the GA can be made to read the values of the seed of the random

number generator and the current population from the restart files.

113

1. /*other code*/
2. long lower_limit_Fraspa;
3. long upper_limit_Fraspa;
4. int rank_Fraspa;
5. int size_Fraspa;
6. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);
7. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);
8. lower_limit_Fraspa=rank_Fraspa*((numOfrecords-1)…;
9. upper_limit_Fraspa =((rank_Fraspa==(size_Fraspa - 1))…)
10. for(k=0;k<numChrom;k++){
11. sumDist=0.0;
12. for(i = lower_limit_Fraspa;i<=upper_limit_Fraspa;i++){
13. min=maximVal;
14. for(j=0;j<numCentroid;j++){
15. z=popcurrent[k][j];
16. eDist=0.0;
17. for(l=0;l<=numVector;l++){
18. eDist=eDist+(mydata[z][l]-mydata[i][l])*(…);
19. }
20. if(min>eDist){
21. min=eDist;
22. }
23. min_d[i]=min;
24. }
25. sumDist=sumDist+sqrt(min_d[i])
26. }
27. MPI_Allreduce(&sumDist,&sumTotal,1,MPI_DOUBLE,MPI_SUM,…);
28. fitness[k]= (1.00/sumTotal);
29. }
30. /*other code*/

Figure 4-28- Code snippet of the parallelized evaluatePop function in GA

A code snippet from the parallelized main function of GA is shown in Figure 4-

29. The frequency of checkpointing, the CaR type (Centralized), and the loop variable

i are specified in the DALC code in Figure 4-30, along with the name of the function

printGenFit after whose execution the checkpointing code should be inserted. The

restart mechanism is also specified through the DALC and is shown in Figure 4-31.

Through this code, the execution of the function dataInitialize is intercepted. Due

to this interception, instead of the execution of the initialization code in the function

body, the array popcurrent is initialized with the values read from the file,

restartPopcurrent. If the restart file is not present then the array is initialized using the

values read from the file initial. The option of reading from one of these two files is

114

expressed by the usage of “|”. The variable time1, which is passed as a seed to the

random number generator, is initialized by the values read from the file restartTime1.

The variables numChrom and numCentroid in Figures 4-30 and 4-31 are the dimensions

of the array popcurrent and are provided by the user.

1. /*other code*/
2. for(i=0;i<numGenerations;i++){
3. if (rank==0){
4. printf("Generation #: %d",i);
5. }
6. popnext=pickchroms(fitness,popcurrent,popnext,start_x_y,…);
7. MPI_Allgatherv(&popnext[0][0],(start_x_y.ystart_x_y.x)*…,…);
8. if(rank==0){
9. popcurrent=mutation(popcurrent,numOfrecords,…);
10. }
11. MPI_Bcast(&popcurrent[0][0],numChrom*numCentroid,…);
12. evaluatePop(popcurrent,mydata,fitness,start_x_y2,…);
13. printGenFit(popcurrent,fitness,(int)time1,i,rank);
14. }

Figure 4-29- Code snippet of the parallelized main function of GA

The CaR mechanism described through the DALC, as shown in Figures 4-30 and

4-31, is translated into intermediate code that a PTE can understand to carry out the non-

invasive transformation of the existing application into a checkpointed one. As per the

specification, the PTE generates the base language code for file I/O. Two files,

restartTime1 and restartPopcurrent are opened and the value of the variable time1

(which is the seed value) and the contents of the array popcurrent are saved to these

files. The code snippet of the checkpointed code is shown in Figure 4-32. The inserted

checkpointing code is at lines # 14-28 of Figure 4-32.

1. beginCheckpointing:
2. after execution("printGenFit")&& (frequency = 10)

&& (loopVar = "i") && (CaRType = Centralized){
3. SaveInt(time1,"restartTime1")
4. SaveIntArray2D(popcurrent, numChrom, numCentroid,

"restartPopcurrent")
5. }

Figure 4-30- Checkpointing specifications for the GA

115

1. beginInitialization: around execution ("dataInitialize"){
2. ReadIntVarFromFile(time1, "restartTime1")
3. ReadIntArray2DFromFile(popcurrent, numChrom, numCentroid,

"restartPopcurrent") |
4. ReadIntArray2DFromFile(popcurrent, numChrom, numCentroid,

"initial")
5. }

Figure 4-31- Restart specifications for the GA

1. /*other code*/
2. for(i=0;i<numGenerations;i++){
3. if (rank==0){
4. printf("Generation #: %d",i);
5. }
6. popnext=pickchroms(fitness,popcurrent,popnext,start_x_y,…);
7. MPI_Allgatherv(&popnext[0][0],(start_x_y.ystart_x_y.x)*…,…);
8. if(rank==0){
9. popcurrent=mutation(popcurrent,numOfrecords,…);
10. }
11. MPI_Bcast(&popcurrent[0][0],numChrom*numCentroid,…);
12. evaluatePop(popcurrent,mydata,fitness,start_x_y2,…);
13. printGenFit(popcurrent,fitness,(int)time1,i,rank);
14. if(rank==0){
15. if (i % 10 == 0){
16. newInputFile = fopen("restartPopcurrent", "w");
17. storeVar = fopen("restartTime1", "w");
18. fprintf(storeVar, "%d ", time1);
19. for (ii = 0; ii < numChrom; ii++){
20. for (jj = 0; jj < numCentroid; jj++){
21. fprintf(newInputFile, "%d ", popcurrent[ii][jj]);
22. }
23. fprintf(newInputFile, "\n");
24. }
25. fclose(newInputFile);
26. fclose(storeVar);
27. }
28. }
29. }

Figure 4-32- Code snippet of the checkpointed parallel GA

4.2 Evaluation and Experimental Setup

All the experiments for this research were run on a 128 node dual-processor Xeon

cluster (Olympus) in the Department of Computer and Information Sciences at the

University of Alabama at Birmingham and the SGI Altix cluster at the Alabama

Supercomputing Center. Each node in the Olympus cluster has 4 GB of RAM, low-

116

latency InfiniBand network, and 4 terabytes of disk space. The Altix cluster has 228 CPU

cores, 1.5 terabytes of memory, and 10.8 terabytes of disk space. The FraSPA was

evaluated according to the following criteria:

1. Performance and accuracy of the generated versions of the parallel code versus

their manually-written counterparts.

2. Performance and accuracy of the generated versions of the checkpointed code

versus their manually-written counterparts

3. The number of Lines of Code (LoC) that the programmer has to write in

C/C++/MPI in order to manually parallelize a sequential application versus the

number of lines of Hi-PaL code the programmer has to write for parallelizing the

sequential application automatically.

4. The number of LoC that were generated by the framework in order to parallelize

the applications.

5. The number of LoC reused for generating various applications.

4.3 Results and Analysis

The run-time and speedup of the manually-written parallel code was compared

with the run-time and speedup of the code generated through the framework. The results

are shown in Figures 4-33 to 4-39. A summary of the problem size and the execution

time for different versions (sequential, manually-written parallel, and generated parallel)

of all the test cases in presented in Table 4-2. Each application was run on different

numbers of processors to test if they are scalable. No significant loss in performance was

observed in any test case and the results from the generated version were almost identical

117

to that of the manually-written version. For all the test cases that we have considered till

date, the performance of the generated application is within 5% of that of the manually-

written application.

Table 4-2- Performance comparison of various test cases
Application Problem Size Number of

Processor
Serial
(in sec)

Parallel
Manual
(in sec)

Parallel
Generated
(in sec)

Prime Number first 250,00,000
Numbers

30 92.30 9.25 9.31

Circuit
Satisfiability

30 input bits 30 208.81 7.70 7.19

Poisson Solver matrix size:
5000 5000, number of
iterations: 5000

30 8391.41 984.49 985.06

Game of Life matrix size:
5000 5000, number of
iterations: 10,000

30 17056.8 622.86 628.03

Image
Processing

image of size 10
million pixels

3 5.44 3.86 4.07

Mandelbrot Set matrix of size:
10000 10000

10 3.26 0.52 0.52

Genetic
Algorithm

number of
chromosomes in a
population: 50
number of centroids
on each chromosome:
100
number of
generations: 100
Number of image
segments: 82,556

30 2505.86 236.92 237.02

Figure 4-33- Runtime and Speedup – Prime Numbers

118

Figure 4-34- Runtime and Speedup – Circuit Satisfiability

Figure 4-35- Runtime and Speedup – Poisson Solver

Figure 4-36- Runtime and Speedup – Game of Life

119

Figure 4-37- Runtime and Speedup – Image Processing

Figure 4-38- Runtime and Speedup – Mandelbrot Set

Figure 4-39- Runtime and Speedup – Genetic Algorithm

120

The results of checkpointing the test cases presented in Sections 4.1.2, 4.1.3 and

4.1.7 are presented in Figures 4-40 to 4-42. The results of checkpointing the Circuit

Satisfiability application manually and through the DALC are presented in Figures 4-40.

The application was run on 10 processors with 30 input bits. The total number of

solutions that satisfied the circuit was 1920. The checkpointing was done every 10000,

20000, and 30000 iterations.

Figure 4-40- Runtime comparison of checkpointed Circuit Satisfiability application

The Poisson Solver application was also checkpointed both manually and through

the DALC. The two versions of the application were run for 50,000 iterations for a

1000x1000 matrix. In both the versions, the convergence is reached after 41218

iterations. The application was run on 40 processors and the frequency of checkpointing

was every 1000, 3000, and 5000 iterations. The comparison chart of the execution time is

presented in Figure 4-41.

121

Figure 4-41- Runtime comparison of the checkpointed Poisson Solver application

The GA was run for 1000 generations on 50 processors. Because the execution

time of the GA is very short, it was run for a greater number of iterations to study the

impact of checkpointing. The checkpointing was done after every 10, 20 and 30

iterations. A comparison between the manual and the generated version of the

checkpointed code of the GA is shown in Figure 4-42. The performance of the GA with

the generated checkpointing code is comparable to the manually-checkpointed GA.

Figure 4-42- Runtime comparison of the checkpointed Genetic Algorithm

122

The performance of the version in which the CaR mechanism was generated

through the DSL is within 5% of the version in which the CaR mechanism was inserted

manually for all the test cases used in this research. The difference between the

performance overheads of the generated and manually-written code (which is maximum

5% in the worst case) seems to be less apparent if the code is run for very large number

of iterations and the checkpointing is done at a very low frequency. Though the GUI

developed in this research can be used for generating the CaR-specifications (i.e., the

DSL code) in a wizard-driven manner, the end-user can also specify the DSL code

manually. A snapshot of the GUI is shown in Figure 3-17. Hence, the end-user effort is

reduced in terms of increase in code reuse.

A summary of the comparison of the number of LoC for the case-studies

described in Section 4.1 is presented in Table 4-3. For example, for the Circuit

Satisfiability application, the framework generates 104 LoC to parallelize the sequential

version of the application. The generated code sets-up the parallel environment,

terminates the MPI execution, has the necessary logic for carrying out the for-loop

parallelization, and reducing the desired value. The programmer had to write just 4 lines

of DSL code in order to parallelize this application. FraSPA uses various design

templates for automatically generating the parallel code on the basis of the Hi-PaL code

provided by the programmer. These templates are generic enough to be reused across

applications from diverse domains. Some of the design templates that were reused across

the test cases presented in Section 4.1 are the ones that set-up the MPI environment, data

distribution, data collection, parallelization of for-loop, and exchanging the values across

the cells in a stencil.

123

Table 4-3- Comparing the LoC for various test cases
Application Serial

(LoC)
Parallel
Manual(LoC)

Hi-PaL (LoC) Parallel
Generated(LoC)

Prime Numbers 47 62 5 75

Circuit
Satisfiability

86 102 4 104

Poisson Solver 85 330 6 357

Game of Life 180 623 6 641

Image
Processing

59 150 4 159

Mandelbrot Set 93 494 3 515

Genetic
Algorithm

431 816 3 830

On the basis of the results in Table 4-3, it can be observed that if Hi-PaL is used,

there is a clear reduction in the programmer effort (more than 90%) in terms of the

reduction in the number of lines of code that he or she has to write in order to accomplish

the task of explicit parallelization using MPI. The programmer is also freed from the

complexities associated with the process of explicit parallelization.

A summary of the number of LoC in the design templates that were reused to

parallelize the test cases is presented in Table 4-4. As noted from Table 4-4, the reduce

operation is performed twice in the parallel version of the application for finding the

Prime Numbers. The design template for generating the code for the reduce operation has

335 LoC and it is called twice (2*335). The template for inserting the code for setting up

the MPI environment has 452 LoC and it is reused across all the test cases. These 452

LoC are required to insert 7 significant lines of C/C++/MPI code (for setting up the MPI

environment, extending the variable declaration section and including the required files)

in the existing sequential applications. The template for the exchange operation has 263

LoC and it was used thrice in the Poisson Solver application. The exchange template, if

used once in a program, internally invokes the distribution template and is responsible for

124

inserting 114 lines of significant C/C++/MPI code in the existing sequential application.

With every additional invocation of the exchange template, an additional line of C/C++

code is inserted. Therefore, in total 116 lines of C/C++/MPI code are inserted by the

invocation of the exchange templates in the Poisson Solver example.

The reusable code components (like design templates) are helpful in code

maintenance and localization of changes. If any change is required in the implementation

of the exchange operation for example, then the same is done at one place as compared to

multiple places in multiple test cases. In summary, the code reuse through design

templates reduces the scope of code duplication (as observed in Figure 1-2), helps in

decreasing the effort involved in code maintenance, and promotes code correctness.

Table 4-4- Reusability metrics for some of the design templates for code generation
Application MPI Setup

(LoC)
Reduce (LoC) Distribution

(LoC)
Exchange
(LoC)

Prime Numbers 452 2*(335) 0 0

Circuit
Satisfiability

452 335 0 0

Poisson Solver 452 419 271 3*(263)

Game of Life 452 419 271 2*(263)

Image
Processing

452 335 271 0

Mandelbrot Set 452 0 271 0

Genetic
Algorithm

452 335 0 0

The total number of LoC required for implementing various components of FraSPA is

shown in Figure 4-5. These statistics do not reflect the actual LoC written for evolving

FraSPA into its current state. Before building the abstractions in FraSPA, the

implementations of various transformation rules was done manually and the estimate of

the same has not been provided here. There are approximately 14 KLOC in the current

125

deliverable. The front-end of FraSPA comprises of about 17% of the total LoC, the

middle-layer consists of nearly 63% of the total LoC, and the backend is nearly 17% of

the total LoC. The middle-layer, which is the thickest layer in the FraSPA architecture,

captures the expertise required for parallelization and fault-tolerance in the form of

reusable rule and design templates.

Table 4-5- Effort estimation in terms of LoC for developing FraSPA
Metamodels for DALC & Hi-PaL

DALC Metamodel Hi-PaL Metamodel RSL Metamodel
Number of Classes in
KM3 metamodel:175

Number of Classes in
KM3 metamodel:510

Number of Classes in
KM3 metamodel:172

LoC for TCS:370 LoC for TCS:674 LoC for TCS:345

ATL Rules
Total Number of ATL Files: 16
Total Number of LoC in ATL Files: 5752

Ant Scripts
Total Number of Scripts: 20
Total Number of LoC in Scripts: 2294

DMS Code (PARLANSE Functions)
Total Number of LoC: 2401
Total Number of Functions: 17

C++ Design Templates
Total Number of Templates: 7
Total Number of LoC: 622

Java Code
Total Number of Files: 7
Total Number of LoC: 364

4.4 General Discussion and Summary

The parallelization and CaR code could also have been generated directly through

the PTE without using the Hi-PaL or DALC. However, the time and complexity involved

in learning and using the PTE necessitated a higher level of abstraction and the DSLs

developed in this research provide the same. As noted from the results in Section 4.3,

inserting the CaR mechanism and parallelization code using the DSL and the PTE is a

126

cost-effective option for non-invasive reengineering of large legacy applications to make

them fault-tolerant and parallel. More than 90% reduction in the end-user effort was

observed in the test cases that were generated through FraSPA and the performance of the

generated code was within 5% of that of its manually-written counterpart. The problems

related to maintaining different copies of the application are also overcome and it is easy

to evolve the application. Because the original application does not undergo any

restructuring, the readability and understandability of the legacy application is also

maintained. The mechanism for fault-tolerance as developed in this research is platform-

independent and can be used to checkpoint code written in several base languages with

slight modifications made to the existing DALC [8].

The checkpointed application can be migrated from one resource to another

without affecting the accuracy of the results [93]. If the resources are comparable, no

significant loss in performance is observed. This DSL-based ALC-technique for making

the parallel application fault-tolerant can be extremely useful in dynamic environments,

like the grid, where small size of checkpoints and platform-independence are of prime

importance. The fault-tolerance mechanism is not only useful in the scenario in which

there is a possibility of resource failures but also for cost-effective resource scheduling.

With the current trend in the scientific community to adapt their applications for

the cloud computing environment, cost-effective resource scheduling is of paramount

importance. Imagine a scenario in which the computation nodes have a cost attached to

them and their availability is not guaranteed. In order to develop an optimal scheduling

strategy where the jobs get serviced at a reasonable cost and with a tolerable amount of

delay, it will be imperative to move the jobs from one resource to another depending

127

upon the cost and availability ratios. The CaR mechanism developed to make the

applications fault-tolerant can be used for developing the optimal scheduling strategy in

which the jobs can be started on any resource that is available (if getting it serviced at the

earliest is the priority) or it can be queued on the least expensive resource that is available

(if the cost has to be kept lowest and the queue wait time is not of concern). However,

apart from these two cases at the extreme ends, the middle-out approach (if the cost and

service time are both of equal importance) would be to start the job on a particular

resource, checkpoint it regularly, migrate it to a better resource as soon as it is available,

and restart it from the latest checkpoint. The definition of a better resource as mentioned

in the previous sentence is highly subjective and will depend upon the end-user

preferences.

In the current implementation of the framework, the onus is entirely on the end-

users to correctly identify the concurrency in their existing sequential applications and to

be aware of the naming convention of the generated code. The programmers are required

to manually ascertain that the operations inside the for-loop are independent of the results

in the previous iterations and there are no data-dependencies in general in the code

specified for parallelization. All the framework-generated variable names have a suffix

_Fraspa and as per the guidelines provided to the end-users, they are expected to avoid

naming their variables with this suffix to prevent name-conflicts between the generated

and user-defined variables. This limitation can be removed in future by generating unique

variable names after analyzing the existing code with the help of a static code analyzer.

It should also be noted that in the current implementation of FraSPA, the end-user

is required to assure that all the partial computation results have been collected from the

128

processors and that the processors are in a synchronized state at the time of taking a

distributed checkpoint.

129

CHAPTER 5

FUTURE WORK

This chapter outlines the directions in which the research presented in this

dissertation can be further extended. By raising the level of abstraction of developing

checkpointed (fault-tolerant) and MPI-based parallel applications through FraSPA, this

dissertation solved two major challenges associated with the HPC application

development. The HPC platforms can be broadly classified into two categories –

homogeneous platforms and heterogeneous platforms. Within these categories, there are

more categories depending upon the type of processing elements or memory-access

pattern. FraSPA solved the problem of automating the process of generating parallel

applications for distributed memory architectures.

FraSPA has the potential of being extended to support multiple parallel

programming models (e.g., support for synthesizing parallel applications for shared

memory paradigms and multi-core architectures) and hence multiple parallel

programming platforms. In order to extend FraSPA to develop applications for shared

memory architectures, a new DSL should be developed instead of extending Hi-PaL. The

mapping between the DSL in the front-end and the program transformation engine in the

backend will need to be extended too. However the backend will not undergo any

changes. The most tedious aspect of writing an OpenMP program is identifying the

variables that are meant to be kept private or shared amongst the multiple threads that

130

work in parallel on a section of a program. This part can be made semi-automatic by

using a static code analysis tool and a GUI. A summary of the suggestions regarding

which variable could be made private or shared and the directives to use can be presented

to the end-user to make selections from. As compared to MPI API, OpenMP has a lesser

number of directives for parallelization and the main ones are for the parallelization of

loops and the reduction operation. Therefore, compared to Hi-PaL, the DSL developed

for explicit parallelization using OpenMP will be simpler. The DALC can make

C/C++/OpenMP-based applications checkpointed without undergoing any changes. It

would also be of interest to extend FraSPA to provide the functionality of the framework

developed for raising the level of abstraction of GPGPU programming [94].

In addition to providing support for multiple programming paradigms, FraSPA

can also be extended to support the automatic parallelization of sequential applications

written in other legacy languages (e.g., FORTRAN) and dialects. For supporting more

legacy languages and dialects, the back-end support should be extended without much

change required in the front-end (i.e., Hi-PaL or DALC). Further details for providing

support for transforming code written in other legacy languages are provided in [37, 81].

Besides providing support for transforming legacy applications, FraSPA can also

be extended to support development of new applications in implicitly parallel languages

like SISAL and X10. To achieve this goal, design-templates can be developed to capture

the known patterns of writing the code in these languages. FraSPA can use these design-

templates to generate a stub-and-skeleton type of code template in which the end-user

will only need to provide the computation kernel in a high-level language [60, 63, 73].

131

It is crucial to include the mechanisms for supporting fault-tolerance, resource-

selection, and feedback for improved performance in a framework that would support the

development of applications for complex heterogeneous systems [7, 69, 75]. In this

context, DALC, and hence FraSPA, can make C/C++ programs fault-tolerant without any

extensions or modifications. However, to make the applications running on GPGPU

checkpointed (and hence fault-tolerant), more work is required for capturing the domain-

knowledge in terms of additional classes in the DALC metamodel. FraSPA can be

extended to generate resource-aware parallel applications that can run in grid computing

environments [80] by providing support for automatic resource discovery and adaptation.

In the grid computing environment, the resources can be heterogeneous, dynamic and

distributed. In order to dynamically and automatically generate a parallel application for a

heterogeneous platform from a set of Hi-PaL specifications and a sequential application,

a repository of application-characteristics is required [73, 95]. This repository will

contain the information of the performance of a class of application on a particular

resource (e.g., performance of evolutionary algorithms on multi-core architecture).

Through the repository of the application-characteristics, a sorted list of the resources the

application can be run on could be generated. The probability of the resource availability

can also be determined on the basis of the historical-data. An optimization function to

select the resource (HPC platform) that is most likely to be available and that has the best

application performance can be designed. Depending upon the dynamically selected

resource (e.g., shared memory platform and distributed platform), FraSPA should be able

to automatically generate an optimized and checkpointed parallel application from the

Hi-PaL specifications and the sequential application.

132

A feedback mechanism will be especially useful in the heterogeneous

environments for selecting the best algorithm or implementation scheme from the given

solution space of platform-specific implementations [7]. If the applications do not

perform optimally on the architecture selected by the end-user or FraSPA, the

information about the same could be fed into FraSPA and it can be trained to improve the

generated solutions. This mechanism will also be helpful in updating the repository of

application-characteristics.

An application-profiler (like Vtune from Intel [95]) can also be integrated into the

FraSPA framework such that if the end-user is not satisfied with the performance of the

generated code, they can further identify the hotspots for parallelization and fine-tune the

parallel application. This process of fine-tuning can also become a part of the feedback

mechanism discussed in the previous paragraph. Currently FraSPA does not have any

facility to prompt the end-user if they are selecting a wrong combination of parallel

operations (e.g., gather operation a variable instead of reduce operation). If the

programmer does not specify the correct parallel task, FraSPA will still generate the code

for parallelization as long as it finds the match-pattern and other constraints are satisfied.

The current set of guidelines developed for parallelizing the sequential code is

coarse-grained. Therefore, a code-analyzer could be provided along with the application-

profiler so that the programmer can not only detect the hotspots for parallelization but can

also make informed choices about the parallel operations to choose. For example, it

might be hard for the programmer to find the dependencies in the for-loop manually.

Therefore, a code analyzer can be helpful in this scenario for warning the programmer to

avoid parallelizing a for-loop with dependencies.

133

Apart from the aforementioned extensions to FraSPA, the following are some of

the potential areas of enhancements:

The current implementation of the framework supports a limited set of

C++ grammar rules for the VisualC++ 6.0 dialect. Extra effort is required

to provide support for the complete C++ grammar for all the dialects in

order to make the framework useful for transforming applications on a

large-scale. A richer support for specifying complex hooks (or join points)

is required (e.g., run-time evaluation of control-flow).

The possibility of adopting the memory hierarchy aware algorithm design

approach [96, 97] for improving the existing design-templates used in

FraSPA could be explored in future. For example, code can be structured

to maximize locality and tasks can be parameterized (multiple

implementations of a particular task can be provided) in order to produce

highly optimized parallel code [7].

The process of making the applications fault-tolerant via checkpointing

has already been made wizard-driven as a part of this research [22].

Efforts could be made to make the process of specifying the Hi-PaL code

wizard-driven as well.

The facility to search the join point or hook in the sequential application

on the basis of the logical line number can also be provided to reduce the

effort in specifying the match-pattern.

134

CHAPTER 6

SUMMARY AND CONCLUSION

The combination of emerging computing platforms (like GPUs, cell processors,

and field-programmable gate arrays) with traditional CPUs is being publicized as the next

revolution in HPC. Though such a paradigm shift is bound to bring massive amount of

computational power to the end-user at a low-cost, there is no unified domain-neutral

application development environment at the time of writing this dissertation that allows

the end-user to express concurrency at a high-level and dynamically generate optimal

solutions for even homogeneous HPC platforms. There are multiple parallel

programming paradigms, each best-suited for developing applications for a specific

computing platform. Therefore, the end-users (or domain-experts) are stuck in the

“problem of plenty” and experience a steep learning curve with each HPC platform or

programming model. Due to the increasing diversity in the type of processing elements in

the modern HPC platforms and the drastic increase in the number of processing elements

on a chip, the probability of failures of the processing elements is also increasing thereby

leading to reduced MTBF [5]. Therefore, a mechanism for supporting fault-tolerance is

required to make the applications running on such platforms immune to resource-failures.

In the light of the aforementioned changes in the HPC landscape, the goal of this

dissertation was to take the first step towards developing a framework that brings

scalability and performance to the end-user in the form of parallel computing without the

135

need to learn any low-level parallel programming paradigm or to do any manual intrusive

reengineering. A framework, named FraSPA, was developed in this research and in its

current scope, it supports the generation of checkpointed and MPI-based parallel

applications from the existing applications (written in C/C++) and code components on

the basis of the high-level specifications provided by the end-user.

Two DSLs have been developed as a part of this research for obtaining the high-

level specifications form the end-user and they are called Hi-PaL and DALC. Both DSLs

were developed from scratch and borrow some concepts from the AOP techniques. With

the help of Hi-PaL, without knowing anything about MPI API or its usage, end-users can

specify the tasks required for parallelizing the existing sequential applications at a very

high-level. The end-users are, however, expected to be familiar with the logic of the

sequential application and should be well acquainted with the concept of concurrency. A

set of Hi-PaL API has been developed for the commonly used parallel tasks like data

distribution, data collection, reading or writing the data in parallel, and parallelizing a for-

loop. DALC is useful for obtaining the specifications for checkpointing and restart from

the end-users. It includes the API for periodically saving and reading the critical

application variables from which the complete execution state of an application can be

recreated in the event of a failure of underlying resources.

Hi-PaL and DALC act as an interface between the end-user and FraSPA. The

specifications provided by the end-user (in the form of Hi-PaL or DALC code) are

translated into the rules for the source-to-source compiler at the back-end by the Rule

Generator. On the basis of these rules, the source-to-source compiler instruments the

existing application to make it checkpointed or parallel without requiring any manual-

136

reengineering. The code generation process is generic and domain-neutral due to the

domain-knowledge that is captured in the Rule Generator component of FraSPA. The

Rule Generator not only contains the domain-knowledge for generating the appropriate

rules from the Hi-PaL and DALC code, but also invokes the source-to-source compiler

(which is DMS in this research), handles the input to DMS, and gets the output from the

DMS to the end-user workspace.

With FraSPA, the programmer is not required to adapt the application to any

generic interfaces, can do incremental integration of components, and need not

restructure the existing application. The test cases presented in Chapter 4 of the

dissertation demonstrate the usage of FraSPA for doing various automatic

transformations (e.g., manipulating the declaration section, including files, inserting a

library call and deleting a line of code) and demonstrate its domain-neutral nature.

FraSPA demonstrates the desired flexibility to experiment with multiple communication

patterns and algorithms. For the selected test cases,

The processes of parallelizing an application and making it fault-tolerant via

checkpointing are decoupled from each other in FraSPA –i.e., they are two different

steps. This gives the end-user a choice of using the two mechanisms separately. If the

end-user is interested in parallelizing their sequential application, they can do so by using

Hi-PaL. If they are interested in making their parallel application fault-tolerant by

there is more than 90% of reduction in

the end-user effort in terms of the number of lines of code written manually while

requiring no explicit changes to the existing code. The performance of the generated code

is within 5% of that of the manually-written code. FraSPA supports separation of

concerns and thereby aids in code maintenance and evolution.

137

inserting the checkpointing and restart mechanism, irrespective of the fact whether the

application was generated by FraSPA or manually-written, they can do that as well by

using DALC. Both these steps obviate the need to intrusively reengineer the existing

application to make it parallel and/or checkpointed. The complex workflow inside

FraSPA and the complexities associated with the process of explicit parallelization are

hidden from the end-user.

The evaluation metrics presented in Chapter 4 show that FraSPA not only raises

the level of abstraction of non-invasively generating checkpointed parallel programming

without drastically degrading the performance, but it also promotes code reusability.

Because FraSPA supports separation of concerns, the process of developing HPC-

applications can become a multi-person software development activity. The domain-

experts can focus on developing the sequential parts of the application or providing the

specifications for parallelization through Hi-PaL and the computer scientists can work on

developing the optimized code components for parallelization and fault-tolerance that can

be integrated into FraSPA for improving the performance of the generated code.

Because the source-to-source compiler used in this research, DMS, is robust and

capable of handling large-scale applications, scalability of the approach presented in this

research is not an issue. This research not only shows a high-level technique for

synthesizing fault-tolerant parallel applications, but also shows a mechanism for raising

the level of abstraction of the DMS usage (the accidental complexities associated with the

usage of DMS are explained in Chapter 3).

FraSPA has the potential of being extended to support multiple programming

languages and paradigms such that eventually the problem of the lack of a unified

138

software development for heterogeneous platforms can be solved. The limitations of

FraSPA are discussed in Chapter 4 and the various measures to improve on them are

presented in Chapter 5. Code snippets of some of the components of FraSPA are

presented in the Appendices. Before concluding this dissertation, it is worth revisiting

the questions raised in Section 1.1.4 of Chapter 1 and to ponder if this research helps in

answering any of those. The questions were as follows:

1. Is it feasible to achieve portability and optimal performance with reasonable

effort?

2. Can efficient parallel programs be automatically generated by computers?

3. Can we bring scalability and performance to domain-experts in the form of

parallel computing without any need to learn low-level parallel programming?

4. Can we facilitate the transition of HPC from the realms of specialized and

scientific application development into mainstream business?

5. Can we mitigate the negative impact of the reduced MTBF of the complex

parallel computing platforms on the execution time of the applications?

While the answer to questions 2, 3, and 5 is a clear “yes”, more work is required to

find a conclusive answer to questions 1 and 4. Because FraSPA is capable of

automatically generating performance-oriented and checkpointed parallel programs on

the basis of the end-user specifications, it answers questions 2, 3, and 5 in the affirmative.

Though the applications generated by FraSPA show a drastic reduction in end-user effort

(more than 90%) in terms of the number of lines of code written manually, and the

performance of the generated code is commensurate to the effort spend (within 5% of that

of the manually-written code), more work is required to extend FraSPA to support

139

heterogeneous architectures. Therefore, the answer to question 1 is a “partial yes” at the

time of writing this dissertation. Because FraSPA can mitigate the complexities

associated with low-level parallel programming, it has the potential to lower the barriers

to large-scale HPC adoption [1, 2]. However, usability-studies are required to test this

feature of FraSPA and hence the answer to question 4 is yet to be discovered.

140

LIST OF REFERENCES

[1] Earl Joseph, Christopher G. Willard, Dolores Shaffer, Addison Snell, Suzy Tichenor,
Steve Conway, “Council on Competitiveness Study of ISVs Serving the High
Performance Computing Market. Part A – Current Market Dynamics”:
http://www.compete.org/images/uploads/File/PDF%20Files/ISV_Study_Part_A_200
5.pdf

[2] High Performance Computing Reveal, “Council on Competitiveness and USC-ISI
Broad Study of Desktop Technical Computing End Users and HPC”:
http://www.compete.org/images/uploads/File/PDF%20Files/CoC_REVEAL_May19.
pdf

[3] William Gropp, Ewing Lusk, Anthony Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, MIT Press, 1999, pp. 1-371.

[4] The OpenMP API specification for parallel programming: http://openmp.org/wp/

[5] Krste Asanovic, Ras Bodik, Bryan C. Catanzaro, Joseph J. Gebis, Parry Husbands,
Kurt Keutzer, David A. Patterson, William L. Plishker, John Shalf, Samuel W.
Williams, Katherine A. Yelick, “The Landscape of Parallel Computing Research: A
View from Berkeley,” Electrical Engineering and Computer Sciences, University of
California at Berkeley, Tech. Rep. UCB/EECS-2006-183, December 2006.
Available at: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-
183.pdf

[6] Top 500 Supercomputer Sites: http://www.top500.org/

[7] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso,
Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko,
Kang Chen, Robert W. Johnson, Nicholas Rizzolo, “SPIRAL: Code Generation for
DSP Transforms,” IEEE, Special issue on Program Generation, Optimization, and
Adaptation, Vol. 93, No. 2, 2005, pp. 232- 275.

[8] Ritu Arora, Purushotham Bangalore, Marjan Mernik, “A technique for non-invasive
application-level checkpointing,” The Journal of Supercomputing, ISSN: 0920-8542,
2010, pp. 1-29.

[9] Victor Basili, Jeff Carver, Daniela Cruzes, Lorin M. Hochstein, Jeff Hollingsworth,
Forrest Shull, Marvin Zelkowitz, “Understanding the High Performance Computing

141

Community: A Software Engineer's Perspective,” IEEE Software, Vol. 25, No. 4,
2008, pp. 29-36.

[10] Frederick P. Brooks, Jr., “No Silver Bullet Essence and Accidents of Software
Engineering,” Computer, Vol. 20, No. 4, 1987, pp.10-19.

[11] Philippe Charles, Christian Grothoff, Vijay A. Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, Vivek Sarkar, “X10: an object-
oriented approach to non-uniform cluster computing,” OOPSLA 2005, pp. 519-538.

[12] Henri E. Bal, M. Frans Kaashoek, Andrew S. Tanenbaum, “Orca: A Language for
Parallel Programming of Distributed Systems,” IEEE Transactions on Software
Engineering, Vol. 18, No. 3, 1992, pp. 190-205.

[13] John T. Feo, David C. Cann, Rodney R. Oldehoeft, “A report on the Sisal language
project,” Journal of Parallel and Distributed Computing, Vol. 10 No. 4, 1990, pp.
349-366.

[14] Guy Steele, “Parallel programming and parallel abstractions in fortress,” Functional
and Logic Programming, 8th International Symposium (FLOPS 2006), LNCS 3945,
2006, pp. 1.

[15] Vincent W. Freeh. “A comparison of implicit and explicit parallel programming,”
Journal of Parallel and Distributed Computing, Vol. 34, No. 1, 1996, pp. 50-65.

[16] Ritu Arora, Purushotham Bangalore, “A framework for raising the level of
abstraction of explicit parallelization,” International Conference on Software
Engineering (ICSE) Companion 2009, pp. 339-342.

[17] Anthony Skjellum, Purushotham Bangalore, Jeff Gray, and Barrett Bryant,
“Reinventing Explicit Parallel Programming for Improved Engineering of High
Performance Computing Software,” ICSE 2004 Workshop: International Workshop
on Software Engineering for High Performance Computing System Applications,
2004.

[18] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin, “Aspect-Oriented Programming,” European
Conference on Object-Oriented Programming, Springer-Verlag LNCS 1241, 1997,
pp. 220-242.

[19] Krzysztof Czarnecki and Ulrich Eisenecker, Generative Programming: Methods,
Tools, and Applications, Addison-Wesley, 2000, pp. 1-832.

[20] Marjan Mernik, Jan Heering, Anthony M. Sloane, “When and how to develop
domain-specific languages,” ACM Computing Surveys, Vol. 37, No. 4, 2005, pp.
316-344.

142

[21] Douglas Schmidt, “Guest Editor’s Introduction: Model-Driven Engineering,” IEEE
Computer, Vol. 39, No. 2, February 2006, pp. 25-31.

[22] Ritu Arora, Purushotham Bangalore, Marjan Mernik, Suman Roychoudhury,
Saraswathi Mukkai, “A Domain-Specific Language for Application-Level
Checkpointing,” International Conference on Distributed Computing and Internet
Technology, 2008, pp. 26-38.

[23] Uwe Aßmann, Invasive Software Composition, Springer, 2003.

[24] AspectC++: http://www.aspectc.org/

[25] AspectC: http://www.cs.ubc.ca/labs/spl/projects/aspectc.html

[26] Purushotham Bangalore, “Generating parallel applications for distributed memory
systems using aspects, components, and patterns,” 6th Workshop on Aspects,
Components, and Patterns For infrastructure Software (ACP4IS '07), Vol. 219,
2007.

[27] Ritu Arora, Purushotham Bangalore, “Using Aspect-Oriented Programming for
Checkpointing a Parallel Application,” Parallel and Distributed Processing
Techniques and Applications (PDPTA 2008), pp. 955-961.

[28] Bruno Harbulot and John Gurd, “Using AspectJ to Separate Concerns in a Parallel
Scientific Java Code,” International Conference on Aspect-Oriented Software
Development, 2004, pp. 122-131.

[29] Bruno Harbulot and John Gurd, “A Join Point for Loops in AspectJ,” Workshop on
Foundations of Aspect-Oriented Languages, 2005.

[30] Mikhail Chalabine and Christoph Kessler, “Crosscutting Concerns in Parallelization
by Invasive Software Composition and Aspect Weaving,” 39th Hawaii International
Conference on System Sciences, 2006.

[31] Reuseware Composition Framework:
http://www.reuseware.org/index.php/Main_Page

[32] Andreas Leha, Mikhail Chalabine, Christoph Kessler, “Parallelizing Scientific Code
with Invasive Interactive Parallelization - A Case Study with Reuseware,” Int.
Workshop on Component-Based High Performance Computing (CBHPC-2008),
2008.

[33] Ira Baxter, “Design Maintenance Systems,” Communications of the ACM, Vol. 35,
No. 4, April 1992, pp. 73-89.

143

[34] Ira Baxter, Christopher Pidgeon, and Michael Mehlich, “DMS: Program
Transformation for Practical Scalable Software Evolution,” International Conference
on Software Engineering, 2004, pp. 350-354.

[35] ROSE homepage: http://www.rosecompiler.org/

[36] David Wile, “Lessons Learned from Real DSL Experiments,” Science of Computer
Programming, Vol. 51, No. 3, 2004, pp. 265-290.

[37] Suman Roychoudhury, Frédéric Jouault and Jeff Gray, “Model-Based Aspect
Weaver Construction,” International Workshop on Language Engineering, 2007, pp.
117-126.

[38] The AMMA Platform: http://atlanmod.emn.fr/AMMAROOT/

[39] Jean Bézivin, Frédéric Jouault, David Touzet, “Principles, Standards and Tools for
Model Engineering,” International Conference on Engineering of Complex
Computer Systems, 2005, pp. 28-29.

[40] Frédéric Jouault and Jean Bézivin, “KM3: a DSL for Metamodel Specification,”
Formal Methods for Open Object-Based Distributed Systems, Springer-Verlag
LNCS 4037, 2006, pp. 171-185.

[41] Eclipse Modeling Framework Project:
http://www.eclipse.org/modeling/emf/?project=emf

[42] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev, “TCS: a DSL for the Specification
of Textual Concrete Syntaxes in Model Engineering,” Generative Programming and
Component Engineering, 2006, pp. 249-254.

[43] Frédéric Jouault and Ivan Kurtev, “Transforming Models with ATL,” Model
Transformations in Practice Workshop at MoDELS, 2005.

[44] OMG: Object Constraint Language Specification, version 2.0, formal/2006-05-01,
http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf, 2001.

[45] Jean Bézivin, Frédéric Jouault, Peter Rosenthal, Patrick Valduriez, “Modeling in the
Large and Modeling in the Small,” MDAFA’2004, Springer-Verlag LNCS 3599, pp.
33-46.

[46] Ivan Kurtev, Jean Bézivin, Frédéric Jouault, and Patrick Valduriez, “Model-based
DSL Frameworks,” Object-Oriented Programming, Systems, Languages and
Applications Companion, pp. 602-616.

[47] Rhiju Das, Bin Qian, Srivatsan Raman, Robert Vernon, James Thompson, Philips
Bradley, Sagar Khare, Micheal D. Tyka, Divya Bhat, Dylan Chivian, David E. Kim,

144

William H. Sheffler, Lars Malmström, Andrews M. Wollacott, Chu Wang, Ingemar
Andre, David Baker, “Structure prediction for CASP7 targets using extensive all-
atom refinement with Rosetta@home,” Proteins, Vol. 69, No. S8, 2007, pp. 118-128.

[48] Qingshan Chen, Jacques Laminie, Antoine Rousseau, Roger Temam, Joseph J.
Tribbia, “A 2.5 model for the equations of the ocean and the atmosphere,” Analysis
and Applications, Vol. 5, No. 3, 2007, pp. 199-229.

[49] Milos Prvulovic, Josep Torrellas, Zheng Zhang, “Revive: Cost-Effective
Architectural Support for Rollback Recovery in Shared-Memory Multiprocessors,”
International Symposium on Computer Architecture, 2002, pp. 111-122.

[50] Jason Duell, “The Design and Implementation of Berkeley Lab’s Linux Checkpoint/
Restart,” Lawrence Berkeley National Laboratory, Paper LBNL-54941, 2005,
http://crd.lbl.gov/~jcduell/papers/blcr.pdf.

[51] Michael Litzkow, Todd Tannenbaum, Jim Basney, Miron Livny, “Checkpoint and
Migration of Unix Processes in the Condor Distributed Processing System,”
University of Wisconsin-Madison Computer Science Technical Report #1346 1997.

[52] Greg Bronevetsky, Daniel Marques, Keshav Pingali, Paul Stodghill, “Automated
Application-Level Checkpointing of MPI Programs,” Symposium on Principles and
Practice of Parallel Programming (PPOPP 2003), pp. 84-94.

[53] Greg Bronevetsky, Daniel Marques, Keshav Pingali, Peter Szwed, Martin Schulz,
“Application-level checkpointing for shared memory programs,” Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2004), pp.
235-247.

[54] Greg Bronevetsky, Daniel Marques, Keshav Pingali, Radu Rugina, “Compiler-
Enhanced Incremental Checkpointing,” Languages and Compilers for Parallel
Computing, 20th International Workshop, LCPC 2007, pp. 1-15.

[55] Joshua Haines, Vijay Lakamraju, Israel Koren, C. Mani Krishna, “Application-Level
Fault Tolerance as a Complement to System-Level Fault Tolerance,” The Journal of
Supercomputing, Vol. 16, Nos. 1-2, 2000, pp. 53-68.

[56] John Paul Walters, Vipin Chaudhary, “Application-Level Checkpointing Techniques
for Parallel Programs,” International Conference on Distributed Computing and
Internet Technologies (ICDCIT 2006), pp. 221-234.

[57] Ajit Singh, Jonathan Schaeffer, Duane Szafron, “Experience with parallel
programming using code templates,” Concurrency: Practice and Experience, Vol.
10, 1998, pp. 91-120.

145

[58] Stephen Siu, Ajit Singh, “Design Patterns for Parallel Computing Using a Network
of Processors,” International Symposium on High Performance Distributed
Computing (HPDC’97), 1997, pp. 293-304.

[59] Narjit Chadha, “A Java Implemented Design-Pattern-Based System for Parallel
Programming,” Master of Science thesis, University of Mannitoba, 2002.

[60] Dhrubajyoti Goswami, Ajit Singh, Bruno R. Preiss, “Building Parallel Applications
using Design Patterns,” Advances in Software Engineering: Topics in
Comprehension, Evolution and Evaluation, Springer-Verlag 2002, pp. 243-265.

[61] Mikhail Chalabine, Christoph Kessle, “Parallelisation of sequential programs by
invasive composition and aspect weaving,” 6th International Workshop on Advanced
Parallel Processing Technologies (APPT’05). LNCS, 2005, pp. 131–140.

[62] João L. Sobral, “Incrementally Developing Parallel Applications with AspectJ,” 20th
IEEE International Parallel & Distributed Processing Symposium (IPDPS'06), 2006.

[63] Fethi A. Rabhi, Helen Cai, Brian C. Tompsett, “A Skeleton-Based Approach for the
Design and Implementation of Distributed Virtual Environments,” 5th International
Symposium on Software Engineering for Parallel and Distributed Systems, IEEE
Computer Society Press, 2000, pp. 13-20.

[64] Tarek El-Ghazawi, Francois Cantonnet, “UPC performance and potential: a NPB
experimental study,” ACM/IEEE conference on Supercomputing, 2002, pp. 1-26.

[65] Cristian Coarfa, Yuri Dotsenko, Jason Eckhardt, John Mellor-Crummey, “Co-array
Fortran Performance and Potential: An NPB Experimental Study,” The 16th
International Workshop on Languages and Compilers for Parallel Computing
(LCPC 2003), 2003, pp. 177-193.

[66] Bradford L. Chamberlain, David Callahan, Hans P. Zima, “Parallel Programmability
and the Chapel Language,” International Journal of High Performance Computing
Applications, Vol. 21, No. 3, 2007, pp. 291-312.

[67] Katherine Yelick, Paul Hilfinger, Susan Graham, Dan Bonachea, Jimmy Su, Amir
Kamil, Kaushik Datta, Philip Colella, Tong Wen, “Parallel Languages and
Compilers: Perspective From the Titanium Experience,” International Journal of
High Performance Computing Applications, Vol. 21, No. 3, 2007, pp. 266-290.

[68] Laxmikant V. Kale, Sanjeev Krishnan, “CHARM++: a portable concurrent object
oriented system based on C++,” ACM SIGPLAN Notices, Vol. 28, No. 10, 1993, pp.
91-108.

[69] Kayvon Fatahalian, Timothy J. Knight, Mike Houston, Mattan Erez, Daniel Reiter
Horn, Larkhoon Leem, Ji Young Park, Manman Ren, Alex Aiken, William J. Dally,

146

Pat Hanrahan,“Sequoia: Programming the Memory Hierarchy,” ACM/IEEE SC 2006
Conference (SC'06), 2006, Article No. 83.

[70] Charles Koelbel, David B. Loveman, Guy L. Steele, Mary E. Zosel, High
Performance FORTRAN Handbook, MIT Press, 1994, pp. 1-329.

[71] Paras Mehta, José Nelson Amaral, Duane Szafron, “Is MPI Suitable for a Generative
Design-Pattern System?” Parallel Computing, Vol. 32, Nos. 7-8, 2006, pp. 616-626.

[72] Alberto Bartoli, Paolo Corsini, Gianluca Dini, Cosimo Antonio Prete, “Graphical
Design of Distributed Applications through Reusable Components,” IEEE Parallel
and Distributed Techonology, Vol. 3, No. 1, 1995, pp. 37-51.

[73] Bryan Catanzaro, Armando Fox, Kurt Keutzer, David Patterson, Bor-Yiing Su, Marc
Snir, Kunle Olukotun, Pat Hanrahan, Hassan Chafi, “Ubiquitous Parallel Computing
from Berkeley, Illinois, and Stanford,” IEEE Micro, Vol. 30, No. 2, 2010, pp. 41-55.

[74] Jeffery Dean, Sanjay Ghemawat, “MapReduce: Simplifed Data Processing on Large
Clusters,” Communications of the ACM , Vol. 51, No. 1, 2008, pp. 107-113.

[75] Hadoop MapReduce: http://hadoop.apache.org/common/docs/current/

[76] Blackford, L. S., Choi J., Cleary A., D'Azevedo E., Jemmel J., Dhillon I., Dongarra
J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., and Whaley,
R.C., “ScaLAPACK Users' Guide,” SIAM, 1997, pp.1-325.

[77] POOMA User Guide: http://acts.nersc.gov/pooma/

[78] PETSc Webpage: http://www.mcs.anl.gov/petsc/petsc-as/

[79] Mark. T. Jones, Paul E. Plassmann, “BlockSolve95 users manual: Scalable library
software for the parallel solution of sparse linear systems,” ANL Report ANL-95/48,
Argonne National Laboratory, 1995, pp. 1-41.

[80] Roger D. Chamberlain, Mark A. Franklin, Eric J. Tyson, Jeremy Buhler, Saurabh
Gayen, Patrick Crowley, James H. Buckley, “Application development on hybrid
systems,” SC 2007.

[81] Jeff Gray, Suman Roychoudhury, “A Technique for Constructing Aspect Weavers
using a Program Transformation Engine,” International Conference on Aspect-
Oriented Software Development, 2004, pp. 36-45.

[82] Balakrishna Ramkumar, Volker Strumpen, “Portable Checkpointing for
Heterogeneous Architectures,” 27th International Symposium on Fault-Tolerant
Computing - Digest of Papers, 1997, pp. 58-67.

147

[83] Hai Jiang, Vipin Chaudhary, “MigThread: Compile/runtime support for thread
migration,” Proceedings of International Parallel and Distributed Processing
Symposium, IPDPS 2002, pp. 58-66.

[84] Pawel Czarnul, Marcin Fraczak, “New User-Guided and ckpt-Based Checkpointing
Libraries for Parallel MPI Applications,” 12th European PVM/MPI Users’ Group
Meeting, Vol. LNCS 3666, 2005, pp. 351- 358.

[85] James Cordy, Thomas Dean, Andrew Malton, and Kevin Schneider, “Source
Transformation in Software Engineering using the TXL Transformation System,”
Journal of Information and Software Technology, Vol. 44, No. 13, 2002, pp. 827-
837.

[86] Eelco Visser, “Stratego: A Language for Program Transformation Based on
Rewriting Strategies. System Description of Stratego 0.5,” International Conference
on Rewriting Techniques and Applications, Springer-Verlag LNCS 2051, Utrecht,
Netherlands, May 2001, pp. 357-361.

[87] Mark van den Brand, Jan Heering, Paul Klint, and Pieter Olivier, “Compiling
Rewrite Systems: The ASF+SDF Compiler,” ACM Transactions on Programming
Languages and Systems, Vol. 24, No. 4, 2002, pp. 334-368.

[88] Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill, A Pattern
Language for Parallel Programming, Addison Wesley Software Patterns Series,
2004.

[89] Michael Quinn, Parallel programming in C with MPI and OpenMP, McGraw-Hill,
2004.

[90] Chung, T. J, Computational Fluid Dynamics, Cambridge University Press, 1st
edition, 2002.

[91] Barry Wilkinson, Michael Allen, Parallel Programming: Techniques and
Applications Using Networked Workstations, Prentice Hall, 1998, pp. 1-431.

[92] Chengcui Zhang, Xin Chen, “Region Based Image Clustering and Retrieval using
Multiple Instance Learning,” Lecture Notes in Computer Science, Image/Video
Annotation and Clustering, 2005, pp. 194-204.

[93] Ritu Arora, and Purushotham Bangalore, “Grid enabling a Content Based Image
Retrieval Application,” International Conference on Parallel and Distributed
Computing Systems (ISCA PDCS 2007), 2007, pp. 19-23.

[94] Ferosh Jacob, Ritu Arora, Purushotham Bangalore, Marjan Mernik, Jeff Gray,
“Raising the level of abstraction of GPU-programming,” Parallel and Distributed
Processing Techniques and Applications (PDPTA 2010), pp. 339-345.

148

[95] Intel Vtune: http://software.intel.com/en-us/intel-vtune/

[96] Craig C. Douglas, Gundolf Haase, Jonathan Hu, Markus Kowarschik, Ulrich Rüde,
Christian Weiß, “Portable Memory Hierarhy Tehniques for PDE Solvers,” SIAM
News, Vol. 33, 2000, pp. 8-9.

[97] Guy E. Blelloch, Rezaul A. Chowdhury, Phillip B. Gibbons, Vijaya Ramachandran,
Shimin Chen, and Michael Kozuch, “Provably Good Multicore Cache Performance
for Divide-and-Conquer Algorithms,” In Proceedings of the 19th ACM-SIAM
Symposium on Discrete Algorithms (SODA'08), 2008.

149

APPENDIX A

HI-PAL METAMODEL SPECIFICATIONS

150

The individual specifications within this Appendix show the KM3 and TCS

specifications for the Hi-PaL metamodel.

A.1. Hi-PaL Metamodel KM3 Specification

The following represents the excerpt of the KM3 specification for the Hi-PaL

metamodel.

-- @name PDSL
-- @version 1.0

package PDSL {

-- extend LocatedElement class.

-- BEGIN DSL-specific classes
class PDSL extends LocatedElement {

reference parSpecs[*] container : ParSpecs;
reference hookType container : HookType;
attribute pattern : String;
attribute mapping : String;

}
class ParSpecs extends LocatedElement {

reference parTask [*] container : ParTask;
reference parCond[*] container : ParCond;

}
class ParCond extends LocatedElement {

reference hook container : Hook;
attribute pattern : String;

}
class Hook extends LocatedElement {

reference hookType container : HookType;
reference hookElem container : HookElement;

}

abstract class HookType extends LocatedElement {
}

abstract class HookElement extends LocatedElement {
}

class Statement extends HookElement {

}
class Call extends HookElement {

}

151

class Execution extends HookElement {

}
class Function extends HookElement {

}
abstract class ParTask extends LocatedElement {
}

abstract class ParCompute extends ParTask {
}

abstract class ParComputeLimits extends ParCompute {
}

class ParReduce extends ParTask {
reference redVarType container : RedVarType;

reference varArgs[*] container : RedVarArg;
}

class ParAllReduce extends ParTask {
reference redVarType container : AllRedVarType;
reference varArgs[*] container : RedVarArg;

}

class ParFor extends ParTask {
reference forLoopInitStatement container : ForInitStatement;
reference forLoopCond container : ForCond;
reference forLoopExpr container : ForLoopExpression;

}
abstract class ForInitStatement extends LocatedElement {
}
class InitStatement extends ForInitStatement {

attribute forVar : String;
reference operator container: Operator;
reference limit container : ParComputeLimits;

}
class AnyStatement extends ForInitStatement {

attribute anyStatement : String;
}
abstract class Operator extends LocatedElement {

}

abstract class ForCond extends LocatedElement {
}
class ForCondPresent extends ForCond{

attribute forVar : String;
reference operator container: Operator;
reference limit container : ParComputeLimits;

}
class ForNoCond extends ForCond {
}
class AnyCondition extends ForCond {

attribute anyCondition : String;

152

}

class LoopExpression extends ForLoopExpression {
attribute forVar : String;
reference stride container : Stride;

}

class ParGather extends ParTask {
reference gatherVarType container : ParGatherArrayType;

reference varArgs[*] container : GatherVarArg;
}
class ParDistribute extends ParTask {

reference distributeVarType container :
ParDistributeArrayType;

reference varArgs[*] container : DistributeVarArg;
}

class ParExchange extends ParTask {
reference exchangeVarType container : ParExchangeArrayType;
reference varArgs[*] container : ExchangeVarArg;

}

class ParBroadCast extends ParTask {
reference broadcastVarType container : ParBroadCastArrayType;
reference varArgs[*] container : BroadCastVarArg;

}

class ParWrite extends ParTask {
reference wVarType container : WriteVarType;
reference varArgs[*] container : WriteVarArg;

}

class ParRead extends ParTask {
reference rVarType container : ReadVarType;
reference varArgs[*] container : ReadVarArg;

}

-- More DSL-specific classes

-- END DSL-specific classes
}

A.2. Hi-PaL TCS Specification

The following shows the excerpt of the TCS specification for the Hi-PaL

metamodel. The lexical part is not included here.

153

syntax PDSL {

-- BEGIN Primitive templates
-- Specifies representation of primitive types.
-- Only needs modification when default lexer is not satisfactory.
-- Generally modified along with the lexer.

primitiveTemplate identifier for String default using NAME:
value = "%token%";

primitiveTemplate stringSymbol for String using STRING:
value = "%token%",
serializer="'\'' + %value%.toCString() + '\''";

primitiveTemplate integerSymbol for Integer default using INT:
value = "Integer.valueOf(%token%)";

primitiveTemplate floatSymbol for Double default using FLOAT:
value = "Double.valueOf(%token%)";

-- END Primitive templates

-- BEGIN Class templates
-- Specifies representation of classes.
-- This is the main section to work on.

template PDSL main
: "Parallel" "section" "begins" hookType "(" pattern

")" "mapping" "is" mapping "{"
parSpecs {separator = ";"}

"}"
;

template ParSpecs
: parTask parCond {separator = "&&"}

;
template ParCond

: hook "(" pattern ")"
;

template Hook
: hookType hookElem

;
template HookType abstract;

template HookElement abstract;
template Statement

:
"statement"

;
template Call

:
"call"

;
template Execution

:
"execution"

;
template Function

154

:
"function"

;
template ParTask abstract;

template ParCompute abstract;

template ParComputeLimits abstract;

template ParReduce
: redVarType "(" varArgs{separator = ","} ")"

;

template ParAllReduce
: redVarType "(" varArgs{separator = ","} ")"

;

template ParFor
: "Parallelize_For_Loop" "where" "(" forLoopInitStatement

";" forLoopCond ";" forLoopExpr ")"
;

template ForInitStatement abstract;

template InitStatement
: forVar operator limit

;

template AnyStatement
: anyStatement

;

template Operator abstract;

template ForCond abstract;

template ForCondPresent
: forVar operator limit

;

template ForNoCond
: ";"

;

template AnyCondition
: anyCondition

;

template ForLoopExpression abstract;

template ParGather
: gatherVarType "(" varArgs{separator = ","} ")"

;

template ParDistribute
: distributeVarType "(" varArgs{separator = ","} ")"

;

155

template ParExchange
: exchangeVarType "(" varArgs{separator = ","} ")"

;

template ParBroadCast
: broadcastVarType "(" varArgs{separator = ","} ")"

;

template ParWrite
: wVarType "(" varArgs{separator = ","} ")"

;

template ParRead
: rVarType "(" varArgs{separator = ","} ")"

;

-- More Class templates corresponding to the KM3 elements not shown in
-- A.2.

-- END Class templates

156

APPENDIX B

DALC METAMODEL SPECIFICATIONS

157

The individual specifications within this Appendix show the KM3 and TCS

specifications for DALC.

B.1. DALC KM3 Specification

The following represents the excerpt of the KM3 specification for the DALC

metamodel.

package CDSL {

-- LocatedElement class

-- BEGIN DSL-specific classes

class CDSL extends LocatedElement {
reference checkptCond container : ChkCond;
reference checkptCode container : ChkCode;
reference restartCond container : RestartCond;
reference restartCode container : RestartCode;

}
class RestartCond extends LocatedElement {

reference hook container : Hook;
attribute pattern : String;

}
class RestartCode extends LocatedElement {

reference restartStmts[*] container : RestartStmt;
}

abstract class RestartStmt extends LocatedElement {
reference rVarType container : ReadVarType;
reference varArgs[*] container : RestartVarArg;

}

class RestartStmt1 extends RestartStmt {
}

class RestartStmt2 extends RestartStmt {
reference rVarType1 container : ReadVarType;
reference varArgs1[*] container : RestartVarArg;

}

class RestartStmt3 extends RestartStmt {
attribute name : String;
attribute _params[*] : String;

}

158

class RestartVarArg extends LocatedElement {
attribute argument : String;

}

class ChkCond extends LocatedElement {
reference hook container : Hook;

attribute pattern : String;
attribute frequency : Integer;
attribute loopVar : String;

}

class Hook extends LocatedElement {
reference hookType container : HookType;
reference hookElem container : HookElement;

}

class ChkCode extends LocatedElement {
reference checkptStmts[*] container : ChkStmt;

}

class ChkStmt extends LocatedElement {
reference sVarType container : SaveVarType;
reference varArgs[*] container : SaveVarArg;

}

class SaveVarArg extends LocatedElement {
attribute argument : String;

}

abstract class HookType extends LocatedElement {
}

abstract class HookElement extends LocatedElement {
}

class Statement extends HookElement {

}
class Call extends HookElement {

}
class Execution extends HookElement {

}

abstract class SaveVarType extends LocatedElement {
}

abstract class ReadVarType extends LocatedElement {
}

-- More DSL-specific classes
-- END DSL-specific classes

}

159

B.2. DALC TCS Specification

The following shows the excerpt of the TCS specification for the DALC

metamodel. The lexical part is not included here.

syntax CDSL {

-- BEGIN Primitive templates
-- Specifies representation of primitive types.
-- Only needs modification when default lexer is not satisfactory.
-- Generally modified along with the lexer.

primitiveTemplate identifier for String default using NAME:
value = "%token%";

primitiveTemplate stringSymbol for String using STRING:
value = "%token%",
serializer="'\'' + %value%.toCString() + '\''";

primitiveTemplate integerSymbol for Integer default using INT:
value = "Integer.valueOf(%token%)";

primitiveTemplate floatSymbol for Double default using FLOAT:
value = "Double.valueOf(%token%)";

-- END Primitive templates

-- BEGIN Class templates
-- Specifies representation of classes.
-- This is the main section to work on.

template CDSL main
: "beginCheckpointing" ":"

checkptCond "{"
checkptCode

"}"
"beginInitialization" ":"

restartCond "{"
restartCode

"}"
;

template RestartCond
: hook "(" pattern ")"

;

template ChkCond
: hook "(" pattern ")" "&&"

"(" "frequency" "=" frequency ")"
"&&" "(" "loopVar" "=" loopVar ")"

160

;

template Hook
: hookType hookElem

;

template ChkCode
: checkptStmts

;
template RestartCode

: restartStmts
;

template ChkStmt
: sVarType "(" varArgs{separator = ","} ")"

;
template RestartStmt abstract;

template RestartStmt3
: rVarType "(" varArgs{separator = ","} ")" "|"

name "<" _params {separator = ","} ">" "("
varArgs{separator = ","} ")"

;

template RestartStmt1
: rVarType "(" varArgs{separator = ","} ")"

;

template RestartStmt2
: rVarType "(" varArgs{separator = ","} ")" "|"

rVarType1 "(" varArgs1{separator = ","} ")"
;

template RestartVarArg
: argument

;
template SaveVarArg

: argument
;

template HookType abstract;

template HookElement abstract;

template SaveVarType abstract;

template ReadVarType abstract;

template Statement
:
"statement"

;
template Call

:
"call"

;

161

template Execution
:
"execution"

;

-- More class templates corresponding to the KM3 elements not shown
in B.1.

-- END Class templates

162

APPENDIX C

MODEL TRANSFORMATION RULES FOR HI-PAL
AND DALC

163

The individual specifications within this Appendix show a sample of the model

transformation rules for the Hi-PaL and DALC.

C.1. ATL Rule for Setting the MPI Environment in Hi-PaL

The following ATL rule shows the complete specification for generating the RSL

rules for inserting the MPI-library calls at specific points in the existing sequential code.

module PSDL2RSL;

create OUT : RSL3 from IN : PDSL;

rule PSDL2RSL {
from

s : PDSL!PDSL
to

t : RSL3!RSL3 (
domain <- dom,
rslelems <- Sequence {pat1, expat1, rule1, pat2,

pat3, expat2, rule2, pat4, pat5, expat3,
rule3, pat6, expat4, rule4},

ruleset <- rs
),
dom : RSL3!Domain (

dname <- 'Cpp'
),
rs : RSL3!RuleSet (

rsname <- 'r',
rname <- Sequence {'addIncludeFile', 'extend_decl',

'add_statements', 'change_exit'}
),
pat1 : RSL3!Pattern(

phead <- ph,
ptoken <- 'statement_seq',
ptext <- pt
),

ph : RSL3!PatternHead (
name <- 'add_var'

),
pt : RSL3!SimplePatternText (

ptext <- ' \\>Cpp\\:[simple_declaration =
decl_specifier_seq init_declarator_list
\';\'] int \\>Cpp\\:[declarator_id =
id_expression] rank_Fraspa
\\<\\:declarator_id ;
\\<\\:simple_declaration
\\>Cpp\\:[simple_declaration =
decl_specifier_seq init_declarator_list

164

\';\'] int \\>Cpp\\:[declarator_id =
id_expression] size_Fraspa
\\<\\:declarator_id ;
\\<\\:simple_declaration

'

),
expat1 : RSL3!ExternalPattern(

dname <-'Cpp',
eptext <- 'addVars' ,
phead <- ph1,
ptoken <- 'translation_unit'

),
ph1 : RSL3!PatternHead(

name <- 'addVars',
params <- Sequence{param1, param2}

),
param1 : RSL3!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
param2 : RSL3!PatternParameter(

name <- 'stmt_seq' ,
referTo <- 'statement_seq'

),
rule1 :RSL3!Rule (

rname <- 'extend_decl',
params <- Sequence{rlparam1},
type <- 'translation_unit',
r_lhs_pattern <- lhs1,
r_rhs_pattern <- rhs1

),
rlparam1 : RSL3!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
lhs1 : RSL3!RuleLHS(

ruletext <- text1
),
rhs1 : RSL3!RuleRHS(

ruletext <- text2,
condition <- Sequence {rulecond1}

),
text1 : RSL3!IDRuleText(

text <-'tu'
),
text2 : RSL3!ComplexRuleText(

pref <- pr1
),
pr1 : RSL3!PatternRef (

name <- 'addVars',
params <- Sequence{param01, param02}

),
param01 : RSL3!RealParameter(

165

name <- 'tu'

),
param02 : RSL3!PatternRef(

name <- 'add_var'
),
rulecond1 : RSL3!RuleNotEqCondition(

lhs <- 'tu',
pref <- pr

),
pr : RSL3!PatternRef (

name <- 'addVars',
params <- Sequence{param11, param21}

),
param11 : RSL3!RealParameter(

name <- 'tu'

),
param21 : RSL3!PatternRef(

name <- 'add_var'
),

pat2 : RSL3!Pattern(
phead <- ph2,
ptoken <- 'statement_seq',
ptext <- pt2
),

ph2 : RSL3!PatternHead (
name <- 'add_code1'

),
pt2 : RSL3!SimplePatternText (

ptext <- '
\\>Cpp\\:[postfix_expression =
postfix_expression \'(\' expression_list
\')\'] MPI_Init(NULL,NULL)
\\<\\:postfix_expression ;
\\>Cpp\\:[postfix_expression =
postfix_expression \'(\' expression_list
\')\'] MPI_Comm_size(MPI_COMM_WORLD,
&size_Fraspa) \\<\\:postfix_expression ;
\\>Cpp\\:[postfix_expression =
postfix_expression \'(\' expression_list
\')\'] MPI_Comm_rank(MPI_COMM_WORLD,
&rank_Fraspa) \\<\\:postfix_expression ;

'

),
pat3 : RSL3!Pattern(

phead <- ph3,
ptoken <- 'statement',
ptext <- pt3
),

ph3 : RSL3!PatternHead (
name <- 'search_pattern1'

),
pt3 : RSL3!SimplePatternText (

ptext <- if

166

(s.pattern.substring(s.pattern.indexOf('(') -
> abs(), s.pattern.indexOf(')')->abs()) -
> size() < 2) then

'\\>Cpp\\:[expression =
assignment_expression] '

s.pattern.substring(1,(s.pattern.indexOf('='))) +

' = ' +
s.pattern.substring(((s.pattern.indexOf('='))+2),

(s.pattern -> size() -1))+' \\<\\:expression ;
'

else if (s.pattern.substring(
s.pattern.indexOf('('),
s.pattern.indexOf(')'))->size() = 2)

then
'\\>Cpp\\:[expression =
assignment_expression] '+

s.pattern.substring(1,(s.pattern.indexOf('=')))
+' = \\>Cpp\\:[postfix_expression =
simple_type_specifier \'(\' \')\'] '+
s.pattern.substring(((s.pattern.indexOf('='))
+2), (s.pattern -> size() -1))+'
\\<\\:postfix_expression \\<\\:expression ;
'
else if (s.pattern.substring(

s.pattern.indexOf('('),
s.pattern.indexOf(')'))->size() > 2)

then
'\\>Cpp\\:[expression =
assignment_expression] '+

s.pattern.substring(1,(s.pattern.indexOf('=')))
+' = \\>Cpp\\:[postfix_expression =
postfix_expression \'(\' expression_list \')\']
'+
s.pattern.substring(((s.pattern.indexOf('='))+2),
(s.pattern -> size() -1))+'
\\<\\:postfix_expression \\<\\:expression ;

'
else

''
endif

endif
endif

),
expat2 : RSL3!ExternalPattern(

dname <-'Cpp',
eptext <- if

(s.hookType.oclIsTypeOf(PDSL!BeforeHookType))
then

'addCodeBeforeStatement'
else

'addCodeAfterStatement'
endif,

phead <- ph4,
ptoken <- 'translation_unit'

167

),
ph4 : RSL3!PatternHead(

name <- if
(s.hookType.oclIsTypeOf(PDSL!BeforeHookType))
then

'addCodeBeforeStatement'
else

'addCodeAfterStatement'
endif,

params <- Sequence{param41, param42,param43, param44,
param45}

),
param41 : RSL3!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
param42 : RSL3!PatternParameter(

name <- 'stmt' ,
referTo <- 'statement'

),
param43 : RSL3!PatternParameter(

name <- 's_seq2' ,
referTo <- 'statement_seq'

),
param44 : RSL3!PatternParameter(

name <- 'id' ,
referTo <- 'IDENTIFIER'

),
param45 : RSL3!PatternParameter(

name <- 'id2' ,
referTo <- 'IDENTIFIER'

),
rule2 :RSL3!Rule (

rname <- 'add_statements',
params <- Sequence{r2param1},
type <- 'translation_unit',
r_lhs_pattern <- lhs2,
r_rhs_pattern <- rhs2

),
r2param1 : RSL3!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
lhs2 : RSL3!RuleLHS(

ruletext <- text21
),
text21 : RSL3!IDRuleText(

text <-'tu'
),
rhs2 : RSL3!RuleRHS(

ruletext <- text22,

168

condition <- Sequence {rulecond2}
),
text22 : RSL3!ComplexRuleText(

pref <- pr2
),
pr2 : RSL3!PatternRef (

name <- if
(s.hookType.oclIsTypeOf(PDSL!BeforeHookType))
then

'addCodeBeforeStatement'
else

'addCodeAfterStatement'
endif,

params <- Sequence{param201, param202, param203,
param204, param205}

),
param201 : RSL3!RealParameter(

name <- 'tu'

),
param202 : RSL3!PatternRef(

name <- 'search_pattern1'
),
param203 : RSL3!PatternRef(

name <- 'add_code1'
),
param204 : RSL3!StringParameter(

name <- '' + 'main' + ' '
),
param205 : RSL3!StringParameter(

name <- ''+
s.pattern.substring(1,(s.pattern.indexOf('='))) + ' '

),
rulecond2 : RSL3!RuleNotEqCondition(

lhs <- 'tu',
pref <- pr3

),
pr3 : RSL3!PatternRef (

name <- if
(s.hookType.oclIsTypeOf(PDSL!BeforeHookType)) then

'addCodeBeforeStatement'
else

'addCodeAfterStatement'
endif,

params <- Sequence{param211, param212,param213,
param214, param215 }

),
param211 : RSL3!RealParameter(

name <- 'tu'

),
param212 : RSL3!PatternRef(

name <- 'search_pattern1'
),
param213 : RSL3!PatternRef(

name <- 'add_code1'
),

169

param214 : RSL3!PatternRef2(
ptext <- param2214

),
param215 : RSL3!PatternRef2(

ptext <- param2215
),
param2214 : RSL3!StringParameter(

name <- '' + 'main' + ' '
),

param2215 : RSL3!StringParameter(
name <- ''+
s.pattern.substring(1,(s.pattern.indexOf('='))) + ' '

),
pat4 : RSL3!Pattern(

phead <- ph5,
ptoken <- 'jump_statement',
ptext <- pt4
),

ph5 : RSL3!PatternHead (
name <- 'returnStmt'

),
pt4 : RSL3!SimplePatternText (

ptext <- 'return 0;'

),
pat5 : RSL3!Pattern(

phead <- ph6,
ptoken <- 'statement',
ptext <- pt5
),

ph6 : RSL3!PatternHead (
name <- 'add_finalize_stmt'

),
pt5 : RSL3!SimplePatternText (

ptext <- '\\>Cpp\\:[postfix_expression =
postfix_expression \'(\' \')\']
MPI_Finalize() \\<\\:postfix_expression ;'

),
expat3 : RSL3!ExternalPattern(

dname <-'Cpp',
eptext <- 'addFinalize' ,
phead <- ph7,
ptoken <- 'translation_unit'

),
ph7 : RSL3!PatternHead(

name <- 'addFinalize',
params <- Sequence{param71, param72,param73}

),
param71 : RSL3!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
param72 : RSL3!PatternParameter(

name <- 'jstmt' ,
referTo <- 'jump_statement'

170

),
param73 : RSL3!PatternParameter(

name <- 'stmt2' ,
referTo <- 'statement'

),
rule3 :RSL3!Rule (

rname <- 'change_exit',
params <- Sequence{r3param1},
type <- 'translation_unit',
r_lhs_pattern <- lhs3,
r_rhs_pattern <- rhs3

),
r3param1 : RSL3!PatternParameter(

name <- 'tran_unit' ,
referTo <- 'translation_unit'

),
lhs3 : RSL3!RuleLHS(

ruletext <- text31
),
text31 : RSL3!IDRuleText(

text <-'tran_unit'
),
rhs3 : RSL3!RuleRHS(

ruletext <- text32,
condition <- Sequence {rulecond3}

),
text32 : RSL3!ComplexRuleText(

pref <- pr4
),
pr4 : RSL3!PatternRef (

name <- 'addFinalize',
params <- Sequence{param301, param302, param303}

),
param301 : RSL3!RealParameter(

name <- 'tran_unit'

),
param302 : RSL3!PatternRef(

name <- 'returnStmt'
),
param303 : RSL3!PatternRef(

name <- 'add_finalize_stmt'
),
rulecond3 : RSL3!RuleNotEqCondition(

lhs <- 'tran_unit',
pref <- pr5

),
pr5 : RSL3!PatternRef (

name <- 'addFinalize',
params <- Sequence{param311, param312,param313}

),
param311 : RSL3!RealParameter(

name <- 'tran_unit'

171

),
param312 : RSL3!PatternRef(

name <- 'returnStmt'
),
param313 : RSL3!PatternRef(

name <- 'add_finalize_stmt'
),
pat6 : RSL3!Pattern(

phead <- ph8,
ptoken <- 'pp_declaration_seq',
ptext <- pt6
),

ph8 : RSL3!PatternHead (
name <- 'fileToInclude'

),
pt6 : RSL3!SimplePatternText (

ptext <- '\\>Cpp\\:[pp_declaration_seq =
control_line]

#include <mpi.h> \\&n

\\<\\:pp_declaration_seq'
),
expat4 : RSL3!ExternalPattern(

dname <-'Cpp',
eptext <- 'IncludeFile2' ,
phead <- ph9,
ptoken <- 'translation_unit'

),
ph9 : RSL3!PatternHead(

name <- 'IncludeFile2',
params <- Sequence{param91, param92}

),
param91 : RSL3!PatternParameter(

name <- 'tran_unit' ,
referTo <- 'translation_unit'

),
param92 : RSL3!PatternParameter(

name <- 'pep_dec_seq' ,
referTo <- 'pp_declaration_seq'

),
rule4 :RSL3!Rule (

rname <- 'addIncludeFile',
params <- Sequence{r4param1},
type <- 'translation_unit',
r_lhs_pattern <- lhs4,
r_rhs_pattern <- rhs4

),
r4param1 : RSL3!PatternParameter(

name <- 'tran_unit' ,
referTo <- 'translation_unit'

),
lhs4 : RSL3!RuleLHS(

ruletext <- text41
),

172

text41 : RSL3!IDRuleText(
text <-'tran_unit'

),
rhs4 : RSL3!RuleRHS(

ruletext <- text42,
condition <- Sequence {rulecond4}

),
text42 : RSL3!ComplexRuleText(

pref <- pr6
),
pr6 : RSL3!PatternRef (

name <- 'IncludeFile2',
params <- Sequence{param401, param402}

),
param401 : RSL3!RealParameter(

name <- 'tran_unit'

),
param402 : RSL3!PatternRef(

name <- 'fileToInclude'
),
rulecond4 : RSL3!RuleNotEqCondition(

lhs <- 'tran_unit',
pref <- pr7

),
pr7 : RSL3!PatternRef (

name <- 'IncludeFile2',
params <- Sequence{param411, param412}

),
param411 : RSL3!RealParameter(

name <- 'tran_unit'

),
param412 : RSL3!PatternRef(

name <- 'fileToInclude'
)

}

C.2. ATL Rule for Translating DALC code into RSL code

The following ATL rule shows the specification for translating one of the DALC

specifications for checkpointing and restart into low-level RSL code.

modulemodule CSDL2RSL;

create OUT : RSL from IN : CDSL;

rule poisson {
from

s : CDSL!CDSL

173

to
t : RSL!RSL (

domain <- dom,
rslelems <- Sequence {pat1, pat2, pat3, pat4,

expat,expat2,rule1,rule2},
ruleset <- rs

),
dom : RSL!Domain (

dname <- 'Cpp~VisualCpp6'
),
rs : RSL!RuleSet (

rsname <- 'r',
rname <- Sequence

{'change_statement','change_statement2'}
),
pat1 : RSL!Pattern(

phead <- ph,
ptoken <- 'statement_seq',
ptext <- pt
),

ph : RSL!PatternHead (
name <- 'chk_code'

),

pat2 : RSL!Pattern(
phead <- ph2,
ptoken <- 'statement_seq',
ptext <- pt2
),

ph2 : RSL!PatternHead (
name <- 'add_code'

),

expat : RSL!ExternalPattern(
dname <-'Cpp~VisualCpp6',
eptext <- 'modify' ,
phead <- ph3,
ptoken <- 'translation_unit'
--ptext <- pt3

),
ph3 : RSL!PatternHead(

name <- 'modify',
params <- Sequence{param1, param2, param3, param4}

),
param1 : RSL!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
param2 : RSL!PatternParameter(

name <- 'stmt_seq' ,
referTo <- 'statement_seq'

),
param3 : RSL!PatternParameter(

name <- 's_seq2' ,

174

referTo <- 'statement_seq'

),
param4 : RSL!PatternParameter(

name <- 'id' ,
referTo <- 'IDENTIFIER'

),
expat2 : RSL!ExternalPattern(

dname <-'Cpp~VisualCpp6',
eptext <- 'delModify' ,
phead <- ph33,
ptoken <- 'translation_unit'

),
ph33 : RSL!PatternHead(

name <- 'delModify',
params <- Sequence{param13, param23, param33,

param43, param53}
),
param13 : RSL!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
param23 : RSL!PatternParameter(

name <- 's_seq' ,
referTo <- 'statement_seq'

),
param33 : RSL!PatternParameter(

name <- 's_seq2' ,
referTo <- 'statement_seq'

),
param43 : RSL!PatternParameter(

name <- 'id1' ,
referTo <- 'IDENTIFIER'

),
param53 : RSL!PatternParameter(

name <- 'id2' ,
referTo <- 'IDENTIFIER'

),
rule1 :RSL!Rule (

rname <- 'change_statement',
params <- Sequence{rlparam1},
type <- 'translation_unit',
r_lhs_pattern <- lhs1,
r_rhs_pattern <- rhs1

),
rlparam1 : RSL!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
lhs1 : RSL!RuleLHS(

175

ruletext <- text1
),
rhs1 : RSL!RuleRHS(

ruletext <- text2,
condition <- Sequence {rulecond1}

),
text1 : RSL!IDRuleText(

text <-'tu'
),
text2 : RSL!ComplexRuleText(

pref <- pr1
),
pr1 : RSL!PatternRef (

name <- 'delModify',
params <- Sequence{param01, param02, param03,

param04,param05}
),
param01 : RSL!RealParameter(

name <- 'tu'

),
param02 : RSL!PatternRef(

name <- 'myStart'
),
param03 : RSL!PatternRef(

name <- 'add_code'

),
param04 : RSL!StringParameter(

name <- '' + s.restartCond.pattern.substring(1,5) +
' '

),
param05 : RSL!StringParameter(

name <- '' + s.restartCode.restartStmts->at(1).name
+ ' '

),
rulecond1 : RSL!RuleNotEqCondition(

lhs <- 'tu',
pref <- pr

),
pr : RSL!PatternRef (

name <- 'delModify',
params <- Sequence{param11, param21, param31,

param41, param51}
),
param11 : RSL!RealParameter(

name <- 'tu'

),
param21 : RSL!PatternRef(

name <- 'myStart'
),
param31 : RSL!PatternRef(

name <- 'add_code'

176

),
param41 : RSL!StringParameter(

name <- '' + s.restartCond.pattern.substring(1,5) +
' '

),
param51 : RSL!StringParameter(

name <- '' + s.restartCode.restartStmts->at(1).name
+ ' '

),
pat3 : RSL!Pattern(

phead <- ph4,
ptoken <- 'statement_seq',
ptext <- pt4
),

ph4 : RSL!PatternHead (
name <- 'search_pattern'

),
pat4 : RSL!Pattern(

phead <- pah4,
ptoken <- 'statement_seq',
ptext <- pt5
),

pah4 : RSL!PatternHead (
name <- 'myStart'

),

rule2 : RSL!Rule (
rname <- 'change_statement2',
params <- Sequence{rlparam2},
type <- 'translation_unit',
r_lhs_pattern <- lhs2,
r_rhs_pattern <- rhs2

),
rlparam2 : RSL!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
lhs2 : RSL!RuleLHS(

ruletext <- text3
),
text3 : RSL!IDRuleText(

text <-'tu'
),
rhs2 : RSL!RuleRHS(

ruletext <- text4,
condition <- Sequence {rulecond2}

),
text4 : RSL!ComplexRuleText(

pref <- pr11
),
pr11 : RSL!PatternRef (

name <- 'modify',
params <- Sequence{param011, param021, param031,

param041}
),

177

param011 : RSL!RealParameter(
name <- 'tu'

),
param021 : RSL!PatternRef(

name <- 'search_pattern'
),
param031 : RSL!PatternRef(

name <- 'chk_code'

),
param041 : RSL!StringParameter(

name <- '' + s.checkptCond.pattern.substring(1,4) +
' '

),
rulecond2 : RSL!RuleNotEqCondition(

lhs <- 'tu',
pref <- pr2

),
pr2 : RSL!PatternRef (

name <- 'modify',
params <- Sequence{param012, param022, param032,

param042}
),
param012 : RSL!RealParameter(

name <- 'tu'

),
param022 : RSL!PatternRef(

name <- 'search_pattern'
),
param032 : RSL!PatternRef(

name <- 'chk_code'

),
param042 : RSL!StringParameter(

name <- '' + s.checkptCond.pattern.substring(1,4) +
' '

)
}

178

APPENDIX D

RSL RULES FOR TANSFORMATIONS

179

A sample of RSL rule generated by the Rule Generator in FraSPA is provided in

Appendix D.1. The generated rules are analyzed and applied by the DMS (PTE that

works in the backend) on the existing applications to do the required code

instrumentation.

D.1. RSL Rule Generated by the Rule Generator in FraSPA

The following RSL rule (add_statements) can be used to add new statements

(add_code1) after the statement specified as search-pattern (search_pattern1) in the

following code.

default base domain Cpp~VisualCpp6.

pattern add_code1() : statement_seq
=
"\>Cpp~VisualCpp6\:[statement = expression_statement] b =

\>Cpp~VisualCpp6\:[postfix_expression = primary_expression]
\>Cpp~VisualCpp6\:[unqualified_id = template_id]

exchange<double>
\<\:unqualified_id

\<\:postfix_expression
(b, myrows_Fraspa+2, mycols_Fraspa+2, P_Fraspa, Q_Fraspa,
p_Fraspa, q_Fraspa, comm2d_Fraspa,rowcomm_Fraspa, colcomm_Fraspa);

\<\:statement".

pattern search_pattern1() : statement
=
"\>Cpp~VisualCpp6\:[expression = assignment_expression] b =

\>Cpp~VisualCpp6\:[postfix_expression = simple_type_specifier '('
expression_list ')']
compute(a, f, b, M, N)

\<\:postfix_expression
\<\:expression ; ".

external pattern addCodeAfterStatement(tu : translation_unit, stmt :
statement, s_seq2 : statement_seq, id : IDENTIFIER, id2 : IDENTIFIER) :
translation_unit

=
'addCodeAfterStatement' in domain Cpp~VisualCpp6.

rule add_statements(

180

tu : translation_unit)
:

translation_unit->
translation_unit

=
tu

->
addCodeAfterStatement(tu, search_pattern1(), add_code1(), "main ",

"compute ")
if tu ~= addCodeAfterStatement(tu, search_pattern1(), add_code1(),

"main ", "compute ")
.

public ruleset r = {add_statements}.

181

APPENDIX E

BACK-END TRANSFORMATION FUNCTIONS

182

The PARLANSE external functions that are reusable or shared among multiple RSL rules

in both Hi-PaL and DALC are shown in Appendix E.1. and E.2. The following

PARLANSE external functions are useful for pattern-matching required for applying the

RSL rules for transforming the existing applications.

E.1. PARLANSE Function for Searching the Return Statement

The following PARLANSE external function is useful for searching the return

statement in the “main” function to insert the MPI_Finalize() library call before it.

`this function is used for adding MPI_Finalize() before the return in
`function main.

statement':
(define addFinalize

(lambda Registry:CreatingPattern
(value (local (;;
[representation_instance AST:RepresentationInstance]
[new_node2 AST:Node]
[new_node1 AST:Node]
[search_node AST:Node]
);;

(;;
(= representation_instance
(AST:GetForestRepresentationInstance
(AST:GetForst arguments:1)
(AST:GetRepresentation arguments:1)))
(= new_node2 (AST:CreateNode representation_instance
GrammarConstants:NodeTypes:_statement_seq_2))
(= new_node1 (AST:CreateNode representation_instance

GrammarConstants:NodeTypes:_statement_2))
(AST:ScanTreeNodes arguments:1
(lambda (function boolean AST:Node

)function
(value (local (;;);;
(;;
(ifthen (== (AST:GetNodeType ?)
GrammarConstants:NodeTypes:_jump_statement_3)
(ifthen (== (@(AST:GetString ?))

(@(AST:GetString arguments:2)))
(;;

(= search_node (AST:GetParent
(AST:GetParent ?)))
(ifthen (~= search_node
AST:VoidNode)

183

(;;
(AST:ConnectNthChild new_node2 1 arguments:3)
(AST:ConnectNthChild new_node2 2 arguments:2)
(AST:ConnectNthChild new_node1 1 new_node2)

(AST:ReplaceTree search_node new_node1)
);;

)
);;

)ifthen
)ifthen

(return ~t)
);;

)local
~t
)value
)lambda

)
(return arguments:1)

);;
)local
(void AST:Node)
)value
)lambda

)define

E.2. PARLANSE Function for Including Helper Files

The following PARLANSE external function is useful for inserting the directives

for including helper files in the program that is to be transformed. An example of the file

that can be inserted by using the following function is “mpi.h”.

(define IncludeFile2
(lambda Registry:CreatingPattern
(value (local (;;

[representation_instance AST:RepresentationInstance]
[search_node AST:Node]
[pp_declaration_seq_node AST:Node]
[new_node1 AST:Node]
[func_node AST:Node]
[id_node AST:Node]
);;
(;;
(= representation_instance (AST:GetForestRepresentationInstance

(AST:GetForest arguments:1) (AST:GetRepresentation
arguments:1)))

(= new_node1 (AST:CreateNode representation_instance
GrammarConstants:NodeTypes: _declaration_seq_2))

(= search_node (AST:FindChildWithProperty arguments:1
(lambda (function boolean AST:Node)function

184

(value (local (;;);;
(;;
(ifthen (== (AST:GetNodeType ?) 867)
(;;
(= func_node (GetChildFromParent ? 1239))

(= id_node (GetChildFromParent func_node 1915))

(ifthen (== (@(AST:GetString id_node)) `main')
(;;

(return ~t)
);;

)ifthen
);;

)ifthen
(return ~f)
);;

)local
~f

)value
)lambda

)
)

(ifthen (~= AST:VoidNode search_node)
(;;

(= pp_declaration_seq_node (GetParentFromChild search_node
855))
(ifthen (~= AST:VoidNode pp_declaration_seq_node)

(;;
(AST:ConnectNthChild new_node1 1 arguments:2)
(AST:ConnectNthChild new_node1 2 search_node)
(AST:ReplaceNthChild pp_declaration_seq_node 1 new_node1)

);;
)ifthen

);;
)ifthen
(return arguments:1)

);;
)local
(void AST:Node)
)value
)lambda
)define

	FraSPA: A Framework for Synthesizing Parallel Applications
	Recommended Citation

	GENAWEAVE: A GENERIC ASPECT WEAVER BASED ON

