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AN EXAMINATION OF STATISTICAL METHODS FOR LONGITUDINAL 
MEDIATION MODELING 

 
JOHN P. BENTLEY 

 
BIOSTATISTICS 

 
ABSTRACT 

 
The use of mediation modeling is quite prevalent in a number of disciplines to 

answer questions about how or why one variable exerts its influence on another variable.  

Although mediation can be assessed in the context of several types of study designs, the 

use of cross-sectional data and a single-mediator model tend to be the most commonly 

reported features in empirical tests of mediation.  There are several limitations associated 

with assessing mediation with cross-sectional data, perhaps the most significant is that 

mediated effect estimates are biased in the case of true longitudinal mediation. For this 

and several other reasons, there has been a greater emphasis on the development of 

longitudinal mediation models. 

There are several classes of models for evaluating longitudinal mediation with the 

collection of three or more waves of data.  These models are increasingly utilized in the 

applied literature and methodological research continues to evaluate them, as well as 

extensions and new approaches.  Despite their use in substantive research, the 

preponderance of mediation hypotheses are still tested with cross-sectional data.  

Furthermore, consensus on the optimal implementation of longitudinal mediation 

modeling methods is largely lacking and there are many unanswered questions. 

In the first paper of this dissertation we sought to demonstrate the application of 

one approach to longitudinal mediation modeling, namely the autoregressive model, and 

build on a set of steps recommended for testing such models.  In the other papers we 
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attempted to address significant methodological questions related to different methods of 

longitudinal mediation modeling.  Paper two explored the effects of unreliability and the 

failure to account for shared method variance in the autoregressive mediation model.  

Paper three evaluated the statistical performance of methods used to test mediation in a 

two-stage piecewise parallel process latent growth curve model and examined the impact 

of misspecifying the true piecewise model as a single-stage parallel process model.  

Although mentioned in the literature as a possible method to address a substantial 

criticism associated with parallel process mediation models (i.e., the inability to delineate 

temporal ordering), piecewise growth models are rarely utilized in substantive research 

and lack a full elaboration in the literature. 
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INTRODUCTION 

Tests of statistical mediation provide a useful set of techniques for understanding 

complex relationships among variables.  At its most basic level, mediation occurs when 

an independent variable (X) (also called the putative causal variable) causes an 

intervening variable or mediator variable (M), which in turn causes the dependent 

variable (Y).  Such models can be used to explore relationships among variables, such as 

how individuals’ attitudes affect behavior through intentions, to evaluate the validity of 

surrogate endpoints (variables that can be used instead of the ultimate dependent 

variable), or to assess how or why an intervention produces change on an outcome 

variable.  Understanding the latter may help researchers design more effective treatments 

and prevention programs by focusing on components of an intervention that change 

mediator constructs which are ultimately shown to cause changes in an outcome.  Such 

efforts are an attempt to understand the underlying mechanisms of an intervention. 

Mediation models can be fit in the context of linear regression, logistic regression 

and probit regression (see MacKinnon, Lockwood, Brown, Wang, & Hoffman, 2007), 

path analysis and structural equation modeling (see Bollen, 1987), survival analysis (see 

Tein & MacKinnon, 2003; Mittelman, Haley, Clay, & Roth, 2006), multilevel modeling 

(see Krull & MacKinnon, 2001), and other techniques.  Decisions regarding the 

appropriate use of which statistical method depends on a number of factors, including the 

number and type (i.e., continuous vs. discrete) of the putative causal, mediator, and 
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outcome variables, the inclusion of latent variables extracted from multiple indicator 

variables, the presence of correlated data (such as repeated-measures data or students 

nested within classes), and the nature of the underlying mediation question. 

Statistical methods for assessing mediation with continuous variables from a 

multivariate normal distribution gathered in a cross-sectional manner are well described, 

usually based on the general linear model (e.g., see MacKinnon, Lockwood, Hoffman, 

West, & Sheets, 2002).  Not surprisingly, the use of cross-sectional data (or longitudinal 

data treated in a quasi cross-sectional manner, i.e., failing to fully account for the 

repeated measurement of the mediator and the outcome) is still the norm in most 

empirical tests of mediation, especially in the field of psychology (Maxwell & Cole, 

2007), where mediation modeling is often conducted.  The collection of longitudinal data 

adds potentially improved interpretation, but introduces a number of modeling options 

and additional considerations (Cole & Maxwell, 2003; Maxwell & Cole, 2007; Collins & 

Graham, 2002). 

There are several approaches available for researchers attempting to assess 

longitudinal mediational relationships and such methods are being increasingly utilized in 

the applied literature.  Furthermore, methodological research continues to evaluate these 

models, as well as extensions and new approaches.  However, despite their growing use 

in substantive research, the preponderance of mediation hypotheses are still tested with 

cross-sectional data.  Furthermore, consensus on the optimal implementation of these 

longitudinal mediation modeling methods is largely lacking and there are still many 

unanswered questions. 
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Therefore, the purpose of this dissertation was: 1) to demonstrate the application 

of one approach to longitudinal mediation modeling, namely the autoregressive 

mediation model, and build on a set of steps recommended for testing such models; and 

2) to address significant methodological questions related to two different classes of 

longitudinal mediation models, the autoregressive mediation model and the parallel 

process latent growth curve model of mediation. 

The following sections in this chapter review several concepts related to 

mediation, with an explicit emphasis on longitudinal mediation modeling.  While the use 

of time-to-event variables could be conceptualized to fall under this umbrella, this paper 

will not discuss mediation modeling in the context of survival analysis.  Rather, it will 

focus on the case where measures of the mediator and outcome variables (and possibly 

the putative causal variable, although it is possible that that could be a time-invariant 

variable, such as assignment to experimental condition) are collected on repeated 

occasions.  There are several different models available to researchers to assess mediation 

in the context of a longitudinal design.  The autoregressive model and the random effects 

model (specifically, the latent growth curve model) form the basis of the methods 

evaluated in this dissertation and thus will receive the most emphasis.   

 

1.1 Overview of Mediation Modeling 

1.1.1  The General Concept of Mediation 

In their seminal piece, Baron and Kenny (1986) define a mediator as a variable 

that accounts for all or part of the relation between a predictor and an outcome.  A 

definition that more clearly delineates the causal nature of mediation relationships comes 
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from Hoyle and Kenny (1999): “Statistical mediation is present when it can be 

demonstrated that the causal influence of one variable on another is transmitted through 

one or more additional variables, referred to as mediators or intervening variables.” 

 Although the terminology differs (and occasionally the assumptions and 

statistical tests), the concept of mediation, more broadly labeled the intervening variable 

effect, is prevalent in many different disciplines.  MacKinnon et al. (2002) note that 

psychology frequently uses the term mediation, sociology uses indirect effect, and 

epidemiology and the biomedical sciences use surrogate or intermediate endpoint effect.  

Examples of the latter provided by MacKinnon (2008a) and MacKinnon et al. (2007) 

include serum-cholesterol as a surrogate endpoint for coronary heart disease and 

measures of immune system response as a surrogate for death in HIV-infected 

individuals.  In the health literature, some suggest that the criteria for establishing the 

validity of a surrogate outcome include a finding that the surrogate endpoint explains all 

of the relation between a treatment and the ultimate dependent variable (in the mediation 

literature, this is referred to as complete mediation) (Prentice, 1989; Freedman, Graubard, 

& Schatzkin, 1992).  This is not a requirement for establishing mediation in the social 

sciences, as Baron and Kenny (1986) explicitly allow for the possibility of partial 

mediation, because rarely in the social sciences can a single variable explain the entire 

relation between predictor and outcome. 

Variables added to models may serve a variety of roles.   When a third-variable is 

added to a model, it can change the interpretation of the relationship between X and Y.  

These effects are termed third-variable effects and several types are possible.  Mediation 



5 
 

as described above is one type of third-variable effect.  Confounding and moderation are 

other commonly examined third-variable effects.    

In the context of a cross-sectional design, MacKinnon, Krull, and Lockwood 

(2000) note that mediation and confounding are mathematically identical concepts and 

can only be distinguished conceptually.  Confounding differs conceptually from 

mediation in that a confounder is not an intermediate effect in a causal sequence – it is 

simply related to both X and Y.  Mediators transmit the effect of X on Y through the 

mediator M.  Some criteria for defining a confounder explicitly state that the confounder 

must not be an effect of the independent variable – it cannot be part of the causal pathway 

(Rothman, Greenland, & Lash, 2008).  Cole and Maxwell (2003) and Maxwell and Cole 

(2007) note that distinction among these third-variable effects can only be made in the 

context of a longitudinal design.  The use of cross-sectional data (or longitudinal data 

treated in a quasi cross-sectional manner, i.e., failing to fully account for the repeated 

measurement of the mediator and the outcome) is still the norm in most empirical tests of 

mediation (Maxwell & Cole, 2007).  The biases associated with the use of cross-sectional 

data to assess longitudinal mediation will be discussed in a later section. 

The concepts of moderation and mediation are often confused.  As mentioned 

above, mediation is a type of intervening variable model, and a mediation model 

hypothesizes that X causes M which then causes Y.  On the other hand, a moderator 

variable alters the strength or direction of the relationship between the independent 

variable and the dependent variable; in essence, the relationship between the X and Y is 

different at different levels of the moderator (Baron & Kenny, 1986).  Moderation 
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involves the presence of an interaction, whereas mediation implies that the effect of X is 

transmitted through the mediator. 

 

1.1.2 Mediation in the General Linear Model Framework: Terminology of Mediation 
Modeling 

 
Before discussing the problems associated with the estimation of longitudinal 

mediated effects with cross-sectional data and reviewing commonly used longitudinal 

mediation models, it is useful to review the traditional mediation model in a general 

linear model framework (i.e., the single mediator, single-level, cross-sectional mediation 

model with continuous X, M, and Y).  Such a review serves to introduce the basic 

terminology associated with mediation modeling.  The necessary regression equations 

and path models for this model can be found in Figure 1. 

  

 

 
 

Figure 1. Path diagram and equations for the basic single-mediator model. 

Independent 
variable

X

Dependent 
variable

Y

Intervening 
variable 

(Mediator)
M

Independent 
variable

X

Dependent 
variable

Y0(1) (1)Y X    

(3)

(2)

0(2) (2)

0(3) (3)

Y X M

M X

   

  

   

  



 

’

(1)

Total effect  +  (=  with OLS regression)  
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There are two general approaches to quantify mediation (MacKinnon et al., 2002).  

The difference in coefficients method estimates the size of the mediated effect (or 

indirect effect) by taking the difference between the regression coefficients of Y on X 

before and after adjustment for the mediator (    in Figure 1).  The product of 

coefficients method estimates the indirect effect as the product of the regression 

coefficient of M on X and the partial regression coefficient of Y on M adjusted for X  

(  in Figure 1).1 The direct effect (  ) represents the effect of X on Y that is not 

transmitted through M.  In the case of a continuous outcome variable with ordinary least 

squares models and assuming no missing data, MacKinnon, Warsi, and Dwyer (1995) 

showed that     is algebraically equivalent to  .  This same finding is generally not 

true for other models, such as models with multiple mediators, logistic regression models 

with a binary mediating or outcome variable, and longitudinal mediation models with 

repeated observations on mediators or outcomes (e.g., see MacKinnon & Dwyer, 1993; 

MacKinnon et al., 2007; Roth & MacKinnon, 2012). 

Until Sobel (1982) derived an estimate of the standard error of the mediated effect 

(for product of coefficients method) using the multivariate delta method based on a first-

order Taylor series approximation, researchers typically used a series of hypothesis tests 

to demonstrate the presence of mediation (e.g., the Baron & Kenny (1986) and Judd & 

Kenny (1981) causal steps methods).  Based on a series of simulation studies, 

MacKinnon et al. (2002) show that such procedures are low in power.  In addition, the 

causal steps methods fail to directly address the mediational hypothesis, rather focusing 

attention on inferring the presence of indirect effects from patterns in a set of regression 

                                                            
1Note that in practice, estimates of the population parameters ( ˆˆˆ ˆ, , ,    ) are used for the calculations. 
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coefficients (Little, Preacher, Selig, & Card, 2007).  Although there are other available 

standard error formulas, including standard errors for difference in coefficients methods 

(see MacKinnon et al., 2002 for a review), the Sobel derived standard error is the most 

commonly used standard error to test for statistical significance of the mediated effect 

and to construct confidence intervals (using the standard normal distribution): 

2 2 2 2
ˆ ˆ

2 2
ˆ ˆ ,  where  and  correspond to the

ˆˆsquared standard errors of  and , respectively.

ˆˆfirst s ss s s  

 

  

 
 

To test the null hypothesis of no mediation  0 : 0H   , the estimate of the mediated 

effect, ˆ̂ , is divided by the Sobel standard error and this ratio is compared to the 

standard normal distribution.  The Sobel standard error is implemented in several 

statistical software programs, such as LISREL, EQS, and Mplus, and will be used in all 

three studies comprising this dissertation. 

It is important to note that the Sobel standard error is not without its critics.  The 

use of the Sobel standard error relies on asymptotic theory (i.e., normal-theory 

confidence limits and hypothesis tests).  The distribution of a product of two independent 

normally distributed random variables is generally not normally distributed, although it 

may approach normality in large samples (MacKinnon, 2008a).  The net result is 

generally conservative hypothesis tests (low Type I error rates and low power) and 

confidence intervals (i.e., empirical coverage probabilities larger than 95% for a 95% 

confidence interval).  An alternative to the Sobel test is the joint significance test of 

mediation discussed by Cohen and Cohen (1983).  This test declares a significant 

mediated effect when the paths comprising the mediated effect are both statistically 

significant.  For the basic single-mediator model in Figure 1, two null hypotheses are 



9 
 

tested  0 0: 0 and : 0H H    and there is evidence for mediation when both null 

hypotheses are rejected (i.e., the paths are jointly significant).  No estimate of the 

mediated effect is necessary and such a test does not provide confidence intervals. 

Other alternatives to the Sobel standard error (and similarly calculated measures) 

include one of several methods of bootstrapping (Shrout & Bolger, 2002; MacKinnon, 

Lockwood, & Williams, 2004; Preacher & Hayes, 2004; Cheung & Lau, 2008) or 

methods that construct asymmetric confidence intervals based on the theoretical 

distribution of the product of two random normal variables (hypotheses tests can be 

conducted based on such confidence intervals) (MacKinnon et al., 2004, MacKinnon et 

al., 2007). 

Some have advocated for the use of a proportion mediated measure as an 

alternative to the product of coefficients and difference in coefficients methods to 

quantify mediation (e.g., see Vittinghoff, Sen, & McCulloch, 2009).  In the case of a 

continuous outcome variable with no missing data, the following formulae provide 

equivalent values of the proportion mediated effect: 

 ,       ,       
   
   



 

 
It is important to note that proportion mediated effect can be less than zero or greater than 

one.  In addition, based on simulation studies, the stability of this measure has been called 

into question unless the effect is large or the sample size is large (N > 500) (MacKinnon, 

Warsi, & Dwyer, 1995). 
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1.1.3  Mediation Modeling with Cross-Sectional Data 

As defined earlier, mediation implies a temporal relation among X, M, and Y 

(MacKinnon, 2008a).  Thus, X should occur before M and M should occur before Y.  

This temporal relationship may help to clarify differences between mediation and other 

third-variable effects.  For example, time-invariant variables (e.g., gender) might be 

conceptualized and shown to serve as moderators (i.e., effect modifiers), but they cannot 

be intermediate variables because an independent variable cannot change a time-invariant 

variable.  More importantly though, it helps shed some light on the difficulties associated 

with establishing mediation relationships with cross-sectional data. 

MacKinnon (2008b) describes several benefits of using longitudinal data to 

evaluate mediation processes.  First, more information regarding the temporal 

sequentiality of X, M, and Y is provided with longitudinal data, a critical underlying 

assumption of mediation.  Second, longitudinal data allow for an examination of 

associations within waves of data (i.e., cross-sectional, between subjects) and changes 

across waves of data (i.e., within individuals).  Finally, individuals may serve as their 

own control in assessing some relationships, thereby potentially controlling for static 

differences among individuals. 

In their discussion of why cross-sectional data generally provide poor estimates of 

effects, Gollob and Reichardt (1991) note another related set of benefits to the use of 

longitudinal data to assess mediation.  First, causal effects often take time to develop, and 

variables measured at the same time may not allow for the necessary development time.  

Second, variables often have effects on themselves, such that Y at a later time is related 

to Y at an earlier time (cross-sectional models implicitly assume these autoregressive 
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effects are zero).  Related to this issue, Cole and Maxwell (2003) note that it is not 

sufficient to merely allow a time lag between X and M and then between M and Y to 

achieve unbiased estimates of effects because of the potentially confounding effects of 

prior levels of the M and Y (for example of a published article using such an approach to 

longitudinal mediation analysis, see Plotnikoff, Pickering, Flaman, & Spence, 2010).  

Third, effect sizes often depend on the amount of time separating observations.  While 

this may often present itself as a considerable problem with longitudinal studies as will be 

discussed later (Gollob & Reichardt, 1991; Collins & Graham, 2002; Cole & Maxwell, 

2003), cross-sectional data ignore such potentially problematic issues by simply not 

specifying the time interval under study. 

 These issues suggest that the use of cross-sectional data will often result in biased 

estimates of true causal effects.  In the case of true longitudinal mediation, Maxwell and 

Cole (2007) demonstrate that cross-sectional analyses provide biased estimates of the 

indirect effect in two different models of change, the autoregressive model and a random 

effects model (their work assumes continuous X, Y, and M that all change over time, as 

well as the case of complete mediation).  These models will be reviewed in a subsequent 

section of this paper (and variants of each will be evaluated in parts of this dissertation).  

The pattern of bias (i.e., direction and degree) for these two models depends on different 

factors.  For example, the pattern is strongly related to the degree of stability (defined in 

their work as the correlation of a variable with itself at time t and time t + 1) in X and M 

in the autoregressive model and to the extent of variability across individuals in baseline 

levels of M and Y, as well as the degree of correlation between these baseline levels with 
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each other and with levels of X (essentially covariance among random effects), in the 

random effects model. 

 Gollob and Reichardt (1991) propose and develop a latent longitudinal model for 

use with cross-sectional data (the “missing” measures at earlier time points are not 

measured, hence the term latent).  Several constraints must be added in order for their 

model to be identified and some have argued that these constraints (assumptions) are 

often unrealistic, and testable only with longitudinal data (Cole & Maxwell, 2003; 

MacKinnon, 2008b). 

 This brief review suggests that in many situations there may not be an adequate 

substitute for longitudinal data when the goal is to assess mediation.  Given this, several 

different options for modeling mediation with multiple waves of data have been 

developed.  These models are based on techniques developed for longitudinal data 

analysis in general (i.e., without the explicit goal of assessing mediation).  Although these 

models have some well understood properties, there is still a significant amount of 

unknown information concerning the appropriate use of the models and the conditions 

under which these models accurately represent true population effects. 

 

1.1.4  Summary of Basic Mediation Modeling 

Before exploring models for assessing longitudinal mediation, it may be helpful to 

summarize issues with respect to basic mediation modeling.  Numerous articles 

estimating and testing mediated effects, especially in the psychology literature, have been 

published in a variety of substantive areas, most typically employing a cross-sectional 

design with X, M, and Y measured simultaneously, usually as continuous variables.  In 
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addition to these content applications, a number of methodological and statistical issues 

with respect to mediation have been explored.  Many of these issues have been 

investigated with Monte Carlo simulation methods (Paxton, Curran, Bollen, Kirby, & 

Chen, 2001; Fan & Fan, 2005; Bandalos, 2006) while others have been investigated 

analytically (e.g., Maxwell & Cole, 2007).  For example, authors have investigated the 

effects of nonnormality in the estimating of mediated effects (Finch, West, & 

MacKinnon, 1997), while several other authors have explored the impact of measurement 

error on estimates and tests of mediation in the cross-sectional mediation model (Hoyle & 

Kenny, 1999; Stephenson & Holbert, 2003; Cheung & Lau, 2008).  Several studies have 

examined the accuracy of various standard error formulae for the mediated effect (e.g., 

MacKinnon et al., 2002), while others have examined the related topic of confidence 

interval construction, including the use of resampling methods such as bootstrapping 

(Shrout & Bolger, 2002; Preacher & Hayes, 2004; MacKinnon, Lockwood, & Williams, 

2004; MacKinnon et al., 2007; Cheung 2007; Cheung & Lau, 2008).  Still others have 

explicitly considered confidence intervals for the standardized indirect effect (Cheung, 

2009).  Raykov and colleagues (2008) developed a general strategy for comparing the 

sizes of mediated effects.  

Multiple mediator models, both the situation when multiple variables mediate the 

relationship between X and Y (i.e., XM1Y and XM2Y) (MacKinnon, 2008c) as 

well as the situation of longer chain mediation models (XM1M2Y) (Taylor, 

MacKinnon, & Tein, 2008) have been explored.  The concepts of mediated moderation 

and moderated mediation were described by Baron & Kenny (1986). Several authors 

have recently discussed procedures to address these concepts (Muller, Judd, & Yzerbyt, 
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2005; Edwards & Lambert, 2007; Preacher, Rucker, & Hayes, 2007; Fairchild & 

MacKinnon, 2009). 

Finally, ubiquitous in its assessment in Monte Carlo simulation studies of 

mediation models (and structural equation modeling more generally) is the role of sample 

size.  This is because many applications routinely use small sample sizes and the impact 

on the properties of point estimators, confidence intervals, hypothesis tests, and measures 

of goodness of fit is often not well understood for small to moderate sample sizes (Paxton 

et al., 2001). 

Mediation continues to be a very active area of methodological and statistical 

research, primarily in psychology, but in other areas as well. For example, research 

concerning sample size calculations for mediation analysis has been published in both 

psychology (Fritz & MacKinnon, 2007) and statistics (Vittinghoff, Sen, & McCulloch, 

2009) journals.  

Despite the large number of application-based and methods-based research 

conducted in the area of mediation modeling, numerous issues remain unresolved.  For 

example, causal inference approaches for evaluating mediation models are receiving 

significant attention in the literature (see MacKinnon, 2008d, for a review).  Expansion of 

the general mediation model to different types of variables, such as count variables and 

two-part models (used when there are a preponderance of zeros, such as the modeling of 

health expenditures (see Dow and Norton, 2003)), remain largely unexplored.  Finally, 

despite the availability of several models for exploring longitudinal mediation, a number 

of issues regarding the evaluation of these models remain unexplored.  For example, 

several years ago Cheong, MacKinnon, and Khoo (2003, p. 260) observed the following 
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regarding one specific model for exploring longitudinal mediation which still holds 

today: 

Although applications of parallel process LGM [latent growth modeling] 
have begun to appear in the substantive research, little is known about 
how accurately the parameters are recovered.  Researchers can set the 
parameter values of the population model for the parallel process and 
investigate the conditions under which an accurate representation of the 
true population is reproduced.  In addition, Type I error rates and 
statistical power can be investigated. 

 
 

1.2 Longitudinal Mediation Modeling 

Before discussing the specific longitudinal mediation models that will be explored 

in this dissertation (i.e., models for which three of more waves of data are collected), it 

may be useful to review some terminology and to also briefly mention available options 

for two-wave models.  The concepts of stability, stationarity, and equilibrium are 

frequently mentioned in discussions of longitudinal models (Kenny, 1979; Cole & 

Maxwell, 2003; Maxwell & Cole, 2007; MacKinnon, 2008b).  Although stability is 

sometimes referred to as an unchanging mean of a variable over time (MacKinnon, 

2008b), it is also used to refer to a substantial correlation between the same variable 

measured at time t and t + 1.  Stationarity refers to whether the relationships among 

variables are the same over time (i.e., an “unchanging causal structure”) while 

equilibrium suggests the cross-sectional variances and covariances among variables do 

not depend on the time of measurement.  In order to assume that the observed 

relationships among X, M, and Y are not simply due to the time of their measurement, 

some degree of equilibrium and stationarity must be present.  Fortunately, these 

assumptions can be tested with longitudinal data.  However, they cannot be tested with 
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cross-sectional data and thus must be (sometimes fallaciously) assumed when cross-

sectional data are used to test mediation (Cole & Maxwell, 2003).  In addition, the degree 

of stability in X and M plays a large role in determining the pattern of bias when cross-

sectional data are used to estimate longitudinal mediation. 

Although some advocate that three waves of data are necessary to truly test 

mediation (Collins, Graham, & Flaherty, 1998), it is possible to provide some evidence of 

mediation with two waves of data.  MacKinnon (2008b) outlines three approaches: 

1. Difference scores – Difference scores (t2 – t1, where ti = measurement at time i = 

1,2) are calculated for each of X, M, and Y and these difference scores are then 

used in the traditional mediation model (Figure 1). 

2. Residualized change scores – Predicted scores for t2 are calculated based on t1 

scores (using the linear regression of t2 on t1) for each of X, M, and Y.  The 

residualized change score is the difference between t2 observed scores and 

predicted scores at t2 (based on t1).  The residualized change scores for X, M, and 

Y are then used in the traditional mediation model (Figure 1). 

3. ANCOVA – A variety of different models are available in which t1 measures are 

used as covariates in models with either raw scores at t2 or change scores used as 

dependent variables.  One possible path diagram can be found in Figure 2 (Cole & 

Maxwell, 2003). This model is called a two-wave autoregressive model by 

MacKinnon (2008b).  Assuming stationarity, a*b provides an estimate of the 

mediated effect of X on Y through M.  MacKinnon (2008b) elaborates on this 

model and provides estimates of contemporaneous effects as well (i.e., X2M2, 

and M2Y2).  It should be noted that a*b is not usually equal to c – c’ (this is the 
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difference in coefficients estimator of the mediated effect described in section 

1.1.2, where c and c’ are used instead of  and ’, respectively) in two-wave 

models and covariate-adjusted wave 2 effects are not generally equivalent to 

covariate-adjusted change score effects, introducing some uncertainty and 

variability in methods for testing two-wave mediation effects (Roth & 

MacKinnon, 2012). 

 

Figure 2. Two-wave autoregressive model. 
 

The increased complexity in two-wave models over cross-sectional models is 

extended and becomes even more complex in models with three or more waves of data.  

Yet, such models offer much promise for providing for precise and compelling tests of 

mediation hypotheses.  Longitudinal models with three or more waves of data comprise 

the over-riding focus of this dissertation. 

There are several classes of models for evaluating longitudinal mediation with the 

collection of three or more waves of data, including 1) autoregressive models, sometimes 

called panel models or cross-lagged panel models (Gollob & Reichardt, 1991; Cole & 

Maxwell, 2003), 2) different types of random effects models (Kenny, Korchmaros, & 

Bolger, 2003; Cheong, MacKinnon, & Khoo, 2003; Cheong, 2011; von Soest & Hagtvet, 
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2011), 3) a stage-sequential model of mediation based on binary data (Collins, Graham, 

& Flaherty, 1998), 4) adaptations of latent difference score models which are useful when 

electing to examine potential differences at different waves of data (McArdle, 2009; 

Geiser et al., 2010), and 5) an autoregressive latent trajectory (ALT) model, which 

combines elements of 1 and 2 (Curran & Bollen, 2001).  Because versions of 

autoregressive and random effects models will be explored in this dissertation, we will 

further explore these models. 

 

1.2.1 Autoregressive Mediation Models 

The basic premise of autoregressive models is that the values of a variable at a 

future time point depend in some part on an earlier time point.  The simplest of these 

models involves one variable measured at multiple time points for a set of individuals, 

where the value of the variable (Y) for individual i at time t + 1 is a linear function of that 

individual’s value of Y at time t: 

1 0 1 1it it itY Y       (1.1)  

 

1where  is an index of stability over time.  

This basic model (the univariate model) is often referred to the simplex model (or 

the Markov simplex model) (Marsh, 1993; Curran & Bollen, 2001) and dates back to the 

work of Guttman (1954).  Gollob and Reichardt (1991) and subsequently Cole and 

Maxwell (2003) extended the univariate simplex model to a trivariate model, an 

autoregressive mediation model, involving X, M, and Y (see Figure 3 for the basic 

structure of this model with three waves – note that in this model a is used instead of , b 

instead of , and c’ instead of ’ to correspond to the notation used by Cole & Maxwell 
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(2003), Maxwell & Cole (2007) and MacKinnon (2008b)).  Parameter estimation and the 

calculation of standard errors involve solving a system of simultaneous equations and is 

usually accomplished using covariance structure analysis (also called structural equation 

modeling – SEM) (Cole & Maxwell, 2003; MacKinnon, 2008b).  In essence, this 

involves finding a set parameter estimates that yields a predicted variance-covariance 

matrix (one that is implied by the estimates of the unknowns) that most closely 

reproduces the sample variance-covariance matrix.  The traditional method of estimation 

in SEM is maximum likelihood, although many other options are available and are often 

the focus of Monte Carlo simulation studies in SEM (Gerbing & Anderson, 1993; Paxton 

et al., 2001; Fan & Fan, 2005; Bandalos, 2006). 

 
 

Figure 3. Basic three-wave autoregressive mediation model. 
 

The basic longitudinal mediated effect in the model in Figure 3 is a*b.  Assuming 

stationarity, which is testable in this model, it should not matter which a or b is used, 

however it is common to use X1M2 as the a path and M2Y3 as the b path to reflect 

temporal ordering.  In a single-mediator, cross-sectional model of mediation, the 

condition of a zero direct effect (i.e., the relationship between X and Y adjusted for M) 
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implies the case of complete or perfect mediation (Baron & Kenny, 1986).  A direct 

effect of X1 on Y3 is represented by the c’ path in Figure 3.  Although the condition of c’ 

= 0 is necessary, it is not a sufficient condition for mediation to be complete in the 

autoregressive mediation model.  Assuming the x and y paths are nonzero, X1 could 

directly affect Y3 (i.e., not go through M) through Y2 (i.e., X1Y2Y3 is a time-specific 

direct effect).   In autoregressive mediation models, these other direct effects must also be 

zero for mediation to be complete (Cole & Maxwell, 2003). 

The earlier discussion with respect to the calculation of standard errors and the 

construction of confidence intervals in the traditional (i.e., cross-sectional) mediation 

model still applies (MacKinnon, 2008b).  It is worth briefly exploring the covariance 

among the residuals at waves 2 and 3.  MacKinnon (2008b) suggests that this is necessary 

to reflect that there are contemporaneous relationships among X, M, and Y, but the causal 

order is unknown.   A more informative explanation is provided by Cole and Maxwell 

(2003, p. 571), who note that the finding of significant and meaningful covariation among 

these residuals implies that “potentially important variables are missing from the model.” 

These variables may be important confounders that, if ignored, may lead to biased 

estimates. 

There are numerous extensions to the model in Figure 3.  Lag 1 direct effects of X 

to Y can be added (X1Y2; X2Y3), implying additional mechanisms of partial 

mediation.  Contemporaneous mediation relationships might be tested (i.e., 

X2M2Y2).  The presence of “theoretically backward effects” (Cole & Maxwell, 

2003, p. 571) or cross-lagged relationships can be tested (i.e., Y1M2, M2X3).  The 

addition of more waves allows one to estimate both time-specific indirect effects (i.e., 
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X1M2Y3), as well as the overall indirect effect (Gollob & Reichardt, 1991; Cole & 

Maxwell, 2003).  For example, for the four wave model in Figure 4, there are three time-

specific indirect effects: 

1. X1X2M3Y4 
2. X1M2M3Y4 
3. X1M2Y3Y4 

 

 

Figure 4. Four-wave autoregressive mediation model. Note that several arrows have been 
removed to simplify the figure. 
 

The overall indirect effect of X1Y4 is the sum of the time-specific indirect 

effects.  In this case: abx + abm + aby.  This addresses the question of whether M 

mediates the effect of X1 on Y4 at any time between waves 1 and 4 (rather than at some 

specific point), a question usually of greater interest to researchers (Cole & Maxwell, 

2003).  More waves of data create a greater number of indirect effects from which to 

choose.  It also creates issues with respect to standard error calculations.  Taylor, 

MacKinnon, and Tein (2008) have derived formulas for standard errors for the three-path 

mediated model, extending the work of Sobel (1982) and Goodman (1960), but these 

calculations are complex and grow in complexity with more waves (and may be quite 
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inappropriate for smaller samples due to the reliance on asymptotic theory).  

Furthermore, the distributional theory of complex indirect effects (i.e., the overall indirect 

effect) generated from multiple wave panel designs is still larger unexamined (Little et 

al., 2007), generally necessitating the use of bootstrapping. 

 Although the autoregressive mediation model certainly has advantages over the 

use of cross-sectional mediation modeling, there are several limitations and challenges 

associated with its use.  The number of possible indirect effects, especially with more 

than three waves of data and with the addition of contemporaneous mediated effects, has 

already been discussed.  As with any longitudinal modeling effort, missing data can 

create problems, especially if the missing data pattern is non-ignorable.  In addition, the 

timing and spacing of measurements can dramatically influence the detection and 

estimation of effects in longitudinal studies (Collins and Graham, 2002).  Furthermore, it 

is possible that the timing of assessments to observe the maximal treatment effect may 

not be the same as the timing to observe mediated effects (Gollob & Reichardt, 1991; 

Cole & Maxwell, 2003).  Autoregressive models do not include modeling of means, nor 

do they allow for random effects to specify individual differences in change (MacKinnon, 

Fairchild, & Fritz, 2007). 

As with the case of cross-sectional models of mediation, the impact of 

measurement error in X, M, and Y, can be substantial and potentially more complex 

(Cole & Maxwell, 2003), as will be discussed in paper two.  MacKinnon (2008, p. 209) 

notes, “One way to improve the interpretability of autoregressive models is to improve 

measurement of variables either by specifying latent variables or increasing the reliability 

of measures.”  The autoregressive mediation model can be extended to latent variable 
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models, where latent variables are extracted from multiple indicators (i.e., observed 

variables) for X, M, or Y (see Roth, Mittelman, Clay, Madan, & Haley (2005) for an 

example of a two-wave model that uses latent variables for the mediators).  As will be 

discussed later, this is a commonly used method to address the biasing effect of 

measurement error, but introduces other modeling options that should be evaluated and 

compared in methodological research.  In addition, models with latent variables allow 

researchers to test whether there is measurement invariance over time (Brown, 2006).  In 

other words, researchers can assess whether changes over time in a measure can be 

assumed to be true score changes or whether the meaning of the measure itself has 

changed over time.  While the use of latent variables certainly has its benefits, the use of 

latent variables increases the possibilities of model misspecification, including the failure 

to account for shared method variance, which may lead to biased parameter estimates 

(Marsh, 1993; Cole, Ciesla, & Steiger; 2007; Geiser et al., 2010; Kline, 2011). 

 

1.2.2 Random Effects Mediation Models 

There are two ways to conceptualize random effects mediation models, the 

primary difference being whether or not time is explicitly incorporated into the model as 

a variable. Before exploring these models, it is worth clarifying some terminology.  

Researchers from the educational, social, and behavioral sciences often use the 

terminology of hierarchical linear models (HLM) or multilevel models (MLM), whereas 

statisticians often use terminology of the linear mixed model.  The models are actually 

the same, although simply different in form (i.e., the combined or composite model from 

HLM is in the linear mixed model form) (Feng et al., 2001; Singer & Willett, 2003). 
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Although it will not be used in this dissertation, it may be helpful to briefly review 

the random effects model of mediation proposed by Kenny, Korchmaros, and Bolger 

(2003), which does not explicitly incorporate time as a variable.  In their example, which 

was also used as the basis for the work of Maxwell and Cole (2007), all three variables 

are level-1 variables, or time-varying variables when applied to the repeated measures 

(i.e., the upper level or level-2 units are individuals and the lower level or level-1 units 

are the repeated measures).  Hence, the authors refer to their model as a lower-level 

mediation model (Krull & MacKinnon (2001) label the model 111, to signify all 

variables are at the lower level).  In their example, X is daily stress level, M is coping 

efforts for that day, and Y is the person’s mood for that day.  The following equations 

(notation based on Maxwell and Cole (2007) and Kenny, Korchmaros, and Bolger 

(2003)) are used to evaluate mediation (notice that time is not a variable in the model, but 

is implicitly included as X, M, and Y are allowed to vary over time – i.e., are time 

varying variables): 

1

1 1 1

2

Level 1 equation: 

Level 2 equations:
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 (1.3) 

 
where Xit, Mit, and Yit represent values of X, M, and Y for individual i at time t and Mit 

and is a linear function of an individual’s X value on a given occasion (Xit) represented 
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by ai and Yit is a linear function of both an individual’s X and M values (Xit and Mit) on a 

given occasion, represented by c’i and bi, respectively. 

An examination of equations 1.2 and 1.3 shows that the effects of interest, ai, bi, 

and ci’, can vary across individuals (i.e., they are random).  The mean of the random 

effects ai and bi (i.e., a and b in equations 1.2 and 1.3, respectively; also known as the 

fixed effects), can be used to estimate the mediated effects through the product of 

coefficients method.  However, because the relation of X to M (coefficient ai) and the 

relation of M to Y (coefficient bi) can vary across individuals (i.e., are random), the 

covariance between ai and bi must be added to a*b to arrive at an unbiased estimate of the 

mediated effect (Kenny, Korchmaros, & Bolger, 2003; MacKinnon, 2008e).  A similar 

consideration must be made in the calculation of the standard error.  The necessary 

estimates can be arrived at by fitting separate equations in a mixed model program (e.g., 

PROC MIXED in SAS) and then use the procedures outlined by Kenny, Korchmaros, 

and Bolger (2003) to estimate the covariance between ai and bi.  One may also fit the 

entire set of equations using a program such as Mplus (see MacKinnon, 2008e).   

 The other random effects model of mediation explicitly incorporates time as a 

variable.  The basic model on which the mediation framework is based is a type of 

longitudinal data modeling (i.e., without the explicit goal of assessing mediation) that 

goes by a variety of names, including the multilevel model for change (Singer & Willett, 

2003) and latent growth curve (LGC) modeling (Duncan & Duncan, 2004).  The basic 

multilevel model for change (i.e., without mediators or any other predictors – the 

unconditional growth model of Singer and Willett (2003)) is: 
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where Yit represents the value of Y for individual i at time t and TIMEit indicates the 

measurement occasion (i.e., some sensible metric that indicates the passage of time) – 

often assumed to be a linear growth trajectory, but other patterns are certainly possible.  

Thus, in equation 1.4, Yit is a linear function of time and the intercept 0i and the effect of 

time (i.e., the slope, 1i) can vary across individuals (i.e., they are random).  The mean of 

these random variables, 00 and 10, are the fixed effects in this model.  Thus, different 

individuals can have their own growth pattern (both initial starting value and slope).  

Time-varying predictors can be added at level 1 or predictors of the coefficients for the 

intercept (initial status) or time can be added at level 2 (i.e., time-invariant predictors) to 

indicate that the growth varies as a function of the time-invariant predictor (e.g., 

assignment to treatment condition).  The parameters from such models can be estimated 

in a mixed model program (e.g., PROC MIXED in SAS). 

The basic multilevel model for change also can be constructed as a structural 

equation model (SEM).  This analytical approach has come to be known as latent growth 

curve modeling.  In a SEM framework, the growth of a variable over time can be 

represented in a measurement model in matrix form as: 

Growth measurement model for a single individual: i i iY = Λη + ε  (1.5) 

 
As noted by Cheong, MacKinnon, and Khoo (2003), Yi is a T x 1 vector of repeated 

measures of the variable Y for individual i over the time points (t = 0, 1, 2, … T),  is a T 

x J matrix of factor loadings on the growth factors, i is a J x 1 vector of J latent factors 
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representing the growth parameters, and i is a T x 1 vector of measurement errors.  A 

conceptual representation of this model where T = 3 (three measurement occasions) and J 

= 2 (two growth parameters) can be found in Figure 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Basic three-wave latent growth curve model (Mi and Di are the mean and 
variance of the initial status factor while Ms and Ds are the mean and variance of the 
linear slope factor). 
 

It is possible to specify exactly the same model as a LGC model or a multilevel 

model for change (Hox & Stoel, 2005).2  The TIME variable is incorporated into the 

LGC model as specific constrained values for the factor loadings in the  matrix: values 

for the loadings for the initial status factor 1i are constrained to be 1 and values for the 

loadings of the growth factor 2i are fixed by the analyst to reflect time intervals between 

measurements and the shape of the growth trajectory (e.g., linear, quadratic, etc.).  For 

example, in the three-wave LGC model in Figure 5, the loadings of [0 1 2] for 2i reflect 

a linear trajectory across 3 time points at evenly spaced intervals (hence that factor is 

                                                            
2To make the models exactly equivalent, one must constrain the variances of E1-E3 in Figure 5 to be equal.  
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labeled “linear slope”).  One can estimate the mean of the initial status factor (or the 

intercept factor), which corresponds to the fixed effect, 00, in the multilevel model for 

change.  In addition, the mean of the growth factor corresponds to the fixed effect, 10.  

Individual differences in parameters describing the growth curve in the LGC model are 

modeled as (co)variances of the intercept (initial status) and growth (or slope) factors.  In 

essence, these correspond to the variances and covariance of 0i and 1i in the multilevel 

model for change (the random effects).  The primary advantage of using a LGC modeling 

approach rather than mixed modeling methods (i.e., the multilevel model for change) is 

the ability to examine several response variables within the context of a single latent 

variable model (Duncan & Duncan, 2004). This distinction is no longer that meaningful 

as several researchers have shown it is possible to include multiple response variables 

using an extended version of the multilevel model for change (i.e., multivariate 

longitudinal data) (Thiébaut, Jacqmin-Gadda, Chêne, Leport, & Commenges, 2002; Gao, 

Thompson, Xiong, & Miller, 2006). 

 The multilevel model for change and the latent growth curve model can be 

expanded to include mediation processes (i.e., this is the other random effects model of 

mediation that explicitly incorporates time as a variable).  Perhaps the most 

straightforward approach is to model growth factors based on repeated measures of X, M, 

and Y.  With this approach, called a parallel process model (MacKinnon, 2008b), one can 

assess mediation by exploring the relationships in growth among X, M, and Y.  One 

possible parallel process model can be found in Figure 6.  Note that the mediated effect in 

Figure 6, a*b, is comprised of two random effects (these relationships can vary across 
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participants), thus the point estimate and standard error calculations must take this into 

account (see Kenny, Korchmaros, & Bolger, 2003; MacKinnon, 2008b). 

 

 

Figure 6. Three parallel process latent growth curve mediation model with three waves 
of data for the independent variable (X), the mediator (M), and the dependent variable 
(Y) (adapted from MacKinnon, 2008b). IX represents the intercept factor (i.e., initial 
status) of the independent variable, SX represents the slope (growth rate) factor of the 
independent variable, IM represents the intercept factor (i.e., initial status) of the mediator, 
SM represents the slope (growth rate) factor of the mediator, IY represents the intercept 
factor (i.e., initial status) of the outcome, and SY represents the slope (growth rate) factor 
of the outcome.  The mediated effect is represented as a*b and the direct effect is c’.  
Note that fixed factor loadings specifying the initial status and slope factors are not 
shown to simplify the figure.  Also note additional paths may be added as needed, such as 
IXSM, IXSY, IMSY, and IYSM.  One may choose to specify covariances rather than 
directed paths among some intercepts and slopes to show that there are relationships 
among the variables, but directions are unknown. 
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A related LGC mediation model was developed by Cheong, MacKinnon, and 

Khoo (2003) for the situation where X is a fixed intervention rather than a time-varying 

variable, like M and Y (Figure 7).  In this model, the XM path (the “a” path) is a fixed 

effect, therefore standard approaches to estimating the point estimate and standard error 

for the mediated effect can be used (Cheong, MacKinnon, & Khoo, 2003).  Cheong, 

MacKinnon, and Khoo (2003) outline several steps for evaluating parallel process 

mediation models.  This includes evaluating both M and Y for differential growth 

trajectories, using multiple-groups SEM to evaluate differences in initial status and 

growth across the levels of the X (e.g., see Kline, 2011), combining the latent growth 

curve models for M and Y into one parallel process model and then using MIMIC 

(multiple indicators, multiple causes) modeling (e.g., see Brown, 2006) to assess the 

impact of the treatment (X) on the growth factors, and finally adding relationships among 

the growth factors to assess for mediation. 

As with the case of the autoregressive mediation model, there are some 

limitations and challenges associated with the use of the LGC mediation model.  Since 

the LGC methodology is a type of longitudinal modeling, non-ignorable missing data 

patterns can create problems.  Although the timing and spacing of measurements may be 

less of an issue for LGC models than autoregressive models if the growth trajectory is 

represented well by a straight line (Collins & Graham, 2002), it can still cause some 

problems, especially if not enough time has elapsed in order for effects to materialize.  

Measurement, including measurement error and invariance in the meaning of a measure 

over time, can have substantial impacts on the interpretation of the results, just like in the 

autoregressive mediation model.  A common criticism of the LGC mediation model is 
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that the mediation relationship is correlational in nature (i.e., there is no temporal 

precedence of the mediator as there is in the autoregressive mediation model).  Although 

the presence of a temporal sequence alone does not unequivocally establish causality, 

such a sequence is considered stronger evidence for a causal relationship than a 

simultaneous relationship (Hill, 1965; Kazdin & Nock, 2003).  Several authors note the 

possibility of using a two-stage piecewise parallel process approach to overcome this 

criticism.  In this model, the growth in the mediator and outcome can be modeled as 

occurring in separate phases.  Thus, the mediated effect can be evaluated via earlier 

growth of the mediator on later growth in the outcome (Figure 8) (Cheong, MacKinnon, 

& Khoo, 2003; Laurenceau, Hayes, & Feldman, 2007; McKinnon, 2008; Cerin, 2010).  

An elaboration of this model is provided in paper three.  Although the putative mediator 

in the parallel process models depicted in Figures 7 and 8 is the slope (or growth rate), it 

is possible to test mediated effects involving the mediator’s intercept factor (von Soest & 

Hagtvet, 2011). 
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Figure 7. Parallel process latent growth curve mediation model with binary X variable 
(the independent variable) and five waves of data for the mediator (M) and the dependent 
variable (Y) (adapted from Cheong et al., 2003). IM represents the intercept factor (i.e., 
initial status) of the mediator, SM represents the slope (growth rate) factor of the 
mediator, IY represents the intercept factor (i.e., initial status) of the outcome, and SY 
represents the slope (growth rate) factor of the outcome.  The mediated effect is 
represented as a*b and the direct effect is c’.  Note that correlations between growth 
factors (e.g., between initial status and disturbances of slope factor for M) are not shown 
to simplify the figure.  
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Figure 8. Two-stage piecewise parallel process latent growth curve mediation model 
with binary X variable (the independent variable) and five waves of data for the mediator 
(M) and the dependent variable (Y). IM and IY represent initial status (i.e., at baseline) for 
the mediator and the outcome, respectively. S1M and S1Y represent growth rates for the 
mediator and outcome, respectively, at an earlier stage of the study; and S2M and S2Y, 
represent growth rates for the mediator and outcome, respectively, at a later stage of the 
study.  The mediated effect is represented as a*b and the direct effect is c’.  Note that 
correlations between growth factors (e.g., between initial status and disturbances of the 
growth rate factor for M) are not shown to simplify the figure. 
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1.2.3 Comparison of Longitudinal Mediation Models 

A natural question regarding the assessment of longitudinal mediation is which 

model to use.  Unfortunately, there is not a simple answer to this question.  There have 

been some studies and manuscripts in which autoregressive and latent growth curve 

models have been compared, usually in the context of a single variable measured over 

time (i.e., studies without mediation).  Perhaps the most widely cited is Rogosa and 

Willett (1985), who showed that a quasi-simplex model (a simplex model that allows for 

observed variables with measurement error) fits well to data generated from a growth 

model (in this case, a constant rate of change model, which is essentially a latent growth 

curve model with initial status and linear slope factors).  The authors used these results to 

question the use of the simplex model to study growth as such models may not be able to 

distinguish among different patterns of individual growth.  Subsequent authors have 

provided examples to the contrary, showing evidence that quasi-simplex models do not 

fit data generated from other types of growth models (Mandys, Dolan, & Molenaar, 1994; 

Raykov, 2000).  Others have shown that Rogosa and Willett’s (1985) findings are 

partially based on the covariance matrix they chose to analyze (Raykov, 1998). 

Several have noted that autoregressive models, including simplex models, are 

group-change or group-coefficient models, where as LGC models are individual-specific 

(Raykov, 1998; Curran & Bollen, 2001).  Thus, LGC models are more important when 

the question of interest relates to individual-time paths or when one is interested in 

correlates of change over time (Raykov, 1998).  When there is not significant growth 

over time or when individual differences are not of interest, autoregressive models may 

be more useful (MacKinnon, 2008a; Selig & Preacher, 2009).  Curran and Bollen (2001, 
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p. 109) succinctly summarize the differences: “The Markov simplex modeling approach 

is well suited for examining the time-specific relations between two constructs over time 

and the growth modeling approach is well suited for examining relations in individual 

differences in continuous developmental trajectories over time.” 

 With respect to selecting an appropriate model for assessing longitudinal 

mediation, similar issues can be raised (i.e., is the interest in differences in individual 

trajectories and how such trajectories on a set of different variables relate to one another 

or is one interested in time-specific relations among the variables).  Although the 

assessment of the mediated effect is more straightforward with LGC models, the 

autoregressive model is more conducive to examining complex patterns of mediation 

across waves and the possibility of cross-lagged relationships.  Furthermore, if one is 

interested in whether relationships among X, M, and Y vary over time or in the 

assessment of when a mediational relationship starts or ends in a longitudinal study, the 

autoregressive model may have certain advantages (Cheong, 2011).  Aside from these 

issues, it is difficult to compare these models.  The indirect effects estimated by these two 

approaches, while both addressing the question of mediation, are in theory not the same 

population parameter.  While it may useful to compare the power and Type I errors 

associated with the detection of a mediated effect, standard methods for evaluating and 

comparing estimators are less relevant (e.g., degree of bias, consistency, efficiency). 

 MacKinnon (2008b) states that recommending one model over the other is 

difficult and suggests that in empirical practice it may be of use to estimate several 

longitudinal mediation models for the same data set.  Convergence in evidence regarding 

the presence or absence of a mediated effect provides the most convincing evidence.  
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Maxwell and Cole (2007, p. 25) likewise “do not attempt to adjudicate which model is 

better” (i.e., the autoregressive mediation model or the random effects mediation model).  

Rather they consider the accuracy of estimating a longitudinal mediated effect with cross-

sectional data first assuming the true process is an autoregressive model and then 

assuming the true process follows a random effects model.  No direct comparisons are 

made.  Similarly, papers two and three of this dissertation address issues specific to each 

of the two separate longitudinal mediation models, rather than directly comparing the two 

models.  Paper two addresses issues with respect to the autoregressive mediation model 

and paper three addresses issues with respect to the LGC mediation model.  Both of these 

papers implement simulation studies.  

 

1.3 Latent Variables 

Paper two directly incorporates latent variables, in this case, latent variables 

extracted from multiple indicators of the mediator at multiple time points. Paper three 

also utilizes latent variables, notably the growth parameters in a latent growth curve 

model.  Thus, it may be useful to briefly discuss the concept of a latent variable. 

Although there is some disagreement in the literature (e.g., see Bollen, 2002), 

perhaps the most straightforward definition of a latent variable is provided by Skrondal & 

Rabe-Hesketh (2004): “A latent variable [is] a random variable whose realizations are 

hidden from us. This is in contrast to manifest variables where the realizations are 

observed.” This distinction is probably most widely recognized in the social sciences, 

most notably in psychology, where latent variables are thought of as hypothetical 

constructs measured by multiple correlated observed (manifest) indicators (implemented 
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though the techniques of confirmatory factor analysis and structural equation modeling). 

Thus, self-esteem, personality, quality of life, intentions to perform a behavior, and 

mathematical ability are hypothetical constructs that are measured indirectly by using 

observed responses to a set of questionnaire items, for example. However, latent 

variables are used in a wide variety of applications and disciplines (although often with 

different names and terminology). Thus, economists refer to unobserved “measured-with-

error” variables (the problem of errors-in-variables or EIV), which is equivalent to the 

concept of an unobserved latent variable modeled by psychologists and sociologists 

(Kennedy, 2003).  Others from a variety of disciplines might use latent variable 

terminology such as common factors, random effects, unobserved heterogeneity, latent 

classes, latent traits (or theta from item response theory), counterfactuals, and latent 

growth curves (and still others). 

Although a complete discussion of latent variables is beyond the scope of this 

paper, it is worth reviewing the process and benefits of extracting a latent variable from a 

set of manifest variables.  Observed (or manifest) variables are linked to latent variables 

through a measurement model (sometimes called a confirmatory factor model) (Kaplan, 

2009).  Oftentimes, separate measurement models are specified for endogenous variables 

(Y-variables) and exogenous variables (X variables).  These models are often presented 

using the notation from LISREL, a popular SEM program: 

Measurement model for : 

Measurement model for : 

y

x

y y

x x

Y = τ +Λ η+ ε

X = τ +Λ ξ +δ
 (1.6) 

 
The  matrices contain values known as factor loadings, which are essentially slope 

coefficients for the regression of the manifest variables, X and Y, on the latent variables, 

 and   The intercept terms, , do not really matter in confirmatory factor analysis 
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(CFA) because they do not contribute to covariance or affect model fit (unless a mean 

structure is tested) (i.e., researchers usually work with mean-centered variables).  The 

relationships linking the exogenous and endogenous latent variables are specified in the 

structural model (note that some endogenous variables may serve as predictors of other 

endogenous variables): 

Structural model: η = α +Βη+ Γξ + ζ  (1.7) 
 
The  matrix contain intercepts, the  matrix contains regression weights interrelating 

endogenous variables (), and the  matrix of regression weights relating exogenous 

variables () to endogenous variables (), and zeta () is a vector of residuals for the 

endogenous latent variables. 

The most critical benefit of extracting a latent variable from several manifest 

variables is that under certain assumptions (most notably that each set of manifest 

variables contains at least congeneric measures of the intended latent variable – Cole & 

Maxwell, 2003), the latent variables are without measurement error.  Therefore, estimates 

of relationships among such variables are not biased by fallible (i.e., unreliable) measures 

(the effects of biased parameter estimates have subsequent effects on Type I and Type II 

errors, which may be minimized by the use of latent variables) (Bedeian, Day, & 

Kelloway, 1997).   This is conceptually similar to the correction for attenuation formula 

based on the work of Spearman (1904) (Bedeian, Day, & Kelloway, 1997). 

As mentioned earlier, parameter estimates in confirmatory factor analysis and 

SEM (both the measurement and structural models) are determined that yield a predicted 

variance-covariance matrix (one that is implied by the estimates of the unknowns) that 
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best reproduces the sample variance-covariance matrix.  The traditional method of 

estimation in SEM is maximum likelihood, although many other options are available. 

It is a straightforward conceptual extension to extract latent variables from a set of 

manifest variables in the autoregressive framework, although its implementation raises 

additional considerations that could affect the estimation of mediation effects.  Many 

investigators still use linear composites of fallible indicators (e.g., sum scores or average 

scores of a set of indicators) to estimate underlying constructs, and while the negative 

impact of measurement errors can be minimized by using measures with higher levels of 

composite reliability, there are benefits of using latent variables even in this case.  It is 

also possible to use a measurement model and extract latent variables from fallible 

indicators in a latent growth curve framework.  Such models go by a variety of names 

including curve-of-factors models (McArdle, 1988; Duncan & Duncan, 2004; Liu et al., 

2009) and second-order latent growth models (Hancock, Kuo, & Lawrence, 2001; Sayer 

& Cumsille, 2001). 

 
1.4 Summary of Research Objectives 

Below is a synopsis of the research objectives of each paper of the dissertation. 

Paper one:  

1. Assess whether the relationship between functional status (i.e., activities of daily 

living (ADLs) or what individuals perceive that they are able to do) and health-

related quality of life is mediated by life-space mobility (i.e., what people actually 

do in terms of mobility) using an autoregressive longitudinal model of mediation. 
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Paper two: 

1. Assuming an autoregressive longitudinal mediation model, assess the effects of 

the method to handle fallible indicators and the omission of paths representing 

shared method variance on parameter and standard error estimation as well as 

statistical power and Type I error rates under a variety of conditions (i.e., degree 

of shared method variance, degree of composite reliability for the set of indicators 

representing the mediator, degree of stability of the latent mediator, size of the 

mediated effect, and sample size). 

Paper three: 

1. Provide an overview of the two-stage piecewise parallel process latent growth 

curve model of mediation. 

2. Evaluate the statistical performance (bias, power, and Type I error rate) of 

methods used to test mediation in this model under different conditions (i.e., 

degree of later growth in the mediator, degree of earlier growth in the outcome, 

complete or partial mediation, size of the mediated effect, and sample size). 

3. Examine the impact of misspecifying the true piecewise model as a single-stage 

parallel process model of mediation under different conditions (i.e., degree of 

later growth in the mediator, degree of earlier growth in the outcome, complete or 

partial mediation, size of the mediated effect, and sample size).   

Each of these objectives, including the motivation for them, will be discussed in 

more detail in the respective papers. 
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Abstract 
 

Purpose.  Using the Wilson-Cleary model of patient health outcomes as a conceptual 
framework, this study assessed whether the relationship between functional status 
(disability) and health-related quality of life is mediated by life-space mobility using data 
gathered from a population-based, longitudinal study of older adults.   
Methods. Participants were enrollees in the University of Alabama at Birmingham 
(UAB) Study of Aging, a longitudinal study of mobility among community-dwelling 
older adults.  Data were from four waves of the study spaced approximately 18 months 
apart from n = 677 participants who survived at least one year beyond the final 
assessment period.  Both cross-sectional mediation models using baseline data and 
autoregressive mediation models using structural equation modeling were evaluated. 
Results. The longitudinal analyses, based on an autoregressive model, supported the 
mediating role of life-space mobility and suggest that this role is more significant with 
the mental component summary score from the SF-12 as the outcome compared to the 
physical component summary score.  Model modifications guided by theory and 
empirical findings did not alter the substantive meaning of this mediated effect, only 
enhanced it.  The possibility of a reciprocal relationship over time between disability and 
life-space mobility was suggested by modification indices.  Estimates of the mediation 
parameters from the autoregressive models were only partially consistent with mediation 
estimates from the cross-sectional analyses, suggesting that mediating relationships 
would have been missed or were potentially underestimated in the cross-sectional 
models.   
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Introduction 

Mobility in older adults is often used as an outcome in health care as many 

interventions are designed to enhance the frequency and extent of individuals’ movement 

as well as to minimize the amount of assistance needed.  To this end, studies may 

examine the effects of interventions designed to enhance mobility or try to understand 

how biomedical, psychological, sociological, or environmental variables relate to, or 

predict, mobility (Baker, Bodner, & Allman, 2003; Peel et al., 2005).  Mobility has also 

been shown to be related to the physical and mental components of quality of life (Baker 

et al., 2003), while others have suggested it might be useful to indicate global functional 

decline in older patients (Brown et al., 2009), suggesting the role of mobility as a useful 

predictor of other variables. 

Self-reports of difficulty with activities of daily living (ADLs) are often used to 

assess functional ability (or disability).  These are classic, clinically-relevant indicators 

that reflect what individuals perceive that they are able to do.  In terms of affecting daily 

living, self-reported functional capability is just one variable that affects actual observed 

mobility, or what individuals actually do (Peel et al., 2005).  The University of Alabama 

at Birmingham (UAB) Study of Aging Life-Space Assessment (LSA) was developed to 

measure individuals’ patterns of mobility during the four weeks preceding an assessment 

(Baker et al., 2003).  The instrument captures mobility in terms of extent and frequency 

of movement across a number of levels (i.e., with one’s home up to outside one’s town), 



44 
 

as well as the degree of independence in performing such movements.  One’s perception 

of the ability to carry out ADLs has been shown to be related to the LSA (Baker et al., 

2003; Peel et al., 2005) and scores on the LSA have also been shown to be correlated to 

the physical and mental component summary scores of the SF-12 (Baker et al., 2003), a 

commonly used measure of health-related quality of life (Ware, Kosinski, & Keller, 

2002).  However, little effort has been directed at understanding the relationships among 

all three of these variables.  

Wilson and Cleary (1995) developed a theoretical framework in an attempt to link 

the biomedical model of health with a quality of life model (Figure 1).  Their model 

focuses on five levels of patient outcomes (i.e., biologic and physiologic variables, 

patient symptoms, patient functioning, overall or general health perceptions, and overall 

quality of life) and proposes mediating relationships among these variables (e.g., the 

relationship between symptom status and overall quality of life is mediated by functional 

status (or disability) and general health perceptions) in addition to explanatory roles of 

several personal and environmental variables.  Parts of this model have been applied to a 

variety of patient populations and some authors have even expressly examined the 

mediated effects implied by the model (e.g., see Sousa & Kwok, 2006; Baker, Pankhurst, 

& Robinson, 2007; Ryu, West, & Sousa, 2009; Wyrwich, Harnam, Locklear, Svedsäter, 

& Revicki, 2011).  With some adaptation, the Wilson-Cleary model provides a useful 

conceptual framework for examining the relationships among functional status, life 

space, and quality of life.  The purpose of this study is to assess whether the relationship 

between functional status (i.e., ADLs or what individuals perceive that they are able to 

do) and health-related quality of life is mediated by life-space mobility (i.e., what people 
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actually do in terms of mobility) (see Figure 2 for conceptual view).  Other studies have 

explored mediators of the relationship between functional status and quality of life.  For 

example, using a sample of older adults, Newsom and Schulz (1996) showed that social 

support acts as a partial mediator between functional status and quality of life. 

 In addition to exploring this set of relationships, this study adds to the growing 

literature using longitudinal data to test mediation relationships (Cheong, MacKinnon, & 

Khoo, 2003; Cole & Maxwell, 2003; Maxwell & Cole, 2007; Little, Preacher, Selig, & 

Card, 2007; MacKinnon, 2008a; Liu et al., 2009; Audrain-McGovern, Rodriguez, & 

Kassel, 2009; Selig & Preacher, 2009; Negriff, Ji, & Trickett, 2011; Roth & MacKinnon, 

2012).  In the case of true longitudinal mediation, Maxwell and Cole (2007) have 

demonstrated that cross-sectional analyses provide biased estimates of the indirect effect 

(or mediated effect) in two different models of change, the autoregressive model and a 

random effects model.  Most previous analyses of mediated relationships based on the 

Wilson-Cleary model have relied on cross-sectional data (Sousa & Kwok, 2006; Baker et 

al., 2007; Ryu et al., 2009).  Some evaluations of the Wilson-Cleary model have used 

longitudinal data, but did not test for mediated effects (e.g., Wilson & Cleary, 1997; 

Mathisen et al., 2007) or used only two waves of data (e.g., Wyrwich et al., 2011).  Some 

advocate that three waves of data are necessary to truly test mediation (i.e., for a model to 

be a fully longitudinal mediation model) (Collins, Graham, & Flaherty, 1998).  Although 

it is possible to provide some evidence of mediation with two waves of data, some 

additional assumptions must be made (Cole & Maxwell, 2003).   
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Methods 

Setting and Participants 

The participants in this study come from the UAB Study of Aging, a population-

based, longitudinal study of mobility among community-dwelling older adults, sampled 

from a list of Medicare beneficiaries living in one of five counties (two urban and three 

rural) in central Alabama.  The Study of Aging included n = 1,000 participants recruited 

between November 1999 and February 2001.  African Americans, men, and rural 

residents were oversampled to provide a balanced sample in terms of race, gender, and 

rural/urban residence.  Details of the study have been described previously (Peel et al., 

2005).  For the present analysis, data from four assessments (or waves) were analyzed.  

The waves were approximately 18 months apart (i.e., baseline, 18, 36, and 54 months 

after baseline).  Participants who did not survive at least one year beyond the final 

assessment were excluded to limit the impact of end-of-life deterioration on the measures 

of interest.  Of the 1,000 initial participants, n = 250 died prior to month 54 and n = 61 

died after month 54 but before month 66.  An additional n = 12 participants had no data 

other than baseline data and were excluded from analysis.  Thus, n = 677 participants 

were used in the present analysis.  As expected, compared to excluded individuals, 

participants in the present analysis were younger and at baseline had fewer verified 

comorbidities, had higher life space scores, had less difficulty in activities of daily living, 

and had higher health-related quality of life scores (p < 0.0001 for all comparisons).  The 

original study, as well as the present analysis, was approved by the UAB Institutional 

Review Board and all participants gave written informed consent. 
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Measures 

The primary measures of interest for this study are measures of functional 

disability (i.e., ADLs), life-space mobility, and health-related quality of life (i.e., the 

physical and mental component summary scores of the SF-12).  All measures were self-

report.   

Disability. A latent disability measure based on categorical factor indicators was 

extracted using the following four ADL items treated as dichotomous observed variables, 

with 1 indicating the presence of difficulty with the task: transferring, bathing, dressing, 

and toileting.  Mobility-related ADLs (i.e., using stairs, walking, and getting outside) 

were excluded due to their conceptual overlap with the life-space assessment.  Data on 

two other ADLs were collected but excluded from the analysis because they were very 

infrequently endorsed by respondents (i.e., turning in bed, eating).  At some waves, no 

respondents endorsed these items, prohibiting the extraction of a latent disability variable 

from these items at those waves.   

Life-space mobility. The UAB LSA is described in more detail elsewhere (Baker 

et al., 2003; Peel et al., 2005).  This instrument measures mobility based on the distance 

through which a person reports moving during the four weeks preceding the assessment.  

The composite measure of life-space (LS-C) was used as an observed variable in the 

present analysis.  Scores for this variable ranged from 0 (“totally bedroom bound”) to 120 

(traveled out of town every day without assistance).  The two-week follow-up test-retest 

reliability of the LS-C measure was estimated to be 0.96 using the intraclass correlation 

coefficient (Baker et al., 2003).  Given its high degree of reliability and its calculation as 
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a composite variable, LS-C was treated as an observed variable rather than a latent 

variable. 

Health-related quality of life. Version 1 of the SF-12 was used to assess health-

related quality of life.  Mental component summary scores (MCS-12) and physical 

component summary scores (PCS-12) were calculated using procedures outlined by Ware 

et al. (2002).  PCS-12 and MCS-12 are transformed such that the norm population (the 

general U.S. population) has a mean of 50 and a standard deviation of 10.  Test-retest 

reliabilities of 0.89 and 0.76 have been reported for the PCS-12 and MCS-12, 

respectively (Ware et al., 2002).  Given established, strong measurement properties and 

frequent use within the field, MCS-12 and PCS-12 were treated as observed variables in 

all analysis (i.e., latent variables were not extracted from the individual SF-12 items).  

Not only is this consistent with common practice, but prior research has shown very high 

correlations with these summary scores and latent variables based on individual items 

(0.97 for PCS and 0.96 for MCS) (Okonkwo, Roth, Pulley, & Howard, 2010).  

Covariates. The following variables, all collected at baseline, were used as 

covariates in all analyses: sex, race, age, recent smoking status, education, and a verified 

co-morbidity score. 

 

Statistical Analysis 

Statistical mediation suggests that the causal influence of one variable on another 

is transmitted through a third variable called a mediator or intervening variable (Hoyle 

and Kenny, 1999).  A variety of statistical methods for assessing mediation have been 

proposed (e.g., see MacKinnon, 2008b).  The presence of longitudinal data provides 
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additional options for data analysis (Cole & Maxwell, 2003; Maxwell & Cole, 2007; 

MacKinnon, 2008a, Roth & MacKinnon, 2012).  It is often difficult to recommend one 

approach over another.  The present analysis evaluated the proposed mediated effect 

utilizing an autoregressive model based on a structural equation modeling (SEM) 

approach.   

The basic premise of autoregressive models is that the values of a variable at a 

future time point depend in some part on an earlier time point.  The simplest of these 

models involves one variable measured at multiple time points for a set of individuals.  

This basic model (the univariate model) is often referred to the simplex model (or the 

Markov simplex model) (Marsh, 1993; Curran & Bollen, 2001) and dates back to the 

work of Guttman (1954).  Gollob and Reichardt (1991) and subsequently Cole and 

Maxwell (2003) extended the univariate simplex model to a trivariate model, an 

autoregressive mediation model, involving the variables: X (the independent variable), M 

(the mediator), and Y (the outcome).  The autoregressive mediation model is preferred 

over other options (e.g., latent growth curve (LGC) mediation models or parallel process 

models) when the variables of interest do not show evidence of significant change over 

time (i.e., the autoregressive mediation model is considered a model of interindividual 

change rather than intraindividual change) (MacKinnon, 2008a; Selig & Preacher, 2009).  

In the present case, some of the variables did not exhibit considerable change over the 

assessment periods suggesting that an autoregressive mediation model is appropriate.  For 

example, even though there was a statistically significant and linear change over time in 

MCS-12, the scores were relatively stable during the study period with an average change 

over each 18-month observation period of less than 0.05 of a standard deviation. 
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Other tests of the Wilson-Cleary model have used autoregressive modeling.  For 

example, Mathisen and colleagues (2007) used four waves of data to test the link between 

general health perceptions and overall quality of life, a relationship implied by the 

Wilson-Cleary model.  Although they did not test mediation, they did use SEM to 

examine cross-lagged effects and simultaneous effects in the context of an autoregressive 

model, addressing the question of whether reciprocal effects are possible in the Wilson-

Cleary model.   

A basic framework for the analysis can be found in Figure 3.  For the sake of 

clarity, only structural paths (i.e., no measurement paths, no residual covariances) for the 

main variables (i.e., no adjustments for covariates) are included in Figure 3. Separate 

models were fit for MCS-12 and PCS-12 as outcome variables. 

A modified set of steps outlined by Cole and Maxwell (2003) as well as 

MacKinnon (2008a) for autoregressive mediation modeling was utilized.  Prior to fitting 

any longitudinal models, a cross-sectional assessment of mediation was evaluated using 

baseline data.  Next, an initial autoregressive mediation model (i.e., Model 1’s) was 

separately fit for MCS-12 and PCS-12 as outcome variables based on the paths outlined 

in Figure 3.  Although measurement invariance over time for the disability measure based 

on ADLs was not assumed (i.e., factor loadings and thresholds were free to vary over 

time), these models did include covariates as control variables as well as covariances 

between residual terms of downstream endogenous variables within the same wave.  This 

last model component is recommended by Anderson and Williams (1992) and the 

presence of significant and meaningful covariation among these residuals implies the 

possibility of confounding due to variables missing from the model and failing to specify 
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such covariances may lead to biased estimates (Cole & Maxwell, 2003).  Following this 

step, a test of measurement invariance over time for the disability measure was 

performed.  The indirect effect (or mediated effect) of disability on health-related quality 

of life through life-space mobility was then calculated and evaluated for statistical 

significance using both the Sobel test (Sobel, 1982) and a bias-corrected bootstrap 

confidence interval with 1,000 draws (MacKinnon, Lockwood, & Williams, 2004).  With 

four waves of data, it is possible to estimate both time-specific indirect effects, as well as 

the overall (or total) indirect effect (Gollob & Reichardt, 1991; Cole & Maxwell, 2003; 

Selig & Preacher, 2009).  As outlined in Figure 3, there are three time-specific indirect 

effects (with the estimate of each indirect effect based on the product of coefficients 

method):  

1. Disability1Diability2LS3PCS4 (or MCS4)  = x1*a2*b3 
2. Disability1LS2LS3 PCS4 (or MCS4) = a1*m2*b3 
3. Disability1LS2 PCS3 (or MCS3)  PCS4 (or MCS4) = a1*b2*y3 
 
The overall indirect effect of Disability1 PCS4 (or MCS4) is the sum of the three 

time-specific indirect effects.  This addresses the question of whether life-space mobility 

mediates the effect of disability1 on PCS4 (or MCS4) at any time between waves 1 and 4 

(rather than at some specific point), a question usually of greater interest to researchers 

(Cole & Maxwell, 2003).  Indeed, Selig and Preacher (2009, p. 150) note that the “sum of 

all possible indirect effects more faithfully depicts the degree to which X1 indirectly 

influences Y4.”  Thus, both time-specific and overall indirect effects were calculated and 

evaluated for significance. 

In addition to the measure of indirect effect, the fit of the models to the data was 

evaluated using various indices, including the chi-square goodness of fit statistic, the root 
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mean square error of approximation (RMSEA), comparative fit index (CFI), and the 

weighted root mean square residual (WRMR).  Good model fit is indicated by a small 

chi-square value (this test is quite sensitive to sample size), an RMSEA less than 0.05 

(Brown & Cudeck, 1993), a CFI above 0.95 (Hu & Bentler, 1999), and a WRMR of less 

than 1.0 (Yu, 2002).  The PCLOSE index provides a probability that the RMSEA for a 

given model is less than or equal to 0.05. 

Following the test of the indirect effect, the potential for omitted paths was 

evaluated using modification indices.  Model 2’s based on the results of these 

specification searches, were then estimated separately for MCS-12 and PCS-12 as 

outcome variables.  In essence, this step allowed for the inclusion of fit-based model 

enhancements, some of which might have the potential to alter the size and/or 

significance of the indirect effect of interest.  Thus, following this step, tests of the 

mediated effects were performed again.  Potential fit-based model adjustments that were 

evaluated included modifications that could be justified theoretically such as: 1) 

covariances between measurement errors for the same ADLs measured at several time 

points, 2) wave-skipping autoregressive paths (e.g., disability4 predicted by disability3 

and disability2), 3) cross-lagged relations (e.g., disability2 predicted by LS1), 4) 

autocorrelation residuals (e.g., residual variance of disability3 with the residual variance 

of disability2), 5) contemporaneous paths (e.g., LS2 predicted by disability2), and 

additional direct effects (e.g., PCS4 (or MCS4) predicted by disability2).  Effects going 

backward in time (e.g., time1 variable predicted by a time2 variable) were not considered. 

All analyses were conducted using SEM in Mplus 6.11 (Muthén & Muthén, Los 

Angeles, CA).  To account for the categorical disability indicators (i.e., ADLs), a robust 
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weighted least squares estimator (i.e., WLSMV) was used (Muthén, 1984).  Although all 

participants provided wave 1 data (including covariates), as with most longitudinal 

studies, data for some participants were not available for the remaining three waves.  

There were n = 677 complete cases at wave 1, n = 651 at wave 2, n = 626 at wave 3, and 

n = 611 at wave 4.  In some cases, participants supplied life-space mobility and ADL 

scores, but not SF-12 scores.  Rather than listwise deletion (i.e., analyzing only those 

with complete data at all four waves), the WLSMV estimator in Mplus uses the total 

available sample for analysis.  Such estimates are consistent under the assumption of 

missing at random with respect to covariates (MARX) and much more efficient than 

listwise deletion (Asparouhov & Muthén, 2010). 

 

Results 

Table 1 provides means and standard deviations or frequencies for the main study 

variables as well as the variables used as covariates (baseline values).  In addition, the 

numbers of available cases for each variable at each time point are provided. 

 

Cross-Sectional Mediation Analysis 

As a basis for comparison, prior to fitting the autoregressive mediation models, 

the mediating role of life-space mobility in the relationship between functional status and 

health-related quality of life was evaluated using baseline values. This cross-sectional 

analysis was conducted on the n = 677 cases used in the longitudinal analysis as well as 

all cases available at baseline (n = 1000).  The latter analysis was conducted as it is likely 

that this is the approach that would have been used to evaluate the mediated relationship 
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had longitudinal data not been available.  Using the terminology in Figure 2, the indirect 

effect was estimated by the product of coefficients method (ab).  The proportion mediated 

effect was calculated as ab/(c’+ab) (MacKinnon, 2008b). 

 The results of the cross-sectional models can be found in Table 2.  In all cases, 

model fit was acceptable.  With PCS-12 as the outcome variable, the mediated effect was 

statistically significant using both the Sobel test and the bias-corrected bootstrap CI 

method for the participants used in the longitudinal analysis (n = 677), but not when data 

from all participants (n = 1000) were analyzed.  Given the relatively large direct effect of 

disability on PCS-12 (c’ = -8.20, SE=0.802, p<0.0001), only approximately 5% of the 

total effect of disability on PCS-12 is mediated through life-space mobility.  With MCS-

12 as the outcome variable, the mediated effect was statistically significant for 

participants used in the longitudinal analysis (n = 677) and for all participants (n = 1000) 

using both the Sobel test and the bias-corrected bootstrap CI method.  About 21% of the 

total effect of disability on MCS-12 is mediated by life-space mobility.  

 

Longitudinal Mediation Analysis 

Because disability was conceptualized as a latent variable represented by multiple 

measures (ADLs), it was possible to assess factorial invariance across waves.  To assess 

invariance, initial models based on Figure 3 (with separate models for PCS-12 and MCS-

12 as outcome variables) were estimated allowing factor loadings and thresholds to freely 

vary over time and compared to models where thresholds and loadings were constrained 

to equal their counterparts at subsequent waves.  The WLSMV estimator in Mplus 

precludes the use of traditional chi-square difference testing to evaluate invariance.  Thus, 
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the DIFFTEST option in Mplus was used (Muthén & Muthén, 1998-2010).  As with 

traditional chi-square difference testing, a significant finding indicates a lack of 

measurement invariance.  For both the PCS-12 and MCS-12 models, this test for the lack 

of invariance was statistically significant (Δ2 = 37.65, df = 21, p = 0.0142; Δ2 = 42.21, 

df = 21, p = 0.004 for PCS-12 and MCS-12 models, respectively).  However, for 

relatively large samples, the test for invariance can be statistically significant (i.e., 

indicating a lack of invariance) even when there are only minor differences in model 

parameters (Millsap, 2005; Kline, 2011).  Examination of fit indices that take model 

parsimony into account can provide information as to whether this is the case.  The value 

of the RMSEA was actually reduced from the unconstrained to the invariant models 

(0.041  0.038 and 0.039  0.037, for PCS-12 and MCS-12 models, respectively) and 

the value of CFI was either increased or remained unchanged (0.981  0.982 and 0.983 

 0.983, for PCS-12 and MCS-12 models, respectively) with the addition of invariance 

constraints.  This provides evidence that the deviations from perfect measurement 

invariance suggested by the statistical tests were small and of no practical significance.  

Thus, all subsequent models were tested with the assumption of invariance over time for 

the disability measure. 

 The results of the longitudinal mediation models with measurement invariance 

constraints imposed for disability can be found in Table 3.  Model 1’s for PCS-12 and 

MCS-12 as the outcome variables are based on the basic framework in Figure 3 and in 

both cases, the models fit the data well.  With PCS-12 as the outcome variable, only one 

of the time-specific mediated effects was statistically significant, but the total indirect 

effect was statistically significant using both the Sobel test and the bias-corrected 
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bootstrap CI method (95% CI: -1.282, -0.062).  About 13% of the total effect of disability 

on PCS-12 is mediated through life-space mobility.  With MCS-12 as the outcome 

variable, all three time-specific mediated effects were statistically significant as well as 

the total indirect effect (using both the Sobel test and the bias-corrected bootstrap CI 

method (95% CI: -1.17, -0.235)).  About 44% of the total effect of disability on MCS-12 

is mediated by life-space mobility.  However, the direct effect of disability on MCS-12 

was only marginally significant (p = 0.051), suggesting the possibility of complete 

mediation of the disability and MCS-12 relationship by life-space mobility. 

Modification indices were used as a guide to assess the potential for omitted 

paths.  Final Model 2’s with the additional paths can be found in Table 3.  In addition, 

completely standardized path coefficients for the original paths as well as the newly 

added paths can be found in Figures 4 and 5 for the PCS-12 and MCS-12 models, 

respectively.  The newly added paths consisted of either wave-skipping autoregressive 

paths (e.g., disability4 predicted by disability2) or cross-lagged relations (e.g., disability2 

predicted by LS1).  Modification indices suggested no other paths that would lead to 

substantial improvements in model fit after these paths were included.  Thus, no 

additional paths were added for covariances between measurement errors for the same 

ADLs measured at several time points, autocorrelation residuals, contemporaneous paths, 

or additional direct effects.  As expected, model fit improved significantly with the 

addition of the paths listed in Table 3.  More importantly, the significance of the 

disability  life-space mobility  HRQOL mediated effect was maintained.  According 

to the Model 2’s, almost 20% of the total effect of disability on PCS-12 is mediated 

through life-space mobility, while it appears that all of the relationship between disability 
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and MCS-12 is mediated by life-space mobility (i.e., p = 0.691 for the direct effect of 

disability on MCS-12). 

 

Discussion 

In this study, a longitudinal analysis supported the existence of the mediating role 

of life-space mobility in the relationship between functional status (disability) and health-

related quality of life, a relationship adapted from the Wilson-Cleary model of patient 

health outcomes.  Moreover, estimates of the mediational parameters in the 

autoregressive models were only partially consistent with estimates cross-sectional 

analyses.  For example, researchers might have concluded that there was no significant 

mediation of the disability and PCS-12 relationship using all available cases at baseline.  

In all cases, the longitudinal models revealed a larger indirect effect as a percentage of 

the total effect when compared to cross-sectional models, even suggesting complete 

mediation when MCS-12 was the outcome variable. 

Few rigorous analyses of mediation mechanisms using longitudinal designs have 

been published.  Furthermore, to our knowledge, this is the first test of mediated 

relationships implied by the Wilson-Cleary model to use longitudinal data with three or 

more waves of data.  There are several benefits of using longitudinal rather than cross-

sectional data to evaluate mediation processes (MacKinnon, 2008a; Roth & MacKinnon, 

2012).  First, more information regarding the temporal sequentiality of the independent 

variable, the mediator, and the outcome variable is provided with longitudinal data, a 

critical underlying assumption of mediation.  Second, longitudinal data allow for an 

examination of associations within waves of data (i.e., cross-sectional, between subjects) 

and changes across waves of data (i.e., within individuals).  Associations between 



58 
 

variables in cross-sectional models capture both time-varying and time-invariant 

covariances between participants, but longitudinal models allow these two sources of 

covariance to be separated and tested more directly in line with the causal assumptions of 

the mediation model.  Finally, individuals may serve as their own control in assessing 

some relationships, thereby potentially controlling for static differences among 

individuals.  In their discussion of why cross-sectional data generally provide poor 

estimates of effects, Gollob and Reichardt (1991) note two other related benefits to the 

use of longitudinal data to assess mediation.  First, causal effects often take time to 

develop, and variables measured at the same time may not allow for the necessary 

development time.  Second, variables often have effects on themselves, such that an 

outcome variable at a later time is related to the same outcome variable at an earlier time.  

Cross-sectional models implicitly assume these autoregressive effects are zero, and 

substantial bias can be introduced as a result.  Cole and Maxwell (2003) note that it is not 

sufficient to merely allow a time lag between the independent variable and the mediator 

and then between the mediator and the outcome to achieve unbiased estimates of effects 

because of the potentially confounding effects of prior levels of the mediator and the 

outcome. Autoregressive effects control for these relationships, and accordingly adjust 

the time-varying associations that are being tested as part of the causal model.  

The mediating role of life-space mobility appears to be more significant with the 

mental component summary score from the SF-12 as the outcome compared to the 

physical component summary score.  The final level of the Wilson-Cleary model, overall 

quality of life, has been represented differently by different authors.  Some have used 

health-related quality of life measures (generic or disease-specific) (e.g., Höfer et al., 
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2005; Heo et al., 2005; Ryu et al., 2009) while others have used life satisfaction measures 

(e.g., Mathisen et al., 2007; Wyrwich et al., 2011) or measures of mental health (Sousa & 

Kwok, 2006) and psychological distress (Baker et al., 2007).  The items in the SF-12 

most strongly related to PCS-12 are more closely related to physical functioning.  Höfer 

and colleagues used the physical functioning scale of the SF-36, which is a large part of 

the PCS scores, as a measure of functional status.  Given the conceptual overlap between 

disability, life-space mobility, and PCS-12, it is not surprising that the mediating role of 

life-space mobility is less significant with PCS-12 as an outcome relative to MCS-12.  

The MCS-12 seems more consistent with the end level in the Wilson-Cleary model. 

 Although not tested as an a priori hypothesis, the existence of cross-lagged 

relationships between disability and life space mobility as indicated by the modification 

indices, suggest that disability levels not only influence changes in life-space mobility, 

but also show effects in response to changes in mobility.  Other evaluations of the 

Wilson-Cleary model have examined such reciprocal effects.  For example, Mathisen and 

colleagues (2007) note reciprocal causal effects over time between general health 

perceptions and overall quality of life, the fourth and fifth levels in the Wilson-Cleary 

model.  Wilson and Cleary (1995) note the possibility of such effects and other 

researchers have called for an examination of these bidirectional relationships (Baker et 

al., 2007; Wyrwich et al., 2011).  Further research is required to support the view that the 

Wilson-Cleary model be modified to explicitly incorporate bidirectional causal effects. 

There are several limitations of the present study that should be considered.  

Although the longitudinal analysis conducted in this study has several benefits over 

cross-sectional views of mediation, it is important to recognize that the data analyzed in 
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the present study are still considered observational.  Longitudinal structural equation 

modeling cannot prove causality in these kinds of designs, but it can test whether a 

proposed causal model is plausible and whether it provides good fit to the observed data.  

In the present study, 18 months separated each wave.  The timing and spacing of 

measurements can influence the detection and estimation of effects in longitudinal studies 

(Collins & Graham, 2002), and the 18-month interval may not have been optimal to 

detect more rapidly transmitting causal effects.  Missing data is usually problematic in 

any longitudinal study.  Given the study that generated the data was of older adults, it is 

not surprising that a substantial number of participants did not survive the entire study 

period.  These individuals were excluded as the intent of the study was to examine the 

mediated effect of interest in a population not experiencing the rapid decline in mobility 

and health that often corresponds with an end-of-life deterioration.  A smaller set of 

individuals failed to complete certain assessments during the study period.  In the 

analysis of the data, we assumed that the missing data mechanism in this data set was 

missing at random with respect to covariates (MARX) (Asparouhov & Muthén, 2010).  

For other missing data mechanisms, other approaches such as multiple imputation 

(Schafer, 1997) or pattern mixture modeling (Hedeker & Gibbons, 1997) would be more 

appropriate.  Finally, although the model modification through specification searches 

only considered theoretical plausible paths, it is important to note that such modifications 

can lead to model misspecifications. 
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Conclusion 

A mediation relationship implied by the Wilson-Cleary model of patient health 

outcomes was evaluated.  Cross-sectional models may be inadequate to fully explain the 

role of life-space mobility in mediating the relationship between disability and quality of 

life.  The present longitudinal analysis, based on an autoregressive model, supports the 

mediating role of life-space mobility and suggests that this role is more significant with 

the mental component summary score from the SF-12 as the outcome compared to the 

physical component summary score.  Furthermore, model modifications guided by theory 

and empirical findings did not alter the substantive meaning of this mediated effect, only 

enhanced it.  In addition, the possibility of reciprocal relationships, consistent with other 

studies of the Wilson-Cleary model, is suggested.  Several authors have advocated for the 

use of longitudinal designs in evaluating relationships proposed in the Wilson-Cleary 

model.  The present study provides an example of one approach for testing mediation 

with longitudinal data. 
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Table 1 Descriptive statistics 
   
 Means [or n (%)] SD 
Covariates at baseline (n = 677)   
     Sex – male 306 (45.2%)  
     Race – African American 337 (49.8%)  
     Recent smoker1 83 (12.3%)  
     Age  74.09  6.02 
     Education2 2.63 1.11 
     Comorbidity score3 1.96 1.41 
Wave 1 (n = 677)   
     ADLs   
          Transferring 177 (26.1%)  
          Bathing 81 (12.0%)  
          Dressing 64 (9.5%)  
          Toileting 31 (4.6%)  
     Life Space 69.12 22.94 
     PCS-12 42.19 12.63 
     MCS-12 54.33 9.03 
Wave 2   
     ADLs (n = 663)   
          Transferring 114 (17.2%)  
          Bathing 83 (12.5%)  
          Dressing 73 (11.0%)  
          Toileting 15 (2.3%)  
     Life Space (n = 664) 64.74 22.38 
     PCS-12 (n = 651) 43.74 10.34 
     MCS-12 (n = 651) 54.95 7.38 
Wave 3   
     ADLs (n = 645)   
          Transferring 74 (11.5%)  
          Bathing 88 (13.6%)  
          Dressing 56 (8.7%)  
          Toileting 26 (4.0%)  
     Life Space (n = 646) 62.77 23.58 
     PCS-12 (n = 627) 44.34 11.21 
     MCS-12 (n = 627) 55.41 7.17 
Wave 4   
     ADLs (n = 638)   
          Transferring 124 (19.4%)  
          Bathing 112 (17.5%)  
          Dressing 71 (11.1%)  
          Toileting 87 (13.6%)  
     Life Space (n = 640) 57.88 25.92 
     PCS-12 (n = 612) 41.66 12.23 
     MCS-12 (n = 612) 55.14 7.60 
Notes: 1Recent smoker status includes those who are current smokers and those who quite within the past 
12 months. 2Education is divided into four categories: 1 ≤ 6; 2 = 7-11; 3=13; 4 ≥ 13.  3Comorbidity score 
was created by summing the total number of verified comorbidities that make up the Charlson Comorbidity 
Index (Charlson Pompei, Ales, & MacKenzie, 1987). 
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Table 2 Model fit indices and unstandardized path coefficients for cross-sectional mediation models 
 PCS as outcome 

n = 677 
PCS as outcome 

n = 1000 
MCS as outcome 

n = 677 
MCS as outcome 

n = 1000 

Path Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 

Disability  LS -8.74 (1.009)** -13.29 (0.925)** -9.01 (1.043)** -13.67 (0.963)** 
LS  PCS/MCS  0.049 (0.024)* 0.033 (0.02) 0.050 (0.020)* 0.057 (0.016)** 
Disability  PCS/MCS -8.20 (0.802)** -9.07 (0.753)** -1.67 (0.610)** -2.98 (0.552)** 
Indirect effect     
     DisabilityLSPCS/MCS (ab) 
     p – value (Sobel test) 
     95% bias-corrected bootstrap CI 

-0.433 (0.204)* 
p = 0.034 

(-0.932, -0.027) 

-0.439 (0.260)* 
p = 0.091 

(-0.986, 0.150) 

-0.448 (0.182)* 
p = 0.014 

(-0.937, -0.121) 

-0.773 (0.216)** 
p < 0.0001 

(-1.295, -0.269) 
2 / df 
RMSEA 
PCLOSE 
CFI 
WRMR 

44.81/26 
0.033 
0.965 
0.989 
0.702 

74.72/26 
0.043 
0.820 
0.985 
0.870 

37.81/26 
0.026 
0.993 
0.992 
0.643 

64.81/26 
0.039 
0.941 
0.986 
0.813 

Notes:  Measurement paths (i.e., for disability) and covariate paths have been omitted from the table for simplicity but were included in each model.  RMSEA = root mean 
square error of approximation, PCLOSE = probability that RMSEA <=0.05, CFI = comparative fit index, WRMR = weighted root mean square residual.  Standard errors 
(SE) for the indirect effect are from Sobel (1982). 
* p ≤ 0.05; ** p ≤ 0.01 
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Table 3 Model fit indices and unstandardized path coefficients for longitudinal mediation models 
 PCS as outcome 

Model 1 
PCS as outcome 

Model 2 
MCS as outcome 

Model 1 
MCS as outcome 

Model 2 
Path Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 
Disability1  Disability2 0.88 (0.046)** 0.65 (0.060)** 0.88 (0.047)** 0.62 (0.066)** 
Disability2  Disability3 0.84 (0.030)** 0.52 (0.068)** 0.85 (0.031)** 0.51 (0.071)** 
Disability3  Disability4 0.86 (0.030)** 0.65 (0.064)** 0.85 (0.030)** 0.64 (0.066)** 
LS1  LS2 0.21 (0.045)** 0.33 (0.042)** 0.29 (0.064)** 0.31 (0.044)** 
LS2  LS3 0.30 (0.061)** 0.40 (0.061)** 0.35 (0.066)** 0.28 (0.055)** 
LS3  LS4 0.05 (0.074) -0.04 (0.075) 0.10 (0.074) 0.01 (0.091) 
PCS/MCS1  PCS/MCS2 0.60 (0.054)** 0.58 (0.056)** 0.29 (0.024)** 0.29 (0.024)** 
PCS/MCS 2  PCS/MCS 3 0.76 (0.061)** 0.31 (0.060)** 0.43 (0.032)** 0.40 (0.031)** 
PCS/MCS 3  PCS/MCS 4 0.53 (0.052)** 0.51 (0.056)** 0.43 (0.036)** 0.33 (0.031)** 
Disability1  LS2 -8.53 (1.353)** -7.27(1.043)** -6.73 (1.844)** -7.06 (1.146)** 
Disability2  LS3 -7.84 (1.330)** -6.26 (1.212)** -6.99 (1.404)** -5.42 (1.251)** 
Disability3  LS4 -13.98 (1.719)** -15.47 (1.723)** -12.92 (1.682)** -14.43 (2.001)** 
LS1  PCS/MCS 2 0.03 (0.016)* -0.004 (0.021) 0.07 (0.016)** 0.08 (0.016)** 
LS2  PCS/MCS 3 0.09 (0.021)** 0.13 (0.021)** 0.06 (0.016)** 0.07 (0.017)** 
LS3  PCS/MCS 4 0.02 (0.026) 0.06 (0.026)* 0.05 (0.017)** 0.09 (0.018)** 
Disability1  PCS/MCS4  -4.07 (0.666)** -3.59 (0.693)** -0.77 (0.392)† 0.16 (0.393)‡ 
Fit-based model enhancements     
     Disability2  Disability4  0.23 (0.075)**  0.23 (0.076)** 
     PCS1  PCS3  0.33 (0.062)**  -- 
     MCS1  MCS4  --  0.13 (0.024)** 
     LS1  LS3    --  0.23 (0.042)** 
     LS1  Disability2  -0.012 (0.003)**  -0.011 (0.003)** 
     LS1  Disability3  -0.014 (0.003)**  -0.016 (0.002)** 
     LS2  Disability3  -0.008 (0.003)*  -0.008 (0.003)* 
Indirect effects     
     Disability1Diability2LS3PCS/MCS4  

     Disability1LS2LS3 PCS/MCS4  
     Disability1LS2 PCS/MCS3  PCS/MCS4 

     Total indirect effect 

-0.165 (0.177) 
-0.061 (0.066) 

-0.400 (0.121)** 
-0.627 (0.242)** 

-0.230 (0.111)* 
-0.166 (0.079)* 
-0.484 (0.101)** 
-0.880 (0.187)** 

-0.319 (0.121)** 
-0.120 (0.053)* 
-0.165 (0.062)** 
-0.605 (0.170)** 

-0.305 (0.096)** 
-0.178 (0.058)** 
-0.160 (0.047)** 
-0.642 (0.137)** 

2 / df 
RMSEA 
PCLOSE 
CFI 
WRMR 

640.53/325 
0.038 
1.00 
0.982 
1.127 

477.21/320 
0.027 
1.00 
0.991 
0.895 

628.88/325 
0.037 
1.00 
0.983 
1.133 

461.98/319 
0.026 
1.00 
0.992 
0.893 

Notes: All models include constraints where measurement properties (i.e., loadings and thresholds) for the disability measure are equivalent over time (invariant). Measurement paths (i.e., for 
disability), covariate paths, and covariances between residual terms of downstream endogenous variables within the same wave have been omitted from the table for simplicity, but were 
included in each model.  RMSEA = root mean square error of approximation, PCLOSE = probability that RMSEA <=0.05, CFI = comparative fit index, WRMR = weighted root mean square 
residual.  Standard errors (SE) for indirect effects are from Sobel (1982).   ‡p = 0.691; †p = 0.051; * p ≤ 0.05; ** p ≤ 0.01 



68 
 

 

 

 

 
Fig. 1  The Wilson-Cleary health-related quality of life model (Wilson & Cleary, 1995). 
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Fig. 2  Basic mediation model for the present study. Indirect effect = ab, direct effect = 
c’, total effect = ab+c’. 
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Fig. 3  Autoregressive mediation model framework for the present study. Measurement 
paths (i.e., for disability), covariate paths, and covariances between residual terms of 
downstream endogenous variables within the same wave have been omitted for simplicity. 
LS = life-space mobility and MCS and PCS = mental component summary score and 
physical component summary score of the SF-12, respectively. 
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Fig. 4  Completely standardized parameter estimates from the final model (i.e., Model 2) 
with PCS-12 as the outcome variable including fit-based model enhancements. 
Measurement paths (i.e., for disability), covariate paths, and covariances between residual 
terms of downstream endogenous variables within the same wave have been omitted for 
simplicity.  Parameter estimates are located above the corresponding path.  LS = life-
space mobility and MCS and PCS = mental component summary score and physical 
component summary score of the SF-12, respectively. 
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Fig. 5 Completely standardized parameter estimates from the final model (i.e., Model 2) 
with MCS-12 as the outcome variable including fit-based model enhancements. 
Measurement paths (i.e., for disability), covariate paths, and covariances between residual 
terms of downstream endogenous variables within the same wave have been omitted for 
simplicity.  Parameter estimates are located above the corresponding path.  LS = life-
space mobility and MCS and PCS = mental component summary score and physical 
component summary score of the SF-12, respectively. 
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Abstract 
 

The autoregressive model is a useful approach for examining mediation, offers several 
advantages over cross-sectional models of mediation, and is being increasingly used in 
empirical studies.  There are, however, additional complexities associated with this model 
and no Monte Carlo studies have examined accuracy of parameter estimation and the 
power for testing mediation in the autoregressive model.  A simulation study was 
conducted to assess the impact on estimation as well as statistical power and Type I error 
rates of failing to account for random measurement error and shared method variance in 
the mediator under a variety of conditions, including the degree of shared method 
variance, degree of composite reliability, degree of stability of the latent mediator, size of 
the mediated effect, and sample size.  The results demonstrate that failure to account for 
measurement error and shared method variance can have a significant impact on 
parameter estimation in the autoregressive mediation model, including both 
overestimation and underestimation of paths of interest.  Although the extraction of latent 
variables from multiple observed measures generally provides accurate estimates and also 
allows researchers to take into account method effects by allowing correlated 
measurement errors, latent variable models still require significant levels of composite 
reliability to achieve acceptable levels of power to detect the mediated effect. 
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Introduction 

At its most basic level, statistical mediation suggests that the causal influence of 

an independent variable (X) on a dependent variable (Y) is transmitted through another 

variable called a mediator or intervening variable (M) (Hoyle & Kenny, 1999).  

Mediation modeling is important as it attempts to provide mechanistic explanations as to 

how or why variables exert their influence on other variables.  The use of such models to 

explore the plausibility of theoretical explanations, to evaluate the validity of surrogate 

endpoints (variables that can be used instead of the ultimate dependent variable), or to 

assess how or why an intervention produces change in an outcome variable are widely 

reported in the literature.   

A variety of statistical methods for assessing mediation in the context of several 

different types of study designs have been proposed (e.g., for a review, see MacKinnon, 

Fairchild, & Fritz, 2007; MacKinnon, 2008a).  However, the use of use of cross-sectional 

data and a single-mediator model (often with continuous measures of X, M, and Y) is still 

the norm in most empirical tests of mediation, especially in the field of psychology 

(Maxwell & Cole, 2007).  In the case of true longitudinal mediation, cross-sectional 

analyses provide biased estimates of the indirect effect in two different models of change, 

the autoregressive model and a random effects model (Maxwell & Cole, 2007).  

Assessment of mediation with longitudinal data provides more information regarding the 

temporal relation of the independent variable, the mediator, and the outcome variable, a 
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critical component in causal inference of a proposed mechanistic explanation, such as a 

mediation hypothesis (Kazdin & Nock, 2003).  Similarly, causal effects often take time to 

develop, and variables measured at the same time, as in a cross-sectional analysis, do not 

account for the necessary development time, essentially assuming immediate effects 

(Gollob & Reichardt, 1991).  In addition, cross-sectional analyses of mediation implicitly 

assume that prior levels of a variable do not have effects on subsequent levels of that 

same variable (i.e., autoregressive effects are zero), potentially leading to an omitted 

variable bias (Gollob & Reichardt, 1991; Cole & Maxwell, 2003).  For these reasons, a 

greater emphasis has been placed on the development of longitudinal mediation models. 

There are several classes of models for evaluating longitudinal mediation with the 

collection of three or more waves of data,1 including: 1) autoregressive models (Gollob & 

Reichardt, 1991; Cole & Maxwell, 2003), 2) different types of random effects models, 

including latent growth curve models (Kenny, Korchmaros, & Bolger, 2003; Cheong, 

MacKinnon, & Khoo, 2003; Cheong, 2011; von Soest & Hagtvet, 2011), 3) adaptations 

of latent difference score models which are useful when electing to examine potential 

differences at different waves of data (Ferrer & McArdle, 2003; McArdle, 2009; Geiser, 

Eid, Nussbeck, Courvoisier, & Cole, 2010), 4) autoregressive latent trajectory (ALT) 

models, which combine elements of 1 and 2 (Curran & Bollen, 2001), and 5) a stage-

sequential model of mediation based on binary data that is person-centered (i.e., 

examines response patterns of individuals on the variables of interest), rather than 

variable-centered (i.e., examines relationships among variables, as in the previous four 

models) (Collins, Graham, & Flaherty, 1998).  Selig and Preacher (2009) provide an 

                                                            
1 It is possible to provide some evidence of longitudinal mediation with two waves of data.  See Cole & 
Maxwell (2003), MacKinnon (2008b), and Roth & MacKinnon (2012) for examples. 
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excellent review of the strengths and weakness of the first three models and provide 

recommendations for appropriate use of each approach. 

Concurrent with the growth in methodological developments, several empirical 

studies have begun to test mediation hypotheses in the context of longitudinal designs 

with these techniques, primarily autoregressive models (Negriff, Ji, & Trickett, 2011; 

Pössel & Thomas, 2011) and latent growth curve models (Cheong, MacKinnon, & Khoo, 

2003; Flora, Khoo, & Chassin, 2007; Liu et al., 2009; Audrain-McGovern, Rodriguez, & 

Kassel, 2009; Roesch et al., 2009; Roesch, Norman, Villodas, Sallis, & Patrick, 2010; 

Littlefield, Sher, & Wood, 2010).  However, there is a need for simulation studies to 

evaluate the performance of these models under a variety of conditions, evaluating the 

impact of these conditions on parameter and standard error estimation as well as 

statistical power and Type I error rates.  Cheong (2011) has recently reported on the 

accuracy of mediated effect estimation and power in the latent growth curve model of 

mediation.  In the present study, a simulation study was conducted to assess the impact of 

model misspecification (i.e., failing to account for random measurement error and shared 

method variance in the mediator) in the autoregressive mediation model under a variety 

of conditions. 

Although longitudinal mediation models, such as the autoregressive model, 

certainly have advantages over the use of cross-sectional mediation modeling, there are 

limitations and challenges associated with their use.  As with the case of cross-sectional 

models of mediation, the impact of random measurement error in X, M, and Y in an 

autoregressive model can be substantial (i.e., underestimation of some effects and 

overestimation of others) and potentially more complex (Cole & Maxwell, 2003; Little, 
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Preacher, Selig, & Card, 2007).  MacKinnon (2008b, p. 209) notes, “One way to improve 

the interpretability of autoregressive models is to improve measurement of variables 

either by specifying latent variables or increasing the reliability of measures.”  

Specification of latent variables is a commonly used method to address the biasing effect 

of random measurement error and the autoregressive mediation model can be extended to 

a latent variable model, where latent variables are extracted from multiple indicators (i.e., 

observed variables) for X, M, and/or Y. 

Despite the availability of latent variable autoregressive models, many 

investigators continue to use single-item fallible indicators of a construct or linear 

composites of a set of fallible indicators (e.g., sum scores or average scores of a set of 

indicators).  The impact of such approaches has been evaluated for cross-sectional 

mediation models (Hoyle & Kenny, 1999; Stephenson & Holbert, 2003; Cheung & Lau, 

2008), but not in the autoregressive longitudinal mediation framework.  In addition, the 

use of latent variables in an autoregressive model increases the possibilities of model 

misspecification, including the failure to account for shared method variance (e.g., the 

method effects associated with repeated administrations of the same measure), which 

may also lead to biased parameter estimates (Marsh, 1993; Cole, Ciesla, & Steiger; 2007; 

Geiser et al., 2010; Kline, 2011).  The purpose of this study was to explore the effects of 

these variables (i.e., the method to handle fallible indicators, omission of paths 

representing shared method variance) on parameter and standard error estimation as well 

as statistical power and Type I error rates under a variety of conditions (i.e., degree of 

shared method variance, degree of composite reliability for the set of indicators 

representing the mediator, degree of stability of the latent mediator, size of the mediated 



79 
 

effect, and sample size) in the autoregressive mediation model using a Monte Carlo 

simulation study.  Before introducing the study, a brief review of the autoregressive 

mediation model and a discussion of the random measurement error and shared method 

variance in the context of longitudinal studies are provided. 

 

The Autoregressive Mediation Model 

The basic autoregressive mediation model described by Gollob and Reichardt 

(1991) and subsequently elaborated on by Cole and Maxwell (2003) can be found in 

Figure 1 (in this case, there are three measurement occasions or waves).  This model 

involves a single putative causal variable (X), mediator (M), and outcome variable (Y), 

all three measured at multiple time points.  The x, m, and y paths provide evidence of 

stability of these variables over time (i.e., x, m, and y are regression coefficients 

summarizing the relationship of a variable with itself at time t and time t + 1).  The use of 

single letters without subscripts for paths a and b in Figure 1 suggests that the causal 

relationship between X and M and M and Y are the same across measurement occasions 

(i.e., the X1  M2 path is the same as the X2  M3 path), a condition known as 

stationarity.  

Cole and Maxwell (2003) outline a set of steps for estimating the autoregressive 

mediation model with structural equation modeling.  The first two steps, testing the 

measurement model and testing for invariance, require multiple measures for X, M, 

and/or Y.  The third step focuses on the possibility of the omission of important variables 

(i.e., confounders) by examining correlations among residuals of endogenous variables 

within each wave (e.g., correlation of the residuals of M3 and Y3) (see also Anderson & 
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Williams, 1992).  Significant correlations between such residuals imply that “potentially 

important variables are missing from the model” (Cole & Maxwell, 2003, p. 571).  The 

fourth step examines the presence of paths that are not part of the proposed mediation 

model, but may nevertheless bias the estimate of the mediated effect if ignored.  These 

paths include wave-skipping autoregressive paths (e.g., X3 predicted by X2 and X1), 

cross-lagged relations (e.g., X2 predicted by M1 or M2 predicted by Y1), and direct effects 

of X on Y, which, if present, suggests the case of partial, rather than complete, mediation.  

The fifth step involves the estimation and testing of the mediated (or indirect) and direct 

effects. 

The basic longitudinal mediated effect in Figure 1 (i.e., with the existence of only 

three waves of data) is a*b.  Assuming stationarity, which is testable in this model, it 

should not matter which a or b is used, however it is common to use X1M2 as the a 

path and M2Y3 as the b path to reflect temporal ordering.  A number of methods exist 

for the calculation of standard errors and the construction of significance tests and 

confidence intervals for the mediated effect (see MacKinnon, Lockwood, Hoffman, West, 

& Sheets (2002) and MacKinnon, Lockwood, & Williams (2004) for a more detailed 

discussion of the various options available for the standard error of the mediated effect 

and subsequent construction of confidence intervals).  Two commonly used methods for 

testing the significance of the mediated effect are the joint significance test (Cohen & 

Cohen, 1983) and the Sobel test (1982).  The joint significance test declares a significant 

mediated effect when the paths comprising the mediated effect are both statistically 

significant.  In the case of the basic autoregressive mediation model in Figure 1, this 
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would be the X1M2 path and M2Y3 path.  Such a test cannot be used to estimate the 

mediated effect or in the construction of confidence intervals. 

The Sobel standard error formula for the a*b mediated effect is: 

 2 2 2 2
b aa s b s  (1) 

 
where sa and sb are the standard errors for the a and b estimates.  The Sobel standard error 

is implemented in several statistical software programs and can also be used to construct 

confidence intervals for the mediated effect, in addition to significance testing.  The 

Sobel standard error is not without its critics.  The use of the Sobel standard error relies 

on asymptotic theory (i.e., normal-theory confidence limits and hypothesis tests).  The 

distribution of a product of two independent normally distributed random variables is 

generally not normally distributed, although it may approach normality in large samples 

(MacKinnon, 2008a).  The net result is generally conservative hypothesis tests (low Type 

I error rates and low power) and confidence intervals (i.e., empirical coverage 

probabilities larger than 95% for a 95% confidence interval).  

In a single-mediator, cross-sectional model of mediation, the condition of a zero 

direct effect (i.e., the relationship between X and Y adjusted for M) implies the case of 

complete or perfect mediation (Baron & Kenny, 1986).  In Figure 1, a direct effect of X1 

on Y3 is represented by the c’ path, such that the condition of c’ = 0 should imply 

complete mediation. However, while necessary, this condition is not sufficient for the 

case of complete mediation in the autoregressive mediation model.  Assuming the x and y 

paths are nonzero, X1 could directly affect Y3 (i.e., not go through M) through Y2 (i.e., 

X1Y2Y3 is a time-specific direct effect).   In autoregressive mediation models, these 
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other direct effects must also be zero for mediation to be complete (Cole & Maxwell, 

2003). 

 

Random Measurement Error and Shared Method Variance 

The impact of random measurement error has received considerable attention in 

the literature.  The impact of fallible measures (i.e., unreliable measures or those 

possessing random measurement error) is to attenuate true correlations between variables.  

This biasing effect of measurement error, and its subsequent impact on hypothesis 

testing, is generally well understood.  Because of its role in multiple paths of a mediation 

model, unreliability in the mediator can lead to a confusing pattern of results (Hoyle & 

Kenny, 1999; Cole & Maxwell, 2003).  In the presence of such unreliability, the 

standardized XM and MY paths are underestimated, leading to an underestimation 

of the indirect effect (the product of these two paths).  However, in this situation the 

XY path controlling for the mediator (i.e., the direct effect) is actually overestimated.  

Thus, in some models unreliable variables can attenuate some path coefficients while 

spuriously inflating others.  In the cross-sectional mediation model, these effects have 

been documented both analytically (Hoyle & Kenny, 1999; Cole & Maxwell, 2003) and 

through simulation studies in which a linear composite of a set of fallible indicators is 

used with known levels of composite reliability to represent a mediator, in essence 

ignoring unreliability (called the observed variable approach) (Hoyle & Kenny, 1999; 

Stephenson & Holbert, 2003; Cheung & Lau, 2008).  Such effects have not been 

systematically explored in the context of an autoregressive mediation model.  The 

inclusion of prior levels of a variable as a predictor of subsequent levels of the same 
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variable and the presence of several additional paths may complicate the biasing effects 

of random measurement error in autoregressive mediation models compared to cross-

sectional mediation models (Cole & Maxwell, 2003; Little et al., 2007). 

It is possible to extract latent variables from multiple indicators with which to test 

mediation models.  These latent variables are without error and thus their use can 

substantially minimize the biasing effects of measurement error in mediation modeling 

(Bedeian, Day, & Kelloway, 1997).  The autoregressive mediation model can be 

extended to a latent variable model (see Figure 2, where a latent variable for Mi is 

extracted at each of three time points from a set of three indicators). 

When assessing the same latent construct at several time points using the same 

observed measures, it is quite likely that there will be some degree of indicator-specific 

effect that is present at each testing occasion (Cole & Maxwell, 2003; Raykov & Penev, 

2005; Brown, 2006).  This is a type of shared method variance and is often reflected by 

correlations between residuals (i.e., measurement errors or disturbances) of the same 

indicator across multiple time points (i.e., cross-wave, within-construct error covariance).  

This is noted in Figure 2 by the doubled-headed arrows between the error terms of 

indicators at multiple time points (e.g., mA1↔mA2).  This presence of correlated 

measurement errors suggests another exogenous common cause, in this case a common 

method, in addition to the latent factor, M.  These effects are usually not of direct interest, 

but failure to account for them may lead to poor overall model fit and to biased parameter 

estimates (Marsh, 1993; Cole, Ciesla, & Steiger; 2007; Geiser et al., 2010; Kline, 2011).  

In the case of the autoregressive mediation model, ignoring correlated measurement 

errors can result in an overestimation of construct stability (i.e., the x, m, and y paths in 
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Figures 1 and 2).  Approaches such as creating linear composites for a construct such as a 

mediator from a set of fallible indicators ignore both measurement error and the possible 

presence of shared method variance.  The consequences for such an approach are 

complex in the autoregressive mediation model since disregarding measurement error has 

a downward biasing effect on stability coefficients while failure to specify correlated 

measurement errors has an upward biasing effect.  

 The concept of reliability discussed when several items are used to measure a 

construct is referred to as internal consistency reliability, most frequently summarized by 

Cronbach’s alpha (although there are other measures available).  This is not equivalent to 

a reliability stability coefficient, which is often assessed by the correlation (e.g., 

Pearson’s or intraclass correlation coefficients) between sets of scores from the same 

subjects on the same measure administered at two different times.  The x, m, and y paths 

in Figures 1 and 2 can be thought of as stability coefficients, albeit the m and y paths 

reflect stability in M or Y after adjusting for X or M, respectively.  In some areas, notably 

the behavioral sciences, highly stable constructs are sometimes labeled as “traitlike,” 

whereas unstable variables (those with low stability coefficients) are labeled as 

“statelike” (Cole, Martin, & Steiger, 2005).  Given the focus of the present study is on 

unreliability and correlated measurement errors with respect to the mediator in an 

autoregressive mediation model, the degree of stability for this construct needs to be 

taken into consideration. 
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Methods 

Population Model 

The population longitudinal mediation model was based on the model in Figure 2, 

a three-wave model with measures for X, M, and Y at all three measurement occasions.  

Multivariate normal data with known population values were generated as part of the 

simulation.  The X and Y variables were assumed to be observed variables and a total of 

three observed indicators were generated for the latent variables M1, M2, and M3.  The X 

and Y variables as well as the indicators of M were assumed to be continuous and the X 

and Y variables were assumed to be measured without error.  Based on the work of 

Cheung (2007), for ease of manipulation, population values were selected such that the X 

and Y observed variables and the latent variables representing M at all three waves were 

standardized (mean = 0; standard deviation = 1). 

The mediated effect was defined as the independent variable at time 1 (X1) 

affecting the dependent variable at time 3 (Y3) via the mediator at time 2 (M2) and was 

estimated as the product of these two paths in all subsequent analyses (a*b).  No 

contemporaneous relationships (i.e., X2M2Y2) nor cross-lagged relationships (i.e., 

M1X2) were specified (all assumed to be zero).  Population values for all direct effects 

of X1 on Y3 were assumed to be zero (i.e., complete mediation).  The covariances among 

residual terms of endogenous variables within each wave were also constrained to be 

zero.  This suggests no important variables are missing from the model. 

Population stability coefficients for X and Y (i.e., the x and y paths) were the 

same for all conditions (x = 0.71 and y = 0.51).  The paths selected represent about 50% 

of the variance in X2 and X3 under all experimental conditions and about 26% of the 

variance in Y2 and Y3 under the conditions of no mediated effect.  The a, b, and m path 
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coefficients were manipulated factors in the simulation study.  Within a given 

experimental condition, all paths (a, b, x, m, and y) were set to be invariant over time in 

the population model (e.g., the M1M2 path = M2M3 path and the X1M2 path = the 

X2M3 path).  Furthermore, the condition of equilibrium in the population model was 

assumed, meaning that the correlations among X, M, and Y are the same at all three 

measurement occasions.  This feature was used to determine the correlations among X, 

M, and Y at time 1 under the different experimental conditions (see Appendix A). 

 

Simulation Study Conditions 

The simulations and subsequent model fitting were conducted using Mplus 6.11 

(Muthén & Muthén, Los Angeles, CA).  The data generation source code for one of the 

combinations of the experimental conditions along with code for the fitting of the three 

model specifications can be found in Appendix B.  A total of six factors were 

manipulated in this simulation study:  1) three model specifications, 2) three levels of 

composite reliability for the set of indicators representing the mediator, 3) three levels of 

shared method variance, 4) two levels of stability of the latent mediator, 5) four sizes of 

the mediated effect, and 6) four different sample sizes.  Of these, only five contributed to 

the creation of different sets of replications (model specification can be thought of as a 

within-subjects factor, where all three levels of this factor were applied to all replications 

in each condition).  Thus, data were generated under 288 unique experimental conditions 

(3 x 3 x 2 x 4 x 4). 

A total of 600 replications were simulated for each of these 288 conditions and a 

model outlined in Figure 2 (including the six measurement error covariances, the c1’ and 
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c2’ paths, and the loading of the first indicator for the mediator at each of the three waves 

fixed to 1 to set the scale for the constructs and identify the model) was fit to the 600 raw 

datasets in each condition using maximum likelihood estimation.  Out of these 600 

replications in each of the 288 conditions, replications that failed to converge or resulted 

in negative variances or residual variances were excluded, and then the first 500 

replications with converged and proper solutions were selected for subsequent analyses 

(Paxton, Curran, Bollen, Kirby, & Chen, 2001), providing a total of 144,000 data sets.  

No experimental condition had more than 100 replications with improper solutions and in 

most conditions, all solutions were proper.  Almost all of the problematic replications 

occurred with n = 100 and low reliability of the mediator.  The three specified models 

described below were then fit to these 144,000 simulated data sets. 

Model specification. Three different models were specified and were fit to each 

data set.  The first model was based on Figure 2 and included the extraction of latent 

variables for M1, M2, and M3 in addition to the specification of the six measurement error 

covariances noted in the figure (i.e., these covariances were freely estimated).  Under the 

conditions where there were nonzero covariances between the error terms of the 

indicators at multiple time points, this was the properly specified model.  When these 

covariances were zero (i.e., no shared method variance), this model included an error of 

inclusion.  The second model specification also included the extraction of latent variables 

for the mediator at all three measurement occasions, but failed to specify indicator error 

covariances (i.e., these covariances were not estimated, but rather fixed to zero).   Thus, 

under conditions of no shared method variance, this was the properly specified model, 

whereas it served to illustrate the potential biasing effects of ignoring correlated 
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measurement errors when these errors were present in the population model.  The third 

model specification essentially failed to explicitly acknowledge unreliability in the 

mediator or the possible presence of shared method variance.  In this model, an 

unweighted linear composite was created for the mediator variable at each measurement 

occasion by averaging the values of the three indicators at each time point. 

For all three models, the c1’ and c2’ paths (i.e., direct effects) were estimated to 

assess the potential for overestimation of direct effects under various conditions.  In 

addition, although all paths (a, b, x, m, and y) were set to be invariant over time in the 

population model, no such constraints were imposed during model fitting (i.e., all 

autoregressive model parameters were freely estimated).  Maximum likelihood was used 

as the estimation method.   

Composite reliability for the mediator. Three levels of composite reliability of the 

mediator were examined: 0.60, 0.75, and 0.90, representing low, moderate, and high 

reliability.  Factor loadings for each indicator were set to 1 such that reliability was 

manipulated by changing the residual (or error) variances of the factor indicators.  The 

composite reliability coefficient can be expressed as (Fornell & Larcker, 1981): 

 
 

 

2

2

i

i i




 





 

 (2) 

 

where  2

i is the squared sum of unstandardized factor loadings and i is the sum 

of unstandardized residual variances for the indicators.  Given factor loadings of 1, 

residual variances of 2, 1, and 1/3 for the indicators provided composite reliabilities of 

0.60, 0.75, and 0.90, respectively.  Thus, simplifying assumptions that the loadings and 

residual variances for the indicators are the same within wave (such an approach was also 
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used by Hoyle and Kenny (1999) and are also equivalent across waves were used (i.e., 

time invariance of the measurement model).  Although this was the case in the population 

used to generate sample data, no such constraints were imposed during model fitting. 

Shared method variance. Three levels of shared method variance, reflected by 

covariances between the error terms of the same indicators at multiple time points (e.g., 

mA1↔mA2), were tested.  Correlations of 0, 0.10, and 0.30 among measurement errors of 

a given indicator at adjacent time points were chosen to reflect no shared method 

variance, a small amount, and a medium amount using Cohen’s (1988) guidelines for the 

correlation coefficient.  As the covariance between measurement errors is a function of 

the correlation coefficient and the residual variances of the indicators, the covariance was 

larger in conditions in which the reliability was lower (i.e., the residual variance for the 

indicators was larger).  Only covariances between adjacent time points were specified 

(see Figure 2) and the same value was used for all six possible correlations.  While there 

were correlated errors across time for the same indicator, no correlated measurement 

errors were specified within the construct on the same measurement occasion.  This 

indicates no occasion-specific effects and reflects common practice.   

Stability of the latent mediator. Two levels of stability in M, after adjusting for 

other relations in the model (i.e., path m in Figure 2), were manipulated: 0.36 and 0.51.  

These represent about 13% and 26% of the variance in M2 and M3 under the conditions of 

no mediated effect.   

Size of the mediated effect. Four levels of a and b were used to vary the effect size 

of the mediated effect.  For ease of manipulation, population path coefficients for a and b 

were set to be equal (see Cheung, 2007; 2009, for similar designs).  The values of 0, 0.10, 
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0.25, and 0.34 were chosen for the a and b paths to reflect zero, small, medium, and large 

effects for the mediated effect.  These values correspond to zero, small (0.02), medium 

(0.15), and large (0.35) effects on the f 2 metric for the incremental effect in the variance 

explained in Y3 of including the a and b paths in the autoregressive model over the y path 

when m = 0.36 (Cohen, 1988) (see Appendix A for further elaboration). When m = 0.51, 

the effects are slightly larger, but still within Cohen’s guidelines for small, medium, and 

large effects. 

Sample size. Four sample sizes often encountered in social and behavioral science 

research were considered: 100, 200, 500, and 1000. 

 

Study Outcomes 

Parameter and standard error estimation.  Both bias and relative bias were used 

to assess the accuracy of point estimation in the autoregressive mediation model. While 

the primary interest was the estimate of the mediated effect (i.e., the product of the 

X1M2 and the M2Y3 paths or a*b) and the direct effects (i.e., the X1Y2 and the 

X1Y3 paths), it is important to look at the effect of model misspecification on the 

estimation of other parameters in the model as it may help to explain the bias in the 

estimates of the mediated and direct effects.  Relative bias is defined as the ratio of the 

deviation in an estimate from the true value to the true value: 

 
 



 (3) 

 
  is the point estimate of the effect of interest from the simulated data whereas   refers 

to the true value specified in the population model.  Absolute values greater than 0.10 
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were considered problematic (Kaplan, 1988).  Under conditions where the true value was 

zero, the bias (the numerator in equation 3) was calculated and reported. 

Because of questions concerning its performance especially with smaller samples, 

the relative bias associated with the estimation of the Sobel (1982) standard error is often 

reported in simulation studies of mediation (e.g., see MacKinnon et al., 2002; Taylor, 

MacKinnon, & Tein, 2008; Cheong, 2011).  To calculate this relative bias, equation 1 

was used to calculate the Sobel (1982) standard error estimate for each of the 500 

replications under a given set of conditions.  The standard deviation of the mediated 

effect across the same 500 replications was used as the true value of the standard error 

and then equation 3 was used to calculate relative bias.  

Power and Type I error rates.  Both the mediated and the direct effects were 

tested for significance in each of the 500 replications under all experimental conditions 

using a two-tailed test at the  = 0.05 level of significance.  Both the Sobel test and the 

joint significance test were used for testing the mediated effect.  Under conditions when 

the true mediated effect was 0 and for all tests of the direct effects (because the true 

values of the c1’ and c2’ paths in Figure 2 are 0 under all conditions), the proportion of 

replications in which the null hypothesis was rejected was used as an estimate of the 

Type I error rate.  When the true mediated effect was nonzero, the proportion of 

replications where the mediated effect was statistically significant was used as the 

measure of power. 
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Analysis 

 SAS 9.2 (SAS Institute, Cary, NC, USA) was used for analyzing the simulation 

results.  To examine the main effects and interactions of the six design factors on the 

study outcomes, analysis of variance was used for continuous outcomes (bias and relative 

bias) and logistic regression was used for dichotomous outcomes (Type I error and 

power).  Because the number of observations was so large, effects were interpreted on the 

basis of effect sizes rather than conventional p < 0.05 significance testing (Paxton et al., 

2001).  The proportion of total variation accounted for (2) was used as the measure of 

effect for ANOVA models and the proportional reduction in deviance attributable to a 

predictor  2
LR  was used for logistic regression models.  The number of observations 

coupled with the goal of estimating terms for all possible interactions precluded the use 

of categorical predictors for all factors in the logistic regression models (i.e., the model 

could not be estimated).  Thus, these models were estimated with all factors except model 

specification treated as centered, quantitative predictors (see Taylor et al., 2008 for a 

similar approach).  Although the three model specifications comprise a within-subjects 

factor, model specification was treated as a between-subjects factor in the analysis.  

Because the results were interpreted in terms of effect sizes rather than significance 

testing, the treatment of model specification as a between-subjects factor did not affect 

the results. 

 

Results 

When the three specified models were fit to the 144,000 simulated data sets, 

proper solutions were obtained for all latent variable models with indicator error 
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covariances specified (as this model was used to initially assess for nonconvergence and 

out-of-range values, this was expected) and for all composite variable models (i.e., 

models in which a linear composite was created for the mediator variable at each 

measurement occasion by averaging the values of the three indicators).  However, 

estimation problems were encountered in 205 data sets (less than 0.1% of the total 

number of data sets) when the third model specification was used (i.e., latent variable 

models with indicator error covariances unspecified) and these were excluded from 

subsequent analyses, leading to a slightly unbalanced design.  The most frequently 

encountered problem for this model specification was a negative residual variance for one 

of the indicators and almost all occurred with n = 100 and low reliability of the mediator. 

 

Parameter Estimation 

Overall, the study factors (and all possible interactions) accounted for 3.3% of the 

total variation in the relative bias associated with estimates of the mediated effect.  Most 

of the explained variation (93%) was due to the main effects of, and interactions among, 

three factors: model specification, level of reliability, and degree of indicator error 

correlation (i.e., shared method variance).  Mean relative bias values for the mediated 

effect estimates are presented in Table 1 as a function of these three factors, as well as 

sample size, collapsing across levels of latent mediator stability and size of the mediated 

effect.  Even though sample size or interactions with this factor did not account for 

nontrivial variance, results are nevertheless reported separately for this factor as it helps 

to demonstrate that the biasing effects of model misspecification do not significantly vary 

by sample size. 
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Although there was a slight degree of positive bias at small sample sizes paired 

with low to moderate reliabilities for the latent variable model when indicator 

covariances were estimated, the relative bias for the mediated effect was less than 0.10 in 

all conditions with this model specification.  When the indicator covariances were 

unspecified in a latent variable model, the mediated effect was significantly 

underestimated in conditions of low to moderate reliability coupled with a medium 

amount of shared method variance, a finding that did not change with increasing sample 

sizes.  Finally, in conditions in which the composite variable model was fit, the absolute 

value of the relative bias of the mediated effect was almost always larger than 0.10.  

Higher reliability was generally associated with a smaller amount of bias, and within each 

level of reliability, greater amounts of indicator error correlation appeared to increase the 

degree of bias.  Again, increasing sample size did not attenuate the biasing effects of this 

model misspecification. 

Because relative bias could not be calculated when the mediated effect was zero, a 

separate analysis examined the bias of the mediated effect estimates under this condition.  

None of the study factors nor interactions accounted for a nontrivial amount of variation 

(0.2%) and the bias values were all generally near zero, suggesting that ignoring shared 

method variance and failing to explicitly recognize unreliability in the mediator do not 

appear to lead to biased estimates of the mediated effect when the effect was zero (not 

tabled). 

The patterns of means for the relative biases associated with estimates of the m, a, 

and b paths can be found in Tables 2, 3, and 4, respectively.  For all three of these 

outcomes, the study factors accounted for a significant amount of total variation in 
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relative bias (29.8%, 2.5%, and 10.5%, respectively) with most of the explained variation 

(97%, 85%, and 97%, respectively) coming from the main effects of, and interactions 

among, model specification, level of reliability, and degree of indicator error correlation.  

Thus, the results in Tables 2, 3, and 4 are presented as a function of these three factors, as 

well as sample size, similar to Table 1.  Because the mediated effect was defined as the 

product of the X1  M2 (a path) and the M2 Y3 (b path) paths, only results for these 

two paths are presented in Tables 3 and 4.  However, the results for the other a (X2  

M3) and b (M1  Y2) paths were generally the same.  Likewise, Table 2 only presents 

results for the first m path (M1  M2), as results for the other m path followed basically 

the same pattern. 

For path m, an interesting pattern emerges when comparing the different model 

specifications (Table 2).  Consistent with the findings for the mediated effect, the latent 

variable model with specified indicator covariances generally performed well, with a 

small amount of positive bias at small samples sizes with low to moderate amount of 

reliability.  In the latent variable model with unspecified error covariances, the m path is 

increasingly overestimated as the degree of shared method variance increases, an effect 

that diminishes as reliability increases.  This same path is generally underestimated in the 

composite variable model, but since this model specification does not explicitly 

acknowledge unreliability or the presence of shared method variance, the relative bias 

tends toward zero as the degree of shared method variance increases, reflecting the 

upward biasing effect of ignoring shared method variance. 

Results for path a estimates are generally inversely related to those of path m 

(Table 3).  Namely, as path m is underestimated by a given model, path a is generally 
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overestimated, and vice-versa.  These results are best seen in the two models with notable 

misspecifications, as the latent variable model with indicator error covariances specified 

generally has values for relative bias for path a near zero.  As with other paths, the 

biasing effects of model misspecification tend to diminish as reliability increases. 

As seen with the other paths and the mediated effect, path b tended to be slightly 

overestimated in the latent variable model with specified indicator covariances at small 

samples sizes with low to moderate amount of reliability (Table 4).  When the indicator 

covariances were unspecified in a latent variable model, path b was underestimated in 

conditions of low and a medium amount of shared method variance.  Finally, for the 

composite variable model, a fairly consistent pattern emerged: a negative bias for this 

path that improved with increasing reliability, but was invariant to both sample size and 

shared method variance within each level of reliability. 

Paths a and b were zero when the mediated effect was zero, thus relative bias 

could not be calculated under these conditions.  Not surprisingly, separate analyses 

examining the bias associated with estimates of these paths under these conditions 

revealed similar results as the bias of mediated effect estimates.  Namely, none of the 

study factors nor interactions accounted for nontrivial amount of variation (0.1% for the a 

path and 0.2% for the b path) and the bias values were all generally near zero (not 

tabled). 

With respect to estimates of the two direct effects, X1  Y2 and X1  Y3, the 

study factors taken together accounted for 3.5% and 7.1% of the total variation in the 

bias, respectively (relative bias could not be calculated as the true values of these paths 

were zero).  The main effects of, and interactions among, model specification, level of 
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reliability, and effect size of the mediated effect accounted for most of the explained 

variation in the bias associated with these direct effects (93% and 94%, respectively).  

Tables 5 and 6 present mean bias values for the direct effects as a function of these three 

factors, as well as sample size, collapsing across levels of latent mediator stability and 

degree of indicator error correlation.  Table 5 shows that the positive bias in the X1  Y2 

path primarily occurred in the composite variable model with lower levels of reliability 

coupled with larger mediated effects; the latent variables models generally showed no 

significant bias associated with this path.  Similarly, the X1  Y3 path tended to be 

overestimated in the composite variable model with low to moderate levels of reliability 

when the mediated effect size was medium to large.  There was a small degree of positive 

bias for this path in the latent variable model with unspecified indicator error covariances 

at low levels of reliability and large mediated effects.  Although the degree of shared 

method variance or interactions with this factor did not account for a nontrivial amount of 

variation in this outcome, it is worth noting that this positive bias generally occurred in 

conditions where the degree of shared method variance was higher.  

The study factors generally accounted for only a small amount of variation in the 

relative bias associated with estimates of the y paths (<2%).  Furthermore, an 

examination of cell means revealed that although there tended to a slight positive bias for 

the composite variable model at low to moderate levels of reliability couple with large 

mediated effects, none of the conditions produced relative biases greater than 0.10. 
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Standard Error Estimation 

The relative biases of the Sobel standard error of the mediated effect can be found 

in Table 7.  Because the main effects of, and interactions among, model specification, 

level of reliability, effect size of the mediated effect, and sample size accounted for most 

of the explained variation (86%, with total variation accounted by all study factors of 

7.0%), the results in Table 7 are collapsed across levels of latent mediator stability and 

degree of indicator error correlation.  The size of the mediated effect had by far the 

largest effect, which is evident in Table 7, which shows that the Sobel standard error 

tended to be positively biased under all model specifications and at all sample sizes, 

when the size of the mediated effect was zero (recall that both paths comprising the 

mediated effect were zero under this condition).  When the mediated effect was nonzero, 

the absolute value of the relative bias of the Sobel standard error estimator was generally 

below 0.10 and improved with increasing sample size. 

 

Type I Error and Power 

The Type I error rates for the mediated effects (i.e., when the true mediated effect 

was zero) using both the Sobel test and the joint significance are reported in Table 8.  

Because rejecting a true null hypothesis was such a rare event under all conditions, no 

assessment was made of the contribution of the study factors.  Results in Table 8 are 

presented by model specification and sample size as well as the method of testing (i.e., 

Sobel and joint significance tests).  Type I error rates were well under the nominal level 

of 0.05 for all sample sizes, regardless of model specification or method of testing 

(although Type I errors rates were generally slightly higher for the joint significance test). 
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 The results with respect to empirical power for the mediated effect can be found 

in Table 9.  The study factors accounted for a 62.4% deviance reduction for the Sobel test 

and 55.9% for the joint significance test, with most of the contribution to this reduction 

(99.9% for both tests) coming from the main effects of, and interactions among, model 

specification, level of reliability, effect size of the mediated effect, and sample size.  

Table 9 therefore presents empirical power levels for different levels of these factors.  In 

general, regardless of model specification and method used to test mediation, power 

generally increased with increasing sample size, increasing effect size of the mediated 

effect, and increasing reliability of the mediator, as would be expected.  There was also a 

power advantage associated with the joint significance test relative to the Sobel test.  

Although specifying indicator error covariances did not appear to significantly affect the 

power of the test for the mediated effect, there was a modest reduction in power in 

general associated with the two latent variable modeling approaches relative to the 

composite variable model. 

Finally, Table 10 provides the Type I error rates associated with the test of the 

two direct effects, X1  Y2 and X1  Y3.  For each outcome, the study factors accounted 

for a nontrivial deviance reduction, 4.2% and 10.6%, respectively.  Most of these effects 

(93% and 95%, respectively) were attributed to model specification, level of reliability, 

effect size of the mediated effect, and sample size (and their interactions).  Thus, the 

entries in Table 10 are mean values collapsed across the other two factors (i.e., degree of 

indicator error correlation and latent mediator stability).  Type I error rates for the direct 

effects generally followed the bias in the direct effects presented in Tables 5 and 6.  Thus, 

the Type I error rates significantly exceeded nominal levels (0.05) generally in the 
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composite variable model, especially with lower levels of reliability coupled with larger 

mediated effects.  As expected, Type I errors for the direct effects increased in frequency 

with increases in sample size.  Under conditions of low reliability, a large mediated 

effect, and a sample size of n = 1,000, the Type I error rate for the X1  Y3 direct effect 

was 0.811 in the composite model. 

 

Discussion 

 The autoregressive model is a useful approach for examining mediation and offers 

several advantages over cross-sectional models of mediation, most notably is that it 

explicitly recognizes the temporal relation among variables involved in a hypothesized 

causal relationship and allows for the control of the potential confounding effects of prior 

levels of a variable when assessing mediation relationships.  However, there are 

additional complexities associated with the autoregressive model of mediation.  The 

effects of measurement error, while well documented in cross-sectional models of 

mediation (Hoyle & Kenny, 1999; Stephenson & Holbert, 2003; Cole & Maxwell, 2003; 

Cheung & Lau, 2008), are potentially more complicated in the autoregressive mediation 

model because of the addition of multiple paths and the control of prior levels of the X, 

M, and Y variables. Cole & Maxwell (2003, p. 568) note that “under such circumstances, 

the biasing effects of measurement error become utterly baffling.”  In addition, the use of 

the same observed measures at multiple time points in the autoregressive model increases 

the possibility of indicator-specific variance, a type of shared method variance that can 

create estimation problems if ignored.  Beyond these two additional complexities, to our 

knowledge, no Monte Carlo studies have been published on the power for testing 
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mediation in the autoregressive model.  Therefore, this study examined the effects of 

failing to account for random measurement error and shared method variance in the 

autoregressive mediation model and also provided information concerning the power of 

the autoregressive mediation model under a variety of conditions. 

In general, a latent variable approach, where covariances were specified between 

measurement errors of a given indicator at adjacent time points, performed well in terms 

of estimating the parameters in an autoregressive mediation model, including the 

mediated effect, under all study conditions.  However, in situations when the mediator is 

not measured reliably, caution should be exercised when sample sizes are less than 200.  

Failing to estimate nonzero error covariances led to underestimation of the mediated 

effect as the degree of error correlation (or shared method variance) increased, especially 

in conditions of low reliability.  Greater sample sizes did not alleviate this biasing effect 

due to model misspecification.  The primary mechanism for this effect is an 

overestimation of the stability coefficient for the mediator with consequent 

underestimation of the two paths comprising the mediated effect (i.e., paths a and b).  

The consequences of failing to account shared method variance had minimal impact on 

the estimation of the direct effects.   

A composite variable model, which combines multiple measures into a single, 

unweighted score, essentially ignores both unreliability as well as shared method variance 

when it is present.  Not surprisingly, this approach had a complicated pattern of biasing 

effects on the autoregressive mediation model parameters under the various study 

conditions.  The composite variable approach generally led to an underestimation of the 

mediated effect, consistent with cross-sectional simulation studies (Hoyle & Kenny, 
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1999; Stephenson & Holbert, 2003; Cheung & Lau, 2008), especially when the reliability 

of the mediator was low in the presence of moderate levels of shared method variance.  

While measurement error in the mediator attenuates the stability coefficient, m, ignoring 

shared method variance creates a biasing effect in the other direction.  Thus, it appears 

that the relative bias in m improves in the presence of increasing shared method variance 

in the composite variable model, which is misleading at best.  Furthermore, as the relative 

biases for path a and path m generally move in opposite directions, the positive bias for 

path a generally decreased in the composite variable model as the degree of shared 

method variance increased.  Given that the relative bias of path b was relatively constant 

in a negative direction at a given level of reliability for the composite variable model, this 

explains the pattern of bias for the mediated effect.  As seen in cross-sectional models of 

mediation (Hoyle & Kenny, 1993; Cole & Maxwell, 2003), when the mediator is 

measured with error, the direct effects are spuriously inflated (with consequent effects on 

the probability of incorrectly rejecting the null hypothesis of no direct effect), especially 

in the presence of larger mediated effects.  In some cases, ignoring unreliability and the 

presence of shared method variance appear to “cancel out” each others’ biasing effects, 

while in other cases, namely the mediated effect, the biasing effects are compounded.  

This highlights the multifaceted effects of unreliable variables in the autoregressive 

mediation model; these effects that are multiplied when one considers potential 

measurement errors in X and Y in addition to M. 

The present model only examined three waves of data.  The addition of four or 

more waves of data further complicates the biasing effects of measurement error and the 

failure to account for shared method variance.  With three waves of data, the mediated 
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effect of interest is simply a*b, but with more than three waves, one can estimate both 

time-specific indirect effects, as well as the overall indirect effect (Gollob & Reichardt, 

1991; Cole & Maxwell, 2003; Selig & Preacher, 2009).  For example, for a four-wave, 

autoregressive mediation model, there are three time-specific indirect effects (assuming 

stationarity): 

1. X1X2M3Y4 = x*a*b 
2. X1M2M3Y4 = a*m*b 
3. X1M2Y3Y4 = a*b*y 
 
The overall indirect effect of X1Y4, or the change in Y4 due to X1 that is 

mediated by M, is the sum of the time-specific indirect effects.  There are six time-

specific indirect effects in a five-wave model.  These mediated effects involve the 

product of several paths, all of which themselves can be attenuated or spuriously inflated 

in the presence of measurement error or when failing to account for true shared method 

variance.  Thus, there are many more ways in which one can be wrong in these situations 

and a true estimate of the mediated effect becomes almost impossible in a multiple-waves 

autoregressive mediation model when unreliable variables are used and shared method 

variance is not addressed. 

 Although the latent variable approaches with specified indicator error covariances 

provided significantly better parameter estimates in terms of bias, they did lead to a 

modest reduction in statistical power for the mediated effect compared to the composite 

variable model, primarily because the standard errors tend to be higher in latent variable 

models because of the estimation of more parameters.  When using unreliable variables, 

composite variable models tend to provide biased estimates (of not just the mediated 

effect, but direct effects as well) with smaller standard errors as opposed to unbiased 
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estimates with larger standard errors in the case of latent variable models.  Similar 

findings have been found with cross-sectional models of mediation (Hoyle & Kenny, 

1999).  Although the biasing effects of measurement error can generally be corrected by 

extracting latent variables from multiple observed variables, it is important to recognize 

that simply obtaining multiple measures and extracting a latent variable is not enough.  

Even in latent variable models, power can be significantly enhanced by using a set of 

measures with a high degree of composite reliability.  Sample sizes of 200 or larger are 

generally sufficient for 0.80 power in the autoregressive mediation model, given a 

mediator of moderate to high reliability and a medium to large mediated effect.  For 

conditions of low or moderate reliability in the mediator, even sample sizes of 1,000 are 

generally not large enough to achieve 0.80 power to detect a small mediated effect. 

 As has been shown in a variety of other simulation studies of mediation for 

different study designs, the joint significance test tends to be more powerful than the 

Sobel test (MacKinnon et al., 2002; Taylor et al., 2008; Cheong, 2011).  Both methods 

had Type I error rates well below 0.05.  Other methods of testing, such as other methods 

of calculating standard errors of the mediated effect (e.g., see MacKinnon et al., 2002), 

one of several methods of bootstrapping (e.g., see Shrout & Bolger, 2002; MacKinnon et 

al., 2004; Cheung & Lau, 2008; Taylor et al., 2008), or methods that construct 

asymmetric confidence intervals based on the theoretical distribution of the product of 

two random normal variables (MacKinnon et al., 2004, MacKinnon, Fritz, Williams, & 

Lockwood, 2007), have been assessed in simulation studies of the mediated effect in a 

number of different study designs.  Future studies using these methods in an 

autoregressive mediation modeling framework are warranted. 
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Investigators should be encouraged to consider the possibility of the presence of 

correlated measurement errors among the same indicators that are repeatedly measured.  

Some investigators have included measurement error correlations without a priori 

specification as a method to improve model fit, a practice that has led some to caution 

against the use of correlated errors in structural equation modeling.  However, this should 

not cause researchers to overlook the inclusion of theoretically justified or design-driven 

correlated residuals (Cole et al., 2007; Kline, 2011) such as those commonly present in 

longitudinal research.  In the present study, specifying indicator error covariances in all 

situations, even when such correlations were not present in the true population, did not 

have any biasing effects on the parameters of interest, nor did it appear to significantly 

affect the power of the test for the mediated effect.  Based on this, one could conclude 

that researchers should always specify such correlated residuals in longitudinal studies.  

However, it is possible that such specifications may lead to models that fail to converge 

or cases of out-of-range values such as negative variances/residual variances.  

Furthermore, one may have theoretical justification for not including such correlated 

errors, such as the case of designs that employ wide assessment intervals, where such 

effects may be less likely (Brown, 2006). 

It is also important to recognize that there are other approaches to account for 

shared method variance other than correlating the residuals of indicators.  Geiser et al. 

(2010) label this approach the “multi-occasion correlated uniqueness” (CU) approach and 

note that this approach has some limitations, most notably that the number of estimated 

correlations can increase substantially with many indicators, constructs, and time points.  

The approach advocated by Geiser et al. (2010) is one in which indicator-specific 
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variance is captured by an indicator-specific (IS) factor rather than a set of correlated 

errors (see also Raffalovich & Bohrnstedt, 1987; Eid, Schneider, & Schwenkmezger, 

1999).  Future research is needed to evaluate whether the use of IS factors can 

significantly enhance estimation accuracy and statistical power in the autoregressive 

mediation model. 

Although the current findings provide researchers with practical information to 

consider when assessing mediation in the context of an autoregressive model, this study 

is not without its limitations.  First, although this study did assess Type I error rates for 

tests of the mediated effects, the only zero-mediated effect condition tested the case when 

both paths comprising the mediated effect were zero.  Several studies have shown that 

both the relative bias of the Sobel standard error and the Type I error rates associated 

with significance tests of the mediated effects can vary when one or more paths 

comprising the zero mediated effect has a true nonzero value (MacKinnon et al., 2002; 

Taylor et al., 2008).  Second, an assumption of the present analysis is that the waves are 

separated by the optimal time interval.  The timing and spacing of measurements are 

critical issues for researchers designing longitudinal studies as estimation and the power 

to detect effects can be significantly influenced by these design considerations (Gollob & 

Reichardt, 1991; Collins and Graham, 2002; Cole & Maxwell, 2003).  Third, as discussed 

earlier, only three waves of data were simulated; the presence of more than three waves 

creates additional modeling complexities and both power and parameter estimation 

accuracy may be vary significantly from the three-wave model.  Fourth, only unreliability 

in the mediator was varied in the present study, the simplifying assumption being that the 

X and Y variables were measured without error.  The impact of measurement error when 
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all three variables in the autoregressive mediation model are imperfectly measured can 

lead to a confusing pattern of underestimation and overestimation, and has led some to 

conclude that such impacts may be “impossible to predict beforehand” (Little et al., 2007, 

p. 361).  Fifth, the present study only examined cross-wave, within-construct error 

covariance; other types of shared method variance are possible, and depending on the 

measurement of X, M, and Y, these effects can be extracted using structural equation 

modeling (Cole & Maxwell, 2003). 

Sixth, we assumed the case where all three variables are measured at all 

occasions.  It is possible to use an autoregressive mediation model where X is a time-

invariant variable that reflects exposure to an intervention (e.g., see Roth & MacKinnon, 

2012).  While other studies of mediation from a cross-sectional perspective have shown 

that the categorical/continuous distinction for the X variable have little impact on study 

outcomes when other conditions are equivalent (MacKinnon et al., 2002), because of the 

additional paths found in an autoregressive mediation model, these findings may not 

generalize.  Seventh, the indicators of the latent variable M were assumed continuous in 

the present study.  The modeling of ordered categorical data (e.g., items on a Likert scale) 

has received considerable attention in the structural equation modeling literature (Finney 

& DiStefano, 2006).  Future studies should consider the impact of the inclusion of 

ordinal-level data as indicators on parameter estimation and power in the autoregressive 

mediation model.  Finally, we generated data such that the X and Y variables as well as 

the latent variable M were continuous.  Future research should examine the application of 

the autoregressive mediation model when all or some of these variables are categorical, 

including binary, nominal, ordinal, or count variables. 
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Conclusion 

The autoregressive mediation model provides researchers with a valuable tool for 

investigating causal processes to explain how or why variables exert their influence on 

other variables.  The present study demonstrates that failure to account for measurement 

error and shared method variance can have a significant impact on parameter estimation 

in this model.  Both overestimation and underestimation of paths of interest can result, 

potentially leading to a misinterpretation of the mediation mechanism.  Although the 

extraction of latent variables from multiple observed measures generally provides 

accurate estimates and also allows researchers to take into account method effects by 

allowing correlated measurement errors, latent variable models still require significant 

levels of composite reliability to achieve acceptable levels of power to detect the 

mediated effect. 
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Table 1. Mean relative bias of the mediated effect estimates (a*b) across simulation conditions 

  Model for the mediator and sample size 

  Latent variable model with indicator error 
covariances specified 

 Latent variable model with indicator error 
covariances unspecified 

 
Composite variable model 

Reliability of 
the mediator 

Indicator error 
correlation 

n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000 

Low None 0.037 0.005 0.006 0.003  0.032 0.003 0.005 0.003  -0.332 -0.345 -0.336 -0.338 
 Small 0.034 0.031 0.001 -0.003  -0.091 -0.069 -0.096 -0.098  -0.369 -0.356 -0.362 -0.364 
 Medium 0.050 0.017 0.009 0.004  -0.255 -0.285 -0.270 -0.272  -0.406 -0.412 -0.409 -0.409 
Moderate None -0.022 -0.006 0.004 0.002  -0.022 -0.005 0.004 0.002  -0.226 -0.208 -0.198 -0.201 
      Small 0.001 -0.005 -0.017 0.001  -0.046 -0.053 -0.062 -0.044  -0.231 -0.225 -0.231 -0.218 
 Medium 0.010 -0.002 0.010 0.013  -0.134 -0.143 -0.128 -0.123  -0.261 -0.263 -0.252 -0.249 
High None -0.004 0.006 0.009 0.002  -0.001 0.006 0.009 0.002  -0.078 -0.069 -0.067 -0.073 
      Small -0.009 -0.009 0.011 -0.008  -0.025 -0.023 -0.003 -0.021  -0.099 -0.093 -0.075 -0.091 
 Medium 0.001 0.011 -0.007 -0.002  -0.042 -0.034 -0.042 -0.043  -0.109 -0.096 -0.106 -0.106 

Note: Entries are mean relative bias, collapsing across factors for which results were similar (i.e., degree of stability of the mediator (or size of path m) and size of the mediated 
effect, excluding the zero mediated effect, as relative bias cannot be calculated under conditions where the true value was zero).  Although sample size or interactions with this 
factor did not account for nontrivial variance, it is nevertheless tabled above.  Reliability of the mediator was defined as low = 0.60, medium = 0.75, and high = 0.90 and indicator 
error correlation (i.e., shared method variance) was defined as none = 0, small = 0.10, and medium = 0.30.  



114 
 

 
Table 2. Mean relative bias of the M1  M2 path estimates (path m) across simulation conditions 

  Model for the mediator and sample size 

  Latent variable model with indicator error 
covariances specified 

 Latent variable model with indicator error 
covariances unspecified 

 
Composite variable model 

Reliability of 
the mediator 

Indicator error 
correlation 

n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000 

Low None 0.051 0.036 0.013 0.004  0.054 0.038 0.011 0.003  -0.411 -0.413 -0.413 -0.414 
 Small 0.063 0.028 0.010 0.004  0.191 0.160 0.138 0.129  -0.315 -0.314 -0.315 -0.315 
 Medium 0.044 0.013 0.005 0.004  0.436 0.386 0.367 0.364  -0.113 -0.118 -0.120 -0.119 
Moderate None 0.021 0.006 0.006 0.002  0.022 0.005 0.006 0.002  -0.256 -0.262 -0.259 -0.261 
      Small 0.022 0.013 0.002 -0.001  0.094 0.086 0.074 0.070  -0.196 -0.194 -0.200 -0.199 
 Medium 0.006 0.009 0.002 0.002  0.224 0.220 0.207 0.206  -0.077 -0.074 -0.076 -0.076 
High None 0.004 0.005 -0.001 0.001  0.004 0.005 -0.001 0.001  -0.108 -0.102 -0.107 -0.105 
      Small 0.005 0.005 -0.0001 0.001  0.032 0.032 0.026 0.026  -0.080 -0.078 -0.081 -0.080 
 Medium 0.002 0.001 -0.001 0.001  0.083 0.079 0.077 0.078  -0.030 -0.031 -0.031 -0.030 
Note: Entries are mean relative bias, collapsing across factors for which results were similar (i.e., degree of stability of the mediator (or size of path m) and size of the mediated 
effect).  Although sample size or interactions with this factor did not account for nontrivial variance, it is nevertheless tabled above.   Reliability of the mediator was defined as low 
= 0.60, medium = 0.75, and high = 0.90 and indicator error correlation (i.e., shared method variance) was defined as none = 0, small = 0.10, and medium = 0.30.   
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Table 3. Mean relative bias of the X1  M2 path estimates (path a) across simulation conditions 

  Model for the mediator and sample size 

  Latent variable model with indicator error 
covariances specified 

 Latent variable model with indicator error 
covariances unspecified 

 
Composite variable model 

Reliability of 
the mediator 

Indicator error 
correlation 

n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000 

Low None 0.011 -0.001 0.005 -0.0002  0.014 -0.003 0.005 -0.0002  0.220 0.191 0.198 0.191 
 Small -0.026 -0.0001 -0.002 -0.008  -0.095 -0.061 -0.063 -0.068  0.142 0.143 0.153 0.141 
 Medium 0.005 0.001 0.001 -0.004  -0.178 -0.185 -0.178 -0.180  0.068 0.060 0.063 0.056 
Moderate None -0.030 0.001 0.003 0.006  -0.030 0.001 0.002 0.006  0.098 0.124 0.123 0.125 
      Small 0.005 -0.004 -0.013 -0.006  -0.028 -0.038 -0.047 -0.039  0.102 0.090 0.081 0.088 
 Medium -0.023 0.001 -0.001 0.006  -0.125 -0.099 0.101 -0.091  0.021 0.041 0.036 0.044 
High None -0.007 0.009 -0.002 0.004  -0.006 0.009 -0.003 0.004  0.042 0.058 0.046 0.053 
      Small -0.017 -0.004 0.007 -0.003  -0.030 -0.016 0.005 -0.014  0.022 0.035 0.044 0.035 
 Medium 0.008 -0.001 0.003 -0.005  -0.030 -0.038 -0.033 -0.040  0.027 0.014 0.018 0.011 
Note: Entries are mean relative bias, collapsing across factors for which results were similar (i.e., degree of stability of the mediator (or size of path m) and size of the mediated 
effect, excluding the zero mediated effect, as relative bias cannot be calculated under conditions where the true value was zero).  Although sample size or interactions with this 
factor did not account for nontrivial variance, it is nevertheless tabled above.  Reliability of the mediator was defined as low = 0.60, medium = 0.75, and high = 0.90 and indicator 
error correlation (i.e., shared method variance) was defined as none = 0, small = 0.10, and medium = 0.30.   
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Table 4. Mean relative bias of the M2  Y3 path estimates (path b) across simulation conditions 

  Model for the mediator and sample size 

  Latent variable model with indicator error 
covariances specified 

 Latent variable model with indicator error 
covariances unspecified 

 
Composite variable model 

Reliability of 
the mediator 

Indicator error 
correlation 

n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000 

Low None 0.068 0.026 0.004 0.002  0.058 0.026 0.003 0.002  -0.447 -0.446 -0.446 -0.445 
 Small 0.103 0.053 0.010 0.006  0.040 0.007 -0.028 -0.032  -0.437 -0.434 -0.445 -0.443 
 Medium 0.082 0.031 0.016 0.012  -0.073 -0.104 -0.105 -0.108  -0.433 -0.442 -0.442 -0.439 
Moderate None 0.015 0.003 0.004 -0.003  0.013 0.003 0.004 -0.003  -0.293 -0.290 -0.285 -0.289 
      Small 0.012 0.011 0.002 0.007  -0.004 -0.004 -0.011 -0.006  -0.297 -0.285 -0.287 -0.282 
 Medium 0.040 -0.001 0.012 0.008  -0.004 -0.046 -0.029 -0.034  -0.276 -0.293 -0.279 -0.281 
High None -0.005 0.004 0.008 -0.002  -0.004 0.004 0.008 -0.002  -0.125 -0.116 -0.112 -0.120 
      Small 0.007 -0.001 0.007 -0.004  0.004 -0.004 0.005 -0.005  -0.119 -0.123 -0.112 -0.121 
 Medium 0.001 0.022 -0.001 0.002  -0.005 0.016 -0.007 -0.003  -0.126 -0.101 -0.120 -0.117 
Note: Entries are mean relative bias, collapsing across factors for which results were similar (i.e., degree of stability of the mediator (or size of path m) and size of the mediated 
effect, excluding the zero mediated effect, as relative bias cannot be calculated under conditions where the true value was zero).  Although sample size or interactions with this 
factor did not account for nontrivial variance, it is nevertheless tabled above.  Reliability of the mediator was defined as low = 0.60, medium = 0.75, and high = 0.90 and indicator 
error correlation (i.e., shared method variance) was defined as none = 0, small = 0.10, and medium = 0.30.   
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Table 5. Mean bias of the X1  Y2 path estimates (path c1’) (i.e., first direct effect) across simulation conditions 

  Model for the mediator and sample size 

  Latent variable model with indicator error 
covariances specified 

 Latent variable model with indicator error 
covariances unspecified 

 
Composite variable model 

Reliability of 
the mediator 

Effect size of 
mediated effect 

n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000 

Low Zero -0.001 -0.001 -0.001 0.0002  -0.001 -0.001 -0.001 0.0001  -0.001 -0.001 -0.001 0.0001 
 Small 0.001 -0.001 0.0003 -0.001  0.002 -0.001 0.001 -0.0003  0.006 0.003 0.005 0.004 
 Medium -0.001 -0.001 -0.0000 -0.001  0.002 0.001 0.002 0.001  0.027 0.026 0.027 0.026 
 Large -0.005 -0.001 -0.001 -0.001  -0.0002 0.002 0.002 0.003  0.048 0.049 0.048 0.048 
Moderate Zero -0.001 -0.001 0.001 -0.001  -0.001 -0.0004 0.001 -0.0004  -0.001 -0.001 0.001 -0.001 
 Small -0.001 0.001 -0.0003 -0.0004  -0.001 0.001 -0.0002 -0.0003  0.001 0.004 0.002 0.002 
      Medium 0.0001 -0.001 -0.001 0.001  0.001 -0.0002 -0.0002 0.001  0.017 0.016 0.016 0.018 
 Large 0.001 -0.001 0.0001 -0.0001  0.002 -0.0003 0.001 0.001  0.034 0.031 0.032 0.032 
High Zero -0.0002 0.0004 0.001 0.001  -0.0002 0.0004 0.001 0.001  -0.0002 0.001 0.001 0.001 
 Small -0.004 -0.003 -0.001 0.0004  -0.004 -0.003 -0.001 0.0004  -0.002 -0.002 0.001 0.001 
      Medium -0.001 -0.001 0.0003 -0.0001  -0.001 -0.0004 0.0003 -0.0001  0.006 0.006 0.007 0.007 
 Large -0.002 -0.0004 -0.002 -0.0004  -0.002 -0.0003 -0.002 -0.0002  0.012 0.013 0.011 0.013 
Note: Since the population value is 0, entries are mean bias not relative bias, collapsing across factors for which results were similar (i.e., degree of stability of the mediator (or size 
of path m) and level of indicator error correlation).  Although sample size or interactions with this factor did not account for nontrivial variance, it is nevertheless tabled above.  
Reliability of the mediator was defined as low = 0.60, medium = 0.75, and high = 0.90 and effect size of the mediated effect was defined according to values on the f 2 metric for the 
incremental effect of including the a and b paths in the autoregressive model over and above the y path as described by Cohen (1988).   
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Table 6. Mean bias of the X1  Y3 path estimates (path c2’) (i.e., second direct effect) across simulation conditions 

  Model for the mediator and sample size 

  Latent variable model with indicator error 
covariances specified 

 Latent variable model with indicator error 
covariances unspecified 

 
Composite variable model 

Reliability of 
the mediator 

Effect size of 
mediated effect 

n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000 

Low Zero 0.003 0.0002 -0.0001 0.001  0.003 0.0002 -0.0001 0.001  0.003 0.0003 -0.0001 0.001 
 Small -0.001 -0.0001 0.001 -0.001  -0.0002 0.0007 0.002 -0.001  0.006 0.006 0.007 0.005 
 Medium -0.004 -0.002 -0.0003 -0.001  0.002 0.003 0.005 0.005  0.037 0.037 0.039 0.038 
 Large -0.009 -0.002 -0.001 -0.002  0.006 0.010 0.011 0.010  0.076 0.075 0.076 0.075 
Moderate Zero -0.002 0.0001 0.001 -0.001  -0.002 0.0001 0.001 -0.001  -0.002 0.0000 0.001 -0.001 
 Small -0.002 0.0001 -0.0001 -0.0003  -0.001 0.0003 0.0002 -0.0001  0.002 0.004 0.004 0.003 
      Medium -0.001 -0.002 0.001 0.0004  0.001 -0.001 0.002 0.002  0.024 0.023 0.025 0.025 
 Large -0.002 -0.0004 -0.0001 0.0001  0.003 0.004 0.004 0.005  0.050 0.050 0.050 0.050 
High Zero -0.0002 -0.001 0.001 -0.001  -0.0001 -0.001 0.001 -0.001  -0.0001 -0.001 0.001 -0.001 
 Small 0.001 -0.001 0.0001 -0.0003  0.001 -0.001 0.0001 -0.0003  0.002 0.001 0.002 0.001 
      Medium -0.001 0.001 -0.002 0.001  -0.001 0.001 -0.001 0.001  0.001 0.011 0.009 0.011 
 Large -0.002 0.0002 -0.0004 -0.0003  -0.001 0.001 0.0003 0.0004  0.020 0.022 0.021 0.021 
Note: Since the population value is 0, entries are mean bias not relative bias, collapsing across factors for which results were similar (i.e., degree of stability of the mediator (or size 
of path m) and level of indicator error correlation).  Although sample size or interactions with this factor did not account for nontrivial variance, it is nevertheless tabled above.  
Reliability of the mediator was defined as low = 0.60, medium = 0.75, and high = 0.90 and effect size of the mediated effect was defined according to values on the f 2 metric for the 
incremental effect of including the a and b paths in the autoregressive model over and above the y path as described by Cohen (1988).
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Table 7. Mean relative bias of standard error of the mediated effect (a*b) across simulation conditions 

  Model for the mediator and sample size 

  Latent variable model with indicator error 
covariances specified 

 Latent variable model with indicator error 
covariances unspecified 

 
Composite variable model 

Reliability of 
the mediator 

Effect size of 
mediated effect 

n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000 

Low Zero 0.172 0.165 0.226 0.252  0.193 0.178 0.228 0.239  0.207 0.200 0.255 0.273 
 Small -0.019 0.001 0.003 0.002  0.036 0.021 0.011 0.006  0.035 0.019 0.006 0.006 
 Medium -0.093 -0.033 -0.009 -0.008  -0.052 -0.018 -0.003 -0.006  -0.002 0.003 0.006 0.001 
 Large -0.140 -0.004 -0.005 -0.011  -0.070 0.015 0.001 -0.007  -0.008 0.009 0.010 0.001 
Moderate Zero 0.183 0.224 0.231 0.245  0.195 0.229 0.234 0.239  0.206 0.239 0.224 0.253 
 Small 0.010 0.003 0.004 0.009  0.026 0.014 0.006 0.011  0.037 0.012 -0.002 0.015 
      Medium -0.045 -0.019 -0.022 -0.002  -0.036 -0.020 -0.019 0.001  -0.015 -0.013 -0.009 -0.0002 
 Large -0.071 -0.017 -0.007 0.007  -0.061 -0.012 -0.0004 0.008  -0.031 -0.0001 -0.003 0.015 
High Zero 0.221 0.206 0.247 0.247  0.224 0.208 0.247 0.249  0.235 0.211 0.250 0.245 
 Small -0.002 0.021 -0.005 0.011  -0.003 0.022 -0.004 0.012  0.005 0.022 -0.003 0.011 
      Medium -0.010 -0.023 0.006 -0.002  -0.004 -0.023 0.007 -0.001  0.0004 -0.019 0.006 -0.002 
 Large -0.029 -0.007 -0.034 0.0001  -0.026 -0.009 -0.032 0.0000  -0.017 -0.002 -0.035 0.002 
Note: Entries are mean relative bias, collapsing across factors for which results were similar (i.e., degree of stability of the mediator (or size of path m) and level of indicator error 
correlation).  Standard error of the mediated effect was obtained using Sobel’s (1982) method.  Reliability of the mediator was defined as low = 0.60, medium = 0.75, and high = 
0.90 and effect size of the mediated effect was defined according to values on the f 2 metric for the incremental effect of including the a and b paths in the autoregressive model over 
and above the y path as described by Cohen (1988).   
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Table 8. Estimated Type I error rates for the mediated effect across simulation conditions 
 Model for the mediator and sample size 

Method for testing 
mediated effect 

Latent variable model with indicator error 
covariances specified 

 Latent variable model with indicator error 
covariances unspecified 

 
Composite variable model 

n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000 
Sobel test  0.0003 0.0002 0.0001 0.0001  0.0002 0.0002 0.0001 0.0001  0.0002 0.0003 0.0002 0.0001 
Joint significance test 0.0029 0.0041 0.0022 0.0026  0.0032 0.0039 0.0023 0.0024  0.0044 0.0039 0.0022 0.0026 
Note: Entries are mean Type I error rates for the mediated effect, collapsing across factors for which results were similar (i.e., degree of stability of the mediator (or size of path 
m), reliability of the mediator, and level of indicator error correlation).  
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Table 9. Empirical power levels across simulation conditions for the test of the mediated effect 

  Model for the mediator and sample size 

  Latent variable model with indicator error 
covariances specified 

 Latent variable model with indicator error 
covariances unspecified 

 
Composite variable model 

Reliability of 
the mediator 

Effect size of 
mediated effect 

n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000 

  Sobel test 
Low Small 0.003 0.009 0.074 0.344  0.003 0.006 0.057 0.283  0.004 0.010 0.096 0.442 
 Medium 0.086 0.422 0.971 1.000  0.069 0.354 0.942 0.999  0.167 0.578 0.993 1.000 
 Large 0.262 0.809 0.999 1.000  0.249 0.746 0.997 1.000  0.518 0.934 1.000 1.000 
Moderate Small 0.005 0.016 0.135 0.554  0.003 0.013 0.115 0.519  0.005 0.019 0.165 0.616 
 Medium 0.203 0.681 0.998 1.000  0.179 0.640 0.994 1.000  0.270 0.764 0.999 1.000 
      Large 0.570 0.971 1.000 1.000  0.537 0.957 1.000 1.000  0.702 0.983 1.000 1.000 
High Small 0.005 0.022 0.217 0.712  0.004 0.021 0.209 0.700  0.005 0.023 0.230 0.739 
 Medium 0.334 0.849 1.000 1.000  0.319 0.838 1.000 1.000  0.367 0.868 1.000 1.000 
      Large 0.807 0.997 1.000 1.000  0.789 0.996 1.000 1.000  0.843 0.998 1.000 1.000 
  Joint significance test 
Low Small 0.011 0.043 0.221 0.585  0.012 0.039 0.181 0.513  0.028 0.070 0.276 0.667 
 Medium 0.221 0.634 0.986 1.000  0.196 0.562 0.966 1.000  0.358 0.761 0.995 1.000 
 Large 0.475 0.900 1.000 1.000  0.442 0.848 0.998 1.000  0.708 0.963 1.000 1.000 
Moderate Small 0.027 0.072 0.328 0.750  0.026 0.064 0.307 0.712  0.034 0.089 0.369 0.795 
 Medium 0.398 0.830 0.999 1.000  0.371 0.793 0.997 1.000  0.496 0.875 1.000 1.000 
      Large 0.746 0.990 1.000 1.000  0.713 0.981 1.000 1.000  0.834 0.991 1.000 1.000 
High Small 0.037 0.105 0.454 0.851  0.035 0.100 0.445 0.841  0.041 0.117 0.475 0.864 
 Medium 0.552 0.915 1.000 1.000  0.547 0.909 1.000 1.000  0.581 0.927 1.000 1.000 
      Large 0.896 0.999 1.000 1.000  0.892 0.999 1.000 1.000  0.916 0.999 1.000 1.000 
Note: Entries are mean power levels, collapsing across factors for which results were similar (i.e., degree of stability of the mediator (or size of path m) and level of indicator error 
correlation).  Reliability of the mediator was defined as low = 0.60, medium = 0.75, and high = 0.90 and effect size of the mediated effect was defined according to values on the f 2 
metric for the incremental effect of including the a and b paths in the autoregressive model over and above the y path as described by Cohen (1988).   
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Table 10. Estimated Type I error rates for the direct effects across simulation conditions levels 

  Model for the mediator and sample size 

  Latent variable model with indicator error 
covariances specified 

 Latent variable model with indicator error 
covariances unspecified 

 
Composite variable model 

Reliability of 
the mediator 

Effect size of 
mediated effect 

n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000  n = 100 n = 200 n = 500 n = 1000 

  X1  Y2 path (path c1’) 
Low Zero 0.054 0.060 0.049 0.046  0.052 0.060 0.049 0.046  0.055 0.061 0.049 0.047 
 Small 0.058 0.048 0.055 0.047  0.059 0.047 0.054 0.047  0.057 0.047 0.056 0.046 
 Medium 0.052 0.046 0.056 0.060  0.051 0.045 0.056 0.059  0.072 0.073 0.116 0.164 
 Large 0.056 0.051 0.044 0.057  0.059 0.051 0.047 0.055  0.107 0.151 0.289 0.487 
Moderate Zero 0.056 0.050 0.047 0.045  0.056 0.049 0.047 0.045  0.056 0.052 0.047 0.045 
 Small 0.051 0.059 0.055 0.046  0.052 0.059 0.055 0.046  0.050 0.058 0.056 0.050 
 Medium 0.055 0.051 0.050 0.049  0.054 0.048 0.050 0.050  0.060 0.056 0.077 0.098 
      Large 0.055 0.055 0.051 0.047  0.055 0.056 0.054 0.048  0.081 0.097 0.153 0.253 
High Zero 0.054 0.053 0.052 0.053  0.054 0.053 0.052 0.053  0.054 0.053 0.053 0.053 
 Small 0.058 0.051 0.055 0.053  0.058 0.050 0.055 0.052  0.058 0.052 0.055 0.052 
 Medium 0.046 0.056 0.043 0.047  0.046 0.055 0.043 0.048  0.048 0.056 0.054 0.052 
      Large 0.060 0.057 0.057 0.050  0.059 0.056 0.058 0.051  0.060 0.061 0.072 0.079 
  X1  Y3 path (path c2’) 
Low Zero 0.062 0.055 0.052 0.046  0.062 0.056 0.052 0.046  0.061 0.055 0.053 0.047 
 Small 0.050 0.055 0.053 0.048  0.049 0.054 0.054 0.047  0.050 0.059 0.058 0.056 
 Medium 0.062 0.046 0.047 0.045  0.059 0.048 0.051 0.052  0.088 0.096 0.179 0.298 
 Large 0.050 0.049 0.051 0.051  0.054 0.056 0.069 0.077  0.170 0.265 0.551 0.811 
Moderate Zero 0.059 0.056 0.051 0.048  0.058 0.056 0.051 0.048  0.059 0.055 0.051 0.049 
 Small 0.050 0.051 0.052 0.055  0.051 0.052 0.052 0.054  0.051 0.051 0.052 0.060 
 Medium 0.052 0.050 0.051 0.050  0.053 0.050 0.051 0.051  0.060 0.070 0.102 0.160 
      Large 0.051 0.053 0.053 0.054  0.053 0.053 0.058 0.059  0.093 0.147 0.278 0.477 
High Zero 0.057 0.056 0.049 0.050  0.058 0.056 0.049 0.050  0.058 0.056 0.049 0.050 
 Small 0.068 0.054 0.050 0.051  0.068 0.054 0.050 0.051  0.068 0.054 0.049 0.053 
 Medium 0.059 0.052 0.050 0.052  0.059 0.050 0.049 0.052  0.060 0.056 0.059 0.073 
      Large 0.057 0.052 0.057 0.049  0.057 0.052 0.057 0.049  0.062 0.072 0.093 0.131 
Note: Entries are mean Type I error rates for the two specified direct effects, collapsing across factors for which results were similar (i.e., degree of stability of the mediator (or size 
of path m) and level of indicator error correlation).  Reliability of the mediator was defined as low = 0.60, medium = 0.75, and high = 0.90 and effect size of the mediated effect was 
defined according to values on the f 2 metric for the incremental effect of including the a and b paths in the autoregressive model over and above the y path as described by Cohen 
(1988). 
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Figure 1. Basic three-wave autoregressive mediation model. 
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Figure 2. Basic three-wave autoregressive mediation model with a latent mediator 
variable. 
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Appendix A – Determining effect sizes for the mediated effect 
 
Under a set of assumptions consistent with the current study (i.e., complete mediation, 
path coefficients a, b, x, m, and y are invariant over time, and a system at equilibrium), 
Maxwell & Cole (2007) show that zero-order correlations among X, M, and Y at each 
measurement occasion, t, (i.e., the cross-sectional correlations) are given by the following 
equations: 
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Furthermore, the variance of Y3 is a function of the relationship of X1 to Y3, M2 to Y3, Y2 
to Y3, a number of covariances, and its residual variance.  Note that the X1 to Y3 path is 
zero in the population and all population values were selected such that all X and Y 
observed variables and the M latent variables were standardized such that their standard 
deviations equal 1.  In addition, the system was assumed to be at equilibrium such that 
the correlations among X, M, and Y are the same at all three occasions.  Given these 
simplifying assumptions and using the notation in Figure 2: 
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Where Var (Y3) is the variance of Y at wave 3.  Recall, that y = 0.51 and x = 0.71 were 
fixed values used in all simulation conditions.  For the set of simulation conditions where 
m = 0.36 and a = b = 0.34, equation A1 yields a value of 0.324, equation A2 yields a 
value of 0.123, and equation A3 yields a value of 0.222.  Setting the variance of Y3 to 1, 
substituting known values of the path coefficients into equation A4, and solving for the 
residual variance of Y3 yields a value of 0.547 (incidentally, at equilibrium, this is also 
the residual variance of Y2 given the same parameter values).  In Mplus, the residual 
variance of Y3 was fixed at this value when generating data under these conditions.  
Given that the variance of Y3 is 1, the amount of explained variance in Y3 under these 
conditions is 45.3%.  When a = b = 0 (i.e., no mediated effect), the amount of explained 
variance in Y3 is 26% (all from the y path).  Using Cohen’s f 2 for incremental effect: 
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yields a value of 0.35 under these conditions, which Cohen (1988) defines as a large 
effect.  Similar calculations can be performed for a = b = 0.1 and a = b = 0.25, yielding 
Cohen’s f 2 values classified as small and medium effect sizes (0.02 and 0.15), 
respectively.  When m = 0.51, the effects are slightly larger, but still within Cohen’s 
guidelines for small, medium, and large effects. 
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Appendix B – Mplus Source Code 
 
!Mplus data generation code for true population model where reliability 
!= 0.60, indicator error correlation=0.3, stability of mediator=0.36, 
!size of the mediated effect = medium (a=b=0.25), and sample size=1000 
 
MONTECARLO: 
    names = mA1 mB1 mC1 mA2 mB2 mC2 mA3 mB3 mC3 x2 x3 y2 y3 x1 y1; 
    nobs = 1000; 
    nreps = 600; 
    seed = 6069894; 
    repsave = all; 
    save = cell_76rep*.dat; 
MODEL MONTECARLO: 
    m1 by mA1@1 mB1@1 mC1@1; 
    m2 by mA2@1 mB2@1 mC2@1; 
    m3 by mA3@1 mB3@1 mC3@1; 
    mA1@2; 
    mB1@2; 
    mC1@2; 
    mA2@2; 
    mB2@2; 
    mC2@2; 
    mA3@2; 
    mB3@2; 
    mC3@2; 
    x1@1; 
    x1 with m1@0.2384; 
    x1 with y1@0.0663; 
    m1 with y1@0.1389; 
    x2 on x1@0.71; 
    x3 on x2@0.71; 
    x2@0.4959; 
    x3@0.4959; 
    m1@1; 
    m2 on m1@0.36; 
    m2 on x1@0.25; 
    m3 on m2@0.36 x2@0.25; 
    M2@0.7650;  
    M3@0.7650;  
    y1@1; 
    y2 on y1@0.51 m1@0.25; 
    y3 on y2@0.51; 
    y3 on m2@0.25; 
    y2@0.6420;  
    y3@0.6420;  
    mA1 with mA2@0.6;  
    mB1 with mB2@0.6; 
    mC1 with mC2@0.6; 
    mA2 with mA3@0.6;  
    mB2 with mB3@0.6; 
    mC2 with mC3@0.6; 
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!Mplus code that reads in the data created from the first syntax and 
!fits the latent variable model with indicator error covariances 
!specified (i.e., freely estimated) 
 
DATA:   FILE=cell_76replist.dat; 
        TYPE = MONTECARLO; 
VARIABLE:  NAMES = mA1 mB1 mC1 mA2 mB2 mC2 mA3 mB3 mC3 x2 x3 
                   y2 y3 x1 y1; 
           USEVARIABLES = ALL; 
MODEL: 
    m1 by mA1@1 mB1*1 mC1*1; 
    m2 by mA2@1 mB2*1 mC2*1; 
    m3 by mA3@1 mB3*1 mC3*1; 
    mA1*2; 
    mB1*2; 
    mC1*2; 
    mA2*2; 
    mB2*2; 
    mC2*2; 
    mA3*2; 
    mB3*2; 
    mC3*2; 
    x1*1; 
    x1 with m1*0.2384; 
    x1 with y1*0.0663; 
    m1 with y1*0.1389; 
    x3 with m3@0; !Fix this or Mplus will estimate by default 
    m3 with y3@0; !Fix this or Mplus will estimate by default 
    x3 with y3@0; !Fix this or Mplus will estimate by default 
    x2 on x1*0.71; 
    x3 on x2*0.71; 
    x2*0.4959; 
    x3*0.4959; 
    m1*1; 
    m2 on m1*0.36; 
    m2 on x1*0.25 (a); 
    m3 on m2*0.36 x2*0.25; 
    M2*0.7650;  
    M3*0.7650;  
    y1*1; 
    y2 on y1*0.51 m1*0.25 x1*0; 
    y3 on y2*0.51; 
    y3 on m2*0.25 (b); 
    y3 on x1*0; 
    y2*0.6420;  
    y3*0.6420;  
    mA1 with mA2*0.6;  
    mB1 with mB2*0.6; 
    mC1 with mC2*0.6; 
    mA2 with mA3*0.6;  
    mB2 with mB3*0.6; 
    mC2 with mC3*0.6; 
MODEL CONSTRAINT: 
    NEW(med*0.0625); 
    med=a*b; 
OUTPUT: TECH9; 
SAVEDATA: RESULTS=cell_76.txt;  
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!Mplus code that reads in the data created from the first syntax and 
!fits the latent variable model with indicator error covariances 
!unspecified (i.e., not estimated or fixed to zero) 
 
DATA:   FILE=cell_76replist.dat; 
        TYPE = MONTECARLO; 
VARIABLE:  NAMES = mA1 mB1 mC1 mA2 mB2 mC2 mA3 mB3 mC3 x2 x3 
                   y2 y3 x1 y1; 
           USEVARIABLES = ALL; 
MODEL: 
    m1 by mA1@1 mB1*1 mC1*1; 
    m2 by mA2@1 mB2*1 mC2*1; 
    m3 by mA3@1 mB3*1 mC3*1; 
    mA1*2; 
    mB1*2; 
    mC1*2; 
    mA2*2; 
    mB2*2; 
    mC2*2; 
    mA3*2; 
    mB3*2; 
    mC3*2; 
    x1*1; 
    x1 with m1*0.2384; 
    x1 with y1*0.0663; 
    m1 with y1*0.1389; 
    x3 with m3@0; !Fix this or Mplus will estimate by default 
    m3 with y3@0; !Fix this or Mplus will estimate by default 
    x3 with y3@0; !Fix this or Mplus will estimate by default 
    x2 on x1*0.71; 
    x3 on x2*0.71; 
    x2*0.4959; 
    x3*0.4959; 
    m1*1; 
    m2 on m1*0.36; 
    m2 on x1*0.25 (a); 
    m3 on m2*0.36 x2*0.25; 
    M2*0.7650;  
    M3*0.7650;  
    y1*1; 
    y2 on y1*0.51 m1*0.25 x1*0; 
    y3 on y2*0.51; 
    y3 on m2*0.25 (b); 
    y3 on x1*0; 
    y2*0.6420;  
    y3*0.6420;  
MODEL CONSTRAINT: 
    NEW(med*0.0625); 
    med=a*b; 
OUTPUT: TECH9; 
SAVEDATA: RESULTS=cell_364.txt;   
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!Mplus code that reads in the data created from the first syntax and 
!fits the composite variable model 
 
DATA:   FILE=cell_76replist.dat; 
        TYPE = MONTECARLO; 
VARIABLE:  NAMES = mA1 mB1 mC1 mA2 mB2 mC2 mA3 mB3 mC3 x2 x3 
                   y2 y3 x1 y1; 
           USEVARIABLES = x2 x3 y2 y3 x1 y1 m1_c m2_c m3_c; 
DEFINE:    m1_c=(mA1+mB1+mC1)/3; 
           m2_c=(mA2+mB2+mC2)/3; 
           m3_c=(mA3+mB3+mC3)/3; 
MODEL: 
    x1*1; 
    x1 with m1_c*0.2384; 
    x1 with y1*0.0663; 
    m1_c with y1*0.1389; 
    x3 with m3_c@0; !Fix this or Mplus will estimate by default 
    m3_c with y3@0; !Fix this or Mplus will estimate by default 
    x3 with y3@0; !Fix this or Mplus will estimate by default 
    x2 on x1*0.71; 
    x3 on x2*0.71; 
    x2*0.4959; 
    x3*0.4959; 
    m1_c*1; 
    m2_c on m1_c*0.36; 
    m2_c on x1*0.25 (a); 
    m3_c on m2_c*0.36 x2*0.25; 
    m2_c*0.7650;  
    m3_c*0.7650;  
    y1*1; 
    y2 on y1*0.51 m1_c*0.25 x1*0; 
    y3 on y2*0.51; 
    y3 on m2_c*0.25 (b); 
    y3 on x1*0; 
    y2*0.642;  
    y3*0.642;  
MODEL CONSTRAINT: 
    NEW(med*0.0625); 
    med=a*b; 
OUTPUT: TECH9; 
SAVEDATA: RESULTS=cell_652.txt; 
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Abstract 
 

Latent growth curve (LGC) modeling can be used to assess longitudinal mediation, with 
one such approach being the parallel process model of mediation.  Although this 
approach has several advantages over cross-sectional tests of mediation, a common 
criticism is that the model cannot be used to establish that prior changes in the mediator 
are related to future changes in the outcome (i.e., a lack of temporal precedence).  
Although definitive cause and effect statements still cannot be made about the mediator-
outcome relationship, the two-stage piecewise parallel process model of mediation can be 
used to test whether early growth in a mediator is related to later growth in an outcome 
(i.e., temporal sequentiality can be established).  This article provides an overview of the 
two-stage piecewise parallel process model of mediation and reports on a simulation 
study designed to examine the statistical performance of methods used to test mediation 
in such a model and also to examine the impact of misspecifying a true piecewise model 
as a single-stage parallel process model of mediation that assumes linear growth 
trajectories under a variety of conditions.  Results demonstrate that fairly large samples, 
in some cases 1,000 or more, were generally required to minimize bias of mediated effect 
estimates and to achieve adequate statistical power. Furthermore, under the conditions of 
the present study, LGC models of mediation are quite sensitive to model 
misspecifications that fail to account for the true state of temporal precedence, both in 
terms of model misfit and parameter estimate bias, suggesting that caution should be 
exercised in the interpretation of single-stage parallel process mediation models without 
strong theory linking growth in the mediator and growth in the outcome or without prior 
established evidence of the temporal relationship between mediator and outcome. 
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Introduction 

 Latent growth curve (LGC) modeling is an increasingly used technique for the 

analysis of longitudinal data, allowing researchers to explicitly model growth (or change) 

over time for individuals (Duncan & Duncan, 2004; Singer & Willett, 2003).  This 

approach is especially useful when one is interested in studying individual differences in 

change as well as correlates, predictors, and outcomes associated with such change 

(Raykov, 1998).  Another substantial body of literature has explored the concept of 

mediation, where researchers make an explicit attempt to understand the causal 

mechanism or the process by which an intervening variable, called a mediator (M), 

transmits an effect of an independent variable (X) to a dependent variable (Y) 

(MacKinnon, 2008a).  Because of its utility in assessing change over time and the call for 

the development of longitudinal mediation models due to limitations associated with 

assessing mediation with cross-sectional data (Maxwell & Cole, 2007), LGC modeling 

has been expanded to include mediation processes. Perhaps the most straightforward 

approach is to model growth factors based on repeated measures of X, M, and Y.  One 

method for assessing mediation in such models is by testing whether the growth 

trajectory (i.e., the slope factor) of X influences the growth trajectory of Y via the growth 

trajectory of M.  Such models are referred to as parallel process models of mediation 

(MacKinnon, 2008b). 
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A related LGC parallel process model of mediation was developed by Cheong, 

MacKinnon, and Khoo (2003) for the situation where X is a time-invariant variable, such 

as group membership, rather than a time-varying variable measured at multiple waves, 

like M and Y.  An example of this LGC model is provided in Figure 1.  Evidence of a 

causal interpretation of a group membership variable’s effect on the growth in the 

mediator and growth in the outcome is significantly enhanced if the group membership 

variable (X) represents random assignment to treatment groups.  However, causal 

statements concerning the relationship between the growth trajectories of the mediator 

and the outcome are limited in the parallel process model of mediation because of the 

lack of information concerning temporal precedence.  In other words, if M and Y are 

assessed at the same measurement occasions, it is not possible to establish that the growth 

in M precedes the growth in Y.  Although the presence of a temporal sequence alone does 

not unequivocally establish causality, such a sequence is considered stronger evidence for 

a causal relationship than a simultaneous relationship (Hill, 1965; Kazdin & Nock, 2003).  

In the parallel process model of mediation outlined in Figure 1, the relationship between 

the change in M and the change in Y is correlational in nature (MacKinnon, 2008b; 

Cheong, 2011); it does not allow one to state that prior changes in M are related to future 

changes in Y.  To make causal inferences about this relationship, and thus subsequently 

the mediated effect, some have argued for the necessity of a priori strong conceptual 

theory (Cheong et al., 2003). 

Several authors have described the possibility of using a two-stage piecewise 

parallel process LGC model of mediation to overcome the lack of temporal precedence 

criticism of the previously described parallel process model of mediation (also called a 
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single-stage parallel process model) (Cheong et al., 2003; Laurenceau, Hayes, & 

Feldman, 2007; McKinnon, 2008b; Selig & Preacher, 2009; Cerin, 2010; von Soest & 

Hagtvet, 2011).  In this model, the growth in the mediator and the growth in the outcome 

can be modeled as occurring in separate phases, allowing for an evaluation of the effect 

of earlier growth in the mediator on later growth in the outcome.  Although levels of the 

mediator are still not randomly assigned in this model, two-stage piecewise parallel 

process models of mediation provide significant advantages over single-stage models in 

that temporal sequentiality can be established, providing a more convincing test of a 

mediational hypothesis. 

Although standard (i.e., single-stage) LGC models can be used to model various 

trajectory shapes (including growth plateaus and limited early growth followed by late 

linear growth) by setting different loadings on a growth rate factor (or slope), piecewise 

LGC models can be specified to explicitly model trajectory shapes that vary over time 

stage (Flora, 2008).  Piecewise LGC models also allow for an evaluation of whether the 

predictors and outcomes associated with change in a given variable are different at 

different time points.  This suggests that piecewise parallel process models of mediation 

may provide better estimates of the mediated effect than single-stage models in situations 

where trajectory shapes for the mediator and the outcome are time dependent 

(MacKinnon, 2008b).  For example, consider a true population model where a prevention 

program’s (i.e., the independent variable) influence on cognitive or attitudinal variables 

(i.e., the mediators) occurs fairly early followed by a plateau, whereas the ultimate 

change in behavior (i.e., the outcome) does not occur until some later time during 

program evaluation.   
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Due to its relative parsimony, a commonly utilized growth pattern when 

conducting LGC modeling is the linear trend (i.e., the growth trajectory over time is best 

represented by a straight line).  Although Cheong et al. (2003) recommend exploring the 

growth patterns in M and Y, and utilizing the most appropriate trajectory when 

conducting LGC mediation modeling, this recommendation may be ignored.  A model 

misspecification that assumes linear growth trajectories for M and Y when the true 

population model is a two-stage piecewise model of mediation has the potential to 

produce significantly biased estimates of the mediated effect. 

Several empirical studies have tested longitudinal mediation hypotheses using 

parallel process models (Cheong et al., 2003; Liu et al., 2009; Audrain-McGovern, 

Rodriguez, & Kassel, 2009; Roesch et al., 2009; Roesch, Norman, Villodas, Sallis, & 

Patrick, 2010; Littlefield, Sher, & Wood, 2010) and others have used Monte Carlo 

simulation methods to assess estimation accuracy and power in the single-stage parallel 

process model of mediation (Cheong, 2011).  However, applied mediation analyses using 

piecewise parallel process growth models are rare (von Soest & Hagtvet, 2011) and, to 

our knowledge, no Monte Carlo studies have evaluated the performance of this statistical 

method for evaluating mediation relationships.  One application can be found in the work 

of Flora, Khoo, & Chassin (2007), who tested a longitudinal mediation hypothesis using 

data from a cohort-sequential design.  However, even though the ultimate dependent 

variable in their mediation framework was later growth in the outcome (i.e., a second 

stage heavy drinking growth trajectory), these authors used an intercept factor (i.e., 

externalizing status at a certain age) rather than a growth rate factor as the putative 

mediator. 
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The purpose of this study was to evaluate the statistical performance (bias, power, 

and Type I error rate) of methods used to test mediation in a two-stage piecewise parallel 

process latent growth curve model and to examine the impact of misspecifying the true 

piecewise model as a single-stage parallel process model of mediation under different 

conditions (i.e., degree of later growth in the mediator, degree of earlier growth in the 

outcome, complete or partial mediation, size of the mediated effect, and sample size).  

Prior to a description of the simulation study design and results, LGC modeling 

(including the specification of piecewise growth models) and the use of LGC models to 

assess longitudinal mediation are briefly reviewed. 

 

Background 

Latent Growth Curve Modeling 

In a latent growth curve analysis, observations of the same variable from multiple 

time points are used to model change over time for individuals.  Two parameters are 

considered latent variables: the intercept (or status) factor, which is commonly used to 

measure initial or baseline status for each individual (although it can be used to indicate 

status at any measurement point), and a slope (or growth rate) factor, which indicates 

individual change over time.  The coding of time in LGC modeling is accomplished 

through specific constrained elements in a factor loading matrix.  In matrix form, the 

unconditional growth model is represented as: 

  i i iY = Λη + ε   (1) 

where Yi is a T x 1 vector of repeated measures of the variable Y for individual i over the 

T time points (t = 0, 1, 2, … T),  is a T x 2 matrix of factor loadings on the growth 
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factors, i is a 2 x 1 vector of latent factors representing the two growth parameters, the 

intercept and the slope, and i is a T x 1 vector of measurement errors or residuals.  

Values for the loadings for the status factor 1i are constrained to be 1 and values for the 

loadings of the growth rate factor 2i are fixed by the analyst to reflect time intervals 

between measurements and the shape of the growth trajectory (e.g., linear).  For example, 

the loadings of [0 1 2 3 4] for 2i reflect a linear trajectory across five time points at 

evenly spaced intervals (hence that factor is typically labeled “linear slope”).  Nonlinear 

functions, including initial growth followed by a plateau, can be modeled by fixing the 

factor loadings to certain values (e.g., [0 1 1 1 1]) or allowing some loadings to be freely 

estimated to reflect the trajectory from the observed data (see Littlefield et al. (2010) for 

an example). 

 The means of these latent variables reflect the population average intercept and 

growth rate, while their variances reflect individual differences.  When the variances are 

significant, the unconditional model can be expanded to include predictors of the two 

growth parameters.  This conditional model in matrix form is represented as: 

 i i i η = μ ΓX + ζ  (2) 

where μ is a 2 x 1 vector of regression intercepts,  is a 2 x K matrix of regression 

coefficients, Xi is a K x 1 vector of K individual covariates, and i is a 2 x 1 vector of 

residual (or error) terms. 

 

The Parallel Process Model of Mediation  

Growth processes for other variables (i.e., parallel processes) can be added to the 

basic LGC model, allowing researchers to address many different research hypotheses, 
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including longitudinal mediation.  In such models, it is possible for growth parameters 

from one process to be regressed on growth parameters from other processes.  Figure 1 

provides one example of a parallel process model of mediation with the independent 

variable of interest being a time-invariant variable, such as assignment to treatment or 

control group, and the mediated effect of interest defined as the effect of X on the growth 

rate of Y via the growth rate of M (X  SMSY).1 

Cheong et al. (2003) and MacKinnon (2008b) outline several steps for evaluating 

parallel process mediation models.  This includes evaluating both M and Y for 

differential growth trajectories, assessing whether the variances of the growth factors are 

statistically significant, using multiple-groups structural equation modeling (SEM) to 

evaluate differences in initial status and growth across the levels of the X (e.g., see Kline, 

2011), combining the latent growth curve models for M and Y into one parallel process 

model and then using MIMIC (multiple indicators, multiple causes) modeling (e.g., see 

Brown, 2006) to assess the impact of the treatment (X) on the growth factors, and finally 

adding relationships among the growth factors to assess for mediation. 

The  coefficient in Figure 1 represents the mean difference in average growth 

rates between a treatment and control group on the mediator variable (controlling for the 

effect of the initial status of the outcome), whereas the  coefficient signifies the 

relationship between the growth rate of the mediator and the growth rate of the outcome, 

adjusted for the effect of the treatment (and the initial status of the mediator).  The ’ 

coefficient indicates the direct effect of X on the growth in the outcome, or the effect of 

X on the growth in the outcome that is not correlated with the growth rate of the 

                                                            
1 Note that IM, SM, IY, and SY are used to represent the growth factors in Figure 1 rather than 1, 2, 3, and 4. 
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mediator.  The point estimate of the longitudinal mediated effect of interest is  * 

(Cheong et al., 2003).  Although there are others (MacKinnon, Lockwood, Hoffman, 

West, & Sheets, 2002), two commonly used methods to test for statistically significant 

mediation are the joint significance test (Cohen & Cohen, 1983) and the Sobel test 

(1982).  When the effects being multiplied together to produce the mediated effect are 

both statistically significant, the joint significance test concludes that there is a significant 

mediated effect.  In the parallel process model of mediation in Figure 1, this would 

include tests of the  and  paths.  No estimate of the mediated effect is necessary and 

such a test does not provide confidence intervals. 

The Sobel standard error formula for the  *  mediated effect is: 

 





2 2
2 2s s
 

   (3) 

where   and s s
 

are the standard errors for the  and  estimates.  The Sobel standard 

error is implemented in several statistical software programs and can also be used to 

construct confidence intervals for the mediated effect, in addition to significance testing.  

As others have noted, the distribution of a product of two independent normally 

distributed random variables is generally not normally distributed (MacKinnon, 2008a).  

Thus, the use of the Sobel standard error relies on asymptotic theory (i.e., normal-theory 

confidence limits and hypothesis tests), and the net result is generally conservative 

hypothesis tests (low Type I error rates and low power) and confidence intervals (i.e., 

empirical coverage probabilities larger than 95% for a 95% confidence interval). 

Although the putative mediator in the parallel process model depicted in Figure 1 

is the slope, it is possible to test mediated effects involving the mediator’s intercept factor 
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(von Soest & Hagtvet, 2011).  The intercept or status factor is the model-implied value of 

the repeatedly measured variable when the loading on the growth rate factor is 0.  While 

often times this is the value of the variable at baseline, this can be changed so that this 

factor reflects status at any time point, not just initial status, by selecting a new reference 

point.  Thus, the loadings of [0 1 2 3 4] for 2i can be changed to [-1 0 1 2 3], which will 

not change the interpretation of the growth rate factor, but now the status factor is the 

value of the variable at t = 1 rather than baseline. As noted by Selig & Preacher (2009), 

caution should be exercised so that mediation paths that run contrary to time are not 

tested.  Thus, using M status at the last time point as a mediator for the growth in Y 

occurring over all time points should not be tested as some growth in Y would occur 

before the final M status is achieved. 

 

Piecewise Latent Growth Curve Modeling 

 LGC models can be extended to include additional growth factors.  Perhaps the 

simplest of these models is the inclusion of a second slope (or growth rate) factor to 

reflect change over a second time segment, the two-piece growth model (Flora, 2008).  

Using the matrix form of the unconditional growth model in equation 1, i is now a 3 x 1 

vector of latent factors representing the three growth parameters (the intercept, early 

growth rate, and later growth rate) and  is a T x 3 matrix of factor loadings on the three 

growth factors.  An example of such a factor loading matrix with five measurement 

occasions is: 
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1 0 0

1 1 0

1 2 0

1 2 1

1 2 2

 
 
 
 
 
 
  

Λ   (4) 

where the intercept factor represents status at baseline or the first measurement occasion, 

the first growth rate factor is the linear change over the first three time points, and the 

second growth factor represents linear change over the last three time points.  The 

conditional model is a straightforward extension, where predictors of all three growth 

parameters can be included (i.e., the  matrix in equation 2 becomes a 3 x K matrix of 

regression coefficients). 

The transition point, or the point at which the two pieces are joined, is referred to 

as the “knot.”  In some applications of piecewise models, the knot represents a point 

where the slopes representing growth on the variable begin to change and thus piecewise 

models can be used to model nonlinear trajectories.  In other applications, the knot may 

represent other considerations, such a transition from active treatment to a maintenance 

period or from middle school to high school (Sayer & Willett, 1998; Khoo, 2001; Duncan 

& Duncan, 2004; Flora, 2008).  In these applications, it is possible that the growth over 

the entire time period may be linear, but the goal may be to assess different predictors of 

growth during the two time periods. 

 

The Two-Stage Piecewise Parallel Process Model of Mediation 

As with the LGC model, growth processes for other variables can be added to the 

basic two-stage piecewise LGC model, potentially allowing for a more convincing test of 

mediation by allowing an assessment of the effect of earlier growth in the mediator on 
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later growth in the outcome.  Such a model is presented in Figure 2 where the primary 

mediated effect is *, and is defined as the effect of X on the growth rate of Y occurring 

at a later stage via the growth rate of M occurring at an earlier stage (X  S1MS2Y).  

Of note is that there are several other possible mediated effects.  For example, one may 

elect to examine the relationships between earlier growth in M and earlier growth in Y 

(mediated effect = *9) or later growth in M and later growth in Y (mediated effect = 

3*10) (MacKinnon, 2008b).  Although these “contemporaneous” mediated relationships 

still suffer from a lack of temporal precedence, they nevertheless may be of substantive 

interest. 

Other mediated effects may involve the intercept (or status) factors.  Given that it 

is possible to change the loadings in  such that the intercept factor reflects status at any 

time point, not just initial status (see previous discussion), it is possible to change the 

nature of a mediated effect involving the intercept by changing the time used to define 

the intercept (Selig & Preacher, 2009).  One can allow temporal precedence in such 

models with the intercept as the putative mediator.  For example, one might test whether 

the effect of X on later growth in Y (i.e., times 3, 4, and 5) is mediated via status of M at 

time 2.  This was the approach taken by Flora, Khoo, & Chassin (2007), primarily 

because the variance of the growth rate factor for their proposed mediator was not 

statistically significantly different from zero. 

In summary, piecewise growth models provide researchers with the flexibility to 

examine nonlinear growth trajectories, antecedents and consequents of change at 

different growth periods, and the ability to test a number of different mediational 
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hypotheses, some of which specifically address the criticism of the lack of temporal 

precedence associated with the single-stage parallel process model of mediation. 

 

Methods 

Population Model 

The present simulation study sought to evaluate the performance of estimating 

and testing mediation in a two-stage piecewise parallel process LGC model and to 

evaluate the effects of misspecifying the true piecewise model as a single-stage parallel 

process LGC model.  Thus, the population longitudinal mediation model was based on 

the model in Figure 2, a model with five measurement occasions for M and Y (both 

simulated to be continuous), and an independent variable, X, designed as a dichotomous, 

time-invariant variable with a 50/50 split, to mimic a randomized controlled trial with a 

treatment and a control group with equal treatment allocation.  The factor loading matrix, 

, for the population model was that specified in equation 4 for both the mediator and the 

outcome, reflecting equally-spaced intervals between measurement occasions.  Thus, IM 

and IY represent initial status (i.e., at baseline) for the mediator and the outcome, 

respectively; S1M and S1Y represent linear growth rates for the mediator and outcome, 

respectively, at an earlier stage of the study; and S2M and S2Y, represent linear growth 

rates for the mediator and outcome, respectively, at a later stage of the study. 

Slope was considered the putative mediator, thus the mediated effect in this study 

was defined as the independent variable (X) affecting the growth rate of Y occurring at a 

later stage via the growth rate of M occurring at an earlier stage (X  S1MS2Y) and 

was estimated as the product of these two paths in subsequent analyses ( ˆˆ *  ).  No 
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contemporaneous mediational relationships (i.e., X S1M S1Y) were specified, as 9 

and 10 were fixed to zero.  In addition, 1 and 2 (i.e., the relationship of X to initial 

status of the mediator and outcome) were both set to 0 to mimic a randomized trial. 

Other parameters were selected based on prior simulation studies involving LGC 

models (Muthén & Curran, 1997; Muthén & Muthén, 2002; Hertzog, von Oertzen, 

Ghisletta, & Lindenberger, 2008; Thoemmes, McKinnon, & Reiser, 2010; Cheong, 

2011).  The means of the initial status factors for both the mediator and outcome were set 

to 0 with variances of 1.  The residual variances of observed M1 through M5 and Y1 

through Y5 were set to be same (0.25), a simplifying assumption that has been used in 

several LGC modeling simulation studies (Muthén & Muthén, 2002; Hertzog et al., 2008; 

Thoemmes et al., 2010).  This yields a model-implied total variance for M1 and Y1 of 

1.25 and an average reliability (R2) of these variables (i.e., at baseline) of 0.8.  The R2 for 

the measures at the other time points vary by the other parameters in the model, but are 

all fairly close to 0.8. 

Covariances among the initial status factors and disturbances of the first growth 

factors for both the mediator and the outcome (i.e., Cov (IM,S1M) and Cov (IY,S1Y)) were 

set at -0.1.  Because there is more time separating the initial status factors and the 

disturbances of later stage growth rate factors, these covariances (i.e., Cov (IM,S2M) and 

Cov (IY,S2Y) were set at -0.05.  For reasons of clarity, none of these covariances are 

shown in Figure 2.  Relationships between initial status factors of one process and the 

growth rate factors of the other process (i.e., 5, 6, 7, and 8 in Figure 2) were all set at -

0.1.  All of these negative relationships are based on the assumption often observed in 

applied LGC analyses that “individuals with higher levels at the initial measurement 
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point showed smaller changes at the later points” (Cheong, 2011, p. 201).  Covariances of 

the disturbances of the growth rate factors (i.e., Cov (S1M,S2M) and Cov (S1Y,S2Y)) were 

set at -0.05, smaller than the covariance involving initial status and the first growth rate 

factor based on previous empirical studies using piecewise LGC modeling (Lee & 

Rojewski, 2009).  The covariance among the initial status factors for the mediator and 

outcome was fixed at 0.3 (Cheong, 2011). 

For both the mediator and the outcome, the average growth for the first stage (i.e., 

S1M and S1Y) and the second stage (i.e., S2M and S2Y) were set to 0, with residual 

variances of 0.1 for these growth rate factors.  This simplifying assumption indicates no 

growth over time on average for the control group (i.e., model-implied means of 0 at all 

five measurement occasions) for both the mediator and the outcome.  For the treatment 

group, growth is a function of the other parameters in the model and the model-implied 

means for the treatment group are fully described below in the section describing 

simulation study conditions.   

Path  in Figure 2 expresses early growth for the treatment group above the 

control group on the mediator and was fixed in all study conditions at 0.4.  A single value 

for this path was selected for this study because this effect is often well supported in the 

literature prior to an empirical study and the experimental manipulation (i.e., the X 

variable in Figure 2) is often designed to have a strong effect on the mediator.  Thus, 

investigators designing longitudinal studies modeled after Figures 1 or 2 often have 

strong evidence for a treatment effect on the mediator of interest before the study is 

conducted.  Given the other parameters already fixed in the population model (i.e., the 

residual variance of S1M, 6, the variance of IY, and the variance of X (simulated to be 
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50/50 dichotomy, therefore the variance of X is 0.25)), a value of 0.4 for  corresponds to 

a unique explained variance of path  (for the prediction of S1M) of just over 26%, a 

large effect (Cohen, 1988).  In addition, the ratio of the difference in slope means for the 

two values of X divided by the standard deviation of S1M is about 1, which is also 

indicative of a large effect (Cohen, 1988). 

 

Simulation Study Conditions 

Mplus 6.11 (Muthén & Muthén, Los Angeles, CA) was using for conducting 

simulations and subsequent model fitting.  Source code for data generation for one of the 

combinations of the experimental conditions along with code for the fitting of the two 

model specifications can be found in the Appendix.  A total of six factors were 

manipulated in this simulation study:  1) two model specifications, 2) four sizes of the 

mediated effect (which is based on path  since path  was fixed in all simulation 

conditions), 3) two levels of the size of path ’ (to reflect complete and partial 

mediation), 4) two levels of later growth in the mediator, 5) two levels of earlier growth 

in the outcome, and 6) five different sample sizes.  Of these, only five contributed to the 

creation of different sets of replications (model specification can be considered a within-

subjects factor, where both levels of this factor were applied to all replications in each 

condition).  Thus, data were generated under 160 unique experimental conditions (4 x 2 x 

2 x 2 x 5). 

A total of 1,000 replications were simulated for each of these 160 conditions and 

the properly specified model (i.e., the model outlined in Figure 2) was fit to the 1,000 raw 

datasets in each condition using maximum likelihood estimation.  Out of these 1,000 



148 
 

replications in each of the 160 conditions, replications that failed to converge or resulted 

in negative variances or residual variances were excluded, and then the first 500 

replications with converged and proper solutions were selected for subsequent analyses 

(Paxton, Curran, Bollen, Kirby, & Chen, 2001), providing a total of 80,000 data sets.  In a 

few experimental conditions, there were close to 400 replications out of the 1,000 with 

improper solutions or a failure to converge.  Almost all of the problematic replications 

occurred with n = 100 or n = 200 (mostly, n = 100).  Thus, only 500 converged and 

proper solutions from the perfectly specified model were used and considered for the 

misspecified model.  Thus, the two model specifications described below were fit to the 

80,000 simulated data sets.  Some of these replications, although resulting in converged 

and proper solutions in the perfectly specified model, failed to converge or resulted in 

improper solutions in the misspecified model.  Such problems were encountered in 2,078 

replications (about 2.6% of the replications), including 861 cases of failed convergence 

and 1,217 cases of out-of-range values.  Although some of these occurred when n = 200, 

almost all occurred with n = 100.  These replications were excluded from subsequent 

analyses, leading to a slightly unbalanced design. 

Model specification. Two different models were specified and were fit to each 

data set.  The first model specification was the properly specified two-stage piecewise 

parallel process model of mediation (Figure 2) (i.e., the estimated model perfectly 

corresponded to the population model).  The second model specification was a single-

stage parallel process model of mediation.  In this model, only one growth rate factor was 

estimated for both the mediator and the outcome and both growth trajectories were 

modeled as linear (Figure 1).  The slope was still considered the putative mediator, thus 
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the mediated effect in the misspecified model was defined as the independent variable 

(X) affecting the growth rate of Y via the growth rate of M (X  SMSY).  Maximum 

likelihood was used as the estimation method for both specifications. 

Size of the mediated effect. Because path  was fixed at 0.4 under all simulation 

conditions, path  was varied to manipulate the size of the mediated effect.   The values 

of 0, 0.15, 0.40, and 0.65 were chosen for the path  to reflect zero, small, medium, and 

large effects for the mediated effect.  Given the other parameters already fixed in the 

population model (i.e., the residual variance of S2Y, 7, the variances of S1M and IM, and a 

number of covariances), these values correspond to unique explained variance of the  

path of 0%, 2.8%, 16.2%, and 32.2% (when ’=0) and 0%, 2.4%, 13.0%, and 25.9% 

(when ’=0.25), which correspond to 0, small, moderate, and large effects on the R2 

metric (Cohen, 1988). 

Size of path ’. Two levels for path ’ (or the direct effect of X) were used to 

reflect complete (’ = 0) and partial (’ = 0.25) mediation.  The value of ’ = 0.25 

corresponds to a small to medium effect in terms of unique explained variance. 

Later growth in the mediator.  Path 3 (Figure 2) was used to manipulate the 

degree of later growth in the mediator.  Given path  is set at 0.4, when 3 = 0, the growth 

in mediator due to treatment is early (and linear) with no additional growth beyond time 3 

(i.e., a stabilized plateau is reached) and when 3 = 0.4, there is later growth in the 

mediator due to treatment and the total growth is basically the same over the five periods 

(it is essentially linear). 

Earlier growth in the outcome.  Path 4 (Figure 2) was used to manipulate the 

degree of earlier growth in the outcome. Given a treatment effect on S2Y (i.e., ≠ 0 
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and/or ’ ≠ 0), when 4 = 0, the growth in outcome due to treatment is late with no growth 

in the first three time points and when 4 = 0.4, the growth in the outcome due to 

treatment occurs early (and is linear over the first three measurement occasions) and there 

is late growth as well from the contributions of  and ’.  In the latter case, the total 

amount of change over time is a function of  and ’. 

Thus, the total growth over the entire study period in the mediator is function of  

and 3, while the total growth in outcome is function of , , ’, and 4.  Table 1 provides 

model-implied means for the measured variables M1-M5 and Y1-Y5 under a few different 

experimental conditions. 

Sample size. Five sample sizes often encountered in social and behavioral science 

research were considered: 100, 200, 500, 1000, and 2000. 

 

Study Outcomes 

Fit indices.  Two commonly used indices were used to assess the fit of the two 

model specifications to the observed data for each replication: the root mean square error 

of approximation (RMSEA) and the comparative fit index (CFI).  The means for these 

two indices across all replications for each experimental condition were calculated and 

compared to literature-based cut-off criteria (Bandalos, 2006).  Good model fit is 

indicated by an RMSEA of 0.05 or less (Brown & Cudeck, 1993) and a CFI above 0.95 

(Hu & Bentler, 1999).   

Parameter and standard error estimation.  The accuracy of point estimation in 

the two-stage piecewise parallel process model of mediation, as well as the effects of 

model misspecification on estimation accuracy, were evaluated by examining both bias 



151 
 

and relative bias.  While the primary interest was the estimate of the mediated effect, 

other parameters in the model were examined as bias associated with estimation of these 

parameters may help explain the effects of model misspecification on the bias in the 

mediated effect.  Relative bias is defined as the ratio of the deviation in an estimate from 

the true value to the true value: 

 
 



 (5) 

 
  is the point estimate of the effect of interest from the simulated data whereas   refers 

to the true value specified in the population model.  Absolute values greater than 0.10 

were considered problematic (Kaplan, 1988).  Under conditions where the true value was 

zero, the bias (the numerator in equation 5) was calculated and reported. 

Several studies report on the relative bias associated with the estimation of the 

Sobel (1982) standard error (e.g., see MacKinnon et al., 2002; Taylor, MacKinnon, & 

Tein, 2008; Cheong, 2011) due to questions concerning its performance especially with 

smaller samples.  To calculate this relative bias, equation 3 was used to calculate the 

Sobel (1982) standard error estimate for each of the 500 replications under a given set of 

conditions.  The standard deviation of the mediated effect across the same 500 

replications was used as the true value of the standard error and then equation 5 was used 

to calculate relative bias.  

Power and Type I error rates.  Effects of interest were tested for significance in 

each of the 500 replications under all experimental conditions using a two-tailed test at 

the 0.05 level of significance.  Both the Sobel test and the joint significance test were 

used for testing the mediated effect.  Under conditions when the true effect was 0, the 

proportion of replications in which the null hypothesis was rejected was used as an 
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estimate of the Type I error rate.  When the true effect was nonzero, this proportion was 

used as the measure of power. 

 

Analysis 

SAS 9.2 (SAS Institute, Cary, NC, USA) was used for analyzing the simulation 

results.  To examine the main effects and interactions of the six design factors on the 

study outcomes, analysis of variance was used for continuous outcomes (bias, relative 

bias, fit indices) and logistic regression was used for dichotomous outcomes (Type I error 

and power).  Because the number of observations was so large, effects were interpreted 

on the basis of effect sizes rather than conventional p < 0.05 significance testing (Paxton 

et al., 2001).  The proportion of total variation accounted for (2) was used as the 

measure of effect for ANOVA models and the proportional reduction in deviance 

attributable to a predictor  2
LR  was used for logistic regression models.  To facilitate 

estimation in the logistic regression models, size of the mediated effect and sample size 

were treated as centered, quantitative predictors (see Taylor et al., 2008 for a similar 

approach).  The two model specifications technically comprise a within-subjects factor; 

however, model specification was treated as a between-subjects factor in the analysis 

because the results were interpreted in terms of effect sizes rather than significance 

testing.  Given the slight differences in cell sizes due to lack of convergence or improper 

solutions for the misspecified model for conditions where sample sizes were small (i.e., 

there was an unbalanced design), least-squares means (i.e., group-based averages or 

unweighted means) were used when collapsing across cells in the reporting of results 

(Keppel & Wickens, 2004).  
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Results 

Model Fit 

Overall, the study factors (and all possible interactions) accounted for 88.5% and 

89.7% of the total variation in RMSEA and CFI, respectively.  For RMSEA, most of the 

explained variation (98%) was due to the main effects of, and interactions among, four 

factors: model specification, size of the mediated effect, later growth in the mediator, and 

sample size, while for CFI, the first three of these factors and their interactions (i.e., not 

sample size) accounted for most of the explained variation (93%).  Model specification 

had the single largest effect for both RMSEA and CFI, as expected.  Mean fit index 

values are presented in Table 2 as a function of these four factors, collapsing across levels 

of the size of the direct effect and degree of earlier growth in the outcome.  For the 

properly specified model, mean RMSEA and CFI values indicated good fit under all 

conditions, with a slight dependency on sample size for RMSEA (larger sample sizes are 

associated with decreasing values of RMSEA; this was not unexpected, see Kline, 2011).  

The misspecified model was generally associated with significantly poorer fit.  RMSEA 

was generally sensitive to detecting misfit associated with model misspecification under 

all conditions (range: 0.068 to 0.105), with higher values (i.e., worse fit) generally 

associated with larger mediated effects and conditions where there is no late growth in 

the mediator (i.e., a stabilized plateau).  Alternatively, mean values for CFI indicated 

acceptable fit under several conditions (range: 0.927 to 0.972), although the general 

pattern observed for RMSEA held; that is, worse fit is generally associated with larger 

mediated effects and conditions where there is no late growth in the mediator. 

 



154 
 

Parameter Estimation 
 

The study factors (and all possible interactions) collectively accounted for 12.8% 

of the total variation in the relative bias associated with the mediated effect estimates, 

with most of the explained variation (99%) attributed to four factors and their 

interactions: model specification, size of the mediated effect, later growth in the 

mediator, and sample size.  Mean relative bias values for the mediated effect are 

presented in Table 3 as a function of these four factors, collapsing across collapsing 

across levels of the size of the direct effect and degree of earlier growth in the outcome.  

For the properly specified model, in cases of small effects, the relative bias was generally 

less than 0.10 only when the sample size was 1,000 or larger.  As the size of the mediated 

effect increased, the relative bias tended to decrease such that the relative bias for the 

mediated effect in the properly specified model was less than 0.10 across all sample sizes 

for the largest effect.  Using a single-stage parallel process model of mediation with 

growth trajectories for both the mediator and the outcome modeled as linear led to 

significant bias in the estimation of the mediated effect in just about all conditions.  In 

some conditions the effect was underestimated and in other conditions it was 

overestimated.  Even in situations where the true total growth for the mediator for the 

treatment group over the five periods is essentially linear (i.e., 3 = 0.4), there was still a 

significant degree of bias in the estimate of the mediated effect. 

An examination of bias associated with the estimation of the mediated effect 

when the true mediated effect was zero (i.e., when relative bias could not be calculated) 

revealed similar findings as the analysis of the relative bias when the true mediated effect 

was nonzero.  Model specification, later growth in the mediator, and sample size 
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accounted for most of the explained variation (98%, with total variation accounted by all 

study factors of 12.6%).  Significant overestimation of the zero mediated effect occurred 

in the misspecified models (Table 4). 

Only two study factors accounted for significant variation in the relative bias of 

the path  estimates: model specification and later growth in mediator (i.e., size of path 

3).  These two factors and their interaction accounted for about 99% of the explained 

variation (the study factors and all possible interactions collectively accounted for 78.5% 

of the total variation).  For the properly specified model, the relative bias was near zero 

for both levels of path 3.  However, for the misspecified model, path  is underestimated 

on average by about 50% when path 3 is 0 (i.e., no late growth for the mediator in the 

true population model), reflecting a forced linear fit to a stabilized plateau.  When path 3 

is 0.4 in the true population model (i.e., when there is late growth as well as early growth 

in the mediator), the relative bias for the path  estimates is essentially 0 (-0.005). 

The study factors together with all possible interactions accounted for a 

significant amount of total variation in the relative bias of path  estimates when this path 

was nonzero in the population and in bias of path  estimates when  = 0 in the 

population (15.6% and 14.9%, respectively).  As with the relative bias associated with 

estimates of the mediated effect, most of the explained variation for the relative bias of 

path  estimates (99%) can be attributed to four factors and their interactions: model 

specification, size of the mediated effect, later growth in the mediator, and sample size.  

Model specification, later growth in the mediator, and sample size accounted for most of 

the explained variation (99%) in the bias for path  estimates when the true value of  = 

0, which is also similar to bias in mediated effect when the true mediated effect was zero.  
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Tables 5 and 6 present the patterns of means associated with the relative bias and bias of 

the path  estimates, respectively.  The findings for the properly specified model closely 

paralleled the findings for relative bias associated with the mediated effect estimates in 

Table 3, which is not surprising given that the relative bias for path  estimates was 

generally near zero for the properly specified model.  Likewise, the patterns of bias for 

the path  estimates when  = 0 in the properly specified model paralleled for the 

findings for the mediated effect when the true mediated effect = 0 (Table 4).  For the 

misspecified model, path  is significantly overestimated in all conditions (including the 

condition of a zero mediated effect), but the degree of bias generally improved with 

larger mediated effects and larger sample sizes. 

Although the degree of earlier growth in the outcome and the size of the direct 

effect, ’, did not account nontrivial variation in parameter estimate bias or relative bias 

for the mediated effect or paths  and , these factors did account for meaningful 

variation in the bias of the direct effect estimates.  Although it is possible to calculate 

relative bias when ’ = 0.25, for consistency, the analysis was performed on the bias 

associated with this parameter estimate.  The study factors taken together accounted for 

26.2% of the total variation in the bias of the ’ path estimates, with the main effects of, 

and interactions among, model specification, size of the direct effect, later growth in the 

mediator, earlier growth in the outcome, and sample size accounting for most of the 

explained variation (97%).  Tables 7 presents mean bias values for the direct effect 

estimates as a function of these five factors, collapsing across levels of the size of the 

mediated effect.  The main effect of the size of the direct effect was simply confirmation 

of that manipulation.  For the most part, the properly specified model showed no 
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significant bias associated with this path.  However, the direction and magnitude of the 

bias of the direct effect estimates for the misspecified model varied according to the 

degree of later growth in the mediator and the degree of earlier growth in the outcome.  A 

greater degree of earlier growth in the outcome (i.e., 4 = 0.4) in the population model 

was generally associated with a positive bias for the direct effect.  However, a greater 

degree of later growth in the mediator (i.e., 3 = 0.4) was generally associated with a 

negative bias for the direct effect.  In some cases, these effects appear to “cancel out” 

each other leading to estimates for the direct effect that appear to be close to the true 

population value (which also helps to explain the counterintuitive finding in Table 7 that 

for a few condition combinations, increasing sample size appears to be contributing to 

increasing bias).   

 

Standard Error Estimation 

The relative biases of the Sobel standard error of the mediated effect can be found 

in Table 8.  Because the main effects of, and interactions among, model specification, 

size of the mediated effect, and sample size accounted for most of the explained variation 

(88%, with total variation accounted by all study factors of 1.1%), the results in Table 8 

are collapsed across levels of the size of the direct effect, degree of later growth in the 

mediator, and degree of earlier growth in the outcome.  Sample size had by far the largest 

effect, which is evident in Table 8, which shows that the Sobel standard error tended to 

be positively biased under both model specifications and at all mediated effect sizes, 

when the sample size was 100.  The absolute value of the relative bias of the Sobel 

standard error estimator was generally below 0.10 with sample sizes greater then 100, 
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although there were some notable exceptions for the properly specified model when n = 

200. 

 

Type I Error and Power 

The Type I error rates for the mediated effects (i.e., when the true mediated effect 

was zero) using both the Sobel test and the joint significance are shown in Table 9.  The 

study factors accounted for a 41.5% deviance reduction for the Sobel test and 39.6% for 

the joint significance test, with most of the contribution to this reduction (99% for both 

tests) coming from the main effects of model specification and sample size, along with a 

sizable interaction between these two factors.  Table 9 therefore presents Type I error 

rates different levels of these factors collapsing across the other factors.  For the properly 

specified model, Type I error rates were below the nominal level of 0.05 for all sample 

sizes regardless of method of testing (although Type I errors rates were generally slightly 

higher for the joint significance test especially at smaller sample sizes).  However, 

because of the sizable bias associated with estimates of the mediated effect in the 

misspecified model when the true effect was zero (Table 4), the Type I error rate for the 

mediated effect significantly exceed nominal levels especially at sample sizes of 500 or 

larger, approaching 0.80 with a sample size of 2,000. 

 The results with respect to empirical power for the mediated effect can be found 

in Table 10.  In a model using all study factors and interactions, a deviance reduction of 

61.8% was achieved for the Sobel test and 59.1% for the joint significance test, with most 

of the contribution to this reduction (99% for both tests) coming from the main effects of, 

and interactions among, model specification, effect size of the mediated effect, and 
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sample size.  Table 10 therefore presents empirical power levels for different levels of 

these factors.  In general, regardless of model specification and method used to test 

mediation, power generally increased with increasing sample size and increasing effect 

size of the mediated effect, as would be expected.  Under the same conditions, power was 

generally higher with the joint significance test when compared to the Sobel test.  Even 

with proper model specification, sample sizes of 100 or 200 are generally inadequate 

(i.e., failed to achieve a power of 0.8) to detect a mediated effect, no matter the size, 

when using a two-stage piecewise parallel process model of mediation.  Furthermore, the 

power to detect small effects was generally low for both the Sobel test and the joint 

significance test even at a sample size of 2,000.  The apparent power advantage for the 

misspecified model is directly related to the inaccurate estimates of the mediated effect 

under conditions of model misspecification (Table 3). 

Table 11 provides the Type I error rates (when ’ = 0) when and empirical power 

(when ’ = 0.25) associated with the test of the direct effect.  For both Type I error rate 

and empirical power, the study factors accounted for a nontrivial deviance reduction, 

43.7% and 41.1%, respectively.  Most of these effects (about 95% for both Type I error 

rate and power) were attributed to model specification, later growth in the mediator, 

earlier growth in the outcome, and sample size (and their interactions).  Thus, the entries 

in Table 11 are mean values collapsed across the size of the mediated effect.  Type I error 

rates for the direct effect generally followed the bias associated with the direct effect 

presented in Table 7.  Thus, inflated Type I error rates often occurred in the misspecified 

model, but were generally near the nominal level (0.05) for the properly specified model.  

Given the direction of the bias noted in Table 7, a Type I error may be associated with 
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incorrectly concluding that there is negative or a positive direct effect, depending on the 

study conditions.  With respect to empirical power, in the properly specified model, later 

growth in the mediator (i.e., path 3 = 0.4) is generally associated with lower power.  

Because there is no significant bias associated with this path with proper model 

specification (Table 7), this effect is explained by the increased variability in the estimate 

for the direct effect in the presence of late growth in the mediator.  For the misspecified 

model, empirical power levels are related to the degree of bias associated with estimation 

of this path.  For example, when there is no early growth in the outcome but there is late 

growth in the mediator, the direct effect estimates are biased towards zero (Table 7) and 

thus the power for detecting this effect is quite low (range: 0.046 to 0.11 depending on 

sample size). 

 

Discussion 

Assessing mediational hypotheses with LGC modeling has certain advantages 

over cross-sectional tests of mediation.  The assessment of change over time in both the 

mediator and the outcome, as well as the ability to estimate individual differences in 

change, provide more convincing evidence of mediation than single moment-in-time 

view of the variables involved in a proposed mediation relationship.  However, the 

single-stage parallel process LGC model of mediation suffers from an inability to claim 

temporal precedence.  In other words, it cannot be used to establish that prior changes in 

M are related to future changes in Y.  Although definitive cause and effect statements still 

cannot be made about the mediator-outcome relationship, the two-stage piecewise 

parallel process LGC model of mediation does allow one to establish the casual criterion 
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of temporal sequentiality, in that one can test whether early growth in M is related to later 

growth in Y.  Other strengths of the piecewise models for testing mediation include the 

ability to specify nonlinear trajectories, increased flexibility in using the intercept factor 

as mediator, and the ability to model bidirectional or reciprocal causal relationships (e.g., 

does early growth in the outcome predict late growth in the mediator?).  Although single-

stage parallel process models have a great deal of flexibility to model trajectory shapes 

other than linear forms (e.g., see Cheong et al. 2003; Littlefield, et al., 2010), they do not 

possess the other properties of piecewise parallel process models. 

 Several authors have recommended the use of piecewise LGC models to assess 

mediation relationships, however there is little information concerning this model in 

either the applied or methodological literature.  In addition, for reasons of parsimony, 

researchers may elect to estimate single growth-rate parameters based on a linear form 

for both the mediator and the outcome, a model misspecification that may produce 

significant model misfit biased parameter estimates.  Therefore, this study examined the 

statistical performance of methods used to test mediation in a two-stage piecewise 

parallel process latent growth curve model and to examine the impact of misspecifying a 

true piecewise model as a single-stage parallel process model of mediation that assumes 

linear growth trajectories under a variety of conditions. 

 With respect to statistical performance, although accuracy and power were 

strongly related to the size of the mediated effect, it is important to note that large 

samples, in some cases 1,000 or more, were generally required to minimize bias of 

mediated effect estimates and to achieve adequate statistical power in the two-stage 

piecewise parallel process model of mediation.  Although not tested in the present study, 
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it is reasonable to suggest two factors that should enhance statistical power for detecting 

the mediated effect in the piecewise parallel process of mediation on the basis of other 

methodological research conducted on LGC models: 1) increasing R2 of the measured 

variables (or growth curve reliability – GCR) (Hertzog et al., 2008; Cheong et al., 2011) 

and 2) increasing the number of measurement occasions (Muthén & Curran, 1997; 

Cheong, 2011).  In the present study, GCR estimated at time 1 was 0.8, a fairly sizable 

amount.  Although using highly reliable measures for the mediator and outcome should 

enhance GCR, it is also possible to use a measurement model to extract latent variables 

from multiple fallible indicators and subsequently fit a growth curve to these latent 

variables (which are theoretically without error).  Such models go by a variety of names 

including curve-of-factors models (McArdle, 1988; Duncan & Duncan, 2004; Liu et al., 

2009) and second-order latent growth models (Hancock, Kuo, & Lawrence, 2001; Sayer 

& Cumsille, 2001).  Future studies using such methods in the piecewise parallel process 

mediation modeling framework are warranted. 

 Increasing the number of measurements is also likely to improve the power to 

detect a mediated effect.  In the present study, five measurement occasions were used.  

Indeed, this is the minimum number of measurements necessary for identification of a 

two-piece latent growth curve model that has no overlap between adjacent linear growth 

segments (Bollen & Curran, 2006; Flora, 2008).  Given limited resources and the 

logistical difficulties associated with longitudinal studies, securing five measurements 

may be problematic, much less any additional measurements needed to enhance statistical 

power.  Some have suggested this as a reason for the limited number of applications 
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using piecewise growth models to test mediation (von Soest & Hagtvet, 2011), despite 

some clear advantages to their use.  

With respect to the second study purpose, under the conditions of the present 

study, LGC models of mediation are quite sensitive to model misspecifications that fail to 

account for the true state of temporal precedence, both in terms of model misfit and 

parameter estimate bias.  Model fit indices generally revealed poor fit for the 

misspecified models, which was worse under conditions of a stabilized plateau for the 

mediator.  This was not unexpected as the misspecified model forced a linear growth rate 

over all five time points.  RMSEA was generally more sensitive to detecting misfit than 

CFI.  Others have observed that the CFI may be more sensitive to misspecified factor 

loadings (Heene, Hilbert, Draxler, Ziegler, & Bühner, 2011; Kline, 2011), which may 

explain its failure to reject misfit under some conditions in the present study.  There is a 

growing body of literature calling into question the applications of general cutoff values 

for fit indices under all conditions (Marsh, Hau, & Wen, 2004; Fan & Sivo, 2005, 2007; 

Yuan, 2005; Heene et al., 2011). 

Using a single-stage parallel process model of mediation with growth trajectories 

for both the mediator and the outcome modeled as linear when the true model was a true-

stage piecewise model led to significant bias for several parameter estimates in just about 

all conditions.  In general, path , which relates growth in the mediator to growth in the 

outcome, is overestimated under the model misspecification with single linear growth 

parameters for M and Y.  Contrast that with the bias associated with estimates of path , 

which is generally unbiased when there is late growth as well as early growth in the 

mediator (i.e., the underlying pattern over all five measurement occasions is essentially 
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linear), and strongly negatively biased when the growth of the mediator reaches a plateau 

after three measurement occasions.  These results lead to some interesting findings with 

respect to the bias of the mediated effect estimates.  The downward bias in path  under 

certain conditions appears to “counteract” the upward bias associated with path  in 

terms of the mediated effect estimates; thus, in some conditions the mediated effect was 

underestimated and in other conditions it was overestimated.  This pattern of differential 

bias associated with estimates of the two paths comprising the mediated effects explains 

why in some situations under model misspecification the mediated effect estimates 

appear unbiased and actually become more biased with increasing sample size.   

It is important to note that even under conditions where the true total growth for 

the mediator for the treatment group over the five periods is essentially linear (i.e., 3 = 

0.4), there was still a significant degree of bias in the estimate of the mediated effect.  

This would suggest that even if the nonlinear pattern for growth (i.e., the stabilized 

plateau) was appropriately modeled in a single-stage parallel process model (e.g., using 

[0 1 2 2 2] as the loadings for the growth rate parameter), there would still be bias in the 

mediated effect estimates if one does address temporal precedence.  The parameter 

estimate bias for the mediated effect leads to a predictable pattern of Type I error rates.  

Thus, given a large enough sample, it is very possible to conclude that a mediated effect 

is statistically significant when the true mediated effect in the population with temporal 

precedence is zero, even in cases where total growth over all measurement occasions 

appears to be linear. 

The pattern of bias of the direct effect estimates under the misspecified model, 

while somewhat dependent on the degree of later growth in the mediator, is also 
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influenced by the degree of earlier growth in the outcome, albeit these biases are in 

opposite directions.  Thus, depending on the combination of conditions, this bias may be 

positive, negative, or have the appearance of zero bias.  It is interesting to note that in the 

case of complete mediation, under several conditions the parameter estimate for the direct 

effect is negative (i.e., negatively biased) but the mediated effect estimate is positive (i.e., 

positively biased).  Depending on the circumstances this may be misinterpreted as a case 

of inconsistent mediation (MacKinnon, Krull, & Lockwood, 2000). 

 All of these findings suggest caution should be exercised when interpreting the 

results of single-stage parallel process models of mediation.  Some have argued that 

strong theory linking the two growth rates (i.e., the mediator and the outcome) in the 

single-stage parallel process model of mediation is a requirement for causal inference 

(Cheong et al., 2003), while others have recommended that such models only be used 

when “a temporal relationship between mediator and dependent variable has been well 

established in the literature” (von Soest & Hagtvet, 2011, p. 299). 

 Several limitations of this study should be noted.  First, other previous simulation 

studies examining the mediated effect have found that the joint significance test is more 

powerful than the Sobel test (MacKinnon et al., 2002; Taylor et al., 2008; Cheong, 2011), 

a finding that is consistent with the results of the present study.  These are just two of 

many methods available to test the significance of the mediated effect in addition to a 

variety of methods to construct confidence intervals (e.g., see MacKinnon et al., 2002; 

Shrout & Bolger, 2002; MacKinnon et al., 2004; MacKinnon, Fritz, Williams, & 

Lockwood, 2007).  Many of these methods have been assessed in simulation studies of 

the mediated effect in a number of different study designs.  Future studies should 
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examine the performance of these methods in the two-stage piecewise parallel process 

model of mediation.  Second, the observed variables for M and Y were simulated as 

continuous.  Latent growth curves models can also be used when one has repeated 

observations of a categorical variable, such as binary, ordinal, or count variables 

(Muthén, 2004).  Sample size requirements may be different from these models, which 

tend to be more complex.  Third, a simplifying assumption of no contemporaneous 

mediation relationships was made in the present study, which allowed for an exploration 

of the situation where the true population reflected the strongest case of temporal 

precedence.  It is possible that the presence of such paths may alter the biasing effects 

associated with model misspecifications.  Finally, the putative mediator in this study was 

the slope (i.e., a growth rate factor).  Oftentimes, the intercept factor may be involved in a 

theoretical model of mediation (Flora et al., 2007; von Soest & Hagtvet, 2011) and future 

research is needed to assess whether the results of the present study generalize to this 

setting. 
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Table 1. Model-implied means for the mediator and the outcome under a few simulation conditions 

  Degree of treatment effect on S2Y 

  None ( = 0 and ’ = 0)  Highest degree in the study ( = 0.65 and ’ = 0.25) 
Size of 3 and 4  Time 1 Time 2 Time 3 Time 4 Time 5  Time 1 Time 2 Time 3 Time 4 Time 5 


3 
= 0, 

4 
= 0             

     Mediator Control group 0 0 0 0 0  0 0 0 0 0 
 Treatment group 0 0.4 0.8 0.8 0.8  0 0.4 0.8 0.8 0.8 
     Outcome Control group 0 0 0 0 0  0 0 0 0 0 
 Treatment group 0 0 0 0 0  0 0 0 0.51 1.02 


3 
= 0.4, 

4 
= 0             

     Mediator Control group 0 0 0 0 0  0 0 0 0 0 
 Treatment group 0 0.4 0.8 1.2 1.6  0 0.4 0.8 1.2 1.6 
     Outcome Control group 0 0 0 0 0  0 0 0 0 0 
 Treatment group 0 0 0 0 0  0 0 0 0.51 1.02 


3 
= 0, 

4 
= 0.4             

     Mediator Control group 0 0 0 0 0  0 0 0 0 0 
 Treatment group 0 0.4 0.8 0.8 0.8  0 0.4 0.8 0.8 0.8 
     Outcome Control group 0 0 0 0 0  0 0 0 0 0 
 Treatment group 0 0.4 0.8 0.8 0.8  0 0.4 0.8 1.31 1.82 


3 
= 0.4, 

4 
= 0.4             

     Mediator Control group 0 0 0 0 0  0 0 0 0 0 
 Treatment group 0 0.4 0.8 1.2 1.6  0 0.4 0.8 1.2 1.6 
     Outcome Control group 0 0 0 0 0  0 0 0 0 0 
 Treatment group 0 0.4 0.8 0.8 0.8  0 0.4 0.8 1.31 1.82 
Note:  = 0.4 under all conditions; = 0.65 and ’ = 0.25 are the largest effects used in the study.   
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Table 2. Mean fit index values across simulation conditions 

  Model specification and sample size 

  Properly specified two-stage piecewise parallel process 
model of mediation 

 Misspecified single-stage parallel process 
model of mediation 

Effect size of 
mediated effect 

Degree of later growth 
in mediator (path 3) 

n = 100 n = 200 n = 500 n = 1000 n = 2000  n = 100 n = 200 n = 500 n = 1000 n = 2000 

  RMSEA 
Zero None 0.024 0.016 0.009 0.006 0.004  0.089 0.088 0.088 0.088 0.088 
 Moderate 0.026 0.015 0.009 0.006 0.004  0.070 0.068 0.068 0.068 0.068 
Small None 0.024 0.016 0.009 0.006 0.004  0.091 0.090 0.089 0.089 0.089 
 Moderate 0.024 0.015 0.009 0.006 0.004  0.070 0.069 0.070 0.070 0.070 
Medium None 0.025 0.016 0.009 0.007 0.004  0.097 0.095 0.095 0.095 0.095 
 Moderate 0.024 0.016 0.009 0.006 0.004  0.078 0.077 0.077 0.077 0.077 
Large None 0.024 0.015 0.009 0.006 0.004  0.105 0.105 0.104 0.105 0.104 
 Moderate 0.024 0.015 0.009 0.006 0.004  0.089 0.088 0.088 0.088 0.088 
  CFI 
Zero None 0.994 0.997 0.999 0.9996 0.9998  0.946 0.949 0.950 0.950 0.950 
 Moderate 0.994 0.998 0.999 0.9996 0.9998  0.967 0.971 0.972 0.972 0.972 
Small None 0.994 0.997 0.999 0.9996 0.9998  0.945 0.947 0.948 0.949 0.949 
 Moderate 0.995 0.998 0.999 0.9996 0.9998  0.967 0.970 0.970 0.971 0.971 
Medium None 0.994 0.997 0.999 0.9995 0.9998  0.938 0.941 0.942 0.942 0.942 
 Moderate 0.995 0.998 0.999 0.9996 0.9998  0.961 0.963 0.964 0.964 0.964 
Large None 0.994 0.998 0.999 0.9996 0.9998  0.927 0.929 0.930 0.930 0.930 
 Moderate 0.995 0.998 0.999 0.9996 0.9998  0.950 0.952 0.953 0.953 0.953 
Note: Entries are mean fit index values, collapsing across factors for which results were similar (i.e., size of the direct effect and degree of earlier growth in the outcome 
(path 4)).  Although sample size or interactions with this factor did not account for nontrivial variance for CFI, it is nevertheless tabled above.  Since path  was fixed in 
this study (0.4), effect size of the mediated effect was defined according the size of path  and reflects zero, small, medium, and large effects on R2 metric as described by 
Cohen (1988).  A moderate degree of later growth in the mediator was defined as path 3 = 0.4.  RMSEA = root mean square error of approximation; CFI = comparative 
fit index. 
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Table 3. Mean relative bias of the mediated effect estimates ( * ˆ̂  ) across simulation conditions 

  Model specification and sample size 

  Properly specified two-stage piecewise parallel process 
model of mediation 

 Misspecified single-stage parallel process 
model of mediation 

Effect size of 
mediated effect 

Degree of later growth 
in mediator (path 3) 

n = 100 n = 200 n = 500 n = 1000 n = 2000  n = 100 n = 200 n = 500 n = 1000 n = 2000 

Small None 0.142 0.225 0.095 0.081 0.027  0.926 0.855 0.447 0.395 0.346 
 Moderate 0.265 0.233 0.115 0.052 0.026  2.489 2.032 1.542 1.341 1.294 
Medium None 0.066 0.149 0.071 0.040 0.008  0.025 0.002 -0.143 -0.210 -0.239 
 Moderate 0.097 0.163 0.054 0.038 0.020  0.800 0.713 0.424 0.363 0.320 
Large None -0.024 0.054 0.040 0.031 0.014  -0.141 -0.208 -0.313 -0.353 -0.372 
 Moderate -0.046 0.033 0.049 0.019 0.010  0.387 0.325 0.179 0.113 0.092 
Note: Entries are mean relative bias, collapsing across factors for which results were similar (i.e., size of the direct effect and degree of earlier growth in the outcome (path 
4)).  Since path  was fixed in this study (0.4), effect size of the mediated effect was defined according the size of path  and reflects zero, small, medium, and large 
effects on R2 metric as described by Cohen (1988).  A moderate degree of later growth in the mediator was defined as path 3 = 0.4. 

 
 
 
 

Table 4. Mean bias of the mediated effect estimates ( * ˆ̂  ) when mediated effect = 0 across simulation conditions 

  Model specification and sample size 

  Properly specified two-stage piecewise parallel process 
model of mediation 

 Misspecified single-stage parallel process 
model of mediation 

Effect size of 
mediated effect 

Degree of later growth 
in mediator (path 3) 

n = 100 n = 200 n = 500 n = 1000 n = 2000  n = 100 n = 200 n = 500 n = 1000 n = 2000 

Zero None 0.016 0.007 0.005 0.002 0.001  0.090 0.080 0.063 0.058 0.054 
 Moderate 0.013 0.012 0.004 0.001 0.0002  0.144 0.125 0.103 0.095 0.090 
Note: Since the population value is 0, entries are mean bias not relative bias, collapsing across factors for which results were similar (i.e., size of the direct effect and 
degree of earlier growth in the outcome (path 4)).  A moderate degree of later growth in the mediator was defined as path 3 = 0.4. 
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Table 5. Mean relative bias of path ̂  across simulation conditions 

  Model specification and sample size 

  Properly specified two-stage piecewise parallel process 
model of mediation 

 Misspecified single-stage parallel process 
model of mediation 

Effect size of 
mediated effect 

Degree of later growth 
in mediator (path 3) 

n = 100 n = 200 n = 500 n = 1000 n = 2000  n = 100 n = 200 n = 500 n = 1000 n = 2000 

Small None 0.116 0.240 0.099 0.079 0.027  2.852 2.729 1.878 1.777 1.689 
 Moderate 0.254 0.238 0.115 0.047 0.026  2.511 2.037 1.537 1.336 1.289 
Medium None 0.060 0.156 0.069 0.040 0.009  1.096 1.038 0.734 0.595 0.541 
 Moderate 0.086 0.158 0.053 0.035 0.017  0.805 0.725 0.437 0.374 0.333 
Large None -0.027 0.050 0.044 0.032 0.014  0.745 0.612 0.400 0.324 0.281 
 Moderate -0.040 0.039 0.046 0.019 0.010  0.417 0.356 0.201 0.135 0.115 
Note: Entries are mean relative bias, collapsing across factors for which results were similar (i.e., size of the direct effect and degree of earlier growth in the outcome (path 
4)).  Since path  was fixed in this study (0.4), effect size of the mediated effect was defined according the size of path  and reflects zero, small, medium, and large 
effects on R2 metric as described by Cohen (1988).  A moderate degree of later growth in the mediator was defined as path 3 = 0.4. 

 
 
 
 

Table 6. Mean bias of path ̂  when  = 0 across simulation conditions 

  Model specification and sample size 

  Properly specified two-stage piecewise parallel process 
model of mediation 

 Misspecified single-stage parallel process 
model of mediation 

Effect size of 
mediated effect 

Degree of later growth 
in mediator (path 3) 

n = 100 n = 200 n = 500 n = 1000 n = 2000  n = 100 n = 200 n = 500 n = 1000 n = 2000 

Zero None 0.035 0.021 0.013 0.006 0.002  0.437 0.402 0.310 0.285 0.265 
 Moderate 0.033 0.030 0.011 0.003 0.0005  0.361 0.310 0.255 0.235 0.224 
Note: Since the population value is 0, entries are mean bias not relative bias, collapsing across factors for which results were similar (i.e., size of the direct effect and 
degree of earlier growth in the outcome (path 4)).  Since path  was fixed in this study (0.4), effect size of the mediated effect was defined according the size of path .  
Thus, a zero mediated effect corresponds to  = 0.  A moderate degree of later growth in the mediator was defined as path 3 = 0.4. 
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Table 7. Mean bias of path ̂  across simulation conditions 

  Model specification and sample size 

  Properly specified two-stage piecewise parallel process 
model of mediation 

 Misspecified single-stage parallel process 
model of mediation 

Degree of earlier 
growth in outcome 
(path 4) 

Degree of later 
growth in mediator 
(path 3) 

n = 100 n = 200 n = 500 n = 1000 n = 2000  n = 100 n = 200 n = 500 n = 1000 n = 2000 

  Complete mediation (’ = 0) 
None None -0.006 -0.012 -0.008 -0.005 -0.002  -0.086 -0.074 -0.051 -0.041 -0.037 
 Moderate -0.005 -0.019 -0.007 -0.006 -0.002  -0.191 -0.178 -0.140 -0.127 -0.122 
Moderate None -0.011 -0.014 -0.009 -0.002 -0.001  0.114 0.133 0.154 0.160 0.164 
 Moderate -0.001 -0.024 -0.008 -0.005 -0.004  0.005 0.027 0.062 0.074 0.077 
  Partial mediation (’ = 0.25) 
None None -0.013 -0.019 -0.007 -0.007 -0.002  -0.218 -0.212 -0.180 -0.171 -0.168 
 Moderate -0.011 -0.013 -0.007 -0.001 -0.001  -0.325 -0.305 -0.272 -0.259 -0.255 
Moderate None -0.001 -0.015 -0.006 -0.007 -0.002  0.003 0.003 0.028 0.034 0.040 
 Moderate -0.007 -0.013 -0.011 -0.005 -0.002  -0.110 -0.094 -0.062 -0.051 -0.044 
Note: Entries are mean bias, collapsing across factors for which results were similar (i.e., size of the mediated effect).  A moderate degree of later growth in the mediator 
was defined as path 3 = 0.4 and a moderate degree of earlier growth in the outcome was defined as path 4 = 0.4.  Although it is possible to calculate relative bias when ’ 
= 0.25, for consistency, the values are mean bias not relative bias. 

 
   



176 
 

 

Table 8. Mean relative bias of standard error of the mediated effect ( * ˆ̂  ) across simulation conditions 

 Model specification and sample size 

 Properly specified two-stage piecewise parallel process 
model of mediation 

 Misspecified single-stage parallel process 
model of mediation 

Effect size of 
mediated effect 

n = 100 n = 200 n = 500 n = 1000 n = 2000  n = 100 n = 200 n = 500 n = 1000 n = 2000 

Zero 0.317 0.012 -0.001 -0.015 -0.003  0.449 0.041 -0.092 -0.018 -0.019 
Small 0.286 0.091 -0.006 0.001 -0.005  0.352 0.003 -0.031 -0.034 -0.007 
Medium 0.403 0.105 -0.017 -0.011 0.003  0.425 0.031 -0.028 -0.007 -0.007 
Large 0.430 0.149 0.013 0.015 0.004  0.412 0.053 -0.059 -0.031 -0.007 
Note: Entries are mean relative bias, collapsing across factors for which results were similar (i.e., size of the direct effect, degree of later growth in the 
mediator (path 3), and degree of earlier growth in the outcome (path 4)).  Since path  was fixed in this study (0.4), effect size of the mediated effect was 
defined according the size of path  and reflects zero, small, medium, and large effects on R2 metric as described by Cohen (1988).  Standard error of the 
mediated effect was obtained using Sobel’s (1982) method.     



177 
 

 
 

Table 9. Estimated Type I error rates for the mediated effect across simulation conditions 

 Model specification and sample size 

Method for testing mediated effect 

Properly specified two-stage piecewise parallel process 
model of mediation 

 Misspecified single-stage parallel process 
model of mediation 

n = 100 n = 200 n = 500 n = 1000 n = 2000  n = 100 n = 200 n = 500 n = 1000 n = 2000 

Sobel test  0.006 0.018 0.034 0.045 0.048  0.002 0.011 0.141 0.434 0.773 
Joint significance test 0.015 0.028 0.038 0.048 0.049  0.004 0.014 0.152 0.442 0.775 
Note: Entries are mean Type I error rates for the mediated effect, collapsing across factors for which results were similar (i.e., size of the direct effect, degree of later 
growth in the mediator (path 3), and degree of earlier growth in the outcome (path 4)).  
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Table 10. Empirical power levels across simulation conditions for the test of the mediated effect 

 Model specification and sample size 

 Properly specified two-stage piecewise parallel process 
model of mediation 

 Misspecified single-stage parallel process 
model of mediation 

Effect size for 
mediated effect 

n = 100 n = 200 n = 500 n = 1000 n = 2000  n = 100 n = 200 n = 500 n = 1000 n = 2000 

 Sobel test 
Small 0.006 0.024 0.145 0.324 0.606  0.002 0.027 0.339 0.794 0.988 
Medium 0.022 0.167 0.717 0.970 1.000  0.010 0.094 0.707 0.983 1.000 
Large 0.065 0.420 0.968 1.000 1.000  0.024 0.188 0.880 1.000 1.000 
 Joint significance test 
Small 0.017 0.036 0.156 0.335 0.610  0.005 0.035 0.357 0.798 0.988 
Medium 0.050 0.216 0.739 0.973 1.000  0.017 0.118 0.727 0.984 1.000 
Large 0.134 0.497 0.971 1.000 1.000  0.040 0.228 0.889 1.000 1.000 
Note: Entries are mean power levels, collapsing across factors for which results were similar (i.e., size of the direct effect, degree of later growth in the 
mediator (path 3), and degree of earlier growth in the outcome (path 4)).  Since path  was fixed in this study (0.4), effect size of the mediated effect 
was defined according the size of path  and reflects small, medium, and large effects on R2 metric as described by Cohen (1988).   
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Table 11. Estimated Type I error rates and empirical power for the direct effects across simulation conditions levels 

  Model for the mediator and sample size 

  Properly specified two-stage piecewise parallel process 
model of mediation 

 Misspecified single-stage parallel process 
model of mediation 

Degree of earlier 
growth in outcome 
(path 4) 

Degree of later 
growth in mediator 
(path 3) 

n = 100 n = 200 n = 500 n = 1000 n = 2000  n = 100 n = 200 n = 500 n = 1000 n = 2000 

  Type I error – Complete mediation (’ = 0) 
None None 0.025 0.036 0.042 0.043 0.047  0.020 0.014 0.026 0.084 0.202 
 Moderate 0.015 0.021 0.034 0.044 0.051  0.006 0.022 0.160 0.497 0.830 
Moderate None 0.025 0.036 0.030 0.047 0.051  0.338 0.470 0.694 0.892 0.986 
 Moderate 0.018 0.023 0.043 0.051 0.047  0.119 0.147 0.228 0.335 0.486 
  Power – Partial mediation (’ = 0.25) 
None None 0.277 0.478 0.822 0.966 0.999  0.169 0.214 0.353 0.524 0.757 
 Moderate 0.149 0.268 0.590 0.864 0.981  0.046 0.046 0.045 0.069 0.110 
Moderate None 0.299 0.482 0.824 0.957 0.999  0.590 0.701 0.897 0.990 1.000 
      Moderate 0.169 0.299 0.582 0.851 0.983  0.306 0.394 0.599 0.802 0.950 
Note: Entries are mean Type I error rate (when ’ = 0) and power (when ’ = 0.25), collapsing across factors for which results were similar (i.e., size of the mediated 
effect).  A moderate degree of later growth in the mediator was defined as path 3= 0.4 and a moderate degree of earlier growth in the outcome was defined as path 
4= 0.4. 
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Figure 1. Parallel process latent growth curve mediation model with binary X variable (the independent variable) and five waves of data for the 
mediator (M) and the dependent variable (Y) (adapted from Cheong et al., 2003). IM represents the intercept factor (i.e., initial status) of the 
mediator, SM represents the slope (growth rate) factor of the mediator, IY represents the intercept factor (i.e., initial status) of the outcome, and SY 
represents the slope (growth rate) factor of the outcome.  Note that correlations between growth factors (e.g., between initial status and 
disturbances of slope factor for M) are not shown to simplify the figure. 
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Figure 2. Two-stage piecewise parallel process latent growth curve mediation model with binary X variable (the independent variable) and five 
waves of data for the mediator (M) and the dependent variable (Y). IM and IY represent initial status (i.e., at baseline) for the mediator and the 
outcome, respectively. S1M and S1Y represent growth rates for the mediator and outcome, respectively, at an earlier stage of the study; and S2M 
and S2Y, represent growth rates for the mediator and outcome, respectively, at a later stage of the study. Note that correlations between growth 
factors (e.g., between initial status and disturbances of the growth rate factor for M) are not shown to simplify the figure.
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Appendix – Mplus Source Code 
 
!Mplus data generation code for true population model where size of the 
!mediated effect = medium (beta = 0.40), partial mediation (tau-prime = 
!0.25), no late growth in the mediator (gamma3 = 0), no early growth in 
!the outcome (gamma4 = 0), and sample size=1000 
 
MONTECARLO: 
    names = m1 m2 m3 m4 m5 y1 y2 y3 y4 y5 x; 
    cutpoints=x(0); 
    nobs = 1000; 
    nreps = 1000; 
    seed = 9516995; 
    repsave = all; 
    save = cell_124rep*.dat; 
MODEL MONTECARLO: 
    [x@0]; x@1; 
    im s1m | m1@0 m2@1 m3@2 m4@2 m5@2; 
    im s2m | m1@0 m2@0 m3@0 m4@1 m5@2; 
    m1-m5@0.25; 
    [im@0 s1m@0 s2m@0]; 
    im@1; s1m@0.1; s2m@0.1; 
    im with s1m@-0.1; 
    im with s2m@-0.05; 
    s1m with s2m@-0.05;  
    iy s1y | y1@0 y2@1 y3@2 y4@2 y5@2; 
    iy s2y | y1@0 y2@0 y3@0 y4@1 y5@2; 
    y1-y5@0.25; 
    [iy@0 s1y@0 s2y@0]; 
    iy@1; s1y@0.1; s2y@0.1; 
    iy with s1y@-0.1; 
    iy with s2y@-0.05; 
    s1y with s2y@-0.05; 
    im with iy@0.3; 
    im on x@0; !gamma1 
    s1m on iy@-0.1; !gamma6 
    s1m on x@0.4; !alpha 
    s2m on iy@-0.1; !gamma8 
    s2m on x@0; !gamma3 
    iy on x@0; !gamma2 
    s1y on im@-0.1; !gamma5 
    s1y on s1m@0; !gamma9 
    s1y on x@0; !gamma4 
    s2y on im@-0.1; !gamma7 
    s2y on s1m@0.4; !beta 
    s2y on x@0.25; !tau-prime; 
    s2y on s2m@0; !gamma10 
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!Mplus code that reads in the data created from the first syntax and 
!fits the properly specified two-stage piecewise parallel process model 
!of mediation 
 
DATA:   FILE=cell_124replist.dat; 
        TYPE = MONTECARLO; 
VARIABLE:   NAMES = m1 m2 m3 m4 m5 y1 y2 y3 y4 y5 x; 
            USEVARIABLES = ALL; 
MODEL: 
    im s1m | m1@0 m2@1 m3@2 m4@2 m5@2; 
    im s2m | m1@0 m2@0 m3@0 m4@1 m5@2; 
    m1-m5*0.25; 
    [im*0 s1m*0 s2m*0]; 
    im*1; s1m*0.1; s2m*0.1; 
    im with s1m*-0.1; 
    im with s2m*-0.05; 
    s1m with s2m*-0.05;  
    iy s1y | y1@0 y2@1 y3@2 y4@2 y5@2; 
    iy s2y | y1@0 y2@0 y3@0 y4@1 y5@2; 
    y1-y5*0.25; 
    [iy*0 s1y*0 s2y*0]; 
    iy*1; s1y*0.1; s2y*0.1; 
    iy with s1y*-0.1; 
    iy with s2y*-0.05; 
    s1y with s2y*-0.05; 
    im with iy*0.3; 
    im on x*0; !gamma1 
    s1m on iy*-0.1; !gamma6 
    s1m on x*0.4 (a); !alpha 
    s2m on iy*-0.1; !gamma8 
    s2m on x*0; !gamma3 
    iy on x*0; !gamma2 
    s1y on im*-0.1; !gamma5 
    s1y on s1m*0; !gamma9 
    s1y on x*0; !gamma4 
    s2y on im*-0.1; !gamma7 
    s2y on s1m*0.4 (b); !beta 
    s2y on x*0.25; !tau-prime; 
    s2y on s2m*0; !gamma10 
MODEL CONSTRAINT: 
    NEW(med*0.16); 
    med=a*b; 
OUTPUT: TECH9; 
SAVEDATA: RESULTS=cell_124.txt; 
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!Mplus code that reads in the data created from the first syntax and 
!fits the misspecified single-stage parallel process model of mediation 
 
DATA:   FILE=cell_124replist.dat; 
        TYPE = MONTECARLO; 
VARIABLE:   NAMES = m1 m2 m3 m4 m5 y1 y2 y3 y4 y5 x; 
            USEVARIABLES = ALL; 
MODEL: 
    im sm | m1@0 m2@1 m3@2 m4@3 m5@4; 
    m1-m5*0.25; 
    [im*0 sm*0]; 
    im*1; sm*0.1; 
    im with sm*-0.1; 
    iy sy | y1@0 y2@1 y3@2 y4@3 y5@4; 
    y1-y5*0.25; 
    [iy*0 sy*0]; 
    iy*1; sy*0.1; 
    iy with sy*-0.1; 
    im with iy*0.3; 
    im on x*0; !gamma1 
    sm on iy*-0.1; !gamma6 
    sm on x*0.4 (a); !alpha 
    iy on x*0; !gamma2 
    sy on im*-0.1; !gamma5 
    sy on sm*0.4 (b); !beta 
    sy on x*0.25; !tau-prime; 
MODEL CONSTRAINT: 
    NEW(med*0.16); 
    med=a*b; 
OUTPUT: TECH9; 
SAVEDATA: RESULTS=cell_284.txt; 
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SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH 

Mediation modeling is commonly used in a number of different disciplines to 

answer questions about how or why one variable exerts its influence on another variable.  

Although mediation can be assessed in the context of several different types of study 

designs, the use of cross-sectional data and a single-mediator model (often with 

continuous measures of the independent variable, mediator, and dependent variable) is 

still the norm in most empirical tests of mediation.  There are several limitations 

associated with assessing mediation with cross-sectional data, perhaps the most 

significant is that mediated effect estimates are biased in the case of true longitudinal 

mediation (Maxwell & Cole, 2007).  

There are several classes of models for evaluating longitudinal mediation with the 

collection of three or more waves of data.  These models are increasingly utilized in the 

applied literature and methodological research continues to evaluate them, as well as 

extensions and new approaches.  However, despite their use in substantive research, the 

preponderance of mediation hypotheses are still tested with cross-sectional data.  

Furthermore, consensus on the optimal implementation of these longitudinal mediation 

modeling methods is largely lacking and there are still many unanswered questions. 

This dissertation sought to demonstrate the application of one approach to 

longitudinal mediation modeling, namely the autoregressive model, and build on a set of 

steps recommended for testing such models (paper one).  In addition, using two different 
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simulation studies, we attempted to address significant methodological questions related 

to both the autoregressive mediation model (paper two) as well as the two-stage 

piecewise parallel process latent growth curve model of mediation (paper three).  The 

latter model, while mentioned in the literature as a possible method to address a 

substantial criticism associated with single-stage parallel process mediation models (i.e., 

the inability to delineate temporal ordering in such models), is rarely utilized in 

substantive research and lacks a full elaboration in the literature as well as an evaluation 

of its statistical performance.  Below we give a summary of the findings from each paper, 

discuss some general avenues of future research in longitudinal mediation models, and 

provide a few implications for researchers wishing to test mediational hypotheses with 

longitudinal data. 

 

5.1 Concluding Comments on Paper One 

In paper one, based on the Wilson-Cleary (1995) conceptual model of patient 

outcomes, we proposed that the relationship between functional status (disability) and 

health-related quality of life is mediated by life-space mobility and tested this hypothesis 

using an autoregressive mediation model based on four waves of data.  A set of steps 

outlined by Cole and Maxwell (2003) and MacKinnon (2008b) for autoregressive 

mediation modeling was modified and used in this study.  Some previous evaluations of 

the Wilson-Cleary model have used longitudinal data, and have even used autoregressive 

modeling (Mathisen et al., 2007), but these studies did not test for mediated effects. To 

our knowledge, this is the first test of mediated relationships implied by the Wilson-

Cleary model to use longitudinal data with three or more waves of data.  Results from the 
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autoregressive mediation models supported the mediating role of life-space mobility and 

suggests that this role is more significant with the mental component summary score 

from the SF-12 as the outcome compared to the physical component summary score.  

Model modifications guided by theory and empirical findings did not alter the substantive 

meaning of this mediated effect, only enhanced it.  Estimates of the mediation parameters 

from the autoregressive models were only partially consistent with mediation estimates 

from the cross-sectional analyses, suggesting that mediating relationships would have 

been missed or were potentially underestimated in the cross-sectional models.  Flexibility 

associated with autoregressive modeling allowed for an examination of cross-lagged 

relationships.  This analysis, based on modification indices, suggested the possibility of a 

reciprocal relationship over time between disability and life-space mobility.  Other 

evaluations of the Wilson-Cleary have examined such reciprocal effects.  For example, 

Mathisen and colleagues (2007) note reciprocal causal effects over time between general 

health perceptions and overall quality of life.  Based paper one, it appears that a 

framework based on an autoregressive model is useful for exploring mediation 

relationships. 

 

5.2 Concluding Comments on Paper Two 

The proposed mediator in paper one, life-space mobility, was highly reliable and 

was constructed to be a composite variable.  However, there are times when researchers 

use measures that are less reliable and also have the opportunity to extract latent variables 

to test a mediational model, rather than simply construct a linear composite based on a set 

of fallible indicators.  In addition, in the context of an autoregressive mediation model, 
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where variables are measured at several different time points, the possibilities of model 

misspecification, including the failure to account for shared method variance (e.g., the 

method effects associated with repeated administrations of the same measure), increases. 

The purpose of paper two was to explore the effects of these variables (i.e., the 

method to handle fallible indicators, omission of paths representing shared method 

variance).  A simulation study was conducted to assess the impact on estimation as well 

as statistical power and Type I error rates of failing to account for random measurement 

error and shared method variance in the mediator under a variety of conditions, including 

the degree of shared method variance, degree of composite reliability, degree of stability 

of the latent mediator, size of the mediated effect, and sample size.  The results from 

paper two demonstrate that failure to account for measurement error and shared method 

variance can have a significant impact on parameter estimation in the autoregressive 

mediation model, including both overestimation and underestimation of paths of interest.  

Although the extraction of latent variables from multiple observed measures generally 

provides accurate estimates and also allows researchers to take into account method 

effects by allowing correlated measurement errors, latent variable models still require 

significant levels of composite reliability to achieve acceptable levels of power to detect 

the mediated effect. 

 

5.3 Concluding Comments on Paper Three 

The autoregressive mediation model applied in paper one and evaluated in paper 

two is one of several classes of models for evaluating longitudinal mediation with the 

collection of three or more waves of data.  Latent growth curve modeling can also be 
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used to assess longitudinal mediation, with one such approach being the parallel process 

model of mediation.  Although this approach has several advantages over cross-sectional 

tests of mediation, a common criticism is that the model cannot be used to establish that 

prior changes in the mediator are related to future changes in the outcome (i.e., a lack of 

temporal precedence).  Although definitive cause and effect statements still cannot be 

made about the mediator-outcome relationship, the two-stage piecewise parallel process 

model of mediation can be used to test whether early growth in a mediator is related to 

later growth in an outcome (i.e., temporal sequentiality can be established). 

Paper three provides an overview of the two-stage piecewise parallel process 

model of mediation and reports on a simulation study designed to examine the statistical 

performance of methods used to test mediation in such a model and also to examine the 

impact of misspecifying a true piecewise model as a single-stage parallel process model 

of mediation that assumes linear growth trajectories under a variety of conditions.  

Results demonstrate that fairly large samples, in some cases 1,000 or more, were 

generally required to minimize bias of mediated effect estimates and to achieve adequate 

statistical power. Furthermore, under the conditions of the present study, LGC models of 

mediation are quite sensitive to model misspecifications that fail to account for the true 

state of temporal precedence, both in terms of model misfit and parameter estimate bias, 

suggesting that caution should be exercised in the interpretation of single-stage parallel 

process mediation models without strong theory linking growth in the mediator and 

growth in the outcome or without prior established evidence of the temporal relationship 

between mediator and outcome.  Although the two-stage piecewise parallel process 

model of mediation can be very useful and provides convincing tests of mediational 
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hypotheses, it is important to note that it requires designs that have at least five waves of 

data, a constraint that may limit its use in applied studies given limited resources and the 

logistical difficulties associated with longitudinal studies (von Soest & Hagtvet, 2011). 

 

5.4 Future Research Directions 

In addition to some of the specific future areas of research mentioned in the 

discussion sections of the individual papers, there are several general future avenues of 

research with respect to longitudinal mediation modeling that require exploration.  First, 

although there are some guidelines and recommendations for selecting which class of 

models is most appropriate for longitudinal mediation modeling (MacKinnon, 2008b; 

Selig & Preacher, 2009; Cheong, 2011; von Soest & Hagtvet, 2011), there is limited 

research to support such recommendations.  Second, it is possible to combine features 

from the multiple classes of longitudinal mediation models.  For example, autoregressive 

latent trajectory (ALT) models, described by Curran and Bollen (2001), combine 

elements of autoregressive models and latent growth curve models.  Selig and Preacher 

(2009) also briefly mention hybrid models that combine autoregressive and latent growth 

curve models.  Future study directed at such combinations and their statistical 

performance is warranted.  Third, the classes of longitudinal mediation models applied 

and evaluated in this dissertation, and the additional classes briefly mentioned in Chapter 

1, do not comprise an exhaustive list.  Future work focused on the development of new 

methods is also necessary. 

The fourth general avenue of future research is the application of existing classes, 

and potentially the development of new models, for longitudinal mediation modeling 
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with categorical data, including variables considered to be binary, nominal, ordinal, or 

count variables.  Some work has addressed the assessment of mediation with categorical 

variables (Huang, Sivaganesan, Succop, & Goodman, 2004; MacKinnon et al., 2007; 

MacKinnon, 2008f), but this work has focused on in assessment of mediation in the 

context of cross-sectional designs.  In addition to these types of variables, some variables 

that may be involved in mediational relationships are measured with a preponderance of 

zeros (i.e., clumping at zero).  Because longitudinal mediation models have been 

primarily developed and tested with the assumption of continuous variables from a 

multivariate normal distribution, these models may not generalize to situations where the 

independent variable, mediator, and/or outcome variable have significant clumping at 

zero. Finally, it is important to understand when cross-sectional analyses will lead to 

biased estimates of true longitudinal mediation effects.  Maxwell and Cole (2007) nicely 

demonstrate how the pattern of bias depends of different factors for the autoregressive 

mediation model and one type of random effects model of mediation.  Similar analyses 

are needed for other longitudinal mediation models. 

 

5.5 Implications for Practice 

The results of this dissertation suggest that caution should be exercised when 

interpreting cross-sectional models of mediation.  In general, the findings also encourage 

the appropriate use of longitudinal mediation modeling, building on the efforts of several 

others who have encouraged the use of these models over the past 20 years.  However, 

care should be taken not to overstep in the interpretation of certain longitudinal models, 

namely single-stage parallel process models of mediation and autoregressive models that 
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utilize measures with low reliability and fail to at least discuss the possibility of shared 

method variance. 

Random measurement error is a critical design feature in longitudinal studies and 

is not sufficient to simply obtain multiple measures and extract latent variables.  While 

such methods may correct the biasing effects of measurement error, they usually will not 

enhance statistical power, as such models tend to be more complex with more parameters 

to estimate.  The use of highly reliable data, with or without the extraction of latent 

variables, is important for longitudinal models of mediation.  Two major barriers to the 

use of longitudinal mediation models are logistics and cost, because of the need to follow 

up (sometimes) large numbers of individuals across three or more measurement waves.  

As discussed in paper three, piecewise models need data from at least five time points.  

Thus, any design feature, such as the use of highly reliable measures, which allows for 

the use of fewer subjects while maintaining appropriate levels of power can help to 

address logistical and cost-related barriers to the use of longitudinal studies to assess 

mediation.  Researchers are also encouraged to conduct power analysis using Monte 

Carlo methods to determine sample size prior to conducting a longitudinal study aimed at 

assessing mediation (Muthén & Muthén, 2002; Thoemmes, MacKinnon, & Reiser, 2010). 
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