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AN INFORMATION THEORY BASED REPRESENTATION
OF SOFTWARE SYSTEMS AND DESIGN

ZEKAI DEMIREZEN

COMPUTER AND INFORMATION SCIENCES

ABSTRACT

Software designers can benefit from the experience of engineering designers and

information theory formalism. Every design starts with uncertainty and the art of software

design involves uncertainty reduction. Information theory enables software designers to

adopt a systems view that facilitates intellectual control over a given software design.

Since design imposes organization through successive transformations in reaching the final

product, it is possible to formalize design with information theory.

We investigated software design as a hierarchical decomposition of design spaces. We

realized that before initiating the software design process there is minimal organization,

representing higher entropy. The design decisions carrying out design activities through

hierarchical decomposition reduce uncertainty and therefore introduce comparatively

higher organization represented by lower entropy.

In this dissertation, the communication channel representation of software is developed

through a process of 1) set-theoretical representation, 2) mapping to a communication

channel formalism, and 3) hierarchical decomposition leading to entropy reduction. This

information theoretical representation allows investigating the properties of software

systems as communication channels.
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Chapter 1

INTRODUCTION

In this dissertation, we study how to make software design more scientific and precise than

it currently is.

1.1 Background, Opportunity, Challenges

Engineering is the study and practice of developing solutions to technical problems that

are timely, cost-effective, and reliable [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Engineers solve

technical problems by applying mathematical and scientific knowledge to develop artifacts

(products). To achieve their goals, they follow appropriate engineering processes to create

reliable technical products with economic value under constraints of time and resources

[5, 6, 8, 11]. A process starts with the problem definition and recognition of other

constraints (economic, technical, etc.), and ends with the production of artifact(s) with

economic value. Within the engineering process, a clear distinction is made between design

and manufacturing [5, 12]. Design Engineers/Designers are responsible for the abstract

creation of a product that involves proof-of-concept prototyping and/or various forms of

simulation and modeling [12, 13]. On the other hand, the physical realization of a product

is the task of manufacturing engineers1 [3]. Figure 1.1 represents the engineering process,

which implicitly includes a multitude of internal processes.

1A discussion of the manufacturing engineering process is not applicable to this introduction since our focus
is on processes involved in design.
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DESIGN MANUFACTURING

Needs,

Requirements,

Constraints

Abstract 

Specification of 

Product

         

           

           Product

Figure 1.1: Engineering Process: Transformation of Needs, Requirements, Constraints into
a Product (Adapted from [12])

The design process in engineering is fundamentally driven by engineering design quality

attributes [9]. Design quality attributes set a realistic limit on expenditures, an expectation

of completion time, and an expected reliability bound/lifetime for the product. Table

1.1 shows the spectrum of emphasis with respect to the key engineering design quality

attributes cost, timeliness, and reliability [9]. Within this spectrum, efforts with low

priority for cost, timeliness, and reliability are generally considered “research-oriented”

activities. For pure research, for example, the main focus is on experimenting with

minimal consideration for cost, issues, delivery times, and operational reliability to design

an alternative artifact. On the other hand, high priority for the three quality factors is

related to “pure” engineering activities. In pure engineering, the emphasis is on delivering a

theoretically ideal product in the sense of the lowest possible cost, and the highest possible

reliability within a minimum delivery time. All other possible combinations in between

are shown in Table 1.1. Cost, Timeliness, or Reliability emphasis provide foundations

of making decisions when compromises are required; this is where engineering judgment

plays an important role.

2



Table 1.1: Combinations of Priority Level with Respect to Design Quality Attributes
(Adapted from [9])

Cost Timeliness Reliability

Pure Research low priority low priority low priority

Reliability Emphasis low priority low priority high priority

Timeliness Emphasis low priority high priority low priority

Timeliness/Reliability Emphasis low priority high priority high priority

Cost Emphasis high priority low priority low priority

Cost/Reliability Emphasis high priority low priority high priority

Cost/Timeliness Emphasis high priority high priority low priority

Pure Engineering high priority high priority high priority

In each of the categories of Table 1.1 there are associated processes [14]. Manipulating

these underlying processes impacts the resulting product quality attributes. Processes

generally contribute to the quality of the product while consuming resources to varying

degrees [14].

Process-centered engineering focuses on improving software processes to achieve higher

quality products while maintaining the same quantity of resources [14]. It is accepted

that even a simple process improvement may have a significant impact on the quality of a

product [5].

Requirements, needs, and constraints are inputs to the engineering process [3, 5, 8].

These inputs reveal that some action must take place to satisfy the given requirements

and produce quality artifacts [12]. First, a designer takes the requirements and constraints

as inputs and makes a representation of an artifact to be constructed by a manufacturing

engineer [8, 12]. The representation ranges from specifications in formal languages, such

as design languages, to informal and visual descriptions, such as engineering drawings

[12, 15]. In Figure 1.1, design output is shown as an abstract specification of a product. An

3



abstract specification of a product is the solution of a design problem and a product can be

created from it [12].

In traditional engineering disciplines, such as mechanical, civil, and electrical, design is

considered to be a fundamental activity [6]. The act of design starts with recognition of a

design problem [5, 6, 8, 12, 15, 16]. A designer determines the problem according to his

or her parameter(s) of interest [17]. A parameter of interest corresponds to a designer’s

judgment and includes the criteria that will drive the design. After analyzing a problem,

the designer conceives of a solution or family of solutions that will correct or improve

the current situation [12, 18]. A solution given by the designer can be interpreted as a

specification for transformation [12, 18]. The solution process is a series of transformations

following the prescribed engineering process, yielding a quality artifact.

The nature of design, and the expansion of the design concept towards a relatively more

abstract domain were studied by Tanik and Ertas [9]. Following these authors, three axioms

for the nature of design activities can be described as follows:

• The Axiom of Hierarchy or Specification Axiom: There are limitations on the

cognitive and information processing capabilities of designers. No humans or

collection of any number of them can specify or design an artifact at once. As the

system becomes more complex, the human cognitive element becomes a bottleneck.

Therefore, in order to exercise intellectual control on the design, hierarchies are a

necessity.

• The Axiom of Feedback: Design solutions are achieved through an iterative process.

This process is evolutionary in nature and includes feedback to proceed to the

next iteration (reducing uncertainty). Rapid and successive feedback promotes the

refinement of a design [13] and will produce better designs in a shorter period of

time.

4
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Figure 1.2: Design as an Uncertainty Reduction Process

• The Axiom of Automation: Automated tools are required to provide a fast and

reliable design process, remaining sources of mistakes that lead to residual faults

in artifacts.

The design activity can also be viewed as a problem solving activity [5]. Designers generate

various alternative approaches to solve the given problem. During evaluation, designers

consider that which is feasible and narrow the space of alternative designs [5, 6, 7, 8,

19]. There are usually several feasible alternatives. The designer is required to make

decisions based on many parameters and to make choices among possible alternatives,

while evaluating the feasibility of each choice [5, 8]. The optimum choice among them

often is not obvious. This situation reflects the uncertainty that designers encounter in

finding a solution. Every design decision resolves some part of an unclear situation and

reduces the number of possible alternatives using the framework outlined in Table 1.1.

Thus, each design activity can be considered as an uncertainty reduction process as shown

in Figure 1.2.

The problem-solving process can also be viewed as consisting of successive steps

with increasing precision in the context of relationships [2]. The four phases of this
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Figure 1.3: Block Diagram of Design process (Adapted from [5])

process are as follows: Clarifying the Task, Conceptual Design, Embodiment Design, and

Detail Design [5]. Designers elicit customer requirements in the first phase. Engineers

collect information about constraints and their importance. Requirements and Constraint

specification is the output of this phase. Conceptual design occurs when a designer

abstracts essential concepts, uses analysis techniques to decompose the given problem,

establishes function structures, and generates all the concepts required for the working

structure. In this phase, the designer considers a number of solution alternatives and

narrows them down to a single solution. In Embodiment Design, designers unite all the

concepts and produce a technical layout [5, 6, 8]. Finally, in Detail Design, designers

complete the details of all individual components and realize them [5].

During the design process, designers work on two different spaces: Problem Space and

Solution Space [19]. Problem Space includes only the details from business/customer

domain [19]. On the other hand, Solution Space includes technical terms and incorporates

solution details [19]. Each space has its own representation [3, 19]. The designer uses

problem-space representation during Clarifying the Task and Conceptual Design steps

[5, 19]. On the other hand, Embodiment Design and Detail Design are solution-space

activities [5, 19]. The transition from problem-space to solution-space occurs between

Conceptual Design and Embodiment Design [5, 19]. This transition is not an easy task and

is characterized as a semantic gap in computer science [20]. Figure 1.3 depicts the steps.

The term Software Engineering was first coined in 1968 to emphasize the need for

modern engineering techniques and methods for software development [21]. Tools and

effective methods for the activities in software development have been devised and led to
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Table 1.2: Design Steps in Traditional Engineering Disciplines vs. Unified Software
Development Process (Adapted from [24])

Traditional Engineering
Disciplines

Unified Software Development Process

Clarifying the Task Requirements

Conceptual Design Analysis

Embodiment Design Design

Detail Design Implementation & Testing

a better understanding of software process. However, today there is still a need to improve

our understanding about software development, especially in the area of software design.

The software development life cycle, given in Booch [22], incorporates the following:

• Requirements: establish agreement on what the system should do, and properties that

are nonfunctional as well;

• Analysis: study requirements, and analyze the problem space to create conceptual

models;

• Design: transform the analysis specification into a design specification. The design

specification includes implementation details and instructions;

• Implementation: code and integrate the design resulting in an executable system;

• Test: verify and validate the software product; and

• Deployment: make the software product available to its end user.

There is a particular difference in design between traditional engineering disciplines and

software engineering. In software engineering, design refers to a step between analysis

and implementation. In traditional engineering, design covers all the steps starting from

requirements to the final output of the design process. Table 1.2 shows a correspondence

between traditional design steps [5] and the Unified Software Development Process

(USDP) [23].
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1.2 Dissertation Statement

Software engineering in particular is an engineering discipline whose focus is the

production of high quality software systems [17, 21, 25]. A software system is a

collection of algorithms/programs designed to transform a set of inputs into desired outputs

[15]. Software development is in a “pre-engineering” phase that is analogous to many

pre-engineering phases found in engineering disciplines of the past [26].

Software Engineers have mostly applied ad-hoc, experience-based design techniques to

date. Most of these practices have on the whole resulted in unreliable and costly products

[27]. Furthermore, because of hardware technology advances, the size and quantity of

software systems have greatly increased. Yet, our ability to reduce the unit software

error rate has not improved correspondingly [28]. Recent observations conclude that the

fundamental causes of software development failures today are the same failures caused

in traditional engineering fields of some 100 years ago [26]. As Royce stated as early as

1968, design principles similar to “hard” engineering principles are needed to overcome

these problems [25]. These principles must be supported by mathematical underpinnings.

Although there are approaches for science-based design [7, 15], a complete mathematical

theory of software design currently does not exist. Until such time as one is defined,

tested, and broadly accepted, we need techniques to minimize the potential damage of poor

designs. The proposed techniques should be defined in a formal way in order to provide a

basis for establishing more complete design theories in the future.

It is clear that we need to make design a systematic engineering activity in software

engineering. It is possible to make software design significantly more systematic by

combining existing concepts from the theory of decomposition of complex systems, by

introducing the novel idea of software design as an entropy-reduction process, and by

employing information theory to connect software design with a communication channel

abstraction.

8



The next sections will outline our approach to achieve the groundwork for such an

important goal. The result will be a better understanding of the design process in software

engineering based on the first principle foundations of science and the practices of “hard”

engineering disciplines.

1.3 Proposed Approach and Solution

Through the use of formal mechanisms, this dissertation proposes to systematize software

design. As indicated in the foregoing, each design activity can be considered to be an

uncertainty reduction process as shown in Figure 1.2. We introduce formal mechanisms

for uncertainty reduction in this dissertation. Historically, this process of transforming

uncertainty to certainty is considered a concern of complexity analysis [29, 30]. Therefore,

from a complex-system perspective, the software design problem is a form of complexity

analysis and system decomposition. Complexity analysis and system decomposition

together provide a combined mechanism to deal with transforming uncertainty to certainty

[31].

In general, a complex system is composed of correlated elements [32, 33, 34]. The

mathematical concept of a complex system is related to the degree of correlation between

elements [30, 32, 33, 34, 35], which indicates the breadth and depth of interactions of

elements constituting a complex system. We can use structure to show the correlation

between elements. For example, gas molecules show apparent weak structural organization

[36]. Each gas molecule is nearly independent of the other molecules. On the other

hand, crystal molecules are correlated with each other and show highly organized macro

structure. An organized structure includes redundancy and the amount of redundancy

reduces the required information to reveal that structure. For example, determination

of the position of each gas molecule is more difficult than determination of a crystal

molecule [36]; with prior knowledge of a few molecules’ positions, it is easy to locate other

molecules in a crystal [36]. By way of comparison, in communication theory, the structure
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of a complex system corresponds to the structure of a message and redundancy within a

message [37]. The gas and crystal analogs demonstrate that revealing the structure of an

apparently disorganized system requires more information than revealing the structure of a

conceptually more organized system would require. This fact corresponds to the amount of

uncertainty in the system [36]. The mathematical concept of organization is closely related

to the measure of uncertainty [30, 32, 33, 34, 35].

According to Simon, Ashby, Wiener and others [29, 33, 34, 38, 39], a common attribute

of complex systems is that “Complexity takes the form of hierarchy” from the observer’s

point of view [39]. Two important points that need to be specified for the definition of a

hierarchical system follow: a) A first requirement is that all subsystems be correlated with

each other, and the correlation strength imply the structure of the system [39, 40]. Simon

denotes these as nearly decomposable to emphasize the correlation between subsystems;

b) A second requirement is that there always be a terminating level of decomposition

from which no further decomposition is feasible. Figure 1.4 illustrates the correlation

between components and the decomposition of a system. To reduce complexity, strongly

connected elements are grouped within subsystems [30, 39, 41]. This highlights that

correlations among subsystems are weaker than correlation within subsystems. In Figure

1.4, correlations between strongly connected elements are represented with wider arrows.

Figure 1.4: Decomposition of a System (Adapted from [30])

Traditionally, a two-pronged approach is taken to study software design - Static and

Dynamic [22, 42]. Static aspects of design consist of analysis of data and their relationships

[22, 42]. More specifically, in the case of object-oriented design, static analysis includes
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data-specification issues, relationships between data, and encapsulation of them [22].

Dynamic aspects on the other hand focus on run-time issues that are composed of

behavioral specifications [22, 42].

Our modeling of software design is fundamentally based on hierarchical decomposition

and driven only by communication among the system attributes. Therefore, all analysis

is dynamic and multivariate by definition. In our modeling approach, as described in this

dissertation, the multivariate correlations among variables are modeled via information

theory [33, 38]. Total correlation over the complex system is the sum of the total

correlation within the subsystems plus the correlations among the subsystems [29, 35, 36,

43]. Furthermore each subsystem can be broken down into further subsystems and the

fundamental rule holds in turn for the subsubsystems and their correlations [30, 41]. One

of the basic criteria for evaluation of the decomposition is that the correlation among the

subsystems be insignificant compared to the total correlation [30, 43].

Figure 1.5 presents four transition steps for the analysis of software systems via

information theory. We start with mapping of software systems to set-theoretical

representations. Software systems are represented with an arbitrary number of variables.

Each variable is observed once per standard time increment, for example, at the end of

a user event for a GUI application. These values are shown as a table in Figure 1.5. In

the second transition, which is the mapping of set-theoretical representation to a channel

formalism, we show the information transfer between variables and demonstrate the

correlations among variables as communication channels. As a result of this step, we have

a communication-channel representation of a software system. The third step, hierarchical

decomposition, takes the channels as input and applies decomposition techniques to find

subsystems. In Figure 1.5, this step is represented as a transformation between channels

and set-subsets (hierarchical) combinations. Finally, Figure 1.5 demonstrates mapping

between set-subsets and software structures. These steps provide a formal means for the

representation and analysis of software design decomposition.
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In the preceding paragraphs we introduced a plan to apply formal methods to software

design. In our hypothesis, software design principles are consistent with general design

principles. Therefore, following Rothstein, Simon, and Ashby [29, 34, 39], we consider the

generation of design alternatives as a process of uncertainty reduction. We hypothesize that

successive applications of information-theoretical multivariate analysis [38] would be the

appropriate mathematical approach to achieve this goal. In a sense, these techniques help

to transform uncertainty to certainty. Therefore, these techniques are applicable beyond the

object-oriented systems that we used as a motivating case.
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V1 V2 V3 V4 V5 V6 V7 V8

2 7 4 67 20 10 1212 93
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200 999 12 2 1 1222 4 2
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begin

A;

if P1 then

B:

else

C;

endif

D;

while P2 do

E;

F;

endWhile

G;

end
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Figure 1.5: Analysis of Software Systems: a) mapping of software systems to
set-theoretical representations, b) mapping of set-theoretical representation
to channel formalism, c) hierarchical decomposition, d) mapping between
set-subsets and software structures
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1.4 Overall Contributions

The major contributions of this dissertation include 1) design decomposition of software,

and 2) communication-channel modeling of software. Theoretical aspects of these

contributions will be explored in Chapter 5 followed by representative examples

demonstrating their utility in Chapter 6. Following Simon [39], in the context of

hierarchical systems and nearly decomposable systems, and following Ashby [34], in the

context of multivariate analysis, we develop a system representation for software using

set-theoretical representations. This representation enables us to study software systems

as communication channels. Following Simon [39], and Aksit [44], we present design

of a software system as a decomposition process. We show that software development

is fundamentally the design of a system and system design is in turn a decomposition of

design space [44]. Following Prather [45], and Simon [39], we analyze decompositions.

Finally, following Conant [41], we use information theory to quantify decomposition of

software systems. As a result, we demonstrate feasibility and value of the communication

channel modeling of software. Thereby we bring a mathematical formalism to software

design, this work also reveals the value of mathematical formalism.

1.5 Impacts

This dissertation outlines a research approach chosen to investigate and develop a formal

yet widely usable means to represent software systems. The results have an opportunity for

transformative impact that would influence the area of software engineering by providing

a more relatively stable context for discussing the representation of software systems than

currently available. In this research, static and dynamic aspects of software systems are

studied and a mathematical formalism is provided for their representations. The proposed

mathematical formalism will be suitable for further design space analysis. The proposed

formalization will have significant impact on current practice of software engineering
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in terms of modeling and controlling the design alternatives through the application of

information-theoretical approaches and techniques. These techniques will lead to better

understanding of the design process in software engineering based on first-principles

foundations of science as well as originating from those practices of “hard” engineering

disciplines. Moreover, they will provide a capability for reasoning about software designs,

so they support software designers’ modeling activities.

Another contribution of the work reveals the need for a mathematical theory to

analyze the semantic decomposition of software systems. This dissertation discusses

the requirements of using information and coding theory during software development.

These outcomes will have an impact on future research that focuses on the analysis of the

relationship between decomposition at run-time and programming statements.

In summary, the representation and analysis of software systems as integrated

communication systems opens up possibilities for applying engineering mathematical

analysis to software development. This means that the elusive concept of software formally

represented in the past with automata and formal languages can evolve into the type

of inquiry involving classical engineering mathematics. These notions are expanded in

Chapter 5 and 7.

1.6 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 discusses the

quantitative study of information and establishes the basic notations used in the following

chapters.

Chapter 3 introduces hierarchical systems. Set-theoretical representation of complex

systems, Information-Theoretical correlation analysis, and decomposition of correlations

are detailed in that chapter.
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Chapter 4 discusses software design, the area of Computer Science that we are advancing

in this dissertation. Since the focus of this dissertation is on the analysis of software design,

all the details are focused towards that direction.

We incorporate theoretical aspects of the design space decomposition using information

flow in Chapter 5, while presenting representative examples in Chapter 6.

This dissertation concludes in Chapter 7 with the summary of the work, the contribution

to the body of knowledge, and future research directions based on this work. The

appendices consist of source code and collected data.
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Chapter 2

THE QUANTITATIVE STUDY OF INFORMATION

The purpose of this chapter is to provide background research on information theory

essential for the development of the dissertation, as well as to develop the necessary

information-theoretic concepts and the notation to be used. Section 2.1 provides a historical

perspective. Section 2.2 provides information concepts such as entropy, interaction, and

correlation formulas. Section 2.3 defines communication concepts that are useful in the

study of software systems in the succeeding chapters.

2.1 History

The beginnings of the development of information theory can be traced to the initial

considerations for the development of the concept of entropy. Theoretical contributions

involving entropy functions started in the original investigation of heat phenomena [46, 47].

After the invention of the steam engine, physicists focused on the transformation of heat

into mechanical work, and vice versa in order to build better steam engines. Scientists

of the time tried to accomplish this by moving from physical reality to the development

of theoretical underpinnings. They thought that heat was a weightless substance and

transferred from one body to another body [48]. In the mid 1800s, Carnot explained the

limitations in the heat-work transformation using a flowing substance model. He observed

that some energy is lost even in the most efficient engine possible [49, 50]. Eventually,
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Clausius formulated the dissipation of useful energy in terms of a new quantity which he

denoted Entropy [46, 47, 49].

Following Carnot’s observation, Maxwell [51], Boltzmann [52], and Gibbs [53] defined

heat as disordered motion of atoms and molecules with consideration of the atomic nature

of matter [46]. Since the “gold standard” at the time was to reduce all known phenomena to

mechanical motion, their approach to modeling was successful because it explained the heat

phenomena through mechanical principles and the aid of the Entropy concept [47, 49, 50].

Their foundational investigations eventually initiated a new branch of mechanics, called

Statistical Mechanics [46]. In his investigations of the second law of thermodynamics,

Maxwell introduced a “gedanken experiment” involving an imaginary being, which was

later called Maxwell’s demon [49, 54]. Maxwell demon is used as a model to this day for

the hypothetical investigation of the potential violation of the second law. Another leading

physicist in the nineteenth-century, Ludwig Boltzmann, studied Entropy as being a measure

of degree of orderliness or disorderliness of gas molecules [47, 52].

Szilard further developed the entropy concept emphasizing the information perspective

[55]. He demonstrated that Maxwell’s demon gets its information at the expense of

entropy increase elsewhere [36, 55]. He showed the conceptual equivalence between

information acquisition and thermodynamic entropy [49, 55]. Following up with Szilard

work, Landauer established the connection between the notions of energy consumption,

information, and computation [56]. He showed that the erasure of information requires

energy dissipation [54, 56].

In the field of communication, Nyquist [57] and Hartley [58] introduced a quantification

technique to measure the information in a message. Their approach used the logarithm

of the number of all possible messages [37, 59, 60]. It took about two decades after

Hartley’s 1928 paper for the introduction of a general theory called Communication Theory,

by Shannon [37]. He constructed a mathematical model for communication systems

and discussed the amount of uncertainty in the output of a source and defined it as the
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information content of a message [61, 62, 63, 64, 65]. He explained the calculation of

channel capacity using time durations of channel symbols and constraints among them

[37, 63, 66, 67] . He demonstrated fundamental theorems for noiseless and noisy channels

and established the transmission rate limit for a given channel and a source. He noted

the possibility of maximum message transmission rate with proper encoding of source

messages and established the existence of a coding system to transmit a source message

over the noisy channel with an arbitrarily small probability of error [37].

Almost immediately, applications of Shannon’s approach to diverse fields started to

appear in the literature. For example, in the field of psychology, the first information-theory

related paper was written by George A. Miller and Frederick C. Frick in 1949 [68]. They

proposed a method for quantifying organization in sequences of events [68, 69]. They

used information theory to analyze serial dependencies in chain of responses. Their

paper opened up the possibility of various application areas of the entropy formula

in the field of psychology as well as other related disciplines [69, 70]. Garner and

Hake published an article studying the amount of information in stimulus and responses

relations [71]. Before their paper, variance analysis was already a widely used technique

in psychology [71, 72]. Their work initiated uncertainty analysis of experimental data

based on information theory [38, 69, 70]. Eventually, Garner and McGill established

the relation between information and variance analysis [72]. All these works focused

on Shannon’s information measures that includes two variables, the sender’s and the

receiver’s state. William McGill presented an extension of Shannon’s measures and put

the information relations between three and four variables [38]. He also developed the

associated quantitative formulations of transmission, interaction, and correlation concepts

for multivariate analysis [38, 69, 70]. Furthermore, Fred Henry Quastler [73] and Attneave

[69] contributed to various applications of information in psychology. The early adoption

of Shannon’s approach in psychology opened up numerous other applications in related

fields that proved fruitful for further developments.
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2.2 Information Concepts

The approach of this dissertation is based on applications of information-theoretic

principles to the field of software design. In this section, we introduce information

concepts, definitions and essential notation which are useful in the study of software

systems in the succeeding chapters.

Definition 2.2.1. A set is a collection of objects called elements. A subset B of a set A

is another set if every element of B is also an element of A. All sets under consideration

are included in a single set S that is called the universal set. The empty set is the set that

contains no elements. The union of two sets A and B is a set consisting of all the elements

that belong to A or to B or to both. The intersection of two sets A and B is a set whose

elements are in both A and B. The complement A
′
of a set A is the set of all elements of S

that are not in A. Two sets A and B are called mutually exclusive or disjoint if they have no

common elements. A partition U of a set S is a disjoint collection of non-empty subsets Ai

of S whose union is S. Cartesian product of the sets S1 and S2 is a set of ordered pairs a1a2

where a1 is any element of S1 and a2 is any element of S2.

Example. Let Ai be defined as the set of all integers which leave the remainder i on division

by 4 . A0,A1,A2, and A3 are mutually exclusive sets and their union is the set of integers.

Definition 2.2.2. Following [74], let S be a collection of elements denoted elementary

events, and let δ be a set of subsets of S; the elements of the set δ will be denoted random

events. Assign to each set A in δ a non-negative real number P(A) that will be denoted as

the probability of the event. This number has been chosen to satisfy the following three

conditions [74]:

• P(A)≥ 0

• P(S) = 1

• If event A and event B have no element in common, then P(A∪B) = P(A)+P(B)
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Example. In tossing a fair coin1, there are two elementary events, “head” and “tail.” Hence

S = {Head,Tail}, δ = {{},{Head},{Tail},S},P({Head}) = 1
2 and P({Tail}) = 1

2 .

Definition 2.2.3. The Conditional Probability [75, 76, 77] of an event A assuming M,

P(A |M), is by definition the ratio

P(A |M) =
P(A∩M)

P(M)
. (2.2.1)

Example. In rolling a fair die, there are six elementary events, each equally likely. Let fi be

the faces of the die, then S = { f1, f2, f3, f4, f5, f6}. The conditional probability of the event

T = { f3} assuming that the event O = { f1, f3, f5} occurred is P(T |O) = P(T∩O)=P(T )
P(O) = 1

3 .

Definition 2.2.4. Two events A and B are called independent if P(A∩B) = P(A)P(B). If A

and B are independent events then P(A | B) = P(A) and P(B | A) = P(B).

Definition 2.2.5. Here we adopt the definition of [65]. A partition is a collection of

mutually exclusive events whose union is S. Figure 2.1 shows a partition.

A

A1 A2

A3

A4

A5

Figure 2.1: Sample Partition (Adapted from [65])

A partition U consisting of the events Ai will be denoted by the notation U = [A1, . . . ,Ak]

or simply U = [Ai]. Events Ai will be denoted elements of U.

• A binary partition is a partition with only two elements. U = [A,A
′
] is a binary

partition consisting of the event A and its complement A
′
.

1A fair coin is a mathematical object with two mutually equiprobable outcomes.
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• An element partition is a partition whose elements are the elementary events {ζt} of

the space S. It will be denoted by V .

• A partition B is a refinement of a partition U if each element B j of B is a subset

of some element Ai of U . The notation B ≺U will be used to indicate that B is a

refinement of U . Thus

B≺U iff B j ⊂ Ai.

• The product of two partitions U = [Ai] and B = [B j] is a new partition consisting of

the elements that are all intersections AiB j of the elements of U and B. This partition

will be denoted by U ·B . The product of two partitions is shown in Figure 2.2.

B1

B2

A.B

A1B1
A2B1

A3B1

A4B1

A5B2

A1B2
A2B2

A3B2
A4B2

A5B1

A

A1 A2

A3

A4

A5

B

Figure 2.2: Product of Two Partitions (Adapted from [65])

Definition 2.2.6. Two partitions U = [Ai] and B = [B j] are called independent if the

elements Ai and B j are independent for every i and j.

Definition 2.2.7. Experiment E consists of determining which of the events Ai,A2, . . . ,An

occurs. Ai,A2, . . . ,An are called the possible outcomes of experiment E. These outcomes

form a partition of the set S. A single performance of an experiment is called a trial.

Definition 2.2.8. Given n experiments E1,E2, . . . ,En, that is, n partitions

S = A(i)
1 +A(i)

2 + . . .+A(i)
ri i = 1,2, . . . ,n (2.2.2)
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of the set S [74]. Then n experiments E1,E2, . . . ,En are called mutually independent

experiments [65, 74, 76, 77, 78] when

P(A(1)
q1 ,A

(2)
q2 , . . . ,A

(n)
qn ) = P(A(1)

q1 )P(A
(2)
q2 ) . . .P(A

(n)
qn ) for any q1,q2, . . . ,qn. (2.2.3)

Definition 2.2.9. Combined Experiment F is the cartesian product of two experiments E1

and E2 whose events are all cartesian products of the form A×B where A is an event of E1

and B is an event of E2, and their unions and intersections [65].

Definition 2.2.10. A random variable is a number x(ζ ) assigned to every outcome ζ of an

experiment [65, 74, 77].

Definition 2.2.11. Entropy of a partition U is a measure of uncertainty about the occurrence

or nonoccurrence of any event Ai of a partition U . It will be denoted by H(U) [65].

The postulates of the Entropy function, H [37]

1. H(U) should be a continuous function of pi = P(Ai).

2. If p1 = · · · = pn = 1/N, then H(U) should be a monotonic increasing function of

N; that is, for U = [A1, . . . ,Am] p(A1) = · · · = p(Am) = 1/M and Y = [B1, . . . ,Bn]

p(B1) = · · ·= p(Bn) = 1/N M < N implies H(U)< H(Y ).

3. If one of the elements of U be broken down into two successive events, then a new

partition B is formed and H(B)≥ H(U).

Remark. Properties of Entropy [65]:

1. H = 0 if and only if all the pi but one are zero,

2. Given a partition U = [A1,A2, . . . ,An], if A1be broken down into the elements Ba and

Bb and be formed a new partition B = [Ba,Bb,A2, . . . ,AN ] then H(U)≤ H(B),

3. if B≺U then H(B)≥ H(U),

4. For any U H(U)≤ H(V ) where V is the element partition,
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5. Given a partition U = [A1,A2, . . . ,An], the entropy of U is maximum when p(A1) =

· · ·= p(An) = 1/n .

Definition 2.2.12. Shannon’s Entropy Formula [37] is a measure of the entropy of a

partition U that is by definition the sum2

H(U) =−p1 log p1−·· ·− pN log pN =
N

∑
i=1

ϕ(pi) (2.2.4)

where pi = P(Ai) and ϕ(p) = −p log p. Since ϕ(p) ≥ 0 for 0 ≤ p ≤ 1, it follows from

2.2.4 that H(U)≥ 0 [65, 79, 80].

Example. For a binary partition U = [A,A′] and P(A) = p,

H(U) =−p log p− (1− p) log(1− p)≡ h(p). (2.2.5)

The function h(p) is shown in Figure 2.3 for 0≤ p≤ 1. This function is symmetric, convex,

and it reaches its maximum at the point p = 0.5 [79].

Figure 2.3: The Function h(p) =−p log p− (1− p) log(1− p)

The probability P(A) of an event A measures the uncertainty concerning the occurrence

or nonoccurrence of event A in a single performance of the underlying experiment S [65].

2Unless otherwise specified, we shall take logarithms to the base 2. The units of H are called bits.
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For example, when P(A) = 0.999, we are almost certain that A will occur. On the other

hand, occurrence of event A and our uncertainty change when P(A) = 0.1; now we are

reasonably certain that A will not occur. Our uncertainty is maximal if P(A) = 0.5 [59].

The quantity H(U) measures the uncertainty concerning the result of an experiment.

There is an uncertainty surrounding the events Ai of the partition U prior to the performance

of the underlying experiment. When the experiment has been carried out and the results

concerning Ai become known, such uncertainty is resolved. Thus one can say that entropy

measures the amount of information obtained [59, 64, 65]. The information provided by

the experiment about the events Ai equal to the entropy of their partition and is measured

by the sum given in equation 2.2.4.

Example. In a fair die, P{1}= P{2}= P{3}= P{4}= P{5}= P{6}= 1/6. Let fi be the

faces of die, the entropy of the partition U = [ f1, f2, f3, f4, f5, f6] in the fair-die experiment

is as follows :

H(U) =−1
6

log2
1
6
−·· ·− 1

6
log2

1
6
= log2 6.

When the fair-die experiment is performed and the result is observed, then we gain

information about the partition U equal to its entropy log2 6.

Definition 2.2.13. The conditional entropy [59, 65, 79, 80] of a partition U assuming M is

by definition the sum

H(U |M) =
NU

∑
i=1

P(Ai |M) logP(Ai |M) (2.2.6)

where P(M) 6= 0, NU is the number of elements in partition U , and P(Ai | M) = P(AiM)
P(M) .

H(U | M) measures the uncertainty concerning the partition U on the average assuming

partition M.

Remark. Properties of Conditional Entropy [65]
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1. H(U |M)≤ H(U)

2. If U and M are independent partitions then H(U |M) = H(U)

3. If B≺U and B is observed, then H(U | B) = 0

Example. In a rolling die experiment, the prior partition is U = [ f1, f2, f3, f4, f5, f6] and

H(U) = log2 6. When the experiment is performed and when we are informed that “even

event,” denoted by E, or “odd event,” denoted by O, is revealed, then the posterior partition

is V = [E,O] and H(V ) = log2 2. The conditional entropy is H(U | V ) = −(1
3 log2

1
3 +

1
3 log2

1
3 +

1
3 log2

1
3) = log2 3. The difference between the uncertainty of U and V is log2 6−

log2 2 = log2 3, and it is equal to the uncertainty about V assuming U .

Definition 2.2.14. The joint entropy [70, 79, 80, 81] of partitions U and M is by definition

H(U ·M) = H(U)+H(M |U) = H(M)+H(U |M). (2.2.7)

Remark. Properties of Joint Entropy [65]

1. For any U and B, H(U ·B)≥ H(U) and H(U ·B)≥ H(B),

2. H(U ·B)≤ H(U)+H(B),

3. H(U ·M) = H(U)+H(M) when U and B are independent partitions.

Example. Two partitions X = [a1,a2,a3,a4] with p(a1) =
1
2 , p(a2) =

1
6 , p(a3) =

1
6 , p(a4) =

1
6 , and Y = [b1,b2] with p(b1) =

1
3 , p(b2) =

2
3 are given. The product of two partitions and

probabilities are shown in Table 2.1 . Hence H(X)≈ 1.79, H(Y )≈ 0.91.

H(X |Y ) = ∑
2
i=1 p(Y = i)H(X |Y = i) = 1

3(
3
4 log2

3
4 +

1
4 log2

1
4)+

2
3(

3
8 log2

3
8 +

1
8 log2

1
8 +

2
8 log2

2
8 +

2
8 log2

2
8)≈ 1.54, and hence H(X ·Y ) = H(Y )+H(X | Y )≈ 2.45.

Table 2.1: Product of Partition X and Y , X ·Y

a1 a2 a3 a4

b1
1
4

1
12 0 0

b2
1
4

1
12

1
6

1
6
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Definition 2.2.15. The relative entropy [79, 82] is a measure of the distance between

two partitions. Given a partition U = [A1,A2, . . . ,An] pi = P(Ai) and a partition B =

[B1,B2, . . . ,BN ] qi = P(Bi), where i = 1 . . .n, relative entropy is defined as

D(U ‖ B) =
n

∑
i=1

pi log
pi

qi
. (2.2.8)

Remark. Properties of Relative Entropy [79]

1. D(U ‖ B)≥ 0,

2. D(U ‖ B) 6= D(B ‖U), and

3. Does not satisfy triangle inequality [83].

Relative Entropy can be interpreted as the notion of gain of information. This formula

explains the heuristic idea of the distance between two partitions and gain of information.

We are restating this derivation from Renyi’s book [59]. Given a set E containing N

elements and a partition of this set E1, . . . ,En. The number of elements of Ek is denoted by

Nk thus N = ∑
n
k=1 Nk. The probability of each element in the partition is given as pk =

Nk
N .

An element of E chosen at random can be specified using its index number in E. And also,

it can be specified by giving the set Ek to which it belongs and its index number within Ek.

The amount of uncertainty of the index number in E for the chosen element is equivalent to

sum of the uncertainty of the set Ek to which chosen element belongs and the uncertainty

of its index number within Ek. Then we have

H(ξ ) = H(η)+H(ζ | η) (2.2.9)

where the index number in E is denoted by ξ , the index k of the relevant set Ek is denoted

by η , and the index number within Ek is denoted by ζ . Clearly H(ξ ) = log2 N , H(η) =

∑
n
k=1 pk log 1

pk
, H(ζ | η) = ∑

n
k=1 pk log2 Nk.
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A nonempty subset of E, denoted by E
′
, is given. We are informed that an element

chosen at random belongs to E
′
. What amount of information is provided about the

uncertainty of the set Ek to which chosen element belongs? Let the intersection of Ek and

E
′
be denoted by E

′
k. Let N

′
k be the number of elements of E

′
k. Then we have ∑

n
k=1 N

′
k = N

′
,

qk =
N
′
k

N′
, and ∑

n
k=1 qk = 1. The uncertainty of the set Ek to which chosen element belongs

is denoted by the random variable η . The partition denoted by η is changed because of the

new information. We are looking for measurement of this change in the partition resulting

from the knowledge that an element chosen at random belongs to E
′
. The knowledge that an

element chosen at random belongs to E
′
contains the information log2

N
N′

. This information

is the summation of two quantities. The first one is the amount of change in the partition η

and the second amount is the information about ζ when η is already known. The amount

of information gain about η is the difference between the prior and posterior distributions

of η . Hence

log2
N
N ′

= D(Q ‖ P)+
n

∑
k=1

qk log2
Nk

N ′k
. (2.2.10)

Since ∑
n
k=1 qk = 1 and NN

′
k

N′Nk
= qk

pk
then D(Q ‖ P) = ∑

n
k=1 qk log2

qk
pk

, which is equal to the

2.2.8.

Definition 2.2.16.

T (U :M) = H(U)−H(U |M) (2.2.11)

is called the mutual information [33, 37, 38, 60, 61, 64, 69, 70] of the partitions U and

M. The observation of M reduces the uncertainty about U from H(U) to H(U |M). This

reduction is the mutual information between two partitions. Mutual information can be

interpreted as the information about U contained in M .

Remark. Properties of Transmission [34, 38, 61]

1. T (U : M)≥ 0,

2. T (U : M) = T (M : U), and

28



3. T (U : U) = H(U).

Definition 2.2.17. Interaction is the information between two of the partitions, due to

additional knowledge of the third partition [34, 38, 69]. It is defined as

Q(U : A : B) =−H(U ·A ·B)+H(U ·A)+H(U ·B)+H(A ·B)−H(U)−H(A)−H(B).

(2.2.12)

Interaction formula can be expressed in terms of the entropy formula as follows [84]

Q(A1 : A2 : . . . : An) =
n

∑
k=1
4nk

{
∑

all kth order in r
H(k partitions)

}
(2.2.13)

where4nk =


−1 f or even r− k

1 f or odd r− k

Figure 2.4 demonstrates certain quantities of entropy with a Venn diagram . The left

circle is the information we get from M, it is the uncertainty about M. The right circle

is the information we get from U . The overlap of the two circles represents the common

uncertainty. Hence transmission between these two partitions is shown as the intersection

of the two circles. The left half of the circle is the uncertainty from M alone. That part is

denoted by H(U |M) and it is the average amount of uncertainty that remains to be gotten

from M after U is already known. The total area enclosed in both circles represents all the

uncertainty that both U and M includes.
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H(U|M)H(M|U) T(U:M)

H(U.M)

H(M) H(U)

Figure 2.4: Information Quantities (Adapted from [81])

Definition 2.2.18. Transmission/Mutual Information function can be generalized to an

arbitrary number of partitions. Correlation [29, 38, 69, 70] among partitions U1,U2, . . . ,Un

is the total information transmission and by definition as follows:

C(U1,U2, . . . ,Un) =
n

∑
i=1

H(Ui)−H(U1 ·U2 · . . . ·Un). (2.2.14)

2.3 Communication Concepts

2.3.1 Communication System

Information theory is concerned with the quantitative analysis of an entity called

communication system [37, 63] which is shown schematically in Figure 2.5. It consists

of five parts. The information source [37] is responsible to generate messages to be

communicated to the receiver.The source encoder [37] is responsible to encode the given

message for transmission over the channel. The channel [37] is defined as the medium in

which the information is transmitted from the source to the receiver. The receiver decoder

[37, 63] is responsible for decoding the transmitted message. The receiver [37] is the actual

message destination. The source symbols [37] are the symbols that were generated and sent

by the source, and the receiver symbols [37] correspond to the symbols the sent symbols
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map. The noise [37] that is always present in the noisy channels causes the symbol at the

output of the source encoder to change during the transmission process.

Source Source EncoderSource Symbols Channel Receiver Decoder Receiver    Receiver Symbols

Noise

INFORMATION CHANNEL

Figure 2.5: Communication System (Adapted from [37])

Formal representation of information flow through a communication channel is depicted

in Figure 2.6 [84]. The uncertainty concerning the source partition X , denoted by H(X),

is called source entropy [60, 61, 63, 81]. It is the uncertainty concerning which symbol

will be transmitted. The receiver partition Y consists of all the possible symbols that will

be received. The amount of uncertainty in the receiver part, denoted by H(Y ), is called

receiver entropy [60, 61, 81]. Therefore, H(Y ) may include uncertainty which the sender

does not account. The conditional entropy H(Y | X) is the measure of this uncertainty and

it is equivalent to noise. In other words, part of the source entropy may not be received by

the receiver because of noise. The quantity H(X | Y ) is the average amount lost, and it is

called equivocation [61, 63, 84]. The amount of information transmitted [61, 63], T (X : Y )

Eq.(2.2.11), is the uncertainty shared by both source and receiver partitions. The capacity

of a channel is the maximum possible rate of transmission [37].
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X Y

H(X)
Source Entropy

H(Y)
Receiver Entropy

H(Y | X)
Noise 

H(X | Y)

Equivocation 

T(X:Y)

Information 
Transmitted

Figure 2.6: The Flow of Information Through a Channel (Adapted from [84])

Definition 2.3.1. Redundancy is the difference between the capacity of a communication

channel and the rate of transmission [37, 63, 81].

R(X : Y ) = Tmax(X : Y )−T (X : Y ) (2.3.1)

2.3.2 Classification of Channels

Following [63], a communication channel can be classified as follows:

• A lossless channel is a channel in which output determines the input [63]. There are

no transmission errors in lossless channel and H(X |Y ) = 0 for all input distributions.

This channel is also called a noise-only channel [84]. A lossless channel and

corresponding Venn diagram for information quantities are shown in Figure 2.7a.

• A deterministic channel is a channel where p(y j | xi) = 1 or 0 for all i, j; that is H(Y |

X) = 0 for all input distributions [63]. This channel is classified as equivocation only

channel [84]. Figure 2.7b demonstrates a deterministic channel.

• A channel is noiseless if it is lossless and deterministic. An example of a lossless

channel is given in Figure 2.7c.
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Transmission
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Figure 2.7: Classification of Channels: a) Lossless Channel or Noise Only Channel b)
Deterministic Channel or Equivocation Only Channel c) Noiseless Channel d)
Useless Channel e) Symmetric Channel f) Mixed Channel

• A useless (or zero-capacity) channel is a channel where H(X |Y ) = H(X) and T (X :

Y ) = 0 for all input distributions [63]. In a useless channel the output provides zero

information about the input. An example of a useless channel is shown in Figure

2.7d.

• A channel is symmetric if H(Y | X) is independent of the input distribution p(x) [63].

In a symmetric channel, conditional entropy H(Y | X) depends only on the channel

probabilities p(y j | xi). Binary Symmetric Channel [61] is shown in Figure 2.7e.

• A mixed channel has a mixture of noise and equivocation [63]. An example of a

mixed channel is shown in Figure 2.7f.

Example. We’re restating the example found in [63]. This example is selected to

demonstrate the information flow between input and output. In this experiment, there are

two coins available, one unbiased and a two-headed coin. In a single trial of the experiment,
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a coin is selected at random and tossed twice, and the number of heads is recorded. The

number of heads convey information about the identity of the coin. The number of heads

obtains in two tosses of the coin is random variable which will be denoted by Y . The

identity of the coin is a random variable which will be denoted by X . For the unbiased

coin X = 0 and for the two-headed coin X = 1. A diagram representing the experiment

is shown in Figure 2.8. What amount of information will be furnished hereby about the

identity of the coin by the number of heads recorded?

0

1

0

1

2

X Y

1

1/3

1/3

1/3

P(X=0)=1/2

P(X=1)=1/2

P(Y=0)=1/6

P(Y=1)=1/6

P(Y=2)=4/6

P(X=0 | Y=0)=1

P(X=0 | Y=1)=1

P(X=0 | Y=2)=1/4

Unbiased

Two-headed

Tail Tail

Head Tail 
or 

Tail Head

Head Head

Figure 2.8: A Coin Tossing Example (Adapted from [63])

Intuitively, one can conclude that the unbiased coin was used when less than two heads

are observed, however if both throws resulted in heads, the output of the experiment favors

the two-headed coin. The quantitative analysis of this experiment is given using entropy

and transmission calculations. The prior uncertainty concerning the identity of the coin is

H(X) = log2 2 = 1, after the experiment is performed, the uncertainty about the identity

of coin is H(X | Y ) = 1
6(0) +

1
6(0)−

4
6(

1
4 log2

1
4 +

3
4 log2

3
4) ≈ 0.54, and the information

transmitted about X by Y is T (X : Y ) = H(X)−H(X | Y )≈ 0.46.
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2.4 Summary

The key concepts to be used in the following chapters were reviewed in this chapter.

For the suitability to our application to software design we followed Papoulis approach

[65] by defining entropy as the measurement of uncertainty about the partition. Since

decomposition is the activity of partitioning a system into its successive subsystems, this

line of analysis would be suitable when the notion of decomposition is used as a bridge

between software design and entropic analysis for quantification purposes. Before the

discussion of decomposition as systematic partitions, the details of information functions

was given in this section. Utilization of entropy functions will be introduced in the

following chapters.
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Chapter 3

THE SYSTEMS PERSPECTIVE

This chapter will present a mathematical concept of organization and of systems used

to model software design in the following chapters. Our modeling of software design is

based on hierarchical decomposition and driven only by communication among the system

attributes. From a complex-system perspective, the software design problem is a form of

complexity analysis and system decomposition. This chapter introduces representation and

analysis of hierarchical systems.

Historically there has been confusion of terminology in this area. One reason for

this confusion originates from the disciplinary roots of the investigators, which includes

physics [29, 33], mathematics [34], and economics [39]. The notions of Complex Systems,

Organized Systems, and Organization are treated as equivalent concepts in this chapter.

Consequently, they are used interchangeably throughout this dissertation.

3.1 History

Following Boltzmann’s principles [52], the basic idea that underlies statistical mechanics

is that an organized system has a lower entropy than a disorganized one [29, 36]. The

difference between these two systems can be defined as a reduction in the entropy, and

the difference can be calculated by the methods of statistical mechanics [47]. In statistical

mechanics, an organized system is composed of ordered molecules [46, 47]. The states of

particles and correlation among these particles was demonstrated with Entropy term [32,
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33]. Watanabe demonstrated the information calculation as the measure of organization

[33, 36, 85]. Rothstein used the redundancy calculation to demonstrate the organization

[29, 32, 40, 86]. In communication theory, correlation is defined with the Redundancy term

[37, 61, 63, 66, 79]. At the early stages of information theory, redundancy was studied and

defined as the relationship between information and correlation [37].

Ashby made major contributions to the information-theoretical analysis of complex

systems [34, 87, 88, 89]. He defined a complex system as a set of variables with constraints

[90]. He mentioned that the presence of organization arises from communication between

variables. In his 1965 paper [34], he examined the constraints as multivariate relationships

within a system and denoted them as Internal Informational Exchange. He showed that

when the variables are related, constraints exist and they can be quantified with information

theory [34, 87, 88]. He also discussed how to measure information exchange within

systems that actively change in time [34]. Although Shannon’s Communication Theory

[37] deals with source and receiver states without considering real-time issues, Ashby

investigated temporal correlations in organizations [34]. After these results, he further

demonstrated the decomposition of systems as an information-flow partition according to

temporal and spatial information exchange [87].

Ashby’s ideas led to the development of new areas of study, including within

General System Theory [91]. He influenced system researchers in the area of

Reconstructability Analysis [92]. The reconstructability problem is a methodological

problem for reconstruction of an overall system from a given set of variables [92]. Several

notable system researchers undertook the informational-theoretical investigation of system

structure. Klir studied the processing of activity arrays through the use of information

theory [93]. Broekstra used the term Constraint Analysis to indicate the application of

information theory in the reconstructability problem [94]. While he discussed the disjoint

partition of constraints to represent a structure system, he also developed the non-disjoint

partition formalism. Krippendorff extended Ashby’s work by defining new information
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functions, such as Informational Distance and Informational Bias [84]. He noted the

concept of information calculus and lattice based representation of structure within his

spectral analysis papers. He pointed out the limitations in the interaction function [84].

Other contributors, such as Conant [41, 43, 95, 96], Gaines [97], Cavallo [98] , and

Uyttenhove [99] applied information theory in the reconstructability problem. Conant

discussed measurement of interaction between subsystems, information transfer through

finite state systems, and channel capacity of automata in his dissertation. He applied

information-theoretical measurement techniques to regulatory processes [43]. Later, he

studied pairwise interaction of variables in a dynamic system. Following Ashby and Simon,

Conant provided a technique to decompose a system into weakly connected subsystems

[41]. His technique detects subsystems of a complex system while quantifying the

interactions among the variables.

3.2 Nature of Hierarchical Systems

Simon, in his development of a science of design, investigated the nature of systems in

general [18]. He defined complex system informally as the composition of large number of

components interacting in a complex way [39]. Typically, in systems, the whole exhibits an

emergent behavior and becomes more than a linear sum of the parts [35, 39, 43]. Therefore

inferring the properties of the whole from the component interactions becomes difficult,

even if the properties of the parts and the laws of their interaction should be known [35, 39,

43].

From Simon’s perspective, complex systems are frequently hierarchical, exhibit a

systems structure through evolutionary processes, are decomposable into components or

subsystems, and because of their hierarchical nature, a relatively simple set of rules

defines their behavior [39]. Therefore, complexity is organized as a form of hierarchy

since complex systems are successively decomposed into lower and lower levels of

subsystems [39]. By a hierarchical system, Simon expresses that a system is composed
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of highly interrelated subsystems, organized into a hierarchical structure until reaching

its non-decomposible components [35, 39, 43]. Because of the level of hierarchy, one

can distinguish interactions among subsystems as well as interactions within subsystems

and components [35, 39, 43]. Furthermore, it is possible that interactions among some

subsystems can prove negligible compared with the interactions within their subsystems

[39]. In such cases, one can make the assumption that they are independent systems.

These systems can also be classified as decomposable into subsystems [39]. This leads

to the classification of nearly decomposable systems as systems in which the interactions

among the subsystems are weak, although the interactions cannot be neglected [39]. As

such, Simon concluded that many complex systems are nearly decomposable and possess a

hierarchical structure [39]. This observation indicated that the analysis of complex systems

is feasible since one can differentiate their parts [35, 39, 43]. When Simon applied this

classification to natural systems and concluded “ If there are important systems in the world

that are complex without being hierarchical, they may to a considerable extent escape our

observation and our understanding. Analysis of their behavior would involve such detailed

knowledge and calculation of the interactions of their elementary parts that it would be

beyond our capacities of memory or computation” [39]. This naturally ties with his notion

of bounded rationality in which he expounded that one needs to have sufficient cognition,

time, and information to reach a rational decision [100].

From our viewpoint, a critical observation made in these instances is that complex

structures in our natural environment are highly redundant, and this redundancy can

be used to simplify, model, and understand their description in economical terms [39].

However, as many authors of the era, including Shannon, indicated, one must find the right

representation to achieve this simplification [37, 39].
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3.3 Formal Treatment of Hierarchical Systems

Watanabe and others introduced a formal treatment technique for the analysis of

hierarchical systems following Simon’s definition [29, 32, 33, 35, 36, 41, 43]. Their

preferred starting point was the mathematical notion of the structure of organization, which

was conceptually identical to the systems view of Simon. However, Watanabe and others

took into account in their analysis the notion of uncertainty in the representation of their

models [30, 32, 33, 34, 35]. Therefore, in this section we note that the mathematical tools

developed in Chapter 2 are used in analyzing the organizational structure existing in a group

of stochastically behaving components.

In this perspective, a complex system is composed of correlated subsystems or elements

[32, 33, 34]. The formal analysis of a complex system is therefore, related to the degree

of correlation among its subsystems or elements [30, 32, 33, 34, 35]. Naturally, correlation

can indicate the level of depth and breadth of interactions among subsystems or elements.

Therefore, this correlation can be used to show the degree of interaction of subsystems

(or elements, or components) constituting a system. If we use the example of Watanabe,

one can say that gas molecules, naturally disorganized in a container, would show weak

interaction as such indicating a weak structural organization [36]. Technically, each gas

molecule can be considered to be nearly independent of the other gas molecules. However,

crystal molecules are correlated with each other according to the structural properties of

individual crystals, and as such, show a highly organized structure. An organized structure

includes redundancy and the amount of redundancy reduces the information required to

reveal that structure [29, 33, 35, 36]. Therefore, structure provides the information to locate

the position of other molecules in a crystal while the determination of the position of each

gas molecule in a disorganized system becomes difficult [36]. If we recall Shannon’s results

at this point, we observe that in communication theory, the structure of a system implies

the structure of a message and redundancy within the message [37]. The gas and crystal

analogies create a visual demonstration, in which exposing the structure of a disorganized
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system requires more information than revealing the structure of a more organized system.

It is observed that this fact mathematically corresponds to the amount of uncertainty [29,

33, 34].

However, as Watanabe recognized, one should distinguish the amount of uncertainty

in individual components from the amount of uncertainty of the whole system [33].

The systemic organization is a function of these two different types of uncertainty.

The amount of uncertainty of individual components simply quantifies our ignorance

about each component, while the essence of organization or emergent behavior of the

system is in the correlation among subsystems or elements [33, 34, 35, 36, 41, 43, 87].

Therefore, a significant amount of uncertainty among individual elements does not imply

an unstructured system [33, 36]. In an organized system, the amount of uncertainty of the

whole could be low despite high ignorance about each individual component [33].

In Chapter 2, entropy was shown to be a good measure of uncertainty. We discussed

various relations governing these entropy functions, H(X), H(X ,Y ) and H(X | Y ).

Following Watanabe [36], we provide a derivation of the formula of degree of organization.

An entropy function is non-negative

H ≥ 0. (3.3.1)

The definition of Conditional Entropy entails

H(X)+H(Y | X) = H(X ,Y ). (3.3.2)

Equation 3.3.2 implies that

H(X ,Y )≤ H(X)+H(Y ). (3.3.3)

Combining 3.3.2 and 3.3.3, we obtain

H(X | Y )≤ H(X). (3.3.4)
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Combining 3.3.1 and 3.3.2, we obtain

H(X)≤ H(X ,Y ). (3.3.5)

It is customary to attach intuitive meanings to these formulas using the notions of

ignorance and information. Watanabe uses the term indeterminacy interchangeably with

ignorance [36]. For example, the left half of equation 3.3.2 can be interpreted as the total

ignorance concerning the system X ,Y which is the sum of the initial ignorance about the

system X and the average remaining ignorance about the other system Y after we have

determined the state of X [36]. Therefore, the total information about the system X ,Y

is the information obtained by observing Y and the information obtained by observing X

after having obtained information about Y [36]. For example, equation 3.3.3 says that

the information obtained by observing the total system X ,Y is less than the sum of the

information obtained from X and the information from Y separately [36]. Because of

interdependence, there is an overlap between the information associated with X and the

information associated with Y . For example equation 3.3.4 can be interpreted that the

ignorance about X is larger or at least equal to the average remaining ignorance about Y

after the information about X is known [36]. For example the relation in equation 3.3.5

expresses that the ignorance about a system X ,Y is larger than , or at least equal to, the

ignorance about its part X , or Y [36].

Utilizing the inequality in equation 3.3.3, one can introduce a non-negative quantity

C(X ,Y ) by C(X ,Y ) = H(X) + H(Y )− H(X ,Y ) = H(X)− H(X | Y ) and C(X ,Y ) ≥ 0

where equality holds if and only if X and Y are independent [36]. On the other hand

C(X ,Y ) ≤ min(H(X),H(Y )) if X dependent on Y then C(X ,Y ) = H(X) If Y is dependent

on X and X is dependent on Y then H(X) = H(Y ) = C(X ,Y ) . Therefore the lower and

upper bounds correspond to the minimum and maximum interdependence between X and

Y respectively [36]. Thus the quantity C(X ,Y ) is called “interdependence between X and
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Y ,” H(X) is the information obtained by observing X only, while H(X | Y ) is the average

additional information obtained by observing X when the outcome of Y is known [36].

Only H(X | Y ) of H(X) is the information exclusively carried by X itself unobtainable

through Y . Therefore, H(X)−H(X | Y ) is the part of information that is doubly carried by

both X and Y . This redundancy is attributed to interdependence [36].

Naturally, the degree of organization increases if the degree of ignorance of the system

decreases despite a large degree of ignorance on individual components [33, 36]. Like

Watanabe states [36] “If there is no organization, a large amount of indeterminacy of

individuals will result in a large amount of indeterminacy of the whole.” Thus the strength

of organization is measured by the balance between the indeterminacy of the components

with respect to the indeterminacy of the whole [36]. Since entropy is a measure of

ignorance or indeterminacy, then the degree of organization [36] can be defined as

Organization = (sum of entropies of parts) – (entropy of whole). (3.3.6)

This formula is equivalent to correlation formula 2.2.14 given in Chapter 2.

3.4 Decomposition of Hierarchical Systems

Decomposition of a complex system, in a sense, is a matter of identification of its

components and their interactions [35, 41, 43]. A many-component system interacting in

a complex way is naturally not conducive to the observation of its component interactions.

Under these circumstances, the observer limits the observation to a few variables at a time

to decompose the system [30, 35, 101]. The difficulty rests in the identification of all

the system components, which is a requirement of decomposing the system into loosely

coupled subsystems or elements [30, 39].

One can define the system as a set of variables and observe the correlation between

variables [29, 33]. It is assumed that the information flow within the system is
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representative of the relations between the variables [33, 34, 35, 87]. Therefore, given

a system of variables, how do we decompose it into a set of subsystems or elements

to minimize the information flow between the subsystems? As we have mentioned in

previous sections, the answer lies in the hierarchical decomposition of the total correlation

[33, 34, 35, 87]. As Van Emden states, “The effect of the complete decomposition is

that correlation of the system is found to be equal to a sum of interactions” [35]. There

are multiple ways of producing such a decomposition scheme [35]. It is a matter of the

“parameter of interest” [17] to decide, which depends on the purpose of the analysis. One

natural purpose could be to identify subdivisions into subsystems in which there is little

interaction among subsystems compared to the amounts of interaction within subsystems.

Applying such a decomposition scheme can also be viewed as a “divide and conquer” or

“divide and rule” [35].

Alexander introduces a general algorithm for partitioning a system into its successive

subsystems [30]. The algorithm is a hill-climbing procedure consisting of producing

one-element subsets and computing the value of correlation for this partition followed by

comparing with it all partitions that can be obtained from it [30]. The partition having the

lowest value of correlation is then substituted for the original partition and the procedure

repeats. The termination criterion is such that the algorithm continues until it arrives to a

partition whose value of correlation is lower than that of any partition that can be obtained

from it by combining two sets. Another hill-climbing procedure used is based on finding

a tree of partitions directly [30]. This algorithm breaks a complete set into its two most

independent disjoint subsets, by computing correlation for a random two-way partition. It

then repeats this process for each of the two subsets obtained, successively partitioning

each of them into two smaller subsets until the entire set is decomposed [30].
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3.5 Summary

In this chapter, an overview on hierarchy of systems was given, primarily through Herb

Simon’s perspective. Then, formalization and quantification of hierarchical systems were

summarized. The last section detailed Information-Theoretical analysis and decomposition

of hierarchical systems. The mathematical concept of organization and decomposition

given in this chapter will be used to model software systems as hierarchical systems in

Chapter 5.
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Chapter 4

SOFTWARE DESIGN

In this chapter we review general design principles from the perspective of design

decomposition and related concepts. Our motivation to emphasize the design

decomposition approach is to be able to represent design in terms of information theoretical

notions. Since the heart of computing involves linguistic formalism we included linguistic

approaches as well as the role of specification languages. We conclude with an assessment

of the state of the art in design, open issues, and, a summary.

4.1 General Design Principles

It is well known that software design has benefited tremendously from the early

considerations of engineering design methods, principles, and the concept of intellectual

control over the developed design by human developers using various series of hierarchical

abstractions. Engineering processes start with the problem definition and recognition of

constraints (e.g., economic, timeliness, technical) and conclude with a prototype production

of desired artifact(s). Within an engineering process, a clear distinction is made between

design and manufacturing [5, 12]. Design Engineers/Designers are responsible for the

abstract creation of a product that involves proof-of-concept prototyping or various forms

of simulation and modeling [12, 13]. On the other hand, the actual realization of a product

is the task of manufacturing engineers [3].
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Following Smith and Browne [19], design problems consists of five elements: goals,

constraints, alternatives, representations, and solutions [19]. While goals comprise the

specification of needs, solutions provide satisfaction of those goals. Designers normally

generate various alternative approaches in order to solve the given problem. Alternatives

are the possibilities designers identify and evaluate [18]. During evaluation, designers

consider what is feasible and work to narrow the space of alternative designs [5, 6, 7, 8, 19].

Constraints specify the feasibility of alternatives [19]. There usually are a number of

feasible alternatives. The designer is required to make decisions based on many parameters

and to choose among possible alternatives, while evaluating the feasibility of each choice

[5, 8]. This situation reflects the overall uncertainty and decision process that designers

encounter in obtaining a solution. Every effective design decision resolves some part of

an unclear situation and reduces the number of possible alternatives, but may also limit

optimality. In the face of uncertainty, a designer is obliged to evolve a design so that if

an artifact were to be produced according to that design, it would meet the requirements

and satisfy the stated constraints [3]. However, the design may not be the optimal. For the

sake of completeness, it is relevant to mention Herb Simon’s notion of bounded rationality

[100, 102] as an observation of human decision making. The bounded rationality notion

is that rationality of individuals is bounded by the information available to them, their

cognitive limitations, as well as time available to make their decision. Herb Simon coined

the term “satisfice” by combining words satisfactory and sufficient [100]. As such, a

decision-maker becomes a “satisficer,” one seeking a satisfactory and sufficient solution

rather than an optimal one.

A discussion of the psychology of problem solving may also help to evaluate the

design process more clearly. Following Pahl [5], problem solving commences with

factual knowledge about a given problem domain. In a design process, goals and

constraints comprise the factual knowledge about the design problem (and there is normally

uncertainty). This factual knowledge is conceptualized in the designer’s mind. In this
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process, short-term and long term-memory are distinguished. It is assumed that short-term

memory retains a limited quantity of facts on a temporary basis [101]. On the other hand,

long-term memory retains the selectively obtained knowledge units for long-term usage of

the entity [5, 103].

Limitations of short-term memory and associative structure requirements in long-term

memory naturally lead designers to search for organized structures within a given problem

area [5, 104]. A structure consists of components and the relationships among them

[5, 36]. Humans use decomposition techniques to find components and relationships

[105]. Decomposition is the partition of anything into its elements and the study of their

relationships [5]. It is generally understood that, humans are able to recognize the following

types of relationships:

• concrete-abstract relationships,

• part-whole relationships, and

• space-time relationships.

4.2 Software Design Principles

Just as in “hard” engineering disciplines, in Software Engineering software design

is considered a fundamental activity. However software development is in a

“pre-engineering” phase analogous in many respects to the pre-engineering phases of long

established engineering disciplines [26]. Software-engineering activities are the techniques

used by humans to solve problems, while computers implement the solution. Software

engineering consists of a series of steps [106]. It has been demonstrated repeatedly in

software development that it is a challenging task to produce a high quality artifact within

the cost and scheduled time parameters, especially for large complex projects. Systematic

software design methodologies reduce the cost of software development and improve the

quality of software products [3, 27, 107, 108]. Tools and effective methods for the activities
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in software development have been developed and lead to a better understanding of the

software development process [108, 109].

A deeper analysis of design reveals that designers evidently focus on abstractions such

as data, function, and control abstractions in order to master the complexity in software

systems [17]. Abstraction of data is the determination of elements, their values, properties

and operations [110]. The result is the decomposition of items that constitutes the software

system [44]. Data are abstracted so that access to the raw data is provided through a set of

predefined operations [111, 112]. Abstraction of function is the functional decomposition

of software systems [110, 112]. The domain, range, and transformation of functions are

determined using function abstraction [110]. Abstraction of control is the determination of

the sequence of data and function activities [110, 112].

These abstractions have been provided in the form of programming language constructs

and design tools [108, 112]. Significant effort has been expended over several decades to

find new design techniques, programming languages, and other strategies for the production

of software [106, 108, 109]. In the early days, programs were implemented as a single

block of instructions [110, 112]. Over time, as problems became more complex and

computers became more powerful, the size of the programs have correspondingly increased

[104, 106, 109, 113]. Controlling the large blocks of instructions proved to be difficult

for developers [110, 112, 114, 115]. Naturally, to tackle the complexities, language

designers started applying hierarchical decompositions techniques [22, 116, 117]. Large

programs were organized into subprograms. Therefore, as a decomposition strategy,

numerous approaches were introduced [116, 117, 118, 119]. These approaches, which

can generally be grouped under the category of module-based programming, amounted

to the development of constructs, such as function, subroutine, and modules [17, 110].

Further developments in hardware technologies and changing requirements led to the need

for implementing even more sophisticated programs. Therefore, the shortcomings of

module-based abstractions and decomposition eventually became pronounced [22, 120].
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As such, the need for even more advanced decomposition techniques resulted in the

development of yet newer programming languages, newer development paradigms, and

programming constructs [121, 122]. Object-Oriented techniques [22, 115, 120, 123] and

Aspect-Oriented techniques [124, 125, 126] are among those facilitating further abstraction

and decomposition.

4.2.1 Design Specification Languages

The foregoing approaches have been successful in their own right to provide strong support

for human designers but they were also supported by specification languages as well as

other forms of linguistic approaches. Therefore; we briefly discuss specification languages

although over the years specification languages gained complete independence from many

abstract design notions.

Specification languages are utilized to represent software design. A software

specification is a description of a collection of software components, defining their

boundaries within software systems and capturing interconnection relationships among

them [127]. Abstract definitions of these components are defined using specification

languages during software development [107]. There are a variety of specification

languages targeting different phases of software development, such as Z [128], Clear [129],

CSP [130], and Larch [131]. These languages provide abstraction techniques to cope with

the software system’s complexity [111, 112, 127]. Specification languages are used to

define structural and behavioral abstractions [27, 107, 127]. Structural abstractions provide

the details for the composition of the software system [112, 127]. On the other hand,

behavioral abstractions specify the execution time details such as the input-output relations

of the software systems [107, 127].

Informal or natural languages enable one to specify software systems in a systematic

way, lacking formal mathematical underpinnings [107, 121]. Formal languages use

mathematical structures and provide reasoning about design [107, 127] . Formal languages
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Figure 4.1: Classification of Specification Languages (Adapted from [107, 127])

are classified into two principal categories [107]. First, the model-based languages

provides techniques to construct a model of the software system using structures such

as sets, functions, and sequences. Model-based specification languages concentrate on

describing how a software system is to operate. These languages are categorized into two

subgroups. In an event-based languages, sequence events are used to represent system

behavior [127]. While in state-based languages, software systems are represented by a

sequence of states [127].

Second the property-based languages enable designers to specify the properties of

software systems using logic and equations [127]. These languages are concerned

with what the system is to do. They are based on procedural and data abstractions.

Axiomatic languages, which are used for procedural abstraction, are classified within the

property-based languages [127]. They use first order predicate logic. On the other hand,

algebraic languages use equations to define data abstractions [127]. Figure 4.1 shows these

languages.
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4.2.2 Methods for Representing Semantics/Behavior

There are several different methods that have been proposed to describe the semantics of

programming languages in a concise and formal manner [132]. These methods also have

been successfully applied to define the semantics for Software. The following lists some of

the main approaches to specify programming language semantics that may also be useful

for defining the semantics of software.

Denotational Semantics: Denotational semantics is a semantic definition technique

based on formal constructs [133]. In denotational semantics, each language element

is associated to a mathematical object by mapping functions. Denotational semantics

provides concise and rigorous definitions to represent the meaning of constructs [133].

Although denotational semantics of software systems could be defined in terms of

state changes, manipulating mathematical objects rather than software constructs lead to

difficulties and complexity during implementation.

Operational Semantics: Operational semantics can be used to specify the meaning

of a programming language in terms of program execution on abstract machines [134].

Semantic definitions are comprised of rules, which describe specific effects of language

constructs on an abstract machine. Each rule consists of preconditions that have to be met

for the rule to apply and affects the transformation of the current state in some way. The

final states of this transition system only contain values; they represent the result of the

specification. Most software design platforms that provides a formal way of specifying the

semantics have employed an operational style of the semantics definition.

Attribute Grammar: An attribute grammar [135] is another formal technique used to

specify static semantics as an extension of a context-free grammar. Attribute grammars are

mainly used to check the correctness of the static semantics such as variable type checking,

and compatibility between procedure definitions and calls. Attribute grammars form one

of the essential parts of compilers and offers benefits such as automatic construction of

compilers, interpreters, and other language-based tools [136]. However, the large number
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of rules required for a complete definition of a language may offer challenges when using

attribute grammars to define a software systems.

Graph Grammars : Graph Grammars is a formal technique used to divide all semantic

concerns into discrete states and transition relations [137]. Graph grammars provide visual

rules that specify in-place transformations based on precondition and postcondition steps.

An in-place model transformation rule is defined as L: [NAC]*LHS->RHS, where L is the

rule label, LHS denotes the left-hand side rule stating the precondition pattern to trigger

the rule; the RHS represents the right-hand side rule that specifies the final model part after

execution of a rule. NAC is the optional negative condition that disables the rule if it is

satisfied. Each graph transformation specifies the runtime behavior for one of the state

transitions [137, 138, 139].

4.2.3 Control Abstractions

Linguistic approaches although successful in their own right they are not sufficient to

further improve the art of software design. Significant benefits could accrue to designer

if linguistic information can be quantized. If successful it enables computational modeling

of design. Furthermore, it provides a possibility of developing a deductive reasoning

mechanism to reach different design alternatives.

In order to support human intuition and provide documentation, behavioral aspects

are typically represented by a diagrammatical system such as an activity diagram [140]

and then transformed into a computer program [141]. Although activity diagrams

document the logical flow of design behavior [140], they are not formal tools providing a

mathematical foundation for analysis of design. Traditionally, compiler implementers have

used graph-theoretical systems such as control flow graphs for analysis [142]. Converting

programs or activity diagrams to control flow graphs can be achieved by introducing

junction nodes where two lines meet without a vertex (node) [143]. The resulting directed

graph is now a mathematical object and is called a program control graph or control
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Table 4.1: The Three Constructs of Programming and Their Equivalent CCFGs (Adapted
from [143])

Sequence Construct Selection Construct Repetition Construct

Activity Diagram

FlowGraph

Cubic Graph

flow graph [142]. Control flow graphs have been useful in analyzing programs and their

algorithms. They not only represent the logic flow of the program but also the overall

control structure. Table 4.1 shows the three basic constructs as activity diagrams and their

equivalent flow graphs. Representing programs with graphs provides software developers

with a graph theoretical toolbox to solve problems associated with programming systems

[142, 144]. However, we need graph formalism that provides composition/decomposition

principles in a rigorous way.

A specific class of control flowgraphs, called Cubic Control Flow Graphs (CCFG),

was introduced to study decomposition properties of complex programs [45]. A CCFG

is a strongly connected directed graph in which every vertex has a degree of three.

Every CCFG has an even number of vertices that are colored half-black and half-white

in order to represent decision and junction nodes respectively. Decision vertices have
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indegree one and outdegree two, while junction vertices have indegree two and outdegree

one. CCFGs, when used to represent the skeleton of a program, enable composition and

decomposition of the structural system skeleton of associated programs [145]. A CCFG

can be reduced to its components, namely the CCFGs of the three constructs [45]. Then,

composition/decomposition principles derived from the cubic graph formalism are used to

investigate the integration of the system [45, 142].

The decomposition process divides a cubic graph into at least two cubic graphs. The

key idea of the decomposition is to remove some edges from a given cubic graph and to

add some edges to decomposed components so the original graph is disconnected while the

resulting components remain cubic graphs [45]. The composition of two cubic graphs is

the process of combining two arbitrary cubic graphs into one cubic graph. This procedure

is explained in detail in [45] and used in [146].

The decomposition of cubic graphs classifies them into two different classes:

decomposable and non-decomposable cubic graphs. A cubic graph is said to be a prime

cubic graph if it is non-decomposable; otherwise, it is said to be a non-prime cubic graph

[45, 147]. Generation of prime cubic graphs and enumeration of them are discussed in

[147].

4.2.4 Coupling and Cohesion

The way in which a software system is decomposed significantly affects the complexity of

software [17, 44, 106]. There is a need to specify decomposition criteria that can guide the

designer in design activities. There are two basic criteria for assessing the decomposition

of a system: cohesion and coupling [116, 118, 148]. These criteria have been used for

evaluating software design in Structured design and Object-oriented design [22, 27, 109,

116, 119].

Coupling is a measure of the strength of interconnection among the decomposed

elements [116, 143]. Coupling is one way to evaluate the decomposition of a system. It
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defines the degree of independence among the decomposed elements [149]. Highly coupled

elements are joined by strong interconnections, while low coupling elements are joined by

relatively weak interconnections [115, 150]. Degree of coupling is an important factor in

systems complexity [143]. Making decomposed elements as independent as possible is

one of the major objectives when dealing with system complexity [22, 27, 106, 110, 116].

Interconnections determine how well the system can be maintained or changed. It is hard to

make changes to one decomposed element without affecting the others for highly coupled

systems [17, 22]. Because of strong interconnection, an update within a decomposed

element leads to additional updates in the other units; this is undesirable.

Cohesion is a measure of the strength of associations of elements within a single

decomposed element [119, 143]. Cohesion is another way to measure how well a system is

decomposed into elements. Within highly cohesive units, elements are strongly related to

one another. Placing strongly associated elements into same unit is another objective while

dealing with complexity [27, 104, 110].

Coupling and cohesion are clearly interrelated [116]. The cohesion of decomposed

elements often determines the coupling among the elements. The greater the cohesion

of individual elements lead to the lower coupling among the elements [118, 149].

4.3 Contemporary Design Decomposition Approaches

We will review contemporary design decomposition techniques starting with Objects

followed by a discussion of Design Patterns, Aspects, and Domain-Specific Languages.

4.3.1 Objects

Object-oriented techniques decompose the software system into a set of objects with

well-defined interfaces [22, 115, 120, 123] An object encapsulates data and services for

manipulating data [109, 112, 115]. Objects call on the services provided by other objects.
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Information hiding defines how objects interacts. Inheritance and polymorphism provide

extension mechanism for objects [112, 115, 121].

Intellectual distance was defined by Edsger Dijkstra to show the distance between

the problem space decomposition and the design space decompositions [151]. Objects

minimize this distance by defining design structure as close as possible to real-world

structure. So the structure of the system is readily understandable.

4.3.2 Design Patterns

Christopher Alexander proposed the pattern and pattern language concepts to describe the

solutions to the problems that occur over and over again [152]. His ideas were adopted

by the object-oriented community and applied into software problems. Software designers

developed over time design patterns to solve recurring software design problems [42].

Design patterns specify design abstractions in a simple and elegant way. Each pattern

provides a specific decomposition technique for a specific case. Designers utilize patterns

to choose design alternatives that make software systems highly reusable and easily

maintainable. The collection of 23 design patterns are given in the so-called Gang-of-Four

catalog [42]. The patterns are divided into three categories: creational, structural, and

behavioral. Creational patterns provide solutions to problems related with object creation

[42]. Structural patterns deal with composition of the classes [42]. Furthermore, behavior

patterns defines techniques for the object interactions and their run-time responsibilities

[42]. Within this catalog, each pattern has four essential elements: the pattern name defines

the pattern in a word or two, the problem describes the cases to apply the pattern, the

solution describes the template, which is a general decomposition technique, to solve the

problem, and finally the consequences put results and trade-offs of applying the pattern

[42].
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4.3.3 Aspects

Although objects enable designers to decompose the system as close as possible to real

world, there are elements within the system require further decomposition methods [124].

These elements, called cross-cutting concerns, scatter throughout the objects and affect all

the objects in the systems [124, 125, 153]. Aspect-Oriented Software development (AOSD)

provides decomposition techniques [125]. In aspect-oriented programming terminology,

Aspects specify cross-cutting concerns, Joint points defines where aspect should be

associated in source code, and Aspect weaving links aspects to the joint points [124, 153].

4.3.4 Domain-Specific Modeling Languages

Model-Driven Engineering (MDE) is a software methodology that utilize modeling

techniques to raise the level of abstraction from the solution domain to problem domain

[154]. It has been shown to increase productivity and reduce development costs [154]. The

concepts advocated by MDE focus on abstractions tied to a specific domain that provide

tailored modeling languages for domain experts. Domain-Specific Modeling Languages

(DSMLs) [155], used within the MDE context, enable end-users who are domain experts to

participate in software development tasks and to specify their own programs using domain

concepts in the problem space, rather than programming language concepts in the technical

solution space [156, 157].

DSMLs, like other programming languages, consist of definitions that specify the

abstract syntax, concrete syntax, static semantics and behavioral semantics of a language

[158]. Specification of abstract syntax includes the concepts that are represented in the

language and the relationships between those concepts. In MDE, domain metamodels

are often used to define the structural rules for the abstract syntax [157]. Concrete

syntax definition provides a mapping between meta-elements and their textual or graphical

representations. Well-formedness rules represent the static semantics of a language. Such

rules are often specified in constraint languages (e.g., OCL) that enforce rules among
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metamodel elements. The runtime behavior of each syntactical meta-element defined in

the DSML represents the behavioral semantics of the language.

4.4 Design Space Analysis

As we have mentioned, software designers have to consider multiple alternatives during

design and reach a decision based on experience and the methodology that they employ.

They may eliminate some design alternatives in early stages, although that may result

in loss of information, and hence optimality [159]. Therefore, designers need a

consistent technique to represent, compare, and select among design alternatives. Aksit

and Tekinerdogan [44] provided an approach to rank various design alternatives based

on quality factors, adaptability, and time. They provided algebraic techniques, called

Design Algebra, to form a mathematical foundation for the design process [44]. Design

Algebra can be viewed as a special form of Relational Algebra [160] that implements

operation instructions such as size, reduce, quantify, and generate for design spaces [44].

Design space is a function that maps fundamental concepts to the design properties [44].

Fundamental concepts of the domain are identified with domain analysis. Design properties

include quality factors and implementation details that cover functional and non-functional

requirements [44]. Each design alternative in a design space can be considered as one

specific mapping of concepts to design properties. Aksit and Tekinerdogan [44] specify

design algebra operations are as follows:

• Size, defines the total number of alternatives that can be generated from design space.

• Generate, identifies all possible design alternatives in a design space.

• Reduce, enables a condition to reduce the size of the design space. (Reduction is

the mechanism that provides elimination of alternatives based on required criteria.

Unfeasible and uninterested alternatives are discarded by the reduce operation.)
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• Quantify, measures the design alternatives to provide a means with which to

differentiate criteria. (The most relevant design alternative has the highest value after

the quantification process.)

4.5 Summary

In this chapter, we reviewed general design principles from the perspective of design

decomposition and related concepts. We followed with engineering design as well as

software design principles and approaches. We included the role of specification languages

as well as other forms of linguistic approaches. We also reviewed structured design

decomposition including notions of data, function, and control based abstractions and

their role in decomposition including coupling and cohesion. Control flow graph, a formal

version of flowchart, is a popular decomposition technique favored by compiler designers

as well as static software analysis programs. A specific class of control flow graphs is Cubic

Control Flow Graph (CCFG). We reviewed CCFG because it provides the most complete

control flow formalism. Methods for representing semantics are also reviewed. Our review

continued with domain specific modeling languages, design patterns, objects, and finally

aspects.

We concluded with design space analysis, in which software designers have to consider

multiple alternatives and reach a decision based on experience and the methodology that

they plan to use. In other words the designer develops a parameter of interest for his

design decomposition and performs the decomposition accordingly. The actual mechanism

of achieving this goal and its information theoretical analysis will be explored in the next

chapter.

The historical objective in developing these successive approaches and their associated

methodologies has been that the human developer should maintain intellectual control over

the developed design by hierarchical series of abstractions. Although these approaches has

been successful in their own right in providing strong support for human designers, they
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are fundamentally linguistic in nature and do not consider information flow in a manner in

which we can make computational modeling of design. Furthermore, they do not present a

possibility of developing a deductive reasoning mechanism to reason about different design

alternatives.

By reviewing all prior techniques from the perspective of design decomposition, we

wanted to expose these approaches in such a way that we can analyze all types of designs

primarily by information theoretical means in the following chapters.
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Chapter 5

INFORMATION THEORETICAL ANALYSIS OF

SOFTWARE SYSTEMS

Our general thesis is that software designers can benefit from the experience of

engineering designers and information theory formalism.Knowledge of information theory

enables software designers to adopt a systems view which facilitates intellectual control

over a given software design. Since design imposes organization through successive

transformations in reaching the final product, it is possible to formalize it with information

theory. This is where reduction of entropy concept and the associated mathematics,

various decomposition techniques become useful. The following sections in this chapter

will illustrate how communication channel formalism from information theory can help

formalize these relationships.

Software designers can also improve organization and clarify their thinking by

systematic design space analysis proposed by Aksit and Tekinerdogan [44]. Every design

starts with uncertainty and the art of software design reduces uncertainty. We discern

from Aksit and Tekinerdogan approach and further systematize the approach through

information theory.

The concept of a system and information theoretical approach has been introduced in

Chapters 1 through 4 from the perspective of design decomposition. After the presentation

of the overall perspective in Chapter 1, we introduced formal study of information in

Chapter 2, while reviewing the systems perspective in Chapter 3. Finally, we connected
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to our main objective, software design, in Chapter 4. In order to maintain the historical

perspective, we retained the terminology of the original sources in these chapters. For

example, we maintained the term “element” for software modules following Ashby [34]

and Watanabe [33].

In this chapter we introduce our initial assumptions in order to present a consistent

approach for information theoretical analysis of software systems. After the introduction

of our approach, we provide supporting examples and case studies in the next chapter. The

key operational assumptions are as follows:

• Design is a hierarchical decomposition and covers all steps from requirements to the

final product (Design is fundamental).

• Design imposes an organization through successive transformations, and therefore

• Formally, design reduces entropy.

Furthermore, we observe that these assumptions of design are shared by software design as

well. In fact, following Simon we can state that software “design is the transformation of

existing conditions into preferred ones.” This formulation is itself an early contribution of

this work because this view of design is novel as far as we can ascertain from the literature.

It should be remembered that, historically, software design has not been studied as

an entropy reduction process leading to the final product. Of course, many particular

approaches have existed to decompose software design to gain some level of intellectual

control of the overall process. It was even recognized that design is a central event in

developing software and as such various methodologies were developed [17, 18, 107].

In some cases software has even been called “abstract design” [9, 10, 17] and design

space techniques are proposed to aid the software development [44]. In fact, many levels

of design have been recognized starting from overall design or architecture to detailed

design [107]. However, a need to develop a new approach for consistent and systematic

development of software design still exists.
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Following Simon, Shannon, and Conant we investigate software design as a hierarchical

decomposition and we represent software design as a communication channel, which is a

novel strategy. As such, software design is represented as an entropy reduction process.

Since this approach rests on a known mathematical formalism, information theory, the

machinery of the theory can be used for further systematic study of software design.

5.1 Software Design is an Entropy-reduction Activity

Software designers generate various alternative approaches to decompose the given

problem from requirements, finally yielding to final artifact. Usually several decomposition

alternatives exist and the designer must make decisions based on many parameters and to

make choices among possible decomposition alternatives, while evaluating the feasibility

of each choice. The choice among them often is subtle. This situation reflects the

uncertainty that designers encounter in finding a specific decomposition. Uncertainty exists

in every step of software design, such as the clarification of requirements, mapping problem

space concepts into solution space concepts, and transformation of solution space concepts

into executable concepts.

It is our view that, every design decision resolves some part of an unclear situation

and reduces the number of possible alternatives. Thus, each design activity is an

uncertainty-reduction process. The following section demonstrates the entropy reduction

activities during problem space and solution space mapping. Four different software design

specifications are used to define software design space. Each design space captures all

possible decomposition alternatives related with one particular aspect of software system.

Design alternatives within spaces clearly show the uncertainty that designers encounter

while progressing through steps.
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Table 5.1: Mapping Between Problem Space Concepts and Solution Space Concepts

Problem Space Concepts

Structural

Class

Attribute

Operation

Relationships

Behavioral

Sequence

Branch

Loop

One responsibility of a software designer is to transform problem space concepts into

solution space concepts. Problem space concepts are terms, definitions, and rules from

business/customer domain which are independent of technical details. On the other hand,

solution space concepts are technical terms that incorporate solution details. Solution

space concepts for software systems can be categorized into two groups, Structural and

Behavioral Concepts [44]. Table 5.1 shows the mapping between problem concepts

and solution ones. In this section, Class, Attribute, Operation, Relationships, Sequence,

Branch, and Loop concepts are used to decompose solution spaces.

As stated above, software design consists of structural and behavior specifications. All

possible design alternatives for these specifications form a design space for the software. To

identify software abstractions, and corresponding decomposition activities, four different

design spaces are defined, a discernment we obtained in this research. These are as follows:

• Structural Entity Space,

• Structural Relation Space,

• Behavioral Flow Space, and

• Behavioral Expression Space.
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5.1.1 Structural Spaces

Design space decomposition starts with the specification of structural spaces. Structural

spaces define entities, attributes, and relationships between the concepts [44]. While

entities within solution space are specified in a Structural Entity Space, relationships are

given in a Structural Relation Space.

5.1.1.1 Structural Entity Space

Mappings between structural problem domain concepts (CDomain) into structural solution

concepts are shown in this space. Figure 5.1 demonstrates the space as a two dimensional

space. Following Aksit and Tekinerdogan [44], definitions of Structural Entity Space and

corresponding solution space concepts are given as follows :

• The predefined property PEntity (represented as the y-axis in Figure 5.1) is

a set of solution space alternatives for problem space concepts. PEntity =

{Class, Operation, Attribute}, and

• SStructuralEntity defines the design space that maps the concepts of CDomain to the

elements of PEntity and as such represents the total set of alternatives of domain

models.

5.1.1.2 Structural Relation Space

This space shows the relations between problem domain concepts in relational terms.

Figure 5.2 demonstrates the two-dimensional space. Following Aksit and Tekinerdogan

[44], definitions of Structural Relation Space and corresponding solution space concepts

are given as follows :

• The predefined property PRelation (represented as the y-axis in Figure 5.2)

is a set of alternatives for the relationships between concepts. PRelation =

{Association, Generalization, AttributeO f , MethodO f , NoRelation}, and
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Figure 5.1: Structural Entity Space

• SStructuralRelation defines a design space that maps the 2-tuple concepts of CDomain to

the elements of PRelation and as such represents the total set of relationship alternatives

of domain models.

5.1.2 Behavioral Spaces

As stated in previous sections, structural aspects of software are given with two structural

design spaces [44]. However, design space specifications should also provide behavioral

spaces. Representation of design alternatives for software behavior is the early contribution

of this work. To represent behavioral design alternatives, behavior is decomposed into

two spaces. The first space gives the flow alternatives of each design. The second space

represents operation steps of behavior as expressions.

5.1.2.1 Behavioral Flow Space

Software programs have an equivalent representation composed of repetitive, selective, and

sequential constructs [161]. In this study, behavior flow space enables behavioral mapping

for the design. Cubic Control Flow Graph (CCFG) is the solution space concept for the
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Figure 5.2: Structural Relation Space

decomposition of behavior flow space. This space shows the logical flow of operational

domain concepts with CCFG [45, 145, 147]. CCFG is a specific class of control flow

graphs providing mathematical convenience for design space decomposition and analysis.

Each cubic control flow graph represents a flow, which is composed of if and/or loops,

as a combination of decision nodes and junction nodes. Figure 5.3 demonstrates the

two-dimensional space. Definitions of Behavior Flow Space and corresponding solution

space concepts are given as follows:

• The predefined property PFlow (represented as the y-axis in Figure 5.3) is a set of

prime cubic graph alternatives for the flow of operational domain concepts.

• SBehaviorFlow defines design space that maps the operational concepts of CDomain to the

elements of PFlow and as such represents the total set of flow alternatives of domain

concepts.
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Figure 5.3: Behavioral Flow Space

5.1.2.2 Behavioral Expression Space

Behavior Flow Space represents the decomposition of logical flow. Additionally, to

represent operational steps, cubic graph edge specifications as well as domain concept

mappings are required. Control flowgraphs with proper labeling comprise the formal tool to

complete behavioral specification. Graph grammar rules are used to decompose operational

steps. Expression Space shows specification of cubic graph labels. Figure 5.4 demonstrates

the two-dimensional behavioral flow space. Definitions of Behavior Expression Space and

corresponding solution space concepts are given as follows:

• The predefined property PExpression (represented as y-axis in Figure 5.4) is a set of

graph grammar rules for the state transition steps of domain operations.

• SBehaviorExpression defines design space that maps the labels defined on cubic graph

edges to the elements of PExpression and as such represents the total set of state

transition alternatives of domain operations.
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Designers decompose these design spaces defined above using solution concepts to

generate a design artifact. In the beginning there is minimal organization therefore high

uncertainty exists (high entropy). The design decisions carrying out design activities reduce

uncertainty and introduce comparatively higher organization (low entropy). In a pictorial

form given in Figure 5.5, the design process is represented from the perspective of the

designer to capture the uncertainty reduction process. In Chapter 6 a representative example

of this process is presented in the form of a library example. All of the possibilities within

the four spaces, given on the left part of Figure 5.5 , demonstrate the uncertainty. On the

other hand, the artifact, given on the right part of the figure, displays organization (low

entropy). Representing software design as an uncertainty reduction process is one of the

novel contributions of this work.
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Figure 5.5: Software Design Activities Transforms Uncertainty to Certainty

5.2 Information Theoretical Approach

System decomposition provides a mechanism to deal with transforming uncertainty to

certainty during design. The process of transforming uncertainty to certainty is viewed as

a process towards organization. In turn, design as a fundamental process is a hierarchical

decomposition and covers all steps from requirements to the final artifact(s). Therefore,

design imposes an organization through successive transformations, and formally speaking,

reduces entropy. Furthermore, software design possesses these key assumptions as well.

In fact, software design is an entropy reduction process leading to the final artifact.

Therefore, following Simon, we analyzed software design as a hierarchical decomposition

and following Shannon and Conant, we represented software design as a communication

channel which is the interaction between elements. Since information theory is a

well-known engineering formalism, it can usefully be applied to advance our viewpoint.

71



We developed the communication channel representation of software through a process

of 1) Set-theoretical representation, 2) Mapping to communication channel formalism, and

3) through hierarchical decomposition leading to entropy reduction. This representation

enables us to study software systems as communication channels, and is a novel

contribution of this work.

5.2.1 Set-theoretical Representation of Software Systems

We start with mapping of software systems to set-theoretical representations. Software

systems are represented with an arbitrary number of variables. We define a set of K

variables for a given software system. The variables represent elements, such as identifiers

defined within programs, data values from data segment, function return values, and code

segment addresses. Each variable is denoted by X j where 1≤ j ≤ K. Software system is a

set of X j, denoted by the set S = {X1, . . . ,XK}.

X ′js values are taken from the set Pj = {X1
j ,X

2
j , . . . ,X

n j
j }. Pj is a finite set, and its elements

depends on the software elements which X j represents. The set Pj forms a partition

associated with variable X j.

For example, when an integer type identifier defined within a given program is associated

with X1, P1 takes a set of valid values associated with this integer type. Considering another

level of abstraction, we can see that for an integer type with n bits, unsigned type represents

the non-negative values 0 through 2n−1, so that P1 = {0, . . . ,2n−1}, on the other hand,

signed integer type represents numbers from −2(n−1) through 2(n−1)−1, therefore the set P

becomes P1 = {−2(n−1), . . . ,0, . . . ,2(n−1)−1}.

The next step is the observation of values associated with variables of the system.

Therefore, values associated with each variable are obtained and observed once per cycle,

for example, at the end of a user event for an application. The cycle represents the

stable states within a software system. The cycle should allow the variables a chance of

changing values so the stable states of software system can be observed. In terms of the
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communication channel, this maps input variables of a channel to output variables. We

observe the K variables for N cycles, and obtain a total of K ·N different values. Therefore,

observed values for each variable is denoted by O j = {O1
j , . . . ,O

N
j }. Observed number of

occurrences of the event in considerationX j = X i
j is denoted by nX i

j
, such that ∑

n j
i=1 nX i

j
= N.

Number of occurrences associated with partition Pj is be denoted by Fj = [nX1
j
, . . . ,n

X
n j
j
].

The variables X j is grouped into sets to demonstrate decomposition steps during software

design. The set Si = {S1
i , . . . ,S

ni
i } represents a subsystem of given software system, where

∪r
i=1Si = S and Si∩S j = /0 for all i 6= j.

A representative example of variables and observations is shown in Figure 5.6. In this

example, eight variables are defined for a given software system. These eight variables are

observed within seven cycles as listed in Figure 5.6. Therefore, in this example, K = 8,

N = 7, S = {V 1,V 2,V 3,V 4,V 5,V 6,V 7,V 8}. The values of variables are shown in Table

5.2.

V1 V2 V3 V4 V5 V6 V7 V8

2 7 4 67 20 10 1212 93

40 123 1234 45 12 5 4 34

6 56 3455 5 34 400 4 3

1 34 23 3455 6787 2 4 456

80 1 23 543 88 123 4 6

15 123 23 2 8 2 4 567

200 999 12 2 1 1222 4 2

Figure 5.6: Conceptual Representation of Set-theoretical Representation of Software
Systems
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Table 5.2: Values of V 1−V 8

Variables Pi ni Fi

V 1 P1 = {1,2,6,15,40,80,200} n1 = 7 F1 = [1,1,1,1,1,1,1]

V 2 P2 = {1,7,34,56,123,999} n2 = 6 F2 = [1,1,1,1,2,1]

V 3 P3 = {4,12,23,1234,3455} n3 = 5 F3 = [1,1,1,3,1]

V 4 P4 = {2,5,45,67,543,3455} n4 = 6 F4 = [2,1,1,1,1,1]

V 5 P5 = {1,8,12,20,34,88,6787} n5 = 7 F5 = [1,1,1,1,1,1,1]

V 6 P6 = {2,5,10,123,400,1222} n6 = 6 F6 = [2,1,1,1,1,1]

V 7 P7 = {4,1212} n7 = 2 F7 = [6,1]

V 8 P8 = {2,3,6,34,93,456,567} n8 = 7 F8 = [1,1,1,1,1,1,1]

5.2.2 Channel Formalism of Software Systems

As presented in the above section, set-theoretical representation of a software system

and the corresponding observed values reveal that there are varieties in observed values,

and there are relationships between the values. To analyze these relationships, we use

communication channel formalism. The set theoretical decomposition of the software

system lead us to expose the relationships between variables. This observation naturally

lead us to capture this relationship in the formalism of communication channel. As

can be discerned from the information theory literature the communication channel, as a

mathematical object, connects input variables to output variables in a probabilistic manner.

A communication channel is represented by an input set S = {S1, . . . ,Sn}, an output

set R = {R1, . . . ,Rm}, and a set of conditional probabilities P(Sk | Rl) for all k, l [61]. A

schematic of a communication channel is shown in Figure 5.7. Here S1,S2 are the input to

the channel and R1,R2 are the output.
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Figure 5.7: A Communication Channel

The interaction between elements in a given software system is represented using

communication channel formalism. To represent the interaction between two system

variables for example, Xi and X j:

• the value set , Pi, which is associated with Xi, is taken as a channel input set S,

• the value set , Pj, which is associated with X j, is taken as a channel output set R, and

• then channel probability is, P(Sk,Rl) =
nSkRl
nRl

, where observed number of occurrences

of the event in consideration{Rl = Pl
j} is denoted by nRl , the number of occurrences

of the event {SkRl = Pk
i Pl

j} is denoted by nSkRl .

For example, Figure 5.8 shows the communication between V 3 and V 4 for the software

system given in Figure 5.6.

Figure 5.8: Communication Between V 3 and V 4
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Communication channel representation is the mathematical modeling of the interactions

among the software elements. This modeling enables us to demonstrate the organization

and the entropy-reduction process during the software design.

To calculate the interaction in the channel we need the entropy calculation since entropy

of a variable, X j, denoted H(X j), is used as a measure of the variability of X j. As stated in

the second chapter, this value is calculated for each variable of a given software system by

the formula [37] :

H(X j) =−
n j

∑
i=1

nX i
j

N
log

nX i
j

N
. (5.2.1)

The observed transmission between two variables, Xi,and X j, is defined as follows:

T (Xi : X j) = H(Xi)+H(X j)−H(XiX j). (5.2.2)

This value is equivalent to the transmission formula given in Chapter 2. We therefore use

this formula for each interaction to measure the organization within software design, thus

leading to the observation for entropy reduction.

In summary, the mapping of set-theoretical representation to channel formalism is

needed to show the interaction between variables. As a result of this observation, we now

have obtained a novel communication channel representation of the software system in

Figure 5.9 produced from Figure 5.6. In Chapter 6, we present representative examples.
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V1 V2 V3 V4 V5 V6 V7 V8

2 7 4 67 20 10 1212 93

40 123 1234 45 12 5 4 34

6 56 3455 5 34 400 4 3

1 34 23 3455 6787 2 4 456

80 1 23 543 88 123 4 6

15 123 23 2 8 2 4 567

200 999 12 2 1 1222 4 2

V3 V4

4

12

2

5

23

1234

45

67
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3455

1

3455

11

1/3

1/3

1/3

1

Figure 5.9: Conceptual Representation of Channel Representation of Software Systems

5.2.3 Hierarchical Decomposition of Software Systems

Hierarchical decomposition, through a process partitioning interactions in a channel,

produces subsets of channel elements. In Figure 5.10, this process is represented as a

transformation between channels and set-subsets producing a hierarchical combinations of

software elements. A complete hierarchical decomposition example is given in Chapter 6.

Following the notation introduced above, software design decomposes the given software

system S= {X1, . . . ,XK} into r elements, such that the variables X j is grouped into sets, Si =

{S1
i , . . . ,S

ni
i }which represents an element of a given software system, where ∪r

i=1Si = S and

Si∩S j = /0 for all i 6= j.

The total interaction is decomposed into transmission such that

CTotal(X1X2 . . .XK) =
r

∑
i=1

CTotal(Si)+C(S1,S2, . . . ,Sr) (5.2.3)

where CTotal(Si) is the transmission within an element, Si, and C(S1,S2, . . . ,Sr), correlation

formula 2.2.14 given in chapter 2, is the transmission among elements. As a result, software

system is decomposed into r elements with the total amount of transmission C(S1S2 . . .Sr).

The example in Chapter 6 shows the actual decomposition using a specific example.
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Figure 5.10: Conceptual Representation of Hierarchical Decomposition of Software
Systems

5.3 Summary

In this chapter, we developed a novel communication channel formalism for software

systems. We used a set-theoretical representation to produce a mapping from software

to a communication channel, leading to entropy reduction. This representation enabled us

to study software systems as communication channels. We formally demonstrated that

• software design is a hierarchical decomposition and covers all steps from

requirements to the final product, and

• software design imposes an organization and reduces entropy through successive

transformations.

The communication channel representation of software systems opens up useful

possibilities for applying engineering mathematical analysis to software development.

This means that current understanding and informal representations of software design,

using our results, can now evolve into the type of inquiry involving classical engineering

mathematics. These results offer an opportunity for transformative impact that could

influence the area of software engineering by providing a relatively more stable context for

discussing the representation of software design than is currently available. In summary,

our contributions and their impacts are as follows:
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• Formal representation of hierarchical decomposition of software and

entropy-reduction view of software design, including :

– better understanding of the design process in software engineering based on

classical engineering principles,

– establishing a new formal foundation for future software research, and

– enabling the use of a known mathematical formalism of information theory,

and therefore opening up possibilities to investigate software design with

established engineering techniques and mathematics.

• Communication channel representation of software:

– opening a new possibilities of software research, connecting software with

information and coding theory, and

– providing stronger bridge between established engineering methods and

software design.

Together these theoretical contributions advance the state of software design theory as

hypothesized in Chapter 1.
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Chapter 6

EXAMPLES, RESULTS, AND ANALYSIS

In Chapter 5, we introduced an information-theoretical analysis of software systems based

on the communication-channel formalism. In this chapter, we provide supporting examples

associated with the theory introduced in Chapter 5. We begin with a representative example

of design space analysis in which we demonstrate the organization process [44]. We

follow up with an information-theoretical example in which we demonstrate the progress

of discovery from set-theoretical representation to communication-channel representation,

and finally to hierarchical representation. All these representations are necessary to map

software systems to the communication-channel formalism.

For convenience, we recapitulate key assumptions as introduced before. We hypothesize

that design, as a hierarchical decomposition, imposes organization through successive

transformations, while covering all aspects from requirements leading to the final

artifact(s). It should be noted that the design-space-decomposition example demonstrates

the principle of imposing order throughout design. The other key idea is that design

reduces entropy. The communication-channel example demonstrates the nature of entropy

reduction in design, demonstrating a promised result of this dissertation. Therefore,

with representative examples, we expose software design as an entropy-reduction process.

Furthermore, we show the connection between the communication-channel formalism and

software systems. We conclude with an analysis of the results.
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6.1 Design Space Example

As explained in Section 5.1, making successive design decisions by decomposing the

design spaces, produces higher levels of organization and leads to lower levels of entropy.

This section demonstrates the application of the design-space decomposition to a library

example provided by Aksit and Tekinerdogan [44]. The example is the design of a set

of collection classes, such as LinkedList, OrderedCollection, and Array to be a part of

an object-oriented library. These classes should provide the needed operations to read and

write the elements stored in collection objects. Furthermore, the sorting operation is needed

to sort items within collection objects.

An overall view of the application of the design-space decomposition to a library

example and corresponding final artifact is provided in Figure 6.1. As stated in Section 5.1,

software design consists of structural and behavior specifications. For the identification

of the software abstractions, and the corresponding decomposition activities for the

library example, four design spaces, Structural Entity Space, Structural Relation Space,

Behavioral Flow Space, and Behavioral Expression Space, are demonstrated in this section.

The structural model of the library example is composed of the concepts of the domain

(CDomain) and the relationships in the domain (RDomain). They are listed below:

• CLibrary = {Library,Collection,LinkedList,Array,OrderedCollection,

collectionItems,sort,read,write},

• RLibrary ={(Library,Collection),(Library,LinkedList),(Library,OrderedCollection),

(Library,Array),(Collection,LinkedList), (Collection,OrderedCollection),

(Collection,Array),(sort,Collection),(sort,LinkedList),(sort,OrderedCollection),

(sort,Array)}.

The structural decompositions are depicted in Figure 6.2 and Figure 6.3. The two types

of structural decompositions, entity design space and relation design space, are shown in

Figure 6.2 and Figure 6.3, respectively.
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Figure 6.1: An Overall Diagram of Successive Design Decisions Leading to the Final
Product
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Figure 6.2: Structural Entity Design Space for the Library Example

Designer decisions in entity design space (represented in two dimensions) are marked in

red in Figure 6.2. On the other hand, the decisions in relation design space are shown in

red in Figure 6.3.
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Figure 6.3: Structural Relation Design Space for the Library Example

The behavioral decompositions are given in Figure 6.4 and Figure 6.5. The selected

design alternatives concerning Flow Design Space and Expression Space are shown in red

in Figure 6.4 and Figure 6.5 respectively. As defined in Section 5.1.2, the icons on the

y-axis in Figure 6.4 represent the predefined property PFlow as cubic graph alternatives
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Figure 6.4: Flow Design Space for the Library Example

for the flow of operational domain concepts. On the other hand, the icons on the y-axis

in Figure 6.5 represent the predefined property PExpression as graph grammar rules for the

state transition steps of domain operations.
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Figure 6.5: Expression Design Space for the Library Example
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The mapping of problem space concepts to solutions space concepts as shown in Figure

6.4 and Figure 6.5 warrants an example for clarification. Therefore, we include an

example design of the sort operation for an Array class and its corresponding cubic-graph

representation in Table 6.1. Graph grammar examples are found in [157, 162]. The graph

grammar examples provided there illustrate how the author and others specified software

behavior using preconditions and postconditions.

Table 6.1: A Design of Sort Behavior for an Array Class

Begin
a r r a y R e f = C o l l e c t i o n I t e m s
n= s i z e o f C o l l e c t i o n I t e m s
f o r i =1 t o n

s m a l l = i ;
f o r j = i +1 t o n

i f a r r a y R e f [ j ] < a r r a y R e f [ s m a l l ]
s m a l l = j ;
temp= a r r a y R e f [ s m a l l ] ;
a r r a y R e f [ s m a l l ]= a r r a y R e f [ i ] ;
a r r a y R e f [ i ]= temp

end

�

The analysis of this example implies that the Library designer decomposes these design

spaces using solution space concepts to generate a library system. This process is viewed in

our model as an effort towards producing an organized system. As emphasized throughout

this dissertation in general and in Chapter 5 in particular, design spaces consist of all

possible alternatives. This fact is shown in figures associated with the library system in

this section. Therefore, the initial state of the library design spaces represent all possible

alternatives with minimal organization (implying high entropy). The successive design

decisions, shown as red markings within design spaces of the library example, introduce

comparatively higher organization (implying low entropy).
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6.2 Information Theoretical Analysis Example

As explained in Section 5.2, a software system is represented with an arbitrary number of

interacting variables, in which the process of transforming uncertainty to certainty is an

activity towards higher level of organization. Thus, design by imposing organization leads

to lower levels of entropy. This example, through the use of hierarchical organization,

demonstrates the utilization of communication channel in design.

Table 6.2 shows the specification of the representative example, with which we

demonstrate information theoretical analysis of software design. In this example, the

abstraction level and style selected by the designer is Object-Oriented. In summary,

following the theory developed in Chapter 5, we first map Class Attributes into set variables

(cf, Table 6.3, Figure 6.6), producing software system S = {V 1,V 2,V 3,V 4}. Then, we

observe the run-time values of these variables for quantitative analysis (cf, Table 6.4). Next,

we demonstrate the relationships between variables as communication channels (cf, Figure

6.7, Table 6.5, Figure 6.8). Using communication channels, we show the hierarchical

decomposition and information theoretical quantification for this example (cf, Figure 6.9,

Figure 6.10, Table 6.6).

The representative example of this section is presented below, following the theoretical

development as explained in Section 5.2. As stated in Section 5.2.1, we start with

mapping of the software system to a set-theoretical representation. We define a set of four

variables, {V 1,V 2,V 3,V 4}, for the software system. In this example, variables represent

Attributes defined within Class A and Class B. Mapping between Class Attributes and

set variables is given in Table 6.3. The example software system is represented as a set,

S = {V 1,V 2,V 3,V 4}.
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Table 6.2: Example Software System

In this example, Class definitions demonstrate the hierarchy between Classes and

Attributes. Figure 6.6a depicts the tree representation of the hierarchy of the example

system. A set-theoretical representation of this hierarchy is shown in Figure 6.6b. Class A

is mapped into a set {V 1,V 2} and Class B is mapped into a set {V 3,V 4}.

Table 6.3: Software Concepts to Set Concepts

Software Set

Example System S = {V 1,V 2,V 3,V 4}

A.x V 1

A.d V 2

B.s V 3

B.z V 4
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a b

Figure 6.6: Hierarchical Representation of the Example: a) Tree Representation of the
Hierarchy of the Example b) Set Representation of the Hierarchy of the
Example

The next step is the observation of values associated with variables of the system. For

the example system, values associated with each variable are observed with the execution

of the calculate method shown in Table 6.2. Each calculate execution changes values of

variables so that each transformation of the example system is observed. Observations of

four variables for nine cycles are given in Table 6.4 1.

1The complete observation values can be found in Appendix B.
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Table 6.4: Part of the Observed Values

Cycle # V1 V2 V3 V4

1 6 0 7 1

2 6 6 42 7

3 11 0 53 42

4 16 0 69 53

5 16 17 1104 69

6 21 3 1125 1106

7 21 23 1146 1125

8 21 27 24066 1150

9 21 28 505386 24071

As stated in Section 5.2.2, the interaction between variables in the example software

system is represented using the communication channel formalism. In terms of mapping to

the channel representation, the relationship between V 1 and V 2 based on observed values

within nine cycles is shown in Figure 6.7. As shown in Table 6.4, while V 1 = 6 in the

first and second cycles , V 2 = 0 for the first cycle and V 2 = 6 for the second cycle. This

relationship is shown in the communication channel of Figure 6.7 as two communication

links starting from the first node of V 1 and ending in the first and third nodes of V 3.

6

11

0

3

16

21

6

17

23

27

28

Figure 6.7: Actual Communication Between V1 and V2
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Transmission between variables is calculated using the transmission formula 5.2.2 given

in Section 5.2.2. Pairwise relationships and corresponding transmission values for the

example system are shown in Table 6.5. Diagrammatic representation of six pairwise

relations are shown in Figure 6.8. In Figure 6.8, pairwise relations are indicated by arrows

whose thickness is directly proportional to transmission values. For example, transmission

value between V 3 and V 4 is 7.56 in Table 6.5, and it is shown as the strongest pairwise

relationships in Figure 6.8 with the thickest arrow.

Table 6.5: Transmission Between Variables

Variables Transmission

V 1⇔V 2 2.81

V 1⇔V 3 4.28

V 1⇔V 4 3.91

V 2⇔V 3 3.86

V 2⇔V 4 3.68

V 3⇔V 4 7.56

Figure 6.8: Transmission Between Variables

As stated in Section 5.2.3, partitioning of these interactions creates the hierarchy within

software systems. Groups of highly interacted elements constitute the subsystems of the
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system, as such producing the desired hierarchy. Following these principles, hierarchical

decomposition of the example system is shown diagrammatically in Figure 6.9.

Figure 6.9: Decomposition of Interaction Among Variables

As seen in Figure 6.9, V 1 and V 2 are grouped into one subsystem and V 3 and V 4 are

grouped into another subsystem. The interaction between two subsets is also represented

as a communication channel in Figure 6.10.

Figure 6.10: Communication Between Two Subsystems

Communication between variables within the example software system can be

decomposed in many different ways. Table 6.6 shows various decomposition possibilities

for the example system. For example, the decomposition S = {{V 2},{V 1,V 3,V 4}}

partitions the example system into two subsystems. First subsystem, {V 2}, consists of

one software element with no internal communication. Second subsystem {V 1,V 2,V 3} is

composed of three elements with total of 12.44 transmission value among the variables,
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V 1,V 3, and V 4. Transmission value between the subsystem {V 2} and the subsystem

{V 1,V 3,V 4} is 4.27.

Table 6.6: Decomposition of Interaction Among Variables and Subsystems

Decomposition
Transmission

among
elements

Transmission
within

elements

S = {V 1,V 2,V 3,V 4} 16.71 16.71

S = {{V 1},{V 2},{V 3,V 4}} 9.15 0+0+7.56

S = {{V 2},{V 1,V 3,V 4}} 4.27 0+12.44

S = {{V 1,V 2},{V 3,V 4}} 6.34 2.81+7.56

As explained in Chapter 3 and Chapter 5, the communication between variables

and decomposition of these communications create the organization within the example

software system. The analysis of this example demonstrates that a communication

channel representation is created for the example system. In the process, we used a

set-theoretical representation and grouping of subsystems based on the observed interaction

values. This activity produced the hierarchy and thus produced the communication channel

representation of the example system.

Figure 6.11 demonstrates the broad disciplines from which we have obtained the

appropriate formulas to represent software design as an entropy-reduction process. From

information theory, we used the mathematical model of communication system defined by

Shannon [37] to model communication or information exchange among software elements.

We adopted the partition formalism definition of Shannon’s entropy given by Papoulis

[65]. Papoulis defines a partition as a collection of mutually exclusive events whose union

is universal set. Entropy of a partition is defined as a measure of uncertainty about the

occurrence or nonoccurrence of any event Ai of a partition U . It is denoted by H(U). The

postulates of the Entropy function, H are

1. H(U) should be a continuous function of pi = P(Ai).
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Figure 6.11: Conceptual Approach

2. If p1 = · · · = pn = 1/N, then H(U) should be a monotonic increasing function of

N; that is, for U = [A1, . . . ,Am] p(A1) = · · · = p(Am) = 1/M and Y = [B1, . . . ,Bn]

p(B1) = · · ·= p(Bn) = 1/N M < N implies H(U)< H(Y ).

3. If one of the elements of U be broken down into two successive events, then a new

partition B is formed and H(B)≥ H(U).

For multivariate interactions, we applied multivariate information transmission which

was defined by McGill [38]. He defined correlation formula which is the extension of

Shannon’s communication system for multivariate cases. Correlation among partitions

U1,U2, . . . ,Un is the total information transmission and by definition as follows:

C(U1,U2, . . . ,Un) =
n

∑
i=1

H(Ui)−H(U1 ·U2 · . . . ·Un). (6.2.1)

From systems theory, we used Ashby’s systems approach. He defined complex systems

as a set of variables with constraints [90]. As elaborated in Chapter 5, we used Ashby’s

technique to map a software system into a complex system and then we used the

organization measurement technique defined by Rothstein [29], Watanabe [33] to map

into the Entropy calculation of Shannon. Rothstein and Watanabe, being physicists in

their original training, primarily investigated the organization from the point of view of the
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interaction among speeding gas molecules. They demonstrated that order of gas molecules

is related with uncertainty of their positions and entropy calculation is the measure the

orderliness for gas molecules. The strength of organization is measured by the balance

between the entropy of the components with respect to the entropy of the whole. Then the

degree of organization can be defined as

Organization = (sum of entropies of part) – (ntropy of whole). (6.2.2)

As elaborated in Chapter 5, we applied this formula to the organization of software.

We used hierarchical system definition from Simon to demonstrate that software design

is a hierarchical decomposition of complex system [39]. Formal treatment of hierarchical

decomposition was also studied by Conant [41]. Building on Simon and Ashby, Conant

provided a technique detecting subsystems of a complex system using communication

formalism of Shannon. As elaborated in Chapter 5 and as shown in Java implementation in

Appendix A we applied the following steps to the decomposition of software system:

1. Define a set of K variables for a given software system. Each variable is denoted

by X j where 1 ≤ j ≤ K. Software system is a set of X j, denoted by the set S =

{X1, . . . ,XK}.

2. Observe the K variables for N cycles, and obtain a total of K ·N different values.

Observed number of occurrences of the event in considerationX j = X i
j is denoted by

nX i
j
, such that ∑

n j
i=1 nX i

j
= N.

3. Represent the interaction between two system variables, Xi and X j using

communication channel as follows:

• the value set , Pi, which is associated with Xi, is taken as a channel input set S,

• the value set , Pj, which is associated with X j, is taken as a channel output set

R, and
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• then channel probability is, P(Sk,Rl) =
nSkRl
nRl

, where observed number of

occurrences of the event in consideration{Rl = Pl
j} is denoted by nRl , the

number of occurrences of the event {SkRl = Pk
i Pl

j} is denoted by nSkRl .

4. Calculate the interaction in the channel using entropy of a variable, X j, denoted

H(X j), is used as a measure of the variability of X j. This value is calculated for

each variable of a given software system by the formula:

H(X j) =−
n j

∑
i=1

nX i
j

N
log

nX i
j

N
. (6.2.3)

The observed transmission between two variables, Xi,and X j, is defined as follows:

T (Xi : X j) = H(Xi)+H(X j)−H(XiX j). (6.2.4)

5. Group the variables X j into sets to decompose software. The set Si = {S1
i , . . . ,S

ni
i }

represents a subsystem of given software system, where ∪r
i=1Si = S and Si∩ S j = /0

for all i 6= j. The total interaction is decomposed into transmission such that

CTotal(X1X2 . . .XK) =
r

∑
i=1

CTotal(Si)+C(S1,S2, . . . ,Sr) (6.2.5)

where CTotal(Si) is the transmission within an element, Si, and C(S1,S2, . . . ,Sr),

correlation formula.

In conclusion, based on Simon’s [18] design definition, we posited that software design

is the transformation of current conditions into preferred conditions. We mapped

transformation idea to software design. For this mapping we used Tanik’s abstract design

definition [13, 9, 17] which addresses all design steps from requirements to final product.

To demonstrate software design as an entropy-reduction process, we modeled software

design using design spaces which were introduced by Aksit and Tekinerdogan [44]. This

modeling technique enable us to represent software design as hierarchical decomposition.
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As a result of the application of these techniques, we provided a novel modeling for

information theoretical representation of software systems and design. The results given

in this chapter show that information theoretical representation of software systems and

design formalize software design decomposition. The results demonstrate that software

design fundamentally is an entropy-reduction process. The results explicitly show that

classification of software elements into composite software elements, such as class,

module, provide an organization which provide entropy reduction.

6.3 Summary

In this chapter we showed two classes of representative software examples which provide

calculation instances for the formulas presented in Chapter 5. The Appendix A shows the

Java program for the calculations and Appendix B contains the associated data. The first

class of representative examples involve design space decomposition leading to entropy

reduction of software design. The second class of examples is the communication-channel

representation of software design. With these examples, we demonstrated that software

design is a hierarchical decomposition. This implies that in software design the successive

design decisions leads to reduced entropy and as such allows for analysis of all kinds of

designs with information theoretical mechanisms.
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Chapter 7

SUMMARY, CONCLUSIONS, AND FUTURE WORK

In this chapter, we provide an overall summary of the findings of this work while reviewing

what was proposed in the first chapter. We offer conclusions on our outcomes and

describe potential for future work in systematizing design in software engineering including

additional incremental results.

7.1 Summary and Conclusions

According to Simon [18], “Design is the transformation of existing conditions into

preferred ones.” Throughout the dissertation we assumed that software design is also the

transformation of current conditions or state into preferred conditions or state. Initially,

our intent was to formally analyze this transformation process for software design. As a

result of this analysis, we hoped to develop a formal system perspective for software design

[146]. We have achieved this objective by realizing software design as an entropy-reduction

process and by representing software systems with communication channels.

We investigated software design as a hierarchical decomposition of design spaces.

We realized that before initiating the software design process there is minimal initial

organization (higher entropy) and therefore high uncertainty exists. The design decisions

carrying out design activities (hierarchical decompositions) reduce uncertainty and

therefore introduce comparatively higher organization (lower entropy).
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This observation described in Chapter 5 and associated experiments explained in Chapter

6 revealed that design is an entropy-reduction process. Probability and information theory

deal with uncertainties and provide the mathematical framework for entropy calculations.

Using these theories, we developed the communication channel formalism of software

design and therefore we prepared the groundwork for the analysis of software designs as

an entropy reduction process.

We started our approach by mapping software systems to set-theoretical representations.

Then we showed the properties of the information transfer between variables and

demonstrated the interactions among variables as representable by communication

channels. Using the communication-channel representation, we explained hierarchical

decomposition of software design. As a result, through hierarchical decomposition, we

analyzed software design as an entropy-reduction process.

Our key goal was to systematize software design and understanding of the design process

in software engineering based on first principle foundations of science and the practices of

“hard” engineering disciplines. We achieved this goal with formal demonstration that:

• software design is a hierarchical decomposition and addresses all steps from

requirements to the final product, and

• software design imposes an organization and reduces entropy through successive

transformations.

The communication-channel representation of software systems opens up further useful

possibilities for applying engineering mathematical analysis to software development.

This indicates that current understanding and informal representations of software design,

using our results, can further evolve into a type of inquiry involving classical engineering

mathematics and concepts. The current results offer an opportunity for transformative

impact that could influence the area of software engineering by providing a relatively

more stable context for discussing the representation of software design than was currently

available before our work. In summary, our contributions and their impacts are summarized
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Table 7.1: Contributions and Associated Impacts

Contributions to
Software Design

Explanations/Impacts

Entropy Reduction View
(See also Section 5.3)

Better understanding of the design process in software
engineering based on classical engineering principles

Establishing a new formal foundation for future software
research

Enabling the use of a known mathematical formalism of
information theory, and therefore opening up possibilities
to investigate software design with established engineering
techniques and mathematics

Communication Channel
Representation
(See also Section 5.3)

Opening new possibilities in software research, connecting
software with information and coding theory

Providing a stronger bridge between established
engineering methods and software design

in Table 7.1. Together these theoretical contributions advance the state of software design

theory as hypothesized in Chapter 1.

As explained in Chapter 4, we presume that Software development is in a

“pre-engineering” phase that is analogous to many pre-engineering phases found in

engineering disciplines of the past. As Royce [25], Yeh [163], Aksit [44], and Tanik

[17, 164], stated from different perspectives, design principles similar to “hard” engineering

principles are needed to overcome problems associated with software development. Future

researchers by using these observations and our entropy reduction formalism could further

improve and/or develop improved mathematical underpinnings for software development.

Considering our information-theoretical formalism, further formalization of software

development towards hard engineering disciplines is in relatively easy reach.

The communication-channel representation of software systems opens up possibilities

for further axiomatization of software design process and thus improving the affinity of

software design to classical engineering. On the other hand, viewing various dynamic

complex processes such as life processes (i.e., cell division) as a progression towards
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organization (lower entropy) opens up broad applications areas to be studied as an entropy

reduction process.

While Chapter 5 presents our formalism, Chapter 6 confirms the validity and

achievability of the theory through representative examples.

7.2 Future Work

The act of design starts with recognition of a problem. A designer determines the problem

according to his or her parameter(s) of interest. A parameter of interest corresponds to

a designer’s intention and includes the criteria that will drive the design. The designer

is required to make decisions based on many parameters and to make choices among

possible alternatives, while evaluating the feasibility of each choice. All these actions on

the part of the designer, require measurement whether the designer is consciously aware

or not. To make sense of a measurement one needs an agreed-upon metric. Therefore, the

calculation of entropy by definition depends on the parameter of interest. Therefore, low

entropy calculation concerning a design implies by definition organization with respect

to the parameter of interest. Naturally, conflicting parameters of interest have different

effects in an entropy reduction process. Investigation of software design with conflicting

parameters of interest is a potential future work of this study. Software Quality factors and

their impacts during software design could also be investigated in the same context of many

parameter of interest problem.

Moreover, differences between decomposition spaces and decomposition tools, such

as the semantic gap [20], the mapping of problem space concepts and solution space

concepts, affect entropy reduction process. There are multiple ways of producing a

decomposition scheme, which are each driven by parameter of interest. In other words, the

designer develops a parameter of interest for his or her design decomposition and performs

the decomposition accordingly. Different design techniques can be also interpreted as

conflicting parameters of interest.
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This research revealed the need for a mathematical theory to analyze the relationship

between decomposition at run-time and programming statements, such as selective,

repetitive, and assignment. Although we took useful steps toward that end here, more work

remains to create a complete, self-consistent, testable theory. Additional theory could be

created to explain and provide deeper guidance on developing programs using information

and coding theory. In this context, here are ways that future work could logically proceed:

• Information Theory and Representation of Computer Programs as a Partition

Transformation, and/or

• Information Theory and Representation of Computer Programs as a Generalized

Communication System.

The following subsections highlight these two areas.

7.2.1 Information Theory and Representation of Computer Programs as A

Partition Transformation

Computer programs can be described and analyzed in combinatorial terms. As computer

scientists, we observe that the execution of computer programs are repeatable and the

outputs are not randomly produced. When we omit all side effects in a specification, it is

expected that given a specific input, one gets a specific output when executed with the same

program. Software programs could be formulated as a process that maps input possibilities

to output possibilities. Furthermore, this mapping could be represented in combinatorial

terms and can subsequently be analyzed with an information-theoretical formalism.

Interpretation of computer programs as a partition (decomposition) transformation is shown

in Figure 7.1. All computer programs transform an existing decomposition of software

system into a new decomposition of software system.
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Figure 7.1: Interpretation of Computer Programs as a Partition Transformation

As a representative example to elaborate on this idea, we introduce an analysis of the

program ADD, that calculates the summation of two integers. An instance of ADD program

for {X ,Y | 0 < X < 4 & 0 <Y < 4} , where X and Y are inputs to the program, is specified

in Table 7.2:

Table 7.2: An Instance of ADD Program for {X ,Y | 0 < x < 4 & 0 < y < 4}

X Y Output

1 1 2

1 2 3

1 3 4

2 1 3

2 2 4

2 3 5

3 1 4

3 2 5

3 3 6

The ADD program example then can be stated as a mapping from one partition to

another partition. Figure 7.2a, Figure 7.2b, and Figure 7.2c, visually depict the prior

partition, intermediate partition, and final partition, respectively. These transformations

could be modeled as an entropy reduction process, and mapped into Communication

channel formalism.
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Figure 7.2: Partition Transformations for the ADD Program: a) Initial Partition for the
ADD Program b) Intermediate Partition for the ADD Program c) Final Partition
for the ADD Program

As a second representative example for partition transformation, we introduce modeling

programs developed with structured constructs. As reviewed in Section 4.2.3 structured

programs are realized with three fundamental constructs, namely sequence, selection,

and repetition. Therefore, if a computer program is viewed as an integrated set of

these three constructs then following our approach, incoming symbols are considered as

the input, and the outgoing symbols stand for the output for the corresponding input.

Therefore, realization of these constructs by using communication channels would allow

us to represent programs as integrated communication systems or an integrated set of

communication channels. Figure 7.3 diagrammatically summarizes each of the three

constructs as communication channel models.
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V1 V2 V1 V2

V1 V2

V1 V2

V1 V2

Figure 7.3: Communication Channel Representation of Program Constructs: a) Sequence
b) Selection c) Repetition

7.2.2 Information Theory and Representation of Computer Programs as A

Generalized Communication System

The transition from initial partition to final partition in theory can only have a

communications channel as shown in the previous section. However, in practice an encoder

and a decoder is needed for the formulation of a parameter of interest as shown in Figure

7.4. In this section, we provide a representative example in the form of a Fourier encoding

of a representative problem, namely discovering a counterfeit coin among others.

104
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Figure 7.4: Representation of Computer Programs as A Generalized Communication
System

The discovery of counterfeit coin problem can be specified as follows. Assume one is

given a scale and four coins. Three of the coins are equal in weight, but the fourth is

counterfeit or defective, and weighs different than other three coins. The objective is to

devise a way to determine the counterfeit coin. The analysis of this problem proceeds as

follows:

Let us assume that the weight of counterfeit coin is ’a’ and the weight of other coins is

’b’. Possible Input configurations are C1 = [a,b,b,b], C2 = [b,a,b,b], C3 = [b,b,a,b], and

C4 = [b,b,b,a] and corresponding output, as depicted in Figure 7.5, are C1 = 1, C2 = 2,

C3 = 3,C4 = 4. It should be noted that Figure 7.5 demonstrates an instance of the problem

for a,b ∈ {1,2,3}. As a result, Figure 7.5 demonstrates the transformation of the input

configuration (initial partition) to the final partition. As outlined in previous chapters, this

transformation can be studied as a communication channel. Furthermore, the utilization of

encoding and decoding is computed with the Fourier Matrix as shown in Figure 7.6 and

Figure 7.7 respectively. The Figure 7.8 depicts the complete example of communication

channel representation including encoding and decoding.
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Figure 7.5: Partition Transformation for Coin Example
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Figure 7.6: Fourier Transformation of the Inputs
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Figure 7.7: Inverse Transformation of the Output
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Figure 7.8: Communication-channel Representation of Coin Example

As a second example for the representation of programs as a generalized communication

system, we discuss the implementation of Polynomial multiplication with Fast Fourier

Transform (FFT). Polynomial Multiplication with FFT [165] can be viewed as a

generalized communication system. Figure 7.9 shows the equality of ordinary
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multiplication and the steps involved in the use of FFT. The use of FFT specifically involves

Evaluation, Pointwise Multiplication, and Interpolation steps as depicted in Figure 7.9.

These FFT steps corresponds to encoding, channel computation, and decoding respectively

in the communication channel formalism and is shown in Figure 7.10.

Figure 7.9: Polynomial Multiplication (Adapted From [165])
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Figure 7.10: Communication-channel Representation of Polynomial Multiplication

Overall, these examples show the power of our approach and indicate the value of further

exploration of software design via mathematical formalism based on information theory.
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Table A.1: List of Java Files 

Java File Explanation 
BasicInterface.java provides an interface for the collection 

operations, such as getElements, 
jointElements.  
 

BasicEntropyInterface.java provides an interface for the entropy 
functions, such as Entropy, Transmission 
and Correlation.  
 

BasicEntropyImplementation.java provides an implementation of 
BasicEntropyInterface such as 
implementation of Shannon's formula and 
McGill's multivariate formula. 
 

UncertainElement.java provides an implementation of 
BasicInterface  and provides basic 
collection operations. Decomposition 
algorithms based on Conant’s and 
Watanabe’s implementations are provided 
in this java file. 
 

Variable.java is a concrete type of UncertainElement 
which is used for the representation of set 
variables.  
 

Set.java is a collection of UncertainElements to 
represent a set of Variables, a set of Sets. 
Decomposition algorithm based on 
Alexander's implementation is provided in 
this java file.  
 

FrequencyTable.java provides the database operations and 
instantiates Sets and Variables. 
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BasicInterface.java

package�multivariateanalysis;

import�java.util.ArrayList;
import�java.util.Collection;
import�java.util.Iterator;
import�java.util.List;

public�interface�BasicInterface�{

public��Iterator<UncertainElement>�getElementsIterator();
public��List<UncertainElement>�getElements();
public��UncertainElement�getElement(int�i);
public��int�size();
public��void�addUncertainElement(UncertainElement�var);
public��boolean�removeUncertainElement(UncertainElement�s);
public��void�addAllUncertainElement(Collection<UncertainElement>�puncertainElements);
public��String�getName();
public��String�getViewName();
public��UncertainElement�jointElements(UncertainElement�part2);
public�ArrayList<UncertainElement>�[]�powerSet();

}
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BasicEntropyInterface.java

package�multivariateanalysis;

public�interface�BasicEntropyInterface�extends�BasicInterface{

//ENTROPY****************************************************************************

//H(X)�Shannon�measure�of�Information
//Measure�of�Uncertainty
public�double�entropy();

//H(Y|X)=Hx(Y)=H(X,Y)�H(X)
public�double�conditionalEntropy(UncertainElement�prior);

//Hmax(X)
public�double�maxEntropy();

//H(x)/Hmax(x)
//Standardized
public�double�normalizedEntropy();

//1�H(x)/Hmax(x)
//C�Function
public�double�redundancy();

//TRANSMISSION*************************************************************************

//�T(Input:Output)=H(X)+H(Y)�H(X,Y)
//Measure�of�Relatedness
public�double�transmission(UncertainElement�part2);

//Tmax=Min(H(X),H(Y))
public�double�maxTransmission(UncertainElement�part2);

//T(X:Y)/Tmax(X:Y)
//Index�of�Predictability�Krippendorff�pp.�24
public�double�normalizedTransmission(UncertainElement�part2);

//R=Tmax�T�(not�standardized)�
public�double�redundancyinTransmission(UncertainElement�part2);

//T(Y:Z|X)=Tx(Y:Z)=H(Y|X)+H(Z|X)�H(Y,Z|X)
public�double�conditionalTransmission(UncertainElement�part2,�UncertainElement�prior);

//the�D�function�D(X:Y)=T(X:Y)/H(Y)=�1��H(Y|X)/H(Y)
//Coefficient�of�Constraint
//Relative�Amount�of�Relatedness
//Not�Symmetrical
public�double�relativeTransmission(UncertainElement�part2);

//D(X:Y|Z)=T(X:Y|Z)/H(Y|Z)
public�double�relativeConditionalTransmission(UncertainElement�part2,�UncertainElement�

prior);

//CORRELATION***************************************************************************
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BasicEntropyInterface.java

//�C(XYZ....)�or�T(X:Y:Z;...)
//Measure�of�Relatedness
public�double�correlation();

//Cx(WYZ)���C(WYZ|X)
public�double�conditionalCorrelation(UncertainElement�prior);

//INTERACTION***************************************************************************

//�Q(xyz)���or�A(x:y:z)
//Measure�of�Partial�Relatedness
public�double�interaction();
public�double�conditionalInteraction(UncertainElement�prior);

}
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BasicEntropyImplementation.java

package�multivariateanalysis;

import�java.text.DecimalFormat;
import�java.util.ArrayList;
import�java.util.Hashtable;
import�java.util.Iterator;

public�abstract�class�BasicEntropyImplementation�implements
BasicEntropyInterface�{

static�Hashtable<String,�Double>�hashEntropy�=�new�Hashtable<>();
public�static�String�condition�=�"";

public�static�void�clearCache()�{
hashEntropy�=�new�Hashtable<>();

}

public�static�double�getLogTwo(double�inputValue)�{
if�(inputValue�>�0)�{

return�Math.log(inputValue)�/�Math.log(2);
}�else�{

return�0.0;
}

}

//�ENTROPY****************************************************************************

//�H(X)�Shannon�Wiener�measure�of�Information

public�double�entropy()�{
double�d�=�0;
ArrayList<Integer>�list�=�FrequencyTable.instance.getFrequency(

getViewName(),�getName(),�condition);
double�total�=�FrequencyTable.instance.getTotal(getViewName(),

condition);
for�(int�i�=�0;�i�<�list.size();�i++)�{

Integer�freq�=�list.get(i);
d�+=��1�*�(((double)�freq)�/�total)

*�getLogTwo(((double)�freq)�/�total);
}
DecimalFormat�f�=�new�DecimalFormat("#.##");
return�new�Double(f.format(d));

}

//�H(Y|X)=Hx(Y)=H(X,Y)�H(X)
public�double�conditionalEntropy(UncertainElement�prior)�{

return�jointElements(prior).entropy()���prior.entropy();
}

//�Hmax(X)
public�double�maxEntropy()�{

int�itemsCount�=�FrequencyTable.instance.getNumberofItems(
getViewName(),�getName());

return�getLogTwo(itemsCount);
}
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BasicEntropyImplementation.java

//
public�double�normalizedEntropy()�{

return�entropy()�/�maxEntropy();
}

//
public�double�redundancy()�{

return�1���normalizedEntropy();
}

//�TRANSMISSION*************************************************************************

//�T(Input:Output)
public�double�transmission(UncertainElement�part2)�{

return�this.entropy()�+�part2.entropy()
��jointElements(part2).entropy();

}

//�Tmax=Min(H(X),H(Y))
public�double�maxTransmission(UncertainElement�part2)�{

double�inEntropy�=�this.entropy();
double�outEntropy�=�part2.entropy();
return�inEntropy�<�outEntropy�?�inEntropy�:�outEntropy;

}

//�T(X:Y)/Tmax(X:Y)
//�Index�of�Predictability�Krippendorff�pp.�24
public�double�normalizedTransmission(UncertainElement�part2)�{

return�transmission(part2)�/�maxTransmission(part2);
}

//�R=Tmax�T�(not�standardized)
public�double�redundancyinTransmission(UncertainElement�part2)�{

return�1���normalizedTransmission(part2);
}

//�T(Y:Z|X)=Tx(Y:Z)=H(Y|X)+H(Z|X)�H(Y,Z|X)
public�double�conditionalTransmission(UncertainElement�part2,

UncertainElement�prior)�{
return�this.conditionalEntropy(prior)�+�part2.conditionalEntropy(prior)

��jointElements(part2).conditionalEntropy(prior);
}

//�the�D�function�D(X:Y)�McGill�Quastler�pp.�89
public�double�relativeTransmission(UncertainElement�part2)�{

return�this.transmission(part2)�/�part2.entropy();
}

//�D(X:Y|Z)=T(X:Y|Z)/H(Y|Z)
public�double�relativeConditionalTransmission(UncertainElement�part2,

UncertainElement�prior)�{
return�this.conditionalTransmission(part2,�prior)

/�part2.conditionalEntropy(prior);
}

//�CORRELATION***************************************************************************
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BasicEntropyImplementation.java

//�C(xyz....)
public�double�correlation()�{

double�result�=�0;
if�(this.size()�==�1)

return�0;
for�(Iterator<UncertainElement>�iterator�=�getElementsIterator();�iterator

.hasNext();)�{
UncertainElement�type�=�iterator.next();
Double�d�=�hashEntropy.get(type.getName());
if�(d�==�null)�{

d�=�type.entropy();
hashEntropy.put(type.getName(),�d);

}
result�+=�d;

}
Double�d�=�hashEntropy.get(this.getName());
if�(d�==�null)�{

d�=�this.entropy();
hashEntropy.put(this.getName(),�d);

}
result��=�d;
return�result;

}

public�double�conditionalCorrelation(UncertainElement�prior)�{
double�result�=�0;
for�(Iterator<UncertainElement>�iterator�=�getElementsIterator();�iterator

.hasNext();)�{
UncertainElement�type�=�iterator.next();
result�+=�type.conditionalEntropy(prior);

}
result��=�this.conditionalEntropy(prior);
return�result;

}

//�INTERACTION***************************************************************************

//�Q(xyz)

public�double�interaction()�{
double�d�=�0;
ArrayList<UncertainElement>[]�subsets�=�this.powerSet();
for�(int�i�=�0;�i�<�subsets.length;�i++)�{

ArrayList<UncertainElement>�arrayList�=�subsets[i];
double�totalEntropy�=�0;
for�(Iterator�iterator�=�arrayList.iterator();�iterator.hasNext();)�{

UncertainElement�uncertainElement�=�(UncertainElement)�iterator
.next();

totalEntropy�+=�uncertainElement.entropy();
}
if�((this.size()���(i�+�1))�%�2�==�0)

d��=�totalEntropy;
else

d�+=�totalEntropy;
}
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return�d;
}

public�double�conditionalInteraction(UncertainElement�prior)�{
double�d�=�0;
ArrayList<UncertainElement>[]�subsets�=�this.powerSet();
for�(int�i�=�0;�i�<�subsets.length;�i++)�{

ArrayList<UncertainElement>�arrayList�=�subsets[i];
double�totalEntropy�=�0;
for�(Iterator�iterator�=�arrayList.iterator();�iterator.hasNext();)�{

UncertainElement�uncertainElement�=�(UncertainElement)�iterator
.next();

totalEntropy�+=�uncertainElement.conditionalEntropy(prior);
}
if�(this.size()���(i�+�1)�%�2�==�0)

d��=�totalEntropy;
else

d�+=�totalEntropy;
}

return�d;
}

}
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package�multivariateanalysis;

import�java.util.ArrayList;
import�java.util.Collection;
import�java.util.Collections;
import�java.util.Hashtable;
import�java.util.Iterator;

public�abstract�class�UncertainElement�extends�BasicEntropyImplementation�{
protected�String�viewName�=�FrequencyTable.VIEWNAME;

public�static�final�int�CONANT�=�0;
public�static�final�int�WATANABE�=�1;

public�abstract�UncertainElement�getTimeIncrementElement(int�tick);

public�String�getViewName()�{
return�viewName;

}

public�UncertainElement�jointElements(UncertainElement�part2)�{
Set�result�=�new�Set();
result.addAllUncertainElement(getElements());
result.addAllUncertainElement(part2.getElements());
return�result;

}

public�String�getName()�{
String�str�=�"";
for�(Iterator<UncertainElement>�iterator�=�getElementsIterator();�iterator

.hasNext();)�{
UncertainElement�type�=�iterator.next();
str�+=�type.getName()�+�",";

}
str�=�str.substring(0,�str.length()���1);
return�str;

}

//�CALCULATIONS**************************************************************************
//�CONANT�Dissertation
//�pp�552�tij
public�double�calculateNormalizedTransmission_OneTimeIncrementLater(

UncertainElement�element)�{
return�this.transmission(element.getTimeIncrementElement(1))

/�element.getTimeIncrementElement(1).entropy();
}

//�CONANT�Dissertation
//�pp�552�Twj
public�double�calculateConstraintHoldingOverOneTimeIncrementWithInSubsytem()�{

Set�s�=�new�Set();
s.addUncertainElement(this);
s.addUncertainElement(this.getTimeIncrementElement(1));
return�s.correlation();

}
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//�CONANT�Dissertation
//�pp�552�Tbij
public�double�calculateTheStrenghtofRelationBetween(Set�element)�{

Set�s1�=�new�Set();
s1.addUncertainElement(this);
s1.addUncertainElement(this.getTimeIncrementElement(1));

Set�s2�=�new�Set();
s2.addUncertainElement(element);
s2.addUncertainElement(element.getTimeIncrementElement(1));

return�s1.transmission(s2);
}

//�CONANT�Dissertation
//�pp�552�Tb
public�double�calculateTheConstraintBetweenAll_OverOneTimeIncrement()�{

Set�result�=�new�Set();
for�(Iterator<UncertainElement>�iterator�=�this.getElementsIterator();�iterator

.hasNext();)�{
UncertainElement�type�=�iterator.next();
Set�subSet�=�new�Set();
subSet.addUncertainElement(type);
subSet.addUncertainElement(type.getTimeIncrementElement(1));
result.addUncertainElement(subSet);

}
return�result.correlation();

}

//�CONANT�Dissertation
//�pp�552�Tw1+Tw2
public�double�calculateTOTALConstraintHoldingOverOneTimeIncrementWithInSubsytem()�{

double�d�=�0;
for�(Iterator<UncertainElement>�iterator�=�getElementsIterator();�iterator

.hasNext();)�{
UncertainElement�type�=�iterator.next();
d�+=�type

.calculateConstraintHoldingOverOneTimeIncrementWithInSubsytem();
}
return�d;

}

//�CONANT�Dissertation
//�pp�552�Tb<<(Tw1+Tw2)
//�Tb/(Tb+Tw1+Tw2)
public�double�verify()�{

return�(calculateTheConstraintBetweenAll_OverOneTimeIncrement()�/�
(calculateTOTALConstraintHoldingOverOneTimeIncrementWithInSubsytem()�
+�calculateTheConstraintBetweenAll_OverOneTimeIncrement()))�*�100;

}

//�
************************************************************************************************

//�DECOMPOSITION
//�*******************************************************************************
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public�static�class�PairWiseInteraction�implements
Comparable<PairWiseInteraction>�{

Double�value;
UncertainElement[]�elements�=�new�UncertainElement[2];
boolean�equal;

PairWiseInteraction(Double�d,�UncertainElement[]�pelements,
boolean�pequal)�{

value�=�d;
elements�=�pelements;
equal�=�pequal;

}

@Override
public�int�compareTo(PairWiseInteraction�o)�{

//�TODO�Auto�generated�method�stub
return��1�*�value.compareTo(o.value);

}
}

public�static�ArrayList<PairWiseInteraction>�getPairwiseInteractionMatrix(
Collection<UncertainElement>�elements,�int�decType)�{

ArrayList<PairWiseInteraction>�pairwiseInteractionMatrix�=�
new�ArrayList<PairWiseInteraction>();

int�x�=�0;
for�(Iterator<UncertainElement>�iterator�=�elements.iterator();�iterator

.hasNext();)�{
UncertainElement�uncertainElement�=�iterator.next();
x++;
int�y�=�0;
for�(Iterator<UncertainElement>�iterator2�=�elements.iterator();�iterator2

.hasNext();)�{
UncertainElement�uncertainElement2�=�iterator2.next();
y++;

if�(x�!=�y)�{
UncertainElement[]�row�=�new�UncertainElement[2];
row[0]�=�uncertainElement;
row[1]�=�uncertainElement2;

if�(decType�==�CONANT)
pairwiseInteractionMatrix

.add(
new�PairWiseInteraction(
uncertainElement.
calculateNormalizedTransmission_OneTimeIncrementLater(uncertainElement2),

row,�x�==�y));
else�if�(decType�==�WATANABE)

pairwiseInteractionMatrix.add(new�PairWiseInteraction(
uncertainElement

.transmission(uncertainElement2),�row,
x�==�y));

}

}
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}
Collections.sort(pairwiseInteractionMatrix);
return�pairwiseInteractionMatrix;

}

public�void�printMatrix(
ArrayList<PairWiseInteraction>�pairwiseInteractionMatrix)�{

for�(Iterator<PairWiseInteraction>�iterator�=�pairwiseInteractionMatrix
.iterator();�iterator.hasNext();)�{

PairWiseInteraction�type�=�iterator.next();
System.out.println(type.elements[0]�+�"��"�+�type.elements[1]�+�"*"

+�type.value);

}
}

public�UncertainElement�decompose(int�decType)�{

if�(this.size()�==�1)
return�this;

Hashtable<UncertainElement,�UncertainElement>�subSystemTracking�=�new�Hashtable<>();
ArrayList<PairWiseInteraction>�pairwiseInteractionMatrix�=�getPairwiseInteractionMatrix(

this.getElements(),�decType);
printMatrix(pairwiseInteractionMatrix);

UncertainElement�result�=�new�Set();
int�variableCount�=�size();
for�(Iterator<PairWiseInteraction>�iterator�=�pairwiseInteractionMatrix

.iterator();�iterator.hasNext();)�{
PairWiseInteraction�pairInteract�=�iterator.next();

UncertainElement�sub1�=�subSystemTracking
.get(pairInteract.elements[0]);

UncertainElement�sub2�=�subSystemTracking
.get(pairInteract.elements[1]);

if�(sub1�==�null�&&�sub2�==�null)�{
UncertainElement�subNew�=�new�Set();
variableCount�=�variableCount���1;
subNew.addUncertainElement(pairInteract.elements[0]);
subSystemTracking.put(pairInteract.elements[0],�subNew);
result.addUncertainElement(subNew);
if�(!pairInteract.equal)�{

subNew.addUncertainElement(pairInteract.elements[1]);
subSystemTracking.put(pairInteract.elements[1],�subNew);
variableCount�=�variableCount���1;

}
}�else�if�(sub1�==�null)�{

variableCount��;
sub2.addUncertainElement(pairInteract.elements[0]);
subSystemTracking.put(pairInteract.elements[0],�sub2);
subSystemTracking.put(pairInteract.elements[1],�sub2);

}�else�if�(sub2�==�null)�{
variableCount��;
sub1.addUncertainElement(pairInteract.elements[1]);
subSystemTracking.put(pairInteract.elements[1],�sub1);
subSystemTracking.put(pairInteract.elements[0],�sub1);
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}�else�{
if�(result.removeUncertainElement(sub2))�{

if�(result.removeUncertainElement(sub1))�{
sub1�=�sub1.jointElements(sub2);
result.addUncertainElement(sub1);
for�(Iterator<UncertainElement>�iterator2�=�sub1

.getElementsIterator();�iterator2.hasNext();)�{
UncertainElement�type�=�iterator2.next();
subSystemTracking.put(type,�sub1);

}
}�else�{

result.addUncertainElement(sub2);
}

}

}
if�(variableCount�==�0)�{

break;
}
//�}

}
return�result;

}

//�
************************************************************************************************

public�String�toString()�{
String�str�=�"";
for�(Iterator<UncertainElement>�iterator�=�getElementsIterator();�iterator

.hasNext();)�{
UncertainElement�type�=�iterator.next();
str�+=�type;

}
return�str;

}

@Override
public�boolean�equals(Object�obj)�{

//�TODO�Auto�generated�method�stub
return�this�==�obj;

}

}
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package�multivariateanalysis;

import�java.util.*;

public�class�Variable�extends�UncertainElement�{
private�String�name;

public�Variable(String�nm)�{
name�=�nm;

}

public�String�getName()�{
return�name;

}

public�UncertainElement�getTimeIncrementElement(int�tick)�{
return�new�Variable(name�+�tick);

}

public�String�toString()�{
return�"�"�+�getName()�+�"�";

}

public�Iterator<UncertainElement>�getElementsIterator()�{
ArrayList<UncertainElement>�elements�=�new�ArrayList<UncertainElement>();
elements.add(this);
return�elements.iterator();

}

public�List<UncertainElement>�getElements()�{
ArrayList<UncertainElement>�elements�=�new�ArrayList<UncertainElement>();
elements.add(this);
return�elements;

}

public�int�size()�{
return�1;

}

public�void�addUncertainElement(UncertainElement�var)�{
}

public�boolean�removeUncertainElement(UncertainElement�s)�{
return�false;

}

public�void�addAllUncertainElement(
Collection<UncertainElement>�puncertainElements)�{

}

public�UncertainElement�getElement(int�i)�{
return�null;

}

public�ArrayList<UncertainElement>[]�powerSet()�{
return�new�ArrayList[0];

}}

Page�1
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package�multivariateanalysis;

import�java.text.DecimalFormat;
import�java.util.ArrayList;
import�java.util.Collection;
import�java.util.Iterator;
import�java.util.List;

public�class�Set�extends�UncertainElement�{

private�ArrayList<UncertainElement>�uncertainElements�=�new�ArrayList<UncertainElement>();

public�Set()�{
//�TODO�Auto�generated�constructor�stub

}

public�Set(ArrayList<UncertainElement>�elems)�{
uncertainElements�=�elems;

}

public�Set(UncertainElement�elem)�{
uncertainElements.add(elem);

}

public�static�void�comb1(Set�prefix,�Set�s)�{
if�(s.size()�>�0)�{

Set�nSet�=�new�Set(prefix.uncertainElements);
nSet.addUncertainElement(s.getElement(0));
System.out.println(nSet);
Set�kSet�=�new�Set(s.uncertainElements);
kSet.uncertainElements.remove(0);
comb1(nSet,�kSet);
comb1(prefix,�kSet);

}
}

public�static�void�comb2(ArrayList<UncertainElement>[]�subsets,�Set�prefix,
Set�s)�{

if�(prefix.size()�!=�0)�{
if�(subsets[prefix.size()���1]�==�null)

subsets[prefix.size()���1]�=�new�ArrayList<>();
subsets[prefix.size()���1].add(prefix);

}

for�(int�i�=�0;�i�<�s.size();�i++)�{
Set�s1�=�new�Set();
s1.addAllUncertainElement(prefix.uncertainElements);
s1.addUncertainElement(s.getElement(i));
Set�s2�=�new�Set();
s2.addAllUncertainElement(s.uncertainElements.subList(i�+�1,

s.uncertainElements.size()));
comb2(subsets,�s1,�s2);

}
}

public�ArrayList<UncertainElement>[]�powerSet()�{
ArrayList<UncertainElement>[]�subsets�=�new�ArrayList[size()];

135



Set.java

Set�lattice�=�new�Set();
Set.comb2(subsets,�lattice,�this);
return�subsets;

}

private�static�ArrayList<Set>�getSubsets(ArrayList<UncertainElement>�set)�{

ArrayList<Set>�subsetCollection�=�new�ArrayList<Set>();

if�(set.size()�==�0)�{
subsetCollection.add(new�Set());

}�else�{
ArrayList<UncertainElement>�reducedSet�=�new�ArrayList<UncertainElement>();

reducedSet.addAll(set);

UncertainElement�first�=�reducedSet.remove(0);
ArrayList<Set>�subsets�=�getSubsets(reducedSet);
subsetCollection.addAll(subsets);

subsets�=�getSubsets(reducedSet);

for�(Set�subset�:�subsets)�{
subset.addUncertainElement(first);

}

subsetCollection.addAll(subsets);
}

return�subsetCollection;
}

public�void�addAllUncertainElement(
Collection<UncertainElement>�puncertainElements)�{

uncertainElements.addAll(puncertainElements);
}

public�Iterator<UncertainElement>�getElementsIterator()�{
return�uncertainElements.iterator();

}

public�boolean�removeUncertainElement(UncertainElement�s)�{
return�uncertainElements.remove(s);

}

public�int�size()�{
return�uncertainElements.size();

}

public�void�addUncertainElement(UncertainElement�var)�{
boolean�b�=�uncertainElements.add(var);
if�(!b)�{

System.out.println(var);
System.out.println(uncertainElements);

}
}
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public�Set�unionElements()�{
Set�result�=�new�Set();
String�str�=�"";

for�(Iterator<UncertainElement>�iterator�=�getElementsIterator();�iterator
.hasNext();)�{

UncertainElement�type�=�iterator.next();
str�+=�type.toString().trim();

}
String�lViewName�=�"(";
for�(Iterator<UncertainElement>�iterator�=�getElementsIterator();�iterator

.hasNext();)�{
UncertainElement�type�=�iterator.next();
lViewName�+=�"�SELECT�"�+�type�+�"�as�"�+�str�+�"�FROM�"

+�FrequencyTable.TABLENAME
+�(iterator.hasNext()�?�"�union�all"�:�"");

}

lViewName�+=�")�as�unionof"�+�FrequencyTable.TABLENAME;
Variable�var�=�new�Variable(str);
result.addUncertainElement(var);
result.viewName�=�lViewName;
return�result;

}

@Override
public�UncertainElement�getTimeIncrementElement(int�tick)�{

Set�result�=�new�Set();
for�(Iterator<UncertainElement>�iterator�=�this.uncertainElements

.iterator();�iterator.hasNext();)�{
UncertainElement�type�=�iterator.next();
result.uncertainElements.add(type.getTimeIncrementElement(tick));

}
return�result;

}

@Override
public�List<UncertainElement>�getElements()�{

//�TODO�Auto�generated�method�stub
return�uncertainElements;

}

public�String�toString()�{
String�str�=�"�(�";
for�(Iterator<UncertainElement>�iterator�=�getElementsIterator();�iterator

.hasNext();)�{
UncertainElement�type�=�iterator.next();
str�+=�type;

}
str�+=�"�)";
return�str;

}

@Override
public�UncertainElement�getElement(int�i)�{

//�TODO�Auto�generated�method�stub
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return�this.uncertainElements.get(i);
}

//�LATTICE�OPERATIONS************************************************

public�Set�createMaxSet()�{
Set�s�=�new�Set();
for�(Iterator�iterator�=�uncertainElements.iterator();�iterator

.hasNext();)�{
UncertainElement�uncertainElement�=�(UncertainElement)�iterator

.next();
Set�sub�=�new�Set();
sub.addAllUncertainElement(uncertainElement.getElements());
s.addUncertainElement(sub);

}
return�s;

}

//�******************************************************************

//�**
public�ArrayList<Set>�generateNeighbours()�{

ArrayList<Set>�result�=�new�ArrayList<>();
for�(int�i�=�0;�i�<�this.size();�i++)�{

for�(int�j�=�i�+�1;�j�<�this.size();�j++)�{
UncertainElement�newSubItem�=�this.getElement(i).jointElements(

this.getElement(j));
ArrayList<UncertainElement>�items�=�new�ArrayList<>(this.size());
items.addAll(this.getElements());
items.remove(this.getElement(i));
items.remove(this.getElement(j));
Set�s�=�new�Set();
s.addUncertainElement(newSubItem);
s.addAllUncertainElement(items);
result.add(s);

}

}

return�result;
}

public�void�printInternal()�{
Iterator<UncertainElement>�it�=�this.getElementsIterator();
double�totalCor�=�0;
DecimalFormat�f�=�new�DecimalFormat("#.##");

while�(it.hasNext())�{
UncertainElement�uncertainElement2�=�(UncertainElement)�it.next();
System.out.print(f.format(uncertainElement2.correlation())�+�"+");
totalCor�+=�uncertainElement2.correlation();

}
System.out.println("="�+�f.format(totalCor));
System.out.println();

}
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private�double�fitnessFunction(Set�uncertainElement)�{
return�uncertainElement.correlation();

}

public�Set�decomposeAlexandar()�{
Set�lowest�=�this.createMaxSet();
double�min�=�Double.MAX_VALUE;
boolean�k�=�true;
while�(k)�{

k�=�false;
ArrayList<Set>�neighbours�=�lowest.generateNeighbours();
if�(neighbours.size()�==�0)

break;
for�(Iterator<Set>�iterator�=�neighbours.iterator();�iterator

.hasNext();)�{
Set�uncertainElement�=�(Set)�iterator.next();
double�tmp�=�fitnessFunction(uncertainElement);
if�(tmp�<�min)�{

lowest�=�uncertainElement;
min�=�tmp;
k�=�true;

}
}
DecimalFormat�f�=�new�DecimalFormat("#.##");
System.out.println("*"�+�lowest�+�"="

+�f.format(lowest.correlation()));
lowest.printInternal();

}
return�lowest;

}

public�void�printLattice()�{
ArrayList<Set>�subsets�=�getSubsets(this.uncertainElements);
for�(Iterator�iterator�=�subsets.iterator();�iterator.hasNext();)�{

Set�arrayList�=�(Set)�iterator.next();
System.out.println(arrayList);

}
}

public�void�printAllInfo()�{
System.out.println(this);
System.out.println("\tEntropy:"�+�this.entropy());
System.out.println("\tCorrelation:"�+�this.correlation());
System.out.println("\tInteraction:"�+�this.interaction());

}

}
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package�multivariateanalysis;

import�java.sql.Connection;
import�java.sql.DriverManager;
import�java.sql.ResultSet;
import�java.sql.SQLException;
import�java.sql.Statement;
import�java.util.ArrayList;
import�java.lang.System;

public�class�FrequencyTable�{

public�static�String�VIEWNAME�=�"mvc_view";
public�static�String�TABLENAME�=�"MVCExample";

public�static�String�SCHEMANAME�=�"test";

Connection�conn�=�null;
public�static�FrequencyTable�instance�=�new�FrequencyTable();

private�FrequencyTable()�{

try�{
conn�=�DriverManager.getConnection("jdbc:mysql://localhost/test?"

+�"user=root&password=alabama01");
}�catch�(SQLException�ex)�{

System.out.println("SQLException:�"�+�ex.getMessage());
System.out.println("SQLState:�"�+�ex.getSQLState());
System.out.println("VendorError:�"�+�ex.getErrorCode());

}

}

public�ArrayList<UncertainElement>�getVariablesTESTDATA(int�count)�{
ArrayList<UncertainElement>�result�=�new�ArrayList<UncertainElement>();
for�(int�i�=�0;�i�<�count;�i++)�{

result.add(new�Variable("X"�+�(i�+�1)));
}
return�result;

}

public�ArrayList<UncertainElement>�getVariablesFromDB()�{

ArrayList<UncertainElement>�result�=�new�ArrayList<UncertainElement>();

Statement�stmt�=�null;
ResultSet�rs�=�null;
try�{

stmt�=�conn.createStatement();
rs�=�stmt

.executeQuery("SELECT�Column_name�FROM�information_schema.`COLUMNS`"
+�"�where�table_name�=�'"
+�TABLENAME
+�"'�and�Column_Key<>'PRI'");

while�(rs.next())�{
result.add(new�Variable(rs.getString(1)));

}
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}�catch�(SQLException�ex)�{
System.out.println("SQLException:�"�+�ex.getMessage());
System.out.println("SQLState:�"�+�ex.getSQLState());
System.out.println("VendorError:�"�+�ex.getErrorCode());

}�finally�{

if�(rs�!=�null)�{
try�{

rs.close();
}�catch�(SQLException�sqlEx)�{
}�//�ignore
rs�=�null;

}
if�(stmt�!=�null)�{

try�{
stmt.close();

}�catch�(SQLException�sqlEx)�{
}�//�ignore
stmt�=�null;

}
}
return�result;

}

public�int�getNumberofItems(String�pviewName,�String�cmpVal)�{

int�result�=�0;

Statement�stmt�=�null;
ResultSet�rs�=�null;
try�{

stmt�=�conn.createStatement();
rs�=�stmt

.executeQuery("SELECT�COUNT(*)�from�(select�distinct�*�FROM�"
+�pviewName�+�"�Group�By�"�+�cmpVal�+�")�as�aa");

while�(rs.next())�{
result�=�(rs.getInt(1));

}
}�catch�(SQLException�ex)�{

//�handle�any�errors
System.out.println("SQLException:�"�+�ex.getMessage());
System.out.println("SQLState:�"�+�ex.getSQLState());
System.out.println("VendorError:�"�+�ex.getErrorCode());

}�finally�{
if�(rs�!=�null)�{

try�{
rs.close();

}�catch�(SQLException�sqlEx)�{
}�//�ignore
rs�=�null;

}
if�(stmt�!=�null)�{

try�{
stmt.close();

}�catch�(SQLException�sqlEx)�{
}�//�ignore
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stmt�=�null;
}

}
return�result;

}

public�ArrayList<Integer>�getFrequency(String�pviewName,�String�cmpVal,
String�condition)�{

ArrayList<Integer>�result�=�new�ArrayList<Integer>();

Statement�stmt�=�null;
ResultSet�rs�=�null;
try�{

stmt�=�conn.createStatement();
rs�=�stmt.executeQuery("SELECT�COUNT(*)�FROM�"�+�pviewName�+�"�"

+�condition�+�"�"�+�"�Group�By�"�+�cmpVal);
while�(rs.next())�{

result.add(rs.getInt(1));
}

}�catch�(SQLException�ex)�{
//�handle�any�errors
System.out.println("SQLException:�"�+�ex.getMessage());
System.out.println("SQLState:�"�+�ex.getSQLState());
System.out.println("VendorError:�"�+�ex.getErrorCode());

}�finally�{

if�(rs�!=�null)�{
try�{

rs.close();
}�catch�(SQLException�sqlEx)�{
}�//�ignore
rs�=�null;

}
if�(stmt�!=�null)�{

try�{
stmt.close();

}�catch�(SQLException�sqlEx)�{
}�//�ignore
stmt�=�null;

}
}
return�result;

}

public�long�getTotal(String�pviewName,�String�condition)�{
int�total�=�0;
Statement�stmt�=�null;
ResultSet�rs�=�null;
try�{

stmt�=�conn.createStatement();
rs�=�stmt.executeQuery("SELECT�COUNT(*)�FROM�"�+�pviewName�+�"�"

+�condition);
while�(rs.next())�{

total�=�rs.getInt(1);
}
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}�catch�(SQLException�ex)�{
//�handle�any�errors
System.out.println("SQLException:�"�+�ex.getMessage());
System.out.println("SQLState:�"�+�ex.getSQLState());
System.out.println("VendorError:�"�+�ex.getErrorCode());

}�finally�{

if�(rs�!=�null)�{
try�{

rs.close();
}�catch�(SQLException�sqlEx)�{
}�//�ignore
rs�=�null;

}
if�(stmt�!=�null)�{

try�{
stmt.close();

}�catch�(SQLException�sqlEx)�{
}�//�ignore
stmt�=�null;

}
}

return�total;
}

public�void�executeSql(String�sql)�{
Statement�stmt�=�null;
ResultSet�rs�=�null;
try�{

stmt�=�conn.createStatement();
stmt.executeUpdate(sql);

}�catch�(SQLException�ex)�{
//�handle�any�errors
System.out.println("SQLException:�"�+�ex.getMessage());
System.out.println("SQLState:�"�+�ex.getSQLState());
System.out.println("VendorError:�"�+�ex.getErrorCode());

}�finally�{

if�(rs�!=�null)�{
try�{

rs.close();
}�catch�(SQLException�sqlEx)�{
}�//�ignore
rs�=�null;

}
if�(stmt�!=�null)�{

try�{
stmt.close();

}�catch�(SQLException�sqlEx)�{
}�//�ignore
stmt�=�null;

}
}

}
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Cycle # V1 V2 V3 V4
1 6 0 7 1
2 6 6 42 7
3 11 0 53 42
4 16 0 69 53
5 16 17 1104 69
6 21 3 1125 1106
7 21 23 1146 1125
8 21 27 24066 1150
9 21 28 505386 24071

10 6 0 7 1
11 6 6 42 7
12 11 0 53 42
13 16 0 69 53
14 16 17 1104 69
15 21 3 1125 1106
16 21 23 1146 1125
17 21 27 24066 1150
18 21 28 505386 24071
19 6 0 7 1
20 6 6 42 7
21 11 0 53 42
22 16 0 69 53
23 16 17 1104 69
24 21 3 1125 1106
25 21 23 1146 112525 21 23 1146 1125
26 21 27 24066 1150
27 21 28 505386 24071
28 6 0 7 1
29 6 6 42 7
30 11 0 53 42
31 16 0 69 53
32 16 17 1104 69
33 21 3 1125 1106
34 21 23 1146 1125
35 21 27 24066 1150
36 21 28 505386 24071
37 6 0 7 1
38 6 6 42 7
39 11 0 53 42
40 16 0 69 53
41 16 17 1104 69
42 21 3 1125 1106
43 21 23 1146 1125
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Cycle # V1 V2 V3 V4
44 21 27 24066 1150
45 21 28 505386 24071
46 6 0 7 1
47 6 6 42 7
48 11 0 53 42
49 16 0 69 53
50 16 17 1104 69
51 21 3 1125 1106
52 21 23 1146 1125
53 21 27 24066 1150
54 21 28 505386 24071
55 6 0 7 1
56 6 6 42 7
57 11 0 53 42
58 16 0 69 53
59 16 17 1104 69
60 21 3 1125 1106
61 21 23 1146 1125
62 21 27 24066 1150
63 21 28 505386 24071
64 6 0 7 1
65 6 6 42 7
66 11 0 53 42
67 16 0 69 53
68 16 17 1104 6968 16 17 1104 69
69 21 3 1125 1106
70 21 23 1146 1125
71 21 27 24066 1150
72 21 28 505386 24071
73 6 0 7 1
74 6 6 42 7
75 11 0 53 42
76 16 0 69 53
77 16 17 1104 69
78 21 3 1125 1106
79 21 23 1146 1125
80 21 27 24066 1150
81 21 28 505386 24071
82 6 0 8 2
83 6 6 48 8
84 6 6 288 48
85 6 6 1728 288
86 6 6 10368 1728
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Cycle # V1 V2 V3 V4
87 6 6 62208 10368
88 6 6 373248 62208
89 6 6 2239488 373248
90 6 6 13436928 2239488
91 6 0 8 2
92 6 6 48 8
93 6 6 288 48
94 6 6 1728 288
95 6 6 10368 1728
96 6 6 62208 10368
97 6 6 373248 62208
98 6 6 2239488 373248
99 6 6 13436928 2239488

100 6 0 8 2
101 6 6 48 8
102 6 6 288 48
103 6 6 1728 288
104 6 6 10368 1728
105 6 6 62208 10368
106 6 6 373248 62208
107 6 6 2239488 373248
108 6 6 13436928 2239488
109 6 0 8 2
110 6 6 48 8
111 6 6 288 48111 6 6 288 48
112 6 6 1728 288
113 6 6 10368 1728
114 6 6 62208 10368
115 6 6 373248 62208
116 6 6 2239488 373248
117 6 6 13436928 2239488
118 6 0 8 2
119 6 6 48 8
120 6 6 288 48
121 6 6 1728 288
122 6 6 10368 1728
123 6 6 62208 10368
124 6 6 373248 62208
125 6 6 2239488 373248
126 6 6 13436928 2239488
127 6 0 8 2
128 6 6 48 8
129 6 6 288 48
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Cycle # V1 V2 V3 V4
130 6 6 1728 288
131 6 6 10368 1728
132 6 6 62208 10368
133 6 6 373248 62208
134 6 6 2239488 373248
135 6 6 13436928 2239488
136 6 0 8 2
137 6 6 48 8
138 6 6 288 48
139 6 6 1728 288
140 6 6 10368 1728
141 6 6 62208 10368
142 6 6 373248 62208
143 6 6 2239488 373248
144 6 6 13436928 2239488
145 6 0 8 2
146 6 6 48 8
147 6 6 288 48
148 6 6 1728 288
149 6 6 10368 1728
150 6 6 62208 10368
151 6 6 373248 62208
152 6 6 2239488 373248
153 6 6 13436928 2239488
154 6 0 8 2154 6 0 8 2
155 6 6 48 8
156 6 6 288 48
157 6 6 1728 288
158 6 6 10368 1728
159 6 6 62208 10368
160 6 6 373248 62208
161 6 6 2239488 373248
162 6 6 13436928 2239488
163 6 0 9 3
164 6 6 54 9
165 11 0 65 54
166 11 12 76 65
167 11 13 87 77
168 11 13 98 88
169 11 13 109 99
170 11 13 120 110
171 16 2 136 121
172 6 0 9 3
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Cycle # V1 V2 V3 V4
173 6 6 54 9
174 11 0 65 54
175 11 12 76 65
176 11 13 87 77
177 11 13 98 88
178 11 13 109 99
179 11 13 120 110
180 16 2 136 121
181 6 0 9 3
182 6 6 54 9
183 11 0 65 54
184 11 12 76 65
185 11 13 87 77
186 11 13 98 88
187 11 13 109 99
188 11 13 120 110
189 16 2 136 121
190 6 0 9 3
191 6 6 54 9
192 11 0 65 54
193 11 12 76 65
194 11 13 87 77
195 11 13 98 88
196 11 13 109 99
197 11 13 120 110197 11 13 120 110
198 16 2 136 121
199 6 0 9 3
200 6 6 54 9
201 11 0 65 54
202 11 12 76 65
203 11 13 87 77
204 11 13 98 88
205 11 13 109 99
206 11 13 120 110
207 16 2 136 121
208 6 0 9 3
209 6 6 54 9
210 11 0 65 54
211 11 12 76 65
212 11 13 87 77
213 11 13 98 88
214 11 13 109 99
215 11 13 120 110
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Cycle # V1 V2 V3 V4
216 16 2 136 121
217 6 0 9 3
218 6 6 54 9
219 11 0 65 54
220 11 12 76 65
221 11 13 87 77
222 11 13 98 88
223 11 13 109 99
224 11 13 120 110
225 16 2 136 121
226 6 0 9 3
227 6 6 54 9
228 11 0 65 54
229 11 12 76 65
230 11 13 87 77
231 11 13 98 88
232 11 13 109 99
233 11 13 120 110
234 16 2 136 121
235 6 0 9 3
236 6 6 54 9
237 11 0 65 54
238 11 12 76 65
239 11 13 87 77
240 11 13 98 88240 11 13 98 88
241 11 13 109 99
242 11 13 120 110
243 16 2 136 121
244 6 0 10 4
245 11 0 21 10
246 16 0 37 21
247 16 17 592 37
248 21 3 613 594
249 26 0 639 613
250 26 28 16614 639
251 31 8 515034 16621
252 36 2 515070 515036
253 6 0 10 4
254 11 0 21 10
255 16 0 37 21
256 16 17 592 37
257 21 3 613 594
258 26 0 639 613
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Cycle # V1 V2 V3 V4
259 26 28 16614 639
260 31 8 515034 16621
261 36 2 515070 515036
262 6 0 10 4
263 11 0 21 10
264 16 0 37 21
265 16 17 592 37
266 21 3 613 594
267 26 0 639 613
268 26 28 16614 639
269 31 8 515034 16621
270 36 2 515070 515036
271 6 0 10 4
272 11 0 21 10
273 16 0 37 21
274 16 17 592 37
275 21 3 613 594
276 26 0 639 613
277 26 28 16614 639
278 31 8 515034 16621
279 36 2 515070 515036
280 6 0 10 4
281 11 0 21 10
282 16 0 37 21
283 16 17 592 37283 16 17 592 37
284 21 3 613 594
285 26 0 639 613
286 26 28 16614 639
287 31 8 515034 16621
288 36 2 515070 515036
289 6 0 10 4
290 11 0 21 10
291 16 0 37 21
292 16 17 592 37
293 21 3 613 594
294 26 0 639 613
295 26 28 16614 639
296 31 8 515034 16621
297 36 2 515070 515036
298 6 0 10 4
299 11 0 21 10
300 16 0 37 21
301 16 17 592 37
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Cycle # V1 V2 V3 V4
302 21 3 613 594
303 26 0 639 613
304 26 28 16614 639
305 31 8 515034 16621
306 36 2 515070 515036
307 6 0 10 4
308 11 0 21 10
309 16 0 37 21
310 16 17 592 37
311 21 3 613 594
312 26 0 639 613
313 26 28 16614 639
314 31 8 515034 16621
315 36 2 515070 515036
316 6 0 10 4
317 11 0 21 10
318 16 0 37 21
319 16 17 592 37
320 21 3 613 594
321 26 0 639 613
322 26 28 16614 639
323 31 8 515034 16621
324 36 2 515070 515036
325 1 1 6 5
326 1 1 7 6326 1 1 7 6
327 1 1 8 7
328 1 1 9 8
329 1 1 10 9
330 6 0 16 10
331 6 6 96 16
332 6 6 576 96
333 6 6 3456 576
334 1 1 6 5
335 1 1 7 6
336 1 1 8 7
337 1 1 9 8
338 1 1 10 9
339 6 0 16 10
340 6 6 96 16
341 6 6 576 96
342 6 6 3456 576
343 1 1 6 5
344 1 1 7 6
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Cycle # V1 V2 V3 V4
345 1 1 8 7
346 1 1 9 8
347 1 1 10 9
348 6 0 16 10
349 6 6 96 16
350 6 6 576 96
351 6 6 3456 576
352 1 1 6 5
353 1 1 7 6
354 1 1 8 7
355 1 1 9 8
356 1 1 10 9
357 6 0 16 10
358 6 6 96 16
359 6 6 576 96
360 6 6 3456 576
361 1 1 6 5
362 1 1 7 6
363 1 1 8 7
364 1 1 9 8
365 1 1 10 9
366 6 0 16 10
367 6 6 96 16
368 6 6 576 96
369 6 6 3456 576369 6 6 3456 576
370 1 1 6 5
371 1 1 7 6
372 1 1 8 7
373 1 1 9 8
374 1 1 10 9
375 6 0 16 10
376 6 6 96 16
377 6 6 576 96
378 6 6 3456 576
379 1 1 6 5
380 1 1 7 6
381 1 1 8 7
382 1 1 9 8
383 1 1 10 9
384 6 0 16 10
385 6 6 96 16
386 6 6 576 96
387 6 6 3456 576
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Cycle # V1 V2 V3 V4
388 1 1 6 5
389 1 1 7 6
390 1 1 8 7
391 1 1 9 8
392 1 1 10 9
393 6 0 16 10
394 6 6 96 16
395 6 6 576 96
396 6 6 3456 576
397 1 1 6 5
398 1 1 7 6
399 1 1 8 7
400 1 1 9 8
401 1 1 10 9
402 6 0 16 10
403 6 6 96 16
404 6 6 576 96
405 6 6 3456 576
406 1 1 7 6
407 1 1 8 7
408 1 1 9 8
409 1 1 10 9
410 6 0 16 10
411 6 6 96 16
412 6 6 576 96412 6 6 576 96
413 6 6 3456 576
414 6 6 20736 3456
415 1 1 7 6
416 1 1 8 7
417 1 1 9 8
418 1 1 10 9
419 6 0 16 10
420 6 6 96 16
421 6 6 576 96
422 6 6 3456 576
423 6 6 20736 3456
424 1 1 7 6
425 1 1 8 7
426 1 1 9 8
427 1 1 10 9
428 6 0 16 10
429 6 6 96 16
430 6 6 576 96
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Cycle # V1 V2 V3 V4
431 6 6 3456 576
432 6 6 20736 3456
433 1 1 7 6
434 1 1 8 7
435 1 1 9 8
436 1 1 10 9
437 6 0 16 10
438 6 6 96 16
439 6 6 576 96
440 6 6 3456 576
441 6 6 20736 3456
442 1 1 7 6
443 1 1 8 7
444 1 1 9 8
445 1 1 10 9
446 6 0 16 10
447 6 6 96 16
448 6 6 576 96
449 6 6 3456 576
450 6 6 20736 3456
451 1 1 7 6
452 1 1 8 7
453 1 1 9 8
454 1 1 10 9
455 6 0 16 10455 6 0 16 10
456 6 6 96 16
457 6 6 576 96
458 6 6 3456 576
459 6 6 20736 3456
460 1 1 7 6
461 1 1 8 7
462 1 1 9 8
463 1 1 10 9
464 6 0 16 10
465 6 6 96 16
466 6 6 576 96
467 6 6 3456 576
468 6 6 20736 3456
469 1 1 7 6
470 1 1 8 7
471 1 1 9 8
472 1 1 10 9
473 6 0 16 10
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Cycle # V1 V2 V3 V4
474 6 6 96 16
475 6 6 576 96
476 6 6 3456 576
477 6 6 20736 3456
478 1 1 7 6
479 1 1 8 7
480 1 1 9 8
481 1 1 10 9
482 6 0 16 10
483 6 6 96 16
484 6 6 576 96
485 6 6 3456 576
486 6 6 20736 3456
487 1 1 8 7
488 1 1 9 8
489 1 1 10 9
490 6 0 16 10
491 6 6 96 16
492 6 6 576 96
493 6 6 3456 576
494 6 6 20736 3456
495 6 6 124416 20736
496 1 1 8 7
497 1 1 9 8
498 1 1 10 9498 1 1 10 9
499 6 0 16 10
500 6 6 96 16
501 6 6 576 96
502 6 6 3456 576
503 6 6 20736 3456
504 6 6 124416 20736
505 1 1 8 7
506 1 1 9 8
507 1 1 10 9
508 6 0 16 10
509 6 6 96 16
510 6 6 576 96
511 6 6 3456 576
512 6 6 20736 3456
513 6 6 124416 20736
514 1 1 8 7
515 1 1 9 8
516 1 1 10 9
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Cycle # V1 V2 V3 V4
517 6 0 16 10
518 6 6 96 16
519 6 6 576 96
520 6 6 3456 576
521 6 6 20736 3456
522 6 6 124416 20736
523 1 1 8 7
524 1 1 9 8
525 1 1 10 9
526 6 0 16 10
527 6 6 96 16
528 6 6 576 96
529 6 6 3456 576
530 6 6 20736 3456
531 6 6 124416 20736
532 1 1 8 7
533 1 1 9 8
534 1 1 10 9
535 6 0 16 10
536 6 6 96 16
537 6 6 576 96
538 6 6 3456 576
539 6 6 20736 3456
540 6 6 124416 20736
541 1 1 8 7541 1 1 8 7
542 1 1 9 8
543 1 1 10 9
544 6 0 16 10
545 6 6 96 16
546 6 6 576 96
547 6 6 3456 576
548 6 6 20736 3456
549 6 6 124416 20736
550 1 1 8 7
551 1 1 9 8
552 1 1 10 9
553 6 0 16 10
554 6 6 96 16
555 6 6 576 96
556 6 6 3456 576
557 6 6 20736 3456
558 6 6 124416 20736
559 1 1 8 7
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Cycle # V1 V2 V3 V4
560 1 1 9 8
561 1 1 10 9
562 6 0 16 10
563 6 6 96 16
564 6 6 576 96
565 6 6 3456 576
566 6 6 20736 3456
567 6 6 124416 20736
568 1 1 9 8
569 1 1 10 9
570 6 0 16 10
571 6 6 96 16
572 6 6 576 96
573 6 6 3456 576
574 6 6 20736 3456
575 6 6 124416 20736
576 6 6 746496 124416
577 1 1 9 8
578 1 1 10 9
579 6 0 16 10
580 6 6 96 16
581 6 6 576 96
582 6 6 3456 576
583 6 6 20736 3456
584 6 6 124416 20736584 6 6 124416 20736
585 6 6 746496 124416
586 1 1 9 8
587 1 1 10 9
588 6 0 16 10
589 6 6 96 16
590 6 6 576 96
591 6 6 3456 576
592 6 6 20736 3456
593 6 6 124416 20736
594 6 6 746496 124416
595 1 1 9 8
596 1 1 10 9
597 6 0 16 10
598 6 6 96 16
599 6 6 576 96
600 6 6 3456 576
601 6 6 20736 3456
602 6 6 124416 20736
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Cycle # V1 V2 V3 V4
603 6 6 746496 124416
604 1 1 9 8
605 1 1 10 9
606 6 0 16 10
607 6 6 96 16
608 6 6 576 96
609 6 6 3456 576
610 6 6 20736 3456
611 6 6 124416 20736
612 6 6 746496 124416
613 1 1 9 8
614 1 1 10 9
615 6 0 16 10
616 6 6 96 16
617 6 6 576 96
618 6 6 3456 576
619 6 6 20736 3456
620 6 6 124416 20736
621 6 6 746496 124416
622 1 1 9 8
623 1 1 10 9
624 6 0 16 10
625 6 6 96 16
626 6 6 576 96
627 6 6 3456 576627 6 6 3456 576
628 6 6 20736 3456
629 6 6 124416 20736
630 6 6 746496 124416
631 1 1 9 8
632 1 1 10 9
633 6 0 16 10
634 6 6 96 16
635 6 6 576 96
636 6 6 3456 576
637 6 6 20736 3456
638 6 6 124416 20736
639 6 6 746496 124416
640 1 1 9 8
641 1 1 10 9
642 6 0 16 10
643 6 6 96 16
644 6 6 576 96
645 6 6 3456 576
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Cycle # V1 V2 V3 V4
646 6 6 20736 3456
647 6 6 124416 20736
648 6 6 746496 124416
649 1 1 10 9
650 6 0 16 10
651 6 6 96 16
652 6 6 576 96
653 6 6 3456 576
654 6 6 20736 3456
655 6 6 124416 20736
656 6 6 746496 124416
657 6 6 4478976 746496
658 1 1 10 9
659 6 0 16 10
660 6 6 96 16
661 6 6 576 96
662 6 6 3456 576
663 6 6 20736 3456
664 6 6 124416 20736
665 6 6 746496 124416
666 6 6 4478976 746496
667 1 1 10 9
668 6 0 16 10
669 6 6 96 16
670 6 6 576 96670 6 6 576 96
671 6 6 3456 576
672 6 6 20736 3456
673 6 6 124416 20736
674 6 6 746496 124416
675 6 6 4478976 746496
676 1 1 10 9
677 6 0 16 10
678 6 6 96 16
679 6 6 576 96
680 6 6 3456 576
681 6 6 20736 3456
682 6 6 124416 20736
683 6 6 746496 124416
684 6 6 4478976 746496
685 1 1 10 9
686 6 0 16 10
687 6 6 96 16
688 6 6 576 96
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Cycle # V1 V2 V3 V4
689 6 6 3456 576
690 6 6 20736 3456
691 6 6 124416 20736
692 6 6 746496 124416
693 6 6 4478976 746496
694 1 1 10 9
695 6 0 16 10
696 6 6 96 16
697 6 6 576 96
698 6 6 3456 576
699 6 6 20736 3456
700 6 6 124416 20736
701 6 6 746496 124416
702 6 6 4478976 746496
703 1 1 10 9
704 6 0 16 10
705 6 6 96 16
706 6 6 576 96
707 6 6 3456 576
708 6 6 20736 3456
709 6 6 124416 20736
710 6 6 746496 124416
711 6 6 4478976 746496
712 1 1 10 9
713 6 0 16 10713 6 0 16 10
714 6 6 96 16
715 6 6 576 96
716 6 6 3456 576
717 6 6 20736 3456
718 6 6 124416 20736
719 6 6 746496 124416
720 6 6 4478976 746496
721 1 1 10 9
722 6 0 16 10
723 6 6 96 16
724 6 6 576 96
725 6 6 3456 576
726 6 6 20736 3456
727 6 6 124416 20736
728 6 6 746496 124416
729 6 6 4478976 746496
730 6 0 7 1
731 6 6 42 7
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Cycle # V1 V2 V3 V4
732 11 0 53 42
733 16 0 69 53
734 16 17 1104 69
735 21 3 1125 1106
736 21 23 1146 1125
737 21 27 24066 1150
738 21 28 505386 24071
739 6 0 7 1
740 6 6 42 7
741 11 0 53 42
742 16 0 69 53
743 16 17 1104 69
744 21 3 1125 1106
745 21 23 1146 1125
746 21 27 24066 1150
747 21 28 505386 24071
748 6 0 7 1
749 6 6 42 7
750 11 0 53 42
751 16 0 69 53
752 16 17 1104 69
753 21 3 1125 1106
754 21 23 1146 1125
755 21 27 24066 1150
756 21 28 505386 24071756 21 28 505386 24071
757 6 0 7 1
758 6 6 42 7
759 11 0 53 42
760 16 0 69 53
761 16 17 1104 69
762 21 3 1125 1106
763 21 23 1146 1125
764 21 27 24066 1150
765 21 28 505386 24071
766 6 0 7 1
767 6 6 42 7
768 11 0 53 42
769 16 0 69 53
770 16 17 1104 69
771 21 3 1125 1106
772 21 23 1146 1125
773 21 27 24066 1150
774 21 28 505386 24071
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Cycle # V1 V2 V3 V4
775 6 0 7 1
776 6 6 42 7
777 11 0 53 42
778 16 0 69 53
779 16 17 1104 69
780 21 3 1125 1106
781 21 23 1146 1125
782 21 27 24066 1150
783 21 28 505386 24071
784 6 0 7 1
785 6 6 42 7
786 11 0 53 42
787 16 0 69 53
788 16 17 1104 69
789 21 3 1125 1106
790 21 23 1146 1125
791 21 27 24066 1150
792 21 28 505386 24071
793 6 0 7 1
794 6 6 42 7
795 11 0 53 42
796 16 0 69 53
797 16 17 1104 69
798 21 3 1125 1106
799 21 23 1146 1125799 21 23 1146 1125
800 21 27 24066 1150
801 21 28 505386 24071
802 6 0 7 1
803 6 6 42 7
804 11 0 53 42
805 16 0 69 53
806 16 17 1104 69
807 21 3 1125 1106
808 21 23 1146 1125
809 21 27 24066 1150
810 21 28 505386 24071
811 6 0 8 2
812 6 6 48 8
813 6 6 288 48
814 6 6 1728 288
815 6 6 10368 1728
816 6 6 62208 10368
817 6 6 373248 62208
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Cycle # V1 V2 V3 V4
818 6 6 2239488 373248
819 6 6 13436928 2239488
820 6 0 8 2
821 6 6 48 8
822 6 6 288 48
823 6 6 1728 288
824 6 6 10368 1728
825 6 6 62208 10368
826 6 6 373248 62208
827 6 6 2239488 373248
828 6 6 13436928 2239488
829 6 0 8 2
830 6 6 48 8
831 6 6 288 48
832 6 6 1728 288
833 6 6 10368 1728
834 6 6 62208 10368
835 6 6 373248 62208
836 6 6 2239488 373248
837 6 6 13436928 2239488
838 6 0 8 2
839 6 6 48 8
840 6 6 288 48
841 6 6 1728 288
842 6 6 10368 1728842 6 6 10368 1728
843 6 6 62208 10368
844 6 6 373248 62208
845 6 6 2239488 373248
846 6 6 13436928 2239488
847 6 0 8 2
848 6 6 48 8
849 6 6 288 48
850 6 6 1728 288
851 6 6 10368 1728
852 6 6 62208 10368
853 6 6 373248 62208
854 6 6 2239488 373248
855 6 6 13436928 2239488
856 6 0 8 2
857 6 6 48 8
858 6 6 288 48
859 6 6 1728 288
860 6 6 10368 1728
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Cycle # V1 V2 V3 V4
861 6 6 62208 10368
862 6 6 373248 62208
863 6 6 2239488 373248
864 6 6 13436928 2239488
865 6 0 8 2
866 6 6 48 8
867 6 6 288 48
868 6 6 1728 288
869 6 6 10368 1728
870 6 6 62208 10368
871 6 6 373248 62208
872 6 6 2239488 373248
873 6 6 13436928 2239488
874 6 0 8 2
875 6 6 48 8
876 6 6 288 48
877 6 6 1728 288
878 6 6 10368 1728
879 6 6 62208 10368
880 6 6 373248 62208
881 6 6 2239488 373248
882 6 6 13436928 2239488
883 6 0 8 2
884 6 6 48 8
885 6 6 288 48885 6 6 288 48
886 6 6 1728 288
887 6 6 10368 1728
888 6 6 62208 10368
889 6 6 373248 62208
890 6 6 2239488 373248
891 6 6 13436928 2239488
892 6 0 9 3
893 6 6 54 9
894 11 0 65 54
895 11 12 76 65
896 11 13 87 77
897 11 13 98 88
898 11 13 109 99
899 11 13 120 110
900 16 2 136 121
901 6 0 9 3
902 6 6 54 9
903 11 0 65 54
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Cycle # V1 V2 V3 V4
904 11 12 76 65
905 11 13 87 77
906 11 13 98 88
907 11 13 109 99
908 11 13 120 110
909 16 2 136 121
910 6 0 9 3
911 6 6 54 9
912 11 0 65 54
913 11 12 76 65
914 11 13 87 77
915 11 13 98 88
916 11 13 109 99
917 11 13 120 110
918 16 2 136 121
919 6 0 9 3
920 6 6 54 9
921 11 0 65 54
922 11 12 76 65
923 11 13 87 77
924 11 13 98 88
925 11 13 109 99
926 11 13 120 110
927 16 2 136 121
928 6 0 9 3928 6 0 9 3
929 6 6 54 9
930 11 0 65 54
931 11 12 76 65
932 11 13 87 77
933 11 13 98 88
934 11 13 109 99
935 11 13 120 110
936 16 2 136 121
937 6 0 9 3
938 6 6 54 9
939 11 0 65 54
940 11 12 76 65
941 11 13 87 77
942 11 13 98 88
943 11 13 109 99
944 11 13 120 110
945 16 2 136 121
946 6 0 9 3
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Cycle # V1 V2 V3 V4
947 6 6 54 9
948 11 0 65 54
949 11 12 76 65
950 11 13 87 77
951 11 13 98 88
952 11 13 109 99
953 11 13 120 110
954 16 2 136 121
955 6 0 9 3
956 6 6 54 9
957 11 0 65 54
958 11 12 76 65
959 11 13 87 77
960 11 13 98 88
961 11 13 109 99
962 11 13 120 110
963 16 2 136 121
964 6 0 9 3
965 6 6 54 9
966 11 0 65 54
967 11 12 76 65
968 11 13 87 77
969 11 13 98 88
970 11 13 109 99
971 11 13 120 110971 11 13 120 110
972 16 2 136 121
973 6 0 10 4
974 11 0 21 10
975 16 0 37 21
976 16 17 592 37
977 21 3 613 594
978 26 0 639 613
979 26 28 16614 639
980 31 8 515034 16621
981 36 2 515070 515036
982 6 0 10 4
983 11 0 21 10
984 16 0 37 21
985 16 17 592 37
986 21 3 613 594
987 26 0 639 613
988 26 28 16614 639
989 31 8 515034 16621
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Cycle # V1 V2 V3 V4
990 36 2 515070 515036
991 6 0 10 4
992 11 0 21 10
993 16 0 37 21
994 16 17 592 37
995 21 3 613 594
996 26 0 639 613
997 26 28 16614 639
998 31 8 515034 16621
999 36 2 515070 515036

1000 6 0 10 4
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