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HIERARCHICAL AND BAYESIAN APPROACHES FOR ESTIMATING  
PREVALENCE BASED ON POOL SCREENING 

THOMAS BIRKNER 

BIOSTATISTICS 

ABSTRACT 

Pool screening is a method that combines individual items into pools. Each pool 

will either test positive (at least one of the items is positive) or negative (all items are 

negative). Pool screening is commonly applied to the study of tropical diseases where 

pools consist of vectors (e.g. black flies) that can transmit the disease. The goal is to 

estimate the proportion of infected vectors.  

In paper 1, we present a frequentist Bernoulli-Beta hierarchical model to relax the 

constant prevalence assumption underlying the traditional frequentist prevalence 

estimation approach. This assumption is called into question when sampling from a large 

geographic area. Using the hierarchical model an investigator can determine the 

probability of the prevalence being below a pre-specified threshold value, a value at 

which no reemergence of the disease is expected. Intermediate estimators (model 

parameters) and estimators of ultimate interest (pertaining to prevalence) are evaluated by 

standard measures of merit, such as bias, variance and mean squared error making 

extensive use of expansions. An investigation into the least biased choice of theα

parameter in the Beta ( ),α β prevalence distribution leads to the choice of 1α = . 

In paper 2, we propose and evaluate the performance of a sequential Bayesian 

approach for the case that zero positive pools are observed in a particular year. Such 

observations become more likely the longer an elimination program is in place. A 

Bayesian approach can incorporate results from previous years and will provide a more 
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sensible prevalence estimate compared to the estimate of zero from the traditional 

approach. Through simulation, we investigate the amount of data (number of years for 

which pool screen results are available) required such that the type of objective prior 

chosen does not make a significant difference with respect to the prevalence estimate. We 

also evaluate the accuracy of the estimates and propose three strategies to improve the 

performance of this Bayesian estimation approach. 

In the last paper we make the case for the Bayesian estimation approach when the 

elimination programs are close to succeeding by presenting and comparing numerical 

results calculated from real data using different approaches.  
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INTRODUCTION 

When to Use Pool Screening 

Pool screening, also known as group testing or composite sampling, is a method that 

combines individual items into several groups, or pools of a certain size. The pools are 

then tested in place of the individual items. The test is based on chemical, biological or 

other properties of the sample. The result is binary, for instance, positive versus negative, 

infected versus non-infected, polluted versus not polluted. The method is currently ap-

plied in various fields including environmental studies, safety of blood products, disease 

screening in humans, animals or plants. In an environmental application, soil samples 

from different sampling locations within a larger area where contamination is suspected 

are combined and tested in order to see whether they surpass a certain threshold value. 

Blood samples from different blood donors are tested together for certain diseases. A 

pool of a number of black flies is homogenized and tested for the DNA of a parasite. 

Leaves of different plants are grouped and tested for a plant virus. The purpose of group 

testing is either to detect each positive or “defective” member in the sample or to estimate 

the prevalence of those members in the population. If the goal is detecting each “defec-

tive” member, a re-testing design with decreasing group sizes is usually employed. The 

rationale behind the use of pool screening versus the testing of each individual item is 

efficiency and cost reduction. This is especially true when the defective rate or disease 

prevalence is low and the cost of conducting each test is substantial. 
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Our application is the disease prevalence estimation in arthropod vector popula-

tions such as mosquitoes or black flies. These vectors transmit viral and parasitic diseases 

(e.g. West Nile virus, St. Louis encephalitis, Onchocerciasis). As a concrete example we 

refer to the “African Programme for Onchocerciasis Control” (APOC) and the “Oncho-

cerciasis Elimination Program of the Americas” (OEPA). Onchocerciasis, also known as 

River Blindness, was a major cause of blindness and skin disease predominantly in Afri-

can countries. The disease is caused by a parasitic worm and is spread by the bite of an 

infected black fly. The prevalence in Africa alone is estimated to be 37 million (Amazigo 

et al., 2006). The aforementioned programs distribute a medication (Ivermectin) which 

kills the microfilariae (infant stage of the worm) within the infected human. This elimi-

nates most of the disease symptoms and stops further transmission of the disease from the 

treated human.  

In order to evaluate the progress of control and elimination programs, pools of 

black flies are collected at different locations within a broader area. Before the advent of 

Polymerase Chain Reaction (PCR) methodology in the 1990s (for PCR method in black 

flies see: Katholi et al., 1995), each fly would have to be dissected and evaluated sepa-

rately for the presence of microfilariae under a microscope. This method provides an un-

biased estimate of the disease prevalence. However, when the disease prevalence is very 

small this method is inefficient, e.g. 1000 flies might have to be evaluated before the first 

infected one is found. If 10 pools consisting of 100 flies each are formed, then only 10 

PCR assays will have to be performed and one of these pools will test positive. A positive 

pool implies that it contains at least one infected insect. PCR cannot determine the num-

ber of infected insects in a pool. 
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Unresolved and Ignored Statistical Issues in Pool Screening 

Non-constant prevalence 

Traditional frequentist approaches in prevalence estimation assume constant in-

fection prevalence across all sampling sites. But when sampling from a large geographic 

area such as a state or country, it appears plausible that the disease prevalence varies from 

sampling site to sampling site above and beyond random variation introduced by the 

sampling process. The following arguments lend some support to this claim: 

1. Black flies rely on fast flowing streams and rivers for breeding. Their numbers will be 

lower in less favorable habitats. This leads to fewer host-vector contacts thereby lowering 

the potential of disease transmission from host to vector and vector to next host.  

2. Control and treatment programs might not have been implemented equally across a 

large geographic area which could also lead to locally different values of the prevalence. 

3. There are different vector sub-species exhibiting varying efficiencies in transmitting 

the parasite. 

Hence, instead of treating the prevalence as a constant it might be more realistic 

to view it as a random variable having a distribution. This distribution has to be estimated 

given the data, which consist of pool size (n), number of pools (m) and number of posi-

tive pools (t). By using a hierarchical model, the non-constant prevalence assumption can 

be incorporated within the frequentist framework. The advantage of estimating a distribu-

tion for the prevalence over a mere point estimate and/or confidence interval lies in the 

ability to make statements about the probability of observing any specific prevalence val-

ue; it will be possible to state the probability that the prevalence is below a certain thre-

shold value. This threshold could be established as the value where further disease trans-
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mission ceases. Practitioners in the field appear to still prefer Frequentist over Bayesian 

methods. The hierarchical model developed and evaluated in paper 1 is a way of attaining 

some of the advantages otherwise only provided in the Bayesian framework. 

 

Zero positive pools 

When control and elimination programs have been in place for awhile and have 

led to a decrease in infection prevalence in the vector population, it is not uncommon in 

practice to encounter zero positive pools even after an extensive collection of vectors (for 

example see Yameogo et al. 1999, Guevara et al. 2003, Rodriguez-Perez et al. 2006). 

This does not imply that the prevalence is truly zero, but that the prevalence has fallen to 

a level where zero positive pools are not unlikely to be obtained. The question then aris-

es: what is a good estimate of the true infection prevalence? 

Both the traditional maximum likelihood method as well the hierarchical model 

approach mentioned above fail in this situation. The Maximum Likelihood Estimate 

(MLE) for the prevalence is zero. The distribution in the hierarchical model approach is 

degenerate.  

It is imperative that the success of the control/elimination program be evaluated 

reliably. It is crucial to know whether the parasite has been eliminated or at least sup-

pressed to a level where no recurrence is expected. These facts are needed to decide 

whether to continue the mass drug administration or end the program. After a program 

ends post treatment monitoring will ensue and be challenged by very low prevalence 

numbers. The need for methods capable of handling the observation of zero positive 

pools, without providing unrealistic prevalence estimates is great. Bayesian approaches 
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that incorporate knowledge of previous samplings from the same or similar geographic 

area into the current prevalence estimation might offer a solution. Several of such ap-

proaches are proposed and investigated in paper 2. A numerical comparison using OEPA 

data between the traditional and the proposed Bayesian estimation techniques is pre-

sented in paper 3. 

 

Literature Review 

Frequentist contributions 

The pool screen approach dates back to the beginning of the 20th century (for exam-

ples see Watson (1936) and Dorfman (1943)). The following assumptions are made in the 

traditional model: 

1. The disease prevalence (p) is constant over the entire sampling area. 

2. The screening assay/test has perfect sensitivity and specificity. 

3. The result of a test of pool of size in  is { }0,1ix = with

( )
( )

( )
1  when x = 0

| ,
1 1  when x = 1

i

i i

n

x i n

p
f x n p

p

 −= 
− −

 

The prevalence (p) is estimated by Maximum Likelihood Estimation given the m data 

points ( ), , 1,..., .i in x i m=  

Widely cited as the original paper in the area of pool screening is Dorfman 

(1943). His objective was to develop an efficient procedure to detect “defective” mem-

bers of large populations. Dorfman (1943) illustrated his approach with data gathered by 

the US Public Health Service with the purpose of “weed[ing] out all syphilitic men called 

up for induction” into the military. He derived expressions for the expected number of 
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chemical analysis to be conducted and for the expected relative cost. He presented a table 

giving the optimum group size for different values of prevalence. Dorfman (1943) con-

cluded that when the prevalence is sufficiently small then it is more economical to obtain 

a measure on a group than on the individual units. 

The foundational work for prevalence estimation was done by Chiang and Reeves 

(1962) and Thompson (1962). Chiang and Reeves developed a method to estimate the 

viral infection rate in a mosquito population. Thompson was interested in the proportion 

of a leafhopper population capable of transmitting aster-yellows virus. Both authors 

found the MLE for p given equal pool sizes, using our notation, as  

 
1

ˆ 1 , number of positive pools.
nm Tp T

m
− = − = 

 
 

Thompson (1962) noted that p̂ is a biased estimator of p given any group size 

greater than 1. Considering the first order approximation of the bias of the MLE provided 

by Tu et al. (1995) or alternatively by Barker (2000) again in our notation: 

 ( )
( )( ) ( )( )1

2

1 1 1 1
ˆ

2

n nn p p
E p p

mn

−− − − −
− = , 

we recognize that for 1n > the MLE is on average an overestimate. For low values of p

and n , even for a small number of pools, the bias in p̂  will be small (Thompson 1962).  

As m approaches infinity p̂ is distributed asymptotically normal and converges in 

probability to p (Thompson 1962). The asymptotic variance of p̂ was found as 

 ( ) ( )
( ) 22

1 1
ˆlim

1

n

nm

p
V p

mn p −→∞

− −
=

−  
(Thompson, 1962). 
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Chiang and Reeves (1962) derived an exact confidence interval ( ),L Up p  for p

from the confidence limits forπ , the binomial probability that a pool will be positive:  

 
[ ]

[ ]

1

1

1

2

1 1

1 1

n
L

n
U

p

p

π

π

= − −

= − − .

 

1π  and 2π are determined by the desired α level. These intervals can be viewed as Clop-

per-Pearson confidence intervals (compare to Katholi et al. 1995). Thompson (1962) pre-

sented the following approximate ( )100 1 %α−  confidence interval for p: 

 ( ) ( ) ( )

1
2 21

1

ˆ ˆ ˆ ˆ1 1 1 1
m i m in n n

i

mip t p p p
imα

−

=

           ± − − − − −             

∑ . 

With respect to the determination of pool size, Chiang and Reeves (1962) sug-

gested to choose n such that there are some positive and some negative pools among the 

m pools. Given an upper limit on n = 100, they derived the following: 

 ( )
( )

log 1/ 2
log 1

n
p

=
−

. 

This follows from the demand that any pool have a 50% chance of being positive. 

The formula is only reasonable for 100,n ≤ otherwise the suggested pool size is far too 

large when p is small. We notice that some prior knowledge about p is necessary to de-

termine the pool size. 

Thompson (1962) derived an approximate formula for the optimal pool size given 

a constant number of pools ( m ) by minimizing the asymptotic variance of ˆ ,p as 

 1.5936 pn
p
−

=
.
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Note that when p is small n becomes very large, for instance suppose p = 0.0001 then n 

required is approximately 15,935. 

Many other contributions addressing the topic of pool screening have been made. 

Bhattacharyya et al. (1979) developed a finite population estimator for p . Walter et al. 

(1980) incorporated pools of different size in the estimation of .p  Swallow (1985) pro-

vided extensive tables and graphs to illustrate bias, variance, and mean-squared-error 

(MSE) properties of ˆ.p  Swallow elaborated on the choice of the pool size n  considering 

relative cost for the cases when the limiting factor is a) the number of pools (tests) or b) 

the total number of vectors. Swallow (1985) also provided an approximate confidence 

 interval for ,p

( ) ( ) ( ) ( )
1

22 2ˆ ˆ ˆ ˆ ˆ,  with 1 1 1  and  being standard normal.n np z V p V p p mn p z−     ± = − − −    
 

Burrows (1986) presented an alternative to the MLE estimator for p with smaller 

bias and MSE: 

 ( ) ( ) ( )
1

1 , 1 2np m T a m b a b n n= − − + + = = −   . 

The value of a and b was chosen, so as to eliminate the dominant term of the bias 

when expanded as a power series. Katholi et al. (1995) provided approximate confidence 

interval formulae for p based on the F distribution. Barker (2000) derived the following 

expansion for ( )ˆE p : 
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2 3 3 4
2

2 3 2 3 4
2

2 3 4
3

1 1 1 1 1 1ˆ 2 2 3 ...
2! 4

11 1 1 1 12 3 3 3 7 18 11 ...
3! 4

11 1 1 12 3 7 12 6 ..
4!

nE p p w w w w w w
m n n n n

n
w w w w w w

m n n n

n
w w w w

m n n n

 −      = + − − − − + − − − + +      
      

−     − − − + + − − + + +     
     

−   − − − + − +  
  

{ }. 
 
 

 

where ( )1 1 .nw p= − −  

This expansion can be used to evaluate bias and mean squared error of p.  

Hepworth (1996) as well as Tebbs and Bilder (2004) provided a review of differ-

ent interval estimators for .p  Hepworth (1996) investigated exact confidence intervals in 

the unequal group size case. In particular he compared “Sterne Intervals”, in which out-

comes are ordered according to their probability of occurrence to intervals where out-

comes are ordered by the magnitudes of their MLE’s. The rejection region with signific-

ance level α for the Sterne interval “includes all the least probable outcomes such that 

their combined probability is no greater than α” (Hepworth 1996). The Sterne method can 

produce empty intervals and disjoint intervals. Hepworth (1996) concluded that those is-

sues are avoided when outcomes are ordered by their MLE’s.  

Tebbs and Bilder (2004) evaluated the Wald, the Thompson, a variance-

stabilizing, the Clopper-Pearson, the Blaker, the Mid-P and the Wilson Score interval in 

terms of coverage probability and mean length. They recommended the use of the Wilson 

or Blaker intervals. 

Katholi and Unnasch (2006) drew attention to different sampling models (binomi-

al, negative binomial and hypergeometric) and their underlying assumptions.  
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Tebbs and McCann (2007) examined large-sample, likelihood-based hypothesis 

tests in the context of stratified group testing. They concluded that likelihood ratio tests 

are the most appropriate, especially when the sample sizes ni are small.  

Hepworth and Watson (2009) investigated techniques to correct for the bias in the 

MLE for pools of different size. They compared Burrows’s method (Burrows 1987) to a 

more general bias adjustment described by Gart (see Gart, 1991). Burrows’s method per-

forms well in one-stage procedures, as does Gart’s in fixed multistage procedures. For 

sequential procedures, a numerical correction was proposed (Hepworth and Watson, 

2009).  

Gao (2010) proposed an exact two-sided hypothesis test procedure based on the 

number of positive pools in the unequal pool size case. He presented “modified versions 

of the likelihood-ratio, Wald’s and Score tests where simulated quantiles are used instead 

of the quantiles based on the standard asymptotic distribution to obtain the rejection re-

gion for each test” (Gao 2010). Gao (2010) also investigated the likelihood ratio test pro-

cedure for the one-sided hypothesis test for unequal pool sizes. 

 

 Bayesian contributions 

Before we describe some of the Bayesian contributions to the field of pool screen-

ing, we will outline some of the major differences between the Frequentist and Bayesian 

methods. In Bayesian statistics there are no parameters (constants). Everything we meas-

ure is regarded as a random variable, which follows a probability density function. Baye-

sians, for instance, would assign a probability to the speed of light being of a certain val-

ue. For Frequentists the speed of light is one specific number with probability equal to 1. 
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Frequentists assign a probability to an estimate (statistic) of a parameter by means of de-

riving or assuming a sampling distribution. Bayesians consider parameters as random va-

riables about which probability statements can be made. Bayesians incorporate previous 

knowledge or beliefs (prior) into their derivation of the probability distribution (post-

erior). Frequentists consider only the data at hand by means of the likelihood function. 

Bayesian credibility intervals are different from frequentist confidence intervals in that 

they are expressing true probabilities of the random variable taking a value within the in-

terval. Frequentist confidence intervals (CI) are meaningful only when considered in the 

context of repeating an experiment a large number of times. There we state our confi-

dence that the CI will contain the parameter value N*(1-α) times out of the total N times 

the experiment is performed. For one particular experiment there is no way of knowing 

whether the CI contains the true value of the parameter. 

Bayesian approaches to prevalence estimation start to appear in the literature in 

the early 1990s. Whereas much of the literature considers three random variables – preva-

lence, sensitivity, and specificity – we will focus on the developments with respect to 

prevalence, since the tests used in our application (arthropod vector control) are assumed 

to have perfect sensitivity and specificity. 

Boswell et al. (1992) in an environmental application studied an empirical Bayes 

procedure to predict the prevalence rate and the corresponding composite sample size. 

They were interested in a cost-efficient approach to classify samples as polluted or not 

polluted. Boswell et al. (1992) used composite samples initially in each sampling stage, 

but performed separate tests for each individual sample from composite samples that 

were polluted. The experimental unit in their classification approach is the individual 



12 
 

sample, while our experimental unit is the composite sample or pool itself. They chose 

the conjugate beta ( ),α β prior on p and hence used the standard Beta-binomial model. 

There procedure works as follows: 

1. Choose an initial beta prior on p with parameter 1α and 1β . 

2. First sampling stage (a. test composite samples, b. test individual units where 

needed). Result: 1X individual samples out of 1n individual samples are classified 

as polluted. 

3. The posterior distribution of p given 1X is a beta distribution with parameters

2 1 1Xα α= +  and 2 1 1 1n Xβ β= + − . The expected value of 2
2

2 2

p α
α β

=
+

 

4. Second sampling stage (a. test composite samples, b. test individual units where 

needed). Proceed as before and move to next sampling stage. 

Chaubey and Li (1995) compared the maximum likelihood estimator (MLE) of a bi-

nomial probability based on sample compositing with a Bayes estimator. First they de-

rived the Bayes estimator using a Beta ( ),α β  prior for p, the population proportion, for 

the equal pool size case:  

 ( )
( ) ( )

( ) ( )

0

0

1 1,
ˆ |

1 ,

T
j

j
T

j

j

T
nj nm nT

j
p E p T

T
nj nm nT

j

α β

α β

=

=

 
− Β + + − + 

 = =
 

− Β + − + 
 

∑

∑
, 

where T is the number of positive pools, n is the pool size and m is the number of pools. 

Secondly they evaluated the estimators using Bayesian (Bayes relative efficiency) 

and Frequentist (relative bias and relative efficiency) criteria. They concluded that the 

MLE is inferior to the Bayes estimator under all three criteria.  
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Chick (1996) in a paper titled “Bayesian Models for Limiting Dilution Assay and 

Group Test Data” expanded the Bayesian prevalence estimation approach to the unequal 

pool size case choosing also a Beta prior. He compared posterior probability distributions 

for three different sets of α and β ( )1; 2, 3; 10, 15α β α β α β= = = = = = . The three post-

erior distributions obtained were not very different from each other due to the relatively 

large amount of data available. Chick (1996) conjectured that this would be the case for 

all Beta priors with small values (<50) ofα β+ . 

Tebbs et al. (2003) developed an empirical Bayes procedure to estimate p using a 

Beta ( )1,β  prior distribution. Their estimate of p is the mean of the empirical posterior

( ) ( )
( )

,
|

ˆ, |
ˆ| ,

ˆ|
T P

P T
T

f t p
f p t

f t

β
β

β
= . They found

( ) ( )
( ) ( )

ˆ ˆ1 1
ˆ 1

ˆ ˆ 1 1
eb

m n m t n n
p

m t n m n n

β β

β β

Γ + + Γ − + +
= −

Γ − + Γ + + +
. 

Tebbs et al. (2003) point out that for 0T = (no positive pools) or T m= (all posi-

tive pools) ( )ˆ|Tf t β cannot be maximized and no ˆebp can be computed. 

They showed that their empirical Bayes estimator outperforms the traditional 

maximum likelihood estimator with respect to relative bias and relative efficiency for 

small group sizes and small p. Tebbs et al. (2003) also derived an empirical credible in-

terval for p: 

 ( ) ( )1 1

ˆ ˆ1 2; , 1 2; , 1
1 , 1

s s

L Um t n t m t n t
p p

α β α β− − + + − + +
= − Β = − Β , 

where ; ,y a bΒ denotes the γ quantile of the two parameter Beta distribution. 

Bilder and Tebbs (2005) adapted the empirical Bayes estimator from above to fit 

the multiple-vector-transfer designs method. This method entails moving several vectors, 

for instance leafhoppers, from a diseased plant to a healthy plant. Researchers are inter-
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ested in whether the healthy plant develops disease symptoms, indicating that at least one 

of the vectors carried the disease, for instance a plant virus.   

One issue we have with the approach used in both papers (2003 and 2005) is the 

fact that the currently observed data are used to estimate the hyperparameter β . The data 

are then used again together with β̂  to estimate p . This amounts to “double dipping” into 

the data. Tebbs et al. (2003) and Bilder and Tebbs (2005) argue that their approach is an 

improvement over (arbitrarily) choosing the values of model hyperparameters a priori. 

We will follow up on this by suggesting a) the use of a noninformative prior in the begin-

ning and b) the use of historical data as it becomes available (see papers 2 and 3).  

Messam et al. (2008) in an animal health research application suggested the fol-

lowing mixture prior distribution to account for the possibility that p is truly zero:  

 
( )Beta ,  with probability

0 with probability 1 ,
p
p

α β λ
λ

=

= = −



 

where λ denotes the probability that the herd is infected. Here the herd represents the 

sampling universe from which a number of animals is randomly selected and pooled into 

groups. The test is performed on the groups and not the individual animals. The determi-

nation ofλ appears to be the Achilles heel of this approach. 

 



15 
 

 

 

 

EVALUATION OF A FREQUENTIST HIERARCHICAL MODEL TO 
ESTIMATE PREVALENCE WHEN SAMPLING FROM A LARGE 

GEOGRAPHIC AREA USING POOL SCREENING 
 
 
 
 
 
 

by 

 

THOMAS BIRKNER, INMACULADA B. ABAN, CHARLES R. KATHOLI 

 

 

 

 

 

 

 

 

 

 

 

In preparation for Communications in Statistics – Theory and Methods 

Format adapted for dissertation 



16 
 

1. INTRODUCTION 

Pool screening, also known as group testing or composite sampling, is a method 

that combines individual units into several groups, or pools of a certain size. The pools 

are then tested in place of the individual units. The test is based on chemical, biological 

or other properties of the sample. The result is binary, e.g. positive versus negative, in-

fected versus non-infected, polluted versus not polluted. Fundamental contributions to the 

statistical analysis of pool screening results and the experimental design itself were made 

by Dorfman (1943), Chiang and Reeves (1962), and Thompson (1962). The method is 

currently applied in various fields including environmental studies (e.g. Garner et al. 

(1989)), safety of blood products (e.g. Gastwirth and Johnson (1994)), disease screening 

in humans (e.g. Tu, Litvak and Pagano (1995)), animals (e.g. Messam et al. (2008)) or 

plants (e.g. Swallow (1985) and Rodoni et al. (1994)). In an environmental application, 

soil samples from different sampling locations within a larger area where contamination 

is suspected are combined and tested in order to see whether they surpass a particular 

threshold value. Blood samples from different blood donors are tested together for certain 

diseases. A pool of a number of black flies is homogenized and tested for the DNA of a 

parasite. Leaves of different plants are grouped and tested for a plant virus. The purpose 

of group testing is either to detect each positive/defective member in the sample or to es-

timate the prevalence of positive/defective members in the population. If the goal is de-

tecting each defective member, a sequential/re-testing design with decreasing group sizes 

is usually employed. The rationale behind the use of pool screening versus the testing of 

each individual unit is efficiency and cost reduction. This is especially true when the de-
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fective rate or disease prevalence is low and the cost of conducting each test is substan-

tial. 

Our motivation is estimating disease prevalence in arthropod vector populations 

such as mosquitoes or black flies, which transmit viral and parasitic diseases (e.g. West 

Nile virus, St. Louis encephalitis, Onchocerciasis, Malaria, Filariasis). As a concrete ex-

ample we will refer to the “African Programme for Onchocerciasis Control” (APOC) and 

the “Onchocerciasis Elimination Program of the Americas” (OEPA). Onchocerciasis, al-

so known as River Blindness, was a major cause of blindness and skin disease predomi-

nantly in African countries. The disease is caused by a parasitic worm and is spread by 

the bite of an infected black fly. The number of infected people in Africa alone is esti-

mated to be 37 million (Amazigo et al., 2006). The aforementioned programs distribute a 

medication (Ivermectin) which kills the microfilariae (infant stage of the worm) within 

the infected human. This eliminates most of the disease symptoms and minimizes further 

transmission of the disease from the treated human.  

In order to evaluate the progress of control and elimination programs, pools of in-

sects are collected at different locations within a broader area. Before the advent of Po-

lymerase Chain Reaction (PCR) methodology in the 1990s (for PCR method in black 

flies see: Katholi et al. (1995)), each insect would have to be dissected and evaluated 

separately for the presence of the parasite under a microscope. This method provides an 

unbiased estimate of the disease prevalence. However, when the disease prevalence is 

very small this method is inefficient, e.g. 1000 insects might have to be evaluated before 

the first infected one is found. If 10 pools consisting of 100 insects each are formed, then 

only 10 PCR assays will have to be performed and one of these pools will test positive. A 
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positive pool implies that it contains at least one infected insect. This method cannot de-

termine the number of infected insects in a pool. 

Traditional frequentist approaches in prevalence estimation assume constant in-

fection prevalence across all sampling sites. But when sampling from a large geographic 

area such as a state or country, it appears plausible that the disease prevalence varies from 

sampling site to sampling site above and beyond random variation introduced by the 

sampling process. The following arguments lend some support to this claim: 

1. Black flies rely on fast flowing streams and rivers for breeding. Their numbers will be 

lower in less favorable habitats. This leads to fewer host-vector contacts thereby lowering 

the potential of disease transmission from host to vector and vector to next host.  

2. Control and treatment programs might not have been implemented equally with respect 

to coverage, frequency, and duration across a large geographic area which could also lead 

to locally different values of the prevalence. 

3. Different exposure to human and vector migration can impact the chances of reintro-

duction of the disease after successful elimination. 

Hence, instead of treating the prevalence as a constant it might be more realistic 

to view it as a random variable having a distribution. This distribution has to be estimated 

given pool size, number of pools and number of positive pools. Bayesian group testing 

procedures model the prevalence as a random variable (Chaubey and Li, 1995; Chick 

1996; Tebbs et al., 2003). In a classical Bayesian approach a prior distribution for the 

prevalence is chosen and then updated by the observed data through the likelihood func-

tion. Inferences are based on the posterior distribution, which can be updated as more da-

ta becomes available. Practitioners in the field appear to still prefer the frequentist me-
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thod and are reluctant to adopt the Bayesian paradigm. The frequentist method does not 

involve a prior density and inferences are based on the maximum likelihood estimate 

(MLE) of the prevalence. By using a hierarchical model, the non-constant prevalence as-

sumption can be incorporated within the frequentist framework. The hierarchical model 

uses the data at hand and maximum likelihood estimates of intermediate parameters to 

estimate the prevalence distribution. All statistics obtained under this approach are fre-

quentist statistics and are to be evaluated by frequentist measures of merit, such as bias 

and mean squared error. A point estimate for the prevalence as derived from the MLE of 

an intermediate variable is also a MLE by the invariance property of the MLE. As new 

data becomes available the intermediate parameters and the prevalence distribution have 

to be estimated based on the new data only. There is no updating; previous data is disre-

garded. However, as longitudinal data is collected, prevalence distributions for several 

years of the same geographic area can be compared (see Table 1 for a summary of differ-

ences and similarities of different prevalence estimation approaches). The advantage of 

estimating a distribution for the prevalence over a mere point estimate and/or confidence 

interval lies in the ability to make statements about the probability of observing any spe-

cific prevalence value; it will be possible to state the probability that the prevalence is 

below a pre-specified threshold value. This threshold could be established as the value 

where further disease transmission ceases.  
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Table 1 

Summary of the position of the frequentist hierarchical model approach in relation to oth-
er possible methods for estimating prevalence. (∝ stands for proportional) 

 
Frequentist Approach Bayesian Approach 

Classical Hierarchical Empirical Classical 
Prevalence is parameter 

(constant) 
Prevalence is random 

variable 
Prevalence is random 

variable 
Prevalence is random 

variable 
- Find point estimate 

of prevalence using 
MLE and confi-
dence interval (CI) 

- Choose functional 
form of prevalence 
distribution a priori 

- Find MLE’s for pa-
rameters of preva-
lence distribution 

- By plugging in those 
estimates obtain es-
timated prevalence 
distribution 

- Prevalence distri-
bution is deter-
mined by: post-
erior∝ likelih-
ood*prior  

- Determine prior 
density based on 
historical data or 
data at hand 

- Prevalence distri-
bution is deter-
mined by: posterior
∝ likelihood*prior 

- Specify prior densi-
ty based on existing 
knowledge or be-
liefs 

- Obtain new point 
estimate and CI as 
new data becomes 
available disregard-
ing previous data 

- Obtain new preva-
lence distribution as 
new data becomes 
available disregard-
ing previous data 

- Update posterior 
as new data be-
comes available 

- Update posterior as 
new data becomes 
available 

- Statistics are eva-
luated using fre-
quentist criteria 
(such as Bias and 
MSE) 

- Statistics are eva-
luated using frequen-
tist criteria (such as 
Bias and MSE)  

- Evaluate posterior 
distribution 

- Evaluate posterior 
distribution 

 
The objective of this paper is to derive and evaluate a frequentist hierarchical 

model - which accounts for different prevalence values within a broader geographic area 

- for the estimation of infection prevalence. This model will allow answering the question 

about the probability of the prevalence being below a postulated or established threshold 

value for disease recrudescence. In this respect our model offers advantages over the 

classical frequentist point estimate and confidence interval approach (which assumes 

constant prevalence and is not equipped to answer the threshold probability question) 

without “going Bayesian”. 
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The outline of the paper is as follows: In section 2 we describe our proposed 

model, in section 3 we evaluate the properties of the estimator(s) of this model, and in 

section 4 we explore the choice of parameters for the prevalence distribution. 

 

2. HIERARCHICAL MODEL 

We let M be the number of pools of equal size n . We assume that the screening 

assay/test has perfect sensitivity and specificity, a realistic assumption when testing for 

the parasite causing river blindness (see Katholi et al. (1995)). In the traditional frequen-

tist model (for development see Chiang and Reeves (1962) or Thompson (1962)) the 

probability of a pool being negative ( )0X = or positive ( )1X = is distributed as Bernoulli

( )( )1 1 np− − , where p is the probability of an insect being infected (carrier of virus or 

parasite). 

( )
( ) ( )

( ) ( )

1 probability of pool being negative 

1 1 probability of pool being positive 

is

is

1  when x = 0;
| ,

1 1  when x = 1; 

  

 

n

ni

n

x n

p

p

p
f X n p

p

−

− −

−
=

− −





(1) 

In the proposed hierarchical model, p is no longer a constant, but a random variable it-

self.  

( )( ) ( )
( )

( ) ( )
( )

11

1  when x = 0

1 1  when x = 1
| 1 1

1
,

,

n

n

n p

p
X P Bernoulli p

p p
P Beta

βα

α β
α β

−−

−
=

− −

− − 


−
=

Β





(2) 

The ( ),Beta α β pdf is defined as

( ) ( ) ( ) 111, 1 ,0 1, 0, 0
,

f p p p pβαα β α β
α β

−−= − < < > >
Β

,  
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and ( ),α βΒ denotes the beta function, ( ) ( )
1

11

0

, 1p p dpβαα β −−Β = −∫ . 

We are assuming p follows a ( ),Beta α β density for the following reasons: The 

domain of a Beta random variable is restricted to lie between 0 and 1, which coincides 

with the range of p . The shape of the Beta distribution is sufficiently flexible (its curve 

can be U-or inverse U-shaped or flat). 

We are proposing this Bernoulli-Beta instead of a Binomial-Beta model, because 

1

M

i
i

T X
=

=∑ (the number of positive pools and random variable in the Binomial-Beta mod-

el) is not a sufficient statistic for p in the unequal pool size case (Gao, 2010). A future 

expansion to the unequal pool size case and potential comparisons of results between the 

two cases are most easily accomplished if the basic model is identical (i.e. both are based 

on X instead of one on T and the other on X ). 

We find the unconditional distribution of each Bernoulli trial as: 

( )

( )
( )
( )
( )

,
 when x = 0, the probability of a negative pool

,
; , ,

,
1  when x = 1, the probability of a positive pool

,

x

n

f x n
n

α β
α β

α β
α β
α β

Β +
 Β= 

Β + − Β

(3) 

Next we derive the Maximum Likelihood Estimates ofα and β . The likelihood 

function has the form: 

( ) ( )
( )

( )
( )

1

1

, ,
, | 1

, ,

i ix x
M

i
i

n n
L x

α β α β
α β

α β α β

−

=

    Β + Β + = −    Β Β     
∏ (4) 
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We are left with one equation for the two parameters to be estimated: 

( )
1

1 0
1

kM

i i k
i

ex x
e=

 −
− + = − 

∑ , where (5) 

( ) ( ) ( ) ( )

( ) ( ) 1

0

ln ln ln ln ,

and where  denotes the gamma function, .x

k n n

x e dxλ

β α β α β β

λ λ
∞

− −

= Γ + + Γ + − Γ + + − Γ              

Γ Γ = ∫
 

We impose the constraint 1α = . This choice does not bias the Beta distribution towards 

or away from 0. We explore this issue in some detail in section 4. 

Theorem I (MLE of β ):  Let X1, X2, … , XM be Bernoulli random samples that 

follow the hierarchical model defined in equation (2) where M  denotes the number of 

pools of equal size n. Let 1.α =  Then the probability mass function for testing of each 

pool is, ( )

( )
( )
( )
( )

1,
=  when x = 0

1,
; ,

1,
1 =1 =  when x = 1

1,

n
n

f x n
n n

n n

β β
β β

β
β β
β β β

Β +
 Β += 

Β + − − Β + +

 

Furthermore, the maximum likelihood estimator for β is given by: 

ˆ Mn n
T

β = − , (6) 

where 
1

m

i
i

T X
=

=∑ .  

Proof: See Appendix A. 

Remark:  SinceT the number of positive pools is a sufficient statistic in the equal pool 

size case for ,p no information is lost by usingT instead of X .  
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Note that ˆ Mn n
T

β = −
 
is the same estimator as obtained by Bilder and Tebbs 

(2005) in their empirical Bayes approach using the method of moments and taking 1α =

in their Beta prior. However, their approach is based on a completely different philoso-

phy (i.e. Bayesian) and as a consequence has to be evaluated and interpreted differently. 

 

3. PROPERTIES OF NEW ESTIMATORS 

3.1. Properties of β̂  

Theorem II (Consistency of β̂ ): Let 1 2, ...X X  be a sequence of independent and 

identically distributed Bernoulli n
nβ

 
 + 

random variables where

( )2 and i i
n nEX VarX

n n
βµ

β β
= = = < ∞

+ +
. Let

1

1 m

m i
i

T X
m =

= ∑ . Then β̂  is a consistent 

estimator of β . 

 

Proof: By the strong law of large numbers mT converges almost surely to µ . 

Almost sure convergence implies convergence in probability, which implies consistency. 

Since mT  converges in probability, then ( )ˆ
m

m m

mn mnf T n n
mT T

β = = − = −  converges in 

probability to ( )( )f E T β=
 
by the continuous mapping theorem. Hence β̂  is a consistent 

estimator for β .  

Remark: All other estimators derived as continuous functions of β̂  are also consistent by 

the continuous mapping theorem. 
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Next, we assess the characteristics of the estimator β̂  and estimators pertaining to

p based on β̂ . We consider the usual measures of merit of an estimator, such as Bias, Va-

riance, and Mean Squared Error. First we determine ( ) 1ˆE nmE n
T

β  = − 
 

. To find 

1E
T
 
 
 

we use the Taylor series expansion. We define ( ) 1f T
T

= and let T  be a random 

variable such that ( ) TE T µ= . We expand ( )f T about Tµ . 

Theorem III: Under the same assumptions as stated in Theorem I we obtained 

the following results: 

Result A (Bias) 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) ( )

2 3

4 5

2 2

3 2 2 3

6 62

24 3

ˆ

6 14 1

n n n nn n
mn mn

n n n n
O

mn

E
mn

mn

β β β ββ β β

β

β β
β

β β

β

β β

+ + ++ +
+ +

+
=

 + + + +
+   

 

+ +

(7) 

Proof: See Appendix B1.  

Result B (Mean Squared Error) 



( ) ( )
( )

( ) ( )
( )

( )

22 2 22
2

2 3

4

38 28 37 2( )( )

1

n n nn nnE
mn mn mn

O
mn

β β β ββ β ββββ β
+ + ++ ++

− + +

 



=

+
 



(8) 

 Proof: See Appendix B2. 

Result C (Variance) 

We find an estimate of the Variance by subtracting the expression for (Bias)2 from (8). 



26 
 

( ) ( ) ( )
( )

( ) ( )
( )

22 2 22

2 3

34 26 36 2( )ˆ n n nn nn
mn mn mn

Var
β β β ββ β ββ ββ ≈
+ + ++ ++

+ + (9) 

Proof: See Appendix B3. 

We observe that β̂  on average overestimates β . However, as m →∞ , ( )ˆE β β→ . Hence

β̂  is asymptotically unbiased.  

Furthermore, we note that (7) has the form 

( ) ( )1 2
2 ...

a a
m m
β β

β + + + . (10) 

Hence the extended Jackknife can be applied to obtain less biased estimates (see Schuca-

ny, Gray and Owen (1971)). We note that the linear bias term in (7) can be also obtained 

by applying the method described in Gart (1991). Gart’s method has been applied to the 

maximum likelihood estimator of prevalence p̂ by Hepworth and Watson (2009). An al-

ternative to the Jackknife for finding a bias corrected estimate β


 is to subtract the bias 

terms up to the desired order of magnitude from the estimate β̂  

( )ˆ ˆBiasβ β β= −


. (11) 

 

3.2. Properties of “Credibility interval” for p  

So far we have explored properties of the intermediate variable β̂ . Our actual in-

terest focuses on ,p  the infection prevalence. 
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Theorem IV: Under the same assumptions as stated in Theorem I and given the 

MLE β̂ , the expected value of p is 

( ) ( ) ( )
1

ˆ 1

0

1ˆ ˆ ˆ1  2, ˆ1
E p p p dpββ β β

β
−= − = Β =

+∫  (12) 

Proof: See Appendix C1. 

Using the results of Theorem IV, we can construct an estimate of a (1 – α)100% 

credibility interval for .p  Define a (1 – α)100% credibility interval as the area between 

two quantile points under the estimated prevalence distribution requiring equal tail areas. 

The expected values of the lower and upper bounds for the credibility interval for p given

β̂  denoted by
 

( ) ( ) ( )
ˆ 1ˆ ˆ ˆ,  such that 1 1

H

L

p

L L H H
p

p p p p p dpββ β β α−= = − = −∫ were used to 

find an estimate of the true (1 – α)100% credibility interval. The method is described as 

follows. Given the general expressions
1
ˆ

1 1
2Lp

βα = − − 
 

,
1
ˆ

1
2Hp

βα = −  
 

, we expanded 

about β and took the expectation to get 

( )

1

1

2

1 12

4 3

1 ln 1
2 21 1

2

1 ln 1 2 1 ln 1
2 2 12 2 ...

2

LE p Bias

MSE

β

β

β

β β

α α
α

β

α α α α

β β

   − −        = − − + 
 

          − − − −                 − + + 
 
 
 

(13) 
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( )
1

1 1

2

2

3

1

4

ln
2 2
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(14) 

Dropping the remaining terms and plugging in only the linear term for the Bias and MSE 

of β̂  (from equations (7) and (8)) we obtain 
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 (16) 

For more details of the above results, see Appendix C2. We note that the expres-

sions for ( ) ( ),L HE p E pβ β  consist of the true ,L Hp p plus/minus some correction term. 
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Those correction terms are almost negligible because
1

1
2

βα  ≈ 
 

, ln
2
α 
 
 

 is small and β  is 

large. Hence the credibility interval for p is nearly unbiased on average. 

 

3.3. Properties of ( )

0P p p≤  as an Estimator of ( )0P p p≤  

To decide when to end a treatment program and move to the surveillance stage, a 

very low infection prevalence level has to be achieved. The probability of being below an 

established or postulated threshold value for no recrudescence of the disease to occur is 

( ) ( ) ( ) ( )
0 0ˆ ˆ ˆ1

0 0
00

ˆ 1 1 1 1
p p

P p p p dp p pβ β ββ −≤ = − = − − = − −∫ (17) 

Using a Taylor series expansion about β  we found: 

( ) ( )

( ) ( ) ( ) ( ) ( )

0 0
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ln 1ˆ ˆ1 ln 1 ...
2!

E P p p P p p

p
p p Bias MSEβ β β

 ≤ = ≤ − 
 −   − − + +
  

(18) 

For details of the derivation of equation (18), see Appendix D. This result shows 

that, on average, ( )

0P p p≤ is an underestimate of ( )0 .P p p≤  However, for small 0p  , 

which is the case we are interested in, ( )0ln 1 p− is close to 0 and ( )

0P p p≤ is nearly un-

biased. Note also that ( )01 0p β− → as β  gets large. 
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3.4. Comparison With Usual Pool Screening Model 

To compare the estimator of prevalence given by ( )

1
ˆ1

E p
β

=
+

 from the hierar-

chical model with the regular pool screen estimate 
1

ˆ 1 1
nTp

m
 = − − 
 

(as derived for exam-

ple in Chiang and Reeves (1962) or Thompson (1962)) we found expansions for both es-

timators and derived expressions of the absolute and relative difference. The expansions 

take the following form: 

( )

2 2 3

2 3

1 1 1 1 ...

1 1 1 1 1 2 1ˆ ...
2 6

T n T n TE p
mn n n m n n m

T n T n n Tp
mn n n m n n n m

− −      = + + +      
      

− − −        = + + +        
         (19)

 

Thus we see that p̂ and ( )E p agree in the first term and the absolute difference is given 

by 

( )

2 3
4

1 1 1 1 1 5 5ˆ ...
2 6

nn T n Tp E p
n n m n n n m

 − − −         − = − − −          
          

 

. (20) 

The relative difference ( )

( )

p̂ E p

E p

−
is TO

m
 
 
 

 when m is large. Thus if the number of pools 

is large the two estimators are practically the same. This result is independent of the size 

of p . The comparison considers only the point estimate of prevalence. The hierarchical 

model will be still preferable if ( )

0P p p≤ is of interest.  
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4. CHOICE OF ALPHA 

To explore the impact of the choice ofα on the shape of the prevalence distribution ob-

tained by the proposed Bernoulli-Beta hierarchical model, we determined β̂  numerically 

for a given value of α  (Fortran executable is available upon request) and plotted the pre-

valence distribution (Beta ( )ˆ,α β ) for different values of α  and the corresponding β̂  as-

suming 100, 25 and 2M n T= = = . Figures 1 through 3 illustrate the influence of the 

choice ofα for the two cases 1α < and 1α > . 

Figure 1 displays the cumulative density functions (cdfs) of the prevalence for

1 2 30.5,  1.0,  and 1.5α α α= = = and corresponding β̂ . We notice a steep increase in the 

prevalence distribution for 1 0.5α = . For this choice of α  more of the distributional mass 

is concentrated near 0 compared to the other α  values considered, indicating a bias to-

wards 0 for 1α < . We can also see that the cdf for 3 1.5α =  starts out below the cdf for

2 1.0α = . The latter indicates a bias away from 0 whenα is greater than 1. 
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Figure 1. Prevalence distributions (cdfs) for different combinations of ˆ and α β .
( )100, 25 and 2M n T= = =  

 

Figure 2 displays the cdfs for a range ofα values less than 1 ( 1α = is included as a refer-

ence). The closer to zero α is chosen the more mass of the density is concentrated near 

zero. Hence for 1α < we observe a bias towards zero. This bias becomes larger the small-

erα becomes. 

 

α  β̂  
0.5 606.56 
1.0 1225.00 
1.5 1843.46 
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Figure 2. Prevalence distributions (cdfs) for different combinations of ˆ1 and α β≤ .
( )100, 25 and 2M n T= = =  

 

Figure 3 depicts the cdfs for 1α > ; the cdf for 1α = is included as a reference. We notice 

that the curves “shift” to the right in the area closest to 0 asα increases; hence we observe 

a bias away from 0 for 1α > .  

 

α  β̂  
0.1 112.12 
0.3 359.23 
0.5 606.56 
0.7 853.93 
0.9 1101.31 
1.0 1225.00 

 



34 
 

 
 
Figure 3. Prevalence distributions (cdfs)for different combinations of ˆ1 and α β≥ .
( )100, 25 and 2M n T= = =  

 

Figures 1 through 3 justify our choice of 1α = , as the value that introduces neither a bias 

towards zero nor a bias away from zero. 

 

5. CONCLUSION 

This paper proposes a frequentist hierarchical Bernoulli-Beta model for the estimation of 

disease prevalence in the equal pool size case and investigates the properties of the esti-

mators. The model allows for different values of prevalence (beyond sampling error) 

across a large sampling area by estimating a prevalence distribution instead of a point es-

 

α  β̂  
1.0 1225.00 
1.1 1348.69 
1.3 1596.08 
1.5 1843.46 
1.7 2090.85 
1.9 2338.24 
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timate of prevalence and affords the estimation of ( )0P p p≤ without “going Bayesian”. 

Due to a lack of sufficient independent information in the likelihood function it was ne-

cessary to preset one of the parameters of the Beta ( ),α β distribution. An investigation 

was undertaken in the choice of the parameterα in the Beta ( ),α β prevalence distribution. 

Setting 1α = proved to be the unbiased option. Given 1α = the maximum likelihood esti-

mator for β  was found. 

We have shown that the intermediate estimator ( )β̂ and the estimators of ultimate interest

( )( )0, ,L Hp p P p p≤ have reasonable statistical properties using standard frequentist crite-

ria – first and foremost they are consistent estimators. The estimators

( )

0
ˆ, , ,  and L Hp p P p pβ ≤  have minimal bias, especially in the case of p near zero.  

A feature that sets our model apart from classical frequentist estimation methods based 

on pool screening is its ability to determine the probability of the infection prevalence 

being below a certain threshold value – a question frequently asked by entomologists.  
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1. INTRODUCTION 

1.1. Pool Screening 

Pool screening, also known as group testing or composite sampling, is a method 

that combines individual items into several groups, or pools of a known size. The pools 

are then tested in place of the individual items. The result is binary, for instance, positive 

versus negative, infected versus non-infected, polluted versus not polluted. The rationale 

behind the use of pool screening versus the testing of each individual item is efficiency 

and cost reduction. This is especially true when the defective rate or disease prevalence is 

low and the cost of conducting each test is substantial. 

Our motivation is the disease prevalence estimation in arthropod vector popula-

tions such as mosquitoes or black flies. These vectors transmit viral and parasitic diseases 

(e.g. West Nile virus, St. Louis encephalitis, Onchocerciasis, Malaria, Filariasis). As a 

concrete example we will refer to the “African Programme for Onchocerciasis Control” 

(APOC) and the “Onchocerciasis Elimination Program of the Americas” (OEPA).  

Onchocerciasis, also known as River Blindness, was a major cause of blindness 

and skin disease predominantly in African countries. The disease is caused by a parasitic 

worm and is spread by the bite of an infected black fly. The number of infected people in 

Africa alone is estimated to be 37 million (Amazigo et al., 2006). The aforementioned 

programs distribute a medication (Ivermectin) which kills the microfilariae (infant stage 

of the worm) within the infected human. This eliminates most of the disease symptoms 

and minimizes further transmission of the disease from the treated human.  

In order to evaluate the progress of control and elimination programs, pools of in-

sects are collected at different locations within a broader area. The pools are tested using 
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a Polymerase Chain Reaction (PCR) method (for PCR in black flies see: Katholi et al., 

1995). A positive result implies that the pool contains at least one infected insect. PCR 

cannot determine the number of infected insects in a pool. The number of positive pools 

is then used to estimate the infection prevalence in the vector population.  

 

1.2. Zero Positive Pools 

When control or elimination programs have been in place for awhile and have led 

to a decrease in infection prevalence in the vector population, it is not uncommon in prac-

tice to encounter zero positive pools even after an extensive collection of vectors (for ex-

ample see Yameogo et al., 1999, Guevara et al., 2003, Rodriguez-Perez et al., 2006). 

This does not imply that the prevalence is truly zero, but that the prevalence has fallen to 

a level where zero positive pools are likely to be obtained. Katholi and Unnasch (2006) 

provide a simple formula to calculate the probability of detecting an infected insect when 

screening different numbers of pools given a particular infection rate. The question then 

arises: what is a good estimate of the true infection prevalence? Both the traditional max-

imum likelihood method (see for instance: Chiang and Reeves, 1962) as well as the hie-

rarchical model approach by Birkner, Aban and Katholi (2011) fail in this situation. The 

Maximum Likelihood Estimate (MLE) for the prevalence is zero. The distribution in the 

hierarchical model approach is degenerate.  

It is crucial to know whether the infection prevalence has been decreased to a lev-

el where no recurrence is expected. The prevalence estimate will inform the decision 

whether to continue the mass drug administration or end the program. After a program 

ends, post treatment monitoring will ensue and be challenged by very low prevalence 
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numbers. The need for methods capable of handling the observation of zero positive 

pools, without providing unrealistic prevalence estimates is great. There exists no viable 

frequentist approach. Bayesian approaches that incorporate knowledge of previous sam-

plings from the same or similar geographic area into the current prevalence estimation 

can offer a solution.  

Vector control programs are evaluated periodically. A natural way to include his-

torical data is provided by the Bayesian approach in the form of a prior distribution – the 

posterior distribution is then proportional to the likelihood times the prior distribution. 

We believe that practitioners have not embraced a Bayesian prevalence estimation me-

thod in the past due to the difficulty of specifying a prior. The use of an objective (versus 

subjectively elicited) prior does not require the specification of prior parameters. A Baye-

sian approach incorporating an objective prior will be able to handle samples where none 

of the pools are infected. 

 

1.3. Bayesian Contributions 

In a classical Bayesian approach a prior distribution for the prevalence is chosen 

and then updated by the observed data through the likelihood function. Inferences are 

based on the posterior distribution, which can be updated as more data become available. 

Bayesian approaches to prevalence estimation start to appear in the literature in 

the early 1990s. Whereas much of the literature considers three random variables – preva-

lence, sensitivity, and specificity – we will focus on the developments with respect to 

prevalence, since the tests used in our application (arthropod vector control) are assumed 
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to have perfect sensitivity and specificity (for supporting evidence see Katholi et al., 

1995) 

Chaubey and Li (1995) compared the maximum likelihood estimator (MLE) of a 

binomial probability based on sample compositing with a Bayes estimator. First they de-

rived the Bayes estimator using a beta ( ),α β  prior for p, the population proportion, for 

the equal pool size case:  

 ( )
( ) ( )
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where T is the number of positive pools, n is the pool size and m is the number of pools. 

Here we define 
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the beta ( ),α β pdf as ( ) ( ) ( ) 111, 1 ,0 1, 0, 0
,

f p p p pβαα β α β
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,  

and the beta function, ( ) ( )
1

11

0

, 1p p dpβαα β −−Β = −∫ . 

Secondly they evaluated the estimators using Bayesian (Bayes relative efficiency) 

and Frequentist (relative bias and relative efficiency) criteria. They concluded that the 

MLE is inferior to the Bayes estimator under all three criteria.  

Chick (1996) in a paper titled “Bayesian Models for Limiting Dilution Assay and 

Group Test Data” expanded the Bayesian prevalence estimation approach to the unequal 

pool size case choosing also a beta prior. He compared posterior probability distributions 
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for three different sets of α and β ( )1; 2, 3; 10, 15α β α β α β= = = = = = .The three post-

erior distributions obtained were not very different from each other due to the relatively 

large amount of data available. Chick (1996) conjectured that this would be the case for 

all beta priors with small values (<50) ofα β+ . 

Tebbs et al. (2003) developed an empirical Bayes procedure to estimate p using a 

beta ( )1,β prior distribution. Their estimate of p is the mean of the empirical posterior

( ) ( )
( )

,
|

ˆ, |
ˆ| ,

ˆ|
T P

P T
T

f t p
f p t

f t
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β
= . They found
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  defines the gamma function, .
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where x e dxα

β β

β β

α α
∞

− −

Γ + + Γ − + +
= −

Γ − + Γ + + +

Γ Γ = ∫

 

Tebbs et al. (2003) point out that for 0T = (no positive pools) or T m= (all posi-

tive pools) ( )ˆ|Tf t β cannot be maximized and no ˆebp can be computed. They showed that 

their empirical Bayes estimator outperforms the traditional maximum likelihood estima-

tor with respect to relative bias and relative efficiency for small group sizes and small p. 

Tebbs et al. (2003) also derived an empirical credible interval for p: 

 ( ) ( )1 1

ˆ ˆ1 2; , 1 2; , 1
1 , 1

s s

L Um t n t m t n t
p p

α β α β− − + + − + +
= − Β = − Β , 

where ; ,y a bΒ denotes the γ quantile of the two parameter beta distribution. 

Bilder and Tebbs (2005) adapted the empirical Bayes estimator from above to fit 

the multiple-vector-transfer designs method. This method entails moving several vectors, 
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for instance leafhoppers, from a diseased plant to a healthy plant. Researchers are inter-

ested in whether the healthy plant develops disease symptoms, indicating that at least one 

of the vectors carried the disease, for instance a plant virus.   

The approach proposed in both papers (2003 and 2005) uses the currently ob-

served data to estimate the hyperparameter β . The data are then used again together with

β̂  to estimate p . This amounts to “double dipping” into the data. Tebbs et al. (2003) and 

Bilder and Tebbs (2005) argue that their approach is an improvement over (arbitrarily) 

choosing the values of model hyperparameters a priori.  

 

1.4. Goal and Outline of the Paper 

The objective of this paper is to: 

1) Develop a sequential Bayes algorithm for prevalence estimation from the beginning of 

a control program to the end and beyond (post treatment surveillance). This algorithm 

will be based on updating the prior and posterior distribution as new information (new 

pool screening results) becomes available. We will consider two objective priors: a) 

Bayes/Laplace and b) Jeffreys’ prior.  

2) Demonstrate that the proposed sequential Bayes procedure produces a sensible esti-

mate of the prevalence even if zero positive pools are observed in the current sampling. 

This situation is encountered most often after several years of treatment and in the post 

treatment surveillance phase. 

3) Suggest strategies to minimize inherent weaknesses of the sequential Bayes approach. 
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We are interested in the number of years (amount of positive pools) required such 

that the difference between the posteriors based on either of the two priors becomes prac-

tically insignificant. This is important, because given this condition is met, the choice be-

tween the objective priors considered here no longer matters. We also want to evaluate 

the impact of the priors on the accuracy of the resulting prevalence estimators, in particu-

lar, how quickly the posterior distributions change when the underlying true prevalence 

changes (due to the treatment effect or reintroduction of the parasite).  

The outline of the paper is as follows: In section 2 we will derive two objective 

priors (Bayes/Laplace, Jeffreys’) and present analytical expressions of the posterior dis-

tributions in the sequential Bayes framework. In section 3 we will discuss simulation re-

sults to gauge the amount of data needed to minimize the impact of a particular prior 

choice. Simulation results pertaining to the accuracy of the Bayesian estimates and to 

three strategies to reduce the “inertia” embedded in the posteriors due to the sequential 

nature of our approach are presented as well. 

 

2. SEQUENTIAL BAYES 

The idea behind the sequential Bayes method is to carry forward the prevalence 

information gathered for the previous year(s) to the current estimation of the prevalence 

distribution. At year 1, we assume that we know very little about the prevalence distribu-

tion, and hence, use an objective (least informative prior), which in our case would 

amount to either the Bayes/Laplace or Jeffreys’ prior. Starting at year 2 we use the post-

erior distribution from the previous year as prior in the preceding year (see schematic be-

low, where∝ stands for proportional). 
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2.1. Objective Priors 

A prior distribution is supposed to represent knowledge about parameters before 

the results of an experiment are known. There are two things to keep in mind: A) One can 

never be in a state of complete ignorance; and B) “knowing little a priori” can only have 

meaning relative to the information provided by an experiment (Box and Tiao (1992), 

25). “Thus, the main issue is how to select a prior which provides little information rela-

tive to what is expected to be provided by the intended experiment” (Box and Tiao 

(1992), 25). The need to elicit a subjective prior distribution for the prevalence at the be-

ginning or some other stage of a treatment program constitutes a major obstacle to the 

application of a Bayesian prevalence estimation approach. Using an objective (least in-

formative) prior eliminates this step and also the potential for specifying a poor prior dis-

tribution. Our choice among available objective priors was guided by finding relatively 

simple, well accepted and computationally convenient ones. We selected the 

Bayes/Laplace (uniform distribution on the number of positive pools) and Jeffreys’ prior. 

A catalog of non-informative priors and their properties is provided by Yang and Berger 

(1998).  
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2.1.1. Bayes/Laplace Prior 

We shall consider the finding of an objective prior analogous to the “flat” or Uniform 

prior advocated by Bayes and Laplace for the Binomial sampling model. The discussion 

is based on the Stigler (1982) interpretation of Thomas Bayes’s, “An Essay Towards 

Solving a Problem in the Doctrine of Chance”, published posthumously in 1764. Stigler 

argues that Bayes did not base his choice of the Uniform prior on an appeal to the “Prin-

ciple of Insufficient Reason”. Rather, the justification is based on choosing a prior such 

that the marginal distribution of the binomial random variable given this prior is a dis-

crete uniform. That is, prior to having collected any data no particular value for the num-

ber of successes in n trials is any more likely than any other. In modern terms, if one con-

siders the ( , )Beta α β  family of distributions as a reasonable candidate for characterization 

of the uncertainty, Bayes’s argument leads to the choice 1α β= =  which is the Uni-

form(0,1) distribution. 

We recall that in the pool screening model (equal pool sizes), m pools of size n 

are screened and the Bernoulli random variable X is 0 when a pool found to be negative 

and 1 when a pool is positive. Thus, for each pool, 

 ( ) ( )
1

1 1 1 ,0 1
j jX Xn n

jX p p p
−

   − − − < <     

If we define 
1

m

j
j

T X
=

=∑ then T  is a ( ),Binomial m θ  random variable with parameter, 

1 (1 )npθ = − − . Hence T has the probability mass function given by: 

( ) ( ) ( )( ) ( )( ); 1 1 1 1
T m Tm T n nTm m

f T m p p
T T

θ θ θ
−−   

= − = − − −   
   
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Following Bayes’ argument as given by Stigler, we look for a prior in the natural 

conjugate prior family (which is the Beta family of distributions), 

( ) ( ) ( )
( )

( ) ( )

( ) ( )

( )

1 11 1

1
11

0

1 1
, , ,  

,
1

where  highlights the fact that  is a function of .

p

p p p p
f p n

p p dp

p p

β βα α

βα

θ θ θ θ
α β

α β
θ θ

θ θ

− −− −

−−

− −      = =
Β

−  ∫  

Using this we can obtain the marginal distribution ofT : 

( ) ( ) [ ] [ ]
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1, 1
, 1

, 1
, , 0
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T
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Result: In particular the distribution function ( ),Tf t α β has value ( )
1

1m +
for all 

{ } ( )1
0,1,2,...,  when 1 and 1 .

n
t m

n
α β

−
∈ = = +  

The objective Bayes prior for the equal pool size pool screening model is obtained as 

( )
( )
( )

( )
( ) ( )

1
1

1*1* 1 1
1

1,1 1,1

n
n n n

n
p

n p n p
f p n p

−

−
−

 − − = = = −
Β Β  

For details and a proof of the result above see appendix E1. 
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2.1.2. Jeffreys’ Prior  

Many interpreters of Bayes have interpreted him as suggesting a uniform prior 

distribution in cases when we know little (or nothing) about the parameter before the ex-

periment is conducted (see Stigler (1982)). This interpretation opened the door for the 

following criticism: if the distribution of a continuous parameterθ were uniform, then the 

distribution of 1log ,  θ θ − or some other transformation of θ  would not be uniform (Box 

and Tiao (1992), 24). Thus, the application of Bayes theorem to different transformations 

of θ  would lead to inconsistent posterior distributions (and inferences) from the same 

data.  To overcome this issue, Jeffreys (1946) developed a rule which produces a non-

informative prior that is invariant under transformation. Jeffreys defined the objective 

prior density as ( ) ( )
1
2 ,p Jθ θ∝    where ( )J θ is the Fisher information for :θ  

( ) ( ) ( )2 2

2

log logd p y d p y
J E E

d d
θ θ

θ θ θ
θ θ

    
 = = −           

(Gelman et al, 2004, p. 63; Jef-

freys 1946). 

The Jeffreys’ prior in our setting is proportional to ( ) ( )
( )

2
2

1
2

1
.

1 1

n

n

mn p
J p

p

−

−
=
 − −   

For details consult appendix E2. Using Jeffreys’ rule the inferences drawn will not differ 

whether we use a prior on p (the probability of one insect being infected and the popula-

tion prevalence) orθ  (a function of p and the probability of a pool containing at least one 

infected insect). For another application but using a non-sequential approach of the Jef-

freys’ prior in the analysis of entomologic data, see Rodriguez-Perez et al. (2006). 
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2.2. Posteriors 

In this section we present the posterior distributions and expressions for the two main 

quantities of interest: the expected value (the prevalence estimate) and the probability of 

being below a certain threshold value. The algebra of the sequential Bayes approach is 

simple since we chose conjugate priors. A prior is conjugate when it is of the same func-

tional form as the likelihood, which in turn produces a posterior of the same functional 

form. The derivation of the posteriors beyond year 1 amounts to updating the exponents 

by simple addition or subtraction of the number of positive pools ( )t and number of pools 

tested ( )m for the current year. A sketch of the algebra for the Bayes/Laplace prior is pro-

vided in appendix F. 

 

2.2.1. The Bayes/Laplace Prior Posterior Distribution 

Let ( )BLf p be the posterior distribution given the Bayes/Laplace prior. Then 

( ) ( ) ( ) ( )

( ) ( ) ( )

1

1 1

1 1 1 1

1 1 1 .

T m Tn n n
BL

Tn n m T

f p p p n p

p p n

− −

+ − −

   ∝ − − − −   

  ∝ − − −     

The fully normalized posterior can be expressed as follows: 

( )
( ) ( ) ( )

[ ]

1 11 1 1
.

1, 1

Tn n m T

BL

n p p
f p

T m T

+ − −  − − −   =
Β + + −

(1) 

The expected value is derived as: 
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( )
( )

( )

12 1
1 .

12 1
BL

m m T
nE p

m m T
n

 Γ + Γ + − + 
 = −

 Γ + + Γ + − 
 

(2) 

An expression for the threshold probability is provided next: 

( ) ( )
( ) ( ) ( )

[ ]
0 0

1 1

0
0 0

1 1 1
.

1, 1

Tn n m T
p p

BL

n p p
P p p f p dp dp

T m T

+ − −  − − −   ≤ = =
Β + + −∫ ∫ (3) 

For derivation, see appendix G. The formulas (1) through (3) above are directly applica-

ble after the number of positive pools has been determined for the first year of pool 

screening. For subsequent years replace T t=  with 
 

1

current year

total year
year

t t
=

= ∑ and m  with 

 

1

current year

total year
year

m m
=

= ∑ , where∑ stands for summation. 

 

2.2.2. Jeffreys’ Prior Posterior Distribution 

We now present the posterior distribution for p employing the Jeffreys’ prior, de-

noted by fJ(p), as derived in Barker (2000): 

( ) ( ) ( )
11 11 221 1 1 .

1 1,
2 2

Tn m T n
J

nf p p p
m T T

   + − − + −      = − − −  Β − + + 
 

(4) 

The expected value of p , given in Barker (2000), is: 

( )
( )1 1 1

21 .
1 11
2

J

m T m
nE p

m T m
n

 Γ − + + Γ + 
 = −
   Γ − + Γ + +   
   

(5) 
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An expression for the threshold probability follows next: 

 

( ) ( ) ( ) ( )
0 0 11 11 22

0
0 0

1 1 1 .
1 1,
2 2

p p Tn m T n
J

nP p p f p dp p p dp
m T T

   + − − + −      ≤ = = − − −  Β − + + 
 

∫ ∫ (6) 

To generalize (4) through (6) replace T t=  with totalt  and m  with totalm , each the summa-

tion over all years in which pool screening has been conducted. 

 

3. SIMULATIONS 

3.1. Objective 

The objective of the simulation study presented here is to determine: 

a) How many years of data are needed such that the difference between the post-

eriors derived by either using the Bayes/Laplace or Jeffreys’ prior is not of any 

practical concern?  

b) Do we observe a strong memory/inertia effect (defined in section 3.4.)? 

b1) How well do the sequential Bayes estimators (expected values from post-

eriors) match the simulated (“true”) prevalence? 

b2) Are the threshold probabilities ( )0P p p≤ read off the posterior distribu-

tion meaningful? In other words: Are they indicating the right time when to 

stop treatment and shift to surveillance only? 

c) If we observe an inertia effect, how can we reduce it?  
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c1) How many years of low prevalence (later years) have to be included to 

overcome the inertia?  

c2) How strong is the effect of omitting a certain number of higher prevalence 

years (early years) with respect to alleviating the inertia? In other words: 

When switching to the sequential Bayes prevalence estimation approach at 

some point during a treatment program how many years of past data do we 

want to include? 

d) How does the Bayesian method given the Bayes/Laplace or Jeffreys’ prior com-

pare to the Maximum Likelihood approach when used in a non-sequential man-

ner? 

 

3.2. Simulation parameters 

We are considering the following setup, which is meant to mimic the real world 

situation for Onchocerciasis and Filariasis elimination programs at this time:  

Number of pools: 300 

Pool size (number of vectors per pool): 25 

Infection prevalence: Linear decrease from year 1 (p=1/1000) to year 20 (p=1/10000). 

This linear decrease is simulating the effect of continuous treatment. 

The prevalence at year 1 is set markedly lower compared to the typical observed 

prevalence at the start of a treatment program in the past. The focus here is prevalence 

estimation after several decades of successful treatment. We suggest that the sequential 

Bayes method should replace the traditional Maximum Likelihood estimation approach in 
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low prevalence scenarios because it can handle the observation of zero positive pools 

(late stage treatment phase or surveillance phase) without producing an implausible pre-

valence estimate. 

 

3.3. Evaluation of Simulation Error (Number of Replications Required) 

To ensure meaningful simulations we need to consider the between-simulation va-

riability. This quantity is known as simulation error or Monte Carlo error (MCE). We fol-

low Koehler, Brown and Haneuse (2009) and letφ  denote some target quantity of interest 

and R̂φ denote the Monte Carlo estimate ofφ from a simulation with R replicates. The 

Monte Carlo error is defined as: 

( )ˆ ˆ
R RMCE Varφ φ =   .(7) 

The target quantityφ in our application is the expected value of the infection pre-

valence based on either the Bayes/Laplace or Jeffreys’ prior and a simulated treatment 

course of 20 years. We considered 10, 100, 500, 1000, 10000, and 100,000 replications. 

Figure 1 displays the averaged expected values (Bayes/Laplace prior) and simulation er-

rors for 6 different replication sizes. We notice that both curves are not changing any-

more for 500R ≥ . The Monte Carlo Error decreases below 2/10000 at year 5 and further 

decreases to a value below 1/10000 around year 10. The simulation error is small relative 

to the prevalence estimate. We decided to use 100,000 replications in our simulations, 

since the computations are not very intensive. 
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Figure 1. Prevalence estimator (using Bayes/Laplace prior) and standard deviation (si-
mulation error) shown for six replication sizes. 

 

3.4. Simulation of 20 years with Linear Decrease in Prevalence 

[m=300, n=25, years=20 (pyear1=1/1000, pyear20=1/10000), p0=5/10000] 

The expected values (means of posterior distributions employing either the 

Bayes/Laplace or Jeffreys’ prior) averaged over 100,000 replications for each year in the 

20 year sequence and associated standard deviations (simulation error) are depicted in 

Figure 2. We observe that the initial small difference between the expected values be-

comes practically insignificant around year 5 and completely vanishes around year 10. 

The magnitude of the estimators declines in accordance with the simulated decrease in 

prevalence, but not to the full extent of the underlying (simulated) prevalence. We simu-
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lated a decline in prevalence from 1/1000 to 1/10000, but the decline in the estimators is 

much slower. The expected values at year 20 are greater than 5/10000, which is an over-

estimate of the true prevalence. This indicates that the sequentially estimated posterior 

distributions retain the higher prevalence of the earlier years for too long – a phenomenon 

we term “inertia”. 

 
 
Figure 2. Prevalence estimators using Bayes/Laplace or Jeffreys’ prior, MLE as refer-
ence, and standard deviations (simulation error) shown for 100,000 replications of 20 
year sequence. 

 

It appears the MLE is superior to the Bayesian Estimators. The principal weak-

ness of the traditional MLE approach though is the implausible prevalence estimate of 0 

for years when no positive pools are observed (none of the pools contained at least one 
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infected insect). For our simulation, where the range of the underlying prevalence ranges 

from 1/1000 to 1/10000, this is the case 157,968 times out of 2,000,000 (7.9%). The most 

extreme proportion of the MLE=0 is recorded at year 20 where the underlying prevalence 

is the lowest at 1/10000. Close to half of the time (or with probability=1/2) the MLE es-

timate equals zero (see Figure 3). 

 
 
Figure 3. Proportion (%) for which MLE = 0, shown for 100,000 replications of 20 year 
sequence. 

 

Even more important in practical terms than prevalence estimates are probability 

statements with regard to the prevalence being below a particular threshold value. It is 

believed that when the prevalence has been pushed below such threshold value the dis-
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ease (parasite) has been eliminated and will not reemerge. If the ( )0P p p≤ is high then 

treatment can be stopped and the post treatment surveillance phase can begin. For Onc-

hoceriasis and Filariasis such proposed threshold values are currently in the neighbor-

hood of 0 1/10000p = and 0 25 /10000p = respectively. Figure 4 depicts the median over 

the 100,000 replications of ( )5 /10000P p ≤ for each year in the 20 year sequence. The U-

shaped curves with a wide flat middle portion indicate again the inertia of the posteriors. 

At year 10 the underlying prevalence falls below the threshold value of 5 in 10000. We 

observe an increasing slope in the following years, but the small magnitudes of the actual 

probabilities still reflect the inertia ( )0.2  for all yearsp ≤ . We chose the median statistic 

because the sampling distribution of ( )5 /10000P p ≤ for either prior revealed skewness. 

Box and whisker plots for each year (not shown) revealed how extreme values shift the 

position of the mean upwards, such that the mean is not a good measure for the center of 

the sampling distribution. 
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Figure 4. Threshold probabilities ( )5 /10000P p ≤ median of 100,000 replications per 
year. 
 

3.5. Strategies to Overcome Inertia 

Given the observation of inertia above, we wanted to assess possible strategies to 

overcome the inertia effect. Strategy 1) extends the data collection for a number of years, 

while Strategy 2) omits a number of early (in our case high prevalence) years. Under 

Strategy 3) we apply the Bayesian approach to the results of each year independent of 

earlier results (non sequential application). The applicability of these strategies depends 

on the time the sequential Bayes approach is implemented relative to the progression of 

the treatment and pool screen programs. Table 1 summarizes the potential situations and 

indicates the feasibility of strategies 1), 2) or 3) for each. We view the [sequential] Bayes 
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approach as a - “one fits all” – strategy to handle those different implementation time 

points and ignore the possibility of deriving a subjectively elicited prior after a few years 

of pool screening results have been obtained. 

Table 1 
 

Applicability of suggested strategies to reduce inertia given different scenarios when the 
sequential Bayes estimation approach is implemented.  
 
Three situations/ time points for 
use of sequential Bayes approach 

(    represents start of sequential 
Bayes approach)  

Feasibility of using strategies 1, 2 or 3 

Strategy 1  

(extend program 
duration, add re-
sults) 

Strategy 2  

(exclude results 
from early years) 

Strategy 3  

(non-sequential) 

I. prospectively 
• pool screen program about to 

begin 
• no historical pool screening data 

available 
 

 

 

yes no yes 

II. mixture of prospectively and 
retrospectively 

• pool screen program has been in 
place for at least one year 

• some historical data available 
 

 

 

yes yes* yes 

III. retrospectively 
• pool screen program ended 
• only historical data available 
 

 

 

no yes** yes 

*include only the five most recent years of historical results; ** exclude x number (e.g. 
x=5) of early years 

 20 
years 

  0 

 20 
years 

  0 

 20   0 

years 
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3.5.1. Strategy 1: Add five years with constant low prevalence 

[m=300, n=25, years=25 (pyear1=1/1000, pyear20=1/10000, pyear21-pyear25=1/10000), 

p0=5/10000] 

Under this strategy, we investigate the impact of including additional years/pool 

screen results. The rationale behind this strategy is to allow for some extra time for the 

posterior distribution to adjust to the actual prevalence level. When adding five years of 

constant low prevalence (year 20 through year 25: p=1/10000) we observe a decline in 

the value of the estimators, but what we are not seeing is a quick downward adjustment 

(Figure 5). The slopes of the curves depicting the estimators longitudinally hardly 

change. The value of the estimators decreases from 0.00055 (year 20) to 0.00046 (year 

25) - not very close to the underlying value of 1/10000 at year 25. Including five years of 

constant low prevalence in the later stages of a treatment program does not have a signif-

icant effect on overcoming the embedded inertia with respect to the expected values. 
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Figure 5. Prevalence estimators using Bayes/Laplace or Jeffreys’ prior, MLE as refer-
ence, and standard deviations (simulation error) shown for 100,000 replications of 25 
year sequence, prevalence year 20 through year 25 set at 1/10000. 

 

There is a markedly stronger effect of adding those years with respect to the thre-

shold probabilities. Considering the median of the threshold probabilities demonstrates a 

strong impact of the inclusion of five low prevalence years in the computations (Figure 

6). The probability of the prevalence being below the threshold value of 5/10000 increas-

es form approximately 0.18 (year 20) to 0.79 (year 25). 
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Figure 6. Threshold probabilities ( )5 /10000P p ≤ median of 100,000 replications per 
year, prevalence year 20 through year 25 set at 1/10000. 

 

3.5.2. Strategy 2: Omit first five years of higher prevalence  

[m=300, n=25, years=20 (pyear6=7.6/10000, pyear20=1/10000), p0=5/10000] 

Judging the inclusion of more low prevalence years at the end (strategy 1)) a par-

tial success in overcoming the inertia of our sequential Bayes approach we wanted to as-

sess the impact of leaving out a number of early high prevalence years. This question is 

of practical relevance when the sequential Bayes estimation approach is applied to a 

treatment program in progress, where pool screening results are already available for a 

number of years. How many of those early, probably higher prevalence years do we want 
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to include? It seems reasonable to go back about five years, since as we have shown ear-

lier that differences between the Bayes/Laplace and Jeffreys’ prior are very small after 

the sequential evaluation of five years of data. Using too much historical data appears to 

increase chances of “overloading the memory” of the posteriors with higher prevalence 

values and so worsening the inertia. For the sake of argument, assume a treatment pro-

gram has been going on for 10 years. We disregard the results from the first five years, 

include the results from years 6 through 10, and go forward another 10 years. We observe 

that the averaged expected values of prevalence decline as before following the simulated 

linear decrease in prevalence (Figure 7). The size of the expected values at year 6 (which 

is the first year included in computations under strategy 2)) is of course much smaller 

compared to the expected values at year 1 (the start year under strategy 1)). The estima-

tors take a value of approximately 0.00044 at year 20 – a clear improvement over strategy 

1), where the prevalence estimates are 0.00046 at year 25. 



65 
 

 
 
Figure 7. Prevalence estimators using Bayes/Laplace or Jeffreys’ prior, MLE as refer-
ence, and standard deviations (simulation error) shown for 100,000 replications of 15 
year sequence, omitted first five (higher prevalence) years. 

 

The effect of disregarding the first five years is seen even more when considering 

the threshold probabilities (Figure 8), whereas in the original setup (section 3.4.) the 

probability of 5 /10000p ≤ at year 20 was less than 0.2 it is now approximately 0.85. The 

inclusion of five low prevalence years (year 21 through 25) under strategy 1) results in 

threshold probabilities of approximately 0.8 at year 25 - a value that is already succeeded 

at year 20 under strategy 2).  
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Figure 8. Threshold probabilities ( )5 /10000P p ≤ median of 100,000 replications per 
year, omitted first five (higher prevalence) years. 

 

3.6. Strategy 3: Evaluation of Objective Priors when used Non-Sequentially 

Given the inertia observed in the posteriors when applying the sequential Bayes 

method to several years of declining prevalence, we wanted to explore how the approach 

compares to the MLE when applied to data of a single year (strategy 3). The setup in this 

case simplifies to: posterior∝ likelihood *objective prior. We found that the prevalence 

estimates obtained by either using the Bayes/Laplace or Jeffreys’ prior track very well 

with the MLE (Figure 9). The estimates are slightly larger than the MLE on average 

(Bayes/Laplace consistently greater than Jeffreys’ estimator), but offer the compensating 



67 
 

advantage of non-zero prevalence estimates in cases where all pools are negative for in-

fection. 

 
 
Figure 9. Prevalence estimators using Bayes/Laplace or Jeffreys’ prior, MLE as refer-
ence, and standard deviations (simulation error) shown for 100,000 replications calcu-
lated for each year not using information from previous year(s). 

 

This approach also allows to calculate ( )0P p p≤ . The medians of the threshold 

probabilities over the 100,000 replications are depicted in Figure 10. The probabilities 

are increasing as the underlying prevalence decreases from 1/1000 to 1/10000, with the 

probabilities calculated using the Jeffreys’ prior tracking slightly above the 

Bayes/Laplace probabilities. The probability of 5 /10000p ≤  reaches values around 0.9 at 

year 20. 
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Figure 10. Threshold probabilities ( )5 /10000P p ≤ median of 100,000 replications per 
year, calculated for each year not using information from previous year(s). 

 

4. CONCLUSIONS 

We propose a sequential Bayes method, using an objective prior (Bayes/ Laplace 

or Jeffreys’) in the first year, and the posterior distribution of the previous year as prior 

for all subsequent years. 

Including results from previous years makes the observation of zero positive 

pools for a particular year a non-issue (versus the prevalence estimate of zero using the 

Maximum Likelihood Estimator). An appropriate treatment of zero positive pools be-

comes more important as the probability of such an event increases, which is the case af-

ter years of successful treatment or in the post treatment surveillance stage. 
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Since we are estimating the prevalence distribution, we can calculate ( )0P p p≤ , 

an important determinant for ending the treatment phase and initiating the surveillance 

only phase. 

The choice between the Bayes/Laplace and Jeffreys’ prior is inconsequential after 

about five years of data have been included (given our setup of m=300, n=25, 

pyear1=1/1000 with linear decrease to pyear20=1/10000). The posterior distributions become 

indistinguishable after 5 to 10 years of data have been incorporated [objective a)]. 

Earlier higher prevalence values are a strong determinant of the posterior distribu-

tion longer than anticipated (an observation we termed “inertia”) [objective b)]. This af-

fects the performance of the expected values and threshold probabilities. The expected 

values tend to overestimate the simulated prevalence. The differences are small (less than 

5/10000 for each year), but nonetheless critical when considering the potential of ending 

a treatment program too early and see the infection rebound. The computed threshold 

probabilities for our declining prevalence scenario are smaller than they should be [objec-

tives b1) and b2)].  

We attribute these observations to the inertia resulting from the carry over effect 

of earlier pool screening results. To reduce the effect of this inertia, we considered 3 

strategies. 

1) Continue the pool screening beyond the typical 15 to 20 years of prevalence es-

timation, to allow the posteriors to adjust fully to the changed prevalence. This approach 

works, but the adjustment process is very slow. There are many extra years required to 

overcome the “memory” of the posterior distribution [objective c1)]. 
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2) Omit data of the first few years of treatment in the sequential Bayes computa-

tions to avoid “overloading the memory” of the posterior distribution. In the situation 

where the treatment program has begun in the past and the sequential Bayes approach is 

now to be used going forward, it should be sufficient and beneficial not to include all 

pool screen results beginning at year 1, but only incorporate the most recent 5 year span 

and go forward from there. This strategy appears to be better suited then strategy 1) to 

mediate the inertia in a practical way because it does not require additional screenings 

and also has a stronger impact on reducing the inertia [objective c2)]. 

3) When the approach is applied to data from one year only (posterior∝ likelih-

ood *objective prior) it compares very well to the traditional Maximum Likelihood ap-

proach. This strategy provides (as do strategies 1) and 2)) a non-zero estimate in the case 

zero positive pools are observed, and the possibility to calculate ( )0P p p≤ [objective d)]. 

The results shown for all three strategies are averaged over the 100,000 replications and 

the estimates derived under strategy 3) for one particular sequence of years will tend to 

be noisier than the estimates under the sequential strategies 1) and 2). 

We showed that the sequential Bayes approach has the inherent property of inertia 

(slow adjustment to changing underlying prevalence). If over the years a change in the 

true prevalence occurs, this property is a clear drawback of the method. If the prevalence 

remains constant however, the inertia has no negative impact on the accuracy of the pre-

valence estimates. In the latter case additional years of results only refine the estimate 

and reduce its variance. For general use of the sequential Bayes approach we recommend 

that it is accompanied by at least one of the other two estimation approaches (MLE or 

annual Bayes [strategy 3]) to detect potential changes in prevalence quickly and to be 
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able to gauge the amount of inertia. Another option is to use the MLE or annual Bayes 

methods until the infection prevalence has been reduced to a very low level at which little 

further change is expected. At that time the sequential Bayes approach can be imple-

mented avoiding its weakness (inertia) and utilizing its strengths (nonzero estimate even 

if 0 positive pools are observed in one particular year). 

In the future, we would like to explore the use of a sliding window, for example 

apply the sequential Bayesian approach to five years worth of pool screening results at a 

time. The idea is to limit the impact of the inertia by limiting the number of years for 

which prior information can be carried forward. Other extensions we are considering are 

modifications to allow for unequal pool sizes and the use of a conjugate subjectively eli-

cited prior. 
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1. INTRODUCTION 

Onchocerciasis or River Blindness is a leading cause of skin disease and blindness 

in Africa and to lesser degree in the Americas. Embryonic microfilariae of the parasitic 

worm Onchocerca volvulus enter the human through the bite of a black fly (species Si-

mulium) taking a blood meal. These microfilariae develop into worms inhabiting subcu-

taneous nodules. Female worms produce microfilariae, which swarm underneath the epi-

dermis and may enter the eye. During subsequent bites transmission to other humans may 

occur. Ivermectin (Mectizan) is a safe drug that kills the microfilariae, but not the adult 

worms. Therefore it has to be given repeatedly over several years. The population at risk 

in the Americas is about 500,000. Onchocerciasis was initially endemic in 13 regions (fo-

ci) in six countries: Brazil, Colombia, Ecuador, Guatemala, Mexico and Venezuela. The 

“Onchocerciasis Elimination Program for the Americas” (OEPA) was launched in 1992 

as a regional partnership that includes the governments of the endemic countries, the Pan 

American Health Organization, The Carter Center, Lions Clubs International, the US 

Centers for Disease Control and Prevention, the Bill and Melinda Gates Foundation, sev-

eral universities, and the Mectizan Donation Program. OEPA’s goal is the elimination of 

the disease in the Americas. In 2009, seven foci still required mass mectizan administra-

tion; transmission was interrupted in the other six foci. For an overview of the program 

we recommend Sauerbrey (2008), Blanks et al. (1998) and OEPA’s annual reports pub-

lished in World Health Organization’s “Weekly Epidemiological Record”.  

To evaluate the progress of the elimination programs periodic screens for infec-

tion are conducted in the human and in the vector population in several communities 

within each region. For the latter, insects are caught and tested in groups using a Polyme-
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rase Chain Reaction (PCR) method. The outcome for each group is either positive (at 

least one fly was infected) or negative (none of the flies were infected). Given the number 

of pools tested, the number of insects per pool and the number of pools that tested posi-

tive, an infection prevalence estimate can be calculated. Several methods based on differ-

ent assumptions and with different strengths and weaknesses are available to perform 

those calculations (see for instance: Chiang and Reeves, 1962; Tebbs, Bilder, Moser, 

2003; Birkner, Aban, Katholi, 2011 [1] and [2]). The predominant approach so far has 

been Maximum Likelihood Estimation (MLE). The success of the elimination programs 

in reducing the infection prevalence to a very small value poses challenges for this me-

thod. This paper will outline the assumptions, advantages and drawbacks of several avail-

able methods (MLE, frequentist hierarchical model, empirical Bayes and classical Baye-

sian) by real data examples. The SAS code to perform the calculations is available from 

the authors. The second and third section outlines the different approaches divided into 

frequentist and Bayesian techniques, in the fourth section we present numerical results to 

compare the estimates resulting from the different methods. We end with an illustration 

of prior influence when the amount of data is small. 

 

 

2. THE FREQUENTIST APPROACH 

2.1. Maximum Likelihood Estimation 

The current Pool Screening protocol is based on the classical (frequentist) ap-

proach to statistical inference. In this approach the quantity of interest (prevalence of in-

fection, p) is a parameter in the model and is assumed to be fixed, but unknown. A sam-
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ple of flies is collected, grouped into pools and tested. The results of these tests and the 

size of pools are the data used to estimate the prevalence of infection. Dorfman (1943), 

Chiang and Reeves (1962) and Thompson (1962) provide information regarding this 

standard method. The approach works well until we find no positive pools. The infection 

prevalence estimate in this case is zero, which appears to be an implausible value for the 

true prevalence especially when considering that the data stems from one sample only. 

One-sided confidence bounds [0, U] can be found, but the performance of these intervals 

can be poor (Tebbs and Bilder, 2004). A supposedly 95% confidence interval may actual-

ly have only 80% coverage, meaning that the random interval [0,U] covers the parameter 

only with 80% probability instead of the assumed 95%. Whenever the estimate falls on 

the boundary of the allowable range of the parameter (0≤p≤1) the frequentist approach 

gives poor results. 

 

 

2.2. Estimation based on Hierarchical Model 

In some applications, the assumption that the infection rate is a constant is not 

realistic. A way to address this issue is to specify a distribution for the prevalence (p). 

This introduces a lower level in the probability model. The value of p calculated at this 

level (assuming the parameters of the prevalence distribution are known) is passed on to 

the higher level, and used in the calculation of the probability of observing an infected 

pool. Usually the parameters are not known and the observed number of infected pools is 

used to estimate them. Due to the multi-level structure those models are called hierar-

chical models. Casella and Berger (2002, p. 162-168) provide a cursory overview of clas-
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sic frequentist hierarchical models. A reasonable distribution for p would be the Beta dis-

tribution with parameters α=1 and β=unknown (Birkner, Aban, Katholi 2011 [1]). The 

larger the value for β the smaller becomes the value for p. The samples of flies are col-

lected and processed in the same way. Given the number of pools, the pool size and the 

number of infected pools one can calculate an estimate for β. Given β̂ , one can obtain 

the “expected value” of the prevalence distribution, which would be analogous to the 

MLE. The interval between the appropriate upper and lower “critical points” of the Beta 

distribution with α=1 and β= β̂  would be a credibility interval for p. The term ‘credibili-

ty’ interval is used to differentiate this interval from a Bayesian ‘credible’ interval. Un-

fortunately, this approach also has problems when there are no positive pools. The esti-

mate of the parameter β becomes infinite. This implies that p has a distribution with all of 

its mass at zero. 

 

 

3. THE BAYESIAN APPROACH 

Another estimation approach that handles a non-constant infection prevalence is 

the Bayesian approach. The variable (here, the infection prevalence) has a distribution, 

known as the prior distribution, which incorporates available information and data before 

the initial experiment is conducted.  After conducting the experiment, one can update the 

prior probability model by incorporating the information inherent in the collected data to 

obtain what is known as the “posterior” distribution. All inferences are made using this 

posterior model. Once the posterior distribution is found then all probability statements 

can be calculated. For example, one can calculate a credible interval and make a state-
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ment like: “Based on prior beliefs and the current data the probability that p is between p1 

and p2 is 99%”. One can also find the probability that p is less than some transmission 

threshold value p0.  

Given these probability statements made on the basis of the posterior distribution, 

the investigator can make decisions based on the risk level with which he/she is comfort-

able. 

 

 

3.1. Reasons to Consider the Bayesian Approach 

A key assumption of the classical approach is that the quantity of interest is an 

unknown constant. If sampling is taking place over a large geographic area, then the as-

sumption of a homogeneous population with the infection rate a constant may be a bit 

questionable. The infection prevalence is treated as a variable in the Bayesian approach – 

a variable having a distribution. 

An added advantage to using the general Bayesian approach is that it can handle 

the case when no positive pools are observed. For any reasonable choice of prior distribu-

tion, the resulting posterior distribution will be well defined. It will not be a degenerate 

distribution with all its mass at a single point. 
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3.2. What about the Choice of the Prior? 

Many investigators are uncomfortable with the Bayesian approach because of the 

need to specify a prior distribution. How does one choose a prior? Below are some priors 

that we will consider in this paper. 

 

 

3.2.1. Empirical Bayes 

A prior can be specified using historical data or even the data at hand. The latter 

approach is problematic because it uses the same data for the prior specification and also 

in the calculation of the posterior distribution. Using historical data (when available) to 

find parameter estimates of the prior distribution is the better approach. This requires that 

the current prevalence and the historical prevalence be considered a random sample from 

a common distribution. Since we are interested in the situation of very small prevalence 

values, the effect of further treatment (such as the mass drug administration) is small and 

the condition is satisfied for all practical purposes. 

 

 

3.2.2. Objective priors 

The uncertainty of specifying a prior can be alleviated by an “Objective Bayes” 

approach utilizing an objective (least informative) prior. There are several priors, which 

can be used in the case of the Pool screening model. We consider two: the Bayes/Laplace 

prior and the Jeffreys’ prior. Our experimentation shows that they lead to similar conclu-

sions. If longitudinal data is available then the posterior distribution calculated from the 
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previous sample can be used as prior distribution for the next round of estimation. This 

scenario we term “sequential Bayes” (see Birkner, Aban, Katholi 2011 [2]).  

 

 

3.2.3. Subjectively elicited priors 

On the other hand, the investigator has the option to incorporate his/her prior expe-

rience and beliefs into the analysis. This prior experience can be used to put a value on 

the parameters of a prior distribution. For example, suppose that based on years of mea-

surement the investigator believes that the prevalence is a certain value, say p0. The pa-

rameter of the prior can be chosen so that the expected value of the prior distribution is 

p0.  

 

 

4. ILLUSTRATION USING OEPA DATA 

4. 1. About the Data 

The data for all numerical examples that follow are real data collected by the OE-

PA1. For the following example, we are using data from Mexico from the year 2004. 

Community level pool screening results for two foci (Oaxaca and Southern Chiapas) are 

displayed in Table 1. Transmission has been interrupted in Oaxaca since 2008 (WHO, 

2010 and Rodriguez-Perez et al., 2010) and transmission is classified as suppressed in 

Southern Chiapas (WHO, 2010 and Rodriguez-Perez et al., 2008). The pool size (number 

of flies per pool) in all examples is 50.  

 
                                                        
1 Data files provided by Thomas R. Unnasch. 
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Table 1 

Pool Screen results Mexico 2004. 

Region Community Number  
  Pools Infected pools 
Oaxaca La Esperanza 82 0 
 Santa Maria La Chichina 28 0 
 Santigo Lalopa 63 0 
  173 0 

 
Southern Chiapas 1 de Mayo 68 0 
 Ampliacion Las Malvinas 27 0 
 Estrella Roja 31 0 
 Jose Maria Morelos 86 7 
 Las Golondrinas 66 0 
 Las Nubes 62 1 
 Nueva Costa Rica 54 0 
 Nueva Reforma Agraria 67 0 
  461 8 

 

The classical frequentist estimates obtained by the Maximum Likelihood method and 

the estimates from the frequentist hierarchical model are shown in Table 2. 

Table 2 

Prevalence estimates from traditional and hierarchical model approaches for Mexico 
2004 data.  
 
Region Traditional frequentist  

estimate 
(95% confidence interval) 

Frequentist hierarchical 
model estimate 
(95% credibility interval) 
P (p≤1/2000) 

Oaxaca 0 
(0, 3.46)* 

0 
nd** 
1*** 
 

Southern Chiapas 3.50 
(1.51, 6.90) 

3.53 
(0.09, 13.02) 
0.757 
 

Both 2.54 
(1.10, 5.00) 

2.56 
(0.06, 9.42) 
0.859 

* calculated for all of α = 0.05 in upper tail; ** nd = not defined for point mass distribu-
tion; *** distribution reduces to point mass of 1 at 0 and by right continuity property: P 
(p≤p0) = 1 for any p0 (0≤p0≤1); point and interval estimates expressed per 10,000 flies. 
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From Table 2 we notice that both approaches give a point estimate of 0 when 0 

positive pools are observed for a particular year (Oaxaca focus). We also see that the 

point estimates derived using either method are very close (Southern Chiapas focus). The 

credibility interval from the hierarchical model is wider compared to the standard method 

confidence interval, reflecting the distribution of prevalence values at the community lev-

el. Only the hierarchical model approach allows calculating the probabilities of being be-

low a specified prevalence threshold. 

To overcome the limitation of the small number of pools at the community level 

we compare the estimators also at the foci level by combining data from the Oaxaca and 

Southern Chiapas regions. Within the hierarchical model context this amounts to allow-

ing for the prevalence to vary between the two regions instead between the communities 

within a region. We reach the same conclusions as above – nearly identical prevalence 

point estimates and a wider credibility interval. 

 

 

4.2. Empirical Bayes 

For comparison purposes, it is worth considering the Empirical Bayes approach 

suggested by Tebbs, Bilder and Moser (2003). The prior distribution in their analysis has 

the form of the Beta density with α=1 and β=unknown. Under this method the data is 

used twice - first to calculate the unknown parameter in the prior distribution and second-

ly in the likelihood function. 
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A more typical empirical Bayes approach is to use historical data to calculate the parame-

ters of the prior distribution. For the example below, data from Mexico from the year 

2000 is utilized to calculate the α and β parameters of a three parameter Beta distribution, 

with the third parameter being set equal to the pool size. The historical data (8 communi-

ties) allow to obtain two pieces of information (mean and variance), which is required to 

estimate the two parameters.  

Table 3 summarizes the estimates for the two empirical Bayes approaches. The 

standard method estimates from Table 2 are included for comparison. 

 

Table 3 

Empirical Bayes Estimates for Mexico 2004 data.  
 
 Traditional frequentist 

estimate 
Empirical Bayes Estimate with prior based on  

Region 
 
 (95% confidence interval) 

Current sample 
(95% credible interval) 
P (p≤ 1/2000) 

Historical data 
(95% credible interval) 
P (p≤ 1/2000) 

Oaxaca 0 
(0, 3.46)* 

0 
nd** 
1*** 

0.39 
(0.00004, 2.27) 
0.999 
 

Southern 
Chiapas 

3.50 
(1.51, 6.90) 

3.50 
(1.60, 6.13) 
0.893 

3.55 
(1.57, 6.33) 
0.878 
 

Both 2.54 
(1.10, 5.00) 

2.54 
(1.16, 4.45) 
0.992 

2.60 
(1.15, 4.63) 
0.987 

* calculated for all of α = 0.05 in upper tail; ** nd = not defined for point mass distribu-
tion; *** posterior reduces to point mass of 1 at 0 and by right continuity property: 
P(p≤p0) = 1 for any p0 (0≤p0≤1); point and interval estimates expressed per 10,000 flies. 
 
 

A great degree of agreement between the point as well as interval estimates is ap-

parent. The empirical Bayes estimates are almost identical to the standard method esti-

mates. 



 86 

It is important to note that the one sample Empirical Bayes approach suffers from 

the same problem as the standard method when there are no positive pools. In this case, 

the estimate of the parameter in the prior distribution is infinity and so the method fails. 

The empirical Bayes approach utilizing historical data avoids this issue as long as the his-

toric data contain a few communities whose pool screen results were positive. 

 

 

4.3. Objective Bayes 

Table 4 contains the prevalence estimates, 95% credible intervals and threshold 

probabilities for the two objective priors chosen and the standard estimates for compari-

son. 

Table 4 
  
Objective Bayes Estimates for Mexico 2004 data.  
 

Region Traditional frequentist 
estimate 
(95% confidence interval) 

Bayes/Laplace prior Es-
timate 
(95% credible interval) 
P (p≤1/2000) 

Jeffreys’ prior Estimate 
 
(95% credible interval) 
P (p≤ 1/2000) 

Oaxaca 0 
(0, 3.46)* 

1.15 
(0.03, 4.24) 
0.987 

0.58 
(0.0005, 2.90) 
0.997 
 

Southern 
Chiapas 

3.50 
(1.51, 6.90) 

3.93 
(1.80, 6.88) 
0.806 
 

3.72 
(1.65, 6.60)  
0.846 

Both 2.54 
(1.10, 5.00) 

2.85 
(1.30, 5.00) 
0.975 

2.70 
(1.20, 4.79) 
0.983 

* calculated for all of α = 0.05 in upper tail; point and interval estimates expressed per 
10,000 flies. 
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As expected the point estimates of infection prevalence are not 0 for the Bayesian 

estimators even if no positive pools are observed (Oaxaca focus). The lower bounds of 

the Bayesian credible intervals are greater than 0 as well.  The credible intervals them-

selves agree to a greater degree and are also more similar to the confidence intervals in 

the case that some pools test positive. The Bayes/Laplace and Jeffreys’ prior prevalence 

estimates are close to each other and only slightly above the MLE (Southern Chiapas fo-

cus). The probability of the prevalence being below 1 in 2000 flies is approximately 0.99 

in Oaxaca and greater 0.8 in Southern Chiapas. Those probability estimates cannot be 

obtained from the standard approach. 

 

 

4.4. Sequential Bayes 

Since prevalence estimates are needed repeatedly over the course of a treatment 

program more pool screening results become available as time goes on. A natural ap-

proach of deriving a prior would be a new specification of the prior parameters each time 

more data becomes available. Instead of estimating say α and β in the case of the 3 para-

meter Beta prior repeatedly we proceeded to apply the previous posterior distribution as 

the prior distribution for the next round of testing.  

Table 5 displays data from two communities (San Miguel and El Tigre) in Ecua-

dor (see Vieira et al. 2007 for background information regarding the elimination program 

in Ecuador). Data was collected every second month from November 1995 through No-

vember 1996.  
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Table 5 
 

Pool screening results from two communities in Ecuador from 1996.  
 
 San Miguel El Tigre 
 Number Number 
 Pools Infected Pools Pools Infected Pools 
Nov95 6 0 3 0 
Jan96 18 2 18 3 
Mar96 31 2 25 10 
May96 26 12 28 4 
Jul96 34 2 26 0 
Sep96 5 1 1 0 
Nov96 5 0 1 0 
 
 

Figure 1 displays the prevalence estimates for the Bayes/Laplace and Jeffreys’ 

prior when the posterior distribution is successively updated with data from the next 

month in which samples were collected. The objective priors are used in the calculations 

for the November 1995 estimate (assuming nothing or little is known about the infection 

prevalence at this point). Thereafter the posterior distribution estimated based on the pre-

vious round of testing is employed as the prior distribution for the next round of testing 

(for example: the posterior from November 1995 is the prior for January 1996). Figure 1 

also displays the estimates from the classical Maximum Likelihood estimation approach. 

In order to allow for a fair comparison with the sequential Bayes approach, sequential 

ML estimates based on successively adding results from the bi-monthly tests were calcu-

lated and are also shown in Figure 1. 
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Figure 1. Sequential Bayes estimates compared to MLE and sequential MLE based on 
data from San Miguel. 
 
 

We observe that the sequential Bayes/Laplace and Jeffreys estimates are not zero 

in November 1995 despite observing zero positive pools. This is clearly an effect of the 

priors. The amount of data (6 negative pools of 50 flies each) that month is not great 

enough to dominate the priors and push the expected value to 0. Overall the Bayesian es-

timates are changing in a less erratic manner compared to the classical MLE. They are 

comparable to the sequential MLE approach, the only difference being that they never 

take a value of zero as the sequential MLE does in November 1995 (all pools tested nega-

tive in the first month data was collected).  After all seven months of data are included 
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the three sequential prevalence estimators are very close in value (E_B/L= 0.00344, 

E_J=0.00337, E_MLE_Seq=0.00329). 

A benefit of the Bayesian approach is that the original choice of the prior distribu-

tion “washes out” over successive data collections. Differences between the 

Bayes/Laplace and Jeffreys’ prior estimates based on the Ecuador 1996 data have essen-

tially vanished as the fourth batch of data (May 1996) is included in the estimation (see 

Figure 1). This observation has also been made for simulated data in Birkner, Aban, Ka-

tholi (2011) [2]. Ideally the sequential approach should be applied to data from consecu-

tive years where results from more recent years is given a greater weight compared to 

earlier results. Without any weighting the estimates are slow to adjust to changes in the 

true prevalence as shown in Birkner, Aban and Katholi (2011) [2]. 

 

 

4.5. The Prior matters when the Amount of Data is Small 

Even a least informative or objective prior carries some information. The prior 

can be pictured as additional data. In general, if an adequate number of pools is tested 

then those results will dominate/override the information provided by the prior. Figures 2 

and 3 show the difference between sufficient information to overwhelm the prior and the 

case where the prior has a great impact on determining the estimate. Here we naively em-

ployed the objective Bayes approach to each bi-monthly dataset separately (naively, be-

cause of the small number of flies tested per month). We observe that the Bayes estimates 

track well with the MLE as long as the number of pools is greater 15. Differences emerge 

for small pool sizes and in the case that zero positive pools are observed. The estimates 
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for September and November 1996 for El Tigre display the greatest divergence (Figure 

3). For each of those months only one pool was tested and found to contain no infected 

flies. The MLE estimate is 0 and the estimate based on the Bayes/Laplace prior approx-

imately 0.01 with the Jeffreys’ estimate slightly below. Given an adequate sample size 

the difference between the classical frequentist and Bayesian approaches is negligible.  

 

 
 

Figure 2. Objective Bayes estimators compared to MLE (San Miguel, Ecuador 1996). 
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Figure 3. Objective Bayes estimators compared to MLE (El Tigre, Ecuador 1996). 

 

 

5. CONCLUSIONS 

Since the intent of OEPA is to eliminate River Blindness in the Americas, it is inevitable 

that at some point the investigator will begin to find no positive pools. In this case, the 

frequentist approach begins to perform poorly (in the sense that it produces an unrealistic 

point estimate of 0 and coverage probabilities at times below the nominal level and at 

other times excessively conservative). The Bayesian approach with various prior specifi-

cations (empirical Bayes utilizing historical data, objective priors, sequential Bayes) does 

not lead to this problem. Moreover, the approach naturally allows for different prevalence 
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values within a broader sampling region and also provides the possibility of probability 

statements, such as P (p≤1/2000). The Bayesian point and interval estimates are strikingly 

close to the frequentist ones provided that we observe a few positive pools. In this case 

the choice between the frequentist and Bayesian approaches is inconsequential. Bayesian 

estimation techniques are preferable when zero infected pools are observed.  
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CONCLUSION 

Summary 

Two statistical issues have been recognized when estimating the infection preva-

lence of viral or parasitic diseases in a vector population based on pooled samples. One 

issue is the assumption of the traditional estimation method, that the infection prevalence 

is constant throughout a possible large sampling region. The treatment of the infection 

prevalence as unknown and fixed parameter in the traditional frequentist approach ig-

nores good reasons for a varying prevalence across a region, such as differences in vector 

habitat (for instance, the existence of fast flowing streams), the existence and distribution 

of highly and less effective vectors, and differences in the implementation of the treat-

ment program.  

The second issue is a consequence of the success of the treatment programs in re-

ducing the infection prevalence in the vector population from between one and five per-

cent to levels close to zero. It becomes very likely to observe only non-infected pools 

when the prevalence is that low. The point estimate obtained by the traditional method in 

this case is zero, a value that most likely does not equal the true prevalence.  

To address the first issue we proposed a Bernoulli-Beta hierarchical model, which 

assumes a Beta(α, β) distribution for the prevalence. The prevalence is treated as random 

variable instead of being a fixed parameter. Due to limited information in the likelihood 

we imposed the constraint α=1 and found the Maximum Likelihood estimator for β. 



97 
 

The choice of α=1 is justified by showing that the resulting prevalence distribu-

tion is neither biased towards nor away from zero. Given the values of α and β̂  we de-

rived the new prevalence estimate ( )E p , an interval estimator and an estimate of the 

probability of the prevalence being below a specified value. This threshold probability 

cannot be computed under the traditional model, but is a value frequently inquired about 

by program staff to aid them in deciding when to end a treatment program. We found that 

all estimators perform well in terms of the usual measures of merit for frequentist estima-

tors, such as Variance, Bias and Mean Squared Error. We also showed that they are con-

sistent estimators. Given these findings we are confident that the proposed Bernoulli-Beta 

model can replace the traditional model whenever the assumption of constant prevalence 

across the region is in doubt. 

 As a solution to the second issue we proposed and investigated a sequential Baye-

sian approach, which incorporates all available pool screening results (historical and cur-

rent) for a particular region. Under the Bayesian paradigm all information gathered be-

fore the current sampling is contained in the prior distribution, which is updated by the 

current data to form the posterior distribution. The prevalence estimate is derived from 

the posterior distribution and hence depends not only on the current data (for instance, 

data containing no positive pools)—but also on the prior distribution. The use of an ob-

jective prior in the first year and of the previous posterior distribution as prior in the next 

year for all subsequent years in our approach resolves the difficult question of prior 

choice. The conjugate property of the two objective priors considered produces posteriors 

that are Beta distributions for any number of pool screening results. Any software con-
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taining the Beta distribution function can be used to calculate percentiles and credible 

intervals. 

A simulation study showed that the choice between the Bayes/Laplace and Jef-

freys’ prior is inconsequential after results of five to eight years have been incorporated. 

The study revealed an inertia problem, in the sense that the posterior distributions are 

slow to adjust to changes in prevalence. The sequential Bayes estimates will over- or un-

derestimate the true prevalence depending on the underlying trend.  

Three strategies to reduce the inertia were considered: (1) continue the pool 

screening efforts for some additional years, (2) omit early years, and (3) use a non-

sequential approach. We found that strategy (1) has only a small effect on the prevalence 

estimates, strategy (2) results in a similar small correction, but without the need for addi-

tional data, and strategy (3) produces estimates just slightly above the traditional ones on 

average. All three strategies exhibit a strong impact on the threshold probabilities, result-

ing in more realistic values. Differences in the estimators due to the prior choice disap-

pear in the sequential approach, but are maintained in the non-sequential formulation. 

Within the sequential framework we recommend the use of strategy (2), provided that at 

least five years worth of results are still available after the omission of a number of early 

results. Further research is needed exploring the use of a subjective or empirical Bayes 

prior in the non-sequential framework.  

The third paper uses data from the “Onchocerciasis Elimination Program for the 

Americas” to make numerical comparisons between the traditional, hierarchical and non-

sequential Bayesian type approaches. Point and interval estimates, as well as the thre-

shold probability P (p ≤ 5/10000) were calculated. Empirical Bayes estimators using ei-
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ther only the current data or current and historical data were also considered. The point 

and interval estimators are fairly similar across all approaches as long as the sample con-

tains some positive pools. If this is not the case then only the Bayesian type approaches 

produce a non-zero point estimate and non-zero lower bound for the interval estimate. 

By using longitudinal data collected bi-monthly over the duration of one year the 

differences between the traditional estimate and the sequential Bayes estimates are dem-

onstrated. The accumulation of information in the sequential approach produces more 

consistent estimates compared to the fluctuating traditional estimate. Calculating the tra-

ditional estimate in a sequential mode resolves that difference and produces an estimate 

for the whole year very similar to the sequential Bayes one. Another point that is illu-

strated graphically is that even objective priors contain some information resulting in 

non-zero prevalence estimates even if no positive pools are observed. As expected the 

influence of the prior gets stronger as the number of pools in the sample gets smaller.  

 

Limitations and Future Research 

The assumption of perfect sensitivity and specificity of the test simplifies the 

evaluation of the proposed methods but is not necessarily true. Generally tests do not 

achieve such levels. Incorporating measurement error in the simulations would allow a 

more realistic comparison between the Bayesian and traditional methods.  

 The methods proposed are applicable when all pools are of equal size. However, 

due to a lack of knowledge about the underlying prevalence investigators sometimes pur-

posefully design a study where different pool sizes are used sequentially (for instance 

see: Hepworth, 1996). Also, the use of unequal sized pools might be desirable to avoid 
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excessive handling of the vectors. Instead of forming equal sized pools, one might want 

to test whatever number of insects is collected within the specified sampling time. The 

extension of the proposed methods for unequal pool sizes will increase their usefulness.  

 A preliminary study has shown, that there exists a simple functional relationship 

between the α and β parameters in the Bernoulli-Beta hierarchical model. The evaluation 

of the impact of other choices of α on the prevalence estimates through a simulation study 

appears worthwhile. In another extension, one could impose an ancillary condition when 

maximizing the likelihood function, which might result in the ability to uniquely estimate 

both parameters. The ancillary condition would be aimed at optimizing some statistical 

property (for instance to minimize the bias). 

Other modifications to reduce the inertia in the sequential Bayes method need to 

be considered. One idea is the use of a sliding window approach – include for instance 

five years worth of data in the computations and then start over with next five years and 

so on. This will reduce the impact of earlier data while still incorporating information 

beyond the current sample. Another idea is to introduce some weighting scheme to in-

crease the impact of the most recent results. 

The simulations assumed the availability of pool screen data for every year from 

the exact same communities within a region over a 20 year span. In reality entomological 

evaluations are not undertaken on a yearly basis and the communities included can vary 

to a degree. It is important to investigate the behavior of the sequential Bayes estimator 

given such data and to incorporate mechanisms to handle unequal temporal distances be-

tween samples. 
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 In the third paper we calculated empirical Bayes estimates using historical data to 

specify the prior. We went beyond approaches already available (for instance, see Tebbs, 

Bilder, Moser 2003) by specifying a three parameter Beta prior distribution, where the 

parameters are , , nα β γ = . This prior is conjugate for the Binomial likelihood resulting in 

a Beta posterior distribution. The performance of this Bayesian approach needs to be eva-

luated as possible alternative to the proposed sequential model for longitudinal data. The 

development of an easy to use algorithm for the entomologist (for instance: R program) 

to specify the prior parameters is another priority.  
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Considering the testing of each pool as a Bernoulli trial we can write out the following likelihood function 

 (assuming independence between pools): 
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Recall: ( ) ( ) ( )
( )
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By properties of log: 
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We obtain: 
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For , 0α β > this is always negative (not zero) 
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, which is > 0 for , 0α β >  and finite. 
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Now we are left with two unknowns ,α β  but only one equation. Hence we impose the constraint 1α =  

(do not bias towards or away from 0, see section 4 of paper) 

We defined ( ) ( ) ( ) ( )ln ln ln lnk n nβ α β α β β= Γ + + Γ + − Γ + + − Γ                

For 1α = and using the fact that ( )( 1) , for 0α α α αΓ + = Γ >  
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Solve for β̂  
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We found ˆ mn n
T

β = −  for 1α =  by finding the maximum of the log-likelihood function. 

We want to determine ( ) 1ˆE nmE n
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1 2 11T T

T T

δ µ µ
δµ µ

− −  
= − = − 

 
 

( )( )
3

2 3 11 1 2 2!T T
T T

δ µ µ
δµ µ

− −  
− = − − =  

 
 

( )
4

3 4 12! 2! 3 3!T T
T T

δ µ µ
δµ µ

− −  
= − = −  

 
 

( )
5

4 5 13! 3! 4 4!T T
T T

δ µ µ
δµ µ

− −  
− = − − =  

 
 

( )
6

5 6 14! 4! 5 5!T T
T T

δ µ µ
δµ µ

− −  
= − = −  

 
 

( )
7

6 7 15! 5! 6 6!T T
T T

δ µ µ
δµ µ

− −  
− = − − =  

 
 

( )
8

7 8 16! 6! 7 7!T T
T T

δ µ µ
δµ µ

− −  
= − = −  

   
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( )
9

8 9 17! 7! 8 8!T T
T T

δ µ µ
δµ µ

− −  
− = − − =  

 


 

Next we rewrite the Taylor series expansion for our scenario: 

( ) ( ) ( ) ( ) ( ) ( )
2 3 4 5 6

2 3 4 51 1 1 1 1 1
T T T T T

T T T T T T

f T T T T T Tµ µ µ µ µ
µ µ µ µ µ µ

         
= − − + − − − + − − − +         

         

 
( ) ( ) ( )

7 8 9
6 7 81 1 1 ...T T T

T T T

T T Tµ µ µ
µ µ µ

     
− − − + −     

       

 

Plugging in T
mn

n
µ

β
=

+
 and taking the expectation we obtain: 

( )( )
2 3 42 3 4 5

5 66 7 8

n n mn n mn n mn n mnE f T E T E T E T E T
mn mn n mn n mn n mn n

n mn n mn n mnE T E T E T
mn n mn n mn n

β β β β β
β β β β

β β β
β β β

       + + + + +       = − − + − − − + −              + + + +              

    + + +     − − + − − −         + + +         

7 89

...n mnE T
mn n
β

β
  + + −   +   

 

We notice the second term equals zero. We find the remaining central moments using the following moment generating function 
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 (with the help of Maple 13): 

 ( )mn
n

mmnt t
n

T

neM t e
nβ

β β
β+

−
+

−

 +
=  + 

 

We find: 

( )

2

2
mn mnE T

n n
β

β β
 

− = + + 
 

( )
( )

( )
( )

3

3 3

mn n mn nmnE T
n n n

β β β β
β β β

− − − 
− = = + + + 

 

( )
( )

( ) ( )
( )

24 2 2 2 2

4 4

4 3 4 3mn n n mn mn n n mnmnE T
n n n

β β β β β β β β
β β β

− + + − + + 
− = = + + +   

( )
( )

( ) ( ) ( )
( )

22 2 3 2 2 3 3 2 2 3

5

5

5

10 10 11 11 11 11 10 10mn mn mn n nmn n mn n n n mn n

n
T

n n
E

β β β β β β β β β β β β

β ββ
  − + − + − − + − + −

=− = + + +   
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( )
( )

( ) ( ) ( ) ( ) ( )
( )

2 2 2 3 2 2 3 4 3 2 2 3 4

6

2

6

34 3 2 2 3 4

6

2 2

15 25 80 25 26 66 26

26 66 26 25 80 25 15

mnE T
n

mn m n mn mn mn n n n n

n

mn n n n n mn n n mn

n

β β β β β β β β β

β

β β β β β β β β

β

β

β

+ − + + 
− = + 

− + − +

+

− + − + + − + +
=

+
 

( )
( )

( )
( ) ( ) ( )

( )
( ) ( )

( )

4 2 3 2 2 2 3 4 2 3 3 2

7

4 3 2 2 3 4

7

3

5 5

7

25 4 2 3 3 2 4 5 3

3

2

7

7

2

56 105 105 56 406 406

57 302 302 57

57 302 302 57 56 406 406 56

105 105

mn mn m n m n mn mn mn

n

n n n n n
n

mn n n

mnE T

n n n mn n n n

n

m n
n

n

n

β β β β β β β

β

β β β β β
β

β β β β β β β β β β

β

β β

β

β

− − + + − +

+

+ − + − +
−

+

− + − + − + − + −

 
− = +

=
+

−
+

+


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( )
( )

( )

2 4 2 5 5 4 2 3 3 2 4 5 6 6

8

6 5 2 4 3 3 4

2 4 3 3 4 2 5 3 3 3 2 2 4 38 2 3

8
1680 3710 1680 119 105 490 1400

490 119 120 1191 2416 1191 120

120 1191 2416 1191

mn mn mn mn mn m n m n m n

n

m n mn n n n n n n
n

mn n n n

mnE T
n

n

β β β β β β β β

β

β β β β β β β β
β

β β β

β

β β β

− + − + + + −

+

+ − + − + − + +
+

+

− + − +

 
− = + 

=
( )

( )
( ) ( ) ( ) ( ) ( )

( )

3 42 2

8

2 5 6

8

2 3 2 2 3 4 4

120

1680 3710 1680 119 119 490 1400 490 105

n n

n

mn n n n n mn n n mn

n

β

β

β β β β β β β β β

β

− +

+

− + − + + + − + +
+

+

 

 

 

 

 

 

 



119 
 

Plugging these moments into ( )( )E f T we obtain: 

( )( )
( )

( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

22 23 4 5

2 3 4

6

27

23 2 2 3

5

2 34 3 2 2 3 4 2

11 11 10 10

26 66 26 25

3

25

4

80

m

mn n n mnmn nn n mn n nE f T
mn mn mn mnn n n

n n n n n mn n

n

mn n n

mn

n n n mn n n m
n

n
m

β β β ββ ββ β β β β
β β β

β

β

β β β β β β

β

β β β β β β β β β

− + +−+ + + +     = + − +     
     + + +

+ − + − + −

+

− + − + + −

 − 
 

+ + + + 
 

( )
( )

( ) ( ) ( ) ( ) ( )
( )

( )
( )

( )

6

2 35 4 2 3 3 2 4 5

7

3 2 2 38

6 5 2 4 3 3 4 2 5 6

8

2 3 2 2 3

9

15

57 302 302 57 56 406 406 56 105 105

120 1191 2416 1191 120

1680 3710 1680 11

n
mn

n
mn

n

mn n n n n n mn n n n mn n

n

mn n n n n n n

n

mn n n n

β

β β β β β β β β β β β β

β

β β β β β β

β

β

β β

β β β β
+

+

− + − + − + − + − + −

+

−

+ − 
 

+ 
 


− + −

+



+ +

− + − +
+

( ) ( ) ( ) ( )
( )

3 44 4 2 2

8

9 119 490 1400 490 105n mn n n mn

n

β β β β β

β

 
 
 
 
 
 
 
 

+ + − + +

+
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( )( ) ( )
( )

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( ) ( )
( )

( )
( )

23 2 2 3

5 5

4 3 2 2 3

22 25 5

2 3 4 4

6 6

7 4

6

11 11 10 10

26 66 26

4 3mn n nn n n mnn n nE f T
mn mn mnmn mn n n

n n
mn mn

n

mn n n n mn n
n n

mn n n
m

n
mn n

n

n
n

β β β

β β ββ β β β β ββ β β

β

β

β β
β β

β β β β β

β

β

β β

β β

− ++ + −+ + +   = + − + +   
   + +

+ +   − −   
   

+ +   + +

− + − −

   
  

+ +

− + +

+ 

− ( ) ( )
( )

( ) ( )
( )

( )
( )

( ) ( )
( )

( ) ( )
( )

27 7

3 2 2 38 8

8

2 32

6 6

25 4 2 3 3 2 4 5

7 7

3

7

59 6

25 80 25 15

57 302 302 57 56 406 406 56

105 105

120 1

n
mn

n n
mn mn

n
m

mn n n mn
n n

mn n n n n n mn n n n

n n

mn n
n

mn n

n

n
mn

β

β β

β β β β
β β

β β β β β β β β β β

β β

ββ

β

β
β

β β β
+

+ +  
 

+ +   − −   
   

+ − 
 

+ 
 
 

− +

+ +

− + − + − − + −

+ +

−

+

− +( )
( )

( ) ( )
( )

( ) ( )
( )

( )
( )

2 4 3 3 4 2 5 6

8

2 3 2 2 3 4 4

8

3 42 2

8 8

9

9 9

191 2416 1191 120

1680 3710 1680 119 119

490 1400 490 105

n n n n n

n

mnn
m

n n n n

n

mn n n mn

n

n n
nmn mnn

β β β β

β

β β β β β

β

β β β β
β

β
β

β

β

+ 
 
 

+ +   + +   


− + − +

+

− + − + +
+

+



− +

 ++
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Simplifying: 

( )( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )( )
( )

( ) ( )
( )

( )( ) ( )
( )

( ) ( )
( )

( )( ) ( )
( )

( )( ) ( )
( )

( ) ( )

23 2 2 3

5

2 34 3 2 2 3 4 2

6

5 4 2 3 3 2 4

22 2

2 3 4 3

4

2

5

5

4

11 11 10 10

26 66 26 25 80 25 15

57 302 302 57

4 3n n nn n n nnE f T
mn mn mn mn mn

n n
mn mn

n n n
mn mn

n n n n

n n n n n n

n n n n

mn

n n

β β β β β β

β β β β β β β β β

β β β ββ β β β β β ββ

β

β

β

β

β β β

β β β ββ

+ − ++ + − ++
= + − + +

+ +
− −

+ + +
+ + +

+

− + − −

−

−

+ − + − +

− + − + −

( )
( )( ) ( )

( )
( )( ) ( )

( )
( ) ( )

( )

( )( ) ( )
( )

( )( ) ( )
( )

( )( )
( )

3 2 2 3

6

5

2

7

3 6 5 2 4 3 3 4 2 5 6

8

2 3 2 2 3 4 4

7

3 2 2 4

6 5

120 1191 2416 1191 120

1680 3710 1680 119 119

490 1400 490 105

56 406 406 56

105 105 n

n

n n n n n n

mn

n n n

mn

n n

mn mn

n

n n

n

mn mn

n
m

n n n

n
n

β β β ββ

β

β

β β β

β β β β β

β β β β β

β β β β

β

β

β β − + − + − +

− +

+

+

+ +
+ +

− + +

− +

− + −

−

+

+
−

+
− +
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Ordering powers: 

( )( ) ( )
( )

( ) ( )
( )

( )( )
( )

( ) ( )
( )

( )( ) ( )
( )

( )( ) ( )
( )

( ) ( )
( )

( )( ) ( )
( )

( )( ) ( )
( )

( )( )
( )

( ) ( )
( )

( )( )

2 3

2 3 43 2 2

2

2

3 3

2 2

4 4 4

2

5 5

3 2

5 5

24 3 2 2 3 4

6

3

4 10 10 15

11 11 25 80 25 105 105 105

26 66 26 56

nnE f T
mn mn

n n n
mn mn

n n n n n
mn mn mn

n n n n
m

n

n n n n n n

n n n

n mn mn mn

n

mn

nn

β ββ

β β β β β

β β β β β β

β β β β

β β β

β β β β β β β β β β

β β β β ββ ββ

++
= +

+ − +
− +

+ − + + +
+ − +

+ + + +
− + − +

+

−

− + − − + −

− + − ++
+ −

( )
( )

( )( ) ( )
( )

( ) ( )
( )

( )( ) ( )
( )

( ) ( )
( )

3 2 2

6

25 4 2 3 3 2 4 5 3 2 2 3 4 4

7 7

6 5 2 4 3 3 4 2 5

3 2 2 3

6

6

8

1680 3710 1680 119 119

120 1191 2416 1191 120

406 406 56 490 1400 490

57 302 302 57 n n n n

n n n n n n

mn

n

mn

n

n

mn mn

n

n n n n n

n n n n

mn

n β β β β β

β β β β β β β

β

β

β β β β β β

β β β β β β

β

β − + − + +

− + −

+

+ + − +

− + − − +

− + − + −
+−

+

+
+

+
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Combining terms: 

( )( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) ( )2

2 2 3 2 2 3

3 4 5 6

6 6 24 36 142 1n n n n n n nn n
O

mn m
nnE f T

mn m n mnn mn

β β β β ββ β β β ββ β ββ β+  + + + + + + ++ +
+ + +  



+
+ +


=   

Recall ( ) 1ˆE nmE n
T

β  = − 
 

 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) ( )2 3 4 5

2 2 3 2 2 36 6 24 36 142 1ˆ n n n n n n nn n
O

mn mn mn m
n

E
mn n

β β β β β β β β βββ β
β

β β
β

 + + + + + + ++ +
+ + +  



+
= +


+ 

 

 

We observe that as m →∞ , ( )ˆE β β→ . Hence β̂  is asymptotically unbiased. 
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APPENDIX B2 

MEAN SQUARED ERROR 
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Recall MSE = ( ) ( ) ( )2 2 2E W Var W E W Var W Bias Wθ θ θ θ θθ θ− = + − = +  

First we need the expression for β̂ , above we only found ( )ˆE β . We have the MLE for 1α = : ˆ mn n
T

β = −   

We also have the expansion for (1/T), plugging in T
mn

n
µ

β
=

+
in this expansion we obtain: 

22 3

ˆ n n mn n mnmn T T
mn mn n mn n
β β ββ

β β

    + + +   =  − − + −       + +        

3 44 5

...n mn n mnT T n
mn n mn n
β β

β β

   + +   − − + − −  −       + +       
 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

2 3 4 52 3 4 5 6

2 3 4 5
ˆ ...

n n n n nmn mn mn mn mnT T T T T
mn n n n n nmn mn mn mn

β β β β β
β β

β β β β β
+ + + + +         

= − − + − − − + − − − +         + + + + +         
 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

2 3 4 52 3 4 5 6

2 3 4 5
ˆ ...

n n n n nmn mn mn mn mnT T T T T
mn n n n n nmn mn mn mn

β β β β β
β β

β β β β β
+ + + + +         

− = − − + − − − + − − − +         + + + + +           

Squaring above expression is somewhat daunting, but there is the Cauchy product (product of two power series): 
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Given 
0 0

,i j
i j

i j

a x b x
∞ ∞

= =
∑ ∑  then ( )( )i j ia b c=∑ ∑ ∑ , where 

0

n

n j n j
j

c a b −
=

=∑  

And so when  ,j ja b j= ∀  we have 
1

0 0
0 1

n n

n j n j n j n j n
j j

c a a a a a a a a
−

− −
= =

= = + +∑ ∑   

When 0 0a =  we have 
1

1

 , for 2
n

j n j
j

a a n
−

−
=

≥∑  

Note in this case 0 1 1 0 1 10, since 2 2*0* 0c c c a a a= = = = =  
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2
2 1 1 1c a a a= =  

3 1 2 2 1 1 22c a a a a a a= + =  

2
4 1 3 2 2 3 1 1 3 22c a a a a a a a a a= + + = +  

5 1 4 2 3 3 2 4 1 1 4 2 32 2c a a a a a a a a a a a a= + + + = +  

6 1 5 2 4 3 3 4 2 5 1 5 4 32
2

12 2c a a a a a a a a a a a a a aa= + + + = +++  

 

( )

( )
( )
( )
( )

( )
( )
( )
( )

2

1

3

2 2

4

3 3

5

4 4

6

5 5

n
a

mn
n

a
mn

n
a

mn

n
a

mn

n
a

mn

β

β

β

β

β

+
= −

+
=

+
= −

+
=

+
= −

 

2
2 1c a= =

( )

4

2
( )n

mn
β +  

( ) ( )
( )

( )
( )

2 3 5

3 1 2 2 32 2 2
n n n

c a a
mn mn mn

β β β  + + +
= = − = −    

  
 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 4 6 6 6 6
2

4 1 3 2 3 4 4 4 42 2 2 3
n n n n n n

c a a a
mn mn mn mn mn mn

β β β β β β  + + + + + +
= + = − − + = + =    

  
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( ) ( )
( )

( )
( )

( )
( )

( )
( )
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Taking expectation on both sides: 
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Taking above piece by piece: 
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Putting those pieces together up to 
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Considering only terms up to 
( )3

1
mn

 we obtain an estimate of the Variance: 

(MSE = Var + Bias^2  => Var=MSE-Bias^2) 
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Difference in Var and MSE is only in 2nd order term and above 

Computation of Bias^2 
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Another application of the Cauchy product: 
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APPENDIX C1 

ESTIMATED EXPECTED VALUE OF PREVALENCE 

 

 
 



136 
 

( )

( )
( )

ˆ 111

0

1
ˆ,

p p
E p p dp

βα

α β

−− −
=

Β∫  

For 1α =  

( )

( ) ( ) ( ) ( ) ( )
1 1 1

ˆ ˆ ˆ1 1 12 1

0 0 0

1 ˆ ˆ ˆ ˆ1 1 1 * 2,ˆ1,
E p p p dp p p dp p p dpβ β ββ β β β

β
− − −−= − = − = − = Β

Β ∫ ∫ ∫  

( ) ( ) ( )
( )

( )
( )

ˆ ˆ1 1ˆ1, ˆˆ ˆ ˆ1 *

β β
β

ββ β β

 Γ Γ Γ
 Β = = =
 Γ + Γ 

 

 

( ) ( ) ( ) ( )
( )

( )
( ) ( )

ˆ ˆ ˆ2 * 1 ! ˆ! 1ˆ ˆ ˆ* 2, ˆˆ ˆ ˆ 12 1 ! 1 !
E p

β β β ββ β β
ββ β β

Γ Γ −
= Β = = = =

+Γ + + +
 



137 
 

 

 

APPENDIX C2 

CREDIBILITY INTERVAL 
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Expressions for lower and upper bound for p 
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The upper bound of credibility interval: 
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We found bias and MSE earlier: 
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Plugging in expressions for Bias and MSE (only first term each): 
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Lower bound of credibility interval 
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1 ln 11 ln 1 2 1 ln 1 ˆ2 22 2 2 2ˆ ˆ1
2 2!

f

ββ β

β

α αα α α α
β βαβ β β

β β β

             − −− − − −            −               ≈ − − − + +  
   

 
 
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( ) ( )
11 12

21

2 4 3

1 ln 11 ln 1 2 1 ln 1 ˆ2 22 2 2 2ˆ1 1
2 2!Lp

ββ β

β

α αα α α α
β βα β β

β β β

             − −− − − −            −               ≈ − − + − − +  
   

 
 

 

( ) ( ) ( )

11 12

1
2

2 4 3

1 ln 11 ln 1 2 1 ln 1
2 2 12 2 2 2ˆ ˆ1 1

2 2LE p E E

ββ β

β

β

α αα α α α
α β β β β

β β β

             − −− − − −                          ≈ − − + − − + −  
   

 
 

 

( )

11 12

1

2 4 3

1 ln 11 ln 1 2 1 ln 1
2 2 12 2 2 21 1

2 2LE p Bias MSE

ββ β

β

β

α αα α α α
α

β β β

             − −− − − −                          ≈ − − + − +  
   

 
 

 

Plugging in expressions for Bias and MSE (only first term each): 
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( ) ( ) ( )

11 12

1 2

2 4 3

1 ln 11 ln 1 2 1 ln 1
2 2 12 2 2 21 1

2 2L

n n
E p

mn mn

ββ β

β

β

α αα α α α
β β β βα

β β β

             − −− − − −           + +               ≈ − − + − +  
   

 
 

 

( ) ( )

1 12

1 1 2

3 2

1 1 ln 1 1 ln 1
2 2 2 21 1 1 ln 1

2 2 2 2L

n
n

E p
mn mn

β β

β β

β

α α α α
ββα α α

β β

            + − − − −           +                 ≈ − − + − − − +      
       

 
 
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APPENDIX D 

THRESHOLD PROBABILITY 
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Investigate the properties of ( ) ( ) ( )
0 ˆ 1

0 0
0

ˆ 1  as an estimator of 
p

P p p p dp P p pββ −≤ = − ≤∫  

( ) ( ) ( ) ( )
0

0

0 ˆ ˆ1
0 0

0

ˆˆ 1 1 11
pp

P p p p dp ppβ ββ
β −≤ = − = = − −− −∫  

Note that the true value is β . So we expand ( )
ˆ

01  about p β β−  

Taylor series expansion: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3
0 0 0

0 0 0 0 0 0...
2! 3! !

n
nx x x x x x

f x f x f x x x f x f x f x
n

− − −
′ ′′ ′′′= + − + + + +  

( ) ( ) ( )0
ˆ ˆ ln 1

0
ˆ 1 pf p eβ ββ −= − =
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

0

ln 1
0 0 0

2
2 2ln 1

0 0 02

ln 1
0 0 0

ln 1 1 ln 1

ln 1 1 ln 1

...

ln 1 1 ln 1

p

p

k
k kp

k

df e p p p
d
d f e p p p
d

d f e p p p
d

ββ

ββ

ββ

β

β

β

−

−

−

= − = − −

= − = − −      

= − = − −      

 

 

 

 

( ) ( ) ( ) ( )( ) ( ) ( )
( )

( ) ( )
( )2 3

2 3
0 0 0 0 0 0 0 0

ˆ ˆ
ˆ1 1 1 ln 1 1 ln 1 1 ln 1 ...

2! 3!
P p p p p p p p p pβ β β ββ β β β

β β
− −

≤ = − − − − − − − − − − − − −        

We know 

( ) ( ) ( ) ( ) ( )
0

0

0 ˆˆ ˆ1
0 0 0

0

ˆ 1 1 1 1 11
pp

p dp p P p p pp
ββ β ββ −− = = − − ⇒ ≤ = − −− −∫  

( ) ( ) ( ) ( )( ) ( ) ( )
( )

( ) ( )
( )2 3

2 3
0 0 0 0 0 0 0

ˆ ˆ
ˆ ˆ1 1 ln 1 1 ln 1 1 ln 1 ...

2! 3!
f p p p p p p pβ β β ββ β β β
β β β

− −
= − + − − − + − − + − − +      
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Hence ( ) ( ) ( ) ( )( ) ( )
( )

( )
( )2 3

2 3
0 0 0 0 0 0

ˆ ˆ
ˆ1 ln 1 ln 1 ln 1 ...

2! 3!
P p p P p p p p p pβ β β β β

β β
 − − ≤ = ≤ − − − − + − + − −       
  

 

( ) ( ) ( ) ( ) ( ) ( )
( )

( )
( )2 3

2 3
0 0 0 0 0 0

ˆ ˆ
ˆ1 ln 1 ln 1 ln 1 ...

2! 3!

E E
E P p p P p p p p E p pβ β β β β

β β
 − −  ≤ = ≤ − − − − + − + − −        
  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

0
0 0 0 0

ln 1ˆ ˆ1 ln 1 ...
2!

p
E P p p P p p p p Bias MSEβ β β

 −     ≤ = ≤ − − − + +    
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APPENDIX E1 

DERIVATION OF BAYES/LAPLACE PRIOR 
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If we define 
1

m

j
j

T X
=

=∑ then T is a ( ),Binomial m θ  random variable with parameter, 1 (1 )npθ = − − : 

( ) ( )( ) ( )( )1 1 1 1
T m Tm T n nTm m

T p p
T T

θ θ
−−   

− = − − −   
   
  

Following Bayes’s argument as given by Stigler, we look for a prior in the natural conjugate prior family, 

( ) ( ) ( )
( )

( ) ( )

( ) ( )

1 11 1

1
11

0

1 1
, ,

,
1

p

p p p p
f p n

p p dp

β βα α

βα

θ θ θ θ
α β

α β
θ θ

− −− −

−−

− −      = =
Β

−  ∫
 

A change of variable 

( ) ( ) ( )
1 1 1 111 (1 ) (1 ) 1 1 1 1 1 1n n n n np p p p dp d

n
θ θ θ θ θ θ−= − − → − = − → − = − → = − − → = −  

results in the following equation: 

( )
( ) ( )

1 1 1 1

1 11 11

0

1 (1 ) (1 ) 1 (1 ) (1 )
, , ,0 1; , 0

11 , 11

n n n n

p

n

p p n p p
f p n p

p p d nn

α β α β

βα
α β α β

α βθ θ θ

− − − −

− + −−

       − − − − − −       = = < < >
 Β + −−      ∫

 

Prior to collection of the data, the joint distribution of T and p is 
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( ) ( )( ) ( )( )

( )
1 1

1

, *

1 (1 ) (1 )
, 1

T m Tn n

n

g T p f T p f p

m n p p
T

α β

θ θ

α β
+ − − + −

=

      = − − −       Β + −  

 

The marginal distribution of T is 

( ) ( )
1

1 1

1
0

, 1 (1 ) (1 )
, 1

T m Tn n
T

n

m nf t p p dp
T

α β
α β

α β
+ − − + −      = − − −       Β + −  

∫  

A further change of variable ( )
1 11 1 ndp d

n
θ θ− = − 

 
yields: 

( ) ( ) [ ] [ ]

( )
( )

1
1

1 1 1

1
0

1

1

1, 1
, 1

, 1
, , 0

, 1

nT m T
T

n

n

n

m
f t d

T

m T m T
T

α βα β θ θ θ
α β

α β
α β

α β

+ − − + + − −  
= −   Β + −  

 Β + − + + − 
= >   Β + −  

∫
 

Theorem 1: The distribution function ( ),Tf t α β has value ( )
1

1m +
for all { } ( )1

0,1,2,...,  when 1 and 1 .
n

t m
n

α β
−

∈ = = +  

Proof: Note that ( ),Tf t α β can be written as, 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1

1 1

1 1 1
,

1 1 1 1
n n

T
n n

m t m t
f t

t m t m
α β α β

α β
α β α β

Γ + Γ + Γ − + + − Γ + + −
=
Γ + Γ − + Γ + + + − Γ Γ + −

 

( )1
When 1 and 1

n
n

α β
−

= = +  above becomes, 

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

1 1 1 1 2 1 11, 1 ,
1 1 2 1 2 1

n
T n

m t m t m
f t t

t m t m m m
α β − Γ + Γ + Γ − + Γ Γ +
= = + = = = ∀

Γ + Γ − + Γ + Γ Γ + +
 

( ) ( ) ( ) ( ) ( )since 1 2 1 and 2 1 1m m mΓ = Γ = Γ + = + Γ + . 

End of proof. 

 

Plugging ( )1
1 and 1

n
n

α β
−

= = + into ( )
1 1

1 (1 ) (1 )
, ,

1, 1

n n

p

n p p
f p n

n

α β

α β
α β

− −
   − − −   =

 Β + − 
 

we obtain the objective Bayes prior for the equal 

pool size pool screening model as 

( )
( )
( )

( )
( ) ( )

1
1

1*1* 1 1
1

1,1 1,1

n
n n n

n
p

n p n p
f p n p

−

−
−

 − − = = = −
Β Β
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APPENDIX E2 

DERIVATION OF JEFFREYS’ PRIOR 
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Jeffreys’ prior for p, the infection prevalence, will be calculated next. 

( ) ( )( ) ( )( )1 1 1
T m Tn nm

L p T p p
T

− 
= − − − 
 

, where T is the # of positive pools. 

( )( ) ( ) ( )ln ln ln 1 1 ln 1nm
L l T p m T n p

T
 

= = + − − + − − 
 

 

( )
( ) ( ) ( )

( )( )
( )( )

( )( ) ( )( )
( )

( )
( )

( )
( )( )

( )( )
( )

( )
( )

1

1
2

1 2
2 22

2 2 22

2 2

1* 1
11 1

1 11 1 1 *
1 1 11 1

1 1 1
1 1 11 1

n
n

n

n n
nn

n n

nn

dl T n p m T n
dp pp

T n pd l Tn p n n p m T n
dp p pp

Tn p n n p T m T n
p pp

−

−

− −

− −

= − − −
−− −

−
= − − − − − − −

− − −− −

− − − −
= − − −

− − −− −

 

( ) ( )( ) ( )1 1 1     since T Bin (m, )n nE T m p m m p θ= − − = − −   
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( )
( )( ) ( )

( )( )
( )( ) ( )( )

( )
( )( )( )

( )

( )
( )

( )( ) ( )( )
( )

( )
( )

( )
( )

2 2 222

2 22

22 22

2

22

1 11 1 1 1 1 1 1

1 1 11 1

1 1 1 11 1
1 1 1 1 1

1
1 1

nn n n n

nn

n nn n

n n

n

n

m m p nm p n p n n p m pd lJ p E
dp p pp

n n p m pmn p mn p
p p p

mn p
p

− −

−−

−

− − −− − − − − − − 
= − = + + 

− − −  − −

− − − −− −
= + +

− − − − −

−
=

− −  

Now the Jeffreys’ prior is proportional to ( ) ( )
( )

2
2

1
2

1
.

1 1

n

n

mn p
J p

p

−

−
=
 − −   
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APPENDIX F 

SEQUENTIAL BAYES APPROACH FOR BAYES/LAPLACE PRIOR 
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1

1 1 1

11

1

11

1

1
1 1 1

year 1: 

| , , 1 1 1 * 1

| , , 1 1 1

: | , , 1 1 1
1, 1

t m tn n n n

t m tn n n

t m tn n

posterior p n m t p p n p

posterior p n m t n p p

nNormalized posterior p n m t p p
t m t

− −

− + −

−

     
          

   
      

   
         

∝ − − − −

∝ − − −

= − − −
Β + − +

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

2 2 2

2 2 2 1 1 1

11

2 1

11

2
1 1 1

2
1

year 2: 

| , , 1 1 1 * | , ,

| , , 1 1 1 * 1 1 1
1, 1

| , ,

n

t m tn n

t m t t m tn n n n n

posterior p n m t p p posterior p n m t

nposterior p n m t p p p p
t m t

nposterior p n m t
t

+ −

−

− − + −

   
      

       
                

∝ − − −

∝ − − − − − −
Β + − +

∝
Β ( ) ( )

( ) ( ) ( )

1 2 1 2 1 2

1 2 1 2 1 2

11

1 1

11

2
1 2 1 2 1 2

1 1 1
1, 1

: | , , 1 1 1
1, 1

t t m m t tn n n

t t m m t tn n n

p p
m t

nNormalized posterior p n m t p p
t t m m t t

+ + − − + −

+ + − − + −

   
         

   
         

− − −
+ − +

∝ − − −
Β + + + − − +


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APPENDIX G 

BAYES/LAPLACE PRIOR POSTERIOR DISTRIBUTION AND EXPECTED VALUE 
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( ) ( ) ( ) ( )

( ) ( ) ( )

1

1 1

1 1 1 1

1 1 1

T m Tn n n
BL

Tn n m T

f p p p n p

p p n

− −

+ − −

   ∝ − − − −   

  ∝ − − −   

 

We must find the scaling constant for ( ).BLf p  To this end, let 

( ) ( ) ( )
1

1 1

0

1 1 1
Tn n m TK n p p dp+ − −  = − − −   ∫  

Making the change of variable ( )1 1 npθ = − − so that ( ) ( )
1

1 1 np θ− = − and ( )
1 11 1 .ndp d

n
θ θ−= −

 
We notice when

0,  0 and when 1,  1.p pθ θ= = = =  

( ) ( )

( )

[ ]

1 1 11 1

0
1

0

11 1

1

1, 1

m TT n n

m TT

K n d
n

d

T m T

θ θ θ θ

θ θ θ

+ − − −

−

 = − −  

 = − 

= Β + + −

∫

∫  

Hence 

 ( )
( ) ( ) ( )

[ ]

1 11 1 1

1, 1

Tn n m T

BL

n p p
f p

T m T

+ − −  − − −   =
Β + + −

  

Next, we want to find ( ) ( )1 1 .BL BLE p E p= − −  
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( )
( ) ( ) ( )

[ ]

1 1 1
1

0

1 1 1
1

1, 1

Tn n m T

BL

n p p
E p dp

T m T

+ − − +  − − −   − =
Β + + −∫  

Making the same change of variable we have 

( )
( )

[ ]

[ ]

( )

( ) ( )
( )

( )

( )

11 1
1

0

1
1

1, 1

11 1

1 11, 1 2

1 11, 1
2

12 1

12 1

m TT n

BL

d
E p

T m T

T m T
n

T m T m
n n

T m TT m T
m

m m T
n

m m T
n

θ θ θ+ − + − −  − =
Β + + −

 Γ + Γ + − + 
 

   Β + + − + Γ + +     = =
Γ + Γ + −Β + + −

Γ +

 Γ + Γ + − + 
 =

 Γ + + Γ + − 
 

∫

 

Hence 

 ( )
( )

( )

12 1
1

12 1
BL

m m T
nE p

m m T
n

 Γ + Γ + − + 
 = −

 Γ + + Γ + − 
 
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