
University of Alabama at Birmingham University of Alabama at Birmingham 

UAB Digital Commons UAB Digital Commons 

All ETDs from UAB UAB Theses & Dissertations 

2010 

Hypothesis Testing Based On Pool Screening With Unequal Pool Hypothesis Testing Based On Pool Screening With Unequal Pool 

Sizes Sizes 

Hongjiang Gao 
University of Alabama at Birmingham 

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection 

Recommended Citation Recommended Citation 
Gao, Hongjiang, "Hypothesis Testing Based On Pool Screening With Unequal Pool Sizes" (2010). All ETDs 
from UAB. 1698. 
https://digitalcommons.library.uab.edu/etd-collection/1698 

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is 
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be 
directed to the UAB Libraries Office of Scholarly Communication. 

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F1698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/1698?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F1698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc


 
 
 
 
 
 
 

HYPOTHESIS TESTING BASED ON POOL SCREENING  
WITH UNEQUAL POOL SIZES 

 
 
 
 
 

by 

HONGJIANG GAO 

 

 

INMACULADA ABAN, CHAIR 
CHARLES R. KATHOLI, CO-CHAIR 

YINGZI CONG 
JOSHUA RICHMAN 

KUI ZHANG 
 
 
 
 
 
 
 
 
 
 

A DISSERTATION 

Submitted to the graduate faculty of The University of Alabama at Birmingham, 
in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

BIRMINGHAM, ALABAMA 

2010 



 ii

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright by 
HONGJIANG GAO 

2010 



 iii

 
HYPOTHESES TESTING IN UNEQUAL SIZED POOL SCREENING 

HONGJIANG GAO 

BIOSTATISTICS 

ABSTRACT 
   

Pool screening is a widely applied technique to estimate the  prevalence of a rare 

event. This focus of this research is on developing statistical test of hypothesis procedures 

under the assumption that pool sizes are unequal but known. One of the proposed test 

procedures is , an exact test based on the number of positive pools (denoted by T). 

Another set of proposed test procedures is a modification of the likelihood ratio, Wald’s 

and Score tests which are commonly-used likelihood-based tests.   

In paper 1, we derive the distribution of T which will be the basis of the exact test. 

Other distributional properties of T are obtained using generating functions. Due to the 

complexity of the form of the distribution, we propose several methods of computing 

probabilities using the distribution of T. It was found that in the setting being considered, 

the double recursion method based on the recursion relationship introduced by Marcus 

and Lopes is the recommended computational method. 

In paper 2, we proposed an exact two-sided hypothesis test procedure based on the 

statistic T. We also propose modified versions of the likelihood-ratio, Wald’s and Score 

tests where simulated quantiles are used instead of the quantiles based on the standard 

asymptotic distribution to obtain the rejection region for each test. Monte Carlo 

simulations show that the modified test procedures perform better in terms of statistical 

power than their original counterpart. However, the exact test based on number of 
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positive pools outperforms the other test when the number of pools screened is small 

and/or the prevalence close to zero.  

The last paper focuses on the one-sided hypothesis test and the likelihood ratio (LR) 

test procedure. We first investigate the distributional properties and behavior of the 

likelihood ratio test statistic both in the finite and large sample cases. It will be shown 

that the distribution of one-sided LR test statistic is a mixture of distributions. We 

propose ways to compute the weights of the finite mixture distribution and use these 

weights to modify the LR test.. We also propose the use of simulated quantiles for one-

sided LR test to define the rejection region. Our results show that: 1) LR test with 

modified weight and conventional LR test have power functions that are very similar; 2) 

Quantile based LR test improves the LR test but require moderate or large number of 

pools to be screened; and  3) When number of pools is small, exact test based on number 

of positive pools performs the best.    

 

 
 
 
 
 
 
 
 
 
 
 
 
Keywords: Pool Screening, Hypothesis Testing, Number of Positive Pools, One-sided 

Likelihood Ratio Test, Statistical Power, Mixture Chi-square Distribution  
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1. Motivation Example of Pools Screening 

Onchocerciasis (river blindness) is a disease caused by the microfilarial  Onchocerca 

volvulus. It is transmitted by the vector black fly (genus Simulium) that breed along water 

side such as streams, rivers, and ponds. Manifestations of onchocerciasis include eye 

lesions, blindness, skin color changes, subcutaneous nodules etc. Therefore, serious 

social-economic problems such as labor loss, social economic status change and stigma 

of infected people have been caused by onchocerciasis. These problems are more 

prominent in the remote area where onchocersiasis has higher prevalence than the other 

places.  Various means of efforts have been done to control or regionally eradicate 

onchocerciasis. The Onchocerciasis Control Program (OCP) was launched in 1974 in 

seven West African countries. The major strategy was to aerially spray insecticide to kill 

the larvae of black flies. Later, Merck & Co. Inc. donate ivermectin into this program in 

addition to vector control. Ivermectin is still the only medicine currently available in the 

market which can paralyze the microfilariae in the human system and stop their 

inseminating process.  Another program, the African Program for Onchocerciasis Control 

(APOC) was introduced in 1995 to control onchocerciasis in the remaining endemic 

countries in Africa, and this program will be end in 2010. All these efforts have been 

successfully decreased the prevalence of disease.            

One usual way to survey the prevalence of Onchocersiasis is to test the infection rate 

in the vector population. It is generally believed that once the infection rate below a 

certain level in black flies, onchocerciasis is effectively controlled in human population. 

However, testing a large number of black flies individually (usually done by dissection 

under microscope) is very time consuming and expensive. An alternative is to pool 
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certain number of black flies together and test the pool by polymerase chain 

reaction(PCR) method (Rodríguez-Pérez et al.,2004; Yamèogo et al.,1999;Goodman et 

al., 2003 ). 

 

2. Pool Screening and Objectives 

“Pool screening” and “group testing” are often used in literature by different authors, 

but they both refer to a procedure that tests subjects in pools or groups instead of testing 

individuals. In this case subjects may be insects, plants, patients, chemical agents. Pool 

screening testing procedure is usually implemented when the proportion of subjects 

testing positive is very low (for instance, rare disease with prevalence less than 0.1%), or 

when a screening method requires group testing in order to reach the lowest limit of  

getting accurate values. Therefore pool screening is more cost effective compared to 

individual test. Another advantage of pool screening is that the identity of subjects could 

be kept confidential. The outcome of pool testing is usually dichotomous, either positive 

or negative. When the outcome of pool testing is negative, all the subjects in this pool are 

declared negative. When the result of pool screening is positive, one or more subjects in 

this pool are positive. Note that pools do not necessarily contain the same number of 

subjects. 

The goal of pool screening could be classifying positive and negative individuals or 

estimating the probability of individual being positive in whole population. In some cases, 

one may be interested in both classification and estimation. If it is classification problem, 

subjects in positive pools should be rescreened in smaller pool size or be tested 

individually. An example of a classification problem is applying pool screening method 
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to identify each human immunodeficiency virus (HIV) positive blood sample from many 

donors. Experiment will stop only when each positive or negative sample has been 

classified. On the other hand, in HIV surveillance studies, the goal is to estimate the  

prevalence of HIV. Investigation may just stop at the group testing level without knowing 

individual HIV status. Furthermore, individual subjects (e.g., mosquitoes, flies) may no 

longer be available for testing after the pooling process.     

 

3. Pool Screening Assumptions 

There are several commonly used assumptions in pool screening: 1) All individuals 

are independent, identically distributed (i.i.d) and hence pools are also independent; 2) 

Pool screening test has perfect sensitivity and specificity and there is no lost of accuracy 

of pool test compared to individual test; 3) Pool sizes are nonrandom and known; and 4) 

Cost of time, financial resources, manpower of pool screening is greatly reduced 

compared to individual screening test.  Under the first assumption, we assume individuals 

are i.i.d. whether they are in the same pool or not. Furthermore, pooling process should 

be random, i.e., there is no pattern followed in grouping subjects. The second assumption 

requires no chance for false negative and false positive to happen in the pool screening, in 

other words, screening test could correctly identify each true positive and true negative 

without error. Furthermore, accuracy of screening test at group level should be as good as 

at individual level. Pool sizes are very important in pool screening; however, we assume 

pool sizes are nonrandom and known quantities in this research. The last assumption is a 

practical issue. Originally, pool screening was motivated by logistic concerns in addition 
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to efficiency. If there were no such major benefits then the values of pool screening 

should be questioned.   

 

4. Literature Review from Statistical Perspective 

Pool screening method has been widely used in many fields, such as disease vector 

control (Katholi and Unnasch, 2006; Durnez and Portaels, 2008; Gu et al., 2008), HIV 

research (Emmanuel et al., 1988; Cahoon-Young et al., 1989; Kline et al., 1989; Busch, 

1991; Litvak et al., 1994; Tu et al., 1995), phytopathology (Marion, 1936; Chiang and 

Reeves, 1962), drug discovery (Xie et al., 2001; Zhu et al., 2001) etc. In this section, we 

review some common statistical issues discussed in the literature. We start by formally 

defining the statistical model for  pool screening. 

  

4.1 Statistical Model 

Suppose 1 2, ,..., mx x x  are pool testing results of  M pools with sizes 1 2, ,..., mnn n , 

where   

 
th

th

1, for positive
=

0,
i pool test

poolfor i negativetestix
⎧⎪
⎨
⎪⎩

 

Let p, be the probability of an individual in the population to be positive and the 

parameter of interest. Given ith pool, the probability that the pool tests negative is 

(1 ) inp− . Since one or more positive individuals in ith pool will make pool positive, the 

probability that the ith pool tests positive is 1 (1 ) inp− − . In this case, the random variable 

Xi follows a Bernoulli distribution given by 

1
| , ) 1 (1( 1 )) (i i

i i
x xn n

i if px p n p
−

⎡ ⎡ ⎤−⎣ ⎦⎤= − −⎣ ⎦  
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When all M pools have sizes equal to a constant K and since pools are independent 

identically distributed (i.i.d.), it is well known that sum of positive pools, 
1

m

i
i

T X
=

= ∑  is 

distributed as Binomial(M, 1 (1 )Kp− − ). It follows from standard theory that the 

maximum likelihood estimate (MLE) of 1 (1 )Kp− −  is T
M

. By the invariance property, 

the MLE of p is
1

ˆ 1 1
KTp

M
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

. Furthermore, if we let ( )1 1 kpπ = − − , so 

that ( )
1

1 1 kp π= − − , then it follows from the asymptotic properties of MLEs that, 

as M →∞ ,  ( )ˆ (0, var( ))dM p p N p− ⎯⎯→  

where Var(p),  by the Delta-method, is given by,  

( )
( ) 22

2 1 1
var( ) (1 )

1

K

K

ppp
K p

π π
π −

− −∂⎛ ⎞= − =⎜ ⎟∂⎝ ⎠ −
 

Therefore, the asymptotic distribution of p̂ is: ( )
( ) 22

1 1
ˆ ,

1

K

K
d p

p N p
MK p −

⎛ ⎞− −
⎯⎯→ ⎜ ⎟⎜ ⎟−⎝ ⎠

 

Note that if K=1, i.e. when we are testing every subject, Var(p)=p(1-p).  

 

4.2 Retesting Scheme of Classification Problem 

Even though earlier implementation of group testing can be found in Marion’s (1936) 

experiment where he investigated the relationship between number of viral infected aphid 

and plants,  Dorfman (1943) is well recognized as the first person who introduced group 

testing into statistical field.  The motivation of Dorfman’s work was identifying syphilitic 

antigen positive individuals among army man by pool screening of blood samples. If the 
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screening test is positive, each individual in the positive pools will be retested until all  

each subject is identified as either positive or negative. After Dorfman’s work, many 

other retesting schemes have been developed mainly focusing on improving efficiency of 

classifying all the positive and negative individuals. Sterrett (1957) proposed to divide 

positive groups into subgroups, such as half of the initial pool size, he concluded that 

positive individuals could be identified more efficiently than Dorfman’s original method. 

More complicated testing/retesting schemes were developed later by others (Milton and 

Groll, 1966; Chen and Swallow, 1990; Hsu, 1995).  

 

4.3 Pool Size 

Since one of the major purposes of pool screening  is for cost efficiency, researchers 

may be tempted to increase pool size. However, the accuracy of the laboratory screening 

test may likely decrease as pool size increases. In addition, when almost all the pools are 

positive, testing bias regarding p will increase because the estimator p̂ is very close to 1 

even if the actual p is low. On the other hand, when pool size is too small, it will more 

likely lead to a large number of negative pools and cost efficiency, which is the essence 

of pool screening, will be lost. Therefore, selection of a proper pool size is critical in pool 

screening and has been investigated by several authors. We will summarize the choice of 

pool size by two schools of thought: for the purpose of classification and for the purpose 

of estimation  

 

Pool size for the objective of clarification. This is the classic “blood testing” problem 

as originally proposed by Dorfman (1943). In summary, suppose all the negative pools 
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are cleared, and all the subjects in positive pools will be tested individually (this design is 

often referred as two-stage pool screening). Based on the assumed p, the question is how 

to choose the group size to minimize the expected number of tests per subject.  Some 

solutions  to  this  problem were proposed by several authors (Samuels, 1978; Turner et 

al., 1988). The basic mathematical models are all same and can be described as follows. 

When the equal pool size 2K ≥ , total number of test for a negative pool is 1 with 

probability (1 )Kp− , and the total number of test for a positive pools is 1K +  with 

probability 1 (1 )Kp− − . Hence the expected number of test per subject is  

(1 ) ( 1)(1 (1 ) ) 1( ) 1 (1 )
K K

Kp K pf K p
K K

= = − −
+ + −

+
− − . 

The above question should be equivalent to the question of finding the value of K that can 

minimize ( )f K  given a specific p. 

 

Pool size for the objective of estimation. Chiang and Reeves(1962) suggested to 

choose pool size that there should be half positive pools and half negative pools. They 

solved the equation ( ) ( )1 1 1 1 / 2K Kp p− =− = − with pool size log(1 / 2) / log(1 )K p= −  

and pointed out that pool size is a decreasing function of p. Thompson (1962) chose the 

pool size by minimizing mean square error (MSE) , he noticed that when p is small and 

number of subjects is large, the square of the bias term in MSE decreased rapidly, and 

hence, it is reasonable to minimize asymptotic variance term by minimizing the  MSE. In 

his result, he found that the appropriate pool size is computed as 1.5936 pK
p
−

= . 
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Besides above theoretical pool size constraints, there are also application constraints 

such as capability of screening test which is well explained by Katholi and Unnasch 

(2006). An instructive example in their paper assumes testing p=0.0025. Chiang and 

Reeves formula recommends a pool size of 277. Thompson suggests a pool size of 635. 

But all these pool sizes are far beyond current laboratory testing capability. The 

maximum pool size is 100 for PCR and 50 for anti-body. Therefore authors suggested 

that the upper limit for pool size is a function of both statistical property and testing 

applicability, and it is more likely to be defined by the latter.      

 

4.4 Sensitivity, Specificity, Dilution Effect of Pool Screening Test 

Test accuracy concerns came mostly from HIV research literatures within the past 

two decades (Kline et al., 1989; Litvak et al., 1994; Tu et al., 1995; Wein and Zenios, 

1996). Tu et al.(1995) pointed out that pool screening actually  improved the test 

accuracy than individual test (ELISA test in HIV) when the condition 1φ ψ+ >  satisfied, 

where ,φ ψ denote sensitivity and specificity respectively. In addition to this main 

conclusion, there are several other interesting statistical results in this paper as shown 

below  

a) MLE of p is 

1

ˆ 1
1

KT
Mp

φ

φ ψ

⎛ ⎞−⎜ ⎟
= − ⎜ ⎟+ −⎜ ⎟

⎝ ⎠

, and p̂ asymptotically normal with mean p and 

variance ( ) [ ]2 2

2 2

1 1 (1 )( )
ˆvar( )

( 1)
( )K

c cp f pp f p
p

MK φ ψ

−− − −
=

+ −
   for 0 1p< <  

,where 1 (1 )) )(1 )( ( 1K K
cf p pp φ ψ⎡ ⎤− − + −⎣ −⎦= . 
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b) Bias 3/21ˆ ˆ( ) var( ) ( ) 0
2(1 )

KE p p p O M
p

−−
− = + ≥

−
for 0 1p< <  

Dilution effect happens when p decreases, i.e., the probability of finding true negative 

subjects decrease. When p is small, there might be individuals in this pool who are 

positive but the pool tested negative. Hung and Swallow (1999) recommended using 

smaller pool sizes in pool screening over individual tests. 

 

4.5 Pool Screening Estimators and their Properties 

Other than maximum likelihood estimate, there is another widely used estimator 

called the minimum infection rate (MIR) defined as the fraction of number of positive 

pools over total number of pools. Apparently this estimator will severely underestimate 

true p when studying none rare disease since positive pools could contain one or more 

than one individuals. This problem has been cautioned by several researchers (Gu et al., 

2003; Katholi and Unnasch, 2006; Gu et al., 2008). 

Barker(2000) took the Taylor expansion about the expectation of sum of positive 

pools in her dissertation research on MLE 
1

ˆ 1 1
KTp

M
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

. Her results are summarized 

by Katholi and Unnasch (2006).  However, if we let 1φ =  and 1ψ = (perfect test 

assumption) in above results of Tu et al.(1995), exactly the same results could be reached 

regarding bias and asymptotic variance ,  

( ) ( )1
2

1 1 (1 ) 1
ˆ( )

2

KKK p p
E p p

MK

−⎡ ⎤− − − −⎣ ⎦− ≈ ,  ( )
( ) 22

1 1
ˆvar( )

1

K

K

p
p

MK p −

− −
=

−
 

Swallow(1985) had more detailed discussion regarding variance, bias, total number of 

subjects screened, and pool size. Similar points could be noticed from above two 
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expressions here. First, MLE has upward bias given 1K >  and 0 1p< < , if we fixed the 

constants p and K, both bias and variance decrease as the number of pools (M) increases. 

Hence mean square error (MSE) decreases. Secondly, if K and M are constant, then bias, 

variance and consequently, the MSE, will increase with p increases.  

Burrows(1987) proposed another point estimator
1

2 11
2 1

KKT Kp
KM K

+ −⎡ ⎤= − ⎢ ⎥+ −⎣ ⎦
. He 

suggested that p  performs uniformly better than p̂ in terms of bias and MSE when K>1. 

 

5. Hypothesis Testing in Pool Screening and Dissertation Outline 

From preceding literature review, note that most statistical inference problems have 

been well studied and some results are commonly accepted under equal pool size 

situation. However, pools do not necessarily contain the same number of subjects either 

due to the study design or by the nature of sample collection. For example, a project 

needs to collect specific insects in an area and then apply pool screening method to 

estimate the prevalence of infection among the vector population. It makes more sense 

that field workers will stop the collecting process in a certain time interval rather than 

counting the number of individual insects to reach a specific constant number. For large 

scale study across different regions, laboratories will most likely use different PCR 

machines, and each PCR machine has its own sample size range. Furthermore, it is more 

likely that field workers bring back all collected samples and divide them into different 

pool sizes to apply laboratory screening test.  

Hypothesis testing is usually applied to assist decision making of whether to continue 

or stop the disease control program. Choosing the most appropriate test procedure is 
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extremely important not only just for the statistical properties but also for the well being 

of the residents in the endemic area. In order to achieve the above  objective, we ask the 

following questions: 1) How many test procedures are available? 2) Which one is better 

than the others and how to compare them? 3) Is there any uniformly most powerful 

(UMP) test procedure, and how to prove or disprove it? 4)  Can we use a  sufficient 

statistic  to develop a  testing procedure? 5) What is the distribution of the sufficient 

statistics and how can we use this distribution to compute probabilities and quantiles of  

to define a rejection region for the test? 6) Suppose there is an exact test, how does it 

compare with the asymptotic tests?    

This dissertation will try to address the above problems under unequal pool size 

situation. We will also focus on the settings that when p is extremely low such as in the 

above onchocerciasis example. After several decades of disease control efforts, the 

probability that a black fly being positive may, for instance, be between 1/1000 and 

1/10000. For the case of equal pool size, the number of positive pools is a natural test 

statistic to choose in hypothesis testing. In Chapter 2, we will find the sufficient statistic 

for p and then define the distribution and characteristics of number of positive pools, T. 

Recursive methods to calculate the distribution of T are explored. Chapter 3 focuses on 

two-sided hypothesis tests. We propose an exact test based on the number of positive 

pools and modifications of the likelihood based tests where simulation quantiles used 

instead of critical points from standard distribution to define the rejection region. We 

compare these proposed tests and the  asymptotic likelihood based tests  with each other 

in terms of statistical powerChapter 4 investigates the one-sided likelihood ratio test in 

unequal pool size. In particular, we examine the distribution and behavior  of the one-
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sided likelihood ratio (LR) statistic. We derive the connection between the distribution of 

LR statistic with the distribution of number of positive pools.  We propose modifications 

of the one-sided LR test and compared these tests with the exact and asymptotic tests in 

terms of statistical power via Monte Carlo simulations . Finally, in Chapter 5, we 

summarize all the results from previous chapters and discuss future research topics.     
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SUMMARY 

Pool screening is widely used design for studies which aims to make inferences about 

the probability of a subject being positive when the probability is extremely low. When 

pool sizes are unequal, the outcomes of pool screening are assumed to be independent 

non-identical Bernoulli distribution. Of interest in this paper is the distribution of, T, the 

number of positive pools. It is shown that this distribution is the sum of the Cartesian 

products of W different Binomial distributions where W denotes the number of distinct 

pool sizes. Characteristics of the distribution of T are obtained using the generating 

functions. Recursive methods of computing the distribution are discussed.  

KEY WORDS: Pool Screening, Number of Positive Pools, Recursive Method. 

 

1. INTRODUCTION 

When investigating a very rare dichotomous event, pool screening technique is 

widely applied for the purpose of efficiency. In this technique, a number of subjects are 

usually pooled together to form groups. Each group will be tested as one unit instead of 

testing individual subjects. When the outcome of pool testing is negative, then all the 

subjects in this pool are declared negative. When the result of pool screening is positive, 

then one or more subjects in this pool are positive.  

Estimating the probability (denoted by p) of a subject being positive is one of the 

primary purposes of statistical inference in pool screening. Tu et al. (1995) and Barker 

(2000) showed that first order approximations to the bias and variance of the maximum 

likelihood estimate (MLE) are  

( ) ( )1
2

1 1 (1 ) 1
Bias=

2

KKK p p
MK

−⎡ ⎤− − − −⎣ ⎦ , 
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( )
( ) 22

1 1
Var ˆ( )

1

K

K

p
p

MK p −

− −
=

−
 , 

where M denotes total number of pools and K denotes pool size. Observe that if the pool 

size is greater than 1, the bias is positive and so the MLE is on the average is an 

overestimation. Also, for a fixed pool size, bias, variance and hence mean square error 

(MSE) decrease as the number of pools increases. Thus the MLE converges in probability 

to p as the number of pools goes to infinity, i.e., the MLE is a consistent estimator of p. 

Finally, both bias and variance increase with p if the number of pools and the pool size 

are held constant. 

Determining the appropriate pool size is very important in pool screening. Chiang and 

Reeves (1962) suggested a formula log(1 / 2) / log(1 )K p= −  to compute the pool size 

with the aim of having half positive and half negative pools. Thompson (1962) proposed 

pool size formula (1.5936 ) /K p p= −  which minimizes the MSE.  

Further statistical inference such as hypothesis testing and confidence interval 

construction should based on appropriate test statistics. One natural choice would be 

number of positive pools. Katholi (2009) summarized pool screening hypothesis testing 

based on this statistic under equal pool size situation. In this study note, we will 

investigate the same test statistics under unequal pool sizes setting with respect to its 

distribution, statistical properties, and computational methods. 

 

2. DISTRIBUTION FOR NUMBER OF POSITIVE POOLS 

Let us first assume that all individual subjects in pool screening are independent, 

identically distributed (i.i.d.), and the pools are independent of each other. Secondly, we 
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assume that the screening test has perfect sensitivity and specificity. Suppose that there 

are W distinct values of the pool sizes denoted by 1 2, ,.., wnn n , and, corresponding to each 

distinct pool size, there are 1 2, ,.., wmm m  pools so that
1

W

i
iM m

=

=∑ . Given a pool of size in , the 

probability that the pool tests negative is (1 ) inp− . Let 1ijx = if the ijth pool is positive, 

and 0ijx =  otherwise. The random variable Xij has Bernoulli distribution given by 

1
| , ) 1 (1 )( (1 )ij ij

i i
x xn n

ij if px p n p
−

⎡ ⎤= − −⎣ ⎡ ⎤−⎣ ⎦⎦  , 1,2,...,i W= and 1,2,..., ij m=   , 

1 , {0,1}i max ijn N x≤ ≤ ∈              (1) 

Define
1

im

i ij
j

t x
=

= ∑ , for i=1,2, …, W, as the number of positive pools among the pools with 

the same size in . The following theorem summarizes the joint distribution of (T1 T2, ... ,  

Tw).  

Theorem 1: Let each element of vector 1 2
', ,..., wT T T   denote the sum of positive pools 

corresponding to pool size 1 2, ,..., wnn n , then this vector 

1) has probability mass function:  
1

1 (1 ) [(1 ) ]i
i i i i

W
n n

i i

mi t tm
t

pp −

=

⎛ ⎞
⎡ ⎤− −⎜ ⎟ ⎣ ⎦ −

⎝ ⎠
∏  for 0,1,...,i it m=  

and 0 1p< <  

2) is jointly sufficient for p. 

Proof: Apparently, each iT  has the Binomial distribution 

( | ) 1 (1 ) (1 ), i i i
i i

t m tn ni
i i i

i

t
m

P T pm p p
t

−⎛ ⎞
⎡ ⎤ ⎡ ⎤= − − −= ⎜ ⎟ ⎣ ⎦ ⎣ ⎦

⎝ ⎠
 for 1,2,...,i W= . Since all subjects are 

independent, pools are independent as well. Thus the joint distribution of vector 
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1 2
', ,..., wT T T   is equal to the product of the above Binomial distributions, which is 

1 1 2 2
1

( ), ,... 1 (, | , [(1 ) ]1 ) i
i i i i

W tn n m ti

i i
w iW

m
P T p

t
t T t T t p m p

=

−⎛ ⎞
⎡ ⎤= − −⎜ ⎟⎣ ⎦

⎝ ⎠
= = = −∏ .The likelihood for a given 

sample is 
1

, (1( , ) 1 )1 ( ) i i i
i i

W m tn n
ij i

i

t
pL x n p p

−

=

⎡ ⎤= − −⎣ ⎦ ⎡ ⎤−⎣ ⎦∏ . Since 

1

1 1 2 12

( , )
(

,
, ,..., )| ,

ij i

W w

W
i

i ii

n p
t T t T t p m

mL x
tP T =

−
⎛ ⎞⎛ ⎞

=⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠= = = ∏ is independent of p, we get the sufficiency result 

using the definition of sufficient statistics. � 

Next we investigate the distribution of the statistic denoting the number of positive 

pools across all pool size categories.  

Theorem 2: Let 
1

W

i
i

T t
=

=∑   be the total number of positive pools. The probability mass 

function of T is 

1

( | , ) 1 (1 ) (1 ) , 0,1,2,...,i i
i i

it m tW
i

i
t Q i i

n nm
g T t p pm p T M

t
−

∈ =

⎛ ⎞
⎡ ⎤ ⎡ ⎤= = − − − =⎜ ⎟⎣ ⎦ ⎣ ⎦

⎝ ⎠
∑∏                   (2) 

Where Q is defined as 

{ }
1 1

| 0,1 , 1,2,..., , 1,2,..., ,
i

t ij i

M W

i
i i

j
j iQ X x i W j M x and tt t

= =

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

= ∈ = == =∑ ∑  and 

0 1p< < . 

Proof: From Theorem 1, {Ti, i=1 ,.., W} are independent ,1 (1 )( )in
iBino al M pmi − −  

random variables so that their joint distribution is simply the product of their marginal 

distributions. Finally, the distribution of T is equal to the sum of all possible permutations 

to get 
1

W

i
i tt

=

=∑ . � 
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Clearly, when all M pools have sizes, say K, pools are independent identically 

distributed (i.i.d.). Thus, T has Binomial (M,1 (1 )Kp− − ) distribution which is a special 

case of equation (2).  

Example: Suppose 3 pools are screened: 1 pool has size 1n , the other 2 pools have 

size 2n . From the first part of Theorem 1, 1 2, 'T T has distribution 

2 2
2

1 1
1 1 2

1 2

1 1 2 2 1 2
1 2

, , )
1 2

( | , 1 (1 ) (1 ) 1 (1 ) (1 )
t t t tn n n nP T p m p pt T t m p p

t t
− −⎛ ⎞ ⎛ ⎞

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − − − −⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎝ ⎠

= =
⎝ ⎠

=

where 1 2{0,1} {0,1,2}T and T == . By the second part of Theorem 1, vector 1 2, 'T T  is a 

sufficient statistic for p . According to Theorem 2, the total number of positive pools, 

{ }0,1,2,3t∈ . For instance, the distribution of 2T =  is 

1 1 2

1 1 2

2

2

10 2 0

1 0 1 1

1 2
( 1 (1 ) (1 ) 1 (1 ) (1 )

0 2

1 2
1 (1 ) (1 ) 1 (1 ) (1 )

1 1

2) n n n n

n n n n

P T p p p p

p p p p

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − − − −⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − − − − − −⎜ ⎟ ⎜ ⎟⎣ ⎦

= =

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

 

Barker (2000) described the following expressions for pool screening 

( ) 1

1

1 (1 )( | )
1

, 1
( )

M

i

i

t

i

i

i

xn

i n

M
n

x i

pg p
p

MT t n =

∈Ω =

⎡ ⎤ ⎡ ⎤− −∑= = −⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦
∑∏           (3) 

where tΩ  is defined as { }
1

| 0,1 , 1,2,..., ,
M

t i
i

iX x i M t x
=

⎧ ⎫
Ω = ∈ = =⎨ ⎬

⎩ ⎭
∑ .  Comparing 

equations (2) and (3), the only difference is that equation (2) further grouped samples 

based on known distinct pool size. Otherwise, they are essentially equivalent.  

Theorem 3: The moment generating function and cumulant generating function of T 

are respectively given by  
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1 1

{[1 (1 )( ) (1 )] }i iM
xi

i

M

i

n ntM t ep p
∑
= =

− −−= +∏ , 

1 1

[( ) log{ 1 (1 ) ] (1 ) }i iM
xi

i

M
n nt

i

H t p e p
∑
= =

− + −−= ∑ . 

Therefore, the first four cumulants are given by  

1st cumulant          
1

1 ( ) 1 (1 ) in
M

i

k E T p
=

⎡ ⎤= = − −⎣ ⎦∑  

2nd cumulant         
1

2 ( ) 1 (1 ) (1 )i i

M

i

n nk Var T p p
=

⎡ ⎤ ⎡ ⎤= = − − −⎣ ⎦ ⎣ ⎦∑  

3rd cumulant          2 3
3

1

1 (1 ) 3(1 (1 ) ) 2(1 (1 ) )i i i

M

i

n n nk p p p
=

⎡ ⎤= − − − − − + − −⎣ ⎦∑  

4th cumulant       2
4

1

(1 ) 1 6(1 ) 6(1 (1 ) (1 )) i ii i

M
nn n n

i

k p p pp
=

⎡ ⎤= − − − + −⎣ ⎦− −∑  

 

Furthermore, skewness and kurtosis are given by 

Skewness             
{ }

1
1

2
2

3

1

1 (1 ) 2(1 ) 1 (1 )

(1 ) (1 )

i i i

i i

n n n

n n

M

i

M

i

p p p

p p

η =

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤− − −⎨ ⎬⎣ ⎦⎩

=

⎭

∑

∑
 

Kurtosis               
2

2

1
2 2

1

(1 ) 1 6(1 ) 6(1 )

(1

(1 (1

) )

)

(1

) i i ii

i i

M
n n n

n
M

n

i

n

i

p p p p

p p
η =

=

− − − + −
=

⎧ ⎫⎡ ⎤− − −⎨ ⎬⎣

⎡ ⎤ ⎡ ⎤− − ⎦

⎦⎭

⎣

⎩

⎣ ⎦∑

∑
 

Proof: Since all subjects are assumed i.i.d, then pools are independently distributed, 

therefore the moment generating function of T is equal to the product of the moment 

generating function of each pool. The cumulant generating function can be easily found 
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by taking the logarithm of the moment generating function. All the other results follow 

immediately by using their respective definitions. � 

First counterintuitive fact from Theorem 3 is the variance of T. If let 1 (1 ) in
i pπ = − − , 

then 
1

1 (1 ) /i

M
n

i

p Mπ
=

⎡ ⎤= − −⎣ ⎦∑  and 2

1

(1 )va ( )r( )
M

i
i

T Mπ π π π
=

− − −= ∑ . Because 

2

1

( ) 0
M

i
i

π π
=

− ≥∑ , then (ar( )) 1v MT π π≤ − .  This implies that the maximum value of the 

variance of T is achieved when pool sizes are equal. Nedelman (1986) generalized this 

fact in other distributions. 

Second noticeable fact is the sign of the skewness. Given in known (i.e., Table 1), it is 

apparent that 2(1 ) 1inp− −  determines the sign of each term within the summation of 1η  

since1 (1 ) 0inp− − > , (1 ) 0inp− >  and denominator greater than zero. When p is very 

small, it is possible that 1(1 )
2

inp− >  for all {1,2,..., }i M∈ , and the distribution of T is 

right skewed. As p increases, more terms of (1 ) inp− will be less than 1
2

 and sign of 1η  

will change from positive to zero to negative. Consequently, the distribution of T will 

change from being positively skewed to symmetrical to negatively skewed (Figure. 1). 

However, there might be few positive or negative terms that dominate the other terms 

given very different pool sizes. Under this situation, the above observation regarding 

skewness could not be generalized.    
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Table 1 Example of Different Pool Sizes (Generated From Discrete Uniform distribution 

[25, 50]). 

26,29,25,26,47,38,40,29,42,28,41,32,27,50,29,47,33,39,47,48,50,26,49,46,32,33,49,40, 

31,34,43,41,50,25,44,36,27,37,41,28,42,37,36,40,47,27,43,37,40,27 

 

 
 

 

3. COMPUTING THE DISTRIBUTION OF T 

One direct approach to compute distribution of T is to derive all W binomial 

distributions based on equation (2), and then calculate Cartesian products of all these 

Binomial distributions. The sum of the terms of the above Cartesian product with 

1
i

W

i
t t

=

=∑  is the probability ofT . For a given value of T and W, the sum, 
1

i

W

i
t t

=

=∑ , would 

be over the set of weak compositions of t  defined by 

2
1

1, ,...,( ) | ,0 andt i i i

W

W
i

t i t tt mt t
=

⎧ ⎫
Ω = ∀ ≤ ≤ =⎨ ⎬

⎩ ⎭
∑ . Note that when 1,.m .in .,( )Wt m m≤ then 
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there are exactly 
1t W

t
+ −⎛ ⎞

⎜ ⎟
⎝ ⎠

 such compositions and these are easily generated and do not 

require use of the additional constrains. However, when 1,.m .in .,( )Wt m m≥ the constrains 

apply, consequently, applications become more difficult.   

Another option to calculate the distribution of T is to apply recursive methods by 

equation (3). First way is using Newton’s identities. Newton’s identities connect power 

sums and elementary symmetric polynomials (Mead, 1992) which can be stated in the 

following equation  

1

1

( 1)
M

i
t t i i

i

tS S R−
−

=

= −∑  for 1,...,t M=                   (4) 

Where
1

j

M
i

i
j

R a
=

= ∑ , 0 1S = , 0t iS − =  for t i< , and 1 (1 )
(1 )

i
i

i

xn

i n
pa

p
⎡ ⎤− −

= ⎢ ⎥−⎣ ⎦
. For illustration, 

suppose we have three pools with pool size n1, n2, and n3. If we let 

1 1 2 3a aR a= + + , 2 2 2
2 1 2 3R a aa + += , 3 3 3

3 1 2 3R a aa + += . Then from equation (4), 

0
1 0 1 1 1 2 3( 1)S R RS a a a== − = + + , 0 1

2 1 1 0 2 1 1 0 2( 1) ( 12 )S R R S S RS S R= − + −=−  

0 1 2
3 2 1 1 2 0 3 2 1 1 2 0 3( 1) ( 1) ( )3 1S R R R S R R RS S S S S= − + + − +=− − . 

If we define 1( , (1 ))
i

M

i

n

ic p n p =
∑

−= , then distribution of T is ( | ), ( , )i i ig T i n c p n SM= =  for 

0,...,3i = . Unfortunately, the Newton recursion is unstable and essentially worthless for 

practical computation. 

The second recursive method we have explored is applying double recursive relations 

in the proof of Marcus and Lopes (1957) inequality. If we let
1

1 (1 )
(1 )

i
i

i
t

xn

n

M

t
x i

pD
p∈Ω =

⎡ ⎤− −
= ⎢ ⎥−⎣ ⎦
∑∏ , 
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and *( )t iD a  represent tD  excluding all terms involving ia  for {1,2,3,..., }i M∈ . Then the 

recursive relations can be express as 

2 *
1 2

1 1

( )
M M

t i t i t i
i i

tD a D a D a− −
= =

= −∑ ∑  , t=2…M,           

* *
1( ) ( )t i t i t iD a D a D a−= −       ,t=2…M                      

Detailed discussions of this method including numerical issues can be found in Gao et 

al.(2009). 

In order to illustrate Marcus and Lopes recursive method, we consider the equal pool 

size where T has a Binomial distribution. Because T has a Binomial distribution, its 

probabilities may be also obtained using standard statistical or mathematical programs. 

We can then compare the probabilities given by these two methods. In this illustration, 

we use FORTRAN 95 (Absoft) and IMSL to compute the Binomial probabilities. 

Suppose there are a total of 150 (M=150) pools screened of equal pool sizes n=50. Let the 

probability of each subject being positive be 0.0001 (p=0.0001).Under this setting, the 

number of positive pools T has 50(150,(1 0.0001) )Binomial − distribution. Results of these 

computations are displayed in Table 2 which shows that Marcus and Lopes recursive 

method and Fortran IMSL give  practically identical results considering the significant 

digits provided. 
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Table 2 Comparing Distribution Calculated by Recursive Methods with IMSL Standard 

Package.(Number of pools=150, pool sizes=50, p=0.0001. Results of  120t <  are omitted). 

T IMSL Marcus and Lopes Method 
120 2.88695198042033E-127 2.88695198042079E-127 
121 3.67173022365900E-129 3.67173022365982E-129 
122 4.47717686978659E-131 4.47717686978748E-131 
123 5.22820359182048E-133 5.22820359182128E-133 
124 5.83969130068907E-135 5.83969130069022E-135 
125 6.23086791115188E-137 6.23086791115334E-137 
126 6.34181148345855E-139 6.34181148345940E-139 
127 6.14774957726811E-141 6.14774957726872E-141 
128 5.66668869341169E-143 5.66668869341158E-143 
129 4.95744203737101E-145 4.95744203737094E-145 
130 4.10798555064724E-147 4.10798555064752E-147 
131 3.21723605530638E-149 3.21723605530665E-149 
132 2.37551576375674E-151 2.37551576375756E-151 
133 1.64920294119818E-153 1.64920294119865E-153 
134 1.07328125266586E-155 1.07328125266612E-155 
135 6.52521877989170E-158 6.52521877989419E-158 
136 3.69183895420507E-160 3.69183895420559E-160 
137 1.93528769933870E-162 1.93528769933822E-162 
138 9.35201343297653E-165 9.35201343297439E-165 
139 4.14158794208808E-167 4.14158794208867E-167 
140 1.66927103202685E-169 1.66927103202611E-169 
141 6.07299696376894E-172 6.07299696376974E-172 
142 1.97447913544355E-174 1.97447913544368E-174 
143 5.66632940630066E-177 5.66632940629919E-177 
144 1.41296916987072E-179 1.41296916987051E-179 
145 2.99924023722591E-182 2.99924023722179E-182 
146 5.26894569172252E-185 5.26894569173594E-185 
147 7.35464472759044E-188 7.35464472758972E-188 
148 7.64744844230237E-191 7.64744844232092E-191 
149 5.26569384244740E-194 5.26569384240432E-194 
150 1.80077588225930E-197 1.80077588229788E-197 
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4. CLOSING REMARKS 

We have presented the distribution and properties of number of positive pools in pool 

screening which a special case of independent non-identical Bernoulli trial. The recursive 

computational methods for this distribution are also explored. Further statistical inference 

such as hypothesis testing, confidence interval construction regarding this test statistic 

can be achieved based on the results in this article. 
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SUMMARY 

Pool screening is a widely used design which provides an efficient way to estimate 

prevalence in vector-borne infectious disease control when the prevalence is small. 

Laboratory screening tests may only have the capability of handling pool sizes up some 

maximum value. If a pool has size larger than this maximum value, it needs to be 

subdivided into smaller pools so that the new pool sizes meet the requirements of the 

screening test. This leads to the problem of analyzing data based on unequal pool sizes. 

We propose and compare procedures for statistical hypothesis testing under the setting of 

unequal pool sizes assumed to be fixed and known. The hypothesis testing procedures 

considered are: (1) an exact test based on the sum of positive pools, and (2) likelihood-

based test procedures. Because the asymptotic distributions of these likelihood-based 

tests are far from the expected Chi-squared distribution when the prevalence is small, we 

show that using the simulated quantiles of these likelihood-based statistics to define the 

new rejection region improves the performance of these tests. In the end, the exact test 

based on the num of positive pools outperforms the other tests with regard to power 

particularly when the prevalence is close to zero.  

 

 

Key words: Pool Screening, Likelihood Ratio Test, Statistical Power, Asymptotic 

Distribution, Maximum Likelihood Estimate 
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1. Introduction 

The terms “pool screening” and “group testing” are used in the literature by different 

authors, but they both refer to procedures that test subjects in pools or groups instead of 

individually. In this case subjects may be insects, virus, blood samples, chemical agents 

etc. The pool screening testing procedure is usually implemented when the proportion of 

positive subjects is very low (for instance, rare disease with prevalence less than 0.1%). 

The outcome of pool testing is either positive or negative. When the outcome of pool 

testing is negative, then all the subjects in this pool are declared negative. When the result 

of pool screening is positive, then one or more subjects in this pool are positive. The goal 

of pool screening can be the efficient classification of individuals as positive or negative 

or estimating the probability of individual subject being positive in whole population.  

Even though earlier implementation of pool screening can be found in Marion’s(1936) 

research, Dorfman (1943) is often credited as the first person who discussed it in the 

statistics literature. The motivation of Dorfman’s work was identifying syphilitic antigen 

positive individuals among army man by pool screening of blood samples. Many of the 

statistical aspects of pool screening were widely investigated later. Retesting schemes 

that were explored mainly focused on improving efficiency of classifying all the positive 

and negative subjects (Sterrett, 1957; Milton and Groll, 1966; Chen and Swallow, 1990; 

Hsu, 1995). Test accuracy concerns came mostly from HIV research (Kline et al., 1989; 

Tu et al.,1995; Wein and Zenios, 1996). Farrington (1992) recommended generalized 

linear models to handle covariates. Hepworth (1996) investigated exact confidence 

intervals given several pool screening stages where each stage has a different pool size. 
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Barker (2000) considered the case where the pool sizes are unequal and follow no special 

pattern in size. 

Besides the above mentioned statistical development in pool screening, estimating the 

probability (denoted by p) of a subject being positive is one of the primary purposes of 

statistical inference. One commonly used estimator is the minimum infection rate (MIR) 

which is calculated as the fraction of number of positive pools over total number of 

subjects screened.  Gu et al (2003) cautioned that this estimator will underestimate the 

true infection rate when positive pools contain more than one positive subject. Another 

estimator is the maximum likelihood estimator (MLE) which can be expressed 

as
1

ˆ 1 1
KTp

M
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 where K denotes the common pool size and T is the sum of positive 

pools.  Tu et al. (1995) and Barker (2000) showed that first order approximations to the 

bias and variance of this estimator are  

( ) ( )1
2

1 1 (1 ) 1
Bias=

2

KKK p p
MK

−⎡ ⎤− − − −⎣ ⎦ , ( )
( ) 22

1 1
Var ˆ( )

1

K

K

p
p

MK p −

− −
=

−
 , 

where M denotes total number of pools. Observe that if the pool size is greater than 1, the 

bias is positive and so the MLE is on the average is an overestimation. Also, for a fixed 

pool size, bias, variance and hence mean square error (MSE) decrease as the number of 

pools increases. Thus the MLE converges in probability to p as the number of pools goes 

to infinity, i.e., the MLE is a consistent estimator of p. Finally, both bias and variance 

increase with p if the number of pools and the pool size are held constant. 

Determining the appropriate pool size is very important in pool screening. Chiang and 

Reeves(1962) suggested a formula ( )
( )

log 1/ 2
log 1

K
p

=
−

 to compute the pool size with the aim 
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of having half positive and half negative pools. Thompson (1962) proposed pool size 

formula 1.5936 pK
p
−

=  which minimizes the MSE. Katholi and Unnasch (2006) pointed 

out that for rare event where p is very small, the above formulae usually provide much 

larger pool size than can be handled in an actual laboratory screening test. That is, the 

chemistry of the test procedure places restrictions on the size of the pools. 

Consequentially, in practice collected subjects are subdivided into smaller samples that 

satisfy the requirements of the laboratory screening test. Therefore in determining pool 

sizes both statistical and practical requirements need to be considered. In Wuchereria 

bancrofti infection control, polymerase chain reaction (PCR) technique can be employed 

to detect up to 40 female mosquitoes in a pool (Helmy et al., 2004; Goodman et al., 

2003;Vasuki et al., 2003;Williams et al., 2002); and in Onchocerca volvulus infection 

control program, most literature uses PCR assay method that can handle no more than 50 

black flies in a pool(Yamèogo et al., 1999; Guevara et al., 2003).    

Hypothesis testing is another important aspect of statistical inference. Especially for 

disease eradication programs such as the Onchocerciasis (river blindness) Control 

Program in Africa. After several years’ effort, hypothesis testing can be utilized to 

determine the progress of disease control and continuation of the program. However, as 

the prevalence, p, decreases and approaches zero, researchers must process very large 

number subjects because the probability of a pool being negative increases rapidly, and 

only a very small fraction of pools will turn out positive. Generally, it is believed that 

there is a level of prevalence at or below which transmission ceases. Hence testing a 

hypothesis of the kind 0p p≤  is essential. Hence it remains statistically challenging and 

practically crucial to investigate and compare different hypothesis testing procedures. 
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There is a scarcity of articles in the literatures discussing statistical test and its power. 

Katholi (2009) summarized pool screening hypothesis testing under equal pool size 

situation. Tebbs and Mccann (2007) explored large sample, likelihood ratio based 

hypothesis tests for data stratified by categorical variable such as gender etc.    

The aim of this paper is to develop and investigate two-sided exact and asymptotic 

tests in the unequal pool size situation. Model setting, distributional properties, and 

computational issues of the number of positive pools will be discussed in Section 2. 

Section 3 will focus on hypothesis testing procedures. Comparisons of the testing 

procedures in terms of statistical  power will be discussed in a simulation study in Section 

4. Limitations and recommendations will be discussed in the Section 5.   

 

2. Distribution and Computation Method for Number of Positive Pools 

The number of positive pools will be the basis for the exact test proposed in Section 

3.  In order to be able to properly use this statistic in developing inferential procedures, it 

is important to understand its distribution. We start by first stating the model and 

notations.   

 

2.1 Model Setting and Distribution for Number of Positive Pools  

Assume all individual subjects within the same pool and between pools are 

independent and identically distributed (i.i.d.). Furthermore, assume that the screening 

test used has perfect sensitivity and specificity. Suppose 1 2, ,..., Mx x x  are pool testing 

results of M pools of sizes 1 2, ,..., Mnn n ,  
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where
th

th

1 ,    if i pool tests positive
0,   if i pool tests negativeix
⎧⎪= ⎨
⎪⎩

 

Let p denote the probability of an individual in the population to be positive and the 

parameter of interest. Given ith pool, the probability that the pool tests negative is 

(1 ) inp− . Since one or more positive individuals in ith pool will make pool positive, the 

probability that the ith pool testing positive is 1 (1 ) inp− − . In this case, the random 

variable Xi has Bernoulli distribution given by 
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i i

x x

i
n

i i
n

if p nx p n p N x
−

⎡ ⎤− ≤ ≤ ∈⎣ ⎦⎡ ⎤= − −⎣ ⎦                       (1) 

Further more, let ∑
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denote number of positive pools, then the probability mass 

function of T is 
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where tΩ  defined as { }
1

| 0,1 , 1,2,..., ,t i i

M

i

tX x i M x
=

⎧
=

⎫
Ω = ∈ =⎨ ⎬

⎩ ⎭
∑  and 0 1p< < . 

Wang (1993) provided several other expressions in a more general setting. Barker 

(2000) derived the above distribution in pool screening. Detailed statistical properties of 

statistic T will be discussed later by authors in another study note. Clearly, when all M 

pools have sizes equal to a constant K, pools are independent identically distributed 

(i.i.d.). Then T is distributed as Binomial (M,1 (1 )Kp− − ) which is a special case of 

equation (2).   

Since 1 (1 ) inp− − is a monotone increasing function of p, Marcus and Lopes (1957) 

inequality condition is satisfied. It can be shown that number of positive pools possesses 
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the monotone likelihood ratio (MLR) property with respect to the parameter p when pool 

sizes are unequal. Detailed proof of above property in a more general setting was done by 

Huynh (1994). 

 

2.2 Computation of Probability Mass Function of T 

Exact test based on T requires computing probabilities associated with different 

values of T. Most statistical software can easily compute the distribution of T when the 

pool sizes are equal by applying the Binomial distribution. However, when the pool sizes 

are unequal, different pools have different probabilities of being positive, and alternative 

methods need to be explored to compute the distribution of T before one can make further 

statistical inference. Several different computational methods will be proposed and 

compared in this subsection. 

 

Enumeration and saddle point method. The most obvious way to compute the 

distribution of T (that is, ( ), 0,1, ,P T t t M= = ) is exhaustively enumerating all 
M
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

possible combinations in the second factor of equation (2) for each value of t. However, 

this method is extremely tedious because the total number of arithmetic operations in the 

sum requires M-1 multiplications. Its computational complexities increase exponentially 

with M. Practical experience shows that the enumeration method is not applicable when 

the total number of pools is much larger than 25. Consider the case where there are total 

34 pools having different pool sizes. By equation (2), the maximum number of 

combination terms within the summation is 
34

2,333,606,220
17
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 which already 
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exceeds 231-1=2,147,483,647, the commonly used largest exact integer based on a 32 bit 

floating point arithmetic according to IEEE standard.  

Due to the deficiency of above direct computation, Barker (2000) explored the use of 

the saddlepoint approximation method to calculate distribution of T . The saddlepoint 

approximation is usually applied when there is no close form for the probability density 

(or mass) function but the moment generating function is known or when the probability 

has close form but is not easy to compute. Daniels(1954) first approached this problem 

by using inversion of Fourier transformation. Goutis and Casella (1999) had an excellent 

tutorial review on this method and simplified this method into several steps. Barker (2000) 

combined saddle point approximation and enumeration method in unequal pool size 

screening using Fortran, where exact enumeration method is used to calculate PMF at the 

two ends when t=0,1,2,M-2,M-1,M. And saddle point method is applied to calculate 

distributions when 3 3t m≤ ≤ − .     

Recursive method. From equation (2), note that distribution of T could be calculated 

as ( | ) ( , )i tg T t p c p n S= = where 1( , ) (1 )
i

M

i

n

ic p n p =
∑

= − , 
1

1 (1 )
(1 )

i
i

i
t

xn

n

M

t
x i

pS
p∈Ω =

⎡ ⎤− −
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let 1 (1 )
(1 )

i
i

i

xn

i n
pa

p
⎡ ⎤− −

= ⎢ ⎥−⎣ ⎦
, then tS  is the expression of coefficients of elementary symmetric 

polynomials. For example, 0 1S = , 1 21 ... MS a a a= + + + , 1 2... MM aS a a=  Furthermore, let  

*( )t iS a  represent tS  excluding all terms involving ia  for {1,2,3,..., }i M∈ . To illustrate, 

*
1 1( )S a  is 1S excluding 1a  in the summation, *

2 1( )S a  is 2S excluding any terms having 

1a  as shown below 
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*
1 1 2 3( ) ... mS a a a a= + + + , *

2 1 2 3 2 4 2 1( ) ... ......m m mS a a a a a a a a a−= + + + + + . Based on 

double recursive relations mentioned in the proof of Theorem 1 in Marcus and Lopes 

(1957) paper,  

   2 *
1 2

1 1

( )
M M

t i t i t i
i i

tS a S a S a− −
= =

= −∑ ∑  , t=2…M                       (3)            

   * *
1( ) ( )t i t i t iS a S a S a−= −             ,t=2…M                       (4)      

The distribution of T can be calculated in the following manner: 

Step 1.) Define 0 1S = , *
0 ( ) 1iS a = , 1( , ) (1 )

i

M

i

n

ic p n p =
∑

= − . Also 

define 1
1

M

i
i

S a
=

= ∑ , *
1 1( )i iS a S a= −  for {1,2,..., }i M∈ . Then g(T=0)= ( , )ic p n , g(T=1)= 

( , )ic p n 1S  

Step 2.) Start loop: 

            2S   will be calculated by plugging  1S  and *
0S  into equation  (3) 

     *
2S  will be calculated by plugging  2S  and *

1S  into equation  (4) 

            Output g(T=2)= ( , )ic p n 2S  

 . 

 . 

            MS   will be calculated by plug  1MS −  and *
2MS −

 into equation (3) 

            Output g(T=M)= ( , )ic p n MS  

End  loop 

Above Marcus recursive method performs better than saddle point approximation in 

terms of precision and speed. The greater precision is not a surprise since the saddle point 
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approach is not expected to yield more than a few digits of accuracy. However, care must 

be taken with the Marcus method to control underflow problem. Considering only the 

leading term 1( , ) (1 )
i

M

i

n

ic p n p =
∑

= − in the PMF expression, ( , )ic p n  will decrease as 

1
i

M

i

n
=
∑ increases for a fixed p. Eventually, ( , )ic p n will run underflow after a certain point. 

However, if the natural logarithm of  ( , )ic p n  is used together with the natural logarithm 

of the quantities tS  the probabilities for values of T can be calculated successfully. There 

is overflow problem coming from the term  1 (1 )
(1 )

i

i

n

n
p

p
− −
−

 as well because this term is an 

increasing function of both p and in . Therefore given large p and  in , above algorithm 

will break down. A simple safeguard to prevent this is to set max
11 (1 )
2

np− − ≤  for 

maximum pool size, then 
1

11
2

maxn
p ⎛ ⎞≤ − ⎜ ⎟

⎝ ⎠
. If this condition is violated, calculation should 

be terminated. 

 

3. Two-Sided Hypothesis Testing Based on Sum of Positive 

 Pools and Asymptotic Results 

3.1 Exact Test  

Using the exact distribution of T, its properties and the computational methods 

discussed in the preceding section, an exact test using T as the test statistic will be 

proposed. It was shown in the preceding section that T possesses a monotone likelihood 

ratio property. Consider a two-sided size α  hypothesis test for 0 0:H p p=  versus 
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0:aH p p≠  based on sum of positive pools. Let 1γ  and 2γ  be two constants taking values 

between 0 and 1. Because T is a discrete random variable, a randomized test (see for 

instance, Lehmann and Romano, 2005) will be utilized to test this set of hypotheses. The 

left and right critical values of the test and the constants, 1γ  and  2γ , can be respectively 

solved using following equations 

1

0 1 0
0

( | )|) (
2
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l
T

g T p g T pTγα
=

−

= + =∑                  (6) 

0
1
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g T p g T pTγα
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Given an alternative ap , the formula for the statistical power, β, is given by 

 2
1

1

1
0

( | ) ( ) ( ) (| | )|
l

r

T M
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−
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3.2 Asymptotic Tests  

Asymptotic test procedures are commonly used in practice because, in most cases, the 

asymptotic distribution is either normal or chi-square distribution.  These tests are 

typically based on the likelihood function.  Three of the standard likelihood-based test 

procedures are the likelihood ratio (LR) test, Wald’s test and the Score test.  In the most 

general case where pool screening applies, the pools do not necessarily have the same 

size which makes the sample independent but not identically distributed. This being the 

case, the usually quoted results concerning the asymptotic properties of the MLE 

parameter estimate do not apply. Bradley and Gart (1962) defined a special situation 

called  “associated population”  where observations come from different (sub)populations 

but have some parameters in common. In their paper, they proved that MLE is a 
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consistent estimator, it is asymptotically normally distributed, and asymptotic Chi-square 

distribution still followed for the asymptotic likelihood ratio test under certain regularity 

conditions. Suppose there are total M pools, im  pools have pool size in   and
1

k

i
i

M m
=

= ∑  (k 

is the total number of distinct sized pools). Then the log of the likelihood is  

{ }
1 1

log ( , ) l (1 ) log(1og 1 (1 ) )
i

in
ij i i

mk

j
i j

L p x x pp n x
= =

⎡ ⎤= − − +⎣ − −⎦∑∑        (9) 

And first derivative of log likelihood is 
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The MLE for p solves equation (10) when it is set equal to 0. Unlike the equal pool size 

case, there is no explicit expression for the MLE ( p̂ ) but it can be obtained using 

numerical methods. In this research, the inverse quadratic interpolation was utilized to 

find the root of above partial derivative equation.   

The next theorem summarizes the asymptotic likelihood-based test procedures being 

considered. 

Theorem 1: When 0 1p< <  and assuming im
M

 is constant as M →∞ . For the 

hypothesis :o oH p p=  versus  :a oH p p≠ , an approximate levelα  test rejects for 

the likelihood based methods when: 

I) Likelihood ratio test: [ ]0
2 2ˆ, ) log ( ,2 log ( () 1)L x LL p p x αχ χ−= − >  

II) Wald’s test: 2 2
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III) Score test: 2 2
1
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∂
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∂
 as given in equation 

(10). 

Proof is given in the Appendix. 

Remark: One can easily modify the above Wald’s and score tests for one sided 

hypothesis. In addition,test statistics 0
1

ˆ

ˆ
W

p

p pZ
I −

⎛ ⎞−⎜ ⎟=
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can be compared 

with standard normal critical values instead of their chi-square counterparts.  

 

4. Simulation Study and Results 

To compare the exact and likelihood ratio based test procedures in terms of statistical 

power, a series of Monte Carlo simulations were conducted using Fortran (Absoft Pro 

Fortran 10.1). Consider testing : 0.0005o oH p =  versus 0.0005op ≠  as an example for a 

very low prevalence of certain infectious disease.  

Although this may seem extreme, there are applications where such a prevalence rate is 

of interest such as in Tropical Medicine research (see for instance, Guevara et al., 2003; 

Yamèogo et al.,1999). Thus, it is important to be able to test if the prevalence is less than 

5 in 10,000 or even 1 in 10,000. 

It is worth noting that although Theorem 1 states that the asymptotic distribution of 

the likelihood-based tests being considered follows a chi-square distribution, it will 

require extremely large number of pools for the asymptotic results to provide a good 

approximation when p is near 0. In practice, the typical number of pools used is between 

100 and 250. To illustrate, consider the following simulation studies where pool sizes 
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were randomly drawn from a discrete uniform [25,50]. In this case, the probability of a 

pool testing positive ranged from 0.012 (when pool size is 25) to 0.025 (when pool size is 

50). Varying the number of pools from 50 to 700, the Kolmogorov-Smironov (KS) 

goodness of fit test statistic values for the LR, Wald’s and Score statistics compared to a 

chi-square with 1 degree of freedom (df) are displayed in Table 1. As expected, the 

values of the KS statistic decrease as the number of pools increases indicating that the 

chi-square 1 df is a reasonable fit. However, Figure 1 and Figure 2 show that the speed of 

convergence is unsatisfactory. These graphs are quantile-quantile plots of the LR statistic 

compared to a chi-square with df=1 when the number of pools is 100 and 700. Similar 

observations were obtained for Wald’s and Score statistics as well as other cases.  

Therefore, test procedures using tabulated chi-square values to define the critical points 

of the rejection region may be inaccurate in cases where p is near zero possibly leading 

researchers to erroneous conclusions.  

 

Table 1 Komogorov-Smironov statistics of likelihood ratio based tests given 
different number of pools. 
Number of 
Pools 50 100 250 400 550 700 

Wald Statistics 0.3762 0.2224 0.1633 0.1312 0.1124 0.0932 
Score Statistics 0.3584 0.2261 0.1264 0.0941 0.0830 0.0700 
LR Statistics 0.5542 0.3053 0.1318 0.1268 0.0844 0.0785 
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To address this issue, an alternative method to define the rejection regions for these 

tests is proposed.  Simulated quantiles will determine the cut off point instead of the 

tabulated values based on a chi-square distribution. The power function based on the 

quantile method will be compared with the exact test and the standard asymptotic test as 

defined in Theorem 1. It is hoped that using simulated quantiles will improve the 

performance of the likelihood-based tests. 

Below is a summary of the simulation steps taken to obtain results in this section: 
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Step 1.) For a certain number of pools such as k, generate pool sizes from a discrete 

uniform distribution over the range [25, 50]. Note that this range of pool sizes is typically 

required by PCR laboratory screening test. 

Step 2.) Given Type I error set at 0.05, find 1γ , 2γ  and critical values lT , rT satisfying 

equations (6) and (7). Given a value of p and the computed values of 1γ , 2γ , lT , rT , 

calculate exact power associated with the test statistic T using equation (8). 

Step 3.) Do first simulation: Generate 100,000 samples under the null.  Calculate LR, 

Wald’s and Score test statistics under each sample. Find 97.5th  and 2.5th quantiles of each 

test statistic. These quantiles will be used to define the rejection region as an alternative 

to the rejection region based on the chi-squared distribution. Thus, H0 is rejected when 

the test statistic value is either less than its corresponding 2.5th  quantile or greater than its 

corresponding 97.5th quantile.   

Step 4.) Do simulation two: Generate 100,000 samples under alternative. Calculate LR, 

Wald’s and Score test statistics under each sample. Compute the percent of times a test 

rejects the null hypothesis – either using the simulated quantiles or the tabulated chi-

square values.  The resulting percentage is the respective simulated power for LR, Wald’s, 

and Score for that particular value of p.          

Remark: Samples where all pools are either positive or negative were excluded from the 

simulation because in these cases the MLE is either 1 or 0. Consequently, the test 

statistics associated with the likelihood ratio, Wald’s, and Score tests cannot be computed. 

When this happens, another set of sample is simulated in order to reach the total of 

100,000. 
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Figure 3 and Figure 4 display the power functions of the exact test and the likelihood-

based tests when the number of pools is 100.  For the likelihood-based tests, the power 

curves in Figure 3 are based on the simulated quantiles while the power curves in Figure 

4 were based on the chi-square distribution. Because the test based on the number of 

positive pools is exact, the power at the null hypothesized value is around the set 

significance level of 5%. A striking feature in these power curves is that only the exact 

test is unbiased, i.e., the power under the alternative at least that of the power under the 

null. The power curves of the likelihood-based tests were significantly improved by using 

simulated quantiles but these modified tests are still biased, in particular, when the 

alternative value is less than the null hypothesized value. Although the power function is 

higher for the modified LR test in Figure 3 relative to the power for the exact test, this is 

only true when p is greater than the null hypothesized value. Modified LR performs 

poorly when p is small. The bias problem of the likelihood-based tests is more likely due 

to fact that most pools are negative. Therefore, in cases like this, it is recommended that 

the likelihood-based tests not be used.  
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When number of pools is increased to 350, the exact test procedure and the 

likelihood-based procedures using simulated quantiles have power curves that are very 

similar (see Figure 5). At the null value, the simulated levels are at around 5% and at any 

of the alternative values, the power increases as the alternative value gets farther away 

from the null. Finally, all tests are unbiased. However, these observations do not hold for 

the standard likelihood-based (see Figure 6). Score test is biased for values less than the 

null while Wald’s test has an inflated type I error rate.  
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Of major interest for applied researchers is determining the number of subjects 

needed if they desire to perform a hypothesis test based on the number of positive pools. 

To illustrate how this can be done using the exact test, consider the case where all pool 

sizes are known uniformly ranging from 25 to 50. Let the null hypothesis be p=0.0005 

and the significance level be set at 5%. The estimated power for varying number of 

subjects is summarized in Table 2 for different alternatives.  Based on this table, if the 
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true prevalence is less than or equal to p=0.0001, then obtaining 200 pools (7493 total 

subjects) is estimated to provide a power of about 86% while increasing the number of 

pools to 250 (9335 total subjects) increased the estimated power to about 88%.   

Remark: The computed power values given in Table 2 are sensitive to the specific pool 

sizes being considered. 

 

5. Conclusion 

Although the distribution of the number of positive pools is complex when pool sizes 

are unequal, it is no longer difficult to compute given the recursive methods explored in 

this research. In addition to this, exact test performs very well in terms of statistical 

power compared to all the other tests considered in this paper.  The standard asymptotic 

likelihood-based tests need to be modified to address the issue of slow convergence when 

the prevalence is near 0 by using simulated quantiles to define the critical values of the 

rejection region. In spite of the improvements due to this modification, the exact test still 

performed better than these likelihood-based tests especially when the number of pools is 

not large  Furthermore, calculating the MLE and obtaining simulated quantiles are 

Table 2  Examples of statistical power and number of pools (subjects) for exact test under different 

alternatives against null p=0.0005, significance level=0.05, assuming pool size has discrete uniform 

distribution [25,50].  

Number of Pools 

(Total Number  of Subjects) 
Alternative 

50 

(1906) 

100 

(3709) 

150 

(5665) 

200 

(7493)

250 

(9335)

300 

(11368)

350 

(12954)

400 

(14916)

450 

(16887)

500 

(19082) 

550 

(20660) 

600 

(22506)

650 

(24366)

Pa=0.00002 0.063 0.148 0.380 0.863 0.884 0.979 0.982 0.997 0.998 1.000 1.000 1.000 1.000 

Pa=0.0001 0.055 0.110 0.241 0.478 0.523 0.694 0.723 0.824 0.863 0.907 0.943 0.953 0.973 

Pa=0.001 0.142 0.199 0.327 0.356 0.450 0.489 0.546 0.623 0.692 0.715 0.749 0.790 0.825 

Pa=0.0015 0.320 0.489 0.726 0.786 0.882 0.916 0.948 0.974 0.987 0.992 0.995 0.997 0.999 
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computationally demanding to researchers.Thus, test procedure based on the number of 

positive pools is more appealing. Therefore, the  exact test based on the number of 

positive pools is recommended regardless of the number of pools. This manuscript 

focused on two sided tests. In practice, one sided hypothesis tests are more often of 

interest particularly in disease elimination programs. This will be the focus of future 

research. 
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APPENDIX  PROOF OF THEOREM 1 

Results of this theorem follow immediately by applying Bradley and Gart’s theorems 

which states that the maximum likelihood estimate ( p̂ ) is a consistent estimator of p and 
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which could be automatically satisfied by the pool screening problem.  Please also note 
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when 1in = ,  result is simply binomial and is well known. When 2in = , ilnf
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SUMMARY 

 The use of the one-sided likelihood ratio (LR) test to make inferences about 

parameters is often based on the asymptotic properties of the test statistic which assume 

some regularity conditions and large sample size. Some users of this test blindly assume 

these conditions hold. In this paper, we are interested in applying the one-sided LR 

method to test whether the prevalence of a certain rare disease has decreased based on 

pool screening data where the pool sizes are unequal. This paper examines the finite 

sample properties as well as the large sample properties of the one-sided LR statistic 

under this setting. We will also propose modified LR tests and compare them with the 

Score test and an exact test based on the number of positive pools using Monte Carlo 

simulations. These simulations show that the conventional LR test has inflated simulated 

type I error rates resulting in an artificially high power values under the alternative 

hypothesis. Modifying the LR test based on simulated quantiles greatly improves the 

performance of the LR test. However, this method requires large enough sample size to 

ensure at least one pool is positive. In the simulation setting considered where the 

prevalence rate in the null hypothesis is 0.05%, 200 pools (with pool sizes ranging 

between 25 and 50) are sufficient for the quantile-based LR test to work. The exact test 

based on the number of positive pools performs the best among all tests considered when 

the sample size is small.  

  

Key words: Pool Screening, One-sided Likelihood Ratio Test, Simulated Power  
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1. MOTIVATION AND BACKGROUND 

Pool screening is a widely used technique to estimate prevalence (denoted by p) of a 

rare disease. A researcher would often pool individual subjects or units together to test 

them as a group instead of testing each individual unit to be more cost effective. All 

subjects in a pool will be declared negative if the pool tests negative. If a pool tests 

positive, then at least one subject in this particular pool is positive for the disease. A 

common application of pool screening is in tropical infectious disease control, for 

instance, the Onchocerciasis Control Program (OCP) which was launched in 1974 in 

seven West African countries. Onchocerciasis (river blindness) is a disease caused by the 

microfilarial Onchocerca volvulus. It is transmitted by the black flies. Manifestations of 

onchocerciasis include blindness, skin color change, subcutaneous nodules etc.. One way 

to survey the infection rate is to dissect a large number of black flies individually under 

microscope. This is usually very time consuming and expensive. An alternative is to pool 

certain number of black flies together and test the pool by polymerase chain reaction 

(PCR) method (Rodríguez-Pérez et al.,2004; Yamèogo et al.,1999;Goodman et al., 2003). 

The primary objective in OCP is to eradicate this disease. An indicator of the 

effectiveness of this eradication program is when the transmission potential goes below a 

certain target level. Transmission potential is typically measured by the infection rate in 

vector population, i.e., carrier of the disease such as black flies in this case. From a 

statistical perspective, the main interest is testing the hypotheses about the parameter, p, 

defined by 0 0H : p p= versus 0AH : p p<  where 0p  is a hypothesized target value of p.  
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The likelihood ratio (LR) procedure is a popular method used to test such hypotheses 

because of the intuitive idea behind the procedure as will be discussed in the next section. 

In application, the LR test is commonly used for testing two-sided hypothesis. 

Furthermore, the LR test procedure is often based on asymptotic results which rely 

heavily on the validity of the assumed regularity conditions as well as a large sample size.  

Some researchers use the asymptotic LR test procedures without checking the regularity 

conditions and assume that the sample size they have is large enough for the test to be 

valid. Gao et al. (2009) showed that the likelihood based test procedures (Wald, Score 

and LR tests) for testing two-sided hypothesis about the parameter p based on pool 

screening when p is very small do not perform very well. Moreover, the sample size 

needed for the asymptotic results to provide good approximations is too large to be 

practical. 

A major difference between the one-sided test and two-sided LR test is that the 

statistic for the one-sided has a mixture distribution which makes it more difficult to 

obtain its distributional property. To add to this complexity is the case that the parameter 

of interest, p, is assumed to have values near 0. These issues associated with the one-

sided LR test will be the main focus of this paper. In addition, we will propose 

modifications to the LR test and investigate the power functions of these tests in relation 

to other tests.  

The outline of this paper is as follows. In the next section, we start with a review of 

the basic concepts of the LR test and pool screening. It will be followed in Section 3 by 

the presentation of the results about the exact distributional properties and the asymptotic 

properties of the one-sided LR test. In Section 4, we use Monte Carlo simulations to 
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evaluate and compare the power of the one-sided LR tests (conventional and modified) 

with an exact test based on the sum of positive pools and Score tests.  Finally in Section 5, 

we summarize our conclusions and provide recommendations. 

 

2. BACKGROUND  

2.1 Likelihood Ratio Test 

R. A. Fisher (1922) first gave the definitions of “likelihood”, “sufficiency” and 

introduced “Method of Maximum Likelihood” for estimation in his seminal paper “On the 

mathematical foundations of theoretical statistics”. Several years after, Neyman and 

Pearson (1928) formulated the likelihood ratio  test by considering hypothesis both under 

the null and alternative. Wilks (1938) obtained the limiting distribution of the two-sided 

LR test using characteristic functions. At present, LR test is now one of the commonly 

used procedures for statistical inference.   

The rational behind LR test is as follows: Let ( | )L Xθ denote the likelihood function 

from a random sample X with discrete probability mass function (pmf) ( | )f x θ where θ  is 

the scalar parameter in the simplest case. The LR test statistic for testing the 

hypotheses 0 0H :θ ∈Θ versus 0AH : cθ ∈Θ  is defined as  

)|(sup
)|(sup

)( 0

XL
XL

X
θ
θ

λ
Θ

Θ=  

where Θ is the unrestricted parameter space, 0Θ is the parameter space restricted by the 

null hypothesis and c
0Θ is the complement of 0Θ , i.e., 0Θ−Θ . Note that 1)(0 ≤≤ Xλ . 

Given the observed sample, the null hypothesis is rejected when ( )Xλ is small because 

this implies that the most likely parameter value that generated the data belongs to the 
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alternative parameter space. Therefore, a critical point C, 0 1C≤ ≤ , is chosen based on a 

significance level, α ,  such that αλ =< ))(( CXP . In this case, whenever, ( )X Cλ < , we 

reject 0H .  Typically, the numerator and denominator of the LR test statistic achieve their 

suprema when the parameter is replaced by the maximum likelihood estimator (MLE) 

over the corresponding parameter space.  Thus, if we let 0̂θ  and θ̂ be the MLE under 

restricted parameter space (null hypothesis) and unrestricted parameter space (alternative 

hypothesis), respectively, then the  LR test statistic simplifies to  

0̂ |
)

)|
(

ˆ
)

(
(

X
X

L
X

L
λ

θ
θ

= . 

A desirable property of a statistical inference method is that the statistic being used 

is a function of the sufficient statistic. Using a sufficient statistic is a way to reduce the 

dimension of the data without losing information about the parameter of interest (for 

more details on the concept of sufficiency see for instance Casella and Berger (2001)). 

By invoking the Factorization Theorem, it can be shown that the likelihood function is 

always a function of the sufficient statistic, hence, making likelihood-based procedures 

desirable. A drawback in using the LR test is that oftentimes the form of the test statistic 

is complex, and its distribution is difficult to obtain. In cases where a one-dimensional 

minimal sufficient statistic exists and the distribution of this test statistic is more 

manageable, one may be able to construct a test equivalent to the LR test but based on the 

sufficient statistic.  However, in the case of distribution of sufficient statistic is neither 

easily obtained nor calculated, one would instead use the asymptotic results. For a two-

sided test of a single parameter, it is a well-known result that, under some regularity 
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conditions, 2 ln( ( ))Xλ− converges in law to distribution 2χ  with 1 degree of freedom (see 

Lehmann,1998). 

 

2.2 Pool Screening  

In pool screening, N independent and identically distributed units are collected and 

divided into m pools. Given that each unit can either be positive or negative with 

probability, p, of being positive, then the probability that the jth pool yields positive result 

is 1 (1 ) jnp− − , where nj is the size of the jth pool. . Now, if we let Xj be the indicator 

function that takes on a value of 1 if the jth pool is positive, and 0 if the jth pool is negative, 

then  Xj is a Bernoulli random variable with probability mass function 

1
(1 ) , {0,1},1 , 1,..,( | , ) 1 (1 )

j

j j
j j

j

x xn n
x maxj jf px p n p x n n j M

−
⎡ ⎤− ∈ ≤ ≤ =⎣ ⎦

⎡ ⎤= − −⎣ ⎦ . 

When pool sizes are equal, Xjs are independent and identically distributed  

random variables. Consequently, the distribution of the number of positive pools, denoted 

by T, is ( ,1 (1 ) )kBinomial M p− −  where k is the pool size. In this case, it can easily be 

shown using the definition of sufficiency or the Factorization Theorem, that the number 

of positive pools, denoted by T, is a sufficient statistic for p and has a monotone 

likelihood ratio property (Huynh,1994). The resulting one-sided hypothesis test for p will 

be uniformly most powerful among the tests with the same significance level.   

In practice, the size of the pools is limited by laboratory requirements of a particular 

screening method (Katholi and Unnasch, 2006). For instance, in Wuchereria bancrofti (a 

filaria can cause lymphatic filariasis) infection control, polymerase chain reaction (PCR) 

technique can be employed to detect up to 40 female mosquitoes in a pool (Helmy et al., 

2004; Goodman et al., 2003;Williams et al., 2002); and  in Onchocerca volvulus infection 



 

 

67

control, most literature uses PCR assay method which can handle no more than 50 female 

black flies in a pool (Yamèogo et al., 1999; Guevara et al., 2003). Similar issues are also 

encountered in large-scale multi-site studies where laboratories may have varying 

requirements on the pool size to obtain the best readings. Thus, it is very likely that the 

collected data  will be based on unequal pool sizes. In such cases, pools will no longer be 

identically distributed (because the probability of a positive pool depends on the pool 

size), although they are still independent, and the number of positive pools, T, is no 

longer a sufficient statistics for p (Gao et al., 2009).  However, as shown by Gao et. al., 

two-sided tests based on T has desirable properties. 

 

3. One-sided LR Test  

Consider testing the hypotheses 0 0 A 0H :   versus  H :p p p p= < . Given the pair of 

data ( , ), 1, ,j jn X j m=  on m pools where nj, j=1,…m, are known constants, let p̂ be the 

MLE of p. It can be shown that the likelihood ratio statistic λ is defined as, 

{ }
{ }

0

1

0 0
1 0

1

1

ˆ1,  when the MLE 

1 (1 ) (1 )
ˆ, when 

ˆ ˆ1 (1 ) (1 )

j jj j

j jj j

m X Xn n

j
m X Xn n

j

p p

p p
p p

p p

λ
−

=

−

=

≥⎧
⎪
⎪ ⎡ ⎤ ⎡ ⎤− − −⎪ ⎣ ⎦ ⎣ ⎦= <⎨
⎪

⎡ ⎤ ⎡ ⎤⎪ − − −⎣ ⎦ ⎣ ⎦⎪⎩

∏

∏

         (1.0) 

 

and that the cumulative distribution function of 2ln( )W λ= −  for the one sided test has 

the form  

1 1 2 2 1 2 1 2( ) ( ) ( ) , , 0, 1WF w c H w c H w c c c c= + > + =          (2.0) 
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 where H1(w)  is the indicator function defined as 1

1, 0
( )

0, 0
w

H w
w
=⎧

= ⎨ <⎩
 and 2 ( )H w  is a step 

function . 

 

3.1 Finite Sample Case 

Based on equation (2.0), the exact distribution of the LR test statistic depends on 2 

unknown components: c1 and H2(w). The other constant, c2, can be obtained from c1 

while H1(w) is simply an indicator function. In the case we are considering, it is difficult 

to obtain the form of H2(w). However, we are still able to investigate and characterize the 

weights, c1   and  c2, for the finite sample case. This will be the focus of this subsection. 

We shall first show that under the case of unequal pool size, the MLE corresponding 

to having observed T positive pools, is bounded in an interval [ ]( ), ( )L Up T p T .  For the 

special case of equal pool size, each of these intervals satisfy ˆ( ) ( ) ( )L Up T p T p T= = , and 

since T takes on values in the set { }0,1, 2, , m ,  it follows that the values of ˆ ( )p T  are 

“well separated”; that is, ˆ ˆ( ) ( 1)p T p T<< + . Katholi and Aban (2009) found that the 

values of the Score Statistic for the two-sided and one-sided hypotheses fall into disjoint 

intervals both for small or large number of pools.  Given T t= ,  it is very likely that 

0ˆ ˆ( ) ( 1)p t p p t< < + . In this case, it follows that 1 ( 1)c P T t= ≥ +  and 2 ( )c P T t= ≤ . 

Using the algorithm in Gao et al. (2009) for computing probabilities based on the exact 

distribution of T, the values of the weights can be determined.  

For the more general case of unequal pool sizes, it is possible that there is a t  such 

that when 0p  is small,  0ˆ ˆ( ) ( 1)U lp t p p t< < +  , in which case the weights may again be 
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calculated. In the unfortunate case where p0 does not satisfy this condition, the exact 

weights cannot be calculated but may still be approximated via simulation. 

The following theorem provides the basis for these observations. 

Theorem 1: Let ( , ), 1, ,j jn X j m=  be ordered pairs associated with testing m pools 

where the j-th pool is of size jn  and jX , the result of the test, is a Bernoulli random 

variable with probability mass function, 

(1 )( | , ) [1 (1 ) ] [(1 ) ] , {0,1} , 1j j j j

j

n X n X
X j j jf x n p p p X n−= − − − ∈ ≥  

Let 
1

m

j
j

T X
=

= ∑ , and let the likelihood function be 1
1

( | , , ) ( | , )
j

m

m X j j
j

L p X X f X n p
=

=∏ , 

then for T t=  , the MLE of ˆ, p p  can take on any one of 
m
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

 values  depending on 

which vector from the set  

1
1

| ( , , ), {0,1}, 1, ,   and 
m

t m j j
j

X X X X X j m t X
=

⎧ ⎫
Ω = = ∈ ∀ = =⎨ ⎬

⎩ ⎭
∑  

is observed. The set of all values has cardinality no larger than 
m
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

 nor less than one and 

is such that we can associate with the set a smallest element ˆ ( )Lp t  and a largest element 

ˆ ( )Up t , i.e., ˆ ˆ ˆ, ( ) ( ) ( )t L UX p t p X p t∀ ∈Ω ≤ ≤ . Without loss of generality we may assume 

that the data are ordered so that 1 2 mn n n≤ ≤ ≤ . Then ˆ ( )Lp t  is equal to the MLE when 

1 2 11 while 0t t mX X X X X+= = = = = ; similarly, ˆ ( )Up t  is equal to the MLE when 

1 1 11 while 0m m m t m tX X X X X− + − −= = = = = = = . 

Proof: To begin, we note that Katholi and Aban (2009) showed that the function 
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( ) ,0 1 , 1
1 (1 )

h p
p ς

ςς ς= < < ≥
− −

 

is strictly monotonically increasing as a function of ς  for any fixed p. It is also easily 

shown that for fixedς , the function is strictly monotonically decreasing for (0,1)p∈ .  

Next note that the derivative of the natural log of the likelihood function in this case is 

the function 1
1 ( | , , , )

(1 ) mf p X n n
p−

 where  

1
1 1

( | , , , ) ( )
1 (1 ) j

m m
j

m j jn
j j

n
f p X n n f p X n

p= =

⎛ ⎞⎡ ⎤
= = −⎜ ⎟⎢ ⎥⎜ ⎟− −⎣ ⎦⎝ ⎠

∑ ∑                (3.0) 

The derivative of the log likelihood is zero at the MLE and this requires that ˆ( ) 0
p p

f p
=
= . 

Again, by assumption 1 2 mn n n≤ ≤ ≤  and using the inequalities previously 

developed it follows that, 

1 1 1

( ) ( )
1 (1 ) 1 (1 ) 1 (1 )m t j j j

t

t m t
m t j j j

U j Ln n n
j j j

X

n n n
g p N X N N g p

p p p− +

− +

= = =
∈Ω

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − ≥ − ≥ − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  (4.0) 

where t is the observed number of positive iX . Next note that as 1p → , 

( 1 )
1

( ) 0
t

U m j
j

g p n N+ −
=

→ − <∑  and that as 0p → , ( )Ug p →∞ . But ( )Ug p  is continuous 

and strictly increasing as 0p →  and so there a unique point ˆUp  such that ˆ( ) 0.U Ug p =  

At this point it is clear from equation (4.0) then ˆ ˆ( ) 0 and ( ) 0U L Ug p g p< <  where 

1

( | ) , for any X
1 (1 ) j

m
j j

tn
j

X n
g p X N

p=

= − ∈Ω
− −∑  

 For ( )Ug p  to be greater than or equal to zero, p must be less than ˆUp .  Similarly,  for 

( )Lg p  to be zero, it is necessary for p to be closer to zero than ˆUp  and so ˆ ˆL Up p< . 
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Finally we note that for any of the other 
m
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

-2 elements in tΩ  the zero of the function 

( )g p must be in the closed interval ˆ ˆ[ , ].L Up p  

End of proof. 

From equation (1), when 0p̂ p≥ , then 1λ =  and 1( ) 1H w = .Therefore, 1c is equal to 

the probability of  0p̂ p≥  under the null. When all pool sizes are equal, its exact value 

can be calculated applying the following theorem. 

Theorem 2: Suppose all m pools have equal pool sizes k, then 1c in equation (2.0) can be 

expressed as   

0

( )
01

(1 (1 )
0(1 (1 (1) ) )

k

m

i M p

k i k m im
c p p

i⎡ ⎤= − −⎢ ⎥

−⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
∑   

and  

0(1 (
( )

0 0

1 )

2
0

(1 (1 () ) )1
k

k i
M p

i

k m im
c p p

i

⎢ ⎥− −⎣ ⎦

=

−⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
∑  , 

where 0(1 (1 )kM p⎡ ⎤− −⎢ ⎥  represents the smallest integer not less than 0(1 (1 )kM p− −  and 

0(1 (1 )kM p⎢ ⎥− −⎣ ⎦  represents largest integer not greater than 0(1 (1 )kM p− − . 

Proof 

From equation 1.0, 1 0ˆP( )pc p ≥= , by invariant property of MLE, 1/ˆ 1 (1 / ) kp T m= − − . 

Hence 1/
1 0 0 0ˆP( ) P((1 / )p ) P( (1 (1 )p )k kc T mT pp m≥ = ≥ − −= = − ≥ . Under the null, T  

follows the distribution of 0( ,1 ( )1 )kBinomial m p− − , therefore, 1c  and 2c  can be 

calculated exactly. 

End of proof. 
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When pool sizes are unequal, the following Corollary defines an alternative way to 

obtain the situations where the exact weight can be calculated. 

Corollary 1: Under the assumptions of Theorem 1, letT t= , 1n denote the smallest pool 

size, mn  denote the largest pool size, and N  the total number of subjects screened. 

Define *ˆUp  and *ˆ Lp  as 

*
1

ˆ 1 (1( ) ) mm n
U

n tp t
N
×

= − −  

and 

1

1

1* ( 1)ˆ 1 1 (( )) 1 n
L

n tp t
N

× +
+ = − − . 

In the case where * *ˆ ˆ( )1) (U Lp t p t≤ +  and 0p lies in the interval * *ˆ ˆ( ), ( ))( 1U Lp t p t + , by 

equation (2.0),  

1
1 0Pr( | )

m

i t
c T i p

= +

= =∑ . 

Proof 

By equation (4.0) in Theorem 1,
1 11 (1 ) 1 (1 ) m t jm

t t
m t jm

nn
j j

nn
p p − +

− +

= =

⎛ ⎞⎛ ⎞
≥ ⎜ ⎟⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠

∑ ∑ , hence 

*( ) ( )ˆ ˆU Up t p t≥  . Note that the left side of this inequality assumes the extreme case where 

pool sizes are all equal to the maximum pool size. Since the pmf of Xj can be written as  

1 (1 )( | , ) [(1 ) ]
(1 )

j

j j

j
j

n
Xn

X j n
pf x n p p

p
⎡ ⎤− −

= − ⎢ ⎥
−⎣ ⎦

 

then  
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1 1 (1 )( , , | ) [(1 ) ]
(1 )

m

j
j

m

mj

n

n

n t
pL p n t x p

p
=
∑ ⎡ ⎤− −

= − ⎢ ⎥−⎣ ⎦
. 

The MLE of this likelihood, denoted by *ˆ ( )Up t , is given by  

*
1

ˆ 1 (1( ) ) mm n
U

n tp t
N
×

= − − . 

Replacing  t by 1~ +t , we find *(ˆ 1)Lp t + ,  and hence, proved that *ˆ 1( ) ( )LLp t p t≤+ by 

directly applying Theorem 1.  

Therefore, if 0p falls in the interval ( *ˆ ( )Up t , *ˆ 1( ))Lp t + , it must also fall in the 

interval ( ˆ ( )Up t , 1)ˆ ( )Lp t +  because *( ) ( )ˆ ˆU Up t p t≥  and *ˆ 1( ) ( )LLp t p t≤+ as shown above. 

Consequently, the probability that 0p̂ p≥ should be equal to the probability that 

1T t≥ + which can be calculated exactly using the methods discussed in Gao et. al. (2009) 

to compute the distribution of T. 

End of proof. 

The relevance of the result in Corollary 1 is as follows: If 0p lies in the shorter interval 

( *ˆ ( )Up t , *ˆ 1( ))Lp t + , it must also fall in the wider interval ( ˆ ( )Up t , 1)ˆ ( )Lp t +  that contains 

this smaller interval. Under this assumption, it will be easier to compute 

*ˆ ( )Up t and *(ˆ 1)Lp t + than ˆ ( )Up t and )ˆ 1(Lp t + . On the other hand, if 0p does not lie in the 

interval, 0p may still be contained in ( ˆ ( )Up t , 1)ˆ ( )Lp t + , and the results of Theorem 1 still 

applies. 

To illustrate the above results, we simulate 100,000 data from a distribution with 

0.0005op = , number of pools m=400, and pool sizes uniformly distributed in the range 

[25, 50]. We then calculated the one-sided LR test statistics using equation (1.0). Figure 
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1a displays the empirical distribution function of 2ln( )λ− . It is evident in this graph that 

2 ln( )λ− has a discrete distribution. Each “jump” in this graph corresponds to a cluster of  

values of 2 ln( )λ−  associated with a specific value of T. Consider 2 cases: when T=2 and 

when T=3. The values of the statistic associated with these values of T are the circled 

areas in Figure 1a. The flat area between these two jumps indicates there is no overlap 

with these two clusters. Figures 1b and 1c show in more detail the values of the LR test 

statistics. We observe that each cluster has a series of values that fall into interval 

[5.7722, 5.7906]  when T=2 and [3.5356, 3.5577]    when T=3 in the simulated data. 

Theoretically, suppose all m pools have different pool sizes and calculated  p̂ is less than 

0p  given a specific observed  t value, then the maximum number of different one-sided 

2ln( )λ−  in the cluster corresponding to t  is 
m
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

 . From above theorem, these 
m
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

values are bounded. When the pool sizes are equal, the probability of any t  pools out of 

m being positive is a constant, therefore, all these  
m
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

 values will collapse into one 

single 2ln( )λ−  point. Unlike what we currently have in Figure 1b and Figure 1c, there is 

only one histogram bar in equal sized pool screening. 
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Next we illustrate Corollary 1. Table 1 displays the results of computing the exact 

weights for varying number of pools: 100, at 200 and at 400. The exact weight is the 

probability of number of positive pools, T, greater than or equal to  1, 3, and 7 for the 

number of pools equal to 100, 200 and 400, respectively. We also obtained simulated 

weights from 100,000 simulated data. One can see that the exact and simulated weights 

are very close to each other.   Note that exact weight depends on the set of pool sizes in a 

sample. 
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Table 1  Exact weight c1 in the mixture distribution under the null 0 0.0005p = : pool sizes 
uniformly distributed in the range [25, 50]. Simulated weights are based on 100,000 simulation 
trials. 
 
Number of 
Pools (m) 

Total 
Subjects (N) t  *ˆ ( )Up t  *(ˆ 1)Lp t +  Exact 

Weight 
Simulated 

Weight 
100 3822 1 0.000263 0.000527 0.5667 0.5680 

200 7563 3 0.000401 0.000532 0.5168 0.5188 

400 15217 7 0.000465 0.000529 0.4748 0.4741 

                         

3.2 Large Sample Case  

Suppose X is a vector of random sample from a population with distribution ( | )f X θ . 

Let 
1

( , ) ( )|
n

i
i

L x f xθ θ
=

=∏ be the likelihood function and n̂θ  denote the MLE of θ . 

Assume that n̂θ  exists and has a limiting normal distribution 1( , )( )N Iθ θ− , where 

2

( g) loI LEθθ
θ

⎡ ⎤∂⎛ ⎞
⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦

= is the Fisher Information matrix. Chernoff (1954) first showed 

that, for testing 0 0 A 0H : vs. H :θ θ θ θ= < , the test statistic 2ln( ( ))Xλ−  has cumulative 

distribution function defined in equation (2.0) satisfying 

0

2( 2 ln( ) ) 1/ 2 ( , 1) / 2LF X C F C dfθ χ− < ⎯⎯→ + < =     (5.0) 

under the null as n →∞ . [Note: Other researchers  such as Kudô (1963), Shapiro (1985, 

1988), and Silvapulle and Sen (2005) extended chi-square mixture results to the  

multiparameter case.]   If a Chi-squared distribution with zero degree of freedom 

2
0( )χ will be used to denote the constant 1 / 2 , then the cumulative distribution function 

of 2ln( ( ))Xλ−  is a mixture distribution of two chi-square distributions, 2
0χ and 2

1χ , 

under the null. Given an observed value of 2ln( ( ))Xλ−  , say *C , the asymptotic p-value 

is equal to p=(1/2)*P( 2
1χ >C*). 
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The above result due to Chernoff assumed independent and identically distributed 

random variables. In unequal sized pool screening, screening results are still assumed to 

be independent but no longer non-identically distributed because the probability of a pool 

being positive is an increasing function of pool size.  However, using the results due to 

Bradley and Gart (1962), Chernoff’s results may be extended to the case of non-

identically distributed random variables.  In their paper, Bradley and Gart defined a 

special case called “associated population” where observations come from different (sub) 

populations but have some parameters in common.  In such cases, they proved that the 

MLE still possesses the property of being a consistent estimator and of having an 

asymptotically normal distribution. Unequal sized pool screening is one example of 

above defined situation since pools are independent but non-identically distributed, but 

they share the same parameter p. All the required regularity conditions for above 

asymptotic results to be true in pool screening with unequal pool sizes were verified by 

Gao et al., 2009. Therefore, the likelihood ratio test statistic for one-sided test in unequal 

pool screening still satisfies the asymptotic property as defined in (3).  

Wald’s and Score test are other likelihood-based procedures commonly used in 

practice. If we let im  denote the number of pools having pool size in ,  
1

W

i
i

m m
=

= ∑  where 

W is the total number of distinct pool size and p̂ denote the MLE of p, then for testing the 

hypothesis oH : op p=  versus AH : op p< , the asymptotic levelα  tests based on Wald’s 

and Score test statistics are defined as follows: 

Wald’s test: Reject the null if 
1

ˆ

0ˆ
)(w

p

p pZ Z
I

α
−

−
= <   
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Score Test: Reject the null if ( ) ( )
o

o
s

p

S pZ Z
I

α= < ,  

where S(p) is given by 
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n pI m
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−⎛ ⎞−
= ⎜ ⎟− −⎝ ⎠
∑  (Fisher information number),  

and )(Z α  is the critical value from standard normal distribution with an α area to the 

right. 

Remark: When all pools are negative, so that the MLE is 0, Wald’s statistic cannot be 

computed because the Fisher information number is undefined at 0ˆ =p . This is a major 

drawback in using Wald’s test for rare events because the probability of observing no 

positive results is relatively high.  

Asymptotic results in cases of rare events require a very large number of pools for the 

approximation to perform well. Consider the case when 0.0005p =  and pool sizes range 

from 25 to 50 inclusively. The probability of a pool testing positive is between 0.0124 

and 0.0247. Using the Negative Binomial distribution, the expected total number of pools 

needed to find just one positive pool ranges from 41(1025 subjects when pool size is 25) 

to 81(4050 subjects when pool size is 50). Therefore, in order to find more than one 

positive pool, researchers need to have large number of subjects which may no longer be 

practical.   

We assess how close the asymptotic distribution approximates the finite distribution 

of the LRT test statistic by conducting goodness of fit tests. In particular, we use the 

Kolmogorov-Smirnov test and quantile-quantile plots. We simulated 100,000 data with 
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p=0.0005 and computed the LR test statistic. The number of pools considered was 200 

and 1000. The resulting quantile-quantile plots are displayed in Figure 2 and Figure 3. 

The values of the Komogorov-Smironov (KS) statistic decreased from 0.108 to 0.059 

when the number of pools was increased from 200 to 1000 and the graphs show 

improvement in the fit for the case where m=1000 relative to m=200 but still 

unsatisfactory.  The asymptotic p-values of KS test are all less than 0.0001. However, 

because we simulated 100,000 data values, the p-value associated with the KS test is 

expected to be very small regardless of the fit of the model, and hence will not be very 

meaningful. We note that the empirical distribution of the LR statistic is very discrete 

although we expect this distribution to approximate a continuous distribution as the 

number of pools increases. However, the convergence of the LR statistic to a continuous 

chi-square distribution is very slow in the particular case considered. Katholi and Aban 

(2009) showed that the thr cumulant of the Score test statistics is 
1

21
r

r
pO

mp
K

−⎡ ⎤
⎛ ⎞−⎢ ⎥= ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

 

for 3r ≥ . In order for Score test statistics to converge to a (0,1)Normal ,  rK  must 

converge to zero. Given that p is near 0, m  needs to be very large for this to happen. As a 

consequence of slow convergence, test procedures using standard critical values for 

rejection may be inaccurate and possibly misleading. 
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Because we cannot rely on the asymptotic distribution, we investigate two alternative 

methods to see if any of these methods will improve the performance of the LR test. The 

first method is to obtain simulated quantiles to determine the cut off for the rejection 

region.   The second  method is to incorporate the exact weight into the mixture Chi-

square distribution instead of using 1/2. For instance, from Table 1, the exact weight is 

0.4748 for this specific simulation when number of pools screened is 400.  If we use this 

weight, the resulting mixture of Chi-square distributions is 
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20.4748 0.5252 ( 1)dfχ+ × = under the null instead of 20.5 0.5 ( 1)dfχ+ × = . 

Consequently, for 0.05α =  test, the critical point for the rejection region is 2.784. 

Following the same argument, the critical point for the rejection region is 2.654 and 

2.479 when number of pools screened is 200 and 100, respectively. These modified tests 

will be compared with the conventional LR test in the next section to see how their power 

functions differ.  

 

4. Comparison of Power Functions 

We compare the performance of the LR tests with other test procedures with respect 

to their power functions when testing oH : 0.0005op =  versus AH : 0.0005op <  through a 

series of Monte Carlo simulations. In particular, we would like to compare LR test with 

the Score test and the exact test based on the T statistics (number of positive pools). As 

noted in the previous section, the Wald’s test is not applicable when one observes a 

sample with no positive pools, i.e., T=0. Because of this, we excluded the Wald’s test in 

the comparison. 

Due to the discreteness of T, we utilized an ancillary randomized test (see for instance, 

Lehmann and Romano, 2005) in order to conduct a size α  hypothesis test. Let  γ  be a 

constant that satisfy0 1γ< <  . In a randomized test for one-sided, the critical value cT and 

constant γ  are determined such that the following equation is satisfied:       

                  
0

1

0 0Pr( | ) Pr( )|
cT

c
i

pT i p T Tγα
=

−

= = + =∑ (6.0) 

Given an alternative ap , statistical power will be computed by  
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1

0

Pr( | ) Pr( | )
c

c

T

a a
i

pT i p T Tβ γ
−

=

= = + =∑ (7.0) 

Below is a summary of the steps in the simulation. All calculations and simulations were 

performed using FORTRAN (Absoft Pro FORTRAN 10.1).  

 

 

 

 

 

 

 

Step 1: Set the significance level at 5%. 
Step 2: Given  the number of pools,  say m=100,200,400, generate pool  sizes  from a discrete 

uniform distribution over the range [25, 50]. 
Step 3: Compute the power for each test: 

• Exact test based on T: Given 0.05 significance level, find γ and critical value  cT  using 

equation  (6.0).  Given  a  value  of  p  under  the  alternative  and  using  the  computed 

values  of γ and  cT  ,  calculate  exact  power  associated  with  the  test  statistic  T  by 

equation (7.0). 

•  LRT: LR test based on asymptotic distribution: Generate 100,000 samples under the 
different values of the parameter and calculate LR test statistics under each sample. 
Given a value of p under the alternative, the simulated power is the percent of times 
out  of  100,000  for which  LR  statistic  is  greater  than  the  critical  point  C  such  that 

90.0)( 2
1 =≤ CP χ where  2

1χ is the chi‐square random variable with one degree of 

freedom. 

• LRT(M): LR test based on asymptotic distribution but using exact weight as shown  in 
Table 1: Generate 100,000 samples under the different values of the parameter and 
calculate  LR  test  statistics  under  each  sample.  Given  a  value  of  p  under  the 
alternative, the simulated power is the percent of times out of 100,000 for which LR 
statistic  is  greater  than  the  critical  point  CM  such  that 

1

12
1 1

95.0)(
c

cCP M −
−

=≤χ where  2
1χ is  the  chi‐square  random  variable  with  one 

degree of freedom. 
 

• LRT(Q):  LR  test where  rejection  region  is  based  on  simulated  quantiles:  Generate 
100,000 samples under the null, calculate LR test statistic and find the 95th quantile.  
Given a value of p under the alternative, compute the simulated power by generating 
another  set of 100,000  samples using p, and  calculate  LR  test  statistics under each 
sample.  The  simulated power  is  the  percent  of  times  out  of  100,000  for which  LR 
statistic is greater than the 95th quantile. 
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Figures 4, 5, and 6 display the simulated power for each test when m=100, 200, and 

400, respectively. Simulated type I error rate for each test is the value of the power 

function associated with p=0.0005. As expected, the power function of a given test 

improves as m increases, i.e., the type I error rates get closer to the set 5% level and the 

power function is higher for a given value of p under the alternative. The exact test based 

on the number of positive pools performs the best among all tests with regard to the type 

I error. This is no surprise because there are no approximations involved in this test and 

the critical point was obtained to attain a 5% size test. 
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LRT(M) and LRT power values are not very different from each other which implies 

that replacing the weights based on asymptotic results by the exact weight did not 

significantly change the performance of the conventional LR test. Among all the tests, 

both of these tests have inflated type I error rates but improves as the number of pools 

increases which supports our claim that the finite sample distribution under the null 

hypothesis converges slowly to the asymptotic distribution. A consequence of inflated 

type I error is that the power function is artificially high under the alternative values of p.  
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The LRT(Q) and the Score  tests perform very poorly when m=100 where their power 

functions are the zero function. This implies that these two tests never reject the null 

hypothesis regardless of the true value of p. The main reason for this behavior of LRT(Q) 

is that when m=100, the number of pools that are positive is near 0. Hence, the critical 

value corresponding to the 95th quantile by equation (1.0) is the value of the test statistic 

associated with T=0, i.e., 

) 2 3822 ln(1 ) 3.8232ln( opλ = − × × − =−  

Similar argument can be made to explain the behavior of the Score function.  

When m=200, power functions of LRT(Q) and Score tests significantly improved. In 

fact LRT(Q) power function is practically mimics the power function of the exact test. 

When number of pools screened increased to 400 (Figure 6), the type I error rates for all 

tests are at about the target 5% level. This implies that the asymptotic distributions under 

the null of the LR and Score tests are good approximations. Furthermore, the Score, LRT 

and LRT(M) exceed the power function of LRT(Q) and exact test. 

 

5. Conclusions 

One-sided LR test statistics in unequal sized pool screening has a mixture distribution. 

The exact weight may be computed but the form of the exact distribution is difficult to 

obtain. Large sample distribution of the LR statistic is known and often used in practice. 

However, for rare diseases where the prevalence is near 0, the asymptotic results require 

large sample sizes to be applicable. In the simulation studies performed, 100 pools are not 

sufficient when the prevalence rate is 0.05%. In this case, the distribution of the LR 

statistic is discrete and clustered around corresponding number of positive pools.  
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In cases where the exact weight can be calculated, one may modify the LR test based 

on the asymptotic distribution of the test statistic by replacing the asymptotic weights by 

exact weights. However, this did not improve the performance of the LR test with regard 

to power function for small samples. Another modification of the LR test is to obtain the 

critical value based on simulated quantiles. This method improved the performance of the 

LR test but this method fails when the sample size is not large enough to observe at least 

one positive pools. In our simulations, if the number of pools is greater than or equal to 

200, this method works well but fails when the number of pools is 100. Exact test based 

on the number of positive pools is still the best choice for small samples.  For moderately 

large samples (at least 400 in the case considered), LR test and Score test are 

recommended because they provide higher power values under the alternative than the 

exact test. 
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1. Summary and Conclusions 

We first review the simulation settings and model assumptions  considered in this 

dissertation which defines the limitations of our results. We assume that pool sizes are 

known constants, and the maximum possible pool size  is bounded to reflect the PCR 

technique requirement corresponding to the lowest and highest sample size that a PCR 

machine can handle to have the best readings. We also assume that the laboratory testing 

procedure has perfect sensitivity and specificity.  The prevalence, p, in the simulations is 

set to be equal to 5 out of 10000 to address the rareness of the event of interest. This 

number might be too high for some studies or too low for other studies. However, in 

general, pool screening may not longer be recommended when p is relatively high, for 

example,  near or greater than 0.1, because pool screening will result in serious concerns 

about the bias of the MLE. Furthermore, if the pool size is greatly decreased when p is 

high, cost-efficiency which is the essence of pool screening is lost as well. Lastly, we 

should recognize the difficulties to collect large number of positive subjects due to the 

extremely low p. At least one pool should be positive in pool screening for estimation 

problem, otherwise, MLE estimate will be 0 and Wald’s test will not be defined.  

Next we summarize our general conclusions of this dissertation research. 1) Exact test 

has close performance with all the other hypothesis testing procedures. When the number 

of pools screened is small (100) and p is extremely low (0.0005), exact test outperforms 

all the other test procedures. 2)  For asymptotic test procedures such as Wald, Score and 

LRT, the modified tests based on quantiles should be preferred over the standard 

procedures when number of pools screened is moderate(200). Please note in order to 
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apply Wald’s test, at least one positive pool should be observed. These conclusions are 

mainly attributed to the  unsatisfactory speed of convergence of the standard asymptotic 

tests under this setting. 3) FORTRAN codes (provided in Appendix A-G) were developed 

as part of this dissertation to implement the proposed tests.     To conclude, we 

recommend the use of either the exact test based on the number of positive pools or the 

modified likelihood based tests using simulated quantiles. 

 

2.  Future Research 

In pool screening applications, experiment setting will never be as perfect as 

simulations. Additional statistical complexities  due to different designs, diseases, 

individual subjects, and pooling processes need to be considered. Therefore, there are still 

many unanswered statistical questions in this field. We will discuss future research 

interests and divide this section into two parts. In the first part, we introduce pool size and 

number of pools combination issues in pool screening. We have a separate subsection for 

this because we present some preliminary results that we have obtained. The second part 

contains some ideas and thoughts on other open problems. 

 

2.1 Combination of Number of Pools and Pool Sizes 

 Most often, total number of subjects (denoted by N) collected from fields will be 

brought back to a laboratory and then divided into a number of pools for screening test. 

The question would be given N fixed, how to choose proper pool size to attain the 

maximum statistical power?  A simple simulation has been done as follows. Suppose 

there are 2000 (N=2000) subjects collected, and the pool sizes (denoted by K) are in the 
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range 10 to 100 corresponding to usual laboratory screening test can handle . We are 

interested in the following combinations of number of pools and pool size : 200 pools 

with pool size 10;  100 pools with pool size 20; 50 pools with pool sizes 40;  25 pools 

with pool sizes 80;  20 pools with pool sizes 100. We also want to test one-side 

hypothesis in the form of o aH: :H o op versusp p p= < . In order to see the trend under 

the different null values, we considered op = 0.0005, 0.001, 0.003, 0.006, 0.009, 0.012. 

Given equal pool sizes, the number of positive pools has distribution of 

( / ,1 (1 ) )KBinomial N K p− − , and test based on this test statistics is an UMP test.  

Preliminary results show that maximum statistical power is attainable at pool size=1 

and number of pools=2000. Otherwise, the statistical power slightly decreases as pool 

size increases.  Another interesting fact is that when op is very low, the power curves of 

different combinations are almost non-distinguishable with each other.  

Our conclusion is that when p is extremely low (for instance, 0.001op = ),  statistical 

power is mainly determined by the total number of subjects N. In other words, for a fixed 

and small p0 and fixed N,  the power functions associated with the different pool size 

combinations do not differ much. As op increases, the differences in the simulated power 

become more obvious: the lower the pool sizes, the higher the statistical power. However, 

decreasing pool sizes will result in an increase in number of screening tests and the cost 

efficiency of pool screening will be gradually lost. Based on these preliminary results, we 

recommend that pool size be determined by financial resources available and laboratory 

requirements when for op <0.001 in order to maximize the power. Future research needs 
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to focus on how to define a utility function that will help provide balance between 

statistical power and research budget in determining the pool size.  

 

2.2 Other Future Research          

There is one critical assumption we have been making in this research, i.e., pool sizes 

are known. In many situations, pool sizes could be random. How to statistically address 

this problem will be very interesting. Suppose we want to use Bayesian’s method, which 

prior do we want to pick for pool sizes? And why pick this prior instead of others? How 

about p, if we think it is random and having Beta distribution, then what kind of Beta 

distribution do we need to choose to reflect the rareness of the dichotomous event?  

Another assumption we have been using is perfect test assumption, in reality, 

sensitivity and specificity are never perfect. Their values may vary with the sample sizes 

handled by the PCR machine. Furthermore, different PCR machine has different 

sensitivity and specificity because manufacturers are not same. 

Finally, it may be of interest to consider the case where more than one vector species 

can carry the same disease. These species are caught and pooled separately. The question 

of interest is: How do we compare the prevalence across different vectors?  One may also 

be interested in the problem of analyzing data from pool screening where the same vector 

carries two or more diseases. In this case, the screening results follow a multinomial 

model. How do you perform a statistical test of hypothesis about the prevalence of each 

diseases considering the possibility of correlated outcomes? 

 

 



 

 

96

 

GENERAL LIST OF REFERENCES 

Absoft Coporation, Fortan 95,Absoft Pro Fortran 10.1 32bit versions 

BARKER, J.T., 2000, Statistical Estimates of Infection Potential Based on PCR Pool 

Screening with Unequal Pool Sizes, PhD thesis, Department of  Biostatistics, 

University of Alabama at Birmingham, Birmingham,AL 

BRADLEY, R.A., and GART, J.J., 1962, The Asymptotic Properties of ML Estimators 

when Sampling from Associated Populations: Biometrika, v. 49, p. 205-214. 

BURROWS, P., 1987, Improved estimation of pathogen transmission rates by group 

testing: Phytopathology, v. 77, p. 363-365. 

BUSCH MP, E.B., KHAYAM-BASHI H, HEILBRON D, MURPHY EL, KWOK S, 

SNINSKY J, PERKINS HA, VYAS GN., 1991, Evaluation of screened blood 

donations for human immunodeficiency virus type 1 infection by culture and DNA 

amplification of pooled cells.: N Engl J Med., v. 325, p. 1-5. 

CAHOON-YOUNG, B., CHANDLER, A., LIVERMORE, T., GAUDINO, J., and 

BENJAMIN, R., 1989, Sensitivity and specificity of pooled versus individual sera in 

a human immunodeficiency virus antibody prevalence study: J. Clin. Microbiol., v. 

27, p. 1893-1895. 

CASELLA, G., and BERGER, R., 2001, Statistical Inference: Duxbury, Pacific 

Grove,CA. 

CHEN, C.L., and SWALLOW, W.H., 1990, Using Group Testing to Estimate a 

Proportion, and to Test the Binomial Model: Biometrics, v. 46, p. 1035-1046. 



 

 

97

CHERNOFF, H., 1954, On the Distribution of the Likelihood Ratio: The Annals of 

Mathematical Statistics, v. 25, p. 573-578. 

CHIANG, C., and REEVES, W., 1962, Statistical Estimation of Virus infection rates in 

mosquito vector populations Am J Hyg, v. 75, p. 377-391. 

DANIELS, H.E., 1954, Saddlepoint Approximations in Statistics: The Annals of 

Mathematical Statistics, v. 25, p. 631-650. 

DORFMAN, R., 1943, The Detection of Defective Members of Large Populations: The 

Annals of Mathematical Statistics, v. 14, p. 436-440. 

DURNEZ L, E.M., MGODE GF, KATAKWEBA A, KATHOLI CR, MACHANG'U RR, 

KAZWALA RR,, and PORTAELS F, L.H., 2008, First detection of mycobacteria in 

African rodents and insectivores, using stratified pool screening.: Appl Environ 

Microbiol, v. 74, p. 768-773. 

EMMANUEL, J.C., BASSETT, M.T., SMITH, H.J., and JACOBS, J.A., 1988, Pooling 

of sera for human immunodeficiency virus (HIV) testing: an economical method for 

use in developing countries: J Clin Pathol, v. 41, p. 582-585, doi: 

10.1136/jcp.41.5.582. 

FARRINGTON, C.P., 1992, Estimating Prevalence by Group Testing Using Generalized 

Linear Models: Statistics in Medicine, v. 11, p. 1591-1597. 

FISHER, R.A., 1922, On the Mathematical Foundations of Theoretical Statistics: 

Philosophical Transactions of the Royal Society of London. Series A, Containing 

Papers of a Mathematical or Physical Character, v. 222, p. 309-368. 



 

 

98

GAO,H., ABAN,I., and KATHOLI,C.R.,2009,  “Two-sided Hypothesis Testing Based on 

Pool Screening with Unequal Pool Sizes”, Biostatistics Department  Technical Report, 

BST2009-002, Available at https://www.soph.uab.edu/bst/technical. 

GAO,H., ABAN, I., and KATHOLI,C.R., 2009, Pool Screening: An Example of 

Independent Non-identical Bernoulli Trial, manuscript under review 

GOODMAN DS, O.J., ROBERTS JM, LAMMIE PJ, STREIT TG., 2003, PCR and 

Mosquito dissection as tools to monitor filarial infection levels following mass 

treatment.: Filaria J., v. Jul 7;2(1): 11. 

GOUTIS, C., and CASELLA, G., 1999, Explaining the Saddlepoint Approximation: The 

American Statistician, v. 53, p. 216-224. 

GU, W., LAMPMAN, R., and NOVAK, R.J., 2003, Problems in Estimating Mosquito 

Infection Rates Using Minimum Infection Rate: Journal of Medical Entomology, v. 

40, p. 595-596. 

GU, W., UNNASCH, T.R., KATHOLI, C.R., LAMPMAN, R., and NOVAK, R.J., 2008, 

Fundamental issues in mosquito surveillance for arboviral transmission: Transactions 

of the Royal Society of Tropical Medicine and Hygiene, v. 102, p. 817-822. 

GUEVARA AG, V.J., LILLEY BG, LÓPEZ A, VIEIRA N, RUMBEA J, COLLINS R, 

KATHOLI, and CR, U.T., 2003, Entomological evaluation by pool screen 

polymerase chain reaction of Onchocerca  volvulus transmission in Ecuador 

following mass Mectizan distribution.: Am J Trop Med Hyg., v. 68(2):222-7. 

HELMY H, F.P., FARID HA, BRADLEY MH, RAMZY RM., 2004, Test strip detection 

of Wuchereria bancrofti amplified DNA in wild-caught Culex pipiens and estimation 

of infection rate by a PoolScreen algorithm.: Trop Med Int Health., v. 9(1):158-63. 



 

 

99

HEPWORTH, G., 1996, Exact Confidence Intervals for Proportions Estimated by Group 

Testing: Biometrics, v. 52, p. 1134-1146. 

HSU, L., 1995, New Procedures for Group-Testing Based on the Huffman Lower Bound 

and Shannon Entropy Criteria: Lecture Notes-Monograph Series, v. 25, p. 249-262. 

HUYNH, H., 1994, A New Proof For Monotone Likelihood Ratio For the Sum of 

Independent Bernoulli Random Variables: Psychometrika, v. 59, p. 77-79. 

HUNG, M., and SWALLOW, W.H., 1999, Robustness of Group Testing in the 

Estimation of Proportions: Biometrics, v. 55, p. 231-237. 

Katholi, C. R., “The Role of Polymerase Chain Reaction Techniques for Assessing 

Lymphatic Filariasis Transmission”, Appendix 5 and Annexes A – E, “Hypothesis 

Testing With the Pool Screening Model”, World Health Organization, Report 

Number WHO/HTM/NTD/PCT/2009.1, 2009. 

KATHOLI, C., TOÉ, L., MERRIWEATHER, A., and UNNASCH, T., 1995, 

Determining the Prevalence of Onchocerca Volvulus Infection in Vector Populations 

by Polymerase Chain Reaction Screening of Pools of Black Flies.: J Infect Dis., v. 

172, p. 1414-1417. 

KATHOLI, C.R., and UNNASCH, T.R., 2006, IMPORTANT EXPERIMENTAL 

PARAMETERS FOR DETERMINING INFECTION RATES IN ARTHROPOD 

VECTORS USING POOL SCREENING APPROACHES: Am J Trop Med Hyg, v. 

74, p. 779-785. 

KATHOLI,C.R. and ABAN,I.,2009,  Investigation of the Distribution of the Score 

Statistics for a Simple Hypothesis in Pool Screening, Biostatistics Department  

Technical Report, BST2009-003, Available at https://www.soph.uab.edu/bst/technical. 



 

 

100

KLINE, R.L., BROTHERS, T.A., BROOKMEYER, R., ZEGER, S., and QUINN, T.C., 

1989, Evaluation of human immunodeficiency virus seroprevalence in population 

surveys using pooled sera: J. Clin. Microbiol., v. 27, p. 1449-1452. 

KUDÔ, A., 1963, A Multivariate Analogue of the One-Sided Test: Biometrika, v. 50, p. 

403-418. 

LEHMANN, E.L., and ROMANO, J.P., 2005, Testing Statistical Hypotheses: Springer. 

LITVAK, E., TU, X.M., and PAGANO, M., 1994, Screening for the Presence of a 

Disease by Pooling Sera Samples: Journal of the American Statistical Association, v. 

89, p. 424-434. 

MARCUS, M., and LOPES, L., 1957, “Inequalities for symmetric functions and 

Hermitian matrices”, Canadian Journal of Mathmatics, v. 9, p. 305-312. 

MARION, A.W., 1936, Factors Affecting the Amount of Infection Obtained by Aphis 

Transmission of the Virus Hy. III: Philosophical Transactions of the Royal Society of 

London. Series B, Biological Sciences, v. 226, p. 457-489. 

MEAD, D.G., 1992, “Newton's Identities”, The American Mathematical Monthly, v. 99, 

      p. 749-751. 

MILTON, S., and GROLL, P.A., 1966, Binomial Group-Testing with an Unknown 

Proportion of Defectives: Technometrics, v. 8, p. 631-656. 

NEDELMAN, J., and WALLENIUS, T., 1986, “Bernoulli Trials, Poisson Trials, 

Surprising Variances, and Jensen's Inequality”, The American Statistician, v. 40, p. 

286-289. 

NEYMAN, J., and PEARSON, E.S., 1928, On the Use and Interpretation of Certain Test 

Criteria for Purposes of Statistical Inference: Part I: Biometrika, v. 20A, p. 175-240. 



 

 

101

RODRÍGUEZ-PÉREZ MA, L.B., DOMÍNGUEZ-VÁZQUEZ A, SEGURA-ARENAS R,, 

and LIZARAZO-ORTEGA C, M.-H.A., REYES-VILLANUEVA F, UNNASCH TR., 

2004, Polymerase chain reaction monitoring of transmission of Onchocerca volvulus 

in two endemic states in Mexico.: Am J Trop Med Hyg., v. 70(1):38-45. 

SAMUELS, S.M., 1978, The Exact Solution to the Two-Stage Group-Testing Problem: 

Technometrics, v. 20, p. 497-500. 

SHAPIRO, A., 1985, Asymptotic Distribution of Test Statistics in the Analysis of 

Moment Structures Under Inequality Constraints: Biometrika, v. 72, p. 133-144. 

SHAPIRO, A., 1988, Towards a Unified Theory of Inequality Constrained Testing in 

Multivariate Analysis: International Statistical Review / Revue Internationale de 

Statistique, v. 56, p. 49-62. 

STERRETT, A., 1957, On the Detection of Defective Members of Large Populations: 

The Annals of Mathematical Statistics, v. 28, p. 1033-1036. 

SILVAPULLE, M.J., and SEN, P.K., 2005, Constrained Statistical Inference:Inequality, 

Order, and Shape Restrictions: John Wiley & Sons, Inc., Hoboken, New Jersey. 

TEBBS, J.M., and MCCANN, M.H., 2007, Large-Sample Hypothesis Tests for Stratified 

Group-Testing Data: Journal of Agriculture, Biological, and Environmental Statistics, 

v. 12, p. 534-551. 

THOMPSON, K.H., 1962, Estimation of the Proportion of Vectors in a Natural 

Population of Insects: Biometrics, v. 18, p. 568-578. 

TU, X.M., LITVAK, E., and PAGANO, M., 1995, On the Informativeness and Accuracy 

of Pooled Testing in Estimating Prevalence of a Rare Disease: Application to HIV 

Screening: Biometrika, v. 82, p. 287-297. 



 

 

102

TURNER, D.W., TIDMORE, F.E., and YOUNG, D.M., 1988, A Calculus Based 

Approach to the Blood Testing Problem: SIAM Review, v. 30, p. 119-122. 

VASUKI V, H.S., SADANANDANE C, JAMBULINGAM P., 2003, A simple and rapid 

DNA extraction method for the detection of Wuchereria bancrofti infection in the 

vector mosquito, Culex quinquefasciatus by Ssp I PCR assay.: Acta Trop., v. 

86(1):109-14. 

WANG, Y.H., 1993, On the Number of Success in Independent Trials: Statistica Sinica, 

v. 3, p. 295-312. 

WEIN, L.M., and ZENIOS, S.A., 1996, Pooled Testing for HIV Screening: Capturing the 

Dilution Effect: Operations Research, v. 44, p. 543-569. 

WILKS, S.S., 1938, The Large-Sample Distribution of the Likelihood Ratio for Testing 

Composite Hypotheses: The Annals of Mathematical Statistics, v. 9, p. 60-62. 

WILLIAMS SA, L.S., BIERWERT LA, SAUNDERS LJ, BOAKYE DA, FISCHER P, 

GOODMAN D, HELMY H, HOTI SL, VASUKI V, LAMMIE PJ, PLICHART C, 

RAMZY RM, OTTESEN EA., 2002, Development and standardization of a rapid, 

PCR-based method for the detection of Wuchereria bancrofti in mosquitoes, for 

xenomonitoring the human prevalence of bancroftian filariasis.: Ann Trop Med 

Parasitol., v. 96, p. Suppl 2:S41-6 

XIE, M., TATSUOKA, K., SACKS, J., and YOUNG, S.S., 2001, Group Testing with 

Blockers and Synergism: Journal of the American Statistical Association, v. 96, p. 92-

102. 

YAMÈOGO L, T.L., HOUGARD JM, BOATIN BA, UNNASCH TR., 1999, Pool screen 

polymerase chain reaction for estimating the prevalence of Onchocerca volvulus 



 

 

103

infection in Simulium damnosum sensu lato: results of a field trial in an area subject 

to successful vector control.: Am J Trop Med Hyg., v. 60(1):124-8. 

ZHU, L., HUGHES-OLIVER, J.M., and YOUNG, S.S., 2001, Statistical Decoding of 

Potent Pools Based on Chemical Structure: Biometrics, v. 57, p. 922-930. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

104

 

APPENDIX A MARCUS AND LOPES SUBROUTINE 
 
 
!Last change: Hongjiang Gao, Dec 2008  
 
!-------------------------------------------------------------------------------------------------------- 
! This routine calculates the distribution of the number of  
! successes in m independent trial with changing probability of 
! success on each trial using Marcus and Lopes (Marcus and Lopes, 1957) double 
! recursions.  
!-------------------------------------------------------------------------------------------------------- 
! The arguments of the routine have the following meanings:  
! 
!k(integer)=total number of pools 
!p(real, double precision)=probability of individual subject being positive 
!PoolSize(array with dimension k, double precision )=Pool Size 
!probability(array with dimension k+1,double precision)=output PMF of the distribution  
! 
!Author/Implementor: Hongjiang Gao 
! 
!Latest revision: Dec 2008  
! 
!-------------------------------------------------------------------------------------------------------- 
!  
!-------------------------------------------------------------------------------------------------------- 
!    C A V I A T R E C E P T O R  
! 
! This is a research program and is not warranted by the authors  
! to be free from "bugs". Having a copy of this program should in no  
! way be considered as a warranty on the part of the authors to  
! provide technical support or changes to the program. Any changes  
! you might make to the program are your responsibility. In short,  
! we make no claims with respect to the quality or correctness of  
! any results you might obtain using this program.  
!-------------------------------------------------------------------------------------------------------- 
! 
!-------------------------------------------------------------------------------------------------------- 
subroutine Marcus_pmf(k,p,PSZ,probability) 
implicit none  
integer(4):: i,j,m,k  
real(8),dimension(k)::a,b,PSZ 
real(8),dimension(k+1)::probability 
real(8),allocatable::s(:),Sminus_a(:,:), prob(:)  
real(8)::LT,sum1,sum2,cdf,v,dlgomx,sumpsz,ptrial,p  
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allocate(s(k+1),Sminus_a(k+1,k),prob(k+1)) 
 
do i=1,k  

a(i)=(1.0d0-(1.0d0-p)**psz(i))/((1.0d0-p)**psz(i)) 
Sminus_a(0,i)=1.0d0 

end do  
LT=(1.0D0-P)**SUM(PSZ) 
prob(0)=LT 
S(0)=1.0d0     ! Initiate S(0) 
S(1)=sum(a)     ! Initiate S(1) 
Prob(1)=S(1)*LT 
do i=1, k 

Sminus_a(1,i)=S(1)-a(i) 
end do 
 
do i=2,k 

sum1=0.0d0 
sum2=0.0d0 
do j=1,k 

sum1=sum1+a(j)*s(i-1) 
sum2=sum2+(a(j)**2.0D0)*Sminus_a(i-2,j) 

end do 
S(i)=(sum1-sum2)/real(i,8) 
prob(i)=LT*S(i) 
do j=1,k 

Sminus_a(i,j)=S(i)-a(j)*Sminus_a(i-1,j)  
end do 

end do 
do i=0,k 

probability(i)=prob(i) 
end do 
return 
end subroutine Marcus_pmf 
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APPENDIX B  NEWTONS IDENTITY SUBROUTINE 
 
!-------------------------------------------------------------------------------------------------------- 
! This routine calculates the distribution of the number of  
! successes in m independent trial with changing probability of 
! success on each trial using Newton’s Identities (Mead, 1992)  
!-------------------------------------------------------------------------------------------------------- 
! The arguments of the routine have the following meanings:  
! 
!k(integer)=total number of pools 
!p(real, double precision)=probability of individual subject being positive 
!PSZ(array with dimension k, double precision )=Pool Size 
!pmf(array with dimension k+1,double precision)=output PMF of the distribution  
! 
!Author/Implementor: Hongjiang Gao 
! 
!Latest revision: Dec 2008  
! 
!-------------------------------------------------------------------------------------------------------- 
!  
!-------------------------------------------------------------------------------------------------------- 
!    C A V I A T R E C E P T O R  
! 
! This is a research program and is not warranted by the authors  
! to be free from "bugs". Having a copy of this program should in no  
! way be considered as a warranty on the part of the authors to  
! provide technical support or changes to the program. Any changes  
! you might make to the program are your responsibility. In short,  
! we make no claims with respect to the quality or correctness of  
! any results you might obtain using this program.  
!-------------------------------------------------------------------------------------------------------- 
! 
!-------------------------------------------------------------------------------------------------------- 
 
Subroutine Newtonpmf(k,p,psz,pmf) 
implicit none  
integer(4):: k,i,j 
real(8),dimension(k):: psz,a,prob,esum2 
real(8),dimension(k+1):: pmf,esum1 
real(8)::p,sum,lt,esum,probsum 
lt=(1.0d0-p)**sum(psz) 
 
 
do j=1,k 
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 Probsum=0.0d0 
 do i=1,k 
  Probsum=probsum+a(i)**real(j,8) 
 end do 
 prob(j)=probsum 
end do 
 
esum1(0)=1.0d0 
do i=1,k 

do j=1,I 
  if((mod(j-1,2)==0)) then 
   esum=esum+esum1(i-j)*prob(j) 
  else 
   esum=esum-esum1(i-j)*prob(j) 
  endif 

end do 
 esum(i)=esum/real(I,8) 
end do 
 
do i=0,k 
 pmf(i)=lt*esum1(i) 
end do 
 
return 
 
end subroutine Newtonpmf 
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APPENDIX C FUNCTION TO CALCULATE LIKELIHOOD 
 
!---------------------------------------------------------------------------------------------------- 
!The purpose of this function is to calculate likelihood 
!---------------------------------------------------------------------------------------------------- 
!The arguments of the function have the following meanings 
!K=How many pools 
!A=Pool size, one-dimensional array with size k 
!B=Test result, screening test result of each pool, 0.0 or 1.0, one-dimensional array with 
! size k 
!P=probability of an individual to be positive 
! 
!-------------------------------------------------------------------------------------------------------- 
!Author/implementer: Hongjiang Gao 
!Date last update: Aug 13,2008  
!-------------------------------------------------------------------------------------------------------- 
!    C A V I A T R E C E P T O R  
! 
! This is a research program and is not warranted by the authors  
! to be free from "bugs". Having a copy of this program should in no  
! way be considered as a warranty on the part of the authors to  
! provide technical support or changes to the program. Any changes  
! you might make to the program are your responsibility. In short,  
! we make no claims with respect to the quality or correctness of  
! any results you might obtain using this program.  
!-------------------------------------------------------------------------------------------------------- 
! 
!-------------------------------------------------------------------------------------------------------- 
 
REAL(8) FUNCTION LL(K,A,B,P) 
INTEGER(4),INTENT(IN)::K 
INTEGER(4)::I 
REAL(8),INTENT(IN)::A(K),B(K),P 
REAL(8)::LT,PROD 
LT=(1.0D0-P)**SUM(A) 
!IF(LT .LE. EPSILON(LT)) THEN 
! WRITE(*,*)'WARNING! WARNING!!'  
! WRITE(*,*)'LEADING TERM IS LESS THAN MINIMUM DOUBLE 
VALUE=(0.5)^52 ' 
! WRITE(*,*)'PLEASE USE OTHER PROGRAM TO CACULATE THE PDF AND 
CDF'  
! STOP 
!ELSE 
PROD=1.0D0 
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DO I=1,K 
PROD=PROD*((1.0D0-(1.0D0-P)**A(I))/(1.0D0-P)**A(I))**B(I) 
END DO 
!END IF 
LL=LT*PROD 
RETURN 
END FUNCTION LL  
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APPENDIX D FUNCTION TO CALCULATE EXPECTED FISHER INFORMATION 
 
!---------------------------------------------------------------------------------------------------- 
! The purpose of this function is to calculate the EXPECTED Fisher Information  
!---------------------------------------------------------------------------------------------------- 
!The argument of the function have the following measnings 
! A=Total Number of Pools 
! B(A)=The Vector of Pool Size  
! C= p_null or p_hat  
! 
! Author/Implementer: Hong J Gao  
! Last Revision: Oct 3, 2008 
! 
!---------------------------------------------------------------------------------------------------- 
! 
! C A V I A T R E C E P T O R 
! This is a research program and is not warranted by the authors  
! to be free from "bugs". Having a copy of this program should in no  
! way be considered as a warranty on the part of the authors to  
! provide technical support or changes to the program. Any changes  
! you might make to the program are your responsibility. In short,  
! we make no claims with respect to the quality or correctness of  
! any results you might obtain using this program.  
!-------------------------------------------------------------------------------------------------------- 
! 
!-------------------------------------------------------------------------------------------------------- 
REAL(8) FUNCTION VAR(A,B,C)  
INTEGER(4),INTENT(IN)::A 
REAL(8),INTENT(IN)::B(A),C 
INTEGER(4)::I,J 
REAL(8)::VARSUM 
VARSUM=0.0D0 
DO I=1,A 
VARSUM=VARSUM+(B(I)**2.0D0*(1.0D0-C)**(B(I)-2.0D0))/(1.0D0-(1.0D0-
C)**B(I)) 
END DO 
VAR=1.0D0/(VARSUM/A) 
END FUNCTION 
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APPENDIX E FUNCTION TO CALCULATE VARIANCE OF SCORE STATISTICS 
 
 
!---------------------------------------------------------------------------------------------------- 
! The purpose of this function is to calculate the second derivative of log likelihood 
! under the null (variance for Score) 
!---------------------------------------------------------------------------------------------------- 
!The argument of the function have the following meanings 
! A=Total Number of Pools  
! B(A)=The Vector of Pool Size 
! C(A)=Pool Test Result  
! C= p_null  
! Author/Implementor: Hong J Gao  
! 
!Last Revision: Oct 15, 2008  
! 
!---------------------------------------------------------------------------------------------------- 
! 
! C A V I A T R E C E P T O R 
! This is a research program and is not warranted by the authors  
! to be free from "bugs". Having a copy of this program should in no  
! way be considered as a warranty on the part of the authors to  
! provide technical support or changes to the program. Any changes  
! you might make to the program are your responsibility. In short,  
! we make no claims with respect to the quality or correctness of  
! any results you might obtain using this program.  
!-------------------------------------------------------------------------------------------------------- 
! 
!-------------------------------------------------------------------------------------------------------- 
 
REAL(8) FUNCTION SCORE_Ftn(A,B,C,D)  
IMPLICIT NONE 
INTEGER(4),INTENT(IN)::A 
REAL(8),INTENT(IN)::B(A),C(A),D 
INTEGER(4)::I,J 
REAL(8)::SCORESUM 
SCORESUM=0.0D0 
DO I=1,A 
SCORESUM=SCORESUM+C(I)*B(I)*(1.0D0-D)**(B(I)-1.0D0)/(1.0D0-(1.0D0-
D)**B(I))-B(I)*(1.0D0-C(I))/(1.0D0-D) 
END DO 
SCORE_Ftn=SCORESUM 
END FUNCTION 
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APPENDIX F SUBROUTINE TO FIND GIVEN QUANTILE OF 

 ONE-DIMENSION ARRAY 
 
 
!---------------------------------------------------------------------------------------------------- 
! The purpose of this subroutine is to find the quantile of one-dimensional array 
!---------------------------------------------------------------------------------------------------- 
! 
!---------------------------------------------------------------------------------------------------- 
!The argument of the function have the following meanings 
!N=Size of the array(Input) 
! P=P^th Quantile(Input) 
! X=X array (Input) 
! Q=Output 
!---------------------------------------------------------------------------------------------------- 
---------------------------------------------------------------------------------------------------- 
! 
! C A V I A T R E C E P T O R 
! This is a research program and is not warranted by the authors  
! to be free from "bugs". Having a copy of this program should in no  
! way be considered as a warranty on the part of the authors to  
! provide technical support or changes to the program. Any changes  
! you might make to the program are your responsibility. In short,  
! we make no claims with respect to the quality or correctness of  
! any results you might obtain using this program.  
!-------------------------------------------------------------------------------------------------------- 
! 
!-------------------------------------------------------------------------------------------------------- 
 
SUBROUTINE QUANTILE(NOBS,P,X,Q) 
USE EQTIL_int 
INTEGER(4),PARAMETER:: NQPROP=1 
INTEGER(4)::NOBS,NMISS 
REAL(8):: P,X(NOBS),Q(1),XEMP(NQPROP), 
XHI(NQPROP),XLO(NQPROP),QPROP(NQPROP) 
QPROP=P 
CALL D_EQTIL (X, NQPROP, QPROP, XEMP, XLO, XHI, NMISS) 
Q=XEMP 
RETURN 
END SUBROUTINE 
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APPENDIX G PROGRAM TO CALCULATE EXACT AND SIMULATED POWERS 
FOR ONE-SIDED HYPOTHESIS TEST 

 
 
!---------------------------------------------------------------------------------------------------- 
! The purpose of this program is to calculate exact and simulated powers of different 
! testing methods for one-sided hypothesis test(Details in Chapter 4 ) 
!---------------------------------------------------------------------------------------------------- 
! 
!---------------------------------------------------------------------------------------------------- 
!The argument of the function have the following meanings 
!N=Size of the array(Input) 
! P=P^th Quantile(Input) 
! X=X array (Input) 
! Q=Output 
!---------------------------------------------------------------------------------------------------- 
---------------------------------------------------------------------------------------------------- 
! 
! C A V I A T R E C E P T O R 
! This is a research program and is not warranted by the authors  
! to be free from "bugs". Having a copy of this program should in no  
! way be considered as a warranty on the part of the authors to  
! provide technical support or changes to the program. Any changes  
! you might make to the program are your responsibility. In short,  
! we make no claims with respect to the quality or correctness of  
! any results you might obtain using this program.  
!-------------------------------------------------------------------------------------------------------- 
! 
!-------------------------------------------------------------------------------------------------------- 

 
 

PROGRAM MAIN 
IMPLICIT NONE 
INTEGER(4)::I,J,CRITICAL_L,CRITICAL_R,K,SIMU1,SIMU2,LR_COUNT,LR_CO
UNT_M,LR_COUNT_C,WALD_COUNT,WALD_COUNT_C,P_COUNT  
INTEGER(4)::SCORE_NEW_COUNT,SCORE_NEW_COUNT_C 
INTEGER(4),ALLOCATABLE::B(:) 
REAL(8)::Q,P,CDF,V,POWER_L,POWER_R,POWER,POWER1,POWER2,TYPE1_L,
TYPE1_R,SIG,LBD,UBD,GAMMA_L,GAMMA_R,LL 
REAL(8)::P_NULL,LR_POWER,LR_POWER_M,LR_POWER_C,WALD_POWER,W
ALD_POWER_C,SCORE_NEW_POWER,SCORE_NEW_POWER_C,ML_EST,& 
NUMRATR,DENOM,LAMDA 
REAL(8)::LR_L,LR_R,SCORE_R,WALD_R,VAR,SCORE_FTN,WALD,SCORE_NE
W 
REAL(8),ALLOCATABLE::C(:),PROBABILITY(:),PSZ(:),TMP(:),TMP2(:),RSLT(:),L
AMDA_C(:),LRT(:),WALD_C(:),SCORE_NEW_C(:) 
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EXTERNAL::DRNUN,RNSET 
WRITE(*,*) 'HOW MANY SIMULATIONS FOR ASYMPTOTIC TESTS CRITICAL 
VALUES(INTEGER)?' 
READ(*,*) SIMU1 
WRITE(1,*)'SIMU1=',SIMU1  
WRITE(*,*) 'HOW MANY SIMULATIONS FOR SIMULATED POWER(INTEGER)?' 
READ(*,*) SIMU2 
WRITE(1,*)'SIMU2=',SIMU2  
WRITE(*,*) 'PREVERLENCE?(DOUBLE)' 
READ(*,*) Q 
WRITE(1,*) 'PREVERLENCE=',Q 
WRITE(*,*) 'SIGNIIFICANCE LEVEL(DOUBLE)' 
READ(*,*) SIG 
WRITE(1,*) 'SIGNIFICANCE(TYPE I ERROR)=',SIG 
! WRITE(*,*) 'HOW MANY POOLS?(INTEGER)' 
! READ(*,*) K 
WRITE(*,*) 'LOWER BOUD OF POOL SIZE?(DOUBLE)' 
READ(*,*) LBD 
WRITE(1,*) 'LOWER BOUND=',LBD 
WRITE(*,*) 'UPPER BOUD OF POOL SIZE?(DOUBLE)' 
READ(*,*) UBD 
WRITE(1,*) 'UPPER BOUND=',UBD 
WRITE(4,*) "P ","K ","Exact_POWER ","LR_POWER_M ","LR_POWER 
","LR_POWER_C ","WALD_POWER ","WALD_POWER_C ",& 
"SCORE_NEW_POWER ", "SCORE_NEW_POWER_C " 
do k=100,100,100 
CALL RNSET(19720612) 
!k=500 
WRITE(*,*) 'Num of Pools=',K 
WRITE(1,*) '-------------------------------------------------------------------' 
WRITE(1,*) 'Num of Pools=',K 
ALLOCATE(B(K),C(K),PROBABILITY(K+1),PSZ(K),TMP(K),TMP2(K),RSLT(K),L
AMDA_C(SIMU1),LRT(SIMU1),WALD_C(SIMU1),& 
SCORE_NEW_C(SIMU1)) 
CALL DRNUN(K,TMP) 
PSZ=DNINT(LBD+(UBD-LBD)*TMP) 
CALL MARCUS_PMF(K,Q,PSZ,PROBABILITY) 
!-------------------------------------------------------------------------------------------------------- 
! CRITICAL VALUE ON THE LEFT EXACT DISTRIBUTION 
!-------------------------------------------------------------------------------------------------------- 
CDF=0.0D0 
DO I=0,K 
CDF=CDF+PROBABILITY(I) 
IF (CDF .GE. SIG) EXIT 
END DO 
CRITICAL_L=I-1 



 

 

115

TYPE1_L=CDF-PROBABILITY(I) 
GAMMA_L=(SIG-TYPE1_L)/PROBABILITY(I) 
!-------------------------------------------------------------------------------------------------------- 
! CRITICAL VALUES OF LR TEST 
!-------------------------------------------------------------------------------------------------------- 
SIMULATION1:DO J=1,SIMU1 
P_COUNT=0 
DO WHILE(P_COUNT .EQ. 0) 
CALL DRNUN(K,TMP2) 
DO I=1,K 
IF (TMP2(I) .LE. 1.0D0-(1.0D0-Q)**PSZ(I)) THEN 
RSLT(I)=1.0D0 
P_COUNT=P_COUNT+1 
ELSE 
RSLT(I)=0.0D0 
END IF 
END DO 
END DO 
!-------------------------------------------------------------------------------------------------------- 
 
NUMRATR=LL(K,PSZ,RSLT,Q) 
CALL MLE(PSZ,RSLT,ML_EST,K) 
DENOM=LL(K,PSZ,RSLT,ML_EST) 
LAMDA_C(J)=NUMRATR/DENOM 
IF(Q .LE. ML_EST) THEN 
LRT(J)=0.0D0 
ELSE 
LRT(J)=-2.0D0*DLOG(NUMRATR/DENOM) 
END IF  
!-------------------------------------------------------------------------------------------------------- 
 
WALD_C(J)=(ML_EST-Q)/sqrt(VAR(K,PSZ,ML_EST)/real(K,8)) 
SCORE_NEW_C(J)=SCORE_FTN(K,PSZ,RSLT,Q)/sqrt(1.0D0/VAR(K,PSZ,Q)*real(K
,8)) 
!-------------------------------------------------------------------------------------------------------- 
 
END DO SIMULATION1 
CALL QUANTILE(SIMU1,0.95D0,LRT,LR_R) 
CALL QUANTILE(SIMU1,0.05D0,Wald_C,WALD_R) 
CALL QUANTILE(SIMU1,0.05D0,SCORE_NEW_C,SCORE_R) 
WRITE(*,*) 'LR_R=',LR_R,'***','Wald_R=',Wald_R,'Score_R=',Score_R 
!-------------------------------------------------------------------------------------------------------- 
! SIMULATED POWER 
!-------------------------------------------------------------------------------------------------------- 
DO P=0.00002D0,0.00050D0,0.00002D0 
CALL MARCUS_PMF(K,P,PSZ,PROBABILITY) 
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POWER_L=0.0D0 
DO I=0,CRITICAL_L 
POWER_L=POWER_L+PROBABILITY(I) 
END DO 
POWER1=POWER_L+GAMMA_L*PROBABILITY(CRITICAL_L+1) 
POWER=POWER1 
WRITE(*,"(F8.6,5X,F8.6,5X,I,5X,A10)")P, POWER,K,'EXACT' 
WRITE(3,"(F8.6,5X,F8.6,5X,I,5X,A10)")P, POWER,K,'EXACT' 
LR_COUNT_M=0 
LR_COUNT=0 
LR_COUNT_C=0 
WALD_COUNT=0 
WALD_COUNT_C=0 
SCORE_NEW_COUNT=0 
SCORE_NEW_COUNT_C=0 
SIMULATION2:DO J=1,SIMU2 
P_COUNT=0 
DO WHILE(P_COUNT .EQ. 0) 
CALL DRNUN(K,TMP2) 
DO I=1,K 
IF (TMP2(I) .LE. 1.0D0-(1.0D0-P)**PSZ(I)) THEN 
RSLT(I)=1.0D0 
P_COUNT=P_COUNT+1 
ELSE 
RSLT(I)=0.0D0 
END IF 
END DO 
END DO 
!-------------------------------------------------------------------------------------------------------- 
 
NUMRATR=LL(K,PSZ,RSLT,Q) 
CALL MLE(PSZ,RSLT,ML_EST,K) 
DENOM=LL(K,PSZ,RSLT,ML_EST) 
IF(Q .LE. ML_EST) THEN 
LRT(J)=0.0D0 
ELSE 
LRT(J)=-2.0D0*DLOG(NUMRATR/DENOM) 
END IF 
IF(LRT(J) .GT.LR_R) THEN 
LR_COUNT=LR_COUNT+1 
END IF 
IF(LRT(J) .GT. 2.70554345d0) THEN 
LR_COUNT_C=LR_COUNT_C+1 
END IF 
IF(LRT(J) .GT. 2.478755967d0) THEN 
LR_COUNT_M=LR_COUNT_M+1 
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END IF 
!-------------------------------------------------------------------------------------------------------- 
  
WALD=(ML_EST-Q)/sqrt(VAR(K,PSZ,ML_EST)/real(K,8)) 
SCORE_NEW=SCORE_FTN(K,PSZ,RSLT,Q)/sqrt(1.0D0/VAR(K,PSZ,Q)*real(K,8)) 
IF((WALD .LE. WALD_R)) THEN 
WALD_COUNT=WALD_COUNT+1 
END IF 
IF(WALD .LE. -1.644853627D0) THEN 
WALD_COUNT_C=WALD_COUNT_C+1 
END IF 
IF(SCORE_NEW .LE. SCORE_R) THEN 
SCORE_NEW_COUNT=SCORE_NEW_COUNT+1 
END IF 
IF(SCORE_NEW .LE. -1.644853627D0) THEN 
SCORE_NEW_COUNT_C=SCORE_NEW_COUNT_C+1 
END IF 
!-------------------------------------------------------------------------------------------------------- 
 
END DO SIMULATION2 
LR_POWER_M=REAL(LR_COUNT_M,8)/REAL(SIMU2,8) 
LR_POWER=REAL(LR_COUNT,8)/REAL(SIMU2,8) 
LR_POWER_C=REAL(LR_COUNT_C,8)/REAL(SIMU2,8) 
WALD_POWER=REAL(WALD_COUNT,8)/REAL(SIMU2,8) 
WALD_POWER_C=REAL(WALD_COUNT_C,8)/REAL(SIMU2,8) 
SCORE_NEW_POWER=REAL(SCORE_NEW_COUNT,8)/REAL(SIMU2,8) 
SCORE_NEW_POWER_C=REAL(SCORE_NEW_COUNT_C,8)/REAL(SIMU2,8) 
WRITE(*,'(F8.6,5X,F8.6,5X,I,5X,A10)')P,LR_POWER,K,'LR' 
WRITE(*,'(F8.6,5X,F8.6,5X,I,5X,A10)')P,LR_POWER_C,K,'LR_C' 
WRITE(*,'(F8.6,5X,F8.6,5X,I,5X,A10)')P,LR_POWER,K,'LR' 
WRITE(*,'(F8.6,5X,F8.6,5X,I,5X,A10)')P,LR_POWER_C,K,'LR_C' 
WRITE(4,'(F8.6,5X,I,8(5X,F22.15))') 
P,K,POWER,LR_POWER_M,LR_POWER,LR_POWER_C,WALD_POWER,WALD_P
OWER_C,SCORE_NEW_POWER, &  
SCORE_NEW_POWER_C 
END DO  
DEALLOCATE(B,C,PROBABILITY,PSZ,TMP,TMP2,RSLT,LAMDA_C,LRT,WALD
_C,SCORE_NEW_C) 
END DO 
END PROGRAM MAIN 
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