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EXPLORING NOVEL SYSTEM BIOLOGY APPROACHES TO UNDERSTAND 
THE MOLECULAR MECHANISMS OF IMMUNE RESPONSES 

 
CASSANDRA GARBUTT 

MOLECULAR BIOLOGY 

ABSTRACT 

 Entire new molecular worlds of immunity and autoimmunity have been 

unveiled through the lens of systems biology. Although many believe that vertebrates 

maintain the most complex immune system, a rival to this concept is arising due to a 

systems’ biology perspective of plant immunity. There are various rising systems 

biology approaches that unveil this previously uncharted territory.  The organization 

of subjects within systems biology including “-omes” and protein–protein interaction 

networks enhance such exploration. The field of plant immune network biology is 

growing alike its parts: prevailing computational modeling approaches of biological 

regulatory network dynamics, rising technologies and availing research avenues 

pertaining to the “-omics” approach. Systems biology approaches also pursue clues 

related to the molecular mechanisms of human autoimmunity, a current mystery. 

Although the factors that cause the onset of systemic lupus erythematosus 

(SLE) are not fully understood, it is known to have several genetic risk factors. One 

factor relates to the fragment crystallizable receptor gene 2B, FCGR2B, that codes for 

the protein FcγRIIB. FcγRIIB is highly responsible for maintaining homeostasis 

within a cell by simultaneously triggering the activation or inhibition of receptors 
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related to undesired autoimmune responses. Systems biology provides effective 

approaches towards uncovering the role of human fragment crystallizable receptors 

(FCRs) in autoimmunity. In this thesis, three primary objectives were pursued to 

expand the knowledge of molecular human autoimmunity: the identification of novel 

interacting partners of FCRs’ cytoplasmic domains; the finding of statistically 

overrepresented cis-regulatory elements in FCGR2B and identification of their 

cognate transcription factors; and the identification of FCGR2B CNV (Copy number 

variation) in SLE patients. The first objective entailed the application of a yeast-two 

hybrid assay, a high-throughput technology that identified protein-protein interactions 

and resulted in the generation of the first human autoimmune network. Bioinformatic 

tools that identify motifs, namely MEME and POBO, were utilized for the second 

objective. Lastly, the third objective entailed a revamped methodological approach 

that yielded a full-length RACE PCR product of the 1q23 gene cluster, which is the 

location of the FCGR2B gene. This full-length product enables the investigation for 

associations between FCGR2B CNV and SLE onset.  
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INTRODUCTION 

The immune system is a versatile constellation of defense responses against 

pathogenic invading microorganisms and cancer in humans. The immune system consists 

of many cells and molecules that can specifically recognize and eliminate an innumerable 

variety of foreign invaders. Despite its complexity, it can functionally be categorized into 

two main activities in both plants and animals, recognition and response, as its aim is to 

protect the host from infectious disease. Recognition entails the ability to differentiate 

between self and non-self, and each species has a diverse array of responses to 

pathogenic disruptions. Some of these responses are pathogen-specific while others are 

general (Kindt, T. et al 2006). The key difference between human and plant immunity is 

that plants lack mobile immune cells (Spoel et al 2012). This feature comes with the 

complex adaptive immune system seen in vertebrates. In a nutshell, adaptive immunity 

enables vertebrates to have mechanisms that reduce self-reactivity while maintaining 

antigen-specific immune capacity and memory (Spoel et al 2012). Only recently have 

researches begun exploring a plant version of autoimmunity to explain instances in which 

offspring of healthy plant strains becomes ill (Katsnelson 2008). The term autoimmunity 

is characteristically reserved for animals since plants lack adaptive immune systems 

(Katsnelson 2008). A question arises then as to how plants can maintain an effective 

immune system without an adaptive immune system. Recently, with the uprising of 

systems biology, plants have been discovered to have complex, sophisticated, efficient 

and multifaceted innate immune responses that involve systemic signaling, cross-talk, 
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chromosomal changes and self-surveillance (Spoel et al 2012). Plants also exhibit 

pathogen-specific RNA silencing elicited from previous infections (Pumplin, N. et al 

2013). RNA silencing is crucial for gene regulation in many eukaryotes as it acts on two 

levels: DNA methylation at the transcriptional level and direct mRNA interference via 

small RNAs at the post-transcriptional level (Pumplin, N. et al 2013). Both plants and 

animals have pattern-recognition receptors (PRRs), which detect microorganism-

associated molecular patterns (MAMPs) (Spoel et al 2012). MAMPs include 

characteristic microbial features such as flagellin and peptidoglycans (Spoel et al 2012). 

The structural similarities between the PRRs of animals and plants are attributed to 

convergent evolution, which occurs when two organisms of different ancestry evolve 

similar advantageous traits (Spoel et al 2012). Another similarity between plant and 

animal immunity is the methods of study. Both systems can be analyzed through a 

systems’ biology lens, which entails network biology and interactome maps. The 

subsequent sections within this introduction explore plant and human immunity, 

autoimmune diseases particularly systemic lupus erythmatosis (SLE), genetics associated 

with autoimmunity, and lastly branches of systems biology that serve as novel tools to 

understand immunity in both plants and animals. The first chapter of my thesis explores 

existing systems biology approaches towards understanding plant immunity, and the 

second chapter of my thesis is composed of three objectives that aim to understand the 

regulation of human fragment crystallizable receptors (FCRs) in autoimmunity: (1) the 

identification of novel interacting partners of FCRs’ cytoplasmic domains, (2) the finding 

of statistically overrepresented cis-regulatory elements in FCGR2, the only classical FCR 

and the identification of their cognate transcription factors, and (3) the identification of 
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FCGR2B CNV (copy number variation) in SLE patients.  

Plant Immunity 

Plants also have inherent or induced defenses against pathogens. Pathogenic 

molecules are recognized by the plant’s cell surface receptors, which initiate specific 

signaling cascades to protect the host. Upon pathogen recognition, the plant-microbe 

pathosystem undergoes an extensive transcriptional reprogramming in a highly dynamic 

and temporally regulated manner (Proietti, S. et al. 2013). Stimulation of these plant 

defenses involves complex signal transduction networks incorporating feedback and 

cross-talk controlled by largely unknown mechanisms (Mukhtar et al. 2009). Upon 

pathogen-recognition, plants rewire their cellular network to activate immune responses 

that entail the first line of defense, microbial-associated molecular patterns (MAMPs)- 

and the second line of defense, Effector-Triggered Immunity (ETI). MAMPs constitute a 

part of the plants non-self recognition signals, which also includes damage-associated 

molecular patterns (DAMPs), and pathogen-derived effectors. Despite the maintenance of 

a sophisticated plant immune system, certain pathogens have evolved suites of virulence 

proteins, or effectors, that influence the dynamics of the plant pathosystem to cause 

diseases and alter the host system for their benefit, as to acquire nutrients for instance 

(Robinson et al. 2006). The co-evolutionary arms race between pathogen and plant 

systems resulted in the development of two major classes of receptors that provide 

efficient surveillance. Pattern-recognition receptors (PRRs) and R proteins perceive 

MAMPs and DAMPs and activate MTI. This is the first line of defense against pathogen 

proliferation and dispersion within the host. Interestingly, pathogens have evolved 

specialized phytopathogens that they secrete to avoid detection, and they are known to 
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target MTI signaling components. These efforts are geared to diminish the plant’s 

defenses and enhance the pathogen’s virulence. Plants have a sophisticated immune 

system that has a counter defense to these pathogenic strategies that entail a major class 

of R proteins, NLR receptors (nucleotide-binding domain and leucine-rich repeat 

receptors), which directly bind to certain effectors or indirectly discover effector 

activities to trigger the second line of defense known as ETI (Sessa 2012). To evade ETI, 

pathogens continually alter their effector suites and modify specific effectors. This 

continual renewal of pathogen effectors enforces selective pressures onto the host’s 

recognition and response abilities.  

PAMP- and effector- triggered immunity are also major players in plant defense. 

PAMP (pathogen associated molecular pattern) are molecules recognized as foreign by 

the plant, and effectors are usually associated with parasitism and are recognized by host 

intracellular resistance proteins (Sessa 2012).  Plant tolerance and resistance categorize 

the plant’s reaction to pathogens. Tolerance is measured by the damage inflicted on the 

host by a pathogen load, whereas resistance is measured by the reduction of pathogen 

load and growth. 

Human Immunity 

When a healthy immune system encounters foreign molecules, it can discriminate 

them from the body’s proteins and cells. The active molecules in immunoglobulin are 

called antibodies, which function to neutralize, precipitate and agglutinate toxins (Kindt 

et al, 2006). Upon identification of a foreign molecule, an effector response is mounted to 

eliminate or neutralize the entity. This immediate response is a part of innate immunity, 

which is a more primitive immune system among vertebrates, uniform within a species, 
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and consists of many circulating cell types (Kindt et al, 2006). Upon later exposure to the 

same foreign molecule, the memory response is launched, which is characterized by a 

heightened and rapid immune reaction that eliminates the pathogen and prevents disease 

(Kindt et al, 2006). The memory response can occur many times throughout a human’s 

life. The memory response is a later evolved system that is acquired and more specific as 

well as a part of adaptive immunity. Lymphocytes, their antibodies and molecules they 

produce are the main players of adaptive immunity as through a maturation process, high 

affinity antigen specific receptors are made. Lymphocytes are formed in the bone marrow 

in mammals and create antibodies in response to a specific antigen. T- and B- 

lymphocytes are created in the bone marrow, but T- lymphocytes mature in the thymus 

whereas B- lymphocytes mature in the bone marrow. Innate immunity is the first line of 

defense against a pathogen whereas adaptive immunity takes more time to execute (Kindt 

et al, 2006). For any immune response, antigen-presenting cells in addition to T 

lymphocytes are crucial. Antigen presenting cells are specialized and regulate T 

lymphocyte responses by delivering a necessary co-stimulatory signal for T lymphocyte 

activation. T lymphocytes recognize epitope proteins bound with the major 

histocompatibility complex (MHC) that are displayed on host-cells, which are altered by 

viruses or cancer. In summary, T lymphocytes recognize a “non-self” target, such as a 

pathogen, only after antigens (small fragments of the pathogen) have been processed and 

presented in combination with a “self” receptor called a major histocompatibility 

complex (MHC) molecule. Whereas B lymphocytic antigen-specific receptors are 

antibody molecules located on the surface of B-lymphocytes, which recognize pathogens 

without any need for antigen processing (Kindt et al, 2006). 
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 The innate immune system can also adapt through an existing pool of natural 

variation in pattern recognition and other immune receptors. Random mutations can also 

create new variants over time (Carvunis et al., 2013).  Copy number variation (discussed 

in later section) can also alter the number of certain receptors present on lymphocytes. 

The advantage of a diverse collection of receptor alleles can enable the innate immune 

system to respond through natural selection when pathogens alter their antigens. The 

innate immune system changes occur through many generations and at the population 

level. Thus the spectrum of alleles associated with the innate immune system varies 

throughout geographical locations (Kindt et al, 2006). 

Human Autoimmunity 

The immune system can fail as a protector when it becomes an aggressor to its 

own host. The activation of the immune system against self-antigens is characterized as 

autoimmunity. Modern medicine encounters difficulty when treating patients with 

autoimmune diseases, because the culprit of the patient’s deteriorating health is 

essentially themselves, specifically their body’s own machinery.  As a result, modern 

medicine can only hinder the deteriorating effects of these diseases, rather than cure 

them.  Another reason why autoimmune diseases are difficult to treat is that they tend to 

be polygenic, which means that there are many genes that contribute to disease 

susceptibility. There are cellular mechanisms in place to prevent autoimmunity. An 

inappropriate T lymphocyte response to the host components can lead to fatal 

autoimmune consequences, which is why antigen-presenting cells are necessary before T 

lymphocyte activation. During lymphocyte development, the bone marrow employs two 

mechanisms to modify autoreactive B lymphocytes (Kindt et al, 2006). These 



	  

 

7 

mechanisms of high importance are called central and peripheral tolerance.  Central 

tolerance includes mechanisms that modify, destroy, or inactivate autoreactive 

cells.  Central tolerance is a method intended to catch these defects early on in the 

development of B lymphocytes.  If an autoreactive cell escapes this safety net, then there 

is another mechanism that limits the occurrence of autoreactivity in mature lymphocytes 

(Kindt et al, 2006). This is called peripheral tolerance.  The failure of both peripheral and 

central tolerances leads to the activation of the immune system against self-antigens, or 

better known as autoimmunity.  Autoimmunity can affect any organ and organ system in 

the human body. 

Systemic Autoimmune Diseases 

The human body can be characterized into major systems including muscular, 

skeletal, nervous, respiratory, cardiovascular, and immune systems.  These systems are 

composed of groups of organs and molecules that together orchestrate one or several 

functions together. The involvements of several tissues and organs as well as a wide 

range of target antigens categorize systemic autoimmune diseases. In general, there is 

hyperactivity among T and B lymphocytes. The accumulation of immune complexes, 

auto-antibodies, and cell-mediated immune responses cause widespread tissue damage 

not exclusive to one system (Kindt et al, 2006). Over 11 million Americans suffer from 

rheumatic autoimmune diseases including systemic lupus erythematosus (SLE) and 

rheumatoid arthritis (RA), which are characterized by painful inflammation of the joints 

and muscles (Helmick et al, 2008). In order to understand SLE on a molecular level, the 

FCGR2B gene, which has been associated with the pathogenesis of SLE, was 

investigated. The role of this gene and the receptor it encodes will be elaborated in 
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subsequent sections.  

Systemic Lupus Erythematosus 

Systemic lupus erythematosus (SLE) is a chronic inflammatory disease whose 

symptoms include fever, arthritis, skin rashes, kidney dysfunction and pleurisy.  The 

lupus foundation of America estimates that 1.5 million Americans have a form of lupus. 

SLE appears more so in women then men, a 10:1 ratio, and within the 20 to 40 age group 

(Kindt et al, 2006). There are antibodies produced to a variety of tissue antigens including 

red blood cells, leukocytes, clotting factors, DNA and histones. Patients with severe SLE 

have excessive complement activation observable by high levels of C3a and C5a, which 

can be up to four times more than normal (Kindt et al, 2006). Complements enhance the 

clearing of pathogens by assisting phagocytes and antibodies. C5a increases type 3 

complement receptor expression, which is located on neutrophils; this enhances 

neutrophil aggregation and attachment to vascular endothelium (Kindt et al, 2006). As 

neutrophils become attached to the vascular endothelium, blood vessels become blocked 

(vasculitis), which leads to widespread tissue damage. The diagnosis of SLE relies on 

indirect immunofluorescent staining that reveals SLE characteristic nucleus-staining 

patterns (Kindt et al, 2006). The staining utilizes SLE specific antinuclear antibodies that 

are directed to DNA, histones, nuclear RNA and nucleoprotein.  

Although the onset of SLE is not completely understood, environmental and 

genetic factors are known causes. Variability in the clinical phenotype suggests an 

environmental influence on the disease phenotype. However, there is an intersection of 

genetics and environmental factors that can be seen in ethnic differences in the disease 

phenotype. For instance, SLE is more common among African Americans and they are 
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also more at risk for developing SLE-nephritis (Kindt et al, 2006). Moreover, certain 

genetic factors characterize SLE in certain populations while not in others. Specifically, 

the FcγRIIB I187T allele is known to cause an SLE risk among Asians, but not among 

those of European or African decent. The degree of genetic and environmental 

contributions to the onset of SLE is unknown, however, the genetics associated will be 

investigated in two projects of my thesis. Specifically, the focus will be on the classical 

low affinity Fcγ receptors, which is discussed thoroughly in subsequent section.  

Rheumatoid Arthritis 

 Rheumatoid arthritis (RA) is characterized by chronic inflammation of the joints, 

and respiratory and cardiovascular systems are often affected. RA is most common 

among 40 to 60 year old women. A majority of patients with RA produce auto-antibodies 

known as rheumatoid factors that react with the Fc region of IgG. IgM antibody with 

such reactivity is most common and binds to IgG, which creates IgG-IgM complexes that 

are deposited in joints (Kindt et al, 2006). These IgG-IgM complex accumulations cause a 

hypersensitive reaction that causes chronic inflammation.  

Fc Receptors Signaling in Autoimmune Diseases 

 Fc receptors are membrane glycoproteins that have an affinity for the Fc portion 

of an antibody. They are present in all of the immunoglobulin classes. Fc receptors are 

critical for the biological functions of antibodies as they are responsible for the regulation 

of IgG serum levels, the movement of antibodies across the cell membrane as well as the 

transfer of IgG across the placenta from the mother to child during gestation. Fc receptors 

are also essential for the passive transfer of antibodies for certain cell types including 

neutrophils, mast cells, macrophages, natural killer cells, and B and T lymphocytes. 
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Antibodies being the products of adaptive immunity, require Fc receptors to recruit 

essential elements of defense from innate immunity such as natural killer cells and 

macrophages, which enable phagocytosis of antigen-antibody complexes (Kindt et al, 

2006).  The crosslinking of FcR-bound antibodies can also generate immunoregulatory 

signals that induce cell activation, differentiation as well as the down-regulation of 

certain cellular responses. Fc receptor is often a part of a signal transduction complex that 

requires the participation of accessory polypeptide chains. An extracellular receptor 

association with intracellular signal transduction occurs in B lymphocytic receptors and is 

crucial in T lymphocytes. There is an entire suite of Fc receptors. The FcαR binds to IgA, 

the FcεR binds to IgE, the FcµR binds to IgM, the FcδR binds to IgD, and there are 

various Fcγ receptors that bind to IgG and its subclasses. The focus will be on the suite of 

Fcγ receptors, which is depicted in Figure 1. 
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Figure 1. Suite of FC receptors and description of their expression location 

Fcγ receptor 1 is a high-affinity receptor whereas FcγRIIA, FcγRIIC, FcγRIIIA 

and FcγRIIIB are a family of low-affinity receptors. FcγIIB is the only Fc receptor with 

inhibitory functions. For signaling, FcγRs rely on immunoreceptor tyrosine-based 

activation and inhibition motifs (ITAM/ITIM respectively). FcγRIIB is the only FcγRII 

with ITIM, all of the rest have an ITAM in the cytoplasmic domain of their alpha chains. 
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 FcγRIIB, specifically, regulates immune and inflammatory responses. The suite of 

FcγRs have an alpha chain and two or three extracellular Ig-like domains, which bind to 

the Fc-domain of IgG. With exception to FcγRIIIB, the alpha chains on all of the 

receptors maintain single transmembrane and cytoplasmic domains. Variation in the 

gene, FCGR2B, encoding FcγRIIB have long been linked to autoimmune disease 

susceptibility, particularly SLE. Other FcRs of interest include: the FcαR1, a receptor for 

IgA that is present on myeloid cells in humans; the recently identified FcµR/TOSO, 

which binds IgM; and finally Fcα/µR, which binds IgA and IgM. Various 

immunoreceptors like FcγRI, FcγRIIIa and FcaRI associate with an adaptor protein called 

the common g-chain, which is necessary for signal transduction.  

Genomic Perspective of FCGR gene evolution  

FcγRIIA, FcγRIIB, and FcγRIIC are encoded by FCGR2A, FCGR2B, and 

FCGR2C, respectively (Figure 2). FCGR2A, FCGR2B, and FCGR2C share similarities 

within their genetic structure: there are two exons that code for a signal peptide followed 

by two exons that code for two extracellular Ig-like domains, then a single exon that 

codes for the transmembrane domain, and lastly two or three exons that code for the 

cytoplasmic domain (Figure 3).  
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Figure 2: Structure of the 1q23 FCGR gene cluster 

These three genes reside within a ~180kb gene cluster on 1q23, with FCGR2A 

and FCGR2B defining the ends of the gene cluster and FCGR2C falling within the 

middle (Figure 2). The boxes represent genes, the intersecting lines represent intergenic 

regions, and the regions of color correlation indicate ~98% sequence homology with 

exception to paralogs that are represented with identical colors. The arrows indicate the 

direction of transcription and gene size is written above each gene. FCGR2A, FCGR2B, 

and FCGR2C are transcribed in the same direction. 

Note: From Travis Ptacek 2012. Reprinted with permission. 
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Figure 3: Structure of the Individual Genes within the 1q23 FCGR gene cluster 

The boxes indicate exons, untranslated regions are represented by thin boxes, 

introns are represented by intersecting grey lines, and exons that code for specific 

domains are indicated by boundaries and labels. Colors indicate paralogous regions. The 

first and second halves of the 1q23 FCGR gene cluster are segmental duplications with 

~98% similarity among the interval regions. As shown in the figure, FCGR -2A and -2C 

contain two exons for their cytoplasmic domains whereas FCGR2B maintains 3.  

Note: From Travis Ptacek 2012. Reprinted with permission. 
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There are actually two existing cytoplasmic domains for FCGR2B. One variant 

has all three of the exons depicted and is called 2B-1, whereas the second is a splice 

variant that includes the last two cytoplasmic domain exons and is called 2B-2. SLE has 

been linked to all of the polymorphisms belonging to FcγRII genes. Moreover, among 

most people in the population, FCGR2C is a pseudogene that does not express a protein, 

but it does have an open reading frame allele (X13Q) that has a ~8-16% of frequency in 

the population. This allele initiates the expression of an activating receptor of B-cells and 

is associated with SLE. The FCGR3 genes, FCGR3A and FCGR3B, lay within the 1q23 

gene cluster as well. However, the focus is particularly on FCGR2B.   

Copy Number Variation 

Prior to the full human genome sequence, a uniform manner of genetic 

inheritance was assumed. Many inherited genetic diseases have been associated with 

structural mutations of copy number variations in which DNA sequences of up to five 

million letters are either added or removed from an individual’s genome (Conrad et al, 

2010). Copy number variation (CNV) describes the occurrence of gene copy variability 

among individuals. In disease association studies, CNV usually refers to gene copy 

numbers that deviate from the most common copy number of that gene (Conrad et al, 

2010). CNV of FCGR2B was investigated for its association with SLE. FCGRs are 

already associated with SLE, yet a novel investigation done by a colleague, Dr. Travis 

Ptacek investigated CNV within the 1q23 locus for any association with SLE. Alongside 

Dr. Ptacek, the identification of FCGR3B alleles associated with high SLE risk among 

certain ethnic races and a strong link between a FCGR2B variant and SLE onset were 

uncovered. These findings form a foundation for future studies of this gene cluster and its 
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role in autoimmunity. I redesigned the methodology in order to obtain the full-length 

product of the 180kb 1q23 gene cluster instead of two products (5’ and 3’) that were 

previously obtained. This will be elaborated further in the methods section of Chapter 2. 

Copy Number Variation in FCGR and Autoimmunity 

Previously, the 1q12 FCGR gene cluster was primarily studied for CNV and 

genetic abnormalities associated with SLE, which began in 1990 when one patient 

exhibited an abnormality on FCGR3B (Breunis et al, 2009). Now, researchers are aware 

of a plethora of CNV intervals within the FCGR gene cluster. The results of several 

studies reveal no apparent association between the CNV of FCGR2A and FCGR2B with 

SLE or RA (Breunis et al, 2009). Although breakpoint studies of FCGR2C and FCGR3B 

have demonstrated that FCGR CNV can emerge de novo during meiosis or somatically, 

and other studies show that FCGR CNV can be heritable (Breunis et al, 2009). A link 

with autoimmune diseases and CNV of FCGR2C has been studied but only in its role as a 

partner of FCGR3B. This could be due to its role as a pseudogene in the majority of the 

population. However, FcγRIIC proteins are associated with the immune response and its 

role in autoimmunity has yet to be investigated. Although many studies connect FCGR3B 

CNV with SLE, the actual mechanistic role it has on the onset of the disease is not yet 

known. All in all, the role of FCGR CNV in autoimmunity is not fully understood. To 

better understand the molecular mechanisms of autoimmunity, three approaches were 

taken, namely:  (1) the identification of novel interacting partners of FCRs’ cytoplasmic 

domains, (2) the finding of statistically overrepresented cis-regulatory elements in 

FCGR2, the only classical FCR and the identification of their cognate transcription 

factors, and (3) the identification of FCGR2B CNV (Copy number variation) in SLE 



	  

 

17 

patients. These approaches are based in systems biology and strive to expand the 

molecular perspective of autoimmunity.   

A Systems Biology lens on Immunity and Autoimmunity 

Biological processes operate via precise interactions amongst thousands of 

molecules. Thus systems biology is a novel area of study for understanding disease 

pathologies as well as healthy genotypes at a genomic level. Systems biology strives to 

understand complex biological systems and their pathways that coordinate molecular 

events (Zhu et al, 2007). A systems perspective seeks to uncover the unpredictable and 

predictable intricacies of many different causal relations within diverse biological 

components. The recent invention of high-throughput technologies has been 

advantageous for studying macromolecular interactions as well as expression patterns. 

The yeast-two hybrid system is a high-throughput technology utilized to couple the first 

hypothesis of my thesis related to the identification of novel interacting partners of FCRs’ 

cytoplasmic domains. Network biology, a branch of systems biology, translates the 

complexities of molecular interactions into a biological message. 

Network Biology 

In any eukaryotic cell, thousands of genes and their products orchestrate their 

transcriptional, translational, and metabolic activities to create cellular functions, 

phenotypic plasticity and organismal fecundity. Functional modules embedded within 

protein–DNA interactions, and protein–protein, and metabolite–substrate networks 

execute diverse cellular functions (Mitra et al., 2013). The dichotomous nature of 

network modules is beneficial to cells or organisms for adaptation to physiological 

perturbations, environmental cues, or pathological signals (Shmulevich et al, 2009). Any 
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given genotype has a sophisticated underlying network of macromolecular interactions 

that give rise to a phenotype. The idea behind systems biology is that cellular networks 

and biological systems are the bridges from genotype to phenotype (Carvunis et al, 

2013). Typically in a network, physical and functional interactions between molecules 

are referred to as edges, and the molecules involved in the interactions are termed nodes. 

Nodes can correspond to nucleic acids, proteins, hormones, metabolites, or other 

macromolecules. Edges can be directed or undirected depending on the type of an 

interaction being illustrated in the graph (Seebacher et al, 2011).  

Interactome Map: A Novel Network for Understanding Disease 

An interactome map is a type of network that seeks to map a universe of 

molecular interactions that could portray key information towards understanding healthy 

and disease phenotypes. For this reason it is referred to as the gateway to systems 

biology. Interactions mediated by protein-protein, protein-RNA, protein-DNA, and 

protein-metabolite can for interactome networks.  A major aim of systems biology is to 

create interactome maps as they facilitate studies of biological processes and systems.  

Static interactome maps can be generated through in vitro technologies and include many 

in vivo edges. On a node level, interactomes can facilitate the understanding of 

uncharacterized and well-known gene products, and at a systems level, interactomes 

provide insight into the properties of regulatory systems and global cellular networks as 

they relate to biological functions. Interactomes of human diseases have been created, 

and interestingly there is overlap between proteins among diseases with similar 

symptoms.  
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CHAPTER 1 

 GETTING TO THE EDGE: PROTEIN DYNAMICAL NETWORKS AS A NEW 
FRONTIER IN PLANT-MICROBE INTERACTIONS 

 

Introduction 

A systems perspective on diverse phenotypes, mechanisms of infection, and 

responses to environmental stresses can lead to considerable advances in agriculture and 

medicine. A significant promise of systems biology within plants is the development of 

disease-resistant crop varieties, which would maximize yield output for food, clothing, 

building materials, and biofuel production. A systems or “-omics” perspective frames the 

next frontier in the search for enhanced knowledge of plant network biology. The 

functional understanding of network structure and dynamics is vital to expanding our 

knowledge of how the intercellular communication processes are executed. This review 

article will systematically discuss various levels of organization of systems biology 

beginning with the building blocks termed “-omes” and ending with complex 

transcriptional and protein–protein interaction networks. The prevailing computational 

modeling approaches of biological regulatory network dynamics were highlighted. The 

latest developments in the “-omics” approach were discussed to underline and highlight 

novel technologies and research directions in plant network biology. 

Systems Biology: A Paradigm Shift from Reductionism 

Despite the progress of understanding phytopathogenic microbes and plant infectious 
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diseases, the arms race between hosts and pathogens fuels further scientific research 

(Boyd et al, 2013). Within the past decades, the molecular approaches to solve these 

crises entailed reductionism that seeks to explain a biological system through the 

summation of its isolated parts. While conceptual origins of systems biology date back 

almost 100 years, a shift from the reductionist approach to a more inclusive and 

integrative one started to occur at dawn of this millennium (Figure 1A; Arkin and 

Schaffer, 2011). This revolutionary, holistic approach is inspired by Aristotle’s belief that 

“The whole is more than the sum of its parts.” “Systems” has also been referenced as the 

“fifth fundamental requirement for Life” considering that biological structures and 

molecules never function in isolation, as is true for sociological structures (Carvunis et al, 

2013). The limitations of reductionism with respect to medical science are widely 

recognized and systems biology offers a way of transcendence (Ahn et al, 2006). 

Extending this observation further, the tenets of systems biology certainly offer an 

alternative viewpoint for other biological research including plant biology. In addition, 

this holistic approach can be attributed to the scientific community’s search for 

understanding the complexity and interconnectedness in a wide array of natural systems 

ranging from the microscale of a cell to the macroscale of socioecosystems. It has 

become strikingly evident that significant similarities exist at the structural organization 

levels among the extremes of these biological spectra (Keurentjes et al, 2011). Thus, 

systems biology yields models that analyze various changes in biological systems over 

time, and a systems perspective complements reductionism to facilitate innovative 

investigations and discoveries (Mitra et al., 2013). It also seeks to uncover the 

unpredictable and predictable intricacies of many different causal relations within diverse 
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biological components. Cumulatively, a systems approach to medical and agricultural 

research could guide new developments in techniques, knowledge, and ultimately 

therapeutics (Barabasi et al., 2011; Vidal et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  

 

23 

 

Figure 1. The systems biology approaches to understand plant immune systems.  

(A) The diagrammatic overview of the integrative framework of multiple layers of “-

omics” including genomics, transcriptomics, proteomics and phonemics. (B) 

Visualization of a cell as a complex web of macromolecular interactions that constitutes 

an “interactome.” Functional modules, such as transcriptional (protein–DNA interactions; 

PDI), translational (protein–protein interactions; PPI) and metabolic (metabolite–

compound interactions; MCI) are illustrated.  
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Here, various elements of systems biology were highlighted beginning with the 

level of the “-omes” (Figure 1A) and then elaborated on the scale of macromolecules and 

their interactions. The application and translation of any discovery teems with 

possibilities from improvements in medicinal therapeutics and plant biology to 

improvements in crop yield, quality, and pathogen resistance.  

Network Biology: A useful tool in understanding Plant Immunity 

In any eukaryotic cell, thousands of genes and their products orchestrate their 

transcriptional, translational, and metabolic activities to create cellular functions, 

phenotypic plasticity and organismal fecundity. Functional modules embedded within 

protein–DNA interactions, and protein–protein, and metabolite–substrate networks 

execute diverse cellular functions (Figure 1B; Mitra et al., 2013). The dichotomous 

(deterministic or stochastic) nature of network modules is beneficial to cells or organisms 

for adaptation to physiological perturbations, environmental cues, or pathological signals 

(Shmulevich and Aitchison, 2009). On the contrary, pathogens have evolved a suite of 

virulence proteins (effector molecules) that perturb the intracellular networks of their 

hosts to cause infection (Mukhtar, 2013). As with any host–pathogen conflict, plants and 

their pathogens are in an evolutionary “arms race,” in which the host mounts defenses, 

the pathogen develops new strategies to thwart the defensive mechanisms, which in turn 

forces the host to adapt (Mukhtar et al., 2011; Pajerowska-Mukhtar et al., 2013). 

Network-based analysis is a holistic approach that can enable a detailed understanding of 

the relationships between phytopathogens and plants (Pritchard and Birch, 2011). 

Network biology, a branch of systems biology, translates the complexities of 

molecular interactions into a biological message. Any given genotype has a sophisticated 
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underlying network of macromolecular interactions that give rise to a phenotype. The 

idea behind systems biology is that cellular networks and biological systems are the 

bridges from genotype to phenotype (Carvunis et al., 2013). Typically in a network, 

physical and functional interactions between molecules are referred to as edges, and the 

molecules involved in the interactions are termed nodes. Nodes can correspond to nucleic 

acids, proteins, hormones, metabolites, or other macromolecules. Edges can be directed 

or undirected depending on the type of an interaction being illustrated in the graph 

(Figure 2A, Seebacher and Gavin, 2011). Computational biologists and mathematicians 

have developed numerous algorithms to analyze the versatile relationships of nodes and 

understand the cellular organization of communication for a particular network. Research 

efforts to uncover potential universal laws that govern cellular networks are underway 

(Carvunis et al., 2013). 
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Figure 2. Network structure and topology.  

(A) The organization of nodes and edges in a graph represents network structure. Vertices 

and links represent nodes and edges, respectively. Two nodes can be connected by 

undirected or directed edges. (B) A sub-network of plant–pathogen interactions is 

demonstrated. Hubs (highly connected proteins), bottlenecks (high betweenness nodes), 

and pathogen effectors (virulence factors) are depicted in red, yellow, and brown colors, 

respectively. Network with scale-free topology might be vulnerable to pathogen-mediated 

perturbations. 
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Dynamics of Transcriptional Regulatory Networks in Plant Defense 

Upon pathogen recognition, the plant cell undergoes an extensive transcriptional 

reprogramming in a highly dynamic and temporally regulated manner. Stimulation of 

these plant defenses involves complex signal transduction networks incorporating 

feedback and cross-talk controlled by largely unknown mechanisms (Mukhtar et al., 

2009). While transcriptomics has already uncovered hundreds of pathogen-responsive 

genes and key regulatory nodes, a large-scale immune transcriptional regulatory network 

is yet to be generated. In building a transcriptome, yeast-one-hybrid, and chromatin 

immunoprecipitation assays are especially useful as they can differentiate between 

indirect and direct gene regulation (Vidal et al., 2011). Experimental large-scale and 

static cellular networks give insight into biological systems at certain times and 

conditions. This data is often combined with protein localization data, protein–protein 

interactions (PPIs) and other temporal expression data (Uzoma and Zhu, 2013). Network 

dynamics modeling enables changes in transcriptional networks, interactomes, and 

signaling pathways to connect genotypic changes with plant defenses and disease 

phenotypes. Furthermore, immune-related subnetworks or modules help decode the 

complexities within biological systems (Riccione et al., 2012). By analyzing network 

dynamics from an evolutionary perspective, a phylogenetic relationship among molecules 

can also be identified (Morange, 2013; Soyer and O’Malley, 2013). Here, the number of 

existing computational tools and algorithms that can be exploited to predict, model and 

determine the dynamics of plant immune regulatory networks were explored. 

Static plant transcriptional immune networks are usually inferred using both linear 
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and non-linear correlations as well as non-linear dimensionality reduction method 

(RepEdLEGG; Ernst et al., 2007; Sato et al., 2010). RepEdLEGG was employed on 

transcriptomic data obtained from diverse Arabidopsis immune mutants to model a static 

immune signaling network (Sato et al., 2010). Dynamic regulatory events miner (DREM) 

utilizes an input–output hidden Markov model and gene expression time series data to 

construct dynamic regulatory networks (Schulz et al., 2012). Recently, DREM was used 

to analyze ethylene transcriptional response in context of dynamic EIN3 binding data 

(Chang et al., 2013). Signaling and DREM (SDREM) extends DREM to address 

perturbation in the regulatory networks (Gitter et al., 2013). However, modeling dynamic 

interactions of the genes and generating meaningful perturbations requires a more 

expanded framework that must incorporate dynamic data as well as any environmental 

dependencies. To consider solutions available to address dynamic network perturbations, 

Shannon’s mutual information was used to model dynamic relationships of genes and 

show that both linear and non-linear models could be incorporated while integrating 

dynamic and environment-dependent complexities of gene expression (Wang et al., 

2013). NEXCADE is another interactive network perturbation program, that uses a graph 

theoretical approach and simulates single, multiple, and sequential perturbations (Yadav 

and Babu, 2012). However, it remains to be determined whether these algorithms are 

effective in modeling plant immune system network. Furthermore, standardized 

qualitative dynamical modeling suite (SQUAD) uses a binary decision diagram algorithm 

to identify all the stable steady states and then applies a qualitative dynamical systems 

approach to solve the resulting continuous dynamic system (Di Cara et al., 2007). 

Noteworthy, Naseem et al. (2012) recently utilized SQUAD to perform dynamic 
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modeling of the plant hormonal signaling network. 

Computational cost is another essential aspect in modeling large-scale dynamic 

regulatory networks. Such cost can be drastically reduced by using software equipped 

with a deterministic model along with a heuristic algorithm, such as NetGenerator V2.0 

(Weber et al., 2013). Collectively, in the light of aforementioned bioinformatics tools, an 

expanded computational framework is needed that incorporates expression data with 

multiple timescales, cellular compartments, host proteins–pathogen effector interactions 

and other environmental dependencies to model plant–pathogen interactions networks.  

Host-Pathogen Protein-Protein Interaction Networks 

Complementary proteomics analyses are essential to understand global virulence 

effects caused by pathogens’ effector-mediated perturbations of the key nodes in the plant 

immune system. The first plant–pathogen interaction network-1 (PPIN-1) was 

constructed using effectors from two pathogens spanning the eukaryote–eubacteria 

divergence and three classes of Arabidopsis immune system proteins (Mukhtar et al., 

2011). The resulting network contains 3,148 interactions among 926 proteins. The PPIN-

1 also identified 165 effector-interacting proteins (effector targets), compared to only 

approximately 20 described previously. While a stringent yeast-two-hybrid (Y2H) system 

was employed for the above analyses, the common limitations of this heterologous 

system may still apply concerning both the false-positive and false-negative discovery 

rates. In addition, PPIN-1 revealed that pathogen effectors target highly interconnected 

host machinery to suppress effective host defenses and promote pathogen fitness (Figure 

2B; Mukhtar et al., 2011). Several network biology hypotheses/premises have been 
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developed through interactome mapping. The centrality–lethality rule and local impact 

hypothesis are two examples that have been applied to human diseases (Arabidopsis 

Interactome Mapping Consortium, 2011; Barabasi et al., 2011; Gulbahce et al., 2012). 

According to the centrality–lethality rule, nodes that are central to many connections 

have the potential of dismantling the entire system if disabled, such as through a viral 

attack. The local impact hypothesis states that “products of disease susceptibility genes 

should reside in the network vicinity of the corresponding viral targets” (Gulbahce et al., 

2012). For this study, the host interactome was developed by integrating different data 

sources. Epstein–Barr virus and human papillomavirus strains were selected to explore 

mechanisms of virally implicated diseases. These strains were found to target host 

proteins that were in proximity to other proteins associated with viral diseases as 

evidenced by significant shift in gene expression levels in corresponding disease 

implicated tissues (Gulbahce et al., 2012). Viral “neighborhoods” existed in the host 

interactome and were labeled as “viral disease networks.” Similar demonstrations or 

contradictions need to be studied in the plant kingdom. Considering network components, 

hubs (highly connected proteins) and edges play an integral role in human and 

Arabidopsis immune systems. In humans, understanding the role of hub proteins requires 

differentiating between disease-related genes and essential genes. Given that human hubs 

frequently correspond to disease-related proteins (Barabasi et al., 2011), it would be 

interesting to extend this theory to plants for testing and verification in diverse natural 

populations. While several high-throughput technologies have been applied in plants, 

there still exist hundreds of thousands of unconstructed plant cell PPIs. Construction and 

access to reference PPIs can be achieved through computational and predictive methods. 
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Predicative capabilities are based on a wide range of protein and interactome 

characteristics (Fukunishi and Nakamura, 2008; Lee et al., 2010). The Protein Data Bank 

serves as a reference for proteins’ three-dimensional structures and protein complexes 

(Velankar and Kleywegt, 2011; Velankar et al., 2012; Gutmanas et al., 2014). As a 

predictive tool, the Protein Data Bank is a methodological starting point for exploring 

experimentally determined protein interfaces, emphasizing particular features that can be 

used to predict domain–domain interactions in proteomes (Braun et al., 2013). Protein 

docking software provides another category of methods to infer protein–protein binding 

domains and interaction sites (Cai et al., 2013; Pencheva et al., 2013). 

Comparing Human and Plant Immunity Through Differential and Three Dimensional 

Networks 

While the development of comprehensive reference maps is one of the current 

challenges in the field, the future of omics-based research will integrate biological 

insights into networks to drive translational research. Creating comprehensive reference 

network maps is the first step toward developing dynamic, information-rich resources. To 

assist in these efforts, standardized experimental benchmarking and validation assays 

provide a mechanism to estimate the size and validity of the existing networks (Braun et 

al., 2013). In contrast to the highly dynamic and fluctuating endogenous conditions, 

under which biological systems normally operate, most physical interactome maps are 

developed from experiments conducted under static conditions. Differential network 

mapping takes into account the dynamic state to produce a cell-type and condition-

specific interactome (Carvunis et al., 2013). Due to this characteristic, differential 

network mapping provides a more accurate description of the molecular and cellular 
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mechanisms within a living system. Although network biology provides a platform for 

decoding complexity, collapsing of networks to nodes and edges may lead to a significant 

loss of data. Current two-dimensional interactome maps do not consider either structure 

or conformation of the individual proteins within a network and ignore the spatial 

limitations of protein interactions. Because protein structure and function are highly 

interwoven, three-dimensional interactome maps that account for protein structure, 

interfaces, and even isoforms can greatly enhance the level of understanding of in vivo 

PPIs (Stein et al., 2011; Wang et al., 2012; Zhang et al., 2012). 

Two-dimensional protein networks can be reconstructed with a third dimension to 

integrate protein structure, conformation, and spatial limitations. Atomic-level protein 

structure information was resolved for several large-scale human PPI networks to create 

the third dimension of analysis (Das et al., 2014a, b). Previously, a three-dimensional 

reconstruction of protein networks was conducted to elucidate the genetic and molecular 

mechanisms underlying human diseases; this investigation primarily focused on gene 

pleiotropy and locus heterogeneity (Wang et al., 2012). This type of network construction 

could also be applied to plant network maps in an effort to better understand plant disease 

and genotype–phenotype complexity. To assist with the creation of 3D interactome 

networks, the first iteration of interactome networks with structural information (INstruct; 

a database that houses current high quality, three-dimensional PPI networks that are 

structurally resolved to the atomic level) was built using several model organisms (Meyer 

et al., 2013). INstruct includes 37 Schizosaccharomyces pombe, 1273 Saccharomyces 

cerevisiae, 119 Mus musculus, 166 Drosophila melanogaster, 120 Caenorhabditis 

elegans, 644 Arabidopsis thaliana, and 6585 human interactions. 
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Node and Edgetic Investigations within Pathogen-Host Systems 

Network components and topological properties provide novel avenues of 

investigation. Phenotypic variations due to total loss of a gene product (node-removal) 

emphasize the importance of node-centered investigations. Network topological 

properties of a node can be investigated to determine key proteins that are central to 

many interactions (Barzel and Barabasi, 2013). One topological property involves the 

degree of a node, which describes the number of edges a node has within a network. 

Hubs are central and critical to many edges within a network. In a scale-free network, 

most nodes possess few connections to other nodes while a handful of hubs essentially 

form the foundation of the network. This characteristic of scale-free networks is 

incorporated in PPI and metabolic network maps developed for organisms ranging from 

yeast to humans (Vidal et al., 2011). Recently, several independent studies confirmed the 

importance of hub proteins in pathogen virulence mechanisms. The results indicate that 

diverse pathogen proteins (spanning across viruses, bacteria, and fungi) target hub 

proteins in both humans and plants (Vidal et al., 2011; Braun et al., 2013). Thus far, two 

different categories of network hubs have been identified. Party and date hubs differ by 

their number of edges and the conditions that enable the interaction (Vidal et al., 2011). 

Party hubs are known for maintaining connections with all of their partners in all tested 

conditions. Date hubs tend to interact with different partners based on specific conditions. 

Node-removal can affect inter- and intra-network hub proteins or ensue on the periphery 

of a community of proteins. Other phenotypic variants can arise from edgetic 

perturbations (removal of a specific edge). In an edgetic disruption, a targeted interaction 

is disrupted while all other interactions (edges) remain unaffected. The consequence of 
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node-removal on the structure of the network might be greater because removing a node 

impacts more than one specific interaction (Zhong et al., 2009). Conversely, edgetic 

perturbations produce less significant network structure changes. At the molecular level, 

edgetic disruptions are characterized by in-frame point mutations that cause single amino 

acid substitutions and minute insertions, whereas truncating mutations and deletions 

reflect node-removal mechanisms. Given that about half of the ~50,000 known human 

diseases could be linked to edgetic disruptions (Zhong et al., 2009; Vidal et al., 2011), a 

similar application of the edgetic hypothesis to the plant kingdom can potentially shed 

light on disease and abiotic stress responses, yielding tools for crop improvement. 

New methods such as forward and reverse edgetics aid in the analysis of 

phenotypic variation due to disturbances in specific molecular interactions (Charloteaux 

et al., 2011). Forward and reverse edgetics are complementary strategies of phenotypic 

investigation. Forward edgetics takes a mutated gene associated with a specific 

phenotype and uses Y2H to establish the interaction disruption. Reverse edgetics begins 

with a protein of interest and its corresponding set of interactions. Using reverse Y2H 

screens, reverse edgetics concerns the systematic separation of edgetic alleles that code 

for a protein defect (Charloteaux et al., 2011). These novel methods can differentiate 

between edgetic disruptions and node-removal mechanisms of phenotypic changes and 

pathogen infections. Edge direction is also essential to biological signaling 

systems/mechanisms and recent technology allows for the development of experimental 

methods to measure edgetic properties (Barzel and Barabasi, 2013). Continued 

exploration/experimentation will produce interactome network models on the proteome 

level that can integrate properties of edge strength, direction, and dynamics. Future 
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interactome maps will combine weighted and animated edgetic information (Carvunis et 

al., 2013). Clearly, a database of all possible protein interactions for each species will be 

the next milestone in systems research. 

Conclusion 

In summary, emerging technologies, resources, and research offer new 

opportunities to investigate unchartered territories in plant biology. Current interactome 

maps primarily reflect static states of time, internal conditions, and external influences. 

As such, today’s interactome maps should be utilized as a scaffold to model in vivo 

conditions by coalescing other layers of functional “-omic” data, including: genomics, 

phenomics, transcriptomics, metabolomics, and epigenomics. Integrating diverse plant “-

omics” data enables researchers to investigate and address plant processes and responses, 

such as development, signal transduction pathways, RNA processing, protein 

modifications, cell cycle, and plant immune responses. A global understanding of plant 

stress and disease responses and phenotypic diversity will promote investigations of 

network topological properties. Computational tools, databases, and other systems 

resources will continue to grow and facilitate functional analysis and integration of 

multiple heterogeneous data sources. This may lead to improvements in environmental 

resilience, pathogen resistance, and overall crop production. 
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CHAPTER 2 

UNDERSTANDING FC RECEPTROS THROUGH THEIR TRANSCRIPTIONAL 
REGULATION AND COPY NUMBER VARIATION   

 

Introduction 

The immunoglobulin-binding molecules termed fragment crystallizable receptors 

(FCRs) are critical for linking antigen-specific recognition to effector cells, which 

facilitates antibody performance. FCRs are also implicated in the pathogenesis of various 

autoimmune diseases including diverse rheumatic diseases, such as SLE and RA. Painful 

swelling in joints or muscles are characteristic of rheumatic diseases. In contribution to 

the future improvement of existing diagnostic and therapeutic methods for rheumatic 

diseases, several molecular mechanisms of FCRs were studied. The primary FCRs of 

interest were the Fc gamma (Fcγ) suite, specifically the FcγIIB receptor. Fcγ receptors 

are known regulators of immune responses and are the FCRs for antibody 

Immunoglobulin G. Most of the FcγRs are activating receptors and include the high-

affinity receptor FcγRI and a family of low affinity receptors, including FcγRIIa, 

FcγRIIc, FcγRIIIa and FcγRIIIb. Other FCRs of interest include: the FcαR1, a receptor 

for IgA that is present on myeloid cells in humans, the recently identified FcµR/TOSO, 

which binds IgM, and finally Fcα/µR, which binds IgA and IgM.  

To understand the regulation of human FCRs in SLE and RA patients, three 

comprehensive approaches were undertaken and include: (1) the identification of novel 
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interacting partners of FCRs’ cytoplasmic domains, (2) the finding of statistically 

overrepresented cis-regulatory elements in FCGR2, the only classical FCR and the 

identification of their cognate transcription factors, and (3) the identification of FCGR2B 

CNV (Copy number variation) in SLE patients.  To identify the novel interacting partners 

of FCRs’ cytoplasmic domains, the yeast-two hybrid system was applied. The yeast-two 

hybrid system enabled the pair-wise test of 48 clones of FCRs’ cytoplasmic domains 

against ~14,000 full length human clones, provided by the Dana Farber Cancer Institute 

(DFCI) in Boston, Massachusetts. This extensive library from DFCI has been previously 

applied to understand the perturbed molecular pathways that cause cancer progression, 

neurological disorders, and type 2 diabetes (Vidal et al, 2013). After conducting the 

experiment twice at DFCI and once more at UAB as to enrich the number of interactions, 

the first human autoimmune disease network was generated. An interactome map 

inclusive of receptors associated with autoimmune diseases is a valuable tool for future 

SLE and RA diagnostic and treatment methods.  

In the search of statistically overrepresented cis-regulatory elements in FCGR2 

and the identification of their cognate transcription factors, Multiple Em for Motif 

Elicitation (MEME) and a promoter-bootstrapping program (POBO) were utilized. 

MEME is designed to find or predict motifs such as transcription factor binding sites and 

cis-regulatory elements, and POBO can screen and verify known cis-regulatory elements 

within a sequence.  A cis-regulatory element is a region of DNA or RNA that regulates 

the expression of genes located on the same strand, and transcription factors are proteins 

that control gene expression.  By finding overrepresented cis-regulatory elements, 

through MEME and POBO, the transcriptional binding factors that cause FcγIIB 
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expression, the only Fcγ inhibitory receptor, can be determined and thus mechanistically 

regulated for therapeutic treatment of some rheumatic diseases.  

Dr. Travis Ptacek, a lab colleague, began the first novel study of the 1q23 FCGR 

gene cluster in association with SLE risk. He identified FCGR3B alleles associated with 

high SLE risk among certain races and a strong link between a FCGR2B variant and SLE 

onset. These findings form a foundation for future studies of this gene cluster and its role 

in autoimmunity. I redesigned the methodology in order to obtain the full-length product 

of the 180kb 1q23 gene cluster instead of two products (5’ and 3’) that were previously 

obtained. To identify the FCGR2B CNV (copy number variation) in SLE donor cohorts, 

the methodology was redesigned to yield a single full-length product through the 

application of SMART cDNA synthesis, 3’ RACE PCR, a labor-intensive PCR Nesting 

performed 3 times, recombination based cloning, mini-prepping of 36 products per round, 

and then Sanger Sequencing. The full-length product contains the genes FCGR2A, 

FCGR2B, FCGR2C, FCGR3A and FCGR3B that are located within 180kb on 1q23. The 

full-length product can enable the discrimination between: FCGR2B and FCGR2C fused 

to FCGR2A, and at the 3’ region, FCGR2B and FCGR2C. By understanding the CNV of 

various functional FCGR alleles, the efficacy of therapeutics can be determined.  

Methods 

Yeast-Two Hybrid System 

Prior to the implementation of the yeast-two hybrid system, 48 clones coding for 

cytoplasmic domains of FCRs were generated. A receptor has extracytosolic, 

intramenbraneous and cytoplasmic domains. Although the extracytosolic domain binds 

with IgG in case of Fcγ, interactors within the cytoplasmic domain of the receptors is 
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expected. Clones were generated using the Gateway cloning and the LR reaction. A 

primer containing attB1 and attB2 sites was designed. PCR was done using a proof 

reading taq polymerase and these products were cloned into pDONR207 vector. The 

sequence was generated through the Heflin Genomic Center at UAB. Upon sequence 

confirmation, I performed an LR clonase reaction into a DB (bait) vector and an AD 

(prey) vector. For the yeast two-hybrid system, one strain contains a DNA-Binding 

domain, known as DB and the other contains an activation domain, known as AD.  A 

known protein, called the bait, is fused to the DB, and an interacting protein, called the 

prey, is fused to the AD of a transcriptional activator. The mating of these two yeast 

strains enables the efficient combination of large collections of DNA constructs. When 

these yeast mate and their vectors join, the reporter gene is activated, which can be 

screened for on selective media containing HIS 3AT. Vectors have 3 functional regions: 

(1) an origin of replication (2) a drug-resistance gene (3) a region where DNA can be 

inserted without interfering with plasmid replication or expression of the drug-resistance 

gene.  

There were a total of 48 clones, including the WT cytosolic domains, phospho-

mimic/phospho-dead mutants (clones attained from Dr. Kimberly’s lab that were used as 

DNA template for PCR amplifications), in addition to naturally occurring alleles. A pair-

wise test of the 48 clones was done against ~14,000 full length human clones, provided 

by DFCI in Boston, Massachusetts.  

To enrich the number of interactions, the yeast strains expressed the human full-

length genes in both the forward direction (48 Fcγ receptor clones as baits) and reciprocal 

direction (Fcγ pool as prey) for a total of 96 clone-types. Prior to beginning, bait and prey 
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cloned vectors are transformed into their corresponding haploid Saccharomyces 

cerevisiae yeast strains: MATα/Y8930 for DB (bait vectors), and MATa/Y8800 for AD 

(prey vectors). 

With a multichannel pipette, transformed DB yeast cells were spotted onto two agar 

plates of SD-Leucine, which were then grown for 1-2 nights at 30°C. The same was done 

for the AD yeast cells but with SD-Tryptophan. Afterwards, the DB and AD colonies 

were picked with a multichannel pipette and directly inoculated (per row) into 96-well 

plates filled with 120µl of Sc-Leu/Sc-Trp respectively and grown overnight at 30°C. 

Then, the cultures were mixed with a multichannel pipette before 3µl of culture per well 

were transferred into falcon tubes containing 7ml of Sc-Leu/Sc-Trp respectively. The 

caps were loosened and taped securely before being placed in a shaker at 30°C to grow 

for 1-2 nights. 

Afterwards, the glycerol stocks of the cultures were prepared. Glycerol is required in 

a 1:1 ratio in order for the cells to survive in an environment of -80°C. In a solution 

basin, 7mL of each grown culture was mixed with 7mL of a 40% glycerol stock. With a 

multichannel pipette, 130µl-140µl of this glycerol/culture solution was aliquoted into 96-

well costar plates then covered with aluminum tape to store in -80°C. This was repeated 

for all 48 baits and 48 preys. 

For mating, 140µl of YEPD media is aliquoted into 96 96-well costar plates. Then, 

5µl of the AD pool is pipetted into the 96 YEPD costar plates. Then 5µl of bait glycerol 

stock is pipetted into the properly labeled YEPD/AD pool costar plates. The mate-plates 

are covered with airport tape before being grown overnight at 30°C. 

For diploid selection, 140µl of Sc-Leu-Trp media is aliquoted into 96 96-well costar 
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plates. The mated plates are then shaken before 5-7µl is aliquoted into the prepared 96-

well Sc-Leu-Trp plates, which are covered with airport tape before being grown 

overnight at 30°C. 

For spotting, the diploid selection plates are shaken before 4-5µl are spotted onto 

various selective media including: SD/-Leu-Trp-His and SD/-Leu-His with plates 

containing multiple concentrations of cyclohexamide and 3AT (explained in detail 

below). Then incubation at 30°C for 3-4 nights occurs. Afterwards, colony picking occurs 

using autoclaved toothpicks for the colonies with positive growth. At this point, colonies 

were assigned confidence scores, which categorize the strength of the interaction based 

upon the growth. These colonies undergo cell lysis and PCR. Cell Lysis is required to 

expose and obtain the vectors. The hybrid proteins (DB-X and AD-Y) are amplified 

directly from yeast transformants by PCR, and subsequently identified by Sanger 

sequencing.  

Throughout the experiment, controls were always present. These controls consisted of 

a variety of genotypes and were a part of the collection at DFCI. I performed this pair-

wise screen twice at DFCI and four times in Birmingham to enrich the number of 

interactions. 

YEPD is a nonselective, enriched media that ensures growth for all cells and provides 

the proper environment to support ample interactions. YEPD allows for all mating to 

occur and the production of many daughter cells, regardless of their phenotype.  Next, 

these diploid cells will be selected for positive vectors rather than the random ones.  This 

is done by growing them on selective media grown overnight at 28°C. The positive 

interaction of a protein with the activating domain and the binding domain complex will 
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cause for the expression of a screening marker (Gal4).  This gene can be selected for on 

media lacking His. Another Y2H condition applied to detect possible autoreactivity of the 

new vectors includes the spotting of Y8800/MATa AD encoding plasmid lacking an 

insert onto the corresponding selective media.  The same should be done for the DB-X 

baits.  Growth on selective medium identifies autoactivators. 

Growth on SC-Leu-Trp-His+3AT media: 

• Should theoretically yield all desired colonies (positive selection) 

• Positives are screened for their ability to activate the His3 marker 

• 3AT is an inhibitor of His and is added to reduce background growth. 

Growth on SC-Leu-His+cyclohexamine+3AT media: 

• Cyclohexamide is a part of the AD vector. And therefore, serves for 

negative selection because this media kills the prey.  

By comparing these plates, the false positives can be identified. Autoreactivity will be 

elaborated in the discussion section. 

Cytoscape to Visualize and Analyze Interaction Data 

 Data from the yeast-two-hybrid assay was uploaded as an excel document into 

Cytoscape 3.2.0. The integration of the data enabled the visualization of an autoimmune 

interactome network. A random network was generated using a cytoscape plug-in called 

“Randomnetworks” as well. This random network was analyzed in parallel with the 

autoimmune network to verify our findings.  Cytoscape plug-ins were also applied for 

network analysis through the assignment of topological properties. The plug-ins include:  

“ShortestPath” to find the shortest paths between nodes, “ClustnSee” identifies clusters, 
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“CalculatenodeDegree” calculates degree distribution, and “CentiScaPe” calculates node 

centrality or betweenness.  

FCGR Promoter analysis 

One major question in systems biology attempts to answer how certain genes are 

controlled or regulated. In the case of this study, the regulation of the FCG2B gene is of 

primary interest. As previously described, MEME and POBO are tools utilized for the 

summation, verification and screening of predetermined cis-element motifs belonging to 

a set of sequences. When a particular sequence was considered to be statistically 

overrepresented, it was subject to a computer-based boot strapping experiment, which 

utilizes all transcription factors in human genome. CSL (“CBF-1, Suppressor of Hairless, 

Lag-2,” after its mammalian, Drosophila, and Caenorhabditis elegans orthologs) is a 

DNA-binding transcription factor that binds to overregulated elements and NICD 

(intracellular domain of Notch) is a signaling protein. The NOTCH signal collaborates 

with CSL via NCID. NCID removes the repressor and binds the activator, thus leading to 

gene expression. The functions of these proteins can be analyzed through the use of 

online databanks.  

Protocols for Investigating Copy Number Variation 

A labor-intensive Nest PCR was applied 3 times as well as recombination based 

cloning, transformation, mini-prep of 36 products per round, sanger sequencing, and then 

sequence analysis. Later the 3’ RACE PCR conditions were optimized to increase the 

mini-preps to 48 products per round. 

RACE PCR Approach 
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 The protocol for the RACE PCR approach was completely adapted from the 

SMART RACE cDNA Amplification Kit User Manual by Clontech (Clontech 2012) and 

is featured below; all credit is due to Clontech. This protocol is for generating RACE-

ready cDNA.  

1. Enough of the following Buffer mix was prepared for all of the 5’- & 3’-RACE-

Ready cDNA synthesis reactions in addition to one extra reaction to ensure 

sufficient volume. For each 10 µl cDNA synthesis reaction, I mixed the following 

reagents and spun them briefly in a microcentrifuge, then set them aside at room 

temperature until Step 6: 

a. 2.0 µl of the 5X First-Strand Buffer  

b. 1.0 µl of DTT (20 mM) 

c.  1.0 µl of dNTP Mix (10 mM) 

d. This yields a total volume of 4.0 µl per reaction.  

2. The following reagents were combined in a separate microcentrifuge tube:  

a. For preparation of 3’-RACE-ready cDNA 

i. 1.0-3.75 µl of RNA 

ii. 1.0 µl of 3’-CDS Primer A 

3. Sterile water was added to the tubes from Step 2 for a final volume of 4.75 µl per 

reaction.  

4. The contents were then mixed and spun the tubes briefly in a microcentrifuge.  

5. Afterwards, the tubes were incubated at 72°C for 3 minutes, the cooled at 42°C 

for 2 minutes. After they were cooled, the tubes were spun briefly for 10 seconds 

at 14,000 g to collect the contents at the bottom.  



	  

 

51 

6. The following master mix was prepared for the 3’-RACE-ready cDNA synthesis 

reactions. The following reagents were mixed at room temperature in the 

following order: 

a. 4.0 µl of the Buffer Mix from Step 1 

b. 0.25 µl of the RNase Inhibitor (40 U/µl) 

c. 1.0 µl of the SMARTScribe Reverse Transcriptase (100 U) 

d. This yields a total volume of 5.25 µl per reaction. 

7. 5.25 µl of the Master Mix from Step 6 was added to the denatured RNA from 

Step 5 for a total volume of 10 µl.  

8. The contents were mixed in the tubes by gentle pipetting, and then spun briefly to 

collect the contents at the bottom.  

9. The tubes were incubated at 42°C for 90 minutes in a hot-lid thermal cycler. 

10. The tubes were then heated at 70°C for 10 minutes. 

11. The samples were stored at -20°C for up to three months. In this case, they were 

applied to Nest PCR. 

Nested PCR Approach 

Nest PCR is a type of PCR that gives way to more specific product by reducing 

non-specific binding of products that are from the amplification of off-target primer 

binding sites. Nested PCR also has 2 sets of primers, the second amplifies a target on the 

first round of product. The PCR was performed using FCGR2A and FCGR2B/C specific 

primers. The product from the first round of PCR was used for the second round of PCR, 

and the product of the second round of PCR was used for the third round.  

Table 1. The first round of PCR: 
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Duration Temperature (°C) 

5 minutes 94 

15 seconds 94 

22 seconds 65 

2 minutes 72 

7 minutes 72 

Infinity 4 

What is in gray indicates that this stage was run 28 times before the infinity phase.  

Table 2. Second and Third Rounds of PCR:  

Duration Temperature (°C) 

5 minutes 94 

15 seconds 94 

15 seconds 65 

2 minutes 72 

Infinity 16 

What is in gray indicates that this stage was run 50 times before the infinity phase 

Recombination Based Cloning: BP Reaction 

 The following master mix was made (per reaction) for the BP Reaction, which 

would generate an entry clone. 

1. 1.5 µl of the pDONR 207 vector 

2. 3.5 µl of the PCR product 

3. 2.0 µl of the BP clonase 

4. 3.0 µl of autoclaved deionized water 
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5. The total volume is 10 µl per reaction.  

Bacterial transformation 

Transformations with competent E. coli cells were prepared with the BP reaction 

product.  Below is the protocol: 

1. One vial of chemically competent cells (about 1 mL) was thawed on ice. One box 

of appropriately sized pipette tips was placed in the freezer. The hot-water bath 

incubator was set to 42°C, and once at 42°C, a tube with a sufficient amount of 

LB broth was placed in the hot bath until used at Step 6. 

2. In a separate tube, 1-5 µl of the BP reaction product was added to 50 µl of 

competent cells (per reaction). This was mixed gently without pipetting.  

3. The vials were incubated on ice for 30 minutes. 

4. The cells were then heat-shocked for 30 seconds in the hot-water bath at 42°C. 

5. The vials were then removed from the hot-water bath and placed on ice for 2 

minutes. 

6. 250 µl of the pre-warmed LB broth was then added aseptically to the vials.  

7. The vials were then shaken horizontally at 37°C for one hour at 225 rpm.  

8. With glass beads, 20 to 200 µl of solution from each transformation was spread 

on a room-temperature selective (Gentamicin or Ampicillin) plate and incubated 

overnight at 37°C (the plates were inverted). 

9. A select number of colonies were collected and then used to generate cultures that 

are then mini-prepped.  

Bacterial growth cultures 

1. 50 mL of LB medium was added to a falcon tube. 
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2. 50 µl of antibiotic (gent/amp) was added into the falcon tube from Step 1 and 

mixed. 

3. 5 mL of the Step 2 mixture was aliquoted into individual appropriately labeled 

culture tubes. 

4. A single colony from the plates of Step 8 from the transformation protocol 

detailed directly above, was selected with a pipette tip and then dropped into the 

culture tube.  

5. The culture tubes were tapped securely to the incubator/shaker, which was set 

vigorously shaking at 37°C.  

6. 36 cultures were prepared per plate. 

Protocol for the Mini-Prep of 36 cultures per PCR product 

The following protocol is from the Mini-Prep handbook from Qiagen.  

1. The hot-water bath set at 42°C was prepared and sufficient Qiagen Buffer EB 

solution was added into a tube and placed in the bath to pre-warm for Step 11.   

2. The majority of the culture fluid was discarded, and then 1.5 µl of the pelleted 

bacterial cells were added to a microcentrifuge tube. This tube was microcentrifuged 

for one minute. This step was repeated 3 times per culture. 

3. Then, 250 µl of Solution 1 (kept at 4 °C) was added.   RNase A was added to Buffer 

P1 previously.  

4. 250 µl of Solution 2 was added and gently inverted 4–6 times.    

5. 350 µl of Solution 3 was added and then the tubes were inverted immediately but 

gently 4–6 times.  
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6. Then, these tubes were centrifuged for 10 min at 13,000 rpm.  A compact white pellet 

formed. 

7. The supernatants were then transferred to the QIAprep spin column by pipetting. 

8. These were then centrifuged for 30–60 seconds. The flow-through was then 

discarded.   

9. The QIAprep spin column was washed by the addition of 0.75 ml Buffer PE before 

centrifuging for 30–60 seconds.  

10. The flow-through was then discarded, before centrifuging for an additional 1 minute 

to remove any residual wash buffer. 

11. The QIAprep column was then placed in a clean 1.5 ml microcentrifuge tube. 50 µl of 

pre-warmed Buffer EB (10 mM Tris·Cl) was added to elute the product.  This was 

added to the center of each QIAprep spin column before sitting for 1 minute. This 

was then centrifuged for 1 minute. 

12. The products were then subject to Sanger-sequencing and afterwards analysis.  

Results 

To develop the Fc Receptor interactome, FCRs that have been conventionally 

known for the past 30 years were the starting point. Cloning the cytosolic domains was 

the primary point of interest since they have been known to relay signals to the nucleus. 

Seven receptors were investigated namely: TOSO, gama-chain, FcαRI, FcγRII,  

FcγRIIC,  FcγRIIA, and  FcγRIIB. Proteins are written with latin and genes are written in 

Arabic numerals. E.e. FCGR2B is a gene and FcγRIIB is its protein.  

For the yeast two-hybrid system, one strain contains a DNA-Binding domain, 

known as DB and the other contains an activation domain, known as AD.  A known 
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protein, called the bait, is fused to the DB, and an interacting protein, called the prey, is 

fused to the AD of a transcriptional activator. The mating of these two yeast strains 

enables the efficient combination of large collections of DNA constructs. When these 

yeast mate and their vectors join, the reporter gene is activated, which can be screened for 

on selective media containing HIS 3AT. Vectors have 3 functional regions: (1) an origin 

of replication (2) an antibiotic-resistance gene (3) a Gateway cassette; aregion where 

DNA can be inserted without interfering with plasmid replication or expression of the 

antibiotic-resistance gene.  

Using above mentioned yeast two-hybrid strategy, a pair-wise test of 48 clones of 

cytoplasmic domains of Fc receptors against an extensive library of ~14,000 full length 

human clones. After identifying the yeast strains that passed phenotypic selectivity, the 

cells were lysed and PCR reactions were performed in a 96-well format. PCR products 

were purified and sequenced using Sanger-based sequencing technology. The sequence 

reads were Blast against NCBI databank to identify the identity of putative positive 

interactions. The positive interactions identified were subject to careful verification of all 

interacting pairs and validation tests using orthogonal assays, which are crucial to ensure 

the release of the FCRs interactome map of the highest possible caliber.  Later, the 

sequences are analyzed and their corresponding proteins are identified. With the results, 

the first autoimmune network was generated. The network is composed of nodes (581) 

and edges (783). The generation of a random network using computer-based simulations 

in order to analyze side-by-side with our autoimmune interactome. Biological networks 

are very different than random networks in terms of organization and structure (Zhu et al, 
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2007). To understand the interactions of a network means to understand disease 

pathologies, SLE particularly in this case (Zhu et al, 2007). 
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Figure 1. The Global View of the First Human Autoimmune Network 

The white dots are nodes or interacting proteins. The lines depict physical and 

functional interactions between them called edges. The yellow nodes represent hub 

proteins. There are 581 nodes and 783 edges. The topological properties of this network 

are discussed in subsequent figures and reveal that this is a scale-free network. 
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Figure 2. Random network generated for comparison with the human autoimmune 

interactome 

This random network was generated with the same number of nodes (581) and 

edges (783) as the autoimmune network, yet displays a completely random arrangement. 

There are no hub proteins. And the nodes depicted on the bottom have either no 

interacting partners or one; this is an occurrence not observed in the autoimmune 

network. 
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Figure 3. Fc receptor signalomics 

The FCRs’ network was organized into  3 layers. The first contains 7 colored 

nodes on the top that represent the 7 Fcγ receptors, which match the key by chronological 

order. The second layer is the most important, which is the mustard-green colored square 

of nodes that represent the direct protein interactors with the receptors. The third layer 

consists of white nodes, which represent the interactors of the positive interactions. A list 

of several key proteins analyzed from the second layer of Figure 3 were compiled in 

Table 3. 
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Table 3. Known functions of proteins identified through their affinity for binding to 

promoters 

Identified Protein Known Protein Function 

SEC61G Glioblastoma proto-oncogene SEC61gamma is required for 

tumor cell survival and response to endoplasmic reticulum 

stress.” 

TP53 “Tp53 gene mutation is associated with malignant epithelioid 

angiomyolipoma of the kidney with pulmonary metastases.” 

PADI4 The synovial expression of cyclic citrullinated peptide and the 

generation of anti-CCP antibodies are strongly associated with 

shared epitope alleles and/or certain PADI4 gene SNPs in 

rheumatoid arthritis.” 

S100A4 “S100A4 and its downstream factors play important roles in 

pancreatic cancer invasion, and silencing A100A4 can 

significantly contain the invasiveness of pancreatic cancer.” 
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Network Visualization and Topology Analysis  

Several bioinformatic analyses were performed to understand the properties of 

this interactome map. Among these properties, our analysis demonstrated that FcRs 

interactome exhibit scale-free properties i.e. a networks exhibiting a power-law degree of 

distribution (Figure 6). The number of edges that nodes have can be calculated through a 

negative exponent of the value for edges. This negative exponent is a parameter usually 

between 2 and 3. This random network serves to validate the autoimmune network as 

well as a useful comparison when assessing the degree of distribution, degree of 

betweeness, clustering coefficient, and the shortest path of the autoimmune network. 

Cytoscape plug-ins were utilized to learn the different topological properties of the 

graphs. Cytoscape is an open-source platform for analysis as well as visualization of 

networks (Salto et al, 2012). Plug-ins provide network-profiling analyses. Cytoscape 

plug-ins are extensions of the software that enable it to be a highly useful bioinformatics 

tool when analyzing large-scale data from a high-throughput experiment such as the 

yeast-two hybrid assay. This software enables the modification of nodes visible such as 

nodes with certain numbers of interactions. The degree of a node in a network is the 

number of connections or edges the node has to other nodes. The degree of distribution is 

the probability of distribution of these degrees over the whole network (Figure 6). The 

shortest paths identify the minimal distance between two nodes in an interactome (Figure 

7). High degree of betweeness means that there are multiple shortest paths (Figure 8). 

This graph demonstrates the high betweeness of the interactors. Clustering means the 

proteins that have a high number of neighbors and are involved in clustering (Figure 9). 

The clustering coefficient is calculated by a N/M ratio, in which N is the number of edges 
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between the protein’s neighbor and M is the maximum number of possible neighbors that 

could exist in a protein (Gu et al, 2011). A high clustering coefficient suggests that 

protein-protein interactions are highly modular.   
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Figure 4. Immune interactors posses a higher degree of distribution in the autoimmune 

interactome 

 The random and autoimmune data were computed to analyze their frequency from 

1 to 1000. The range of frequency for the random network is 1 to 10. The range of 

frequency for the autoimmune network is 1 to ~100. The degree of distribution for the 

autoimmune network is 1 to about 600. In contrast, the degree of distribution for the 

random network is 1 to ~100. The degree of distribution reveals valuable insight into a 

network’s structure. For instance, the random network exhibits a small range of 

distribution, characteristic of a simple network. In contrast, the autoimmune network has 

a variety of degree of distribution. Most of the nodes maintain a small degree (around 

50), while a few nodes have large degree (around 100) as they have high connectivity. 

These nodes of high connectivity are key nodes that could be hub proteins. 
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Figure 5. Immune interactors possess a shorter path in the autoimmune interactome 

 The frequency of the random network ranges from 1 to 15, whereas the frequency 

of the autoimmune network ranges from 1 to 8. The path length of the autoimmune 

network ranges from 0 to 200,000. The path length of the random network ranges from 0 

to ~60,000. This data suggests that proteins in the FCR interactome exhibit the usage of 

minimal distances between nodes to reach a target destination.  The high number of 

frequency or connectivity of nodes at the path length of 4 suggests that these nodes could 

be key nodes central to many connections, whereas most nodes vary in their connectivity 

or frequency and path lengths. 
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Figure 6. Immune interactors posses a high betweenness in the autoimmune interactome 

 The degree of betweeness ranges from 1 to ~100 for the autoimmune network 

whereas the degree of betweeness ranges from 1 to ~10 for the random network. The 

number of neighbors for the random network is between 0 and ~0.1. The number of 

neighbors for the autoimmune network ranges from 0 and ~200. This data suggests that 

proteins in FCRs maintain a complex array of interactions, in which some proteins have a 

high numbers of neighbors, which highlights their biological functional significance. 
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Figure 7. Immune interactors tend to form clusters in the autoimmune interactome 

 The average clustering coefficient for the random network ranges from ~3 to ~10. 

The average clustering coefficient for the autoimmune network ranges from ~3 to ~200. 

The number of neighbors of the autoimmune network maintains within the 0 range. The 

clustering coefficient at 0 corresponds to true clusters. The autoimmune network contains 

only true clusters, which validates our findings. In contrast, the number of neighbors for 

the random network ranges from 0 to ~0.0125. This data suggests that proteins in FCRs 

are highly connected and some are key to many connections.  
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FCGR2B promoter analysis identifies key regulatory cis-elements 

A cis-regulatory element is a region of DNA or RNA that regulates the expression 

of genes located on that same molecule, and transcription factors are proteins that control 

gene expression.  By finding overrepresented cis-regulatory elements, through the use of 

bioinformatics, the binding factors that cause FcγIIB expression can be determined.  The 

overregulated cis-elements were analyzed using MEME and POBO. The software found 

5 sites of CTGAGAA in 1.6 kilobites of data. To define the reason for this occurrence, a 

computer-based boot strapping experiment seemed like the perfect means to find the 

answer. 50 random promoters were applied 1000 times in the human genome.  

A. 
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B. 

 

Figure 8: Overrepresented motifs using MEME and POBO in FCGR2B 

Overrepresentation of CTGAGAA (A) and GG/TGAAAGA (B): 

A. Five sites in 1.6 kb of data were identified. The core binding site for CSL 

(CBF1/RBP-J, Su(H), Lag-1). For the random cluster (the red curve), the average number 

of pseudo-clusters for this sequence is ~70 and the average range is ~25. For the blue 

curve, which represents activated cis-regulatory elements of the CTGAGAA sequence, 

the average number of pseudo-clusters is ~40 whereas the average range is ~125.  

B. Five sites in 1.9 kb of data were identified. These are the core binding 

sequence for members of the NFkB family (RelA; p65 and NFkB1; p50). For the random 

cluster (the red curve), the average number of pseudo-clusters for this sequence is ~34 

and the average range is ~100. For the blue curve, which represents activated cis-

regulatory elements of the sequence, the average number of pseudo-clusters is ~30 

whereas the average range is ~130. 
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The red curve represents random populations of gene expression and the blue 

curve is the CSL binding motif. The fact that the blue curve, which represents activated 

cis-regulatory elements of the sequences, is distinct from the random replication 

occurrences suggests that this cis-element is overregulated. CSL is a DNA binding 

protein that functions as a repressor or activator. Promoter analysis identified enriched 

elements in CSL. Further investigation needs to be done to determine whether these are 

not just elements, but binding partners. 
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A.  

  

B. 
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C.  

 

Figure 9. Optimization of RACE PCR for CNV of FCGR2- A, B & C 

This figure demonstrates the quality of the products obtained before and after 

optimization of the protocol. A. This shows the results of the gel electrophoresis of the 

first and second round Nest PCR products. “BC” and “A” refer to the portions of the 

1q23 gene cluster that contains the FCGR2B and FCGR2C (BC), and FCGR2A (A). B. 

This is an image of the gel electrophoresis of the third and last round of the Nest PCR. 

Evidently, there are more bands visible throughout the PCR rounds. C. This is an image 

of the gel electrophoresis of the products before optimization of the protocol. Evidently, 

there are no strong bands. The key details what cDNA is in the lanes corresponding 

numerically. The numbers correspond to donors and the “A” and “BC” reference the 

genes they contain (as explained above). The redesigned approach yielded stronger bands 

as well as the optimal product for analyzation. 
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Figure 10. RACE Strategy resulting in FCGR2A/FCGR2B Hybrid Products 

 Color homology and shapes represent homology, thus the portions of the hybrid 

RACE product that match the wild type FCGR2A and FCGR2B sequences are the same. 

Paralogous sequencing of the variants alongside the FCGR2A and FCGR2B wild types 

can confirm the same FCGR2B origin as opposed to the FCGR2C sequence. Future aims 

include approaches to further understand this hybrid RACE product.  

Note: From Travis Ptacek 2012. Reprinted with permission. 
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Discussion 

Large-scale yeast two-hybrid screens generated most of the binary protein 

interaction data currently available. The positive interactions identified through the Y2H 

system could be biologically relevant and thus provide a foundation for future 

investigations of the mechanisms by which the interactions affect the physiology of an 

organism. Recent efforts to map interactions in model organisms and in humans illustrate 

the promise and some of the limitations of the two-hybrid approach. Although these maps 

are incomplete and include false positives, they serve as a framework around which to 

elaborate and model the in vivo interactome. False positives can entail “pseudo-

interactions” which define the occurrences of positive interactions identified from the 

Y2H method, but in vivo, these macromolecules are either temporally or spatially 

separated throughout an organism’s lifetime. Although there are several levels of control 

to identify false positives, high-throughput assays that generate large datasets can include 

a fraction of false positives. Thus, the dataset must be analyzed thoroughly for quality 

before the construction of a reliable interactome map. This includes the prefilteration of 

the datasets with the use of orthogonal data or assays. Weak to strong interactions can be 

identified from Y2H assay, although these interaction strengths may not be reflective of 

the in vivo interactions. Regardless, strong interactions are considered as higher quality 

and thought to have a higher potential to be involved in biophysical interactions. 

Confidence scores are assigned that suggest significant binary interactions upon 

analyzing the robustness or strength of the yeast growth on various selective media. 

Since the first development of the Y2H system, controls and strategies to avoid 

misinterpreted or false information have been developed which has upgraded the Y2H 



	  

 

75 

system to a highly reliable binary interaction assay. One of the strategies and its controls 

are aimed to identify autoactivators. Autoactivators occur when a DB causes for the 

expression of its downstream reporter gene, although it is haploid. The yeast-two hybrid 

system is highly stringent exhibiting 97 percent accuracy. AD-Y autoactivators are 

identified on cycloheximide containing media, which allows for growth of only DB-X 

containing yeast. Yeast strains that grow on cycloheximide are disregarded and classified 

as de novo autoactivators. To identify DB-X autoactivators, high 3AT concentrations in 

media can be incorporated, which act on the GAL1-HIS3 reporter gene of DB-X.  

A system of interacting macromolecules can be abstracted into a mathematical 

framework, a graph, which can be further mathematically analyzed to obtain a 

comprehension of the system. The autoimmune interactome includes 581 nodes and 783 

edges. Many of these interactions are indirect. To identify key proteins, including hubs, 

several topological properties are identified and include: the degree of distribution, 

degree of betweeness, clustering coefficient, and shortest path. The number of edges 

occurring at a node is called the degree. A high node degree would be characteristic of a 

macromolecule that interacts with many other molecules, such as ATP, which interacts 

with many proteins. Degree of betweenness among nodes can identify key proteins (even 

non-hub nodes) that coordinate interactions between many nodes. The clustering 

coefficient reveals the number of neighbors that are likely to be connected in a network. 

The least number of distinct connected nodes between two nodes defines the shortest 

path, which reveals how quickly information can be transported in a network. 

Additionally, topological properties can support hypotheses of perturbation affects among 

proteins. For instance the central-lethality relation describes that within small motifs, 
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certain proteins are indispensable due to its number of direct connections. Identifying key 

proteins including hub and non-hub proteins, can have major implications on modeling 

interactomes and evaluating drug design target protein-protein interactions. The random 

and autoimmune generated networks were both analyzed for their topological properties, 

and the data from the random network served to validate the significance of the findings 

within the autoimmune interactome.   

Transcription factors can induce or repress gene expression upon binding to their 

cognate cis-regulatory DNA sequences. The discovery of an entire collection of 

transcription factor binding sites within an organism is one of the largest challenges in 

computational biology. Moreover, the understanding of the regulatory mechanisms of 

gene expression is a major role of genomics. FCGIIB promoter analysis is very important 

and done on a bioinformatic and systemic level. By finding overrepresented cis-

regulatory elements, through the use of bioinformatics, the binding factors that cause 

FcγIIB expression can be determined.  This is one of the first steps to analyzing the 

regulatory network. Several cis-regulatory sequences were found that require further 

investigation to determine that they are indeed binding partners and not just overregulated 

elements.  

Several proteins were identified through their affinity for binding to promoters. 

Several proteins that have been linked to diseases in previously published literature were 

found within the autoimmune network. For example, PAD14 and SD100 have been 

associated with RA, and some proteins associated with immune diseases were also 

confirmed. These findings could be attributable to the location of FCG receptors on 
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immunoglobulin G, which is a major antibody against pathogens. Further investigations 

should be done for confirmation, however the link is promising. 

With regards to the investigation of FCR CNV, the optimization of the protocol 

yielded advanced results in comparison to the initial conventional approach. Moreover, 

the hybrid RACE product creates more room for future investigation. Utilizing SMART 

cDNA synthesis and RACE PCR enabled us to obtain a full-length product as well as 

discriminate between FCGR2A, FCGR2B and FCGR2C (Figure 12). SMART cDNA 

synthesis eliminated the need to fuse two products, thus decreasing the potential margin 

for error. According to Clontech (2012), with SMART (Switching Mechanism at 5’ End 

of RNA Template) technology there is no adaptor ligation necessary during the addition 

of known sequences to both ends of the cDNA strand during first strand synthesis, which 

is also shown in Figure 12. Rapid Amplification of cDNA Ends (RACE) is useful for the 

amplification of mRNA sequences between pre-defined internal sites and an unknown 

sequence that is located at either the 3’ or 5’ ends of the mRNA. SMART cDNA 

synthesis was utilized for the downstream applications of 5’ and 3’ RACE PCR 

amplification strategies. For the original RACE strategy, the primers were designed to 

amplify FCGR2B, FCGR2A and FCGR2C. Two gene-specific primers were required per 

RACE reaction: a FCGR2B-FCGR2C specific primer as well as pan-FCGR2 primer 

(which amplified mostly FCGR2A transcripts) as seen in Figure 11. There is 

individuality in 5’ portion of FCGR2A, thus 3’ RACE PCR method is beneficial for the 

obtainment of a full-length PCR product with the cytoplasmic domain that can also 

discriminate between FCGR2B and FCGR2C fused to FCGR2A. The 3’ region can be 

analyzed to discriminate between FCGR2B and FCGR2C. As depicted in Figure 2 of the 
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introduction, there is high homology between the extracellular domain of FCGR2C and 

FCGR2B, but no homology at their cytosolic domains. With regards to FCGR2A and 

FCGR2C, there is high homology at their cytoplasmic domains only, and FCGR2A and 

FCGR2B exhibit no homology. There were several trial-and-error attempts with PCR 

before the optimal conditions were defined (shown in tables 1 and 2). After minor 

adjustments to the initial settings, the results were optimal.  
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Figure 11. Previous RACE Strategy 

Exons are color coded by domain and by sequence paralogy to other genes. 

Moreover, two exons located within different genes and share the same color maintain 

about 95-100% paralogy. The arrows show primer sites and their respective reactions are 

listed. As you can see, the 5’ universal primer can anneal onto the 5’ site, and there is a 

gene specific primer on the transmembrane domain. There is also a 3’ universal primer 

on the poly-a-tail and the 3’ forward primer on the extracellular domain. This set-up 

resulted in two independent products (5’ and 3’ products) that were cloned as opposed to 

sequencing, which is highly labor intensive.  

Note: From Travis Ptacek 2012. Reprinted with permission. 
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Figure 12. Modified RACE Strategy 

With the 3’ RACE the full-length product that can discriminate between FCG2B 

and FCG2C fused to FCG2A via the cytoplasmic domain was obtained. The 3’ RACE 

primers bind to the 5’ signaling domain and the 3’ cytoplasmic domain.  

Note: Edited from Travis Ptacek 2012. Reprinted with permission. 
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 All in all, the results satisfy the 3 objectives of the investigation including: the 

identification of novel interacting partners of FCRs’ cytoplasmic domains; the finding of 

statistically overrepresented cis-regulatory elements in FCGR2, the only classical FCR 

and the identification of their cognate transcription factors; and the identification of 

FCGR2B CNV in SLE patients.  
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CONCLUSIONS 

 The results provide a deeper understanding of the regulatory mechanisms of 

FCRs, particularly FcγRIIb, the only inhibitory receptor of its class. The results also 

satisfy the 3 objectives including (1) the identification of novel interacting partners of 

FCRs’ cytoplasmic domains, (2) the finding of statistically overrepresented cis-regulatory 

elements in FCGR2, the only classical FCR and the identification of their cognate 

transcription factors, and (3) the identification of FCGR2B CNV (Copy number 

variation) in SLE patients. The human autoimmune network is a novel leap towards 

understanding the onset of systemic autoimmune diseases associated with FCRs, 

particularly FcγRIIB. The added control measures to the yeast two-hybrid assay enable 

the creation of a highly stringent network in addition to the orthogonal assays done to 

assure that the network was of the highest caliber. The topological properties give insight 

into the network’s structure and the identification of potential key proteins within the 

autoimmune interactome. Upon analyzation, some of the proteins’ functions are already 

published in existing literature. Some of these proteins have already been linked to 

autoimmune and immune diseases and were highlighted in the results section (Table 3).  

Moreover, to understand the regulation of the FCGR2B promoter, overrepresented cis-

regulatory elements were sought using MEME and POBO. The results yielded the 

identification of several cis-regulatory elements that require future verification.  In 

addition, the modification of the methods approach was successful and yielded a full-
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length product of the 1q23 gene locus. The full-length product enables the analyzation of 

the FCR-coding genes within the donor cohort as well as discrimination between the 

contained genes including FCGR2B and FCGR2C fused to FCGR2A. The identification 

of copy number variations associated with SLE furthers our understanding of the disease 

onset and provides a gateway into diagnostic and treatment options. All in all, the results 

reveal further understanding of SLE on a genomic level that can contribute to diagnostic 

methods that enable therapeutic treatments that regulate the autoimmune response—of 

other rheumatic diseases as well—on a molecular level via FCRs, particularly FcγRIIB.  

Significance  

Systems biology is the next generation approach towards understanding immunity 

in plants and humans alike. There is a plethora of new technologies that contribute to this 

frontier. The development of interactome maps, for instance, enables further 

understanding of immunity. Interactome maps can mirror in vivo conditions through the 

incorporation of layers of functional “-omic” data, including: genomics, phenomics, 

transcriptomics, metabolomics, and epigenomics. The integration of this “-omics” data 

can answer questions regarding plant processes and responses, such as development, 

signal transduction pathways, RNA processing, protein modifications, cell cycle, and 

plant immune responses. 

In relation to autoimmune diseases, systems biology can enable the realization of 

the ultimate goal that is the alleviation of symptoms. Patients with RA suffer from 

chronic pain derived from the inflammation, tenderness, deformation and stiffness of 

affected joints. At the onset of RA, fatigue, fever and weight loss are common symptoms 

as well as pain in smaller joints, such as those in the hands and feet. With the progression 
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of the disease, symptoms of joint pain and stiffness spread to the ankles, elbows, hips and 

shoulders. The severity of the symptoms can nearly disappear during remission phases of 

the disease. The symptoms of SLE vary among patients, but almost everyone experiences 

joint pain. Other symptoms include a butterfly shape rash on the face, fever, fatigue, 

arrhythmias (abnormal heart rhythms), Raynaud’s phenomenon (change of color in 

phalanges from cold), arthritis and pleurisy (pain in the chest during deep breaths). Both 

of these diseases affect a significant subset of the population. The Lupus Foundation of 

America estimates that 1.5 million Americans, and at least five million people 

worldwide, have a form of lupus. The U.S. Department of Health and Human Services 

estimates that RA affects one percent of the adult population and approximately 2.5 

million Americans. However, the trigger that causes the onset of RA and SLE is 

unknown. At present, there is no single SLE diagnostic test, but rather an inclusive 

testing approach that aims to minimize the possible margin of error from false positives 

and/or false negatives. Molecular medicine could give way to an efficient diagnostic test 

as well as a potential cure. The findings enable a molecular understanding of the 

receptors and their genes involved in the pathogenesis of SLE and RA as well as other 

rheumatic diseases. This understanding provides a foundation for the development of 

diagnostic methods and efficient therapeutic targets.  

Future Directions 

With regards to the autoimmune network, further investigations related to the 

proteins are necessary to fully understand the interactions. Future investigations include 

the identifications of the involved proteins’ functions, which will contribute to the 

prediction of phenotypic affects on the perturbance of specific protein-protein 
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interactions. Moreover, further investigations of the identified cis-regulatory elements of 

the FCGR2B promoter are needed to verify that the results are binding partners rather 

than solely overregulated sequences. Experiential proof of the cis-elements CSL and NκB 

binding to FCGR2B is needed in addition to determining their roles in autoimmunity. 

Among all of the interacting partners, we know that some are key immune players thus 

we are confident that future investigations will illuminate their roles in autoimmunity. 

Regarding understanding the role of CNV of FCGR2B, although a hybrid product was 

identified using the RACE PCR strategy, there is much to learn about its genomic 

organization, such as how the hybrid is made.  
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