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CONNECTIVITY OF THE STRIATAL RESTING-STATE NETWORKS IN AUTISM 

SPECTRUM DISORDER  

 

THOMAS PATRICK DERAMUS 

 

BEHAVIORAL NEUROSCIENCE 

 

ABSTRACT  

 

 Social deficits and repetitive behaviors and are core features of autism. Structural 

and functional alterations in the striatum, brain regions highly involved in movement 

planning, regulation, and motivation, may underlie these core features. However, few 

studies have examined functional connectivity (FC) of the striatum in autism; and fewer 

have examined anatomical connectivity despite hypotheses of structural alterations influ-

encing FC autism spectrum disorders (ASDs). To address these gaps, the current study 

examined FC of resting-state brain networks in the striatum in 19 typically developing 

and 19 children with autism (ages 7-17 years) from the Autism Brain Imaging Database 

Exchange II. The approach is unique in that it compares the traditional group analysis to a 

behavior-centric focus on repetitive behaviors and social motivation. These analyses were 

expanded upon using diffusion weighted imaging (DWI) measures of connectivity to ex-

amine the degree to which anatomical connectivity correlated with FC in the brain. 

 ASD participants displayed increased striatal-cortical FC in sensorimotor and de-

fault mode networks, but also striatal-cortical FC reductions in frontoparietal, dorsal at-

tention, and default mode networks. Measures of social motivation were found to corre-

late with striatal-cortical FC in dorsal attention networks, while measures of stereotyped 

and compulsive behaviors were found to correlate with FC in sensorimotor and frontopa-

rietal striatal-cortical networks respectively. FC between striatal and cortical regions typ-
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ically associated with reward processing did not correlate with social motivation scores, 

in contrast to theories proposing dysfunction within these regions in ASD. 

Very few anatomical connections were correlated with FC, and those that did were lim-

ited to default mode or frontoparietal networks that were not related to the initial TD vs 

ASD contrast or the behavior analysis. More data is needed to assess the influence of 

structural connectivity on functional connectivity given the constraints of the model used. 

The findings of this study seem to suggest that while there may be alterations in the stria-

tum in ASD, those differences may be pronounced in brain regions associated with atten-

tion and cognitive control. Future work using behavior-and-anatomy-centric analyses in 

ASD may provide more insights into useful information processing models in a disorder 

where behavior is highly variable. 

 

 

 

 

 

 

 

 

 

 

 

Keywords: autism; striatum; diffusion; functional connectivity; multimodal neuroimaging 



iv 

 

 

 

 

 

ACKNOWLEDGMENTS 

 I would like to thank my mentor, Dr. Rajesh Kana, for his support for the last 6 

years. Dr. Kana’s mentoring and approach to science challenged me to constantly 

question methods and never blindly accept results, making me the scientist that I am 

today. Drs. Michael Friedlander, Laura and Mark Klinger, and Read Montague have my 

thanks for sparking my interests in neuroimaging. My time in Dr. Farah Lubin’s lab 

taught me what it was like to work in neuroscience, how much I didn’t know, and seeded 

my desire to learn more. Dr. Franklin Amthor has my sincerest thanks for taking a chance 

on accepting a Birmingham local with insatiable curiosity into the UAB Behavioral 

Neuroscience program, without which I would not have reached this point. I would also 

like to acknowledge Dr. David Clark for his trust and tutelage in techniques that I would 

only later realize how much I needed to understand. 

 I am indebted to my committee members, Dr. Sarah O’Kelley, Dr. Edwin Cook 

III, Dr. David Knight, and Dr. Mark Bolding for their valuable input and direction. I 

appreciate the valuable career, scientific, and personal advice I have received throughout 

my graduate career from Dr. Knight and Dr. Bolding. I am especially indebted to Dr. 

Deborah Kerr for her continued personal and professional support as I move forward in 

my academic career. Much of my goals would not be accomplished without her generous 

coaching and aid. 

 The UAB Roadmap Scholars (RMS) Program has my deepest thanks for their 

professional and financial support. I hope that someday the need for increased 



v 

 

representation of minorities and individuals with disabilities in academia is no longer 

necessary. I would also like to thank the Multimodal Neuroimaging Training Program 

(MNTP) at Carnegie Mellon University and University of Pittsburgh for an experience I 

will always cherish. Special thanks are due to Dr. Fang-Cheng Yeh, Thomas Kraynak, 

Cristina Roman, Dr. Rogers Silva, and Melissa Thye for their roles in teaching me to 

understand the techniques used for this project, as well as their continued friendships. 

 Special thank you are due to my former and current lab mates, Dr. Lauren Libero 

and Jose Omar Maximo for their friendship, feedback, and support throughout my 

research. Additional thanks are due to Tana Birky, Dr. Wesley Burge, Kevin Chang, 

Hrishikesh “Rishi” Deshpande, Terin Dupre, Dr. Joseph Griffis, Dr. Fred Guaraná 

Oliveria Souza, Nathaniel Harnett, Brandon Huffstetler, Dr. LaRita Jones, Jacob Knight, 

Samantha Lesniak, Dr. Angela Nietz, Delores Stacks, and Dr. Muriah Wheelock for their 

friendship during my graduate career. 

 I would also like to acknowledge initiatives such as Open-Science-Framework 

(OSF) and open-access learning platforms that promote well-informed, transparent 

research in the field. This project would not have been possible without the open-source 

Autism Brain Imaging Database Exchange (ABIDE), the institutions contributing to 

ABIDE, and the participants dedicating their valuable time to provide the data for 

ABIDE. 

Finally, I would like to acknowledge my wife, Dr. Marci DeRamus, who has 

given me the strength and support needed to achieve my Ph.D., my daughter Ruby for her 

cheerful disposition, and my parents and in-laws for all their valuable help and support 

throughout this time. I truly could not have done it without all of you. 



vi 

 

 
 

 

 

 

TABLE OF CONTENTS  

 

Page 

 

ABSTRACT ........................................................................................................................ ii 

 

ACKNOWLEDGMENTS ................................................................................................. iv 

 

LIST OF TABLES ........................................................................................................... viii 

 

LIST OF FIGURES ........................................................................................................... ix 

 

LIST OF ABBREVIATIONS ..............................................................................................x 

 

OBJECTIVES ......................................................................................................................1 

   

Aim Number 1 .........................................................................................................2 

Aim Number 2 .........................................................................................................3 

 

INTRODUCTION ...............................................................................................................4 

   

The role of behavior and striatal connections in the brain  ......................................4 

The Striatum and Connectivity in Autism ...............................................................9 

Novelty And Innovation ........................................................................................13 

 

METHODS ........................................................................................................................15 

   

Participant Data ......................................................................................................15 

Participant Data Exclusion Criteria ...........................................................16 

MRI Data Quality Assurance .....................................................................17 

Final Participant Count and Group Comparisons ......................................19 

Generation of Group Brain Template ....................................................................20 

Generation of ROIs for FC Analyses .....................................................................24 

Aim Number 1 .......................................................................................................26 

MRI data collection and analysis ...............................................................26 

Data Preprocessing.....................................................................................27 

Functional Connectivity Analysis ..............................................................28 

Potential Problems and Alternative Strategies ...........................................29 

 fMRI ..........................................................................................29 

 Analytical ..................................................................................32 

Aim Number 2 .......................................................................................................33 

Functional Connectivity and Autism Symptoms .......................................33 



vii 

 

 Restricted Repetitive Behavior Scale-Revised (RBS-R)...........34 

 Social Responsiveness Scale (SRS) Version 1 ..........................35 

Functional Connectivity/Diffusion Analysis .............................................36 

 DWI Processing and Extraction ................................................36 

 Functional Connectivity/Anisotropy Analysis ..........................37 

Potential Problems and Alternative Strategies ...........................................39 

 Analytical ..................................................................................39 

 DWI ...........................................................................................40 

 Mitigation of false-positives ......................................................41 

 Computational ...........................................................................41 

 

RESULTS ..........................................................................................................................44 

   

Aim Number 1 .......................................................................................................44 

Aim Number 2 .......................................................................................................49 

Behavioral Correlates of FC ......................................................................49 

Anatomical Correlates of FC .....................................................................54 

 Generalized Fractional Anisotropy ...........................................57 

 Normalized Quantitative Anisotropy ........................................58 

 Assessments of Age and FSIQ ..................................................58 

 

DISCUSSION ....................................................................................................................60 

   

Aim Number 1 .......................................................................................................61 

Aim Number 2 .......................................................................................................64 

Correlations of FC with Behavioral Measures...........................................64 

Correlations with FC and Anisotropy Measures ........................................67 

 FC with GFA......................................................................68 

 FC with NQA .....................................................................69 

Strengths, Limitations, and Future Directions .......................................................71 

 

 

REFERENCES ..................................................................................................................78 

 

APPENDICES 

  

 Appendix A: tSNR by ROI and Correlations with Age, FSIQ, and QC metrics .120 

 

 Appendix B: UAB IRB Exemption Form ............................................................125 



viii 

 

 

 

 

LIST OF TABLES 

 

Tables                                                                                                                             Page 

 

1 Tests for group differences in demographic and behavioral measures 

from sample ....................................................................................................................22 

 

2 Tests for group differences in MRI data quality assurance pipelines .............................23 

 

3 Regions of interest from the Choi/Yeo striatal parcellation yielding 

significant group differences in functional connectivity ................................................48 

 

4 Significant correlations between FC in Choi/Yeo networks with 

behaviors of interest ........................................................................................................52 

 

5 Significant correlations between FC of Choi/Yeo regions and generalized 

and quantitative anisotropy .............................................................................................56 
 



 

ix 

 

 

 

 

LIST OF FIGURES 

 

Figure                                                                                                                            Page 

 

1 Yeo et al. 2011 and Choi et al. 2012’s parcellation of the striatum and cortex 

coded into 7 networks: Visual, Somatosensory, Dorsal attention, Ventral 

attention, Limbic, Frontoparietal, and Default mode ........................................................6 

 

2 Verstynen et al. 2012 (Figure. 1):  Deterministic cortical-striatal tractography 

ending in the putamen seeded from cortical ROIs associated with specific 

functions from a single participant in Verstynen et al. 2012. ...........................................8 

 

3 Flowchart describing the participant selection criteria ...................................................16 

 

4 Participants in ABIDE Template by database and site. Volume and Surface 

renders of template constructed from ABIDE II T1s which passed quality 

assurance .........................................................................................................................20 

 

5 The 107-ROI parcellation of the Yeo et al. 2011 and Choi et al. 2012 atlases 

in MNI normalized diffusion space, and example fiber-track streamlines 

based on QSDR reconstructed diffusion data .................................................................36 

 

6 Connections with statistically significant group differences across networks................47 

 

7 Connections with statistically significant correlations with RBS-R and SRS 

subscales .........................................................................................................................53 

 

8 Regions in which FC is significantly correlated with generalized fractional or 

normalized quantitative anisotropy .................................................................................55 

 

9 Adapted figure from Figure 2 of DiMartino et al. 2017 .................................................75 
 



 

x 

 

 

 

 

LIST OF ABBREVIATIONS 

 

ABIDE Autism Brain Imaging Database Exchange 

ACC anterior cingulate cortex 

ADC apparent diffusivity coefficient 

ADHD attention deficit hyperactivity disorder 

AFNI Analysis of Functional NeuroImages  

AMYG amygdala 

ANCOVA Analysis of Covariance 

ANTs Advanced Normalization Tools 

ASD autism spectrum disorder 

BG basal ganglia 

BNI Barrow Neurological Institute 

BOLD blood oxygen level dependent 

CI95 95% confidence interval 

CNS central nervous system 

CSF cerebrospinal fluid  

DAN dorsal attention network 

DMN default mode network 

DS dorsal striatum 



 

xi 

 

DSM-IV Diagnostic and Statistical Manual of Mental Disorders IV 

DTI diffusion tensor imaging 

DWI diffusion weighted imaging 

EMC Erasmus University Medical Center 

EPI echo planar image 

ETH Eidgenössische Technische Hochschule Zürich 

FA fractional anisotropy 

FAST FMRIB's Automated Segmentation Tool 

FC functional connectivity 

FCP 1000 Functional Connectomes Project 

FD framewise displacement 

FDR false discovery rate 

FG fusiform gyrus 

fMRI functional magnetic resonance imaging 

FOV field of view 

FPN frontoparietal network 

FSIQ full-scale intelligence quotient 

FSL FMRIB Software Library 

FSPGR fast spoiled gradient echo 

FWHM full-width-half-maximum 

GABA gamma-aminobutryic acid 

GFA generalized fractional anisotropy 

GQI Generalized Q-Sampling Imaging  



 

xii 

 

GU Georgetown University 

HIPAA Health Insurance Portability and Accountability Act 

ICA independent component analysis 

IFG inferior frontal gyrus 

INDI International Neuroimaging Data-sharing Initiative  

IP Institut Pasteur 

IPL inferior parietal lobule 

IRB Institutional Review Board  

IU Indiana University 

KKI Kennedy Krieger Institute 

KUL Katholieke Universiteit Leuven 

LMBC limbic 

LOC lateral occipital cortex 

MaxMun Ludwig Maximilians University Munich 

MDD Major depressive disorder 

MFG middle frontal gyrus 

MNI Montreal Neurological Institute  

mPFC medial prefrontal cortex 

MRI magnetic resonance imaging 

NAcc nucleus accumbens 

NQA normalized quantitative anisotropy 

NYU New York University 

OCD obsessive compulsive disorder 



 

xiii 

 

ODF orientation distribution function 

OFC orbital frontal cortex 

OHSU Oregon Health and Science University 

ONRC Olin Neuropsychiatry Research Center 

PCC posterior cingulate cortex 

PDD-NOS pervasive developmental disorder not otherwise specified 

QA quantitative anisotropy 

QAP Quality Assurance Protocol 

QC quality control 

QSDR Q-Space Diffeomorphic Reconstruction  

rbs  Rank-Biserial Correlation Coefficient 

RBS-R Repetitive Behavior Scale-Revised 

RMSD root-mean-square deviation 

ROI region of interest 

rsfMRI resting-state functional magnetic resonance imaging 

SAMN somatomotor network 

SDSU San Diego State University 

SEM structural equation modeling 

SFG superior frontal gyrus 

SMA supplementary motor area 

SN substantia nigra 

SNR signal-to-noise ratio 

SPM Statistical Parametric Mapping 



 

xiv 

 

SRS Social Responsiveness Scale 

SyN Symmetric Diffeomorphic Image Registration with Cross-Correlation 

TCD Trinity College Dublin 

TD typically developing 

tDOF temporal degrees of freedom 

TE echo time 

TICV total intracranial volume  

ToM theory-of-mind 

TR relaxation time 

tSNR temporal signal-to-noise ratio 

UCD University of California Davis 

UCLA University of California Los Angeles 

UM University of Michigan 

UPSM University of Pittsburgh School of Medicine 

USM Utah School of Medicine 

VAN ventral attention network 

VIS visual 

vmPFC ventral-medial prefrontal cortex 

VS ventral striatum 

WASI-II Wechsler Abbreviated Scale of Intelligence® second edition 



1 
 

 

 

 

OBJECTIVES 

Autism Spectrum Disorders (ASDs) are a class of neurodevelopmental disorders 

affecting as many as 1 in 68 children between 3-17 years of age in the United States.1  

ASDs are characterized by social communication deficits, restricted interests and 

repetitive behaviors.2,3 Analyses of functional (temporal correlations in Blood Oxygen 

Level Dependent [BOLD] signal between brain regions) and structural white matter 

connections (measured through differences in the diffusion of water in the brain 

quantified using diffusion anisotropy) in individuals with ASDs have led to hypotheses 

that deficits in social cognition and language may be due to alterations in frontal-

temporal brain connectivity.4–6 However, many of the symptoms related to repetitive 

behaviors7–9 and poor motivation for social stimuli10–14 in ASD have been attributed to 

alterations in striatum. 

 Prior work6,15–19 on resting-state functional connectivity (FC) suggests a trend of 

hyperconnectivity of subcortical structures with the rest of the brain in individuals with 

ASDs.6,15–17 However, no studies to date have examined the relationship of cortical-

subcortical connectivity to repetitive behaviors or social motivation. Furthermore, 

diffusion weighted imaging (DWI) studies of the white matter report both increases and 

decreases in fractional anisotropy (FA) and diffusivity of frontal, temporal, and striatal 

white matter in individuals with ASDs.20 The absence of behavior-specific, multimodal 

analyses of brain regions related to two core-features of ASD warrants further 
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exploration, especially in the context of developing translational models of brain 

structure/function relationships in ASD.  

To address this gap, we utilized a combination of phenotypic, diffusion, and resting-

state fMRI (rsfMRI) data from high-functioning ASD and typically developing (TD) 

children (ages 7-17 years) from the open-source Autism Brain Imaging Data Exchange II 

(http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html) (ABIDE-II). In addition, this 

project applies a novel, connectome-based21–23 approach to examine the connectivity of 

striatal networks in individuals with ASD. Our goal was to examine whether FC 

differences in ASD is significantly influenced by, or independent of, behavioral measures 

of restricted-repetitive behaviors and social motivation in cortical-striatal resting-state 

networks in accordance with current models of the ASD phenotype. We also assessed the 

contribution of two measures DWI based diffusion anisotropy (fractional and 

quantitative) on FC between resting-state cortical-striatal brain regions to test the 

hypothesis that alterations in FC in ASD are driven by underlying white matter 

anomalies. Prior research using multimodal imaging techniques from our group has 

linked alterations in FC and brain morphology to facets of the ASD phenotype,4,5,24–30 

making our research group well-equipped to further examine striatal circuitry in ASD. 

 

AIM #1 Compare the functional connectivity of resting-state striatal brain networks 

in individuals with ASD and TD controls. 

o H1: Resting-state functional connectivity of striatal structures with their cortical 

targets (e.g. nucleus accumbens, caudate, putamen to frontal and temporal cortex) 

will be greater in individuals with ASDs compared to TD controls. 

http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
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AIM #2 Examine brain-behavior relationships by analyzing correlations between 

functional connections of resting-state striatal brain networks in individuals with 

ASDs with cognitive and behavioral factors (repetitive behaviors, social motivation 

scores) and structure-function relationships by correlating resting-state functional 

connections diffusion anisotropy. 

o H2: Repetitive Behavior Scale-Revised (RBS-R)31,32 scores of stereotyped and 

compulsive behavior will correlate positively with functional connections 

between striatal structures such as the caudate and putamen and frontal motor and 

sensorimotor regions. 

O H3: Social motivation scores from the Social Responsiveness Scale(SRS)33 will 

correlate positively with functional connections between the nucleus accumbens 

and frontal regions of the brain. 

o H4: Using connectome-based analysis of diffusion MRI, we propose that 

measures of diffusion anisotropy (generalized fractional and quantitative) will 

correlate with measures of FC in cortical-striatal networks. 

o H5: RBS-R, SRS, and Anisotropy measures may explain group differences in FC 

between TD and ASD participants. 
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INTRODUCTION 

The role of behavior and striatal connections in the brain  

Human and animal studies have found that goal-orientated behaviors have distinct 

neural sub-components that recruit cortico-striatal structures. These components are 

modulated by GABAergic (Gamma-Aminobutyric Acid), glutamatergic, dopaminergic, 

oxytocin/vasopressin, and many other neurotransmitters and neuropeptides via frontal-

striatal, nigral-striatal, cortical-limbic, and frontal limbic connections across the 

brain.12,34–45 Several mechanisms have been proposed to explain the complex interactions 

between striatal regions during positive and negative reinforcement paradigms in both 

human and animal literature, but a unifying feature among the findings is the role of the 

ventral striatum (VS) (of which the nucleus accumbens or NAcc is the primary structure) 

in modulating activity across several regions of the brain. The VS is the target of a 

number of cortical, limbic, and thalamic regions of the brain, and projects into the 

amygdala (AMYG), hypothalamus, nucleus basalis, and substantia nigra (SN).46 These 

projections place the VS in a unique position to receive inputs from several brain regions 

while simultaneously being able to directly influence cortical and limbic areas.46 A recent 

meta-analysis by Liu et al. (2012) on human neuroimaging studies of reward processing 

suggests that there are region-specific profiles of the human brain integral to certain 

components of reward processing. These include: decision making (NAcc, caudate, 

putamen, thalamus, ventral-medial prefrontal cortex [vmPFC], insula, anterior cingulate 
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cortex [ACC], medial prefrontal cortex [mPFC], inferior parietal lobule [IPL], and 

posterior cingulate cortex [PCC]), anticipation (ACC, insula, brainstem), and reception 

(being given an appetitive stimulus; NAcc, vmPFC, and AMYG).35 The meta-analysis 

further suggests these regions are significantly influenced by the nature of the stimulus, 

with the vmPFC and PCC primarily associated with pleasant stimuli, and the ACC, 

insula, and mPFC with unpleasant stimuli.35 However, it is a topic of debate whether 

striatal BOLD signal is primarily driven by the salience of the stimuli being presented, 

sensory stimulation, motor preparation, or whether the stimulus involves receiving a 

reward or avoiding punishment.47–51 fMRI studies of connectivity have reported  

thalamus and insula activity influencing activity in the NAcc, and an increase in FC 

between the VS and vmPFC during aversive outcomes in TD individuals.52,53 Similar 

studies using Granger causality approaches to calculate FC argue that the VS receives 

input from the vmPFC and hippocampus (HIP), but can directly influence activity in the 

vmPFC.54 Optogenetic stimulation of dopaminergic and glutamatergic hippocampal and 

amygdalar projections into the NAcc have been found to both produce hedonic affect and 

rescue depressive and anxious symptoms in rodents.55,56 The results from these 

experiments suggest that subcortical connections may influence motivation for receiving 

a reward or avoiding punishment over and above the frontal cortex, although this is 

relatively difficult to assess in human studies.  

Basal ganglia (BG) structures (i.e. caudate, putamen, globus pallidus) that comprise 

the dorsal striatum (DS) have a separate, but somewhat overlapping role with VS 

structures. While the DS plays a role in reward processing, decision making, and learning 

similar to the VS,57–59 it is also actively involved in motor coordination and planning. 
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There is also evidence that the DS is heavily involved in the integration of sensory input 

to guide motor behavior and motor responses to stimuli through reciprocal connections 

with the thalamus and cortex.60–62 The structure and common pathways of the BG relative 

to the striatum and cortex have been studied extensively in humans and primates,63 with 

damage, lesions, and alterations within these areas associated with a number of 

movement disorders. Even in the absence a of task, structures within the striatum appear 

to display distinct FC with specific areas of the brain. In work by Choi et al., 2012,64 

striatal structures were grouped with resting-state cortical networks separated by function 

(e.g. Visual, Somatomotor, Dorsal/Ventral attention, Limbic, Frontoparietal, and Default 

mode) based on the highest correlation between striatal voxels with each cortical network 
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(See Figure 1). Some components of this parcellation have had connection profiles 

validated using tract-tracing in primates.64,65 

Despite this wealth of information, few studies have examined connections between 

regions encompassing the striatum using diffusion imaging techniques. One study found 

distinct white matter projections across VS to the vmPFC and uncus of the temporal 

pole66 using a tensor-based DWI model67 to perform tractography. A more recent study 

using Generalized Q-Sampling Imaging (GQI) reconstruction68 found a number of 

projections between the striatum, lateral frontal cortex, and limbic structures, with the 

frontal projections alone numbering more than twice the amount of sensory and motor 

projections in the rostral aspects of the striatum.69 Additionally, a recent study validated a 

known white matter tract connecting the NAcc and vmPFC,70 referred to as the 

“accumbofrontal tract.” 

Surprisingly however, there has been little research examining direct relationships 

between, BOLD-based FC and DWI-based anatomy measures. While there are 

experiments in the literature suggesting relatively high agreement between DWI based 

tractography and functionally connected resting-state brain networks,71–74 this work has 

been limited to cortical-cortical connections. Furthermore, while there are several 

techniques available to integrate FC and DWI data such as Fusion ICA 

[http://mialab.mrn.org/software/fit/index.html], many of these techniques utilize tensor-

based models to estimate diffusion. Compared to higher order diffusion models such as 

multi-tensors and orientation distribution functions (ODFs), tensors are more susceptible 

to partial volume effects (loss of contrast between adjacent tissues in an image)75 and can 

produce artificially low fractional anisotropy (FA; the degree of anisotropy of water 
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diffusion in the brain) values in regions where there are multiple fibers at different 

orientations (as much as 60-90% of all white matter voxels according to some studies).76 

Given that subcortical-cortical projections are far more likely to have multiple fibers 

fanning, branching, or crossing white matter tracts, higher order ODF-based models 

would be far more useful to study subcortical-cortical connections such as those from the 

striatum to the cortex (See Figure 2 for a representative example from Verstynen et al. 

2012). Exploring the relationship between structure and function of striatal connections in 

humans is important not only as a basic science question to validate known white matter 

architecture, but also due to the growing number of studies finding atypical striatal 

connections in patient populations.77–79 
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The Striatum and Connectivity in Autism 

 Social deficits and repetitive behaviors that are hallmark features of ASD may be 

influenced by functional differences involving cortical and subcortical connections of the 

brain. Neuroimaging initiatives to study children and adults with ASDs have led to 

theoretical models proposing altered connections between brain areas in individuals with 

ASD. It has been suggested that alterations in FC may explain some of the social and 

language deficits common to ASD.4,5,24,26,80–83 An increasing number of studies using 

both traditional neuroimaging analyses and machine learning approaches to data analysis 

propose that alterations in brain connections may serve as promising markers for 

ASD.30,84–89 

Recently, there has been increased interest in the NAcc in ASD in the context of the 

social motivation hypothesis, which posits that deficits in social processing in ASD stem 

from a decreased motivation to seek out social stimuli.10,12,102,103 Some support for social 

motivation theory has been found through ASD-specific alterations in BOLD signal in 

the NAcc in response to monetary,13,14,104,105 object,14 and social rewards.13,104,105 

However, the concept of social motivation may be inherently convoluted by multiple 

underlying mechanisms. These include: the role of learning in motivation, whether social 

cognition pre-empts social motivation, its domain specificity, and the observation that 

certain clinical populations (e.g. ADHD, major depression [MDD], anxiety) that are 

highly comorbid in ASD display similar deficits.12 Alterations in striatal development and 

function are frequently listed as potential sources of restricted interest and repetitive 

behaviors in ASD,9,106,107 However, the few published studies have examined volumetric 
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MRI and tensor-based diffusion MRI measures rather than BOLD-based functional 

striatal-cortical connections. 

Disruptions in frontal-striatal, nigral-striatal, cortical-limbic, and frontal-limbic 

dopaminergic and oxytocin/vasopressin pathways (all of which relate to motivation, 

salience, and reward) have been reported in individuals with ASD.108–110 Volumetric 

studies of regions associated with reward processing in ASD using voxel-based 

morphometry and post-mortem tissue studies report ASD-related volumetric alterations 

within the caudate,111–113 putamen,113 hippocampus (HIP),114–116 AMYG,113,115,116 

vmPFC,117,118 and NAcc.113 Volumetric alterations of the caudate and putamen correlate 

with repetitive behaviors in ASD in some published work.106 Studies using reward tasks 

report reductions in activity within the striatal and prefrontal regions, and those using 

rsfMRI report alterations in FC in ASD in these same regions.13,14,17,34,104,105,107,119–121 

Considering these findings, the interaction of subcortical striatal structures with the 

cortex in ASD may provide a unifying framework for better understanding the ASD 

phenotype. 

Unifying models or “biomarkers” are difficult to develop for individuals with 

autism however, largely due to the complexity and clinical heterogeneity within this 

population. For example, ADHD, obsessive compulsive disorder (OCD), Tics/Tourette’s 

syndrome, anxiety disorders, and depression are frequently comorbid with ASD.122–137 

Subgroups within ASD and common comorbid conditions can also display overlap on 

clinical and screening with one another.130,138 In addition, many comorbidities common to 

ASD have been associated with alterations in BOLD signal and FC, particularly within 

subcortical structures, in absence of ASD.138–157 This confound is not novel in behavioral 
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and clinical studies of individuals with ASDs, but it is only recently beginning to be 

addressed in neuroimaging literature. Studies have linked alterations in connectivity to 

behavioral measures of ASD severity.158 However, many of these results are from post-

hoc correlations on results of TD vs ASD contrasts. This practice carries two risks: One, 

any mechanistic interpretations of group differences become less generalizable, as the 

models are not examining the relationship of the behavior to the brain, but rather how 

strongly it relates to results from a previous contrast in which the test itself is designed to 

separate the two groups. This may in turn, lead to gross oversimplifications of brain 

regions with multi-dimensional functions.138,159 Second, if not properly addressed, such 

practices can lead to artificially inflated effect sizes.160–162 As such, relating fMRI-based 

brain function to clinical measures and behavior early in the analytical process is critical 

to the development of informed models of cognition in patient groups. 

Perhaps the most critical factor, yet to be addressed regarding connectivity-based 

hypotheses of ASD, is the relationship between structural and functional connections. 

Just et al., (2004; 2007) originally proposed that alterations in FC are likely influenced by 

alterations in underlying white matter. With the exception of a single paper using a multi-

modal data-driven analytical technique combining resting state, diffusion, and voxel-

based morphometry,163 the literature on the structure/function connections in ASD have 

either been domain specific analyses (i.e. either FC or diffusion analyses), or have 

implemented post-hoc correlations when significant group differences were already 

reported in either FA or FC.4 While many studies have found significant correlations 

between measures of FC and diffusion indices, such as FA in TD populations,71,72,164,165 

many FC/DWI results from some studies in ASD have been task-specific. In studies 
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where alterations in FC are task specific, additional  behavioral and/or clinical data are 

necessary before inferences about the relationship of FC to FA can be considered.166 

When such relationships are not identified, the validity of conclusions such as brain 

architecture influencing FC and behavior are significantly reduced.167 Furthermore, this 

approach, if performed incorrectly, also carries risks of artificial inflation of the 

correlations between diffusion and FC.160–162,168–170 

Connectome analyses based on apriori-parcellations of the human cortex21,22 such 

as those implemented by the HCP and graph-theoretical connectivity approaches have the 

potential to simultaneously analyze FC and DWI metrics of connectivity. While this 

approach has been applied to both FC171–173 and diffusion-based174–176 measures of brain 

connectivity in isolation, studies examining these measures relative to one another using 

non-correlative methods177 are rare, with those incorporating behavioral/clinical measures 

even more so. Establishing the relationships between structural and functional 

connections are integral not only for understanding how communication between specific 

regions of relation to cognition and behavior, but also how such connections can vary at 

individual level. Exploring the structural and functional connectivity, relative to clinical 

measures meant to be interpreted as part of a “spectrum” of behaviors, has been the focus 

of many brain imaging studies. Behavior-centric approaches should be similarly applied 

to clinical populations as opposed to the widely used dichotomous “patient or not” 

approaches which may be less sensitive to heterogeneity. 

As a first step towards this goal, we propose a focused analysis on resting-state striatal 

networks (via the Yeo et al., 2011 and Choi et al., 2012 network parcellations) in a well-

matched sample of TD and ASD children retrieved from the ABIDE-II database. This 
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analysis will focus on functional connections of striatal regions, believed to be specific to 

reward processing and restrictive, repetitive behaviors in ASD. Analyses conducted will 

focus on 2 main research goals: 1) the degree to which diffusion anisotropy correlates 

with resting-state FC between cortical-striatal brain regions; and 2) assess establish brain-

behavior relationships with FC and clinical measures specific to social motivation and 

repetitive behaviors in ASD and TD individuals This will be the first in a set of multiple 

studies aimed at examining the FC/behavior relationships of the striatum in ASD. 

 

Novelty and Innovation 

This study is novel in both its theoretical and analytical approach about studying the 

striatum in ASD: This proposal is the first, to our knowledge, to directly assess the 

contribution of striatal FC to behavioral symptoms (repetitive behaviors, social 

motivation) in ASD participants. In addition, it will also be the first study to relate 

measures of white matter connectivity to cortical-striatal, striatal-striatal, and cortical-

cortical FC based on network-specific (e.g. somatomotor, reward) parcellations in 

participants with ASD. Relating behavior to measures of brain function is important 

given the breadth of connections and behaviors influenced by the exchange of 

information across cortical and subcortical regions. Doing so is especially important in 

clinical populations as group differences in fMRI measures may be better explained by 

these measures (e.g. motivation, individual clinical symptoms, salience). The latter is 

critical given the high comorbidity ASD has with other disorders that can also influence 

brain regions implicated as “biomarkers” for ASD. 77,120,140,147,148,178–183 This research 

question is the beginning of what will be many future studies, aimed at moving the field 
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towards neuroimaging studies which utilize a multi-dimensional behavioral and clinical 

approaches to understand the neurobiology of ASD. 

Finally, there have been significant advances in DWI, with orientation distribution 

function (ODF) modeling techniques such as GQI,68 and Q-Space Diffeomorphic 

Reconstruction (QSDR),184 which are increasingly able to address discrepancies in 

crossing and neighboring white matter tracts that share voxels compared to apparent 

diffusivity coefficients (ADCs) calculated by the typical tensor.185 ODF based 

reconstruction offers the advantage of increased spatial information and orientation 

information at the voxel-level over and above the typical tensor, in addition to less 

sensitivity to artifacts that affect the typical tensor; and greater reliability compared to the 

traditional FA measures (unpublished data). In addition, tractography in DSI Studio186 

utilizes quantitative anisotropy (QA) for fiber tracking. Briefly summarized, QA is the 

amount of anisotropic spins that diffuse along a fiber orientation, and defined at the peak 

for each orientation of spin distribution function. QA scales with spin density and the 

isotropic component of the spin distribution function is discarded, whereas regular ODF 

does not scale with spin density and is often min-max scaled to 0-1. The net result is a 

considerable reduction in the generation of false fibers.186 This proposal will be the first, 

to our knowledge, to utilize ODF/QA based tractography specific to striatal connections 

in ASD, adding to a growing literature of advanced diffusion analyses in ASD. 
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METHODS 

Participant Data: The data for this proposal is obtained from the Autism Brain Imaging 

Data Exchange dataset 2 (ABIDE-II). ABIDE-II contains MRI images and phenotypic 

data from 487 individuals with ASD and 557 TD control participants (age range: 5-64 

years) across 17 institutions coordinated by Dr. Adriana Di Martino and supported by two 

NIMH R21 grants (http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html for more 

details). Of the 17 imaging centers contributing to ABIDE-II, four provide diffusion data 

(Barrow Neurological Institute in Phoenix Arizona, New York University Langone 

Medical Center, San Diego State University, Trinity Center for Health Sciences at Trinity 

College Dublin), creating a total pool of 263 participants (105 TD, 158 ASD) with 

structural, resting state, and diffusion MRI data. Images from these 263 participants were 

filtered by participant clinical data and MRI data quality assurance protocols and the 

criteria described below. See Figure 3 for a summary of the participant data selection 

workflow. 

http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
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Participant Data Inclusion/Exclusion Criteria: MRI data  submitted to ABIDE-II came 

from participants under the age of 18 years at time of scan, report Wechsler Abbreviated 

Scale of Intelligence® second edition (WASI-II)187,188 full-scale intelligence quotients 

(FSIQs) greater than 70, either no reported diagnosis (for TD participants), or a diagnosis 

of Autism or Asperger’s syndrome, but not a diagnosis of pervasive developmental 

disorder not otherwise specified (PDD-NOS), and scores from the stereotype and 

compulsive behaviors of the RBS-R (Repetitive Behavior Scale-Revised) and social 

motivation from the SRS (Social Responsiveness Scale). Participants who did not meet 

these criteria were excluded from the analyses. Applying these exclusion criteria dropped 

the number of usable participant data from all sites of interest (BNI, NYU, and TCD) 

except SDSU, leaving a total of 55 participants (25 TD M/F: 23/2, 30 ASD M/F: 25/5, 

age 7.4-17.8 years [M: 13.01+3.06]) with the adequate combination of phenotypic data 

for the final analysis.  
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MRI Data Quality Assurance: Images for the analysis were selected based on a 4-step 

process: 1) Multiple Data types per participant: each participant with rs-fMRI data 

needed matching DWI data for individual-subject pairing. 2) Available phenotypic data: 

participants with missing age (in years), FSIQ, RBS-R, and SRS-Motivation scores were 

excluded from the analysis. 3) Automated quality assurance: pipelines for identifying 

motion, signal-to-noise, and variability between images during MRI sequences were 

utilized to identify outliers in the MR signal that may artificially create significant group 

differences or correlations with behaviors of interest. 4) Visual quality assurance: images 

were visually inspected by the experimenters for artifacts not identified by the automated 

pipeline as an additional quality check. Step 1 identified five different sites (BNI, IP, 

NYU, SDSU) with DWI data. However, DWI acquisition parameters differed, with NYU 

utilizing two 64 direction diffusion tensor imaging (DTI) sequences with isotropic 

(3x3x3mm) voxels with an optional field-map for image correction. However, while the 

NYU data has isotropic DWI data and the most phenotypic data, the NYU sample was 

reduced to 26 TD and 11 ASD participants based on the data exclusion criteria from the 

participant data step. Thus, using this sample by itself would result in underpowered 

analyses (based on both a small, Cohen’s f2 = 0.02, and medium, Cohen’s f2 = 0.15 effect 

size based on 80% statistical power at an α = 0.05). DWI data from BNI were excluded 

due to skewed voxel resolutions (1.406x1.406x3mm), which are not appropriate for 

tractography-based analyses. The remaining centers with DWI data include TCD and 

SDSU. While both sites differ in diffusion weighting (TCD; b=1000, SDSU; b=~1500), 

and both have non-isotropic voxel dimensions (1.938x1.938x2mm and 
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1.875x1.875x2mm respectively) both datasets use a 61-direction diffusion sequence. Step 

2 found that as described in the Participant Data Exclusion Criteria section, only SDSU 

collected phenotypic data (RBS-R and SRS) for all participants (TCD only collected 

these measures for ASD participants). As a result, only participants from SDSU were 

used in the analysis. For step 3, each of the 55 SDSU participants’ T1, DWI, and rsfMRI 

images (30 ASD, 25 TD) underwent quality assessment using the Quality Assurance 

Protocol (QAP) developed as part of the Preprocessed Connectomes Project (PCP) of the 

1000 Functional Connectomes Project (FCP) and International Neuroimaging Data-

sharing Initiative (INDI) (http://preprocessed-connectomes-project.org/quality-

assessment-protocol/index.html). Diffusion data quality was also assessed using an 

additional pipeline adapted from workflow developed at University of Pennsylvania 

Perelman School of medicine (http://upenncmroi.wpengine.com/qascripts/).189 Quality 

control (QC) metrics were z-scored for all participant images across each modality (T1, 

echo planar images [EPI], and DWI), and those with z-values greater than 3 were flagged 

as univariate outliers. Participant EPI images were analyzed for motion spiking using 

ArtDetect (http://gablab.mit.edu/index.php/software) via the CONN toolbox (version 

17.e).190 If more than 20% of a participant’s total EPI volumes were flagged by root-

mean-square-deviation (RMSD) motion greater than 2mm and/or standardized global 

signal intensity-by-volume exceeding a z-scored threshold of 3, then the participant was 

excluded from the analysis. As the fourth and final step, visual QC examining data 

quality for artifacts not detectable by automated means (i.e. Gibbs ringing, ghosting, 

motion not detected by framewise displacement) were performed by the PI and tests for 

http://preprocessed-connectomes-project.org/quality-assessment-protocol/index.html
http://preprocessed-connectomes-project.org/quality-assessment-protocol/index.html
http://upenncmroi.wpengine.com/qascripts/
http://gablab.mit.edu/index.php/software
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group differences across QC metrics were assessed prior to the calculation of FC values 

(see Table 2).  

 

Final Participant Count and Group Comparisons: Of the remaining 55 participant 

datasets from SDSU, one participant was excluded from the analysis due to a lack of 

DWI data (sub-28852), five participants were removed due to more than 20% of their 

total EPI volumes corrupted by motion (sub- 28862, sub- 28875, sub- 28887, sub- 28892, 

sub-28907), one participant (sub-28872) was removed due to an abnormally high 

temporal signal-to-noise-ratio (tSNR) value in their DWI data driven by a hyperintensity 

artifact in the participant’s vmPFC, another four were removed due to DWI data acquired 

with parameters significantly different from the rest of the participants in the study 

(0.94x0.94x2mm vs 1.88x1.88x2mm), one participant was discarded due to a T1 image 

with dimensions that differed from the standard acquisition for the dataset (1.2x1x1mm 

vs 1x1x1mm), and one participant was discarded due to an aberrantly large inherent 

smoothness in their T1 image (sub-28888). 

 This left a final sample of 38 participants (19 TD M/F:17/2, 19 ASD M/F:16/3, 

age 8-17.8 years [M: 13.16 SD: 3.03]). For the final participant count, group differences 

in demographic information (Age, FSIQ), clinical measures of ASD (RBS-R subsets, 

SRS social motivation), and QC metrics for T1, EPI, and DWI data were assessed using 

either a two-tailed student’s t-test (assuming unequal variance), or a Wilcoxon rank-sum 

test191,192 dependent upon the results of an Anderson-Darling test193 for normality in 

MATLAB© 2016a.194 The results of these analyses are described below in Tables 1, and 

2 respectively. 
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Generation of Group Brain Template: It has been widely acknowledged that 

normalization  of MRI 

data from pediatric 

populations to adult brain 

templates and the use of 

adult-brain tissue priors 

can negatively impact the 

results and conclusions of 

MRI based analyses.195–200    

To address this concern, a custom preprocessing pipeline was generated which 

attemped to minimize any biases that may have been introduced through preprocessing 

methods informed by adult brain templates such as the standard SPM preprocessing 

pipeline. First, we generated a group template using Advanced Normalization Tools 

(ANT)s’ (http://stnava.github.io/ANTs/) Multivariate Template Construction workflow 

(https://github.com/stnava/ANTs/blob/master/Scripts/antsMultivariateTemplateConstruct

ion.sh) utilizing T1 images from ABIDEI and ABIDEII databases. QAP data readouts for 

2,324 individual T1 images were obtained from ABIDEI and ABIDEII databases and 

concatenated into a single data file. Participants were removed if their ages were greater 

than or equal to 18 years or their FSIQ scores were less than 70, leaving 834 participants. 

The remaining T1 data was then z-scored across all QC dimensions, and any participant 

with a z-score greater than 3 across any dimension or a “fail” mark by any one of the 3 

independent raters from the ABIDE initiative were discarded, leaving approximately 621 

http://stnava.github.io/ANTs/
https://github.com/stnava/ANTs/blob/master/Scripts/antsMultivariateTemplateConstruction.sh
https://github.com/stnava/ANTs/blob/master/Scripts/antsMultivariateTemplateConstruction.sh
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T1s. Visual examination of the 621 remaining images was performed for artifacts not 

identified by automated QC (i.e. subtle motion, Gibbs ringing), and discarded if any such 

artifacts were identified. This left a total of 332 brains (197 TD, M/F 178/19; age 5.9-

17.8 years [M: 12.37+2.87], FSIQ 83-144 [M: 113.55+12.62], 135 ASD, M/F 124/11; 

age 5.2-17.9 years [M:12.90+3.10], FSIQ 78-149 [M: 106.71+14.44]) for template 

generation. The template and additional information regarding selection by site and group 

differences are described in Figure 4. 
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Generation of ROIs for FC Analyses: The cortical parcellation used for generating 

regions of interest (ROIs) is the Choi et al., 2012’s 17-network parcellation of the 

striatum with the cerebral cortex from 1,000 participants’ (500 to derive parcellation and 

500 to validate) resting state connectivity profiles.64 In this parcellation, striatal voxels 

were assigned to cortical regions from the Yeo et al., 2011 cortical parcellation, informed 

by a combination of task-based functional connectivity,64,201 histological tracings of 

cortical connections in macaque monkeys,202,203 and the confidence intervals of resting-

state seed-to-voxel correlations in the participant pool.64,65 The parcellation and the 

methods are described in detail in the respective Freesurfer204–208 documentation page 

and publication (http://www.freesurfer.net/fswiki/StriatumParcellation_Choi2012). 

 The parcellation includes 7 networks involving multiple domains (visual, 

somatomotor, limbic, frontoparietal, dorsal attention, ventral attention, and default 

mode) across the cortex split into subdomains (totaling 17 networks). However, not all 

subcortical voxels were strongly correlated with each of the 17 cortical regions of the 

cortical parcellation. For example, there were minimal correlations between the putamen 

and the visual cortex. In addition, the original parcellation used a surface-based method 

for analysis, while the atlas is published in a 1x1x1mm isotropic volume of the MNI 152 

brain in FSL(FMRIB Software Library).209 Furthermore, each of the cortical and 

subcortical regions were grouped by their confidence-interval-based clustering of highest 

functional connectivity. This is problematic for the proposed analysis as no protocols for 

separating networks into distinct brain regions are available from the developers.  

To address this limitation, we created individual masks of each network using 

Analysis of Functional NeuroImages (AFNI)’s210 clustering algorithm to separate each 

http://www.freesurfer.net/fswiki/StriatumParcellation_Choi2012
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cortical and subcortical network into distinct brain regions based on grouping by clusters 

in conservative estimates of functionally connected regions from the Yeo et al., 2011 and 

Choi et al. 2012 atlases. Voxels that did not fall into individual clusters and small clusters 

were grouped into larger regions based on Euclidean distance from neighboring clusters 

(~ 3-4mm or less from a larger cluster typically elicited grouping while larger distances 

were considered individual regions) and if sides, edges, or corners of an unassigned voxel 

or small cluster flanked those of a larger cluster. This process was repeated for all 

networks. Once complete, each cluster-based ROI was resampled to a 2mm isotropic 

mask, and all cluster-based ROIs that did not survive this interpolation (i.e. reported 0 for 

cluster size and volume after resampling, reflecting sub-voxel interpolation) were 

discarded from subsequent analyses. This left a total of 107 individual cortical and 

subcortical brain regions in the atlas, corresponding to 10 sub-networks of interest 

(derived from somatomotor, limbic, frontoparietal, dorsal attention, ventral attention, and 

default mode regions) from the atlas. Each ROI derived from clustering was dilated 

between 3-12mm and multiplied by a binarized mask of the liberal definition of the 

cortical surface from the each of the Choi et al. 2012 and Yeo et al. 2011 network 

parcellations to form a “loose” mask including grey and white matter for diffusion 

tractography analyses. The “loose” atlas was then masked by the more conservative 

definition of the cortical surface (containing only grey matter) for the FC analyses 

described in the aims and results sections. 
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AIM #1  

Compare the functional of connectivity resting-state striatal brain networks in 

individuals with ASD and TD controls. 

 

MRI data collection and analysis: The images for each participant include: one T1 

weighted 3D-(fast spoiled gradient echo) FSPGR anatomical image (TR/TE: 

11.08/4.3ms, FOV: 256mm, 256×256 matrix, 176 slices, 1mm2 isotropic voxels, flip 

angle: 45°), 180 individual T2-weighted EPI images stacked across 6 minutes of resting 

state MRI (TR/TE: 2000/30ms, 3.4mm slice thickness, in-plane resolution: 3.48x3.48x3.4 

mm2, number of slices: 39-40) and a set of single-shot echo-planar diffusion weighted 

images TR/TE: 11000/91ms, FOV: 240mm, 128×128matrix, 2mm slice thickness, 68 

axial slices) using a single-shell paradigm with two diffusion weighting values (b = 0 and 

1000 s/mm2) in 61 non-linear directions. Informed assent and consent was obtained from 

all participants and their caregivers in accordance with the University of California, San 

Diego, and San Diego State University Institutional Review Board (IRB), and the datum 

were anonymized (protected health information such as participant names, dates of birth, 

and facial features were removed from MRI scans) prior to the submission of the data to 

ABIDE-II in accordance with HIPAA guidelines and 1000 FCP/INDI protocols. The 

removal of protected health information and open-access nature of the MRI datum from 

the ABIDE and ABIDE-II databases qualified the proposed analyses for IRB exemption 

(no individual IRB protocol for data collection or participant information storage 

required). The exemption status of the project was issued on March 22, 2017 following a 
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full review conducted in accordance with UAB’s Assurance of Compliance and approved 

by the Department of Health and human Services. 

 

Data Preprocessing: Functional EPIs were processed through a customized pipeline 

including routines from Statistical Parametric Mapping 12 (SPM 12; Wellcome Trust 

Centre for Neuroimaging) implemented in the CONN toolbox (version 17.b),190  in 

MATLAB©,211AFNI,210 and ANTs (http://stnava.github.io/ANTs/). The preprocessing 

pipeline utilized a 6 step process. 1) Realignment and Unwarping to estimate and correct 

subject motion. Field maps have already been applied to the data by SDSU researchers 

prior to submission to ABIDE-II. 2) Co-registration to N4Bias corrected (ANTs’ 

N4BiasFieldCorrection)212 and skullstripped (via AFNI’s 3dSkullStrip 

https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dSkullStrip.html) anatomical T1 

images for each participant via ANTs’ Symmetric Diffeomorphic Image Registration with 

Cross-Correlation (SyN: antsRegistrationSyN).213 3) Segmentation using FSL’s209 FAST 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST) to generate grey matter, white matter, and 

cerebral spinal fluid tissue images. 4) Registration of the participant T1 (and 

accompanying segmented tissue-types) and co-registered EPI using ANTs’ SyN 

registration. 5) Signal and motion outlier detection at the participant level using 

ArtDetect (http://gablab.mit.edu/index.php/software) to serve as nuisance regressors for 

motion-related changes in BOLD signal. 6) Each participant’s EPI timeseries data was 

smoothed to 6mm full-width-half-maximum (FWHM),214,215 prior to data analysis. 

 

http://stnava.github.io/ANTs/
https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dSkullStrip.html
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST
http://gablab.mit.edu/index.php/software
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Functional Connectivity Analysis: Tissue-type and smoothed EPI images, normalized 

to the ABIDE group template, for each participant were loaded into the CONN toolbox 

(version 17.e),190 in MATLAB©211 for denoising and signal extraction for the FC 

analyses. CONN utilizes an aCompCor216 principal-component-based denoising strategy 

which includes the removal of effects related to tissue types (white matter, cerebrospinal 

fluid [CSF]) and data correction procedures (realignment and scrubbing with 1st order 

temporal derivatives for each) of the EPI data. Following the identification and regression 

of nuisance variables (CSF, white matter, motion, and motion-derivatives), the data were 

band-pass filtered from 0.01–0.08Hz, which was recently found to reduce differences in 

FC between high and low motion groups and mean absolute correlations between FC and 

RMSD motion compared to the standard 0.01–0.1 Hz filter for rsfMRI data.217After 

which, the EPI timeseries data is linearly detrended and for first-level analyses of the 

functional data. Following this process, FC values were extracted from each pairwise 

combination of ROIs within each network of the clusterized Choi/Yeo atlas to be used as 

the dependent variable in subsequent analyses.  

Prior to each ROI pair by group comparison, measures of FC were checked for 

univariate normality using the Anderson-Darling test.193 If values were found to be non-

normally distributed, a non-parametric Wilcoxon-rank sum191,218 test was used to 

compare group differences in lieu of a student’s t-test. A 5% false-discovery rate (FDR) 

correction219 was used at the level of all ROI pairs (628 total) for comparisons of FC 

between ROI pairs to reduce false positives. Effect sizes for parametric tests (Hedge’s 

g),220 non-parametric tests (rank-biserial correlations),221 and confidence intervals for all 

results are also computed (using Harald Hentchke’s measures-of-effect-size-toolbox; 
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https://www.mathworks.com/matlabcentral/fileexchange/32398-hhentschke-measures-of-

effect-size-toolbox in MATLAB©211) and reported as measures of utility, reliability, and 

for future power calculations.  

 

Potential Problems and Alternative Strategies:  

fMRI: As described in the METHODS: MRI Data Quality Assurance section, 

images were quality checked visually by the researchers and scores from the QAP 

pipeline (http://preprocessed-connectomes-project.org/quality-assessment-protocol/). 

Scores on QAP data quality measures were tested for any significant differences between 

diagnostic groups (TD vs ASD) to assess the potential of these measures as possible 

confounding variables. Motion artifact is a potential confound for all fMRI analyses, but 

is a much greater risk for studies with smaller brain regions such as the NAcc (k ~= 

1000mm3). Subcortical and some cortical regions (such as the OFC) are highly 

susceptible to signal dropout. To evaluate any potential group difference in ROI signal, 

tSNR was calculated by dividing the mean EPI time-series for each subject (slice time 

corrected, unwarped, and realigned) and then dividing the mean ROI image signal by the 

standard deviation of the ROI time-series signal. Each of the 25 subcortical (bilateral 

NAcc and subregions of the caudate and putamen) and 2 cortical OFC ROIs were 

mapped back to individual subject space using the inverse transforms generated by 

ANTs(http://stnava.github.io/ANTs/). Anderson Darling tests193 were conducted for tSNR 

values for each ROI and either a student’s t-test or a Wilcoxon rank-sum test191,192 was 

conducted depending on the normality of the data. This approach identified an ROI in the 

left hemisphere of a default mode subnetwork (network 16, corresponding to regions of 

the head of the caudate and putamen) that displayed a large (g = 0.7) and statistically 

https://www.mathworks.com/matlabcentral/fileexchange/32398-hhentschke-measures-of-effect-size-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/32398-hhentschke-measures-of-effect-size-toolbox
http://preprocessed-connectomes-project.org/quality-assessment-protocol/
http://stnava.github.io/ANTs/
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significant (t(35) = 2.21, p = 0.03, CI95 1.34,31.52) reduction in tSNR in the ASD group. 

A univariate outlier was also identified in the right hemisphere of the frontal cortex in 

“limbic” subnetwork 10 (corresponding to the OFC) in sub-28853. Removal of this 

participant did not result in a significant group difference in tSNR of the OFC, so the 

participant’s data was retained. Results from this ROI are interpreted in the RESULTS 

section with this finding noted and Appendix Table 1 contains a summary of these 

analyses. Two ROIs in the tail of the right putamen and one in the left posterior body of 

the putamen (in networks 8, 13, and 14 respectively) did not survive interpolation back to 

native space. 

Group differences between TD and ASD participants in mean/max motion, total 

volumes excised following outlier detection (see ArtDetect below), and final temporal 

degrees of freedom (tDOF) following ArtDetect and aCompCorr corrections, were 

performed prior to the final analyses and are reported in Table 2. No significant group 

differences in RMSD motion or tDOF were found. However, a significant (t(36)  = 2.06, 

p < 0.05, CI95 0.00003,0.0035) and large (g = 0.66) group difference in ghost-to-signal 

ratio (GSR)222 was identified, indicating that TD children were more likely to exhibit 

ghosting in brain regions prone to ghosting artifacts compared to individuals with ASD 

(TD, [M:0.010+0.002]; ASD, [M=0.008+0.003]) based on the phase-encoding direction.  

As of July 2017, there were two publications examining the test-retest reliability 

and differences in results regarding noise mitigation pipelines in resting state fMRI.223,224 

These papers cite two main areas of concern from previous literature when measuring 

resting-state FC: 1) correlations between connectivity results and measures of motion 

(such as framewise displacement [FD] and RMSD) and 2) distance-dependence 
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artifact.225 The former assesses if FC results are significantly influenced by measures of 

head motion in the scanner. Previous work has identified motion in fMRI data can 

artificially reduce FC values in some networks (e.g. frontoparietal and default mode), and 

while artificially increasing FC in other regions (e.g. somatomotor regions).223,224,226–228 

Distance-dependence analyses address the phenomenon that motion in fMRI data 

significantly increases proximal (short range) FC results while reducing distal (medium 

to long-range) FC results. 223,224,226–229 Distance-dependence is concerning given that 

many current theories of FC in ASD are centered on reduced long-range and enhanced 

short-range functional connections in the brain.4,26,225,230,231 It has also been suggested 

aCompCorr has the potential to exacerbate distance-dependence.223,224  

To address these concerns, FC-motion correlations were performed using Spearman’s 

ρ232 for each FC result of interest. This analysis revealed a total of 39 of the 628 pairwise 

connections that significantly correlated with motion. These include 3 pairs in 

somatomotor network regions, 3 pairwise connections in ventral attention network 

regions, 9 pairs in frontoparietal network regions, 12 pairs in dorsal attention network 

regions, and 12 pairwise combinations of default mode network regions. It should be 

noted however, that none of these comparisons survived FDR correction for multiple 

comparisons.219 Following the motion-FC correlations, the Euclidean distance between 

the center of gravity for each pair of ROIs of interest (in template space) were correlated 

with the motion-FC correlations using a Spearman’s ρ232 to determine if any FC results 

were also influenced by distance-dependence artifact.224,226–229 Results from this 

inspection revealed a small but significant (ρ(626) = -0.08, p < 0.05) relationship between 

FC-motion correlations and Euclidean distance, with ROIs closer to one another 
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exhibiting higher FC-motion correlations and ROIs further from one another exhibiting 

lower FC-motion correlations. This finding is in line with previous cautionary reports of 

reduced correlations relative to Euclidian distance between ROIs.224,226–229 Given this 

finding, results from all analyses should be considered relative to RMSD motion.  

Analytical: Given the relatively smaller sample size (and thus, lower power) for this 

study, the results of these analyses may not generalize to the larger population, and would 

require replication with a larger sample size. As such, all possible attempts were made to 

control for false positives, adjust for smaller sample size, and estimate effect sizes for 

power calculations for future analyses. Collinearity between demographic factors were 

expected (e.g. Age and IQ), but only PIQ displayed a significant relationship with age 

(ρ(36) = -0.36, p = 0.03), with reduction in PIQ as a function of age in the final UCSD 

sample. Despite the lack of collinearity in these variables, the number of observations 

relative to variables of interest limit the ability to effectively model and study interaction 

effects of age and FSIQ relative to TD vs ASD and as a result, pairwise t and Wilcoxon-

rank-sum tests were chosen as opposed to general linear models (i.e. ANCOVA). 

However, considering the finding of little collinearity, results are compared to those of 

general-linear-model approaches to address the impact these variables may have on the 

results. 

Age, and WASI®-II188 FSIQ scores have the potential to display effects much larger 

than that of group considering the range of the participant sample (7.4-17.8 years and 77-

130 respectively). To address this, we performed correlative analyses on the effects of 

age and IQ on all connections of interest prior to all planned analyses. Increases in FC 

relative to age were found in 18 pairs of frontal-parietal ROIs, 6 pairs of dorsal attention 
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network ROIs, and 3 pairs of default mode network ROIs. Reductions in FC with 

increase in age were noted in 4 frontoparietal, 2 dorsal attention, and 8 default mode 

network ROIs. Significant increase in FC relative to FSIQ scores were found in 7 ventral 

attention network ROIs, 3 pairs of frontoparietal ROIs, and 6 pairs of default mode 

network ROIs. Significant decreases in FC relative to FSIQ were found in 3 pairs of 

somatomotor ROIs, 2 pairwise combinations each for dorsal attention network and 

ventral attention network ROIs, 2 frontoparietal, and 4 pairs of default mode regions. 

These results are summarized in Appendix Table 2. However, it should be noted that 

none of these results survived 5% FDR correction for multiple comparisons. 

 

AIM #2 Examine brain-behavior relationships by analyzing correlations between 

functional connections of resting-state striatal brain networks in individuals with 

ASDs with cognitive and behavioral factors (repetitive behaviors, social motivation 

scores) and anatomical connections of the striatum. 

 

Functional Connectivity and Autism Symptoms: The effects of clinical measures 

derived from subdomains of ASD symptom severity measures such as the RBS-R and 

SRS (described below) will be conducted as a second-level analysis on FC values 

between striatal ROIs and associated networks. The goal of both analyses is to establish if 

clinical measures can predict or relate to FC across striatal ROIs and their respective 

networks. 
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Restricted Repetitive Behavior Scale-Revised (RBS-R): The RBS-R233 is a 43-item scale 

spread across 5 or 6 subdomains (depending on factor interpretation) designed to assess 

the severity of items across the restricted interest and repetitive behaviors that were core 

features of ASDs under the DSM-IV.234 The authors have chosen the 6-factor solution of 

the measures, which include:  stereotyped behaviors (apparently purposeless movements 

or actions that are repeated in a similar manner), self-injurious behaviors (movements or 

actions that have the potential to cause redness, bruising, or other injury to the body, and 

that are repeated in a similar manner), compulsive behaviors (behaviors repeated and 

performed according to rules, or involves things being done “just so”), ritualistic 

behaviors (performing activities of daily living in a similar manner), sameness (resistance 

to change, insisting that things stay the same), restricted behaviors (limited range of 

focus, interest or activity). Each of these domains contain 4-11 items that are rated by an 

informant on a 0-3 Likert scale representing the presence and severity (behavior does not 

occur: 0, behavior is a mild problem: 1, behavior is a moderate problem; 2, and behavior 

is a severe problem: 3) of the behavior in the last month. Higher scores indicate greater 

severity within the respective domain.  

In accordance hypotheses proposing “disrupted connectivity” alterations in the 

striatum contributing to repetitive behaviors, FC between brain regions associated with 

somatomotor and cognitive control should be significantly related to restricted-repetitive 

behaviors in ASD. To that end, we propose two analyses: 1) Correlating raw scores for 

Stereotyped behaviors (6 items) with somatomotor networks (3, 4, and 14) in the Yeo et 

al. 2011/Choi et al. 2012 due to their association with sensory/motor integration.64 2) 

Correlating raw scores for compulsive (8 item) behaviors with FC between Yeo et al. 
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2011/Choi et al. 2012 frontoparietal network (8 and 13) regions due to the relationship 

frontoparietal regions share with inhibition and cognitive control.235,236 FC values which 

correlate with either of these two metrics may be indicative of alterations in brain 

communication that lead to increases in the incidence and intensity of repetitive 

behaviors. 

 

Social Responsiveness Scale (SRS) Version 1: The SRS33 is a 65 item questionnaire 

completed by an informant (e.g. parent, teacher, significant other) that is rated on a 1-4 

point Likert scale for each behavior (Not true: 1, Sometimes true: 2, Often true: 3, Almost 

always true: 4). Scoring of the SRS is broken down into a total raw score for all questions 

(0-199), but can also be separated into 5 subdomains: Social Awareness (0-21), Social 

Cognition (0-32), Social Communication (0-55), Social Motivation (0-32), and Autistic 

Mannerisms (0-36), with higher scores representing greater impairment in each. SRS has 

been interpreted as measures of “social impairment” in individuals with ASDs, but the 

authors have also noted that repetitive behaviors, communication deficits, and symptoms 

that are not exclusive to an ASD diagnosis are also included in this questionnaire.237–240 

For the purposes of this proposal, the authors will be utilizing the Social Motivation 

subscale raw scores as a proxy for attention towards and the desire to engage in social 

situations when exploring the hypothesis that social motivation influences connectivity 

between striatal subregions such as the NAcc. FC between the limbic (primarily NAcc to 

OFC) of the Yeo et al. 2011/Choi et al. 2012 parcellation and social motivation raw 

scores are explored in accordance with “social motivation hypotheses” of ASD. 

However, the researchers believe the role of attention in “social motivation hypotheses” 



36 
 

of ASD warrants exploration of regions associated dorsal attention network and ventral 

attention network within the Yeo et al. 2011/Choi et al. 2012 parcellation. 

 

Functional Connectivity/Diffusion Analysis: To further examine claims by brain 

connectivity accounts of ASD positing that alterations in FC are driven by alterations in 

the underlying white matter, correlations between FC and DWI derived measures of 

connectivity were performed within the sample of TD and ASD participants. The 3-step 

analyses outlined below aim to 1) identify anatomical connections within resting-state 

parcellations, 2) determine 

if there are any significant 

relationships between 

measures of diffusion 

velocity (GFA) or spin 

density (NQA) and FC 

where tracts may be 

present. 

DWI Processing and Extraction: DWIs were eddy-current corrected and reconstructed in 

DSI Studio68,186 using QSDR184 with a path length of 1.2 and no r2 weighting. These 

parameters were found to have the highest test-retest reliability in QSDR184 from work 

performed with the PI’s Multimodal Neuroimaging training program (MNTP) training 

cohort under Fang-Cheng Yeh, M.D., Ph.D. (unpublished data). As part of QSDR,184 

each b0 volume was co-registered to the skull-stripped and bias corrected T1 to use as a 

guide for constrained diffeomorphic mapping to normalize the diffusion data to a T2-
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weighted MNI template. Once normalized to the MNI template, whole-brain 

deterministic tractography utilizing a Euler method67 for building tracts were performed 

using DSI Studio68,186 for each participant’s normalized images with a total fiber count of 

1 million. Tracking parameters include: QA threshold of 0.6*Otsu's threshold for the 

image, max turning angle randomly selected from 15-90° for each tract grown, step size 

randomly selected from a 0.1-3 (2mm) voxel distance, propagation from 0-95% ratio 

between incoming and subsequent direction during tracking.  After which, mean 

generalized fractional, normalized quantitative anisotropy (GFA and NQA respectively), 

and total streamline count that passes through each ROI-to-ROI pair in the “loose” mask 

from the Freesurfer based Yeo et al. 2011/Choi et al. 2012 parcellation were extracted for 

each participant (See Figure 5).  

 

Functional Connectivity/Anisotropy Analysis: Following whole-brain tractography for 

each participant, ROI pairs within networks of interest were extracted and fiber counts 

were thresholded to minimize false fibers (using [max fiber count * 0.001] for the 

minimum count needed for anisotropy), and ROI pairs reporting more than 75% of the 

total participants with streamline counts greater than participant-level fiber maximas were 

kept for subsequent analyses, while pairs in which less than 75% of all participants 

reported streamlines below threshold were discarded.  Previously published work has 

proposed using probabilistic group thresholds in which ¼ either report at least one 

streamline connecting ROIs241 or at least ½ of the participants report a probability 

threshold for tracts based on a group map of 0.5 or greater,242which were considered 

conservative, in order to filter out false fibers for sample sizes smaller than those for our 
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analysis (32 and 10). However, since QA based deterministic fiber tracking is more 

robust to accidental identification of false fibers,184,186 we chose to use a conservative 

threshold of 75% of participants due to the large number of ROIs across a small number 

of subjects and the quality of the data. Subsequent FC/anisotropy analyses between ROIs 

were only conducted for ROI pairs that reported streamlines and anisotropy values above 

threshold.  

For the remaining ROIs with streamlines and anisotropy values, normality was 

assessed across both the first-level FC results produced by CONN243 and the anisotropy 

values from DSI Studio68,186 using an Anderson-Darling test.193 The next step of the 

analysis assesses the size of the correlation between FC and RMSD motion, and 

framewise displacement in the DWI data by participant and anisotropy measures (NQA 

and GFA). The final step performs either a Pearson’s r for normally distributed data or a 

Spearman’s ρ232 for non-normally distributed data. However, if RMSD is found to 

significantly correlate with FC, or if mean framewise displacement is found to correlate 

with anisotropy, or both FC and anisotropy correlate with their respective motion 

measures, a partial correlation between FC and anisotropy is instead performed in an 

attempt to account for one or both respective measures of motion. Separate correlations 

were run for GFA and NQA with the intention of examining the relationship between 

separate ODF-based diffusion measures that provide different information about 

diffusion data (velocity for GFA, and quantitative spin distribution for NQA) and FC 

between any pair of ROIs. For each analysis run, the correlations, p-values, and 

motion/DV correlations were saved and the results were multiple-comparison corrected 

using a 5% FDR for the total number of tests in each type of anisotropy.  
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Potential Problems and Alternative Strategies:  

Analytical: Ideally, interactions between diagnostic groups (ASD vs TD) would 

be included in the model and mediation analyses that would be performed between 

measures of SRS, RBS-R, NQA and GFA on measures of FC, should the interaction 

effects be statistically significant. We acknowledge that the statistical power for the 

analysis is relatively low, limiting any multi-dimensional conclusions that could be drawn 

from regression models should they be present. As such, interaction terms were not 

modeled for the diffusion indices, nor were moderation analyses performed. Spearman ρ 

rank correlations232 performed on the independent variables of interest (RBS-R, SRS, 

GFA and NQA) to assess multicollinearity revealed that raw motivation scores from the 

SRS and stereotyped and compulsive behaviors from the RBS-R are highly correlated 

with one another (ρ(36) = 0.67, ρ(36) = 0.61, and ρ(36) = 0.71, all p < 0.0001 

respectively). Anisotropy measures were equally highly correlated with one another 

across brain regions which reported tracts (ρ(7218) = 0.45, p < 0.00001), despite the 

information conveyed by GFA and NQA being theoretically distinct from one another. 

The combination of these results supports our decision to use separate models for each to 

avoid variance inflation within a single model. 

A recent publication assessing data quality in the Human Connectome Project 

(HCP) discovered that many demographic variables (e.g. age, FSIQ, weight, and 

psychiatric diagnosis scales) may strongly correlate with motion-related measures from 

MRI data.244 As a check against this potential confound, mean RMSD motion was 

correlated with RBS-R stereotyped behaviors, RBS-R compulsive behaviors, and SRS-
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motivation raw scores. No significant correlations between any SRS or RBS-R variables 

of interest were identified.    

DWI: The tSNR and maximum voxel value of each DWI were calculated using 

automated shell code (https://www.med.upenn.edu/cmroi/qascripts.html).189 After which, 

analyses were performed to assess group differences in tSNR and maximum voxel 

displacement, which based on discriminatory data quality studies using machine learning, 

are the most influential data quality measure which separates good from excellent and 

good from poor data quality respectively.189 Motion differences in DWIs between each 

group were assessed using QAP’s measures of framewise displacement, in addition to 

other measures of potential artifact (see: http://preprocessed-connectomes-

project.org/quality-assessment-protocol/ ). Correlations between FD and the extracted 

diffusion measures (count, NQA, GFA) were performed as part of each analysis to asses 

any contributions of motion to the data. While RMSD motion and mean framewise 

displacement in DWIs were found to highly correlate with one another (ρ(36) = 0.38, p = 

0.02), 36 ROI pairs required a correction for both across all anisotropy measures. No 

significant differences were identified in any diffusion-based quality metrics between TD 

and ASD individuals prior to the FC/DWI correlations. Registration accuracy to the MNI 

template is available as part of QSDR reconstruction. As an additional check, template 

registration accuracy (measured by the R2 value of DWI data to the template) was also 

correlated with variables of interest and are assessed as potential sources of artifact. 

Previous research indicates that surface-based parcellations display less reliability 

compared to volume-based parcellations due to the absence of white matter regions in 

these parcellations.245 To mitigate this problem as much as possible, the “loose” mask of 

http://preprocessed-connectomes-project.org/quality-assessment-protocol/
http://preprocessed-connectomes-project.org/quality-assessment-protocol/
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the Yeo et al. 2011/Choi et al. 2012 was used as there is partial volume overlap with 

white and grey matter in this less-conservative parcellation. However, in theory, whole-

brain tractography mitigates this to a degree as the seeding parameters are asking the 

program to identify up to 1 million tracts within a mask of the entire brain as opposed to 

building streamlines between specific grey matter ROIs where tractography may be 

suspect. 

Mitigation of false-positives: Psychological research has come under increased 

scrutiny due to findings that many published research studies may contain numerous false 

positives.246,247 The authors acknowledge that the low sample size, which both reduces 

the statistical power and likelihood of obtaining a representative sample for the analysis 

risks producing such false positives.248 FDR corrections219 with a 5% false-positive rate 

for each group of tests (628 for TD vs ASD group FC, 446 for FC/behavior correlations, 

190 for both GFA and NQA correlations with FC) to attempt to limit false-positives. 

Should no results survive FDR correction, uncorrected results will be reported with the 

caveat that they do not survive multiple comparisons. Additionally, the extracted 

participant data and code for the analytical pipeline are made openly available on the 

Open Science Framework (https://osf.io/)249,250 for replication and meta-analyses. 

Computational: The authors acknowledge the connectome does not fully 

represent white-matter tract profiles in the human brain. Diffusion tractography is, by 

nature, a second order reconstruction of the flow of water throughout the human brain, 

which is then used to model what is assumed to be white-matter fiber tracts. Such models 

do not fully represent the microstructural resolution and nature of white-matter fiber 

bundles, is susceptible to many subject and scanner artifacts, and should be interpreted as 

https://osf.io/
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approximations at best when analyzed. Furthermore, the connectome approach applied 

here addresses structural connectivity on a very binary level, meaning it assumes that any 

2 regions in the connectome are or are not structurally connected. On a biological level, a 

single tract or set of tracts may pass through several regions in the brain, carrying 

information to one or all brain regions upon which axons and dendrites synapse. 

Additionally, many functional connections may stem from 2nd or 3rd order 

communication from brain regions not physically connected by a single white matter 

tract. Tract verification programs are available in most popular diffusion analysis 

packages to attempt to address the former. However, these are difficult to implement in 

connectome-based analyses due to the number of tracts generated across the entire brain. 

For the latter, higher-order modeling may be used (e.g. ICA, SEM, homology), but to our 

knowledge, these have currently only been applied to tensors and not higher-order 

diffusion data.251,252 Further research will be required to implement such models for 

higher-order spherical deconvolution diffusion modeling. 

We have made attempts in the past to grow tracts in between individual ROIs, but 

this approach may be influenced by several other variables including but not limited to: 

inter-subject variability in total intracranial volume (TICV) and ROI size relative to seed 

count, voxel-count differences in seed-to-ROI locations relative to seed count, total-fiber 

count relative to TICV, and maximum allowable tract minimum and maximums relative 

to TICV determined ROI distances. While weighting tractography algorithms by such 

factors are theoretically possible, no clear guidelines for doing so have been published to 

date to our knowledge. Additionally, performing such weighting would not only be 

highly experimental, but also computationally intensive. As such, the authors have 
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chosen to normalize the diffusion images to a standard MNI template and perform 

tractography across the whole brain with the same settings for each participant and apply 

the 75% or more tract-present analysis for diffusion analyses to be performed. The 

authors have also chosen to measure group differences using normalized quantitative 

anisotropy (NQA), which scales the maximum QA value of a subject to 1 in lieu of QA 

so measures may be more comparable participants. In theory, these steps will minimize 

the influence of individual differences in head size and diffusion morphometry and 

reduce the likelihood of analyzing false tracts, but there are still many more experiments 

that must be performed to test the reliability and accuracy of connectomes before 

inferences drawn from them can be interpreted as real-world representations (see Maier-

Hein et al., 2016 for limitations).253 
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RESULTS 

AIM #1 Compare the functional connectivity of resting-state striatal brain networks 

in individuals with ASD and typically developing controls. 

No significant group differences were found following an FDR correction for the 

total number of tests (628). Additionally, there were only a few significant group 

differences in striatal-cortical connectivity even at an uncorrected statistical threshold of 

p < 0.05 for each test (see Table 3 for summary). Regarding frontoparietal network 8, 

there were reductions in FC in ASD between the sections of the body and head of left and 

right putamen with the right precentral gyrus region (t(36) = 2.16, p = 0.04, g = 0.69, 

CI95 0.007,0.23; t(28) = 2.24, p = 0.03, g = 0.71, CI95 0.01,0.20), and the left putamen 

tail and contralateral IPL (t(36) = -2.41, p = 0.02, g = 0.77, CI95 0.02,0.21). An increase 

in FC in ASD between the medial body of the left caudate and a region containing the 

ipsilateral middle and inferior temporal gyri (MTG, ITG) corresponding to frontoparietal 

network 13 (t(31) = -2.04, p < 0.05, g = 0.65, CI95 -0.21,-0.0003). Both left and right 

aspects of dorsal attention network corresponding to the tail of the putamen displayed 

reduced FC with a right medial aspect of the cingulate gyrus in ASD compared to TD 

participants (t(36) = 2.50, p < 0.02, g = 0.80, CI95 0.04,0.35; t(36) = 2.98, p = 0.005, g = 

0.95, CI95 0.05,0.26). A medial aspect of the body of the left putamen (corresponding to 

somatomotor network14) displayed increased FC in ASD compared to TD participants 

with bilateral aspects inferior frontal gyrus (IFG)/OFC ROI bordering the insula (left: 
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t(36) = -2.12, p < 0.05, g = 0.68, CI95 -0.25,-0.006; right: t(36) = -2.51, p < 0.02, g = 

0.80, CI95 -0.24,-0.025). Only one subcortical ROI pair in the default mode network 

ROIs displayed altered connectivity, with ASD individuals displaying increased FC 

between a right dorsal-medial aspect of the caudate and a temporal ROI containing 

aspects of the middle, superior, and inferior temporal gyrus corresponding to default 

mode network 17 in the parcellation (t(34) = -2.14, p < 0.04, g = 0.68, CI95 -0.24, 

-0.006). No group differences in cortical-subcortical connections were found in ventral 

attention network or limbic networks. 

Multiple cortical-cortical connections within the ventral attention, frontoparietal, 

and default mode regions, and one pair within the dorsal attention network, displayed 

significantly reduced FC (all p < 0.05, g > 0.4) in individuals with ASD. In contrast, the 

connection between the insula and MTG/lateral occipital cortex (LOC; part of ventral 

attention network), the connection between the ACC/superior frontal gyrus (SFG) and 

IPL (part of frontoparietal network 8), and the connection between the IPL and 

SFG/middle frontal gyrus (MFG; part of default mode network 17) were significantly 

greater in individuals with ASD compared to TD individuals. The complete results of the 

group-level analysis with the relevant test statistics, effect sizes, and confidence intervals 

are reported in Table 3. Figure 6 displays t and Z values of group differences by 

connection. However, it should be noted that none of these results survive FDR 

correction for multiple comparisons and should be interpreted with caution.  

Of the 27 uncorrected results from group level comparisons, three of the 

connections were identified as having a strong correlation with FSIQ (right insula:right 

MTG/LOC, right insula:right IPL, right insula:left MTG) and another connection 
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displayed a significant relationship with age (right IPL:left SFG/MFG). When age or 

FSIQ were accounted for using ANCOVAs, all FC results except for FC between the 

right insula and right IPL retained a significant effect of group. 
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AIM #2 Examine brain-behavior relationships by analyzing correlations of 

functional connections striatal networks in individuals with ASDs with by cognitive 

and behavioral factors (repetitive behaviors, social motivation scores) and 

anatomical connections of the striatum. 

 

Behavioral Correlates of FC:  

Group comparisons on the three subscales confirmed significantly higher scores 

in the ASD group (RBS-R-Stereo, Z = 221, p < 0.001, rbs = 0.75, CI95 0.58, 0.89; RBS-

R-Compulsive, Z = 250, p < 0.001, rbs = 0.75, CI95 0.36,0.81, SRS-Motivation, Z = 190, 

p < 0.001, rbs = 0.88, CI95 0.868,0.871), suggesting that these measures distinguish TD 

from ASD participants at a within this sample. Only two ROI pairs from somatomotor 

network 14 were found to have significant and positive correlations with RBS-R 

measures of stereotyped behavior. These were the medial aspect of the body of the left 

putamen with two bilateral IFG/OFC regions bordering the insula reported previously in 

the ASD vs TD group comparisons (left: ρ(36) = 0.33, p = 0.04; right: ρ(36) = 0.39, p = 

0.02). RBS-R compulsive behaviors on the other hand was found to correlate with 13 

different pairs of ROIs in the frontoparietal networks. FC in 2 of the 3 subcortical 

connections (both in frontoparietal network13) between the left caudate and cortex 

(contralateral IFG and IPL) were related to increases in RBS-R compulsivity scores (IFG: 

ρ(36)  = 0.39, p = 0.02; IPL: ρ(36)  = 0.33, p = 0.04), while the third connection between 

the right putamen tail and contralateral IPL in frontoparietal network 8 was associated 

with reductions in FC as RBS-R compulsivity scores increased (ρ(36)  = -0.34, p < 0.03). 

The remaining significant correlations for RBS-R compulsivity were between the right 
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frontal pole, (with bilateral ITG/MTG and SFG/MFG regions respectively), right IFG-left 

ITG/MTG, right IPL-right ITG/MTG, and left and right ITG/MTG-right 

Paracingulate/SFG. All cortical-cortical results within frontoparietal network 13 

displayed reductions in FC as RSBR-compulsive scores increased. The left IPL in 

frontoparietal network 8 displayed a significant positive correlation with both a right 

ACC/SFG ROI (ρ(36)  = 0.33, p < 0.04) and a significant negative correlations with the 

left FP/OFC ROI (ρ(36)  = -0.39, p < 0.02). 

 No significant correlations were identified between any ROIs within the limbic of 

the Choi/Yeo parcellation (network 10) and SRS-motivation scores. FC in ventral 

attention network and dorsal attention network, however, displayed relationships with 

SRS measures of social motivation. Both the left and right tail of the putamen relative to 

the right ACC displayed significant negative relationships with SRS social motivation 

scores (left:  ρ(36)  = -0.33, p < 0.05, right: ρ(36) = -0.40, p = 0.01) not unlike what was 

seen in the ASD vs TD comparisons. However, FC between the right tail of the putamen 

and the IFG/MFG in network 12 displayed a significant positive relationship with SRS-

motivation (ρ(36)  = 0.33, p < 0.05). The remaining significant correlations with SRS-

motivation in dorsal attention network and ventral attention network are cortical-cortical, 

with the FC between the right OFC in and 3 other regions (right IFG/MFG, right IPL, left 

ACC) in dorsal attention network displaying significant negative correlations with SRS 

motivation (IFG/MFG: ρ(36) = -0.37, p = 0.02, IPL: ρ(36)  = -0.34, p = 0.04, ACC: ρ(36)  

= -0.35, p < 0.03). Results within the ventral attention network revealed similarly 

negative relationships in FC and SRS-motivation between the right insula and bilateral 

IPL ROIs (left: ρ(36)  = -0.35, p = 0.03; right: ρ(36)  = -0.40, p < 0.01), and the right 
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ACC/supplementary motor area (SMA) and an ROI containing precentral/postcentral 

gyrus (ρ(36)  = -0.36, p < 0.03). An ROI containing the MTG/LOC and parts of the 

fusiform however, displayed significantly positive relationships with SRS-motivation and 

FC with the right ACC/SMA (ρ(36)  = 0.32, p < 0.05) and insula (ρ(36)  = 0.43, p = 

0.007).  

 Correlations with behavior at an uncorrected threshold are summarized Table 4 

and Figure 7. It should be noted that of all 446 comparisons conducted as part of the 

behavioral/FC correlation analysis, none survived a 5% FDR correction for multiple 

comparisons.  As such, all results should be interpreted with caution given the low 

statistical power of this experiment. Additionally, FC within 3 ROI pairs (right insula-

right MTG/LOC; right insula-right IPL; and left posterior body of the putamen and right 

IFG) were found to significantly correlate with FSIQ. Follow-up partial Spearman’s 

ρ232correlations found a stronger relationship between right insula and right MTG/LOC 

FC with increasing social motivation deficits when controlling for FSIQ (ρ(35) = 0.50, p 

< 0.002), and a similar but slightly weaker relationship between the putamen and IFG 

(ρ(25) = -0.36, p = 0.03). The insula-IPL connection however, resulted in an inversion of 

the relationship, with FC decreasing as social motivation impairments increased (ρ(35) = 

-0.37, p = 0.02) when accounting for FSIQ. 
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Anatomical Correlates of FC: 

 The fiber count threshold required that at least 28 of the 38 participants in the 

analysis report tract streamline counts above threshold (set by image data quality by 

participant) between any pair of ROIs. This reduced the number of pairwise combinations 

of ROIs from 628 to 190. While all networks of interest in the parcellation had 

streamlines between at least 1 pair of ROIs, certain networks within the parcellation 

contained more tracts than others. Most streamlines surviving the threshold were cortical-

cortical (176), but less than half as many connections were subcortical- cortical (133) and 

subcortical-subcortical (18) were also identified. Most of the streamlines were between 

frontoparietal ROIs (39%), which is not surprising considering that it is the largest 

network within the parcellation. This was followed by default mode network (31%), and 

dorsal/ventral attention networks (23%), with somatomotor (4%) and limbic (3%) 

networks accounting for the lowest number of tracts. The limbic network however, had 

the largest number of streamlines relative to possible combinations between ROI pairs at 

100%, likely due to the lower number of possible combinations in the network (6) and 

their proximity (24-40 mm3 in MNI space) to one another. Summary statistics of 

streamline counts and results by network are displayed below in Table 5 and Figure 8.  
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Generalized Fractional Anisotropy: Of the 190 connections analyzed as part of the GFA 

analysis, 9 ROI pairs returned statistically significant at uncorrected p-values of p < 0.05 

for each analysis. Four default mode, 3 frontoparietal, and 1 dorsal attention network ROI 

pair displayed statistically significant correlations between FC and GFA. Subcortical-

cortical connections were limited to default mode network between the left head of the 

caudate and ipsilateral SFG (ρ(35) = 0.40, p = 0.01), and the left tail of the putamen with 

an ROI consisting of parts of the ipsilateral frontal pole and OFC (ρ(35) = 0.39, p = 0.02). 

These results required correction for DWI framewise displacement and mean RMSD 

motion respectively. The remaining results cortical-cortical relationships, with positive 

correlations between FC and GFA in interhemispheric MFG/SFG ROIs, left and right 

frontal pole ROIs with their ipsilateral MFG/SFG regions, right IFG with ipsilateral IPL, 

and a left frontal pole/OFC ROI with the ipsilateral MFG. Two default mode network 

connections however, displayed negative relationships with FC and GFA, with increasing 

FC between the right MFG and contralateral SFG, and right PCC and contralateral SFG 

associated with reduced GFA. Correlation values, types, motion/measure relationships, 

and uncorrected p-values are reported in Table 5. Of note, none of the statistically 

significant ROI pairs correspond to any regions of the (uncorrected) statistically 

significant group differences within AIM 1 of the analysis. Additionally, while many of 

the statistically significant correlations range from medium to large (0.33-0.50), half of 

the results displayed positive relationships between FC and GFA while others displayed 

negative relationships between FC and GFA. Additionally, these 9 results do not survive 

5% FDR multiple comparison corrections. 
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Normalized Quantitative Anisotropy: Of the 190 connections analyzed as part of the 

NQA analysis, 8 ROI pairs displayed statistically significant negative relationships 

between FC and NQA at an uncorrected threshold of of p < 0.05 for each test, with only 

one displaying a positive relationship. Four default mode, 4 frontoparietal, and 1 ventral 

attention network displayed significant correlations with FC at this threshold. Most of the 

frontoparietal connections were frontal-striatal, with connections from the caudate and 

putamen to contralateral medial frontal regions and ipsilateral frontal pole. Additional 

correlations between frontal-striatal FC and GFA were located between the left body of 

the putamen and an ACC/SMA ROI within the dorsal attention network, and the left 

putamen tail with the ipsilateral IPL in the default mode network. The remaining cortical- 

cortical connections were frontal-parietal, cingulofrontal, and interfrontal (which 

displayed increases in FC relative to increases in NQA) in default mode network, with 

the insula-IPL connection in the frontoparietal network. These results similarly did not 

survive a 5% FDR correction for multiple comparisons. 

 

Assessments of Age and FSIQ: No significant correlations were identified between any of 

the clinical measures of interest (RBS-R & SRS) and age or FSIQ. However, FC and 

GFA measures between some ROIs were identified as correlating with age, some results 

were found to correlate with registration accuracy of the DWI data to the template, and 

age was found to be highly correlated with framewise displacement in diffusion data (ρ = 

0.44, p = 0.005). Given this observation, 6 of the statistically significant correlations 

between GFA and these variables were re-analyzed using partial correlations to account 

for age, FSIQ, registration, and motion metrics as necessary. Once these variables were 
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included accounted for in the partial correlations, the ipsilateral frontal pole to MFG, 

right IFG to IPL, and right frontal pole to left SFG results were no longer significant (see 

Appendix Table 3). 
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DISCUSSION 

Much of the attention of neuroimaging research in individuals with ASD has been 

either on the use of fMRI to confirm or expand the prevalent hypotheses in ASD-related 

behaviors (e.g. ToM deficits, alterations in perceptual processing streams, neural 

correlates of goal-oriented behavior), or in discovering MRI based “biomarkers” or 

“neural signatures” unique to individuals with ASD, or some combination of these. While 

several studies have proposed that FC may be a useful tool to identify the “neural 

fingerprints” unique to ASD, much of the work in the field has focused on cortical-

cortical brain connections. While hippocampal254 and amygdalar98,101,254–257 connections 

have been frequently studied in the ASD/FC literature, the striatum (including the NAcc, 

caudate, and putamen) have received relatively little attention in individuals with ASD. 

This is surprising considering the findings proposing striatal dysfunction may be major 

contributors to stereotyped or compulsive behaviors and social reward processing in 

ASD.8,11,14,15,34,105,106,108,119,258–260 Additionally, the disrupted connectivity account of ASD 

propose that anomalies in FC stem from underlying alterations in white matter 

connections. While there is support for these hypotheses in the literature, many of the 

published results are more or less limited to a single domain of investigation (structural 

MRI, FC, or DWI) with post-hoc correlations calculated after TD/ASD group differences 

are identified. Additionally, many recent studies (including those in children and adults 

with ASD) have discovered that spurious group differences in FC and DWI may arise 
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from analytical strategies that do not adequately control for head motion.217,223–225,227,261 

The current study attempted to address these limitations and their effects by using both a 

traditional group-level analysis for FC and a novel, clinical-focused and FC/DWI 

analyses (embedded with multiple data quality assurance steps) to mitigate the impact of 

motion artifacts. 

 

AIM 1 

Contrary to our hypotheses of increased FC within the striatum and its targets in 

ASD, no group differences were found after a 5% FDR correction was applied. Even at 

the uncorrected level, very few cortical-striatal connections (a total of 9) differed between 

TD and ASD individuals. Increases in striatal-cortical connections from the left body of 

the putamen with the left OFC and right IFG in sensorimotor network 14 provides some 

support for our original hypothesis of increased connectivity with frontal ROIs in ASD. 

Similarly, increases in two subregions of the left caudate with the ipsilateral ITG/MTG in 

frontoparietal network 13 and right temporal pole in default mode network 17 are also in 

line with our original hypothesis derived from previous findings. However, many 

bilateral connections with the left and right putamen to a right precentral gyrus and left 

IPL in default mode network 8, and the right ACC in the dorsal attention network were 

found to be reduced in ASD, which provides less support for our original hypotheses. 

These findings appear relatively novel, as analytical approaches similar to ours 

parcellating the striatum into subregions17 have reported the inverse in precentral areas, 

and little mention of FC alterations in the putamen with and IPL. Alterations in FC for 

parietal areas has been reported previously in the caudate but not the putamen.17 Whether 
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these results stem from fundamentally different methods of analysis (e.g. ROI-vs-voxel 

based, single vs multi-level parcellation of the striatum), sample variability (previous 

studies had a smaller age range),17 or reflect a genuine relationship with compulsive 

behaviors is difficult to say with the current limitations in statistical power. 

The remaining 18 results at an uncorrected statistical threshold (see Table 3) were 

cortical-cortical connections between temporal, frontal, parietal, and cingulate areas, 

primarily favoring reductions in individuals with ASDs (15/18). These were almost 

exclusively within frontoparietal regions, which are typically associated with cognitive 

control.235,236 The remaining 7 comprise frontal-parietal or cingulo-frontal ventral 

attention (3), dorsal attention (1), or intrahemispheric frontal-frontal or cingulo-parietal 

default mode (3) connections. Cortical-cortical, especially frontal-parietal “long distance” 

connections are frequently reported in both the task and resting-state literature in 

individuals with ASD and multiple review papers are available discussing their 

consistency and implications.82,83,158,230,262 However, our results noted 3 exceptions to this 

trend in increased connectivity between the right insula to right MTG/LOC, right 

ACC/SFG to left IPL, and right IPL to left SFG/MFG (corresponding to the ventral 

attention, frontoparietal network 8, and default mode network 17 respectively). The 

insula-MTG/LOC result is interesting considering the role of the MTG/LOC in object 

recognition. 

The lack of ASD/TD group differences in cortical-striatal regions typically 

associated with reward (NAcc and OFC) does not seem to support the theories of general 

dysfunction within reward circuitry in ASD. Results in attention networks may suggest 

that disruption in attentional streams may possibly play a greater role than those of 
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reward. However, it is worth noting that there are considerably greater numbers of 

combinations of cortical and subcortical connections across the regions in both dorsal and 

ventral attention networks compared to the limbic ROIs (171 to 6 respectively) typically 

associated with reward processing. Statistically significant alterations (mostly reductions 

in ASD) in FC between frontoparietal regions were frequent (12/27 results) and large (g = 

0.65-0.91), suggesting that FC between brain regions associated with cognitive-

control235,236 may be significantly altered in ASD. However, frontoparietal network pairs 

(constituting half of the significant group differences may also have a bias in this 

parcellation as this network contains 227 pairwise combinations (~36% of all possible 

combinations) and may be more likely to be statistically significant due to chance. As 

such, claims of disruptions in the connectivity of brain regions associated with cognitive 

control will require additional experiments using inhibition tasks. However, group 

differences in default mode ROIs were present but sparse despite a similarly large 

representation within the parcellation (182 pairs or 30% of the parcellation) and 

subcortical-cortical somatomotor regions were greater in individuals with ASDs despite 

constituting a relatively low percentage of the total possible combinations (~7%) with 

relatively large effect sizes (g > 0.6). Alterations in subcortical-cortical somatomotor 

regions, if replicated, could provide important insights into repetitive behaviors in ASDs. 
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AIM 2 

Correlations of FC with Behavioral Measures: 

 There was considerable overlap between the results of FC/behavioral correlations 

and the results of group comparisons, with 16 of the 26 correlations between behavioral 

measures present in the same ROI pairs that were significant in the TD vs ASD group 

comparisons. This is not surprising given that these measures were developed to 

categorize the presence or absence of behaviors within individuals with ASDs. The 

results from the sensorimotor networks are a good example, with increasing incidence of 

stereotyped behavior correlating with increased FC between the left posterior body of the 

putamen and frontal regions such as the OFC and IFG. This supports the initial 

hypothesis of a relationship between stereotyped behaviors and sensorimotor FC.  

Interestingly, there were 11 ASD/TD group differences that did not correspond to 

any correlations between FC and clinical measures, and 10 correlations between FC and 

clinical measures that were not present within the group analysis. These differences were 

primarily driven by additional FC/behavioral correlations with frontoparietal and 

attention networks and an absence of default mode results in FC/behavioral correlations. 

There was data available in the literature to suggest default networks would be correlated 

with the subscales of interest. For example, increases in FC between the caudate and 

contralateral ROIs near the IFG and IPL, were associated with a greater incident of 

compulsive behaviors, identified as part of the behavioral correlation analysis but not the 

group comparisons. Coincidentally, similar putamen ROIs in the group analysis which 

displayed reductions in FC do not correlate with these behaviors in post-hoc brain-

behavior correlations in the ASD-only group. Attention networks correlating FC with 
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SRS-motivation similarly mirrored the ASD vs TD comparisons, with 7 pairs of ROIs 

replicating across group and behavioral analyses, but 4 pairs on each analysis producing 

results unique to the other. General results seem to indicate a reduction in putamen tail to 

ACC and frontal-parietal FC when there is greater motivation to engage in social stimuli 

in a participant. The exception to this is the right putamen tail and right IFG/MFC, which 

displays increasing FC with greater impairment in social motivation. This result was not 

present in the initial analysis for ASD vs TD. Interestingly, as social motivation 

impairment increases, FC between a right MTG/LOC ROI containing parts of the LOC 

and right insula, ACC/SMA, the latter of which was not present in the ASD vs TD 

analysis. Like the frontoparietal network results, none of the attention network results 

unique to the ASD group was significantly correlated with SRS-motivation measures.  

Analyses from this behavior-centric framework seem to result in reduced 

connectivity between frontal and temporal ROIs with increasingly severe compulsive 

behaviors, and reductions in FC with decreasing social motivation impairment in inter-

frontal (ACC:SFG and SFG:OFC), frontal-parietal, cingulo-frontal, and subcortical-

cingulo connections. The findings of increased FC between subcortical to cortical 

IFG/MFG and frontal and cingulate regions with an area comprising the fusiform is of 

note given the role the former plays in communication and language and the latter in face 

processing. Both the IFG and fusiform responses are frequently described as atypical in 

both BOLD signal101,263,264 and FC256,265 in the ASD literature. The prospect that FC 

between cortical and subcortical ROIs is increased with social motivation impairment 

may provide insights into the role of communication and perception in social motivation 

with relevant behavioral experiments in the future. Nevertheless, caution is advised in 
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generalizing the current model considering none of the results survived corrections for 

multiple comparisons. Additionally, the finding that at least one behavioral result had a 

directional change once FSIQ was accounted for (Right Insula to right IPL in the ventral 

attention network with SRS-Motivation) in the analysis suggests that these variables may 

exert greater influence on FC that we were able to asses with our sample; in addition, 

previous work on subcortical structures suggests this may be the case.266,267 It is also 

possible that our sample is highly variable (9 of the ASD participants were medicated 

with antipsychotic, stimulant, anticonvulsant, or antiadrenergic medication) despite our 

attempts to match on age and FSIQ. However, multivariate approaches to assess 

contributions of such developmental factors such as age and IQ in a much larger sample 

are needed for adequate statistical power for such generalizations. 

 The combination of the behavioral/FC correlations seem to indicate that analyses 

of brain-behavior relations in ASD are capable of both providing the same information as 

an analysis of group differences, but also additional regions relative to behaviors of 

interest with the bonus of providing directional effects of FC relative to the behaviors of 

interest. The correlations were also relatively strong even at an uncorrected statistical 

threshold (+0.32-0.47 based on a medium effect of > 0.30 and a large effect > 0.50). This 

behavior-centric approach to fMRI analyses of brain function fits well with the NIH 

RDoC initiative urging symptom-based studies across diagnoses to develop better models 

of brain function. This is especially relevant to research within the ASD population since 

so many individuals with ASD express comorbid conditions that overlap with ASD 

symptoms. Any of which has the potential to be mediating or moderating variables on a 

specific behavioral domain. Leveraging large datasets like ABIDE and ADHD-200 have 
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the potential to identify brain regions associated with behavioral or clinical domains. 

Some research groups and brain parcellations have already begun this line of research.268 

Such models would be extremely useful for studying the mechanisms of brain function or 

diagnostic subdomains within a given clinical population, but the heterogeneity in 

behavioral questionnaires and data collection practices severely limit the possibility of 

such research in the future. Should these practices improve, inclusion of these variables 

using multivariate techniques could lead to informative models of how the brain 

functions in individuals with ASDs. 

 

Correlations with FC and Anisotropy Measures: 

The relatively low number of streamlines between ROIs in the parcellation (190 

of 628 original pairs) is not surprising given the limitations of the pairwise approach to 

diffusion streamlines used for the analysis. It however, highlights 2 important features 

worth considering when implementing multi-modal MRI data analysis techniques: 1) 

Any analysis proposing that FC may be a result of underlying neuroanatomy may wish to 

perform tractography first to establish anatomical connections between ROIs of interest. 

2) If connections span multiple brain regions, higher order models (2nd….nth order 

connections) may be necessary to examine structure-function relationships. Graph theory 

techniques may have the potential to address higher order connections (in which 

connectivity between 2 or more regions is moderated by FC or physical connections 

between a third region) in these types of analyses. Q-based,72,269 and persistent 

homological252,270 graph theory approaches have been utilized previously to address such 
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questions, but our current ODF-based diffusion model does not lend itself well to such 

techniques. As such, it is a venue of future development. 

 

FC with GFA: 

 Contrary to our initial hypotheses, only a handful of ROI pairs exhibited 

significant correlations between FC and GFA even at uncorrected statistical thresholds.  

This is surprising considering several previous studies report relatively high correlations 

between default mode regions and FA. The finding that more than half of the results were 

in default mode regions however, coincides with this previous work. Also, in contrast to 

our hypothesis, only one GFA/FC correlation overlapped with a previous behavior/FC 

result. This relationship found increases in FC between the right frontal pole and right 

SFG/MTG associated with decreases in RBS-R scores and increases in GFA. However, 

when correlated with each other, RBS-R scores did not exhibit significant correlations 

with GFA between these regions (ρ(36) = -0.24, p = 0.15). Also surprising is the lack of 

sensorimotor results within the analysis considering that much of the parcellation was 

derived from a combination of functional connections between motor regions and 

anatomical tract tracings in macaque monkeys.64 Most of the FC/GFA correlations 

display positive relationships between GFA and FC between intra-frontal, frontal-

parietal, and frontal-striatal connections, with frontal-posterior-cingulo and intra-frontal 

MFG to SFG as the exception. However, once considering the finding that a third of the 

results are no longer significant once potential effects of age or registration accuracy are 

addressed, the default mode ipsilateral FP to MFG, contralateral FP to SFG, and 

frontoparietal IFG to IPL results should be interpreted with caution.  
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FC with NQA: 

The finding that all but one of the significant results at an uncorrected threshold 

displayed small to moderate (0.34-0.50) negative relationships with NQA comes in stark 

contrast to our initial hypothesis, the implications of which are concerning. Given that 

QA/NQA is theoretically more robust to false fibers and artifacts from crossing fibers as 

it is calculated at the level of the fiber and not the voxel,186 the method should be more 

representative of the underlying anatomy compared to GFA. The fact that the results of 

GFA and NQA analyses do not overlap seems to support the idea that each are providing 

different information. However, the finding that FC decreases with increasing NQA 

seems to suggest that increases in functional connections are associated with “less dense” 

underlying white matter. To our knowledge, our group is the first to use this measure 

relative to FC, and future work to explain it will be required, but given that relatively few 

ROI pairs had NQA/FC correlations, it would appear that measures of white matter 

tractography have little to do with FC without the use of higher order models. 

  In summary, our analyses do not seem to support our initial hypotheses of 

alterations in FC between brain regions typically associated with reward (limbic) ASD 

influencing social motivation. However, an uncorrected trend of reduced striatal-cortical 

connectivity reductions in ASD subcortical-cortical FC in dorsal attention regions which 

correlate negatively with SRS motivation scores (larger scores mean more impairment) 

may imply that alterations in brain regions associated with attention may contribute more 

to dysfunctions in social motivation than reward regions. This would be an inversion of 

the social motivation hypothesis (which proposes that the lack of reward drives 

attention), and would imply that attentional systems for the preparation and response for 
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goal-directed behaviors (aka: task positive).201,271 It could easily be argued that social 

stimuli fall under this umbrella, and may reflect difficulty with communication or social 

navigation in such situations. The subcortical-cortical relationships between 

frontoparietal and somatomotor is interesting, as frontoparietal is associated with 

cognitive control235,236 and seems to display a general reduction in FC in ASD and 

general increases in subcortical-cortical FC with incidences of compulsive behaviors. In 

contrast, FC between subcortical-cortical somatomotor regions were higher in ASD and 

associated with greater incidences of compulsive behaviors. The cortical-cortical results 

mirrored these trends, with primarily reductions in FC between frontoparietal regions in 

ASD associated with greater incidences of compulsive behaviors, but added some 

alterations in ventral attention regions that were primarily associated decreases in FC 

with increasing social motivation impairments. The exception to the ventral attention 

network results being connections between the MOG (which is heavily involved in object 

processing) and ACC/insula regions. These may highlight imbalances between inhibition 

from control networks (via frontoparietal regions), difficulty filtering and reorienting to 

relevant stimuli (via dorsal attention and ventral attention networks), and overactivity of 

somatomotor regions in ASD. Caution is advised however, as these conclusions are 

highly reverse-inferential and will require task-based experiments to assess the validity of 

such conclusions, and many of the cortical-cortical results may be subject to the potential 

effects of distance-dependence. 
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Strengths, Limitations, and Future Directions: 

We made considerable efforts to mitigate participant and MRI based artifacts 

within our sample, and constrain our analyses to participants with relevant behavioral and 

quality diffusion data to study structure-function and brain-behavior relationships within 

ASD. This has given us confidence that our results are minimally artifact-driven. 

Unfortunately, these practices limited our number of viable participants, reducing the 

power of the analysis to detect a significant effect (should it be present) to 64% (based on 

a β/α ratio of 4 [.80/.05]) assuming an effect size of Cohen’s f2 = 0.15 as calculated from 

a compromise power analysis in G*Power272,273 before the mass-univariate nature of MRI 

analyses are considered. This is an unfortunate limitation that the authors acknowledge 

stemming from heterogeneous phenotypic data-collection practices across ABIDE-II 

centers. It should also be noted that a small but statistically significant difference was 

identified for distance-dependence artifact across all ROI pairs of interest (ρ(626)  = -

0.08, p < 0.05), which may affect measures of “long distance” connections. Comparisons 

of RMSD motion between the did not find significant differences in median RMSD in 

TD compared to ASD groups (Z = 351, p = 0.60, rbs = 0.09, CI95 -0.24,0.42). The lack of 

significant group differences in motion may suggest that group differences in mean 

RMSD motion are not a concern in the analysis. However, much of the literature suggests 

this artifact may occur even in minimal (typically not flagged for scrubbing) differences 

in motion, which is worth considering in studies of pediatric populations in which 

thresholds for motion are typically less conservative. Follow up correlations with mean 

RMSD did not reveal any significant relationships with FC in any group level ROI pair, 

leading the authors to conclude any such relationships have been mitigated to the best 
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possible degree. Similarly, DWI data was normalized to an adult template, which is 

typically not suggested for a pediatric population. The T1 weighted co-registration prior 

to normalization should have aided in addressing potential confounds related to this issue, 

but there are studies in the literature that have reported artefactual results in age-related 

studies as a function of extensive warping from smaller brains to a larger 

template.195,196,198,274,275 We are exploring methods to minimize such artifacts, including 

weighting results by Euclidean distance in native space, weighting tractography counts by 

total intracranial volume, or treating total intracranial volume as a covariate in future 

analyses. However, further research is necessary to establish the effects of distance and 

image warping in populations in which these parameters are typically high. 

The discrepancy in the FC/Anisotropy results in this study compared to others 

may stem from heterogeneity in tractography approaches. While much of the previous 

work similarly utilizes whole-brain tractography, previous work has used smaller 

numbers of ROIs,276 native-space tracking,71,74,276 and many have used lower resolution 

diffusion data except for Honey et al. 2009, which used a higher-order diffusion scheme 

not yet available on ABIDE-II. However, none of these studies, to date, have utilized 

higher-order tensors or ODF based models to guide tractography. This is surprising given 

the number of advancements in tractography algorithms in the last decade and research 

suggesting that anywhere from 60-90% of white matter voxels in the brain contain fiber 

crossings.76 While we are unsure if this may be why the results are inconsistent, it is 

widely accepted that FA and GFA are more susceptible to partial volume effects, 

reductions from crossing fibers, and FA is defined at the voxel rather than the fiber level 

(QA is defined at the level of the fiber).  While we have made every attempt to ensure 
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that results are not driven by artifact (i.e. motion, SNR, registration errors), more work is 

needed to assess the validity and reliability of these different approaches with higher-

resolution data. Our choice of a “connectivity threshold” to filter out potentially false 

fibers, in theory, should have aided with accuracy, but given that these thresholds can be 

subject-specific and may relate to other data quality metrics, it could have introduced 

biases into the analyses. 

 Many of the models proposed for the role of the striatum in human and animal 

behavior note the relationship between learning and reward within these subcortical 

circuits. Unfortunately, the cortical parcellation chosen for our analysis did not include 

any functional connections between the striatum and hippocampus or amygdala. This is 

not an insignificant limitation given the number of functional and structural connections 

between the hippocampus and amygdala with the striatum and cortex frequently noted in 

human and animal literature. However, mapping individual subregions of the striatum to 

subregions of the HIP and AMYG would be an enormous scientific undertaking. Ideally 

future research will explore voxelwise FC with cortical-limbic regions such as those 

performed by Choi et al., 2012. Identifying such relationships and relating them back to 

the striatum is important considering limbic areas have the strong potential to be 

moderators for frontal-striatal networks (e.g. NAcc, HIP, vmPFC connections for goal 

oriented behavior). Additionally, many other subcortical regions (e.g. subthalamic 

nucleus and SN) are greatly involved in the behavior of the striatum but are not easy to 

resolve using MRI without specific protocols designed for their acquisition. We intend to 

re-visit limbic-to-striatal connections, and how they related to the cortex, as such 

parcellations improve with the literature. Open source MRI initiatives, increased 
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structural resolution, and novel analytical techniques move the field towards this goal 

with each development. However, it should be noted that the approach taken by the 

authors and the atlas developers is not inconsequential given that much of the striatal 

parcellation was validated in a large sample (1000 individuals), is based on previous 

work in somatomotor network, and tract tracing in primates. However, while the 

organization and topology of the striatum from the atlas may be accurate, developmental 

shifts in these locations are possible within pediatric samples, which is outside the 

framework of the current study. 

Most importantly, the authors acknowledge that the analysis above is based upon 

resting-state FC with networks associated with specific tasks. While there is evidence to 

support task-based network topology is preserved in resting-state paradigms,64,277 task-

based fMRI analyses are currently still the best tool for identifying neural correlates when 

a task is performed or a psychological state is inferred (with appropriate controls). The 

authors intend to explore neural correlates of cortical-striatal networks associated with 

reward processing and motor planning in the future, attempting to link cortical-striatal 

BOLD signal and tractography to subsets of the ASD phenotype using a behavior-first 

approach proposed as part of continued work stemming from the results proposed in this 

document. Behaviorally relevant neural correlates of ASD are critical given the 

heterogeneous nature of the ASD phenotype.   

 One unavoidable confound of the current experiment is the influence of 

medication effects on BOLD signal and diffusion within our patient population. Three 

participants were actively taking central antiadrenergic medication during the scan, which 

has the potential to affect global BOLD signal. At least five were taking some form of 
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dopaminergic CNS stimulant or antipsychotic, three were on serotonergic anti-

depressants, and at least one participant was on a GABA-based anticonvulsant. Most of 

these medications impact the circuitry of interest in some form (particularly striatal 

reward circuitry). However, all the participants on medication were children with ASD, 

and removing these participants from the analysis would have resulted in only 10 ASD 

participants. The lack of statistical power due to the small sample size has been noted 

multiple times throughout the document.  While the participants needed to be retained to 

prevent severe skewing of the sample, it is possible that medication may have blunted 

group differences or behavioral relationships with BOLD signal. 

 Worth noting however, is that many individuals with ASD have additional 

diagnoses beyond ASD (e.g. ADHD, MDD, OCD, Anxiety, Tics) that have the potential 

to affect striatal, control, sensorimotor, and other networks or combinations of networks. 

Many individuals on the spectrum, including children, are typically on one or more forms 

of psychotropic 

medication for 

ASD or a 

comorbid 

condition.278 A 

recent work 

analyzing the 

potential effects 

of medication on 

connectivity 
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(including striatal-cortical and cortical-cortical) suggested that individuals with ASDs 

that are on such medications have cortical-cortical and striatal-cerebellar alterations in FC 

compared to individuals with ASD that are not on such medications.279 What is worth 

noting however, is that few if any studies, to date, have assessed the contribution of any 

of these conditions to brain function in ASD. This is despite the numerous findings that 

relatively few individuals with ASD report no comorbidities.124,126,129,135,137 As such, there 

is considerable uncertainty that alterations in FC are driven by the psychotropic 

medication itself or the condition(s) that it is designed to treat within individuals with 

ASDs.  

 The ABIDE database notes that a large majority of the participants in the samples 

have comorbid conditions, with 60% of ASD participants reporting one or more 

comorbid psychiatric diagnoses. ADHD and anxiety disorders are the most frequently 

reported (see DiMartino Figure 9),280 but few of the data sets (9 of the now 26 sites) have 

collected such information. We propose that future analyses and data collection initiatives 

collect not only data on comorbid conditions from individuals with ASD, but also 

measures of commonly occurring comorbidities (e.g. ADHD and anxiety measures), or 

large-scale tests such as the Structured Clinical Interview for DSM (S.C.I.D.) or M.I.N.I. 

International Neuropsychiatric Interview (M.I.N.I.) to analyze the contribution of such 

measures. Additionally, it is strongly advised that future research focus on neural 

correlates of behaviors of interest in individuals with ASD (similar to RDoC criteria), as 

our results suggest that a focus using this approach not only preserves results similar to 

those identified by group contrasts, but also may identify brain regions unique to such 

behaviors. Given the overlap many ASD symptoms share with other diagnoses, and the 
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high rate of comorbidities in ASD, it is becoming clearer that ASD is a multifactorial 

disorder that will require multifactorial, not dichotomous, solutions. 

Neuroimaging as a field is heterogeneous, even across similar modalities of 

imaging. Inconsistencies in results even within similar datasets or paradigms could stem 

from a number of factors, including: 1) non-standardized definitions of results and 

measures of structural and functional connectivity,158 2) variability in data processing, 

filtering, and analytical approaches to studying connectivity,6,158,281,282 3) a lack of 

robustness (lack of similarity of results across participants, different scan parameters and 

data acquisition techniques),281,283 and 4) the influence of other factors such as 

development,6,284 or clinical heterogeneity6 on measures of functional and structural 

connectivity. Initiatives such as HCP and INDI have been attempting to address some of 

these issues to a degree through standardized preprocessing protocols, but effect sizes 

specific to scanner type and field strength can not only be significantly different from one 

another,285–287 but also influenced by other factors such as age of the participants,288,289 

which may eclipse the effects specific to diagnosis. Adequate considerations and 

corrections to data acquired from different scanners can aid in the former, and informed 

participant recruitment strategies and criteria can help mitigate the latter. However, to 

truly address these concerns, consistency across scan parameters and protocols such as 

those implemented by HCP will be required. 
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