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FRASPA: A FRAMEWORK FOR SYNTHESIZING PARALLEL APPLICATIONS

RITU ARORA

COMPUTER AND INFORMATION SCIENCES

ABSTRACT

Scientists, engineers and other domain-experts have computational problems that 

are growing in size and complexity, thereby, increasing the demand for High 

Performance Computing (HPC). The demand for reduced time-to-solution is also 

increasing and simulations on high performance computers are being preferred over 

physical prototype development. Though HPC is gradually becoming indispensible for 

business growth, the programming challenges associated with HPC application 

development are a key bottleneck to embracing it on a massive scale. Current high-level 

approaches for generating HPC applications are either domain-dependent or do not 

leverage from existing applications.

Message Passing Interface (MPI) is the most popular standard for writing parallel 

applications for distributed memory HPC platforms. The development of parallel 

applications using MPI often begins with working sequential applications that undergo 

major rewrites to incorporate appropriate calls to MPI routines. Writing efficient parallel 

applications using MPI is a complex task due to the extra burden on programmers 

(including domain-experts) to manually and explicitly handle all the complexities of 

message-passing (viz., data distribution and load-balancing). Invasive manual 

reengineering of existing applications is also required for making them checkpointed to 

overcome resource-failures in distributed environments.
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A Framework for Synthesizing Parallel Applications (FraSPA) has been 

developed in this research with the goal of reducing the complexities associated with the 

process of developing checkpointed message-passing applications. FraSPA is capable of 

doing automatic code instrumentation for parallelization and checkpointing on the basis 

of the high-level specifications provided by the end-users.  The high-level specifications 

are provided by domain-specific languages developed in this research. For the selected 

test cases, there is more than 90% of reduction in the end-user effort in terms of the 

number of lines of code written manually while requiring no explicit changes to the 

existing code. The performance of the generated code is within 5% of that of the 

manually-written code. FraSPA was developed using a combination of modern software 

engineering techniques (viz. generative programming and model-driven engineering) and 

has the potential of being extended to support heterogeneous architectures, multiple 

programming languages, and various parallel programming paradigms.



v

DEDICATION

Gururev Brahma, Gururev Vishnu,

Gururev Devo, Maheshwara,

Gururev Shakshat Param Brahma,

Tasmayi Shree Guruveh, Namoh Namah!

This work is dedicated to my advisor, Dr. Purushotham Bangalore – Thanks for 

imparting the knowledge that I needed to be where I want to be in life!



vi

ACKNOWLEDGEMENTS

I am very grateful to my advisor, Dr. Purushotham Bangalore, for accepting me as 

his Ph.D. student and giving me a chance to reach this far. Because of his liberal and 

progressive approach, he has created a positive impact on my personality such that today, 

I am confident of being a successful researcher in both collaborative and independent 

research environments. With his immense knowledge in the field of High Performance 

Computing, he has very calmly and patiently guided me in the Ph.D. program. I shall 

always be indebted to him for his able guidance that made this work possible.

I am very thankful to my role-model, Dr. Jeff Gray, for providing me the required 

training on modern software engineering techniques through his courses. His timely 

support and able guidance on several issues has helped me in accomplishing my research 

and career goals. I am especially thankful to him for the opportunity to collaborate with 

the members of his laboratory and mentoring me on the art of writing high-quality 

research papers. It was a great learning experience to work with him and I shall always 

strive to match-up to his standards.

I am very grateful to Dr. Marjan Mernik for mentoring me in the area of Domain-

Specific Languages. He has taken great interest in my work and has always been 

available to advise me. I am extremely grateful to him for all the efforts that he has made 

in helping me understand the topics that I have found difficult and in improving the 

quality of our papers. I am very thankful to him for his valuable feedback in improving 

this dissertation.



vii

I am thankful to Dr. Ioana Banicescu and Dr. Anthony Skjellum for very kindly 

accepting the invitation to serve on my graduate study committee and for providing their 

valuable feedback for improving this dissertation.

I would like to thank Dr. Frédéric Jouault for letting me attend his lectures on 

model-driven engineering and helping me understand the basics of the AMMA platform 

used in this research. I am grateful to my colleague and mentor, Dr. Suman 

Roychoudhury, for guiding me through the initial work done for this research – thanks 

for understanding me and being there for me during tough times! My expertise-level in 

RSL and PARLANSE wouldn’t have been the same without his help. I am sincerely

thankful to Dr. Ira Baxter for his timely help on the questions related to DMS. He has

very patiently understood my questions and has answered them in great depth and with

care. I am grateful to my mentor, Dr. Kai Shen, for showing me the new directions in 

which this dissertation research can be applied.

I would like to thank Dr. Elliot Lefkowitz and all the members of his laboratory –

especially Jim Moon, Curtis Hendrickson, Don Dempsey, and Catherine Galloway – for 

giving me the opportunity to work them on the Viral Bioinformatics Resource Project. 

The work experience that I gained through my association with them has made me a 

well-rounded software engineer and has given me the required exposure to the American 

work-culture. I have not only improved my attention-to-detail by working with them but 

have also learnt the art of demystifying complex problems. 



viii

I am thankful to all the faculty members of the Computer and Information 

Sciences Department at UAB for the courses they have offered. Their courses have 

helped me in broadening my knowledge and in passing the qualifying exams, without 

which it would have not been possible to advance in the graduate program.

I am extremely grateful to my colleague and friend, Dr. Vetria Byrd, for her 

incessant encouragement and company in tough times – you have been such a great 

listener and my rock-solid-support-system! To my other colleagues at UAB - Yu Sun, 

Zekai Demirezen, Ferosh Jacob, and Saraswathi Mukkai – I enjoyed working with you 

all. I will carry the wonderful memories of the time we spent together working on tough 

and not-so-tough problems for the rest of my life. I am very grateful to Janet, Kathy, and 

John for their kind help, care and support. Janet and Kathy have always been there for me 

as great listeners and guides. This dissertation work would not have been complete 

without the timely support from the IT staff in the Computer and Information Sciences 

Department and I am very thankful to them. I would also like to thank UAB and the 

Computer and Information Sciences Department for the computing resources and for 

employing me as a graduate assistant for majority of the duration of my graduate study.

I am grateful to Dr. David Young at the Alabama Supercomputing Center for 

helping me in using their computational resources. I am grateful to my counselor,

Consuelo Click, for her kind help and support. I appreciate the kind assurance and advice 

from Dr. Jeff Engler and Susan Banks – it meant a lot to me! In the end, I am thankful to 



ix

my family for keeping me motivated and helping me overcome all the hurdles during the

course of my graduate study – thank you for your financial, moral, and spiritual support!



x

TABLE OF CONTENTS

Page

ABSTRACT....................................................................................................................... iii

DEDICATION.....................................................................................................................v

ACKNOWLEDGEMENTS............................................................................................... vi

LIST OF TABLES........................................................................................................... xiii

LIST OF FIGURES ......................................................................................................... xiv

LIST OF ABBREVIATIONS........................................................................................ xviii

CHAPTER

1         INTRODUCTION ....................................................................................................1

1.1 Challenges in HPC Application Development ...............................................1
1.1.1 Problem of Plenty ............................................................................2
1.1.2 Modern Computing Platforms ........................................................2
1.1.3 Predicament of Programmers...........................................................4
1.1.4 Summary of the Challenges and Discussion....................................5

1.2 Scope of the Research and Research Statement .............................................7
1.3 Key Contributions.........................................................................................14
1.4 Broader Impact..............................................................................................15
1.5 Overview of the Dissertation ........................................................................16

2 BACKGROUND AND RELATED WORK .........................................................17

2.1 Aspect-Oriented Programming .....................................................................18
2.2 Invasive Software Composition....................................................................23
2.3 Generative Programming ..............................................................................25

2.3.1 Template Metaprogramming .........................................................26
2.3.2 Program Transformation................................................................26

2.4 Domain-Specific Languages.........................................................................31
2.5 Model-Driven Engineering ...........................................................................32
2.6 Checkpointing ...............................................................................................34



xi

TABLE OF CONTENTS (Continued)

Page
CHAPTER

2.7 Related High-Level Programming Approaches............................................38
2.7.1 New Parallel Programming Languages .........................................39
2.7.2 Pattern-Based Approaches .............................................................42
2.7.3 Domain-Specific Approaches ........................................................44
2.7.4 Library-Based Approaches ............................................................46
2.7.5 Other Related Work .......................................................................46

2.8 Related Approaches for Fault-Tolerance Through Checkpointing..............48
2.9 General Discussion ......................................................................................50

3 DESIGN AND IMPLEMENTATION OF FRAMEWORK .......................................53

3.1 Overview of the Approach............................................................................56
3.2 Framework Design.........................................................................................60

3.2.1 Hi-PaL – DSL for Parallelization .....................................................64
3.2.2 DALC – DSL for Application-Level Checkpointing........................69
3.2.3 Rule Generator ..................................................................................78

3.3 Framework Implementation..........................................................................79
3.4 Summary.......................................................................................................86

4 EXPERIMENTAL EVALUATION...........................................................................88

4.1 Test Cases .....................................................................................................88
4.1.1 Prime number Generation .................................................................91
4.1.2 Circuit Satisfiability..........................................................................93
4.1.3 Possion Solver...................................................................................96
4.1.4 Game of Life ...................................................................................100
4.1.5 Image Processing ............................................................................106
4.1.6 Mandelbrot Set................................................................................107
4.1.7 Genetic Algorithm for Content-Based Image Retrieval .................108

4.2 Evaluation and Experimental Setup............................................................115
4.3 Results and Analysis ...................................................................................116
4.4 General Discussion and Summary ..............................................................125

5 CONCLUSION.....................................................................................................129

6 FUTURE WORK...................................................................................................134

LIST OF REFERENCES.................................................................................................140



xii

TABLE OF CONTENTS (Continued)

Page

APPENDIX

A HI-PAL METAMODEL SPECIFICATIONS ............................................149

A.1     Hi-PaL Metamodel KM3 Specification ...........................................150

A.2     Hi-PaL TCS Specification ...............................................................152

B DALC METAMODEL SPECIFICATIONS...............................................156

B.1    DALC KM3 Specification ................................................................157

B.2     DALC TCS Specification.................................................................159

C MODEL TRANSFORMATION FOR Hi-PaL AND DALC......................162

C.1     ATL Rule for Setting the MPI Environment in Hi-PaL...................163

C.2     ATL Rule for Translating DALC code into RSL code ....................172

D RSL RULES FOR TRANSFORMATION.................................................178

D.1     RSL Rule Generated by the Rule Generator in FraSPA ..................179

E BACKEND TRANSFORMATION FUNCTIONS ...................................181

E.1    PARLANSE Function for Searching the Return Statement............182

E.2     PARLANSE Function for Including Helper Files ..........................183



xiii

LIST OF TABLES

Table Page

4-1 Parallel operations applied on the test cases ..........................................................91

4-2 Performance comparison of various test cases.....................................................117

4-3 Comparing the LoC for various test cases............................................................123

4-4 Reusability metrics for some of the design templates for code generation .........124

4-5 Effort estimation in terms of LoC for developing FraSPA ..................................125



xiv

LIST OF FIGURES

Figure                                                                                                                       Page

1-1 Usual process of writing a parallel program using MPI...........................................9

1-2 Percentage of duplicate lines of code that applications share ................................11

2-1 Aspect weaving Process .........................................................................................19

2-2 C++ code snippet....................................................................................................21

2-3 AspectC++ code for printing method signature .....................................................21

2-4 Source-to-Source transformation process using a PTE..........................................28

2-5 High-Level approaches for parallel program generation .......................................52

3-1 High-Level idea behind the working of FraSPA....................................................57

3-2 Steps for generating a checkpointed parallel application using FraSPA................60

3-3 Three layered diagram of the FraSPA....................................................................62

3-4 General structure of the Hi-PaL code.....................................................................64

3-5 Excerpt of the production rules in Hi-PaL .............................................................65

3-6 Excerpt of the Hi-PaL API .....................................................................................67

3-7 Sample Hi-PaL code showing the broadcast operation specification ....................68

3-8 One-to-one mapping of the Hi-PaL structural elements into the sample code ......68

3-9 Excerpt of the features identified in the ALC-Domain ..........................................69

3-10 Excerpt of the API in DALC..................................................................................71

3-11 Basic Structure of the DALC Code for checkpointing mechanism .......................74

3-12 Basic Structure of the DALC Code for restart mechanism ....................................74



xv

3-13 Function to compute the value of ...........................................................................74

3-14 Sample DALC code for checkpointing ..................................................................75

3-15 Sample DALC code for restart ...............................................................................76

3-16 Checkpointed function to compute the value of ..................................................76

3-17 Wizard for generating the DALC code ..................................................................77

3-18 Excerpt of the KM3 code for modeling the ParReduce grammar rule ..................80

3-19 Excerpt of the TCS code for modeling the ParReduce grammar rule ...................81

3-20 Extraction and injection of models in FraSPA.......................................................82

3-21 DSL code mapped into KM3 model.......................................................................84

3-22 ATL code snippet ...................................................................................................85

3-23 RSL rule snippet .....................................................................................................86

4-1 Code snippet of the sequential prime number generation application ...................92

4-2 Hi-PaL code for parallelizing the prime number generation application...............93

4-3 Code snippet of the generated parallel prime number generation application .......93

4-4 Code snippet from the sequential circuit satisfiability application ........................94

4-5 Hi-PaL code for parallelizing the circuit satisfiability application ........................95

4-6 Code snippet from the generated parallel circuit satisfiability application ............95

4-7 Checkpointing specifications for circuit satisfiability application .........................96

4-8 Restart specifications for circuit satisfiability application .....................................96

4-9 Code snippet of the checkpointed circuit satisfiability application........................97

4-10 Code snippet from the sequential version of the Poisson Solver ..........................98

4-11 Hi-PaL code snippet for parallelizing the Poisson Solver .....................................98



xvi

4-12 Code snippet from the generated parallel version of the Poisson Solver ..............99

4-13 DALC code snippet for describing checkpointing in Poisson Solver ..................100

4-14 DALC code snippet for describing the restart mechanism in Poisson Solver .....100

4-15 Code snippet of the checkpointed Poisson Solver ...............................................102

4-16 Code snippet from the sequential game of life application ..................................103

4-17 Hi-PaL code for parallelizing game of life application .......................................104

4-18 Code snippet from the generated parallel game of life application.....................105

4-19 Code snippet of the sequential image processing application.............................106

4-20 Code snippet of the Hi-PaL code for the image processing application .............106

4-21 Code snippet of the generated parallel image processing application.................107

4-22 Code snippet of the sequential Mandelbrot Set application ................................108

4-23 Hi-PaL Code for parallelizing the Mandelbrot Set   ..........................................108

4-24 Code snippet of the generated Mandelbrot Set application ................................109

4-25 Code snippet from the main function of sequential GA .....................................111

4-26 Code snippet from the evaluatePop function in the sequential GA ...................111

4-27 Hi-PaL code for parallelizing the evaluatePop function in the GA ....................112

4-28 Code snippet of the parallelized evaluatePop function in GA ............................113

4-29 Code snippet of the parallelized main function of GA .......................................114

4-30 Checkpointing specifications for the GA ...........................................................114

4-31 Restart specifications for the GA .......................................................................115

4-32 Code snippet of the checkpointed parallel GA....................................................115

4-33 Runtime and Speedup – Prime Numbers ...........................................................117

4-34 Runtime and Speedup – Circuit Satisfiability ......................................................118



xvii

4-35 Runtime and Speedup – Poisson Solver ..............................................................118

4-36 Runtime and Speedup – Game of Life  ...............................................................118

4-37 Runtime and Speedup – Image Processing ..........................................................119

4-38 Runtime and Speedup – Mandelbrot Set   ...........................................................119

4-39 Runtime and Speedup – Genetic Algorithm.........................................................119

4-40 Runtime comparison of checkpointed Circuit Satisfiability application  ............120

4-41 Runtime comparison of the checkpointed Poisson Solver application ................121

4-42 Runtime comparison of the checkpointed Genetic Algorithm.............................121



xviii

LIST OF ABBREVIATIONS

ALC Application-Level Checkpointing

ANT Another Neat Tool

AMMA ATLAS Model Management Architecture

AOP Aspect-Oriented Programming

API Application Programming Interface

AST Abstract Syntax Tree

ATL Atlas Transformation Language

CaR Checkpointing and Restart

CBIR Content Based Image Retrieval

CFD Computational Fluid Dynamics

CPU Central Processing Unit

DALC DSL for Application-Level Checkpointing

DMS Design Maintenance System

DPnDP Design Patterns and Distributed Process

DSL Domain-Specific Language

DSM Domain-Specific Modeling

EBNF Extended Backus-Naur Form

EMF Eclipse Modeling Framework

EMOF Essential Meta-Object Facility



xix

FraSPA Framework for Synthesizing Parallel Applications

GA Genetic Algorithm

GPL General-Purpose Language

GPGPU General-Purpose Graphical Processing Unit

GUI Graphical User Interface

Hi-PaL High-Level Parallelization Language

Hi-Spade Hierarchy-Savvy parallel algorithm design

HPC High Performance Computing

ISC Invasive Software Composition

LOC Lines of Code

MAP3

MDE Model-Driven Engineering

S MPI Advanced Pattern-Based Parallel Programming System 

MIMD Multiple Instruction Multiple Data

MOF Meta-Object Facility

MPI Message Passing Interface

OCL Object Constraint Language

PARLANSE PARallel LANguage for Symbolic Expressions

PTE Program Transformation Engine

RMS Root Mean Square

RSL Rule Specification Language

SQL Structured Query Language

SSC Source-to-Source Compiler

TCS Textual Concrete Syntax



1

CHAPTER 1

INTRODUCTION

With the advancement in science and technology, the computational problems are 

growing in size and complexity, thereby, resulting in the increase in the demand for High 

Performance Computing (HPC) resources. To keep up with the competitive pressure, the 

demand for reduced time-to-solution is also increasing and simulations on high 

performance computers are being preferred over physical prototype development and

testing. Recent studies have shown that though HPC is gradually becoming indispensible 

for business growth, the programming challenges associated with the development of 

HPC applications (e.g., lack of HPC experts, learning curve and system manageability) 

are key deterrents that stop companies from embracing HPC on a massive scale.

Therefore a majority of companies are stalled at the desktop-computing level [1, 2]. The 

challenges associated with the development of HPC applications are further elaborated in 

Section 1.1. 

1.1 Challenges in HPC Application Development

The general challenges associated with the HPC application development are 

presented in this section. These challenges were the main motivating factors behind the 

research done for this dissertation and were found across several application-domains. 
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1.1.1 Problem of Plenty

Scientific (or HPC) applications are often written in C/C++ or FORTRAN and are 

run on HPC platforms using a parallel programming paradigm. Because there are 

multiple types of HPC platforms available today, there are multiple parallel programming 

paradigms available, each best-suited for a particular platform (or architecture). For 

example, Message Passing Interface (MPI) [3] is best suited for developing parallel 

programs for distributed memory architectures, whereas, OpenMP [4] is widely used for 

developing applications for shared memory architectures. It is a difficult task to write 

portable and performance-oriented parallel programs that are scalable across multiple 

HPC platforms and the programmers are often required to reengineer their applications as 

per the underlying HPC architecture. This challenge is closely related to the challenges

presented in Sections 1.1.2 and 1.1.3.

1.1.2 Modern Computing Platforms

The tremendous progress in the computer architecture discipline over the last few 

decades has lead to the development of fast personal computers that are capable of 

providing theoretical peak performance of more than 100 gigaFLOPS - equaling the 

performance of some of the advanced supercomputers from about a decade ago [5, 6, 7].

Even though the advancement in the area of computer architecture has resulted in such 

high theoretical peak performance for the latest personal computers, it is difficult to 

effectively exploit the full potential of these architectures due to the slow rate of

advancement in the area of parallel programming environments. To understand this 

problem at the grass root-level, one must realize that modern computers are immensely 
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complex and have different characteristics as compared to their predecessors such that the 

process of determining the performance of applications on modern architectures has also 

undergone a transition [7]. As noted in [5], on today’s modern architectures, loading and 

storing the data in memory can be slower (200 clocks) than doing a multiply operation (4

clock cycles). However, in the previous years, the speed of doing a multiply operation 

was considered as an important performance characteristic. Modern day platforms’    

microarchitectural features (viz. memory hierarchy, register sets, and special instruction 

sets) crucially determine the performance of an application, which implies that, with 

every new HPC platform, the programmer must re-optimize the application to achieve 

maximum performance. A code that is optimal for a particular architecture might not 

depict the same performance on a different architecture. If the highest performance is 

required, the applications are likely to be hand-tuned and hand-written in assembly 

language (example, Intel’s Integrated Performance Primitives) [7]. It is expensive to re-

optimize, re-tune or re-implement hand-written code to adapt it for the latest architecture. 

A gradual shift from homogeneous architectures to complex heterogeneous 

architectures is also being observed [5]. The combination of CPUs, cell processors, field-

programmable gate arrays, and graphical processing units is being touted as the next 

evolution in HPC (e.g., IBM’s Roadrunner and ORNL’s Jaguar). At the core of this 

evolution is Moore’s Law, which has accurately predicted for over three decades that the 

density of transistors on a chip will double every 18 months. Thus, modern multi-core 

and many-core architectures feature hundreds of cores on a chip [5]. The heterogeneity in 

modern architectures and the constant increase in the number of processors in a parallel 

system have lead to complex systems with a short Mean Time Between Failures (MTBF) 
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[7]. The execution time of computational science applications running on such complex 

systems might be greater than the MTBF of the underlying resources. It is therefore 

imperative to develop a portable and distributed fault-tolerance mechanism to support the 

parallel applications developed for such complex systems [8]. The fault-tolerance 

mechanism would save time in restarting the application in the event of any failure in the 

underlying platform. The applications are migrated from the failed resource to a healthy 

one, and are restarted from the latest saved state instead of being restarted from scratch. 

Due to memory constraints, it is important to avoid taking the core dumps of the

execution states of the applications. A lean-and-mean approach for fault-tolerance is 

therefore essential.

1.1.3 Predicament of Programmers 

It is also important to understand the role of key players in the process of HPC 

application development. HPC applications are traditionally developed by domain-

experts and computer scientists. The domain-experts, as being referred to here, are the 

scientists who lack formal training in computer science discipline but are likely to have 

engineering, physics, chemistry, or biology backgrounds. They tend to be researchers 

who are more interested in achieving accurate results than in learning how the 

applications were developed [9]. Due to lack of access to computer scientists (or HPC 

experts), researchers often develop their own applications and spend quality time to learn

new programming paradigms or to understand the latest architectures [1, 2]. They seldom 

have time to hone their performance-programming skills. On the other hand, computer 

scientists are from the traditional computer science background and are knowledgeable 
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about programming languages and computer architectures. Yet, to develop the optimal 

solution for the scientific problem at hand, they must develop an understanding of the 

problem domain and must accurately interpret the requirements of domain-experts. When 

working in conjunction with a computer scientist, a domain-expert is responsible for 

interpreting the results and mapping the source of any errors to either the specifications or 

the code developed by the computer scientist. Therefore, domain-experts and computer 

scientists must climb the learning curve and spend quality time before developing

scalable and performance-oriented applications that give accurate results. It has also been 

observed that many programmers implement and optimize similar functionality for 

multiple platforms without considering the reusability-quotient of their applications [7,

9]. As explained earlier, they often repeat the process of application implementation,

optimization and tuning when a new architecture emerges [7]. In short, HPC application 

development has emerged as an interdisciplinary task requiring that the programmer be 

knowledgeable not only in algorithms and programming languages but also in computer 

architectures [7].

1.1.4 Summary of Challenges and Discussion

A summary of the challenges presented so far in this chapter is as follows:

1. There are multiple parallel programming platforms and hence multiple parallel 

programming paradigms. Each programming paradigm has a learning curve 

associated with it.
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2. It is increasingly hard to harness the peak performance provided by the modern 

HPC platforms due to the slow rate of advancement in the area of parallel 

programming environments.

3. Adapting the applications to new architectures is a time-consuming activity 

because it might require re-tuning, re-optimization, or re-implementation.

4. HPC application development has become an interdisciplinary task requiring that 

programmers not only have the knowledge of programming languages, 

algorithms, and architectures but also clearly understand the problem domain [7].

5. The heterogeneity in architecture and the constant increase in the number of 

processors in HPC platforms are likely to produce complex parallel computing 

platforms with short MTBF. The execution time of the applications running on 

such platforms might be longer than the MTBF of the platform and therefore, a

fault-tolerance mechanism is required.

In the light of the aforementioned challenges related to fast changing, increasingly 

complex, and diverse computing platforms, key questions that arise are:

1. Is it feasible to achieve portability and optimal performance with reasonable 

effort? 

2. Can efficient parallel programs be automatically generated by computers?

3. Can we bring scalability and performance to domain-experts in the form of 

parallel computing without any need to learn low-level parallel programming? 

4. Can we facilitate the transition of HPC from the realms of specialized and 

scientific application development into mainstream business? 
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5. Can we mitigate the negative impact of the reduced MTBF of the complex 

parallel computing platforms on the execution time of the applications?

Most of these questions are associated with the accidental complexities related to the 

HPC application development process while some questions can be mapped to the 

essential complexities. Fred Brooks [10] identified two complexities associated with the 

application development process – essential and accidental. Essential complexities are

related to the problem space and are deep-seated domain challenges [10]. Accidental 

complexities are related to the solution space, i.e., the tools and techniques used for 

implementing the solution to a problem. Brooks also mentioned in [10] that there is no

single silver bullet (or no single approach) to alleviate all the complexities associated 

with the software development process. Therefore, only through an effective combination 

of multiple modern software engineering techniques, can one attack the challenges 

associated with the development of HPC applications. 

1.2 Scope of Research and Research Statement

While geared towards tackling the challenges associated with the development of 

HPC applications, this dissertation’s main focus was to address the aforementioned 

challenges in the context of distributed memory architectures. The rest of this chapter will 

therefore provide an overview of the niche area of this dissertation, which is, cost-

effective explicit parallelization for distributed memory architectures. 

HPC applications for distributed memory architectures can either be developed 

using methods of implicit parallelization or explicit parallelization. Implicit 

parallelization is achieved by using pure implicitly parallel languages (e.g., X10 [11], 
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Orca [12], SISAL [13], Fortress [14]). The parallelism is characteristic of the language 

itself and therefore the language compiler or interpreter is able to automatically 

parallelize the computations on the basis of the language constructs used. This method of 

parallelization enables the programmer to focus on the problem to be solved instead of 

worrying about the low-level details of how the parallelization is achieved. However, 

there are some disadvantages associated with this mode of parallelization and some of 

them are: the code must be developed from scratch, existing legacy applications written 

in C/C++/FORTRAN cannot benefit from this approach, programmer might have limited 

flexibility to experiment with different algorithm-design options, and debugging is 

difficult because it is unclear which code construct might be causing performance loss 

[15].

Explicit parallelization is achieved by using specialized libraries for 

parallelization in conjunction with the programming language of the programmer’s 

choice. With this approach the programmer inserts the library calls in the existing 

application at the points where parallelization is desired. This approach gives substantial 

amount of flexibility to the programmer by letting them make a choice about the portions 

of their program that should run in parallel and the way they should be parallelized. This 

approach also helps the programmer to leverage from their existing sequential 

applications. Though this approach is very popular due to the control, flexibility, and 

performance it provides, it puts the burden of parallelization on the programmer in terms 

of time and effort required to achieve the goals. The programmer is responsible for 

understanding the parallelism in his application and expressing it intelligently in order to 

gain maximum performance. Due to its advantages in terms of performance, the focus of 
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this dissertation is on explicit parallelization. The specific advantages and disadvantages 

of explicit parallelization in context of this dissertation are further explored in the 

following paragraphs.  

Figure 1-1 - Usual process of writing a parallel program using MPI

Under the category of explicit parallelization, MPI is regarded as the most popular 

standard for writing portable and scalable parallel applications for distributed memory 

architectures by embedding calls to MPI-routines in sequential applications. The process 

of developing a parallel application using MPI is pictorially depicted in Figure 1-1. As 

can be noticed from Figure 1-1, often, programmers develop parallel applications using 

MPI by taking working sequential applications, identifying concurrency in them, and 

then expressing the concurrency in terms of data or task distribution amongst the 

available processors. In order to express the concurrency explicitly, the programmers 

often restructure the existing sequential applications and insert calls to MPI-routines. The 

programmers have to bear the burden of explicitly mapping the tasks to the processors, 

manually orchestrating the exchange of messages, load-balancing and synchronization. 

The parallel version generated by inserting the MPI-routines in the sequential application 

Reengineering

Reengineering
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is further optimized as per the machine architecture, to obtain maximum efficiency or 

speedup. The most common optimization techniques are related to arrays and memory 

management, loops, arithmetic operations, and data input or output. The manual 

optimization of the code might involve several iterations of code changes. Overall, 

developing, debugging, and maintaining parallel programs using MPI is a challenging 

task. The process of explicit parallelization using the MPI standard eventually becomes 

an intrusive reengineering activity that puts extra burden on programmers to handle too 

many low-level details manually (including handling errors and race conditions). Also, 

the MPI layer provides a poor level of abstraction as it deals with explicit buffers and 

message transfers and therefore exposes data structure details to the programmer [16, 17].

Not only is manual intrusive reengineering for explicit parallelization a complex 

and error-prone activity involving critical resources (viz. time and effort), but it also 

makes code maintenance difficult due to the cross-cutting concerns [18]. Cross-cutting 

concerns are the concerns that are spread across multiple methods within multiple 

modules of an application [18]. These cross-cutting concerns lead to scattered or tangled 

code. In order to make a single change in a cross-cutting concern, it becomes necessary to 

replicate the changes at multiple places. Examples of cross-cutting concerns in parallel 

applications are communication, synchronization, load-balancing, and checkpointing.

The software development process using explicit parallelization leaves little scope 

for code reuse because it involves ad-hoc design decisions [17]. In case a programmer 

wants to set-up communication between the processors, there are multiple options 

available, each with specific trade-offs (e.g., synchronous/asynchronous, point-to-

point/one-sided/collective) but there are no well-established rules or design patterns to 
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select one option over the other. There are some mechanical steps for setting up the MPI 

environment that can be found in every MPI program. Analyses of code samples from 

diverse domains (see Figure 1-2) also show replicated code constructs for tasks other than 

setting-up the MPI environment. Such commonalities (replicated code constructs) 

indicate that there is definitely a scope of reducing the effort involved in developing HPC 

applications by promoting code reuse.

Figure 1-2 – Percentage of duplicate lines of code that applications share

Despite the challenges mentioned in this chapter, MPI is the most widely used 

standard for writing parallel applications and it has been implemented for several 

distributed memory architectures. The main advantages of MPI are its speed and 

portability. Hence, to effectively exploit the HPC power of low-cost distributed memory 

architectures, parallel programming based on the most widely used parallel programming 

standard (i.e., MPI) should be made less complex (through abstractions). In the light of 

the aforementioned issues, the main goal of this research was to raise the level of 



12

abstraction of parallel programming using MPI, such that, the effort involved in 

developing a parallel application by manually reengineering an existing sequential 

application, is significantly reduced. The reduction in effort can be quantified in terms of 

the reduction in the number of lines of code the programmer has to write manually. The 

generative programming [19] approach adopted in this research was helpful in 

developing a framework that employs reusable code components for synthesizing parallel 

programs for a wide range of application-domains. This framework, called FraSPA 

(Framework for Synthesizing Parallel Applications), is useful for developing parallel

applications for distributed memory models without the burden of learning or using MPI. 

However, the programmers using FraSPA still need to identify concurrency in the

application and express it in a very succinct manner. Therefore, FraSPA employs a user-

guided approach to synthesize optimized parallel programs from existing sequential 

programs. 

A high-level, declarative and platform-independent Domain-Specific Language 

(DSL) called High-level Parallelization Language (Hi-PAL) has been developed in this 

research for obtaining the concurrency-specifications from the programmers. A set of 

guidelines can be provided to the end-users for helping them in expressing the 

concurrency in their applications through Hi-PaL. These guidelines would also be useful 

for explaining the key steps for analyzing the sequential application and the best practices 

to achieving a parallel code with high performance. In summary, in order to 

automatically synthesize parallel applications through FraSPA, the programmers are 

required to:

understand the concept of concurrency,  
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follow the guidelines provided for expressing concurrency, and

install the required tools on their machines.

Thus, with a minimum investment, the programmers can synthesize parallel applications

using FraSPA without getting involved in the complexities associated with MPI. This 

research, therefore, raises the level of abstraction of the scientific application 

development process. If the programmers wish to make the synthesized applications 

checkpointed (one of the techniques required for making the applications fault-tolerant),

they can do so with the help of the DSL for Application-Level Checkpointing (DALC) 

that was developed as a part of this research. Similar to the process of generating parallel 

applications on the basis of the Hi-PaL specifications provided by the end-user, FraSPA 

uses the DALC specifications to make the existing applications checkpointed. The 

FraSPA generates the desired code for parallelization and checkpointing for a wide range 

of applications using reusable code components, design-templates, program 

transformation system, domain-specific languages, and glue code. The details of the 

implementation of the framework are provided in Chapter 3. FraSPA can be extended to 

provide support for additional functionality and helps in the incremental development of 

applications with multiple alternatives. In short, FraSPA bolsters the claim made by the 

following research statement:

“An extensible and flexible framework can be developed for non-invasively synthesizing 

scalable, MPI-based, performance-oriented and checkpointed parallel applications in a 

user-guided manner with the goal of reducing the complexities associated with explicit 

parallelization without compromising the performance or accuracy of results.”
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1.3 Key Contributions

The key contributions made to the field of HPC through the design and 

implementation of FraSPA are summarized in this section. These contributions are the 

solutions to some of the challenges related to the HPC application development in 

general, and explicit parallelization using MPI in particular. FraSPA,

1) Brings performance and scalability to domain-experts in the form of parallel 

computing without the need to learn low-level parallel programming or to do 

intrusive reengineering. 

2) Separates parallel and sequential concerns to reduce the code complexity and 

improve the maintainability of the application.

3) Promotes code reuse and code correctness through the usage of design-templates.

4) Provides support for generating checkpointed applications that can be used in 

combination with resources for fault-detection in order to develop fault-tolerant 

solutions.

5) Can parallelize applications from diverse domains (e.g., image processing, 

computational fluid dynamics, and evolutionary algorithms).

6) Increases the programmer productivity in terms of the decrease in the number of 

lines of code written manually.

7) Reduces the time-to-solution due to the reusable nature of its code components.

In summary, FraSPA hides the challenges associated with the low-level parallel 

programming from the domain-experts. It also helps them by reducing the time involved 

in parallelizing their applications by utilizing reusable code components. 
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1.4 Broader Impact

FraSPA demonstrates a methodology for composing optimized HPC applications 

from reusable components and hence is an ideal example of amalgamation of modern 

software engineering techniques with HPC application development. This research has 

the potential of bridging the complexity gaps between scientific application development

and complex hardware platforms [5]. FraSPA can be extended to provide support for 

multiple parallel programming models (e.g., support for synthesizing parallel applications 

for shared memory paradigms and multi-core architectures) and hence multiple parallel 

programming platforms. Apart from extending FraSPA to provide support for multiple 

programming paradigms, it can also be extended to support the automatic parallelization 

of sequential applications written in other legacy languages (e.g., FORTRAN) and 

dialects. The likelihood of major manual rewrites in the event of any change in the 

application requirements, HPC platform, or implementation algorithms, is speculated to 

decrease with the usage of the approach presented in this dissertation. FraSPA has the 

potential of lowering the barriers to the adoption of HPC [1, 2] by domain-experts who 

do not have any exposure to low-level parallel programming. FraSPA can also be adopted 

by instructors for teaching the process of developing MPI-based parallel programs 

incrementally and at a conceptual-level before going into the low-level details of MPI-

programming. The overall principle behind the working of FraSPA can be applied to 

develop a domain-specific modeling language for specifying parallel computations in 

specific domains such that the domain-experts can provide the specifications once and 

generate code in several base languages including those for implicit parallelization (viz.
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X10, Fortress, or SISAL) by using language-specific interpreters.

The checkpointing mechanism developed in this research is useful for making 

both parallel and sequential applications checkpointed and can be incorporated with the 

strategies for fault-detection to develop fault-tolerant solutions. This approach has the 

potential of being adapted to develop fault-tolerant applications for multi-core and many-

core architectures as well. In future, if the support for fault-tolerance is available as a part 

of the MPI library, the approach developed in this research can be used for automatically 

and non-invasively reengineering the existing parallel applications for embedding the 

calls to the latest MPI routines. As a consequence of this research, stronger interactions of 

HPC researchers, software engineers, and scientists can be fostered across different 

domains.

1.5 Overview of the Dissertation

The background and the related research work are discussed in Chapter 2 of this 

dissertation. The Generative Programming [19] tools and techniques that were used for 

implementing FraSPA are also described in detail in Chapter 2. These techniques obviate 

some of the barriers that scientists face in adopting high-level abstractions. Chapter 3 is 

related to the design and development of FraSPA. The case-studies and results are 

discussed in Chapter 4. The potential future work is presented in Chapter 5 and 

conclusion is presented in Chapter 6.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This dissertation demonstrates the effective application of modern software 

engineering techniques to automate the process of HPC application generation. The main 

tangible contribution of this research is a framework that enables the automatic synthesis 

of MPI-based, checkpointed parallel applications from high-level specifications and 

existing sequential applications. The framework is implemented by using the

combination of Generative Programming (GP) techniques [19] and a set of Domain-

Specific Languages (DSLs) [20]. Design-templates have also been used in this research 

to capture the most commonly used data distribution, communication, and 

synchronization patterns in MPI-based programs. Model-Driven Engineering (MDE) [21] 

was used to make the framework extensible and flexible. Application-Level 

Checkpointing (ALC) technique was used to make the generated applications fault-

tolerant [22].

This chapter will provide a background discussion of the technologies used in this 

dissertation research and the related work. Section 2.1 presents a discussion on Aspect-

Oriented Programming (AOP) [18] and its usage in the initial work done for this 

research. Section 2.2 gives a brief overview of an alternative to AOP-based approach for 

program synthesis, which is called, Invasive Software Composition (ISC) [23]. The 

generative programming tools and techniques used in this research are explained in 



18

Section 2.3. DSLs are explained in Section 2.4. MDE and its usage in this research are

explained in Section 2.5. The checkpointing mechanism for making the HPC applications 

fault-tolerant is explained in Section 2.6. A discussion of the work related to high-level 

parallel programming is presented in Section 2.7. A discussion of the work related to 

checkpointing (and hence fault-tolerance) is presented in Section 2.8. A general 

discussion is provided in Section 2.9. 

2.1 Aspect-Oriented Programming

When a concern or functionality is spread across multiple methods within 

multiple modules of an application (e.g., profiling and logging), it is known as a 

crosscutting concern [18]. Such concerns are difficult to modularize using traditional 

languages because each concern is scattered across modularity boundaries, making it hard 

to maintain and reuse. To make a single change in a crosscutting concern, it is necessary 

to replicate the changes at multiple places. Therefore, crosscutting concerns lead to 

tangled or scattered code [18] and it is advantageous to capture the functionality of each 

concern in a separate module.

AOP offers a new modular construct that cleanly separates crosscutting concerns 

(or secondary functionality) from the core computations, thereby leading to an improved 

quality of code in terms of improved cohesion, coupling, and code reuse. A crosscutting 

concern is isolated in a modular unit, called aspect, which can be woven into an 

application as needed. Each aspect, thus, leads to the localizing of the description of a 

crosscutting concern in a single place. It should be noted that, by itself, AOP is only a

concept. There are several AOP languages that materialize the AOP concepts and extend 
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the traditional programming languages. AOP languages (e.g., AspectC++ [24] and 

AspectC [25]) overcome the limitations of traditional programming languages by 

extending them with constructs for programming aspects. The programmers write a base 

code in a traditional language (e.g., C++ or C) and aspect code in the relevant AOP 

language (e.g., AspectC++ or AspectC) so that the aspect code affects the execution of 

specific code in the base program. The aspect code is combined with the base program 

with a tool called aspect weaver that finally generates the transformed code. The 

transformed code has the desired functionality (as specified in the aspect code) at the 

desired number of places added to the base program. It can be compiled and run like a 

normal program. This weaving process is pictorially depicted in Figure 2-1.

Figure 2-1: Aspect weaving process

Some of the common constructs in AOP languages are as follows:

Join Point: A location in a program where a crosscutting concern emerges - for 

example, method call and method execution.

Match Expression: A search pattern in string format. It may specify the type, 

namespace, class, function, or template in the base program which should be used as 

a handle for weaving the aspect code.

Pointcut: Determines the condition on which the aspect code would be executed. It is

a “set of join points and are described by a pointcut expression” [18].

Base Program

Aspect Code

Aspect
Weaver

Transformed 
Code

Compiler

Executable
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Pointcut Expression: Composed of match expressions (that are used to find the set 

of join points), pointcut functions (for filtering specific join points), and algebraic 

operators (used for combining pointcuts).

Advice: Captures the implementation of a crosscutting concern and defines actions to 

be performed at associated join points. It can also be used to introduce a new function 

or an attribute or a type at join point and is of the types: before, after, and

around.

Aspect: Implements a crosscutting concern and hence, localizes its functionality in a 

separate module. An aspect in AspectC++ is similar to a class in C++ and is defined 

by pointcut expressions and advice. It may contain attributes, methods, and advice 

declarations. Like classes, an aspect can inherit from other classes and aspects.

Consider the C++ code shown in Figure 2-2 that does simple addition, subtraction,

multiplication and division. It is desired to print the signature of every method in Figure 

2-2 for debugging and testing purposes without making any changes to the existing code 

(shown in Figure 2-2). This can be achieved through a printing aspect (aspect printing

at line # 4 of Figure 2-3) written using AspectC++ and shown in Figure 2-3. As can be 

noticed from line # 5 of the code in Figure 2-3, this printing aspect prints the method 

signature before the method is executed. In general, the ‘*’ represents a wildcard, and 

‘...’ represents any number of parameters or class type or function name. Therefore, the 

advice on line # 5 of Figure 2-3 means that the printing aspect should be woven

before the execution of any function of any class with any return type. The match 

expression in the advice code (i.e., ("% ...::%(...)") ) specifies that any function of 

any class with any return type should be treated as a join point because it uses ‘...’ . In
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general, the before (or after) type of advice enables specific actions to be performed 

before (or after) a join point. The around type of advice enables the execution of specific 

actions (the code in the body of the advice) in place of the code at the join point. 

1.
2.

#include<stdio.h>

3.

void A(int x, int y){

4.
printf("\nSum:  %d\n",(x+y));

5. void B(int x, int y){
}

6. printf("\nDiff: %d\n",(x-y));
7. }
8. void C(int x, int y){
9. printf("\nProduct:  %d\n",(x*y));
10. }
11. void D(int x, int y){
12. printf("\nDivision:  %d",(x/y));
13. }
14. int main(){
15. A(3,2);
16. B(3,2);
17. C(2,2);
18. D(4,2);
19. return 0;
20. }

Figure 2-2: C++ code snippet

1. #ifndef _APGA_AH_
2. #define _APGA_AH_
3. #include <stdio.h>
4. aspect printing{
5. advice execution("% ...::%(...)") : before() {
6. printf("\nFollowing Function is about to be Called\n");
7. printf("%s",JoinPoint::signature());
8. printf("\n");
9. }
10. };
11. #endif

Figure 2-3: AspectC++ code for printing method signature

As can be inferred from the printing aspect example (aspect printing), a 

crosscutting concern (here, printing the method signature) can be captured in a separate 

module, called aspect, thereby leading to untangled code. This improves software quality 

and maintainability by isolating the code for secondary functionality from the core 

computation and by reducing the size of the base program.
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During the initial phase of this research, AOP was used to study the impact of 

separation of concerns (e.g., separation of MPI-code for data distribution, 

communication, and synchronization from the sequential base applications) on the 

performance of the HPC applications. In particular, AspectC++ (the AOP language for 

C++) was used to weave the checkpointing and parallelization concerns (e.g., MPI-code 

for data distribution, communication, and synchronization) into the existing C/C++ 

sequential applications to generate their checkpointed and parallel versions [26, 27]. The 

usual process of explicit parallelization requires manual insertion of library calls (e.g.,

MPI function calls) into the existing sequential applications. By using AOP, manually 

inserting the library calls at multiple places can be automated while isolating the required 

changes (parallelization code) within aspect advice [26]. Similarly, for making the 

applications fault-tolerant via checkpointing, the desired code for ALC is encapsulated 

within aspects and woven into the existing sequential or parallel applications [27].

The initial study concluded that the separation of concerns or the usage of

AspectC++ did not result in any significant degradation in the performance of generated 

parallel or checkpointed applications [26, 27]. The main advantages of using AOP to 

generate parallel applications are: 

Non-invasive reengineering of sequential applications to generate parallel 

applications.

Separation of concerns, thereby leading to improved software quality, 

maintainability, and reusability.

Multi-person development of HPC applications, wherein experts in 

parallel programming and fault-tolerance can focus on developing the 
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code for parallelization and checkpointing concerns and the domain-

experts can focus on expressing the core computations through the 

sequential program.

The main challenges of using the AOP approach in the initial research and some

observations are:

Difficulty in expressing for-loops as join points [28, 29].

Aspect weavers are available only for few languages (e.g., Java, C/C++) 

and there is no mature and robust support for FORTRAN which is a very 

popular language in the HPC community.

A large number of legacy sequential applications are non-modular and in 

order to apply AOP techniques on them, they should first be refactored.

It is difficult to debug the aspect-oriented program because the woven 

code is not shown to the programmer [30].

Transformed code is difficult to understand and modify [30].

Due to the aforementioned limitations associated with AOP languages, this dissertation 

research adopted a more general approach for transforming sequential applications into 

their parallel versions (and also making the sequential/parallel applications checkpointed)

by using a powerful combination of generative programming approach and MDE 

technique.

2.2 Invasive Software Composition

ISC is a software composition approach that helps a programmer to overcome the 

limitations imposed by other composition techniques like AOP. ISC allows programmers
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to extend the techniques as desired. ISC involves code transformation at specific change 

points (hooks) in components in order to adapt or extend the functionality of the 

components themselves. Compared to AOP, ISC, based on static metaprogramming,

provides a stronger model for join points. 

Reuseware [31] is an implementation of ISC used for developing semi-parallelized 

scientific code. Though Reuseware is not a full-fledged compiler in itself, it does works 

at the Abstract Syntax Tree (AST) level and falls under the category of source-to-source 

engines [32]. It allows the programmer to define the code blocks that should be 

transformed by the Reuseware engine and the action that needs to be performed by these

blocks. To begin using the system, the programmer must build the composition 

environment by providing the grammar of the traditional language (C/C++/FORTRAN) 

in which the sequential program is written and the programmer must provide 

specifications of the composition interfaces (the extensions of the traditional language). 

The grammar needs to be expressed as metamodel [31, 32]. The composition interfaces 

are added through a reuse language that is provided as a grammar in EBNF. There are 

two basic composers that Reuseware provides for handling composition interfaces and 

join points: bind and extend. These composers are used to replace a composition interface 

or to insert fragments at specific points and can be used to build a complex composer. As 

noted in [32], Reuseware does not support semantic checks and does not support full-

fledged pattern-matching on syntax trees.

This approach, if used without any abstraction on top of it, is low-level and invasive. 

The programmer must specify the MPI functions and the new variables that are to be 

woven in the sequential program. The programmer must be aware of all the low-level 
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details related to MPI-based parallelization. As noted in [32], increasing the complexity 

of parallelization inevitably increases the complexity of the parallelizing composers 

involved in the Reuseware system that involves ISC. The pattern-matching capability and 

the overall usage of ISC for parallelizing sequential applications still need to be made 

general [32] (currently it seems to be application-specific). In this research, due to the 

complexity involved (from the programmer’s perspective) and scalability concerns,

instead of adopting ISC as an intermediate component/tool, abstractions were built upon 

a more mature tool (source-to-source transformation engine).

2.3 Generative Programming

GP is a software development approach for modeling and developing software 

families such that a software system can be automatically generated from a given set of 

specifications and reusable components [19]. The GP-based approach adopted in this 

research obviates the necessity to adapt the applications to any generic interface, supports 

incremental integration of components, and does not require code restructuring according 

to any fixed guidelines. The already existing components and patterns are assembled on 

the basis of the high-level specifications and metadata to generate a domain-specific 

solution. A powerful GP-tool (source-to-source compiler that is capable of doing term-

rewriting) can be used for code assembly and transformation. Several off-the-shelf 

source-to-source compilers are available and two such mature systems are Design 

Maintenance System [33, 34] and ROSE [35]. This research has used another GP-

technique, template metaprogramming, to capture the patterns in data distribution, 

communication and synchronization. As a note, a source-to-source compiler is also 
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known as a program transformation engine and both terms are used interchangeably in 

this dissertation.

2.3.1 Template Metaprogramming

A metaprogram is a program that can manipulate or generate other programs [19]. In 

C++, metaprogramming can be done using templates and is based on partial-evaluation of 

templates at compile-time. Templates are functions or classes that are written for one or 

more types that are not specified at the time of writing the program. In this research, C++ 

template metaprogramming was used to define generic templates (type-independent) for 

algorithms for data distribution, synchronization, and load-balancing. These were helpful 

in capturing the general design pattern of parallel tasks so that they can be reused across 

multiple applications being developed by the framework. Templates are also helpful in 

optimizing code at compile-time such that the run-time overheads are saved and memory 

footprint is reduced. However, heavy-usage of template metaprogramming has the 

potential of increasing the compilation-time of applications and might lead to portability 

issues.

2.3.2 Program Transformation Engine

A Program Transformation Engine (PTE) is a powerful source-to-source 

transformation tool that works at the AST level and was used in this dissertation to 

overcome some of the limitations posed by the current AOP languages. A PTE uses

pattern-matching and term-rewriting to carry out complex transformations. Term-

rewriting is a paradigm in which rewrite rules are used to define the expected 
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modifications in the code structure by specifying a match-pattern and the expected effect

after the rules are applied. With this approach, the source code is combined with 

languages and tool definitions for doing automatic analysis, enhancement, and cross-

platform migration of software systems. In general, as compared to AOP, PTEs are 

helpful in carrying out more complex and flexible transformations because any arbitrary 

line of code can be specified as a join point.

The Design Maintenance System (DMS) [33, 34] is a mature and robust PTE used in 

this research. A major advantage in using a mature PTE like DMS is that the tool support 

(e.g., Lexer, Parser, and Pretty Printer) is available for more than 20 languages, including 

FORTRAN and C/C++. Therefore, unlike the ISC technique, the programmer is free 

from the burden of providing the grammar of the traditional language and the grammar 

for creating the composition interfaces. Also, unlike the ISC technique, DMS offers 

powerful pattern-matching capability and can do semantic checks. The DMS is 

implemented in a parallel language known as PARLANSE [33, 34] and therefore, tree 

traversal and the transformation process are scalable to tens of thousands of files [33, 34].

As mentioned earlier, this dissertation research used DMS to transform sequential 

applications (base applications) into parallel and checkpointed ones (see Figure 2-4). The 

transformation is carried out in the DMS on the basis of the rewrite rules written in Rule 

Specification Language (RSL) [33, 34] and PARLANSE. The transformation rules 

required for this research were implemented using RSL. The external functions for 

complex pattern-matching required for fine-grained transformations were written using 

PARLANSE. These PARLANSE functions are being called from within the RSL rules 

and they are reusable. 
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rruullee aadddd__ssttmmtt((ss:: ssttaatteemmeenntt__sseeqq))::
ffuunnccttiioonn__bbooddyy -->> ffuunnccttiioonn__bbooddyy ==
"" {{ \\ss }} "" -->>
""{{\\ppaatttteerrnn11\\((\\));; {{ \\ss }} \\ppaatttteerrnn22\\((\\));;}}""..

Figure 2-4: Source-to-Source transformation using a PTE

The RSL code consists of primitives (e.g., pattern declaration, rules, conditions and 

rule sets) that are required for describing the desired source-to-source transformations.

The main elements for writing RSL code are:

Patterns: Used to describe the parts of the syntax tree that are of interest in 

the transformation process.

Rule: The specification of the desired AST transformation on the basis of 

some conditions. It has a left-hand side, which is the source syntax expression, 

and a right-hand side, which is the target syntax expression. 

Conditions: The named boolean-valued expressions that are used to set

constraints on the rules and patterns.

Rule Set: Used for grouping a set of rules.

Default Domain: The domain for which the rules are being written (e.g., the 

dialect of C++ language).

Syntax Tree Expressions: These are the expressions that compose trees.
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The general format for specifying an RSL rule is as follows:

rule name_of_the_rule (parameter_list):
non-terminal -> non-terminal =
"match_pattern" -> "replacement_pattern"
if condition.

The words in boldface (rule, if) are the keywords. Each rule has a name defined by the 

programmer (name_of_the_rule). The pattern to be matched (match_pattern) is 

specified on the left-hand side of the rule, and the desired substitution in the syntax tree 

(replacement_pattern) is specified on the right-hand side of the rule. Constraints 

(condition), if any, are added to the rule following the keyword if. As a part of the 

syntax of specifying a rule, it is required that the syntax tree type (non-terminal) is also 

specified (e.g., arithmetic expression, statement, and identifier). The formal parameters to 

the rules, patterns and conditions are optional and are represented by parameter_list in 

the general format shown above. 

The transformation rule shown in Figure 2-4, transforms the body of all the functions 

(note that the non-terminal is function_body) in the program on which it is applied. The 

match pattern in this rule consists of a set of all the statements (statement_seq) inside 

the function body and is specified as a block ‘{ \s }’. The variable s is the formal 

parameter of the rule and ‘\’ is the RSL escape character.  The replacement pattern in this 

rule is the sequence of original statements in the function body preceded by a set of 

statements specified by the pattern ‘pattern1\(\)’ and succeeded by a set of statements 

that are specified by ‘\pattern2\(\)’.

Apart from the ready-made tool support for Lexer, Parser, and Prettyprinter, DMS 

also provides automatically generated Rule Applier and Refiner. The Rule Applier helps 

in experimenting with rule sets for a  single domain - it parses the input file for a domain, 
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applies the designated rules, and prints the results. Refiner is useful for experimenting 

with rules written in multiple domains. DMS also provides AST interface to support the 

traversal of the syntax trees that represent string-based languages. Some of the important 

operations on ASTs provided by DMS are finding a child node with a specific property, 

finding a parent node with a specific property, getting the Nth child node from a parent 

node, etc.

For all the test cases used in this research, the performance of the PTE-generated code 

was similar to the manually written code. The generated code is the same as the manually 

written code and the PTE does not introduce any artifacts. However, it is difficult to learn 

and use the PTE (DMS in particular). The rewrite rules are difficult to write and the 

ambiguity errors during the transformation process are hard to understand and resolve. 

Also, the rewrite rules are very domain-specific, grammar-specific and PTE-specific. A

rule written in a particular dialect of C++ (e.g., Microsoft’s Visual6 C++) might not work 

with another dialect (e.g., GNU C++). If, for example, the DMS is replaced by another 

PTE, the already written RSL-rules would become useless. Certain search patterns are too 

complex to express through RSL code and therefore external functions should be called 

by the RSL rules for pattern-matching and syntax tree manipulation. Such external 

functions are written in PARLANSE which is a functional language that is difficult to 

learn due to lack of extensive documentation and the need to manually handle the syntax 

tree traversal and transformation. Lastly, the DMS is a costly commercial tool and might 

not be available to all the developers participating in the application development 

lifecycle. These limitations were the motivating factors behind exploring techniques for 

abstracting out the code transformation process from the programmer. The intent was to 
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benefit from the power and robustness of a PTE while reducing the accidental 

complexities associated with its usage.

2.4 Domain-Specific Language 

DSLs are specialized languages written for a particular application-domain [20]. They 

raise the level of abstraction of programming and enable the domain-experts to work in a 

language closer to their problem domain. As compared to the General-Purpose 

Languages (GPLs), DSLs are more expressive in a given domain but have limited 

features and applicability. Like any GPL, a DSL has a concrete syntax, abstract syntax,

and well defined semantics. Because the DSLs are more specialized and expressive than 

other GPLs, they are easy to learn and use. The usage of a DSL increases productivity 

and decreases software development time and cost [20]. An excellent example of a DSL 

is Structured Query Language (SQL) which is related to the database domain.

The first step in developing a DSL is analyzing the domain for which it is being 

designed. During the domain analysis phase of developing the DSLs required for this 

dissertation, technical literature and existing implementations were surveyed to obtain an 

overview of the terminologies and concepts related to the domains of concern.

Commonly used terms and their relationships were used to develop the domain lexicons.

Feature-Oriented Domain Analysis (FODA) [19] was used for further domain analysis. 

FODA is often used to develop generic domain products by employing abstraction and 

refinement. The specific applications from a domain are analyzed and a layer of 

abstraction is added to hide the differences between the applications. The generic product 

can then be refined to generate a specific application [19]. A feature model represents the 
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commonalities and differences between various features of an application. As advocated 

in [36], only the necessary and relevant features were modeled. The next steps for 

developing the DSL are domain design and implementation. Already existing notations 

were adopted for the DSLs developed for this research and new terms and jargon were 

avoided. The concepts and constructs of the DSLs developed in this research have some 

resemblance to the AOP language concept (the join-point model [18]) and constructs 

(e.g., before, after, and around). The implementation of the DSLs was done using the 

MDE technique.

2.5 Model-Driven Engineering

MDE is a software engineering paradigm that involves abstraction of real-world

entities or concepts as models. With the help of a translator or an interpreter, the actual 

code can be automatically generated from the models. Hence, MDE raises the level of 

abstraction of programming in high-level languages and helps in expressing domain-

specific concepts efficiently. The MDE technique was used in this research for 

developing the DSLs that are required for obtaining the specifications for parallelization 

and checkpointing from the programmer. The DSLs (and hence the MDE paradigm) were 

helpful in making the framework flexible and extensible so that multiple traditional 

languages and parallel programming paradigms can be supported with minimum effort 

[37]. Some of the MDE-concepts are defined as follows:

Model: A model is a representation of a system and can be of three types - a

terminal model, a metamodel or a metametamodel.

Terminal Model: A model whose reference model is a metamodel.
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MetaModel: A model that defines a language for expressing other models. It 

describes different contained model elements and the relationship between them. 

It conforms to a metametamodel and Meta-Object Facility (MOF) is an example 

of a metametamodel. The MOF metametamodel is self-defined.

MegaModel: A megamodel is a model that records the global information on 

tools, services and other models.

The MDE platform used in this research is called Atlas Model Management 

Architecture (AMMA) [38] and is implemented on top of the Eclipse/EMF framework.

AMMA provides a set of facilities for processing models and consists of the following 

main blocks [39]

Kernel MetaMetaModel (KM3): It is an implementation-independent, textual 

domain-specific language for defining the abstract syntax of the DSLs in the form 

of metamodels [40]. KM3 resembles the Ecore terminology [41] and uses 

concepts like package, class, attribute, reference, and primitive data type. 

Textual Concrete Syntax (TCS): TCS [42] is itself a DSL and can be used to 

specify the textual concrete syntax of other DSLs by attaching syntactic 

information to metamodels. TCS-specifications are used to automatically generate 

tools for model-to-text (by generating ANTLR grammar) and text-to-model 

transformations (by using a Java-based extractor) [42].

Atlas Transformation Language (ATL): A model transformation language

transforms a set of source models into a set of target models on the basis of the 

defined rules [43]. ATL has its abstract syntax defined as a metamodel and every 

ATL transformation is itself considered as a model. The language consists of rules 
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and expressions (based on OCL [44]). Each rule consists of a source pattern on its 

left-hand side and a target pattern on the right-hand side. The source pattern 

consists of model element types from the source metamodels and the boolean 

expressions. The target pattern consists of the model element types from the target 

metamodel. A set of binding is attached to each rule for specifying the way in 

which the properties of the target elements should be initialized. 

Atlas MegaModel Management (AM3): Provides support for global resource 

management in a model-engineering environment. The main features of AM3 are 

management of megamodels, management of various relations between artifacts 

(e.g., models, metamodels, transformations, and semantic correspondences), 

sharing and exchanging of megamodel elements, and user interfaces for viewing 

megamodel elements [45, 46]. Because the AM3 supported megamodels allow the 

manipulation of other resources such as XML documents, database tables or flat 

files as well, the notion of artifacts is used in general.

2.6 Checkpointing

Checkpointing is a mechanism by which an application is made resilient to failures by 

periodically saving its state to the secondary storage medium. Scientific applications that 

take an enormous amount of time to execute (e.g., simulation for protein structure 

prediction [47] or climate modeling [48]) and are run in distributed, dynamic and 

heterogeneous environments, like a grid, can benefit considerably from checkpointing. In 

case of failures or changes in the availability of underlying resources, instead of restarting 

the application from the beginning, the programmer can restart the application from the
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latest checkpoint. This is achieved by recreating the pre-failure application state from the 

saved data on the disk. Checkpointing is also an essential component for writing self-

healing applications. These applications can monitor their own state, detect faults, and 

recover from the faults automatically. Checkpointing or a similar mechanism (e.g.,

logging) is required to recover from the fault and continue execution without having to 

restart the whole application.

Writing and reading the application state are the major steps involved in 

checkpointing. Through the rest of this dissertation, these steps are referred to as 

Checkpointing and Restart (CaR). The main types of checkpointing techniques, 

depending upon the level of transparency, are: hardware-level [49], system-level [50], 

user-level [51], application-level [52, 53, 54], and hybrid approaches [55].

In the hardware-level checkpointing, specialized hardware (e.g., redundant arrays

of inexpensive disks, custom-designed directory controller, and cache memory)

can be integrated into the processors for saving the state of the application.

The system-level checkpointing is performed external to the application with the 

support of the operating system and involves periodically saving the execution 

state of the entire application. Typically, this requires changes to the operating 

system’s kernel and the entire process state is saved since the operating system 

does not have knowledge about the application semantics.

The user-level checkpointing process is often accomplished by linking the 

checkpointing libraries to the application code. The programmer is free from the 

burden of making any changes to the code and no additional code is required to be 
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installed in the kernel as compared to the system-level checkpointing. This 

approach is usually architecture-dependent.

In the Application-Level Checkpointing (ALC) an application is made reliable by 

inserting the fault-tolerance mechanism directly into it. Only the critical variables 

and data structures are saved to the disk during ALC.

A Hybrid Approach is a combination of multiple checkpointing techniques. A

hybrid of system-level checkpointing and ALC is presented in [55]. The authors 

claim that this combination results in higher reliability in real-time systems.

Although ALC requires more end-user involvement than any other form of 

checkpointing, it has several advantages [56]. As compared to other types of 

checkpointing techniques, ALC involves lesser storage space (core-dumps are taken in 

system-level checkpointing), offers the end-user more control for selective checkpointing 

and is useful for writing portable applications for different operating systems. As 

mentioned in [56], the ALC schemes are language-independent “provided that the base 

language constructs are present” [56].

One major problem with the current techniques for ALC is that the current techniques

require invasive reengineering of existing applications to insert the checkpointing code 

(typically done by inserting macros in the source code) and thus make software 

maintenance challenging. If the application code is large, and the number of critical 

variables is huge, there may be multiple places where the end-user must make changes in 

the existing application to make it fault-tolerant via checkpointing. Because ALC 

involves extra read and write operations, the checkpointed version of the application 

might take substantially longer time to run than the non-checkpointed one. When
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performance is more critical than fault-tolerance, the stakeholder might want to have the 

facility to turn-off the checkpointing feature. For the convenience of code maintenance 

and evolution, it is important to avoid creating multiple versions of the application (with 

and without checkpointing). Also, the solution space for ALC is constantly evolving.

Many checkpointing libraries and techniques exist and each has some special merits over 

the others [50, 56]. With the emergence of many-core and multi-core architectures, more 

solutions for fault-tolerance are expected to emerge. Given such a widespread and an 

evolving solution space, the end-users should not be forced to reengineer their application 

to switch from one solution to another. Due to all these reasons, it is desirable that the

existing application should not undergo any invasive reengineering in order to become 

fault-tolerant and the CaR mechanism (to enable ALC) should exist as a pluggable 

feature. 

In this dissertation, the checkpointing mechanism is ALC-centric. This work is 

relevant for both uniprocessor and multiprocessor systems. At a coarse-grain level, it can

be said that the ALC-approach developed in this research is selective (core-dump of the 

processor's state is not taken), periodic (checkpoints are always taken at a particular 

frequency), and static (because the checkpoints are known before the program is run). 

This approach applies to checkpointing both sequential and parallel programs. When

checkpointing parallel applications with this approach, depending upon the end-user’s 

choice, checkpointing can be centralized (only one processor initiates the checkpoint) or 

distributed (each processor participates in the checkpointing process). Because while

taking centralized checkpoints with this approach, it is important that the processors are 

in a synchronized state, this approach is a coordinated one. However, synchronizing the 
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processors is not a part of the approach. It is the end-user’s responsibility to manually 

ensure this.

This research’s focus is to raise the level of abstraction of ALC so that the end-user is 

not responsible for manually reengineering the existing application to insert the 

checkpointing code. Instead of writing the optimized ALC code by hand or inserting any 

library calls in the code (which could lead to code tangling), the end-user provides the 

CaR-specifications (what should be checkpointed and where, along with the frequency of 

checkpointing) using the DSL developed in this research. The necessary code is then 

generated and inserted into the existing application using a set of domain-specific 

optimizations (i.e., transformations) [19]. This approach solves the problems related to 

versioning and maintenance (described above) and allows the end-users to take advantage 

of the latest tools and techniques for ALC. Other advantages of this high-level approach 

include: enhanced code reuse, absence of code restructuring, and highly 

comprehensible/readable code for the CaR mechanism. This research also provides the 

facility to checkpoint code at arbitrary points in the application. The applications that 

were checkpointed through the technique demonstrated in this research produce results 

with the same accuracy and precision as the non-checkpointed code or the manually

checkpointed code. The performance of the application checkpointed by this technique is 

comparable to the manually checkpointed version of the application.  

2.7 Related High-Level Parallel Programming Approaches

There have been several research efforts in the past to raise the level of 

abstraction of parallel programming. Various libraries, toolkits, languages, and language 
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extensions have been developed and a detailed discussion on these can be found in [57, 

58, 59, 60, 61, 62, and 63]. Most of these techniques demonstrate the significance of 

abstractions and component-based HPC application development. It has been noted in 

these papers that the reasons behind the failure of some high-level approaches from the 

past are lack of flexibility, performance, and extensibility [57, 58, and 59]. In other 

words, in order to be widely accepted and adopted, any high-level approach should 

guarantee a reasonable amount of performance while providing the flexibility to modify 

the generated application. It should also be extensible enough to support multiple 

platforms.

Some of the efforts for raising the level of abstraction (those that use design 

patterns and templates [60], Invasive Software Composition (ISC) [30, 32, and 61], 

Aspect-Oriented Programming (AOP) [26, 27, 28, 29, and 62] and skeleton-oriented 

frameworks [63]) have successfully demonstrated the advantages of keeping parallel and 

sequential concerns separate in order to reduce code complexity and thereby augmenting 

code reuse and making the process of code maintenance easy. The lessons learned from

these approaches are reflected in this dissertation research. A discussion on some of the 

techniques that are complementary to FraSPA is presented in the following subsections.

2.7.1 New Parallel Programming Languages

Partitioned Global Address Space (PGAS) languages like UPC [64], Co-Array 

Fortran [65], X10 [11], Chapel [66] and Titanium [67] do have advantages over MPI, for 

instance, they offer better performance for fine-grained communication, yet they are still 

evolving. In order to use these languages (or language extensions), legacy applications 
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must be reengineered invasively and the application developer must be familiar with 

these new programming paradigms. Some other parallel programming languages that fall 

under the category of fine-grained mechanisms for parallel computations are Orca [12], 

SISAL [13], and Fortress [14]. 

As noted in [15], the disadvantage of new parallel languages for implicit 

parallelization, like SISAL, is that the programmer might have limited flexibility to 

experiment with different algorithm-design options. Debugging for performance is also 

difficult because it is unclear which code construct might be contributing to the loss in 

performance. That is because the compiler is in control of parallelization [15]. Legacy 

code, and demand for Fortran/C-based languages make these new languages impractical 

options. 

One concern with the new programming languages is the steep learning curve for 

the programmers. Another concern is that the programmers have to rewrite the 

applications in the new language, do the required testing and debugging, thus making the 

process time consuming and expensive. Many applications that are already in production

have considerable amount of time and money already invested in them. It is not a trivial 

task to rewrite them from scratch. Instead, libraries for parallelization (e.g., MPI) help 

programmers to take advantage of the existing code. Therefore, a layer of abstraction 

built on top of such popular libraries has a potential of reducing the effort involved in 

parallelization without involving any steep learning curve. A discussion of some of the 

techniques that have the objectives closely related to this research (MPI-based, high-

level, generative programming-based, applicable to a wide range of application domains, 

and performance-oriented) is provided below.
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CHARM++ [68] is an explicit parallel language and adaptive runtime system that 

is based upon the object-oriented programming paradigm having its roots in C++. The 

execution model of CHARM++ is asynchronous and message-driven (or event-driven).

The programmer must decompose the computation into small virtual message-driven 

processes called as chares. The data mapping to processors, fault-tolerance and load-

balancing is done by the system. The programmer must also write an interface file to 

provide the methods of the chare object that can be invoked by other chare objects. The 

language can be used for writing Multiple-Instruction Multiple Data (MIMD) parallel 

programs for both shared memory and distributed memory applications and handles the 

portability issues really well. This approach provides separation of sequential and parallel 

concerns and is best-suited for applications meant to be written from scratch. A steep 

learning curve is associated with the usage of CHARM++.  FraSPA provides support for 

most of the features for parallelization that are supported by CHARM++ including fault-

tolerance, and is best suited for reengineering legacy sequential applications.

Sequoia [69] is a programming language designed for the development of the 

memory-hierarchy aware portable parallel programs. The generic algorithmic expression 

and machine-specific optimization are kept strictly separate to enable portability without

compromising on performance [69]. In Sequoia, the application developer abstractly 

describes the hierarchies of tasks and then maps these hierarchies to the memory system 

of a target machine. This process entails a complete rewrite of the existing application to 

take advantage of the abstraction provided by Sequoia. Unlike in Sequoia, FraSPA does

not necessitate the rewrite of the existing application for parallelizing it. As in Sequoia, 
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the FraSPA provides the separation of machine-specific optimization and generic code 

constructs.

High Performance FORTRAN (HPF) [70] is a high-level language extension of 

FORTRAN 90 used to annotate the FORTRAN code with directives for data 

decomposition, specifying data parallel operations and mapping data to the processors.

The high-level language developed in this research has the potential to support 

parallelization of languages written in multiple programming languages including 

FORTRAN.

2.7.2 Pattern-Based Approaches

Design Patterns and Distributed Process (DPnDP) [60] and MPI Advanced 

Pattern-Based Parallel Programming System (MAP3S) [71] are pattern-based systems for 

developing parallel applications. These systems are extensible, flexible and demonstrate 

the advantages of keeping the sequential and parallel concerns separate in an application 

(and thereby reducing code complexity) while promoting code reuse and correctness. The 

DPnDP system generates the code skeleton depending upon the parameters (e.g., master-

slave pattern and the number of processors) specified by the programmer. The 

programmer is then required to edit the generated files that contain code skeletons to 

insert the sequential entry procedures into the skeleton. The MAP3S system demonstrates 

that generative pattern systems can be successfully implemented using the combination 

of MPI and C. The system uses customization and tuning parameters provided by the 

programmer to develop efficient parallel code templates. The programmer is also 

required to provide macros for packing the processing elements into MPI packets. 
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However, low-level specifications, like the maximum size of packet that can be 

transmitted between the processors or the timing for synchronization, place the burden on 

the programmer to understand the limitations of the MPI. Compared to DPnDP and 

MAP3S, FraSPA does not involve any intrusive reengineering of the existing code and 

the programmer is not required to specify any low-level parameters. Also, DPnDP and 

MAP3

Tracs [72], developed at the University of Pisa, provides design pattern 

components from which an actual application can be built. Tracs requires that all design 

patterns be expressed graphically. However, this is its major limitation because not all the 

design patterns can be expressed graphically (e.g., divide and conquer). 

S systems seem to be better suited for applications that are meant to be written 

from scratch. FraSPA is better suited for reengineering existing sequential applications in

order to parallelize them.

MPIBuddy [59], a portable design pattern based system for parallel programming 

implemented in Java, provides a level of abstraction above MPI and is an extensible 

system. MPIBuddy has a graphically rich front-end written in Java and uses Java Native 

Interface (JNI) methods to use C and MPI code. The interface programming offers the 

advantages of both the efficient low-level code (C and MPI) and easy graphical

development through Java. This approach provides a skeleton that should be manually 

fleshed out with application-specific code. The user should be aware of parallel 

programming constructs and APIs (e.g., MPI APIs). In contrast, the users of the FraSPA 

are not required to know the intricacies of parallel programming except identifying 

concurrency and selecting the right type of functionality (e.g., distribute data, gather 

data).
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2.7.3 Domain-Specific Approaches

Spiral [7] is a domain-specific library generation system that generates HPC code 

for some domains (e.g., linear transformations) using the high-level specifications. It 

supports a wide range of platforms for complete automation of implementing and 

optimizing libraries. The basic idea behind Spiral is to capture the algorithm at a high-

level and use rewrite systems to generate the executable. Spiral uses a feedback 

mechanism for exploring the solution space (set of candidate solutions) in order to pick 

the highly optimized solution for a particular platform. Unlike Spiral that generates 

optimized libraries, this research aims to generate complete parallel applications from 

existing sequential applications. Architecture-specific optimizations for any particular 

domain are beyond the current scope of this research. 

Catanzaro et al. [73] are developing a set of DSLs for different application-

domains (a different DSL for each application domain under study) to simplify the 

process of developing applications for heterogeneous architectures. Though their research 

goal (generating parallel code from high-level languages for improving end-user 

productivity) seems to be similar to that of FraSPA, there are major differences in the 

details associated with the two efforts. FraSPA is useful for synthesizing optimized 

parallel applications in a non-invasive and domain-neutral manner, i.e. it can parallelize 

sequential applications from diverse domains. A single DSL has been developed in this 

research to capture the specifications of parallel tasks per se (e.g., reduce data, gather 

data, and distribute data) and the end-users are not required to specify their core-

computations in any particular fashion (or in conformance to any standard interface). In

contrast, the set of DSLs from Catanzaro et al. capture the domain-specific computations 
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(for mesh-based PDE, physics library PhysBAM, and machine-learning), promise to 

deliver optimized parallel solutions, and seem to be suitable for applications that are to be 

written from scratch. Their framework seems to be still under development and they have

yet to develop mechanisms that provide communication and synchronization with low 

overhead [73]. The current scope of FraSPA is limited to providing the facility for 

parallel code-generation for homogeneous architectures, and the optimal solutions are 

generated through the usage of design patterns and templates.

Google’s “MapReduce is a programming model and an associated 

implementation for processing and generating large data sets. Programs written in this 

functional style are automatically parallelized and executed on a large cluster of 

commodity machines. The run-time system takes care of the details of partitioning the 

input data, scheduling the program's execution across a set of machines, handling 

machine failures, and managing the required inter-machine communication. This allows

programmers without any experience with parallel and distributed systems to easily 

utilize the resources of a large distributed system.” [74] MapReduce is an abstraction that 

is helpful in expressing simple computations without getting into the details of 

parallelization, fault-tolerance, data distribution, and load-balancing. It seems to separate

the computation concerns from the parallelization concerns to some extent but there is 

not much information publically available on this. In FraSPA, the end-user if not required 

to write the computations according to a particular model. 

Similar in functionality to Google’s MapReduce, an open-source project called as 

Hadoop also provides a MapReduce Framework [75] for performing computations in 

parallel. Hadoop also provides a distributed file system for storing data on compute nodes 
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and node failures are handled by the framework itself. MapReduce has two phases of 

computation – a map phase and a reduce phase. In the map phase, the input data set is 

split into multiple fragments and distributed to compute nodes by the framework. A key-

value pair is provided as input to each map task which produces an intermediate key-

value pair as output by invoking the user-defined map function. The intermediate results 

are sorted and each key can have multiple results associated with it. These intermediate 

results are consumed by the reduce task that invokes the user-defined reduce function for 

generating an output of key-value pairs.  

2.7.4 Library-Based Approaches

Application-specific libraries and toolkits for parallelization (e.g., PBLAS [76], 

POOMA [77], PETSc [78] and BlockSolve [79]) provide high-level and fine-grained 

mechanism for parallelization. These libraries provide a very application-specific parallel 

solution. With toolkits or library, the user writes the main body of the application and 

inserts calls to reusable routines (that the toolkits and the libraries provide). However, 

with FraSPA, the end-user is not supposed to make any changes to the existing sequential 

application and has the flexibility to generate applications from diverse domains.

2.7.5 Other Related Work

Chamberlain et al. have shown an approach for designing and developing an 

environment for authoring and deploying applications on hybrid systems [80]. Their 

solution involves the use of a coordination language to specify dataflow style 

interconnections between compute blocks, and native languages and tool sets for the 
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development of the compute blocks themselves. The application performance is 

evaluated early in the design cycle. Due to the environment support, the compute blocks 

are mapped to the computational resources in a semi-automated way. The environment 

also supports block-to-block communication both within and between computational 

resources [80]. With this approach the user is responsible for writing the compute blocks 

for all the different architectures participating in the hybrid system. This is an excellent 

approach for writing applications from scratch. The experts in the languages and tools for 

each type of architecture can write their implementations individually and can later 

integrate the different implementations via the glue code provided by the coordination 

language. FraSPA is different from this approach because it automatically synthesizes an

MPI application from an existing sequential application on the basis of the high-level 

specifications provided by the end-user. 

Roychoudhury et al. [37, 81] have demonstrated a technique for constructing 

aspect-weavers for general-purpose programming languages by combining model-driven 

engineering with a program transformation system. In their technique, the aspect-

specifications are captured in an abstract manner such that there is no dependency on any 

one particular program transformation system. Their framework for constructing aspect-

weavers has influenced the design-decisions of FraSPA in a manner that the high-level 

specifications for parallelization and checkpointing are decoupled from the low-level 

implementation details.  
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2.8 Related Approaches for Fault-Tolerance Through Checkpointing

Bronevetsky et al. [52, 53, and 54] have proposed a preprocessor-based approach for 

ALC. Their work is relevant for both shared memory and distributed memory 

architectures and their approach consists of two components: a pre-processor, and a 

checkpointing library. With their approach, the programmer invasively changes the 

existing application to insert the calls to a predefined function for checkpointing, at the 

points in the program where checkpointing is desired. An optimized approach to 

automated ALC is presented in [54], which is helpful for asynchronously checkpointing 

an application. 

Ramkumar et al. [82] have used a source-to-source compilation technique for creating 

portable checkpoints. In their approach too, the end-user has to instrument the existing 

code by renaming functions and by inserting the call to the checkpointing library 

function. The frequency of checkpointing is controlled using a timer that triggers 

checkpointing. The state of the program is stored on stacks and this approach doubles the 

memory requirement for running an application. In case the DRAM cannot hold the data 

on the stack, then the stack is mapped to a local disk and thus extra checkpointing 

overheads are introduced. 

Jiang et al. [83] proposed an ALC technique for shared-memory architectures which 

they call MigThread. This technique consists of a LEX-based preprocessor and a runtime 

support module. The preprocessor scans the code and inserts the thread migration 

primitives, renames the functions and variables and inserts other code required for thread 

migration [83]. In this technique, parts of computation are assigned to different threads, 
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the computation is paused, the state of the threads (process, computation, 

communication) is migrated to a different node, and the computation is resumed.  

In [84], Czarnul et al. have proposed a user-guided approach for inserting calls to 

their checkpointing library, either through a dedicated master processor or collectively by 

all the processors, and call it PARUG. This approach offers the flexibility of selective 

checkpointing to the end-user but is invasive. 

The major differences between the checkpointing approach developed in this 

research and other related work are the non-invasive reengineering of existing 

applications, separation of the checkpointing concern from the existing application, and 

the readability/comprehensibility of the generated code. However, the onus is on the end-

user to identify the places in the code where checkpointing is required and to specify the 

checkpointing-frequency. As compared to Bronevetsky et al.’s approach, the research 

presented in this dissertation is non-invasive but semi-automatic and the end-user is 

responsible for ensuring that the processors are in a consistent state before taking the 

checkpoint. As compared to Ramkumar et al’s approach, the research presented in this 

dissertation is at a very high-level of abstraction, gives control to the end-user to select 

the critical program variables to checkpoint and to select the frequency of checkpointing. 

As compared to MigThread, the research presented in this paper is relevant for different 

types of architectures and the transformed code is more comprehensible to the end-user 

because the original structure is maintained as is with the exception of checkpointing 

code inserted at the specified places in the application. The work done in this dissertation 

can be extended to support non-invasive ALC of applications written in several base 

languages, including FORTRAN [37, 81].   
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2.9 General Discussion

Out of all the approaches presented in Sections 2.7 and 2.8, at the time of writing 

this dissertation only FraSPA, CHARM++, and MapReduce, provide a high-level 

approach for developing fault-tolerant parallel applications. Amongst the three, FraSPA 

is best-suited for the scenarios in which the legacy applications already exist and the end-

users intend to transform these applications to parallelize them or make them fault-

tolerant via checkpointing. Both CHARM++ and MapReduce are suitable for the 

scenarios in which the applications are being written from scratch. While both FraSPA 

and CHARM++ can be used to develop parallel and fault-tolerant applications from

diverse domains, MapReduce has limited functionality because not all the applications 

can be solved by the MapReduce algorithm. MapReduce is best suited for data-parallel 

applications which process vast amounts of data. While FraSPA and CHARM++ support 

the notion of separation of concerns, in case of MapReduce, the functionality for map and 

reduce operations could be intertwined with the core computations – though the 

parallelization is hidden from the end-user, but the end-user is still required to implement 

map and reduce functions in their applications in conformance to standard interfaces. 

The high-level approaches that are closely related to this dissertation are loosely 

classified in Figure 2-5. There are five criteria according to which the classification has 

been done in Figure 2-5 and they are:

Approaches that are language-based - either application domain-specific 

(e.g., Spiral, MapReduce and Catanzaro et al.) or application domain-

neutral (e.g., UPC, Orca, CHARM++, and FraSPA).
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Design pattern-based approaches (e.g., DPnDP, MAP3

Approaches that support separation of concerns (e.g., DPnDP, MAP

S, Tracs, 

MPIBuddy, and FraSPA). 

3

Approaches that support generation of applications for heterogeneous 

architectures (e.g., Spiral, Catanzaro et al., and Chamberlain et al.).

S,

CHARM++, and FraSPA).

Approaches that provide support for fault-tolerance (e.g., MapReduce, 

CHARM++, and FraSPA).

Only MapReduce, Spiral and Catanzaro et al.’s work can be classified as application 

domain-specific. Most of the other approaches are application domain-neutral. Given the 

current scope of FraSPA, it meets four out of five classification-criteria and has the 

potential of being extended to meet the fifth criterion as well - which is, providing 

support for synthesizing applications for heterogeneous architectures. The DSLs (Hi-PaL 

and DALC) developed as part of FraSPA are application domain-neutral. FraSPA clearly 

supports separation of concern and fault-tolerance via checkpointing. It uses design-

templates that are codified design patterns for data-distribution, load-balancing and 

synchronization for distributed memory HPC platforms.
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Figure 2-5: High-Level approaches for parallel program generation
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CHAPTER 3

DESIGN AND IMPLEMENTATION OF FRAMEWORK

As described in Chapter 1, the goal of this research was to raise the level of 

abstraction of generating performance-oriented, checkpointed parallel applications from 

existing sequential applications. This would reduce the effort and complexities associated 

with developing HPC applications for distributed memory platforms. As explained in 

Chapter 2, during the initial phase of this research, multiple approaches were explored to

achieve this goal. It was found that no single approach or tool can address all the

requirements alone. Only through a combination of modern software engineering tools 

and techniques can the major challenges associated with achieving the dissertation’s goal

be solved. As evident from the related work sections in Chapter 2, developing high-level 

parallel programming environments is an actively researched area. The lessons learned 

from the success and limitations of the complementary approaches have guided the 

development of a framework, named FraSPA, in this research. The main limitations of 

the complementary approaches in the light of the goal of FraSPA are their application 

domain-specific nature and the requirement to write the applications from scratch. The 

main lesson learned from the complementary approaches is that a widely accepted 

framework should provide support for separation of concerns, fault-tolerance mechanism, 

flexibility and extensibility. The lessons learned are embodied in the form of FraSPA 

which is an application domain-neutral, component-based framework for generating 
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checkpointed parallel applications from existing sequential applications and high-level 

specifications. FraSPA supports separation of concerns and does not entail any manual 

reengineering of existing applications to achieve the objectives of parallelization or fault-

tolerance via checkpointing.

Currently the scope of FraSPA is limited to the generation of checkpointed

parallel applications for homogeneous HPC platforms. To obtain the bigger goal of

extending the framework for generating checkpointed parallel applications for 

heterogeneous architectures and multiple programming languages (C/C++/FORTRAN), 

it was required that the framework be extensible and flexible. If the framework is 

extensible, the support for generating applications for heterogeneous architectures can be 

added in the future without making any changes to the existing code. Currently, FraSPA 

supports the synthesis of applications that are written in C/C++ as base languages. 

However, because of its extensible nature, it can be extended to support generation of 

applications written in FORTRAN as well. Through their work on generic aspect 

weavers, Roychoudhury et al. [37, 81] have demonstrated a technique for achieving 

extensibility in a framework. Because similar design principles are adopted for the 

development of FraSPA, it can be inferred that FraSPA has the desired property of 

extensibility to support other languages. 

FraSPA is flexible and by using various components in isolation or together, it 

can support the composition of parallel and checkpointed applications. For example, the 

API for distributing the data amongst various processors can be used in conjunction with 

the API for gathering the results or reducing the results without any restrictions. This 

approach gives the end-user the flexibility to experiment with multiple communication 
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patterns and algorithms. However, the onus is on the end-user to correctly choose the 

parallel operations to be inserted at a particular place in the base application. 

The terms framework, extensibility, and flexibility as used in this dissertation are 

defined below:

Framework: A framework is a software system that abstracts selected common 

functionality in the form of generic code which can be specialized according to

the end-user’s needs. In essence, it is a consolidation of various generic code 

components (e.g., rule generator, templates for communication patterns, and Ant 

Scripts for invoking the PTE) for achieving the desired abstraction. The flow of 

control (which component to use and when on the basis of the high-level 

specifications) is automated and is not in the control of the user of the framework.

Extensibility: The property of the framework which allows the user to add extra 

functionality at a later stage is called extensibility. In context of FraSPA, 

extensibility is desired so that the support for multiple programming models (e.g.,

OpenMP, and OpenCL) and languages can be provided in future.

Flexibility: The property of the framework that allows the user to compose their 

own design patterns from the existing components by assembling them in any 

order is called flexibility. In the context of FraSPA, this means that there is no 

restriction in the order of specifying the API for different parallel operations. 

Also, there is no restriction imposed by FraSPA on the combination of various 

parallel operations.

The rest of this chapter describes the overall approach, architecture, design, and 

implementation of FraSPA. An overview of the overall approach for synthesizing 
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checkpointed parallel applications is presented in Section 3.1. Design details and the 

high-level architecture of FraSPA are presented in Section 3.2 and the implementation of 

FraSPA is described in Section 3.3. A detailed description of the main components, 

concepts, and tools related to the design and implementation of FraSPA has already been 

presented in Chapter 2. A summary of the chapter is presented in Section 3.4. The terms 

“Source-to-Source Compiler” and “Program Transformation Engine” are used 

interchangeably in this chapter.

3.1 Overview of the Approach 

This research involves source-to-source transformation by the means of high-level 

specifications provided by the end-user in the form of DSL code. As shown in Figure 3-1, 

the DSL code is parsed by the Rule Generator to generate intermediate code. The 

intermediate code is a set of rules (Generated Rules in Figure 3-1) that the Source-to-

Source Compiler (SSC) can comprehend. These rules contain the precise information 

about the modifications desired by the end-user, and the place in the Existing Code where 

these modifications should take effect. By applying the Generated Rules and other 

optional code components (e.g., Design-Templates) the SSC transforms the Existing 

Code into Transformed Code. In this research, both the Existing Code and Transformed 

Code have the same base language (C/C++) but even if they were in different languages,

this approach would still work [33, 34].

The complete work-flow - from the first step, which is the parsing of the input 

DSL code, to the last step, in which the transformed code is generated - is part of 

FraSPA. The set of DSLs developed in this research serve as the interface between the 
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end-user and FraSPA. The end-users analyze their existing applications and can express 

the transformations that they desire by the means of the DSL. The other steps responsible 

for transformations are like a “black-box” to the end-users. Therefore, the approach used 

in this research can be used to raise the level of abstraction of source-to-source 

transformations. Through this approach, the end-users (including domain experts) can 

express the specifications of what they intend to do (explicit parallelization and 

checkpointing for fault-tolerance), and are freed from the burden of how their intentions 

are materialized because low-level programming and source-to-source transformation 

details are hidden from them.

Figure 3-1- High-Level idea behind the working of FraSPA

Approaches similar to the one used in this research, are being adopted by other 

researchers [7, 73] who realize that the DSL-route has the potential to reduce both the 

time-to-solutions and the complexities associated with HPC application development. 

Most of the challenges identified in Chapter 1, can be mitigated with the approach 

presented in Figure 3-1 because this high-level approach does not entail invasive manual-

reengineering of existing applications, is platform-independent, and also base-language-

independent. Unlike the approaches in [7 and 73], the approach adopted in this research is 

application-domain neutral. 
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Before reaching the current DSL-based design of FraSPA, direct usage of source-

to-source transformations techniques for generating checkpointed parallel applications 

was also explored. AOP has the potential for doing the desired code-weaving and 

transformation. However, due to the limitations of the current implementations of AOP 

languages (described in Chapter 2), a robust PTE was chosen in this research to carry out 

the required transformations. Because the PTE is capable of doing non-invasive 

transformation by itself, it could have also been used directly to transform the existing 

application into a parallel or a checkpointed one. This would have obviated the extra 

effort spent in developing the DSLs. However, PTEs are complex and difficult to learn 

and use. 

The PTE used in this research, described in Chapter 2, is DMS [33, 34]. The end-

user has to climb a steep learning curve in order to use DMS. It is also required to 

develop an understanding of the base language grammar and the various tools available 

through DMS. Of the many features and tools associated with DMS, the end-users should 

at least have an understanding of RSL, PARLANSE, and the usage of AST API provided 

with DMS in order to begin using the system for source-to-source transformations. The 

debugging facility provided in DMS is very basic and the error messages are often 

difficult to understand (e.g., foreign exceptions and ambiguity errors at runtime). Some 

search patterns are difficult to specify directly in RSL rules. Hence, external patterns in 

PARLANSE should be written and called from within the RSL rules. 

To leverage the powerful source-to-source transformation capabilities of DMS 

(in-built Lexer, Parser, Rule Analyzer and Pretty Printer), while avoiding the 

complexities associated with its usage, an extra layer of abstraction in the form of DSLs
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in the front-end was absolutely necessary. In summary, using DSLs in this research not 

only helps in non-invasive reengineering of existing applications, platform-independence, 

and base-language-independence, but also mitigates the complexities involved with

source-to-source transformation techniques.

To fulfill the requirements in the current and future scope of this research, the 

framework had to be extensible and flexible. In case, a concept or a feature is missing 

from the framework, it should be possible to later add that to the framework without 

modifying the existing code. FraSPA currently supports the abstractions for some 

commonly used MPI primitives. The support for various parallel operations (viz.

distribute, gather, and reduce) was incrementally added to the framework. If support for 

additional parallel operations is required in future, the same can be added to FraSPA 

without modifying the code for the supported parallel operations.

The components in the FraSPA design are decoupled from each other so a

component in a particular layer can be replaced with another without impacting the 

components in other layers. For example, if DMS in the back-end is replaced with 

another PTE, it will not impact the implementation of the DSL in the front-end. Likewise, 

if the implementation scheme of the DSL changes, it will not impact the implementation 

of the rules for the PTE in the backend. However, the mapping between the front-end and 

the backend (i.e., the middle layer) will require changes if either the front-end or the 

backend undergoes a change. This decoupling between the components allows the 

framework to evolve with the evolving solution space and will be useful when FraSPA

needs to be extended.
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3.2 Framework Design

A set of DSLs has been developed in this research to provide a high-level 

interface between the end-users and FraSPA. These DSLs are meant for obtaining the 

specifications of desired parallel operations and ALC from the end-users. The DSLs are 

known as Hi-PaL (High-Level Parallelization Language) and DALC (DSL for 

Application-Level Checkpointing). As it can be noticed in Figure 3-2, the process of non-

invasively generating checkpointed (and hence fault-tolerant) parallel applications 

through FraSPA involves three steps that the end-user should undertake:

1. Identify the concurrency in the sequential application and express it using Hi-PaL.

2. Obtain the parallelized version of the application from FraSPA.

3. Analyze the parallel application and provide the specifications for CaR through 

the DALC.

Figure 3-2- Steps for generating a checkpointed parallel application using FraSPA
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To identify the concurrency in their application, the end-users should know the 

logic of the existing sequential application. They should know the usual terminology used 

in the parallel programming domain – e.g., distribute, gather, and reduce. A set of 

guidelines has been developed for assisting the end-user in selecting the standard parallel 

operations available through FraSPA and expressing concurrency through Hi-PaL. In 

case the end-users are not interested in making their generated applications fault-tolerant

via checkpointing, they might not want to proceed to step 3. However, if they wish to 

make the generated or existing parallel applications fault-tolerant via checkpointing, they 

must analyze the application and provide the CaR-specifications through DALC. 

The mechanism for translating the Hi-PaL and DALC code into the actual code 

for parallelization and checkpointing is the same. As a summary – the rule generator 

translates Hi-PaL or DALC code into the rules for a SSC. The generated rules, design-

templates (codified design patterns for inter-process communication, data distribution, 

synchronization etc.) and the existing (sequential or parallel) application are passed as 

inputs to the compiler at the back-end. The compiler modifies the AST of the existing 

application so that the parallel and/or checkpointed version of the application can be 

generated while keeping the existing application intact.

Figure 3-3 provides an overview of the internal components of FraSPA. As noted 

in Figure 3-3, FraSPA has a three-layered architecture comprising of front-end, middle-

layer and backend. A description of each of the layers is as follows:

1. Front-End: This is the primary interface between the end-user and FraSPA. It 

comprises of the:
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a. abstractions for expressing the specifications for explicit 

parallelization. (Hi-PaL)

b. abstractions for expressing the specifications for 

checkpointing. (DALC)

2. Middle Layer: This layer is not visible to the end-user and is used for 

translating the high-level abstractions obtained from the front-end into the 

intermediate code to be used by the backend. (Rule Generator)

3. Backend: This layer is also hidden from the end-user and is required for code 

instrumentation – that is, for inserting the code for parallelization and 

checkpointing into the existing sequential or parallel application on the basis 

of the intermediate code generated by the middle layer. (PTE)

Figure 3-3- Three layered diagram of the FraSPA
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In the following lines, the overall work-flow of FraSPA is explained again in 

context of its internal components and the layers of FraSPA. The Hi-PaL code provided 

by the end-user is translated into the rules by the means of a Rule Generator. These rules 

are analyzed by the SSC (also known as PTE) for generating and weaving the desired 

code for parallelization or checkpointing in the existing sequential or parallel application. 

The Rule Generator consists of templates written in ATL [43] and Ant Scripts. The 

generated rules are specific to the application that the end-user wants to parallelize and 

have the required C/C++/MPI code for parallelization and checkpointing.

The code in the rules is in the form of the nodes of abstract syntax tree so that the 

PTE, without any manual intervention, can analyze and transform the sequential 

application into a parallel one. The glue code, also written as Ant Scripts, is responsible 

for invoking the PTE and making the generated code (parallel or checkpointed) available 

to the end-user (step 2 and 4 in Figure 3-2). The design-templates that are a part of 

FraSPA are codified design patterns for inter-process communication, data distribution, 

and synchronization. The PTE infers which design-template to include in the process of 

parallelization on the basis of the generated rules and the template can be backtracked to 

the mappings available in the rule generator. The checkpointed parallel application thus 

obtained can be compiled and run like any manually-written parallel application. Figure 

3-3 shows the abstractions for expressing the specifications for explicit parallelization 

and checkpointing that have been built in FraSPA through Hi-PaL and DALC. Instead of 

any particular application-domain the domains of these DSLs are explicit parallelization 

and ALC per se. Hi-PaL is described in Section 3.2.1, DALC is described in Section 
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3.2.2, and the rule generator is described in Section 3.2.3. All other components have 

been described in Chapter 2.

3.2.1 Hi-PaL - DSL for Parallelization

A DSL for specifying parallel computations has been developed in this research

and is called Hi-PaL. Because the specifications for parallel computations can vary from 

application to application, different application-domains (e.g., image processing, 

evolutionary algorithms, and stencil-based computations) were evaluated to build the key 

abstractions in the form of a DSL. The general structure of the Hi-PaL is shown in Figure 

3-4. The mandatory structural elements of the Hi-PaL code are shown in bold-face in 

Figure 3-4. The italicized elements inside angular brackets are the variable structural 

elements of the Hi-PaL code (e.g., APIs for parallelization, and statements for pattern 

matching). The “&&” operator is used for creating powerful match expressions. The Hi-

PaL code will not compile if any of the mandatory keywords are missing and appropriate 

error messages are generated. An excerpt of the production rules of Hi-PaL grammar is

shown in Figure 3-5.

Parallel section begins <hook type> (<hook pattern>) mapping is
<mapping type> {
<operation along with the arguments> <hook>
&& in function (<function name>)
}

Figure 3-4- General structure of the Hi-PaL code

It can be noticed from the grammar in Figure 3-5 that the specification for 

parallelization (PARSPECS) consists of a parallel task (PARTASK) and the constraints 

(PARCONDITION) for parallelization. The parallel tasks defined in this grammar consist of a 

subset of the standard operations provided through MPI. For example, reducing the data 
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(PARREDUCE, PARALLREDUCE), gathering the data from the processors (PARGATHER), and 

distributing the data amongst the processors (PARDISTRIBUTE). Each parallel task can be 

broken down further into the basic elements of the grammar. As an example, consider the 

rule for reducing the data. According to the Hi-PaL grammar, the specification of the 

reduction operation (PARREDUCE) consists of the specification of the type of reduction 

operation (REDTYPE), the data type of the variable being reduced (DATATYPE) and the name 

of the variable to be reduced (REDVARIABLE).

PARSPECS ::= PARTASK PARCONDITION 

PARCONDITION ::= {&& HOOK PATTERN}

HOOK ::= HOOKTYPE HOOKELEMENT 

HOOKTYPE ::= before|after|around|in 

HOOKELEMENT ::= statement|FCT 

FCT ::= function_call|function_execution 

PARTASK ::= PARCOMPUTE|PARREDUCE|PARALLREDUCE|PARFOR|PARGATHER|

PARDISTRIBUTE|PAREXCHANGE|PARBROADCAST|PARWRITE|PARREAD

PARREDUCE ::= REDTYPE DATATYPE “(“ REDVARIABLE “)” 

REDTYPE ::= REDUCESUM|REDUCEPRODUCT|REDUCEMINVAL|REDUCEMAXVAL

PARFOR ::= FORINITSTATEMENT; FORCOND; FOREXPRESSION 

FORINITSTATEMENT ::= INITSTATEMENT|ANYSTATEMENT

INITSTATEMENT ::= FORVAR OPERATOR LIMIT

OPERATOR ::= LESSTHANEQUAL|GREATERTHANEQUAL|EQUALTO|LESSTHAN|GREATERTHAN 

FORCOND ::= FORCONDPRESENT|FORNOCOND|ANYCOND 

FORCONDPRESENT ::= FORVAR OPERATOR LIMIT 

LIMIT ::= PARCOMPUTELIMITS 

FORLOOPEXPRESSION ::= LOOPEXPRESSION|ANYEXPRESSION 

LOOPEXPRESSION ::= FORVAR STRIDE 

STRIDE ::= PLUSPLUS|MINUSMINUS 

PARCOMPUTELIMITS ::= LOWERLIMIT|UPPERLIMIT|VARIABLEASLIMIT

Figure 3-5- Excerpt of the production rules in Hi-PaL
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Currently, support for a subset of reduction operations is provided in FraSPA and 

those are MPI_SUM (REDUCESUM), MPI_PRODUCT (REDUCEPRODUCT), MPI_MAX 

(REDUCEMAXVAL), and MPI_MIN (REDUCEMINVAL). Additional operations can be added by 

extending the abstract and concrete syntax of Hi-PaL.

The end-users using Hi-PaL need not have any understanding about its grammar.

The grammar-level details of Hi- Pal are only important for programmers who wish to 

extend the language. With Hi-PaL, without knowing anything about MPI API or its 

usage, end-users can specify the tasks required for parallelizing the existing sequential 

applications at a very high-level. Therefore, a set of Hi-PaL API has been developed for 

the commonly used parallel tasks like data distribution, data collection, reading or writing 

the data in parallel, parallelizing a for-loop, etc.

An excerpt of some of the Hi-PaL API and their brief description (type of MPI 

routine or the parallelization code associated with the API) is shown in Figure 3-6. The 

API-names are descriptive enough to explain their purpose. For example, 

ReduceMaxValInt(<variable name>), means that the variable specified by <variable 

name> is of type integer and it needs to be reduced on one node (by default the node with 

the rank equal to zero) such that while reducing, the maximum value of the variable 

calculated by the individual processors is selected (MPI_MAX operation). Detailed 

guidelines can be provided to the end-users to help them select the appropriate API and to

simplify the process of learning and using Hi-PaL. The end-users are, however, expected 

to be familiar with the logic of the sequential application and should be well acquainted 

with the concept of concurrency. 
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Hi-PaL API Description
ReduceSumInt(<variable name>) MPI_Reduce with sum operation 

ReduceMaxValInt(<variable name>) MPI_Reduce with max operation

AllReduceSumInt(<variable name>) MPI_Allreduce with sum operation

DistributeVectorInt(<vector name>, 
<num of rows>)

MPI_Scatterv to distribute the 
vector

Gather2DArrayInt(<array name>, <num of 
rows>, <num of columns>)

MPI_Gatherv to collect the data

BroadCast2DArrayInt(<array name>, <num 
of rows>, <num of columns>)

MPI_Broadcast to broadcast the 
data

Exchange2DArrayInt(<array name>, <num 
of rows>, <num of columns>)

Exchange neighboring values in 
stencil-based computations 

Parallelize_For_Loop where 
(<for_init_stmt>;<condition>;<stride>)

Parallelize for-loop with 
matching initialization 
statement, condition and stride

Figure 3-6- Excerpt of the Hi-PaL API

The syntax of Hi-PaL is similar to the syntax of other aspect languages [18]. The end-

user needs to specify the hooks in the sequential application where the parallel operation 

needs to take effect. The complete hook definition includes the specification of hook type 

along with a search pattern (which is a statement in the sequential application). There are 

three types of hooks- before, after, and around- and every syntactically correct statement 

in a sequential application can qualify as a search pattern in Hi-PaL. In contrast to Hi-

PaL, various language extensions of AOP (e.g., AspectC++ and AspectC) only allow for 

the specification of function call, function execution, object construction, and object 

destruction for search purposes. The program statement specified as a hook serves as an 

anchor before or after which the code for parallelization needs to be woven. With the 

around hook type, the end-user gets the flexibility to delete or modify a particular 

statement in the sequential application. For example, if a print statement in the sequential 

application is not desired in the parallel version of the application, but needed as an 

anchor to weave some code for parallelization, the end-user can use an around type of 
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hook on that statement. The generated code will have the print statement replaced by the 

code for parallelization.

In addition to the hook, the end-user is also required to specify the desired type of

data mapping in the parallel application. Data mapping means the mapping of arrays to 

the memories of processors and it can impact the performance of applications [70]. Some 

examples of the data distribution schemes are block (or linear), cyclic, block-cyclic [70]. 

Figure 3-7 shows a sample program written in Hi-PaL. This sample code demonstrates 

the method of specifying the broadcast operation on a matrix named life in function 

main. A one-to-one mapping of the general structure of Hi-PaL code (Figure 3-4) and a

sample Hi-PaL code (Figure 3-7), is presented in Figure 3-8. This one-to-one mapping 

illustrates the simplicity of Hi-PaL. The standard structural elements (e.g., Parallel

section begins after) are going to remain the same in all the Hi-PaL programs. More 

examples of the usage of Hi-PaL are presented in Chapter 4. 

Parallel section begins after ("SEED = atoi(argv[4]);") mapping is
Linear{
ParBroadCast2DArrayInt(life, M, N) after statement
("life = initMatrix<int>(life, M, N);") && in function ("main")
}

Figure 3-7- Sample Hi-PaL code showing the broadcast operation specification

General Structure of Hi-PaL code 
(Figure 3-4)

Sample Hi-PaL code 
(Figure 3-7)

Parallel section begins Parallel section begins
<hook type> After
(<hook pattern>) ("SEED = atoi(argv[4]);")
mapping is mapping is
<mapping type> Linear
{ {
<operation along with the arguments> ParBroadCast2DArrayInt(life,M,N)
<hook> after statement ("life = …)
&& in function && in function
<function name> ("main")
} }

Figure 3-8- One-to-one mapping of the Hi-PaL structural elements into the sample code
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3.2.2 DALC- DSL for Application-Level Checkpointing

The first step in developing any DSL is analyzing the domain (in this case ALC) for 

which it is being designed. During the domain analysis phase of developing the DALC, a 

survey of technical literature and existing implementations [49-56, 82-84] was done to 

obtain an overview of the terminologies and concepts related to the ALC-domain. 

Commonly used terms and their relationships were used to develop the domain lexicon. 

Commonalities and differences were observed in the process of implementing the CaR 

mechanism across applications in various domains and these are referred to as features 

from this point onward in this chapter. Some of the features in the ALC-domain and their 

relationships are shown as expressions in Figure 3-9.

ChckptgPack: all(Checkpoint, Restart)

Checkpoint: all (CheckPointCondition, CheckPointCode)

CheckPointCondition: all(Hook,Pattern,Frequency, loopVar?,CaRType)

CaRType: one-of(Centralized, Distributed, Sequential)

CheckPointCode: all(SaveVarType, saveVarArg)

SaveVarType: one-of (SaveInt, SaveDouble, SaveChar, …)

Restart: all (RestartCondition, RestartCode)

RestartCondition: all(Hook, Pattern)

RestartCode: all(ReadVarType, restartVarArg)

ReadVarType: one-of (ReadIntVarFromFile, ReadDoubleVarFromFile, …)

Hook: all (HookType, HookElement)

HookType: one-of(afterHookType, beforeHookType, aroundHookType)

HookElement: one-of(Call, Execution, Statement)
Figure 3-9- Excerpt of the features identified in the ALC-Domain

As shown in Figure 3-9, the feature ChckptgPack indicates that this DSL package 

allows two activities, Checkpoint and Restart. If the end-user wants to Checkpoint an

application then the checkpoint condition, CheckPointCondition, and the code that 

should be checkpointed, CheckPointCode, are specified. The CheckPointCondition
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includes the specification of the points where the code for checkpointing should be 

inserted (Hook and Pattern). It also includes the frequency of checkpointing 

(Frequency) and the type of CaR (CaRType). The expression Hook is made up of 

HookType and HookElement. Together with the Pattern (which is a search string), 

these two syntax elements identify the places in the application code where the 

checkpointing code should be inserted. 

In case, checkpointing is required inside a loop, the name of the loop variable,

loopVar, should also be specified. This is an optional feature and is represented by “?”. 

The type of the desired CaR (Centralized, Distributed or Sequential) should also 

be specified as a part of CheckPointCondition.The CheckPointCode includes the 

specification of the type and name of the variable or data structure to be checkpointed. 

Depending upon the variable or data structure, the end-user is expected to specify a list of 

parameters. For example, if the end-user intends to save an integer variable, SaveInt is 

selected from the list of SaveVarType. The other parameters required from the end-user 

in this case would be the name of the variable, and the name of the file in which the 

variable needs to be saved. 

An excerpt of the API developed for capturing the details about the variable or 

data-structure to be saved is presented in Figure 3-10. If the end-user intends to save a 

two dimensional array of type integer (specified by SaveIntArray2D), then apart from 

the name of the array and the file name, the dimension of the array also needs to be 

specified. Likewise, during the restart phase, as per the expression for the feature 

Restart, the end-user should specify the RestartCondition and the RestartCode. As 

in the case of CheckPointCondition, the RestartCondition includes the specification 
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of the Hook and Pattern. The Hook and Pattern are used together to identify the place

where the restart code should be inserted. The RestartCode specification includes the 

description of the variable or data structure being read, the name of the variable to be 

initialized with the value stored in the restart file and the name of the restart file. If the 

restart file exists, then the variable is initialized by the value stored in the restart file, else, 

the program proceeds with the normal initialization process.

SaveInt(<variable name>, <file name>)

SaveIntArray1D(<array name>, <number of columns>, <file name>)

SaveIntArray2D(<array name>, <number of rows>, <number of columns>, 

<file name>)

ReadIntVarFromFile(<variable name>, <file name>)

ReadIntArray1DFromFile(<array name>, <number of columns>, <file name>)

ReadIntArray2DFromFile(<array name>, <number of rows>, <number of 

columns>, <file name>)

Figure 3-10- Excerpt of the API in DALC

The DALC was designed from scratch with no commonality with the existing

language. However, like Hi-PaL, DALC also borrows some concepts and constructs from 

the AOP techniques. Similar to the concept of advice in AOP, the DALC has a notion of 

a well-defined Hook (shown in Figure 3-9) which is used as a handle to a specific point in 

the program flow. A Hook can be of one of the following types: after, before, and around.

A Hook of type after has the same significance as an after advice in AOP. The before and 

around type correspond to the before advice and the around advice in AOP. It should be 

noted here that the around advice is implemented differently from its implementation in 

the Hi-PaL code. In Hi-PaL, the join point specified in the around advice gets entirely 

deleted, whereas in the DALC, the statement is preceded or succeeded with other code 

(see the Poisson Solver test case in Chapter 4). This advice is especially useful while 
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providing the code for restart mechanism because it is required to weave an if-else 

statement around the statement that is marked as the Hook for around advice and not to 

delete it. The mechanism for deleting a line might not be required for doing CaR and 

therefore no extra functionality for deleting a statement has been provided currently in 

DALC. Apart from the type, a hook definition also includes the specification of the 

pointcut

Unlike many language extensions of AOP, in this DSL any syntactically correct 

program statement can be specified as a join point. A partial list of the type of join points

that can be specified using this DSL are: function call, function execution, expression 

statement, compound statement, selection statement, and iteration statement. These 

different join points give different granularity of control to the end-user. For example, in 

case the join point is of type function execution, then the end-user gets control of the 

execution point of the function such that the behavior and structure of the entire code in 

the function body can be modified if desired. As opposed to function execution, if any 

one particular statement in the function needs to be modified, the join point should be of 

type statement (examples of allowed statement types are expression statement and 

iteration statement). 

.

Based on the way the function execution and function call join points are 

implemented, they can differ in the scope of action. The scope of function call type of 

join point starts with the call to the function and lasts tills the program control returns 

from the function. The scope of function execution type of join point starts with the 

execution of the code in the body of the function and lasts till the last line of the code in 

the function body. The DSL keywords for expressing a pointcut are call, execution, and 
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statement along with a search pattern. An example of a Hook

around statement ("start = 0;")

definition along with the 

search pattern would be:

In this example, the statement, ("start = 0;"), serves as a join point of type around

One of the most important steps during the design stage was choosing a structure for

DALC code constructs. In DALC, the user specifies the variant features and the editor 

automatically generates the constant features (through the means of a wizard explained 

later in this chapter). As per the design, the conditions and the code for checkpointing 

should be provided by the end-user in the code block following the keyword 

beginCheckpointing. The conditions and the code for restart should be provided by the 

end-user in the code block following the keyword beginInitialization.

.

Apart from deciding the structure of the language constructs, the valid and invalid 

combinations of the features were also identified in the design phase. For example, any 

attempt to specify the code pertaining to the restart mechanism (e.g., 

ReadIntVarFromFile) should not be allowed in the block following the keyword 

beginCheckpointing. Therefore, beginCheckpointing and ReadIntVarFromFile are 

invalid combinations of the DSL features. The valid and invalid combination of features 

is called configuration knowledge [19] and is required during the DSL implementation 

phase.

The basic structure of the DALC code for checkpointing is shown in Figure 3-11. The 

place-holder for the variant part, provided by the end-user, is depicted by “< >”. The 

Hook is a statement or function call or function execution before, after or around which 

the checkpointing or restart functionality is desired. The Pattern of the Hook and the 
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Frequency of checkpointing, which is an integer value, are also required as a part of 

the CaR-specification. The “&&” operator is used to create a powerful expression for CaR-

specifications. The loopVar shown in Figure 3-11 is an optional structural element and is 

used only if the variable or data structure meant to be checkpointed is inside a loop. The 

datastructures and variables to be checkpointed are specified within “{” and “}”.

beginCheckpointing:

<Hook> <Pattern> && (Frequency = "<#>") &&(loopVar ="<>")

&& <CaRType>{

<checkpointing code>

}

Figure 3-11- Basic structure of the DALC code for checkpointing mechanism

The basic structure of the DALC code for restart is shown in Figure 3-12. The 

code block for restart requires the specification of Hook and Pattern. The datastructures 

and variables to be read from a file are specified within “{” and “}”.

beginInitialization:

<Hook> <Pattern> {

<restart code>

}

Figure 3-12- Basic structure of the DALC code for restart mechanism

1. double computepi(int start, int end, double h) {

2. double mysum = 0.0;

3. for (int i=start; i<=end; i++) {

4. double x = h * ((double)i - 0.5);

5. mysum += 4.0 / (1.0 + x*x);

6. }

7. return h*mysum;

8. }

Figure 3-13- Function to compute the value of 
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A simple function, computepi, for computing the value of pi (i.e., 

is shown in Figure 3-13 to illustrate the DALC code to be provided. If the variable mysum

needs to be checkpointed after the execution of the statement at line # 5, at a frequency of 

every 10 iterations of the for-loop at line # 3 of Figure 3-13, then the corresponding 

DALC code for specifying this intention is shown in Figure 3-14. The keyword

beginCheckpointing: at line # 1 of the code marks the beginning of the checkpointing 

block and is compulsory. The code at line # 2-4 of the Figure 3-14 expresses the 

checkpointing condition which in this case is to save the value of the variable mysum,

every 10th

1. beginCheckpointing:

iteration, wherever the initialization variable in the for-loop is i. The code at 

line # 6 of Figure 3-14 means that the variable named mysum of type double is being 

saved in a file named restartMysum. The iteration number is also stored in the restart 

file. 

2. after statement("mysum += 4.0 / (1.0 + x*x);")
3. && (frequency = 10)
4. && (loopVar = "i" )&& (CaRType = Sequential)
5. {
6. SaveInt(i, "restartMysum")
7. SaveDouble(mysum, "restartMysum")
8. }

Figure 3-14- Sample DALC code for checkpointing

During the restart phase, the variable mysum and the starting value of iteration 

count, start, are initialized from latest checkpoint stored in the file restartMysum. The 

DALC code for specifying this intent is shown in Figure 3-15. The keyword 

beginInitialization: at line # 1 of the code is compulsory. As per the DSL design, if 

the end-user attempts to provide the CaR-specifications without providing the necessary 

keywords, the parser will complain about it and the code generation process will not 

proceed.
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1. beginInitialization:
2. after statement ("double mysum = 0.0;")
3. {
4. ReadDoubleVarFromFile (mysum, "restartMysum")
5. ReadIntVarFromFile (start, "restartMysum")
6. }

Figure 3-15- Sample DALC code for restart

The DALC code needs to be translated into the source code of an existing 

language, usually called the base language. The DALC code in this research is 

transformed into the base language source code, which is C/C++, via DMS and 

transformation languages. First, the DALC code is translated into an intermediate code 

for the DMS via ATL. Using the intermediate code (generated rules), the DMS generates 

the code in the base language and inserts it automatically into the base application. The 

example code shown in Figure 3-13 is checkpointed by FraSPA, on the basis of the 

specifications provided in Figures 3-14 and 3-15. The output is shown in Figure 3-16.

The code to save the values of the critical variables is on line # 8-13 of the code of Figure 

3-16.

1. double computepi(int start, int end, double h) {
2. FILE* newInputFile;
3. /*other code*/
4. double mysum = 0.0;
5. for (int i=start; i<=end; i++) {
6. double x = h * ((double)i - 0.5);
7. mysum += 4.0 / (1.0 + x*x);
8. if (i % 10 == 0){
9. newInputFile = fopen("restartMysum", "w");
10. fprintf(newInputFile, "%d", i);
11. fprintf(newInputFile, "\n");
12. fprintf(newInputFile, "%lf", mysum);
13. fclose(newInputFile);
14. }
15. }
16. return h*mysum;
17. }

Figure 3-16- Checkpointed function to compute the value of 

With minimum effort, the DSL can be extended to add the facility to checkpoint 

additional data structures that are currently not covered in its present scope. In order to 
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promote code correctness and to reduce coding complexity, a wizard-driven GUI for 

DALC code generation (Figure 3-17) has been developed. The end-user can enter the 

CaR-specifications through the GUI instead of typing them manually. For example, the 

end-user can select one of the features from the list of ReadVarType features and provide 

the parameters (like variable name, restart file name). The corresponding DALC code,

with the API and parameters, is generated automatically. On the basis of the selections 

made in the panel for providing checkpointing-specifications, the panel for restart-

specifications can be generated dynamically. An outline of the workflow involved in 

providing the CaR-specifications is shown in the panel on the left-hand-side of the GUI. 

A summary page showing the CaR-specifications can be presented to the end-user in the 

end for the purpose of overview.

Figure 3-17- Wizard for generating the DALC code

This GUI was developed using the API and user-interface from SwingLabs, a 

subproject supported by Open source Java projects, an open source initiative from Sun 
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Microsystems and hosted at https://wizard.dev.java.net/quickstart.html. Because wizard 

content needs to vary dynamically (contents on the next panel depends upon the contents 

of the previous panel/panels), nesting of wizards within wizards was done. Input 

validation can be easily programmed and the process of developing this wizard-driven 

GUI was itself wizard-driven! This wizard can be run from any platform that has a java 

virtual machine installed. A similar GUI can be developed for making the process of 

obtaining the Hi-PaL specifications from the end-users wizard-driven. The benefits of 

using the DALC are summarized below:

1. Non-invasive ALC of existing applications. 

2. Mitigation of the complexity associated with the usage of a PTE.

3. High-level of abstraction for source-to-source transformation.

4. Decoupling of the problem and solution space, i.e., the CaR-specifications are 

decoupled from the actual implementation of the CaR mechanism.

5. Prevention of code tangling and thus reduction in the effort involved in software 

maintenance.

3.2.3 Rule Generator

A Rule Generator lies in the middle-layer of FraSPA and is required for dynamically 

generating the rules for the DMS in the backend. It translates the Hi-PaL or DALC code 

provided by the end-user into the RSL rules that the DMS can analyze. These generated 

rules are then used by the DMS for doing the code instrumentation – that is inserting the 

relevant C/C++/MPI code for parallelization and checkpointing into the existing 

applications. The Rule Generator not only contains the domain-knowledge [19] for 

generating the appropriate rules from the Hi-PaL and DALC code, but also does the task 
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of invoking the DMS, handling the input to DMS, and getting the output from the DMS

to the end-user workspace. It comprises of ATL code, Object Constraint Language (OCL) 

code, metamodel and textual concrete syntax of RSL, and Ant Scripts. A description of 

each of these elements has been provided in Chapter 2.

3.3 Framework Implementation

Both Hi-PaL and DALC were implemented using a MDE platform called AMMA 

(refer Chapter 2). The AMMA platform was preferred for DSL development due to the 

familiarity with the same. AMMA provides KM3 and TCS for writing the abstract and 

concrete syntax of the DSL – while KM3 itself is like a DSL for writing new DSLs, TCS 

is like a grammar-template that needs to be extended. The usage of AMMA-based front-

end further makes the process of extending FraSPA convenient. The extension of this 

MDE-based front-end might entail embedding the new grammar rules of the DSL being 

extended in the form of classes and templates in KM3 and TCS respectively. The already 

existing classes and templates will not require any modifications. 

Each production rule in the Hi-PaL and DALC grammar was coded as classes in 

KM3 and templates in TCS. A snippet of the KM3 code for modeling the grammar rule 

for PARREDUCE (refer Figure 3-5) in Hi-PaL is shown in Figure 3-18. It can be noticed 

from Figure 3-18 that ParTask is defined as an abstract class. All the classes for 

specifying MPI tasks (e.g., reduce, gather, and distribute) are required to extend this 

abstract class. The ParReduce class extends ParTask and contains references to other 

classes - RedVarType, and RedVarArg. Because there are multiple options available for 

the type of reduction operation, the class RedVarType is modeled as an abstract class.
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Hence, the classes modeling the different types of reduction operation (e.g., MPI_MAX 

or MPI_MIN) are required to extend the RedVarType class. In essence, if there are 

multiple values possible for a particular element in a grammar rule, then that element is 

modeled as an abstract class and a separate class (which can be either abstract or 

concrete) extending this abstract class is written for every possible value that the element 

can take.

class ParSpecs extends LocatedElement {
reference parTask [*] container : ParTask;
reference parCond[*] container : ParCond;

}
abstract class ParTask extends LocatedElement {
}
class ParReduce extends ParTask {

reference redVarType container : RedVarType;
reference varArgs[*] container : RedVarArg;

}

class RedVarArg extends LocatedElement {
attribute argument : String;

}

abstract class RedVarType extends LocatedElement {
}
class ReduceSumInt extends RedVarType {
}

Figure 3-18- Excerpt of the KM3 code for modeling the ParReduce grammar rule 

While the KM3 metamodel provides the abstract syntax of the language being 

developed, the concrete syntax of the language is specified in a separate model that is 

expressed using TCS. In a TCS model, of main interest to a language developer are the 

“Class templates” and the “Operator table”. For every class represented in the KM3 

specification, it is required to have a corresponding template definition in TCS. The

“Operator table” is used for defining the syntax of DSL using operators. The terminal 

tokens, like separators and brackets, are a part of the TCS model. If the default lexer is 

not satisfactory, then the “Primitive template” in TCS can be modified as per the 
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requirement. If additional symbols are required then the class for “Special symbols” 

should be modified. An excerpt of the concrete syntax of Hi-PaL, as defined in TCS, is 

shown in Figure 3-19. The keyword template is used as a part of the definition of all the 

KM3 classes as templates. The name of the KM3 class (ParReduce) is specified along 

with the name of the class elements (redVarType and varArgs) defined in the KM3 

model. The “,” is to be used as a separator between the arguments, then the same is

specified as follows: 

{separator = ","}

In the template definition of ParReduce note the specification of "(" and ")". These 

tokens could not be a part of KM3 model but are necessary for specifying the structure of 

the grammar rule and hence are a part of the TCS template definition.

template ParSpecs
: parTask parCond {separator = "&&"}
;

template ParTask abstract;

template ParReduce 
: redVarType "(" varArgs{separator = ","} ")"
;

template RedVarArg 
: argument 
;

template RedVarType abstract; 

template ReduceSumInt
: "ReduceSumInt"
;

Figure 3-19- Excerpt of the TCS code for modeling the ParReduce grammar rule

Apart from using AMMA platform for developing the front-end (i.e., Hi-PaL and 

DALC), it was also used for capturing the semantics of the RSL (used in the backend by 

the DMS) as a metamodel. This step was required for doing the metamodel-to-metamodel 

translation by using the ATL (part of Rule Generator in FraSPA) in the AMMA toolsuite. 
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Roychoudhury et al. have also demonstrated the usage of AMMA platform alongside 

DMS and as mentioned in Chapter 2, the design of FraSPA is influenced by the design of 

their framework for generic aspect weaving [37, 81]. In summary, the fundamental nature 

of Hi-PaL and DALC used in the front-end, and the RSL used in the backend is captured 

through metamodels written in KM3 and TCS. The metamodels for the Hi-PaL and 

DALC in the front-end are known as “source metamodels” whereas the metamodel for 

the RSL to be used in the backend is called the “target metamodel”. The high-level 

specifications provided by the end-user, in the form of Hi-PaL or DALC code, are first 

injected into the DSL metamodel. These high-level specifications can be considered as a 

terminal model in the MDE parlance. The specifications are validated against the 

metamodel during the process of injection. With the help of the ATL transformations and 

Ant Scripts, the code injected in the DSL metamodel is translated into the RSL terminal 

model (RSL rules). The process of obtaining the RSL terminal model from the RSL 

metamodel is called extraction. The RSL rules thus generated are used by the DMS for 

weaving the parallelization or checkpointing code into the existing application. All these 

steps result in the transformed code (parallel or fault-tolerant) and the complete workflow 

of the process of transformation through models is pictorially shown in Figure 3-20.

Figure 3-20- Extraction and injection of models in FraSPA
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The mapping of the elements of the DALC into the metamodel elements is 

pictorially shown in Figure 3-21. The KM3 classes corresponding to the syntactic 

elements of the DALC code are shown on the left hand-side of Figure 3-21. There are 

three concrete classes for the hook type (before, after, around) and the DALC code for

checkpointing shown in Figure 3-21 uses an around type of hook on a statement. Each 

variable or data structure that should be checkpointed is mapped into a ChkStmt class. 

The data members of this class are the type and the name of the variable or data structure 

to be used, and additional parameters like the name of the restart file or the dimensions of 

the array. In the example code in Figure 3-21, the line SaveInt(k, restart)of the 

DALC code implies that a variable of type integer is being checkpointed and the variable 

type is mapped into the KM3 class called as SaveInt. The parameter k is the name of the 

variable that should be checkpointed and the parameter restartK is the name of the file 

in which the checkpointing data should be saved.

The set of ATL rules (ATL + OCL code), Ant Scripts, and RSL metamodel make 

the Rule Generator. A snippet of the ATL rule is shown in Figure 3-22. As can be noticed 

from Figure 3-22, the ATL rule consists of the description of the source metamodel 

(DSL) and the target metamodel (RSL) along with the mapping of the syntactic elements 

from the source metamodel to the target metamodel. The source and target metamodels 

are specified as from and to in the rule. Each type of RSL rule (e.g., for modifying a for-

loop, for setting up the MPI environment, and for performing the gather operation), is 

modeled as a separate ATL rule using the elements of ATL syntax and OCL expressions. 
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Figure 3-21- DSL code mapped into KM3 model

The ATL rule snippet that is shown in Figure 3-22 is meant for generating the 

RSL rule for automating the insertion of the MPI code for reduce operation in the 

existing sequential application. The compulsory elements of the RSL rule (e.g.,

‘statement_seq' and 'add_var') are hard-coded in the ATL rule. The variable parts 

that are application-specific are automatically derived from the terminal model (or the Hi-

PaL code) provided by the end-user. It can be observed from the code snippet shown in 

Figure 3-22 that the OCL expressions are used for traversing the nodes of the terminal

model for obtaining the values of the variables in the ATL rule. The OCL expressions

shown in Figure 3-22 are meant to derive the name of the variable to be reduced from the 

terminal model. A suffix “_Fraspa” is added to the name thus obtained from the front-

end specifications. The data type of the variable to be reduced is also derived from the 
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terminal model. Both these derived values are used for declaring a variable in which the 

global value of the MPI operation (e.g., MPI_SUM or MPI_MIN) is stored during the 

reduce operation. 

module PSDL2RSL;
create OUT : RSL from IN : PDSL;
rule PSDL2RSL {

from
s : PDSL!PDSL
to
t : RSL!RSL (

domain <- dom,
rslelems <- Sequence {pat1, expat1, rule1, pat2, pat3, expat2, rule2},
ruleset <- rs

),
dom : RSL!Domain(

dname <- 'Cpp'
),
rs : RSL!RuleSet (

rsname <- 'r',
rname <- Sequence {'extend_decl', 'add_statements'}

),
pat1 : RSL!Pattern(

phead <- ph,
ptoken <- 'statement_seq',
ptext <- pt

),
ph : RSL!PatternHead (

name <- 'add_var'
),
pt : RSL!SimplePatternText (

ptext <- s.parSpecs->iterate(parSpec; c : String = ''| c + 
if
(parSpec.parTask->first().oclIsKindOf(PDSL!ParReduce))

then
if
(parSpec.parTask->first().redVarType.oclIsTypeOf(PDSL!ReduceMaxValInt)
or parSpec.parTask->first().redVarType.oclIsTypeOf(PDSL!ReduceSumInt)
or ...)
then
'\\>Cpp\\:[simple_declaration = decl_specifier_seq

init_declarator_list\';\'] int
\\>Cpp\\:[declarator_id = id_expression]'

+ parSpec.parTask->first().varArgs->first().argument + '_Fraspa
\\<\\:declarator_id ; 

\\<\\:simple_declaration'
else if (...

Figure 3-22- ATL code snippet

The Ant Scripts are used in FraSPA for saving the KM3 model in the Ecore 

format, transforming the source model to target model on the basis of the specified ATL 

rule, serializing the target model into text, and for debugging purposes. They are also 
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used as the glue code for copying the files (RSL rules and sequential code) from AMMA 

platform to the required folders in the DMS installation, for invoking the DMS engine for 

code weaving, and for copying the generated parallel code back to AMMA platform. 

Therefore, the Ant Scripts are used for automating the complete workflow in FraSPA. A 

snippet of the RSL rule generated by FraSPA for extending the variable declaration 

section in the existing sequential application is shown in Figure 3-23. An example of 

using this new variable can be in storing the global result of performing a reduce 

operation.

default base domain Cpp~VisualCpp6.
pattern add_var() : statement_seq =
"\>Cpp~VisualCpp6\:[simple_declaration = decl_specifier_seq 

init_declarator_list';'] int 
\>Cpp~VisualCpp6\:[declarator_id = id_expression]

norm_Fraspa
\<\:declarator_id

;
\<\:simple_declaration ".

external pattern addVars(tu : translation_unit, stmt_seq : statement_seq) :
translation_unit
= 'addVars' in domain Cpp~VisualCpp6.

rule extend_decl(tu : translation_unit):
translation_unit->
translation_unit
=
tu ->
addVars(tu, add_var())
if tu ~= addVars(tu, add_var()).

Figure 3-23- RSL rule snippet

3.4 Summary

The process of developing Hi-PaL and DALC was explained in this chapter. The 

sample code for KM3 metamodel and TCS grammar for Hi-PaL are presented in 

Appendix A and that for DALC are presented in Appendix B. Sample ATL rule is shown 

in Appendix C. A sample of RSL rule generated by FraSPA is presented in Appendix D 

and samples of PARLANSE code are provided in Appendix E. The DSLs required in this 
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research were written using AMMA platform and are used as the front-end of FraSPA. 

The middle-layer of FraSPA comprises of the Rule Generator (ATL rule templates, Ant 

Scripts and the RSL metamodel). For both the DSLs developed in this research, the target 

RSL metamodel remained the same and is similar to the one developed by Roychoudhury 

et al. [37, 81]. The DMS was used for weaving the code for parallelization and 

checkpointing in the existing applications. The current implementation of the FraSPA 

supports the transformation of code written in C/C++ but it can be extended for code 

written in other languages as well. Support for a limited set of C/C++ grammar rules and 

MPI API is provided in the current implementation of FraSPA.

Besides DMS, there are other PTEs that are available today. Some of them are 

ROSE [35], TXL [85], Stratego [86], and ASF + DSF [87]. DMS was preferred over 

these open-source projects because it is a mature and scalable tool that has tool support 

(Lexer, Parser, Pretty Printer, Rule Analyzer) available for over 20 domains. Due to the 

decoupling between the components in the different layers of the FraSPA, the DMS can 

be swapped with a better PTE should there be one available in future. As mentioned in 

Section 3.1, changing the PTE in the backend would not necessitate any changes in the 

front-end. However, it will require that the new mappings are written between the front-

end and the backend, thereby, necessitating changes in the rule generator component.



88

CHAPTER 4

EXPERIMENTAL EVALUATION

The applications generated through FraSPA were evaluated for performance, 

accuracy, scalability, and fault-tolerance (through checkpointing). The framework itself 

was evaluated for the amount of reusable code components and the amount of effort 

involved in generating applications belonging to various domains. The aim of the 

experiments run in this research was to compare the code generated through FraSPA with 

its manually-written counterpart. The test cases used for evaluating FraSPA are described

in Section 4.1 of this chapter. The experimental set-up and evaluation of FraSPA are

described in Section 4.2. The results and analysis are presented in Section 4.3. A general 

discussion and summary are presented in Section 4.4.

4.1 Test Cases

The various test cases used to study the behavior of FraSPA are presented in the 

following subsections. These test cases had already existing manual implementations of 

sequential, parallel, and checkpointed versions written in C/C++/MPI. Only those test 

cases were selected that added value in highlighting the usability of FraSPA and the 

features that are currently available (e.g., gathering, distributing, and reducing the data) –

that is, the selected test cases depict diverse combination of parallel operations. The 

existing sequential applications were used to embed the code for parallelization and 
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checkpointing such that the generated parallel versions and checkpointed versions had 

communication patterns similar to their manually-written counterparts. The selected test 

cases were useful in evaluating the performance, accuracy, scalability, and reliability of 

the applications generated through FrasPA, and successfully demonstrated these

following properties:

it is application-domain-neutral, 

it reduces the programmer effort through code reuse, and

it reduces the application development time by reducing the number of 

lines of code that the programmer has to write.

For parallelizing the applications through FraSPA, the programmers should be

familiar with the logic of the corresponding applications, must be aware of the hotspots 

for parallelization (they can profile their applications for this purpose), and must express 

the specifications for the desired parallelization through the Hi-PaL code. Likewise, for 

automatically checkpointing the applications, the programmers must identify the main 

data structures or variables from which the entire execution state of the application can be 

recreated in case of a failure. Since the checkpointing approach developed in this research 

falls under the category of ALC, it involves saving the state of the critical data structures 

or variables to a secondary storage medium, and it can incur extra run-time overheads. 

Therefore, the frequency at which the checkpoint is taken is also important and should be 

specified by the programmer. The place in the application where the checkpoint should 

be taken can affect the accuracy of the results in case of the restart. Therefore, for doing 

both parallelization and checkpointing (for fault-tolerance) through FraSPA, the

programmer must specify where code insertions are performed. The process of making 
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the applications fault-tolerant via checkpointing is demonstrated in three test cases. Only 

three test cases are needed because there are no significant differences in the process of 

checkpointing the other test cases. A summary of parallel operations applied on each test 

case and whether or not the test case was made fault-tolerant through checkpointing is 

presented in Table 4-1. The communication patterns exhibited by the selected test cases 

are also shown in Table 4-1. The classification of test cases as per the communication 

pattern they exhibit is done according to the guidelines provided in [88]. A brief 

description of these patterns is as follows:

Embarrassingly Parallel: This pattern describes the concurrent execution 

of a collection of independent tasks (having no data dependencies). 

Implementation techniques include parallel loops and Manager-Worker. 

o Parallel Loop: If the computation fits the simplest form of the 

pattern such that all tasks are of the same size, and are known a 

priori then they can be computed by using a parallel loop that 

divides them as equally as possible amongst the available 

processors.

o Manager-Worker: Also known as task queue, this pattern involves 

two set of processors – Manager and Worker. There is only one 

Manager that creates and manages a collection of tasks (task 

queue) by distributing it amongst the available Workers and 

collecting the results back from them.   
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Mesh: Also known as “stencil-based computations”, this pattern involves a 

grid of points in which new values are computed for each point in the grid 

on the basis of the data from the neighboring points in the grid.

Pipeline: This pattern involves the decomposition of the problem into 

ordered group of data-dependent tasks. The ordering of tasks does not 

change during the computation.

Replicable: This pattern involves multiple sets of operations that need to 

be performed using a global data structure and hence having dependency. 

The global data is replicated for each set of operations and after the 

completion of operations, the results are reduced 

Table 4-1- Parallel operations applied on the test cases
Test Case Parallel

Operation
Communication
Pattern

Checkpointing

Prime Number For-Loop,
Reduce Sum, 
Reduce Max

Embarrassingly
Parallel
(Parallel Loop)

No

Circuit
Satisfiability

For-Loop,
Reduce Sum

Embarrassingly
Parallel
(Parallel Loop)

Yes

Poisson Solver Exchange,
AllReduce

Mesh Yes

Game of Life Distribute,
Exchange,
AllReduce

Mesh No

Image
Processing

Distribute,
Reduce Sum, 
Gather

Manager-Worker No

Mandelbrot Set Distribute,
Gather

Manager-Worker No

Genetic
Algorithm

Distribute,
Gather, Reduce 
Sum, For-Loop

Pipeline,
Replicable

Yes

4.1.1 Prime Number Generation

The Sieve of Eratosthenes algorithm is used for finding the prime numbers 

between 1 to N, where N is any natural number. The code snippet in Figure 4-1 is from 
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the sequential implementation of the application. If the intention is to parallelize the for-

loop at line # 4 of Figure 4-1, find the global sum of the variable pc, and find the largest 

prime number in a given range, then the required Hi-PaL code is shown in Figure 4-2. As 

can be noticed from the Hi-PaL code, the for-loop with the (n=1; n<=LIMIT; n++) 

pattern should be parallelized and two reduce operations are required (lines #3-4 of 

Figure 4-2), one to find the global sum of the variable pc and the other one to find the 

largest prime number in a given range. The line # 1 of the code in Figure 4-2 means that 

the code for setting up the MPI environment should be inserted after the statement 

t1=gettime(); in the sequential code (line # 2 in Figure 4-1). The code snippet from 

the generated parallel code is shown in Figure 4-3. The code for all the required 

variables, API, and files to include (e.g., mpi.h) is generated automatically from the Hi-

PaL code in Figure 4-2. To avoid any naming conflicts between the generated and user-

defined variables, the generated variables have a different namespace (*_Fraspa). The 

parallelized for-loop is shown at line # 6 of Figure 4-3 and the statements for computing 

the values of lower_limit_Fraspa and upper_limit_Fraspa are inserted automatically 

but not shown in the code snippet presented here. 

1. //other code
2. t1= gettime();
3. pc=0;
4. for (n=1; n<=LIMIT; n++) {
5. if (isprime(n)) {
6. pc++;
7. foundone = n;
8. printf("%d\n",foundone);
9. }
10. if (n>2){
11. n=n+1;
12. }
13. }
14. t2= gettime();
15. //other code
Figure 4-1- Code snippet of the sequential prime number generation application
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1. Parallel section begins before ("t1=gettime();") mapping is
Linear {

2. Parallelize_For_Loop where (n=1; n<=LIMIT; n++)
after statement ("pc=0;") && in function ("main");

3. ReduceSumInt(pc) in function ("main");
4. ReduceMaxValInt(foundone) in function ("main")
5. }
Figure 4-2- Hi-PaL code for parallelizing the prime number generation application

1. //other code. Files included & Variable declaration section 
//extended.

2. t1= MPI_Wtime();
3. pc=0;
4. MPI_Init(NULL, NULL);
5. //other code
6. for (n = lower_limit_Fraspa; n <= upper_limit_Fraspa;n++)
7. {
8. if (isprime(n)) {
9. pc++;
10. foundone = n;
11. printf("%d\n",foundone);
12. }
16. if (n>2){
17. n=n+1;
18. }
13. }
14. {
15. MPI_Reduce(&pc, &pc_Fraspa, 1, MPI_INT, MPI_SUM,…);
16. MPI_Reduce(&foundone, &foundone_Fraspa, 1, MPI_INT,

MPI_MAX,…);
17.
18. pc = pc_Fraspa  ;
19. foundone = foundone_Fraspa;
20. }
21. t2= MPI_Wtime();
22. //other code

Figure 4-3- Code snippet of the generated parallel prime number generation application

4.1.2 Circuit Satisfiability

This embarrassingly parallel application is adapted from Michael Quinn’s book 

on “Parallel programming in C with MPI and OpenMP” [89]. The application simulates 

the actual circuit and determines whether a combination of inputs to the circuit of logical 

gates produces an output of 1. The application involves an exhaustive search of all the 

possible combinations of the specified number of bits in the input. For example, for a 
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circuit having 30 bits of input, the search space would involve 230 combinations of the 

bits, which is 1,073,741,824 possibilities. A code snippet from the sequential version of 

the application is shown in Figure 4-4.  In this code snippet, the computation being done 

in the for-loop (line # 6-13) can be done in parallel and the results of the computation can 

be reduced after the for-loop. If the programmer wants to begin the parallel section after 

the statement on line # 3 of Figure 4-4, wishes to parallelize the for-loop on line # 6, and 

wants to reduce the results before line # 14, then this intention is expressed through the 

Hi-PaL code shown in Figure 4-5. As noted in Figure 4-5, the && operator is used to 

create a powerful match expression in line # 2.  If the programmer does not specify the 

function name and place in the code where the for-loop needs to be parallelized, then 

everywhere (in any function or module) a matching for-loop is found in the application, it 

will get parallelized.  This scenario will happen in the case of statements that cut through 

multiple modules. A snippet from the generated parallel code is shown in Figure 4-6.

Like the previous test case, the code for all the required variables, API, and files to 

include (e.g., mpi.h and design templates) is generated automatically from the Hi-PaL 

specifications.

1. //other code
2. ilo = 0;
3. ihi = pow(2, n);
4. solution_num = 0;
5. t1 = gettime();
6. for ( i=ilo; i<ihi; i++ ){
7. //other code
8. value = circuit_value ( n, bvec );
9. if ( value == 1 ) {
10. solution_num = solution_num + 1;
11. //other code
12. }
13. }
14. t2 = gettime();

Figure 4-4- Code snippet from the sequential circuit satisfiability application
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1. Parallel section begins after ("ihi=pow(2,n);") mapping is
Linear {

2. Parallelize_For_Loop where (i=ilo; i<ihi; i++)
3. after statement ("ihi=pow(2,n);") && in function "main");
4. ReduceSumInt(solution_num) before statement
5. ("t2=gettime();") && in function ("main")
6. }

Figure 4-5- Hi-PaL code for parallelizing the circuit satisfiability application

1. //other code. Files included & Variable declaration section 
//extended.

2. ilo = 0;
3. ihi = pow(2, n);
4. MPI_Init(NULL, NULL);
5. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);
6. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);
7. lower_limit_Fraspa = rank_Fraspa *((ihi - ilo)…;
8. upper_limit_Fraspa=((rank_Fraspa==(size_Fraspa - 1))?...;
9. solution_num = 0;
10. t1 = MPI_Wtime();
11. for (i=lower_limit_Fraspa; i<=upper_limit_Fraspa;i++){
12. value = circuit_value ( n, bvec );
13. if ( value == 1 ) {
14. solution_num = solution_num + 1;
15. //other code
16. }
17. }
18. MPI_Reduce(&solution_num,&solution_num_Fraspa,...)
19. solution_num = solution_num_Fraspa;
20. t2 = MPI_Wtime();

Figure 4-6- Code snippet from the generated parallel circuit satisfiability application

The parallel code in Figure 4-6 can be made fault-tolerant by inserting the CaR 

mechanism in it. The first step towards achieving this goal is to identify the critical 

variables in the application from which the complete execution state can be recreated. 

The critical variables for this application are upper_limit_Fraspa, the iteration number 

which is i, and the number of solutions found (which is solution_num in the code). For 

brevity, solution_num is not considered for the illustration of the checkpointing 

technique and only the values of upper_limit_Fraspa and i are being shown to be 

saved. It is best to insert the checkpointing code after lines # 8 and 14 of the code in 

Figure 4-6. The DSL code for checkpointing this application is shown in Figure 4-7.
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Because this involves a Distributed checkpoint, each processor is responsible for 

saving the state of the critical variables in separate files. The restart code in Figure 4-8

illustrates the usage of after statement type of Hook. The instrumented code is shown 

in Figure 4-9. As can be noticed from this code, the file names for saving and reading the 

critical variables are generated dynamically for the Distributed CaR type by calling the 

function named fileName_Fraspa.

1. beginCheckpointing:
2. after statement("upper_limit_Fraspa =((rank==(size - 1))?…")
3. && (frequency = 1) && (CaRType = Distributed){
4. SaveLong (upper_limit_Fraspa, restartUpperLimit)
5. }

6. beginCheckpointing:
7. after statement("solution_num = solution_num + 1;") &&

(frequency = 100) && (loopVar="i") && (CaRType = Distributed){
8. SaveLong (i, restartLowerLimit)
9. }

Figure 4-7- Checkpointing specifications for circuit satisfiability application

1. beginInitialization:
1. before statement ("lower_limit_Fraspa = rank*((ihi - ilo)… "){
2. ReadLongVarFromFile(ilo, "restartLowerLimit")

3. ReadLongVarFromFile(ihi, "restartUpperLimit")

4. }

Figure 4-8- Restart specifications for circuit satisfiability application

4.1.3 Poisson Solver

Solving second-order partial differential equations is one of the most common 

computational tasks performed in the Computational Fluid Dynamics (CFD) domain. The

Poisson Solver is a representative application that illustrates the communication and 

computation patterns in a typical CFD application. In this particular case-study we are 

considering a solution to a two-dimensional Poisson problem with a five-point stencil 
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[90, 91]. The solution involves iterative computation of values at each point in the 

computational domain using the neighboring cells from the previous iteration. This is 

done till the convergence criterion is satisfied.

1. //other code. Files included & Variable declaration section 
//extended.

2. char fname1[20] = "restartLowerLimit";
3. char fname2[20] = "restartUpperLimit";
4. char *addString1, *addString2;
5. //other code
6. ilo = 0;
7. ihi = pow(2, n);
8. MPI_Init(NULL, NULL);
9. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);
10. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);
11. addString1 = fileName_Fraspa(fname1, rank_Fraspa);
12. addString2 = fileName_Fraspa(fname2, rank_Fraspa);
13. inputfile1 = fopen(addString1, "r");
14. if(inputfile1 !=NULL){
15. fscanf(inputfile1 , "%lld", &ilo);
16. fclose(inputfile1);
17. }
18. inputfile2 = fopen(addString2, "r");
19. if(inputfile2 !=NULL){
20. fscanf(inputfile2, "%lld", &ihi);
21. fclose(inputfile2);
22. }
23. lower_limit_Fraspa = rank_Fraspa *((ihi - ilo)…;
24. upper_limit_Fraspa=((rank_Fraspa==(size_Fraspa - 1))?...;
25. solution_num = 0;
26. t1 = MPI_Wtime();
27. for (i=lower_limit_Fraspa; i<=upper_limit_Fraspa;i++){
28. value = circuit_value ( n, bvec );
29. if ( value == 1 ) {
30. solution_num = solution_num + 1;
31. //other code
32. }
33. }
34. MPI_Reduce(&solution_num,&solution_num_Fraspa,...)
35. solution_num = solution_num_Fraspa;
36. t2 = MPI_Wtime();

Figure 4-9- Code snippet of the checkpointed circuit satisfiability application

A code snippet of the sequential version of Poisson Solver is shown in Figure 4-

10. For parallelizing this application, the matrices a and b should be blocked and the cells 

at the border of the blocks should exchange values with their neighbors after the 

initialization is complete. The neighboring blocks should exchange the value of the 
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border-cells of matrix b in every iteration of the for-loop starting at line # 10 of Figure 4-

10. Apart from exchanging values, the value of the norm computed in every iteration of 

the for-loop should also be reduced. All these steps for parallelization are specified 

through the Hi-PaL code in Figure 4-11. A code snippet from the generated code is 

shown in Figure 4-12. The code inserted by FraSPA is shown in bold-face. The code for 

calling including the function template for exchanging the desired values of the matrices 

is at line # 21, 22 and 27 of Figure 4-12.

1. //other code
2. NTIMES = atoi(argv[3]);
3. a = allocMatrix<double>(a, M, N);
4. b = allocMatrix<double>(b, M, N);
5. f = allocMatrix<double>(f, M, N);
6. start = 0;
7. //other code
8. printMatrix<double>(a, M, N);
9. t1 = gettime();
10. for (k = start; k < NTIMES && norm >= tolerance; k++) {
11. b = compute(a, f, b, M, N);
12. ptr = a;
13. a = b;
14. b = ptr;
15. norm = normdiff(b, a, M, N);
16. }
17. t2 = gettime();//other code

Figure 4-10- Code snippet from the sequential version of the Poisson Solver

1. Parallel section begins after ("NTIMES = atoi(argv[3]);")
mapping is Linear{

2. ParExchange2DArrayDouble (a, M, N) before statement
("printMatrix<double>(a, M, N);") && in function ("main");

3. ParExchange2DArrayDouble (b, M, N) before statement
("printMatrix<double>(a, M, N);") && in function ("main");

4. ParExchange2DArrayDouble (b, M, N) after statement
("b=compute(a, f, b, M, N);") && in function ("main");

5. AllReduceSumInt(norm) after statement
("norm = normdiff(b, a, M, N);") && in function ("main")

6. }
Figure 4-11- Hi-PaL code snippet for parallelizing the Poisson Solver

To make the code shown in Figure 4-12 fault-tolerant, the programmer needs to 

provide the CaR specifications via DALC as shown in Figure 4-13. The critical variables 
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and data structures for this application are matrices a and f, the number of iterations 

which is k, and the norm. The checkpointing code in this application should be inserted

before line # 26 of the code in Figure 4-12. The code at line # 2 of Figure 4-13 is the 

Hook specification (line # 26 of the code in Figure 4-12) and is required for pattern 

matching in the abstract syntax tree of the application code. The intent of writing the 

variables and data structures to appropriate files is expressed in line # 5-8 of Figure 4-13.

1. //other code
2. NTIMES = atoi(argv[3]);
3. MPI_Init(NULL, NULL);
4. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);
5. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);
6. create_2dgrid(MPI_COMM_WORLD, &comm2d_Fraspa,…);
7. create_diagcomm(MPI_COMM_WORLD, size_Fraspa, …);
8. rowmap_Fraspa.init(M, P_Fraspa, p_Fraspa);
9. colmap_Fraspa.init(N, Q_Fraspa, q_Fraspa);
10. myrows_Fraspa = rowmap_Fraspa.getMyCount();
11. mycols_Fraspa = colmap_Fraspa.getMyCount();
12. M_Fraspa = M;
13. N_Fraspa = N;
14. M = myrows_Fraspa;
15. N = mycols_Fraspa;
16. a = allocMatrix<double>(a, M, N);
17. b = allocMatrix<double>(b, M, N);
18. f = allocMatrix<double>(f, M, N);
19. start = 0;
20. //other code
21. a = exchange<double>(a, myrows_Fraspa + 2, mycols_Fraspa + 

2,…);
22. b = exchange<double>(b, myrows_Fraspa + 2, mycols_Fraspa +

2,…);
23. printMatrix<double>(a, M, N);
24. t1 = MPI_Wtime();
25. for (k = start; k < NTIMES && norm >= tolerance; k++) {
26. b = compute(a, f, b, M, N);
27. b = exchange<double>(b, myrows_Fraspa + 2, mycols_Fraspa

2,…);
28. ptr = a;
29. a = b;
30. b = ptr;
31. norm = normdiff(b, a, M, N);
32. MPI_Allreduce(&norm, &norm_Fraspa, 1, MPI_INT, MPI_SUM,…);
33. norm = norm_Fraspa;
34. }
35. t2 = MPI_Wtime();
36. //other code

Figure 4-12- Code snippet from the generated parallel version of the Poisson Solver



100

1. beginCheckpointing:
2. before statement ("b = compute(a, f, b, M, N);")
3. && (frequency = 10)
4. && (loopVar="k") && (CaRType = Centralized){
5. SaveDoubleArray2D(a,M,N,restartA)
6. SaveDoubleArray2D(f,M,N,restartF)
7. SaveDouble (norm,restartNorm)
8. SaveInt (k,restartK)
9. }
Figure 4-13- DALC code snippet for describing checkpointing in Poisson Solver

The DALC code for specifying the restart mechanism for this application is 

shown in Figure 4-14. Lines # 3-4 of the code imply that the matrices a and f should be 

initialized from the values read from the files restartA and restartF. In case these 

restart files are not present, the matrices are initialized by calling initMatrix <double>

(a, N, N, value) and initMatrix<double>(f, N, N, value) respectively. The 

inserted CaR code is shown in lines # 19-28 and 31-50 of Figure 4-15.

1. beginInitialization:
2. around statement ("start = 0;"){
3. ReadDoubleArray2DFromFile (a,M,N,"restartA") |

initMatrix <double>(a, M, N, value)
4. ReadDoubleArray2DFromFile (f,M,N,"restartF") |

initMatrix<double>(f, M, N, value)
5. ReadDoubleVarFromFile (norm,"restartNorm")
6. ReadIntVarFromFile (start,"restartK")
7. }

Figure 4-14- DALC code snippet for describing the restart mechanism in Poisson Solver

4.1.4 Game of Life

The Game of Life is a board game that consists of a two-dimensional array of 

cells. Each cell can hold an organism and has eight neighboring cells (left, right, top, 

bottom, top-left, bottom-right, top-right, and bottom-left). Each cell can be in two states: 

alive or dead. The game starts with an initial state and cells either live, die or multiply in 

the next iteration (generation) according to the following rules: 
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1. If a cell is alive in the current generation, then depending on the state of its 

neighbors, in the next generation the cell will either live or die based on the 

following conditions:

Each cell with one or no neighbor dies, as if by loneliness. 

Each cell with four or more neighbors dies, as if by overpopulation. 

Each cell with two or three neighbors survives. 

2. If a cell is dead in the current generation but if there are exactly three 

neighbors alive then it will change to the alive state in the next generation, as 

if the neighboring cells gave birth to a new organism. 

The rules of the game are applied at each iteration (generation) so that the cells

evolve or change state from generation to generation. Also all cells are affected 

simultaneously in a generation (i.e., for each cell you need to use the value of the 

neighbors in the current iteration to compute the values for the next generation). This

application is an example of stencil-based computation. A code snippet from the 

sequential version of the application is shown in Figure 4-16. One way to parallelize this 

application would be to block and distribute the two-dimensional life matrix amongst the 

available processors and let each of the processors do the computation on their respective 

block of the matrix. After distributing the life matrix, it is required to exchange the initial 

values of the cells at the borders of the neighboring blocks in every iteration, and collect 

the information about the number of cells that are alive in each block of the matrix. 
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1. //other code
2. NTIMES = atoi(argv[3]);
3. MPI_Init(NULL, NULL);
4. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);
5. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);
6. create_2dgrid(MPI_COMM_WORLD, &comm2d_Fraspa,…);
7. create_diagcomm(MPI_COMM_WORLD, size_Fraspa, …);
8. rowmap_Fraspa.init(M, P_Fraspa, p_Fraspa);
9. colmap_Fraspa.init(N, Q_Fraspa, q_Fraspa);
10. myrows_Fraspa = rowmap_Fraspa.getMyCount();
11. mycols_Fraspa = colmap_Fraspa.getMyCount();
12. M_Fraspa = M;
13. N_Fraspa = N;
14. M = myrows_Fraspa;
15. N = mycols_Fraspa;
16. a = allocMatrix<double>(a, M, N);
17. b = allocMatrix<double>(b, M, N);
18. f = allocMatrix<double>(f, M, N);
19. if (!restart) {
20. start = 0;
21. initMatrix<double>(a, M, N, value);
22. initMatrix<double>(f, N, N, value);
23. } else { // read a, f, norm and start from restart file
24. readMatrix(a,M,N, "restartA");
25. readMatrix(f,N,N, "restartF",);
26. readVar(&norm, "restartNorm");
27. readVar(&start, "restartK");
28. }
29. /*other code*/
30. for (k = start; k < NTIMES && norm >= tolerance; k++){
31. if(k % 10 == 0){
32. inputfile1 = fopen("restartA", "w");
33. inputfile2 = fopen("restartF", "w");
34. inputfile3 = fopen("restartNorm", "w");
35. inputfile4 = fopen("restartK", "w");
36. for (ii = 0; ii < M; ii++){
37. for (jj = 0; jj < N; jj++){
38. fprintf(inputfile1, "%lf  ", a[ii][jj]);
39. fprintf(inputfile2, "%lf  ", f[ii][jj]);
40. }
41. fprintf(inputfile1, "\n");
42. fprintf(inputfile2, "\n");
43. }
44. fprintf(inputfile3, "%lf  ", norm);
45. fprintf(inputfile4, "%d  ", k);
46. fclose(inputfile1);
47. fclose(inputfile2);
48. fclose(inputfile3);
49. fclose(inputfile4);
50. }
51. b = compute(a, f, b, M, N);
52. b = exchange<double>(b, myrows_Fraspa + 2, mycols_Fraspa + 2,…);
53. ptr = a;
54. a = b;
55. b = ptr;
56. norm = normdiff(b, a, M, N);
57. MPI_Allreduce(&norm, &norm_Fraspa, 1, MPI_INT, MPI_SUM,…);
58. norm = norm_Fraspa;
59. }
60. t2 = MPI_Wtime();
61. //other code

Figure 4-15- Code snippet of the checkpointed Poisson Solver
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1. //other code
2. SEED = atoi(argv[4]);
3. //other code
4. initMatrix<int>(life, M, N, value);
5. //other code
6. printMatrix<int>(life, M, N);
7. //other code
8. std::cout << "No. of cells alive initially = ";
9. count = cellsAlive(life, M, N) ;
10. std::cout << count << std::endl;
11. // Play the game of life for given number of iterations 
12. t1=gettime();
13. for (k = 0; k < NTIMES; k++) {
14. // compute new matrix 
15. temp = compute(life, temp, M, N);
16. // swap old and new matrices
17. ptr = temp;
18. temp = life;
19. life = ptr;
20. }
21. t2= gettime();
22. // Display the life matrix after NTIMES 
23. std::cout << "Life after " << NTIMES << " iterations:" <<

std::endl ;
24. printMatrix<int>(life, M, N);
25. std::cout<< "No. of cells alive after " << NTIMES << "

iterations = ";
26. count = cellsAlive(life, M, N);
27. std::cout << count << std::endl;
28. //other code

Figure 4-16- Code snippet from the sequential game of life application

The steps to parallelize this application are expressed in the form of the Hi-PaL

code shown in Figure 4-17. The line # 2 of Figure 4-17 expresses the intent that the two-

dimensional integer-type matrix life with M rows and N columns that occurs in function

("main") should be distributed (or scattered) amongst different processors around the 

statement initMatrix<int>(life, M, N, value); (line # 4 of Figure 4-16). The code 

at line # 4 of Figure 4-17 means that the integer-type variable named count should be 

reduced (to collect the information about the number of cells that are alive in each block) 

and that this operation needs to take place at multiple places in function ("main")-

which means, everywhere the specified search pattern is found in function main. If the 

keyword multiple is not specified as an argument to the API then the code for reduce 
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operation will be inserted at only one place, which is the first occurrence of the specified 

search pattern in function ("main"). Therefore, multiple can manipulate cross-cutting 

concerns within a single module. The code at line # 3 and line # 5 expresses the intent to 

exchange the updated values of the border-cells of the blocks of matrices life and temp.

1. Parallel section begins after ("SEED = atoi(argv[4]);") mapping
is Linear{

2. ParDistribute2DArrayInt(life, M, N) around statement
("initMatrix<int>(life, M, N, value);") && in function
("main");

3. ParExchange2DArrayInt (life, M, N) before statement
("printMatrix<int>(life, M, N);") && in function ("main");

4. AllReduceSumInt(count, multiple) after statement
("count = cellsAlive(life, M, N);") && in function ("main");

5. ParExchange2DArrayInt (temp, M, N) before statement ("ptr = 
temp;") && in function ("main")

6. }
Figure 4-17- Hi-PaL code for parallelizing game of life application

A code snippet from the generated parallel application is shown in Figure 4-18.

As noted from it, the code for reducing the count variable is inserted at two places - after 

line # 28 and line # 48 - because the keyword multiple was specified in the code at line 

# 4 of Figure 4-17 (AllReduceSumInt(count, multiple)). Because an around type of 

hook was specified at line # 2 of Figure 4-17, the statement that was specified as a search 

pattern in the hook definition (initMatrix<int>(life, M, N, value);) was deleted. 

The usage of around type of hook saved the extra time in initializing the life matrix in 

the generated code because it is going to be set to the block of data from the matrix 

life_Fraspa (see line # 21 of Figure 4-18) - this happens due to the distribute (or scatter) 

operation specified at Line # 2 of Figure 4-17.
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1. //other code. Files included & declaration section extended.
2. SEED = atoi(argv[4]);
3. MPI_Init(NULL, NULL);
4. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);
5. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);
6. create_2dgrid(MPI_COMM_WORLD, &comm2d_Fraspa, &rowcomm_Fraspa,…);
7. create_diagcomm(MPI_COMM_WORLD, size_Fraspa, p_Fraspa,…);
8. rowmap_Fraspa.init(M, P_Fraspa, p_Fraspa);
9. colmap_Fraspa.init(N, Q_Fraspa, q_Fraspa);
10. myrows_Fraspa = rowmap_Fraspa.getMyCount();
11. mycols_Fraspa = colmap_Fraspa.getMyCount();
12. M_Fraspa = M;
13. N_Fraspa = N;
14. M = myrows_Fraspa;
15. N = mycols_Fraspa;
16. //other code
17. if (rank_Fraspa==0){
18. life_Fraspa = allocMatrix<int>(life_Fraspa, M_Fraspa,

N_Fraspa);
19. initMatrix<int>(life_Fraspa, M_Fraspa, N_Fraspa, value);
20. }
21. life = split<int>(life_Fraspa, life, M_Fraspa, N_Fraspa,…);
22. //other code
23. life = exchange<int>(life, myrows_Fraspa + 2,…);
24. printMatrix<int>(life, M, N);
25. //other code
26. std::cout << "No. of cells alive initially = ";
27. count = cellsAlive(life, M, N) ;
28. MPI_Allreduce(&count, &count_Fraspa, 1, MPI_INT,…);
29. count = count_Fraspa;
30. std::cout << count << std::endl;
31. // Play the game of life for given number of iterations 
32. t1= MPI_Wtime();
33. for (k = 0; k < NTIMES; k++) {
34. // compute new matrix 
35. temp = compute(life, temp, M, N);
36. temp = exchange<int>(temp, myrows_Fraspa + 2,…);
37. // swap old and new matrices
38. ptr = temp;
39. temp = life;
40. life = ptr;
41. }
42. t2= MPI_Wtime();
43. // Display the life matrix after NTIMES 
44. std::cout << "Life after " << NTIMES << " iterations:" <<

std::endl ;
45. printMatrix<int>(life, M, N);
46. std::cout<< "No. of cells alive after " << NTIMES << "

iterations = ";
47. count = cellsAlive(life, M, N);
48. MPI_Allreduce(&count, &count_Fraspa, 1, MPI_INT,…);
49. count = count_Fraspa;
50. std::cout << count << std::endl;
//other code

Figure 4-18- Code snippet from the generated parallel game of life application
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4.1.5 Image Processing

A test case from the image processing domain for performing the contrast 

operation [91] was considered. To perform the contrast operation, the image is read from 

a file and the pixel values are stored in an unsigned integer array. The root mean square 

(RMS) value of all the pixel values is calculated and this RMS value is then used to 

update the value of each pixel. The updated array is finally written to a file. The base 

code snippet of the sequential application is shown in Figure 4-19. In order to parallelize 

this application, the 1-dimensional array masterbuf should be distributed across the 

available processors and the results (the variable mysum) should be collected via reduce 

operation. The results of the contrast operation performed individually by the processors 

should be collected in another array via gather operation. The Hi-PaL code to express this 

intension is shown in Figure 4-20. The code snippet from the generated parallel code is 

shown in Figure 4-21. The MPI API for distributing, reducing and gathering the values 

are shown inserted at lines # 19, 21, and 29 of Figure 4-21.

1. //other code
2. t1 = gettime();
3. masterbuf = allocvector(masterbuf, N);
4. initvector(masterbuf, N, 0);
5. mysum = computerms(masterbuf, N);
6. //contrast operation
7. t2 = gettime();
8. //other code

Figure 4-19- Code snippet of the sequential image processing application

1. Parallel section begins before ("t1=gettime();") mapping is
Linear {

2. ParDistribute1DArrayDouble(masterbuf, N) after statement
("initvector(masterbuf, N, 0);") && in function ("main");

3. ReduceSumDouble(mysum) after statement
4. ("mysum = computerms(masterbuf, N);") && in function ("main")
5. ParGather1DArrayDouble(masterbuf, N) before statement

("t2=gettime();") && in function ("main");
6. }
Figure 4-20- Code snippet of the Hi-PaL code for the image processing application
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1. //other code
2. MPI_Init(&argc, &argv);
3. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);
4. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);
5. LinearMapping<int> mapping(N, size, 0, 1);
6. counts_Fraspa = mapping_Fraspa.getCounts();
7. displacements_Fraspa = mapping_Fraspa.getDisplacements();
8. mycount_Fraspa = counts_Fraspa [rank_Fraspa];
9. start_Fraspa = mapping_Fraspa.getStart();
10. end_Fraspa = mapping_Fraspa.getEnd();
11. N_Fraspa = N;
12. N = mycount_Fraspa;
13. if (rank_Fraspa == 0)
14. {

masterbuf_Fraspa = allocvector(masterbuf_Fraspa, …);
initvector(masterbuf_Fraspa, N_Fraspa, …);

15. }
16. t1 = MPI_Wtime();
17. masterbuf = allocvector(masterbuf, N);
18. initvector(masterbuf, N, 0);
19. MPI_Scatterv(masterbuf_Fraspa, counts_Fraspa,…);
20. mysum = computerms(masterbuf, N);
21. MPI_Reduce(&mysum, &mysum_Fraspa, 1, MPI_DOUBLE, MPI_SUM,…);
22. mysum = mysum_Fraspa;
23. N = N_Fraspa;
24. if (rank == 0)
25. {
26. printf("\n Reduced Values is: %lf ", mysum);
27. }
28. //contrast operation
29. MPI_Gatherv(masterbuf, mycount_Fraspa,…);
30. t2 = MPI_Wtime();
31. //other code
Figure 4-21- Code snippet of the generated parallel image processing application

4.1.6 Mandelbrot Set

The Mandelbrot Set is a commonly used example from the domain of complex 

dynamics and it involves fractals (objects that involve similar components at various 

scales). Generation of this set involves iteratively solving an equation of complex 

numbers. Any number belonging to the Mandelbrot Set is depicted in colors, whereas, the 

numbers that do not belong to the set are colored as white. The code snippet of the 

sequential version of the Mandelbrot Set generation application is shown in Figure 4-22, 

the Hi-PaL code for parallelizing the same is shown in Figure 4-23, and the generated 
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parallel code is shown on Figure 4-24. This test case involves the distribution and 

gathering of data in a 2-dimensional array and as can be noticed from Figure 4-24, the 

generated code has calls to function templates for splitting and gathering the data in the 

2-dimensional array (line # 35 and 46). 

1. //other code
2. N= 1000;
3. //other code
4. bigmat = allocarray(bigmat, M+2, N+2);
5. for(y=0; y < M+2; y++) {
6. for(x=0; x < N+2; x++) {
7. bigmat[y][x] = 55;
8. }
9. }
10. t1 = gettime();
11. for(y=0; y < M+2; y++) {
12. for(x=0; x < N+2; x++) {
13. c.real = ((float) x - 500.0)/250.0;
14. c.imag = ((float) y - 500.0)/250.0;
15. color = compute(c, maxiter);
16. bigmat[y][x]=color;
17. }
18. }
19. t2=gettime();

Figure 4-22- Code snippet of the sequential Mandelbrot Set application

1. Parallel section begins after ("N= 1000;") mapping is Linear{
2. ParDistribute2DArrayInt(bigmat, M, N) before statement

("t1=gettime();") && in function ("main");
3. ParGather2DArrayInt(bigmat, M, N) after statement

("t2=gettime();") && in function ("main")
4. }

Figure 4-23- Hi-PaL Code for parallelizing the Mandelbrot Set

4.1.7 Genetic Algorithm for Content-Based Image Retrieval

Unlike the previous test cases, the test case presented in this section is a real 

world application. The Content-Based Image Retrieval (CBIR) technique is used to 

search images in large databases on the basis of the image content instead of the image 

captions [92]. The images are sliced into smaller semantic regions and are stored as blobs 

in the database. Each segment represents an individual semantic region of the original 
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image (e.g., grass, tiger, and butterfly). The next step involves the extraction of features 

(color, texture, shape) for each image segment.

1. //other code
2. N= 1000;
3. MPI_Init(NULL, NULL);
4. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);
5. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);
6. create_2dgrid(MPI_COMM_WORLD, &comm2d_Fraspa,…);
7. create_diagcomm(MPI_COMM_WORLD, size_Fraspa, p_Fraspa,...);
8. rowmap_Fraspa.init(M, P_Fraspa, p_Fraspa);
9. colmap_Fraspa.init(N, Q_Fraspa, q_Fraspa);
10. myrows_Fraspa = rowmap_Fraspa.getMyCount();
11. mycols_Fraspa = colmap_Fraspa.getMyCount();
12. M_Fraspa = M;
13. N_Fraspa = N;
14. M = myrows_Fraspa;
15. N = mycols_Fraspa;
16. if (argc != 2) {
17. printf("Usage: %s <outputfile>\n", argv[0]);
18. exit(-1);
19. }
20. if ((fp = fopen(argv[1],"w")) == NULL) {
21. printf("Unable to open file %s for write\n", argv[1]);
22. exit(-1);
23. }
24. bigmat = allocarray(bigmat, M+2, N+2);
25. for(y=0; y < M+2; y++) {
26. for(x=0; x < N+2; x++) {
27. bigmat[y][x] = 55;
28. }
29. }
30. if (rank_Fraspa == 0)
31. {
32. bigmat_Fraspa = allocMatrix<int>(bigmat_Fraspa,…);
33. initMatrix<int>(bigmat_Fraspa, M_Fraspa, N_Fraspa, value);
34. }
35. bigmat = split<int>(bigmat_Fraspa, bigmat, M_Fraspa,…);
36. t1 = MPI_Wtime();
37. for(y=0; y < M+2; y++) {
38. for(x=0; x < N+2; x++) {
39. c.real = ((float) x - 500.0)/250.0;
40. c.imag = ((float) y - 500.0)/250.0;
41. color = compute(c, maxiter);
42. bigmat[y][x]=color;
43. }
44. }
45. t2= MPI_Wtime();
46. bigmat_Fraspa = collect<int>(bigmat, bigmat_Fraspa,…);
47. //other code

Figure 4-24- Code snippet of the generated Mandelbrot Set application
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Because the amount of image data is large, clustering is used to preprocess the 

data and reduce the search space in the image retrieval process. The clustering is 

performed on image segments and therefore if a segment belongs to the cluster so does 

the image containing the segment. The clustering performed here is based on a Genetic 

Algorithm (GA). A typical experiment involved using 9,800 images with 82,556 regions 

and these image regions were divided into 100 clusters. Additional details and steps 

involved in the CBIR procedure can be found in [92].

In this experiment, if the GA is run for 100 generations or greater, it produces 

better quality of clusters. The MATLAB-based implementation of the GA took more than 

4 hours to execute for 100 generations [92]. The MATLAB code was first converted to 

C/C++ code and then parallelized using MPI. The GA for CBIR is an excellent test case 

because it is computation-intensive. The code snippet of the sequential version of the GA 

is shown in Figure 4-25. Each generation of the GA involved 50 chromosomes, with 100 

centroids on each chromosome. The centroids are the identification number associated 

with each image segment stored as a group of features, and as mentioned earlier, there are 

82,556 image segments or regions involved in this experiment. The fitness value 

associated with each chromosome is the inverse of the sum of the minimum distances of 

each image segment from the centroids on each chromosome [92]. There are 

(82,556)*(100)*(50) computations involved in calculating the fitness values of the 

chromosomes in each population. The function in which the fitness value of the 

chromosome is calculated (evaluatePop) is therefore very time-consuming and 

application profiling showed that the application spends more than 90% of its execution 

time in this function. This function is therefore an ideal candidate for parallelization. 



111

1. /*other code*/
2. evaluatePop(popcurrent,mydata,fitness);
3. for(i=0;i<numGenerations;i++){
4. printf("Gen: %d ", i);
5. pickchroms(fitness,popcurrent,popnext);
6. mutation(popnext,popcurrent);
7. equate(popcurrent, popnext);
8. evaluatePop(popcurrent,mydata,fitness);
9. printGenFit(popcurrent,fitness,(int)time1);
10. }
11. /*other code*/

Figure 4-25- Code snippet from the main function of sequential GA

The code snippet of evaluatePop function is shown in Figure 4-26. The for-loop 

on line # 4 of Figure 4-26, iterates over 82,556 image segments to compute the distance 

of each image segment from the centroid on each chromosome (popcurrent[k][j]). To

split the task of the calculation of the distances amongst multiple processors, the 

computations in this for-loop should be split amongst multiple processors. 

1. /*other code*/
2. for(k=0;k<numChrom;k++){
3. sumDist=0.0;
4. for(i=0;i<numofRecords;i++){
5. min=maximVal;
6. for(j=0;j<numCentroid;j++){
7. z=popcurrent[k][j];
8. eDist=0.0;
9. for(l=0;l<=numVector;l++){
10. eDist=eDist+(mydata[z][l]-mydata[i][l])*(…);
11. }
12. if(min>eDist){
13. min=eDist;
14. }
15. min_d[i]=min;
16. }
17. sumDist=sumDist+sqrt(min_d[i])
18. }
19. fitness[k]= (1.00/sumTotal);
20. }
21. /*other code*/
Figure 4-26- Code snippet from the evaluatePop function in the sequential GA

The code snippet shown in Figure 4-27 shows the Hi-PaL code for parallelizing 

this for-loop which is outside the function main - (in function ("evaluatePop")) and 
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collecting the results of the computations in the for-loop by reducing the value of 

sumDist before computing the fitness value. The code snippet of the parallelized 

evaluatePop function is shown in Figure 4-28.  The MPI API for setting up the MPI-

environment and other code for parallelization is inserted in the function main but is 

omitted here. 

1. Parallel section begins before ("t1=gettime();") mapping is
Linear{

2. Parallelize_For_Loop where (i=0;i<numOfrecords;i++) before
statement ("min=maximVal;") && in function ("evaluatePop");

3. ReduceSumInt(sumDist) before statement
("fitness[k]= (1.00/sumDist)") && in function ("evaluatePop")

4. }

Figure 4-27- Hi-PaL code for parallelizing the evaluatePop function in the GA

Because the GA can get stuck in local optima, it should be run for a large number 

of generations to obtain the globally optimal results. Therefore, it is imperative to 

checkpoint the application, especially when it is run in a dynamic and distributed 

environment. For checkpointing, depending upon the implementation scheme (type of 

load-balancing and design pattern) of the GA and the end-user’s preference, the 

population and the fitness value of the chromosomes can be saved after certain number of 

generations or even during the last generation. The state of the executing GA application 

depends upon the current or initial population, and the seed value of the random-number 

generator function. For making this application fault-tolerant through checkpointing, the 

current population and the value of the seed used to initialize the random number 

generator function are stored in a file. The time of the day is passed as the seed value to

the random number generator function in this application. To restart the program from 

any point in execution, the GA can be made to read the values of the seed of the random 

number generator and the current population from the restart files.
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1. /*other code*/
2. long lower_limit_Fraspa;
3. long upper_limit_Fraspa;
4. int rank_Fraspa;
5. int size_Fraspa;
6. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);
7. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);
8. lower_limit_Fraspa=rank_Fraspa*((numOfrecords-1)…;
9. upper_limit_Fraspa =((rank_Fraspa==(size_Fraspa - 1))…)
10. for(k=0;k<numChrom;k++){
11. sumDist=0.0;
12. for(i = lower_limit_Fraspa;i<=upper_limit_Fraspa;i++){
13. min=maximVal;
14. for(j=0;j<numCentroid;j++){
15. z=popcurrent[k][j];
16. eDist=0.0;
17. for(l=0;l<=numVector;l++){
18. eDist=eDist+(mydata[z][l]-mydata[i][l])*(…);
19. }
20. if(min>eDist){
21. min=eDist;
22. }
23. min_d[i]=min;
24. }
25. sumDist=sumDist+sqrt(min_d[i])
26. }
27. MPI_Allreduce(&sumDist,&sumTotal,1,MPI_DOUBLE,MPI_SUM,…);
28. fitness[k]= (1.00/sumTotal);
29. }
30. /*other code*/

Figure 4-28- Code snippet of the parallelized evaluatePop function in GA

A code snippet from the parallelized main function of GA is shown in Figure 4-

29. The frequency of checkpointing, the CaR type (Centralized), and the loop variable 

i are specified in the DALC code in Figure 4-30, along with the name of the function 

printGenFit after whose execution the checkpointing code should be inserted. The 

restart mechanism is also specified through the DALC and is shown in Figure 4-31.

Through this code, the execution of the function dataInitialize is intercepted. Due 

to this interception, instead of the execution of the initialization code in the function 

body, the array popcurrent is initialized with the values read from the file, 

restartPopcurrent. If the restart file is not present then the array is initialized using the 

values read from the file initial. The option of reading from one of these two files is 
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expressed by the usage of “|”. The variable time1, which is passed as a seed to the 

random number generator, is initialized by the values read from the file restartTime1.

The variables numChrom and numCentroid in Figures 4-30 and 4-31 are the dimensions 

of the array popcurrent and are provided by the user. 

1. /*other code*/
2. for(i=0;i<numGenerations;i++){
3. if (rank==0){
4. printf("Generation #: %d",i);
5. }
6. popnext=pickchroms(fitness,popcurrent,popnext,start_x_y,…);
7. MPI_Allgatherv(&popnext[0][0],(start_x_y.ystart_x_y.x)*…,…);
8. if(rank==0){
9. popcurrent=mutation(popcurrent,numOfrecords,…);
10. }
11. MPI_Bcast(&popcurrent[0][0],numChrom*numCentroid,…);
12. evaluatePop(popcurrent,mydata,fitness,start_x_y2,…);
13. printGenFit(popcurrent,fitness,(int)time1,i,rank);
14. }

Figure 4-29- Code snippet of the parallelized main function of GA

The CaR mechanism described through the DALC, as shown in Figures 4-30 and 

4-31, is translated into intermediate code that a PTE can understand to carry out the non-

invasive transformation of the existing application into a checkpointed one. As per the 

specification, the PTE generates the base language code for file I/O. Two files, 

restartTime1 and restartPopcurrent are opened and the value of the variable time1

(which is the seed value) and the contents of the array popcurrent are saved to these 

files. The code snippet of the checkpointed code is shown in Figure 4-32. The inserted 

checkpointing code is at lines # 14-28 of Figure 4-32.

1. beginCheckpointing:
2. after execution("printGenFit")&& (frequency = 10)

&& (loopVar = "i" ) && (CaRType = Centralized){
3. SaveInt(time1,"restartTime1")
4. SaveIntArray2D(popcurrent, numChrom, numCentroid,

"restartPopcurrent")
5. }

Figure 4-30- Checkpointing specifications for the GA
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1. beginInitialization: around execution ("dataInitialize"){
2. ReadIntVarFromFile(time1, "restartTime1")
3. ReadIntArray2DFromFile(popcurrent, numChrom, numCentroid,

"restartPopcurrent") |
4. ReadIntArray2DFromFile(popcurrent, numChrom, numCentroid,

"initial")
5. }

Figure 4-31- Restart specifications for the GA

1. /*other code*/
2. for(i=0;i<numGenerations;i++){
3. if (rank==0){
4. printf("Generation #: %d",i);
5. }
6. popnext=pickchroms(fitness,popcurrent,popnext,start_x_y,…);
7. MPI_Allgatherv(&popnext[0][0],(start_x_y.ystart_x_y.x)*…,…);
8. if(rank==0){
9. popcurrent=mutation(popcurrent,numOfrecords,…);
10. }
11. MPI_Bcast(&popcurrent[0][0],numChrom*numCentroid,…);
12. evaluatePop(popcurrent,mydata,fitness,start_x_y2,…);
13. printGenFit(popcurrent,fitness,(int)time1,i,rank);
14. if(rank==0){
15. if (i % 10 == 0){
16. newInputFile = fopen("restartPopcurrent", "w");
17. storeVar = fopen("restartTime1", "w");
18. fprintf(storeVar, "%d  ", time1);
19. for (ii = 0; ii < numChrom; ii++){
20. for (jj = 0; jj < numCentroid; jj++){
21. fprintf(newInputFile, "%d  ", popcurrent[ii][jj]);
22. }
23. fprintf(newInputFile, "\n");
24. }
25. fclose(newInputFile);
26. fclose(storeVar);
27. }
28. }
29. }

Figure 4-32- Code snippet of the checkpointed parallel GA

4.2 Evaluation and Experimental Setup

All the experiments for this research were run on a 128 node dual-processor Xeon 

cluster (Olympus) in the Department of Computer and Information Sciences at the 

University of Alabama at Birmingham and the SGI Altix cluster at the Alabama 

Supercomputing Center. Each node in the Olympus cluster has 4 GB of RAM, low-
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latency InfiniBand network, and 4 terabytes of disk space. The Altix cluster has 228 CPU 

cores, 1.5 terabytes of memory, and 10.8 terabytes of disk space. The FraSPA was 

evaluated according to the following criteria:

1. Performance and accuracy of the generated versions of the parallel code versus 

their manually-written counterparts.

2. Performance and accuracy of the generated versions of the checkpointed code 

versus their manually-written counterparts

3. The number of Lines of Code (LoC) that the programmer has to write in 

C/C++/MPI in order to manually parallelize a sequential application versus the 

number of lines of Hi-PaL code the programmer has to write for parallelizing the 

sequential application automatically.

4. The number of LoC that were generated by the framework in order to parallelize 

the applications.

5. The number of LoC reused for generating various applications. 

4.3 Results and Analysis

The run-time and speedup of the manually-written parallel code was compared 

with the run-time and speedup of the code generated through the framework. The results 

are shown in Figures 4-33 to 4-39.  A summary of the problem size and the execution 

time for different versions (sequential, manually-written parallel, and generated parallel) 

of all the test cases in presented in Table 4-2. Each application was run on different 

numbers of processors to test if they are scalable. No significant loss in performance was 

observed in any test case and the results from the generated version were almost identical 
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to that of the manually-written version. For all the test cases that we have considered till 

date, the performance of the generated application is within 5% of that of the manually-

written application.

Table 4-2- Performance comparison of various test cases
Application Problem Size Number of 

Processor
Serial
(in sec)

Parallel
Manual
(in sec)

Parallel
Generated
(in sec)

Prime Number first 250,00,000 
Numbers

30 92.30 9.25 9.31

Circuit
Satisfiability

30 input bits 30 208.81 7.70 7.19

Poisson Solver matrix size: 
5000 5000, number of 
iterations: 5000

30 8391.41 984.49 985.06

Game of Life matrix size: 
5000 5000, number of 
iterations:  10,000

30 17056.8 622.86 628.03

Image
Processing

image of size 10 
million pixels

3 5.44 3.86 4.07

Mandelbrot Set matrix of size: 
10000 10000

10 3.26 0.52 0.52

Genetic
Algorithm

number of 
chromosomes in a 
population: 50 
number of centroids 
on each chromosome: 
100
number of 
generations: 100
Number of image 
segments: 82,556

30 2505.86 236.92 237.02

Figure 4-33- Runtime and Speedup – Prime Numbers
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Figure 4-34- Runtime and Speedup – Circuit Satisfiability

Figure 4-35- Runtime and Speedup – Poisson Solver

Figure 4-36- Runtime and Speedup – Game of Life
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Figure 4-37- Runtime and Speedup – Image Processing

Figure 4-38- Runtime and Speedup – Mandelbrot Set

Figure 4-39- Runtime and Speedup – Genetic Algorithm
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The results of checkpointing the test cases presented in Sections 4.1.2, 4.1.3 and 

4.1.7 are presented in Figures 4-40 to 4-42. The results of checkpointing the Circuit 

Satisfiability application manually and through the DALC are presented in Figures 4-40.

The application was run on 10 processors with 30 input bits. The total number of 

solutions that satisfied the circuit was 1920.  The checkpointing was done every 10000, 

20000, and 30000 iterations.

Figure 4-40- Runtime comparison of checkpointed Circuit Satisfiability application

The Poisson Solver application was also checkpointed both manually and through 

the DALC. The two versions of the application were run for 50,000 iterations for a 

1000x1000 matrix. In both the versions, the convergence is reached after 41218 

iterations. The application was run on 40 processors and the frequency of checkpointing 

was every 1000, 3000, and 5000 iterations. The comparison chart of the execution time is 

presented in Figure 4-41.



121

Figure 4-41- Runtime comparison of the checkpointed Poisson Solver application

The GA was run for 1000 generations on 50 processors. Because the execution 

time of the GA is very short, it was run for a greater number of iterations to study the 

impact of checkpointing. The checkpointing was done after every 10, 20 and 30 

iterations. A comparison between the manual and the generated version of the 

checkpointed code of the GA is shown in Figure 4-42. The performance of the GA with 

the generated checkpointing code is comparable to the manually-checkpointed GA. 

Figure 4-42- Runtime comparison of the checkpointed Genetic Algorithm
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The performance of the version in which the CaR mechanism was generated 

through the DSL is within 5% of the version in which the CaR mechanism was inserted 

manually for all the test cases used in this research. The difference between the 

performance overheads of the generated and manually-written code (which is maximum 

5% in the worst case) seems to be less apparent if the code is run for very large number 

of iterations and the checkpointing is done at a very low frequency. Though the GUI 

developed in this research can be used for generating the CaR-specifications (i.e., the 

DSL code) in a wizard-driven manner, the end-user can also specify the DSL code 

manually. A snapshot of the GUI is shown in Figure 3-17. Hence, the end-user effort is 

reduced in terms of increase in code reuse.

A summary of the comparison of the number of LoC for the case-studies 

described in Section 4.1 is presented in Table 4-3. For example, for the Circuit 

Satisfiability application, the framework generates 104 LoC to parallelize the sequential 

version of the application. The generated code sets-up the parallel environment, 

terminates the MPI execution, has the necessary logic for carrying out the for-loop 

parallelization, and reducing the desired value. The programmer had to write just 4 lines 

of DSL code in order to parallelize this application. FraSPA uses various design 

templates for automatically generating the parallel code on the basis of the Hi-PaL code 

provided by the programmer. These templates are generic enough to be reused across 

applications from diverse domains. Some of the design templates that were reused across 

the test cases presented in Section 4.1 are the ones that set-up the MPI environment, data 

distribution, data collection, parallelization of for-loop, and exchanging the values across 

the cells in a stencil. 
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Table 4-3- Comparing the LoC for various test cases
Application Serial

(LoC)
Parallel
Manual(LoC)

Hi-PaL (LoC) Parallel
Generated(LoC)

Prime Numbers 47 62 5 75

Circuit
Satisfiability

86 102 4 104

Poisson Solver 85 330 6 357

Game of Life 180 623 6 641

Image
Processing

59 150 4 159

Mandelbrot Set 93 494 3 515

Genetic
Algorithm

431 816 3 830

On the basis of the results in Table 4-3, it can be observed that if Hi-PaL is used, 

there is a clear reduction in the programmer effort (more than 90%) in terms of the 

reduction in the number of lines of code that he or she has to write in order to accomplish 

the task of explicit parallelization using MPI. The programmer is also freed from the 

complexities associated with the process of explicit parallelization.

A summary of the number of LoC in the design templates that were reused to 

parallelize the test cases is presented in Table 4-4. As noted from Table 4-4, the reduce 

operation is performed twice in the parallel version of the application for finding the 

Prime Numbers. The design template for generating the code for the reduce operation has 

335 LoC and it is called twice (2*335). The template for inserting the code for setting up 

the MPI environment has 452 LoC and it is reused across all the test cases. These 452 

LoC are required to insert 7 significant lines of C/C++/MPI code (for setting up the MPI 

environment, extending the variable declaration section and including the required files)

in the existing sequential applications. The template for the exchange operation has 263 

LoC and it was used thrice in the Poisson Solver application. The exchange template, if 

used once in a program, internally invokes the distribution template and is responsible for 
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inserting 114 lines of significant C/C++/MPI code in the existing sequential application.

With every additional invocation of the exchange template, an additional line of C/C++ 

code is inserted. Therefore, in total 116 lines of C/C++/MPI code are inserted by the 

invocation of the exchange templates in the Poisson Solver example. 

The reusable code components (like design templates) are helpful in code 

maintenance and localization of changes. If any change is required in the implementation 

of the exchange operation for example, then the same is done at one place as compared to 

multiple places in multiple test cases. In summary, the code reuse through design 

templates reduces the scope of code duplication (as observed in Figure 1-2), helps in 

decreasing the effort involved in code maintenance, and promotes code correctness.

Table 4-4- Reusability metrics for some of the design templates for code generation
Application MPI Setup

(LoC)
Reduce (LoC) Distribution

(LoC)
Exchange
(LoC)

Prime Numbers 452 2*(335) 0 0

Circuit
Satisfiability

452 335 0 0

Poisson Solver 452 419 271 3*(263)

Game of Life 452 419 271 2*(263)

Image
Processing

452 335 271 0

Mandelbrot Set 452 0 271 0

Genetic
Algorithm

452 335 0 0

The total number of LoC required for implementing various components of FraSPA is 

shown in Figure 4-5. These statistics do not reflect the actual LoC written for evolving 

FraSPA into its current state. Before building the abstractions in FraSPA, the 

implementations of various transformation rules was done manually and the estimate of 

the same has not been provided here. There are approximately 14 KLOC in the current 
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deliverable. The front-end of FraSPA comprises of about 17% of the total LoC, the 

middle-layer consists of nearly 63% of the total LoC, and the backend is nearly 17% of 

the total LoC. The middle-layer, which is the thickest layer in the FraSPA architecture, 

captures the expertise required for parallelization and fault-tolerance in the form of 

reusable rule and design templates. 

Table 4-5- Effort estimation in terms of LoC for developing FraSPA
Metamodels for DALC & Hi-PaL

DALC Metamodel Hi-PaL Metamodel RSL Metamodel
Number of Classes in 
KM3 metamodel:175

Number of Classes in 
KM3 metamodel:510

Number of Classes in 
KM3 metamodel:172

LoC for TCS:370 LoC for TCS:674 LoC for TCS:345

ATL Rules
Total Number of ATL Files: 16
Total Number of LoC in ATL Files: 5752

Ant Scripts
Total Number of Scripts: 20
Total Number of LoC in Scripts: 2294 

DMS Code (PARLANSE Functions)
Total Number of LoC: 2401
Total Number of Functions: 17

C++ Design Templates
Total Number of Templates: 7
Total Number of LoC: 622

Java Code
Total Number of Files: 7
Total Number of LoC: 364

4.4 General Discussion and Summary

The parallelization and CaR code could also have been generated directly through 

the PTE without using the Hi-PaL or DALC. However, the time and complexity involved 

in learning and using the PTE necessitated a higher level of abstraction and the DSLs

developed in this research provide the same. As noted from the results in Section 4.3, 

inserting the CaR mechanism and parallelization code using the DSL and the PTE is a 
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cost-effective option for non-invasive reengineering of large legacy applications to make 

them fault-tolerant and parallel. More than 90% reduction in the end-user effort was 

observed in the test cases that were generated through FraSPA and the performance of the 

generated code was within 5% of that of its manually-written counterpart. The problems 

related to maintaining different copies of the application are also overcome and it is easy 

to evolve the application. Because the original application does not undergo any 

restructuring, the readability and understandability of the legacy application is also 

maintained. The mechanism for fault-tolerance as developed in this research is platform-

independent and can be used to checkpoint code written in several base languages with 

slight modifications made to the existing DALC [8]. 

The checkpointed application can be migrated from one resource to another 

without affecting the accuracy of the results [93]. If the resources are comparable, no 

significant loss in performance is observed. This DSL-based ALC-technique for making 

the parallel application fault-tolerant can be extremely useful in dynamic environments, 

like the grid, where small size of checkpoints and platform-independence are of prime 

importance. The fault-tolerance mechanism is not only useful in the scenario in which 

there is a possibility of resource failures but also for cost-effective resource scheduling. 

With the current trend in the scientific community to adapt their applications for 

the cloud computing environment, cost-effective resource scheduling is of paramount 

importance. Imagine a scenario in which the computation nodes have a cost attached to 

them and their availability is not guaranteed. In order to develop an optimal scheduling 

strategy where the jobs get serviced at a reasonable cost and with a tolerable amount of 

delay, it will be imperative to move the jobs from one resource to another depending 
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upon the cost and availability ratios. The CaR mechanism developed to make the 

applications fault-tolerant can be used for developing the optimal scheduling strategy in 

which the jobs can be started on any resource that is available (if getting it serviced at the 

earliest is the priority) or it can be queued on the least expensive resource that is available 

(if the cost has to be kept lowest and the queue wait time is not of concern). However, 

apart from these two cases at the extreme ends, the middle-out approach (if the cost and 

service time are both of equal importance) would be to start the job on a particular 

resource, checkpoint it regularly, migrate it to a better resource as soon as it is available, 

and restart it from the latest checkpoint. The definition of a better resource as mentioned 

in the previous sentence is highly subjective and will depend upon the end-user 

preferences. 

In the current implementation of the framework, the onus is entirely on the end-

users to correctly identify the concurrency in their existing sequential applications and to 

be aware of the naming convention of the generated code. The programmers are required 

to manually ascertain that the operations inside the for-loop are independent of the results 

in the previous iterations and there are no data-dependencies in general in the code 

specified for parallelization. All the framework-generated variable names have a suffix 

_Fraspa and as per the guidelines provided to the end-users, they are expected to avoid 

naming their variables with this suffix to prevent name-conflicts between the generated 

and user-defined variables. This limitation can be removed in future by generating unique 

variable names after analyzing the existing code with the help of a static code analyzer.

It should also be noted that in the current implementation of FraSPA, the end-user 

is required to assure that all the partial computation results have been collected from the 
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processors and that the processors are in a synchronized state at the time of taking a

distributed checkpoint.
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CHAPTER 5

FUTURE WORK

This chapter outlines the directions in which the research presented in this 

dissertation can be further extended. By raising the level of abstraction of developing 

checkpointed (fault-tolerant) and MPI-based parallel applications through FraSPA, this 

dissertation solved two major challenges associated with the HPC application 

development. The HPC platforms can be broadly classified into two categories –

homogeneous platforms and heterogeneous platforms. Within these categories, there are 

more categories depending upon the type of processing elements or memory-access 

pattern. FraSPA solved the problem of automating the process of generating parallel 

applications for distributed memory architectures.

FraSPA has the potential of being extended to support multiple parallel 

programming models (e.g., support for synthesizing parallel applications for shared 

memory paradigms and multi-core architectures) and hence multiple parallel 

programming platforms. In order to extend FraSPA to develop applications for shared 

memory architectures, a new DSL should be developed instead of extending Hi-PaL. The 

mapping between the DSL in the front-end and the program transformation engine in the 

backend will need to be extended too. However the backend will not undergo any 

changes. The most tedious aspect of writing an OpenMP program is identifying the 

variables that are meant to be kept private or shared amongst the multiple threads that 
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work in parallel on a section of a program. This part can be made semi-automatic by 

using a static code analysis tool and a GUI. A summary of the suggestions regarding 

which variable could be made private or shared and the directives to use can be presented 

to the end-user to make selections from. As compared to MPI API, OpenMP has a lesser 

number of directives for parallelization and the main ones are for the parallelization of 

loops and the reduction operation. Therefore, compared to Hi-PaL, the DSL developed 

for explicit parallelization using OpenMP will be simpler. The DALC can make 

C/C++/OpenMP-based applications checkpointed without undergoing any changes. It 

would also be of interest to extend FraSPA to provide the functionality of the framework 

developed for raising the level of abstraction of GPGPU programming [94]. 

In addition to providing support for multiple programming paradigms, FraSPA 

can also be extended to support the automatic parallelization of sequential applications 

written in other legacy languages (e.g., FORTRAN) and dialects. For supporting more

legacy languages and dialects, the back-end support should be extended without much 

change required in the front-end (i.e., Hi-PaL or DALC). Further details for providing 

support for transforming code written in other legacy languages are provided in [37, 81]. 

Besides providing support for transforming legacy applications, FraSPA can also 

be extended to support development of new applications in implicitly parallel languages 

like SISAL and X10. To achieve this goal, design-templates can be developed to capture

the known patterns of writing the code in these languages. FraSPA can use these design-

templates to generate a stub-and-skeleton type of code template in which the end-user 

will only need to provide the computation kernel in a high-level language [60, 63, 73]. 
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It is crucial to include the mechanisms for supporting fault-tolerance, resource-

selection, and feedback for improved performance in a framework that would support the 

development of applications for complex heterogeneous systems [7, 69, 75].  In this 

context, DALC, and hence FraSPA, can make C/C++ programs fault-tolerant without any 

extensions or modifications. However, to make the applications running on GPGPU 

checkpointed (and hence fault-tolerant), more work is required for capturing the domain-

knowledge in terms of additional classes in the DALC metamodel. FraSPA can be 

extended to generate resource-aware parallel applications that can run in grid computing 

environments [80] by providing support for automatic resource discovery and adaptation.

In the grid computing environment, the resources can be heterogeneous, dynamic and 

distributed. In order to dynamically and automatically generate a parallel application for a 

heterogeneous platform from a set of Hi-PaL specifications and a sequential application, 

a repository of application-characteristics is required [73, 95]. This repository will 

contain the information of the performance of a class of application on a particular 

resource (e.g., performance of evolutionary algorithms on multi-core architecture). 

Through the repository of the application-characteristics, a sorted list of the resources the 

application can be run on could be generated. The probability of the resource availability 

can also be determined on the basis of the historical-data. An optimization function to 

select the resource (HPC platform) that is most likely to be available and that has the best 

application performance can be designed. Depending upon the dynamically selected 

resource (e.g., shared memory platform and distributed platform), FraSPA should be able 

to automatically generate an optimized and checkpointed parallel application from the 

Hi-PaL specifications and the sequential application.
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A feedback mechanism will be especially useful in the heterogeneous 

environments for selecting the best algorithm or implementation scheme from the given 

solution space of platform-specific implementations [7]. If the applications do not 

perform optimally on the architecture selected by the end-user or FraSPA, the 

information about the same could be fed into FraSPA and it can be trained to improve the 

generated solutions. This mechanism will also be helpful in updating the repository of 

application-characteristics.

An application-profiler (like Vtune from Intel [95]) can also be integrated into the 

FraSPA framework such that if the end-user is not satisfied with the performance of the 

generated code, they can further identify the hotspots for parallelization and fine-tune the 

parallel application. This process of fine-tuning can also become a part of the feedback 

mechanism discussed in the previous paragraph. Currently FraSPA does not have any 

facility to prompt the end-user if they are selecting a wrong combination of parallel 

operations (e.g., gather operation a variable instead of reduce operation). If the 

programmer does not specify the correct parallel task, FraSPA will still generate the code 

for parallelization as long as it finds the match-pattern and other constraints are satisfied.

The current set of guidelines developed for parallelizing the sequential code is

coarse-grained. Therefore, a code-analyzer could be provided along with the application-

profiler so that the programmer can not only detect the hotspots for parallelization but can 

also make informed choices about the parallel operations to choose. For example, it 

might be hard for the programmer to find the dependencies in the for-loop manually. 

Therefore, a code analyzer can be helpful in this scenario for warning the programmer to 

avoid parallelizing a for-loop with dependencies.
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Apart from the aforementioned extensions to FraSPA, the following are some of 

the potential areas of enhancements: 

The current implementation of the framework supports a limited set of 

C++ grammar rules for the VisualC++ 6.0 dialect. Extra effort is required 

to provide support for the complete C++ grammar for all the dialects in 

order to make the framework useful for transforming applications on a 

large-scale. A richer support for specifying complex hooks (or join points) 

is required (e.g., run-time evaluation of control-flow).

The possibility of adopting the memory hierarchy aware algorithm design 

approach [96, 97] for improving the existing design-templates used in 

FraSPA could be explored in future. For example, code can be structured 

to maximize locality and tasks can be parameterized (multiple 

implementations of a particular task can be provided) in order to produce 

highly optimized parallel code [7]. 

The process of making the applications fault-tolerant via checkpointing 

has already been made wizard-driven as a part of this research [22]. 

Efforts could be made to make the process of specifying the Hi-PaL code 

wizard-driven as well. 

The facility to search the join point or hook in the sequential application 

on the basis of the logical line number can also be provided to reduce the 

effort in specifying the match-pattern.
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CHAPTER 6

SUMMARY AND CONCLUSION

The combination of emerging computing platforms (like GPUs, cell processors, 

and field-programmable gate arrays) with traditional CPUs is being publicized as the next 

revolution in HPC. Though such a paradigm shift is bound to bring massive amount of 

computational power to the end-user at a low-cost, there is no unified domain-neutral 

application development environment at the time of writing this dissertation that allows 

the end-user to express concurrency at a high-level and dynamically generate optimal 

solutions for even homogeneous HPC platforms. There are multiple parallel 

programming paradigms, each best-suited for developing applications for a specific 

computing platform. Therefore, the end-users (or domain-experts) are stuck in the 

“problem of plenty” and experience a steep learning curve with each HPC platform or 

programming model. Due to the increasing diversity in the type of processing elements in 

the modern HPC platforms and the drastic increase in the number of processing elements 

on a chip, the probability of failures of the processing elements is also increasing thereby 

leading to reduced MTBF [5]. Therefore, a mechanism for supporting fault-tolerance is 

required to make the applications running on such platforms immune to resource-failures. 

In the light of the aforementioned changes in the HPC landscape, the goal of this 

dissertation was to take the first step towards developing a framework that brings 

scalability and performance to the end-user in the form of parallel computing without the 
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need to learn any low-level parallel programming paradigm or to do any manual intrusive 

reengineering. A framework, named FraSPA, was developed in this research and in its 

current scope, it supports the generation of checkpointed and MPI-based parallel 

applications from the existing applications (written in C/C++) and code components on

the basis of the high-level specifications provided by the end-user. 

Two DSLs have been developed as a part of this research for obtaining the high-

level specifications form the end-user and they are called Hi-PaL and DALC. Both DSLs 

were developed from scratch and borrow some concepts from the AOP techniques. With 

the help of Hi-PaL, without knowing anything about MPI API or its usage, end-users can 

specify the tasks required for parallelizing the existing sequential applications at a very 

high-level. The end-users are, however, expected to be familiar with the logic of the 

sequential application and should be well acquainted with the concept of concurrency. A

set of Hi-PaL API has been developed for the commonly used parallel tasks like data 

distribution, data collection, reading or writing the data in parallel, and parallelizing a for-

loop. DALC is useful for obtaining the specifications for checkpointing and restart from 

the end-users. It includes the API for periodically saving and reading the critical 

application variables from which the complete execution state of an application can be 

recreated in the event of a failure of underlying resources.

Hi-PaL and DALC act as an interface between the end-user and FraSPA. The 

specifications provided by the end-user (in the form of Hi-PaL or DALC code) are 

translated into the rules for the source-to-source compiler at the back-end by the Rule 

Generator. On the basis of these rules, the source-to-source compiler instruments the 

existing application to make it checkpointed or parallel without requiring any manual-
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reengineering. The code generation process is generic and domain-neutral due to the 

domain-knowledge that is captured in the Rule Generator component of FraSPA. The 

Rule Generator not only contains the domain-knowledge for generating the appropriate 

rules from the Hi-PaL and DALC code, but also invokes the source-to-source compiler 

(which is DMS in this research), handles the input to DMS, and gets the output from the 

DMS to the end-user workspace.

With FraSPA, the programmer is not required to adapt the application to any 

generic interfaces, can do incremental integration of components, and need not 

restructure the existing application. The test cases presented in Chapter 4 of the 

dissertation demonstrate the usage of FraSPA for doing various automatic 

transformations (e.g., manipulating the declaration section, including files, inserting a 

library call and deleting a line of code) and demonstrate its domain-neutral nature. 

FraSPA demonstrates the desired flexibility to experiment with multiple communication 

patterns and algorithms. For the selected test cases,

The processes of parallelizing an application and making it fault-tolerant via 

checkpointing are decoupled from each other in FraSPA –i.e., they are two different 

steps. This gives the end-user a choice of using the two mechanisms separately. If the 

end-user is interested in parallelizing their sequential application, they can do so by using 

Hi-PaL. If they are interested in making their parallel application fault-tolerant by 

there is more than 90% of reduction in 

the end-user effort in terms of the number of lines of code written manually while 

requiring no explicit changes to the existing code. The performance of the generated code 

is within 5% of that of the manually-written code. FraSPA supports separation of 

concerns and thereby aids in code maintenance and evolution.
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inserting the checkpointing and restart mechanism, irrespective of the fact whether the 

application was generated by FraSPA or manually-written, they can do that as well by 

using DALC. Both these steps obviate the need to intrusively reengineer the existing 

application to make it parallel and/or checkpointed. The complex workflow inside 

FraSPA and the complexities associated with the process of explicit parallelization are 

hidden from the end-user.

The evaluation metrics presented in Chapter 4 show that FraSPA not only raises 

the level of abstraction of non-invasively generating checkpointed parallel programming 

without drastically degrading the performance, but it also promotes code reusability. 

Because FraSPA supports separation of concerns, the process of developing HPC-

applications can become a multi-person software development activity. The domain-

experts can focus on developing the sequential parts of the application or providing the 

specifications for parallelization through Hi-PaL and the computer scientists can work on 

developing the optimized code components for parallelization and fault-tolerance that can 

be integrated into FraSPA for improving the performance of the generated code. 

Because the source-to-source compiler used in this research, DMS, is robust and 

capable of handling large-scale applications, scalability of the approach presented in this 

research is not an issue. This research not only shows a high-level technique for 

synthesizing fault-tolerant parallel applications, but also shows a mechanism for  raising 

the level of abstraction of the DMS usage (the accidental complexities associated with the 

usage of DMS are explained in Chapter 3).

FraSPA has the potential of being extended to support multiple programming 

languages and paradigms such that eventually the problem of the lack of a unified 
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software development for heterogeneous platforms can be solved. The limitations of 

FraSPA are discussed in Chapter 4 and the various measures to improve on them are 

presented in Chapter 5. Code snippets of some of the components of FraSPA are 

presented in the Appendices.  Before concluding this dissertation, it is worth revisiting 

the questions raised in Section 1.1.4 of Chapter 1 and to ponder if this research helps in 

answering any of those. The questions were as follows:

1. Is it feasible to achieve portability and optimal performance with reasonable 

effort? 

2. Can efficient parallel programs be automatically generated by computers?

3. Can we bring scalability and performance to domain-experts in the form of 

parallel computing without any need to learn low-level parallel programming? 

4. Can we facilitate the transition of HPC from the realms of specialized and 

scientific application development into mainstream business? 

5. Can we mitigate the negative impact of the reduced MTBF of the complex 

parallel computing platforms on the execution time of the applications?

While the answer to questions 2, 3, and 5 is a clear “yes”, more work is required to 

find a conclusive answer to questions 1 and 4. Because FraSPA is capable of 

automatically generating performance-oriented and checkpointed parallel programs on 

the basis of the end-user specifications, it answers questions 2, 3, and 5 in the affirmative.

Though the applications generated by FraSPA show a drastic reduction in end-user effort 

(more than 90%) in terms of the number of lines of code written manually, and the 

performance of the generated code is commensurate to the effort spend (within 5% of that 

of the manually-written code), more work is required to extend FraSPA to support 
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heterogeneous architectures. Therefore, the answer to question 1 is a “partial yes” at the 

time of writing this dissertation. Because FraSPA can mitigate the complexities 

associated with low-level parallel programming, it has the potential to lower the barriers 

to large-scale HPC adoption [1, 2]. However, usability-studies are required to test this 

feature of FraSPA and hence the answer to question 4 is yet to be discovered.
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The individual specifications within this Appendix show the KM3 and TCS 

specifications for the Hi-PaL metamodel.

A.1. Hi-PaL Metamodel KM3 Specification

The following represents the excerpt of the KM3 specification for the Hi-PaL

metamodel. 

-- @name PDSL
-- @version 1.0

package PDSL {

-- extend LocatedElement class.

-- BEGIN DSL-specific classes
class PDSL extends LocatedElement {

reference parSpecs[*] container : ParSpecs;
reference hookType container : HookType;
attribute pattern : String;
attribute mapping : String;

}
class ParSpecs extends LocatedElement {

reference parTask [*] container : ParTask;
reference parCond[*] container : ParCond;

}
class ParCond extends LocatedElement {

reference hook container : Hook;
attribute pattern : String;

}
class Hook extends LocatedElement {

reference hookType container : HookType;
reference hookElem container : HookElement;

}

abstract class HookType extends LocatedElement {
}

abstract class HookElement extends LocatedElement {
}

class Statement extends HookElement {

}
class Call extends HookElement {

}
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class Execution extends HookElement {

}
class Function extends HookElement {

}
abstract class ParTask extends LocatedElement {
}

abstract class ParCompute extends ParTask {
}

abstract class ParComputeLimits extends ParCompute {
}

class ParReduce extends ParTask {
reference redVarType container : RedVarType;

reference varArgs[*] container : RedVarArg;
}

class ParAllReduce extends ParTask {
reference redVarType container : AllRedVarType;
reference varArgs[*] container : RedVarArg;

}

class ParFor extends ParTask {
reference forLoopInitStatement container : ForInitStatement;
reference forLoopCond container : ForCond;
reference forLoopExpr container : ForLoopExpression;

}
abstract class ForInitStatement extends LocatedElement {
}
class InitStatement extends ForInitStatement {

attribute forVar : String;
reference operator container: Operator;
reference limit container : ParComputeLimits;

}
class AnyStatement extends ForInitStatement {

attribute anyStatement : String;
}
abstract class Operator extends LocatedElement {

}

abstract class ForCond extends LocatedElement {
}
class ForCondPresent extends ForCond{

attribute forVar : String;
reference operator container: Operator;
reference limit container : ParComputeLimits;

}
class ForNoCond extends ForCond {
}
class AnyCondition extends ForCond {

attribute anyCondition : String;
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}

class LoopExpression extends ForLoopExpression {
attribute forVar : String;
reference stride container : Stride;

}

class ParGather extends ParTask {
reference gatherVarType container : ParGatherArrayType;

reference varArgs[*] container : GatherVarArg;
}
class ParDistribute extends ParTask {

reference distributeVarType container :
ParDistributeArrayType;

reference varArgs[*] container : DistributeVarArg;
}

class ParExchange extends ParTask {
reference exchangeVarType container : ParExchangeArrayType;
reference varArgs[*] container : ExchangeVarArg;

}

class ParBroadCast extends ParTask {
reference broadcastVarType container : ParBroadCastArrayType;
reference varArgs[*] container : BroadCastVarArg;

}

class ParWrite extends ParTask {
reference wVarType container : WriteVarType;
reference varArgs[*] container : WriteVarArg;

}

class ParRead extends ParTask {
reference rVarType container : ReadVarType;
reference varArgs[*] container : ReadVarArg;

}

-- More DSL-specific classes

-- END DSL-specific classes
}

A.2. Hi-PaL TCS Specification

The following shows the excerpt of the TCS specification for the Hi-PaL

metamodel. The lexical part is not included here.
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syntax PDSL {

-- BEGIN Primitive templates
-- Specifies representation of primitive types.
-- Only needs modification when default lexer is not satisfactory.
-- Generally modified along with the lexer.

primitiveTemplate identifier for String default using NAME:
value = "%token%";

primitiveTemplate stringSymbol for String using STRING:
value = "%token%",
serializer="'\'' + %value%.toCString() + '\''";

primitiveTemplate integerSymbol for Integer default using INT:
value = "Integer.valueOf(%token%)";

primitiveTemplate floatSymbol for Double default using FLOAT:
value = "Double.valueOf(%token%)";

-- END Primitive templates

-- BEGIN Class templates
-- Specifies representation of classes.
-- This is the main section to work on.

template PDSL main
: "Parallel" "section" "begins" hookType "(" pattern 

")"  "mapping" "is" mapping "{" 
parSpecs {separator = ";"} 

"}"
;

template ParSpecs
: parTask parCond {separator = "&&"}

;
template ParCond

: hook "(" pattern ")"
;

template Hook
: hookType hookElem

;
template HookType abstract; 

template HookElement abstract; 
template Statement

:
"statement"

;
template Call

:
"call"

;
template Execution

:
"execution"

;
template Function
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:
"function"

;
template ParTask abstract; 

template ParCompute abstract; 

template ParComputeLimits abstract;

template ParReduce 
: redVarType "(" varArgs{separator = ","} ")"

;

template ParAllReduce 
: redVarType "(" varArgs{separator = ","} ")"

;

template ParFor 
: "Parallelize_For_Loop"  "where" "(" forLoopInitStatement 

";" forLoopCond ";" forLoopExpr ")"
;

template ForInitStatement abstract;

template InitStatement 
: forVar operator limit 

;

template AnyStatement 
: anyStatement 

;

template Operator abstract;

template ForCond abstract;

template ForCondPresent
: forVar operator limit

;

template ForNoCond 
: ";"

;

template AnyCondition 
: anyCondition 

;

template ForLoopExpression abstract;

template ParGather 
: gatherVarType "(" varArgs{separator = ","} ")"

;

template ParDistribute
: distributeVarType "(" varArgs{separator = ","} ")"

;



155

template ParExchange
: exchangeVarType "(" varArgs{separator = ","} ")"

;

template ParBroadCast 
: broadcastVarType "(" varArgs{separator = ","} ")"

;

template ParWrite 
: wVarType "(" varArgs{separator = ","} ")"

;

template ParRead 
: rVarType "(" varArgs{separator = ","} ")"

;

-- More Class templates corresponding to the KM3 elements not shown in
-- A.2.

-- END Class templates 
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The individual specifications within this Appendix show the KM3 and TCS 

specifications for DALC.

B.1. DALC KM3 Specification

The following represents the excerpt of the KM3 specification for the DALC 

metamodel.

package CDSL {

-- LocatedElement class

-- BEGIN DSL-specific classes

class CDSL extends LocatedElement {
reference checkptCond container : ChkCond;
reference checkptCode container : ChkCode;
reference restartCond container : RestartCond;
reference restartCode container : RestartCode;

}
class RestartCond extends LocatedElement {

reference hook container : Hook;
attribute pattern : String;

}
class RestartCode extends LocatedElement {

reference restartStmts[*] container : RestartStmt;
}

abstract class RestartStmt extends LocatedElement {
reference rVarType container : ReadVarType;
reference varArgs[*] container : RestartVarArg;

}

class RestartStmt1 extends RestartStmt {
}

class RestartStmt2 extends RestartStmt {
reference rVarType1 container : ReadVarType;
reference varArgs1[*] container : RestartVarArg;

}

class RestartStmt3 extends RestartStmt {
attribute name : String;
attribute _params[*] : String;

}
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class RestartVarArg extends LocatedElement {
attribute argument : String;

}

class ChkCond extends LocatedElement {
reference hook container : Hook;

attribute pattern : String;
attribute frequency : Integer;
attribute loopVar : String;

}

class Hook extends LocatedElement {
reference hookType container : HookType;
reference hookElem container : HookElement;

}

class ChkCode extends LocatedElement {
reference checkptStmts[*] container : ChkStmt;

}

class ChkStmt extends LocatedElement {
reference sVarType container : SaveVarType;
reference varArgs[*] container : SaveVarArg;

}

class SaveVarArg extends LocatedElement {
attribute argument : String;

}

abstract class HookType extends LocatedElement {
}

abstract class HookElement extends LocatedElement {
}

class Statement extends HookElement {

}
class Call extends HookElement {

}
class Execution extends HookElement {

}

abstract class SaveVarType extends LocatedElement {
}

abstract class ReadVarType extends LocatedElement {
}

-- More DSL-specific classes
-- END DSL-specific classes

}
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B.2. DALC TCS Specification

The following shows the excerpt of the TCS specification for the DALC

metamodel. The lexical part is not included here.

syntax CDSL {

-- BEGIN Primitive templates
-- Specifies representation of primitive types.
-- Only needs modification when default lexer is not satisfactory.
-- Generally modified along with the lexer.

primitiveTemplate identifier for String default using NAME:
value = "%token%";

primitiveTemplate stringSymbol for String using STRING:
value = "%token%",
serializer="'\'' + %value%.toCString() + '\''";

primitiveTemplate integerSymbol for Integer default using INT:
value = "Integer.valueOf(%token%)";

primitiveTemplate floatSymbol for Double default using FLOAT:
value = "Double.valueOf(%token%)";

-- END Primitive templates

-- BEGIN Class templates
-- Specifies representation of classes.
-- This is the main section to work on.

template CDSL main
: "beginCheckpointing" ":" 

checkptCond "{" 
checkptCode

"}"
"beginInitialization" ":" 

restartCond  "{" 
restartCode

"}"
;

template RestartCond
: hook "(" pattern ")"

;

template ChkCond
: hook "(" pattern ")" "&&" 

"(" "frequency" "=" frequency ")"
"&&" "(" "loopVar" "=" loopVar ")" 
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;

template Hook
: hookType hookElem

;

template ChkCode 
: checkptStmts

;
template RestartCode 

: restartStmts 
;

template ChkStmt 
: sVarType "(" varArgs{separator = ","} ")"

;
template RestartStmt abstract;

template RestartStmt3
: rVarType "(" varArgs{separator = ","} ")" "|" 

name "<" _params {separator = ","} ">" "("
varArgs{separator = ","} ")"

;

template RestartStmt1
: rVarType "(" varArgs{separator = ","} ")"

;

template RestartStmt2
: rVarType "(" varArgs{separator = ","} ")" "|" 

rVarType1 "(" varArgs1{separator = ","} ")"
;

template RestartVarArg 
: argument

;
template SaveVarArg 

: argument
;

template HookType abstract; 

template HookElement abstract; 

template SaveVarType abstract;

template ReadVarType abstract; 

template Statement
:
"statement"

;
template Call

:
"call"

;
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template Execution
:
"execution"

;

-- More class templates corresponding to the KM3 elements not shown 
in B.1.

-- END Class templates
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APPENDIX C

MODEL TRANSFORMATION RULES FOR HI-PAL
AND DALC
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The individual specifications within this Appendix show a sample of the model 

transformation rules for the Hi-PaL and DALC.

C.1. ATL Rule for Setting the MPI Environment in Hi-PaL

The following ATL rule shows the complete specification for generating the RSL 

rules for inserting the MPI-library calls at specific points in the existing sequential code.

module PSDL2RSL;

create OUT : RSL3 from IN : PDSL;

rule PSDL2RSL {
from

s : PDSL!PDSL
to

t : RSL3!RSL3 (
domain <- dom,
rslelems <- Sequence {pat1, expat1, rule1, pat2, 

pat3, expat2, rule2, pat4, pat5, expat3, 
rule3, pat6, expat4, rule4},

ruleset <- rs
),
dom : RSL3!Domain  (

dname <- 'Cpp'
),
rs : RSL3!RuleSet (

rsname <- 'r',
rname <- Sequence {'addIncludeFile', 'extend_decl',

'add_statements', 'change_exit'}
),
pat1 : RSL3!Pattern(

phead <- ph,
ptoken <- 'statement_seq',
ptext <- pt
),

ph : RSL3!PatternHead (
name <- 'add_var'

),
pt : RSL3!SimplePatternText (

ptext <- ' \\>Cpp\\:[simple_declaration = 
decl_specifier_seq init_declarator_list
\';\'] int \\>Cpp\\:[declarator_id = 
id_expression] rank_Fraspa 
\\<\\:declarator_id ; 
\\<\\:simple_declaration
\\>Cpp\\:[simple_declaration = 
decl_specifier_seq init_declarator_list 
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\';\'] int \\>Cpp\\:[declarator_id = 
id_expression] size_Fraspa 
\\<\\:declarator_id ; 
\\<\\:simple_declaration

'

),
expat1 : RSL3!ExternalPattern(

dname <-'Cpp',
eptext <- 'addVars' ,
phead <- ph1,
ptoken <- 'translation_unit'

),
ph1 : RSL3!PatternHead(

name <- 'addVars',
params <- Sequence{param1, param2}

),
param1 : RSL3!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
param2 : RSL3!PatternParameter(

name <- 'stmt_seq' ,
referTo <- 'statement_seq'

),
rule1 :RSL3!Rule (

rname <- 'extend_decl',
params <- Sequence{rlparam1},
type <- 'translation_unit',
r_lhs_pattern  <- lhs1,
r_rhs_pattern <- rhs1

),
rlparam1 : RSL3!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
lhs1 : RSL3!RuleLHS(

ruletext <- text1
),
rhs1 : RSL3!RuleRHS(

ruletext  <- text2,
condition <- Sequence {rulecond1}

),
text1 : RSL3!IDRuleText(

text <-'tu'
),
text2 : RSL3!ComplexRuleText(

pref <- pr1
),
pr1 : RSL3!PatternRef (

name <- 'addVars',
params <- Sequence{param01, param02}

),
param01 : RSL3!RealParameter(
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name <- 'tu'

),
param02 : RSL3!PatternRef(

name <- 'add_var'
),
rulecond1 : RSL3!RuleNotEqCondition(

lhs <- 'tu',
pref <- pr

),
pr : RSL3!PatternRef (

name <- 'addVars',
params <- Sequence{param11, param21}

),
param11 : RSL3!RealParameter(

name <- 'tu'

),
param21 : RSL3!PatternRef(

name <- 'add_var'
),

pat2 : RSL3!Pattern(
phead <- ph2,
ptoken <- 'statement_seq',
ptext <- pt2
),

ph2 : RSL3!PatternHead (
name <- 'add_code1'

),
pt2 : RSL3!SimplePatternText (

ptext <- '
\\>Cpp\\:[ postfix_expression = 
postfix_expression \'(\' expression_list 
\')\'] MPI_Init(NULL,NULL) 
\\<\\:postfix_expression ;
\\>Cpp\\:[ postfix_expression = 
postfix_expression \'(\' expression_list 
\')\'] MPI_Comm_size( MPI_COMM_WORLD, 
&size_Fraspa ) \\<\\:postfix_expression ;
\\>Cpp\\:[ postfix_expression = 
postfix_expression \'(\' expression_list
\')\'] MPI_Comm_rank( MPI_COMM_WORLD, 
&rank_Fraspa ) \\<\\:postfix_expression ;

'

),
pat3 : RSL3!Pattern(

phead <- ph3,
ptoken <- 'statement',
ptext <- pt3
),

ph3 : RSL3!PatternHead (
name <- 'search_pattern1'

),
pt3 : RSL3!SimplePatternText (

ptext <- if
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(s.pattern.substring(s.pattern.indexOf('(') -
> abs(), s.pattern.indexOf(')')->abs() ) -
> size() < 2) then

'\\>Cpp\\:[ expression = 
assignment_expression] '

s.pattern.substring(1,(s.pattern.indexOf('='))) + 

' = ' +
s.pattern.substring(((s.pattern.indexOf('='))+2),

(s.pattern -> size() -1 ))+' \\<\\:expression ;
'

else if (s.pattern.substring(
s.pattern.indexOf('('),
s.pattern.indexOf(')') )->size()  = 2) 

then
'\\>Cpp\\:[ expression = 
assignment_expression] '+

s.pattern.substring(1,(s.pattern.indexOf('=')))
+' = \\>Cpp\\:[ postfix_expression = 
simple_type_specifier \'(\' \')\']  '+
s.pattern.substring(((s.pattern.indexOf('='))
+2), (s.pattern -> size() -1 ))+'
\\<\\:postfix_expression \\<\\:expression ;
'
else if (s.pattern.substring(

s.pattern.indexOf('('),
s.pattern.indexOf(')') )->size() > 2) 

then
'\\>Cpp\\:[ expression = 
assignment_expression] '+

s.pattern.substring(1,(s.pattern.indexOf('=')))
+' = \\>Cpp\\:[ postfix_expression = 
postfix_expression \'(\' expression_list \')\']
'+
s.pattern.substring(((s.pattern.indexOf('='))+2),
(s.pattern -> size() -1 ))+'
\\<\\:postfix_expression \\<\\:expression ;

'
else

''
endif

endif
endif

),
expat2 : RSL3!ExternalPattern(

dname <-'Cpp',
eptext <- if

(s.hookType.oclIsTypeOf(PDSL!BeforeHookType))
then

'addCodeBeforeStatement'
else

'addCodeAfterStatement'
endif,

phead <- ph4,
ptoken <- 'translation_unit'
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),
ph4 : RSL3!PatternHead(

name <- if
(s.hookType.oclIsTypeOf(PDSL!BeforeHookType))
then

'addCodeBeforeStatement'
else

'addCodeAfterStatement'
endif,

params <- Sequence{param41, param42,param43, param44, 
param45}

),
param41 : RSL3!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
param42 : RSL3!PatternParameter(

name <- 'stmt' ,
referTo <- 'statement'

),
param43 : RSL3!PatternParameter(

name <- 's_seq2' ,
referTo <- 'statement_seq'

),
param44 : RSL3!PatternParameter(

name <- 'id' ,
referTo <- 'IDENTIFIER'

),
param45 : RSL3!PatternParameter(

name <- 'id2' ,
referTo <- 'IDENTIFIER'

),
rule2 :RSL3!Rule (

rname <- 'add_statements',
params <- Sequence{r2param1},
type <- 'translation_unit',
r_lhs_pattern  <- lhs2,
r_rhs_pattern <- rhs2

),
r2param1 : RSL3!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
lhs2 : RSL3!RuleLHS(

ruletext <- text21
),
text21 : RSL3!IDRuleText(

text <-'tu'
),
rhs2 : RSL3!RuleRHS(

ruletext  <- text22,
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condition <- Sequence {rulecond2}
),
text22 : RSL3!ComplexRuleText(

pref <- pr2
),
pr2 : RSL3!PatternRef (

name <- if
(s.hookType.oclIsTypeOf(PDSL!BeforeHookType))
then

'addCodeBeforeStatement'
else

'addCodeAfterStatement'
endif,

params <- Sequence{param201, param202, param203, 
param204, param205}

),
param201 : RSL3!RealParameter(

name <- 'tu'

),
param202 : RSL3!PatternRef(

name <- 'search_pattern1'
),
param203 : RSL3!PatternRef(

name <- 'add_code1'
),
param204 : RSL3!StringParameter(

name <- '' + 'main' + ' '
),
param205 : RSL3!StringParameter(

name <- ''+
s.pattern.substring(1,(s.pattern.indexOf('='))) + ' '

),
rulecond2 : RSL3!RuleNotEqCondition(

lhs <- 'tu',
pref <- pr3

),
pr3 : RSL3!PatternRef (

name <- if
(s.hookType.oclIsTypeOf(PDSL!BeforeHookType)) then

'addCodeBeforeStatement'
else

'addCodeAfterStatement'
endif,

params <- Sequence{param211, param212,param213, 
param214, param215 }

),
param211 : RSL3!RealParameter(

name <- 'tu'

),
param212 : RSL3!PatternRef(

name <- 'search_pattern1'
),
param213 : RSL3!PatternRef(

name <- 'add_code1'
),
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param214 : RSL3!PatternRef2(
ptext <- param2214

),
param215 : RSL3!PatternRef2(

ptext <- param2215
),
param2214 : RSL3!StringParameter(

name <- '' + 'main' + ' '
),

param2215 : RSL3!StringParameter(
name <- ''+
s.pattern.substring(1,(s.pattern.indexOf('='))) + ' '

),
pat4 : RSL3!Pattern(

phead <- ph5,
ptoken <- 'jump_statement',
ptext <- pt4
),

ph5 : RSL3!PatternHead (
name <- 'returnStmt'

),
pt4 : RSL3!SimplePatternText (

ptext <- 'return 0;'

),
pat5 : RSL3!Pattern(

phead <- ph6,
ptoken <- 'statement',
ptext <- pt5
),

ph6 : RSL3!PatternHead (
name <- 'add_finalize_stmt'

),
pt5 : RSL3!SimplePatternText (

ptext <- '\\>Cpp\\:[ postfix_expression = 
postfix_expression \'(\' \')\']
MPI_Finalize() \\<\\:postfix_expression ;'

),
expat3 : RSL3!ExternalPattern(

dname <-'Cpp',
eptext <- 'addFinalize' ,
phead <- ph7,
ptoken <- 'translation_unit'

),
ph7 : RSL3!PatternHead(

name <- 'addFinalize',
params <- Sequence{param71, param72,param73}

),
param71 : RSL3!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
param72 : RSL3!PatternParameter(

name <- 'jstmt' ,
referTo <- 'jump_statement'
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),
param73 : RSL3!PatternParameter(

name <- 'stmt2' ,
referTo <- 'statement'

),
rule3 :RSL3!Rule (

rname <- 'change_exit',
params <- Sequence{r3param1},
type <- 'translation_unit',
r_lhs_pattern  <- lhs3,
r_rhs_pattern <- rhs3

),
r3param1 : RSL3!PatternParameter(

name <- 'tran_unit' ,
referTo <- 'translation_unit'

),
lhs3 : RSL3!RuleLHS(

ruletext <- text31
),
text31 : RSL3!IDRuleText(

text <-'tran_unit'
),
rhs3 : RSL3!RuleRHS(

ruletext  <- text32,
condition <- Sequence {rulecond3}

),
text32 : RSL3!ComplexRuleText(

pref <- pr4
),
pr4 : RSL3!PatternRef (

name <- 'addFinalize',
params <- Sequence{param301, param302, param303}

),
param301 : RSL3!RealParameter(

name <- 'tran_unit'

),
param302 : RSL3!PatternRef(

name <- 'returnStmt'
),
param303 : RSL3!PatternRef(

name <- 'add_finalize_stmt'
),
rulecond3 : RSL3!RuleNotEqCondition(

lhs <- 'tran_unit',
pref <- pr5

),
pr5 : RSL3!PatternRef (

name <- 'addFinalize',
params <- Sequence{param311, param312,param313}

),
param311 : RSL3!RealParameter(

name <- 'tran_unit'
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),
param312 : RSL3!PatternRef(

name <- 'returnStmt'
),
param313 : RSL3!PatternRef(

name <- 'add_finalize_stmt'
),
pat6 : RSL3!Pattern(

phead <- ph8,
ptoken <- 'pp_declaration_seq',
ptext <- pt6
),

ph8 : RSL3!PatternHead (
name <- 'fileToInclude'

),
pt6 : RSL3!SimplePatternText (

ptext <- '\\>Cpp\\:[pp_declaration_seq = 
control_line]

#include <mpi.h> \\&n

\\<\\:pp_declaration_seq'
),
expat4 : RSL3!ExternalPattern(

dname <-'Cpp',
eptext <- 'IncludeFile2' ,
phead <- ph9,
ptoken <- 'translation_unit'

),
ph9 : RSL3!PatternHead(

name <- 'IncludeFile2',
params <- Sequence{param91, param92}

),
param91 : RSL3!PatternParameter(

name <- 'tran_unit' ,
referTo <- 'translation_unit'

),
param92 : RSL3!PatternParameter(

name <- 'pep_dec_seq' ,
referTo <- 'pp_declaration_seq'

),
rule4 :RSL3!Rule (

rname <- 'addIncludeFile',
params <- Sequence{r4param1},
type <- 'translation_unit',
r_lhs_pattern  <- lhs4,
r_rhs_pattern <- rhs4

),
r4param1 : RSL3!PatternParameter(

name <- 'tran_unit' ,
referTo <- 'translation_unit'

),
lhs4 : RSL3!RuleLHS(

ruletext <- text41
),
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text41 : RSL3!IDRuleText(
text <-'tran_unit'

),
rhs4 : RSL3!RuleRHS(

ruletext  <- text42,
condition <- Sequence {rulecond4}

),
text42 : RSL3!ComplexRuleText(

pref <- pr6
),
pr6 : RSL3!PatternRef (

name <- 'IncludeFile2',
params <- Sequence{param401, param402}

),
param401 : RSL3!RealParameter(

name <- 'tran_unit'

),
param402 : RSL3!PatternRef(

name <- 'fileToInclude'
),
rulecond4 : RSL3!RuleNotEqCondition(

lhs <- 'tran_unit',
pref <- pr7

),
pr7 : RSL3!PatternRef (

name <- 'IncludeFile2',
params <- Sequence{param411, param412}

),
param411 : RSL3!RealParameter(

name <- 'tran_unit'

),
param412 : RSL3!PatternRef(

name <- 'fileToInclude'
)

}

C.2. ATL Rule for Translating DALC code into RSL code

The following ATL rule shows the specification for translating one of the DALC 

specifications for checkpointing and restart into low-level RSL code.

modulemodule CSDL2RSL;

create OUT : RSL from IN : CDSL;

rule poisson {
from

s : CDSL!CDSL
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to
t : RSL!RSL (

domain <- dom,
rslelems <- Sequence {pat1, pat2, pat3, pat4, 

expat,expat2,rule1,rule2},
ruleset <- rs

),
dom : RSL!Domain  (

dname <- 'Cpp~VisualCpp6'
),
rs : RSL!RuleSet (

rsname <- 'r',
rname <- Sequence

{'change_statement','change_statement2'}
),
pat1 : RSL!Pattern(

phead <- ph,
ptoken <- 'statement_seq',
ptext <- pt
),

ph : RSL!PatternHead (
name <- 'chk_code'

),

pat2 : RSL!Pattern(
phead <- ph2,
ptoken <- 'statement_seq',
ptext <- pt2
),

ph2 : RSL!PatternHead (
name <- 'add_code'

),

expat : RSL!ExternalPattern(
dname <-'Cpp~VisualCpp6',
eptext <- 'modify' ,
phead <- ph3,
ptoken <- 'translation_unit'
--ptext <- pt3

),
ph3 : RSL!PatternHead(

name <- 'modify',
params <- Sequence{param1, param2, param3, param4}

),
param1 : RSL!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
param2 : RSL!PatternParameter(

name <- 'stmt_seq' ,
referTo <- 'statement_seq'

),
param3 : RSL!PatternParameter(

name <- 's_seq2' ,
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referTo <- 'statement_seq'

),
param4 : RSL!PatternParameter(

name <- 'id' ,
referTo <- 'IDENTIFIER'

),
expat2 : RSL!ExternalPattern(

dname <-'Cpp~VisualCpp6',
eptext <- 'delModify' ,
phead <- ph33,
ptoken <- 'translation_unit'

),
ph33 : RSL!PatternHead(

name <- 'delModify',
params <- Sequence{param13, param23, param33, 

param43, param53}
),
param13 : RSL!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
param23 : RSL!PatternParameter(

name <- 's_seq' ,
referTo <- 'statement_seq'

),
param33 : RSL!PatternParameter(

name <- 's_seq2' ,
referTo <- 'statement_seq'

),
param43 : RSL!PatternParameter(

name <- 'id1' ,
referTo <- 'IDENTIFIER'

),
param53 : RSL!PatternParameter(

name <- 'id2' ,
referTo <- 'IDENTIFIER'

),
rule1 :RSL!Rule (

rname <- 'change_statement',
params <- Sequence{rlparam1},
type <- 'translation_unit',
r_lhs_pattern  <- lhs1,
r_rhs_pattern <- rhs1

),
rlparam1 : RSL!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
lhs1 : RSL!RuleLHS(
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ruletext <- text1
),
rhs1 : RSL!RuleRHS(

ruletext  <- text2,
condition <- Sequence {rulecond1}

),
text1 : RSL!IDRuleText(

text <-'tu'
),
text2 : RSL!ComplexRuleText(

pref <- pr1
),
pr1 : RSL!PatternRef (

name <- 'delModify',
params <- Sequence{param01, param02, param03,

param04,param05}
),
param01 : RSL!RealParameter(

name <- 'tu'

),
param02 : RSL!PatternRef(

name <- 'myStart'
),
param03 : RSL!PatternRef(

name <- 'add_code'

),
param04 : RSL!StringParameter(

name <- '' + s.restartCond.pattern.substring(1,5) + 
' '

),
param05 : RSL!StringParameter(

name <- '' + s.restartCode.restartStmts->at(1).name
+ ' '

),
rulecond1 : RSL!RuleNotEqCondition(

lhs <- 'tu',
pref <- pr

),
pr : RSL!PatternRef (

name <- 'delModify',
params <- Sequence{param11, param21, param31, 

param41, param51}
),
param11 : RSL!RealParameter(

name <- 'tu'

),
param21 : RSL!PatternRef(

name <- 'myStart'
),
param31 : RSL!PatternRef(

name <- 'add_code'
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),
param41 : RSL!StringParameter(

name <- '' + s.restartCond.pattern.substring(1,5) + 
' '

),
param51 : RSL!StringParameter(

name <- '' + s.restartCode.restartStmts->at(1).name
+ ' '

),
pat3 : RSL!Pattern(

phead <- ph4,
ptoken <- 'statement_seq',
ptext <- pt4
),

ph4 : RSL!PatternHead (
name <- 'search_pattern'

),
pat4 : RSL!Pattern(

phead <- pah4,
ptoken <- 'statement_seq',
ptext <- pt5
),

pah4 : RSL!PatternHead (
name <- 'myStart'

),

rule2 : RSL!Rule (
rname <- 'change_statement2',
params <- Sequence{rlparam2},
type <- 'translation_unit',
r_lhs_pattern  <- lhs2,
r_rhs_pattern <- rhs2

),
rlparam2 : RSL!PatternParameter(

name <- 'tu' ,
referTo <- 'translation_unit'

),
lhs2 : RSL!RuleLHS(

ruletext <- text3
),
text3 : RSL!IDRuleText(

text <-'tu'
),
rhs2 : RSL!RuleRHS(

ruletext  <- text4,
condition <- Sequence {rulecond2}

),
text4 : RSL!ComplexRuleText(

pref <- pr11
),
pr11 : RSL!PatternRef (

name <- 'modify',
params <- Sequence{param011, param021, param031, 

param041}
),
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param011 : RSL!RealParameter(
name <- 'tu'

),
param021 : RSL!PatternRef(

name <- 'search_pattern'
),
param031 : RSL!PatternRef(

name <- 'chk_code'

),
param041 : RSL!StringParameter(

name <- '' + s.checkptCond.pattern.substring(1,4) + 
' '

),
rulecond2 : RSL!RuleNotEqCondition(

lhs <- 'tu',
pref <- pr2

),
pr2 : RSL!PatternRef (

name <- 'modify',
params <- Sequence{param012, param022, param032, 

param042}
),
param012 : RSL!RealParameter(

name <- 'tu'

),
param022 : RSL!PatternRef(

name <- 'search_pattern'
),
param032 : RSL!PatternRef(

name <- 'chk_code'

),
param042 : RSL!StringParameter(

name <- '' + s.checkptCond.pattern.substring(1,4) + 
' '

)
}
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APPENDIX D

RSL RULES FOR TANSFORMATIONS
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A sample of RSL rule generated by the Rule Generator in FraSPA is provided in 

Appendix D.1. The generated rules are analyzed and applied by the DMS (PTE that 

works in the backend) on the existing applications to do the required code 

instrumentation.

D.1. RSL Rule Generated by the Rule Generator in FraSPA

The following RSL rule (add_statements) can be used to add new statements

(add_code1) after the statement specified as search-pattern (search_pattern1) in the 

following code.

default base domain Cpp~VisualCpp6.

pattern add_code1() : statement_seq
=
"\>Cpp~VisualCpp6\:[ statement = expression_statement] b = 

\>Cpp~VisualCpp6\:[ postfix_expression = primary_expression] 
\>Cpp~VisualCpp6\:[unqualified_id = template_id] 

exchange<double>
\<\:unqualified_id

\<\:postfix_expression
(b, myrows_Fraspa+2, mycols_Fraspa+2, P_Fraspa, Q_Fraspa, 
p_Fraspa, q_Fraspa, comm2d_Fraspa,rowcomm_Fraspa, colcomm_Fraspa);

\<\:statement".

pattern search_pattern1() : statement
=
"\>Cpp~VisualCpp6\:[ expression = assignment_expression]  b = 

\>Cpp~VisualCpp6\:[ postfix_expression = simple_type_specifier '(' 
expression_list ')']
compute(a, f, b, M, N) 

\<\:postfix_expression
\<\:expression ; ".

external pattern addCodeAfterStatement(tu : translation_unit, stmt : 
statement, s_seq2 : statement_seq, id : IDENTIFIER, id2 : IDENTIFIER) : 
translation_unit

=
'addCodeAfterStatement' in domain Cpp~VisualCpp6.

rule add_statements(
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tu : translation_unit)
:

translation_unit->
translation_unit

=
tu

->
addCodeAfterStatement(tu, search_pattern1(), add_code1(), "main ", 

"compute ")
if tu ~= addCodeAfterStatement(tu, search_pattern1(), add_code1(), 

"main ", "compute ")
.

public ruleset r = {add_statements}.
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APPENDIX E

BACK-END TRANSFORMATION FUNCTIONS



182

The PARLANSE external functions that are reusable or shared among multiple RSL rules 

in both Hi-PaL and DALC are shown in Appendix E.1. and E.2. The following 

PARLANSE external functions are useful for pattern-matching required for applying the 

RSL rules for transforming the existing applications. 

E.1. PARLANSE Function for Searching the Return Statement 

The following PARLANSE external function is useful for searching the return 

statement in the “main” function to insert the MPI_Finalize() library call before it.

`this function is used for adding MPI_Finalize() before the return in
`function main.

statement':
(define addFinalize

(lambda Registry:CreatingPattern 
(value (local (;; 
[representation_instance AST:RepresentationInstance]
[new_node2 AST:Node]
[new_node1 AST:Node] 
[search_node AST:Node]
);;

(;;
(= representation_instance 
(AST:GetForestRepresentationInstance
(AST:GetForst arguments:1 )
(AST:GetRepresentation arguments:1)))
(= new_node2 (AST:CreateNode representation_instance 
GrammarConstants:NodeTypes:_statement_seq_2))
(= new_node1 (AST:CreateNode representation_instance 

GrammarConstants:NodeTypes:_statement_2))
(AST:ScanTreeNodes  arguments:1
(lambda (function boolean AST:Node

)function
(value (local (;; );;
(;;
(ifthen (== (AST:GetNodeType ?) 
GrammarConstants:NodeTypes:_jump_statement_3)
(ifthen (== (@(AST:GetString ?)) 

(@(AST:GetString arguments:2)))
(;;

(= search_node (AST:GetParent 
(AST:GetParent ?)))
(ifthen (~= search_node 
AST:VoidNode)
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(;;
(AST:ConnectNthChild new_node2 1 arguments:3)
(AST:ConnectNthChild new_node2 2 arguments:2)
(AST:ConnectNthChild new_node1 1 new_node2)

(AST:ReplaceTree search_node new_node1)
);;

)
);;

)ifthen
)ifthen

(return ~t)
);;

)local
~t
)value
)lambda

)
(return arguments:1)

);;
)local
(void AST:Node)
)value
)lambda

)define

E.2. PARLANSE Function for Including Helper Files

The following PARLANSE external function is useful for inserting the directives 

for including helper files in the program that is to be transformed. An example of the file 

that can be inserted by using the following function is “mpi.h”. 

(define IncludeFile2
(lambda Registry:CreatingPattern 
(value (local (;; 

[representation_instance AST:RepresentationInstance] 
[search_node AST:Node]
[pp_declaration_seq_node AST:Node] 
[new_node1 AST:Node]
[func_node AST:Node]
[id_node AST:Node]
);;
(;;
(= representation_instance (AST:GetForestRepresentationInstance 

(AST:GetForest arguments:1 )  (AST:GetRepresentation 
arguments:1)))

(= new_node1 (AST:CreateNode representation_instance 
GrammarConstants:NodeTypes: _declaration_seq_2))

(= search_node (AST:FindChildWithProperty  arguments:1
(lambda (function boolean AST:Node )function
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(value (local (;;  );;
(;;
(ifthen (== (AST:GetNodeType ?) 867)
(;;
(= func_node (GetChildFromParent ? 1239))

(= id_node (GetChildFromParent func_node 1915))

(ifthen (== (@(AST:GetString id_node)) `main')
(;;

(return ~t)
);;

)ifthen
);;

)ifthen
(return ~f)
);;

)local
~f

)value
)lambda

)
)

(ifthen (~= AST:VoidNode search_node)
(;;

(= pp_declaration_seq_node (GetParentFromChild search_node 
855))
(ifthen (~= AST:VoidNode pp_declaration_seq_node)

(;;
(AST:ConnectNthChild new_node1 1 arguments:2)
(AST:ConnectNthChild new_node1 2 search_node)
(AST:ReplaceNthChild pp_declaration_seq_node 1 new_node1)

);;
)ifthen

);;
)ifthen
(return arguments:1)

);;
)local
(void AST:Node)
)value
)lambda
)define
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