
University of Alabama at Birmingham University of Alabama at Birmingham

UAB Digital Commons UAB Digital Commons

All ETDs from UAB UAB Theses & Dissertations

2010

A Highly Reliable GPU-Based RAID System A Highly Reliable GPU-Based RAID System

Matthew L. Curry
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

 Part of the Arts and Humanities Commons

Recommended Citation Recommended Citation
Curry, Matthew L., "A Highly Reliable GPU-Based RAID System" (2010). All ETDs from UAB. 1451.
https://digitalcommons.library.uab.edu/etd-collection/1451

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F1451&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/438?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F1451&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/1451?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F1451&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

A HIGHLY RELIABLE GPU-BASED RAID SYSTEM

by

MATTHEW L. CURRY

ANTHONY SKJELLUM, COMMITTEE CHAIR
PURUSHOTHAM V. BANGALORE

ROBERT M. HYATT
ARKADY KANEVSKY

JOHN D. OWENS
BORIS PROTOPOPOV

A DISSERTATION

Submitted to the graduate faculty of The University of Alabama at Birmingham,
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
BIRMINGHAM, ALABAMA

2010

Copyright by
Matthew L. Curry

2010

A HIGHLY RELIABLE GPU-BASED RAID SYSTEM

MATTHEW L. CURRY

COMPUTER AND INFORMATION SCIENCES

ABSTRACT

In this work, I have shown that current parity-based RAID levels are nearing the

end of their usefulness. Further, the widely used parity-based hierarchical RAID levels

are not capable of significantly improving reliability over their component parity-based

levels without requiring massively increased hardware investment. In response, I

have proposed k + m RAID, a family of RAID levels that allow m, the number of

parity blocks per stripe, to vary based on the desired reliability of the volume. I have

compared its failure rates to those of RAIDs 5 and 6, and RAIDs 1+0, 5+0, and 6+0

with varying numbers of sets.

I have described how GPUs are architecturally well-suited to RAID computations,

and have demonstrated the Gibraltar RAID library, a prototype library that performs

RAID computations on GPUs. I have provided analyses of the library that show how

evolutionary changes to GPU architecture, including the merge of GPUs and CPUs,

can change the efficiency of coding operations. I have introduced a new memory layout

and dispersal matrix arrangement, improving the efficiency of decoding to match that

of encoding.

I have applied the Gibraltar library to Gibraltar RAID, a user space RAID

infrastructure that is a proof of concept for GPU-based storage arrays. I have

integrated it with the user space component of the Linux iSCSI Target Framework,

which provides a block device for benchmarking. I have compared the streaming

workload performance of Gibraltar RAID to that of Linux md, demonstrating that

Gibraltar RAID has superior RAID 6 performance. Gibraltar RAID’s performance

through k+5 RAID remains highly competitive to that of Linux md RAID 6. Gibraltar

RAID operates at the same speed whether in degraded or normal modes, demonstrating

a further advantage over Linux md.

iii

DEDICATION

This thesis is dedicated to my family and friends who have supported me personally

through the process of completing this work. I wish I could individually list all who

were there providing words of encouragement and inspiration, but their names are too

numerous to list. Friends and family from my earlier life have remained supportive,

and colleagues in the University of Alabama at Birmingham graduate program and

the Sandia National Laboratories summer internship program have provided me a

much wider network of like-minded and similarly ambitious supporters and friends. I

am thankful for them all.

iv

ACKNOWLEDGEMENTS

I have had the great fortune of having some very understanding and accommodating

superiors on this project. My advisor, Dr. Anthony Skjellum, allowed me to complete

much of this work in New Mexico to strengthen collaborations between our group and

Sandia National Laboratories. Lee Ward, my mentor for my work at Sandia, provided

financial support for this project and invaluable guidance in general during my stay

in Albuquerque. I feel that my professional life has been dramatically improved by

this arrangement, and I am grateful that all involved were immediately on board for

my unusual suggestion.

Although I did have the best of associates, this work would not have been possible

without the support of funding agencies. This work was supported by the United

States Department of Energy under Contract DE-AC04-94AL85000. This work was

also supported by the National Science Foundation under grant CNS-0821497.

v

TABLE OF CONTENTS

ABSTRACT . iii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF ABBREVIATIONS . xii

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. LITERATURE REVIEW . 8
1. RAID . 8
1.1. Software RAID and RAID-Like File Systems 13
2. Coding Algorithms . 15
2.1. General, MDS Codes . 16
2.2. Non-General, MDS Codes . 16
2.3. General, Non-MDS Codes . 17
2.4. Non-General, Non-MDS Codes . 17
3. General Purpose GPU Computing . 17

CHAPTER 3. THE k + m RAID LEVELS 21
1. Disk Reliability . 22
1.1. Disk Failures . 22
1.2. Unrecoverable Read Errors . 23
1.3. Further Sources of Data Loss . 25
2. A Model for Calculating Array Reliability 25
3. Current High-Reliability Solutions . 27
4. k + m RAID for Increased Reliability 30
4.1. Guarding Against Reduced Disk Reliability and High Load 32
4.2. Read Verification for Unreported Errors and UREs 34
4.3. Performance Impact of k + m RAID 35
5. Conclusions . 36

CHAPTER 4. A GPU-BASED RAID ARCHITECTURE FOR STREAMING
WORKLOADS . 38

1. The Software Ecosystem for Gibraltar RAID 38
1.1. The NVIDIA CUDA Toolkit . 38
1.2. The Linux SCSI Target Framework 39

vi

2. Design Characteristics and Implications 40
2.1. Read Verification . 40
2.2. Asynchronous/Overlapping Operation 41
2.3. O DIRECT and the Gibraltar Library Throughput 41
3. Gibraltar RAID Software Architecture 42
3.1. Interface . 42
3.2. Stripe Cache . 45
3.3. I/O Scheduler . 46
3.4. I/O Notifier . 48
3.5. Victim Cache . 48
3.6. Erasure Coding . 48
4. Conclusions . 49

CHAPTER 5. GIBRALTAR . 51
1. Introduction . 51
2. Reed-Solomon Coding for RAID . 54
3. Mapping Reed-Solomon Coding to GPUs 55
3.1. GPU Architecture . 55
3.2. Reed-Solomon Decoding . 57
4. Operational Example and Description 61
An Example Program . 61
5. Performance Results . 66
6. Future Trends . 69
7. Conclusions and Future Work . 75

CHAPTER 6. PERFORMANCE EVALUATION OF A GPU-BASED RAID
IMPLEMENTATION . 76

1. DAS Testing . 76
2. Single Client NAS Testing . 79
3. Multiple Client NAS Testing . 81
4. Conclusions . 83

CHAPTER 7. FUTURE WORK AND EXTENSIONS 85
1. Failing in Place for Low-Serviceability Storage Infrastructure 85
1.1. Extra Parity or Hot Spares? . 86
2. Multi-Level RAID for Data Center Reliability 87
3. Combining RAID with Other Storage Computations 90
4. Checkpoint-to-Neighbor . 91
5. Alternative Platforms . 92

CHAPTER 8. CONCLUSIONS . 94

REFERENCES . 99

Appendix A. APPLICATION PROGRAMMING INTERFACES 108

Appendix B. ADDITIONAL DATA . 114

Appendix C. PLATFORMS AND TESTING ENVIRONMENTS 136

vii

Appendix D. A Sample One-Petabyte GPU-Based Storage System 137

viii

LIST OF TABLES

1 Hierarchical RAID Storage Overhead for Sample Configuration 28

ix

LIST OF FIGURES

1 Cost for One Petabyte of Storage from Several Vendors 3

2 Sample Configurations of RAID Levels in Common Use Today [20, 84] . . 9

3 Sample Configurations of Original RAID Levels Not in Common Use Today [84] 10

4 Sample Configurations of Hierarchical RAID Levels in Common Use Today [6] 11

5 The Bathtub Curve as a Model for Failure [57] 23

6 Probability of Avoiding a URE, Calculated with Equation 4 24

7 Comparison of Reliability: RAID 5 and RAID 5+0 with Varying Set Sizes,

BER of 10−15, 12-Hour MTTR, and 1,000,000-Hour MTTF 29

8 Comparison of Reliability: RAID 6 and RAID 6+0 with Varying Set Sizes,

BER of 10−15, 12-Hour MTTR, and 1,000,000-Hour MTTF 30

9 Comparison of Reliability: RAID 1+0 with Varying Replication, BER of 10−15,

12-Hour MTTR, and 1,000,000-Hour MTTF 31

10 Comparison of Reliability: Several RAID Levels with BER of 10−15, 12-Hour

MTTR, and 1,000,000-Hour MTTF . 32

11 Comparison of Reliability: Several RAID Levels with BER of 10−15, One-Week

MTTR, and 100,000-Hour MTTF . 33

12 Gibraltar RAID Architecture and Data Flow Diagram 43

13 Performance of a Single Disk in a RS-1600-F4-SBD Switched Enclosure over

4Gbps Fibre Channel . 47

14 Performance for m = 2 Encoding and Decoding 67

x

15 Performance for m = 3 Encoding and Decoding 68

16 Performance for m = 4 Encoding and Decoding 69

17 Encoding Performance for m = 2 : 16, k = 2 : 16 69

18 Excess PCI-Express Performance over GPU Performance for m = 2 71

19 Excess PCI-Express Performance over GPU Performance for m = 3 72

20 Excess PCI-Express Performance over GPU Performance for m = 4 73

21 Excess PCI-Express Performance over GPU Performance for m = 2..16 . . 74

22 Streaming I/O Performance for DAS in Normal Mode 77

23 Streaming I/O Performance for DAS in Degraded Mode. 78

24 Streaming I/O Performance for NAS in Normal Mode for a Single Client . 79

25 Streaming I/O Performance for NAS in Degraded Mode for a Single Client 80

26 Streaming I/O Performance for NAS in Normal Mode for Four Clients . . 81

27 Streaming I/O Performance for NAS in Degraded Mode for Four Clients . 82

28 Network Diagram for Typical Active/Passive Configuration, or Active/Active

with High Controller Load . 88

29 Network Diagram for a Typical Active/Active Configuration 88

30 Network Diagram for an Active MRAID Configuration 89

31 Huffman Encoding Rates for an Intel i7 Extreme Edition 975 and an NVIDIA

Geforce GTX 285. 91

32 Huffman Decoding Rates for an Intel i7 Extreme Edition 975 and an NVIDIA

Geforce GTX 285. 92

xi

LIST OF ABBREVIATIONS

ASIC application-specific integrated circuit

BER bit error rate

CPU central processing unit

DAS direct-attached storage

ECC error correction code

GPU graphics processing unit

GPGPU general purpose computation on GPUs

HPC high performance computing

HRAID hierarchical RAID

I/O input/output

JBOD just a bunch of disks

MRAID multi-level RAID

MTBF mean time between failures

MTTDL mean time to data loss

MTTF mean time to failure

NAS network attached storage

RAID redundant array of independent disks

URE unrecoverable read error

xii

CHAPTER 1

Introduction

Redundant arrays of independent 1 disks (RAID) is a methodology of assembling

several disks into a logical device that provides faster, more reliable storage than

is possible for a single disk to attain [84]. RAID levels 5 and 6 accomplish this

by distributing data among several disks, a process known as striping, while also

distributing some form of additional redundant data to use for recovery in the case

of disk failures. The redundant data, also called parity, are generated using erasure

correcting codes [63]. RAID levels 5 and 6 can drastically increase overall reliability

with little extra investment in storage [20].

RAID can also increase performance because of its ability to parallelize accesses to

storage. A parameter commonly known as the chunk size or stripe depth determines

how much contiguous data are placed on a single disk. A stripe is made up of one

chunk of data or parity per disk, with each chunk residing at a common offset. The

number of chunks within a stripe is known as the stripe width. For a particular RAID

array, the number of chunks of parity is constant. RAID 5 is defined to have one

chunk of parity per stripe, while RAID 6 has two. If a user requests a read or write of

a contiguous block of data that is several times the size of a chunk, several disks can

be used simultaneously to satisfy this request. If a user requests several small, random

pieces of data throughout a volume, these requests are also likely to be distributed

among many of the disks.

RAID has become so successful that almost all mass storage is organized as one or

more RAID arrays. RAID has become ingrained into the thought processes of the

enterprise storage community. Hardware RAID implementations, with varying levels

1This acronym was formerly expanded to redundant arrays of inexpensive disks, but has changed
over time.

1

of performance, are available from many vendors at many price points. Alternatively,

software RAID is also available out of the box to the users of many operating systems,

including Linux [116]. Software RAID is generally viewed as trading economy for

speed, with many high-performance computing sites preferring faster, hardware-based

RAIDs. While software RAID speeds do not compare well with those of hardware

RAID, software RAID allows a wider community to benefit from some of the speed

and reliability gains available through the RAID methodology.

Software RAID is economically appealing because hardware RAID infrastructure is

expensive, thus making hardware RAID impractical in a large number of applications.

Figure 1 shows the results of a 2009 survey of costs for a petabyte in raw disk capacity,

software RAID infrastructure, and hardware RAID infrastructure from several storage

vendors [73]. The least expensive hardware-based RAID solution, the Dell MD1000, is

nearly eight times as expensive as building servers to use with Linux md, the software

RAID implementation included with the Linux operating system. While the md

servers and those with hardware RAID are somewhat different, the cost disparity is

mostly attributable to the cost of hardware RAID controllers.

The currently popular RAID levels are beginning to show weakness in the face of

evolving disks. Disks are becoming larger, and their speeds are increasing with the

square root of their size. This implies that, when a larger disk fails, the mean time to

repair (MTTR) will be much larger than for a smaller disk. Further, the incidence of

unrecoverable read errors (UREs) is not changing, but is becoming more prevalent

during a RAID’s rebuild process. UREs are manifested as a disk’s failure to retrieve

previously stored contents of a sector. RAID 6 is capable of tolerating up to two

simultaneous media failures during a read operation, whether they are disk failures or

UREs. RAID 6 exists because RAID 5 has been shown to be inadequate, as double

disk failures do occur. This indicates that RAID 6 will not be able to maintain data

integrity when encountering increased numbers of UREs during a rebuild.

2

$0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 $3,500

Raw Disks

Linux md-Based Server

Dell MD1000

Sun X4550

NetApp FAS-6000

EMC

Cost (Thousands of U.S. Dollars)

R
A

ID
 D

ev
ic

e

Figure 1. Cost for One Petabyte of Storage from Several Vendors
Adapted from “Petabytes on a Budget: How to Build Cheap Cloud Storage” by Tim

Nufire, September 1, 2009, BackBlaze Blog (http://blog.backblaze.com).
Copyright 2009 by BackBlaze, Inc. Adapted with permission.

Hierarchical RAID (HRAID) was introduced to improve the reliability of traditional

RAID infrastructure [6]. By treating RAID arrays as individual devices, new RAID

arrays can be composed of several smaller RAID arrays. This improves the reliability

of RAID by increasing the total amount of parity in the system. While HRAIDs do

protect efficiently from disk failures, UREs present a different kind of problem.

Chapter 3 contains an extensive analysis of RAID reliability, with particular

attention paid to risks associated with UREs. It demonstrates that hierarchical RAID

levels do not significantly increase protection against risk of data loss, and that a new

strategy is required. It describes a new family of RAID levels, k + m RAID, that can

significantly reduce risk of data loss. These RAID levels are similar to RAID levels

5 and 6, as they are all parity based. However, k + m RAID allows the amount of

storage dedicated to parity to be customized, with m being tunable to determine the

number of disks that may fail in a RAID set without data loss. For example, k + 2

RAID is functionally equivalent to RAID 6. Increasing m beyond two can allow for

drastically increased reliability.

3

One algorithm that stands out as being directly applicable to k +m RAID is Reed-

Solomon coding. Reed-Solomon coding has the disadvantage of being computationally

expensive. Other codes are less expensive, but have their own limitations. For

example, EVENODD [10] and its variants are specialized to certain values of m.

Others, like tornado codes [17], are inefficient in the amount of storage used and the

amount of work required for small updates. Current hardware RAID controllers do

not implement functionality similar to k+m RAID. However, as Reed-Solomon coding

is efficiently performed in hardware, controllers can be manufactured to provide these

new levels. This advance would incur the same costs that make current hardware

RAID 6 controllers expensive. More economical and flexible software RAID is required

for many scenarios.

Software RAID controllers can be modified to provide k + m RAID with Reed-

Solomon coding today, but would likely operate more slowly than current RAID 6

when using m > 2. The most widely used CPUs, x86 and x86-64, do not have vector

instructions that can be used to accelerate general k + m Reed-Solomon coding. Such

acceleration is required to approach the peak processing power of current CPUs, so

much of the computation power will not be used. This situation is already apparent in

some software implementations of RAID 6, but will be exacerbated by the increased

computational load required: k + m RAID requires O(m) computations per byte

stored, implying that k + 3 RAID requires 50% more computations than RAID 6.

One solution to this problem is to look toward a growing source of compute

power available in the commodity market: Graphics processing units (GPUs). GPUs

are devices intended to accelerate processing for demanding graphics applications,

such as games and computer-aided drafting. GPUs manufactured for much of the

last decade have been multi-core devices, reflecting the highly parallel nature of

graphics rendering. While CPUs have recently begun shipping with up to twelve

cores, NVIDIA’s GeForce 480 GTX has recently shipped with 480 cores per chip.

4

Applications that are easily parallelized can often be implemented with a GPU to

speed up computation significantly.

This work shows that Reed-Solomon coding in the style of RAID is a good match for

the architecture and capabilities of modern GPUs. Further, a new memory layout and

a complementary matrix generation algorithm significantly increase the performance

of data recovery from parity, or decoding, on GPUs. In fact, the operations can be

made to be nearly identical to parity generation, or encoding, yielding equivalent

performance. RAID arrays are widely known to suffer degraded performance when

a disk has failed, but these advances in a GPU RAID controller can eliminate this

behavior.

A tangible contribution of this work is a practical library for performing Reed-

Solomon coding for RAID-like applications on GPUs, the Gibraltar library, which

is described in Chapter 5. This library can be used by RAID implementations, or

applications that share RAID’s style of parity-based data redundancy. The Gibraltar

library uses NVIDIA CUDA-based GPUs to perform coding and decoding. There

are over 100 million GPUs capable of running this software installed world-wide [65],

implying that a wide population can apply the findings from the Gibraltar library’s

creation.

While a practical library for Reed-Solomon coding is important, a view into future

viability of RAID on multi-core processors and GPUs is necessary. Design choices

that would benefit Reed-Solomon coding can be at odds with those that benefit other

popular applications, and vice versa. Chapter 5 describes projected performance for

theoretical devices that have varied design parameters. Further, the impending merge

of conventional CPUs and GPUs [4] points to a significant change in the performance

characteristics of many general-purpose GPU (GPGPU) applications because of the

elimination of PCI-Express bus use as well as increased data sharing. This chapter

addresses these concerns as well.

5

A new RAID controller that targets streaming workloads, Gibraltar RAID, has

been prototyped around the Gibraltar library. It serves as a proof of concept for the

capabilities of the Gibraltar library. It is tested according to streaming I/O patterns

as direct-attached storage (DAS) and network-attached storage (NAS) for up to four

clients. This demonstrates the applicability of this controller. Linux md’s RAID 6

performance has been compared to Gibraltar RAID’s performance in configurations

2 ≥ m ≥ 5 with identical I/O patterns. Benchmarks equally emphasize normal mode

operation, where no disks have failed, and degraded mode operation, where at least

one disk has failed. Gibraltar RAID’s performance has proven superior over Linux

md for all values of 2 ≤ m ≤ 5.

Gibraltar RAID’s applications extend beyond conventional RAID. Because it

is software-based, one can quickly modify it to support significant flexibility in its

operation. For example, Gibraltar RAID can support large arrays composed of several

smaller arrays residing on other machines, an organization known as multi-level RAID

(MRAID) [104]. Chapter 7 provides several examples of alternative organizations and

policies enabled by Gibraltar RAID. These variations can be exceedingly expensive

with a hardware implementation. These storage configurations can allow for full data

center reliability, enabling an inexpensive means of eliminating single points of failure

with software RAID techniques. Further applications of the library are also explored

in Chapter 7.

The data being read and written by users are subject to processing with a GPU,

providing another potential benefit to the software nature of the library. Extra storage

operations that can benefit from GPU computation, like encryption, deduplication, and

compression, can be integrated into the storage stack. This amortizes the transfer costs

associated with GPU computation by allowing multiple computations to be performed

on data with a single transfer. GPUs supporting multiple simultaneous kernels have

recently been introduced, allowing such operations to be pipelined efficiently.

6

In summary, this work details a RAID methodology and infrastructure that improve

on existing RAID implementations in multiple dimensions. First, this methodology

provides a high degree of flexibility in balancing performance, storage utilization, and

reliability in RAID arrays. Second, a software infrastructure is described that has

improved speed and capabilities over Linux md, allowing for NAS and DAS that

can take advantage of more capable networks. Finally, flexibility in application of

Gibraltar RAID and the Gibraltar library allows for their use in many situations that

are decidedly similar to RAID but differ in details. Further, extra storage computations

may be integrated into storage stack when beneficial. This work has the potential

to impact the economics of high-performance storage, allowing for more storage per

dollar and faster capability improvements than is possible with custom ASIC-based

solutions.

7

CHAPTER 2

LITERATURE REVIEW

This work lies at the intersection of three main subject areas: RAID, erasure

coding, and GPU computing. Other interesting work in fault-tolerant storage is in

traditional file systems and network file systems. This chapter provides an overview

of history and efforts in all of these areas.

1. RAID

The introduction of RAID formalized the use of striping, mirroring, parity, and

error correction codes (ECC) to increase reliability and speed of storage systems

composed of many disk drives [84]. The original RAID levels numbered only 1-5, with

RAID 0 and RAID 6 later added to the standard set of RAID levels [20]. A list of the

salient characteristic of each level, as originally defined and characterized [20, 84],

follows.

• RAID 0 (Figure 2a) stripes data among all disks with no measures for fault

tolerance included. This level has the highest possible write bandwidth, as

no redundant information is written.

• RAID 1 (Figure 2b) mirrors data between all of the disks in the volume.

This level has the highest possible read bandwidth, as several mirrors can be

tasked simultaneously.

• RAID 2 (Figure 3a), a bit-striping level (i.e., striping across devices with

a block size of one bit), uses Hamming codes to compute error correction

information for a single bit error per stripe. This level is no longer used, as

this level of error correction is typically present within modern disk drives.

Striping at the bit level requires all disks in an array to be read or written for

8

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
Data

Block
0

Data
Block

8

Data
Block

16

Disk 6 Disk 7
Data

Block
1

Data
Block

9

Data
Block

17

Data
Block

2

Data
Block

10

Data
Block

18

Data
Block

3

Data
Block

11

Data
Block

19

Data
Block

4

Data
Block

12

Data
Block

20

Data
Block

5

Data
Block

13

Data
Block

21

Data
Block

6

Data
Block

14

Data
Block

22

Data
Block

7

Data
Block

15

Data
Block

23

...

(a) RAID 0

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Data
Bit 0

Data
Bit 1

Data
Bit 2

Disk 6 Disk 7

Data
Bit 0

Data
Bit 1

Data
Bit 2

Data
Bit 0

Data
Bit 1

Data
Bit 2

Data
Bit 0

Data
Bit 1

Data
Bit 2

Data
Bit 0

Data
Bit 1

Data
Bit 2

Data
Bit 0

Data
Bit 1

Data
Bit 2

Data
Bit 0

Data
Bit 1

Data
Bit 2

Data
Bit 0

Data
Bit 1

Data
Bit 2

...
(b) RAID 1

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
Data

Block
0

Data
Block

7

Data
Block

14

Disk 6 Disk 7
Data

Block
1

Data
Block

8

Data
Block

15

Data
Block

2

Data
Block

9

Data
Block

16

Data
Block

3

Data
Block

10

Data
Block

17

Data
Block

4

Data
Block

11

Data
Block

18

Data
Block

5

Data
Block

12

Data
Block

19

Data
Block

6

Data
Block

13

Data
Block

20

Parity
Block

0

Parity
Block

1

Parity
Block

2

...

(c) RAID 5

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
Data

Block
0

Data
Block

7

Data
Block

14

Disk 6 Disk 7
Data

Block
1

Data
Block

8

Data
Block

15

Data
Block

2

Data
Block

9

Data
Block

16

Data
Block

3

Data
Block

10

Data
Block

17

Data
Block

4

Data
Block

11

Data
Block

5

Data
Block

12

Data
Block

6

Data
Block

13

Parity
Block

0

Parity
Block

1

Parity
Block

2

...

Parity
Block

5

Parity
Block

3

Parity
Block

4

(d) RAID 6

Figure 2. Sample Configurations of RAID Levels in Common Use
Today [20, 84]

9

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Data
Bit 0

Data
Bit 4

Data
Bit 8

Disk 6

Data
Bit 1

Data
Bit 5

Data
Bit 9

Data
Bit 2

Data
Bit 6

Data
Bit 10

Data
Bit 3

Data
Bit 7

Data
Bit 11

ECC
Bit 0

ECC
Bit 4

ECC
Bit 8

ECC
Bit 1

ECC
Bit 5

ECC
Bit 2

ECC
Bit 6

ECC
Bit 3

ECC
Bit 7

...
(a) RAID 2

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Data
Bit 0

Data
Bit 7

Data
Bit 14

Disk 6 Disk 7

Data
Bit 1

Data
Bit 8

Data
Bit 15

Data
Bit 2

Data
Bit 9

Data
Bit 16

Data
Bit 3

Data
Bit 10

Data
Bit 17

Data
Bit 4

Data
Bit 11

Data
Bit 18

Data
Bit 5

Data
Bit 12

Data
Bit 19

Data
Bit 6

Data
Bit 13

Data
Bit 20

Parity
Bit 0

Parity
Bit 1

Parity
Bit 2

...
(b) RAID 3

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
Data

Block
0

Data
Block

7

Data
Block

14

Disk 6 Disk 7
Data

Block
1

Data
Block

8

Data
Block

15

Data
Block

2

Data
Block

9

Data
Block

16

Data
Block

3

Data
Block

10

Data
Block

17

Data
Block

4

Data
Block

11

Data
Block

18

Data
Block

5

Data
Block

12

Data
Block

19

Data
Block

6

Data
Block

13

Data
Block

20

Parity
Block

0

Parity
Block

1

Parity
Block

2

...

(c) RAID 4

Figure 3. Sample Configurations of Original RAID Levels Not in
Common Use Today [84]

most accesses, reducing potential parallelism for small reads and writes. The

number of ECC disks required is governed by the equation 2m ≥ k + m + 1,

where k is the number of data disks and m is the number of ECC disks [42].

• RAID 3 (Figure 3b), another bit-striping level, computes a parity bit for the

data bits in the stripe. This is a reduction in capability from RAID 2, as

this provides for erasure correction without error correction, but the storage

10

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
Data

Block
0

Data
Block

1

Disk 6 Disk 7
Data

Block
0

Data
Block

1

Data
Block

3

Data
Block

4

Data
Block

3

Data
Block

4

Data
Block

6

Data
Block

7

...

Data
Block

2

Data
Block

2

Data
Block

5

Data
Block

5

Data
Block

8

Data
Block

6

Data
Block

7

Data
Block

8

Data
Block

9

Data
Block

10

Data
Block

11

Data
Block

9

Data
Block

10

Data
Block

11

(a) RAID 1+0

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
Data

Block
0

Data
Block

7

Data
Block

14

Disk 6 Disk 7
Data

Block
1

Data
Block

8

Data
Block

15

Data
Block

2

Data
Block

9

Data
Block

16

Data
Block

3

Data
Block

10

Data
Block

17

Data
Block

4

Data
Block

11

Data
Block

5

Data
Block

12

Data
Block

6

Data
Block

13

Parity
Block

0

Parity
Block

1

Parity
Block

2

...

Parity
Block

5

Parity
Block

3

Parity
Block

4

(b) RAID 5+0

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
Data

Block
0

Data
Block

13

Data
Block

26

Disk 6 Disk 7
Data

Block
1

Data
Block

14

Data
Block

27

Data
Block

2

Data
Block

15

Data
Block

28

Data
Block

3

Data
Block

16

Data
Block

29

Data
Block

4

Data
Block

17

Data
Block

5

Data
Block

24

Data
Block

12

Data
Block

25

Parity
Block

0

Parity
Block

1

Parity
Block

4

...

Parity
Block

9

Parity
Block

5

Parity
Block

8

Disk 8 Disk 9 Disk 10 Disk 11 Disk 12 Disk 13
Data

Block
6

Data
Block

19

Data
Block

32

Disk 14 Disk 15
Data

Block
7

Data
Block

20

Data
Block

33

Data
Block

8

Data
Block

21

Data
Block

34

Data
Block

9

Data
Block

22

Data
Block

35

Data
Block

10

Data
Block

23

Data
Block

11

Data
Block

30

Data
Block

18

Data
Block

31

Parity
Block

2

Parity
Block

3

Parity
Block

6

...

Parity
Block

11

Parity
Block

7

Parity
Block

10

(c) RAID 6+0

Figure 4. Sample Configurations of Hierarchical RAID Levels in Com-
mon Use Today [6]

11

overhead is much lower. Like RAID levels 4 and 5, the parity can be computed

by performing a bit-wise XOR on all of the data.

• RAID 4 (Figure 3c) allows for independent parallel read accesses by storing

contiguous blocks of data on each disk instead of using bit-striping. When

data are organized in this way, the array can service a small read operation by

reading a single disk, so k small reads can potentially be serviced in parallel.

• RAID 5 (Figure 2c) enables independent parallel read and write accesses

by distributing parity between all disks. For a small write, the stripe’s new

parity can be computed from old parity, old data blocks, and new data blocks,

so a small write requires only part of a stripe. Rotating parity blocks allows

multiple parity updates to be accomplished simultaneously. The dedicated

parity disks in RAID levels 2-4 cause writes to be serialized by the process of

updating parity.

• RAID 6 (Figure 2d) uses rotating parity like RAID 5, but increases the fault

tolerance of the array by adding another block of parity per stripe. This

RAID level is the most reliable of the standard parity-based levels.

Figure 2 shows the canonical RAID levels that are widely used today. Figure 3

shows the canonical RAID levels that have fallen out of general use. These levels are

no longer favored because of a lack of parallelism for small independent operations,

with RAID 2 having the additional detriment of requiring much more hardware than

other levels to perform erasure correction. It is notable that, while RAID 4 does lack

small random write parallelism, NetApp has created a proprietary file system (the

WAFL file system [47]) that allows many independent writes to occur simultaneously

by locating them within the same stripe. NetApp has also created an alternative

RAID level, RAID DP, with two dedicated parity disks [110]. RAID TP, which is not

a NetApp product, a rotating parity RAID level with three parity blocks per stripe,

has recently been introduced and is included with some hardware controllers.

12

There are methods that increase the reliability of RAID without requiring new

RAID levels, but instead compose them. One widely used method is HRAID [6].

HRAID has two levels of RAID: An inner level that aggregates disks, and an outer

level that aggregates arrays. For example, RAID 1+0 aggregates multiple RAID 1

arrays into a RAID 0 array. While HRAID can use any two RAID levels, the set of

HRAID types in common use is quite restricted. Figure 4 shows the most popular

HRAID types. These increase reliability by dedicating more capacity within the array

to holding parity. For example, a RAID 6+0 array that has two inner RAID 6 arrays

(like Figure 4c) can lose up to four disks: Two from disks 0–7, and two from disks

8–15. However, data loss can occur with as few as three failures if they all occur in

the same set, regardless of the number of sets in the outer array. A similar approach

that aggregates storage across multiple nodes in a similar way, MRAID, has been

discussed [104].

As recently as 1992, there were no controllers available from industry that im-

plemented RAID 5, while a university team had implemented a hardware RAID 5

controller [55]. Today, a wide variety of RAID implementations exists. I/O processors,

like the Intel 81348 Processor [23], can be integrated onto a circuit board to carry out

I/O-related operations between a host computer and an array of disk drives, including

RAID.

1.1. Software RAID and RAID-Like File Systems. Several operating sys-

tems include software RAID implementations. Specific examples include Microsoft

Windows Server 2003, which supports RAID levels 0, 1, and 5 [106]; Linux, which

supports RAID levels 0, 1, 4, 5, and 6 [105, 116]; and Mac OS X, which supports

RAID levels 0, 1, and 10 [51]. While hardware implementations have maintained a

reputation of being the high-performance path for RAID, software RAID is beginning

to gain a foothold in high-end installations. Linux software RAID is used in the Red

Sky supercomputer at Sandia National Laboratories [70], and storage vendors are

13

taking advantage of new CPU architectures to drive storage servers implementing

RAID in software [66].

The Zettabyte File System (ZFS), a file system implemented for the Solaris

operating system, includes RAID 5- and RAID 6-like functionality through RAID-

Z and RAID-Z2, respectively [68]. One notable differentiation from typical RAID

implementations is the lack of the RAID 5 and 6 “write hole,” which is the period

of time where the parity and data on disk may not be consistent with each other.

Power failure during this time frame can cause data to be corrupted. A further

advancement provides RAID-Z3, a software implementation that provides for triple-

parity RAID [61]. Leventhal describes these implementations as derivatives of Peter

Anvin’s work on the Linux RAID 6 implementation [5].

Brinkmann and Eschweiler described a RAID 6-specific GPU erasure code im-

plementation that is accessible from within the Linux kernel [14]. They contrast

their work with that found in Chapter 5 by pointing out that their implementation

is accessible from within the Linux kernel. However, their coding implementation

also runs in user space; a micro-driver is used to communicate between the GPU and

the kernel space components. Further, the implementation they describe performs

coding suitable for RAID 6 applications, while this work describes a generalized k +m

RAID implementation. Another GPU implementation of RAID 6 was being pursued

at NVIDIA, but has not seen public release [54].

Several FPGA-based implementations of Reed-Solomon codes exist for erasure

correction applications, including RAID [37] and distributed storage [102]. Further

applications in communications have benefited from high-speed implementations

of Reed-Solomon coding on FPGAs [60]. A multiple disk hardware file system

implementation has been created in an FPGA that supports RAID 0 [67].

Parallel and distributed file systems are typically installed on several nodes in a

cluster that use RAID arrays as underlying storage. At the same time, the parallel file

system will ensure that data are available in the case of one or more nodes becoming

14

unavailable by using RAID techniques. Production file systems like Ceph [109],

Lustre [1], and the Google File System [35] use replication (i.e., RAID 1 techniques)

to ensure the availability of files. Several network file systems for experimental use

have been presented that use coding algorithms to reduce storage overhead [18, 93].

An analysis of the trade-offs between replication and erasure coding in the context

of distributed file systems has been conducted [108]; erasure coding was found to be

superior for many metrics.

2. Coding Algorithms

An erasure correcting code is a mathematical construct that inserts redundant

data into an information stream. These redundant data can be used for data recovery

in the case of known data loss, or erasures [63]. The process of generating the data is

called encoding. If some limited amount of data are lost, the remaining data in the

information stream can be decoded to regenerate the missing data. In the context of

RAID, where k + m disks are composed into an array that can tolerate m failures,

k chunks of user data are used in the coding process to generate m chunks of parity.

There is a wide variety of codes that can be used in a RAID-like context, including

many that are less computationally expensive but require more storage to implement.

To aid discussion, coding algorithms will be classified based on two characteristics:

Generality (indicating whether k and/or m are fixed), and separability (with a

maximum distance separable code requiring m extra chunks of storage to recover

from m failures). RAID 6 codes, for example, may or may not be general; however,

they must be maximum distance separable, as a RAID 6 array must survive two

disk failures, but must require exactly two extra disks for code storage overhead.

Non-general codes generally have better computational characteristics for given m

than other codes, but they may be patent-encumbered. Non-general codes are also

sparse in m, as only certain values of m are considered useful for RAID 6 or RAID TP,

restricting the research devoted to codes with higher m. The following list of codes

15

is not exhaustive, but is intended to demonstrate that codes exist in all dimensions,

with certain codes being more well-suited for particular types of workloads.

2.1. General, MDS Codes. Reed-Solomon coding, while initially developed

for noisy communication channels like radio, is one algorithm which can be used for

RAID 6 (or any k + m coding) [20, 92]. Specifically, Reed and Solomon described a

code that offers optimal storage utilization for the reliability required, in that a system

that must protect from m erasures for k equally sized pieces of data must store k + m

pieces of that size. Several open-source packages exist that implement Reed-Solomon

coding in the context of erasure coding for storage, including zfec [79] and Jerasure [89].

RAID 6-specific optimizations of Reed-Solomon coding have been created for use in

implementations, including that used in the Linux kernel [5]. Multi-core scheduling of

polynomial operations for Reed-Solomon coding has been examined [103].

2.2. Non-General, MDS Codes. The simplest, most highly fault-tolerant, but

least storage efficient scheme for fault tolerance is simple N -way mirroring, which

is simply replicating data among many storage resources unchanged. In the k + m

terminology, N -way mirroring has a fixed k (k = 1), with varying m. Mirroring

requires no computation, as no data are changed, but software implementations can

suffer from reduced data bandwidth, and all implementations suffer from high storage

overhead. RAID 1 is a straightforward implementation of N -way mirroring [84].

Creating a hierarchical RAID 1+0 system, where multiple RAID 1 arrays are treated

as individual storage resources within a large RAID 0 array, is a means of increasing

the usable space of a mirrored array beyond that of a single disk.

Blaum et al. developed a RAID 6-specific algorithm called EVENODD, which is

provably optimal (asymptotically) in the amount of storage and number of operations

required [10]. They describe EVENODD as being the second erasure code (after

Reed-Solomon coding) that is capable of implementing RAID 6, with the benefit that

it uses only XOR operations. At the time of its introduction, using XOR as the only

operation was an advantage of the algorithm, as hardware RAID controllers that

16

provide RAID 5 already included hardware XOR capabilities [55], allowing them to

be repurposed for RAID 6.

Corbet et al. developed the Row-Diagonal Parity (RDP) algorithm [22], another

RAID 6-specific code. They describe the algorithm as more computationally efficient

than EVENODD in practice while maintaining the same asymptotic characteristics.

RDP also uses only XOR operations.

2.3. General, Non-MDS Codes. Tornado Codes are a family of erasure codes

that are encodable and decodable in linear time [17]. Tornado Codes are defined

to be probablistic codes defined by a sparse system, unlike Reed-Solomon codes.

Tornado Codes are considered to be inappropriate for online, block-based storage

systems because of their large storage overhead, as they use much more parity than

Reed-Solomon coding, and the cost of propagating changes of data chunks to affected

parity chunks is significant [111].

2.4. Non-General, Non-MDS Codes. Weaver codes are several families of

XOR-based codes that provide constrained parity in-degree [41]. These codes described

are not MDS (having a storage efficiency of at most 50%, identical to 2-way mirroring),

but have several other interesting properties that make them desirable for distributed

RAID systems, including improved locality. Hafner describes several instances of

Weaver codes that are up to 12 disk failure tolerant, but there is no proof that a

Weaver code can be generated that can tolerate any particular number of failures.

3. General Purpose GPU Computing

Workstations with graphics output have a heavy computation load associated

with 2D and 3D graphics. In order to improve overall system performance, GPUs

were created to perform graphical tasks efficiently to yield increased graphics quality

and increased system performance. One early observation of graphics researchers

was the inherent parallelism of graphics [90], so parallel GPU architectures have

long been in use. Many researchers who wished to perform their computations faster

17

have attempted to apply GPUs as parallel processors, resulting in a new sub-field of

computer science: General purpose computation on GPUs.

One of the first GPU applications did not target the programmable shader pro-

cessors of today’s GPUs, but instead targeted a texture combining mode. These

functions were accessed directly via the OpenGL [99] or Direct3D [40] graphics APIs.

Larson and McAllister demonstrated that a GeForce3, a GPU that used four pixel

pipelines to parallelize graphics, could be used to multiply matrices by storing them as

textures and using multiplicative and additive blending of these textures on a rendered

polygon [59].

As GPU technology developed, and users were demanding more realistic real-time

graphics, APIs and hardware support were created to allow developers to load their

own fragment shader programs into GPUs [11]. This allowed programmers to create

fragment shaders of arbitrary complexity (while obeying instruction count limits, which

were originally quite constraining). The program still had to render to the framebuffer,

but now algorithms that could not be implemented with texture units and other

portions of the graphics pipelines could be created. This style of computing was first

available from NVIDIA in the GeForce3 GPU [74]. Further capability enhancements

included a full 32-bits per component, allowing 32-bit floating point precision to be

obtained in computations.

Further enhancements to GPUs included efficient mechanisms for rendering directly

to another texture instead of to the framebuffer memory [12]. This eased the creation of

algorithms that required feedback, the reprocessing data that was processed earlier by

the GPU. The building blocks were in place to create fast and advanced applications on

GPUs for many important types of computations, including simulation of physics [45],

protein interaction [80], and planetary systems [115]. Further applications were

developed to perform numerical computing, including LU decomposition [25, 33] and

conjugate gradient [13]. Advancements in programming for this style of computation

include Cg, a language designed to create shader and vertex programs for GPUs

18

with different instruction sets [30]; BrookGPU, an implementation of the Brook

streaming language for GPUs [16]; and Sh (which has since become RapidMind), a

metaprogramming language for GPUs [64].

While many applications were successfully implemented on GPUs with vertex and

fragment shaders, there are significant hurdles to using this style of GPU computation.

One of the most limiting is the lack of scatter capabilities [43]. Each running thread

is assigned an output position by the rasterizer, implying that scattering functionality

must be simulated through refactoring the algorithm to use gather or vertex processors

to get scatter in limited contexts. Further difficulties included (before the advent of

Shader Model 4) limited data type capabilities. Emulation of the unavailable types,

which included double precision floating point, could prove inefficient if not done

carefully [38]. While there are several floating point types and vectors thereof, there

were no integer types or operations. Furthermore, only certain vector lengths and

types are supported for some operations such as vertex texture fetch [34].

As the interest in programming GPUs to do non-graphics tasks increased, ATI

(via Close-to-Metal, now known as AMD Stream Computing [3]) and NVIDIA (via

CUDA [75]) released hardware and software to allow more general purpose tasks

to be more efficiently programmed. Both include general scatter functionality and

integer types. Furthermore, each allows bit operations like shifts, XOR, AND, and

OR. Further contributions include NVIDIA’s parallel data cache, a fast memory

that can be accessed by several shader units simultaneously. These qualities taken

together create computing platforms that are easier to use and more efficient for

general purpose tasks than the OpenGL- or DirectX-based methods. As concern

over methods of programming different types of GPUs and other multi-core devices

increased, OpenCL was proposed as an open, royalty-free standard for writing programs

for multi-core devices, including GPUs [71]. While the API and workings heavily

resemble CUDA driver mode, OpenCL has an extension system similar to that of

19

OpenGL to facilitate vendor-specific extensions that are not part of the OpenCL API.

OpenCL implementations are now available for a variety of compute devices.

Many of algorithms and applications have been implemented in CUDA, OpenCL,

and AMD Stream languages. Much work has been done to implement primitives for

parallel computing on GPUs, including the parallel prefix sum [44], an algorithm that

has many practical applications. Numerical computing, while popular for OpenGL-

based GPGPU applications, has received a significant performance boost because of

new capabilities from explicit caching facilities [52]. Current NVIDIA and ATI/AMD

devices offer a superset of the application possibilities of OpenGL-based methods,

allowing those previous applications to be implemented to take advantage of more

device features [78, 85]. Some storage-related algorithms that benefit from expanded

data types and operations have been implemented with CUDA. AES encryption, which

can be used for on-disk encryption, has been demonstrated [113]. SHA-1, which can be

used for deduplication or content-based addressing, has also been implemented [114].

20

CHAPTER 3

The k + m RAID Levels

Calculating the lifespan of a RAID array can yield falsely encouraging results.

Manufacturer-estimated disk mean time to failure (MTTF) statistics are on the order

of one million hours, yielding an approximate mean time between failures (MTBF)

for a 32-disk RAID 6 array that exceeds 100 million years. (In comparison, mass

extinction events on Earth occur on average every 62 million ± 3 million years [95].)

While this is a display of the inadequacy of MTBF as a statistic for choosing storage

infrastructure configurations (a 100,000,000 year MTBF translates to approximately

99.99999% probability of experiencing no data loss in 10 years), real-world array

reliability is not reflected by this MTBF.

To mitigate challenges in disk and array reliability discussed in this chapter, a

generalization of RAID called k + m RAID is proposed. For this broad class of RAID,

the mechanism for supporting fault tolerance is familiar. For example, in RAIDs 5

and 6, storage is organized into multiple stripes of fixed size, with each chunk of the

stripe stored on a separate disk. The construct k + m indicates how the chunks of

each stripe are used; k is the number of chunks per stripe that store data, and m is

the number of chunks per stripe that store parity. Thus, RAID 5 is identical to k + 1

RAID, while RAID 6 is identical to k + 2 RAID.

k + m RAID arrays are m disk failure tolerant: Up to m disks may fail before any

data have been lost. However, the benefits to using k +m RAID for some applications

are best realized by never having m disks fail, but instead by having some extra disks

available at all times, with a minimum of one or two excess chunks per stripe depending

on array requirements. This chapter also demonstrates the reasoning behind these

requirements.

21

1. Disk Reliability

Disks are difficult to analyze from a reliability standpoint for many reasons, chief

among them being the relentless pursuit of higher densities and the pressure to

introduce new features quickly. Testing of new drives for their mean time to failure

characteristics is necessarily accelerated, and assumptions have to be made about

how the results can be applied to drives as they age. Further, the effect of UREs

is under-emphasized, which increases the risk of small data losses. Finally, other

unusual circumstances can lead to data corruption without outright physical failure

of any component. All impact the reliability of storage, especially when using disks

aggregated into arrays.

1.1. Disk Failures. Large disk population failure studies have been rare until

recently, as corporations do not tend to track these statistics, and drive manufacturers

do not run large disk installations for testing drives long term. Instead, drives are

assumed to follow the same types of patterns that other electronics do, namely the

“bathtub curve,” which expresses failures caused by infant mortality, component wear,

and a constant rate of failure for other reasons [57]. See Figure 5 for an illustration of

the bathtub curve and its components.

Disk manufacturers cite impressive MTTF statistics for their disk drives that are

obtained via estimates based on medium-scale studies (500 drives) at high temperatures

(42◦ C/108◦ F) continuously over short periods of time (28 days), then correcting and

extrapolating these findings for a drive’s expected lifetime [21]. Unfortunately, there

are problems with this type of testing:

• The tests assume that, as temperatures rise in an enclosure, failures increase.

A recent study has shown that there is little correlation between drive failure

and operating temperature [86].

• The tests assume that drive failures tend to remain constant after the first

year for the drive’s expected lifetime, with a high infant mortality rate [21].

22

A
nn

ua
l F

ai
lu

re
 R

at
e

Time

Infant Mortality

Constant Failure

Wear and Tear

Total Failure Rate

Figure 5. The Bathtub Curve as a Model for Failure [57]

A recent study has shown that drive failure can begin increasing as soon as

the second year of operation of a disk drive [100].

The authors of the above-mentioned recent studies, through the benefit of analyzing

maintenance records for many large systems using millions of disks, have drawn the

conclusion that drive MTTF estimates provided by drive manufacturers are too large

by a factor of two to ten, or more for older disks [86, 100]. Such discrepancies require

adjustments when calculating RAID reliability.

1.2. Unrecoverable Read Errors. A significant source of data loss that plagues

hard disks is the URE, a type of error that causes data loss without outright failure

of the disk [39]. Such errors can be caused by several factors, but the end result is

the same: An entire sector (either 512 bytes or 4,096 bytes in size) of the media is

unreadable, resulting in data loss.

The statistics for UREs, defined by the rate at which they occur by the Bit Error

Rate (BER), often appear innocuous. Such errors are encountered for one sector per

1015 bits read for typical hard disks [97] and solid state drives [24], implying a BER of

10−15. However, these events can make storage vulnerable to increased risk of losing

23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

58

61

64

67

70

73

76

79

82

85

88

91

94

97

10
0

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

Data Read (TB)

BER=10^-14
BER=10^-15
BER=10^-16

Figure 6. Probability of Avoiding a URE, Calculated with Equation 4

data as the number of bits read approaches a significant fraction of the inverse of the

BER.

In a healthy RAID array, an unreadable sector is unlikely to cause significant

problems, as this is a condition reported to the RAID controller. The RAID controller

can then use the contents of the other disks to recover the lost data, assuming that there

is excess parity in the array. However, as RAID arrays experience disk failures, an array

can be left with some amount of the volume unprotected by redundancy. For RAID 6

arrays, double disk failures do happen (an intuitive reason that RAID 5 arrays are often

considered inadequate), and UREs are frequent enough that a volume unprotected by

redundancy is at unacceptably high risk of data loss. System administrators at Sandia

National Laboratories have encountered multiple instances where production RAID 6

arrays with 10 disks have suffered double disk failures and UREs, causing extensive

volume maintenance to recover data [69]. Figure 6 shows that, given the described

configuration with two-terabyte disks and a double disk failure, the probability of

surviving the rebuild process without data loss is less than 0.89, assuming a BER of

10−15. The BER of disks is an example of increasing disk sizes causing significant

24

problems when the reliability remains constant. As disks grow larger, more data

must be read to reconstruct lost disks in arrays, thus increasing the probability of

encountering UREs.

1.3. Further Sources of Data Loss. If an array is otherwise healthy, UREs

are relatively simple to handle. There are other types of errors that are significantly

more rare, but have the potential to cause user processes to receive incorrect data from

storage. These errors are unreported, causing passive means of ensuring data integrity

to fail. Such failures are difficult to analyze because of their infrequent (and often

undetected) nature, but at least one case study has been performed in an attempt to

quantify the possible impact [7]. Listed reasons for such errors include disk firmware

bugs, operating system bugs in the I/O stack, and hardware failing in unusual ways.

Some applications cannot afford to encounter such unreported errors, no matter how

rare.

2. A Model for Calculating Array Reliability

Two formulas were given by Chen et al. to calculate the reliability of RAID arrays,

taking only disk failures into account [20]:

RAID 5 MTBF =
MTTF 2

n(n− 1)MTTR
(1)

RAID 6 MTBF =
MTTF 3

n(n− 1)(n− 2)MTTR2 , (2)

where MTTF is the MTTF of a single disk, n is the total number of disks in the

array, and MTTR is the time required to replace and rebuild a failed disk. Other

terms were included in later derivations to incorporate other risks, such as UREs. The

above formulas can be extended to k + m formulations, tolerating up to m failures of

k + m = n disks without losing data, as follows:

k + m RAID MTBF =
MTTFm+1

(k+m)!
(k−1)! ×MTTRm

. (3)

25

Unfortunately, in the paper where these formulas were originally derived, an assumption

was made that the MTTR of a disk array is negligible compared to the MTTF of a

disk in the array [84]. Even as recently as 1994, an MTTR of one hour was considered

reasonable [20]. Such figures are no longer reasonable, as the MTTR has increased

and MTTF has not substantially increased [100]. Even with the inclusion of hot

spares, idle disks included within an array to be used as replacements upon disk failure,

rebuild times can span several hours, days, or weeks for systems under significant load.

The calculation of the likelihood of encountering a URE when reading a disk is a

straightforward exercise in probability. Since a hard disk operates on a sector level,

read errors do not occur on a bit-by-bit basis. Instead, entire sectors are affected. As

such, the sector error rate must be used to compute probability of data loss. The

relationship between the probability of encountering sector errors and the amount of

data read is perilous given the volume of data that is typically processed during array

rebuilds, as shown in Figure 6.

In the following calculations for an array which can tolerate m failures without

data loss, the Poisson distribution (denoted by POIS) is used to calculate several

related probabilities:

The probability of encountering a URE, with the sector size expressed in bytes, is:

Pure(bytes read) = 1− (1− sector size × BER × 8 bits
byte

)
bytes read
sector size . (4)

The probability of the first disk failing, where n is the number of disks in the array,

and array life is expressed in years, is:

P (df 1) = 1− POIS (0, n× AFR × array life). (5)

The probability of the ith disk failing, where i = 2 . . .m + 1, within the MTTR of the

previous failure, where MTTR is expressed in hours, is:

P (df i) = 1− POIS (0, (n− i + 1)× AFR ×MTTR). (6)

26

The probability of encountering m failed disks and a URE is:

Psector = Pure(disksize × (n−m))
m∏

n=1

P (df i). (7)

The probability of data loss caused by encountering m+1 failed disks or an unmitigated

URE is:

Pfail =Psector +
m+1∏
n=1

P (df i)− Psector ×
m+1∏
n=1

P (df i). (8)

The probability of data loss caused by losing all hot spares between service period,

where h is the number of hot spares, and s is the service interval (in hours, where s is

small for attendant technicians), is:

Phot = POIS (h + m + 1, n× AFR × s/(24× 365.25)). (9)

The total probability of data loss is as follows:

Ploss = Pfail + Phot − Pfail × Phot . (10)

3. Current High-Reliability Solutions

RAID 6 is a commonly supported RAID level that offers high reliability, but

other variations exist that are designed to provide increased reliability. These are

commonly termed hierarchical RAIDs, which configure RAID volumes containing

disks (termed “inner arrays”) to act as devices in a large RAID volume (termed “outer

array”) [6]. In this document, the naming scheme used for such RAIDs is RAID

a + b, where a describes the RAID type for the inner RAIDs and b describes the

RAID type for the outer RAID. The rationale behind hierarchical RAID levels is

that each additional sub-array introduces more parity into the system, increasing the

fault tolerance overall, even if the outer RAID does not contain any additional parity.

Outer RAID 0 organizations are much more common than any other, with controllers

27

Inner RAID Outer RAID Level
Level 0 1 5 6

0 0% ≥ 100% 12.5% 25%
1 ≥ 100% ≥ 300% ≥ 106.25% ≥ 112.5%
5 25% ≥ 106.25% 40.63% 56.25%
6 25% ≥ 112.5% 56.25% 87.5%

Table 1. Hierarchical RAID Storage Overhead for Sample Configuration

often supporting RAID 1+0 (striping over mirrored disks), RAID 5+0 (striping over

RAID 5 arrays), and/or RAID 6+0 (striping over RAID 6 arrays).

There are no theoretical restrictions on which RAID levels nest together, nor

is there a limit to the depth of nesting. However, when ignoring the additional

computational complexity of providing two levels of parity generation, nesting RAID

levels when the outer level provides reliability requires a large investment in storage

resources. Table 1 shows that, when using 4 + 1 or 8 + 2 configurations for inner

RAIDs when possible, hierarchical RAID involves at least a 40% overhead in storage

requirements while potentially doubling processing requirements.

These concerns indicate two classes of reliability within the hierarchical RAID

levels. Some can be considered somewhat more reliable than non-hierarchical RAID

levels, as they simply provide more inner parity without adding any outer parity

(levels [1-6]+0). Others drastically increase the reliability by adding additional parity

to the outer array that can be applied to recover any failure encountered by an inner

array (levels [1-6]+[1-6]). From Table 1, it is clear that storage overhead for RAID

[1-6]+[1-6] is high. RAID 5+5 is most storage efficient, but still requires more than

40% storage overhead. Levels [1-6]+[1-6] are not commonly implemented because

of both this storage overhead and the additional level of computation. Instead, the

simpler levels (RAID [1-6]+0) are most commonly used. These are straightforward to

analyze from a reliability standpoint:

Ploss(nsets) = Ploss(nsets− 1) + Ploss(1)− Ploss(nsets− 1)× Ploss(1) (11)

28

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

Pr
ob

ab
ili

ty
 o

f D
at

a
L

os
s W

ith
in

 T
en

 Y
ea

rs

Data Capacity (TB, using 2TB Disks)

RAID 5
RAID 5+0 (2 sets)
RAID 5+0 (3 sets)
RAID 5+0 (4 sets)

Figure 7. Comparison of Reliability: RAID 5 and RAID 5+0 with
Varying Set Sizes, BER of 10−15, 12-Hour MTTR, and 1,000,000-Hour
MTTF

The base case is Ploss(1), which is simply Ploss for the inner RAID level.

Figures 7 and 8 demonstrate the differences between RAID 5 and RAID 5+0, and

RAID 6 and RAID 6+0, respectively. It is worth noting that RAID 5+0, even when

split to four sets, does not appreciably increase the reliability over RAID 5 with the

same capacity. The additional parity does not help because RAID 5 is not capable of

correcting UREs during rebuild operations. RAID 6 does benefit more appreciably,

with more than an order of magnitude difference between RAID 6 and RAID 6+0

over four sets. This increased reliability comes at the cost of quadrupling the storage

overhead.

RAID 1+0, while extreme in the amount of overhead required, is computationally

simple and has a high reputation for reliability. Figure 9 shows the reliability for

three RAID 1+0 configurations. While more replication has higher reliability, two-way

replication suffers from the same problems encountered with RAID 5+0. While

29

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

1.40E-03

0 50 100 150 200 250 300

Pr
ob

ab
ili

ty
 o

f D
at

a
L

os
s W

ith
in

 T
en

 Y
ea

rs

Data Capacity (TB, using 2TB Disks)

RAID 6
RAID 6+0 (2 sets)
RAID 6+0 (3 sets)
RAID 6+0 (4 sets)

Figure 8. Comparison of Reliability: RAID 6 and RAID 6+0 with
Varying Set Sizes, BER of 10−15, 12-Hour MTTR, and 1,000,000-Hour
MTTF

three-way and four-way replication do improve reliability significantly, the storage

overhead is 200% and 300%, respectively.

4. k + m RAID for Increased Reliability

One contribution of this work is the demonstration of a capability to run RAID

arrays containing arbitrary amounts of parity with commodity hardware. Typically,

today’s controllers implement RAID levels 1, 5, 6, 5+0, 6+0, 1+0, and rarely RAID TP

(a recently introduced triple-parity RAID level that is equivalent to k + 3 RAID). This

work implements RAID that can dedicate any number of disks to parity, enabling any

k + m variant, subject to restrictions of Reed-Solomon codes pertaining to word size

used.

Figure 10 shows a comparison between variants of each commonly used level:

RAID 5+0, with four sets; RAID 6+0, with four sets; and RAID 1+0, with three-

30

1.00E-12
1.00E-11
1.00E-10
1.00E-09
1.00E-08
1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00

0 50 100 150 200 250 300

Pr
ob

ab
ili

ty
 o

f D
at

a
L

os
s W

ith
in

 T
en

 Y
ea

rs

Data Capacity (TB, using 2TB Disks)

RAID 1+0 (2-way
replication)
RAID 1+0 (3-way
replication)
RAID 1+0 (4-way
replication)

Figure 9. Comparison of Reliability: RAID 1+0 with Varying Repli-
cation, BER of 10−15, 12-Hour MTTR, and 1,000,000-Hour MTTF

and four-way replication. It is clear that RAID 5+0 should not be used when data

integrity is important. The RAID 1+0 variants show that, if one can tolerate the

200-300% storage overhead, RAID 1+0 offers excellent protection from data loss

(disregarding the possibility of not knowing which data is correct in the case of data

corruption). The curves for RAID 1+0 at all points have a smaller derivative than

the parity-based RAIDs; this is because RAID 1+0 is the only RAID level shown that

increases redundant data as capacity grows.

It is clear that, by increasing the parity, the array’s expectation of survival for

a time period increases by a significant amount while requiring a small investment

of additional storage resources. Further, each additional parity disk increases the

number of disks that may be managed within a single array substantially while keeping

reliability fixed. For example, a system administrator may decide that a reliability of

99.9999% over 10 years is justified based on availability requirements. According to

31

1.E-19

1.E-17

1.E-15

1.E-13

1.E-11

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

0 50 100 150 200 250 300

Pr
ob

ab
ili

ty
 o

f D
at

a
L

os
s W

ith
in

 T
en

 Y
ea

rs

Data Capacity (TB, using 2TB Disks)

RAID 5+0 (4 sets)

RAID 6+0 (4 sets)

RAID 1+0 (3-way
replication)
RAID 1+0 (4-way
replication)
RAID k+3

RAID k+4

RAID k+5

Figure 10. Comparison of Reliability: Several RAID Levels with BER
of 10−15, 12-Hour MTTR, and 1,000,000-Hour MTTF

the data behind Figure 10, found in Appendix B, this can be done with RAID 1+0,

but only with three disks of data in the array, with 66% overhead. Upgrading to a

RAID 6+0 array with two sets increases the data capacity supported to eight disks of

data, with 50% overhead. Instead, by only adding a single parity disk to the RAID 6

array to upgrade to k + 3 RAID, 93 disks may be included within the array, with

approximately 3.2% overhead.

4.1. Guarding Against Reduced Disk Reliability and High Load. As

discussed in Section 1.1 of this chapter, studies have shown that disks are up to 10

times more likely to fail than manufacturers describe before accounting for advanced

age [86, 100]. Further, a MTTR of 12 hours was assumed in discussions thus far,

but such repair rates may not be realistic for systems servicing client requests during

the rebuild. A disk drive can reasonably sustain approximately 100 MB/s of transfer,

implying two terabytes will be written at that rate to complete a rebuild. If the rest

32

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
0 50 100 150 200 250 300

Pr
ob

ab
ili

ty
 o

f D
at

a
L

os
s W

ith
in

 T
en

 Y
ea

rs

Data Capacity (TB, using 2TB Disks)

RAID 5+0 (4 sets)

RAID 6+0 (4 sets)

RAID 10 (3-way
replication)
RAID 10 (4-way
replication)
RAID k+3

RAID k+4

RAID k+5

Figure 11. Comparison of Reliability: Several RAID Levels with BER
of 10−15, One-Week MTTR, and 100,000-Hour MTTF

of the array can keep pace, this operation will require a minimum of 5.6 hours to

complete. For a 16-disk RAID 6 array, rebuilding a failed disk at 100 MB/s requires

at least 1400 MB/s of bandwidth from other disks that can no longer be used for

servicing client requests. RAID systems can reasonably experience rebuild times that

are on the order of a week based on high client load and low bandwidths per disk.

While declustered RAID can increase rebuild speeds, it lowers array capacity and can

cause other problems based on the layouts used [48].

Figure 11 shows the dramatic effects of increased MTTR and decreased MTTF:

Large arrays become less likely to survive for long periods without data loss. RAID 1+0

with four-way replication, RAID n+4, and RAID n+5 are the only RAIDs shown that

can provide 99% reliability for arrays approaching 250 TB in capacity. Meanwhile, for

128 TB arrays, the outlook is better: RAID 1+0 with four-way replication and RAID

n + 5 can offer more than 99.99% reliability, RAID n + 4 can offer 99.9% reliability.

33

While the parameters are more extreme than many will expect, this is a reasonable

lower bound on reliability based on high load and worst-case MTTF (or MTTF in

harsh environments). In such cases, high-parity RAID may be the only economical

solution to ensure data integrity.

4.2. Read Verification for Unreported Errors and UREs. One reason

UREs are so perilous is that they have a high probability of being encountered

during the rebuild phase of a RAID array, when redundancy can be completely absent.

Such an error can be found on a disk sector that has not been accessed for a long

period, and is only found when it cannot be repaired without restoring lost data from

backups. Further, corrupted data on disk from an unreported error cannot be detected

when redundancy is eliminated.

A partial solution to these situations is a process known as scrubbing [81]. Scrub-

bing is a feature where a controller starts reading from the beginning of the RAID

device to the end, attempting to detect UREs and parity inconsistencies as a back-

ground process during normal operation of a RAID array. Such errors are usually

fixed by either rewriting the data to the same sector or by remapping the sector, but

the lost data must be recovered from the parity available. Scrubbing allows for such

errors to be caught before redundancy is lost in an array.

Using scrubbing in a large array that is always in use is not ideal. Such activities

rely on idle time in the array, or must use some of the available bandwidth, reducing

client performance. Also, scrubbing will not prevent a client from using bad data

resulting from an unreported error before the scrubbing process could detect and

resolve the discrepancy, demonstrating the need to verify all data on read.

While read verification alone does improve reliability significantly, disk failures can

decrease or eliminate the ability to verify data integrity. To correct an unreported

error, more than a single extra parity block is necessary; a single parity chunk will

merely serve to detect that an error has occurred. While error detection without

correction is still useful, as a long-running compute job can be immediately terminated

34

instead of wasting further compute resources to produce a likely incorrect result, the

ability to correct errors and continue work provides more utility. To correct errors, it

is necessary to maintain at least two chunks of parity within the system at all times,

even while operating in degraded mode.

It should be noted that RAID 1+0 does not have strong error correction (as

opposed to erasure correction) capabilities when using less than four-way replication.

Unreported errors or data corruption can be propagated into the data stored on a

single disk, causing a problem when two supposedly identical disks contain different

data. When there are only two replicas, which is the case under 2-way replication or

3-way replication with a single failure, there is no way of resolving such discrepancies

without another data source. Furthermore, since all disks are executing the exact same

workload by definition, unreported errors caused by firmware bugs may be encountered

in several disks simultaneously, provided that they are identical models.

Similar lack of error correction can also be noticed in the parity-based RAIDs. For

k+ 1, error detection is possible but error correction is completely absent. k+ 2 suffers

the same problem when operating in degraded mode. This lack of error correction

for unreported errors further motivates the need for k + m RAID in conjunction with

read verification.

4.3. Performance Impact of k+m RAID. Higher levels of parity have obvious

performance impacts on small writes, and on small reads with read verification with

parity, because of the necessity of accessing more disks than are involved in data

operations. For example, a small write without read verification involving data stored

on only one disk requires 2m + 2 I/O operations: A read of the previous contents

of the data chunk, a read of all parity chunks, and a write of the updated data and

parity chunks. With read verification, k + m + 2 I/O operations must occur:

(1) Read k + 1: Because at least some data must be read (minimally, the parity

to update), k + 1 chunks must be read to have any error detection capability.

35

If k ≥ m, the affected data block, the parity chunks, and k −m unaffected

data chunks can be read.

(2) Modify: An update can be completed with the affected data chunk and

parity chunks, or simple generation of parity if less than m chunks of parity

are read.

(3) Write m + 1: The updated data and parity chunks must be written.

However, for large and/or streaming operations, there is little I/O overhead

compared to the amount of data written or read, even for verified operations. Each

read incurs k + 1 chunks per stripe read, with a single chunk of overhead, and each

write incurs k + m chunks written, where k is generally significantly larger than m.

I/O workloads that are streaming in nature can take advantage of high-speed high-

parity RAIDs without much penalty, excepting available disk bandwidth and usable

capacity. Log structured file systems can create I/O workloads that are similar to a

streaming pattern without a user’s workload conforming to this pattern, particularly

for write-heavy workloads [96].

5. Conclusions

Disks are difficult to analyze for reliability for a number of reasons, but the end

result is the same: When aggregating several disks into an array with inadequate

parity, data loss is highly probable. However, the amount of parity necessary and the

optimal organization is debated widely. Current highly reliable RAID still maintains

the same structure of RAID levels 1, 5, and 6, with hierarchical organizations being

used to increase fault tolerance. Unfortunately, based on analysis of these levels, it

has been shown that RAID 5+0 is not a significant improvement on RAID 5, and

RAID 6+0 is not a large improvement on RAID 6. Further, reasonable ranges of

values for array MTTR and disk MTTF can cause the reliability of an array to vary

widely.

36

RAID levels 5, 6, 5+0, and 6+0 also do not support high levels of error correction

capability. With RAID 5 and RAID 5+0, it is impossible to determine where errors

have occurred within the array beyond which set is affected. RAID 6 exhibits the

same behavior when operating in degraded mode. RAID 1+0 can reliably detect

errors when there are at least three replicas active simultaneously within a RAID 1

set, so that voting can occur, but incurs a large storage overhead. For applications

that require absolute data integrity, such levels cannot provide reassurance against

storage stack bugs, firmware bugs, or certain types of hardware failure.

This chapter shows that k + m RAID, a storage organization that improves on

current parity-based RAID by allowing arbitrary choice of disk failure tolerance, is

a potential solution to all of the identified problems. Read verification, along with

error correction, can be implemented with high reliability, while providing orders of

magnitude reliability improvement over hierarchical RAID levels that use more storage

resources and provide fewer protections.

37

CHAPTER 4

A GPU-BASED RAID ARCHITECTURE FOR

STREAMING WORKLOADS

Currently available GPU technologies, when incorporated into a RAID controller

for high-performance computing, impose some constraints on the software architecture.

Gibraltar RAID, a prototype GPU-based RAID system, targets a high-performance

computing environment that primarily hosts streaming file I/O. This specialization

allows for opportunities to simplify and optimize the architecture while addressing

specific needs of potential users.

This chapter details the overall system that includes Gibraltar RAID as a com-

ponent. It further details the major design decisions of Gibraltar RAID given the

challenges and opportunities of the workload and system. It also details the architec-

ture of the RAID layer while discussing design decisions.

1. The Software Ecosystem for Gibraltar RAID

While this research effort involves creation of a new piece of software, little software

exists in isolation. Gibraltar RAID depends on two main software packages to provide

necessary functionality: A GPU computation package, and a storage target. This

section describes the use of each and the related consequences.

1.1. The NVIDIA CUDA Toolkit. The Gibraltar Library (detailed in Chap-

ter 5) depends on the capabilities of the NVIDIA CUDA [75] toolkit for GPU compu-

tations, and must deal its limitations. CUDA is intended to be used by user space

applications for accelerating many types of user computations. Computations that are

performed within an operating system are not often targeted for GPU acceleration,

resulting in a lack of kernel space APIs to access GPU computing resources. There

38

are at least three possible ways to use CUDA within a RAID system. They are, in

order from most difficult to least:

(1) Reverse-engineer the CUDA runtime (or eavesdrop on traffic between user

space applications and the NVIDIA driver) and provide a kernel space CUDA

API;

(2) create a kernel driver that passes data between the block layer and a user

space CUDA-enabled daemon; or

(3) create a RAID system within a user space network storage software.

Based on the relative benefit for each development path, the third option was the

strategy chosen for Gibraltar RAID. The reasoning relies not only on the relative

difficulty of creating a high-quality prototype, but also its future utility. As future

accelerators applicable to RAID coding become available, a user space infrastructure

will likely prove most beneficial. Any conceivable accelerator intended for mainstream

use can be most easily integrated and tested with this strategy. Further, as this

prototype is designed to be used with high performance streaming workloads that are

observed in large compute clusters, the use of network storage server software on the

storage server is likely. If accessing network storage with client software on a loopback

interface is efficient, this strategy can also provide DAS for a single workstation.

1.2. The Linux SCSI Target Framework. A target is an entity on a network

providing storage. To use the storage offered by a target, client software (the initiator)

must interact with the target. In order to follow the third design strategy, target

software that includes a user space processing component is necessary. Fortunately, the

standard iSCSI [98]/ISER [58] target for Linux, the Linux SCSI Target Framework [32]

(stgt), is largely implemented in user space. While stgt does include a Linux kernel

module to interact efficiently with network transports, almost all of stgt’s operations

are performed within a user space daemon (tgtd).

In the standard stgt distribution, the default mode of operation includes opening

the backing store, which can be a device or flat file, within tgtd. The iSCSI commands

39

are applied to the backing store with standard system calls like open, pread, pwrite,

and so on. To provide the RAID functionality, a software package can provide similar

calls to minimize the necessary modifications to tgtd. This is useful, as significant

updates to stgt are currently released approximately once per month.

2. Design Characteristics and Implications

There are three main design characteristics that are important to the applicability

and performance of Gibraltar RAID. These have important, interrelated implications

that must be addressed at the outset. This section details these characteristics and

their effects on Gibraltar RAID’s design.

2.1. Read Verification. Chapter 3 describes in great detail the unreliable nature

of disk systems and hardware. However, many segments of the high performance

computing population require the utmost confidence in computations. Ensuring that

the data are stored and retrieved reliably is going to become a significant factor in

the correctness of results. In order to demonstrate the feasibility of read verification,

it is a feature in the Gibraltar RAID system.

There are at least two ways to provide read verification: Block checksums, and

parity-based verification. The T10 Data Integrity Field (DIF) [49], which is available

on SAS and Fibre Channel hard disks, includes a field of eight bytes with every

512-byte block. This field includes many types of information, including a cyclic

redundancy check (CRC) to detect bit errors. Performing this type of check in

software would require an inordinate number of small memory copies, even with

knowledge of the RAID stripe depth. The second, stripe verification, requires no new

data to be generated beyond the RAID-required parity chunks. However, in order to

verify any information in a RAID stripe, the entire stripe (data and parity) needs to be

read from disk. This implies that small reads have a lesser, but analogous, penalty as

writes in a parity-based system. For streaming workloads, there is a reduced penalty,

as both reads and writes tend to be large and contiguous.

40

2.2. Asynchronous/Overlapping Operation. Asynchronous I/O, which al-

lows the Linux kernel to manage read and write requests in the background, is sensible

for storage-intensive applications. Initially, Gibraltar RAID used threads to perform

synchronous reads and writes with one thread assigned per disk. Switching to asynchro-

nous reads and writes allowed for more efficient use of resources than CPU-intensive

pthread condition variables with a high thread-to-core ratio allow. While asynchronous

I/O has been implemented in the Linux kernel and C libraries for some time, the

methods for performing asynchronous vector I/O are not well-documented.

The benefits of using asynchronous I/O are compelling: Using a single thread to

perform I/O is easier to manage (and debug) than using a team of threads. Further,

fewer system calls must be made to file an I/O operation for a stripe. There is a

significant disadvantage: Linux asynchronous I/O only works with devices opened

with the O DIRECT flag.

2.3. O DIRECT and the Gibraltar Library Throughput. When specified

as a flag for the Linux open system call, O DIRECT instructs the I/O subsystem to

bypass the Linux buffer cache and perform I/O directly on user space buffers. This

is desirable for an application that manages large caches itself. Specifically, RAID

software that verifies reads must be aware of the location of data at all times. If data

received from a read call comes from the buffer cache, and has already been read by

the application, the RAID software does not need to reverify the contents returned.

Unfortunately, this information is not available when requesting data from the buffer

cache.

O DIRECT’s implementation conflicts with the implementation of CUDA’s memory

allocation functions, which can permanently pin buffers for PCI-Express transfers

without data copies. When attempting to perform direct I/O on a CUDA-allocated

memory region, the system call will return an error and not complete. The most

efficient usage of Gibraltar involves memory mapping host memory into the GPU’s

address space, which requires using the CUDA memory allocator. Since this mapping

41

can not be done, that coding is much less efficient within Gibraltar RAID than it

could be, resulting in a throughput of approximately 900 MB/s in the test system

outlined in Appendix C. The resulting requirement is that the architecture must be

pipelined to ensure good performance when the disk controller is capable of a similar

throughput as the GPU. While not attempted, straightforward modifications to the

Linux kernel would rectify this shortcoming.

3. Gibraltar RAID Software Architecture

The interface between Gibraltar RAID and the target is general, allowing Gibraltar

RAID to be used with other network storage packages that have user space operation.

Further, software that manages its own raw storage may use Gibraltar RAID directly.

However, Gibraltar RAID cannot take advantage of the facilities for I/O within

the operating system kernel, so many portions of the underlying secondary storage

stack had to be remade and integrated within Gibraltar RAID in user space. This

section details the mechanics of the components that have been provided, and how

the components communicate.

Figure 12 has been provided to aid with the description following. Different data

paths are outlined as follows: Writes are denoted with a “w,” reads with an “r,” and

victimization with a “v.” Each interaction is noted with a letter indicating the data

path and a number indicating the order in which the interactions occur.

3.1. Interface. One goal of integration into the Linux SCSI Target Framework

was to keep the user interaction with the running target the same because the target

was deployed in a production environment. This necessitates completely changing

the operation of the target to remove support for using regular devices as storage

resources, as a new command would be required to manage virtual devices. Instead,

this target is intended to be used solely as a GPU-based RAID server.

The only new command creates a new Gibraltar RAID device with an arbitrary

number of logical units, storing the settings in several files, one per logical unit. Each

42

Erasure Coding

Client Service Thread

pwritepread

r1

Victim Cache

I/O Scheduler

Victimizer

Stripe Cache

Linux Async I/O

I/O Notifier

w1

r2

r3

r4

r5

r6 v1

v2

v3

v6

v4

r7

Figure 12. Gibraltar RAID Architecture and Data Flow Diagram

43

file can be used to add and remove storage resources from the target independently

in the same manner used to add and remove storage devices. Each logical unit file

contains configuration information like the SCSI identifier of the member drives, array

status, ranges of bytes included in the logical unit, and so on. One benefit of this

arrangement, in contrast to Linux md, is that Gibraltar RAID can host a large number

of file systems within a single RAID device, exposed as multiple logical units.

Other possible contents of logical unit files include bitmaps that contain information

on initialization status of stripes and rebuild progress. The initialization information

is useful at array creation, eliminating the requirement of generating parity for unused

portions of the disk. When creating an array with Linux md, for example, a lengthy

syncing process runs in the background until all parity has been generated, even though

the array generally contains no data that requires fault tolerance. If initialization

data are stored, parity can be generated for data as they are stored. Similarly, rebuild

progress can be stored to allow array rebuilding to be interrupted without losing

progress.

All interaction between the target and Gibraltar RAID occurs through functions

following the interfaces for the standard C library calls pread() and pwrite(). Each

function takes a pointer to a user buffer, an offset into the RAID device, and the

length of the desired data to be copied into the user buffer. Each request is mapped by

these functions to the stripes affected, and asynchronous requests for those stripes are

submitted to the Gibraltar RAID cache. These requests are filled without knowledge

of whether the stripes are present in the cache, so the stripe can be requested in one

of two ways:

• Request stripe with its full, verified contents; or

• Request a “clean” stripe, which may return an uninitialized stripe and does

not incur disk I/O.

The second option is useful if the stripe is to be completely overwritten by a write

request, or if it is expected to be overwritten. Client service threads, threads created

44

by the target to satisfy read and write requests from network clients, call pread and

pwrite.

For reads, additional stripes may also be requested in order to provide read ahead

capability that takes advantage of spatial locality of disk accesses. In the case of

streaming reads, there is a high probability that a read for a segment of data will be

quickly followed by a request for the next. The Linux kernel buffer cache does this;

read ahead is necessary to get the best performance out of a storage system under

streaming workloads.

After all read or write requests have been registered, the client service thread waits

for the requests to be fulfilled. In the case of a read, the routine passes each stripe

to the erasure coding component to be verified or recovered. Writes can be recorded

as incomplete updates to a stripe, anticipating that the whole stripe will eventually

be overwritten. If this does not happen before a stripe is chosen for victimization,

the stripe must be read, verified, modified with the contents of the incomplete stripe,

updated with regenerated parity, and written.

3.2. Stripe Cache. Gibraltar RAID includes a stripe cache that operates asyn-

chronously with the I/O thread and the user’s requests for reads and writes. In the

event of a read request to the cache, the cache submits requests to the I/O thread

to read the relevant stripes from disk in their entirety, including parity chunks for

read verification. This full-stripe operation can be viewed as a slight mandatory read

ahead.

Writes have a simple implementation in the stripe cache, as they do not require

immediate disk operations. The cache is optimistic; if the write request does not fill

an entire stripe, the cache assumes that the stripe will be completely populated before

being flushed to disk. Therefore, no reads are required before a partial update to a

stripe is made. If a stripe is in the process of being read, the cache will force the

client thread to wait until the read has been completed. If the stripe has already been

previously read, it will be simply given to the client thread to be updated with the

45

write contents. Otherwise, a blank stripe is returned, and the client is responsible for

maintaining the clean/dirty statistics related to the writes requested.

When the cache is sufficiently full, the cache will start deleting clean stripes and

filing operations to flush dirty stripes. The interface to accomplish this is flexible,

allowing many different types of caching algorithm to be used. The default mode of

operation is the Least Recently Used (LRU) caching algorithm, but higher quality

algorithms may be used. Furthermore, the victim selection routine can have an internal

timer used to facilitate write-behind caching.

3.3. I/O Scheduler. The scheduler receives requests from the cache for reading

stripes, and receives requests from the victimization routine for writing stripes. The

scheduler accumulates these requests in a queue until it is ready to service them. All

of the requests are received as a batch to facilitate combining of requests that are

adjacent on disk. Only write requests are combined for the following reasons:

• Clients are affected by latency if they have to wait longer for a read request

to be serviced. Reads are necessarily synchronous, so a large combined read

request will force all clients to wait until the entire combined request is

serviced.

• Our experiments show that performing short contiguous reads easily obtains

good performance from a disk. Writes, however, can be significantly slower

(depending on the qualities of the system, such as hardware and configuration)

unless a comparatively large amount of data are accumulated for writing at

once. Figure 13 demonstrates this property. Notice that contiguous writes of

16 megabytes are slightly slower than contiguous reads of 64 kilobytes. This

performance degradation is only apparent for files or devices opened with the

O DIRECT flag, which bypasses the Linux kernel buffer cache. For normal

disk operation, write requests are combined in the buffer cache, hiding this

potential performance issue.

46

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 4 8 16 32 64 128 256 512 1024 4096 16384

Th
ro

ug
hp

ut
 (M

B/
s)

Operation Size (KB)

Streaming Read
Streaming Write

Figure 13. Performance of a Single Disk in a RS-1600-F4-SBD
Switched Enclosure over 4Gbps Fibre Channel

The scheduler receives all waiting requests as a batch, ordering and combining

them as necessary to achieve the highest possible disk bandwidth. The ordering

algorithm currently used is the circular elevator algorithm (C-SCAN).

Combining requests is conceptually simple. If there are two writes that are adjacent

on disk, it is possible to use a vector write to service the requests in a single write

call. One implementation of this type of call available to applications is pwritev(), a

vector version of pwrite(). Vectored operations allow a contiguous area of a disk to

be the target for a combined write operation from non-contiguous areas of memory.

However, using pwritev() is not the best strategy for a RAID system.

Asynchronous I/O, which allows the Linux kernel to manage read and write requests

in the background, is more sensible for storage-intensive applications than syncronous

I/O. Initially, Gibraltar RAID used the pthreads library to perform synchronous

reads and writes with one thread assigned per disk. Switching to asynchronous reads

and writes allowed for more efficient use of resources than CPU-intensive pthread

condition variables with a high thread-to-core ratio allow. While asynchronous I/O

47

has been implemented in the Linux kernel and C libraries for some time, the methods

for performing asynchronous vector I/O are not well-documented.

There is a method of using io submit() to submit iovec structures in an uncon-

ventional and difficult-to-discover way. The typical usage of io submit() takes an

array of iocb structures as a parameter, which describes individual I/O operations to

submit asynchronously. However, to use the relatively new vectored read and write

capabilities, one passes an array of iov structures within the iocb structure instead

of iocb common structures. These will be used to perform a vectored I/O operation.

This is not noted in system documentation.

3.4. I/O Notifier. The I/O Notifier is a thread that collects events resulting

from the asynchronous I/O calls, and performs record-keeping on a per-stripe basis.

Once all of the asynchronous I/O calls for a stripe have been completed, the notifier

notifies other threads that depend on the stripe associated with the I/O. If the stripe

is undergoing eviction from the cache, this thread will initiate destruction of the stripe

at I/O completion.

3.5. Victim Cache. When considering the speed that new I/O requests can

arrive at the RAID controller, there is a significant delay between the decision to

victimize a dirty stripe and the completion of the write associated with it. Canceling

a write in progress is an inefficient action because of the combining of writes and the

asynchronous completion of the writes. To aid in victimization, a victim cache is

included that allows for a client read or write request to “rescue” a stripe from being

deleted before it has been written, or even while the write is still in progress.

3.6. Erasure Coding. The erasure coding component uses a the Gibraltar li-

brary, which was designed to perform Reed-Solomon encoding and decoding at high

rates using GPUs [26]. Briefly, the Gibraltar library operates by accepting k buffers

of data, such as striped data for a RAID array, and returns m buffers of parity. This

GPU-based parity calculation can encode and decode at speeds of well over four

48

gigabytes per second for RAID 6 workloads on commodity GPUs. A unique feature of

Gibraltar RAID is the ability to extend far beyond RAID 6 in the number of disks

that may fail without data loss. Chapter 5 details the Gibraltar library.

GPU parity calculations entail transfer of significant amounts of data across the

PCI-Express bus to the GPU. This implies that using the Gibraltar library in this

system also incurs significant PCI-Express traffic. This traffic can be a significant

concern if other hardware, like network adapters and host bus adapters, also heavily

uses the PCI-Express bus.

4. Conclusions

This chapter details a RAID system designed specifically for streaming workloads.

An emphasis is placed on asynchronous operation, allowing overlap between many

portions of the system. For example, a decision was made to trade raw coding

throughput for a more heavily pipelined architecture, resulting in a match between

storage speed and GPU speed for likely configurations. Obviously, this is not a perfect

architecture for all workloads and systems.

Systems with streaming I/O workloads are assumed to require several megabytes

of data from a contiguous storage area. This architecture is tuned for this type of

workload in several ways. Most notably, read verification requires the contents of an

entire stripe from the RAID system, regardless of the number of bytes being read from

that stripe. An alternative method of read verification may require only a certain

amount of data per disk, which introduces some storage overhead and memory copies

for reads and writes. However, such methods are likely to perform better for I/O

patterns that require small reads and writes.

The benefit of this architecture is that I/O rates can easily match or exceed the

speed of many high-performance SATA, SAS, or Fibre Channel controllers while

satisfying increased reliability constraints. Further, future improvements to many

areas can be prototyped with this controller, including trials of new caching algorithms,

49

coding devices, and disk systems. It is a user space application, so it requires few

changes to be runnable on a wide variety of Linux systems and kernels, provided that

they do not deprecate the current asynchronous I/O API. A software system that

follows this architecture will be useful for many significant research activities.

50

CHAPTER 5

GIBRALTAR

1. Introduction

Each byte that is read from or written to a RAID system must often be subjected

to processing by an erasure correcting code to ensure reliability of the data. Poor

performance of the erasure correcting code can limit the scale of a RAID system. Since

this work is intended to create a high-speed, scalable RAID system, the requirements

of the erasure correcting code are two-fold:

(1) The code must be able to provide arbitrary dimensions of erasure correction;

namely, a wide range of k + m coding configurations must be supported.

(2) The code’s performance should be capable of supporting the full throughput

of the storage resources for many configurations

In an extended RAID system, by introducing m appropriately distributed parity

chunks (created with a maximum-distance separable code [91]) per k data chunks in a

disk array stripe, an array can withstand the total failure of up to m disk drives. RAID

levels 5 and 6 are two common RAID levels that are capable of m = 1 and m = 2,

respectively. While m = 1 can be implemented with k − 1 exclusive-or operations,

m ≥ 2 involves a more complex calculation [22].

One standard method of generating more than one parity chunk is Reed-Solomon

coding [92]. Many RAID 6-specific codes exist [10, 22, 88], but Reed-Solomon is

often used today in RAID 6 systems, including the Linux kernel’s software RAID [5].

While RAID 6 only requires two coded chunks, Reed-Solomon coding can be used

to generate an arbitrary number of independent coded chunks, allowing redundancy

of a system to scale with its size. This scaling capability is not present in many

RAID 6 algorithms. Unfortunately, most conventional commodity processors are not

51

well-suited architecturally to Reed-Solomon coding for more than two parity chunks

because of required table look-up operations [8]. This quality results in slow software

RAID when m > 2, necessitating alternative hardware solutions.

Reed-Solomon coding for parity computation is generally performed by hardware

RAID controllers that are positioned in the data path between the computer and its

storage resources. The controller can present the multiple attached storage resources

as a single block device to the operating system, resulting in transparency and

performance. However, a RAID controller is limited in the tasks it can accomplish.

Relocating the Reed-Solomon coding to a more general purpose piece of hardware

results in new flexibility. Any application that can benefit from Reed-Solomon coding

would be able to offload this computation, increasing the performance of that portion

of the application, either by increasing the speed of the task or overlapping it with a

different computation.

Graphics Processing Units, also known as GPUs, are highly parallel devices designed

to exploit the embarrassingly parallel nature of graphics rendering tasks [31, 77]. As

conventional CPUs have transitioned through single-core, multi-thread, and multi-

core devices, the anticipation is high that CPUs will become many-core devices

in order to keep up with the demands of Moore’s Law while mitigating increasing

power consumption [46]. Application developers have been considering the GPU as a

currently mature and highly developed computational platform with hundreds of cores.

GPUs have been successfully applied to applications that are either embarrassingly

parallel or have embarrassingly parallel sub-steps [19, 33].

Until recently, however, GPU platforms were restricted in terms of usable data

types. Generally, only certain floating-point operations and data types were well

supported [83]. Some other types could be emulated through the provided types;

however, unless used judiciously, emulation often proved to be an inefficient use of the

GPU’s resources [38]. With the native types available, only applications that heavily

52

use floating-point data and calculations could be meaningfully accelerated via GPU

computation.

In order to provide acceleration for more general-purpose GPU (GPGPU) applica-

tions, NVIDIA has released its CUDA API and architecture [75], and ATI/AMD has

released a stream computing software stack that potentially allows many high-level

languages to be used for programming ATI GPUs [2, 3]. Both ATI and NVIDIA

technology now allow operations to be performed on arbitrary binary data using their

GPUs and software. This presents the opportunity for applications to perform more

general data processing tasks that are well-suited to the GPU’s overall architecture,

but need different kinds of computation than floating point units can provide.

This chapter identifies Reed-Solomon coding as an application that both suits the

general architecture of GPUs and requires the added primitive types and operations

available through CUDA. In particular, results presented previously demonstrated

that GPUs could show superior performance as part of a software RAID system that

includes more than two parity disks by achieving an overall ten-fold speedup over a

CPU implementation where k = 3 and m = 3 and beyond [27, 28].

This chapter describes generalized Reed-Solomon coding on programmable GPU

hardware, specifically for use with applications requiring data resiliency in a manner

similar to RAID. This chapter begins by describing Reed-Solomon coding in more detail

within the context of RAID and distributed data applications. It goes on to detail

the mapping of Reed-Solomon coding to NVIDIA GPUs. Results for performance are

given, including comparison with a well-known CPU library which also implements

the Reed-Solomon coding as used in this work [89]. Future potential trends for GPU

and other highly multi-core devices are described, along with conclusions. A publicly

available prototype library, Gibraltar, demonstrates the findings of this work. In order

to demonstrate its practicality, a usage example and design rationale are provided.

53

2. Reed-Solomon Coding for RAID

The primary operation in Reed-Solomon coding is the multiplication of F , the

lower m rows of an information dispersal matrix A =

 I

F

, with a vector of data

elements d [87].  I

F

 d =

 d

c

 (12)

This yields another vector of redundant elements (the coding vector, c). The re-

dundancy of the operation comes from the over-qualification of the system: Any k

elements of e =

 d

c

 may be used to recover d, even if some (or all) elements of d

are not available. A more in-depth discussion is provided in the next section.

Rather than relying on integer or floating point arithmetic, the operations are

performed on members of a finite field [62]. Addition of two numbers is implemented

through an exclusive-or operation, while multiplication by two is implemented through

a linear feedback shift register (LFSR) [5]. Multiplying two arbitrary numbers involves

decomposing the problem into addition of products involving powers of two, which

potentially requires a large number of operations. One useful identity that holds true

in finite fields of size 2w (where w is the number of bits per symbol) is as follows:

x× y = exp(log(x) + log(y)) (13)

where the addition operator denotes normal integer addition modulo 2w − 1, while

exp() and log() are, respectively, exponentiation and logarithm operations in the finite

field using a common base [87]. Since w = 8 for RAID systems, an implementation

can contain pre-calculated tables for the exp and log operations, which are each 256

bytes. Multiplication can be implemented using these tables with three table look-ups

and addition modulo 2w−1 instead of potentially many more logical operations. Being

that decoding (recovering missing data elements from k remaining data and/or coding

elements) is a similar operation, all of the above holds true for decoding as well.

54

Unfortunately, the type of table look-up operations used in Reed-Solomon coding

does not exploit the internal vector-based parallelism of CPUs. While fast vector

instructions have been included in modern CPUs, few CPU models include a parallel

table look-up instruction. In the case of IBM’s Power architecture, whose AltiVec

instruction set includes a parallel table look-up instruction, multiplication in finite

fields has been accelerated over typical CPU implementations [8]. Unfortunately,

this capability is not common, and CPU implementations tend to be unusable for

high-speed applications because of this lack of capability.

A more in-depth treatment of implementation details of Reed-Solomon coding is

available [87].

3. Mapping Reed-Solomon Coding to GPUs

GPUs are architecturally quite different from CPUs. The emphasis of GPU

architecture is to accomplish hundreds of millions of small, independent, and memory

intensive computations per second in order to provide interactive graphics to its user.

As such, GPUs have several interesting qualities that are directly applicable to the

task of Reed-Solomon coding.

In this discussion, a buffer is a particular slice of data of s bytes. A k + m coding

would require k data buffers, and m coding buffers. These buffers are typically stored

together, one after another, within a continuous memory region that is referred to as

the buffer space. One may refer to the ith buffer in the buffer space, which specifically

refers to the bytes between i×s. . . (i+1)×s−1 within the buffer space. However, when

not explicitly qualified, the ith buffer indicates its contents rather than its position.

For the first k buffers, buffer 0 contains the first s bytes of data, buffer 1 contains the

next s bytes of data, and so on. The following m buffers contain the coding data.

3.1. GPU Architecture. One of the more well-known features of a GPU is its

vast number of multi-threaded processing cores. The NVIDIA GeForce 8800 GTX, for

example, features 128 cores, while the GeForce 285 GTX contains 240 [76]. According

55

to NVIDIA, these cores are designed to be effective for many threads of execution as

small as a few instructions. In the context of parity generation, each set of bytes in the

data stream (i.e., byte b of each buffer) can be modeled accurately as an independent

computation. The threading implementation allows for hiding of memory access

latency if the ratio of instructions to memory accesses proves high, so it is beneficial

to pack as many bytes per memory request as possible. In the approach presented

here, each thread is responsible for four bytes per buffer; this takes advantage of the

relatively wide 384-bit memory bus, which allows multiple threads to transfer all 32

bits each in parallel. It is unnecessary to load each thread with a significant portion

of the workload to achieve good performance, even though this may result in many

thousands of threads. Therefore, each thread can remain relatively small, and the

GPU’s scheduling of the threads can efficiently accomplish the work of creating parity

for many megabytes of data at a time.

The cores are split into units called multiprocessors that contain a shared memory

space along with eight cores. This shared memory space is banked, allowing up to 16

parallel accesses to occur at once, and is as fast as registers for each core. Because

of its speed, bank conflicts can adversely affect performance. Given the previously

mentioned 30 multiprocessors of the GeForce GTX 285, each core within a warp (a

group of co-scheduled threads, 32 threads per 8-core multiprocessor) can access a

separate bank of memory, allowing up to 240 simultaneous table look-up operations.

Unfortunately, it is difficult to manage the tables in each shared memory block to

eliminate conflicts, and the birthday paradox [29] dictates that the probability of

conflicts are high. On average, however, simulations of this application’s workload

has shown that there are about 4.4 accesses per bank in order to satisfy the table

look-up operations for 32 simultaneous threads. On the NVIDIA GTX 285, each

access consumes four clock cycles. This implies that 17.6 clock cycles are required to

56

satisfy 32 requests, yielding 1.82 requests per cycle per shared memory unit, or 55

requests per cycle across the chip1.

Another interesting hardware feature benefiting Reed-Solomon coding is the support

for constant memory values. As an architecture that deals primarily in accessing

read-only textures for mapping onto polygons, GPUs require fast constant accesses in

order to provide high graphics performance 2. Unlike other types of memory within the

CUDA architecture, constant memory is immutable. Therefore, in order to increase

performance of constant memory accesses, each multiprocessor’s constant accesses

are cached. Once data is loaded into this cache, accesses to this data are as fast as

register accesses. With this in mind, the constant memory is a prime location for the

information dispersal matrix. The matrices are small, and each element is accessed in

lock-step across all cores within a multiprocessor. The constant memory allows all

requests to each element of the matrix to be cached and simultaneously fulfilled for

all cores as if the values were in registers.

3.2. Reed-Solomon Decoding. One major contribution of this work is the

improvement over previous GPU-based decoding performance [28]. The coding logic

presented in this work is already highly optimized. It includes the minimum number of

memory accesses, and has high performance. From the perspective of RAID, recovery

should be as fast (or faster, depending on the number of failed disks attached to the

array) so that performance of the server is not degraded upon failure of a disk.

In order to ensure this performance requirement, one of the design goals was to

make the logic of coding and decoding on the GPU as similar as possible. Similarities

already exist within the coding and decoding algorithms. In coding tasks, all coded

buffers are generated via vector-matrix multiplication. The data vector of size k is

multiplied with the information dispersal matrix, of size m×k, yielding a parity vector

1This is an imprecise figure because the interactions of memory requests between threads running at
different times are complex, but this is a reasonable estimate.
2This fact is derived from the emphasis on fill rates in marketing materials for consumer GPUs. The
fill rate is a the theoretical limit of how fast a GPU can apply a texture to a polygon, measured in
pixels per second.

57

c of size m. However, the problem initially is viewed as a larger problem of multiplying

d with A to yield e. The redundancy comes from the overdetermined quality of the

system, allowing any m entries to be removed from e, along with corresponding rows

of F .

In implementing decoding, there is a design decision to be made about whether

buffers must remain ordered, the user of the routine may be allowed to choose arbitrary

orderings of buffers, or some combination of the two. By imposing a partial ordering on

the buffers, the library can statically determine how calculations should be performed

without indirect indexing into arrays, as long as the generation matrix is adjusted to

reflect buffer orderings. In Gibraltar, a buffer ordering where all present buffers are

listed at the beginning of the buffer space is required. Decoded buffer contents are

placed after the original buffers within the buffer space. There are two reasons that

justify imposing this alternative partial order:

• Contents of the buffers for decoding are not typically resident in the memory

of the host performing the decoding. Instead, they are spread over devices (or

another host) that become unavailable because of failure or fault. Therefore,

a transfer must be incurred between the host and device, and the host is free

to place the contents of the transfer anywhere in its memory.

• If k is significantly greater than m, there are simple manners of changing the

order of the buffers to satisfy the layout requirement quickly in CPU memory.

If 1 ≤ q ≤ m buffers have failed, only q buffers must be moved within the

buffer space.

The following example demonstrates the desired reordering requirements, along with a

description of the quick reordering method. Once again, this background information

can be found in several sources, including [87].

In an example k = 4, m = 4 coding system, codes are generated in a straightforward

way. An overdetermined information dispersal matrix A is generated. In order to

generate the parity vector c, one multiplies the lower m rows of A (usually denoted as

58

F) by the data vector d. The memory layout for such an operation is simple, as each

buffer is arranged linearly in memory. (See the API discussion for more information.)

If each buffer is of length s, it is known at compile time where the input bytes and

output bytes are for a given step, so the generation routine can be highly efficient.

Memory accesses are minimal, as indices are simply computed. This simplicity allows

many optimizations such as unrolling of loops within the kernel by the compiler.

However, there is some variability in how a recovery can be accomplished. Suppose

that devices 0, 2, 3, and 6 fail. The state is now represented by the following equation,

with unavailable elements denoted with a question mark.



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

F0,0 F0,1 F0,2 F0,3

F1,0 F1,1 F1,2 F1,3

F2,0 F2,1 F2,2 F2,3

F3,0 F3,1 F3,2 F3,3




d0?

d1

d2?

d3?


=



d0?

d1

d2?

d3?

c0

c1?

c2

c3



(14)

The goal of the recovery operation is to solve for missing portions of d with the

present portions of e, which includes elements of d and c. By the means of construction,

A has full rank, so rows may be eliminated without losing information until only k

rows remain. Doing so requires removing the corresponding elements of e in order to

maintain the correctness of the equation. The vector e and A are modified (creating

e′ and A′, respectively) to preserve the equality, yet reflect in e′ only the elements

that have not been lost.

59


0 1 0 0

F0,0 F0,1 F0,2 F0,3

F2,0 F2,1 F2,2 F2,3

F3,0 F3,1 F3,2 F3,3




d0?

d1

d2?

d3?


=


d1

c0

c2

c3


(15)

Pre-multiplying each side by A′−1 will yield the desired configuration that will

yield the missing data elements with only the known data elements:


d0?

d1

d2?

d3?


=


0 1 0 0

F0,0 F0,1 F0,2 F0,3

F2,0 F2,1 F2,2 F2,3

F3,0 F3,1 F3,2 F3,3



−1
d1

c0

c2

c3


(16)

As specified in [87], the properties of Galois field arithmetic and the methods of

generation for A will ensure that these equalities hold, A′ is invertible, and all elements

generated are within the bounds specified by the domain of the code (e.g., eight-bit

values).

One obvious optimization would be to not explicitly perform any of the row

multiplications for elements that are already present in d. Modifying the algorithm

to just skip these elements requires a vector that indicates the elements that need

recomputing. In particular, in order to accomplish the decoding task on a GPU, this

vector must be copied into every thread block, and referenced heavily via indirect

indexing.

Instead, a new algorithm is used to eliminate state vectors or indirect indexing.

One rearranges rows so that data elements still present in e are in the lower portion

of the matrix, then ignore the lower rows when performing the multiplication. This

change results in a slight performance impact on the CPU by introducing work that

was not required previously. However, the problem now more closely resembles a

60

generation problem, with no need for indirect indexing on the GPU. The previous

example is now recast into the following equation.

B =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


(17)

B


d0?

d1

d2?

d3?


= BA′−1


d1

c0

c2

c3


(18)

In this formulation, all the information that is required in order to work optimally

is the quantity of data buffers that need recovery. There will always be a need for

k data or parity elements to recover the missing data elements, so buffers can be

statically arranged such that k intact buffers are at the beginning of the memory

region, and the remaining buffers requiring recovery can be output in the next portion

of the buffer region.

4. Operational Example and Description

While Gibraltar does make use of GPUs to accomplish the vast majority of the

computations required for Reed-Solomon coding, it is not necessary to use a GPU

to implement all operations. Many of the operations which are performed require

insignificant amounts of time to execute on a CPU compared to the coding task. With

the algorithmic enhancements to minimize memory accesses, the GPU is only required

to perform large numbers of small matrix-vector multiplications. All other matrix

algebra, including the necessary factorizations and inversions, occur within the CPU.

An Example Program. In order to illustrate the way which Gibraltar can be

used, this section will present an example program. Its operation is simple: Perform a

61

coding operation to yield parity, erase some buffers, and decode the remaining buffers

to yield the original data.

Initializing Gibraltar. A context is used to manage Gibraltar’s operation. Different

kernels are required to perform different coding tasks, and one application can reason-

ably use multiple k +m coding schemes simultaneously. To satisfy this requirement, a

context is referenced in each call which identifies which compiled kernels to execute

when performing tasks.

While Gibraltar does make use of compile-time knowledge in order to allow

static optimization of the kernels, the user executable is not required to manage

the configuration of Gibraltar. Initialization of a context will compile kernels on

demand for the appropriate matrix-vector operations. Such kernels are cached for

later initializations with the same parameters. This compilation step causes the first

use of a particular encoding to incur a delay.

i n t k = 16 , m = 3 ;

g ib con t ex t gc ;

g i b i n i t (k , m, &gc) ;

After executing the above listing, the handle gc can now be used for coding

operations.

In order to code and decode buffers, a buffer space must be allocated. To perform

a k + m encoding on buffers of size s, a region of size (k + m)× s must be allocated.

Gibraltar includes an allocation function which can improve the performance of the

GPU functions by introducing an optional stride between buffers and using specialized

memory allocation routines. Such allocation routines can prepare buffers for high-speed

transfers over the PCI-Express bus.

Since Gibraltar, via its context, has already obtained the value of k + m, it is only

necessary to provide s. In this example, Gibraltar will be used to manage an array of

integers.

62

i n t s = 1024 ∗ s i z e o f (i n t) ;

i n t ∗buf ;

// A l l o ca t e an array o f (k+m)∗ s i n t e g e r s f o r coding

g i b a l l o c ((void ∗∗)(& buf) , s , &s , gc) ;

At this point in the program, the user can fill the buffer with the data which

requires coding.

Coding. Once again, this call requires no explicit mention of k or m. The coding

function call is called gib generate, as it is simplest to view the coding task as

generating parity data from original data. Conceptually, this is a simple call. The

initialization routine had already calculated F , so the only task of this function is to

manage the GPU.

g i b g e n e r a t e (buf , s , gc) ;

Losing Data. Any interesting use of Gibraltar involves unavailability of data. This

example will assume that an integer array, called fail config of size k + m, contains

a zero for a buffer that is available or a one for a buffer that is not available. At most

m entries in fail config may be set to one.

Decoding. Technically, the only requirements for buffer positioning for the decoding

routine are:

(1) The buffers indicated in the list of buffer assignments within the first k entries

must be available and located in the same order at the beginning of the buffer

space, and

(2) the only buffers indicated for recovery should be data buffers.

However, in order to attain the highest performance when the application requires

buffers to be in order, some previously mentioned layout requirements must be followed.

If buffer 0 ≤ i < k, which is a data buffer, is available, it should be positioned in

the ith buffer position within the buffer space. The remaining spaces can be filled

63

with available coding buffers. Upon completion of the routine, the user can move the

contents of the recovered buffers, which are located after initial k available buffers

within the buffer space, into proper positions.

Note: The function is called gib recover, as this routine recovers lost data from

available data.

i n t g o o d b u f f e r s [2 5 6] ; /∗ k o f the se are needed . ∗/

i n t b a d b u f f e r s [2 5 6] ; /∗ Up to m of these can be used ∗/

i n t ngood = 0 ;

i n t nbad = 0 ;

f o r (i n t i = 0 ; i < gc−>k + gc−>m; i++) {

i f (f a i l c o n f i g [i] == 0)

g o o d b u f f e r s [ngood++] = i ;

e l s e i f (i < gc−>k) {

b a d b u f f e r s [nbad++] = i ;

}

}

/∗ Reshu f f l e to prevent extraneous memory c o p i e s l a t e r ∗/

f o r (i n t i = 0 ; i < ngood ; i++) {

i f (g o o d b u f f e r s [i] != i && g o o d b u f f e r s [i] < gc−>k) {

i n t j = i +1;

whi l e (g o o d b u f f e r s [j] < gc−>k)

j++;

i n t tmp = g o o d b u f f e r s [j] ;

memmove(g o o d b u f f e r s+i +1, g o o d b u f f e r s+i ,

s i z e o f (i n t)∗ (j−i)) ;

g o o d b u f f e r s [i] = tmp ;

64

}

}

/∗ Perform memory c o p i e s ∗/

f o r (i n t i = 0 ; i < gc−>k ; i++)

i f (g o o d b u f f e r s [i] != i)

memcpy(buf + s∗ i , buf + s∗ g o o d b u f f e r s [i] , s) ;

i n t b u f i d s [2 5 6] ;

memcpy(bu f id s , good bu f f e r s , gc−>k∗ s i z e o f (i n t)) ;

memcpy(b u f i d s+gc−>k , bad bu f f e r s , nbad∗ s i z e o f (i n t)) ;

g i b r e c o v e r (buf , s , bu f id s , nbad , gc) ;

/∗ Replace b u f f e r s ∗/

f o r (i n t i = 0 ; i < gc−>k ; i++) {

i f (b u f i d s [i] != i) {

i n t j = i +1;

whi l e (b u f i d s [j] != i) j++;

memcpy(buf + s∗ i , buf + s∗ j , s) ;

b u f i d s [i] = i ;

}

}

At the termination of this portion of the program, the first k buffers contain their

original contents. Appendix A contains a complete description of the Gibraltar API.

65

5. Performance Results

An experimental program was constructed in order to measure the performance of

Gibraltar and Jerasure. It encodes a set of data at varying values of k + m with each

buffer occupying one megabyte of memory. The program erases min(k,m) random data

buffers, then recovers their original contents. The same operations are performed using

Jerasure [88], a well-known library implementing many error correcting codes including

Vandermonde-based Reed-Solomon. The results are reported from the perspective of

throughput, as the results represent the idea that this library implements a filter for

ensuring reliability or recovery of data intended for other purposes. An example case

would be that coding is being performed on ten one-megabyte buffers in a k = 6,m = 4

configuration. A user does not interact with parity, so throughput is calculated by

dividing the size of the data buffers (six megabytes) by the time required to encode

them. Similarly, the throughput for recovery is calculated to be the size of the data

buffers (six megabytes) divided by the time required to return recovered data.

It is important to note that recovery operations in Gibraltar are only intended to

recover data buffers, and that coding buffers should be recovered with a subsequent

call to a generation routine. This is different from Jerasure, as the coding buffers are

recovered automatically if missing, even when the coding buffers are not needed or

devices to store the coding buffers are unavailable. In order to ensure fair benchmarking,

only data buffers are erased. Jerasure does check to ensure that no coding buffers

require recovery, but no recovery must be done. The CPU operations are performed

using an unaltered version of the latest available Jerasure, version 1.2.

The machine used in this test is the storage server that is fully detailed in Appen-

dix C.

Given that the focus of Gibraltar is integration into a software RAID system, it is

illustrative to compare the bandwidth achieved by Gibraltar to that of a modern disk.

Given recent benchmarks of solid state drives and more conventional disks [72], 100

megabytes per second is a representative average bandwidth. With the methodology of

66

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
B

/s
)

k

Jerasure Coding
Jerasure Decoding

Gibraltar Coding
Gibraltar Decoding

Figure 14. Performance for m = 2 Encoding and Decoding

measuring the system throughput from a user application point of view (i.e., rate that

actual data is transmitted through the system, which does not include the overhead

of transferring coded data), the performance provided by Gibraltar can be directly

compared to the performance of data disks in a RAID set. From this perspective, it

is clear from Figure 16 that Gibraltar can provide enough performance to support

more than two dozen disks at extremely high levels of reliability, with enough fault

tolerance to withstand failure of any four disks in the array. This is quite different

from hierarchical RAID levels such as RAID 6+0, which can combine two or more

RAID 6 sets into an outer RAID 0 volume. RAID 6+0 can allow up to four failures,

but not allow any four arbitrary disks to fail. Such failures must be limited to two per

inner RAID 6 volume. Figure 14 shows that Gibraltar can support RAID 6 arrays at

full streaming bandwidth for at least three dozen data disks.

67

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
B

/s
)

k

Jerasure Coding
Jerasure Decoding

Gibraltar Coding
Gibraltar Decoding

Figure 15. Performance for m = 3 Encoding and Decoding

An interesting performance characteristic is that Gibraltar has extremely similar

performance for coding and decoding, while Jerasure tends to experience reduced

performance for recovery. Gibraltar was designed so that the generation and recovery

are nearly identical operations. Jerasure, does not, however, reconfigure the matrix in

memory as needed, but instead indexes within it. Several things can cause Jerasure

to be slower for decoding, including having less prefetch-friendly access patterns and

creating the need for additional memory reads for indirect array accesses.

A further note: When m > k, the tests performed show an increase in performance

because of the restrictions on which buffers may be erased during this experiment.

68

 0

 500

 1000

 1500

 2000

 2500

 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
B

/s
)

k

Jerasure Coding
Jerasure Decoding

Gibraltar Coding
Gibraltar Decoding

Figure 16. Performance for m = 4 Encoding and Decoding

k m

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

Th
ro

ug
hp

ut
 (M

B/
s)

"limit.dat" using 1:2:4

 2 4 6 8 10 12 14 16

 2 4 6 8 10 12 14 16

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

Figure 17. Encoding Performance for m = 2 : 16, k = 2 : 16

6. Future Trends

The current performance is highly balanced when viewed from the perspective of

current NVIDIA graphics processors. In order to demonstrate this, three modes of

operation have been tested: 69

• Operations performed on host memory. This is the typical mode of operation.

• Operations performed on GPU memory. Given the high bandwidth of GPU

memory compared to PCI-Express bandwidth, this is an approximation of the

maximum performance of the GPU kernel without the impacts of PCI-Express

transfers.

• No operations performed on host memory, while performing transfers as if

the kernel were performing computations. This is an approximation of the

maximum performance of the PCI-Express bus without the impacts of GPU

computation.

These experiments were also run on an NVIDIA GeForce GTX 285 with each

buffer occupying one megabyte. Results show that, for a RAID 6 workload (Figure 18),

the system is extremely well-balanced. For a RAID TP workload (Figure 19), the

balance is also good. Current hardware starts to show more degraded balance with

m = 4 (Figure 20) and beyond (Figure 21.)

One can see the effects of the overlapping computation and communication via

the non-parallelizable overheads incurred, as represented by the near, but not precise,

approximation of the minimum performance. This is interesting because of the

tendency for performance of the total system to trend the PCI-Express performance

with some overhead (approximately one gigabyte per second of throughput) when

bandwidth-bound. This overhead is much smaller when coding becomes computation-

bound. This is due to the large amount of data that must be transported to and from

the GPU before work can start and after work has ended, respectively. The volume of

data is caused by the massive number of processing elements, and the CUDA runtime’s

attempts to apply the entire GPU’s computational capacity.

Such performance characteristics at this stage imply that, in order to have appre-

ciably large performance improvements for m = 2 and m = 3, both the PCI-Express

implementation and the computation power within the GPU must increase. However,

if GPU power increases disproportionately, it becomes possible and reasonable to

70

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
B

/s
)

k

GPU Throughput
PCI-Express Throughput

Total Throughput (GPU + PCI-Express)

Figure 18. Excess PCI-Express Performance over GPU Performance
for m = 2

perform encodings and decodings with increasing values of m without impact on speed,

excepting the bandwidth requirements to transfer the extra coded buffers from the

GPU after computation.

One major GPU architectural feature that most limits the speed of this computation

is the same feature that makes the GPU attractive: The multi-banked memories. While

such memories are useful in accelerating this computation, there are architectural

changes that can improve performance of random table look-ups in shared memory.

Through simulation, the authors have quantified the effects of many potential design

changes.

• Increase the number of banks per shared memory unit. The upcoming Fermi

architecture [77] from NVIDIA is designed with a larger shared memory,

allowing for the possibility of a larger number of four-byte banks. Current

71

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
B

/s
)

k

PCI-Express Throughput
GPU Throughput

Total Throughput (GPU + PCI-Express)

Figure 19. Excess PCI-Express Performance over GPU Performance
for m = 3

shared memory sizes are 16 kilobytes, to be increased to up to 48 kilobytes

(with an additional 16 kilobytes dedicated to an L1 cache.) If the number of

banks were tripled along with this memory size, conflicting accesses would

reduce to 2.84 per warp. Similar benefits could be achieved by shrinking the

size of the banks and increasing their number, resulting in the same amount of

shared memory. For example, 64 one-byte banks would yield 2.32 conflicting

accesses per warp, while 32 two-byte banks would yield 3.15.

• Decrease the number of cores per multiprocessor, and increase the number of

multiprocessors. This course of action would reduce the effect of the birthday

paradox by reducing the number of competing cores. This would likely be an

expensive option, as the number of shared memory units on the chip would

grow quickly, but it would also be highly effective. Halving the number of

cores to four, which run 16 threads together, would reduce conflicting accesses

72

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
B

/s
)

k

PCI-Express Throughput
GPU Throughput

Total Throughput (GPU + PCI-Express)

Figure 20. Excess PCI-Express Performance over GPU Performance
for m = 4

to 2.91 per warp, while two cores (with eight threads) would only have 2.00

conflicting accesses per warp. A single core for four threads and the same

shared memory would average 1.32 conflicting accesses per warp.

• Increase the speed of the shared memory. The G80 architecture requires four

clock cycles to satisfy a shared memory request, which causes conflicting

accesses between threads that are not necessarily running simultaneously.

Allowing the memory to satisfy single-byte requests in a single memory cycle

would decrease the number of conflicting accesses per warp to 2.91. This

would have the same effect as halving the number of cores per shared memory

unit and doubling the number of shared memory units.

An interesting feature that could improve the speed of random look-ups in small

tables is the ability to load a small array into a particular bank, with the ability to

73

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

 2 4 6 8 10 12 14 16

E
xc

es
s

P
C

I C
ap

ac
ity

k

Figure 21. Excess PCI-Express Performance over GPU Performance
for m = 2..16

perform normal indexing into the array. The programmer could then load multiple

copies of the table simultaneously, querying each through different threads without

conflict, or with controlled conflict. This approach was tested, but the indexing

overhead was somewhat worse than the delay incurred by bank conflicts.

One interesting view into this data is the comparison of PCI-Express bandwidth

and computational capacity of the GPU, as illustrated by Figure 21. Each line on

the graph corresponds to a particular value for m, where higher lines correspond

to larger values of m. Currently, the only value of m that, for all values of k, has

excess computational capacity compared to PCI-Express bandwidth is m = 2, which

corresponds to RAID 6. m = 3 comes much closer for many useful values of k to being

balanced, but extra compute capacity in future GPUs will be useful in bringing the

other values of m into reach of fully consuming PCI-Express bandwidth.

74

Furthermore, solutions that trade PCI-Express bandwidth for extra computation

power remain effective. For example, it would be possible to split this computation

across multiple GPUs by copying all data buffers to both GPUs, then have each GPU

compute a fraction of the parity buffers.

7. Conclusions and Future Work

This chapter describes a general-purpose Reed-Solomon coding library, Gibraltar,

which is suitable for use in applications requiring efficient data resiliency in a manner

similar to RAID. Its immediate value stems from using CUDA-enabled GPUs to

perform coding and decoding tasks, which has proven to be between 5- and 10-fold

faster than a well-known CPU code running on a processor that costs three times as

much as the GPU used by Gibraltar.

Several other non-storage applications can benefit from high-speed Reed-Solomon

coding. For example, high-speed encryption and pseudorandom number generation

become possible [56]. Similarly, secret sharing can be performed with large secrets at

high speeds [101].

This work demonstrates the applicability of certain multicore architectures to

Reed-Solomon coding, as well as provides analysis into the effects of the design

parameters for these architectures. Guidance has been provided as to the most

beneficial architectural decisions related to Reed-Solomon coding, which apply equally

well to other applications with the same data access patterns.

As part of this work, Gibraltar, a practical library for Reed-Solomon coding and

decoding on GPUs, has been developed. A generic, rational API has been developed

that allows computation to be performed on many types of devices that do not have

direct access to host memory, allowing back ends to be produced for many types of

accelerators.

75

CHAPTER 6

PERFORMANCE EVALUATION OF A GPU-BASED

RAID IMPLEMENTATION

The Gibraltar library is demonstrably fast enough to be used within the context

of a RAID controller. However, there are other factors that must be experimentally

measured to ensure that a GPU-based controller is feasible. This chapter will establish

the effectiveness of Gibraltar RAID as part of a storage server intended for streaming

I/O workloads. Comparisons will be made with Linux md, the software RAID

implementation that is included with the Linux kernel. Tests will focus on DAS

operation and NAS cases over Infiniband.

1. DAS Testing

DAS is an important use case for many RAID applications. In this arrangement,

the RAID software or hardware delivers data to applications directly through the

system call interface. For most RAID infrastructure, this is normal operation. However,

for the architecture presented for this work, DAS is considered an unusual mode of

operation, as the software is integrated directly into the target software. In order to

have the benefit of interaction with the storage through a file system, the application

will have to access the storage through the target.

For this use case, the target has been started on the test machine, and the Open-

iSCSI initiator is used to connect to the target software through the loopback interface.

This presents some potential advantage to other RAID infrastructure, as this is an

extra layer of software through which storage is accessed.

To evaluate DAS performance, the following tests are performed.

76

0 100 200 300 400 500 600 700 800

Linux md (Direct)

Linux md (stgt)

Gibraltar k+2

Gibraltar k+3

Gibraltar k+4

Gibraltar k+5

Throughput (MB/s)

R
A

ID
 T

yp
e

Write

Read

Figure 22. Streaming I/O Performance for DAS in Normal Mode

• Read: A single client runs dd on the raw device with a block size of one

megabyte until one hundred gigabytes have been read.

• Write: A single client runs dd on the raw device with a block size of one

megabyte until one hundred gigabytes have been written.

There are two configurations of Linux md that are tested. The first, which is

the typical md use case, has the storage accessed directly through its device entry.

This is the device named /dev/mdx after creation of the RAID array. The second

configuration is to use an unaltered version of stgt to offer the md device over the

loopback interface. This is mostly to show the extra latency involved in using the stgt

software. Four k + m RAID levels supported by Gibraltar RAID are used. They are

distinguished by their value of m, which is number of disks that may fail without data

loss. Figure 22 shows the results for normal mode, where the array has zero failed

disks.

77

0 100 200 300 400 500 600 700 800

Linux md (Direct)

Linux md (stgt)

Gibraltar k+2

Gibraltar k+3

Gibraltar k+4

Gibraltar k+5

Throughput (MB/s)

R
A

ID
 T

yp
e

Write

Read

Figure 23. Streaming I/O Performance for DAS in Degraded Mode.

There are several interesting characteristics demonstrated by the results of this

test. For instance, the difference between md direct, when reading and writing, is

significant. Linux md, when writing, performs the coding generation required for

RAID 6 recovery when a drive fails. Reading, however, does not incur any coding

computations. This is in contrast to Gibraltar RAID, which performs coding to verify

reads. Another interesting feature is that accessing the md RAID through stgt incurs

a significant read penalty, while write throughput is unaffected.

Gibraltar RAID shows good performance for many RAID levels. The m =

2 configuration, which is equivalent to the Linux md in disk failure tolerance, is

significantly faster for both reads and writes. While this indicates extra efficiency in

integrating the storage management into the target, Gibraltar RAID verifies all reads

with the same routines used to generate parity. Hence, Gibraltar RAID provides more

data protection than md while providing increased throughput as well.

78

0 100 200 300 400 500 600 700 800

Linux md

Gibraltar k+2

Gibraltar k+3

Gibraltar k+4

Gibraltar k+5

Throughput (MB/s)

R
A

ID
 T

yp
e

Read

Write

Figure 24. Streaming I/O Performance for NAS in Normal Mode for
a Single Client

Figure 23 shows the results for degraded mode, where the array has one disk

marked as faulty. It shows that Gibraltar RAID, because of the symmetric nature

of the algorithms for coding and decoding, maintains the same levels of performance

regardless of RAID type. Linux md experiences a loss of the majority of its performance.

Interestingly, stgt does not affect md at all in degraded mode. This was not true for

normal mode reads, indicating a loss of efficiency between tgt and md that is not

experienced by Gibraltar RAID.

2. Single Client NAS Testing

In order to quantify the effects of introducing latency, testing with a single client on

a high-speed network was also performed. This serves as a characterization of network

effects by themselves in order to provide a more informed analysis of multi-client

network testing. The testing parameters are the same as the previous tests, with

79

0 100 200 300 400 500 600 700 800

Linux md

Gibraltar k+2

Gibraltar k+3

Gibraltar k+4

Gibraltar k+5

Throughput (MB/s)

R
A

ID
 T

yp
e

Read

Write

Figure 25. Streaming I/O Performance for NAS in Degraded Mode
for a Single Client

a single client performing either a read or write in one megabyte chunks until one

hundred gigabytes have been read or written. The network used is 4x DDR Infiniband.

Figure 24 shows the results of testing with all RAID configurations in normal

mode. While the testing on DAS showed nearly equal read and write performance for

Linux md through stgt, introduction of the network changed performance significantly.

Reads were slower and writes were faster, introducing a 200 MB/s difference between

the two. The same patterns can be seen in Gibraltar RAID, except write rates were

consistent between tests. Gibraltar RAID maintains its performance superiority over

Linux md.

Figure 25 shows the results of testing with all RAID configurations in degraded

mode. Linux md has the expected amount of performance degradation, while Gibraltar

RAID does seem to have a slight decrease in performance as well. This is not expected,

and may be attributable to a performance bug. However, even with the slight decrease

80

0 100 200 300 400 500 600 700

Linux md

Gibraltar k+2

Gibraltar k+3

Gibraltar k+4

Gibraltar k+5

Throughput (MB/s)

R
A

ID
 T

yp
e

Mixed

Read

Write

Figure 26. Streaming I/O Performance for NAS in Normal Mode for
Four Clients

in degraded performance, Gibraltar RAID is still significantly faster than Linux md.

Figures 24 and 25 show that there is a significant overhead related to network reads

using stgt. This is possibly related to latency, as a read requires a network round-trip

before the read call can be passed. Writes, on the other hand, do not display this

characteristic. This is because writes can be completed in parallel with the application,

in the background.

3. Multiple Client NAS Testing

This prototype is intended to be a storage server in a networked cluster of computers,

necessitating a networked storage test. Four clients are used in the tests described in

this chapter, with all connected to the same 4x DDR Infiniband network. To provide

the storage, each target was configured to export four 128-gigabyte volumes, with

one mounted per server. Three tests were performed: Each client reads one hundred

81

0 100 200 300 400 500 600 700

Linux md

Gibraltar k+2

Gibraltar k+3

Gibraltar k+4

Gibraltar k+5

Throughput (MB/s)

R
A

ID
 T

yp
e

Mixed

Read

Write

Figure 27. Streaming I/O Performance for NAS in Degraded Mode
for Four Clients

gigabytes from its volume, each client writes one hundred gigabytes to its volume,

and half perform each action on their respective volumes. This is a test of two main

characteristics of the Gibraltar RAID controller:

• For all tests and modes, the software should handle all requests fairly without

starving any client.

• In degraded mode for a mixed workload, the compute kernel for each volume

must be changed several times. While the kernels are similar in their function-

ality, the degraded mode kernel has distinct operational requirements when

compared to the normal mode kernel. The mixed-mode test for degraded

mode will indicate whether there are problems with the current software

and/or hardware configuration.

Figure 26 shows the results for normal mode. Interestingly, Linux md shows higher

performance than any previous configuration, including direct access in Figure 22.

82

This is most likely caused by host-side cache effects. In any case, Gibraltar RAID

performance remains at least as good as Linux md’s performance for many test cases,

with the k + 5 configuration being slightly slower but still competitive.

Figure 27 shows the results for degraded mode. The same situation is observed

here: Performance is somewhat better for Linux md than in the DAS case. However,

the slower overall operation of Linux md in degraded mode is apparent, resulting

in slow operation in comparison with the Gibraltar RAID configurations. Gibraltar

RAID’s performance remains nearly identical to the normal mode cases, demonstrating

the efficiency of degraded mode operations.

4. Conclusions

Gibraltar RAID, while implemented entirely in user space, presents a formidable

competitor to the standard Linux software RAID system, md, for streaming workloads.

Building Gibraltar RAID into the target was likely to be a good choice for the network

storage case, provided an efficient architecture for the Gibraltar RAID layer. However,

even directly interfacing with the target by mounting over the loopback interface is

more efficient for Gibraltar RAID in both reading and writing. This is a surprising

result, as md does significantly less work during reads than Gibraltar RAID does,

given the requirement that Gibraltar RAID verify reads with parity.

Gibraltar RAID’s use of Reed-Solomon coding for erasure correction provides

demonstrable performance benefits over Linux md while providing efficient data

protection. While md suffers significant performance degradation for writes, Gibraltar

RAID demonstrates better read and write performance for five disk-failure-tolerant

configurations and beyond. Further, degraded mode is no longer a concern with

Gibraltar RAID and streaming workloads, while md loses up to 50% of its performance.

This chapter has provided several test scenarios for an important application area,

streaming workloads. By comparing against Linux md, the efficiency of Gibraltar

RAID can be directly evaluated. Gibraltar RAID’s RAID 6 performance always

83

surpasses that of md. In fact, the k+ 5 configuration is competitive with md’s RAID 6

configuration. Degraded mode performance is vastly superior for Gibraltar RAID

across the wide range of levels tested. In short, for these workloads, Gibraltar RAID

is technologically sound and a significant advance on software RAID in use today.

84

CHAPTER 7

FUTURE WORK AND EXTENSIONS

Extended RAID that is supported by GPU computation is an important result

on its own. However, there are further fruitful research paths that can build on the

knowledge of GPU-based RAID. These include exploration of alternative implementa-

tion platforms, reapplication of underlying technology to create new capabilities, and

alternative storage organization enabled by decoupling RAID computation from disk

drives. This section provides an overview of some future work that follows from this

work.

1. Failing in Place for Low-Serviceability Storage Infrastructure

When describing RAID reliability, the MTTDL calculations will often assume

that the time to replace a failed disk is relatively low, or even negligible compared to

rebuild time. For platforms that are in remote areas collecting and processing data, or

for installations designed for density rather than serviceability, it may be impossible

to access the system to perform maintenance for long periods. A disk may fail early in

a platform’s life, but not be replaceable for much longer than typical for RAID arrays.

Service periods may be scheduled at intervals on the order of months, or the platform

may not be serviced until the end of a mission in progress.

An alternative application of high-parity RAID is for a storage brick can be

designed to have a MTTDL that extends well beyond the useful lifetime of the

hardware used. Such a system would require less service throughout its lifetime. This

approach is similar to the Xiotech ISE [112], but through high-parity RAIDs can

increase reliability and performance. Such a design can be deliberately placed remotely

85

(without frequent support) in order to provide colocation, or meet installation cost

goals.

While it is possible to include hot spares within a storage brick, they do not protect

the system from UREs during the rebuild process. Furthermore, when a hot spare is

being used in reconstruction, there is a window of vulnerability during which disks are

more likely to fail because of the stress of the rebuilding process. This can potentially

leave the array without excess parity to protect against UREs or to verify reads.

In a fail-in-place infrastructure without hot spares, degraded mode performance

is important, as failure is considered to be the normal operating case. It has been

shown that x86-64 CPUs do have ways of optimizing parity generation with vector

instruction sets, there are not any similar means of increasing the speed of degraded

mode operation of an array [5, 8]. An important design goal of a high-parity RAID

system is to have adequate performance for data recovery and generation of parity.

The GPU-based parity computation library, presented in Chapter 5, satisfies this

requirement.

1.1. Extra Parity or Hot Spares? One solution is to continue using RAID 6,

but to include enough hot spares in an array to prevent triple-disk failures between

service periods. Unfortunately, hot spares do not provide improved mitigation for

UREs. An administrator managing an inaccessible system does not have the luxury of

restoring a lost sector from backups, if they exist. Even locally-installed arrays that

encounter UREs cause significant workload for administrators to repair the volume.

As disks become larger, the incidence of UREs will be increasingly incident with a

disk failure, creating a need for increased parity for improved data recovery.

Further, using hot spares creates a window of vulnerability during which another

disk may fail, with the potential of data loss. Rebuild times are increasing as disks

grow in size, making this window of vulnerability larger over time. However, if all

disks are kept on line, with extra disks providing extra capacity for parity, there is no

window of vulnerability except when no fault tolerance is left in the array.

86

2. Multi-Level RAID for Data Center Reliability

Protection from data loss is a high priority for those designing data center storage

systems. However, another important metric to data center operators is availabil-

ity. These concerns extend far beyond the traditional high performance computing

community into e-commerce and financial institutions where downtime is generally

equated to a loss in earning potential. While traditional RAID systems can protect

against data loss, RAID does not protect against failure of other components within a

server, such as the power supplies or interconnect. It has been found that, while disks

are possibly the most failure-prone component, other components within the system

cannot be ignored when designing a reliable storage system [53]. An alternative

storage organization using RAID concepts may be able to mitigate many types of

failure in storage infrastructure.

Currently, data center storage is most commonly implemented by creating several

independent storage servers and either installing a parallel file system (e.g., Lustre [1]

or PVFS [50]) across all nodes, or dealing with several independent non-parallel file

systems on each storage server, as is the common case with storage area networks.

Some extra reliability can be provided with controller failover, with active-passive

configurations supplying a stand-by controller that can respond to requests for a failed

primary controller, or active/active configurations that pair two in-service controllers.

In an active/active configuration, if one controller becomes unavailable, the second

may service requests for the other while continuing to service its own clients.

Figure 28 shows an active-passive configuration or active/active where controller

load is a bottleneck. Figure 29 shows an active/active configuration with multiple

storage resources. Each figure includes a network connection between controllers with

a coherence protocol, as each must maintain the incoherent cache contents of the

other. This way, when a controller fails, no data that has only been written to cache

will be lost. This serves to increase the availability of a storage cluster at the cost of

87

Simple
Controller
Node #1

Simple
Controller
Node #2

Storage Node

High-Speed Network
(Coherence protocol)

Storage Network
(iSCSI, Fibre Channel)

Storage Network
(iSCSI, Fibre Channel)

Figure 28. Network Diagram for Typical Active/Passive Configura-
tion, or Active/Active with High Controller Load

Simple
Controller
Node #1

Simple
Controller
Node #2

Storage Node
#1

High-Speed Network
(Coherence protocol)

Storage Network
(iSCSI, Fibre Channel)

Storage Network
(iSCSI, Fibre Channel)

Storage Node
#2

Storage Network
(iSCSI, Fibre Channel)

Figure 29. Network Diagram for a Typical Active/Active Configuration

88

MRAID
Controller
Node #1

MRAID
Controller
Node #2

Storage Node
#2

High-Speed Network
(Coherence protocol)

Storage Network (iSCSI, Fibre Channel)

Storage Node
#5

Storage Node
#3

Storage Node
#4

Storage Node
#1

Storage Node
#6

Figure 30. Network Diagram for an Active MRAID Configuration

decreased speed when a controller fails. However, failure of storage nodes is still a

catastrophic event that leads to data unavailability.

Figure 30 shows an improved organization, here termed Active MRAID, that can

be used with a hardware-decoupled high-speed RAID implementation to tolerate

outright failure of storage nodes without a parallel filesystem. This is accomplished by

treating individual servers as storage devices, as multilevel RAID does. The differences

are apparent in controller organization: There is typically only one top-level MRAID

controller, leading to a reduction in availability. Active MRAID can include multiple

top-level controllers, with each controller striping data across all storage nodes. Data

resiliency can be implemented by using a GPU with Gibraltar to generate RAID

stripes to split among the underlying storage servers.

With the inclusion of the active/active controller pair, which is not part of the

MRAID concept, several nodes within the network can become unavailable simul-

taneously. An additional financial benefit is the possible reduction of cost for each

individual storage node; each node can be less reliable and host fewer disks. Instead of

relying on each storage node to be a massive collection of disks that can serve storage

at high rates with high reliability, larger numbers of slower, less-reliable nodes can

89

be deployed. In fact, each storage node may not require hardware or GPU-based

RAIDs, but can use RAID 5 locally with software-only implementations, reducing

costs further.

Several key questions include the ultimate scalability of this concept. Active/active

controller pairs are common today, but it is reasonable to question the inclusion of

more than two active controllers per storage pool. As storage clusters tend to be

much smaller than compute clusters, different network topologies can also be explored

which can increase the efficiency of interactions between more than two controllers,

especially when write-through caching is used and storage nodes are fully appointed

servers.

3. Combining RAID with Other Storage Computations

The bandwidth within a graphics card is on the order of 100 GB/s, while PCI-

Express bandwidth remains less than 10 GB/s. When dealing with large amounts of

data, performance is best when all necessary operations can be applied to data within

a GPU. The data’s presence in GPU memory can be applied to active storage and

three traditional storage services: Encryption, deduplication, and compression.

Active storage is a storage paradigm where excess processing power can be applied

to storage applications, allowing certain tasks to be accomplished by the storage

system on behalf of the user [94]. Given the application of GPU computation to all

reads and writes for a RAID array as outlined in this work, all data will have been

transferred to a GPU before reading and writing. Active storage concepts could be

applied while the data is passing through the GPU, given an appropriate GPU-based

active storage infrastructure.

Further, GPU-based encryption may be suitable for storage applications. Work

has already been done to investigate AES encryption using CUDA-based GPUs [9].

While full-disk encryption is available for storage servers based on per-server keys, this

type of solution could provide a more flexible means of encryption on a per-user basis.

90

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 100 200 300 400 500 600 700 800 900 1000

T
h

ro
u

g
h

p
u

t
in

 M
B

/s
e

c
.

Unencoded File Size in MB

Encoding Throughput CPU vs. GPU with Block Size 100

CPU Throughput
OpenMP CPU Throughput

GPU Throughput

Figure 31. Huffman Encoding Rates for an Intel i7 Extreme Edition
975 and an NVIDIA Geforce GTX 285.

Deduplication can be implemented using cryptographically secure hashing, which has

also been implemented on GPUs [114].

Finally, block-level compression can be applied to user data. If efficient enough,

it could be applied to increase the user-visible bandwidth of the disk subsystem.

Research to find good trade-offs for GPU computation speed and storage efficiency is

ongoing, but Robert Cloud has preliminary results showing that Huffman coding and

decoding can be accelerated with a CUDA-based GPU. Figure 31 shows the encoding

rates for a single core of an Intel i7 Extreme Edition 975, all cores of an Intel Extreme

Edition 975, and a single NVIDIA GeForce GTX 285. Figure 32 shows the decoding

rates for the same hardware.

4. Checkpoint-to-Neighbor

The Scalable Checkpoint Restart (SCR) library, which bypasses the global parallel

filesystem for checkpointing purposes and instead uses node-local storage across the

machine, has experimentally been used to provide hundreds gigabytes per second of

91

 0

 50

 100

 150

 200

 250

 300

 350

 100 200 300 400 500 600 700 800 900 1000

T
h

ro
u

g
h

p
u

t
in

 M
B

/s
e

c
.

Encoded File Size in MB

Decoding Throughput CPU vs. GPU with Block Size 100

CPU Throughput
OpenMP CPU Throughput

GPU Throughput

Figure 32. Huffman Decoding Rates for an Intel i7 Extreme Edition
975 and an NVIDIA Geforce GTX 285.

bandwidth to checkpointing activities within an application[15]. The library functions

by creating a replica of a node’s important job data and storing the replica on the

storage of another node. Other operating modes are described, including an XOR

mode that mimics a RAID 5 volume that is distributed across a team of nodes.

However, if a GPU is available within the node, it becomes possible to more widely

disburse portions of a checkpoint, allowing for higher reliability with comparatively

smaller amounts of node-local storage.

5. Alternative Platforms

While GPUs have been shown to be effective at RAID computations, the user

space RAID infrastructure developed for this work lowers the barrier to entry for

testing other devices RAID devices. So long as an implementation of the Gibraltar

API can be developed for the device, a RAID implementation is trivial to test with

a real I/O workload. There are several known platforms that may make worthwhile

Reed-Solomon coding back ends. These include FPGAs, CPUs implementing new

92

vector instructions, and projected platforms with CPUs and GPUs integrated on the

same die. Furthermore, as future CPU platforms evolve, the architectures used may

lend themselves to the massively multicore processing strategies used in NVIDIA

GPUs for this work.

93

CHAPTER 8

CONCLUSIONS

Many sites desire two main features from a RAID controller: Assurance that

the data read are correct, and high-speed operation [107]. If software RAID could

meet this need, the impact would be significant. While current RAID technology has

served the community well for the last two decades, two main concerns have crept

to the forefront of storage system practitioners’ attention. First, quality hardware

RAID is expensive (as shown in Figure 1 on page 3), making it inaccessible to

a broad community. Second, current RAID levels may not be reliable enough to

accommodate changing storage technology (as demonstrated in Figure 11 on page 33).

This work offers a significant advancement in RAID, GPU-based high-parity RAID,

which provides solutions to both problems.

Many system administrators look to HRAID as a method of prolonging the

usefulness of traditional RAID levels. This work has shown that HRAID levels do

not significantly reduce the probability of losing data to disk failure or UREs. For

manufacturer-supplied failure statistics, Figure 7 (on page 29) shows that there is little

difference in reliability between a RAID 5 array and a four-set RAID 5+0 array of

the same capacity. Further, Figure 8 (on page 30) shows a single order of magnitude

improvement between a RAID 6 array and a four-set RAID 6+0 array with the same

capacity. While RAID 1+0 can offer extreme levels of reliability, it requires a large

investment in disks compared to parity-based RAID methods. Many within the storage

industry have largely accepted that current storage hardware cannot guarantee the

safety of data. Garth Gibson, one of the pioneers of RAID, has recently proposed that

the metric of choice for reporting RAID reliability be the average number of bytes

lost per year [36].

94

This work has demonstrated that k + m RAID, a RAID level with administrator-

selectable fault tolerance within an array, can reasonably solve this reliability problem.

The convenience of the feature is one of its most valuable traits. Using the equations

given in Chapter 3, with parameters that are known or can be reasonably estimated,

a storage system administrator can choose the amount of parity required to satisfy

reliability requirements. Further uses include testing initial deployments of storage

infrastructure in a production setting. If the hard disks used are affected by a batch-

correlated defect, the probability of survival is significantly increased by using more

parity in the array [82]. Other strategies include, upon noticing increased failure rates,

having an administrator add more storage for increased parity to the live system. This

kind of capability is not available with current RAID 6 systems, which only provides

the recourse of initiating a full system backup.

This work has also demonstrated that replication-based schemes, like RAID 1+0

and the Google File System (GFS) [35], are not as reliable as relatively low-parity k+m

RAID levels. When keeping capacity constant, RAID 1+0 has different characteristics

than parity-based RAID levels that make RAID 1+0 asymptotically more reliable.

However, as shown in Figure 10, k + 3 RAID with 128 two-terabyte disks maintains

better reliability while offering the same amount of user storage when compared to

three-set RAID 1+0 with 375 two-terabyte disks. This can be directly compared to

the reliability features of the GFS because it creates three replicas of each file by

default. For Figure 11, where failure rates are determined by empirical data and

rebuild times are increased, k + 3 RAID is again the more reliable configuration.

While k + m RAID can create more reliable storage with less hardware than any

other parity-based RAID, it is computationally expensive as software RAID on x86

and x86-64 CPUs. The parity is computed with Reed-Solomon coding, which involves

heavy use of table look-up operations. This work describes the Gibraltar library, a

prototype library that provides high-speed Reed-Solomon coding for RAID on NVIDIA

95

CUDA GPUs. Current GPUs have been thoroughly analyzed for their fit to the task,

with further evaluation of potential future evolutionary changes.

For k + 3 workloads, the Gibraltar library is capable of sustaining six-fold the

performance of a Jerasure, a well-known CPU-based Reed-Solomon code library.

Algorithm modifications have improved data reconstruction rates on the GPU, yielding

symmetric performance for encoding and decoding. This symmetry is an important

quality to software RAID applications, as degraded mode operation causes decreased

performance for reads. Without symmetry, user-level performance decreases and

reconstruction times increase. Improving the performance of degraded mode allows

for fast recovery or fail-in-place functionality. As failures become more prevalent, one

can estimate that an array of disks will usually have at least one disk offline. The

Gibraltar library can maintain good performance under these circumstances.

While the Gibraltar library demonstrates new concepts for RAID encoding and

decoding, and provides a valuable resource for user space storage applications, it is

not immediately applicable within a RAID controller. This work describes Gibraltar

RAID, a software RAID proof of concept that provides a traditional block device for

general use, with parity computations provided by the Gibraltar library. This was

a significant hurdle, as CUDA GPUs are not accessible from kernel space. Potential

performance problems could have inhibited the ability of a RAID system to make full

use of GPU-based coding. Gibraltar RAID is integrated with the Linux SCSI Target

Framework (stgt), the standard network storage protocol target package for Linux.

This design leverages many capabilities of the stgt code base, including the ability

to serve network storage with iSCSI, Fibre Channel over Ethernet, iSER, and other

storage protocols.

To provide the best performance, much of the traditional storage stack was designed

around the Gibraltar library in user space. Gibraltar RAID is about 25% faster than

Linux md for direct-attached normal RAID 6 streaming reads. Gibraltar RAID is

75% faster for direct-attached normal RAID 6 streaming writes. Direct-attached

96

normal streaming read and write performance remains superior through k + 5 RAID,

which improves reliability over RAID 6 by up to eight orders of magnitude. Given

that Gibraltar RAID verifies the results of read operations against parity, its RAID 6

mode improves assurance against corrupted data and bugs better than Linux md does,

permitting its use in HPC applications that require high confidence in results.

The most extreme performance differences can be seen when comparing Gibraltar

RAID and Linux md in degraded mode. Disk failures cause no performance degra-

dation in Gibraltar RAID. Linux md, in comparison, suffers severe performance loss:

Performance decreases by more than 50% for reads. Under these conditions, md may

require significantly longer to repair a failed disk than Gibraltar RAID, especially

when under load. Further, it is unreasonable to leave the array in this degraded state

because of increased risk of overall failure and unacceptable performance. Higher

parity Gibraltar RAID, however, can maintain superior performance under perpetual

failure, allowing significantly larger RAID arrays than are possible with RAID 6.

Gibraltar RAID is a demonstration of a software RAID infrastructure without

software RAID’s main drawback: Low performance. This leaves the benefit that

software RAID has long enjoyed over hardware RAID: Flexibility. While MRAID with

hardware acceleration has been discussed in research circles, practitioners of software

RAID have been doing similar organizations without difficulty. For example, with

Linux md, any block device listed in the /dev directory can be used as part of an

array. For example, iSCSI/iSER shares (which may be backed by RAID 6 arrays on

remote machines) can be assembled into an MRAID on one machine.

The high-speed nature of Gibraltar RAID allows for its use as an MRAID in-

frastructure in environments where performance is a priority. MRAID’s purpose

is to allow storage infrastructure to withstand more types of failures than can be

handled by RAID alone. While active/active and active/passive controller pairs can

withstand controller failures, and MRAID can withstand multiple storage node or

enclosure failures, no solution currently provides both types of functionality in a single

97

package because of the coding bottleneck. With the use of GPU-based RAID, this

infrastructure is now possible.

Further advances enabled by the Gibraltar library include user-managed distributed

data storage. Most distributed data storage uses replicas for reliability, typically

requiring at least 200% overhead in bandwidth and storage space. However, a

significant bandwidth savings and reliability increase can be obtained by storage of

coded pieces of a file. These pieces can be stored with different services to decrease

chances of administrative mistakes causing data loss.

In conclusion, this work provides a firm foundation for RAID to evolve to offer

more reliability in a changing technological landscape. The family of k + m RAID

levels, which embody the generalization of parity-based RAID concepts, has been

defined and proposed. It is shown to offer significantly better protections than

fundamental and hierarchical RAID levels today. A proof of concept for an advanced,

inexpensive (as demonstrated in Appendix D), high-performance software RAID

controller that uses GPUs for coding has been created and benchmarked, demonstrating

its performance advantages over current software RAID technology under streaming

workloads. Furthermore, GPU-based RAID provides a means of assembling large

amounts of storage in a cluster environment for a significantly reduced cost. Additional

reliable storage applications are enabled by a practical library for storage coding and

decoding, allowing data storage in a broader context than RAID, while enabling

previously impractical RAID variations.

98

References

[1] Lustre file system: High-performance storage architecture and scalable cluster

file system. http://www.raidinc.com/pdf/whitepapers/lustrefilesystem_

wp.pdf, December 2009.

[2] AMD. ATI CTM guide. http://ati.amd.com/companyinfo/researcher/

documents/ATI_CTM_Guide.pdf, 2006.

[3] AMD. ATI Stream technology: Technical overview. http://developer.amd.

com/gpu_assets/Stream_Computing_Overview.pdf, 2008.

[4] AMD. The future is fusion. The industry-changing impact of accelerated com-

puting. http://sites.amd.com/us/Documents/AMD_fusion_Whitepaper.pdf,

2008.

[5] H. Peter Anvin. The mathematics of RAID-6. http://kernel.org/pub/linux/

kernel/people/hpa/raid6.pdf, 2009.

[6] Sung Hoon Baek, Bong Wan Kim, Eui Joung Joung, and Chong Won Park.

Reliability and performance of hierarchical RAID with multiple controllers. In

PODC ’01: Proceedings of the Twentieth Annual ACM Symposium on Principles

of Distributed Computing, pages 246–254, New York, NY, USA, 2001. ACM.

[7] Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca Schroeder, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. An Analysis of Data Corruption

in the Storage Stack. In Proceedings of the 6th USENIX Conference on File and

Storage Technologies (FAST ’08), San Jose, California, February 2008.

[8] Raghav Bhaskar, Pradeep K. Dubey, Vijay Kumar, and Atri Rudra. Efficient

Galois field arithmetic on SIMD architectures. In SPAA ’03: Proceedings of the

99

Fifteenth Annual ACM Symposium on Parallel Algorithms and Architectures,

pages 256–257, New York, NY, USA, 2003. ACM Press.

[9] Andrea Di Biagio, Alessandro Barenghi, Giovanni Agosta, and Gerardo Pelosi.

Design of a parallel AES for graphics hardware using the CUDA framework.

Proceedings of the 23rd IEEE International Parallel and Distributed Processing

Symposium, 0:1–8, 2009.

[10] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An optimal scheme

for tolerating double disk failures in RAID architectures. In Proceedings of the

21st Annual International Symposium on Computer Architecture, pages 245–254,

1994.

[11] OpenGL Architecture Review Board. ARB fragment shader. http://www.

opengl.org/registry/specs/ARB/fragment_shader.txt, June 2003.

[12] OpenGL Architecture Review Board. EXT framebuffer object. http://www.

opengl.org/registry/specs/EXT/framebuffer_object.txt, January 2005.

[13] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröoder. Sparse matrix

solvers on the GPU: Conjugate gradients and multigrid. ACM Trans. Graph.,

22(3):917–924, 2003.

[14] A. Brinkmann and D. Eschweiler. A microdriver architecture for error correcting

codes inside the Linux kernel. In SC ’09: Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis, pages 1–10, New

York, NY, USA, 2009. ACM.

[15] Greg Bronevetsky and Adam Moody. Scalable I/O systems via node-local storage:

Approaching 1 TB/sec file I/O. Technical Report LLNL-TR-415791, Lawrence

Livermore National Laboratory, 2009.

[16] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike

Houston, and Pat Hanrahan. Brook for GPUs: Stream computing on graphics

hardware. ACM Trans. Graph., 23(3):777–786, 2004.

100

[17] John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh Rege. A

digital fountain approach to reliable distribution of bulk data. In SIGCOMM ’98:

Proceedings of the ACM SIGCOMM ’98 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication, pages 56–67, New

York, NY, USA, 1998. ACM.

[18] J.W. Byers, M. Luby, and M. Mitzenmacher. Accessing multiple mirror sites in

parallel: Using Tornado Codes to speed up downloads. volume 1, pages 275–283,

March 1999.

[19] Nathan A. Carr, Jared Hoberock, Keenan Crane, and John C. Hart. Fast GPU

ray tracing of dynamic meshes using geometry images. In GI ’06: Proceedings of

Graphics Interface 2006, pages 203–209, Toronto, Ont., Canada, 2006. Canadian

Information Processing Society.

[20] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A.

Patterson. RAID: High-performance, reliable secondary storage. ACM Computing

Surveys, 26(2):145–185, 1994.

[21] Gerry Cole. Estimating drive reliability in desktop computers and consumer

electronics systems. Technical Report TP-338.1, Seagate, November 2000.

[22] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven Kleiman,

James Leong, and Sunitha Sankar. Row-diagonal parity for double disk failure

correction. In Proceedings of the 3rd USENIX Symposium on File and Storage

Technologies (FAST 04), pages 1–14, 2004.

[23] Intel Corporation. Intel 81348 I/O processor datasheet. http://download.intel.

com/design/iio/datashts/31503803.pdf, December 2007.

[24] Intel Corporation. Intel X25-E SATA Solid State Drive Product Manual, May

2009.

[25] Matthew L. Curry and Anthony Skjellum. Improved LU decomposition on

graphics hardware. Poster at Supercomputing 2006 conference.

101

[26] Matthew L. Curry, Anthony Skjellum, H. Lee Ward, and Ron Brightwell. Gibral-

tar: A library for RAID-like Reed-Solomon coding on programmable graphics

processors. Technical report. Submitted to Concurrency and Computation: Prac-

tice and Experience.

[27] Matthew L. Curry, Anthony Skjellum, H.Lee Ward, and Ron Brightwell. Acceler-

ating Reed-Solomon coding in RAID systems with GPUs. In IEEE International

Symposium on Parallel and Distributed Processing, 2008, pages 1–6, April 2008.

[28] Matthew L. Curry, H. Lee Ward, Anthony Skjellum, and Ron Brightwell. Ar-

bitrary dimenision Reed-Solomon coding and decoding for extended RAID on

GPUs. In 3rd Petascale Data Storage Workshop held in conjunction with SC08,

November 2008.

[29] Anirban DasGupta. The matching, birthday and the strong birthday problem: A

contemporary review. Journal of Statistical Planning and Inference, 130(1-2):377

– 389, 2005. Herman Chernoff: Eightieth Birthday Felicitation Volume.

[30] Randima Fernando and Mark J. Kilgard. The Cg Tutorial. Addison-Wesley, 2003.

[31] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.

Computer Graphics: Principles and Practice in C. Addison-Wesley Professional,

second edition, 1995.

[32] Tomonori Fujita and Mike Christie. tgt: Framework for storage target drivers. In

Proceedings of the Linux Symposium, July 2006.

[33] Nico Galoppo, Naga K. Govindaraju, Michael Henson, and Dinesh Manocha. LU-

GPU: Efficient algorithms for solving dense linear systems on graphics hardware.

In SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing,

page 3, Washington, DC, USA, 2005. IEEE Computer Society.

[34] Philipp Gerasimov, Randima Fernando, and Simon Green. Shader model 3.0:

Using vertex textures. Whitepaper, June 2004. ftp://download.nvidia.com/

developer/Papers/2004/Vertex_Textures/Vertex_Textures.pdf.

102

[35] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system.

SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.

[36] Garth Gibson and Lin Xiao. Reliability/resilience panel. http://

institute.lanl.gov/hec-fsio/conferences/2010/presentations/day2/

Gibson-HECFSIO-2010-Reliability.pdf, 2010.

[37] M. Gilroy and J. Irvine. Raid 6 hardware acceleration. In Field Programmable

Logic and Applications, 2006. FPL ’06. International Conference on, pages 1 –6,

August 2006.

[38] Dominik Göddeke, Robert Strzodka, and Stefan Turek. Accelerating double

precision FEM simulations with GPUs. In Frank Hülsemann, Markus Kowarschik,

and Ulrich Rüde, editors, Proceedings of the 18th Symposium on Simulation

Technique (ASIM 2005), pages 139–144. SCS Publishing House e.V, September

2005.

[39] Jim Gray and Catherine van Ingen. Empirical measurements of disk failure rates

and error rates. Technical Report MSR-TR-2005-166, Microsoft, Dec 2005.

[40] Kris Gray. Microsoft DirectX 9 Programmable Graphics Pipeline. Microsoft Press,

2003.

[41] James Lee Hafner. Weaver codes: Highly fault tolerant erasure codes for storage

systems. In FAST’05: Proceedings of the 4th conference on USENIX Conference

on File and Storage Technologies, pages 16–16, Berkeley, CA, USA, 2005. USENIX

Association.

[42] R. W. Hamming. Error detecting and error correcting codes. The Bell System

Technical Journal, 29(2), April 1950.

[43] Mark Harris. GPU Gems 2, chapter Mapping Computational Concepts to GPUs.

Addison-Wesley Professional, 2005.

[44] Mark Harris, Shubhabrata Sengupta, and John D. Owens. GPU Gems 3, chapter

Parallel Prefix Sum (Scan) with CUDA. Addison-Wesley Professional, 2007.

103

[45] Mark J. Harris, Greg Coombe, Thorsten Scheuermann, and Anselmo Lastra.

Physically-based visual simulation on graphics hardware. In HWWS ’02: Pro-

ceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics

Hardware, pages 109–118, Aire-la-Ville, Switzerland, Switzerland, 2002. Euro-

graphics Association.

[46] From a few cores to many: A tera-scale computing research overview.

http://download.intel.com/research/platform/terascale/terascale_

overview_paper.pdf, 2006.

[47] Dave Hitz, James Lau, and Michael Malcolm. File system design for an NFS file

server appliance. Technical Report 3002, NetApp, Inc., January 1995.

[48] Mark Holland and Garth A. Gibson. Parity declustering for continuous operation

in redundant disk arrays. pages 23–35, 1992.

[49] Keith Holt. End-to-end data protection justification. http://www.t10.org/ftp/

t10/document.03/03-224r0.pdf, July 2003.

[50] Walter B. Ligon III and Robert B. Ross. An overview of the parallel virtual file

system. In Proceedings of the 1999 Extreme Linux Workshop, 1999.

[51] Apple Inc. Mac OS X, Mac OS X server: How to use Apple-supplied RAID

software. http://support.apple.com/kb/HT2559, 2008.

[52] EM Phonetics Inc. Cula. http://www.culatools.com/, September 2010.

[53] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady Kanevsky. Are disks

the dominant contributor for storage failures?: A comprehensive study of storage

subsystem failure characteristics. Trans. Storage, 4(3):1–25, 2008.

[54] Cyndi Jung. Personal communication, 2007.

[55] Randy H. Katz, Peter M Chen, Ann L. C Drapeau, Edward K Lee, K. Lutz,

Ethan L. Miller, S. Seshan, and David A. Patterson. RAID-II: Design and

implementation of a large scale disk array. Technical report, Berkeley, CA, USA,

1992.

104

[56] A. Kiayias and Moti Yung. Cryptography and decoding Reed-Solomon codes as

a hard problem. In Theory and Practice in Information-Theoretic Security, 2005.

IEEE Information Theory Workshop on, pages 48–48, Oct. 2005.

[57] G.A. Klutke, P.C. Kiessler, and M.A. Wortman. A critical look at the bathtub

curve. Reliability, IEEE Transactions on, 52(1):125 – 129, mar. 2003.

[58] M. Ko, M. Chadalapaka, J. Hufferd, U. Elzur, H. Shah, and P. Thaler. Internet

Small Computer System Interface (iSCSI) Extensions for Remote Direct Memory

Access (RDMA). RFC 5046 (Proposed Standard), October 2007.

[59] E. Scott Larsen and David McAllister. Fast matrix multiplies using graphics

hardware. In Supercomputing ’01: Proceedings of the 2001 ACM/IEEE Conference

on Supercomputing (CDROM), pages 55–55, New York, NY, USA, 2001. ACM.

[60] Seungbeom Lee, Hanho Lee, Chang-Seok Choi, Jongyoon Shin, and Je-Soo Ko.

40-Gb/s two-parallel Reed-Solomon based forward error correction architecture

for optical communications. In Circuits and Systems, 2008. APCCAS 2008. IEEE

Asia Pacific Conference on, pages 882 –885, nov. 2008.

[61] Adam Leventhal. Triple-parity RAID-Z. http://blogs.sun.com/ahl/entry/

triple_parity_raid_z, 2009.

[62] Rudolf Lidl and Harald Niedrreiter. Introduction to Finite Fields and their

Applications. Cambridge University Press, 1994.

[63] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, and Daniel A.

Spielman. Efficient erasure correcting codes. IEEE Transactions on Information

Theory, 47:569–584, 2001.

[64] Michael McCool and Stefanus Du Toit. Metaprogramming GPUs with Sh. AK

Peters, July 2004.

[65] Prince McLean. NVIDIA pioneering OpenCL support on top of CUDA.

http://www.appleinsider.com/articles/08/12/10/nvidia_pioneering_

opencl_support_on_top_of_cuda.html, 2008.

105

[66] Chris Mellor. Rorke’s drift towards RAID ASIC replacement. http://www.

channelregister.co.uk/2009/04/16/rorke_nehalem_raid/, April 2009.

[67] Ashwin A. Mendon, Andrew G. Schmidt, and Ron Sass. A hardware filesystem

implementation with multidisk support. Int. J. Reconfig. Comput., 2009:1–1,

2009.

[68] Sun Microsystems. Solaris ZFS Administration Guide. October 2009.

[69] Steve Monk. Personal communication, 2010.

[70] Steve Monk and Joe Mervini. Lustre on Red Sky, April 2010.

[71] Aaftab Munshi, editor. The OpenCL Specification: Version 1.1. Khronos OpenCL

Working Group, June 2010.

[72] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety, and

Antony Rowstron. Migrating server storage to SSDs: Analysis of tradeoffs. In

EuroSys ’09: Proceedings of the fourth ACM european conference on Computer

systems, pages 145–158, New York, NY, USA, 2009. ACM.

[73] Tim Nufire. Petabytes on a budget: How to build

cheap cloud storage. http://blog.backblaze.com/2009/09/01/

petabytes-on-a-budget-how-to-build-cheap-cloud-storage/, 2009.

[74] NVIDIA. The infinite effects GPU. http://www.nvidia.com/object/LO_

20010612_4376.html, 2001.

[75] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture

Programming Guide. Santa Clara, CA, 2007.

[76] NVIDIA Corporation. NVIDIA CUDA: Compute Unified Device Architecture,

Programming Guide (Version 2.1 Beta). Santa Clara, CA, 2008.

[77] NVIDIA Corporation. NVIDIA’s next generation CUDA compute architecture:

Fermi, 2009.

[78] Lars Nyland, Mark Harris, and Jan Prins. GPU Gems 3, chapter Fast N-Body

Simulation with CUDA. Addison-Wesley Professional, 2007.

[79] Zooko O’Whielacronx. zfec 1.4.6. http://pypi.python.org/pypi/zfec.

106

[80] Vijay Pande. Folding@Home on ATI GPU’s: A major step forward. http:

//www.stanford.edu/group/pandegroup/folding/FAQ-ATI.html.

[81] J.-F. Pâris, A. Amer, D.D.E. Long, and T.J.E. Schwarz. Evaluating the impact

of irrecoverable read errors on disk array reliability. pages 379 –384, nov. 2009.

[82] Jehan-François Pâris and Darrell D. E. Long. Using device diversity to protect

data against batch-correlated disk failures. In StorageSS ’06: Proceedings of the

Second ACM Workshop on Storage Security and Survivability, pages 47–52, New

York, NY, USA, 2006. ACM Press.

[83] Suryakant Patidar, Shiben Bhattacharjee, Jag Mohan Singh, and P. J. Narayanan.

Exploiting the shader model 4.0 architecture. Technical Report 145, International

Institute of Information Technology, Hyderabad, 2007.

[84] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant

arrays of inexpensive disks (RAID). In SIGMOD ’88: Proceedings of the 1988

ACM SIGMOD International Conference on Management of Data, pages 109–116,

New York, NY, USA, 1988. ACM.

[85] James C. Phillips and John E. Stone. Probing biomolecular machines with

graphics processors. Communications of the ACM, (10):34–41, October 2009.

[86] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. Failure trends

in a large disk drive population. In Proceedings of the 5th USENIX Conference on

File and Storage Technologies, pages 17–28, Berkeley, CA, USA, 2007. USENIX

Association.

[87] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like

systems. Software – Practice & Experience, 27(9):995–1012, September 1997.

[88] J. S. Plank. The RAID-6 Liberation codes. In FAST-2008: 6th USENIX Confer-

ence on File and Storage Technologies, February 2008.

[89] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure: A library in C/C++

facilitating erasure coding for storage applications - Version 1.2. Technical Report

CS-08-627, University of Tennessee, August 2008.

107

[90] Michael Potmesil and Eric M. Hoffert. The pixel machine: A parallel image

computer. In SIGGRAPH ’89: Proceedings of the 16th Annual Conference on

Computer Graphics and Interactive Techniques, pages 69–78, New York, NY,

USA, 1989. ACM.

[91] Irving S. Reed and Xuemin Chen. Error-control Coding for Data Networks.

Kluwer Academic Publishers, 1999.

[92] Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite fields.

Journal of the Society for Industrial and Applied Mathematics, 8(2):300–304,

1960.

[93] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao, and

John Kubiatowicz. Pond: The Oceanstore prototype. In FAST ’03: Proceedings

of the 2nd USENIX Conference on File and Storage Technologies, pages 1–14,

Berkeley, CA, USA, 2003. USENIX Association.

[94] Erik Riedel, Garth A. Gibson, and Christos Faloutsos. Active storage for large-

scale data mining and multimedia. In VLDB ’98: Proceedings of the 24rd Inter-

national Conference on Very Large Data Bases, pages 62–73, San Francisco, CA,

USA, 1998. Morgan Kaufmann Publishers Inc.

[95] Robert A. Rohde and Richard A. Muller. Cycles in fossil diversity. Nature,

434:208–210, March 2005.

[96] Mendel Rosenblum and John K. Ousterhout. The design and implementation of

a log-structured file system. ACM Trans. Comput. Syst., 10(1):26–52, 1992.

[97] Samsung. Consumer class Spinpoint F3EG. http://www.samsung.com/global/

system/business/hdd/prdmodel/2010/2/11/888084f3eg_spec.pdf.

[98] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner. Internet

Small Computer Systems Interface (iSCSI). RFC 3720 (Proposed Standard),

April 2004. Updated by RFCs 3980, 4850, 5048.

108

[99] Dave Schreiner. OpenGL Programming Guide: The Official Guide to Learning

OpenGL, Versions 3.0 and 3.1. Addison-Wesley Professional, seventh edition,

2007.

[100] Bianca Schroeder and Garth A. Gibson. Disk failures in the real world: what does

an MTTF of 1,000,000 hours mean to you? In Proceedings of the 5th USENIX

Conference on File and Storage Technologies, pages 1–1, Berkeley, CA, USA,

2007. USENIX Association.

[101] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[102] P. Sobe and V. Hampel. FPGA-accelerated deletion-tolerant coding for reli-

able distributed storage. In ARCS 2007 Proceedings, pages 14–27, Berlin, 2007.

Springer.

[103] Peter Sobe. Parallel Reed/Solomon coding on multicore processors. Storage

Network Architecture and Parallel I/Os, IEEE International Workshop on, 0:71–

80, 2010.

[104] Alexander Thomasian. Multi-level RAID for very large disk arrays. SIGMET-

RICS Perform. Eval. Rev., 33(4):17–22, 2006.

[105] Linus Torvalds. Summary of changes from v2.6.1 to v2.6.2. http://www.kernel.

org/pub/linux/kernel/v2.6/ChangeLog-2.6.2.

[106] Robert Walker. Redundancy on a budget: Implementing a RAID file server. http:

//technet.microsoft.com/en-us/magazine/2005.05.raid.aspx, 2008.

[107] H. Lee Ward. Personal communication, 2010.

[108] Hakim Weatherspoon and John Kubiatowicz. Erasure coding vs. replication: A

quantitative comparison. In Peter Druschel, Frans Kaashoek, and Antony Row-

stron, editors, Peer-to-Peer Systems, volume 2429 of Lecture Notes in Computer

Science, pages 328–337. Springer Berlin / Heidelberg, 2002.

109

[109] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos

Maltzahn. Ceph: A scalable, high-performance distributed file system. In Pro-

ceedings of the 7th Symposium on Operating Systems Design and Implementation

(OSDI, pages 307–320, 2006.

[110] Jay White and Chris Lueth. RAID-DP: NetApp implementation of double-parity

RAID for data protection. Technical Report 3298, NetApp, Inc., May 2010.

[111] M. Woitaszek and H.M. Tufo. Fault tolerance of Tornado Codes for archival stor-

age. In High Performance Distributed Computing, 2006 15th IEEE International

Symposium on, pages 83 –92, 0-0 2006.

[112] Xiotech. ISE - the new foundation of data storage. http://www.xiotech.com/

ise-technology.php.

[113] Takeshi Yamanouchi. GPU Gems 3, chapter AES Encryption and Decryption

on the GPU. Addison-Wesley Professional, 2007.

[114] Lin Zhou and Wenbao Han. A brief implementation analysis of SHA-1 on FPGAs,

GPUs and Cell processors. In The Proceedings of the International Conference

on Engineering Computation, pages 101–104, May 2009.

[115] Simon F. Portegies Zwart, Robert G. Belleman, and Peter M. Geldof. High

performance direct gravitational n-body simulations on graphics processing units.

New Astronomy, 13(2):103–112, March 2008.

[116] Jakob Østergaard and Emilio Bueso. The software-RAID HOWTO, v.1.1.1.

http://tldp.org/HOWTO/Software-RAID-HOWTO.html, March 2010.

110

APPENDIX A

APPLICATION PROGRAMMING INTERFACES

This work represents a significant software effort. It required engineering interfaces

to provide access to resources in an efficient and easily used way. This appendix

documents APIs for software developed in connection with this work.

1. The Gibraltar Library

To address the need for improved RAID implementations, as well as provide this

functionality to other software, the Gibraltar library, a C library using NVIDIA’s

CUDA technology, was created. The Gibraltar library provides data parity and

recovery calculations through a generic, flexible API that hides the details of where

the computations are being performed. While it does support GPU computation,

it can allow for CPU failover, as well as the ability to use alternate computational

devices with the same API. It is designed to provide the higher performance of a GPU

while also being easy to use. This section provides an overview of the API, along with

comments about design decisions.

1.1. gib init. int gib init(int k, int m, gib context *gc);

This function initializes the library’s runtime to perform k + m codings. The

library is capable of performing many different types of codings simultaneously, so

this function may be called several times with varying values for k and m. The

gib context object is used in future calls in order to identify the type of coding to

be performed. As will be verified by examining the further function definitions, the

return values are error codes, while the products of the functions are returned by

reference.

111

When this function is called, the GPU is initialized (if necessary), the routines

to perform coding and decoding are compiled for the specific values of k and m (if

necessary), and the programs are loaded into the GPU for later use.

1.2. gib destroy. int gib destroy(gib context gc);

When the user no longer anticipates performing the coding represented by a

context, its resources on the GPU can be released for other uses. Once destroyed, gc

can no longer be used by the program unless it is reinitialized.

1.3. gib alloc. int gib alloc(void **buffers, int buf size, int *ld,

gib context gc);

The Gibraltar library works under the assumption that all buffers are allocated

end-to-end in main memory, with the start of each buffer separated by ld, which

is an abbreviation of “leading dimension”, bytes, while the first buf size bytes are

used. When buffers are placed directly next to each other, ld = buf size. In general,

ld ≥ buf size, and ld is used to satisfy some memory alignment constraint. Notice

that ld is a return value instead of a parameter, as ld is determined by the library

based on the target device. The amount of total memory allocated is ld× (k + m).

It is not necessary to allocate buffers with this function. However, there are

often ways to increase performance depending on the underlying device (e.g. by using

specialized memory allocation functions, such as CUDA’s cuMemAllocHost [75]), or

by altering the stride of memory accesses during the coding process (as governed by

ld). For example, with certain methods of CPU coding, performance doubles if ld is

not divisible by two. However, it is also not necessary to use ld as given.

1.4. gib free. int gib free(void *buffers);

The allocation function is able to use non-standard memory allocation functions, so

the user may not know how to appropriately free the memory associated. Furthermore,

the use of functions can change over time because of limited resources or the size of

allocation. gib free is used to free memory allocated with gib alloc.

112

Data Buffer 0

Data Buffer 1

Data Buffer k − 1

Redundancy Buffer 0

Redundancy Buffer 1

Redundancy Buffer m− 1
...

...

Figure 33. Buffer Layout for gib generate

1.5. gib generate. int gib generate(void *buffers, int buf size,

gib context gc);

This function performs the encoding of the data buffers into parity buffers according

to the parameters set by the gib context. The buf size is the size of one coding

buffer, or ld as returned by gib alloc.

The situations where data structures are coded for the sake of coding are rare.

Coding operations are usually part of another data moving task, such as writing to files,

transfer over networks, etc. Furthermore, in order to improve performance, the library

encourages that applications load data into buffers preallocated with gib alloc. To

take advantage of these conditions, the library imposes a particular style of layout

on the data that it operates upon, which is in the form of a multi-dimensional array

embedded within a single array.

Figure 33 illustrates how the layout is interpreted. In short, the buffers are situated

in memory such that byte i of data buffer j (i.e., Dj,i) is at the location buf[j× ld+ i].

Once the routine has been run, the output is situated at the end of the allocated

space, such that byte i of parity buffer j (i.e., Cj,i) is at location buf[(k + j)× ld+ i].

113

Intact Buffer[buf ids[0]]

Intact Buffer[buf ids[1]]

Intact Buffer[buf ids[k − 1]]

Recovery Buffer[buf ids[k]]

Recover Buffer[buf ids[k + 1]

Recovery Buffer[buf ids[k + f − 1]]
...

...

Figure 34. Buffer Layout for gib recover

The output can be considered to have been computed by a function RS such that for

byte i in all input buffers as follows:

RS({D0,i, D1,i, . . . , Dk,i}) = {C0,i, C1,i, . . . , Cm,i}

1.6. gib recover. int gib recover(void *buffers, int buf size,

int *buf ids, int recover last, gib context gc);

This function, given k intact buffers, will regenerate the contents up to f ≤ m of

the remaining buffers, which have presumably lost their data. The buf ids variable

contains a list of integers identifying the order of the buffers found in the variable

buffers.

While gib generate took some liberties in dictating the layout of the buffers in

memory, this function is more strict in some ways, less strict in others. Figure 34

indicates the layout required to use gib recover.

In order to use the function, all of the k intact buffers should be positioned in the

first k × ld bytes of buffers. The order is not imposed by the library, and they do

not have to appear in sorted order. However, buf ids should be populated with the

order of the buffers as given.

114

The last entries in buf ids should be set to the identities of the buffers the

application wishes to have recovered. The variable recover last indicates the value

f , which is the number of buffers that should be recalculated. When the function

returns, the last f buffers will contain the original data.

If it is not necessary to recover m buffers, it is acceptable to pass only k+f entries.

However, all buffers should be situated adjacent to each other with no gaps (except

constant stride between buffers as provided for by the ld parameter.)

2. Gibraltar RAID

A simple API has been provided which allows the RAID infrastructure to interface

with a higher-level piece of storage software. The RAID infrastructure interfaces

with the Linux SCSI Target Framework. However, one may choose to exercise many

other options to provide access to this storage, including writing applications directly

to the RAID infrastructure without use of a kernel-level filesystem. To reduce the

implementation effort required to use this infrastructure in a new target or driver, a

simple API has been provided.

2.1. gr fopen. int gr fopen(char *path, uint64 t *size);

This function opens a RAID logical unit specification indicated by path. This file

contains information required to start the array, including component device names,

the offset into the array at which the logical unit begins, and the k + m coding used.

It initializes all data structures and libraries required, including the Gibraltar library.

It returns a logical unit number (LUN) to use for operations on the volume. The size

of the volume is stored in the variable size, which is sent to the client via the target

software.

2.2. gr pread. int gr pread(int fd, void *buf, size t nbytes, off64 t

offset);

This function reads from a currently open logical unit. Its interface is identical to

the standard C system call pread.

115

2.3. gr pwrite. int gr pwrite(int fd, const void *buf, size t nbytes, off64 t

offset);

This function writes to a currently open logical unit. Its interface is identical to

the standard C system call pread.

2.4. gr clean. void gr clean(int fd);

This function flushes all data associated with the file descriptor fd to the disks in

the RAID array.

116

APPENDIX B

ADDITIONAL DATA

This chapter includes data that was used to gerenate figures in this document.

This includes difficult-to-generate data as well as experimental performance data.

117

T
a
b
l
e
2
.

T
h
is

ta
b
le

gi
ve

s
th

e
d
at

a
fo

r
F

ig
u
re

s
7

an
d

8
on

p
ag

es
29

an
d

30
.

T
h
is

d
at

a
d
es

cr
ib

es
th

e
p
ro

b
ab

il
it

y
of

d
at

a
lo

ss
w

it
h
in

te
n

ye
ar

s
gi

ve
n

va
ry

in
g

R
A

ID
le

ve
ls

an
d

ca
p
ac

it
ie

s,
w

it
h

d
is

k
si

ze
of

tw
o

te
ra

b
y
te

s,
d
is

k
M

T
T

F
of

on
e

m
il
li
on

h
ou

rs
,

M
T

T
R

of
12

h
ou

rs
,

an
d

B
E

R
of

10
−
1
5
.

C
ap

.
(T

B
)

R
A

ID
6

R
A

ID
6+

0
R

A
ID

6+
0

R
A

ID
6+

0
R

A
ID

5
R

A
ID

5+
0

R
A

ID
5+

0
R

A
ID

5+
0

(2
se

ts
)

(3
se

ts
)

(4
se

ts
)

(2
se

ts
)

(3
se

ts
)

(4
se

ts
)

2
8.

82
E

-0
8

4
3.

36
E

-0
7

1.
76

E
-0

7
7.

29
E

-0
3

6
7.

99
E

-0
7

2.
64

E
-0

7
1.

39
E

-0
2

8
1.

52
E

-0
6

6.
71

E
-0

7
3.

53
E

-0
7

2.
20

E
-0

2
1.

45
E

-0
2

10
2.

54
E

-0
6

3.
15

E
-0

2
12

3.
88

E
-0

6
1.

60
E

-0
6

1.
01

E
-0

6
4.

20
E

-0
2

2.
75

E
-0

2
2.

17
E

-0
2

14
5.

55
E

-0
6

5.
34

E
-0

2
16

7.
58

E
-0

6
3.

05
E

-0
6

1.
34

E
-0

6
6.

56
E

-0
2

4.
35

E
-0

2
2.

88
E

-0
2

18
9.

96
E

-0
6

2.
40

E
-0

6
7.

84
E

-0
2

4.
10

E
-0

2
20

1.
27

E
-0

5
5.

08
E

-0
6

9.
16

E
-0

2
6.

19
E

-0
2

22
1.

58
E

-0
5

1.
05

E
-0

1
24

1.
93

E
-0

5
7.

76
E

-0
6

4.
57

E
-0

6
3.

20
E

-0
6

1.
19

E
-0

1
8.

23
E

-0
2

6.
46

E
-0

2
5.

43
E

-0
2

26
2.

31
E

-0
5

1.
33

E
-0

1
28

2.
73

E
-0

5
1.

11
E

-0
5

1.
47

E
-0

1
1.

04
E

-0
1

30
3.

18
E

-0
5

7.
62

E
-0

6
1.

61
E

-0
1

9.
15

E
-0

2
32

3.
66

E
-0

5
1.

52
E

-0
5

6.
09

E
-0

6
1.

75
E

-0
1

1.
27

E
-0

1
8.

52
E

-0
2

34
4.

17
E

-0
5

1.
89

E
-0

1
36

4.
72

E
-0

5
1.

99
E

-0
5

1.
16

E
-0

5
2.

03
E

-0
1

1.
51

E
-0

1
1.

21
E

-0
1

38
5.

30
E

-0
5

2.
17

E
-0

1
40

5.
90

E
-0

5
2.

54
E

-0
5

1.
02

E
-0

5
2.

31
E

-0
1

1.
75

E
-0

1
1.

20
E

-0
1

42
6.

54
E

-0
5

1.
67

E
-0

5
2.

44
E

-0
1

1.
52

E
-0

1
44

7.
20

E
-0

5
3.

16
E

-0
5

2.
57

E
-0

1
1.

99
E

-0
1

46
7.

88
E

-0
5

2.
71

E
-0

1
48

8.
59

E
-0

5
3.

86
E

-0
5

2.
27

E
-0

5
1.

55
E

-0
5

2.
83

E
-0

1
2.

24
E

-0
1

1.
84

E
-0

1
1.

58
E

-0
1

T
a
b
l
e
2
.

C
on

ti
n
u
ed

on
n
ex

t
p
ag

e.

118

C
ap

.
(T

B
)

R
A

ID
6

R
A

ID
6+

0
R

A
ID

6+
0

R
A

ID
6+

0
R

A
ID

5
R

A
ID

5+
0

R
A

ID
5+

0
R

A
ID

5+
0

(2
se

ts
)

(3
se

ts
)

(4
se

ts
)

(2
se

ts
)

(3
se

ts
)

(4
se

ts
)

50
9.

33
E

-0
5

2.
96

E
-0

1
52

1.
01

E
-0

4
4.

62
E

-0
5

3.
09

E
-0

1
2.

48
E

-0
1

54
1.

09
E

-0
4

2.
99

E
-0

5
3.

21
E

-0
1

2.
17

E
-0

1
56

1.
17

E
-0

4
5.

45
E

-0
5

2.
22

E
-0

5
3.

33
E

-0
1

2.
72

E
-0

1
1.

97
E

-0
1

58
1.

25
E

-0
4

3.
45

E
-0

1
60

1.
33

E
-0

4
6.

35
E

-0
5

3.
81

E
-0

5
3.

56
E

-0
1

2.
96

E
-0

1
2.

50
E

-0
1

62
1.

42
E

-0
4

3.
68

E
-0

1
64

1.
51

E
-0

4
7.

32
E

-0
5

3.
03

E
-0

5
3.

79
E

-0
1

3.
20

E
-0

1
2.

38
E

-0
1

66
1.

60
E

-0
4

4.
74

E
-0

5
3.

90
E

-0
1

2.
83

E
-0

1
68

1.
69

E
-0

4
8.

35
E

-0
5

4.
00

E
-0

1
3.

42
E

-0
1

70
1.

78
E

-0
4

4.
11

E
-0

1
72

1.
88

E
-0

4
9.

44
E

-0
5

5.
78

E
-0

5
3.

99
E

-0
5

4.
21

E
-0

1
3.

65
E

-0
1

3.
16

E
-0

1
2.

78
E

-0
1

74
1.

97
E

-0
4

4.
31

E
-0

1
76

2.
07

E
-0

4
1.

06
E

-0
4

4.
41

E
-0

1
3.

87
E

-0
1

78
2.

17
E

-0
4

6.
93

E
-0

5
4.

51
E

-0
1

3.
48

E
-0

1
80

2.
27

E
-0

4
1.

18
E

-0
4

5.
08

E
-0

5
4.

60
E

-0
1

4.
08

E
-0

1
3.

19
E

-0
1

82
2.

37
E

-0
4

4.
69

E
-0

1
84

2.
47

E
-0

4
1.

31
E

-0
4

8.
18

E
-0

5
4.

78
E

-0
1

4.
29

E
-0

1
3.

79
E

-0
1

86
2.

58
E

-0
4

4.
87

E
-0

1
88

2.
68

E
-0

4
1.

44
E

-0
4

6.
33

E
-0

5
4.

96
E

-0
1

4.
49

E
-0

1
3.

59
E

-0
1

90
2.

79
E

-0
4

9.
53

E
-0

5
5.

04
E

-0
1

4.
09

E
-0

1
92

2.
90

E
-0

4
1.

58
E

-0
4

5.
13

E
-0

1
4.

68
E

-0
1

94
3.

01
E

-0
4

5.
21

E
-0

1
96

3.
12

E
-0

4
1.

72
E

-0
4

1.
10

E
-0

4
7.

71
E

-0
5

5.
29

E
-0

1
4.

87
E

-0
1

4.
39

E
-0

1
3.

97
E

-0
1

98
3.

23
E

-0
4

5.
37

E
-0

1
10

0
3.

34
E

-0
4

1.
87

E
-0

4
5.

45
E

-0
1

5.
05

E
-0

1
10

2
3.

45
E

-0
4

1.
25

E
-0

4
5.

52
E

-0
1

4.
67

E
-0

1
10

4
3.

56
E

-0
4

2.
02

E
-0

4
9.

24
E

-0
5

5.
60

E
-0

1
5.

22
E

-0
1

4.
35

E
-0

1
T
a
b
l
e
2
.

C
on

ti
n
u
ed

on
n
ex

t
p
ag

e.

119

C
ap

.
(T

B
)

R
A

ID
6

R
A

ID
6+

0
R

A
ID

6+
0

R
A

ID
6+

0
R

A
ID

5
R

A
ID

5+
0

R
A

ID
5+

0
R

A
ID

5+
0

(2
se

ts
)

(3
se

ts
)

(4
se

ts
)

(2
se

ts
)

(3
se

ts
)

(4
se

ts
)

10
6

3.
68

E
-0

4
5.

67
E

-0
1

10
8

3.
79

E
-0

4
2.

17
E

-0
4

1.
42

E
-0

4
5.

74
E

-0
1

5.
39

E
-0

1
4.

94
E

-0
1

11
0

3.
91

E
-0

4
5.

81
E

-0
1

11
2

4.
03

E
-0

4
2.

33
E

-0
4

1.
09

E
-0

4
5.

88
E

-0
1

5.
55

E
-0

1
4.

70
E

-0
1

11
4

4.
14

E
-0

4
1.

59
E

-0
4

5.
95

E
-0

1
5.

20
E

-0
1

11
6

4.
26

E
-0

4
2.

50
E

-0
4

6.
02

E
-0

1
5.

71
E

-0
1

11
8

4.
38

E
-0

4
6.

08
E

-0
1

12
0

4.
50

E
-0

4
2.

67
E

-0
4

1.
77

E
-0

4
1.

27
E

-0
4

6.
14

E
-0

1
5.

86
E

-0
1

5.
44

E
-0

1
5.

04
E

-0
1

12
2

4.
62

E
-0

4
6.

21
E

-0
1

12
4

4.
74

E
-0

4
2.

84
E

-0
4

6.
27

E
-0

1
6.

00
E

-0
1

12
6

4.
86

E
-0

4
1.

96
E

-0
4

6.
33

E
-0

1
5.

68
E

-0
1

12
8

4.
99

E
-0

4
3.

01
E

-0
4

1.
46

E
-0

4
6.

39
E

-0
1

6.
14

E
-0

1
5.

37
E

-0
1

13
0

5.
11

E
-0

4
6.

45
E

-0
1

13
2

5.
23

E
-0

4
3.

19
E

-0
43

8
E

n
d

of
T
a
b
l
e
2
.

120

Table 3. This table gives the data for Figure 9. This data describes
probability of data loss within ten years with varying capacity and
replication (number of sets) within a RAID 1+0 array. The disks size is
two terabytes, the MTTF is one million hours, the MTTR is 12 hours,
and the BER is 10−15.

Cap. 2 sets 3 sets 4 sets Cap. 2 sets 3 sets 4 sets
(TB) (TB)
2 5.10E-03 1.76E-07 8.12E-12 130 2.83E-01 1.15E-05 5.28E-10
4 1.02E-02 3.53E-07 1.62E-11 132 2.87E-01 1.16E-05 5.36E-10
6 1.52E-02 5.29E-07 2.44E-11 134 2.90E-01 1.18E-05 5.44E-10
8 2.03E-02 7.05E-07 3.25E-11 136 2.94E-01 1.20E-05 5.52E-10
10 2.53E-02 8.82E-07 4.06E-11 138 2.97E-01 1.22E-05 5.60E-10
12 3.02E-02 1.06E-06 4.87E-11 140 3.01E-01 1.23E-05 5.68E-10
14 3.52E-02 1.23E-06 5.68E-11 142 3.05E-01 1.25E-05 5.76E-10
16 4.01E-02 1.41E-06 6.49E-11 144 3.08E-01 1.27E-05 5.84E-10
18 4.50E-02 1.59E-06 7.31E-11 146 3.12E-01 1.29E-05 5.93E-10
20 4.99E-02 1.76E-06 8.12E-11 148 3.15E-01 1.30E-05 6.01E-10
22 5.47E-02 1.94E-06 8.93E-11 150 3.19E-01 1.32E-05 6.09E-10
24 5.95E-02 2.12E-06 9.74E-11 152 3.22E-01 1.34E-05 6.17E-10
26 6.43E-02 2.29E-06 1.06E-10 154 3.26E-01 1.36E-05 6.25E-10
28 6.91E-02 2.47E-06 1.14E-10 156 3.29E-01 1.38E-05 6.33E-10
30 7.39E-02 2.64E-06 1.22E-10 158 3.32E-01 1.39E-05 6.41E-10
32 7.86E-02 2.82E-06 1.30E-10 160 3.36E-01 1.41E-05 6.49E-10
34 8.33E-02 3.00E-06 1.38E-10 162 3.39E-01 1.43E-05 6.58E-10
36 8.80E-02 3.17E-06 1.46E-10 164 3.43E-01 1.45E-05 6.66E-10
38 9.26E-02 3.35E-06 1.54E-10 166 3.46E-01 1.46E-05 6.74E-10
40 9.72E-02 3.53E-06 1.62E-10 168 3.49E-01 1.48E-05 6.82E-10
42 1.02E-01 3.70E-06 1.70E-10 170 3.53E-01 1.50E-05 6.90E-10
44 1.06E-01 3.88E-06 1.79E-10 172 3.56E-01 1.52E-05 6.98E-10
46 1.11E-01 4.05E-06 1.87E-10 174 3.59E-01 1.53E-05 7.06E-10
48 1.16E-01 4.23E-06 1.95E-10 176 3.62E-01 1.55E-05 7.14E-10
50 1.20E-01 4.41E-06 2.03E-10 178 3.66E-01 1.57E-05 7.22E-10
52 1.25E-01 4.58E-06 2.11E-10 180 3.69E-01 1.59E-05 7.31E-10
54 1.29E-01 4.76E-06 2.19E-10 182 3.72E-01 1.60E-05 7.39E-10
56 1.33E-01 4.94E-06 2.27E-10 184 3.75E-01 1.62E-05 7.47E-10
58 1.38E-01 5.11E-06 2.35E-10 186 3.79E-01 1.64E-05 7.55E-10
60 1.42E-01 5.29E-06 2.44E-10 188 3.82E-01 1.66E-05 7.63E-10
62 1.47E-01 5.47E-06 2.52E-10 190 3.85E-01 1.67E-05 7.71E-10
64 1.51E-01 5.64E-06 2.60E-10 192 3.88E-01 1.69E-05 7.79E-10
66 1.55E-01 5.82E-06 2.68E-10 194 3.91E-01 1.71E-05 7.87E-10
68 1.60E-01 5.99E-06 2.76E-10 196 3.94E-01 1.73E-05 7.96E-10
70 1.64E-01 6.17E-06 2.84E-10 198 3.97E-01 1.75E-05 8.04E-10
72 1.68E-01 6.35E-06 2.92E-10 200 4.00E-01 1.76E-05 8.12E-10
74 1.72E-01 6.52E-06 3.00E-10 202 4.03E-01 1.78E-05 8.20E-10

Table 3. Continued on next page.

121

Cap. 2 sets 3 sets 4 sets Cap. 2 sets 3 sets 4 sets
(TB) (TB)
76 1.77E-01 6.70E-06 3.08E-10 204 4.07E-01 1.80E-05 8.28E-10
78 1.81E-01 6.88E-06 3.17E-10 206 4.10E-01 1.82E-05 8.36E-10
80 1.85E-01 7.05E-06 3.25E-10 208 4.13E-01 1.83E-05 8.44E-10
82 1.89E-01 7.23E-06 3.33E-10 210 4.16E-01 1.85E-05 8.52E-10
84 1.93E-01 7.40E-06 3.41E-10 212 4.19E-01 1.87E-05 8.60E-10
86 1.97E-01 7.58E-06 3.49E-10 214 4.21E-01 1.89E-05 8.69E-10
88 2.02E-01 7.76E-06 3.57E-10 216 4.24E-01 1.90E-05 8.77E-10
90 2.06E-01 7.93E-06 3.65E-10 218 4.27E-01 1.92E-05 8.85E-10
92 2.10E-01 8.11E-06 3.73E-10 220 4.30E-01 1.94E-05 8.93E-10
94 2.14E-01 8.29E-06 3.82E-10 222 4.33E-01 1.96E-05 9.01E-10
96 2.18E-01 8.46E-06 3.90E-10 224 4.36E-01 1.97E-05 9.09E-10
98 2.22E-01 8.64E-06 3.98E-10 226 4.39E-01 1.99E-05 9.17E-10
100 2.26E-01 8.82E-06 4.06E-10 228 4.42E-01 2.01E-05 9.25E-10
102 2.30E-01 8.99E-06 4.14E-10 230 4.45E-01 2.03E-05 9.34E-10
104 2.34E-01 9.17E-06 4.22E-10 232 4.48E-01 2.05E-05 9.42E-10
106 2.37E-01 9.34E-06 4.30E-10 234 4.50E-01 2.06E-05 9.50E-10
108 2.41E-01 9.52E-06 4.38E-10 236 4.53E-01 2.08E-05 9.58E-10
110 2.45E-01 9.70E-06 4.46E-10 238 4.56E-01 2.10E-05 9.66E-10
112 2.49E-01 9.87E-06 4.55E-10 240 4.59E-01 2.12E-05 9.74E-10
114 2.53E-01 1.00E-05 4.63E-10 242 4.61E-01 2.13E-05 9.82E-10
116 2.57E-01 1.02E-05 4.71E-10 244 4.64E-01 2.15E-05 9.90E-10
118 2.61E-01 1.04E-05 4.79E-10 246 4.67E-01 2.17E-05 9.98E-10
120 2.64E-01 1.06E-05 4.87E-10 248 4.70E-01 2.19E-05 1.01E-09
122 2.68E-01 1.08E-05 4.95E-10 250 4.72E-01 2.20E-05 1.01E-09
124 2.72E-01 1.09E-05 5.03E-10 252 4.75E-01 2.22E-05 1.02E-09
126 2.75E-01 1.11E-05 5.11E-10 254 4.78E-01 2.24E-05 1.03E-09
128 2.79E-01 1.13E-05 5.20E-10 256 4.80E-01 2.26E-05 1.04E-09

End of Table 3.

122

T
a
b
l
e
4
.

T
h

is
ta

b
le

gi
ve

s
th

e
d

at
a

fo
r

F
ig

u
re

10
on

p
ag

e
32

.
It

d
es

cr
ib

es
th

e
p

ro
b

ab
il

it
y

th
at

d
at

a
w

il
l

b
e

lo
st

w
it

h
in

10
ye

ar
s

if
th

e
d
is

k
si

ze
is

tw
o

te
ra

b
y
te

s,
th

e
M

T
T

F
is

on
e

m
il
li
on

h
ou

rs
,

th
e

B
E

R
is

10
−
1
5
,

an
d

th
e

M
T

T
R

of
th

e
ar

ra
y

is
12

h
ou

rs
.

C
ap

.
(T

B
)

R
A

ID
5+

0
R

A
ID

6+
0

R
A

ID
1+

0
R

A
ID

1+
0

R
A

ID
1+

0
R

A
ID

k
+

3
R

A
ID

k
+

4
R

A
ID

k
+

5
(4

se
ts

)
(4

se
ts

)
(2

se
ts

)
(3

se
ts

)
(4

se
ts

)
2

5.
10

E
-0

3
1.

76
E

-0
7

5.
10

E
-0

3
4.

06
E

-1
2

4
1.

02
E

-0
2

3.
53

E
-0

7
1.

02
E

-0
2

1.
93

E
-1

1
1.

34
E

-1
5

1.
08

E
-1

9
6

1.
52

E
-0

2
5.

29
E

-0
7

1.
52

E
-0

2
5.

52
E

-1
1

4.
46

E
-1

5
4.

12
E

-1
9

8
3.

53
E

-0
7

2.
03

E
-0

2
7.

05
E

-0
7

2.
03

E
-0

2
1.

23
E

-1
0

1.
13

E
-1

4
1.

18
E

-1
8

10
2.

53
E

-0
2

8.
82

E
-0

7
2.

53
E

-0
2

2.
35

E
-1

0
2.

44
E

-1
4

2.
82

E
-1

8
12

3.
02

E
-0

2
1.

06
E

-0
6

3.
02

E
-0

2
4.

03
E

-1
0

4.
66

E
-1

4
5.

92
E

-1
8

14
3.

52
E

-0
2

1.
23

E
-0

6
3.

52
E

-0
2

6.
42

E
-1

0
8.

16
E

-1
4

1.
13

E
-1

7
16

2.
88

E
-0

2
1.

34
E

-0
6

4.
01

E
-0

2
1.

41
E

-0
6

4.
01

E
-0

2
9.

64
E

-1
0

1.
34

E
-1

3
2.

01
E

-1
7

18
4.

50
E

-0
2

1.
59

E
-0

6
4.

50
E

-0
2

1.
38

E
-0

9
2.

08
E

-1
3

3.
38

E
-1

7
20

4.
99

E
-0

2
1.

76
E

-0
6

4.
99

E
-0

2
1.

91
E

-0
9

3.
10

E
-1

3
5.

39
E

-1
7

22
5.

47
E

-0
2

1.
94

E
-0

6
5.

47
E

-0
2

2.
56

E
-0

9
4.

46
E

-1
3

8.
27

E
-1

7
24

5.
43

E
-0

2
3.

20
E

-0
6

5.
95

E
-0

2
2.

12
E

-0
6

5.
95

E
-0

2
3.

35
E

-0
9

6.
22

E
-1

3
1.

23
E

-1
6

26
6.

43
E

-0
2

2.
29

E
-0

6
6.

43
E

-0
2

4.
28

E
-0

9
8.

45
E

-1
3

1.
77

E
-1

6
28

6.
91

E
-0

2
2.

47
E

-0
6

6.
91

E
-0

2
5.

38
E

-0
9

1.
12

E
-1

2
2.

48
E

-1
6

30
7.

39
E

-0
2

2.
64

E
-0

6
7.

39
E

-0
2

6.
64

E
-0

9
1.

46
E

-1
2

3.
40

E
-1

6
32

8.
52

E
-0

2
6.

09
E

-0
6

7.
86

E
-0

2
2.

82
E

-0
6

7.
86

E
-0

2
8.

08
E

-0
9

1.
88

E
-1

2
4.

58
E

-1
6

34
8.

33
E

-0
2

3.
00

E
-0

6
8.

33
E

-0
2

9.
70

E
-0

9
2.

37
E

-1
2

6.
06

E
-1

6
36

8.
80

E
-0

2
3.

17
E

-0
6

8.
80

E
-0

2
1.

15
E

-0
8

2.
95

E
-1

2
7.

90
E

-1
6

38
9.

26
E

-0
2

3.
35

E
-0

6
9.

26
E

-0
2

1.
36

E
-0

8
3.

63
E

-1
2

1.
01

E
-1

5
40

1.
20

E
-0

1
1.

02
E

-0
5

9.
72

E
-0

2
3.

53
E

-0
6

9.
72

E
-0

2
1.

58
E

-0
8

4.
42

E
-1

2
1.

29
E

-1
5

42
1.

02
E

-0
1

3.
70

E
-0

6
1.

02
E

-0
1

1.
83

E
-0

8
5.

32
E

-1
2

1.
61

E
-1

5
44

1.
06

E
-0

1
3.

88
E

-0
6

1.
06

E
-0

1
2.

10
E

-0
8

6.
35

E
-1

2
2.

00
E

-1
5

46
1.

11
E

-0
1

4.
05

E
-0

6
1.

11
E

-0
1

2.
39

E
-0

8
7.

52
E

-1
2

2.
46

E
-1

5
48

1.
58

E
-0

1
1.

55
E

-0
5

1.
16

E
-0

1
4.

23
E

-0
6

1.
16

E
-0

1
2.

71
E

-0
8

8.
84

E
-1

2
2.

99
E

-1
5

T
a
b
l
e
4
.

C
on

ti
n
u
ed

on
n
ex

t
p
ag

e.

123

C
ap

.
(T

B
)

R
A

ID
5+

0
R

A
ID

6+
0

R
A

ID
1+

0
R

A
ID

1+
0

R
A

ID
1+

0
R

A
ID

k
+

3
R

A
ID

k
+

4
R

A
ID

k
+

5
(4

se
ts

)
(4

se
ts

)
(2

se
ts

)
(3

se
ts

)
(4

se
ts

)
50

1.
20

E
-0

1
4.

41
E

-0
6

1.
20

E
-0

1
3.

05
E

-0
8

1.
03

E
-1

1
3.

62
E

-1
5

52
1.

25
E

-0
1

4.
58

E
-0

6
1.

25
E

-0
1

3.
42

E
-0

8
1.

20
E

-1
1

4.
34

E
-1

5
54

1.
29

E
-0

1
4.

76
E

-0
6

1.
29

E
-0

1
3.

81
E

-0
8

1.
38

E
-1

1
5.

16
E

-1
5

56
1.

97
E

-0
1

2.
22

E
-0

5
1.

33
E

-0
1

4.
94

E
-0

6
1.

33
E

-0
1

4.
23

E
-0

8
1.

58
E

-1
1

6.
11

E
-1

5
58

1.
38

E
-0

1
5.

11
E

-0
6

1.
38

E
-0

1
4.

67
E

-0
8

1.
80

E
-1

1
7.

18
E

-1
5

60
1.

42
E

-0
1

5.
29

E
-0

6
1.

42
E

-0
1

5.
15

E
-0

8
2.

05
E

-1
1

8.
39

E
-1

5
62

1.
47

E
-0

1
5.

47
E

-0
6

1.
47

E
-0

1
5.

65
E

-0
8

2.
31

E
-1

1
9.

76
E

-1
5

64
2.

38
E

-0
1

3.
03

E
-0

5
1.

51
E

-0
1

5.
64

E
-0

6
1.

51
E

-0
1

6.
18

E
-0

8
2.

60
E

-1
1

1.
13

E
-1

4
66

1.
55

E
-0

1
5.

82
E

-0
6

1.
55

E
-0

1
6.

73
E

-0
8

2.
92

E
-1

1
1.

30
E

-1
4

68
1.

60
E

-0
1

5.
99

E
-0

6
1.

60
E

-0
1

7.
32

E
-0

8
3.

26
E

-1
1

1.
49

E
-1

4
70

1.
64

E
-0

1
6.

17
E

-0
6

1.
64

E
-0

1
7.

93
E

-0
8

3.
63

E
-1

1
1.

70
E

-1
4

72
2.

78
E

-0
1

3.
99

E
-0

5
1.

68
E

-0
1

6.
35

E
-0

6
1.

68
E

-0
1

8.
58

E
-0

8
4.

03
E

-1
1

1.
94

E
-1

4
74

1.
72

E
-0

1
6.

52
E

-0
6

1.
72

E
-0

1
9.

25
E

-0
8

4.
45

E
-1

1
2.

20
E

-1
4

76
1.

77
E

-0
1

6.
70

E
-0

6
1.

77
E

-0
1

9.
96

E
-0

8
4.

91
E

-1
1

2.
48

E
-1

4
78

1.
81

E
-0

1
6.

88
E

-0
6

1.
81

E
-0

1
1.

07
E

-0
7

5.
40

E
-1

1
2.

79
E

-1
4

80
3.

19
E

-0
1

5.
08

E
-0

5
1.

85
E

-0
1

7.
05

E
-0

6
1.

85
E

-0
1

1.
15

E
-0

7
5.

92
E

-1
1

3.
13

E
-1

4
82

1.
89

E
-0

1
7.

23
E

-0
6

1.
89

E
-0

1
1.

23
E

-0
7

6.
48

E
-1

1
3.

50
E

-1
4

84
1.

93
E

-0
1

7.
40

E
-0

6
1.

93
E

-0
1

1.
31

E
-0

7
7.

07
E

-1
1

3.
91

E
-1

4
86

1.
97

E
-0

1
7.

58
E

-0
6

1.
97

E
-0

1
1.

39
E

-0
7

7.
70

E
-1

1
4.

35
E

-1
4

88
3.

59
E

-0
1

6.
33

E
-0

5
2.

02
E

-0
1

7.
76

E
-0

6
2.

02
E

-0
1

1.
48

E
-0

7
8.

37
E

-1
1

4.
83

E
-1

4
90

2.
06

E
-0

1
7.

93
E

-0
6

2.
06

E
-0

1
1.

57
E

-0
7

9.
08

E
-1

1
5.

34
E

-1
4

92
2.

10
E

-0
1

8.
11

E
-0

6
2.

10
E

-0
1

1.
67

E
-0

7
9.

83
E

-1
1

5.
90

E
-1

4
94

2.
14

E
-0

1
8.

29
E

-0
6

2.
14

E
-0

1
1.

77
E

-0
7

1.
06

E
-1

0
6.

50
E

-1
4

96
3.

97
E

-0
1

7.
71

E
-0

5
2.

18
E

-0
1

8.
46

E
-0

6
2.

18
E

-0
1

1.
87

E
-0

7
1.

15
E

-1
0

7.
15

E
-1

4
98

2.
22

E
-0

1
8.

64
E

-0
6

2.
22

E
-0

1
1.

98
E

-0
7

1.
23

E
-1

0
7.

85
E

-1
4

10
0

2.
26

E
-0

1
8.

82
E

-0
6

2.
26

E
-0

1
2.

08
E

-0
7

1.
33

E
-1

0
8.

60
E

-1
4

10
2

2.
30

E
-0

1
8.

99
E

-0
6

2.
30

E
-0

1
2.

20
E

-0
7

1.
42

E
-1

0
9.

40
E

-1
4

10
4

4.
35

E
-0

1
9.

24
E

-0
5

2.
34

E
-0

1
9.

17
E

-0
6

2.
34

E
-0

1
2.

31
E

-0
7

1.
53

E
-1

0
1.

03
E

-1
3

T
a
b
l
e
4
.

C
on

ti
n
u
ed

on
n
ex

t
p
ag

e.

124

C
ap

.
(T

B
)

R
A

ID
5+

0
R

A
ID

6+
0

R
A

ID
1+

0
R

A
ID

1+
0

R
A

ID
1+

0
R

A
ID

k
+

3
R

A
ID

k
+

4
R

A
ID

k
+

5
(4

se
ts

)
(4

se
ts

)
(2

se
ts

)
(3

se
ts

)
(4

se
ts

)
10

6
2.

37
E

-0
1

9.
34

E
-0

6
2.

37
E

-0
1

2.
43

E
-0

7
1.

63
E

-1
0

1.
12

E
-1

3
10

8
2.

41
E

-0
1

9.
52

E
-0

6
2.

41
E

-0
1

2.
55

E
-0

7
1.

74
E

-1
0

1.
21

E
-1

3
11

0
2.

45
E

-0
1

9.
70

E
-0

6
2.

45
E

-0
1

2.
67

E
-0

7
1.

86
E

-1
0

1.
32

E
-1

3
11

2
4.

70
E

-0
1

1.
09

E
-0

4
2.

49
E

-0
1

9.
87

E
-0

6
2.

49
E

-0
1

2.
80

E
-0

7
1.

98
E

-1
0

1.
43

E
-1

3
11

4
2.

53
E

-0
1

1.
00

E
-0

5
2.

53
E

-0
1

2.
93

E
-0

7
2.

11
E

-1
0

1.
55

E
-1

3
11

6
2.

57
E

-0
1

1.
02

E
-0

5
2.

57
E

-0
1

3.
07

E
-0

7
2.

25
E

-1
0

1.
67

E
-1

3
11

8
2.

61
E

-0
1

1.
04

E
-0

5
2.

61
E

-0
1

3.
21

E
-0

7
2.

39
E

-1
0

1.
80

E
-1

3
12

0
5.

04
E

-0
1

1.
27

E
-0

4
2.

64
E

-0
1

1.
06

E
-0

5
2.

64
E

-0
1

3.
35

E
-0

7
2.

53
E

-1
0

1.
94

E
-1

3
12

2
2.

68
E

-0
1

1.
08

E
-0

5
2.

68
E

-0
1

3.
49

E
-0

7
2.

68
E

-1
0

2.
09

E
-1

3
12

4
2.

72
E

-0
1

1.
09

E
-0

5
2.

72
E

-0
1

3.
64

E
-0

7
2.

84
E

-1
0

2.
25

E
-1

3
12

6
2.

75
E

-0
1

1.
11

E
-0

5
2.

75
E

-0
1

3.
79

E
-0

7
3.

00
E

-1
0

2.
42

E
-1

3
12

8
5.

37
E

-0
1

1.
46

E
-0

4
2.

79
E

-0
1

1.
13

E
-0

5
2.

79
E

-0
1

3.
95

E
-0

7
3.

17
E

-1
0

2.
59

E
-1

3
13

0
2.

83
E

-0
1

1.
15

E
-0

5
2.

83
E

-0
1

4.
11

E
-0

7
3.

35
E

-1
0

2.
77

E
-1

3
13

2
2.

87
E

-0
1

1.
16

E
-0

5
2.

87
E

-0
1

4.
27

E
-0

7
3.

53
E

-1
0

2.
97

E
-1

3
13

4
2.

90
E

-0
1

1.
18

E
-0

5
2.

90
E

-0
1

4.
44

E
-0

7
3.

73
E

-1
0

3.
17

E
-1

3
13

6
5.

68
E

-0
1

1.
67

E
-0

4
2.

94
E

-0
1

1.
20

E
-0

5
2.

94
E

-0
1

4.
60

E
-0

7
3.

92
E

-1
0

3.
39

E
-1

3
13

8
2.

97
E

-0
1

1.
22

E
-0

5
2.

97
E

-0
1

4.
78

E
-0

7
4.

13
E

-1
0

3.
61

E
-1

3
14

0
3.

01
E

-0
1

1.
23

E
-0

5
3.

01
E

-0
1

4.
95

E
-0

7
4.

34
E

-1
0

3.
85

E
-1

3
14

2
3.

05
E

-0
1

1.
25

E
-0

5
3.

05
E

-0
1

5.
13

E
-0

7
4.

56
E

-1
0

4.
10

E
-1

3
14

4
5.

97
E

-0
1

1.
89

E
-0

4
3.

08
E

-0
1

1.
27

E
-0

5
3.

08
E

-0
1

5.
32

E
-0

7
4.

78
E

-1
0

4.
36

E
-1

3
14

6
3.

12
E

-0
1

1.
29

E
-0

5
3.

12
E

-0
1

5.
50

E
-0

7
5.

02
E

-1
0

4.
63

E
-1

3
14

8
3.

15
E

-0
1

1.
30

E
-0

5
3.

15
E

-0
1

5.
69

E
-0

7
5.

26
E

-1
0

4.
92

E
-1

3
15

0
3.

19
E

-0
1

1.
32

E
-0

5
3.

19
E

-0
1

5.
88

E
-0

7
5.

51
E

-1
0

5.
22

E
-1

3
15

2
6.

24
E

-0
1

2.
12

E
-0

4
3.

22
E

-0
1

1.
34

E
-0

5
3.

22
E

-0
1

6.
08

E
-0

7
5.

76
E

-1
0

5.
53

E
-1

3
15

4
3.

26
E

-0
1

1.
36

E
-0

5
3.

26
E

-0
1

6.
28

E
-0

7
6.

03
E

-1
0

5.
86

E
-1

3
15

6
3.

29
E

-0
1

1.
38

E
-0

5
3.

29
E

-0
1

6.
49

E
-0

7
6.

30
E

-1
0

6.
20

E
-1

3
15

8
3.

32
E

-0
1

1.
39

E
-0

5
3.

32
E

-0
1

6.
69

E
-0

7
6.

58
E

-1
0

6.
55

E
-1

3
16

0
6.

49
E

-0
1

2.
36

E
-0

4
3.

36
E

-0
1

1.
41

E
-0

5
3.

36
E

-0
1

6.
90

E
-0

7
6.

87
E

-1
0

6.
92

E
-1

3
T
a
b
l
e
4
.

C
on

ti
n
u
ed

on
n
ex

t
p
ag

e.

125

C
ap

.
(T

B
)

R
A

ID
5+

0
R

A
ID

6+
0

R
A

ID
1+

0
R

A
ID

1+
0

R
A

ID
1+

0
R

A
ID

k
+

3
R

A
ID

k
+

4
R

A
ID

k
+

5
(4

se
ts

)
(4

se
ts

)
(2

se
ts

)
(3

se
ts

)
(4

se
ts

)
16

2
3.

39
E

-0
1

1.
43

E
-0

5
3.

39
E

-0
1

7.
12

E
-0

7
7.

17
E

-1
0

7.
31

E
-1

3
16

4
3.

43
E

-0
1

1.
45

E
-0

5
3.

43
E

-0
1

7.
33

E
-0

7
7.

48
E

-1
0

7.
71

E
-1

3
16

6
3.

46
E

-0
1

1.
46

E
-0

5
3.

46
E

-0
1

7.
56

E
-0

7
7.

79
E

-1
0

8.
13

E
-1

3
16

8
6.

73
E

-0
1

2.
61

E
-0

4
3.

49
E

-0
1

1.
48

E
-0

5
3.

49
E

-0
1

7.
78

E
-0

7
8.

12
E

-1
0

8.
57

E
-1

3
17

0
3.

53
E

-0
1

1.
50

E
-0

5
3.

53
E

-0
1

8.
01

E
-0

7
8.

45
E

-1
0

9.
02

E
-1

3
17

2
3.

56
E

-0
1

1.
52

E
-0

5
3.

56
E

-0
1

8.
24

E
-0

7
8.

80
E

-1
0

9.
49

E
-1

3
17

4
3.

59
E

-0
1

1.
53

E
-0

5
3.

59
E

-0
1

8.
47

E
-0

7
9.

15
E

-1
0

9.
98

E
-1

3
17

6
6.

96
E

-0
1

2.
88

E
-0

4
3.

62
E

-0
1

1.
55

E
-0

5
3.

62
E

-0
1

8.
71

E
-0

7
9.

51
E

-1
0

1.
05

E
-1

2
17

8
3.

66
E

-0
1

1.
57

E
-0

5
3.

66
E

-0
1

8.
95

E
-0

7
9.

88
E

-1
0

1.
10

E
-1

2
18

0
3.

69
E

-0
1

1.
59

E
-0

5
3.

69
E

-0
1

9.
20

E
-0

7
1.

03
E

-0
9

1.
16

E
-1

2
18

2
3.

72
E

-0
1

1.
60

E
-0

5
3.

72
E

-0
1

9.
45

E
-0

7
1.

07
E

-0
9

1.
21

E
-1

2
18

4
7.

17
E

-0
1

3.
15

E
-0

4
3.

75
E

-0
1

1.
62

E
-0

5
3.

75
E

-0
1

9.
70

E
-0

7
1.

11
E

-0
9

1.
27

E
-1

2
18

6
3.

79
E

-0
1

1.
64

E
-0

5
3.

79
E

-0
1

9.
96

E
-0

7
1.

15
E

-0
9

1.
33

E
-1

2
18

8
3.

82
E

-0
1

1.
66

E
-0

5
3.

82
E

-0
1

1.
02

E
-0

6
1.

19
E

-0
9

1.
40

E
-1

2
19

0
3.

85
E

-0
1

1.
67

E
-0

5
3.

85
E

-0
1

1.
05

E
-0

6
1.

23
E

-0
9

1.
46

E
-1

2
19

2
7.

36
E

-0
1

3.
44

E
-0

4
3.

88
E

-0
1

1.
69

E
-0

5
3.

88
E

-0
1

1.
07

E
-0

6
1.

28
E

-0
9

1.
53

E
-1

2
19

4
3.

91
E

-0
1

1.
71

E
-0

5
3.

91
E

-0
1

1.
10

E
-0

6
1.

32
E

-0
9

1.
60

E
-1

2
19

6
3.

94
E

-0
1

1.
73

E
-0

5
3.

94
E

-0
1

1.
13

E
-0

6
1.

37
E

-0
9

1.
67

E
-1

2
19

8
3.

97
E

-0
1

1.
75

E
-0

5
3.

97
E

-0
1

1.
16

E
-0

6
1.

41
E

-0
9

1.
75

E
-1

2
20

0
7.

55
E

-0
1

3.
73

E
-0

4
4.

00
E

-0
1

1.
76

E
-0

5
4.

00
E

-0
1

1.
18

E
-0

6
1.

46
E

-0
9

1.
82

E
-1

2
20

2
4.

03
E

-0
1

1.
78

E
-0

5
4.

03
E

-0
1

1.
21

E
-0

6
1.

51
E

-0
9

1.
90

E
-1

2
20

4
4.

07
E

-0
1

1.
80

E
-0

5
4.

07
E

-0
1

1.
24

E
-0

6
1.

56
E

-0
9

1.
99

E
-1

2
20

6
4.

10
E

-0
1

1.
82

E
-0

5
4.

10
E

-0
1

1.
27

E
-0

6
1.

61
E

-0
9

2.
07

E
-1

2
20

8
7.

71
E

-0
1

4.
03

E
-0

4
4.

13
E

-0
1

1.
83

E
-0

5
4.

13
E

-0
1

1.
30

E
-0

6
1.

67
E

-0
9

2.
16

E
-1

2
21

0
4.

16
E

-0
1

1.
85

E
-0

5
4.

16
E

-0
1

1.
33

E
-0

6
1.

72
E

-0
9

2.
25

E
-1

2
21

2
4.

19
E

-0
1

1.
87

E
-0

5
4.

19
E

-0
1

1.
36

E
-0

6
1.

78
E

-0
9

2.
34

E
-1

2
21

4
4.

21
E

-0
1

1.
89

E
-0

5
4.

21
E

-0
1

1.
39

E
-0

6
1.

83
E

-0
9

2.
44

E
-1

2
21

6
7.

87
E

-0
1

4.
35

E
-0

4
4.

24
E

-0
1

1.
90

E
-0

5
4.

24
E

-0
1

1.
42

E
-0

6
1.

89
E

-0
9

2.
54

E
-1

2
T
a
b
l
e
4
.

C
on

ti
n
u
ed

on
n
ex

t
p
ag

e.

126

C
ap

.
(T

B
)

R
A

ID
5+

0
R

A
ID

6+
0

R
A

ID
1+

0
R

A
ID

1+
0

R
A

ID
1+

0
R

A
ID

k
+

3
R

A
ID

k
+

4
R

A
ID

k
+

5
(4

se
ts

)
(4

se
ts

)
(2

se
ts

)
(3

se
ts

)
(4

se
ts

)
21

8
4.

27
E

-0
1

1.
92

E
-0

5
4.

27
E

-0
1

1.
45

E
-0

6
1.

95
E

-0
9

2.
64

E
-1

2
22

0
4.

30
E

-0
1

1.
94

E
-0

5
4.

30
E

-0
1

1.
48

E
-0

6
2.

01
E

-0
9

2.
75

E
-1

2
22

2
4.

33
E

-0
1

1.
96

E
-0

5
4.

33
E

-0
1

1.
51

E
-0

6
2.

07
E

-0
9

2.
85

E
-1

2
22

4
8.

02
E

-0
1

4.
67

E
-0

4
4.

36
E

-0
1

1.
97

E
-0

5
4.

36
E

-0
1

1.
55

E
-0

6
2.

13
E

-0
9

2.
97

E
-1

2
22

6
4.

39
E

-0
1

1.
99

E
-0

5
4.

39
E

-0
1

1.
58

E
-0

6
2.

20
E

-0
9

3.
08

E
-1

2
22

8
4.

42
E

-0
1

2.
01

E
-0

5
4.

42
E

-0
1

1.
61

E
-0

6
2.

26
E

-0
9

3.
20

E
-1

2
23

0
4.

45
E

-0
1

2.
03

E
-0

5
4.

45
E

-0
1

1.
64

E
-0

6
2.

33
E

-0
9

3.
32

E
-1

2
23

2
8.

16
E

-0
1

5.
00

E
-0

4
4.

48
E

-0
1

2.
05

E
-0

5
4.

48
E

-0
1

1.
68

E
-0

6
2.

39
E

-0
9

3.
44

E
-1

2
23

4
4.

50
E

-0
1

2.
06

E
-0

5
4.

50
E

-0
1

1.
71

E
-0

6
2.

46
E

-0
9

3.
57

E
-1

2
23

6
4.

53
E

-0
1

2.
08

E
-0

5
4.

53
E

-0
1

1.
75

E
-0

6
2.

53
E

-0
9

3.
70

E
-1

2
23

8
4.

56
E

-0
1

2.
10

E
-0

5
4.

56
E

-0
1

1.
78

E
-0

6
2.

60
E

-0
9

3.
84

E
-1

2
24

0
8.

28
E

-0
1

5.
33

E
-0

4
4.

59
E

-0
1

2.
12

E
-0

5
4.

59
E

-0
1

1.
81

E
-0

6
2.

68
E

-0
9

3.
98

E
-1

2
24

2
4.

61
E

-0
1

2.
13

E
-0

5
4.

61
E

-0
1

1.
85

E
-0

6
2.

75
E

-0
9

4.
12

E
-1

2
24

4
4.

64
E

-0
1

2.
15

E
-0

5
4.

64
E

-0
1

1.
88

E
-0

6
2.

83
E

-0
9

4.
27

E
-1

2
24

6
4.

67
E

-0
1

2.
17

E
-0

5
4.

67
E

-0
1

1.
92

E
-0

6
2.

90
E

-0
9

4.
42

E
-1

2
24

8
8.

40
E

-0
1

4.
70

E
-0

1
2.

19
E

-0
5

4.
70

E
-0

1
1.

96
E

-0
6

2.
98

E
-0

9
25

0
4.

72
E

-0
1

2.
20

E
-0

5
4.

72
E

-0
1

1.
99

E
-0

6
25

2
4.

75
E

-0
1

2.
22

E
-0

5
4.

75
E

-0
1

25
4

4.
78

E
-0

1
2.

24
E

-0
5

4.
78

E
-0

1
25

6
4.

80
E

-0
1

2.
26

E
-0

5
4.

80
E

-0
1

E
n
d

of
T
a
b
l
e
4
.

127

T
a
b
l
e
5
.

T
h

is
ta

b
le

gi
ve

s
th

e
d

at
a

fo
r

F
ig

u
re

11
on

p
ag

e
33

.
It

d
es

cr
ib

es
th

e
p

ro
b

ab
il

it
y

th
at

d
at

a
w

il
l

b
e

lo
st

w
it

h
in

10
ye

ar
s

if
th

e
d
is

k
si

ze
is

tw
o

te
ra

b
y
te

s,
th

e
M

T
T

F
is

10
0,

00
0

h
ou

rs
,

th
e

B
E

R
is

10
−
1
5
,

an
d

th
e

M
T

T
R

of
th

e
ar

ra
y

is
on

e
w

ee
k
.

C
ap

.
(T

B
)

R
A

ID
5+

0
R

A
ID

6+
0

R
A

ID
1+

0
R

A
ID

1+
0

R
A

ID
1+

0
R

A
ID

k
+

3
R

A
ID

k
+

4
R

A
ID

k
+

5
(4

se
ts

)
(4

se
ts

)
(2

se
ts

)
(3

se
ts

)
(4

se
ts

)
R

A
ID

5+
0

R
A

ID
6+

0
R

A
ID

1+
0

R
A

ID
1+

0
R

A
ID

k
+

3
R

A
ID

k
+

4
R

A
ID

k
+

5
(4

se
ts

)
(4

se
ts

)
(3

se
ts

)
(4

se
ts

)
2

0.
00

01
09

24
8

5.
74

E
-0

7
2.

87
E

-0
7

1.
96

E
-0

9
1.

65
E

-1
1

4
0.

00
02

18
48

4
1.

15
E

-0
6

1.
16

E
-0

6
9.

76
E

-0
9

9.
82

E
-1

1
6

0.
00

03
27

70
9

1.
72

E
-0

6
2.

89
E

-0
6

2.
91

E
-0

8
3.

41
E

-1
0

8
0.

00
02

18
48

4
0.

00
04

36
92

1
2.

30
E

-0
6

5.
75

E
-0

6
6.

73
E

-0
8

8.
99

E
-1

0
10

0.
00

05
46

12
1

2.
87

E
-0

6
9.

99
E

-0
6

1.
33

E
-0

7
2.

00
E

-0
9

12
0.

00
06

55
31

3.
44

E
-0

6
1.

58
E

-0
5

2.
38

E
-0

7
3.

96
E

-0
9

14
0.

00
07

64
48

6
4.

02
E

-0
6

2.
36

E
-0

5
3.

93
E

-0
7

7.
19

E
-0

9
16

0.
12

28
66

0.
00

06
79

51
6

0.
00

08
73

65
1

4.
59

E
-0

6
3.

34
E

-0
5

6.
11

E
-0

7
1.

22
E

-0
8

18
0.

00
09

82
80

4
5.

17
E

-0
6

4.
55

E
-0

5
9.

08
E

-0
7

1.
96

E
-0

8
20

0.
00

10
91

94
5.

74
E

-0
6

6.
01

E
-0

5
1.

30
E

-0
6

3.
02

E
-0

8
22

0.
00

12
01

07
6.

32
E

-0
6

7.
75

E
-0

5
1.

80
E

-0
6

4.
48

E
-0

8
24

0.
18

58
78

0.
00

13
72

04
0.

00
13

10
19

6.
89

E
-0

6
9.

77
E

-0
5

2.
43

E
-0

6
6.

45
E

-0
8

26
0.

00
14

19
3

7.
46

E
-0

6
0.

00
01

21
12

7
3.

21
E

-0
6

9.
05

E
-0

8
28

0.
00

15
28

39
8.

04
E

-0
6

0.
00

01
47

79
1

4.
16

E
-0

6
1.

24
E

-0
7

30
0.

00
16

37
47

8.
61

E
-0

6
0.

00
01

77
91

4
5.

30
E

-0
6

1.
66

E
-0

7
32

0.
24

36
44

0.
00

22
84

38
0.

00
17

46
54

9.
19

E
-0

6
0.

00
02

11
66

5
6.

65
E

-0
6

2.
20

E
-0

7
34

0.
00

18
55

6
9.

76
E

-0
6

0.
00

02
49

19
8

8.
23

E
-0

6
2.

85
E

-0
7

36
0.

00
19

64
64

1.
03

E
-0

5
0.

00
02

90
66

8
1.

01
E

-0
5

3.
66

E
-0

7
38

0.
00

20
73

68
1.

09
E

-0
5

0.
00

03
36

22
2

1.
22

E
-0

5
4.

62
E

-0
7

40
0.

29
65

01
0.

00
34

07
9

0.
00

21
82

7
1.

15
E

-0
5

0.
00

03
86

00
4

1.
46

E
-0

5
5.

78
E

-0
7

42
0.

00
22

91
71

1.
21

E
-0

5
0.

00
04

40
14

1
1.

74
E

-0
5

7.
15

E
-0

7
44

0.
00

24
00

7
1.

26
E

-0
5

0.
00

04
98

76
5

2.
05

E
-0

5
8.

77
E

-0
7

T
a
b
l
e
5
.

C
on

ti
n
u
ed

on
n
ex

t
p
ag

e.

128

C
ap

.
(T

B
)

R
A

ID
5+

0
R

A
ID

6+
0

R
A

ID
1+

0
R

A
ID

1+
0

R
A

ID
1+

0
R

A
ID

k
+

3
R

A
ID

k
+

4
R

A
ID

k
+

5
(4

se
ts

)
(4

se
ts

)
(2

se
ts

)
(3

se
ts

)
(4

se
ts

)
46

0.
00

25
09

69
1.

32
E

-0
5

0.
00

05
62

2.
40

E
-0

5
1.

07
E

-0
6

48
0.

34
51

52
0.

00
47

36
35

0.
00

26
18

66
1.

38
E

-0
5

0.
00

06
29

96
7

2.
79

E
-0

5
1.

28
E

-0
6

50
0.

00
27

27
63

1.
44

E
-0

5
0.

00
07

02
77

3.
23

E
-0

5
1.

54
E

-0
6

52
0.

00
28

36
58

1.
49

E
-0

5
0.

00
07

80
52

1
3.

71
E

-0
5

1.
82

E
-0

6
54

0.
00

29
45

51
1.

55
E

-0
5

0.
00

08
63

32
4.

24
E

-0
5

2.
15

E
-0

6
56

0.
39

01
6

0.
00

62
64

23
0.

00
30

54
44

1.
61

E
-0

5
0.

00
09

51
27

3
4.

83
E

-0
5

2.
53

E
-0

6
58

0.
00

31
63

36
1.

67
E

-0
5

0.
00

10
44

46
5.

47
E

-0
5

2.
95

E
-0

6
60

0.
00

32
72

26
1.

72
E

-0
5

0.
00

11
42

98
6.

16
E

-0
5

3.
42

E
-0

6
62

0.
00

33
81

15
1.

78
E

-0
5

0.
00

12
46

9
6.

92
E

-0
5

3.
95

E
-0

6
64

0.
43

19
44

0.
00

79
86

42
0.

00
34

90
03

1.
84

E
-0

5
0.

00
13

56
33

7.
75

E
-0

5
4.

55
E

-0
6

66
0.

00
35

98
89

1.
89

E
-0

5
0.

00
14

71
31

8.
64

E
-0

5
5.

20
E

-0
6

68
0.

00
37

07
75

1.
95

E
-0

5
0.

00
15

91
94

9.
60

E
-0

5
5.

93
E

-0
6

70
0.

00
38

16
59

2.
01

E
-0

5
0.

00
17

18
27

0.
00

01
06

28
4

6.
74

E
-0

6
72

0.
47

07
9

0.
00

98
97

18
0.

00
39

25
42

2.
07

E
-0

5
0.

00
18

50
38

0.
00

01
17

37
2

7.
63

E
-0

6
74

0.
00

40
34

24
2.

12
E

-0
5

0.
00

19
88

32
0.

00
01

29
25

8.
60

E
-0

6
76

0.
00

41
43

05
2.

18
E

-0
5

0.
00

21
32

14
0.

00
01

41
94

8
9.

67
E

-0
6

78
0.

00
42

51
85

2.
24

E
-0

5
0.

00
22

81
91

0.
00

01
55

49
7

1.
08

E
-0

5
80

0.
50

69
49

0.
01

19
91

3
0.

00
43

60
63

2.
30

E
-0

5
0.

00
24

37
67

0.
00

01
69

92
8

1.
21

E
-0

5
82

0.
00

44
69

4
2.

35
E

-0
5

0.
00

25
99

47
0.

00
01

85
27

1
1.

35
E

-0
5

84
0.

00
45

78
16

2.
41

E
-0

5
0.

00
27

67
35

0.
00

02
01

55
5

1.
50

E
-0

5
86

0.
00

46
86

91
2.

47
E

-0
5

0.
00

29
41

36
0.

00
02

18
81

1
1.

66
E

-0
5

88
0.

54
06

23
0.

01
42

63
3

0.
00

47
95

64
2.

53
E

-0
5

0.
00

31
21

54
0.

00
02

37
07

1
1.

84
E

-0
5

90
0.

00
49

04
37

2.
58

E
-0

5
0.

00
33

07
91

0.
00

02
56

36
3

2.
03

E
-0

5
92

0.
00

50
13

08
2.

64
E

-0
5

0.
00

35
00

51
0.

00
02

76
71

8
2.

23
E

-0
5

94
0.

00
51

21
78

2.
70

E
-0

5
0.

00
36

99
38

0.
00

02
98

16
6

2.
45

E
-0

5
96

0.
57

19
99

0.
01

67
08

1
0.

00
52

30
47

2.
76

E
-0

5
0.

00
39

04
55

0.
00

03
20

73
7

2.
68

E
-0

5
98

0.
00

53
39

15
2.

81
E

-0
5

0.
00

41
16

02
0.

00
03

44
46

1
2.

93
E

-0
5

10
0

0.
00

54
47

81
2.

87
E

-0
5

0.
00

43
33

83
0.

00
03

69
36

7
3.

20
E

-0
5

T
a
b
l
e
5
.

C
on

ti
n
u
ed

on
n
ex

t
p
ag

e.

129

C
ap

.
(T

B
)

R
A

ID
5+

0
R

A
ID

6+
0

R
A

ID
1+

0
R

A
ID

1+
0

R
A

ID
1+

0
R

A
ID

k
+

3
R

A
ID

k
+

4
R

A
ID

k
+

5
(4

se
ts

)
(4

se
ts

)
(2

se
ts

)
(3

se
ts

)
(4

se
ts

)
10

2
0.

00
55

56
46

2.
93

E
-0

5
0.

00
45

58
0.

00
03

95
48

4
3.

49
E

-0
5

10
4

0.
60

12
22

0.
01

93
19

7
0.

00
56

65
11

2.
99

E
-0

5
0.

00
47

88
57

0.
00

04
22

84
5

3.
80

E
-0

5
10

6
0.

00
57

73
74

3.
04

E
-0

5
0.

00
50

25
51

0.
00

04
51

47
4

4.
12

E
-0

5
10

8
0.

00
58

82
35

3.
10

E
-0

5
0.

00
52

68
87

0.
00

04
81

40
4

4.
47

E
-0

5
11

0
0.

00
59

90
96

3.
16

E
-0

5
0.

00
55

18
65

0.
00

05
12

66
2

4.
84

E
-0

5
11

2
0.

62
84

49
0.

02
20

93
0.

00
60

99
55

3.
22

E
-0

5
0.

00
57

74
88

0.
00

05
45

27
9

5.
23

E
-0

5
11

4
0.

00
62

08
13

3.
27

E
-0

5
0.

00
60

37
54

0.
00

05
79

28
5.

64
E

-0
5

11
6

0.
00

63
16

7
3.

33
E

-0
5

0.
00

63
06

65
0.

00
06

14
69

5
6.

08
E

-0
5

11
8

0.
00

64
25

26
3.

39
E

-0
5

0.
00

65
82

21
0.

00
06

51
55

3
6.

54
E

-0
5

12
0

0.
65

38
17

0.
02

50
22

7
0.

00
65

33
81

3.
44

E
-0

5
0.

00
68

64
25

0.
00

06
89

88
3

7.
03

E
-0

5
12

2
0.

00
66

42
34

3.
50

E
-0

5
0.

00
71

52
74

0.
00

07
29

70
9

7.
55

E
-0

5
12

4
0.

00
67

50
86

3.
56

E
-0

5
0.

00
74

47
69

0.
00

07
71

06
8.

09
E

-0
5

12
6

0.
00

68
59

38
3.

62
E

-0
5

0.
00

77
49

1
0.

00
08

13
96

5
8.

67
E

-0
5

12
8

0.
67

74
57

0.
02

81
03

9
0.

00
69

67
87

3.
67

E
-0

5
0.

00
80

57
0.

00
08

58
45

9.
27

E
-0

5
13

0
0.

00
70

76
36

3.
73

E
-0

5
0.

00
83

71
33

0.
00

09
04

54
1

9.
90

E
-0

5
13

2
0.

00
71

84
84

3.
79

E
-0

5
0.

00
86

92
11

0.
00

09
52

26
4

0.
00

01
05

66
3

13
4

0.
00

72
93

3
3.

85
E

-0
5

0.
00

90
19

35
0.

00
10

01
65

0.
00

01
12

63
8

13
6

0.
69

94
78

0.
03

13
30

8
0.

00
74

01
75

3.
90

E
-0

5
0.

00
93

53
04

0.
00

10
52

72
0.

00
01

19
95

13
8

0.
00

75
10

19
3.

96
E

-0
5

0.
00

96
93

15
0.

00
11

05
5

0.
00

01
27

60
9

14
0

0.
00

76
18

62
4.

02
E

-0
5

0.
01

00
39

7
0.

00
11

60
01

0.
00

01
35

62
5

14
2

0.
00

77
27

03
4.

08
E

-0
5

0.
01

03
92

6
0.

00
12

16
29

0.
00

01
44

00
9

14
4

0.
71

99
96

0.
03

46
98

6
0.

00
78

35
44

4.
13

E
-0

5
0.

01
07

52
0.

00
12

74
36

0.
00

01
52

77
2

14
6

0.
00

79
43

83
4.

19
E

-0
5

0.
01

11
17

7
0.

00
13

34
23

0.
00

01
61

92
2

14
8

0.
00

80
52

21
4.

25
E

-0
5

0.
01

14
89

8
0.

00
13

95
94

0.
00

01
71

47
2

15
0

0.
00

81
60

58
4.

31
E

-0
5

0.
01

18
68

3
0.

00
14

59
52

0.
00

01
81

43
2

15
2

0.
73

91
13

0.
03

82
02

3
0.

00
82

68
93

4.
36

E
-0

5
0.

01
22

53
1

0.
00

15
24

98
0.

00
01

91
81

2
15

4
0.

00
83

77
28

4.
42

E
-0

5
0.

01
26

44
3

0.
00

15
92

34
0.

00
02

02
62

4
15

6
0.

00
84

85
61

4.
48

E
-0

5
0.

01
30

41
7

0.
00

16
61

64
0.

00
02

13
87

9
T
a
b
l
e
5
.

C
on

ti
n
u
ed

on
n
ex

t
p
ag

e.

130

C
ap

.
(T

B
)

R
A

ID
5+

0
R

A
ID

6+
0

R
A

ID
1+

0
R

A
ID

1+
0

R
A

ID
1+

0
R

A
ID

k
+

3
R

A
ID

k
+

4
R

A
ID

k
+

5
(4

se
ts

)
(4

se
ts

)
(2

se
ts

)
(3

se
ts

)
(4

se
ts

)
15

8
0.

00
85

93
93

4.
54

E
-0

5
0.

01
34

45
5

0.
00

17
32

89
0.

00
02

25
58

7
16

0
0.

75
69

29
0.

04
18

37
3

0.
00

87
02

24
4.

59
E

-0
5

0.
01

38
55

5
0.

00
18

06
12

0.
00

02
37

76
16

2
0.

00
88

10
54

4.
65

E
-0

5
0.

01
42

71
8

0.
00

18
81

35
0.

00
02

50
40

8
16

4
0.

00
89

18
83

4.
71

E
-0

5
0.

01
46

94
4

0.
00

19
58

6
0.

00
02

63
54

3
16

6
0.

00
90

27
1

4.
77

E
-0

5
0.

01
51

23
1

0.
00

20
37

9
0.

00
02

77
17

7
16

8
0.

77
35

24
0.

04
55

98
0.

00
91

35
36

4.
82

E
-0

5
0.

01
55

58
1

0.
00

21
19

26
0.

00
02

91
32

1
17

0
0.

00
92

43
61

4.
88

E
-0

5
0.

01
59

99
2

0.
00

22
02

71
0.

00
03

05
98

5
17

2
0.

00
93

51
85

4.
94

E
-0

5
0.

01
64

46
5

0.
00

22
88

27
0.

00
03

21
18

2
17

4
0.

00
94

60
08

5.
00

E
-0

5
0.

01
68

99
9

0.
00

23
75

96
0.

00
03

36
92

3
17

6
0.

78
89

86
0.

04
94

8
0.

00
95

68
29

5.
05

E
-0

5
0.

01
73

59
5

0.
00

24
65

81
0.

00
03

53
22

17
8

0.
00

96
76

49
5.

11
E

-0
5

0.
01

78
25

1
0.

00
25

57
82

0.
00

03
70

08
4

18
0

0.
00

97
84

69
5.

17
E

-0
5

0.
01

82
96

8
0.

00
26

52
02

0.
00

03
87

52
7

18
2

0.
00

98
92

86
5.

22
E

-0
5

0.
01

87
74

5
0.

00
27

48
44

0.
00

04
05

56
1

18
4

0.
80

33
93

0.
05

34
78

6
0.

01
00

01
5.

28
E

-0
5

0.
01

92
58

3
0.

00
28

47
08

0.
00

04
24

19
8

18
6

0.
01

01
09

2
5.

34
E

-0
5

0.
01

97
48

0.
00

29
47

98
0.

00
04

43
44

9
18

8
0.

01
02

17
3

5.
40

E
-0

5
0.

02
02

43
7

0.
00

30
51

15
0.

00
04

63
32

7
19

0
0.

01
03

25
5

5.
45

E
-0

5
0.

02
07

45
3

0.
00

31
56

6
0.

00
04

83
84

2
19

2
0.

81
68

19
0.

05
75

89
6

0.
01

04
33

6
5.

51
E

-0
5

0.
02

12
52

8
0.

00
32

64
36

0.
00

05
05

00
8

19
4

0.
01

05
41

7
5.

57
E

-0
5

0.
02

17
66

3
0.

00
33

74
45

0.
00

05
26

83
6

19
6

0.
01

06
49

8
5.

63
E

-0
5

0.
02

22
85

5
0.

00
34

86
88

0.
00

05
49

33
8

19
8

0.
01

07
57

9
5.

68
E

-0
5

0.
02

28
10

6
0.

00
36

01
67

0.
00

05
72

52
7

20
0

0.
82

93
25

0.
06

18
07

6
0.

01
08

65
9

5.
74

E
-0

5
0.

02
33

41
6

0.
00

37
18

85
0.

00
05

96
41

4
20

2
0.

01
09

74
5.

80
E

-0
5

0.
02

38
78

3
0.

00
38

38
41

0.
00

06
21

01
1

20
4

0.
01

10
82

1
5.

86
E

-0
5

0.
02

44
20

7
0.

00
39

60
39

0.
00

06
46

33
1

20
6

0.
01

11
90

1
5.

91
E

-0
5

0.
02

49
68

9
0.

00
40

84
81

0.
00

06
72

38
6

20
8

0.
84

09
78

0.
06

61
28

7
0.

01
12

98
1

5.
97

E
-0

5
0.

02
55

22
7

0.
00

42
11

67
0.

00
06

99
18

8
21

0
0.

01
14

06
1

6.
03

E
-0

5
0.

02
60

82
2

0.
00

43
40

99
0.

00
07

26
74

8
21

2
0.

01
15

14
1

6.
09

E
-0

5
0.

02
66

47
4

0.
00

44
72

79
0.

00
07

55
08

1
T
a
b
l
e
5
.

C
on

ti
n
u
ed

on
n
ex

t
p
ag

e.

131

C
ap

.
(T

B
)

R
A

ID
5+

0
R

A
ID

6+
0

R
A

ID
1+

0
R

A
ID

1+
0

R
A

ID
1+

0
R

A
ID

k
+

3
R

A
ID

k
+

4
R

A
ID

k
+

5
(4

se
ts

)
(4

se
ts

)
(2

se
ts

)
(3

se
ts

)
(4

se
ts

)
21

4
0.

01
16

22
1

6.
14

E
-0

5
0.

02
72

18
1

0.
00

46
07

08
0.

00
07

84
19

6
21

6
0.

85
18

35
0.

07
05

48
5

0.
01

17
30

1
6.

20
E

-0
5

0.
02

77
94

5
0.

00
47

43
89

0.
00

08
14

10
9

21
8

0.
01

18
38

1
6.

26
E

-0
5

0.
02

83
76

4
0.

00
48

83
22

0.
00

08
44

82
9

22
0

0.
01

19
46

6.
32

E
-0

5
0.

02
89

63
8

0.
00

50
25

09
0.

00
08

76
36

9
22

2
0.

01
20

54
6.

37
E

-0
5

0.
02

95
56

6
0.

00
51

69
52

0.
00

09
08

74
3

22
4

0.
86

19
53

0.
07

50
63

2
0.

01
21

61
9

6.
43

E
-0

5
0.

03
01

55
0.

00
53

16
52

0.
00

09
41

96
2

22
6

0.
01

22
69

8
6.

49
E

-0
5

0.
03

07
58

8
0.

00
54

66
1

0.
00

09
76

03
8

22
8

0.
01

23
77

7
6.

55
E

-0
5

0.
03

13
68

0.
00

56
18

29
0.

00
10

10
98

23
0

0.
01

24
85

6
6.

60
E

-0
5

0.
03

19
82

5
0.

00
57

73
08

0.
00

10
46

81
23

2
0.

87
13

78
0.

07
96

67
6

0.
01

25
93

5
6.

66
E

-0
5

0.
03

26
02

4
0.

00
59

30
51

0.
00

10
83

54
23

4
0.

01
27

01
4

6.
72

E
-0

5
0.

03
32

27
6

0.
00

60
90

57
0.

00
11

21
16

23
6

0.
01

28
09

2
6.

77
E

-0
5

0.
03

38
58

1
0.

00
62

53
29

0.
00

11
59

71
23

8
0.

01
29

17
1

6.
83

E
-0

5
0.

03
44

93
9

0.
00

64
18

67
0.

00
11

99
19

24
0

0.
88

01
59

0.
08

43
58

3
0.

01
30

24
9

6.
89

E
-0

5
0.

03
51

34
9

0.
00

65
86

74
0.

00
12

39
62

24
2

0.
01

31
32

8
6.

95
E

-0
5

0.
03

57
81

0.
00

67
57

49
0.

00
12

81
24

4
0.

01
32

40
6

7.
00

E
-0

5
0.

03
64

32
3

0.
00

69
30

95
0.

00
13

23
35

24
6

0.
01

33
48

4
7.

06
E

-0
5

0.
03

70
88

8
0.

00
71

07
13

0.
00

13
66

68
24

8
0.

88
83

41
0.

01
34

56
2

7.
12

E
-0

5
0.

03
77

50
4

0.
00

72
86

04
25

0
0.

01
35

63
9

7.
18

E
-0

5
0.

03
84

17
25

2
0.

01
36

71
7

7.
23

E
-0

5
25

4
0.

01
37

79
5

7.
29

E
-0

5
25

6
0.

01
38

87
2

7.
35

E
-0

5
E

n
d

of
T
a
b
l
e
5
.

132

m
k 2 3 4 5 6
2 2309.38 1717.56 1322.04 1047.34 864.98
3 2813.71 2086.78 1618.79 1285.67 1071.28
4 3132.76 2405.06 1789.37 1423.89 1204.17
5 3323.53 2603.08 1959.55 1539.48 1295.86
6 3454.28 2756.08 2080.85 1616.03 1356.79
7 3600.79 2832.18 2152.40 1689.67 1428.91
8 3751.27 2932.56 2190.92 1730.41 1464.99
9 3808.38 3026.82 2276.07 1756.99 1489.61
10 3807.74 3100.18 2331.64 1815.15 1514.00
11 3955.39 3074.02 2347.52 1830.46 1546.59
12 3986.72 3182.68 2360.06 1843.88 1549.90
13 3982.61 3185.82 2400.29 1848.01 1561.14
14 3955.93 3237.88 2445.41 1871.31 1567.36
15 4050.53 3237.07 2437.51 1881.39 1603.31
16 4044.45 3293.68 2443.71 1887.14 1601.56

Table 6. The Gibraltar Library Performance on a GeForce GTX 285,
k = 2 . . . 16, m = 2 . . . 6, with Buffer Size of 1 MB, as Reflected in
Figure 17

m
k 7 8 9 10 11
2 763.18 676.77 600.70 533.73 492.73
3 916.36 822.09 727.62 648.59 589.94
4 1051.19 919.75 818.29 723.04 660.76
5 1128.05 997.76 850.59 776.51 706.37
6 1188.53 1050.74 891.65 806.54 720.01
7 1230.74 1089.18 965.73 870.01 765.37
8 1281.34 1072.32 984.87 858.44 790.13
9 1299.83 1096.65 942.76 848.38 796.64
10 1323.76 1107.57 1018.89 868.71 798.12
11 1350.08 1165.60 1023.42 867.48 799.99
12 1358.84 1172.33 973.39 851.83 802.57
13 1381.24 1187.53 1055.48 897.45 805.88
14 1370.69 1174.83 1029.63 879.48 805.57
15 1370.56 1187.10 1037.68 921.28 810.10
16 1382.91 1198.96 1029.38 872.06 790.13

Table 7. The Gibraltar Library Performance on a GeForce GTX 285,
k = 2 . . . 16, m = 7 . . . 11, with Buffer Size of 1 MB, as Reflected in
Figure 17

133

m
k 12 13 14 15 16
2 452.93 415.02 385.83 365.71 341.61
3 539.97 499.69 466.14 435.59 408.57
4 605.65 553.94 516.47 486.03 453.26
5 645.89 591.13 552.13 515.45 483.81
6 672.24 618.13 574.43 538.70 509.30
7 696.90 631.09 586.96 551.70 527.37
8 723.35 636.21 598.62 563.19 530.44
9 737.70 661.07 607.60 564.73 524.69
10 736.32 682.86 597.50 576.24 531.00
11 711.15 660.93 604.96 569.09 523.51
12 732.54 660.62 609.60 561.21 519.13
13 718.64 655.20 596.73 571.55 524.49
14 724.17 661.73 589.17 551.52 509.89
15 732.71 652.51 595.41 556.15 512.24
16 720.72 655.08 597.42 543.40 503.67

Table 8. The Gibraltar Library Performance on a GeForce GTX 285,
k = 2 . . . 16, m = 12 . . . 16, with Buffer Size of 1 MB, as Reflected in
Figure 17

m
k 2 3 4 5 6
2 2778.42 2179.54 1790.53 1518.63 1320.13
3 3496.42 2794.34 2327.76 2053.95 1806.59
4 3785.82 3287.33 2757.87 2463.69 2174.12
5 3836.02 3289.96 2880.86 2541.69 2296.14
6 4093.34 3547.78 3146.59 2858.78 2622.15
7 4146.44 3658.04 3327.30 3020.34 2813.03
8 4191.48 3788.29 3501.97 3249.89 2968.68
9 4196.54 3833.37 3535.78 3289.25 3061.04
10 4360.35 3951.00 3644.88 3423.47 3194.88
11 4360.23 4020.75 3730.80 3487.01 3273.59
12 4434.59 4067.80 3815.37 3599.95 3382.19
13 4405.00 4079.33 3843.65 3657.64 3454.51
14 4449.25 4125.41 3878.54 3675.30 3484.18
15 4429.48 4173.88 3914.40 3735.62 3543.29
16 4477.27 4201.24 3988.26 3780.19 3609.63

Table 9. PCI-Express Throughput for Coding Workloads on a GeForce
GTX 285, k = 2 . . . 16, m = 2 . . . 6, with Buffer Size of 1 MB, as Reflected
in Figures 18, 19, 20, and 21

134

m
k 7 8 9 10 11
2 1176.89 1047.45 954.66 873.14 800.00
3 1602.92 1437.32 1311.79 1219.42 1131.39
4 1968.88 1764.91 1647.31 1533.51 1415.23
5 2112.91 1949.03 1810.54 1693.41 1585.60
6 2415.47 2244.82 2081.75 1941.75 1834.97
7 2612.34 2447.86 2266.25 2141.73 2011.49
8 2777.78 2617.27 2440.22 2312.82 2192.27
9 2862.40 2708.10 2553.77 2414.68 2304.28
10 3001.55 2829.97 2701.54 2556.47 2420.73
11 3103.67 2930.21 2785.80 2653.04 2528.96
12 3206.65 3034.15 2894.39 2755.18 2639.92
13 3264.17 3103.82 2959.51 2833.84 2721.70
14 3330.93 3176.75 3044.93 2919.23 2802.69
15 3385.71 3242.38 3103.40 2972.55 2862.69
16 3452.88 3301.14 3175.61 3056.49 2943.55

Table 10. PCI-Express Throughput for Coding Workloads on a
GeForce GTX 285, k = 2 . . . 16, m = 7 . . . 11, with Buffer Size of 1
MB, as Reflected in Figures 18, 19, 20, and 21

m
k 12 13 14 15 16
2 743.99 693.72 647.38 610.50 578.06
3 1052.05 986.85 929.95 869.61 831.62
4 1327.50 1244.03 1160.49 1108.89 1048.77
5 1498.27 1418.13 1347.14 1274.40 1215.54
6 1748.36 1642.04 1565.35 1478.27 1404.50
7 1911.74 1814.89 1738.01 1647.76 1570.28
8 2072.21 1969.76 1876.79 1798.80 1719.91
9 2183.30 2082.37 1975.51 1908.57 1834.57
10 2321.07 2206.83 2120.80 2040.41 1963.33
11 2425.37 2326.27 2229.98 2139.65 2059.94
12 2536.03 2429.25 2348.81 2249.80 2179.69
13 2594.50 2499.13 2427.00 2332.10 2260.39
14 2703.86 2581.59 2511.30 2414.21 2356.35
15 2751.49 2598.12 2567.61 2484.92 2358.14
16 2836.79 2743.19 2645.41 2561.88 2480.08

Table 11. PCI-Express Throughput for Coding Workloads on a
GeForce GTX 285, k = 2 . . . 16, m = 12 . . . 16, with Buffer Size of
1 MB, as Reflected in Figures 18, 19, 20, and 21

135

m
k 2 3 4 5 6
2 2778.42 2179.54 1790.53 1518.63 1320.13
3 3496.42 2794.34 2327.76 2053.95 1806.59
4 3785.82 3287.33 2757.87 2463.69 2174.12
5 3836.02 3289.96 2880.86 2541.69 2296.14
6 4093.34 3547.78 3146.59 2858.78 2622.15
7 4146.44 3658.04 3327.30 3020.34 2813.03
8 4191.48 3788.29 3501.97 3249.89 2968.68
9 4196.54 3833.37 3535.78 3289.25 3061.04
10 4360.35 3951.00 3644.88 3423.47 3194.88
11 4360.23 4020.75 3730.80 3487.01 3273.59
12 4434.59 4067.80 3815.37 3599.95 3382.19
13 4405.00 4079.33 3843.65 3657.64 3454.51
14 4449.25 4125.41 3878.54 3675.30 3484.18
15 4429.48 4173.88 3914.40 3735.62 3543.29
16 4477.27 4201.24 3988.26 3780.19 3609.63

Table 12. GPU Throughput for Coding Workloads on a GeForce GTX
285, k = 2 . . . 16, m = 2 . . . 6, with Buffer Size of 1 MB, as Reflected in
Figures 18, 19 and 20

m
k 7 8 9 10 11
2 1176.89 1047.45 954.66 873.14 800.00
3 1602.92 1437.32 1311.79 1219.42 1131.39
4 1968.88 1764.91 1647.31 1533.51 1415.23
5 2112.91 1949.03 1810.54 1693.41 1585.60
6 2415.47 2244.82 2081.75 1941.75 1834.97
7 2612.34 2447.86 2266.25 2141.73 2011.49
8 2777.78 2617.27 2440.22 2312.82 2192.27
9 2862.40 2708.10 2553.77 2414.68 2304.28
10 3001.55 2829.97 2701.54 2556.47 2420.73
11 3103.67 2930.21 2785.80 2653.04 2528.96
12 3206.65 3034.15 2894.39 2755.18 2639.92
13 3264.17 3103.82 2959.51 2833.84 2721.70
14 3330.93 3176.75 3044.93 2919.23 2802.69
15 3385.71 3242.38 3103.40 2972.55 2862.69
16 3452.88 3301.14 3175.61 3056.49 2943.55

Table 13. GPU Throughput for Coding Workloads on a GeForce GTX
285, k = 2 . . . 16, m = 7 . . . 11, with Buffer Size of 1 MB, as Reflected
in Figures 18, 19 and 20

136

m
k 12 13 14 15 16
2 743.99 693.72 647.38 610.50 578.06
3 1052.05 986.85 929.95 869.61 831.62
4 1327.50 1244.03 1160.49 1108.89 1048.77
5 1498.27 1418.13 1347.14 1274.40 1215.54
6 1748.36 1642.04 1565.35 1478.27 1404.50
7 1911.74 1814.89 1738.01 1647.76 1570.28
8 2072.21 1969.76 1876.79 1798.80 1719.91
9 2183.30 2082.37 1975.51 1908.57 1834.57
10 2321.07 2206.83 2120.80 2040.41 1963.33
11 2425.37 2326.27 2229.98 2139.65 2059.94
12 2536.03 2429.25 2348.81 2249.80 2179.69
13 2594.50 2499.13 2427.00 2332.10 2260.39
14 2703.86 2581.59 2511.30 2414.21 2356.35
15 2751.49 2598.12 2567.61 2484.92 2358.14
16 2836.79 2743.19 2645.41 2561.88 2480.08

Table 14. GPU Throughput for Coding Workloads on a GeForce GTX
285, k = 2 . . . 16, m = 12 . . . 16, with Buffer Size of 1 MB, as Reflected
in Figures 18, 19 and 20

Configuration Read Write
Linux md (Direct) 558 406
Linux md (stgt) 374 400
Gibraltar k+2 689 696
Gibraltar k+3 667 673
Gibraltar k+4 644 650
Gibraltar k+5 621 627

Table 15. Streaming I/O Performance for DAS in Normal Mode, as
Reflected in Figure 22

Configuration Read Write
Linux md (Direct) 224 230
Linux md (stgt) 200 232
Gibraltar k+2 692 697
Gibraltar k+3 670 674
Gibraltar k+4 647 651
Gibraltar k+5 625 628

Table 16. Streaming I/O Performance for DAS in Degraded Mode, as
Reflected in Figure 23

137

Configuration Write Read
Linux md 494 315
Gibraltar k+2 672 437
Gibraltar k+3 655 412
Gibraltar k+4 588 418
Gibraltar k+5 568 355

Table 17. Streaming I/O Performance for NAS in Normal Mode for a
Single Client, as Reflected in Figure 24

Configuration Write Read
Linux md 270 211
Gibraltar k+2 681 379
Gibraltar k+3 659 378
Gibraltar k+4 588 352
Gibraltar k+5 565 367

Table 18. Streaming I/O Performance for NAS in Degraded Mode for
a Single Client, as Reflected in Figure 25

Configuration Write Read Mixed
Linux md 531.9148936 610.6870229 577.2005772
Gibraltar k+2 636.9426752 657.8947368 606.9802731
Gibraltar k+3 606.0606061 624.024961 597.0149254
Gibraltar k+4 591.7159763 603.3182504 579.7101449
Gibraltar k+5 568.9900427 578.8712012 561.7977528

Table 19. Streaming I/O Performance for NAS in Normal Mode for
Four Clients, as Reflected in Figure 26

Configuration Write Read Mixed
Linux md 328.6770748 282.0874471 317.9650238
Gibraltar k+2 633.9144216 651.465798 619.1950464
Gibraltar k+3 582.2416303 637.9585327 606.0606061
Gibraltar k+4 552.4861878 609.7560976 586.5102639
Gibraltar k+5 546.4480874 590.8419498 569.8005698

Table 20. Streaming I/O Performance for NAS in Degraded Mode for
Four Clients, as Reflected in Figure 27

138

APPENDIX C

PLATFORMS AND TESTING ENVIRONMENTS

The ability to reproduce experiments is tantamount to their success. In an effort

to make the results as transparent as possible, this appendix details all relevant

configuration details of the computers used.

Component Version/Type
CPU Intel Core i7 Extreme 975
RAM 6 GB 1333 Mhz DDR3 tri-channel
Operating System Debian 5.0
OS Volume Storage 6 × 32 GB Imation Mobi 3000 flash disks
Raw Storage for RAID 32 × 750 GB Seagate Barracuda ES hard disks
Raw Storage Interface 2 × Fibre channel 4Gbps
Raw Storage Enclosure 2 × RS-1600-F4-SBD
GPU NVIDIA GeForce GTX 285, 2GB
CUDA 2.2
Network 4x DDR infiniband
OFED 1.4
Linux SCSI Target Framework 1.0.6 with iSER support

Table 21. The testing platform server specifications. All data con-
tained in this work was from experiments using this machine.

Component Version/Type
CPU 2 × Intel Xeon E5504
RAM 24 GB 800 Mhz DDR3 tri-channel
Operating System Redhat Enterprise Linux 5
Network 4x DDR infiniband
Open-iSCSI 6.2.0.869.2
OFED 1.5

Table 22. The testing platform client specifications. For the tests
outlined in Sections 2 and 3 of Chapter 6, these machines were accessing
storage served by the machine in Table 21.

139

APPENDIX D

A Sample One-Petabyte GPU-Based Storage System

In connection with grant CNS-0821497 from the National Science Foundation, UAB

is at the time of this writing procuring a GPU-based storage cluster designed to host

computations and reliable storage simultaneously. While this cluster is significantly

more capable than a plain storage system (as surveyed in Figure 1), the cost per

gigabyte can still be compared directly to understand the benefits of using GPU-based

RAID in a cluster deployment. A single node’s specifications can be found in Table 23.

The networking costs for a cluster of up to 24 nodes with QDR Infiniband is $11,746.

Qty. Component
1 Supermicro 4U CSE-846E26-R1200B Rackmount Chassis
1 Supermicro X8DAH+-F Dual Xeon Server Board
2 Xeon X5650 CPUs (Westmere, 6 cores)
32 WD2003FYYS 2 TB 7200 RPM Hard Disks
6 4 GB DDR3-1333 Registered ECC Memory
1 Mellanox/Supermicro Dual Port QDR Infiniband NIC
1 NVC2050 TESLA
2 LSI 9212-4i4e HBAs

Table 23. A Single Node Configuration in a GPU-Based Storage
Cluster, Total Cost $14,906

Figure 1 showed that prices for reliable storage ranged from $0.80-$2.80 per gigabyte

for a petabyte purchase from many well-known hardware RAID vendors. Table 24

shows that, when varying the number of nodes to provide at least one petabyte of

storage, GPU-based RAID can be used to build systems with widely varying reliability

for $0.26-$0.32 per gigabyte while providing extensive computation resources. For an

even larger cost savings, the system could be built more economically by using less

expensive GPUs, slower processors, and less RAM per node.

140

m Data Capacity # Nodes $/GB
(GB, Usable) Required

2 1020000 17 0.260
3 1044000 18 0.268
4 1008000 18 0.278
5 1026000 19 0.287
6 1040000 20 0.298
7 1000000 20 0.310
8 1008000 21 0.322

Table 24. Storage Cluster Design Parameters and Cost Per Gigabyte

141

	A Highly Reliable GPU-Based RAID System
	Recommended Citation

	tmp.1703003762.pdf.ACjsD

