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CLUSTERING PHISH USING THE SIMPLE SET COMPARISON TOOL

JASON BRITT

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

ABSTRACT

Phishing has been a problem since before the early 2000s and has only become more

prevalent and diverse since. Phishing countermeasures have been developed and used to prevent

or mitigate phishing attacks. However, each countermeasure has pros and cons and not every

countermeasure is effective in every situation. Choosing the best suited phishing countermeasure

or combination of phishing countermeasures to use and track their effectiveness requires grouping

phish based upon common characteristics and tactics used by phish or phish grouping. To be

effective phish grouping needs to produce dependable groupings, quickly produce groups, and

analyze large volumes of phish.

This dissertation develops the Simple Set Comparison (SSC) tool. The SSC tool enables

existing phish grouping processes to run faster. It also decreases the maximum amount of

memory required allowing grouping of a larger number of phish. The SSC tool utilizes a multi-

step approach that makes use of parallel processing to improve runtime and reduce the maximum

amount of memory required. This dissertation evaluates the efficiency and quality of using the

SSC tool with the SLINK style phish grouping algorithm used by Malcovery Security. The

SLINK style algorithm using the SSC tool is compared to the SLINK style algorithm without

using the SSC tool on the ability to produce a clustering, the quality of the clustering produced,

and the runtime to produce a clustering.

Four experiments are run using three different implementations of the SLINK style clustering

algorithm over large phishing data sets. The SSC tool improved the runtime of the SLINK style

algorithm in each experiment. The SLINK style algorithm algorithm with the SSC tool produces

results 37 times faster than without in the first experiment, 404 times faster in the second

experiment, 6 times faster in the third experiment, and 10.8 times faster in the fourth experiment.

The tool produces results faster, while maintaining equivalent quality. The SSC tool improves

the SLINK style algorithm’s runtime and reduces the maximum amount of memory required

to produce a clustering, allowing larger volumes of phish to be grouped, and produces similar

clusterings to the SLINK style algorithm without the tool.
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CHAPTER 1

Overview

Phishing is a social engineering attack that attempts to convince victims to provide personal or

sensitive information to the criminal by directing the victim to a website that imitates another

website. The information secured by the criminal is then used to gain access to systems used by

the victim, gain access to the victim’s financial accounts, or perpetrate identify theft against the

victim.

Phishing has been a threat since before 2003 and continues to be a significant and increasingly

frequent threat today. There are many different countermeasures used to combat phishing attacks.

Each type of countermeasure has its own advantages and disadvantages. Selecting the appropriate

type of countermeasure to counter the type and scale of phishing attack is important to effectively

combat the attack.

Phish clustering is the ability to group phish by a shared characteristic. The goal of phishing

clustering is to identify related phish and can be used to make determinations about the techniques

used and motivations behind a concerted phishing attack or phishing campaign. Quick and

accurate phish clustering is needed to enable selection of the appropriate type of countermeasure

and quantify a countermeasure’s effectiveness at combating phishing attacks. To be effective a

phish clustering process needs to meet two goals. The first is to produce dependable high quality

phish clusterings. The second is to produce results quickly to be able to follow phishing attacks

as close as possible to real time.

Algorithms currently exist to perform phish clustering and a number of existing algorithms

used for other purposes can be applied to phishing data to produce phish clusterings. Improve-

ments can be made to reduce runtime to produce results closer to real time and reduce memory

consumption to process larger volumes of phish. Runtime can be improved and memory consump-

tion reduced while maintaining clustering quality with a new tool, the Simple Set Comparison

tool (SSC tool).

The SSC tool utilizes a multi-step approach with parallel processing to improve runtime
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and reduce memory consumption. The SSC tool is evaluated in several experiments against a

traditional clustering algorithm, SLINK, on the quality of results produced, the runtime it takes

to produce results, and the maximum memory required.

1.1 Contributions

The SSC tool improves existing phish grouping algorithms in two areas. It develops phish

clusterings closer to real time by improving runtime and allows larger volumes of phish to be

processed by reducing the maximum amount of memory required.

1.2 Outline

The rest of the dissertation defense document is organized in a series of chapters covering details

about phishing, related work, the SSC tool, the experiments performed, a detailed discussion

about the SSC tool, and conclusions drawn from the work. Future work directions are also

included.

The introduction chapter gives an overview of phishing. The subsections address why

phishing is a threat, current countermeasures used against phishing, how phish clustering can

improve the effectiveness of phishing countermeasures, and metrics to use to evaluate a phish

clustering process. The evaluation metrics include a phish clustering process’s ability to produce

high quality clusters, the runtime taken, and the amount of memory required.

The related work chapter covers current and past phishing detection and clustering research.

The next topics covered are current data mining techniques and their uses in other fields. The

improvement subsection of the related work section outlines areas for advancement in current data

mining techniques when trying to achieve the phish clustering goals described in the introduction.

The algorithm chapter covers the details of the SSC tool. There is an overview, a detailed

explanation for each of the four steps in the SSC tool, and its theoretical computational complexity.

The experiments chapter covers four experiments performed to evaluate the effectiveness of

a SLINK style algorithm using the SSC tool compared to a SLINK style algorithm without using

the SSC tool. The experiments compare the ability to process a data set without running out of

memory, the quality of the clusterings produced, and the runtime required to produce a clustering.
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The discussion chapter sums up the results from all four experiments. It looks at the quality,

runtime, and maximum memory of all four experiments. It also covers the interchangeable

similarity metric and clustering algorithm.

The conclusion chapter sums up the argument that the SSC tool is more effective at providing

phishing intelligence than traditional clustering and current phishing intelligence processes based

upon the goals a phishing intelligence process should meet.

The future work chapter covers possible future directions including the use of different

similarity metrics and applicability for use with other clustering algorithms useful in different

applications other than phishing.
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CHAPTER 2

Introduction

The introduction gives an overview of phishing and a direction to help alleviate phishing attacks.

It consists of five sections. The first section introduces the threat of phishing and why it matters.

The second section gives a broad classification of types of phishing threats showing the variety of

social engineering tactics used. The third section describes various phishing countermeasures and

how they can combat phishing. The fourth section discusses phish grouping and its importance

to effectively using phishing countermeasures. The fifth section lays out the attributes that should

be used to evaluate a phish grouping process.

2.1 Phishing Threat

Phishing has been a problem and organizations such as the Anti-phishing Working Group (APWG)

founded in 2003 and PhishTank founded in 2005 have been fighting phishing for years [1, 2].

Today, phishing is still a problem. A 2013 Kaspersky lab report places phishing attacks as one

of the three most prevalent external threats facing corporations [3]. Between April and June of

2014, APWG reported observing 128,378 new phishing attacks [4]. This is the second highest

phishing attack volume observed in a three month period by APWG [4]. Phishing attack volumes

are large and have increased over the years.

2.2 General Classification of Phish

Types of phishing attacks can be categorized in many different ways. Phishing can be classified

by the type of organization being attacked, the mechanism used to advertise the phishing website,

or the particular tactic used to entice users to the phish. The following broad categorization of

phish is based upon the type of tactic used to entice users as it highlights the differences in the

breadth of organizations affected by phishing and particular circumstances where the different

types of phish are effective. The three broad categorizations of phishing used here are continuous

phishing, opportunistic phishing, and targeted or spear phishing.
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Continuous phishing is a type of phishing that is constantly occurring and generally targets

well-known brands. These brands can vary from financial institutions, email providers, and social

media firms, or government entities. Continuous phishing is characterized by its broad targeting.

It aims for success by advertising to many people to be effective. One example is a phishing

campaign targeting university employees around the country. Around the 10th of November 2014

a phishing campaign targeting university employees at George Mason University, University

of Chicago, University of Oregon, Brown University, Michigan State University, Georgetown

University, and many others [5]. This particular phishing campaign began by sending a phishing

email with the subject “Your Salary Raise Confirmation” and contained a link to a website that

mimics the particular university’s employee payroll website [5]. The goal appeared to be to gain

employee payroll logon credentials and banking information to steal money from the employee’s

bank account and/or redirect employee pay.

Opportunistic phishing is a type of phishing where phishers use a current topic or fear to

help enable their form of social engineering to be more effective. Examples include phishing

campaigns directed at possibly affected users after a breach notification such as the Anthem

breach or the rash of income tax related phishing seen in many different countries around

income tax filing time. Opportunistic phishing is characterized by its use of user awareness to

assist in making the social engineering attack effective and like continuous phishing it often

indiscriminately targets many people. In February 2015 Anthem health care made a public

announcement that customer Social Security information and other personal information had

been compromised [6]. The systems that were compromised contained information for some 80

million customers. Shortly after the public announcement a phishing campaign began that was

targeting current and former Anthem customers. The campaign was tailored around customer

fears of the data breach and attempted to navigate victims to a phishing page using a link button

in the phishing email that read “Click Here To Get Your Free Year Of Credit Card Protection”.

Spear phishing is a type of phishing targeted at and tailored for a very small population.

Spear phishing attacks are often aimed at organizations to gain access to internal financial systems

or other resources within private networks. Beginning sometime in 2012 and continuing until

June 11th 2015 an international group of cyber criminals defrauded over fifty different companies

from all over the world for approximately eight hundred thousand euros and caused an estimated

five million euros worth of damage [7]. The criminal group tailored phishing emails to particular
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company employees, spear phishing, to direct the employees to a phishing site to try and gain

the employees’ corporate logon credentials. These logon credentials were then used to gain

access to the corporate computer network with the goal of redirecting funds intended to pay

suppliers to the criminal group. This criminal network was broken up on June 11th 2015 by an

international investigation involving multiple European law enforcement agencies. The result

of the investigation was the arrest of forty-nine individuals in the following countries: Spain,

Poland, Italy, Belgium, Georgia, and the United Kingdom.

2.3 Phishing Countermeasures

Currently there are many different ways of trying to combat phishing. Each phishing countermea-

sure has its own pros and cons.

2.3.1 Alerting Users

Alerting users can take many forms including email notifications, posts on organization alert

websites, or any other method of communicating to a user group. The goal of the alerting users

countermeasure is to give the user base an idea of the specifics of a phishing email with the

hope the user will recognize the phishing email and not fall victim to it. Specifics about a

phishing email include the subject, the text in the email body, and email sender. The alerting

users countermeasure is usually going to be performed by the organization being targeted by

the phishing campaign and depends on the targeted organization being aware it is the target of a

phishing campaign and knowing specifics about the campaign to use to alert users. The Alerting

users countermeasure fails to protect users who are not a part of the organization, but are phishing

targets.

2.3.2 User Education

User education involves training users to recognize and avoid phishing websites. It can take a

number of forms including online lectures, testing, and gamified training [8]. There are many

different online training tutorials for detecting phishing websites. Some tutorials are free and

offered by not for profit organizations such as that provided by APWG, the Open Web Application

Security Project (OWASP), and others [9, 10]. Other tutorials are purchased as a part of user

training packages offered by security companies such as McAfee, Wombat Security Technologies,
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and others [11, 12].

An example of gamified training is the online game Anti-Phishing Phil created at Carnegie

Mellon University [8]. Anti-Phishing Phil presents users with the challenge of distinguishing

between phishing websites and non-phishing websites in a game environment with in-game

rewards for correct answers. The game also gives players an introductory tutorial on detecting

phishing websites via training messages [8]. The goal of the user education is to give users

general tools to recognize and avoid phishing emails and phishing websites. User education is

important as it decreases the chance that users will fall victim to phishing, but it does not always

prevent educated users from falling victim to phishing [8]. Also, user education will only help

users that use the education material or exercise, which will not cover all internet users who can

possibly become a phishing victim.

2.3.3 Phishing Takedown

A phishing takedown is the process of detecting and then removing the phishing website, also

known as a phishing take down. To perform a phishing takedown the phishing website Universal

Resource Locator (URL) must first be identified. Next, information about the website such

registration and hosting information needs to be collected. Based on the information gathered the

website can be taken down a number of ways including contacting the domain owner, sending an

email to the abuse email listed on the whois domain information, contacting the hosting service,

or the domain registrar [13, 14]. Phishing takedowns are often performed by security companies

such as PhishLabs, Cyveilance, and others [15, 16]. These security companies are contracted

by a firm to protect the firm’s brand via phishing take downs and other countermeasures. The

goal of the phishing takedown countermeasure is to limit victim exposure to phishing websites

[14]. This countermeasure has been shown to be useful, but not a solution by itself because each

phishing website has to be detected, investigated, and removed by a third party ISP, registrar,

or hosting provider [14]. The phishing takedown countermeasure combats individual phishing

websites and requires multiple parties to cooperate.

2.3.4 Blacklisting

Blacklists are a widely used technique to prevent users from visiting phishing sites [17]. Black-

listing works by developing a list of bad URLs, domains, or IP addresses and preventing users
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from visiting these phish. The bad URL, domain, and/or IP address list can be developed from a

number of sources including: manual reporting, web crawler heuristics, passive DNS analysis,

and honeypots. The blacklists are then used by companies, internet service providers, web

browsers, third party software, and others to prevent users from visiting the URLs, domains, and

IPs listed in the blacklist. For blacklists to be effective phish have to be identified and their URL,

domain, and/or IP added to the list quickly. It has been shown that blacklists are only effective at

blocking phish that are twelve plus hours old mainly due to the time it takes collect and identify

phish [13]. Blacklists alone are not enough to protect users from phish.

2.3.5 Web Toolbars

Web browser toolbars are used to detect and alert users they are visiting a malicious website, such

as a phishing website so the user can avoid the malicious website [13]. There are a variety of

methods used including blacklists, various signature detection mechanisms, and other heuristics

to detect malicious websites such as phish [13, 17]. Web toolbars depend on user confidence in

the tool bar to prevent them from visiting the phish. If the user does not believe or care about

the tool bar supplied warning they can override it and visit the malicious website anyway. An

evaluation of security toolbars showed that they do completely prevent phish attacks [18]. All of

the security toolbars detection mechanisms depend on timely updates to blacklists, signatures, or

heuristic signatures to effectively present users alerts against new novel phishing attacks. Web

toolbars are not enough to stop phishing attacks by themselves because they depend on user

awareness and timely updates.

2.3.6 Email Filters

Email filters attempt to detect and prevent the delivery of spam including spam containing phish.

Preventing the user from receiving the phishing advertisement keeps the victim from visiting

the phishing site. Email filters user a variety of mechanisms including blacklists, signature

detection, and heuristics to detect malicious emails. Like web toolbars, email filters depend upon

timely updates to the detection mechanism to prevent a user from receiving malicious emails.

Email filters will only stop email advertisements for phish. Phishing advertisements can also be

delivered via other mechanisms such as social media applications, malware redirections, and

DNS hijacking. Email filters alone do not stop phishing attacks and to be effective at preventing
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spam phishing advertisements depend on timely updates to the underlying detection mechanisms.

2.3.7 Criminal Prosecution

Prosecuting criminal behind phishing attacks attempts to decrease the number of criminals

performing phishing attacks and deter future phishers by raising the risk of phishing. Criminal

prosecutions are difficult to perform due to the number of parties that must be involved to

achieve a successful prosecution. Prosecuting phishing criminals holds promise as another

countermeasure that can add to the current countermeasures and present different challenges to

phishers [19]. Because of the nature of the internet, phishing can involve many different law

enforcement jurisdictions, companies, and individuals spread across the world. Often the main

barrier to criminal prosecutions is identifying the scale of the crime [19]. Aggregating phishing

activity and identifying likely suspects is a key problem in criminal prosecutions due to various

parties having different motivations [19]. Also, coordinating many different law enforcement

jurisdictions (often international) can be a problem. Recently there has been some hope for

jurisdictional cooperation, identification, and prosecution of phishers as seen with recent arrest

and prosecution of phishers [7]. Criminal prosecution of phishers faces many hurdles including

timely aggregation of phishers committing crimes. Quickly identifying and aggregating phishers

is one cornerstone to enabling effective prosecution of criminals.

2.3.8 Increasing Exploitation Difficulty

Increasing exploitation difficulty involves any technique that makes it harder to convert phished

credentials into system access or monetization them. These techniques are mainly within the

control of the institution being phished and involve increasing the security around intrusion

defense and detection.

Phishers can quickly monetize phished banking credentials on underground black markets.

This monetization does not involve interaction with the financial institution. Also, there is a

good chance the credential’s buyer or another party will attempt to monetize the credentials

via exfiltrating money from the account or making fraudulent purchases at some point in time.

Locating these black markets and shutting them down because of a violation of terms of service

or law enforcement action would help in decreasing incentives for phishers. Phishing attacks

against financial institutions often involve a direct path to monetization via fraudulent charges or
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exfiltrating money from the account. Phishing attacks against email providers can also result in

banking fraud. Financial institutions often require an email account be verified to reset online

banking credentials. Once a criminal has phished an email account, the criminal can search

the email history for any references to financial institutions and use the compromised account

to reset the online banking credentials. Phishing attacks against social media are not generally

able to be pivoted to banking fraud, except for instances like Google where email, social media,

and Google Wallet are all tied together via one username and password. Increasing exploitation

difficulty can be used to combat phishing financial institutions, email accounts, and system logon

credentials. There are a variety of techniques to increase exploitation difficulty for phished

credentials via increasing authentication effectiveness such as multifactor authentication, out

of band one time passwords, and others [20]. The goal is to make accessing the resource more

difficult and therefore more difficult to exploit. Some of these same techniques can be used to help

protect against exploiting credit card data in card present and card not present fraud. For example

having to input information on gas pumps such as the billing addresses zip code to help prevent

card present fraud or Verified by Visa that prompts the card user for a password to help prevent

card not present fraud. Data Analytics encompasses a number of different technologies to classify

transactions as valid or fraudulent based on information gathered from the transaction such as

frequency between transactions, the sender account, the receiver account, physical location where

the transaction is initiated, and other data [20]. Some of the different technologies utilized in data

analytics include statistical models, supervised machine learning, and non-supervised machine

learning [20–22]. Increasing exploitation difficulty is a mitigation countermeasure as it attempts

to prevent exploitation after credentials have been phished. For the Increasing Exploitation

Difficulty countermeasure to be effective it needs information about exploitation techniques used

in current phishing attacks.

2.4 Grouping Phish

Categorizing or Grouping phish provides a method to detect phish, enables efficient use of

countermeasures, and enables measurement of countermeasures against populations of phish.

Binary categorization enables detection and non-binary categorization enables efficient use of

countermeasures and measurement of countermeasures.
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Identifying a website as a phish or not a phish is a binary categorization. Products and

services exist that provide lists of verified phishing attacks [15]. These products and services

categorize a website as a phish or not a phish. These products and services are effective at

phishing detection.

Non-binary categorization can enable more than detecting phish. Phish can be grouped into

non-binary categories using shared or common characteristics. It allows phish to be grouped by

possible bad actors behind a phishing campaign, tactics used to advertise the campaign, tactics

used to avoid detection, motivations behind the campaign, etc.

Understanding the characteristics of a particular phishing campaign allows the selection of

the best countermeasure or combination of countermeasures based upon cost and effectiveness.

Once a countermeasure’s effectiveness and cost have been benchmarked against phish with a

particular characteristic the appropriate countermeasure or combination of countermeasures can

be chosen given the makeup of current phish and the willingness to accept the cost associated

with the chosen countermeasures. Grouping phish by common characteristics enables informed

use of countermeasures.

Grouping phish by common characteristics can be used to measure the effectiveness of

phishing countermeasures against a particular group of phish. All countermeasures are not

equally as effective at preventing or mitigating all types of phishing attacks. For example, email

spam filters can help mitigate spam based advertisements for phishing, but will not help mitigate

social media based advertisements for phish. Also, enacting phishing countermeasures is not

free of cost. The cost can be financial such as labor, software, and or hardware to implement

the countermeasure. The cost can be non-financial such as increased user frustration when a

countermeasure increases a user’s wait time or workload to complete an action. Grouping phish

by common characteristics allows measuring both the effectiveness and cost effectiveness of

countermeasures against a particular style of phish.

Criminal prosecution needs phish grouping to function. Grouping phish by suspected

criminal is required at several points during criminal prosecution. Law enforcement can only

pursue a limited number of investigations and cannot start an investigation for each individual

phish. Instead law enforcement need phish aggregated by the criminal suspected to be behind

the phish. Aggregating phish by the suspected criminal enables effective law enforcement

investigations.
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After an effective investigation is underway or completed, prosecutors need to be engaged

to move the process forward. Prosecution cannot move the process forward until jurisdictional

damage thresholds are met. These thresholds differ by jurisdiction. Enough monetary damage

must be incurred in a jurisdiction by a criminal or criminal group before prosecution will occur.

Aggregating phishing attacks by the criminal or criminal group and being able to assign the

monetary damage by jurisdiction is required. Phishing intelligence is required to enable effective

investigation and prosecution.

Malcovery Security currently uses an unsupervised machine learning algorithm to group

phish by several different shared characteristics. The result is categorizing websites as phish or

not a phish and categorizing phish by the brand it imitates. Non-binary phish classification is

needed to properly deploy phishing countermeasures, enable law enforcement actions, and enable

criminal prosecution.

2.5 Dissertation Goals

The currently observed phishing attack volumes make grouping phish via manual means uneco-

nomical. Automated methods to group phish need to be used to keep pace with the currently

observed volume of phish.

Automated methods that produce phish groupings faster enable quicker responses to phishing

attacks. Automated methods that group phish by common characteristics can benefit from

improved runtime.Automated methods can also run into hardware memory limitations when

trying to group large numbers of phish limiting the number of phish that can be grouped.

Automated methods that group phish by common characteristics can benefit from reduced

maximum memory requirements. Automated methods to group phish can benefit from improved

runtime and reductions in maximum memory consumption.

The goal of this dissertation is to improve the current state of grouping phish by improving

an existing method’s runtime and reducing the maximum memory requirements, while producing

similar clusterings without having to have specialty hardware or alter existing algorithms.
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CHAPTER 3

Related Work

The related work chapter is divided into three main sections. The first section covers existing

phishing detection and phishing categorization processes. The second section covers data mining

algorithms that have been applied to other research areas. The third section discusses areas where

data mining algorithms can be improved for use as phish grouping and categorization processes.

3.1 Phishing Detection and Phishing Categorization

Various automated methods or algorithms exist to group phish into binary categories to enable

detection and non-binary categories to enable phishing categorization. The existing algorithms

are classified based upon the type of phishing related data the algorithm utilizes. The two broad

areas of phishing related data used by existing algorithms are URL and phishing website content

data. The most recently published algorithms are reviewed.

3.1.1 URL Based

Gyawali et al.. [23] and Ma et al. [24] propose solutions to phishing identification by using

features that can be derived from a URL. These researchers demonstrated that URL-based

methodologies can identify phishing URLs with high accuracy; however, such techniques can be

avoided causing lower detection rates by shortening the phishing URLs or hosting the website in

the root directory. Phishing actors used to create domains on the same IP blocks, which Weaver

and Collins leveraged in a clustering algorithm using the IP address or hosting network to cluster

phish [16]. The researchers in Wardman et al. [25] suggest that domains compromised by the

same attack may indicate the same phisher. URL based methods are limited to only detecting

or grouping phish using a single type of data and cannot be easily adapted to use other types of

phishing related data.
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3.1.2 Content Based

Content-based approaches use the content of the website for detection. Dunlop et al. [26] presents

a method for determining the visual similarity between screenshots of phishing websites. Other

researchers have used components within the source code [27, 28]. Britt et al. [29] and Wardman

et al. [30] describe a structural analysis technique (DeepMD5) looking at local domain files to

create groups of related phish. Zawoad et al. clusters phish using the similarities in the drop

email addresses from kits found with the phish [31]. Content based methods are limited to only

detecting or grouping phish using a single type of data and cannot be easily adapted to use other

types of phishing related data.

3.2 Data Mining

The data mining algorithms found to be useful for phish grouping fall into one of two categories.

The first category is supervised machine learning and the second category is unsupervised

machine learning. Supervised machine learning algorithms are briefly reviewed. Unsupervised

machine learning algorithms are broken down into several different families of algorithms and

each family of algorithms is reviewed.

3.3 Supervised Machine Learning

Supervised machine learning is a broad categorization for machine learning algorithms that

require training data to develop models to predict labels for new data. Anecdotally I have

heard many researchers say that the worst part and biggest barrier to using supervised machine

learning is manually assigning labels for training data sets. Sampling small amounts of data for

training can decrease the amount of manual effort required to tag a training data set. However,

this introduces the possibility that the sampled data is not representative of the data set being

sampled. Unrepresentative training data samples can lead to the model working correctly for

the training data, but under performing on the testing data. This effect is known as over fitting.

Since the supervised learning develops models based on current data and identifying trends in the

current data it can be ineffective when new types of trends are introduced. To avoid this problem

retraining is required. Retraining involves manually labeling a new training data set and rerunning

the supervised machine learning algorithm. Supervised machine algorithms are also notorious for
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having long training run times. Having to retrain models involves more manual effort to tag new

training data sets and more run time as a new model is developed. The drawbacks of supervised

learning algorithms are the manual effort to tag training data, the susceptibility to over fitting

based on training data sampling, and run time issues from frequent retraining.

3.4 Unsupervised Machine Learning

Unsupervised machine learning is a broad categorization for machine learning algorithms that do

not require training data to predict labels for data. There are several subcategories of unsupervised

machine learning algorithms that are well suited for particular tasks. One example is frequent set

generation algorithms that are used to develop frequently seen sets of items in sets of transactions

such as market basket analysis. A particular subcategory of unsupervised machine learning

algorithms known as clustering algorithms can be used to classify data sets into non-binary

categories. Clustering algorithms classify data sets by grouping or clustering data into groups

or clusters based upon a distance metric applied to the data points and the particulars of the

clustering algorithm. The result is a sorting of a data set’s points into groups or clusters. The

resulting clusters can be used for categorization when the data points within a cluster share a

common label. The following subsections cover many of the different families of clustering

algorithms where each family approaches the clustering problem in a different way.

3.4.1 Partition Clustering

There are many different partition clustering algorithms. They all share a common characteristic

of clustering data points by repetitively sorting data points into clusters, applying an evaluation

metric, and updating the clustering until the evaluation metric meets a certain criterion. One

partition clustering algorithm that has relatively good scalability is CLARA (Clustering LARge

Applications). CLARA is makes use of data sampling. CLARA tries to choose suitable rep-

resentative data points out of all data points in the data set. The representative data points are

then fed into a standard partitioning algorithm called PAM [32]. Reducing the number of data

points being considered allows better scalability with respect to the number of data points. Using

representative data points could be a useful idea in reducing the runtime.
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3.4.2 Hierachical Clustering

Hierarchical clustering algorithms such as BIRCH [33], CURE [34], and Chameleon [35] use a

multi-phase approach to clustering [32]. In the first phase of clustering the algorithms cluster

relatively similar objects into small clusters or micro clusters and generate representatives or

summary information for each micro cluster. In the second phase one or more levels of clustering

are performed on the micro clusters using the representatives or summary information about each

micro cluster. The concept of micro-clusters varies between BIRCH, CURE, and Chameleon.

BIRCH’s micro-clusters summary information consists of the number of points, the sum of the

points, and the square sum of points. CURE’s micro-clusters summary information consists of

representative members of the micro-cluster shrunk towards the cluster centroid. Chameleon does

not capture summary information using its micro-clusters. It generates relative interconnectivity

between micro-clusters and relative closeness between micro-clusters. However, BIRCH, and

CURE micro-clusters can only represent numerical data. The Chameleon micro-cluster concept

can represent categorical data, but can have a quadratic runtime in bad cases.

3.4.3 Relational Data Classification and Clustering

Relational data classification and clustering attempts to classify or cluster richly structured data

that is in a relational database. In particular, relational data clustering’s goal is “to use our

knowledge about one object to reach conclusions about other, related objects” [36]. Three such

techniques that try to exploit relational data are described in Neville et al. [37], Tasker et al.,

and Xavier-Junior et al. [38]. Neville et al. performs classification on relational data by using

iteratively updated Bayesian classifiers based upon the database’s relational structure. In Tasker et

al., classification or clustering is performed by applying Bayesian learning to a relational schema

or skeleton that describes a database’s relations and attributes. A skeleton is developed to describe

the relational data. A Bayesian learning algorithm is then given the skeleton and a select amount

of relational data. A probability distribution (PRM) is then developed based upon the attribute

values over the skeleton using an inductive Bayesian learning algorithm to assign class labels. The

PRM is then used to assign class labels to the data not used to develop the PRM. Xavier-Junior

et al. describes a method to convert a relational database schema into a hierarchical structure

to allow for a distance measure to be computed between individual instances over the largest

number of shared attributes possible. The hierarchical structure and resulting distance metric can
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be used by standard classification and clustering algorithms, such as k-means and agglomerative

hierarchical clustering, as demonstrated by the authors. Relational classification and clustering

techniques try to leverage the format of relational databases to improve upon non-relationally

aware classification or clustering techniques. Relational classification and clustering techniques

must be aware of how each of the relations (tables) relate to each other. Relational data clustering

ideas may be useful when trying to develop relations between data from different user defined

data groups, different subsets of the same data sources, and different data sources that have fields

in common.

3.4.4 Dynamic Clustering

Dynamic clustering algorithms are clustering algorithms dealing with changing or dynamic

data. In dynamic data insertions and deletions happen rapidly causing issues with clustering.

Stream clustering can be viewed as a sub-genre of dynamic clustering because it “. . . can be

regarded to a certain degree as a degenerate case of an incremental database where the database

size is extremely small (the size of a window in a stream), and insertions and deletions arise

such that the current “database” content is completely replaced.” [39]. There are two general

directions followed when trying to solve the dynamic clustering problem [39]. The first direction

involves the creation of a new clustering algorithm that can handle dynamic changes. The second

direction involves the creation of a data compression or summarization algorithm followed by

the application of a standard clustering algorithm that has been minimally modified. Nassar et

al. describes the concept of data bubbles to be used to minimize the amount of re-computation

to regenerate a hierarchical clustering in a dynamic environment [39]. The technique sorts data

into a series of data bubbles and subdivides the data bubbles into regions. These regions are then

monitored for activity when additions and deletions occur. When an addition or deletion occurs

in a sub-region the affected data bubble is evaluated as to whether it is good or bad. If found to be

bad the data bubble goes into a merge and split pool with other bad data bubbles. The merge and

split pool of data bubbles is then merged and split to the data bubbles across the data so as to create

good data bubbles again. Nassar et al. presents mathematical analysis showing how effective

the data bubbles summarization is when applying a merge and split strategy to accommodate

non-static data. The data bubble concept could be leveraged when trying to parallelize clustering

processes to improve runtime and maximum memory consumption.
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3.4.5 High Dimensionality Clustering

There are various high dimensionality data clustering algorithms and flavors of these algorithms

can be found to perform clustering on data streams. High dimensionality clustering algorithms are

varied in their approaches. All are comparing data objects across many different dimensions. High

dimensionality clustering algorithms are optimized to deal with a large number of dimensions,

but otherwise are not different than other clustering algorithms. High dimensionality clustering

algorithms are applicable for use when clustering high dimensionality data.

3.4.6 Bi-Clustering or Co-Clustering

Usually clustering derives a global model, but biclustering produces local models [40, 41].

Applying normal clustering algorithms to microarray data can be used to globally tie conditions

together (columns) or globally tie genes together (rows). Applying biclustering algorithms to

microarray data can be used to tie a local subset of conditions (columns) to a local subset of

genes (rows). The individual genes (rows) and conditions (columns) can be present in multiple

clusters. So bi-clustering/co-clustering is creating local clusters of high dimensionality data.

Biclustering/co-clustering algorithms are useful when wanting to generate local clusters of high

dimensionality data, but not global clusterings.

3.4.7 Subspace Clustering

Subspace clustering generates clusterings on a subset of high dimensionality data. In [42] a

subspace clustering algorithm named SONAR is described. The algorithm is inspired by the way

active sonar pings are sent out and interpreted. SONAR “pings” the high dimensionality data

set using several runs of the expectation maximization (EM) algorithm to find multiple local

minima. The “pings” are then statistically compared to the various data objects and the results

are collected in a matrix. The response matrix generated from the pings is used in independent

component analysis (ICA) to identify the separation points between the data in various subspaces.

These split points are combined to generate a clustering of the data across various subspaces.

Subspace clustering algorithms are useful when dealing with high dimensionality data sets and

creating clusters across different dimensional subspaces.
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3.4.8 Multi-View Clustering

Multi-view clustering attempts to identify multiple clusterings of data unlike traditional clustering

that only attempts to find a single clustering [43]. In [43], a complex statistics modeling algorithm,

MVGen, is presented to identify clusters in different and sometimes overlapping subspaces.

MVGen utilizes a Bayesian framework modeling process to identify the various clusters and

various subspaces in which these clusters lie. Multi-view clustering is similar to subspace

clustering as both attempt to develop find important subspaces within high dimensionality data.

However, multi-view clustering can identify multiple important global subspaces and [43] can

identify multiple important local subspaces. Multi-view clustering is useful when trying to

develop multiple views of the same data.

3.4.9 Comparing Individual Clusters

Cluster generation and evolution analysis algorithms compare two clusters [44]. Cluster gener-

ation algorithms perform cluster comparisons in order to construct a clustering of data, while

evolution analysis algorithms compare clusters across a time axis to identify changes. In clus-

tering generation algorithms, a cluster comparison technique is used that implements a distance

metric to measure the distance between two clusters in order to generate a clustering of data.

There are distance metrics for numerical data like Euclidean distance and distance metrics for

categorical data like the Jaccard coefficient. There are various comparison techniques that use

distance metrics to determine a distance between two clusters. A few examples are the complete

linkage technique that uses the largest distance between elements in the two clusters, the average

technique that uses the average distance between all the points in the two clusters, and the centroid

technique that measures the distance between cluster centroids. Evolution analysis algorithms

compare two clusters to determine the amount of change over time. A particularly interesting

evolution analysis algorithm example is presented by Charu Aggarwal [45]. Aggarwal outlines an

evolution analysis algorithm that identifies data density changes as well as the magnitude of the

changes. Two clusters’ data points are plotted and density is computed at several corresponding

locations. The density distributions are then compared to identify changes in density, magnitude,

and direction. Cluster comparison techniques are useful when trying to compare two clusters.
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3.4.10 Comparing Sets of Clusters

There is existing work used to compare one clustering (a set of clusters generated by a particular

clustering algorithm) to another clustering based upon data commonality and/or cluster structure

commonality [44, 46]. There are two flavors of clustering comparisons algorithms. The first

flavor compares clusterings generated from the same set of data points with the same attributes

(homogenous data from the same window) and the second compares clusterings generated

from different sets of data points that have the same attributes (homogenous data from different

windows). The first flavor of comparing clusterings is used to evaluate the quality of one clustering

algorithm over another and can be used in clustering algorithms that attempt to converge on a

best clustering solution. Examples include the RAND index, the Jaccard coefficient, and other

mentioned by in Meila et al. [46]. The second flavor is useful in distributed data mining when

trying to group together similar clusterings and when trying to determine pattern wide changes

over time. Examples include the FOCUS and PANDA frameworks [44]. Clustering comparison

techniques can be used to measure similarity and differences between clusterings. Cluster set

comparison techniques based upon data commonality or cluster structure commonality are useful

when trying to compare sets of clusters or clusterings.

3.4.11 Mining Heterogeneous Data

There are algorithms in recent literature that perform data mining tasks on heterogeneous data.

Two such algorithms are one-sided convolutional nonnegative matrix factorization (OSC-NMF)

presented in Wang et al. and contingency table based clustering in Hossian et al. [47, 48].

The OSC-NMF algorithm performs temporal pattern mining on medical records for individual

patients, groups of patients, and multiple groups of patients. The patient data consists of a wide

variety of time stamped heterogeneous data types including vital signs, immunizations, laboratory

data, radiology reports, etc. The OSC-NMF algorithm can generate temporal sequence patterns

for individual patients using only an individual patient’s history, group temporal sequence patterns

using a group of similar patient histories, and cross group temporal sequence patterns using

several groups of patient histories. OSC-NMF generates temporal sequence patterns by viewing

patient histories as an event matrix where rows are heterogeneous data types and columns are time

windows. OSC-NMF assumes the patient matrices can be expressed as a series of reoccurring

concatenated event sequences. OSC-NMF determines the reoccurring sequences using matrix
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decomposition. The result is a set of temporal event sequences. The OSC-NMF algorithm is

limited to mining sequential patterns. Contingency table based clustering presented in Hossian

et al. clusters two sets of data over different data types, heterogeneous data, using relationships

between the two sets of data and various other attributes. The clusterings are generated by

sorting points into clusters to optimize, maximize or minimize, connection strengths between

heterogeneous data. When maximizing connection strengths the goal is to have points in a cluster

that only have relationships to data points in a single heterogeneous data cluster, which they

call dependent clustering. When minimizing connection strengths the goal is to have points in

a cluster that have relationships to data points in all heterogeneous data clusters, which they

call disparate clustering. The algorithm performs the dependent or disparate clustering by first

creating a prototype grouping for each data type using k-means. A contingency table showing

the relationships between groups is generated where groups from one data type are represented

as rows,V, and groups for the other data type are represented in the columns,W. The relational

strength between two groups V and W is in the contingency table entry, VW. Once the contingency

table is created an optimization cycle is started to re-arrange group membership and improve the

dependent or disparate strengths between groups in V and W. The algorithm also includes several

restarts to help to avoid local minima and maxima in the optimization problem. An advantage

of dependent or disparate clustering is that it does not have to be limited to heterogeneous

data. Homogeneous data can be considered a degenerate case of heterogeneous data as creating

relational links between homogeneous data shouldn’t be any harder than creating relational

links between heterogeneous data. A disadvantage of dependent or disparate clustering is that

it is limited to creating clusters for pairs of heterogeneous or homogeneous data. It becomes

problematic to utilize dependent or disparate clustering when there are more than two windows.

Performing dependent or disparate clustering on three data sets requires the re-clustering of two

data sets if relating all three data sets to each other. Dependent or disparate clustering is best

used when relating only a pair of data sets. In [49] the MVSim architecture is described. MVSim

utilizes a co-similarity algorithm on multiple similarity matrices between different data types to

generate relations between the different data objects. The data object relational strength output of

the MVSim architecture allows for the application of a generic clustering algorithm to generate

clusters between different data types. The MVSim architecture gives a method that enables

generic clustering algorithms to cluster heterogeneous data based upon relations between the
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heterogeneous data. The MVSim architecture’s generation of similarity matrices between data

sets allows it to handle more than a pair of data sets, unlike dependent or disparate clustering

presented in Hossain et al. The MVSim architecture has an n squared runtime complexity

with a coefficient equal to the number of data sets to be related. However, it is also built with

parallelization in mind and can be configured to allow each data set comparison to be run on a

separate processor or core. Thus the coefficient applied to the n squared runtime is removed. The

heterogeneous data mining methods presented in Wang et al., Bisson et al., and Hossian et al. are

interesting algorithms that are useful when trying to mine temporal event sequences and creating

dependent or disparate clusterings. Ideas used in Wang et al. and Bisson et al will be useful when

constructing relations between clusters and clusterings. Adding a preprocessing step would allow

MVSim to work with groups of data points instead of single data points and develop relational

strengths between data groups or sets of data groups.

3.5 Improvements

Current phishing detection and phish grouping process cannot be easily adapted to incorporate

different types of phishing related data. Developing a general method to handle phishing related

data can be accomplished using machine learning algorithms. Each machine learning algorithm

presented has its own particular advantages and disadvantages. Existing phishing phishing

detection and phish grouping can produce high quality results but sacrifice runtime.

There are ideas in various algorithms that can be combined to improve runtime and reduce

maximum memory consumption, while maintaining the quality of the results produced. The

various families of clustering algorithms contain useful ideas when trying to meet the goals of

this dissertation.

Scalability issues mainly concerned with runtime can be overcome by creating small sub

problems that can be solved in parallel by different hardware as seen in MVSim [49]. Hossian et

al presents a method to cluster homogenous and heterogeneous data using dependent clustering,

which can be used to compare data points from different sub problems generated from parallel

processing [48].

The ideas found in hierarchical clustering and the idea of data bubbles in Nassar et al provides

a conceptual method that is adaptable and can be used to unite clusters from different data sets

22



to create a global clustering of many smaller data sets [39]. Combining ideas and strategies

in the various data mining algorithms leads to the creation of a new tool called the Simple Set

Comparison tool that improves runtime and reduces maximum memory consumption, while

producing high quality results.

23



CHAPTER 4

Algorithm

The SSC tool is a method that can be applied to a clustering algorithm to reduce the algorithm’s

runtime and maximum memory consumption. The SSC tool uses a multi-step approach incor-

porating ideas from several unsupervised machine learning algorithms. Its multi-step approach

is similar to hierarchical clustering. When applied to the SLINK style clustering algorithm

used for phish grouping by Malcovery security it reduces the runtime and maximum memory

consumption, while producing comparable results.

The SSC tool consists of four broadly defined steps. The four broadly defined steps are

creating windows, clustering windows, comparing windows, and merging windows. In the first

step, a user specifies chronological division points in the phishing data set. These chronological

divisions are used to create single windows and cross windows. A single window consists of all

data points within a single chronological division and all relationships between data points within

the single chronological division. A single window is created for each chronological division.

A cross time window consists of all data points in two different single time windows and

only the relationships between data points from the two different single time windows. A cross

window is created for every combination of user specified single time windows.

In the second step, the single and cross windows are clustered independently of one another.

All single and cross window clustering processes can be run in parallel. The second step results

in a clustering for each window.

The third step compares clusters from single windows to clusters in cross windows that

utilize data points from the single window. The cluster comparison is based upon shared cluster

members. The cluster comparisons between overlapping windows can be run in parallel. The

third step results in a cluster similarity graph, where clusters from the windows are nodes and

edges are based upon the number of shared members between single window clusters and cross

window clusters.
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The fourth step runs a clustering algorithm over the cluster similarity graph to merge similar

clusters. The result is a clustering of the entire data set.

The SSC tool takes advantage of parallel processing in the second and third steps. To be

able to process a large data set in parallel the data set must first be subdivided or partitioned. The

phish and kit data is tagged with a received time which allows partitioning on a chronological

basis. The parallel processing in steps two and three are the key to reducing the runtime and

reducing the maximum memory consumption for the clustering algorithm. Next each of the four

steps are covered in more detail.

4.1 Creating Windows

The data set is subdivided into windows. As well as single windows, windows incorporating

two single windows are created, which are called cross windows. Cross windows are created for

every combination of single windows. For example a single data set could be divided into four

windows, A, B, C, and D. The four single windows would be A, B, C, and D. There would be six

cross windows A:B, A:C, A:D, B:C, B:D, and C:D.

4.2 Clustering Windows

The phish and kit single windows and cross windows are clustered by comparing phishing

websites using the Deep MD5 method as a similarity score and a SLINK clustering algorithm

to sort the phish into groups based upon their similarity scores [50, 51]. Deep MD5 generates a

score based upon file set similarity using the MD5 message digest algorithm to create a hash for

each file in the file set [52]. Deep MD5 generates a score using the count of candidate one’s files

(count1), the count of candidate two’s files (count2), and the number of matching MD5 values

between candidate one and candidate two (overlap).

Kulczynski2Coefficient = 0.5(overlap

count1 ) + 0.5(overlap

count2 ) (4.1)

A Kulczynski 2 coefficient, 4.1, is then applied to count1, count2, and overlap to generate the

Deep MD5 score with a value between 0.0 and 1.0. For example two websites, website X and

website Y, could be compared using Deep MD5. If website X’s html code makes references to
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files a,b,c,d,e and website Y’s html code makes references to files a,b,f,g then the overlap count

between the two websites’ file sets is two (overlap). Website X’s file count is five (count1) and

website Y’s file count is four (count2). Then the Deep MD5 score is 0.5(2/5) + 0.5(2/4) or 0.45.

The cross windows that incorporate phish and kit data are compared using a a Simpson

coefficient instead of a Kulczynski 2 coefficient. The Simpson coefficient is used to connect phish

to kits because when fetching the phishing website only the web facing content can be collected.

Downloaded phishing kits contain not only the web facing content, but also all of the server side

content. A phishing website created from a particular kit will have at most the same number

of files as the kit, but often it will have fewer. Introducing the kit files would introduce server

side files that cannot be contained in the phish and dilute the similarity score. The similarity

score should not incorporate the total number of kit files. The similarity score of a phish to a

kit should only be based upon how many of the files found in the phish are contained in the kit.

The Simpson coefficient uses the smaller of the two file set counts as its denominator instead of

both the phish and kit file set counts like the Kulczynski 2 coefficient. The smaller file set count

should be the file set count for the phish.

SimpsonCoefficient = overlap

smallestset
(4.2)

The Deep MD5 score is modified by changing out the Kulczynski 2 coefficient for a Simpson

coefficient in equation 4.2. The number of matching files between the two sets is still used as

the numerator. The difference between the Kulczynski 2 and the Simpson coefficients is the

denominator. The Simpson coefficient uses the smaller of the two set sizes (smallest set) as its

denominator. After the similarity scores are generated the results are feed to a SLINK clustering

algorithm. The SLINK clustering algorithm is a graph theoretic clustering algorithm. The graph

has vertices of phishing websites and for each pair of vertices there exists a deep MD5 similarity

score. Edges where the similarity score meets or exceeds a threshold are kept and edges not

meeting the minimum threshold are discarded. An analysis of Deep MD5 scores between phish

showed good matching results between the threshold values 0.5 and 0.75 with very little change

[51]. A 0.6 value is chosen as a middle ground between the high and low end threshold values.

After all edges not meeting the minimum threshold have been pruned, the SLINK clustering

algorithm turns connected components into clusters.
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FIGURE 4.1: Similarity Score Generation for Single Time Windows A and B

Each single window is clustered by generating similarity scores for all phish from a single

window and then applying a SLINK clustering algorithm. Figure 4.1 shows similarity scores

being generated for two single windows before the clustering algorithm is applied.

FIGURE 4.2: Similarity Score Generation for Cross Time Windows A and B

The six cross windows are clustered by generating a similarity score for all phish from one

window compared to another window and applying a SLINK clustering algorithm. Phish from

the same window are not compared, only phish from different windows are compared. Figure 4.2

shows similarity scores being generated for a single cross window before the clustering algorithm

is applied. Clustering the four single time windows and six cross windows can be performed
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independently of one another, allowing all clustering processes to be run in parallel instead of in

sequence.

4.3 Comparing Windows

The cross window clusters are used to merge clusters from single windows together. Clusters

from single windows are compared to clusters from overlapping cross windows. The clusters

are compared by counting the number of members shared between the two clusters (overlap)

divided by the total number of members in the single window cluster (count1) resulting in a score

between 0.0 and 1.0.

ClusterMembershipSimilarity = overlap

count1 (4.3)

The cross window’s size is not included as it will dilute the similarity score. Because the

cross window clusters can incorporate members from two windows they are generally much

larger. Each single window to cross window comparison can be run independently of one another.

Comparing windows can be performed in parallel. Comparing windows based upon shared

cluster members results in a cluster similarity graph for all clusters from all windows.

4.4 Merging Clusters

A clustering algorithm is then run over the cluster similarity graph to merge similar clusters.

The same SLINK clustering algorithm used in step two is used here in step four. The clustering

algorithm used in this step of the SSC tool is interchangeable. The only requirement is the

clustering algorithm takes an edge based representation of a graph and produce non-overlapping

clusters.

4.5 Computational Complexity

The SSC tool leverages parallelization in steps two and three to reduce runtime and maximum

memory consumption, but step four is not run in parallel. Step two creates additional copies

of the clusters in the single time windows via cross time windows clusters. Since step four

is not parallelized and the number of clusters that it needs to cluster has been increased the
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computational complexity may increase because of the use of the SSC tool. The fear is this may

lead to a squaring of the computational complexity. Other factors need to be incorporated to limit

the computational complexity growth. The computational complexity of the clustering algorithm

without the SSC tool is used as a baseline and compared to the computational complexity of

the SSC tool applied to the same clustering algorithm. The clustering algorithm’s runtime and

the clustering algorithm runtime using the SSC tool are both assumed to be dependent upon the

number of data points to be clustered. To determine the number of data points it is assumed that

all windows will have approximately the same number of data points. In any given window, W, it

is assumed the number of data points, k, will be approximately the same. The number of data

points in a data set is kW. The computational complexity for the clustering algorithm without

using the SSC tool is the computational complexity to generate a clustering for the entire data set.

C(x) is defined to be the computational complexity of the clustering algorithm, on x data points.

The number of data points, x, will then be kW. However, as k is a constant it can be removed.

Therefore the computational complexity for the clustering algorithm is:

C(W ) (4.4)

The computational complexity for the clustering algorithm using the SSC tool will be the

computational complexity of the highest growth step out of the four steps. The first step, creating

windows, is assumed to be determined before the SSC tool is run and would not be accounted for

in the computational complexity. The second step is clustering windows. Each of the windows is

clustered independently, so each window can be run in parallel. Since the windows are clustered

in parallel, the computational complexity will be the window that has the largest number of data

points. Single windows consist of only a single window’s data points whereas cross windows

consist of the data points for two single windows. Therefore, the largest number of data points

occurs in cross time windows. A cross time window is assumed to have the longest runtime. The

number of data points to cluster is 2k. Since 2k is a constant the second step, clustering windows,

is constant and will not grow with an increase in the number of windows.

The third step is comparing windows. Each of the cross windows is compared to the two

single windows that it overlaps. Each window comparison is performed independently and

assumed to be performed in parallel. Since the window comparisons are performed in parallel
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the window comparison with the most points will have the highest computational time. Each

single window has k data points and each cross window will have 2k points. Since k and 2k are

constants the computational complexity for the third step, comparing windows, is constant as

long as there are enough processes available to scale with the increasing number of windows.

The fourth step is merging windows. The similarity graph generated from comparing

windows is used to cluster the clusters generated in step two, clustering windows. There are no

independent pieces when merging windows. Merging windows cannot be performed in parallel.

To compute the input size the number of data points in the windows to be merged needs to

be determined and the number of windows to be merged. Each window has k data points and

each cross window has 2k data points. Since merging windows involves merging clusters from

different windows and not data points a constant reduction percentage, r, is used to represent the

reduction in the number of data points as they have been merged into clusters in the clustering

windows step. Therefore each single window has rk data points and each cross window has 2rk

data points. Next the number of single windows and cross windows needs to be determined.

There are W single windows and W(W-1)/2 cross windows. The number of cross windows,

once constants are removed, is W 2. The number of data points in single windows is Wrk and

the number of cross window data points is W 2rk. Therefore the number of clusters is Wrk +

W 2rk. Since rk and 2rk are constants they can be removed. Also, W 2 is the dominate growth

rate compared to W. So the linear growth rate of W can be removed. The result is the input

growth being governed by W 2, quadratic growth rate.

To remedy the quadratic growth rate the number of cross windows needs to be limited.

Limiting the number of cross windows involves limiting the number of single windows to which

any given single window can be compared. Limiting each single window to being compared to a

constant number of other single windows, b, will solve the issue as there will only be bW cross

windows instead of W 2. As b is now a constant it can be removed, resulting in W. Assuming the

computational complexity of merging windows is C(x) where x is the number of data points the

computational complexity is:

C(W ) (4.5)

The first step, creating windows, is assumed to not affect the computational complexity as it

is performed before the process is run. The second step, clustering windows, has a constant
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computational complexity. The third step, comparing windows, also has a constant computational

complexity. The fourth step, merging windows, has a linear computational complexity once a

limit, b, is used as an upper bound to the number of single windows to which any given single

window can be compared. The largest computational complexity growth rate out of the four steps

is the linear growth rate of the fourth step, merging windows. The computational complexity

of the SSC tool is linear, which is the same as the traditional clustering algorithm’s growth

rate. However, limiting the number of cross windows limits the number of single windows to

which any other single window can be compared. Limiting the single window comparisons to

b will only limit the results when the number of windows is larger than b. Therefore when the

number of windows is less than b every single window will be compared to every other single

window. However, when the number of windows is greater than b every single window will not

be compared to every other window and may result in clusters from different windows that should

be merged failing to merge. We have not investigated and determined an ideal value for b.
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CHAPTER 5

Experiments

Four experiments with real world phishing data are carried out to compare how a SLINK style

clustering algorithm using SSC tool compares to the SLINK style clustering algorithm without

the SSC tool.

The four experiments will evaluate the SLINK style algorithm using the SSC tool compared

to the SLINK style clustering algorithm without the SSC tool. The evaluation is based upon the

ability to process all of the data without exceeding maximum available memory, the runtime it

takes to produce a clustering, and the quality of the clustering produced.

The first and second experiments use a memory hungry implementation of the SLINK style

algorithm that loads all data points and all edges between data points into main memory. The

third and fourth experiments use a memory lean implementation of the SLINK style algorithm

called Union-Find that loads all of the data points and iterates through all edges only loading

a single edge into main memory at any given time. The experiments involve real world data

collected and labeled by a security company, Malcovery Security.

5.1 Data Set Overview

The data sets for the four experiments have been gathered by a security company, Malcovery

Security and provided to the author. The data set for the first experiment consists of phish

gathered over a one month period. The data set for the second experiment consists of phish and

phish kits gathered over a six month period. The data set for the third experiment consists of

phish data gathered over a one month period. The data set for the fourth experiment consists of

phish data gathered over a six month period.

5.1.1 Phish Data

The Malcovery Security phish data mine gathers phishing URLs from a large spam-based URL

provider, a large anti-phishing company, and a number of other feeds including private companies,
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security companies, and financial institutions. The URLs are either URLs contained in spam

advertising phish or URLs reported by the public to fraud alert email addresses. The data set

favors financial institutions and under represents gaming and social media phish when compared

to other phishing collections. A number of methods are used in the industry to count phish. Some

methods count distinct URLs. If there is any randomization in the host name, directory path, or

arguments it leads to ‘over-counting’. Cases where this occurs include wild-card DNS entries,

per user customized URLs, or virtual hosts allowing the same directory path for multiple domains

to resolve to a single IP address. A conservative counting approach that attempts to de-duplicate

URLs leading to the same phishing content is used by Malcovery Security.

The phishing data consists of all files referenced in the phishing website. The website files

were fetched using an automated web crawler that makes use of a firefox mechanization tool

[53]. After the files were downloaded, a hash value is generated for each file using the MD5

hashing algorithm. Screenshots and the domain information were manually reviewed to determine

whether the potential phish was a phish. The phish data used only consists of confirmed phish.

5.1.2 Kit Data

The Malcovery Security kit data mine collects suspected kits by searching confirmed phishing

URLs for zip files. Each confirmed phishing URL is scanned starting from the domain level up

to the last directory in the URL. At each level the most common kit names and most common kit

names for the confirmed phish brand are appended onto the current directory level and attempted

to be fetched. If the fetching attempt is successful the zip file is downloaded and stored locally.

Once the suspected kit zip file is stored locally an attempt is made to unzip the file. If successfully

unzipped all unzipped files are hashed using the MD5 hashing algorithm. The unzipped files

from the suspected kits are manually reviewed to determine if the suspected kit is a kit. The

presence of an html page imitating a known brand and/or script pages used to create emails with

phished credentials are indicators that a suspected kit is a kit. The kit data used only consists of

confirmed kits.

5.2 First Experiment

The first experiment compares a memory hungry implementation of the SLINK algorithm using

the SSC tool to a traditional clustering algorithm, SLINK.
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The first experiment consists of phish data gathered over the course of a one month period.

The first experiment also compares several different merging thresholds for the SSC tool’s step

four, merging windows, based on the quality of the results produced. By comparing the quality

of the results produced the best merging threshold can be determined.

5.2.1 Data Set

Brand Count
Tech Company 1 3815
Telecom Company 1 1720
Tech Company 2 1484
Financial Institution 2 1435
Financial Institution 3 829
Tech Company 3 786
Tech Company 4 709
Financial Institution 4 657
Tech Company 5 589
Financial Institution 5 529

TABLE 5.1: Ten Most Phished Brands

The one month data set consists of 19,825 confirmed phishing sites collected between

September 1st 2014 and September 30th 2014 and does not include phishing kits. There are

a total of 245 different brands attacked by phishing websites in the one month data set. The

phishing websites are represented by MD5 hash values for the main html phishing website and

all files that are referenced by the main html page. The referenced files include image files, script

files, style sheets, etc on the same domain as the phishing website and on other domains. Table

5.1 shows an anonymized by sector listing of the 10 most phished brands in the data set.

5.2.2 Results

Before the SLINK algorithm using the SSC tool can be compared to the SLINK algorithm

without, a threshold needs to be established for step four, merging clusters, in the SSC tool.

The SSC tool merging thresholds are compared using three evaluation metrics: homogeneity,

completeness, and V-measure.

After a merging threshold has been selected, the SLINK algorithm using the SSC tool is

compared to SLINK algorithm without using the SSC tool on both quality measurements and on
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runtime. The same Simple Set Comparison tool merging threshold found to be most effective in

the one month test is used in the second, third, and fourth experiments.

5.2.2.1 Merging Thresholds

Before a complete clustering can be produced using the SSC tool a merging threshold used in step

four, merging clusters, must be established. Various SSC tool merging thresholds are compared

and evaluated on clustering quality metrics as seen in table 5.2. The clustering quality is measured

using three different entropy based metrics; homogeneity, completeness, and V-measure [54].

All three measures are based upon evaluating the clustering results compared to a ground truth

label assigned to all data points. The ground truth label assigned to the data points represents a

perfect clustering of the data set. The three different measures evaluate how close to a perfect

clustering is created. The ground truth label used is the phish brand. Homogeneity evaluates how

well the clustering is at placing members that should be in the same cluster in the same cluster. A

perfect homogeneity score is achieved when all clusters only contain members with the same

label. Completeness evaluates how close to perfect the clustering came to determining the correct

number of clusters. A perfect completeness score is achieved when there is only one cluster for

each label. V-measure is the harmonic mean of the homogeneity and completeness scores, a

blend of homogeneity and completeness scores. An exact definition for all three entropy metrics

is found in the appendix section. A more detailed explanation for all three metrics can be found

in Rosenberg et al [54]. The number of clusters created is also included in table 5.2.

Threshold Number Clusters Homogeneity Completeness V-Measure
0.001 1,248 0.9871 0.6778 0.8037
0.1 1,281 0.9872 0.6761 0.8025
0.2 1,321 0.9872 0.6739 0.801
0.3 1,324 0.9872 0.6729 0.8003
0.4 1,332 0.9872 0.6716 0.7994
0.5 1,332 0.9872 0.6716 0.7994
0.6 1,335 0.9873 0.6702 0.7984
0.7 1,368 0.9866 0.6683 0.7969
0.8 1,377 0.9851 0.6641 0.7934
0.9 1,386 0.9845 0.6606 0.7907
1 1,416 0.985 0.6352 0.7723

TABLE 5.2: Simple Set Comparison Tool Clustering Quality Measures
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The Simple Set Comparison tool is evaluated over eleven different thresholds ranging from

0.001 to 1.0. These ranges are chosen as the smallest and largest thresholds to evaluate because

the smallest cluster similarity score found above 0.0 is approximately 0.0094 and the largest

cluster similarity score is 1.0. The other thresholds range from 0.1 to 0.9 with 0.1 increments to

get the best coverage without an exhaustive search of all threshold values.

The cluster quality measures stay very consistent across the thresholds. As the threshold

increases the homogeneity scores only changes in the third and fourth decimal places. Oddly

though the homogeneity scores rise slightly until the 0.6 threshold and then fall slightly until the

1.0 threshold. This may be due to an unusual breakdown of good similarity clusters at very high

thresholds. The completeness score decreases slightly but consistently from the 0.001 threshold

to the 1.0 threshold. The V-measure score that measures the tradeoff between homogeneity

and completeness slightly decreases from the 0.001 to the 1.0 threshold. The degradation of

completeness without a corresponding improvement in homogeneity begins at 0.3. The relative

degradation of the clustering is also reflected in the declining V-measure score from the 0.3 to

0.4 thresholds. The clustering result produced by the 0.3 merging threshold is chosen as a best

representative to compare to the traditional clustering algorithm on clustering quality as it is the

point where a degrading completeness score does not result in an improvement in homogeneity.

5.2.2.2 Quality Comparison

Now that a particular merging threshold has been set for the SSC tool it can be used in combination

with the SLINK algorithm to produce a clustering of the one month phish data set. The clustering

quality is measured using the same three entropy based metrics as used previously; homogeneity,

completeness, and V-measure [54]. The number of clusters created is also included.

The 0.6 threshold value used in SLINK algorithm is the same value used in step one of the

SLINK algorithm using the SSC tool. The 0.6 threshold should serve as a good benchmark. As is

noted in a Deep MD5 evaluation paper [51] there is little difference between the 0.5 and 0.75

DeepMD5 threshold values.

Figure 5.1 compares the quality of the clusterings produced. Comparing the clustering quality

measures shows almost no differences as the homogeneity, completeness, and V-measure scores
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FIGURE 5.1: Comparing quality measures for SLINK with and without using the SSC tool.

are all relatively similar. SLINK without the SSC tool produces a slightly better completeness

score. There are negligible differences between the quality of clusterings produced.

5.2.2.3 Anecdotal Comparison

An anecdotal comparison of the ten largest clusters generated by SLINK with and without the

SSC tool is presented in table 5.3.

Cluster Brand SLINK Cluster Size Simple Set Comparison Tool Cluster Size
Telecom Company 1 1291 1291
Tech Company 1 915 915
Financial Institution 3 794 794
Financial Institution 2 770 770
Tech Company 3 637 637
Tech Company 2 567 567
Tech Company 1 365 365
Financial Institution 6 303 303
Telecom Company 1 303 303
Financial Institution 4 302 302

TABLE 5.3: Ten Largest Clusters Produced By SLINK With and Without the SSC Tool

SLINK with and without the SSC tool produces the same ten largest clusters. Meaning, both

sets of ten clusters are perfectly homogeneous, have the exact same cluster sizes, and have the

same brand label. The individual phish that make up both of the sets of ten were not compared to

determine if they have exactly the same phish contained in each corresponding cluster.
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5.2.2.4 Runtime

The total runtime for SLINK using the SSC tool is computed by adding the runtime for each of

the four steps together. There is no runtime spent for the first step as the chronological dividing

points for each time window are chosen before the tool is run. The second step is run in parallel,

ideally each clustering process is run on a separate machine; the runtime for step two will be the

longest runtime out of the group. The third step’s runtime is the longest comparison runtime out

of all single to cross time window comparisons. Since the third step is run in parallel, ideally each

comparison process is run on a separate machine; the runtime for step three will be the longest

runtime out of the group. The fourth step is not parallelized. The fourth step’s runtime will be the

runtime it takes to assemble a global clustering out of the cluster similarity graph generated in

step three. The parallel clustering processes run in step two have the largest runtimes out of all of

the steps and their runtimes are presented in figure 5.2.

FIGURE 5.2: Clustering Runtimes for Single and Cross Time Windows

Clustering the single time windows takes between three minutes for the fastest and twelve

minutes for the slowest. Clustering the cross time windows takes between almost seven minutes

and almost fourteen minutes. The longest runtime out of the group is cross window 1:2 at almost

14 minutes, 836,108 milliseconds. Step two, comparing single to cross time window clusters,

took very little time. All twelve of the comparisons took only 640 milliseconds combined.

The longest comparison took 93 milliseconds and the shortest took 31 milliseconds. Step four,

merging time windows, is not parallelized and has a single runtime of 1,324 milliseconds. Adding
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the longest runtime for step two (836,108 milliseconds), the longest runtime for step three (93

milliseconds), and step four’s runtime (1,324 milliseconds) results in a total runtime of almost

fourteen minutes (837,525 milliseconds). The biggest contributor of total runtime comes from

step two, clustering windows. The traditional clustering algorithm took over eight and a half

hours, 31,044,322 milliseconds, to complete. The SSC tool’s runtime is more than 37 times faster

than the traditional clustering algorithm’s runtime. There is almost no difference between the

quality of clusterings produced by the SSC tool and traditional clustering. The runtime is the

biggest difference between the two. The SSC tool is more than 37 times faster at producing

results for the monthly dataset.

5.3 Second Experiment

After a merging threshold has been established for the SSC tool in the one month data set and the

results compared, an experiment on six months of data was performed. The six month data set

used in this experiment has been provided by Malcovery Security, the same security company

that provided the one month data set. Unlike the one month experiment, the six month experiment

includes two different data sources, phish data and phishing kit data. Other differences between

the two experiments are described next followed by the results.

There are several differences between the one month experiment and the six month experi-

ment. Some of the differences are based upon lessons learned from the one month experiment.

Other differences are necessitated because of the increased volume of data used in the six month

experiment.

5.3.0.1 SLINK Implementation

The SLINK implementation used in the first experiment could not be used without the SSC

tool. Several attempts were made to use the SLINK implementation. However each attempt

failed with a java error message of “java.lang.OutOfMemoryError”. Increasing the amount

of memory available to java via command line arguments up to 8 gigabytes of memory did

not solve the problem. Instead a new implementation of the SLINK algorithm was created

using plpgsql to create a postgres database function that implements the SLINK clustering

algorithm. Implementing the SLINK algorithm inside of the database as a database function
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was chosen because it allows for the creation of an algorithm that limits the amount of required

memory and shifts the costs to runtime. However, this concession had to be made as the memory

requirements of the original java implementation when using six months of data exceeded the

hardware limitations. The postgres function implementation of the SLINK algorithm is only

used for the SLINK traditional clustering benchmark on the six month data set. The java SLINK

implementation is still used for the SLINK with the SSC tool.

5.3.0.2 Comparing Windows

The experiment on one month of phishing data showed some steps in the SSC tool benefited

more than others when run in parallel. The SSC tool clustered the monthly data set in 837,525

milliseconds. Most of the runtime comes from the second step, clustering windows, which took

836,108 milliseconds. The third step, comparing windows, only added 93 milliseconds to the

runtime. If the third step was not run in parallel, but run in sequence it would have added only

640 milliseconds to the runtime or less than 1% to the overall runtime. When comparing clusters

there is some manual overhead with setting up and tracking each of the parallel processes. Since

comparing clusters in parallel versus in sequence did not significantly add to the runtime in the

first experiment in the second experiment comparing clusters is performed in sequence.

5.3.1 Data Set

Unlike the first one month experiment the six month experiment consists of both phish and kits.

The phish and kit data for the six month experiment are also provided by the security company

Malcovery. The following is a description of both the phish and phish kit or kit data.

5.3.1.1 Phish Data

The phish data was gathered from July 1st 2014 to January 11th 2015 and consists of 130,690

phishing websites covering 427 different brands. The phishing websites are represented by MD5

hash values for the main html phishing website and all files that are referenced by the main html

page. The referenced files include image files, script files, style sheets, etc on the same domain as

the phishing website and on other domains.
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Brand Count
PayPal 43,632
eBay 8,543
Bank of America 7,281
Yahoo 6,864
SFR.com 4,639
Alipay 3,527
Generic Email 3,476
Bradesco Internet Banking 2,988
Taobao 2,835
Wells Fargo 2,679

TABLE 5.4: Ten Most Phished Brands

The data set has been provided and manually tagged by Malcovery Security. The ten most

phished brands are listed in table 5.4. The label “Generic Email” is used to describe phish

targeting many different email providers using a single phish.

5.3.1.2 Kit Data

Brand Count
PayPal 274
Generic Email 146
Wells Fargo 59
Bank of America 39
Yahoo 37
Sparkasse 29
SFR.com 18
Apple 17
Chase Bank 17
AOL 15

TABLE 5.5: Ten Brands with the Most Phish Kits

The kit data set was gathered from July 1st 2014 to January 11th 2015 and consists of 906

kits covering 90 different brands. The kit data consists of MD5 values for all files contained in

the kit zip file. The kit data was gathered by Malcovery Security using the practices described

earlier for gathering kit data. The ten brands with the most phish kits are listed in table 5.5.

5.3.2 Results

Now that the SSC tool merging threshold has been established in the one month experiment the

same merging threshold is used for the six month data set. Just like the one month experiment the
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six month experiment compares a SLINK algorithm using the SSC tool to a SLINK algorithm not

using the SSC tool. Unlike the one month experiment the six month experiment involves phish

and kit data. For the SLINK algorithm not using the SSC tool additional runtimes need to be

incorporated. The additional runtimes incorporated for the SLINK algorithm include the runtime

to compute comparisons between phish like the one month experiment but also the runtime

to compute the comparisons between phish and kits, and the runtime to compute comparisons

between kits and other kits. The SLINK algorithm with and without the SSC tool is evaluated on

clustering quality and on runtime.

5.3.2.1 Cluster Quality

The clustering quality is measured using three different entropy based metrics; homogeneity,

completeness, and V-measure [54]. These are the same three entropy based metrics used in the

first experiment. An exact definition for all three metrics can be found in the appendix section

and a more detailed explanation can be found in Rosenberg et al [54]. The same ground truth

brand label is also used.

FIGURE 5.3: Traditional Clustering and Simple Set Comparison Quality Measures

Figure 5.3 compares the clusterings produced using the three quality metrics. There is very

little difference in the quality metrics between the clusterings produced by SLINK with and

without the SSC tool.
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5.3.2.2 Anecdotal Comparison

The ten largest clusters created by SLINK with and without the SSC tool are compared for

anecdotal evidence to support the claim that the clusterings produced by each are almost exactly

the same. Clusters 1, 2, and 4 all have multiple brands, while clusters 3, 5, 6, 7, 8, 9, and 10 only

have one brand. The ten largest clusters created by SLINK with and without the SSC tool are

listed with their size and brand label in table 5.6. If there are multiple brands for a cluster the

label Multi Brand is used.

Cluster
Identifier Brand Simple Set Comparison

Tool Cluster Size
SLINK
Cluster Size

Size
Difference

1 Multi Brand 36,690 36,787 97
2 Multi Brand 12,426 12,705 279
3 eBay 3,502 3,514 12
4 Multi Brand 2,491 2,491 0
5 SFR.com 2,420 2,697 277
6 Alipay 2,231 2,231 0
7 AXA Banque 1,907 1,907 0
8 SFR.com 1,713 1,713 0
9 Bancolumbia 1,592 1,592 0
10 PayPal 1,570 1,573 3

TABLE 5.6: Ten largest clusters produced by SLINK and the Simple Set Comparison Tool

The comparison shows clusters 1, 2, 3, 5, and 10 are not the same size. But the differences

are not large for the most part with the largest difference being two hundred seventy nine between

the second clusters. Clusters 6, 7, 8, and 9 are exactly the same size and have the same brand

labels. Each of the SLINK with SSC tool clusters are either smaller or the same size as the

equivalent SLINK cluster. Also, all mono brand clusters have the same brand label. The top ten

mono brand clusters are very similar. The similarity between the ten largest clusters produced by

the SLINK algorithm and the Simple Set Comparison tool anecdotally supports the claim that the

clusterings are very similar. More detailed comparisons of clusters 1 and 2 are examined as these

clusters are multi brand clusters and differ in size. Even though the counts are very similar for

the multi brand clusters they could be significantly different with respect to their members’ brand

make up especially because the counts are different.

Figure 5.4 compares the largest cluster produced by SLINK with and without SSC tool.

Cluster members are aggregated by brand and the brand counts are compared. Both clusters

consist of members with the same eight brands in almost the exact same numbers. There are
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FIGURE 5.4: Comparing Simple Set Comparison Tool’s Cluster 1 to SLINK’s Cluster 1

only three brands with different counts; PayPal differs in count by one, SFR.com differs in count

by one, Visa differs in count by two, and Wells Fargo differs in count by three. Examining the

differences shows they consist of members with the same brands and have very similar brand

counts. The close similarity between the largest cluster produced by SLINK with and without the

SSC tool gives anecdotal support to the claim that clusterings produced by each are almost the

same.

Figure 5.5 compares the second largest cluster produced by SLINK with and without the

SSC tool. Cluster members are aggregated by brand and the brand counts are compared.

FIGURE 5.5: Comparing Simple Set Comparison Tool’s Cluster 2 to SLINK’s Cluster 2

Both clusters consist of members with the same fifteen brands with almost the exact same

member counts for each brand. Thirteen of the fifteen brands have the same member count, while

two brands have a different member count. The two brands with different member counts are
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Generic Email with a difference of two hundred thirty one and Google with a difference of forty

eight. The difference in the number of members with the Generic Email brand is the largest out

of the two different member counts but still only makes a 6.7% difference between the two. This

gives anecdotal support to the claim that the clusterings produced by SLINK with and without

the SSC tool are almost the same. Comparing the ten largest clusters shows anecdotal evidence

to support SLINK produces almost identical clusterings with and without the SSC tool.

5.3.2.3 Runtime

Outside of the quality of the clusterings produced the runtime also needs to be evaluated. The

SSC tool allows a clustering algorithm to be partially run in parallel. So, there should be a

large runtime gain when SLINK uses the SSCT compared to SLINK without using the SSC tool.

SLINK’s runtime is the time it takes to create the comparison scores between all data points and

then to use the comparison scores to generate a clustering. The runtime is broken down into three

categories of comparison score generation and the runtime to generate the clustering, presented

in table 5.7.

Traditional Clustering Runtime in Milliseconds
Compare Phish 111,449,382
Compare Kits 5,013
Compare Phish to Kits 543,437
Clustering 556,552,493
Total Runtime 668,550,325

TABLE 5.7: Breakdown of Traditional Clustering Runtime in Milliseconds

The total runtime is approximately 186 hours or almost eight days. Out of the three

comparison runtimes the compare phish runtime is the largest. Comparing all phish to one

another is going to involve many more comparisons than comparing all kits and comparing all

phish to all kits. There are approximately 130,000 phish and 906 kits. Comparing all phish to

one another involves approximately 130,0002 or 1.69 x 1010 comparisons. Comparing all kits to

one another involves 9062 or approximately 8.2 X 105 comparisons, while comparing all phish

to all kits involves 906 X 130,000 or approximately 1.1 x 108 comparisons. It is appropriate for

the compare phish runtime to be significantly larger than the other comparison runtimes.

The clustering runtime is the single largest contributing factor to the total runtime. To gener-

ate a clustering the slower but less memory intensive implementation of the SLINK algorithm is
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having to process a graph with 130,906 points and 661,636,369 edges connecting those points. It

makes sense that the clustering runtime would be so large.

SLINK runtime using the SSC tool consists of the runtime for steps two through four. The

first step, creating windows, is assumed to be decided before the algorithm is run and does not

add any runtime. The second step, clustering windows, is parallelized and is the largest runtime

out of all of clustering runtimes. The third step, comparing windows, can be parallelized, but

was run in sequence as it did not impact the runtime as much as the second step. The fourth step,

merging windows, is a non-parallelized step and is the runtime needed to merge all windows.

The runtime broken down by step is presented in table 5.8.

The Simple Set Comparison Tool Runtime in Milliseconds
Clustering Windows 1,587,458
Comparing Windows 11,986
Merging Windows 55,094
Total Runtime 1,654,538

TABLE 5.8: The Simple Set Comparison Tool’s Runtime in Milliseconds

The Simple Set Comparison tool’s total runtime of 1,654,538 milliseconds is just under a

half an hour. The majority of the runtime comes from clustering the windows just as seen in

the first experiment. In comparison SLINK without the SSC tool has a runtime of 668,550,325

milliseconds or just under eight days. The java SLINK implementation using the SSC tool is

approximately 404 times faster than the plpgsql SLINK implementation without the SSC tool.

5.4 Third Experiment

The third experiment uses a memory lean SLINK implementation in java called Union-Find, UF.

UF only loads a list of data points or nodes and a single link or edge at a time. UF produces the

same results as the non-memory lean implementation, but uses much less memory. UF with and

without the SSC tool is used to cluster the one month data set. UF with the SSC tool and UF

without the SSC tool are compared on the quality of the clustering produced, and the runtime to

produce a clustering.
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5.4.1 Data Set

The third experiment uses the same one month data set used in the first experiment. The one

month data set consists of 19,825 confirmed phishing sites collected and tagged by Malcovery

Security between September 1st 2014 and September 30th 2014. There are a total of 245

different brands attacked by phishing websites in the one month data set. The phishing websites

are represented by MD5 hash values for the main html phishing website and all files that are

referenced by the main html page. The referenced files include image files, script files, style

sheets, etc on the same domain as the phishing website and on other domains. The data set does

not include phishing kits.

5.4.2 Results

As in the prior experiments the results are evaluated based upon the quality of the clusterings

produced and runtime taken. UF with the SSC tool and UF without the SSC tool were able

to complete a clustering of the one month data set without exceeding the maximum available

memory.

5.4.2.1 Quality

The clusterings created by UF with and without the SSC tool are evaluated on their quality using

the same three entropy based metrics used in the first, second, and third experiments. The number

of clusters in each clustering is also noted. UF with the SSC tool produced 1,209 clusters and

UF without the SSCT tool produced 1,193 clusters. Using the SSC tool resulted in only 16 more

clusters being produced.

Each clusterings quality metrics are seen in figure 5.6. The homogeneity scores between the

two clusterings are almost identical. The homogeneity score for UF with the SSC tool is only

0.0002 lower than the homogeneity score for UF without the SSC tool. The completeness scores

are also very similar. The completeness score for UF with the SSC tool is only 0.0018 lower

than the completeness score for UF without the SSC tool. As a result of the homogeneity and

completeness scores being similar the derived V-measure scores are also very similar. UF with

the SSC tool has a V-measure score 0.0012 lower than the V-measure score for UF without the

SSC tool. All three entropy based metrics show the two clusterings are very similar.
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FIGURE 5.6: Comparing Quality Metrics Between UnionFind and UnionFind using SSCT

5.4.2.2 Runtime

The runtimes to produce a clustering with and without the SSC tool are compared. The UF

runtime is made up of the time it takes to compare phish using DeepMD5 and the time it takes to

cluster the resulting phish similarity graph.

Compare Phish 4,717,239
Cluster 5,054
Total Runtime 4,722,293

1

TABLE 5.9: Union-Find Runtime

UF without the SSC tool has a runtime of 4,722,293 milliseconds or approximately 78

minutes. The majority of the runtime is taken comparing phish with the UF clustering process

taking only 5,054 milliseconds or approximately 5 seconds.

To compute the runtime of UF with the SSC tool the runtime of each step is added. Step

one is assumed to not contribute to the runtime as it is user defined. The runtime for step two

is the longest runtime to generate and cluster a single or cross time window as this step is run

in parallel. The runtime for step three is the time it takes to compare clusters from different

windows. The runtime for the fourth step is the time it takes to generate a clustering using the

cluster comparisons from step three. Table 5.10 gives a detailed listing of each step’s runtime

with step two being split out between the runtime to compare phish in a window and the runtime

to cluster a window.
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Compare Phish 784,839
Cluster Windows 1,295
Compare Windows 390
Merge Windows 78
Total Runtime 786,602

TABLE 5.10: Union-Find Runtime using the SSC tool

UF with the SSC tool has a runtime of 786,602 milliseconds or approximately 13 minutes.

The majority of the runtime is taken comparing phish in a window with the same window taking

only 1,295 milliseconds to cluster. UF with the SSC tool has a runtime that is six times less than

UF without the SSC tool.

5.5 Fourth Experiment

The fourth experiment compares UF to UF using the SSCT tool when used to cluster six months

of phishing data. A subset of the data used in the second experiment is used in the fourth

experiment. Only the phish data from the second experiment is used. The kit data is not used.

Both UF with and without the SSC tool were able to produce a clustering for the six months

of phishing data without exceeding the maximum amount of memory available. UF using the

SSC tool is compared to UF without using the SSC tool. It is evaluated based upon the ability

to produce a clustering, the runtime to produce a clustering, and the quality of the clustering

produced.

5.5.1 Data Set

The fourth experiment uses the same phish data set of 130,690 phish used in the second experi-

ment, but does not include the 908 kits that were included in the second experiment. The data set

was collected from July 1st 2014 to January 11th 2015.

The kit data was excluded as the kit data only adds 908 data points, but requires the same

amount of work to include as the much larger phish data set. Excluding the set will also not

significantly decrease the memory costs as the number of data points is small and the number of

links are relatively small when compared to the number of links created by the phish data alone.
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5.5.2 Results

As in the prior three experiments the fourth experiment compares the clusterings produced by UF

using the SSC tool and UF without the SSC tool. The runtime taken to produce a clustering is

also examined. UF with and without the SSC tool were able to successfully produce a clustering

without exceeding the maximum memory available.

5.5.2.1 Quality Comparison

Clusterings produced by UF without the SSC tool and UF with the SSC tool are compared based

upon the number of clusters created and the three entropy quality metrics used in the prior three

experiments.

UF produced 3,935 clusters, while UF using the SSC tool produced 4,150 clusters. Using

the SSC tool increased the number of clusters produced by 215.

FIGURE 5.7: Comparing Quality Metrics Between UF and UF using the SSC tool

The homogeneity, completeness, and V-measure scores are very similar. For each score

UF without the SSC tool has a slightly better score than UF with the SSC tool. UF without the

SSC tool has a homogeneity score that is 0.0001 greater, a completeness score that is 0.0053

greater, and a V-measure score that is 0.0036 greater than UF with the SSC tool. All three quality

measures and the number of clusters created are very similar.
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5.5.2.2 Runtime

The runtimes to create a clustering using UF with the SSC tool and without the SSC tool are

compared. The runtime for UF consists of the runtime to compare phish and the runtime to

cluster the comparison results.

Compare Phish 28,771,848
Cluster 394,713
Total Runtime 29,166,561

TABLE 5.11: Union-Find Runtime without the SSC tool

The UF process took a total of 29,166,561 milliseconds or 486 minutes to complete a

clustering. The majority of the runtime comes from comparing phish.

Compare Phish 2,530,337
Cluster Windows 5,085
Compare Windows 148,770
Merging Windows 3,092
Total Runtime 2,687,284

TABLE 5.12: Runtimes for Union-Find with SSCT

UF using the SSC tool took a total of 2,687,284 milliseconds or approximately 45 minutes

to complete. UF with the SSC tool has a runtime that is 10.8 times faster than UF without the

SSC tool. The SSC tool significantly improves the runtime to produce a clustering.
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CHAPTER 6

Discussion

The discussion section takes a more detailed look at the quality and runtime results from the

four experiments. The question of exceeding the maximum amount of memory available is also

examined. The discussion section also covers the interchangeability of the comparison metric

and clustering algorithm.

6.1 Comparable Quality

In all four experiments the clustering algorithm using the SSC tool produces comparable results

to the clustering algorithm that does not use the SSC tool. The quality of clusterings produced

differs almost negligibly in the homogeneity, completeness, and V-measure metrics.

The SSC tool is slightly worse when evaluated on quality measures in the six month

experiments, but only slightly more than the one month experiments. The quality differences are

negligible in both the one and six month experiments.

6.2 Improved Runtime

The computational complexity analysis shows using the SSC tool does not increase the growth

rate as the number of data points increase as long as a maximum number of windows is set. The

SSC tool is easily run in parallel without requiring specialty infrastructure or a reformulation of a

clustering algorithm to run in parallel.

All four experiments show the SLINK style clustering algorithm using the SSC tool has a

dramatically better runtime compared to the SLINK style clustering algorithm not using the SSC

tool. In the first experiment, the clustering algorithm using the SSC tool has a runtime 37 times

faster than the clustering algorithm that does not use the SSC tool. In the second experiment,

the clustering algorithm using the SSC tool has a runtime 404 times faster than the clustering

algorithm that does not use the SSC tool. In the third experiment, the clustering algorithm using

the SSC tool has a runtime 6 times faster than the clustering algorithm that does not use the SSC
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tool. In the fourth experiment, the clustering algorithm using the SSC tool has a runtime 10.8

times faster than the clustering algorithm that does not use the SSC tool.

The larger improvement in runtime in the second experiment is due to the implementation

changes required to process the six month data set when not using the SSC tool. The SSC tool

still used the original SLINK algorithm implementation. While this is not comparing apples to

apples it shows the SSC tool’s ability to reduce maximum memory cost and how that can affect

runtime. All four experiments show using the SSC tool improves the SLINK algorithm’s runtime.

6.3 Exceeding Maximum Memory

In the second experiment the memory hungry SLINK implementation that did not use the SSC

tool was not able to produce a clustering as it exceeded the eight gigabytes of memory available.

The memory hungry SLINK implementation loads all nodes and edges into memory. The data set

in the second experiment is represented by a graph with 130,906 nodes and 661,636,369 edges.

All of the nodes and edges can not be loaded into main memory as seen by the out of memory

error that occurs in the second experiment. The SLINK algorithm only requires the nodes to be

loaded and a single edge. However, other clustering algorithms such as DBSCAN require an

undeterminable number of accesses to the same data. The result is having to load all nodes and

edges into main memory or load them onto disk resulting in a large runtime increase. The SSC

tool reduces the maximum amount of memory required by splitting the data into windows. The

window with the largest number of edges had 14,398 nodes and 14,321,012 edges. This is only a

fraction of the size of the entire data set. The SSC tool can allow a clustering algorithm to process

a larger data set than could normally fit in main memory as seen in the second experiment.

6.4 Interchangeable Components

The SSC tool has three interchangeable components. The distance metrics used to compare data

in the first step, the clustering algorithm used to cluster phish in the first step, and the clustering

algorithm used when merging similar clusters in the third step. The SSC tool can make use of a

variety of similarity metrics. The tool only requires the similarity metric be numeric and have an

upper and lower bound. The SSC tool can make use of a variety of clustering algorithms. The

tool requires a clustering algorithm to take an edge representation of a graph as input and produce
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non-overlapping clusters. These loose requirements allow the SSC tool to work with a variety of

similarity metrics and clustering algorithms.

6.4.1 Deep MD5

The Deep MD5 metric is being used as a similarity measure in the first step as it has been shown

to be useful for clustering phishing websites [51, 55, 56]. The Deep MD5 metric is not fool proof

as it relies on file reuse by phish. Small changes to a file will change the MD5 value for that

file. If a phishing author was so inclined all content files referenced by a phish could be slightly

changed each time a particular phish was created. The result would be a Deep MD5 score of

0.0 between two phish created by the same author that targeted the same brand with the same

functionality and appearance. However, this has not been noticed to be prevalent in the wild at

this time. If this does occur at some future date, the similarity metric used by the SSC tool is

interchangeable and another more sufficient phish similarity metric can be used in place of Deep

MD5. The only requirement the SSC tool has for a comparison metric is that the metric produces

a single numerical value within a defined upper and lower bound. The Deep MD5 similarity

metric is being used as an example similarity metric that is currently effective in this particular

use case.

6.4.2 SLINK Algorithm

The SLINK clustering algorithm is used in step one for clustering windows and in step three

when merging clusters. The same clustering algorithm does not have to be used in both step one

and step three. Indeed there may be circumstances where using a different clustering algorithm

in step one and step three may produce better results. However, in this particular case using a

SLINK style clustering algorithm to cluster the time windows in step one and merge clusters in

step three is effective as it produces a clustering of similar high quality to traditional clustering.

The SLINK clustering algorithm is not the best or newest clustering algorithm. It is a simple

clustering algorithm and has been shown to produce good results when applied to clustering

phish [51, 55, 57, 58]. Like the similarity metric, the clustering algorithm used by the SSC

tool is interchangeable. The SSC tool only requires a clustering algorithm take an edge based

representation of a graph as input and produce non-overlapping clusters within a single data set.
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CHAPTER 7

Conclusion

Phishing is a problem today and continues to grow in size. Phishing is diverse in its use of social

engineering tactics to enable a successful attack. Countermeasures exist to combat phishing

and each countermeasure has pros and cons. To select the most effective countermeasures and

evaluate the effectiveness of countermeasures algorithms to perform phish grouping are needed.

A phish grouping process tries to achieve three different goals. It tries to produce dependable

groups, quickly produce groups to allow phishing attacks to be evaluated in as close to real time

as possible, and have the ability to analyze large volumes of phish.

A variety of phish grouping processes currently exist. One such process is a SLINK style

algorithm run over DeepMD5 comparisons of phishing websites. Malcovery uses this process to

automate phishing detection and brand identification.

The SSC tool has been developed to improve runtime and the volume of data that can be

processed by a phish grouping process. The four experiments run use large phishing data sets

collected over one month and six months. The data sets were clustered using an implementation

of a SLINK style algorithm with and without the SSC tool. In each experiment, the SLINK style

algorithm using the SSC tool had significantly improved runtime and produced clusterings with

equivalent quality.

In the second experiment the SSC tool allowed the SLINK style clustering algorithm to

produce a clustering when the same implementation failed to produce a clustering because it

exceeded the eight gigabytes of memory available.

The SSC tool successfully improved the runtime of the SLINK style algorithm and increased

the volume of data the algorithm can process without exceeding available memory. The SSC tool

improves a currently used phish grouping algorithm.
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CHAPTER 8

Future Directions

In the four experiments conducted DeepMD5 was used to measure the similarity of phishing

websites. As noted though the DeepMD5 similarity metric can be rendered ineffective if phishing

website authors make minor changes to files to alter the file’s MD5 hash value. The SSC tool only

requires a weight value be developed for a link or edge between two nodes. Another similarity

metric can be used to replace the DeepMD5 score used in the four experiments.

In each of the four experiments conducted the SSC tool was used with a SLINK style

clustering algorithm. The memory hungry implementation of the SLINK style algorithm provides

in memory access to all nodes and edges. The in-memory access to all nodes and edges would

allow other clustering algorithms to effectively run such as DBSCAN, OPTICS, Chameleon,

and others. It may be possible to use the SSC tool with other clustering algorithms used in

applications other than phish grouping.
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The appendix section provides an exact definition for the three entropy based comparison

metrics used to evaluate clusterings. The three entropy based metrics are homogeneity, complete-

ness, and v-measure. A more detailed explanation of the three entropy metrics is provided in

Rosenberg et al [54]. For the following definitions a few variables are needed to exactly define

the homogeneity, completeness, and v-measure entropy based metrics. Assume the data set is

comprised of N data points and two different partitions of N. The first partition is the set of

classes or ground truth labels, C, where the set of classes in C is 1. . . n. The second partition is the

set of clusters, K, where the set of clusters in K is 1. . . m. A is the contingency table produced by

a clustering algorithm representing the clustering output. A has a set of members aij that are the

members of class ci and elements of cluster kj. Homogeneity evaluates how well the clustering is

at placing members that should be in the same cluster in the same cluster. A perfect homogeneity

score is achieved when all clusters only contain members with the same label. Two preliminary

calculations are needed before the homogeneity can be determined. The first is H(C/K) and the

second is H(C).

H (C/ K) = −
|K|∑
k=1

|C|∑
c=1

ack

N
log ack∑|C|

c=1 ack

(8.1)

H(C) =
|C|∑
c=1

∑|K|
k=1 ack

n
log

∑|K|
k=1 ack

n
(8.2)

Homogeneity = 1 − H(C/K)
H(C) (8.3)

Completeness evaluates how well the clustering came to determining the correct number of

clusters. A perfect completeness score is achieved when there is only one cluster for each label.

Two preliminary calculations are needed to calculate completeness. The first is H(K/C) and the

second is H(C).

H (K/ C) = −
|C|∑
c=1

|K|∑
k=1

ack

N
log ack∑|K|

k=1 ack

(8.4)

H(K) =
|K|∑
k=1

∑|C|
c=1 ack

n
log

∑|C|
c=1 ack

n
(8.5)

Completeness = 1 − H(K/C)
H(K) (8.6)
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V-measure is the harmonic mean of the homogeneity and completeness scores, a blend of

homogeneity and completeness scores. A variable, beta, determines the weighting between the

homogeneity and completeness scores. A beta value less than 1 weights homogeneity more than

completeness. A beta value greater than 1 weights completeness more than homogeneity. A beta

value of 1 equally weights homogeneity and completeness. The beta value used in this research

is 1 to equally weight the importance of homogeneity and completeness.

65


	Clustering Phish Using The Simple Set Comparison Tool
	Recommended Citation

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENT
	LIST OF TABLES
	LIST OF FIGURES
	1 Overview
	1.1 Contributions
	1.2 Outline

	2 Introduction
	2.1 Phishing Threat
	2.2 General Classification of Phish
	2.3 Phishing Countermeasures
	2.3.1 Alerting Users
	2.3.2 User Education
	2.3.3 Phishing Takedown
	2.3.4 Blacklisting
	2.3.5 Web Toolbars
	2.3.6 Email Filters
	2.3.7 Criminal Prosecution
	2.3.8 Increasing Exploitation Difficulty 

	2.4 Grouping Phish
	2.5 Dissertation Goals

	3 Related Work
	3.1 Phishing Detection and Phishing Categorization
	3.1.1 URL Based
	3.1.2 Content Based

	3.2 Data Mining
	3.3 Supervised Machine Learning
	3.4 Unsupervised Machine Learning
	3.4.1 Partition Clustering
	3.4.2 Hierachical Clustering
	3.4.3 Relational Data Classification and Clustering
	3.4.4 Dynamic Clustering
	3.4.5 High Dimensionality Clustering
	3.4.6 Bi-Clustering or Co-Clustering
	3.4.7 Subspace Clustering
	3.4.8 Multi-View Clustering
	3.4.9 Comparing Individual Clusters
	3.4.10 Comparing Sets of Clusters
	3.4.11 Mining Heterogeneous Data

	3.5 Improvements

	4 Algorithm
	4.1 Creating Windows
	4.2 Clustering Windows
	4.3 Comparing Windows
	4.4 Merging Clusters
	4.5 Computational Complexity

	5 Experiments
	5.1 Data Set Overview
	5.1.1 Phish Data
	5.1.2 Kit Data

	5.2 First Experiment
	5.2.1 Data Set
	5.2.2 Results
	5.2.2.1 Merging Thresholds
	5.2.2.2 Quality Comparison
	5.2.2.3 Anecdotal Comparison
	5.2.2.4 Runtime


	5.3 Second Experiment
	5.3.0.1 SLINK Implementation
	5.3.0.2 Comparing Windows

	5.3.1 Data Set
	5.3.1.1 Phish Data
	5.3.1.2 Kit Data

	5.3.2 Results
	5.3.2.1 Cluster Quality
	5.3.2.2 Anecdotal Comparison
	5.3.2.3 Runtime


	5.4 Third Experiment
	5.4.1 Data Set
	5.4.2 Results
	5.4.2.1 Quality
	5.4.2.2 Runtime


	5.5 Fourth Experiment
	5.5.1 Data Set
	5.5.2 Results
	5.5.2.1 Quality Comparison
	5.5.2.2 Runtime



	6 Discussion
	6.1 Comparable Quality
	6.2 Improved Runtime
	6.3 Exceeding Maximum Memory
	6.4 Interchangeable Components
	6.4.1 Deep MD5
	6.4.2 SLINK Algorithm


	7 Conclusion
	8 Future Directions
	LIST OF REFERENCES
	APPENDIX A

