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A SPATIOTEMPORAL MODEL FOR REPEATED IMAGING DATA 

 

BRANDON J. GEORGE 

 

BIOSTATISTICS 

 

ABSTRACT 

 

 Longitudinal imaging studies have increased in popularity as clinical 

researchers seek to investigate how phenomena within the body change over time. 

Analysis of data from these studies is complicated by correlation between repeated 

measures over time and different locations in the body.  

 To address this problem we propose the use of a linear model with a 

separable parametric correlation structure. This model considers spatial and 

temporal correlation independently and incorporates the correlation using 

parametric functions that have the potential to be much more efficient than an 

unstructured approach. Our model also has the ability to control for time- and 

space-varying covariates, which previously used summary methods cannot do. 

 Results from a simulation study that investigates the effects of correlation 

structure selection on statistical inference about a treatment-by-time interaction are 

reported. Using the true correlation structure conserves the Type I error rate and 

maximizes power versus other structures, while misspecified structures may inflate 

the type I error rate or reduce power. If the misspecified structure can closely 

approximate the true correlation function then the Type I error rate is conserved 

and the loss of power from the true structure is negligible. For the considered 

conditions, information criteria are highly accurate at choosing a working 

correlation structure that conserved the Type I error rate. 
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 Our model is compared to summary methods through a simulation study that 

considers inference on a treatment-by-time effect. Our model more reliably 

conserves the Type I error rate and has greater statistical power than summary 

methods in space and time. The practice of analyzing spatial regions separately is 

found to have poor statistical properties. The presence of missing data does not 

change the qualitative results. 

 Finally, we apply our model to the UAB SCCOR study, which considered MRI-

derived outcomes from a longitudinal clinical trial in mitral regurgitation patients 

assigned to medical therapy or placebo. This study provided the motivation for this 

dissertation and inspired the scenarios used in the simulation studies. Here we 

discuss practical considerations of applying our model to real data such as how to 

choose a working correlation structure and how to handle missing data.  

 

Keywords: spatiotemporal, correlation, spatial, longitudinal, cardiology, imaging 
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INTRODUCTION

Introduction and Motivation

Since the early days of Fisher and Gosset, most statistical methods have arisen from

a desire to solve a particular problem. Methodological research grows from an investiga-

tor’s encounter with a set of data that simply cannot be appropriately analyzed by any

known methodologies.

In this sense, our work is much like many that have come before it. Our motivation

comes from the data collected in the SCCOR (Specialized Centers of Clinically Oriented

Research) study at University of Alabama at Birmingham (UAB). It is composed of three-

dimensional magnetric resonance imaging (MRI) scans of the subject’s heart for patients

with multiple possible cardiovascular diseases such as myocardial infarction, mitral valve

regurgitation, and left ventricular hypertrophy. In general, each patient’s data consists of

five of these scans, collected six months apart. For this research, we focused on the part of

the study that looked at patients with mitral regurgitation (MR) enrolled in a clinical trial

testing a medical therapy.

In this body of work we propose a method that models both spatial and temporal

correlation with separable parametric structures, and investigate ways to choose between

multiple structures. We also investigate how such a model compares to summary measures

in space and time that have been previously used to study such datasets. Lastly, we discuss

how our model can be implemented in practice using the UAB SCCOR data as an example.

The difficulty in this application is that the raw data are collected at different points,

referred to as voxels, within the three-dimensional MRI image. These values cannot be

assumed to be independent, as there is most likely spatial correlation for values within the
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same image. Similarly, when looking at the values at the same location in the same patient

taken at different time points, one would expect to see some level of temporal correlation.

Therefore, the most appropriate method to analyze this dataset will account for both spatial

and temporal correlation. Furthermore, not every patient had every observation and rarely

adhered to the six month schedule, so an ideal method needs to be able to handle unevenly

spaced repeated measures with missing data.

One particularly interesting application of such a spatiotemporal model is that it can

be used to draw inferences about remodeling in the left ventricle over time. Indeed, one

reason clinical researchers are excited about imaging is that it can be utilized to observe

more sensitive clinical outcomes. Rather than relying on a less specific and more variable

outcome such as mortality, investigators can get a direct look at how an intervention can

change the course of the disease. Since imaging can be expensive, especially for MRI, it

is highly desirable to get as much information as possible from the collected images. This

method is also extendable to other body parts and imaging modalities, such as images of

the brain or PET scans.

A specific motivating factor is that current evaluation of mitral regurgitation patients

is done by looking at global parameters for left ventricular geometry and function. We feel

that this represents a possible improvement in clinical interpretation and practice, and that

relating ventricular geometry and function at a segment-level basis to disease progression

could increase sensitivity in analysis and eventually diagnosis. In particular, we wish to

examine the radius of curvature-to-wall thickness ratio in patients with mild and severe

mitral regurgitation as a measure of disease progression to determine the effectiveness of

medical therapy. These topics will be explained more fully in the next section.
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Background and Literature Review

Clinical

Mitral Regurgitation and Left Ventricular Remodeling. Although we wish for our model

to be generalizable to many different applications of spatiotemporal medical data, it is im-

portant to consider the immediate problem we hope the method can solve. In this case,

we need to have a solid understanding of what is known to be the natural history of mitral

regurgitation so that the appropriate MRI parameters can be used to identify those changes.

In particular, we wish to know how the left ventricle remodels in patients with mitral re-

gurgitation in the absence of medical or surgical intervention. For this application we are

interested in properties that vary over the left ventricle; global descriptors such as ejection

fraction do not have concerns with spatial correlation and have already been handled in

SCCOR using basic mixed models.

Mitral regurgitation is defined as backflow from the left ventricle through a faulty

mitral valve into the low-pressure left atrium. The greater the amount of backflow, the

‘worse’ the MR. The body then attempts to compensate for this loss of cardiac output

by pumping harder resulting in left ventricular hypertrophy. Evidence suggests that one

avenue of compensation is an increase in the activation of the systemic sympathetic nervous

system[26]. In vitro experiments have shown that consistent exposure to norepinephrine

has severely deleterious effects to cardiac myocytes[23]. In patients with MR we see that

after the initial compensation and hypertrophy the ventricular wall begins to bulge and

suffer harmful structural changes; this secondary change is called decompensation. This

decompensation has been seen to happen along with increased markers of oxidative stress

and pathology indicating myofibrillar degradation[2]. The primary effects of the secondary

remodeling seem to be an increase in stroke volume and decrease in ejection fraction. In

particular, in dogs it has been found that MR leads to:

• reduced cardiac output[29],
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• an increase in LV end-diastolic (LVED) volume-to-LV mass ratio,

• a decrease in the LVED circumferential curvature at the midwall,

• an increase in the LVED radius/wall thickness ratio[14].

All together, there seems to be a ‘ballooning’ of the left ventricle, where the cham-

ber gets bigger but the wall does not get correspondingly thicker. In more technical terms,

there seems to be an increase in the sphericity of the left ventricle such that it becomes

more spherical rather than the normal ’long-ellipsoid’ shape. To use a sports analogy, it

looks more like a basketball than a football. Because the wall does not increase its thick-

ness along with this increase in radius, the wall stresses must increase according to the

laws of Laplace. It has been seen in the SCCOR study that both the maximum shortening

(Emin) and rotation across the left ventricle differ between patients with MR and healthy

individuals[31]. Previous work has shown that in healthy mammalian hearts, the radius-

to-thickness (R/T) ratio is approximately constant from the base to the apex of the left

ventricle[4]. Previous results from the SCCOR dataset indicate that the R/T ratio is ele-

vated across the whole LV in untreated MR patients, and that this increase is significantly

more pronounced in patients with more advanced MR[30].

There have been mixed results with medical therapies, where beta-blockers have

been the main focus of research. This approach of beta-blockers is done due to evidence of

an elevated adrenergic response in MR patients[27] and promising results in canines[36],

but SCCOR’s results are not as strongly positive[1]. With a lack of effective medical inter-

vention, the standard intervention is surgical repair of the mitral valve. Although patients

can be identified or diagnosed with MR from murmurs or low ejection fraction, surgery

is typically not done unless the patient has an abnormally large left ventricular end sys-

tolic dimension (LVESD). A common rule of thumb is that the patient should only receive

surgery when the LVESD is greater than 40mm. There have been concerns among cardiol-

ogists that this cutoff results in surgical intervention coming too late to prevent irreversible
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damage to the myocardium, a view that has been supported by previous analyses of the

SCCOR data[2, 30].

Currently, clinical practice focuses on global MRI parameters in mitral regurgitation

patients. The assessment of left ventricular geometry is done by looking at the LVESD, the

diameter of the left ventricle at the base near the mitral and aortic valves. The assessment of

left ventricular function is done by looking at the left ventricular ejection fraction (LVEF),

the proportion of blood in the left ventricle in diastole that exits into the aorta in systole.

However, these measures are less than ideal; the aforementioned sphericity and damage

to the myocardium have been observed in MR patients with ‘good’ LVEF[2] and with

LVESD smaller than 40mm[30]. Furthermore, it has been observed that LVEF decreases

post-surgery which has thus far been unexplained but may also be indicative of irreversible

myocardial damage[30].

It is important to understand the connection between left ventricular geometry and

function. Through Laplace’s Law and hemodynamics, the two are inextricably linked.

However, since the heart can compensate for MR and maintain overall function (as in

LVEF[2]), clinicians rely on left ventricular geometry to identify how far along in the dis-

ease course a patient is. Since the increase in LVESD is not very sensitive and usually

comes later in the disease (potentially too late to prevent permanent damage), we propose

that the R/T ratio be used as an index of the sphericity of the left ventricle. It would be

of great interest to show that the R/T ratio (representing geometry) is associated with the

abnormal strain and rotation (representing function), as it could possibly move us closer

to establishing a more sensitive measure of MR progress that can result in better patient

outcomes.

Presentation and Interpretation of Cardiac Imaging Data. Cardiac magnetic resonance

(CMR) imaging is the clinical gold standard for describing the structural and functional
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characteristics of cardiac motion. When constructing a plan for statistical analysis, it is

important to understand where this CMR data comes from and what it means.

The first thing to consider is how the heart is described in CMR imaging, so that

we can all be discussing the same part of the heart. There are three main axes that are used

for imaging the ventricles, shown in Figure 1: short axis, horizontal long axis, and vertical

long axis[8].

It is useful to divide the left ventricle into segments so that particular regions can

be clearly identified and discussed. The most common way to do this is with the AHA’s

17 segment model, presented in Figure 2. The view is from the short axis, looking down

into the left ventricle from the base towards the apex. The concentric rings represent the

bullet shape of the LV; it can also be considered a cylinder cut into three pieces with a

hemispherical cap. It is common to assign one value to a segment as a summary of all of the

voxels included in that area; it is also common to summarize the segments themselves into

the basal, mid, and apical rings. The 17th segment, the apex, is usually omitted from these

types of analyses. One can also examine the different segments grouped by the coronary

artery that feeds them, shown in Figure 3[8].

A variety of imaging processing tools have been developed to extract important

clinical values from CMR images. Ventricular wall thickness is easy to measure, as one can

measure the length of lines drawn radially outward across the myocardium[7]. However,

we often wish to know something about the motion of the ventricular walls, which can be

more difficult. A common way to measure motion is through the use of tagging.

Tagging is the process where the magnetic field produced by the MRI machine

is modulated in such a way that the myocardium is temporarily magnetized in a certain

pattern; this pattern comes out in the final image as a grid of dark lines against the light-

colored tissue[32]. Because the tissue itself is holding the grid, movement of the wall can

be seen as deformation of the grid which allows us to track the movement of individual
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Figure 1. Three orientations for viewing the left ventricle[8].

Note: From “Standardized Myocardial Segmentation and Nomenclature for Tomographic

Imaging of the Heart” by M. D. Cerqueira, et. al., 2002, Circulation, 105, p. 540. Copyright

2002 by the American Heart Association. Reprinted with permission: license number

3191020494022.
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Figure 2: The AHA’s 17-segment model of the left ventricle[8].

Note: From “Standardized Myocardial Segmentation and Nomenclature for Tomographic

Imaging of the Heart” by M. D. Cerqueira, et. al., 2002, Circulation, 105, p. 542. Copyright

2002 by the American Heart Association. Reprinted with permission: license number

3191020494022.
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Figure 3: The 17 segment model with the coronary arteries that feed them (left anterior

descending, right coronary, and left circumflex)[8].

Note: From “Standardized Myocardial Segmentation and Nomenclature for Tomographic

Imaging of the Heart” by M. D. Cerqueira, et. al., 2002, Circulation, 105, p. 542. Copyright

2002 by the American Heart Association. Reprinted with permission: license number

3191020494022.
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points. Three-dimensional movement can be observed as well by imposing and imaging

grids in orthogonal planes[38]. The computation needed to tie a series of images together

to truly capture the motion of a cardiac cycle is non-trivial. Fortunately, harmonic phase

(HARP) analysis can do these calculations quickly by treating the image as a signal and

moving it to the frequency domain with a Fourier transform. This speed is highly desirable,

as it lessens the patient burden by reducing the length of time the subject must hold their

breath[7]. This procedure of measuring cardiac wall motion through tagging and HARP

was used in the collection of the SCCOR data[1].

Once the motion of the heart can be fully observed, it is possible to generate a strain

map of the ventricle. Strain is a unitless quantity describing the amount of deformation

(stretching or compression) and is defined as

L− L0

L0

where L is the current length and L0 is the original length. Strain in the ventricle is usually

examined as being in the radial, circumferential, and longitudinal directions, although one

may also look at the principle strains which are in the direction of the greatest elongation

and greatest compression. Having a three-dimensional map of strain in the left ventricle

over the cardiac cycle has immense clinical implications. The systolic strain maps allow

one to assess the contractility of the myocardium and also to detect abnormalities in the

pattern of contraction. This asynchrony can be indicative of arrhythmias[25]. Diastolic

strains lets one quantify the elasticity of the myocardium as it relaxes as blood fills the

ventricle[7].

Since we are studying abnormalities in the LV, it is crucial to know what the strain

map looks like for a healthy subject. In healthy patients, circumferential strain increases

from the base to the apex and from the epicardium to the endocardium, and tends to be

higher in the anterior and lateral regions than the inferior region. Longitudinal strain also
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increases from base to apex and has the same transmural pattern of increasing from the

epicardium to the endocardium (through the ventricular wall from the inside to outside of

the heart). The transmural pattern holds for radial strain as well, but there is not a consensus

about how radial strain changes between the base and apex. It has been observed that older

patients tend to have slower relaxation in diastole for both circumferential and longitudinal

strains[32]. Slow relaxation of circumferential strain has also been seen in patients with

hypertrophy[25].

In addition to strain, torsion is an important parameter to measure. Looking up

from the apex, in healthy individuals the base of the LV rotates clockwise while the apex

rotates counter-clockwise. This wringing motion is thought to improve the efficiency of

the heart, in part by creating suction during the ‘un-wringing’ in diastole that helps fill the

LV. Patients with hypertrophy tend to experience greater torsion during the cardiac cycle,

while older patients experience slower relaxation of torsion in diastole[32].

Spatial Statistics

History and Background. The use of the spatial component in analysis is not a new de-

velopment. For instance, consider the work by John Snow on the 1854 cholera epidemic

in London which many consider to be the start of modern epidemiology. He recorded the

residences of all the cholera victims in the Soho neighborhood, and noted the locations on a

map of the area that included the locations of public water pumps. By doing so, he was able

to see that although there was spatial variability in the case locations, there was a distinct

clustering around the Broad Street pump.

This story is well-known among biostatisticians and epidemiologists. There are

many reasons for this, such as the successful civic response to close the Broad Street pump,

to the deductive nature of his study that has the feel of exciting detective work with a clear

culprit. In a way, it is an example of spatial statistics at not only its best, but also at its
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easiest. The outcome was binary (cholera or no cholera) and clusters of cases are much

easier to see in acute diseases, especially infectious diseases. Unfortunately, in practice the

spatial resolution may be much larger than a single neighborhood, and the disease could be

of a more chronic nature with a far more complex etiology.

To handle these more complicated situations, formal statistical methods are neces-

sary. Some of the greatest development has followed the example of John Snow and has

focused on the clustering of events like disease cases over a geographic region. In their

book Applied Spatial Statistics for Public Health Data, Waller and Gotway[37] (2004) de-

tail the many different methods that can be used to address this issue of clustering as well

as the complexities involved in defining the problem. When looking at clusters, one must

decide whether the research hypothesis pertains to detecting what are distinct clusters or to

finding if there is a general pattern of clustering; many methods have been produced which

answer both of these types of questions. Another wrinkle in this kind of cluster analysis

is the nature of the location data: some datasets have the exact location for each event,

while others only have counts aggregated over whole subregions. Although ultimately one

assumes the events are the result of a stochastic Poisson point process, the way this as-

sumption is implemented varies between study types. Unfortunately, regional count data

introduces the modifiable area unit problem, which is that the study results could change

merely if the subregion boundaries were redrawn.

Spatial Exposure Data. In the SCCOR data, we are primarily concerned with continu-

ous values distributed over space rather than discrete binary events. These measures of

continuous spatially-distributed random variables are called exposure data by Waller and

Gotway[37]. For example, an agricultural study may look at rainfall at different farms

across the state as the exposure of interest. Note that these kinds of variables can be the de-

pendent variable instead of a covariate. In this type of dataset, valuesZ(s1), Z(s2), ..., Z(sN)

for some variable Z are collected at N different locations; typically the variable is continu-

12



ous and the locations coincide with event locations. We assume that the values observed are

realizations of a random field, a random or stochastic process defined as [Z(s) : s ∈ D] for

a study region D. Note that for a fixed s, Z(s) is a random variable. The random field is con-

sidered stationary if E[Z(s)] = µ for all s, second-order stationary if Cov[Z(si), Z(sj)] =

C(si − sj) for all si, sj ∈ D. In other words, stationarity means that the mean (and pos-

sibly covariance) of a random field does not depend on the location within the field. A

random field is isotropic if the covariance function C(•) depends only on distance and not

direction.

Ultimately, we want to be able to describe this spatial autocorrelation within the

random field. One approach is based on semivariograms, defined as

Var(Z(si)− Z(sj)) = 2γ(si − sj), si, sj ∈ D (1)

where the function γ(•) is the semivariogram. The properties of a semivariogram are:

1. γ(s − u) = γ(u − s). Direction doesn’t matter for a given two points. This means

that a corresponding covariance structure is symmetric.

2. γ(s− s) = γ(0) = 0.

3. With spatial lag h between points s and u, γ(h)/h2 → 0 as h → ∞. As points go

apart, the semivariogram goes to zero.

4. The semivariogram is conditionally negative definite, meaning

m∑
i=1

m∑
j=1

aiajγ(si − sj) ≤ 0 (2)

such that a1, . . . , am are real numbers whose sum is zero.

5. A semivariogram is isotropic if it depends only on the length of the spatial lag, not

the direction.

13



A common method for interpreting semivariograms is to plot them against the spatial lag

distance h. An increasing semivariogram implies that closer values are more related than

distant ones. A typical function will increase but level off after a certain distance; this

plateau is called the sill.

If the random field is second order stationary, then

γ(h) = C(0)− C(h). (3)

If C(h) → 0 as h → ∞ then C(0) is the sill of the semivariogram. We can get the

correlation as a function of the spatial lag, called the correlogram, as

ρ(h) = C(h)/C(0).

The semivariogram is desirable to use as its estimation is slightly easier than the estimation

of the covariance function since it does not rely on estimating the mean of the random field.

If the random field is assumed to be isotropic, the estimation of the semivariogram

begins by choosing a parametric model. Common models include spherical, exponential,

power, Matérn, and Cardinal-Sine functions. Much like choosing an error distribution in

linear models, these functions have a general shape and multiple parameters that affect the

exact shape. Most models have parameters relating to the sill, the intercept (called a nugget

effect), the slope, and the distance to reaching the sill (called the range). The choice of

parametric semivariogram function is based on both dimensionality of the study region and

the expected underlying covariance structure. For example, of the models listed above only

the Cardinal-Sine semivariogram can model negative correlations.

Estimation of a parametric semivariogram is done by computing estimates of its
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parameters. Considering that E[Z(si)] = µ, we can rearrange Equation 1 so that

2γ(h) = Var(Z(s+ h)− Z(s)) = E[(Z(s+ h)− Z(s))2]− E[(Z(s+ h)− Z(s))]2

where the second term goes to zero. To estimate the remaining part, we just square and

sum pairs of observations that have the same spatial lag in both distance and direction. The

method of moments estimator is

γ̂(h) =
1

2|N(h)|
∑

N(h)[Z(si)− Z(sj)]
2, h ∈ R2 (4)

where N(h) is the set of distinct pairs defined by si − sj = h, and |N(h)| is the number

of distinct pairs. Note that this approach only gives point estimates at observed vectors of

h. Assuming isotropy can remove the directional requirement and increase the number of

eligible pairs. For irregularly spaced data, the problem of having enough pairs at a given

lag can be helped by specifying a tolerance region where the pairs are grouped ahead of

time into distance regions, and the estimate for a region is assigned to the region’s average

‖h‖.

Note that the empirical semivariogram γ̂ may not be conditionally nonnegative def-

inite, and certainly will not have values for all possible h. Thus, we want to fit some

of those parametric models to our empirical points. One approach to model fitting is

based on least squares, where we try to find the values of the parameters θ that minimize∑K
j=1 [γ̂(hj)− γ(hj|θ)]2. Unfortunately, the values of γ̂ are not independent and have het-

erogeneous variance (at least due to differing number of lags going into each lag region). A

generalized least squares (GLS) approach is then needed. The pure GLS approach requires

a covariance matrix and ends up needing the fourth-order moments of the random field,

so the simplified weighted least squares method may be better. This approach works by
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choosing θ to minimize the weighted residual sum of squares (WRSS)

WRSS(θ) =
1

2

K∑
j=1

N(hj)

[γ(hj|θ)]2
[γ̂(hj)− γ(hj|θ)]2 . (5)

Alternatively, the maximum likelihood (ML) approach can be used to estimate

semivariogram parameters. If we assume that Z(s1), . . . , Z(sM) are a vector drawn from a

multivariate Normal distributionNM(µ,Σ(θ)), then the MLEs are the values that minimize

l(θ) = log(|Σ(θ)|) + (Z− 1µ)TΣ(θ)−1(Z− 1µ) +N log(2π). (6)

A usable approximation of Σ(θ) is the inverse of the Fisher information matrix. One benefit

of using the MLEs is that one can use a likelihood ratio test to compare nested models. Of

course, Akaike’s information criterion (AIC) can also be used to choose a model for the

semivariogram.

Recall that the AIC works by finding the model that gives the highest likelihood,

penalized by the number of parameters in the model to prevent overfitting. Mathematically,

AIC = 2 ln(k)− 2 ln(L)

where k is the number of parameters and L is the maximum value of the likelihood for the

given model. In this case, the ‘best’ model is the one with the smallest (most negative)

value for the AIC. Another option is the Bayesian information criterion (BIC), defined as

BIC = k ln(n)− 2 ln(L)

where n is the sample size. Again, the smaller the value of the BIC, the ‘better’ the model.

There are methods to estimate semivariograms for anisotropic random fields as well.
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Anisotropy comes in two forms: geometric and zonal. In geometric anisotropy, the differ-

ent directional semivariograms have the same shape and sill, but the range changes with

direction. We also assume that the maximum range of all directions amax occurs at direc-

tion φ, and the minimum ranges occur at φ ± 90o, making an ellipse. Therefore, we can

calculate the reduced distance between two observations by taking a transformation that

effectively turns the ellipse into a unit circle.

We consider zonal anisotropy to be where the range is constant but the sill changes

over directions. This model is useful when one direction (such as elevation) is fundamen-

tally different from the others. One method for dealing with zonal anisotropy is to model

the semivariogram as the sum of two semivariograms, one isotropic with sill cmin and range

a and the other with constant sill cmax − cmin and an anisotropic range. This range is a in

the direction of φ and overwhelmingly large perpendicular to that, which makes that com-

ponent effectively nil in the final model.

Often times it is of interest to interpolate values of Z(s) that were not observed

based off of locations that did have their value of Z recorded. The most common method

for accomplishing this is Kriging. In essence, Kriging makes a prediction based off of a

weighted average of the observed values Ẑ(s0) =
∑N

i=1 λiZ(si) where the weights λi are

a function of the semivariogram. Many variations of Kriging exist to deal with issues such

as surface smoothness, probability maps, and regional exposure data.

Spatial Regression Models. In the previous section, we discussed how to define the spatial

correlation in a single spatially distributed variable using semivariogram models. However,

it is common for data to contain multiple variables distributed across space with the re-

search question of how they relate to each other. According to Waller and Gotway[37], the

most common way to deal with this situation is with spatial regression models.

The simplest model we can use for spatial data is independent multivariate regres-
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sion, given by the model

Y = Xβ + ε (7)

where Y are the N outcomes at locations s1, ..., sN , X is an N x p covariate matrix, β are the

regression parameters, and ε ∼ NormalN(0,Σ). Note that covariate matrix X contains

the possible predictors measured at the same locations as the outcomes. The variance-

covariance matrix Σ can be defined as

Σ = Var(Y) = Var(ε) = σ2I (8)

which means that each of the observations are independent. For this model to be valid, all

of the spatial variation in Y needs to be explained by the covariates in X. This is a likely

invalid assumption, so further modifications will be necessary.

By assuming a multivariate normal distribution for the outcome variables, Y, the

β parameters and σ2 can be estimated with maximum likelihood methods. Specifically, by

setting the derivative of the log-likelihood to zero we can derive the score equations. For

independent observations, the results of β̂ = (X′X)−1X′Y and σ̂2 = [(Y − Xβ̂)′(Y −

Xβ̂)]/[N −p] are identical to ordinary least squares (OLS) estimation. To make inferences

with the model, note that the variance of the parameter estimates can be found through the

information matrix to be V̂ar(β̂) = σ̂2(X′X)−1 which can be used for t-tests or confidence

intervals on the β̂s. Also, note that often times it is preferable to use the restricted maximum

likelihood (REML) instead, as it gives less biased estimates than traditional ML in these

cases of correlated observations.

Although REML was popularized for use in repeated measures studies by Harville

(1977), it can be used in spatial data as well since the underlying difficulty in the data

(correlation) is the same. In these cases REML works by taking the likelihood of a set

of contrasts of the outcome rather than the outcomes themselves. The contrasts, defined
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as the matrix u, are such that E[uY] = 0; this reduces the number of effective observed

outcomes which corrects for the loss of degrees of freedom due to estimating the βs.

In most cases, the assumption of independent observations conditional on the spa-

tial covariates is unrealistic. There is almost always some residual spatial autocorrelation

among the outcomes that is not accounted for by the covariates. Instead, we consider where

Var(ε)ij = Σij = Cov (Y (si), Y (sj)) ≥ 0 (9)

represents the residual spatial correlation between the outcomes at si and sj . We stick with

the overall regression model where Y ∼ NormalN(Xβ,Σ) but now we consider Xβ to

be the large-scale variation or spatial trend in the outcome and the ε to be the small-scale

variation.

In order to compute estimates for β, the covariance structure needs to be known. A

simple model assumes that the overall structure is known up to a constant, with Σ = σ2V

where V is known. This modification to the least squares approach results in the estimates

being β̂ = (X′V−1X)−1X′V−1Y and σ̂2 = [(Y −Xβ̂)′V−1(Y −Xβ̂)]/[N − p].

More commonly, we don’t know what V is either. Even if we make the simplifying

assumption of constant variance (Σii = σ2), there are still N(N-1)/2 terms to estimate in

the matrix. Since we only have N observations, additional structure needs to be assumed

for Σ. A common approach to this problem is to choose and fit a parametric covariance

function. Recall equation 2.3, such that Cov(si, sj) = C(si−sj) = C(0)−γ(si−sj); thus,

by choosing a semivariogram model we can drastically reduce the number of covariance

components, denoted θ, we need to estimate.

Estimation of these semivariograms is more difficult than before, though, since the

presence of the E[Y] = Xβ trend violates the assumption of stationarity. Y is no longer

stationary since its mean is no longer constant over the study region, but rather the mean is
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a function of the values of X at a certain point. Equation 2.1 now becomes

E[(Y (si)− Y (sj))]
2 = 2γ(si − sj) +

[
p∑

k=0

βk[xk(si)− xk(sj)]

]2

so we can see that the addition of a trend introduces a bias. This bias could be corrected

for if β was known, but we need Σ(θ) to estimate β. Therefore, the two sets of parameters

need to be estimated simultaneously. This can be done using either iteratively reweighted

generalized least squares (IRWGLS) or maximum likelihood.

IRWGLS works much like the EM algorithm and has the following steps:

1. Guess the values of β̂.

2. Calculate the residuals as r = Y −Xβ̂.

3. Use the residuals to estimate the parameters of the chosen semivariogram model and

get an estimate of the covariance matrix, Σ̂(θ).

4. Re-estimate β as β̂ = (X′Σ̂(θ)
−1

X)−1X′Σ̂(θ)
−1

Y.

5. Repeat steps 2-4 until convergence criteria are met (the estimates stop changing).

Unfortunately, the semivariogram estimation from residuals in step 3 contains bias. Hope-

fully this bias would be small, but maximum likelihood may be preferable.

Maximum likelihood estimation is more difficult than in the simple ordinary least

squares model, since there is typically not a nice closed form for the score equations for

the derivative with respect to θ. Therefore, iterative algorithms such as Newton-Raphson

are needed to find the values of θ̂ that maximize the log-likelihood. A common trick to

reduce the number of parameters to fiddle with at any given iteration is to maximize the

concentrated log-likelihood, which is found by plugging (X′Σ(θ)−1X)−1X′Σ(θ)−1Y in

for β in the likelihood function. By doing so one needs to only maximize over the different

θs, since by the invariance property of MLEs one can get the MLE for β by plugging θ̂
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into the previous formula. Furthermore, the variances of the MLEs can be found from the

information matrix. In addition to these nice properties, one can also use a likelihood ratio

test to compare nested parametric models.

Regardless of how the parameters are estimated, care needs to be taken in inter-

preting the results. Due to how the spatial variation in Y is divided up based on covariates

and a predicted correlation structure, one can actually get a similar fit for two models with

different covariates and covariance matrices. It should also be noted that model fitting may

be problematic for noisy outcomes with a set of predictors that do not well explain the

outcome variability.

If interpolation of outcome values is desired, the regression model can be used

via the universal Kriging predictor. This form of Kriging is similar to before, but the

predicted value must also contain a spatially weighted average of the Xβ̂. This method is

preferable to ordinary Kriging methods that ignore covariates, or even models that subtract

the covariate effect, as spatial covariates may greatly reduce or simplify the covariance in

the outcome.

We must also consider the assumptions of the linear model with spatial data. The

traditional general linear model assumes independence, but the observations are no longer

independent due to the spatial correlation. The revised assumptions of this model are:

1. Homogeneity of variance among the outcomes. Var(Y) = Σii = σ2 for all i.

2. The outcome has the specified covariance structure. Note the lack of independence,

and that an estimated structure is something the statistician is assuming.

3. Linearity between predictors and the outcome, as Y = Xβ.

4. Existence of the error variance, and that the mean of ε is zero.

5. The outcomes have a multivariate normal distribution.
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As we can see, it is still quite similar to the set of assumptions of the general linear model.

Of course, we still need to examine the residuals after fitting the model to check these

model assumptions.

One limitation of semivariogram-based estimation of the covariance matrix is that it

relies on having the exact distances between observations. When one has summary data for

entire regions in space, the concept of distance is less useful since inter-centroid distances

are not always representative of how things are truly related in space. One approach is the

use of autoregressive models, where the outcome for one region is regressed on nearby

outcome values.

By regressing the residuals in the model on one another simultaneously, we get the

formula

ε(si) = ν(si) +
N∑
j=1

bijε(sj), bii = 0 (10)

where bij are the spatial dependence parameters and the residuals of the residuals ν(si)

are independently distributed with mean zero and variance σ2
i . Combining this result with

equation (2.7) gives us the new autoregressive model

Y (si) = X(si)
′β +

N∑
j=1

bij[Y (sj)−X(sj)
′β] + ν(si). (11)

Thus, we now have where the spatial dependence not explained by the covariates is encap-

sulated in the weighted average of these spatial deviations. The non-spatial variability is

taken up by the ν term. The parameters now affecting the variance/covariance of Y are the

{σ2
i } and the {bij}, such that the covariance matrix of Y can be expressed as

Σ = (I−B)−1Σν(I−B′)−1 (12)

where B is the matrix of bij and Σν = diag{σ2
1, ..., σ

2
N}.
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As before, we would like to impose a structure on B so there will be a reasonable

number of parameters to estimate. We can do so by assuming that a general relationship

structure scaled by a constant is known, such as B = ρW. Another way to simplify the

spatial dependence parameters is to restrict them to only have non-zero values when in a

certain neighborhood set describing nearby regions. The resulting model can be described

by

Y = Xβ − ρWXβ + ρWY + ν. (13)

We can see that in this model the residual spatial variability is explained due to spatially

lagged components based on the covariates and other outcome values in neighboring re-

gions. Other common simplifying assumptions are that Y is multivariate normal and

Σν = σ2I.

Estimation of the parameters within B can be done by maximizing the concentrated

log likelihood as described above. Similarly, the variances of these parameters can be found

through the information matrix. It should be noted that assumptions about the structure of

B that reduce the number of parameters can greatly reduce the difficulty in finding valid

estimates.

It is also important to test whether this autoregression is even necessary. After all,

correlation between observations reduces your power since each observation contains less

unique information. The simplest way to check for spatial autocorrelation is by assuming

B = ρW and testing the null hypothesis that ρ = 0. This can be done in one of three ways.

The first involves using Moran’s I to check for spatial dependence in an OLS model. The

second is to take the variance estimate for ρ̂ from the information matrix and do a Wald’s

test. Lastly, a likelihood ratio test can be performed comparing the autoregressive model

with the OLS model since (under the simplifying assumption mentioned above) the two are

nested.

In the models before, we are specifying the joint probability of all of the observa-
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tions in Y. It may be useful to look at Y (si) as being conditional on Y−i. We can then

discuss the conditional mean

E [Y (si)|Y−i] = x(si)
′β +

N∑
j=1

cij[Y (sj)− x(sj)
′β] (14)

and variance

Var[Y (si)|Y−i] = σ2
i (15)

where cij are the spatial dependence parameters with cii = 0 and cij = 0 when sj and sj

are not in the same neighborhood set. In other words, if two points are too distant from one

another (not in the same neighborhood) they have no dependence on one another. The joint

distribution of all outcomes can be derived from the individual conditional probabilities,

provided they are Gibbs random fields (Hammersley-Clifford theorem). The theorem will

hold true under the assumption of Gaussian conditional distributions and a multivariate

normal joint distribution. The variance of this multivariate distribution is

Σ = (I−C)−1ΣC (16)

where ΣC = diag(σ2
1, ..., σ

2
N). There is the restraint that σ2

j cij = σ2
i cji to ensure a valid

symmetric covariance matrix. We can also note that when variance σ2 is constant among

Y’s, we can relate the conditional model to the simultaneous one by C = B + B′ −BB′.

Because of the close relationship between simultaneous and conditional autore-

gressive models, the variance components of the conditional autoregressive models can be

estimated in the same manner. One benefit to the conditional model is that the least squares

estimators are now consistent, although you can get the same plus more from maximum

likelihood with some additional computation.

In summary, spatial autoregressive models can be quite useful for describing the

relationships between spatial variables. Great care should be taken in deciding what model
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of autocorrelation to use, as the choice greatly affects the results. It is wise to try several

different models and compare them to decide which best represents the data itself. Later

on, we shall see a modern example of how an analysis of cardiac imaging data approaches

this problem of multiple candidate correlation structures.

Longitudinal Data Analysis

Longitudinal data, also referred to as repeated measures, deals with analyzing data

collected at multiple time points from the same subject. Specific methods are needed to

account for the correlation within a subject over time as the measures are no longer inde-

pendent. In this way, longitudinal data presents similar problems as spatial data; the main

difference is that there is only one dimension and that the relationships are truly just going

forward in time. Quite often, it is the temporal relationship itself that a study is interested

in quantifying. For example, a drug study may be interested in the trajectory of a patient’s

cholesterol while on a certain statin. As each patient’s measure will have a unique time

response, typically the overall goal of longitudinal methods is to summarize the response

in some generalizable way.

There are two common complications to longitudinal data. The first is when the

observations are unevenly spaced, such that the length of time between observations is not

constant over the study period. This can make estimation of covariances between obser-

vations difficult, as two adjacent pairs of observations will probably not have the same

correlation if the difference in time is different. This is compounded when different sub-

jects are observed at different time points. For example, subject A has their second visit

after five weeks while subject B has theirs after only four weeks. The other complication

is from missed observations, which leave a gap in the timeline for a patient or a truncated

response curve. Both types of complication are quite common in real longitudinal datasets

and should always be addressed at the risk of losing information and power or misrepre-

senting the data itself.
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Here, we will describe four general types of methods for dealing with continuous

longitudinal data as well as discuss their strengths and weaknesses. The four types are

univariate reduction, MANOVA with correlated errors, mixed models, and growth curve

modeling.

Note that we are not considering the approach of general estimating equations

(GEEs). Although most commonly seen in discrete data analysis, this method is capable

of analyzing correlated data with continuous outcomes as well. GEEs work by consider-

ing a ‘quasi-likelihood,’ where a distribution is considered for the marginal mean of the

outcome rather than the outcome itself[3]. Previous work has shown that the estimators

from GEEs are fairly efficient, but not as efficient as pure likelihood-based methods[13].

Since in our assumed model we will have the full likelihood expression, it is unnecessary

to use the quasi-likelihood and thus we will avoid using GEEs in favor of the more efficient

maximum likelihood approach.

Univariate Reduction and Area Under the Curve. The simplest approach to longitudinal

data is where all of the repeated measures are reduced to a single variable[13]. Although

this method makes reporting and interpreting a result extremely simple, it comes at the

cost of losing a great deal of detail and information about the actual shape of the temporal

relationship. Specifically, two subjects with different temporal trajectories can end up with

the same summary value as their outcome. Furthermore, one generally collects information

about covariates at each time point in addition to the outcome and it is unclear how these

time-varying covariates can be translated into a single appropriate value for analysis.

Matthews et al. (1990) consider there to be two common types of ways to sum-

marize longitudinal data: slopes and areas under the curve (AUC)[24]. For the first, one

calculates the slope of a straight line fit to the response variable versus time for each subject,

and uses that as the subject’s outcome variable. This approach is limited to cases where

the time response is approximately linear, which may not always be the case. It should be
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noted that the widely used pre-post t-test could be considered a special case of this method

for only two time points.

The AUC is more generalizable than the slope, as it does not assume a linear trend

over time. Indeed, it doesn’t assume any overarching shape for the temporal trajectory: it

just calculates the area under a subject’s response curve for the course of the study. When

calculating the AUC one generally estimates the response curve by connecting observa-

tions with a straight line and using the trapezoidal rule. If the curve is assumed to have an

exponential shape the logarithmic trapezoidal method can be used instead. In cases where

the length of observation is different, such as loss to follow-up, it is acceptable to divide the

subject’s AUC by the length of the subject’s follow-up. There are different definitions for

AUC in other settings, such as receiver-operator characteristic (ROC) curves or pharmaco-

dynamics, but for simple longitudinal data with continuous outcomes the trapezoidal rule

is almost always used. Matthews et al. suggest choosing a summary method that relates to

your research question; a study on growth may prefer using the slope, while a study that

looks at overall outcome may prefer the AUC.

A benefit of AUC is that in the presence of missing observations one can just have

the curve connect across the gap; this can have a negative impact on the variance. Although

the lack of an assumed shape is a strength of the method, the lack of information regarding

the shape is a definite weakness. Furthermore, there could be an infinite number of possible

curves that give the same AUC value, making the measure much less useful when the shape

of the time response is heterogeneous among subjects. Unequal length of follow-up should

also be considered when calculating the AUC.

ANOVA/MANOVA with Correlated Errors. Another class of methods are based on the Anal-

ysis of Variance (ANOVA) design, described in Longitudinal Data Analysis: A Handbook

of Modern Statistical Methods (2008)[13]. Indeed, repeated measures ANOVA is one of

the earliest methods used to handle longitudinal data[39].
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Let us first define Yij as the outcome variable for subject i at their jth observation,

β as a vector of fixed parameters, and Xij as the ANOVA design matrix. The model itself

is

Yij = XT
ijβ + bi + eij (17)

where the random effect for individual i is bi ∼ N(0, σ2
b ) and the error term eij ∼ N(0, σ2

e).

Recall, ANOVA partitions the variance into a part explained by the model and a part un-

explained by the model. Repeated measures ANOVA seeks to further partition that un-

explained variance into variance within a subject and left-over error variance. A common

approach is to impose compound symmetry on the error structure within an individual, such

that V ar(Yij) = σ2
b + σ2

e and Cov(Yij, Yik) = σ2
b . This assumption may not be the valid as

compound symmetry is only applicable when the effect is randomly allocated, which is not

the case in repeated measures where we presume that the temporal correlation decreases

between more distant observations. The assumption of constant error variance over time

and subjects may also be unrealistic. Furthermore, the model is not flexible to missing

values and does not account for uneven spacing, so as a whole this model is limited.

Regular multivariate ANOVA (MANOVA) lets us analyze multivariate outcomes,

which can be extended to this problem since longitudinal data is essentially multivariate

with temporal correlation. This extension is referred to as repeated measures MANOVA.

A notable variant of this approach was developed by Box in 1950 and is based on the

transforming the outcome to multiple polynomial contrasts of the repeated-measures. This

variant, called profile analysis, is flexible to different shaped time responses as it does

not care what the time-response truly is: the behavior over time is totally encompassed in

the construction of the linear contrasts. It also does not require the restrictive compound-

symmetry assumption on the covariance; the only assumption is that the covariance is the

same for each subject. Unfortunately, to achieve all of these nice properties it requires that

the data must be balanced and not have missing data[22].
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A similar approach exists based on a linear model, described by Albert (1999)[3].

Let us consider a px1 vector of covariates as Xij with a normally distributed outcome Yij .

A potential linear model is thus

Yij = XT
ijβ + εij (18)

where εij is a time-series error structure. Quite often, one of the variables in X is time

which allows for us to sync the discrete jth observation with the continuous time at which

it occurred. The trick then comes in the definition of the error term. One potential solution

is an autoregressive moving-average (ARMA) model, defined as

εt = θεt−1 + γat−1 + at

where at ∼ N(0, σ2
ε ), θ is the first-order autoregressive effect, and γ is the moving-average

effect. This allows for the repeated measures to be linked together through time, since the

random term is a function of the previous errors. In essence, the moving average represents

how the dependent variable moves over time as a random walk. Unfortunately, this method

does not do well with missing and irregularly spaced observations either. Inclusion of time

as a covariate also implies that one is explicitly defining the time-outcome relationship, and

the assumed relationship may not be valid across all subjects.

Mixed Models. One common approach is to use random-effects models, where the param-

eters of a linear model are random variables with their own distribution. For example, an

outcome may have a linear relationship with time, but the slope of that relationship varies

from person-to-person. Albert (1999) describes the difference between fixed and random

effects anecdotally; fixed effects are covariates that are explicitly fixed (like treatment group

assignment or baseline values) while random effects are things that can produce varying re-

sults between subjects. Random effects can also capture individuals’ deviations from their

group averages[3].
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The random-effects model works by taking a first stage where the linear model is

conditioned on the random effects and then taking a second stage where the random effects

are given a distribution (usually multivariate normal). This results in a multivariate normal

outcome with a particular covariance matrix. Some benefits include: no requirement of

balanced data, can explicitly model within- and between-subject variability, and the ability

to control for covariates. The main difficulty is in determining the covariance structure and

calculating its variance components.

The use of a mixed model for longitudinal data was first formally defined by David

Harville in 1977[18]. In 1982, Nan Laird and James Ware developed a more general ver-

sion, which is the focus of the discussion below[20].

Let us define the outcome for the ith individual as yi for i = 1, ...,m, where yi is

composed of ni observations and has a Nni
(µi, Σ) distribution. We define the stage one

model as

yi = Xiα + Zibi + ei (19)

where X is the design matrix for the p population parameters α, Z is the design matrix for

the k individual parameters in bi, and error terms ei ∼ N(0,Ri) with ni × ni covariance

matrix Ri. Note that the error terms are independent of the parameter vectors. The second

stage gives bi the distribution Nk(0,D). The marginal distribution of the y’s thus has

mean Xiα and covariance matrix Vi = Ri + ZiDZT
i . A simplifying assumption would

be to set Ri = σ2I, making the observations independent. This is called the conditional-

independence model.

We define the set θ to be the variance components of Ri and D. Therefore, to fully

specify the model from the data we need to be able to estimate α and θ. Note that the

structure of D is user-defined and thus has a variable number of parameters to estimate.

One structure proposed by Harville is that D = diag[θ1I, ..., θcI], where the random effects

are divided into c independent groups he called ‘levels.’

30



If the variance components are known, estimation of α and bi is simple and is done

with the following formulas based on maximum likelihood:

α̂ =

(
m∑
i=1

XT
i V−1i Xi

)−1 m∑
i=1

XT
i V−1i yi, (20)

and

b̂i = DZT
i V−1i (yi −Xiα̂). (21)

Laird and Ware derived formulas for the variance of the two estimators as well. If we know

Vi, the computation is straightforward. Of course, it is a far more common case where the

variance components must be estimated as well. This results in a more difficult situation,

where α must be known to calculate θ̂, but θ is needed to work out α̂. Thus, the two

sets of parameters must be estimated simultaneously. This is typically done by maximizing

the maximum likelihood (ML) or restricted maximum likelihood (REML) using numeric

methods.

Assuming the conditional-independence model, and that D is a nonnegative-definite

matrix, Laird and Ware also found that from maximum likelihood

σ̂2 =
m∑
i=1

eTi ei

/
m∑
i=1

ni = t1

/
m∑
i=1

ni (22)

and

D̂ =
1

m

m∑
i=1

bib
T
i = t2/m, (23)

so the sufficient statistics for θ are t1 and the k(k + 1)/2 unique components of t2. Taking

the expectation of these statistics, we get

t̂1 = E

{
m∑
i=1

eTi ei|y, α̂(θ̂), θ̂

}
=

m∑
i=1

[
êi(θ̂)T êi(θ̂) + tr var{ei|y, α̂(θ̂), θ̂}

]
(24)
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and

t̂2 = E

{
m∑
i=1

bib
T
i |y, α̂(θ̂), θ̂

}
=

m∑
i=1

[
b̂i(θ̂)b̂i(θ̂)T + var{bi|y, α̂(θ̂), θ̂}

]
(25)

where êi(θ̂) = yi −Xiα̂(θ̂)− Zib̂i(θ̂).

Therefore an EM algorithm can be constructed that follows these steps:

1. Start with an initial value for θ̂.

2. E-step: Calculate t̂ from the current value of θ̂ by equations (24) and (25).

3. M-step: Using the values of t̂ from the E-step, calculate θ̂ from equations (22) and

(23).

4. Cycle through E- and M-steps until convergence.

Like most implementations of an EM algorithm, this approach is very powerful. Unfor-

tunately, in practice it can be slow to converge, especially when the parameter is near the

edge of the parameter space. This can be difficult with the constraint that σ2 > 0 or θi > 0,

since for distant observations the estimate covariance may be quite small and actually near

zero.

It should be noted that maximization of the likelihood can also be done using the

Newton-Raphson algorithm, as discussed by Harville. This carries the usual difficulties of

the Newton-Raphson algorithm, such as ensuring the global maximum is found instead of

a local one, and the imposition of the parameter space. It also requires the calculation of

second derivatives, which may result in a the method requiring great deal more work to

implement than the EM algorithm.

Restricted maximum likelihood is based off of the reduction of the likelihood func-

tion to adjust for the loss of degrees of freedom in small datasets and large number of

parameters. Laird and Ware described a scenario where the REML function is the marginal
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distribution of yi and θ, and the parameter estimates can be found using the above EM

algorithm with the E-step slightly changed to reflect how things are no longer conditional

on α̂. Conversely, Harville defines the REML as being composed of N-p contrasts. This

results in a much more complicated likelihood function, and may require the use of ap-

proximations for α̂ and b̂i if the new function is too complex. Estimation of Harville’s

REML-based parameters follows the same procedure as above.

Laird and Ware’s version of the mixed model is generally better to use, as it allows

for a greater flexibility in the definition of the covariance structure compared to Harville’s

independent ’levels.’ The design matrices are similarly less restricted under the Laird-Ware

model. In the case of small sample sizes, the REML version of estimation is suggested to

correct for possible bias.

Growth Mixture Modeling. As defined in Longitudinal Data Analysis: A Handbook of

Modern Statistical Methods, the goal of growth mixture models is to capture the unobserved

heterogeneity between subjects during the time course of the study[13]. The models utilize

both random effects and finite mixtures. For a simple model to start, consider for subject i

at time point j

Yij = η0i + η1iaij + κiwij + εij (26)

where the outcome Y is continuous, w is a time-varying covariate, aij is the index (1,

2,...,T) of the time of the observation, and η0i and η1i are the random intercept and slope

of the growth process, respectively. We may also consider a time-invariant predictor (like

gender) as X. κ is a random slope for the time-varying covariate effect. ε ∼ N are the

residual errors.

The random slopes and intercepts are defined as

η0i = α0 + γ0xi + ζ0i (27)
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η1i = α1 + γ1xi + ζ1i (28)

κi = α2 + γ2wij + ζ2i (29)

where α and γ are model parameters and ζ ∼ N are residuals. Note that this model can be

considered a special case of the traditional mixed model; let us define

Λi =



1 ai1

1 ai2
...

...

1 aiT


.

Thus, in the traditional model we consider

Xi = (ΛiwiΛixiwixi) Fixed effect covariates: time-invariant and time-variant,

as well as time indices

β = (α0, α1, α2, γ0, γ1, γ2)
T Fixed eff. parameters: parameters from the random slopes

and intercept

Zi = (Λiwi) Random effect covariates: time-varying covariates and

their time index

bi = (ζ0i, ζ1i, ζ2i)
T Random effect parameters: random intercept and slopes residuals

ei = εi

for the two models to be equivalent.

This model can be further broken into four components, two fixed effects and two

random effects. It also relates to factor analysis when Λi = Λ. Also consider when ait = at,

which is done to make the time index into a parameter; this is typically done to assess

deviation from the linear growth model. Also note that a non-parametric version of the

growth mixture model can be fit for non-normal outcomes.
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The maximum likelihood estimates of the model parameters can be calculated using

the EM algorithm. Muthén and Asparouhov (Longitudinal Data Analysis) suggest having

the estimation step find the posterior distributions of the η’s, but a non-Bayesian approach

should be functional as well.

An extension of the growth mixture model is the multilevel mixture model. It func-

tions by grouping the subjects into clusters, where subjects within a cluster share fixed and

random effects. As such, this results in additional parameters to estimate so the improve-

ment in model fit is offset by a greater loss of degrees of freedom and greater computational

cost. Also, it is not entirely clear what the most appropriate procedure is for grouping sub-

jects into clusters and if done by ’eyeballing’ the growth curves a great deal of bias could

be introduced.

As a whole, growth mixture modeling seeks to add greater complexity to the typical

mixed model so that the shape of the growth curve and the effects of covariates can have

a finer effect on the outcome in the model. The growth mixture model focuses its efforts

on describing the actual curve of the outcome versus time, which is quite different from

the temporal correlation structure the mixed model is built around. It seems that the choice

between the two should be decided by what the application at hand requires.

Comparison of Longitudinal Methods: Summary Statistics Versus Mixed Models. Despite

the prevalence of longitudinal data, there has been very little work done to compare the

different choices of method. Although the more complex methods will give a better fit to

the data, these models may be more difficult to interpret and certainly spend more of the

data on estimating nuisance parameters such as variance components. It is of great interest

to know how much power a statistician gives up by using a simpler model such as summary

statistics to analyze longitudinal data.

A recent paper by Zucker et al. (2012) reported on a simulation study that ex-
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amined the power of mixed models and summary statistics[40]. The simulation was set

up in the manner of a two-arm repeated measure trial with J observations over time and

equal group sizes. The assumption of no missing data was also made. They defined the

outcome as being continuous and denoted Yij for subject i at time tj with j = 1, ..., J .

Two different summary measures were used, the unweighted 1
J

∑J
j=1 Yij and the weighted

1∑
j tj

∑J
j=1 tjYij . Two forms of the traditional mixed model were used, with and without

the group-specific effect. In other words, with and without the implicit assumption of the

baseline values being equal between arms. The unstructured covariance structure was also

used. Three scenarios were used, in which the groups always started at the same place but

the number of observations varied from 4 to 6 and different variance structures were tried.

The scenarios were inspired by three different studies, and were simulated from a mixed

model.

When testing for a treatment by time interaction, they found that across all scenar-

ios the mixed model without the baseline treatment difference was the most powerful, with

the weighted summary measure close behind. It should be noted that this is not surprising,

since the mixed model was used to generate the data in the first place. The mixed model

with the treatment-intercept performed worse, far worse in the case with a small number

of observations. Zucker et al. rationalized this by fitting two parameters for a line is very

inefficient when the number of observations is as small as 4, but changing that to just one

parameter ameliorates that problem substantially. This result may be of questionable use,

however, since their simulation was done on data where there truly was no baseline differ-

ence between groups. It is unlikely that these trends would hold when there is an actual

difference at baseline. On average randomization should eliminate baseline differences, but

for small sample sizes there may be a small difference that could throw off the model fit if

unaccounted for.

They found that when testing for a treatment effect on the intercept of the model
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(here there were actual baseline differences), the mixed model was generally most effi-

cient. However, in cases where the number of observations is small the summary measures

performed better.

As a whole, there seems to be evidence that the summary measures can actually

compete with mixed models on longitudinal data, especially when the number of obser-

vations is small. It seems that the weighted summary measure is more powerful than the

unweighted; this is relevant to the model choices presented before as the AUC is a kind

of time-weighted summary measure. The authors noted that work needs to be done in this

area that extends these findings to unbalanced data, which we hope to do in terms of miss-

ing observations. Their work was not conclusive in deciding between mixed models and

summary measures as the most powerful, which suggests that there exists the equipoise

needed for us to compare different longitudinal methods in this proposed research.

Spatiotemporal Modeling

It is possible to extend our previous knowledge of spatial processes to spatiotem-

poral models by simply considering them a special case of spatial data with one additional

dimension. For the imaging data, instead of three-dimensions the data is considered to be

four-dimensional.

Unfortunately, this approach has several intrinsic limitations. First, time goes for-

ward, so although a later time can be correlated with an earlier one, it does not make sense

to say that the previous observation is affected by a later one. Also, defining the lags be-

tween observations in time can be more complicated than defining spatial lags. Lastly,

although the spatial observations may be effectively continuous over time, temporal obser-

vations are generally treated as discrete observations.

Following the theory described in Handbook of Spatial Statistics (2010)[15], let us

first consider a stationary spatial process with covariance function CS , whose realizations
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change over time with velocity vector V. The resulting process is considered to be station-

ary with covariance structure C(h, u) = E[CS(h −Vu)] with distance vector h and time

u. The frozen field model is a special case where velocity is constant over time. Spatial

dispersion models are a common implementation of this idea, with most applications in

meteorology.

For a normally distributed outcome, let us attempt to decompose spatial Gaussian

processes based on their moments by defining the process Y at point s and time t as

Y (s, t) = µ(s, t) + η(s, t) + ε(s, t) (30)

where µ is a trend function, η is stationary process with mean zero and ’continuous sample

paths,’ and ε is the error term with mean zero. We assume the covariance structure of ε to

be separable such that

Cov[ε(s+ h, t+ u), ε(s, t)] = aI(h, t) = (0, 0) + bI(h = 0) + cI(u = 0) (31)

where I is the indicator function and b, c > 0. The ’b’ term is purely spatial, while the ’c’

term is purely temporal.

The simplest form of the trend function is where it decomposes into independent

spatial and temporal components (µ(s, t) = f(s) + g(t)). Here, we can use the standard

spatial approaches for the spatial component and assign an appropriate function for the

temporal component. Although this allows for flexibility in defining the temporal trend,

it also requires the statistician to assume a certain function whose validity needs to be

scrutinized.

We define a second-order stationary process to be where the covariance does not
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depend on location, such that

Cov[η(s+ h, t+ u), η(s, t)] = C(h, u)

where C is the space-time covariance function. The pure spatial and temporal covariances

can be found by setting u or h to 0, respectively. This second-order stationarity is related

and equivalent to strict stationarity, which is translation invariant meaning the relationship

does not change with the location of the points. In the event that the data is not stationary,

a transformation or different aggregation may serve to produce approximately stationary

results.

Now that space-time covariance structures have been introduced, their properties

need to be discussed. A space-time covariance function is considered to be symmetric if

the direction of a temporal or spatial does not matter. In other words, if

C(h, u) = C(h,−u) = C(−h, u) = C(−h,−u).

Inherent directionality in the system, such as a unidirectional current, prevents the system

from being symmetric.

A popular and powerful simplifying assumption is one of separability. We consider

a space-time covariance function to be separable if it can be written as the product of a

spatial covariance function and a temporal covariance function. In other words, if C is the

product of a spatial function and a temporal function. A benefit of a separable model is

that it makes the inversion of the correlation matrix less intensive as it can be expressed

as the Kronecker product of spatial and temporal correlation matrices; this is highly desir-

able when the number of observations per subject grows large and the cost of inverting the

matrix becomes high. This creates a simpler model with fewer parameters, but prevents

the consideration of a space-time interaction[16]. The implications of violating the sepa-

39



rability assumption have not been well studied, but work has been done to validate tests of

separability[35]. Because of the simplicity of a separable space-time covariance structure,

we consider it a good starting point for our model.

Often times, we cannot assume that the space-time covariance function is separable.

This occurs when there is a certain interaction between space and time that needs to be

addressed in the model. Thus, nonseparable covariance functions have been developed[9].

It should be noted that these typically also assume symmetry for the ease of computation.

In cases of a flow in the outcome variable over space, it is reasonable to think of

correlation between two points in time as being able to be represented by the correlation

between two locations for a given velocity and identical time lag. This is considered to

be Taylor’s hypothesis which is satisfied if there is a velocity vector v in space such that

C(0, u) = C(vu, 0). The frozen field model is an example of this. It is uncertain how

valid such an assumption is for geometric imaging parameters, as the myocardium does

not move to different parts of the left ventricle.

The product-sum method breaks up the space-time covariance function into

C(h, u) = a0C
0
S(h)C0

T (u) + a1C
1
S(h) + a2C

2
T (u) (32)

where CS are spatial functions and CT are temporal. This method allows for specific

changes in the covariance function due to space or time[10].

A different option is

C(h, u) = φ
(√

a1||h||2 + a2u2
)

(33)

where φ is a continuous function such that φ(0) = 1, which creates spatial anisotropy

and satisfies Taylor’s hypothesis. The limitation to this method is that it assumes that

space and time are interchangeable, so that a certain change in space can be replicated
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with a proportional change in time. The use of a single ‘spatiotemporal distance’ greatly

simplifies the covariance structure, but prevents the situation where space and time have

unique effects on covariance.

Previous Methods for Spatiotemporal Analysis of Longitudinal Imaging Data

In recent years there has been some research to develop statistical methods that can model

the spatiotemporal correlation inherent in longitudinal imaging data. Two major works

stand out, however: Bowman and Waller’s work from 2004 and the work by Simpson et al.

from 2014.

Cardiac Imaging Analysis by Bowman and Waller. Bowman and Waller (2004) were

concerned with the unique analytical problems that are associated with using biomedical

imaging for research, specifically the use of single photon emission computed tomogra-

phy (SPECT) to image perfusion of the heart[5]. This imaging modality gives a three-

dimensional image of the hearts perfusion, which was used by the researchers to examine

the effects of a myocardial infarction on perfusion. The study looked at perfusion of the left

ventricle at rest and during stress at two time points, one two days after the infarct and the

other one year post-MI. The overall goal was to characterize both the changes in perfusion

under different physiological conditions after an infarct and how remodeling changes per-

fusion throughout the left ventricle over time. This study is highly relevant to this research,

as the goal of making a spatiotemporal model that can deal with cardiac MRI data is essen-

tially the same as what we want to do. However, our data has more than two time points,

and examines multiple different physical characteristics of the left ventricular myocardium

other than perfusion.

Statistical challenges arise since this data involves all of the 600 voxels in a three-

dimensional image. Also, each subject and condition typically has roughly two-dozen
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images taken to reduce error. Although one could conceivably have a cardiologist make a

categorical interpretation of the hearts image as an outcome, this approach is less powerful

than a quantitative assessment and is subject to error with how the image is interpreted. The

traditional approach has been to run t-tests at each voxel and create a map of the t-statistics.

The problem with this approach is twofold. First, an image has a large number of voxels

so the issue of multiple testing inflating the Type I error becomes a real concern. Second,

the values at one voxel are known to be related to the values of the surrounding voxels, so

this spatial correlation in the data makes the implicit assumption of independent voxels in

the t-test approach invalid. Furthermore, the repeated examination of a patients heart raises

the concern of temporal correlation within a patient from one physiological condition to

another and from the first year to the second.

Their analysis looked at 1 patient under four conditions pertaining to stress/rest

crossed with 2 days/ 1 year post-MI. The images were comprised of 600 voxels, which

were condensed to 20 sectors in three cylindrical rings with a hemispherical cap. These

four regions related to the regions from the base to the apex of the left ventricle. They

could also be divided up into thirds based on what major coronary artery fed that part of

the left ventricular wall (left anterior descending, left circumflex, right coronary artery).

Note that at each condition, the image was taken multiple times to make a more stable

estimate for each sector; a typical sector had 20-22 samples.

The model proposed by Bowman and Waller is a mixed effects model. The model

for the perfusion Yk for subject k is

Yk = Xkβ + Zkdk + ek (34)

where β is the fixed effect parameter vector, Xk are the fixed effect covariates for subject

k, Zk are the random effect covariates for subject k, dk is the random effects parameter

vector, and ek are the error terms. Furthermore, it is assumed that dk ∼ N(0,∆) which is
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independent of ek ∼ N(0, σ2Vk). Thus, the overall covariance matrix for Yk is

Σk = Zk∆Z′k + σ2Vk (35)

Furthermore, the estimator for the standard fixed effects β is

β̂ =

(
K∑
k=1

X′kΣ̂
−1
k Xk

)−1( K∑
k=1

X′kΣ̂
−1
k Yk

)
(36)

and was estimated using iterative algorithms. It should be noted that there we no real

covariates in the model, so the βs were just the average perfusion of a certain sector under

a certain condition across all of the samples.

The spatial and between-condition correlation was handled through different struc-

tures of Vk. One approach dubbed between sector correlation worked by defining Vk =

diag(Vk1,Vk2, ...,VkC) treating the C different conditions as independent. Vkc was the

unstructured correlation matrix between the sectors and samples in subject k at condition c.

A second approach was within sector correlation and defined Vk = diag(Vk•1,Vk•2, ...,Vk•20)

where Vk•s was the unstructured correlation between the different conditions for a given

subject k and sector s. This approach treats the different sectors as being independent. So,

is essence the between sector correlation looks at the spatial correlation and ignores the

temporal aspect, while the within sector correlation models the temporal relationship while

ignoring the spatial aspect. However, it is not clear that the within sector correlation is

really representative of the correlation between conditions since the autoregressive struc-

ture they used does not make sense in a 2x2 design and seems to instead reflect repeated

samples within a given condition.

A third approach utilizes both the random effects and the correlated errors. The

initial term Zk∆Z′k refers to the between sector covariance while the second term, σ2Vk,

corresponds to the within sector covariance. The value of ∆ depends on what form is
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chosen for dk; different choices correspond to different assumptions about the relationship

between regions, or the desired number of regions to examine. For instance, one could look

at the covariance between the four sides (inferior/anterior, septal/lateral) of the LV instead

of the 20 sectors by changing Zk to be a matrix of 0’s and 1’s denoting whether an observa-

tion came from a particular side. We typically assume that the covariance of dk is the same

for all conditions; in other words, that the random effect for each sector is independent of

temporal or physiological condition. This can be denoted by ∆ = diag(∆c, ...,∆c). In this

approach, the random effect is needed to account for the covariance between sectors.

The advantage of the mixed model with correlated errors is that you may get a more

accurate model, depending on the covariance structure chosen. The main disadvantage

is that you need to estimate the variance components of ∆, which adds computational

burden and reduces degrees of freedom. Interpretation of the results may also become

more complex since we are adding parameters to the model.

In their example, Bowman and Waller attempted to fit six different covariance struc-

tures to their model. Four of them only looked at between sector correlation. One of these

used an unstructured covariance structure between all sectors, another assumed compound

symmetry (σij = σ2
1 + σ2I[i = j]), and two let the sectors within a given region (four rings

or three artery regions) be unstructured while assuming regions were independent. A fifth

model used only within sector covariance with an assumed autoregressive structure, and

the sixth utilized both compound symmetric between and autoregressive within sector co-

variance. The authors proposed that AIC be used to determine which covariance structure

was most appropriate.

Interestingly, the ’best’ of the six structures was found to be the unstructured co-

variance structure. This model found that sectors within a region tended to be positively

correlated, while sectors in the base were negatively correlated with those at the apex. If

this is truly the case, it is not surprising that independence between regions or compound
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symmetry failed to fit the data well. Also, the authors noted that they were unable to fit an

unstructured between sector model with a within sector autoregressive model due to com-

putational limitations; this finding has implication on this project, such that we will not be

able to simply let everything have unstructured covariance.

The work by Bowman and Waller provides a strong base to build a better spatiotem-

poral model from. Although they attempted to relate observations at two different times and

two different conditions, it is not clear how their model handles correlation at successive

observations. Only one model was tried with a spatiotemporal covariance structure, and

the temporal component appeared to refer to multiple samples in one condition and did not

utilize a proper distance-based covariance structure. Unfortunately, our preliminary work

suggested that the unstructured-by-autoregressive model they used was not viable for our

dataset (it failed to converge) so the Bowman-Waller model is not directly applicable to the

SCCOR dataset.

Brain Imaging Analysis by Simpson et al.. More recently, the research group of Simpson,

Edwards, Muller, and Styner (2014) have considered a linear model with a separable para-

metric correlation structure[34]. Their application looked at caudate morphology measured

via MRI scans taken at multiple points in time. Much like the 17-segment model we will

use for the left ventricle, Simpson et al. mapped the MRI data defining the morphology to

a 21-segment model of the caudate. The application driving their research was very similar

to ours as they were interested in whether medical therapy affected the caudate shape over

time in patients with schizophrenia.

The model they proposed is designed for data collected on subjects with Si spatial

and Ti temporal observations for i = 1, ..., N . They assume that the observations for sub-

ject i have a multivariate normal distribution with mean Xiβ and covariance σ2 [Γi ⊗Ωi]

where Γi is a Ti × Ti temporal correlation matrix and Ωi is a Si × Si spatial correlation

matrix. The values of the correlation matrices are determined by parametric correlation
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functions. In their application they used maximum likelihood estimation with the justifi-

cation of a large sample size (N = 296, SiTi ∈ (63, 147)). With the exception of using

ML estimation instead of REML, their described model is identical to the one we propose.

It should be noted that that our respective groups worked independently; their paper was

submitted June 2013 and published in February 2014, while this dissertation was proposed

in August 2013. Happily, once the coincident research paths were brought to light at ENAR

2014 there has been nothing but positive discussion between the groups.

Although both works describe the same model framework, the paper by Simpson et

al. focuses on the application of a particular parametric function crossed with itself. The

linear exponent autoregressive (LEAR) structure was previously proposed by the group and

found to have excellent flexibility for having only two parameters[33]. The LEAR⊗LEAR

structure was compared with other crossed structures when applied to the caudate study

data in terms of AIC and inference about predictors. The paper did not provide simulation

results, with the only conclusion being that for their particular dataset the LEAR model

provided superior fit to the other parametric functions considered. We feel that there is still

a significant gap into defining the practical considerations of applying such a model that

our research seeks to address.

Research Goals

In this section we will discuss the goals of the three papers presented in this dissertation

and how they fit together into a body of work.

Paper 1: Selecting a Separable Parametric Spatiotemporal Covariance Structure for Lon-

gitudinal Imaging Data

In the first paper, we lay out the theoretical framework for our spatiotemporal

model. In particular, we describe the multivariate normal structure of the outcomes and
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how it relates to the likelihood function and REML estimation of the parameters. We then

outline the main assumptions of the covariance structure such as separability and the use of

parametric spatial and temporal correlation functions.

The paper then describes the results from a simulation study that investigated prac-

tical considerations for applying such a model. The abilities of several information criteria

to select the true correlation structure was quantified. However, in practice one never knows

the true structure and it could be argued that there is not a true parametric structure for real

data. Therefore, we looked at the effects on Type I error rate and statistical power when

making inferences about predictors when a correlation structure that did not necessarily

match the one generating the data was fitted. Specifically, inferences about a treatment-

by-time interaction were examined as it was most relevant to the goals of the motivating

clinical trial. Those results give us an idea of how badly inference can go if an inappropriate

correlation structure is used, as well as a sense of what structures provide a “good enough”

fit for a certain true correlation structure. To support this effort, we simulated data from

several combinations of spatial and temporal correlation structures as well as different de-

grees of correlation. Sample size was also varied between simulation conditions to assess

whether correlation structure misspecification could be powered out of. Furthermore, we

considered the Type I error rate when an information criteria-chosen structure was used,

giving a quantification for how safe a given criterion is in terms of not falsely rejecting the

null hypothesis.

Finally, the first paper considered an application of our model to the UAB SCCOR

data. We demonstrate how information criteria can be used to select a working separable

correlation structure and how the choice can be checked by comparing multiple information

criteria or plotting observed versus predicted correlations. We also examine the inferences

made under different working correlation structures to reinforce the assertions made by the

simulation study results. As REML was used, we considered how the choice of predictors
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can affect the estimation and selection of parametric correlation functions.

Overall, the first paper presents and validates a linear model with a separable para-

metric correlation structure for use in practice.

Paper 2: Comparing Summary Methods and a Spatiotemporal Model in the Analysis of

Longitudinal Imaging Data

The first paper sought to demonstrate our model’s reliability and how it could be

used in practice, while our second paper looks to quantify the benefit of using our model

instead of the previously used summary methods. Although the prospect of using all of

the observed imaging data together is highly appealing to clinical investigators, before this

stimulation study it was unclear whether or not the complexity of such a model is justified

by improved reliability and efficiency. Summary methods were appealing not just because

of how they can eliminate the need to model correlation between observations but with how

they can sometimes make interpretation easier.

The body of the second paper reports the results of a simulation study that looked at

how well our model compared to summary measures in terms of statistical inference about

a treatment-by-time effect. Combination of spatial (regional averages analyzed together or

separately, and a global average) and temporal (slope, endpoint, and area-under-the-curve

analysis) summary measures were looked at for data generated under a linear time course.

Like in the previous paper, different generating correlation structures, degree of correlation,

and sample size were considered. The results from using a Wald and a Kenward-Roger

corrected F-test are compared. Although that paper showed that the Type I error rate of our

model was reliably conserved when the true correlation structure is used, it was of keen

interest to quantify the gain in power compared to the more easily implemented summary

methods. We also show that the common practice of analyzing regional averages separately

has extremely poor statistical properties due to the multiple correlated tests performed.
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This paper also considered the effects of missing data on the different models. A

benefit of some summary measures is to sum or average over missing data, resulting in

no loss in the number of observations in the analysis. However, the theory behind them

suggests that such averaging can still result in unequal variances which could cause adverse

behavior in the standard errors of estimators. We hoped to determine how the summary

methods themselves handled missing data when compared to our proposed model.

Paper 3: Applying a Spatiotemporal Correlation Model for Longitudinal Imaging Data

The goal of the first two papers were to convince statisticians that our proposed

model has merit and should be used in lieu of the easier summary methods. Conversely,

the goal of the third paper is to convince clinical investigators to go along with an analysis

plan based on our proposed method. To do so, we explain the function and assumptions

of our model in more easily accessible language, and give an example where we apply

our model to an outcome from the UAB SCCOR study. A different MRI parameter than

the first paper was used, and observations from all subjects were used (compared to only

subjects with complete sets as in the first paper).

This paper walks through a full analysis of longitudinal imaging data using our

model and points out the steps where clinical and statistical investigators need to work

together to produce the best results. This includes selection of predictors, selection of a

working correlation structure, and the drawing of inferences. Care is taken to explain the

benefit of using time- and space-varying predictors that would be excluded by summary

methods. We also examine the results of inference between our model and summary meth-

ods when applied to the UAB SCCOR data, and use degrees of freedom to explain how

much information is truly lost in the summation. Finally, we dispense advice for investiga-

tors when using our model.
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ABSTRACT

Longitudinal imaging studies allow great insight into how the structure and function

of a subject’s internal anatomy changes over time. Unfortunately, the analysis of longitudi-

nal imaging data is complicated by inherent spatial and temporal correlation: the temporal

from the repeated measures, and the spatial from the outcomes of interest being observed

at multiple points in a patients body. We propose the use of a linear model with a separable

parametric spatiotemporal error structure for the analysis of repeated imaging data. The

model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound

symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions.

A simulation study, inspired by a longitudinal cardiac imaging study on mitral re-

gurgitation patients, compared different information criteria for selecting a particular sepa-

rable parametric spatiotemporal correlation structure as well as the effects on Type I and II

error rates for inference on fixed effects when the specified model is incorrect. Information

criteria were found to be highly accurate at choosing between separable parametric spa-

tiotemporal correlation structures. Misspecification of the covariance structure was found

to have the ability to inflate the Type I error or have an overly conservative test size, which

corresponded to decreased power.

An example with clinical data is given illustrating how the covariance structure

procedure can be done in practice, as well as how covariance structure choice can change

inferences about fixed effects.
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INTRODUCTION

One of the most common approaches to analyzing correlated data is the use of

linear regression models with correlated errors. Through this method the investigator can

specify the covariance structure between observations that can be assumed to be related.

For example, in longitudinal studies the successive observations on a subject are considered

to have temporal correlation, with observations closer in time being more highly correlated

than those further apart. Similarly, in imaging studies the observations from different parts

of the same individual are considered to have spatial correlation that follows the same

pattern of decreasing correlation with distance. Therefore longitudinal imaging studies

need to be analyzed using methods that account for the spatiotemporal correlation in the

data. Note that here we refer to longitudinal imaging studies as those that take a handful of

successive images days, months, or even years apart; we do not refer to functional imaging

studies that take hundreds of images seconds or fractions of a second apart.

In spatial statistics, this relationship between distance and correlation is typically

defined by a parametric covariance structure. Commonly used spatial structures include

the exponential, spherical, and Matérn structures. For temporal correlation, typically the

autoregressive-1 (AR-1) and Toeplitz structures are used to define decreasing correlation

with time. The compound symmetric structure can also be used for distance-independent

correlation, while the unstructured correlation model allows for the most precise fit to the

data. Note that when separability between space and time is assumed, these temporal and

spatial structures can be combined in a spatiotemporal model[1]. Even if the correlation

between observations is a nuisance and only fixed effect parameters are of interest, use of

the proper covariance matrix is essential to prevent the estimates of the standard errors of

the parameters from being erroneous[2].
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Selecting a Covariance Structure

In practice, however, the investigator will not know a priori which covariance func-

tion will best represent the data. A three-step approach, proposed by Diggle[3] and refined

by Wolfinger[4], starts by (1) choosing fixed effects for the model, then (2) fitting different

covariance structures, and (3) finally choosing between covariance structures using either

formal testing or examination of the variogram. The variogram is a plot of covariance be-

tween observations as a function of distance and is the spatial statistician’s preferred option

for spatial covariance structure selection[5]. Unfortunately, in spatiotemporal models it can

be difficult to ’eyeball’ which of several semivariograms would be appropriate since space

and time would be on different axes or different graphs. Furthermore, this procedure does

not take the complexity of the model into consideration. Most spatial covariance functions

will have five or fewer parameters so overfitting is not as much of a concern in that field, but

when the unstructured covariance matrix is brought into consideration one must be acutely

aware of model parsimony.

Early on, formal testing for choosing covariance structures had been done using

likelihood ratio tests (LRT). For example, Schaalje et al.[6] looked at an example of how

one could choose between common longitudinal correlation structures using the LRT, and

Grady and Helms[7] used the LRT to decide between multiple covariance structures and

random effects. However, as Grady and Helms noted the LRT is only a valid test for

nested models which works decently well in longitudinal structures where everything is

nested within the unstructured model and compound symmetry and AR-1 are nested within

Toeplitz. Unfortunately, compound symmetry and AR-1 are not nested within one an-

other, making the LRT useless for choosing directly between the two. The problem of

non-nested covariance structures is greater in spatial statistics, where beyond exponential

within Matérn there is very little nesting of models. Thus, the likelihood ratio test is not a

valid choice for choosing between spatiotemporal covariance structures.
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A more helpful tool for choosing a spatiotemporal structure is the use of information

criteria (IC). As noted by Wolfinger[4], information criteria can be used instead of the LRT

in the third step of Diggle’s algorithm[3]. The most commonly used information criteria

are AIC, BIC, HQIC, CAIC, and AICC, whose forms and preference for parsimony will be

discussed later. In general, these information criteria provide a metric that quantifies how

well the model fits the data with a penalty that increases with model complexity. They can

be used to choose between covariance structures[2] or between different parameterizations

involving random effects[8] with no requirement that the covariance matrices be nested.

Several other methods have also been previously studied for their ability to choose

between covariance structures in longitudinal data analysis. Keselman et al.[9] investigated

a whole battery of statistical tests for model selection, while Wang and Schaalje[10] exam-

ined the use of predictive criteria such as theR2 statistic and predictive error sum of squares

(PRESS). Ibrahim et al.[11] looked into smooth clipped absolute deviation (SCAD) and

the adaptive least absolute shrinkage and selection operator (ALASSO) as model selection

tools.

A large amount of work has been done to assess the accuracy of information crite-

ria in the selection of the true longitudinal covariance structure[8, 12, 13, 14, 15, 16, 17].

In addition to comparing the different information criteria against one another, many of

these simulation studies have examined how study parameters and peculiarities in the data

affect accuracy. Some of these parameters and conditions include sample size, number

of follow-up visits, balance between treatment groups, skewness of the outcome, degree

of correlation, and what sorts of covariance structures generated the simulated data and

which were candidates for selection. Although much has been done with choosing tem-

poral correlation structures for longitudinal studies, there has been little work in choosing

spatiotemporal covariance structures like those seen in longitudinal imaging studies. Simp-

son et al.[18] considered information criteria for the selection of correlation functions with
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an end goal of application to longitudinal imaging data, but their simulation studies on IC

accuracy were limited to one dimension of correlation. Therefore we sought to investigate

which information criterion is best suited for choosing between spatiotemporal covariance

structures and how accurate we can expect it to be.

Effects of Covariance Structure on Fixed Effect Inference

Since selection methods are not perfect, it is necessary to assess how statistical

inference changes when the covariance structure is misspecified. There has been a large

amount of research into how different factors and covariance structures affect the Type

I error rate and power of tests of fixed effects as well as the bias and standard error of

the corresponding parameter estimates[9, 12, 13, 16, 18, 19, 20]. Much like the studies

of accuracy, these studies examined the effects of sample size, treatment group balance,

skewness, and temporal covariance structure misspecification on inference. Many of these

studies overlapped with investigations of information criteria, and reported the Type I error

rate and bias observed when either AIC or BIC was used to choose a covariance structure.

Again, these studies have simulated purely longitudinal data and so there remains a need to

examine Type I and II error rates in a spatiotemporal model under similar conditions.

Motivation

Our work here has been motivated by a multi-aim longitudinal cardiac imaging

study that looked at the effects of medical therapy on patients with mitral regurgitation

(MR)[21]. These patients randomized to treatment or placebo at baseline and were ob-

served every six months for up to two years. At baseline and every follow-up visit, the

patients underwent three-dimensional cardiac magnetic resonance (CMR) imaging to ob-

serve the geometry and function of the left ventricle. The data from these 3-D images

was condensed into 16 data values corresponding to the segments defined by the American
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Heart Association’s model for the left ventricle[22]. Due to the spatial relationship between

these segments and the repeated measures over time, a spatiotemporal model is needed to

properly model the entirety of the data. Also, since this arm of the study has a small sample

size characteristic of imaging studies a separable parametric spatiotemporal model is pre-

ferred in lieu of an unstructured covariance matrix. The goal of this arm of the study was to

determine if two different treatment strategies affected the remodeling of the left ventricle

post-surgery; in other words, we wish to know if the time course post-surgery is different

for the different treatment strategies. In terms of a statistical model, we are interested in

making inferences about the treatment-by-time fixed effect term. Previously, longitudinal

studies of CMR imaging data have focused on global outcomes such as ejection fraction,

which removes the concern with spatial correlation, or have taken summary values from

the segments and analyzed them separately[23]. In our example we wish to investigate an

outcome (end-systolic wall thickness) at all of the segments of the left ventricle simulta-

neously, since we feel that the time course of the outcome may be different at different

locations in the heart. The outcome has also been observed to differ between the base and

apex of the left ventricle, so we wish to utilize a linear regression framework to control for

and possibly make inferences on the regions of the heart as fixed effects.

Previous methodological work into cardiac imaging has fallen short of a true spa-

tiotemporal model. Bowman and Waller[24] constructed a mixed model that incorporated

spatial correlation as well as covariance between related conditions, but the spatial aspect

did not use parametric spatial covariance structures and the conditions did not follow that

typical longitudinal form of several follow-up visits. Simpson et al.[25] applied a separa-

ble parametric spatiotemporal model to neuroimaging data, but their work looked at only

a limited set of parametric correlation functions and did not report simulation results as to

how that choice affects statistical inference. Seals[27] built a spatial model for the left ven-

tricle based on the 16-segment model and cardiac imaging data. That study also examined

how accurate AIC and BIC are at choosing the correct covariance structure as well as how
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the choice of covariance structure influences the inference of fixed effects. Ultimately, the

spatial model by Seals provides the foundation for this spatiotemporal model.

The goal of this paper is to propose and examine a spatiotemporal model appropri-

ate for analyzing longitudinal imaging data. We will present a linear model and describe

how a separable, parametric covariance structure can be used to capture the inherent spatial

and temporal correlation within such studies. The results of simulations will also be dis-

cussed, where the accuracy of various information criteria used to select a spatiotemporal

covariance structure were evaluated. The simulations also looked at the effects on Type

I and Type II error rates when the fitted covariance structure was different than the one

used to generate the data. Finally, we will present an example with real longitudinal imag-

ing data to illustrate how the covariance structure selection can be done and how fitting

different covariance structures can affect inferences on fixed effects.

PROPOSED STATISTICAL MODEL, COVARIANCE STRUCTURES, AND

INFORMATION CRITERIA

Linear Model with Correlated Errors

We propose the use of a linear model with a spatiotemporal error structure. First,

consider a dataset with no missing values where N subjects were imaged at J points in time

and each image contains K outcome values. Let us define Yijk as the observed outcome of

subject i at time j and location k such that i = 1, ..., N , j = 1, ..., J , and k = 1, ..., K. Let

us also define Yi as the JK × 1 vector of observations from subject i and Yij• as subject

i’s K observed outcomes at time j, so that

Yi = Yi•• = {Yi1•,Yi2•, ...,YiJ•}, Yij• = {Yij1, Yij2, ..., YijK}.

Therefore, the dataset containsNJK observations divided up into correlated blocks of size

JK. Using the framework described by Jennrich and Schluchter[28], the linear model has
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the form

Yi = Xiβ + εi (1)

where Xi = Xi•• is a JK × p matrix containing the values of the fixed effects variables

for subject i, β are the corresponding p regression parameters to be estimated, and εi ∼

MVNJK(0, σ2Σ) and is independent and identically distributed for all N subjects, given

no missing data. The σ2 is the variance of the errors and Σ is their correlation matrix,

which assumes homogeneity of variance across repeated observations. If there are missing

observations, one could define the errors to have a correlation matrix Σi which is a subset of

Σ. In this application, we wish for the correlation matrix Σ to follow a separable parametric

spatiotemporal structure; the parameters of this matrix are contained in the vector θ so that

we can refer to the correlation matrix as Σ(θ).

When θ and thus Σ is known, the fixed effect parameters β are easily estimated by

solving the normal equations where V is a block diagonal matrix comprised of N blocks of

σ2Σ:

(X′V−1X)β̂ = X′V−1Y (2)

with the property that the estimator β̂ is the best linear unbiased estimator of β[29]. This

estimator comes from maximizing the log-likelihood ` of the form[14]

`(β|Y) = −NJK
2

log(2π)−1

2

N∑
i=1

log |σ2Σ|−1

2

N∑
i=1

(Yi••−Xi••β)′(σ2Σ)−1(Yi••−Xi••β).

(3)

In the case where Σ is known, inferences can be made on β using either a Wald’s test or,

preferably, a likelihood ratio test.

Unfortunately, in practice we do not know the values of θ and must estimate them

from the data. Although maximum likelihood estimation is possible, the estimator for θ

is biased as it fails to account for the degrees of freedom lost in estimating β[30]. There

are also concerns with the likelihood function being multi-modal in maximum likelihood
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estimation[31]. Therefore, it is more common to see {σ2,θ} estimated with restricted

maximum likelihood (REML) which greatly reduces the bias. It does so by projecting the

data into a space where all of the fixed effects of Xβ are removed from the likelihood

function. The θ̂ are then found by maximizing the restricted log-likelihood

REML1(σ2,θ|Y) =− NJK − p
2

log(2π) +
1

2
log

∣∣∣∣∣
N∑
i=1

X′i••Xi••

∣∣∣∣∣
− 1

2
log

∣∣∣∣∣
N∑
i=1

X′i••[σ
2Σ(θ)]−1Xi••

∣∣∣∣∣− 1

2

N∑
i=1

log |σ2Σ(θ)|

− 1

2

N∑
i=1

(Yi•• −Xi••β̂)′[σ2Σ(θ)]−1(Yi•• −Xi••β̂)

(4)

where the constant term has been modified and the second and third terms have been added

when compared to the full likelihood function[14]. Note that in many software implemen-

tations the second term is dropped when reporting the maximum restricted likelihood as it

is not a function of θ; this quantity is referred to as REML2 and is defined as

REML2(σ2,θ|Y) = REML1(σ2,θ|Y)− 1

2
log

∣∣∣∣∣
N∑
i=1

X′i••Xi••

∣∣∣∣∣ . (5)

If inferences about θ are of interest, it was noted by Harville[29] that θ̂ follows an asymp-

totically normal distribution.

The actual REML estimation is more complicated than it may seem since the form

of REML contains β̂, but β̂ needs σ2Σ(θ) to be estimated before it can be calculated.

Thus, iterative algorithms are needed to estimate all of the parameters in our model. One

possibility is the EM algorithm, most famously described by Laird and Ware[30], which has

a low computational burden per iteration but may require many iterations. Another com-

mon choice is the Newton-Raphson algorithm, described by Jennrich and Schluchter[28]

and refined by Lindstrom and Bates[32], which has a greater computational burden per

step in calculating matrix derivatives but ultimately requires far fewer steps than the EM
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algorithm. A third option is the Fisher scoring algorithm, also discussed by Jennrich and

Schluchter[28], which provides the base of the model estimation software we utilized[33].

These algorithms address the cyclic nature of estimating β̂ and θ̂ by switching between

the two estimations, using the most recent estimate of one to estimate the other and re-

peating until convergence. In this approach, the typical initial step is to estimate β̂ using

least-squares estimation then using that to begin the REML estimation of θ̂.

One limitation of REML estimation is that its estimates are specific to a certain

structure of X. If one wished to compare a full model to one with a reduced number of

fixed effects, the REML procedure will project the data into two different spaces and the

likelihoods cannot be compared. Thus, traditional likelihood ratio tests cannot be used to

compare nested fixed effects models when REML is used. In practice inferences about

fixed effects under REML estimation have been restricted to a hybrid of ML and REML

estimation[4] or, more commonly, Wald’s tests. Previous research has suggested that when

a Wald’s test is used it is highly advisable to use some form of degrees of freedom correction

such as Kenward-Roger’s adjustment[4, 12, 13, 20]. There have been efforts made by

Welham and Thompson[34] to use LRTs in REML estimation by altering the full model’s

projection to go to the same space as the reduced model, but to our knowledge their method

has not been implemented in common statistical software.

Separable Parametric Covariance Structures

Once an initial set of fixed effects has been chosen, the parametric structure of the

correlation matrix must be determined. Ultimately, the only restriction on Σ(θ) is that it

must be positive definite, though it is practically always symmetric as well. The main idea

behind parametric covariance functions is that ‘close’ observations are more highly related

than ‘far’ observations. There is also the consideration that two pairs of observations with

identical ‘distances’ apart should have similar if not identical correlations. We will discuss

below which parametric covariance models we considered.
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When choosing a spatiotemporal model, one must think about how space and time

relate in the problem at hand. A simplifying assumption is that the spatial and temporal

correlations are independent; in this case one can construct a separable model where the

correlation between two observations is the product of the spatial and temporal correlation

functions. Using matrix algebra, one can create a full correlation matrix from two inde-

pendent sources of correlation by taking the direct/Kronecker product (denoted ⊗) of the

two correlation matrices[35, 36]. Separable covariance structures for repeated measures

imaging data have been used previously by Simpson et al.[25], who have also investigated

a test for separability[26].

Nonseparable spatiotemporal models exist, and frequently rely on Taylor’s hypoth-

esis that spatial and temporal correlation use the same function and are connected through a

velocity[1]. This kind of spatiotemporal structure is most common in meteorology, where

the difference in weather between points A and B is the same as the difference at point

A now and point A at a later time once the front over point B has moved to A. While

this form may be useful in medical imaging that examines signal transduction, for imaging

studies such as ours that look at anatomical structure the Taylor hypothesis is entirely in-

appropriate. Thus, we will focus on investigating a separable spatiotemporal model which

is reasonable based on the nature of the problem as well as successful previous use of the

assumption[25].

We investigated four temporal and three spatial correlation functions, chosen for

how they are frequently fitted in practice and appear in most common statistical software.

The three spatial structures are exponential (EXP), spherical (SPH), and Matérn (MAT).

The temporal structures are compound symmetry (CS), autoregressive-1 (AR-1), Toeplitz

(TOEP), and the unstructured model (UN). The details of these correlation functions are

given in Table 1. Note that we have assumed the spatial structures are isotropic: the cor-

relation between two points depends only on the magnitude of the distance between them
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and not the direction/orientation.

Information Criteria

In analyzing longitudinal imaging data with our model, one would need to choose

a particular combination of spatial and temporal correlation structures when fitting the

data. Studies on longitudinal methods had seen promising results in the use of informa-

tion criteria to select temporal correlation structures, and so we wish to extend their use

to spatiotemporal models. The most common information criteria (AIC[37], AICC[38],

CAIC[39], BIC[40], HQIC[41]) all have the form of the log-likelihood function, `, penal-

ized by the number of parameters. The information criteria that came after the AIC also

weight the penalty according to the sample size. However, the choice of likelihood and

sample size is not immediately clear when REML is part of the model estimation. Should

the maximum likelihood be used for `, or should REML1 or REML2? Should the sample

size penalty n∗ be based on the total number of observations minus the number of fixed

effects be used (NJK − p, the dimension of ` in REML), or should one instead weight the

penalties with the number of independent observational units (N)? Numerous studies have

looked for answers to these questions in longitudinal studies[10, 14, 16, 17, 18] but not in

a true spatiotemporal framework.

The details of the five information criteria are given in Table 2, presented such

that the smaller information criterion is the ‘better’ model[14, 17]. In a broad sense, each

information criterion could have six forms: ML with n∗ = NJK, ML with n∗ = N ,

REML1 with n∗ = NJK − p, REML1 with n∗ = N , REML2 with n∗ = NJK − p,

and REML2 with n∗ = N . However, since we ultimately used these information criteria

to choose between parametric covariance structures and not between models with different

fixed effects, making the X matrices identical between prospective models, REML1 and

REML2 would give identical results. The estimation procedure used was purely based on

REML and did not support maximum likelihood estimation, so we just concerned ourselves
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with the full restricted likelihood REML1 for `. Thus, we investigated nine information

criteria: AIC; and forms of n∗ = N or NJK − p for AICC, BIC, CAIC, and HQIC.

SIMULATION STUDY

In order to assess the accuracy of these information criteria as well as the effects

of covariance structure misspecification on statistical inference, we performed a simulation

study which observed those properties under a variety of conditions. Specifically, we esti-

mated the Type I and Type II error rates for testing a treatment-by-time fixed effect when

the covariance structure used to fit the model either matched or did not match the covari-

ance structure used to generate the data. Under the same conditions, we estimated how

often different information criteria would correctly select the covariance structure used to

generate the data when presented with a variety of possible structures. Furthermore, the

effects of sample size and the degree of spatial or temporal correlation were investigated

for how they changed IC accuracy or Type I and Type II error rates. In the design and re-

porting of these simulations, we endeavored to adhere to the guidelines proposed by Burton

et al.[42] but for the sake of space many details have been reserved for the supplementary

materials.

Simulation Details

The generated data is based on the structure of the data collected in the cardiac

imaging study reported on by Schiros et al.[21]. The outcome variable is multivariate

normal and was collected from two treatment groups at five time points, evenly spaced six

months apart (J=5). At each observation, cardiac imaging was done where the outcome was

observed at 16 points within the left ventricle (K=16). Thus, each subject had 80 observed

outcomes. The layout of the spatially observed locations was modeled using the AHA’s

17 segment model presented by Cerqueria et al.[22], where the left ventricle is laid out
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in a circular pattern with concentric rings corresponding to the different levels of the left

ventricle (base, mid, and apex), much as if one is looking down from the left atrium. The

coordinates were defined as the center of each segment laid out on a unit circle shown in

Figure 1 and are specifically defined in the supplementary materials[27].

The outcome was calculated as the result of a linear model with correlated errors.

Specifically,

Yijk = β0 +β1Timeij +β2Groupi+β3Midk +β4Apexk +β5Timeij ∗Groupi+ εijk (6)

where Timeij was the continuous time of subject i’s jth observation; Groupi was the

treatment group for subject i; Midk and Apexk were indicator variables for whether the

ijkth observation was from the mid or apex of the left ventricle, respectively. The collected

error terms for subject i were independent and identically distributed for all subjects and

were distributed εi•• = [εi,1,1, εi,1,2, ..., εi,1,16, εi,2,1, ..., εi,5,16] ∼MVN80(0, σ2Σ), where σ2

was the variance of the outcome (assumed to be equal across all observations) and Σ is an

80-by-80 separable parametric spatiotemporal correlation matrix. For the sake of simplicity

we assumed β0 = β1 = β2 = β3 = β4 = 1 and σ2 = 1.

The parts of the linear model itself that were changed between conditions include

β5 and Σ. Note that β5 represents the time-by-treatment interaction and if β5 6= 0 then

there exists a difference in the time course between the two groups, which was the original

research hypothesis. β5 = 0 allowed for the examination of the Type I error rate, and the

other values were chosen to create sigmoidal power curves. The generating Σ was varied

between different parametric structures and degrees of correlation, as shown in Figure 2.

Total sample size was set to either 50 or 100 subjects. The complete listing of simulation

conditions is given in Table 3.

For each condition described in Table 3, 5000 independent simulated datasets were

run and 12 separable covariance structures corresponding to the combinations of three spa-
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tial (exponential, spherical, and Matérn) and four temporal (compound symmetric, autoregressive-

1, Toeplitz, and unstructured) working correlation structures. From each model fit, we

looked at the p-value for the Wald’s test against the null hypothesis of H0 : β5 = 0 as well

as the maximum restricted likelihood. A conditional F-test with a Kenward-Roger adjust-

ment for denominator degrees of freedom was considered but did not alter the conclusions.

We calculated the values of the 9 information criteria for each of the 12 covariance mod-

els using the restricted log-likelihood, and defined the ‘chosen’ model for that dataset as

the one with the smallest criterion. The selection probabilities for each information cri-

terion for a certain condition was calculated as the proportion of the 5000 datasets where

the information criterion chose the covariance structure that had been used to generate the

dataset.

The Type I error rates were calculated as the proportion of the 5000 datasets where

a model with a certain covariance structure rejected the null hypothesis of β5 = 0 at an α =

0.05 level when the data was generated with β5 truly equal to zero. Using the convention

suggested by Bradley[43], we considered the Type I error rate to be conserved when it

fell between 0.75α and 1.25α, or 0.0375 and 0.625 for our chosen α level. The value of

1.25α was chosen to be moderate, neither highly conservative (1.1α) nor liberal (1.5α) as

Bradley described them. Thus, we classified the fit of a certain covariance structure on data

generated under a given covariance structure to be overconservative if the empirical Type I

error rate α̂ was below 0.0375 and inflated if the error rate was above 0.0625.

The Type II error rates (the power curves) were found by checking the proportion

of times the Wald’s test for β5 = 0 was rejected on datasets generated with β5 > 0. Note

that the combinations of fitted and generating covariance structures that were deemed to

have inflated Type I error rates (α̂ > 0.0625) did not have their power investigated as they

were deemed to be unreliable.
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Results

Selection Accuracy of Information Criteria

The five different information criteria (AIC, AICC, BIC, CAIC, and HQIC), along

with their different forms for the sample size penalties, were evaluated for their accuracy

in selecting the true covariance structure that was used to generate simulated data when

presented with a variety of possible structures to choose from; the summarized results are

given in Figure 3 and the full results are in the supplementary materials. The information

criteria were highly accurate as a whole, with the lowest value for any condition being

68.4% accuracy and the highest being over 99.9%.

In general, the consistent information criteria (BIC, CAIC, HQIC) seemed to have

a higher accuracy than the efficient criteria (AIC, AICC). CAIC seemed to be the most

accurate information criterion, followed closely by BIC then HQIC, with AICC further

behind that. AIC was the least accurate of the information criteria evaluated in terms of

covariance structure selection. As for the sample size adjustment, AICC seemed to be

more accurate using the number of subjects (N ) while the consistent criteria were slightly

more accurate using the total number of observations minus the number of fixed effects

(NJK − p).

When choosing between temporal correlation structures, all information criteria

were able to perfectly distinguish between CS and AR-1 structures. Incorrect choices were

the result of picking a more complex temporal function (Toeplitz, unstructured) which was

more common among the efficient criteria. The degree of temporal correlation had no

noticeable effect on selection accuracy. Conversely, the degree of spatial correlation had

a large effect on accuracy of choosing the true spatial structure. In particular, accuracy

dropped for all criteria under a high degree of spatial correlation compared to a low degree.

The reason for this behavior can be guessed at from Figure 2; the spatial correlation struc-

tures were much more distinct and different under the low-correlation condition than the
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high-correlation condition.

The larger sample size had a subtle effect on selection accuracy. Increasing the total

number of subjects from 50 to 100 did not simply result in an across-the-board increase in

accuracy. Under low spatial correlation, the larger sample size had a slight improvement

for consistent criteria, no noticeable effect on AIC, and an apparent decrease in accuracy

for AICC. When the spatial correlation was high, increasing the sample size to 100 seemed

to mitigate some of the accuracy loss seen in theN = 50 groups, especially for exponential

or spherical simulated data.

Effects of Correlation Structure Specification on Type I Error Rates

In addition to examining the accuracy of information criteria, we looked at the

empirical Type I error rates for unadjusted Wald’s tests under different combinations of

generating and fitted covariance structures. The chosen α level for these tests was 0.05.

The summarized results of these simulations are given in Figures 4 and 5, with the full

results given in supplementary tables. As stated before, we considered the Type I error rate

to be inflated if it was greater than 0.0625 (1.25α) and overly conservative if it was less

than 0.0375 (0.75α).

We found that when the spatiotemporal covariance structure used to fit the data was

the same as the one used to generate the data the Type I error rate is conserved. This result

held regardless of the degree of spatial or temporal correlation, whether the sample size was

50 or 100, or what the actual structures were. Specifically, all of the Type I error rates for the

conditions with matching generating and fitted covariance structures fell between 0.0448

and 0.0598 with a median of 0.0516. This conservation of the error rate held when more

complex correlation functions were fit to special cases such as Matérn fit to exponential

data and Toeplitz or unstructured fit to compound symmetric or autoregressive-1 data.

The simulation showed that misspecification of the correlation structure can cause
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the Type I error rate to be inflated or overly conservative, sometimes extremely so. In cases

where the fitted temporal correlation structure was correctly specified, the effects of spatial

structure misspecification are shown in Figure 4. When the degree of spatial correlation was

low, the mismatch of spherical structures and exponential/Matérn structures resulted in the

Type I error not being conserved. However, when the degree of spatial correlation was

high there was no problem with the Type I error rate with the mismatch of those structures.

We also found that fitting an exponential structure to Matérn data can result in the Type

I rate being overly conservative. On the temporal side, when the spatial structure was

correctly specified, the results were much more straightforward as seen in Figure 5. Fitting

compound symmetric to autoregressive-1 data greatly inflated the Type I error, while fitting

autoregressive-1 to compound symmetric data resulted in a very conservative Type I error

rate.

One very important observation from the simulations is that the sample size increase

from 50 to 100 did not noticeably change situations where the Type I error rate was not con-

served, suggesting that increasing sample size is an ineffective way to conserve the Type I

error rate when the spatiotemporal structure is misspecified. A more effective strategy of

conserving the Type I error rate seems to be proper selection of the covariance structure.

As we have seen, commonly used information criteria are very accurate when it comes

to picking the true parametric spatiotemporal covariance structure. To test this approach,

we looked at the empirical Type I error rate when the covariance structure chosen by the

information criterion was used; the detailed results are given in a supplementary table. We

found that when the working covariance structure was chosen by one of the nine informa-

tion criteria the Type I error rate was very well conserved ([0.0446,0.0600] for all IC and

conditions; median=0.0516), even when using the least accurate AIC ([0.0448,0.0600], me-

dian=0.0514). This suggests that the strategy of using an information criterion to choose

the working correlation structure is one that, on average, will conserve the α-level of a

Wald’s test of fixed effects.
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Effects of Correlation Structure Misspecification on Power

In order to explore the relationship between fitted and actual spatiotemporal corre-

lation structures with regard to their effect on Type II error rates, more simulation studies

were run. As with the Type I error rate, the test of interest is an unadjusted Wald’s test

for a group-by-time interaction (β5 in Equation 6). An example of the results is given in

Figure 6 for data generated under spherical-by-compound symmetric, and the results for

other generating structures are shown in the supplementary materials.

The first thing to note is that statistical power seems to be maximized when the true

correlation structure is used to fit the data. That is, when the working correlation structure

is the same as the one used to generate the data the resulting power is as large or larger

than any other working correlation structure we considered. Other working covariance

structures were able to match that level of power, though. In particular, the more complex

working covariance structures that contained the true covariance structure (Matérn contain-

ing exponential, Toeplitz and unstructured containing both autoregressive-1 and compound

symmetry) matched the true correlation structure in terms of power despite requiring addi-

tional degrees of freedom.

When the correlation structure was misspecified in a pairing that had an overly

conservative Type I error rate, the resulting power was lower than that of the true correlation

structure. For example, when an autoregressive-1 structure was fit to compound symmetric

data the power was greatly reduced, reflecting the extremely low α̂ that was observed.

Mismatched spatial structures that were overly conservative when spatial correlation was

low had similarly lower power. Those pairings whose Type I error rate returned to normal

for a high degree of spatial correlation had their power increase to roughly the maximum

as well.

We did observe that power was higher for a high degree of temporal correlation

compared to a low degree of temporal correlation, and that power seemed to be lower when
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spatial correlation was high versus low. Increased spatial correlation means that there is less

unique information amongst the multiple observations from a subject, which may explain

the power loss. As for the gain in power under high temporal correlation, it is probable that

this result only holds for inference on parameters related to time such as the treatment-by-

time interaction we tested.

ILLUSTRATING THE USE OF COVARIANCE STRUCTURES IN A

LONGITUDINAL CARDIAC IMAGING STUDY

The data used in this example analysis was first reported in the paper by Ahmed

et al.[23], which contains the details of data collection and study design. In short, this

study was a randomized controlled phase IIb trial for the use of medical therapy in the

treatment of patients with chronic degenerative mitral regurgitation. The intent was that

treatment would prevent the adverse left ventricular remodeling typically seen in MR pa-

tients. Over time the left ventricle balloons outward in these patients resulting in a more

spherical chamber compared to the ‘bullet’ shape seen in healthy patients; a sample MRI

scans of the hearts of a healthy subject and a MR patient, both enrolled in the study, are

given in Figure 7. In the previous work global or summary measures were taken from the

MRI scans, while this analysis makes use of outcomes from all 16 segments. The particular

outcome analyzed here is the end-systolic (ES) wall thickness of the left ventricle.

A linear model similar to the one used in the simulation study was fitted to the

data, where the treatment-by-time interaction was of interest. In this model, shown below,

higher order interaction terms were included up through the three-way time/level/treatment

interaction. These terms represent how the treatment would affect the time course of LV

remodeling, but it would affect the different levels in different ways. The parentheses
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represent the terms relating to ventricular level.

Yijk = β0 + β1Timeij + β2Groupi + (β3Midk + β4Apexk) + β5Timeij ∗Groupi

+ (β6Timeij ∗Midk + β7Timeij ∗ Apexk) + (β8Groupi ∗Midk + β9Groupi ∗ Apexk)

+ (β10Groupi ∗ Timeij ∗Midk + β11Groupi ∗ Timeij ∗ Apexk) + εijk (7)

Like before, Yijk represents the wall thickness of the kth segment of the ith subject at

the jth time point and the error terms for subject i were independent and identically dis-

tributed for all subjects and were distributed εi•• = [εi,1,1, εi,1,2, ..., εi,1,16, εi,2,1, ..., εi,5,16] ∼

MVN80(0, σ2Σ), where σ2 was the variance of the outcome (assumed to be equal across

all observations) and Σ is an 80-by-80 separable parametric spatiotemporal correlation ma-

trix. Twelve models were fit where Σ was varied to the structures discussed earlier. Note

that only complete cases were used, giving a sample size of 26.

The log-likelihood of the fitted models was then used to calculate the nine infor-

mation criteria. The BIC and CAIC with n∗ = NJK − p chose MAT⊗CS to be the best

covariance structure, while the others all picked EXP⊗UN. When there is a discrepancy

between criteria, it is best to look at how the estimated correlation functions compare to the

observed correlation; the easiest way is to plot the correlation versus distance, as seen in

Figure 8. The unstructured model works best for comparing the estimated functions to the

‘true’ correlation, but this approach is limited by the number of correlated outcomes. Here,

five temporal observations made fitting an unstructured model simple while the 16 spatial

locations meant that a spatial unstructured model could not be estimated. The values in

Figure 8 were calculated by taking pairs of segments from every time point and calculating

the correlation with an unstructured model in space and time; this strategy was inspired by

the method used in Simpson et al.[26].

From the plot we can see that the compound symmetric model fits the temporal

correlation well, but there is a bit of heterogeneity that could give the unstructured model
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the nod when additional parameters are not too harshly penalized. On the other hand, the

correlation between the 16 segments is extremely heterogeneous when considered in terms

of distance between segments. None of the three functions fit the correlations particularly

well, but with such a high amount of heterogeneity it is doubtful any one parametric func-

tion could fit the data closely. The exponential model may fit the middle distances better,

but Matérn seems to fit the far distances better; the discrepancy between the information

criteria in choosing a spatial structure can likely be explained by this.

Since we have chosen a covariance structure, we are now able to draw inferences

about the fixed effects in the model. The results of the Wald’s and conditional F-tests for

the three-way interaction terms is given in Table 4. The simple Wald’s χ2 test and the

conditional F-tests with the Kenward-Roger adjustment did not appear to give noticeably

different results. Another thing to note is that the choice of covariance structure did affect

the test statistics and p-values, although the effect was minor in this case. However, if one

considers the adjusted residual degrees of freedom in the F-test it is clear that choosing

a spatiotemporal covariance structure with more parameters can substantially reduce the

degrees of freedom available for testing.

We can also see the importance of selecting a proper correlation structure. From

the simulation results, it would appear that if the data was truly exponential- or Matérn-by-

compound symmetric then a spherical-by-autoregressive-1 model would be entirely inap-

propriate and be extremely conservative. This result is borne out when such a SPH⊗AR-1

model is fitted, as the test statistic was much smaller and the p-value much larger than when

the chosen structures were fitted.

Since the three-way interaction was not statistically significant at an α = 0.05 level,

the next logical step is to remove it and test the two-way treatment-by-time interaction

in a reduced model. Here we can see how the choice of correlation structures can be

dependent on the fixed effects. When the twelve models were fitted and the information
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criteria compared, all nine criteria chose the exponential-by-unstructured model. This is a

different result than the conflicting choices from the full model, suggesting that the chosen

structure should be reevaluated when the fixed effects change.

DISCUSSION

In this paper, we have presented a spatiotemporal linear model for data correlated

through space and time and have considered the relationship separable parametric covari-

ance structure choice has on statistical inference.

We have found that when the chosen covariance structure matches the true structure

of the data (or has the true structure as a special case), statistical inference works ‘best’ as

expected. Specifically, the Type I error rate is conserved and tests about fixed effects have

their power maximized. When the chosen structure is misspecified, however, there is the

potential for the Type I error rate to be inflated or too conservative which makes statistical

inference unreliable or inefficient, respectively. Furthermore, misspecifications that are

overly conservative in Type I error rate were found to also have noticeably reduced power

compared to the true structure.

The best determinant of whether a given working covariance structure will have a

negative effect on inference is whether or not it can closely approximate the data’s struc-

ture. When one tries to use an exponentially decreasing function like AR-1 with a flat

function like compound symmetry, the resulting statistical properties are irredeemably bad.

Similarly, fitting a mostly linear function like the spherical structure to exponential data

generally causes problems with inference; however, if all of the correlations are high (such

as in Figure 2) then there is little difference in the functions and statistical inferences are

reasonable. In practice it is advisable to plot the estimated correlation functions versus the

unstructured values[25], or to consult a semivariogram[5]. This finding is similar to the one

by Gurka et al.[19] that found that underfitting the correlation often led to the Type I error
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rate not being conserved.

Overall, it seems that the use of more flexible and complex spatial and temporal

correlation structures result in reliably high power regardless of the degree of correlation,

assuming that the complex model can fully or at least reasonably approximate the true

model. Note that this conclusion may be entirely reliant on the data having a high di-

mension per subject: despite the low sample size of 50, when one considers the effective

degrees of freedom to be at most 3994 (NJK − p = 50 ∗ 5 ∗ 16 − 6) then it makes sense

that spending a few more degrees of freedom to estimate additional covariance structure

parameters would have a negligible effect in terms of power loss.

In addition, we have found that information criteria are highly accurate at choos-

ing between separable spatiotemporal covariance models. Even the simplest AIC was at

least 68% accurate. The consistent information criteria (BIC, CAIC, and HQIC) seemed to

be more accurate than efficient (AIC, AICC) criteria, with CAIC being the most accurate.

The CAIC’s accuracy was generally over 90%, and often went over 99%. Although with

REML estimation the sample size adjustment of N worked much better for AICC, HQIC

performed better with NJK − p and CAIC/BIC were largely invariant to which of the two

were used. As a whole, we would recommend the use of CAIC for choosing a spatiotem-

poral covariance structure; if it is unavailable, though, BIC should work admirably as well.

One possible caveat to this high accuracy was that only one variance was considered in our

simulation study; simulations reported by Gurka[14] suggest that accuracy of information

criteria can sharply decrease at higher variances, particularly for efficient criteria. Gurka

also found thatREML2 was better for efficient criteria andREML1 for consistent criteria

for choosing fixed effects, but in our simulations the fixed effects were constant so there

was inherently no difference between the two formulations; Additional work would be

needed to address the appropriateness of using information criteria to choose fixed effects

and covariance structures simultaneously.
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In this study we only considered three spatial and four temporal correlation struc-

tures for model fitting, and only two temporal for data generation. The actual number

of structures one may wish to choose from will likely be much larger in practice, and

previous studies suggest that increasing the number of choices reduces the accuracy of in-

formation criteria monotonically[12, 13, 17]. We suggest that an analyst should consider

the goodness-of-fit of spatial and temporal correlation structures when making a decision

about which model to use for drawing inferences, and that graphical checks can be very

useful as a supplement to information criteria. It should also be remembered that choosing

a covariance structure should be redone if the predictors of the model change as the ‘best’

correlation function may change as well. This was observed in the above applied example,

and is a direct consequence of the statistical theory; changing the fixed effects results in the

restricted likelihood being projected into a different space which directly alters the estima-

tion of the covariance parameters. The amount which correlation structure selection affects

overall goodness-of-fit was not quantified in our simulation study, but would be useful to

the field and a logical next step. A practical approach would be to employ backwards selec-

tion from a model with all potential predictors, choosing a new covariance model at each

step back.

One of the most important assumptions in our model was that the temporal and spa-

tial correlation were separable. It is an extremely useful assumption that we feel is reason-

able, but still one that must be checked. Simpson et al.[26] recently proposed a likelihood

ratio test for whether a separable parametric structure should be rejected when compared

to a fully unstructured covariance matrix. Such an unstructured matrix was estimated by

looking at subsets of temporal and spatial observations to fill out the area around the main

diagonal, with the assertion that correlation quickly decays to zero with distant observa-

tions. Neither spatial nor temporal correlation quickly decayed with distance in our exam-

ple, which agrees with Simpson’s suggestion that a more general yet still computationally

efficient method is needed. It should be noted that they did report that for their application
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in caudate morphology the separability assumption was found to be invalid, so one cannot

simply state that separable structures are always valid for longitudinal imaging data as there

may be an interaction between space and time. Unfortunately, as mentioned before the vast

majority of structured nonseparable correlation models rely on Taylor’s hypothesis, which

does not seem valid for such an application. Cressie and Huang[45] developed a framework

for a wide variety of nonseparable parametric spatiotemporal functions, but work has not

been done as to the appropriateness of those for longitudinal imaging studies. Work also

remains to be done to examine the impact of violating the separability assumption in our

model as it pertains to inference.

There are other considerations that fell outside the scope of this study that merit

further investigation. For drawing statistical inferences, we looked at an unadjusted Wald’s

test as well as an F-test with a Kenward-Roger adjustment to the denominator degrees of

freedom; one could argue for the use of an additional Kenward-Roger adjustment to the

covariance matrix[4, 12, 13, 20] or of the REML-friendly likelihood ratio test[34] which

would necessitate similar inquiries as to how covariance structure specification affects sta-

tistical inference. Another possible direction would be to consider the sensitivity of our

model to the assumption of multivariate normality, and to look at how it behaves when

faced with skewness or kurtosis in the outcome.

Lastly, it is worth considering how our model and an information criteria-based

covariance structure selection approach handle some challenges seen in the analysis of real

studies, such as unbalanced designs or missing data. These are issues that may encourage

the use of summary methods which have seen much discussion and research[46, 47, 48,

49]. Therefore a direct comparison of such summary methods with our model is currently

planned.
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Table 1: Table of the spatial and temporal correlation functions examined in this paper.
Temporally, consider ta to be the discrete time of the ath observation in time, with a =
1, ..., J , and Y (ta) be the observed outcome at that time point. Let us assume that all
observations are evenly spaced, so that ta − ta−1 = tb − tb−1 for any a, b ≥ 2. Spatially,
consider dab as the Euclidian spatial distance between observations Ya and Yb.[2, 44]

Type Correlation Fcn. Corr(Ya, Yb) Parameter Space Length(θ)

Spatial Exponential ρdab ρ ∈ (0, 1) 1

Spherical 1− 3
2

(
dab
φ

)
+ 1

2

(
dab
φ

)3
φ ∈ (0,max(dab)) 1

Matérn 1
2ν−1Γ(ν)

(
dab
φ

)ν
Kν

(
dab
φ

)
φ ≥ 0, ν ≥ 0 2

Temporal Comp. Symm. ρ ρ ∈ (0, 1) 1
Autoregressive-1 ρ|tb−ta| ρ ∈ (0, 1) 1
Toeplitz ρc, c = |a− b| ρc ∈ (0, 1) J − 1

Unstructured ρab ρab ∈ (0, 1) J(J−1)
2
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Table 2: Table of the function forms of the different information criteria (IC) under REML,
presented so that ‘smaller is better.’ The ` is the log-likelihood, s is the number of param-
eters in the covariance structure, and n∗ is the sample size penalty of either the number
of subjects (N ) or the dimension of the log-likelihood in REML (NJK − p, number of
observations minus the number of fixed effects).

IC Source Form with n∗ = N Form with n∗ = NJK − p

AIC Akaike (1974) −2`+ 2s −2`+ 2s

BIC Schwarz (1978) −2`+ s log(N) −2`+ s log(NJK − p)

HQIC Hannan & Quinn (1979) −2`+ 2s log(log(N)) −2`+ 2s log(log(NJK − p))

CAIC Bozdogan (1987) −2`+ s(log(N) + 1) −2`+ s(log(NJK − p) + 1)

AICC Hurvich & Tsai (1989) −2`+ 2s
(

N
N−s−1

)
−2`+ 2s

(
NJK−p
NJK−s−1

)
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Table 3: Total number of conditions for the simulation study which included varying the
sample size, temporal and spatial structures used to generate the data, the degree of spatial
and temporal correlation used in data generation, and the values of β5 used.

Sample Size N=50 N=100

ΣT Structures 2 (CS,AR-1) 2 (CS,AR-1)

Degree of ΣT 2 (High, Low) 2 (High, Low)

ΣS Structures 3 (Exp,Sph,Mat) 3 (Exp,Sph,Mat)

Degree of ΣS 2 (High, Low) 2 (High, Low)

Values of β5 β5 = {0, 0.05, 0.10, 0.15, 0.20} β5 = {0}

Total Number of Conditions 120 24
144
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Table 4: Table of the statistical inferences for the treatment-by-time-by-level and treatment-
by-time interactions for end-systolic wall thickness as the outcome.

Model and Chosen IC Wald χ2 Test Conditional F-Test
Variable Tested ΣS ⊗ ΣT Choosing Σ Test stat. p-value Test statistic p-value

Full Model, MAT⊗CS BIC, CAIC χ2
2 =1.66 0.4370 F2,1113.0 = 0.828 0.4373

Time*Treatment*Level EXP⊗UN All others χ2
2 =1.60 0.4593 F2,413.2 = 0.778 0.4599

MAT⊗UN None χ2
2 = 1.64 0.4397 F2,366.4 = 0.822 0.4406

SPH⊗AR-1 None χ2
2 = 0.70 0.7057 F2,1231.4 = 0.348 0.7059

Reduced Model, EXP⊗UN All IC χ2
1 = 0.40 0.5364 F1,133.1 = 0.382 0.5375

Time*Treatment MAT⊗UN None χ2
1 = 0.34 0.5593 F1,111.1 = 0.341 0.5605
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Figure 1: Plot of the 16 segments of the left ventricle. The outer ring corresponds to the
base, the middle ring to the mid, and the inner circle to the apex[22, 27]. The numbers
correspond to the segment’s index as defined in Table A.1.
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Figure 2: Plots of the covariance functions used to generate the spatiotemporal data. The
spatial structures (exponential, spherical, and Matérn) are on the left and the temporal
structures (compound symmetric and autoregressive-1) are on the right. The functions
used to generate data with a low degree of correlation are on the top, and those generating
a high degree are on the bottom.
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Figure 3: Box plots of the accuracies of the nine information criteria for selecting the gen-
erating correlation structure from 12 working structures. The values plotted are aggregated
from 48 simulation conditions.
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and green squares a high degree. Smaller markers denote a sample size of N=50, while the
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Figure 7: Representative end-systolic (ES) cardiac MRI scan with the four chamber view
from a control subject and a MR patient. Note how remodeling has caused the MR patient
to have a more spherical left ventricle (circled) compared with the healthy subject.
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Figure 8: Plot of the estimated correlation functions for the full model of the end-systolic
wall thickness in the SCCOR data. On the left are the spatial functions when the temporal
correlation is unstructured, while on the right are the temporal structures for a Matérn
spatial structure. The unstructured spatial correlations were estimated from subset pairs of
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APPENDIX

Simulation Details

In this simulation study, for the sake of simplicity we assumed β0 = β1 = β2 =

β3 = β4 = 1 and σ2 = 1. No loss of generality was expected, as σ2 simply scales the

outcome and inferences about β5 should not depend on the values of the other βs. The

parts of the linear model itself that were changed between conditions include β5 and Σ.

Note that β5 represents the time-by-treatment interaction and if β5 6= 0 then there exists

a difference in the time course between the two groups, which was the original research

hypothesis. β5 = 0 allowed for the testing of the Type I error rate, and the other values

were chosen to create sigmoidal power curves.

As mentioned earlier, we assumed that the spatiotemporal correlation structure Σ

was separable in space and time. Thus, Σ = ΣT ⊗ ΣS for parametric temporal (ΣT )

and spatial (ΣS) correlation functions. We generated data from combinations of compound

symmetric and autoregressive-1 temporal structures and exponential, spherical, and Matérn

spatial structures, for a total of 6 possible parametric structures of Σ. When choosing the

values of θ for Σ(θ), we looked at values that produced high and low correlation in both

space and time for four combinations of degree of correlation. The parameters for the

correlation functions that produced the data are given in Table A.2.

We also varied the total number of subjects (N) so that N = 50 or 100. The treat-

ment groups were considered to be balanced, with the number per group being 25 and 50,

respectively. Note that since there are 80 observations per subject, these numbers of sub-

jects corresponds to 4000 and 8000 total observations, respectively. Due to the computa-

tional burden from fitting models with complex covariance structures on 8000 observations,

the N=100 sample size was only evaluated for Type I error rate as it can be assumed that,

for a given working covariance structure, increased sample size will just increase power

and thus not provide enough novel conclusions to justify the lengthy computation time.
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To achieve the desired precision in the estimates of Type I errors and selection prob-

abilities, we used a simulation size of 5000 for each condition so that the 95% confidence

interval on the estimate of the Type I error rate would have a width of about 1%. The

data was generated using the ‘mvrnorm’ function in the MASS (v. 7.3-29) package of R

(v. i368 3.0.2) where each subject’s 80 observations were drawn at once, independently

from the other subjects. The random number generator used in the ‘mvrnorm’ function is

the Mersenne-Twister generator. The linear model fitting, along with the inference on the

fixed effects, was done using the ASReml-R package (v. 3.0, VSN International, Hemel

Hempstead, UK)[33]. The 12 possible covariance models were fitted on the same dataset to

increase the comparability of the results. The seeds were changed between each simulation

iteration so that each run would be generated independently. Care was taken to ensure all

twelve models in each iteration converged, typically by increasing the number of iterations

or by re-running troublesome datasets with improved initial values. The most problematic

structures to fit were ones based off of the spherical spatial model fit to non-spherical data;

these sometimes required over 50 iterations to converge, while most models were fit in less

than 15 iterations.

Legend of Supplementary Material

• Table A.1: Spatial coordinates of the 16 segments of the AHA model of the left

ventricle.

• Table A.2: Parameters for the correlation structures used to generate the simulated

data.

• Table A.3: Accuracy of the nine information criteria in selecting the true model for a

variety of generating correlation functions and conditions.

• Table A.4: Empirical Type I error rates for the treatment-by-time interaction for vari-

ous working correlation structures fitted to simulated data generates with a compound
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symmetric temporal correlation function.

• Table A.5: Empirical Type I error rates for the treatment-by-time interaction for

various working correlation structures fitted to simulated data generates with an

autoregressive-1 temporal correlation function.

• Table A.6: Empirical Type I error rates for the treatment-by-time interaction for the

working correlation structures chosen by the given information criterion when fit to

the given type of generated data.

• Figure A.1: Plot of power curves for a generating covariance structure of EXP⊗CS

under high and low degrees of correlation in space and time.

• Figure A.2: Plot of power curves for a generating covariance structure of MAT⊗CS

under high and low degrees of correlation in space and time.

• Figure A.3: Plot of power curves for a generating covariance structure of EXP⊗AR-1

under high and low degrees of correlation in space and time.

• Figure A.4: Plot of power curves for a generating covariance structure of SPH⊗AR-1

under high and low degrees of correlation in space and time.

• Figure A.5: Plot of power curves for a generating covariance structure of MAT⊗AR-

1 under high and low degrees of correlation in space and time.
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Table A.1: Spatial coordinates of the 16 segments in the model of the left ventricle[27, 22].
They are denoted as their level (base, mid, apex), orientation (anterior, septal, inferior,
lateral), and index number.

Base, Ant. (1) (0,5
6 ) Mid, Ant. (7) (0,1

2 ) Apex, Ant. (13) (0,1
6 )

Base, Ant.Sep. (2) (−5
√

3
12 , 5

12 ) Mid, Ant.Sep. (8) (−
√

3
4 ,1

4 ) Apex, Sep. (14) (−1
6 ,0)

Base, Inf.Sep. (3) (−5
√

3
12 ,−5

12 ) Mid, Inf.Sep. (9) (−
√

3
4 ,−1

4 ) Apex, Inf. (15) (0,−1
6 )

Base, Inf. (4) (0,−5
6 ) Mid, Inf. (10) (0,−1

2 ) Apex, Lat. (16) (1
6 ,0)

Base, Inf.Lat. (5) (5
√

3
12 ,−5

12 ) Mid, Inf.Lat. (11) (
√

3
4 ,−1

4 )
Base, Ant.Lat (6) (5

√
3

12 , 5
12 ) Mid, Ant.Lat (12) (

√
3

4 ,1
4 )

Table A.2: Parameters used to produce high and low degrees of correlation in the parametric
correlation structures.

Correlation Type Correlation Function Low Correlation High Correlation
Spatial Exponential ρ = 0.3 ρ = 0.8

Spherical φ = 2.25 φ = 6
Matérn φ = 0.4, ν = 1 φ = 0.9, ν = 2

Temporal Compound Symmetry ρ = 0.4 ρ = 0.8
Autoregressive-1 ρ = 0.6 ρ = 0.9
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Table A.3: Accuracy (in %) of the information criteria (IC) with different versions of the
sample size penalty (n∗) for data generated from six separate correlation structures un-
der multiple combinations of degree of correlation (high and low in both space [ΣS] and
time[ΣT ]) and total sample size (N).

N=50 N=100
Generating Low ΣS High ΣS Low ΣS High ΣS
Σ Structure IC n∗ Low ΣT High ΣT Low ΣT High ΣT Low ΣT High ΣT Low ΣT High ΣT

Exp⊗CS AIC 72.7 73.8 68.7 69.0 72.7 74.5 72.5 72.8
AICC NJK-p 72.7 73.8 68.7 69.1 72.8 74.5 72.5 72.8
AICC N 81.9 82.3 77.0 77.8 77.6 79.1 77.1 77.7
BIC NJK-p 99.8 99.4 90.5 91.0 99.8 99.6 96.5 96.9
BIC N 94.4 94.0 87.2 87.4 96.4 96.3 94.0 94.4

CAIC NJK-p 99.9 99.7 90.7 91.2 99.9 99.7 96.5 96.9
CAIC N 97.3 97.0 88.9 89.4 97.9 97.8 95.3 95.8
HQIC NJK-p 95.5 95.1 87.8 88.2 95.8 95.8 93.4 94.0
HQIC N 85.7 86.4 80.4 80.8 88.8 89.0 97.5 88.4

Sph⊗CS AIC 86.7 86.3 76.3 76.4 87.2 87.0 82.2 82.6
AICC NJK-p 86.8 86.3 76.3 76.4 87.2 87.0 82.2 82.6
AICC N 93.4 93.1 83.3 83.4 91.4 91.3 85.8 87.1
BIC NJK-p 99.9 99.9 93.2 93.6 > 99.9 > 99.9 92.2 98.2
BIC N 98.9 98.9 90.5 90.4 99.7 99.6 96.7 97.1

CAIC NJK-p 99.9 > 99.9 93.4 93.6 > 99.9 > 99.9 98.3 98.3
CAIC N 99.7 99.6 91.8 92.2 > 99.9 99.9 97.4 97.7
HQIC NJK-p 99.3 99.2 91.1 91.1 99.7 99.4 96.5 97.0
HQIC N 95.0 95.1 85.7 85.8 97.7 97.7 93.0 93.5

Mat⊗CS AIC 88.1 86.5 87.2 87.2 87.5 87.5 87.5 87.0
AICC NJK-p 88.2 86.5 87.3 87.2 91.7 87.6 87.6 87.1
AICC N 95.1 94.7 95.0 95.1 87.6 92.3 91.8 91.5
BIC NJK-p > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 > 99.9
BIC N 99.3 99.2 99.0 99.3 99.6 99.7 99.6 99.6

CAIC NJK-p > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 > 99.9
CAIC N 99.8 99.7 99.8 99.9 99.9 > 99.9 99.9 99.9
HQIC NJK-p 99.6 99.4 99.4 99.6 99.5 99.7 99.6 99.6
HQIC N 95.9 95.4 95.7 95.8 97.6 97.2 97.3 96.9

Exp⊗AR-1 AIC 74.7 74.2 68.3 68.5 74.8 73.2 72.0 73.0
AICC NJK-p 74.8 74.4 68.4 68.6 74.8 73.3 72.1 73.0
AICC N 83.0 82.9 76.6 76.6 79.1 78.8 76.8 77.7
BIC NJK-p 99.6 99.6 90.4 89.9 99.8 99.7 96.6 96.6
BIC N 94.5 94.7 86.8 86.3 96.5 96.7 94.0 94.4

CAIC NJK-p 99.8 99.8 90.4 90.1 99.9 99.9 96.7 96.7
CAIC N 97.0 97.3 88.6 88.4 98.2 98.2 95.5 95.4
HQIC NJK-p 95.5 95.7 87.6 87.24 96.0 96.2 93.5 93.8
HQIC N 86.6 86.5 80.1 79.8 90.2 89.8 97.5 87.5

Sph⊗AR-1 AIC 86.9 86.9 76.3 75.9 87.0 86.3 82.0 83.0
AICC NJK-p 86.9 86.9 76.3 75.9 87.0 86.3 82.1 83.1
AICC N 93.6 93.5 83.4 82.5 91.0 90.6 86.3 86.9
BIC NJK-p 99.9 99.8 93.3 93.5 > 99.9 > 99.9 98.4 98.2
BIC N 98.9 98.9 90.8 90.6 99.6 99.6 97.0 97.2

CAIC NJK-p > 99.9 99.9 93.5 93.5 > 99.9 > 99.9 98.5 98.2
CAIC N 99.5 99.6 92.0 92.3 99.9 99.9 97.7 97.7
HQIC NJK-p 99.1 99.2 91.4 91.4 99.5 99.5 96.8 97.0
HQIC N 95.2 95.1 85.8 84.8 96.8 97.2 93.4 94.0

Mat⊗AR-1 AIC 87.2 86.9 87.0 86.6 87.0 86.8 86.1 86.9
AICC NJK-p 87.3 86.9 87.0 86.6 87.1 86.9 86.1 86.9
AICC N 94.7 94.3 95.3 94.5 91.7 91.2 90.9 91.9
BIC NJK-p > 99.9 > 99.9 > 99.9 99.9 > 99.9 > 99.9 > 99.9 > 99.9
BIC N 99.1 99.3 99.3 99.0 99.6 99.8 99.7 99.7

CAIC NJK-p > 99.9 > 99.9 > 99.9 99.9 > 99.9 > 99.9 > 99.9 > 99.9
CAIC N 99.7 99.9 99.9 99.6 99.9 99.9 99.9 > 99.9
HQIC NJK-p 99.4 99.6 99.5 99.3 99.5 99.6 99.6 99.6
HQIC N 95.4 95.1 95.9 95.3 97.2 97.1 96.9 97.4
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Table A.4: Empirical Type I error rate for inferences on the treatment-by-time interaction
where the fitted covariance structure is one of twelve separable spatiotemporal structures.
The results are for data generated from three separate spatial correlation structures crossed
with a compound symmetric temporal correlation structure under multiple combinations of
degree of correlation (high and low in both space [ΣS] and time[ΣT ]) and total sample size
(N). Results from the models fitted with the covariance structure used to generate the data
are denoted by highlighting . Error rates greater than 0.0625 are considered to be inflated
and are in red bold while those less than 0.0375 are considered to be too conservative and
both are listed in blue italics.

N=50 N=100
Generating Fitted Low ΣS High ΣS Low ΣS High ΣS

Σ Σ Low ΣT High ΣT Low ΣT High ΣT Low ΣT High ΣT Low ΣT High ΣT
Exp⊗CS Exp⊗CS 0.0470 0.0592 0.0490 0.0516 0.0510 0.0552 0.0472 0.0550

Sph⊗CS 0.0704 0.0836 0.0520 0.0544 0.0728 0.0786 0.0474 0.0560
Mat⊗CS 0.0488 0.0604 0.0492 0.0518 0.0514 0.0558 0.0472 0.0548

Exp⊗AR-1 0.0076 0.0014 0.0058 0.0012 0.0070 0.0012 0.0076 0.0020
Sph⊗AR-1 0.0164 0.0022 0.0070 0.0014 0.0138 0.0030 0.0082 0.0020
Mat⊗AR-1 0.0078 0.0014 0.0064 0.0014 0.0070 0.0010 0.0076 0.0020
Exp⊗Toep 0.0484 0.0582 0.0486 0.0528 0.0494 0.0544 0.0474 0.0552
Sph⊗Toep 0.0708 0.0844 0.0512 0.0556 0.0732 0.0786 0.0476 0.0558
Mat⊗Toep 0.0488 0.0608 0.0498 0.0532 0.0498 0.0550 0.0468 0.0550
Exp⊗UN 0.0500 0.0592 0.0496 0.0540 0.0500 0.0554 0.0470 0.0534
Sph⊗UN 0.0704 0.0864 0.0506 0.0552 0.0734 0.0798 0.0480 0.0564
Mat⊗UN 0.0500 0.0608 0.0494 0.0546 0.0500 0.0558 0.0468 0.0536

Sph⊗CS Exp⊗CS 0.0200 0.0234 0.0432 0.0456 0.0226 0.0200 0.0478 0.0392
Sph⊗CS 0.0514 0.0508 0.0520 0.0522 0.0540 0.0500 0.0538 0.0480
Mat⊗CS 0.0294 0.0310 0.0472 0.0486 0.0306 0.0276 0.0502 0.0424

Exp⊗AR-1 0.0014 <0.0002 0.0064 0.0040 0.0018 0.0002 0.0040 0.0004
Sph⊗AR-1 0.0074 0.0006 0.0082 0.0060 0.0076 0.0010 0.0074 0.0006
Mat⊗AR-1 0.0032 <0.0002 0.0072 0.0060 0.0038 0.0002 0.0056 0.0004
Exp⊗Toep 0.0212 0.0234 0.0446 0.0456 0.0216 0.0202 0.0484 0.0380
Sph⊗Toep 0.0504 0.0518 0.0520 0.0530 0.0542 0.0512 0.0546 0.0472
Mat⊗Toep 0.0292 0.0302 0.0480 0.0486 0.0310 0.0272 0.0512 0.0424
Exp⊗UN 0.0208 0.0238 0.0426 0.0462 0.0218 0.0206 0.0480 0.0388
Sph⊗UN 0.0516 0.0536 0.0516 0.0522 0.0560 0.0500 0.0554 0.0472
Mat⊗UN 0.0312 0.0324 0.0472 0.0486 0.0316 0.0280 0.0508 0.0420

Mat⊗CS Exp⊗CS 0.0232 0.0234 0.0198 0.0156 0.0180 0.0242 0.0144 0.0178
Sph⊗CS 0.0766 0.0754 0.0494 0.0474 0.0728 0.0716 0.0512 0.0480
Mat⊗CS 0.0558 0.0522 0.0518 0.0540 0.0516 0.0524 0.0598 0.0550

Exp⊗AR-1 0.0016 <0.0002 0.0016 <0.0002 0.0012 <0.0002 0.0020 <0.0002
Sph⊗AR-1 0.0166 0.0016 0.0100 0.0080 0.0136 0.0012 0.0070 0.0004
Mat⊗AR-1 0.0084 0.0008 0.0088 0.0080 0.0054 0.0002 0.0094 0.0006
Exp⊗Toep 0.0230 0.0252 0.0200 0.0158 0.0192 0.0242 0.0146 0.0178
Sph⊗Toep 0.0768 0.0744 0.0506 0.0512 0.0734 0.0710 0.0520 0.0478
Mat⊗Toep 0.0546 0.0544 0.0512 0.0556 0.0506 0.0528 0.0592 0.0554
Exp⊗UN 0.0230 0.0246 0.0202 0.0162 0.0190 0.0244 0.0152 0.0182
Sph⊗UN 0.0776 0.0764 0.0518 0.0502 0.0732 0.0722 0.0530 0.0478
Mat⊗UN 0.0564 0.0552 0.0534 0.0536 0.0506 0.0526 0.0602 0.0544
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Table A.5: Empirical Type I error rate for inferences on the treatment-by-time interaction
where the fitted covariance structure is one of twelve separable spatiotemporal structures.
The results are for data generated from three separate spatial correlation structures crossed
with an autoregressive-1 temporal correlation structure under multiple combinations of de-
gree of correlation (high and low in both space [ΣS] and time[ΣT ]) and total sample size
(N). Results from the models fitted with the covariance structure used to generate the data
are denoted by highlighting . Error rates greater than 0.0625 are considered to be inflated
and are in red bold while those less than 0.0375 are considered to be too conservative and
both are listed in blue italics.

N=50 N=100
Generating Fitted Low ΣS High ΣS Low ΣS High ΣS

Σ Σ Low ΣT High ΣT Low ΣT High ΣT Low ΣT High ΣT Low ΣT High ΣT
Exp⊗AR-1 Exp⊗CS 0.1566 0.2124 0.1550 0.2132 0.1572 0.2088 0.1604 0.2096

Sph⊗CS 0.1930 0.2580 0.1592 0.2176 0.1948 0.2526 0.1604 0.2116
Mat⊗CS 0.1578 0.2132 0.1546 0.2136 0.1560 0.2076 0.1598 0.2088

Exp⊗AR-1 0.0510 0.0484 0.0488 0.0496 0.0510 0.0448 0.0506 0.0552
Sph⊗AR-1 0.0746 0.0740 0.0516 0.0496 0.0718 0.0708 0.0522 0.0560
Mat⊗AR-1 0.0508 0.0488 0.0490 0.0500 0.0508 0.0452 0.0502 0.0552
Exp⊗Toep 0.0506 0.0486 0.0496 0.0486 0.0510 0.0448 0.0508 0.0542
Sph⊗Toep 0.0760 0.0734 0.0510 0.0500 0.0718 0.0708 0.0522 0.0566
Mat⊗Toep 0.0506 0.0486 0.0492 0.0484 0.0510 0.0456 0.0514 0.0538
Exp⊗UN 0.0538 0.0500 0.0510 0.0494 0.0512 0.0448 0.0522 0.0548
Sph⊗UN 0.0768 0.0734 0.0510 0.0520 0.0718 0.0704 0.0536 0.0562
Mat⊗UN 0.0536 0.0494 0.0506 0.0498 0.0514 0.0456 0.0526 0.0538

Sph⊗AR-1 Exp⊗CS 0.0900 0.1460 0.1488 0.2060 0.0910 0.1458 0.1398 0.1946
Sph⊗CS 0.1572 0.2128 0.1620 0.2196 0.1540 0.2152 0.1498 0.2100
Mat⊗CS 0.1102 0.1720 0.1538 0.2122 0.1136 0.1716 0.1438 0.2010

Exp⊗AR-1 0.0196 0.0210 0.0450 0.0466 0.0172 0.0220 0.0428 0.0476
Sph⊗AR-1 0.0508 0.0512 0.0526 0.0526 0.0472 0.0536 0.0512 0.0548
Mat⊗AR-1 0.0308 0.0312 0.0488 0.0488 0.0258 0.0334 0.0462 0.0512
Exp⊗Toep 0.0196 0.0216 0.0458 0.0454 0.0172 0.0222 0.0428 0.0474
Sph⊗Toep 0.0518 0.0510 0.0546 0.0516 0.0480 0.0516 0.0506 0.0556
Mat⊗Toep 0.0320 0.0318 0.0488 0.0480 0.0266 0.0336 0.0456 0.0508
Exp⊗UN 0.0216 0.0218 0.0462 0.0472 0.0178 0.0234 0.0436 0.0474
Sph⊗UN 0.0518 0.0518 0.0536 0.0530 0.0472 0.0522 0.0502 0.0564
Mat⊗UN 0.0314 0.0322 0.0494 0.0498 0.0270 0.0344 0.0460 0.0504

Mat⊗AR-1 Exp⊗CS 0.0986 0.1268 0.0788 0.1296 0.0930 0.1374 0.0916 0.1236
Sph⊗CS 0.1962 0.2370 0.1540 0.2100 0.1894 0.2396 0.1576 0.2034
Mat⊗CS 0.1592 0.1998 0.1574 0.2126 0.1496 0.2014 0.1660 0.2112

Exp⊗AR-1 0.0206 0.0214 0.0166 0.0178 0.0216 0.0210 0.0182 0.0156
Sph⊗AR-1 0.0742 0.0664 0.0474 0.0528 0.0688 0.0668 0.0486 0.0466
Mat⊗AR-1 0.0512 0.0462 0.0532 0.0536 0.0454 0.0458 0.0560 0.0546
Exp⊗Toep 0.0216 0.0206 0.0176 0.0180 0.0214 0.0204 0.0182 0.0162
Sph⊗Toep 0.0752 0.0656 0.0480 0.0530 0.0690 0.0668 0.0488 0.0486
Mat⊗Toep 0.0514 0.0466 0.0524 0.0540 0.0470 0.0458 0.0574 0.0552
Exp⊗UN 0.0214 0.0220 0.0166 0.0192 0.0220 0.0212 0.0188 0.0158
Sph⊗UN 0.0764 0.0674 0.0484 0.0550 0.0678 0.0668 0.0486 0.0492
Mat⊗UN 0.0520 0.0484 0.0534 0.0552 0.0466 0.0472 0.0568 0.0552
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Table A.6: Empirical Type I error rate for inferences on the treatment-by-time interaction
where the covariance structure used was chosen by the given information criterion (IC) with
a certain version of the sample size penalty (n∗). The results are for data generated from six
separate correlation structures under multiple combinations of degree of correlation (high
and low in both space [ΣS] and time[ΣT ]) and total sample size (N). Error rates greater
than 0.0625 are considered to be inflated and are in red bold while those less than 0.0375
are considered to be too conservative and both are listed in blue italics.

N=50 N=100
Generating Low ΣS High ΣS Low ΣS High ΣS
Σ Structure IC n∗ Low ΣT High ΣT Low ΣT High ΣT Low ΣT High ΣT Low ΣT High ΣT

Exp⊗CS AIC 0.0474 0.0596 0.0494 0.0522 0.0512 0.0554 0.0476 0.0548
AICC NJK-p 0.0474 0.0596 0.0494 0.0522 0.0512 0.0554 0.0476 0.0548
AICC N 0.0470 0.0596 0.0496 0.0528 0.0512 0.0556 0.0476 0.0552
BIC NJK-p 0.0468 0.0592 0.0498 0.0526 0.0510 0.0552 0.0472 0.0550
BIC N 0.0466 0.0598 0.0498 0.0528 0.0516 0.0552 0.0472 0.0548

CAIC NJK-p 0.0470 0.0592 0.0498 0.0526 0.0510 0.0552 0.0472 0.0550
CAIC N 0.0466 0.0596 0.0498 0.0526 0.0512 0.0552 0.0472 0.0550
HQIC NJK-p 0.0466 0.0598 0.0498 0.0528 0.0516 0.0552 0.0472 0.0548
HQIC N 0.047 0.0596 0.0498 0.0528 0.0514 0.0558 0.0474 0.0550

Sph⊗CS AIC 0.0514 0.0510 0.0510 0.0516 0.0546 0.0506 0.0536 0.0484
AICC NJK-p 0.0514 0.0510 0.0510 0.0516 0.0546 0.0506 0.0536 0.0484
AICC N 0.0516 0.0512 0.0514 0.0520 0.0544 0.0504 0.0536 0.0486
BIC NJK-p 0.0514 0.0508 0.0520 0.0520 0.0540 0.0500 0.0536 0.0480
BIC N 0.0516 0.0510 0.0516 0.0522 0.0540 0.0500 0.0536 0.0480

CAIC NJK-p 0.0514 0.0508 0.0520 0.0520 0.0540 0.0500 0.0536 0.0480
CAIC N 0.0514 0.0508 0.0518 0.0522 0.0540 0.0500 0.0536 0.0480
HQIC NJK-p 0.0516 0.0508 0.0520 0.0522 0.0540 0.0500 0.0536 0.0480
HQIC N 0.0516 0.0510 0.0516 0.0520 0.0538 0.0500 0.0538 0.0484

Mat⊗CS AIC 0.0558 0.0528 0.0516 0.0548 0.0514 0.0526 0.0600 0.0550
AICC NJK-p 0.0558 0.0528 0.0516 0.0548 0.0514 0.0526 0.0600 0.0550
AICC N 0.0556 0.0526 0.0520 0.0544 0.0516 0.0524 0.0598 0.0550
BIC NJK-p 0.0558 0.0522 0.0518 0.0540 0.0516 0.0524 0.0598 0.0550
BIC N 0.0558 0.0522 0.0520 0.0540 0.0516 0.0524 0.0600 0.0550

CAIC NJK-p 0.0558 0.0522 0.0518 0.0540 0.0516 0.0524 0.0598 0.0550
CAIC N 0.0558 0.0522 0.0518 0.0540 0.0516 0.0524 0.0598 0.0550
HQIC NJK-p 0.0558 0.0522 0.0518 0.0540 0.0516 0.0524 0.0600 0.0550
HQIC N 0.0556 0.0526 0.0520 0.0544 0.0516 0.0522 0.0596 0.0552

Exp⊗AR-1 AIC 0.0506 0.0492 0.0498 0.0496 0.0510 0.0448 0.0506 0.0546
AICC NJK-p 0.0506 0.0492 0.0498 0.0496 0.0510 0.0448 0.0506 0.0546
AICC N 0.0510 0.0492 0.0492 0.0494 0.0510 0.0448 0.0508 0.0550
BIC NJK-p 0.0510 0.0486 0.0490 0.0498 0.0510 0.0448 0.0510 0.0552
BIC N 0.0510 0.0486 0.0494 0.0496 0.0512 0.0448 0.0508 0.0552

CAIC NJK-p 0.0510 0.0484 0.0490 0.0498 0.0510 0.0448 0.0510 0.0552
CAIC N 0.0510 0.0484 0.0492 0.0498 0.0512 0.0448 0.0510 0.0552
HQIC NJK-p 0.0510 0.0488 0.0492 0.0496 0.0512 0.0446 0.0508 0.0552
HQIC N 0.0506 0.0491 0.0494 0.0494 0.0508 0.0446 0.0510 0.0550

Sph⊗AR-1 AIC 0.0506 0.0510 0.0526 0.0524 0.0476 0.0534 0.0512 0.0546
AICC NJK-p 0.0506 0.0510 0.0526 0.0524 0.0476 0.0534 0.0512 0.0546
AICC N 0.0506 0.0512 0.0520 0.0524 0.0474 0.0534 0.0514 0.0546
BIC NJK-p 0.0508 0.0512 0.0520 0.0526 0.0472 0.0536 0.0510 0.0546
BIC N 0.0508 0.0512 0.0520 0.0526 0.0474 0.0536 0.0512 0.0546

CAIC NJK-p 0.0508 0.0512 0.0522 0.0526 0.0472 0.0536 0.0510 0.0546
CAIC N 0.0508 0.0512 0.0520 0.0526 0.0472 0.0536 0.0510 0.0546
HQIC NJK-p 0.0508 0.0512 0.0520 0.0526 0.0472 0.0536 0.0512 0.0546
HQIC N 0.0508 0.0512 0.0518 0.0524 0.0472 0.0536 0.0512 0.0546

Mat⊗AR-1 AIC 0.0504 0.0460 0.0528 0.0540 0.0460 0.0464 0.0566 0.0548
AICC NJK-p 0.0504 0.0460 0.0528 0.0540 0.0460 0.0464 0.0566 0.0548
AICC N 0.0508 0.0458 0.0530 0.0538 0.0456 0.0458 0.0566 0.0548
BIC NJK-p 0.0512 0.0462 0.0532 0.0536 0.0454 0.0458 0.0560 0.0546
BIC N 0.0512 0.0462 0.0532 0.0538 0.0456 0.0458 0.0560 0.0546

CAIC NJK-p 0.0512 0.0462 0.0532 0.0536 0.0454 0.0458 0.0560 0.0546
CAIC N 0.0512 0.0462 0.0532 0.0536 0.0456 0.0458 0.0560 0.0546
HQIC NJK-p 0.0512 0.0462 0.0532 0.0536 0.0456 0.0458 0.0560 0.0546
HQIC N 0.0510 0.0458 0.0530 0.0536 0.0454 0.0458 0.0564 0.0548
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Figure A.1: Plot of power curves for a generating covariance structure of EXP⊗CS under
high and low degrees of correlation in space and time. The working covariance structure
corresponding to the true structure is denoted with a dot and solid black line. Note that
working covariance structures with approximately equivalent power are grouped in the
legend and share a common line style and color.
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Figure A.2: Plot of power curves for a generating covariance structure of MAT⊗CS under
high and low degrees of correlation in space and time. The working covariance structure
corresponding to the true structure is denoted with a dot and solid black line. Note that
working covariance structures with approximately equivalent power are grouped in the
legend and share a common line style and color.
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Figure A.3: Plot of power curves for a generating covariance structure of EXP⊗AR-1 under
high and low degrees of correlation in space and time. The working covariance structure
corresponding to the true structure is denoted with a dot and solid black line. Note that
working covariance structures with approximately equivalent power are grouped in the
legend and share a common line style and color.
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Figure A.4: Plot of power curves for a generating covariance structure of SPH⊗AR-1 under
high and low degrees of correlation in space and time. The working covariance structure
corresponding to the true structure is denoted with a dot and solid black line. Note that
working covariance structures with approximately equivalent power are grouped in the
legend and share a common line style and color.
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Figure A.5: Plot of power curves for a generating covariance structure of MAT⊗AR-1
under high and low degrees of correlation in space and time. The working covariance
structure corresponding to the true structure is denoted with a dot and solid black line.
Note that working covariance structures with approximately equivalent power are grouped
in the legend and share a common line style and color.
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ABSTRACT

Summary methods of both spatial and temporal data have been used previously in

the analysis of longitudinal imaging data. This approach has been poorly received by clin-

ical and statistical investigators alike due to the potential loss of power associated with the

reduction of data; the objection holds particularly true when considering data obtained with

magnetic resonance imaging (MRI) which is extremely expensive to obtain. To address this

concern, we have previously proposed the use of a linear model with a separable parametric

correlation structure for the error terms.

A simulation study, whose structure was modeled after a longitudinal cardiac imag-

ing study, was done to compare the statistical properties of our proposed method and several

common summary measures in time (slope, endpoint, and area-under-the-curve analysis)

and space (regional averages analyzed together or separately, and a global average). We

found that when testing for a treatment-by-time effect, our model with the separable para-

metric covariance structure more reliably conserved the Type I error rate and had greater

statistical power than the summary methods. Of the temporal summary methods, slope

analysis performed best on data generated with a linear time course. A notable finding was

that the common practice of analyzing spatial regions separately without a multiple testing

correction greatly inflated the Type I error, while the use of a Bonferroni correction resulted

in a loss of power. The effects of missing data were considered, and the summary measures

were not found to improve in relation to our proposed model.
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INTRODUCTION

In longitudinal clinical studies where the outcome is measured at multiple locations

via an imaging modality, statistical analysis is complicated by the presence of spatial and

temporal correlation among a subject’s outcomes. In order to directly model this correla-

tion, we have previously defined and investigated a linear model with a separable, paramet-

ric correlation structure for the analysis of longitudinal imaging data. We found that when

the parametric structures (both spatial and temporal) are properly specified the Type I error

rate is conserved and power for testing a treatment-by-time interaction is maximized. We

also found that when the structures were misspecified the Type I error rate could be inflated

or overly conservative, the latter leading to reduced statistical power[17]. Overall, it seems

that the closer a fitted structure can approximate the true underlying correlation structure,

the better the properties of resulting statistical inference. In making the decision for which

structure to use in the model, information criteria proved to be highly accurate at select-

ing the true parametric structure, or at least one that was sufficiently similar to produce

approximately the same inference.

Fitting the spatiotemporal model requires specialized software either bought com-

mercially or coded by hand as it cannot be fit using the standard packages in R or procedures

in SAS. (Although PROC MIXED can accommodate some crossed structures, in SAS 9.4

they are limited to at least one being unstructured which may be unacceptable for a large

number of spatial or temporal observations.) While clinical researchers have relied on sim-

pler methods for analyzing this sort of data[2, 27], statisticians have modeled the data with

correlation structures ranging from simple[5] to complex[29, 30, 31].

Another approach is to consolidate the data using summary methods, where sum-

mary statistics are used in place of multiple observations to make the resulting correlation

simpler or nonexistent. There have been many different summary measures used and re-

fined over the years. The most common summary measure is a slope or average growth
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rate[13, 3]; if the data does not follow a linear trend but is at least monotonic, much work

has been done for how the data can be weighted or transformed to be linear[6, 25, 24].

Other approaches to summarizing change over time is the total change between the final

and baseline observations (also called endpoint analysis), or the use of the parameters of

higher order polynomials as an individual’s outcome variable[33, 26, 18]. Other methods

that may be better for peaked curves rather than monotonic growth include the area under

the curve (AUC), a weighted average, the maximum observed value, and the time to the

maximum value[23].

Summary measures been used for a very long time[33], as they do have some key

benefits. One is that consolidating the data allows for the application of basic statistical

methods (t-test, ANOVA) to the summarized data, which was extremely helpful in the era

before computers. The elimination of correlation from the observational units is also help-

ful when the sample size may be too small to properly estimate covariance parameters[14].

Another benefit is that the decision of what summary measure to use can be scientifically

useful as it focuses the analysis on the true purpose of the study and is usually very easy

to interpret[23, 13]. For example, if the growth rate between treatment groups is of interest

then the individual growth rates can be modeled directly.

There are several downsides to the use of summary measures, however. It involves

‘throwing away’ data, which investigators loathe due the expense of data collection, par-

ticularly in longitudinal imaging studies and even more so in those that use MRI[15]. It

can seem quite wasteful to spend millions collecting data only to not use all of it. Sum-

mary measures may also be misleading as two different response profiles can produce the

same summary value; it may also be the case that a summary measure simply does not

meaningfully capture an individual’s responses[24, 14]. A further limitation is that sum-

marizing data over time or space precludes the use of time- or space-varying covariates in

the analysis[14].
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Summary measures also have an interesting relationship with missing data, as it

can be both a benefit and limitation to the approach. On the positive side, for certain

measures a summary measure can be calculated for a subject with some missing data;

this prevents the subject from being excluded in complete case analysis or eliminates the

need to handle missing data in the model. The downside is that just because the summary

measure can be calculated, it may have different statistical properties that can violate model

assumptions. For instance, most summary measures are calculated as a weighted sum or

difference of the observed values; the number of observations being summed or subtracted

will directly affect the variance of the measure which can introduce heteroscedasticity into

the dataset[13, 14]. This can lead to bias in estimates and inflation of the Type I error

rate[18, 16].

A possible justification for summary measures is that if correlation between obser-

vations is high then the data can be summarized without a meaningful loss of information,

since in correlated data there is less unique information than if the observations were all

independent. However, very little work has been done to quantify how much power is lost

by using summary measures compared to a method that utilized all the data and directly

modeled the correlation. Many examples have been given that have compared how the

two approaches differ for a sample dataset[6, 26, 18, 16, 13], but to our knowledge the

only simulation study comparing them was done by Zucker, Manor, and Gubman (2012).

Their study compared mixed models with random effects for both the intercept and slope

to averages, both simple and time-weighted, in their Type I and II error rates for simulated

data. The conditions were straightforward with no missing data and a small (≤ 5) num-

ber of repeated measurements, and they found that in these cases the summary measures

tended to perform as well as if not better than the mixed models[34]. Although there seems

to be evidence that summary measures should be considered as a serious alternative to di-

rectly modeling correlation, it is currently unknown how the added complications of spatial

correlation and missing data affect that conclusion.
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Our research into the comparison of summary measures and spatiotemporal models

has been motivated by longitudinal imaging studies, specifically those in cardiology. In the

past, these studies have either avoided outcomes with spatiotemporal correlation in favor

of ‘global’ outcomes such as ejection fraction[1], or have averaged the segments within

different levels (base, mid, and apex) of the left ventricle and compared the levels through

pairwise comparisons at set time points or through a longitudinal mixed model[2, 4, 27].

These are examples of spatial summary measures, in contrast to the temporal summary

measures discussed above. The core idea behind spatial summary measures is that the

outcomes from a given spatial area are summed or averaged over either subregions or the

entire observed area. The choice of subregions is entirely specific to a given application,

but as an example the imaging data from the 16 segments of the left ventricle could be

averaged according to the level it resides in or by the coronary artery that feeds it[11].

The pros and cons of spatial summary measures are fairly similar to those of the

temporal kind. In exchange for simplifying the model and removing the spatial correlation,

spatial summary measures result in a loss of information. In particular, there is a loss

of spatial resolution, or the ability to identify how the outcome changes over space. For

example, summarizing over the levels of the left ventricle precludes the ability to identify

whether the outcome changes going from the anterior to the inferior side of the heart. In

addition, summarizing over space introduces the modifiable area unit problem which is

where the significance level of a treatment or exposure can vary based on how the total

observed area is subdivided. Looking at a larger number of subregions helps prevent this

problem at the cost of introducing more complexity into the model. In practice, it may be

best to find an intermediate number of subregions to break the data into[32].

The particular scenarios of interest were inspired by the arm of the UAB SCCOR

study which looked at how medical therapy affected the progression of mitral regurgitation[2].

It did so by looking at functional (strain rate, rotation) and geometric (radius of curvature-

113



to-wall thickness ratio) measures of disease progression at the segment-level, averaged over

the levels or the entirety of the left ventricle. Unfortunately, that initial analysis failed to

find a significant treatment-by-time interaction for any of the segment-level outcomes[2]. It

is the hope of the clinical researchers that the use of all of the data through a spatiotemporal

covariance structure will increase statistical power and give the ability to find a significant

treatment effect.

There has been no prior work that compared spatial and temporal summary mea-

sures to a full spatiotemporal model with regard to statistical inference. It is the goal of

this paper to determine how the use of summary measures and correlation structures affect

the Type I and Type II error rates for testing a treatment effect measured by a treatment-

by-time interaction. We will consider the effects of sample size, degree of correlation,

generating correlation function, and the presence of missing data on inference from these

models. Through the use of simulation studies, we hope to answer the question of whether

our previously proposed spatiotemporal model is worth the added complexity.

STATISTICAL MODELS

In this section, we shall outline the statistical models used to incorporate the spa-

tial and temporal aspects of the data, either through a correlation structure or through a

summary measure. In all cases, consider a longitudinal imaging study with N subjects ob-

served at J points in time, and at K locations at each time point. We consider Yijk to be the

observed outcome of the ith subject at the jth time point and kth location for i = 1, ..., N ,

j = 1, ..., J , and k = 1, ..., K. This means that, for complete data, each subject has

JK observed outcomes, which can be summarized as the JK-length vector Yi. The set

{t1, ..., tj, ..., tJ} are the times of the J observations. Also consider the JK×pmatrix Xi to

be (possibly space- and time-varying) covariates for subject i, so thatE [Yi] = Xiβ. In this

case, we will also assume normality and homoscedasticity such that Yi ∼MNV (µi, σ
2Σ)

for mean vector µi and correlation matrix Σ.
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Separable Parametric Spatiotemporal Model

In our previous paper, the properties of a spatiotemporal linear model with a sepa-

rable parametric correlation structure were explored. This model was defined as

Yi = Xiβ + εi (1)

where β are the p parameters corresponding to the covariates and εi ∼MVN(0, σ2Σ). For

applications where a treatment group and treatment-by-time interaction is of main interest,

we can consider a simple model for our clinical application to be

E[Yijk] = β0 + β1Timej + β2Groupi + β3Midk + β4Apexk + β5TimejGroupi (2)

where Timej is the time of the jth visit, Groupi = 1 if subject i is in the main treatment

group and equal to 0 for placebo, and Midk and Apexk are indicator variables for whether

segment k is in the mid or apex of the left ventricle.

For our model we assume that the correlation matrix Σ is separable and parametric

such that Σ = ΣT ⊗ΣS , where ΣT and ΣS are parametric temporal and spatial correlation

matrices of dimension J × J and K × K, respectively, with parameters θ. To repre-

sent its parametric nature the correlation matrix could be referred to as Σ(θ). There are

near-endless choices for parametric correlation functions, but in our previous work we con-

sidered exponential, spherical, and Matérn for spatial correlation and compound symmetry,

autoregressive-1, Toeplitz, and unstructured for temporal correlation. We found that when

fitting the true correlation structure to the data, or at least one that could closely approxi-

mate the true structure, the Type I error rate was conserved and the Type II error rate was

minimized. When the fitted correlation structure did not properly match the data, we found

that it could inflate the Type I error rate or markedly reduce the statistical power for hy-

pothesis tests about β. Fortunately, we found that information criteria were highly accurate
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at choosing the true structure, or at least one that matched the data well enough to reliably

conserve the Type I error rate[17]. Note that the consistent (CAIC[7], BIC[28], HQIC[19])

information criteria tended to perform better, with the most accurate being CAIC with a

sample size adjustment of NJK − p.

Due to the potentially large number of parameters to estimate in θ, it is recom-

mended that restricted maximum likelihood (REML) estimation be used in lieu of stan-

dard maximum likelihood (ML)[20]. This involves maximizing the following restricted

log-likelihood according to σ2 and θ, which can be done using iterative algorithms such as

those described by Jennrich and Schluchter (1986) and Lindstrom and Bates (1988)[21, 22].

Note that this estimation can still be done if there is missing data in subject i’s outcomes

by taking a submatrix of Xi and Σ corresponding to the non-missing values in Yi.

REML1(σ
2,θ|Y ) =− NJK − p

2
log(2π) +

1

2
log

∣∣∣∣∣
N∑
i=1

X′iXi

∣∣∣∣∣
− 1

2
log

∣∣∣∣∣
N∑
i=1

X′i[σ
2Σ(θ)]−1Xi

∣∣∣∣∣− 1

2

N∑
i=1

log |σ2Σ(θ)|

− 1

2

N∑
i=1

(Yi −Xiβ̂)′[σ2Σ(θ)]−1(Yi −Xiβ̂)

(3)

General Notes Regarding Summary Methods

As mentioned previously, summary methods are a common way researchers con-

solidate their data in order to remove correlations between observations. Removing cor-

relation not only makes the model simpler but may be necessary if the sample size is too

small to estimate correlation parameters[14, 15]. This can be seen in Table 1, where most

of the summary methods reduce the J or K observations through time or space into a sin-

gle observation with no correlation parameters. Much like we previously assumed spatial

and temporal correlation functions can be chosen separately, spatial and temporal sum-
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mary methods can be mixed and matched as well; combining two summary methods on

spatiotemporal data could reduce the data to a single observation per subject, which could

be analyzed using a test as simple as the t-test. A major drawback of this simplicity is that

it prevents the addition of time- or space-varying covariates[14, 15], as will be discussed in

the simulation section.

The specifics of the various summary measures will be detailed in the next two

sections, but there are some common traits that all of them share. One is that they are

all essentially weighted summations of the observed outcomes, although the weights vary

greatly. One implication of this is that when the outcome is assumed to be normally dis-

tributed the summary measure will also have a normal distribution, albeit with different

mean and variance. Another consequence is that the variance of the summary measure

is a function of the weighted sum of the correlations of the included observations. Thus,

although summary measures may eliminate correlated outcome variables, the correlation

inherent in the original data can have a large impact on model efficiency and assumptions.

Of particular concern is the assumption of homoscedasticity, since missing or unevenly

spaced data can make variances different between subjects. This is due to the summation

weights changing as well as the number of terms in the summation differing between sub-

jects. Although in theory one could add weights to the summary measures to correct for

the missingness or unevenness of observations, those weights would be a function of the

unknown correlation between observations and thus not be suitable in practice[14, 15].

Spatial Summary Methods

Regional Summary Measures

In order to more easily analyze data collected at a variety of spatial locations, a

common strategy is to take an average over part of the total observed area. This approach

has the benefit of reducing the dimensionality of the problem to a more manageable level.
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These averages between subregions can then be analyzed concurrently using a parametric

correlation function or, if the number of subregions is sufficiently small, an unstructured

correlation model. In our cardiac MRI example, this would be reducing the sixteen seg-

ments to three levels which reduces the number of pairs in the unstructured model from 120

to 3, easily estimable even in a small sample size. In practice, the subdivision of the total

observed area is entirely specific to a particular application. There may even be multiple

ways to subdivide the same data; for instance, the sixteen segments could be divided by

level or by which coronary artery feeds them. The division should be a function of the

science of the study rather than p-values, as it is well known that redrawing boundaries can

alter the conclusions of statistical inference[32].

An alternative to modeling the correlation between subregion averages would be

to analyze the subregions in separate models. This approach has seen use in clinical

research[12, 27], but has unknown statistical validity. Performing multiple tests could in-

flate the Type I error rate, and a p-value correction (such as Bonferroni) has the potential to

be overly conservative. Due to the multiple tests being correlated, it is unclear how inflated

or overly conservative the two approaches would be. It is one of the goals of this paper

to quantify how analyzing subregions separately affects inference, both with and without a

correction.

To generalize the approach of taking an average within a region, consider the K

spatial observations as being divided into M subregions, with a location belonging to ex-

actly one subregion. To define this division, we define the set Km, m = 1, ...,M , as the set

containing the indices of all the spatial locations corresponding to the mth division; |Km|

denotes the number of locations within that set. Therefore, the spatial summary measures

corresponding to the averages within these regions are defined as

Y m
ij =

1

|Km|
∑
k∈Km

Yijk (4)
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which has variance

V ar(Y m
ij ) =

σ2

|Km|2

[
|Km|+ 2

∑∑
k<l; k,l∈Km

Corr(Yijk, Yijl)

]
. (5)

As a result of summarizing the spatial data in this way, the data vector for a given subject

will have only M rows per temporal observation instead of the previous K. If the subre-

gions are analyzed in the same model, then Yi will have length JM , while separate analysis

of the regions would involve M outcome vectors each having length J . It is important to

note that the variance of the M outcomes may be heterogeneous, as both the number of

locations being averaged (|Km|) and the sum of correlations between locations may vary

from one region to the next. If this is the case, then the assumption of homoscedasticity

may be violated which could have adverse effects on statistical inference. In addition, the

kinds of predictors that one can be fit are limited so that the space-varying covariates are at

the region-level rather than the level of the observed locations.

A Global Summary Measure

Another approach to summarizing the data in space is to take the average of all of

the locations, reducing the spatial dimension from K to 1. Correspondingly, the length

of Yi is reduced from JK to just J . This approach has also seen clinical use due to

how it totally eliminates the spatial correlation from the modeling of the data[2], although

by doing so all of the spatial resolution is lost from the analysis and any space-varying

covariates are excluded from modeling. The calculation of the single outcome per time

point is quite simple,

Y Global
ij =

1

K

K∑
k=1

Yijk, (6)

but when the variance is considered it becomes apparent that the spatial correlation does
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affect the variance of the outcome.

V ar(Y Global
ij ) =

σ2

K2

[
K + 2

∑∑
1≤k<l≤K

Corr(Yijk, Yijl)

]
(7)

Specifically, when the correlation increases the variance of the average increases.

Temporal Summary Methods

Due to longitudinal studies having a longer history than imaging studies, many more

summary measures have been proposed to handle longitudinal data than spatial data. There

are enough different types of summary measures to fill an entire review article, possibly

more, so here we will focus on three of the most popular ones: endpoint analysis, the

slope over time, and the area under the curve. Note that the choice of a temporal summary

measure should be motivated by the research question pertaining to the time course of the

outcome[23], since in practice they all reduce the temporal dimension from J to 1 and

prevent the use of time-varying covariates.

In addition to the properties of the measures themselves, we will also consider how

they perform in the presence of missing data. Missing data is a near certainty in longitudinal

studies, especially when the subjects are human, and it tends to take the form of missing

observations in time. Closely related is the issue of uneven follow-up, where subjects

may have the same number of observations but they were taken at different times from

baseline. Note that we are only considering temporal missing rather than spatial; this is

due to missing data in longitudinal imaging studies being far more likely to come from a

missed visit or dropout than from part of an image being missing. Low-quality images do

happen, but one can generally assume that the imaging technician would be aware of when

that occurred and take additional images until an acceptable one has been obtained.
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Endpoint Analysis

Endpoint analysis is where the baseline observation is subtracted from the final

observation to give the total change over the study’s duration. The calculation is extremely

simple as is its variance,

Y Endpoint
ik = YiJk − Yi1k (8)

V ar
(
Y Endpoint
ik

)
= 2σ2[1− Corr(YiJk, Yi1k)], (9)

but the result has the potential to directly answer certain research questions. Endpoint

analysis is best suited to answer the question of how an exposure or treatment changes an

outcome after a certain period of time[18]. In the context of cardiac imaging in patients

with mitral regurgitation, it could be used to quantify how much the left ventricular ejection

fraction had decreased after a certain period of time.

In practice, endpoint analysis is best when the total change is of interest rather

than the rate of change. If the time course is linear, then the slope and endpoint analysis

should give the same answer but the slope will typically have a smaller variance. Therefore,

endpoint analysis is often more suited for when the time course is non-linear, such as when

change levels off with time[23]. Similar options to endpoint analysis exist that may be

more efficient, such as an ANCOVA where the final observation is used as the outcome and

the baseline is used as a covariate[16, 13].

Endpoint analysis discards the observations between the initial and final observa-

tion, which involves throwing away a large amount of information. On the bright side,

this means that it does not matter if those observations are missing or unevenly spaced.

However, if the J th observation is missing it means that the subject cannot be used. One

may think to use the last observed value, but this can bias the outcome measure towards

zero. In practice, endpoint analysis can produce a great deal of bias and inflate the Type I

error rate when the missingness is not completely at random[18]. If there is a large range in
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when the J th observations were taken, endpoint analysis may also be inappropriate since

the subjects would not have had the same amount of time for change to have occurred. This

unevenness can also result in heteroscedasticity, since if the time between YiJk and Yi1k is

not uniform then the correlation (and also V ar
(
Y Endpoint
ik

)
) will probably be different for

each subject[14].

Slope Analysis

One of the more common approaches to summarizing longitudinal data is to fit a

parametric growth curve to each subject’s time course and use one or more of the estimated

parameters as that subject’s outcome variable. The nature of the parametric curve is depen-

dent on the ‘typical’ shape of subjects’ change over time, but the most basic would be to fit

a line using ordinary least squares estimation and take the slope as the outcome variable.

Y Slope
ik =

∑J
j=1 (tj − t̄)

(
Yijk − 1

J

∑J
l=1 Yilk

)
∑J

j=1 (tj − t̄)2
(10)

This approach is best suited for cases where the average change over time is of scientific

interest to a researcher[23]. In practice, using the slope as the outcome has many sim-

ilarities to a mixed model with random slopes for the individuals[24], though it has the

potential to be highly efficient due to not having to estimate covariate parameters affecting

the intercept[34].

The variance of the slope is much more complicated to compute than the variance

of the change score; the details of the derivation are given in the Supplementary Material.
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The variance’s full form is

V ar
(
Y Slope
ik

)
=

σ2[
J
∑J

j=1 t
2
j −

(∑J
j=1 tj

)2]2
J2

 J∑
j=1

tj ∑
l∈[1,J ],l 6=j

tlCorr(Yijk, Yilk)



+

(
J∑
j=1

tj

)2(
2
∑∑
1≤j<l≤J

Corr(Yijk, Yilk)

)

− J

(
J∑
j=1

tj

) J∑
j=1

tj ∑
l∈[1,J ],l 6=j

Corr(Yijk, Yilk)


− J

(
J∑
j=1

tj

) J∑
j=1

∑
l∈[1,J ],l 6=j

tlCorr(Yijk, Yilk)]


+J

J J∑
j=1

t2j −

[
J∑
j=1

tj

]2 .
(11)

If we make some simplifying assumptions it is possible to reduce Equation 11 to a form

that allows for easy understanding of how the study and model parameters affect the vari-

ance. If we assume that the times between follow-up visits are fixed at t for all subjects

with no loss to follow-up, and that the temporal correlation is compound symmetric with

Corr(Yijk, Yilk) = ρ, then we can compute the variance of an individual’s slope to be

V ar
(
Y Slope
ik

)
=

σ212(1− ρ)

t2J(J + 1)(J − 1)
(12)

under these assumptions. Note that as the number of observations (J) or the spacing be-

tween them (t) increase, the variance of the slope decreases. In addition, the variance

decreases as the temporal correlation ρ approaches 1, suggesting that slope analysis is even

more efficient under cases of high temporal correlation.

If the growth is nonlinear, several options exist. One would be to fit higher order

polynomials and analyze the different coefficients separately[33]. Polynomials up to the

order J − 1 could be fit (assuming no missing data), and although higher order terms will
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improve the fit of the curves there is a potential loss of interpretability as well as dimin-

ishing returns for the additional degrees to the polynomial[26]. Another option would be

to transform the observed outcome variables so they are approximately linear in time; this

could be done using a log transformation[6, 25] or by the use of weighting[24]. It has been

noted that for small sample sizes, such as those in imaging studies, it may be impossible to

use statistical metrics to choose between growth curve models, so it is important to let the

research question and good judgment guide the decision[25].

Assuming that the time courses are truly linear (or that the growth curve or trans-

formation is appropriate), the slope is fairly robust to missing data or unevenly spaced

observations. At least, given that the model is correct one would not expect either case to

cause bias. Missing data and unevenly spaced observations can affect the efficiency of the

approach[3], however, as V ar(Y Slope
ik ) is a function of both the number of observed time

points and the spread of those points through time (
∑J

j=1(tj − t̄)2).

Area Under the Curve Analysis

Another option for summarizing longitudinal data is to take the area under the curve

(AUC). The AUC may be useful when the time courses are not monotonic as it provides

a measure of whether the observations tended to be higher for a longer duration over the

study period. Such situations may occur when the outcome is highly variable over time or

if the ‘standard’ time course is naturally peaked. The calculation is a fairly simple inte-

gration, typically done using the method of trapezoids, and is essentially a time-weighted

summation of the observed values[23].

Y AUC
ik =

1

2

J−1∑
j=1

(tj+1 − tj)(Yijk + Yi,j+1,k)

=
1

2

[
(t2 − t1)Yi1k + (tJ − tJ−1)YiJk +

J−1∑
j=2

(tj+1 − tj−1)Yijk

] (13)
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The variance of the AUC is much more complicated due to the sum of sums in

Y AUC
ik .

V ar
(
Y AUC
ik

)
=
σ2

4

[(
(t2 − t1)2 + (tJ − tJ−1)2 +

J−1∑
j=2

(tj+1 − tj−1)2
)

+ 2(tJ − tJ−1)(t2 − t1)Corr(YiJk, Yi1k)

+ 2
J−1∑
j=2

(t2 − t1)(tj+1 − tj−1)Corr(Yi1k, Yijk)

+ 2
J−1∑
j=2

(tJ − tJ−1)(tj+1 − tj−1)Corr(YiJk, Yijk)

+2
J−2∑
j=2

J−1∑
l=j+1

(tj+1 − tj−1)(tl+1 − tl−1)Corr(Yijk, Yilk)

]

(14)

In this form, some of the nuances of the variance can be lost in the complexity. Assuming

the time between follow-up visits is fixed at t for all subjects, the variance simplifies to

V ar
(
Y AUC
ik

)
=
σ2t2

4

[
(4J − 6) + 2Corr(YiJk, Yi1k) + 4

J−1∑
j=2

Corr(Yi1k, Yijk)

+4
J−1∑
j=2

Corr(YiJk, Yijk) + 8
J−2∑
j=2

J−1∑
l=j+1

Corr(Yijk, Yilk)

]
.

(15)

A further simplifying assumption to make the variance of the AUC easier to understand

would be to assume a compound symmetric correlation of ρ between all observations

through time. After some algebra, the variance in this case becomes

V ar
(
Y AUC
ik

)
=
σ2t2

4

[
(4J − 6) + (4J2 − 12J + 10)ρ

]
=
σ2t2

2

[
(2J − 3) + (2J2 − 6J + 5)ρ

] (16)

which shows that the variance of the AUC increases quadratically with both the time be-

tween observations (t) and the number of observations (J).
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Due to this property, it is advisable to instead use the ratio of the AUC to the time of

the final observed outcome. This adjustment results in the summary measure being akin to

a time-weighted average of the observed Y values. For complete data, the adjusted Y AUC

would be

Y AUC
ik

tJ
=

1

2tJ

J−1∑
j=1

(tj+1 − tj)(Yijk + Yi,j+1,k)

=
1

2tJ

[
(t2 − t1)Yi1k + (tJ − tJ−1)YiJk +

J−1∑
j=2

(tj+1 − tj−1)Yijk

] (17)

with variance

V ar

(
Y AUC
ik

tJ

)
=
V ar

(
Y AUC
ik

)
t2J

. (18)

This adjustment also has the benefit of stabilizing the variance of the summary measure.

Under the previous simplifying assumptions of equally spaced observations (making tJ =

(J − 1)t) and compound symmetric correlation, the variance of the adjusted AUC is

V ar

(
Y AUC
ik

(J − 1)t

)
=

σ2

2(J − 1)2
[
(2J − 3) + (2J2 − 6J + 5)ρ

]
→ ρσ2 as J →∞ (19)

which is no longer an increasing function of t or J . The AUC is still limited, though, since

as long as ρ > 0 the variance of the adjusted AUC will not go to zero even as the length

of follow-up increases. In addition, the variance increases with ρ which suggests that AUC

analysis may become less efficient is scenarios with high temporal correlation.

It is apparent that the presence of unevenly spaced observations can drastically af-

fect both the value of Y AUC
ik and its variance. Missing data from the second to J − 1st

observations may not impact the calculation of the AUC since the curve can just be drawn

between the adjacent observed outcome values, though like all summary methods it can af-

fect the variance. The largest concern when using AUC as a summary measure is when the

last observed value was taken. Ideally, each subject will have their J th observation taken at
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time tJ . If the duration of observation is different between subjects, however, the AUC will

be larger or smaller for longer or shorter follow-up times, respectively. This could occur

for uneven follow-up times for the J th observation or if the J th observation is missing.

Adjusting by tJ may not fix this problem, as reduced follow-up duration implies that there

is less time for a time-weighted average to move away from Yi1k. Consequently, it can be

very dangerous to use the AUC (adjusted or not) when the total follow-up time is different

between subjects.

SIMULATION STUDY DESIGN

The goal of this simulation study was to assess how our proposed spatiotemporal

model compares with summary measures in both space and time with regard to statistical

inference (Type I and II error rates) about a treatment-by-time interaction. These error

rates were investigated under several different conditions such as generating correlation

function, degree of correlation, and sample size. Additionally, the effects of missing data

were considered as were whether the inference was made with a simple Wald’s test or an

F-test with a denominator degrees of freedom correction. In the design and reporting of

these simulations, we endeavored to adhere to the guidelines proposed by Burton et al.

(2006)[9].

Basic Structure of Generated Data

The generated data is based on the structure of the data collected in the cardiac

imaging study reported on by Schiros et al. (2012)[27]. The outcome variable is contin-

uous and was collected from two treatment groups at five time points, evenly spaced six

months apart (J=5). At each observation, cardiac imaging was done where the outcome was

observed at 16 points within the left ventricle (K=16). Thus, each subject had 80 observed

outcomes. The layout of the spatially observed locations was modeled using the AHA’s
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17 segment model presented by Cerqueria et al. (2002), where the left ventricle is laid out

in a circular pattern with concentric rings corresponding to the different levels of the left

ventricle (base, mid, and apex), much as if one is looking down from the left atrium[11].

The coordinates were defined as the center of each segment laid out on a unit circle, defined

in Table A.1 and shown in Figure A.1 with the spatial lag defined as the Euclidian distance

between the centers[29].

The outcome was calculated as the result of a linear model with correlated errors.

Specifically,

Yijk = β0+β1Timeij+β2Groupi+β3Midk+β4Apexk+β5Timeij ∗Groupi+εijk (20)

where Timeij was the continuous time of subject i’s jth observation; Groupi was the treat-

ment group for subject i; Midk and Apexk were indicator variables for whether the ijkth

observation was from the mid or apex of the left ventricle, respectively; and the collected

error terms for subject i were independent and identically distributed for all subjects with

distribution

εi = [εi,1,1, εi,1,2, ..., εi,1,16, εi,2,1, ..., εi,5,16] ∼MVN80(0, σ
2Σ),

where σ2 was the variance of the outcome (assumed to be equal across all observations) and

Σ is an 80-by-80 parametric spatiotemporal correlation matrix. In this simulation study,

for the sake of simplicity we assumed β0 = β1 = β3 = β4 = 1, β2 = 0, and σ2 = 1. No

loss of generality was expected, as σ2 simply scales the outcome.

Model Parameters Changed Between Conditions

The parts of the linear model itself that were changed between conditions include

β5 and Σ. Note that β5 represents the time-by-treatment interaction and if β5 6= 0 then
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there exists a difference in the time course between the two groups, which was the original

research hypothesis. We generated data from the linear model with five different values for

β5 : {0, 0.05, 0.10, 0.15, 0.20}. Setting β5 = 0 allowed us to assess the Type I error rate,

while the other values allowed us to construct a power curve to compare Type II error rates

for different conditions.

As mentioned earlier, we assumed that the spatiotemporal correlation structure Σ

was separable in space and time. Thus, Σ = ΣT ⊗ ΣS for parametric temporal (ΣT )

and spatial (ΣS) correlation functions. We generated data from combinations of compound

symmetric and autoregressive-1 temporal structures and exponential, spherical, and Matérn

spatial structures, for a total of 6 possible parametric structures of Σ. When choosing the

values of θ for Σ(θ), we looked at values that produced high and low correlation in both

space and time. The parameters that produced these correlation structures are given in Table

A.2 and the correlation functions themselves are plotted in Figure A.2. We considered

4 combinations of parameters (low spatial/low temporal, low spatial/high temporal, high

spatial/low temporal, and high spatial/high temporal correlation) to represent the degree

of correlation, resulting in 24 (6 × 4) different covariance structures used to generate the

simulated data.

When fitting the models with a parametric correlation structure we fitted only the

true model. This choice was motivated by how information criteria were previously shown

to be highly accurate at choosing the true structure, and that the effects of misspecification

were well explored in our past work[17].

We also varied the total number of subjects (N) so that N = 50 or 100. This was

done to examine the convergence of the asymptotic Wald and F-tests when the sample size

is small, so that we could determine if the sample size of a typical longitudinal imaging

study is enough to employ large-sample methods of inference. The treatment groups were

considered to be balanced, with the number per group being 25 and 50, respectively. Note
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that since there are 80 observations per subject, these numbers of subjects corresponds

to 4000 and 8000 total observations, respectively. Due to the computational burden from

fitting models with complex covariance structures on 8000 observations, the N=100 sample

size was only evaluated for information criterion accuracy and Type I error rate, but not the

four values of β5 to evaluate power; this is because it can be safely assumed that, for a

given working covariance structure and the cases considered here, increased sample size

will increase power and thus not provide enough novel conclusions to justify the lengthy

computation time of additional simulations.

The effect of missingness in the data was also considered as well. The method of

missingness was assumed to be completely at random. The extent of missing data was

derived from the dataset inspiring this work: data is only missing from absent follow-up

visits at a 10% rate per observation time, with the missingness for each temporal observa-

tion independent of one another. In this case, there is temporal missingness but not spatial

missingness. The baseline visit is always observed, so each subject can have K, 2K, ...,

(J − 1)K, or JK observed outcomes.

The complete listing of conditions is given in Table 2.

Simulation Details

To achieve the desired precision in the estimates of Type I error rates, we used a

simulation size of 5000 for each condition. Specifically, we wished for the 95% confidence

interval on the estimate of the Type I error rate to have a width of about 1%. The data

was generated using the ‘mvrnorm’ function in the MASS (v. 7.3-29) package of R (v.

i368 3.0.2) where each subject’s 80 observations were drawn at once, independently from

the other subjects. The random number generator used in the ‘mvrnorm’ function is the

Mersenne-Twister generator. When present in the simulation condition, missing data was

assessed independently for each time point for each individual; a Uniform(0,1) variable
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was generated and if it was less than 0.1 that follow-up visit was marked as missing and

excluded from the analysis.

The linear model fitting, along with the inference on the fixed effects, was done

using the ASReml-R package (v. 3.0, VSN International, Hemel Hempstead, UK)[10].

Results for a Wald’s test and an F-test with a Kenward-Roger’s correction for denomina-

tor degrees of freedom, built into the ASReml package, were recorded at each simulation

run. The seeds were changed between each simulation iteration so that each run would

be generated independently. Care was taken to ensure all sixteen models in each itera-

tion converged, typically by re-running troublesome datasets with improved initial values.

Non-convergence was most prominent in the averages of left ventricular levels analyzed to-

gether, as the parameters in the unstructured spatial correlation matrix were extremely close

to 1; use of proper initial values obtained through pair-wise Pearson correlations between

the level averages proved to be the most reliable way of getting convergence.

Simulation Output

For each condition described in Table 2, and each of the 5000 independent simu-

lated datasets, we fit sixteen linear models corresponding to different approaches to correla-

tion in space and time, listed in Table 3. All combinations of four spatial and four temporal

methods were considered: modeling the correlation directly with a parametric correlation

function or with a summary measure in space (regional averages analyzed jointly with M=3,

regional averages analyzed separately, and a global average) or time (endpoint, slope, and

tJ -corrected AUC analysis). When a correlation function was employed the true function

was used. When a correlation function was used for both space and time, the Kronecker

product of the two was used (i.e. correlation was separable in the fitted model). Table 3 also

details what predictors were used when fitting each model; note that certain summary mea-

sures precluded the use of time- or space-varying covariates. Note that due to their Type I

error rates not being conserved when complete data was used, the level averages analyzed
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separately (with or without Bonferroni correction) were excluded from the simulations with

MCAR data resulting in only twelve models being fit for those conditions.

From each model fit, we looked at the p-value for the hypothesis test of whether

the treatment group affected the change over time; when the temporal correlation was used

this was a test for treatment-by-time interaction (H0 : βT imejGroupi = 0) and when a tem-

poral summary measure was used it was a test for a group effect on the summary value

(H0 : βGroupi = 0); these βs refer to the fixed effects associated with the predictors in Ta-

ble 3. As mentioned above, the p-values for these hypothesis tests were obtained through

a Wald’s test and a corrected F-test. For the level averages analyzed separately, the effect

of correction for multiple testing was considered. The uncorrected approach declared sig-

nificance when any of the three levels rejected for p < α, while the other approach used a

Bonferroni correction such that a significant finding was declared when p < (α/3) for any

of the three levels.

The Type I error rates were calculated as the proportion of the 5000 datasets where a

fitted model rejected the relevant null hypothesis (see Table 3) at an α = 0.05 level when the

data was generated with β5 truly equal to zero. Using the convention suggested by Bradley

(1978), we considered the Type I error rate to be conserved when it fell between 0.75α

and 1.25α, or 0.0375 and 0.625 for our chosen α level. The value of 1.25α was chosen

to be moderate, neither highly conservative (1.1α) nor liberal (1.5α) as Bradley described

them[8]. Thus, we classified the fit of a certain covariance structure on data generated under

a given covariance structure to be overconservative if the empirical Type I error rate α̂ was

below 0.0375 and inflated if the error rate was above 0.0625. The Type II error rates (the

power curves) were found by calculating the proportion of times the hypothesis test for a

treatment-over-time effect was rejected on datasets generated with β5 > 0 (Equation 20).
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SIMULATION RESULTS

Type I Error Rates - No Missing Data

The results of the Type I error rate simulations for complete data are given in Fig-

ures 1, 2, and 3. The figures include the Bradley-inspired bounds of (0.0375,0.0625) and

the stricter 99% confidence bounds of (0.04206,0.05794); both are included to provide a

scale to evaluate what constitutes a mild or severe deviation from a Type I error rate of

0.05. For the twelve models from Figures 1 and 2, there were no clear relationships be-

tween the observed Type I error rate and the generating correlation structure and degree

of spatial/temporal correlation. Since there was not an apparent pattern, the Type I error

rates were aggregated over these 24 conditions to produce the box plots, which thus gives

an idea for how a certain approach behaves for data with various properties. For mod-

els where level averages were analyzed separately (Figure 3) a strong relationship existed

between degree of spatial correlation and whether or not a Bonferroni correction was used.

As was seen in our previous work[17], when the true separable parametric corre-

lation structure was fitted our proposed spatiotemporal model consistently conserved the

Type I error rate under all conditions and sample sizes, and both tests demonstrated con-

vergence to their asymptotic α-level. As seen in the first panel of Figure 1, they are even

conserved with regards to the stricter 99% confidence interval.

We did observe trends across different spatial and temporal methods, although there

did not appear to be an interaction between the effects of different spatial methods and

temporal methods. Therefore for the sake of brevity (as 1,920 Type I error rates were

collected) the spatial and temporal methods will have their statistical properties discussed

separately.

For the spatial methods, several results are apparent. First is that, keeping the tem-

poral method the same, there seemed to be little difference between modeling spatial corre-

lation between 16 segments, analyzing averages of the three levels together via an unstruc-
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tured correlation matrix, and a global average as all three approaches did a decent job of

conserving the Type I error rate regardless of sample size or test (Wald vs. F-test). This is

not surprising as there was no spatial component to the treatment-over-time effect, so with

regards to the model used to generate the data the spatial aspect was a nuisance.

However, the approach of analyzing the three level averages separately (Figure 3)

seemed to be a poor approach, since a lack of correction caused inflated Type I error rates

even though only three tests were done. A Bonferroni correction causes a different problem

of an overly conservative Type I error rate. The degree of spatial correlation had a large

effect on how inflated/overly conservative this approach was: the Bonferroni correction

was less conservative under low spatial correlation while the uncorrected method was less

inflated under high spatial correlation. These results are reasonable due to how the three

tests are correlated. When spatial correlation is low the correlation between the tests will

also be low, so a Bonferroni correction would be reasonable while a lack of correction

would result in a greatly inflated Type I error (up to 14.3% for three uncorrelated 0.05-level

tests). Conversely, if the tests are highly correlated (as is the case when spatial correlation

is high) then the Type I error rate would not be very inflated for multiple tests, meaning that

a Bonferroni correction is “overkill” and would result in a very conservative overall test.

Among the temporal methods, it seems that the use of the true temporal correlation

structure reliably conserved the Type I error regardless of sample size or type of test. The

temporal summary measures had the potential for the Type I error rate to be inflated when

the sample size was small (N=50) and the Wald’s test was used, especially for AUC and

endpoint analysis. Slope analysis was slightly better, but still had some potential inflation

for the Wald’s test with a small sample size. A sample size of N=100 generally did a

better job of conserving the Type I error rate for the Wald’s test than for N=50 but still had

some error rates outside the 99% confidence interval for the temporal summary measures.

However the F-test with corrected denominator degrees of freedom had a conserved Type
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I error rate for all temporal methods regardless of sample size. The F-test also seemed

to result in a median Type I error rate from different conditions being closer to 0.05 than

the Wald test. Interestingly, the F-test performed better for temporal summary measures

even when the global average was used and all observations were independent. These

results suggest that a corrected F-test should be used when temporal summary measures

are employed on longitudinal data, especially if the sample size is small.

Power Curves - No Missing Data

In addition to the Type I error rate, the correlation models and summary methods

were compared by their Type II error rate when making inference about a treatment-by-

time interaction. Although there were some differences in the overall power between the

different generating correlation structures, the relative power of the spatial and temporal

methods was largely the same between them. Therefore, representative power curves asso-

ciated with the simulation results for a MAT×CS structure are given in Figures 4 (Wald)

and 5 (F-test) while the curves associated with the other five correlation structures are given

in Figures A.3 to A.12 in the Supplementary Materials. In these figures, each of the sixteen

models is identified by a combination of line color (spatial method) and style (temporal

method). The multiple figures report the observed power when a Wald’s or corrected F-test

were used, and for what spatiotemporal correlation structure was used to generate the data.

The power curves under different generating correlation structures are given to evaluate

whether the relative power of the methods vary with the underlying correlation structure;

note that in practice one does not know the data’s true correlation structure and thus we

want our conclusions to be generalizable to whatever correlation structure is encountered

in practice. In addition, the Wald and F-test did not seem to differ in power which suggests

that there would be no reason not to use the more reliable corrected F-test in practice.

In all of the cases, we observed that for a given temporal method the use of a spa-

tial correlation model had the highest power among the four spatial methods. The global
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average and the level averages analyzed jointly with an unstructured correlation matrix

(LVL-UN) proved to be roughly equivalent to one another; the pair had less power than the

spatial correlation model, although the difference was slightly less pronounced in cases of

high spatial correlation. The level averages analyzed separately with a Bonferroni correc-

tion (LVL-I) had the smallest power of the four, but was still competitive in cases of low

spatial correlation. When spatial correlation was high, which was where the Bonferroni

correction made the Type I error rate overly conservative, the independent level averages

had greatly reduced power compared to the other spatial methods. Recall that the uncor-

rected independent level averages had an inflated Type I error rate, and as such did not

have their power examined. It should be noted that regardless of spatial method, the overall

statistical power was reduced in the presence of high spatial correlation; this result is not

surprising, as higher correlation implies that there is less unique information per subject.

As for the temporal methods for a given spatial method, the two most powerful

methods seemed to be the temporal correlation model and slope analysis. The two had

roughly equivalent power in most cases, which is not surprising given the model generating

the data could be considered a ‘best-case scenario’ for slope analysis. Endpoint analysis

was less powerful than the temporal correlation model or slope analysis, but could still

be considered competitive. Given the scenarios had a constant rate of change over time

and a set length of follow-up for each subject, one could consider these to be acceptable

conditions to use endpoint analysis. AUC analysis, however, proved to be substantially

less powerful than the other methods. The degree of temporal correlation had a profound

impact on the power of these methods; higher correlation resulted in higher power for the

temporal correlation model, slope analysis, and endpoint analysis, while higher correlation

led to lower power in the AUC analysis. Considering the relationships seen in Equations

9, 12, and 16 this is not surprising, as we have seen that the variance of endpoint and slope

summary measures decrease with increasing correlation while the variance of the AUC

increases with it. These results seem to be evidence that AUC analysis should not be used
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when a change over time is of interest and temporal correlation is not negligible.

Type I Error Rates - With Missing Data

The observed Type I error rates for the twelve models (recall, the level averages

analyzed separately were excluded due to poor performance on complete data) fitted to

data with missing observations are given in Figures 6 and 7. When aggregated over the

2,160,000 iterations across all conditions, the percent of missingness closely followed the

expected amount and binomial distribution. The temporal correlation model had an average

of 8.00% missingness, endpoint analysis had an average of 10.00% missingness, and slope

and AUC analysis both had a mean missingness of 0.01%. The histograms of the percent

missingness for each iteration are given in Figure A.13. In general, the results were similar

to the Type I error rates of the complete datasets. There did not seem to be a difference in

conservation between spatial summary methods, which is not surprising since the missing-

ness was purely temporal. The use of a temporal correlation model seemed to conserve the

Type I error rate under most conditions.

For temporal summary methods, the Wald’s test with N=50 had a slightly inflated

Type I error rate, although the degree of inflation did not seem to be much different from

the non-missing conditions. However, in the presence of missing data the Type I error

rate of the Wald’s test was not conserved at N=100; this is in contrast to the complete data

conditions where the increased sample size resulted in a conserved error rate. This suggests

that, where the Wald’s test is concerned, a sample size of N=100 is not sufficient to achieve

convergence of asymptotic properties when there is missing data in longitudinal imaging

studies. The F-test, conversely, conserved the Type I error rate for the temporal summary

methods for N=50 and N=100; this reinforces the conclusion that the corrected F-test is

preferred when temporal summary methods are used.
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Power Curves - With Missing Data

The simulated power curves for the twelve methods under a MATxCS generating

correlation structure are shown in Figures 8 (Wald) and 9 (F-test), with the other structures

in Figures A.14 to A.23 in the Supplemental Materials. We found that the relative power of

the twelve methods did not differ between the six generating correlation structures, much

like the complete data case.

The power curves on complete data and those with missing data were similar, but

some differences arose. The most powerful method was still our spatiotemporal model,

and the Wald and corrected F-test performed approximately the same for all models. A

spatial correlation structure making use of all sixteen segments was still more powerful

than one taking a global average or analyzing level averages together with an unstructured

working correlation matrix. On the temporal side, AUC analysis was still lacking in power

and endpoint analysis was still fairly competitive.

The biggest difference is that all models lost power when missingness was intro-

duced to the data generation step. This is expected, as less data naturally means less power.

However, the gap between the temporal correlation model and the temporal summary meth-

ods seems to have widened due to the introduction of missing data. In particular, slope

analysis was marginally less powerful than a temporal correlation model in the presence of

missing data. Since the true time course was linear and the missingness was completely at

random, the individual slope estimates are unbiased; the observed loss of power must there-

fore be due to changes with the variance, either a direct increase from fewer observation

going into the slope estimation or the heteroscedasticity between subjects with different

numbers of lost follow-ups.
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CONCLUSIONS

Longitudinal imaging studies are characterized by a large amount of correlated data

on a small number of independent subjects. It was therefore necessary to consider the Type

I error rate for asymptotic tests such as Wald’s and the F-test, as it was not known whether

the repeated measures offset the concerns regarding convergence with a small number of

subjects. We found that our previously proposed model with a separable parametric cor-

relation structure consistently conserved the Type I error rate for both tests regardless of

sample size, generating correlation structure, degree of correlation, and missing data. Con-

versely, summary measures occasionally produced inflated Type I error rates in the Wald

test when the sample size was small (N=50) or even when it was larger (N=100) when

some data was missing. Although the Type I error rate was better conserved when the cor-

rected F-test was used, this suggests that summary methods may be unreliable to use on

longitudinal imaging data. It should be noted that it is unclear from our results whether

this is due to the underlying mechanics of summary measures or to how they reduce the

dimension of the dataset; one could expect a model using 4000 observations to have bet-

ter asymptotic properties than another using just 50, even if those 4000 observations were

highly correlated within clusters of size 80.

Of particular note is the approach where regional averages were analyzed sepa-

rately, creating a multiple testing problem. This analysis strategy was of particular interest

because of how it is commonly used in practice when analyzing longitudinal imaging data.

We found that the degree of spatial correlation had a large impact on how inflated or overly

conservative the Type I error rate was. Without a correction for multiple testing, the Type I

error rate was typically inflated with a higher error rate under lower degrees of correlation.

With a Bonferroni correction, the Type I error rates were usually too conservative which led

to a loss of power; the power loss was particularly substantial when the spatial correlation

was high. Since a lack of correction inflates the Type I error and a Bonferroni approach
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overcorrects and inflates the Type II error, one could suggest an intermediate correction.

The problem with this reasoning is that the amount of correction needed is a direct function

of the correlation between the regions, and if the inter-region correlation was known or

estimated there would be little reason to not analyze the regions together with at least an

unstructured correlation model. The rudimentary approach of analyzing regions separately

appears to be misleading at worst and inefficient at best, and thus should not be used in

practice.

When comparing the models based off of power, our spatiotemporal model had the

highest of the approaches considered across all conditions. Despite the target of interest

(the treatment-by-time interaction) having no spatial component in the generating model,

the use of spatial correlation structures with data from all 16 segments routinely beat out

the global average and the jointly-modeled level averages. The temporal summary mea-

sures also resulted in a loss of power, particularly for the area-under-the-curve analysis.

Although endpoint analysis was competitive and slope analysis closely rivaled the tempo-

ral correlation model, the finding that the gap in power was as big or even larger when

some data is missing was disconcerting as it implies that the use of summary measures to

‘smooth over’ missing data is likely to be counterproductive.

Our simulation study had several limitations that would be useful areas to expand

upon in future research. The generating time course was linear which meant that our

model’s fixed effects were correctly specified and the summary measures (especially end-

point and slope analysis) were operating in a best-case scenario. Additional simulations

under a non-linear time course or heterogeneous time courses between subjects would pro-

vide results that may be more applicable to practical applications. The simulation design

also set the fitted correlation structures to match the true structure, which failed to capture

the uncertainty of choosing the true correlation structure and presumed there even was a

true separable parametric function underlying the data. Such scenarios where the difficul-
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ties of modeling correlation in space and time are present could lend credibility to summary

methods where correlation is simplified or removed.

There are other interesting directions for this line of research to take. It would

be of interest to compare the models in the presence of a three-way interaction between

treatment group, time, and region to quantify the power lost when smoothing out a target

of inference with spatial and temporal components. Lastly, it would be a potential credit

to our spatiotemporal model to quantify the power gained from controlling for time- and

space-varying covariates compared to summary methods that cannot use them.
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Table 1: Dimensions and correlation matrices for several approaches to spatial and longi-
tudinal data. The value M refers to a number of distinct regions within the observed area
such that M � K. Note that duv is the distance between locations u and v with f(d1K |θ)
being a parametric correlation function. The terms ρuv are parameters for an unstructured
correlation matrix.

Type of Data Method Dim(ΣS/T ) ΣS/T

Spatial Correlation K ×K ΣS =


1 f(d12|θ) · · · f(d1K |θ)

f(d12|θ) 1 · · · f(d2K |θ)
...

...
. . .

...
f(d1K |θ) f(d2K |θ) · · · 1



Regional Average, Unstructured M ×M ΣS =


1 ρ12 · · · ρ1M
ρ12 1 · · · ρ2M

...
...

. . .
...

ρ1M ρ2M · · · 1


Regional Average, Separate 1× 1 ΣS = [1]
Global Average 1× 1 ΣS = [1]

Temporal Correlation J × J ΣT =


1 f(t1, t2|θ) · · · f(t1, tJ |θ)

f(t1, t2|θ) 1 · · · f(t2, tJ |θ)
...

...
. . .

...
f(t1, tJ |θ) f(t2, tJ |θ) · · · 1


Endpoint Analysis 1× 1 ΣT = [1]
Slope Analysis 1× 1 ΣT = [1]
AUC Analysis 1× 1 ΣT = [1]
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Table 2: Total number of conditions for the simulation study which included varying the
sample size, temporal and spatial structures used to generate the data, the degree of spatial
and temporal correlation used in data generation, the values of β5 used, and whether or not
there was missing data. β5 refers to the size of the treatment-by-time effect in Equation 20.

Sample Size N=50 N=100

ΣT Structures 2 (CS,AR-1) 2 (CS,AR-1)

Degree of ΣT 2 (High, Low) 2 (High, Low)

ΣS Structures 3 (Exp,Sph,Mat) 3 (Exp,Sph,Mat)

Degree of ΣS 2 (High, Low) 2 (High, Low)

Values of β5 β5 = {0, 0.05, 0.10, 0.15, 0.20} β5 = {0}

Missing Data 2 (Yes/No) 2 (Yes/No)

Total Number of Conditions 240 48
288
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Table 3: Sixteen linear models made from combination of spatial and temporal methods,
the form of their fitted predictors, and what predictor is the focus of hypothesis testing for
a treatment-by-time. These are also the sixteen models considered in our simulation study.

Spatial Temporal Tested
Method Method Fitted Model Predictor

Correlation Correlation E[Yijk] ∼ 1 + T imej +Groupi +Midk +Apexk + T imejGroupi T imejGroupi
Endoint E[Yik] ∼ 1 +Groupi +Midk +Apexk Groupi
Slope E[Yik] ∼ 1 +Groupi +Midk +Apexk Groupi
AUC E[Yik] ∼ 1 +Groupi +Midk +Apexk Groupi

Level Average, Correlation E[Yijm] ∼ 1 + T imej +Groupi +Midm +Apexm + T imejGroupi T imejGroupi
Together Endoint E[Yim] ∼ 1 +Groupi +Midm +Apexm Groupi

Slope E[Yim] ∼ 1 +Groupi +Midm +Apexm Groupi
AUC E[Yim] ∼ 1 +Groupi +Midm +Apexm Groupi

Level Average, Correlation E[Yijm] ∼ 1 + T imej +Groupi + T imejGroupi T imejGroupi
Separately Endoint E[Yim] ∼ 1 +Groupi Groupi

Slope E[Yim] ∼ 1 +Groupi Groupi
AUC E[Yim] ∼ 1 +Groupi Groupi

Global Correlation E[Yij ] ∼ 1 + T imej +Groupi + T imejGroupi T imejGroupi
Average Endoint E[Yi] ∼ 1 +Groupi Groupi

Slope E[Yi] ∼ 1 +Groupi Groupi
AUC E[Yi] ∼ 1 +Groupi Groupi
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Figure 1: Plot of the empirical Type I error rates for the methods using temporal correlation
or AUC analysis, for different sample sizes and tests. The dashed lines correspond to the
theoretical 99% confidence interval for α = 0.05, and the solid blue and red lines refer
to the (0.0375,0.0625) bounds, respectively. The solid grey line denotes α = 0.05. Each
box plot is the aggregate of the four degrees of correlation and six generating correlation
structures.
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Figure 2: Plot of the empirical Type I error rates for the methods using endpoint analysis
or slope analysis, for different sample sizes and tests. The dashed lines correspond to the
theoretical 99% confidence interval for α = 0.05, and the solid blue and red lines refer
to the (0.0375,0.0625) bounds, respectively. The solid grey line denotes α = 0.05. Each
box plot is the aggregate of the four degrees of correlation and six generating correlation
structures.
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Figure 3: Plot of the empirical Type I error rates for the methods using regional averages
over the three levels analyzed separately, for different sample sizes and tests. The dashed
lines correspond to the theoretical 99% confidence interval for α = 0.05, and the solid
blue and red lines refer to the (0.0375,0.0625) bounds, respectively. The solid grey line
denotes α = 0.05. Each box plot is the aggregate of the four degrees of correlation and six
generating correlation structures.
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Figure 4: Plot of the empirical power curves for the sixteen models under a Matérn-by-
compound symmetric generating correlation structure where a Wald’s test was used for
inference about the treatment-by-time interaction. Results from the different combinations
of degrees of spatial and temporal correlation are given in the different panels. Note that
for a certain combination the spatial method is denoted by color and the temporal method
by line style.
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Figure 5: Plot of the empirical power curves for the sixteen models under a Matérn-by-
compound symmetric generating correlation structure where a corrected F-test was used for
inference about the treatment-by-time interaction. Results from the different combinations
of degrees of spatial and temporal correlation are given in the different panels. Note that
for a certain combination the spatial method is denoted by color and the temporal method
by line style.
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Figure 6: Plot of the empirical Type I error rates for the methods using temporal correlation
or AUC analysis, for different sample sizes and tests on data with missing observations. The
dashed lines correspond to the theoretical 99% confidence interval for α = 0.05, and the
solid blue and red lines refer to the (0.0375,0.0625) bounds, respectively. The solid grey
line denotes α = 0.05. Each box plot is the aggregate of the four degrees of correlation and
six generating correlation structures.
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Figure 7: Plot of the empirical Type I error rates for the methods using endpoint analysis or
slope analysis, for different sample sizes and tests on data with missing observations. The
dashed lines correspond to the theoretical 99% confidence interval for α = 0.05, and the
solid blue and red lines refer to the (0.0375,0.0625) bounds, respectively. The solid grey
line denotes α = 0.05. Each box plot is the aggregate of the four degrees of correlation and
six generating correlation structures.
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Figure 8: Plot of the empirical power curves for the twelve models under a Matérn-by-
compound symmetric generating correlation structure with longitudinally missing data
where a Wald’s test was used for inference about the treatment-by-time interaction. Re-
sults from the different combinations of degrees of spatial and temporal correlation are
given in the different panels. Note that for a certain combination the spatial method is
denoted by color and the temporal method by line style.
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Figure 9: Plot of the empirical power curves for the twelve models under a Matérn-by-
compound symmetric generating correlation structure with longitudinally missing data
where a corrected F-test was used for inference about the treatment-by-time interaction.
Results from the different combinations of degrees of spatial and temporal correlation are
given in the different panels. Note that for a certain combination the spatial method is
denoted by color and the temporal method by line style.
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SUPPLEMENTARY MATERIAL

Derivation of the Slope Variance

Consider Yi1k, Yi2k, ..., YiJk to be the J observations from subject i at location k.

One can calculate the slope through those J observations (assuming no missing data) using

ordinary least squares estimation, which is b̂1 in the estimator

b̂ =

b̂0
b̂1

 = (X ′X)−1X ′y (A.1)

where

X =



1 t1

1 t2
...

...

1 tJ


(A.2)

is a J × 2 matrix with tj being the observed time of observation j with j = 1, ..., J . It is of

interest to determine how the variance of b̂1 is influenced by the follow-up design and the

temporal correlation between points. By defining the covariance of the J observations as

the J × J matrix V ,

V ar(b̂) = (X ′X)−1X ′V X(X ′X)−1. (A.3)

By assuming homogeneity of variance we can consider V in terms of a temporal

correlation matrix ΣT with ρjl = Corr(Yijk, Yilk).

V ar({Yi1k, ..., YiJk}) = V = σ2ΣT = σ2



1 ρ12 · · · ρ1J

ρ12 1 · · · ρ2J
...

... . . . ...

ρ1J ρ2J · · · 1


(A.4)
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The calculations for the terms in Equation A.3 are as follows.

(X ′X)2x2 =

 J
∑J

j=1 tj∑J
j=1 tj

∑J
j=1 t

2
j

 (A.5)

|X ′X| = J
J∑
j=1

t2j −

(
J∑
j=1

tj

)2

(A.6)

(X ′X)−1 =
1

J
∑J

j=1 t
2
j −

(∑J
j=1 tj

)2
 ∑J

j=1 t
2
j −

∑J
j=1 tj

−
∑J

j=1 tj J

 (A.7)

(X ′V X)2x2 = σ2

 J + 2
∑∑

1≤j<l≤J ρjl
∑J

j=1 tj +
∑J

j=1 tj

(∑
l∈[1,J],l 6=j ρjl

)
∑J

j=1 tj +
∑J

j=1

∑
l∈[1,J],l 6=j tlρjl

∑J
j=1 t

2
j +

∑J
j=1 tj

(∑
l∈[1,J],l 6=j tlρjl

)

(A.8)

(X′X)−1X′V X =
σ2

|X′X|



|X′X|+
(∑J

j=1 t
2
j

)(
2
∑∑

1≤j<l≤J ρjl

)
−
(∑J

j=1 tj

)(∑J
j=1

∑
l∈[1,J],l 6=j tlρjl

)
,(∑J

j=1 t
2
j

)(∑J
j=1 tj

(∑
l∈[1,J],l 6=j ρjl

))
−
(∑J

j=1 tj

)(∑J
j=1 tj

(∑
l∈[1,J],l 6=j tlρjl

))
;

J
(∑J

j=1

∑
l∈[1,J],l6=j tlρjl

)
− 2

(∑J
j=1 tj

)(∑∑
1≤j<l≤J ρjl

)
,

|X′X|+ J
(∑J

j=1 tj

(∑
l∈[1,J],l 6=j tlρjl

))
−
(∑J

j=1 tj

)(∑J
j=1 tj

(∑
l∈[1,J],l 6=j ρjl

))


(A.9)

We are only interested in V ar(b̂1), element (2,2) in (X ′X)−1X ′V X(X ′X)−1, so for the

sake of space let us consider the matrix multiplication of the second row of (X ′X)−1X ′V X

(Equation A.9) and the second column of (X ′X)−1. We then find that the variance is

V ar
(
Y Slope
ik

)
=

σ2[
J
∑J

j=1 t
2
j −

(∑J
j=1 tj

)2]2
J2

 J∑
j=1

tj ∑
l∈[1,J ],l 6=j

tlρjl



+

(
J∑
j=1

tj

)2(
2
∑∑
1≤j<l≤J

ρjl

)
− J

(
J∑
j=1

tj

) J∑
j=1

tj ∑
l∈[1,J ],l 6=j

ρjl


−J

(
J∑
j=1

tj

) J∑
j=1

 ∑
l∈[1,J ],l 6=j

tlρjl

+ J

J J∑
j=1

t2j −

[
J∑
j=1

tj

]2 .
(A.10)

In order to make the results more easily understood, one can make simplifying

assumptions about the correlation and the follow-up times. By making the follow-up times
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be t units of time apart, we get the simpler forms of the X matrices.

XJx2 =



1 t1

1 t2
...

...

1 tJ


==



1 0

1 t

...
...

1 (J − 1)t


(A.11)

(X ′X)2x2 =

 J
∑J

j=1 tj∑J
j=1 tj

∑J
j=1 t

2
j

 =

 J tJ(J−1)
2

tJ(J−1)
2

t2J(J−1)(2J−1)
6

 (A.12)

|X ′X| = J
J∑
j=1

t2j −

(
J∑
j=1

tj

)2

=
t2J2(J + 1)(J − 1)

12
(A.13)

(X ′X)−1 =
1

J
∑J

j=1 t
2
j −

(∑J
j=1 tj

)2
 ∑J

j=1 t
2
j −

∑J
j=1 tj

−
∑J

j=1 tj J

 =

2(2J−1)
J(J+1)

−6
tJ(J+1)

−6
tJ(J+1)

12
t2J(J+1)(J−1)


(A.14)

We can also make the assumption of compound symmetry, such that ρjl = ρ for all

observations.

(X ′V X)2x2 = σ2

 J + J(J − 1)ρ tJ(J−1)
2

+ tρJ(J−1)
2

2

tJ(J−1)
2

+ tρJ(J−1)
2

2
t2 J(J−1)(2J−1)

6
+ t2ρJ(J−1)(J−2)(3J−1)

12


= σ2

 J [1 + ρ(J − 1)] tJ(J−1)
2

[1 + ρ(J − 1)]

tJ(J−1)
2

[1 + ρ(J − 1)] t2J(J−1)
12

[(4J − 2) + ρ(J − 2)(3J − 1)]


(A.15)

(X ′X)−1X ′V X == σ2

1 + ρ(J − 1) tρJ(J−1)
2

0 1− ρ

 (A.16)

(X ′X)−1X ′V X(X ′X)−1 == σ2

 (4J+2)+ρ(J2−3J+2)
J(J+1)

−6(1−ρ)
tJ(J+1)

−6(1−ρ)
tJ(J+1)

12(1−ρ)
t2J(J+1)(J−1)

 (A.17)

Again, the formula of interest is in the lower right cell.
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Supplementary Tables

Table A.1: Spatial coordinates of the 16 segments in the model of the left ventricle[29].
They are denoted as their level (base, mid, apex), orientation (anterior, septal, inferior,
lateral), and index number.

Base, Ant. (1) (0,56 ) Mid, Ant. (7) (0,12 ) Apex, Ant. (13) (0,16 )
Base, Ant.Sep. (2) (−5

√
3

12 , 5
12 ) Mid, Ant.Sep. (8) (−

√
3

4 ,14 ) Apex, Sep. (14) (−16 ,0)
Base, Inf.Sep. (3) (−5

√
3

12 ,−512 ) Mid, Inf.Sep. (9) (−
√
3

4 ,−14 ) Apex, Inf. (15) (0,−16 )
Base, Inf. (4) (0,−56 ) Mid, Inf. (10) (0,−12 ) Apex, Lat. (16) (16 ,0)
Base, Inf.Lat. (5) (5

√
3

12 ,−512 ) Mid, Inf.Lat. (11) (
√
3
4 ,−14 )

Base, Ant.Lat (6) (5
√
3

12 , 5
12 ) Mid, Ant.Lat (12) (

√
3
4 ,14 )

Table A.2: Parameters used to produce high and low degrees of correlation in the parametric
correlation structures.

Correlation Type Correlation Function Low Correlation High Correlation
Spatial Exponential ρ = 0.3 ρ = 0.8

Spherical φ = 2.25 φ = 6
Matérn φ = 0.4, ν = 1 φ = 0.9, ν = 2

Temporal Compound Symmetry ρ = 0.4 ρ = 0.8
Autoregressive-1 ρ = 0.6 ρ = 0.9
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Supplementary Figures

Simulation Design

Figure A.1: Plot of the 16 segments of the left ventricle. The outer ring corresponds to
the base, the middle ring to the mid, and the inner circle to the apex[11, 29]. The numbers
correspond to the segment’s index as defined in Table A.1.
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Figure A.2: Plots of the covariance functions used to generate the spatiotemporal data.
The spatial structures (exponential, spherical, and Matérn) are on the left and the temporal
structures (compound symmetric and autoregressive-1) are on the right. The functions used
to generate data with a low degree of correlation are on the top, and those generating a high
degree are on the bottom.
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Results - Power Curves - No Missing Data

Figure A.3: Plot of the empirical power curves for the sixteen models under an exponential-
by-compound symmetric generating correlation structure where a Wald’s test was used for
inference about the treatment-by-time interaction. Results from the different combinations
of degrees of spatial and temporal correlation are given in the different panels. Note that
for a certain combination the spatial method is denoted by color and the temporal method
by line style.
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Figure A.4: Plot of the empirical power curves for the sixteen models under an exponential-
by-compound symmetric generating correlation structure where a corrected F-test was used
for inference about the treatment-by-time interaction. Results from the different combina-
tions of degrees of spatial and temporal correlation are given in the different panels. Note
that for a certain combination the spatial method is denoted by color and the temporal
method by line style.
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Figure A.5: Plot of the empirical power curves for the sixteen models under a spherical-
by-compound symmetric generating correlation structure where a Wald’s test was used for
inference about the treatment-by-time interaction. Results from the different combinations
of degrees of spatial and temporal correlation are given in the different panels. Note that
for a certain combination the spatial method is denoted by color and the temporal method
by line style.
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Figure A.6: Plot of the empirical power curves for the sixteen models under a spherical-by-
compound symmetric generating correlation structure where a corrected F-test was used for
inference about the treatment-by-time interaction. Results from the different combinations
of degrees of spatial and temporal correlation are given in the different panels. Note that
for a certain combination the spatial method is denoted by color and the temporal method
by line style.
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Figure A.7: Plot of the empirical power curves for the sixteen models under an exponential-
by-autoregressive-1 generating correlation structure where a Wald’s test was used for infer-
ence about the treatment-by-time interaction. Results from the different combinations of
degrees of spatial and temporal correlation are given in the different panels. Note that for
a certain combination the spatial method is denoted by color and the temporal method by
line style.
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Figure A.8: Plot of the empirical power curves for the sixteen models under an exponential-
by-autoregressive-1 generating correlation structure where a corrected F-test was used for
inference about the treatment-by-time interaction. Results from the different combinations
of degrees of spatial and temporal correlation are given in the different panels. Note that
for a certain combination the spatial method is denoted by color and the temporal method
by line style.

169



Figure A.9: Plot of the empirical power curves for the sixteen models under a spherical-by-
autoregressive-1 generating correlation structure where a Wald’s test was used for inference
about the treatment-by-time interaction. Results from the different combinations of degrees
of spatial and temporal correlation are given in the different panels. Note that for a certain
combination the spatial method is denoted by color and the temporal method by line style.
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Figure A.10: Plot of the empirical power curves for the sixteen models under a spherical-
by-autoregressive-1 generating correlation structure where a corrected F-test was used for
inference about the treatment-by-time interaction. Results from the different combinations
of degrees of spatial and temporal correlation are given in the different panels. Note that
for a certain combination the spatial method is denoted by color and the temporal method
by line style.
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Figure A.11: Plot of the empirical power curves for the sixteen models under a Matérn-by-
autoregressive-1 generating correlation structure where a Wald’s test was used for inference
about the treatment-by-time interaction. Results from the different combinations of degrees
of spatial and temporal correlation are given in the different panels. Note that for a certain
combination the spatial method is denoted by color and the temporal method by line style.
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Figure A.12: Plot of the empirical power curves for the sixteen models under a Matérn-
by-autoregressive-1 generating correlation structure where a corrected F-test was used for
inference about the treatment-by-time interaction. Results from the different combinations
of degrees of spatial and temporal correlation are given in the different panels. Note that
for a certain combination the spatial method is denoted by color and the temporal method
by line style.
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Results - Amount of Missingness

Figure A.13: Histograms of the percent of missing data for the three approaches to lon-
gitudinally missing data: a correlation model that uses all of a subject’s non-missing ob-
servations, endpoint analysis that only uses subjects with a first and last observation, and
slope and AUC analysis that use individual estimates as long as the subject has at least two
observations in time. The means of the three distributions are 8%, 10%, and 0.01%.
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Results - Power Curves - No Missing Data

Figure A.14: Plot of the empirical power curves for the twelve models under an
exponential-by-compound symmetric generating correlation structure with longitudinally
missing data where a Wald’s test was used for inference about the treatment-by-time inter-
action. Results from the different combinations of degrees of spatial and temporal correla-
tion are given in the different panels. Note that for a certain combination the spatial method
is denoted by color and the temporal method by line style.

175



Figure A.15: Plot of the empirical power curves for the twelve models under an
exponential-by-compound symmetric generating correlation structure with longitudinally
missing data where a corrected F-test was used for inference about the treatment-by-time
interaction. Results from the different combinations of degrees of spatial and temporal cor-
relation are given in the different panels. Note that for a certain combination the spatial
method is denoted by color and the temporal method by line style.
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Figure A.16: Plot of the empirical power curves for the twelve models under a spherical-
by-compound symmetric generating correlation structure with longitudinally missing data
where a Wald’s test was used for inference about the treatment-by-time interaction. Results
from the different combinations of degrees of spatial and temporal correlation are given in
the different panels. Note that for a certain combination the spatial method is denoted by
color and the temporal method by line style.
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Figure A.17: Plot of the empirical power curves for the twelve models under a spherical-
by-compound symmetric generating correlation structure with longitudinally missing data
where a corrected F-test was used for inference about the treatment-by-time interaction.
Results from the different combinations of degrees of spatial and temporal correlation are
given in the different panels. Note that for a certain combination the spatial method is
denoted by color and the temporal method by line style.
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Figure A.18: Plot of the empirical power curves for the twelve models under an
exponential-by-autoregressive-1 generating correlation structure with longitudinally miss-
ing data where a Wald’s test was used for inference about the treatment-by-time interaction.
Results from the different combinations of degrees of spatial and temporal correlation are
given in the different panels. Note that for a certain combination the spatial method is
denoted by color and the temporal method by line style.
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Figure A.19: Plot of the empirical power curves for the twelve models under an
exponential-by-autoregressive-1 generating correlation structure with longitudinally miss-
ing data where a corrected F-test was used for inference about the treatment-by-time inter-
action. Results from the different combinations of degrees of spatial and temporal correla-
tion are given in the different panels. Note that for a certain combination the spatial method
is denoted by color and the temporal method by line style.
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Figure A.20: Plot of the empirical power curves for the twelve models under a spherical-
by-autoregressive-1 generating correlation structure with longitudinally missing data where
a Wald’s test was used for inference about the treatment-by-time interaction. Results from
the different combinations of degrees of spatial and temporal correlation are given in the
different panels. Note that for a certain combination the spatial method is denoted by color
and the temporal method by line style.
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Figure A.21: Plot of the empirical power curves for the twelve models under a spherical-
by-autoregressive-1 generating correlation structure with longitudinally missing data where
a corrected F-test was used for inference about the treatment-by-time interaction. Results
from the different combinations of degrees of spatial and temporal correlation are given in
the different panels. Note that for a certain combination the spatial method is denoted by
color and the temporal method by line style.
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Figure A.22: Plot of the empirical power curves for the twelve models under a Matérn-by-
autoregressive-1 generating correlation structure with longitudinally missing data where a
Wald’s test was used for inference about the treatment-by-time interaction. Results from
the different combinations of degrees of spatial and temporal correlation are given in the
different panels. Note that for a certain combination the spatial method is denoted by color
and the temporal method by line style.

183



Figure A.23: Plot of the empirical power curves for the twelve models under a Matérn-by-
autoregressive-1 generating correlation structure with longitudinally missing data where a
corrected F-test was used for inference about the treatment-by-time interaction. Results
from the different combinations of degrees of spatial and temporal correlation are given in
the different panels. Note that for a certain combination the spatial method is denoted by
color and the temporal method by line style.
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ABSTRACT

Longitudinal imaging studies have both spatial and temporal correlation among the

multiple outcome measurements from a subject. Statistical methods of analysis must prop-

erly account for this autocorrelation. In this work we discuss how a linear model with a

separable parametric correlation structure could be used to analyze data from such a study.

The goal of this paper is to provide an easily understood description of how such a model

works and discuss how it can be applied to real data. Model assumptions are discussed

and the process of selecting a working correlation structure is thoroughly discussed. The

steps necessitating collaboration between statistical and scientific investigators have been

highlighted, as have considerations for missing data or uneven follow-up.

The results from a completed longitudinal imaging study were considered for il-

lustration purposes. The data comes from a clinical trial for medical therapy for patients

with mitral regurgitation, with repeated measurements taken at sixteen locations from the

left ventricle to measure disease progression. The spatiotemporal correlation model was

compared to previously used summary measures to demonstrate improved power as well

as increased flexibility in the use of time- and space-varying predictors.

INTRODUCTION

Imaging studies have grown in popularity in recent years as clinical investigators

are making use of the ability of imaging modalities to accurately measure outcomes within

the body. These modalities allow quantification of internal anatomical or physiological

properties that would have previously required invasive surgery or autopsy, which provides

investigators with new understanding of how the body works. It thus makes perfect sense
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for imaging studies to be joined with longitudinal studies, which allow for observation of

how an outcome changes over time.

Although these longitudinal imaging studies offer wonderful knowledge of how

the inside of the body changes over time, there are challenges in the statistical analysis

of such datasets. The repeated measures of an individual introduces temporal correlation

between observations that must be controlled for. In addition, imaging studies frequently

take multiple outcome measures from a single image (for instance, functional MRI scans

may measure oxygen consumption at thousands of points throughout the brain) which are

spatially correlated.

In order to control for these two sources of correlation, we have proposed the use

of a linear model with a separable parametric spatiotemporal correlation structure[1]. We

have shown that information criteria are highly accurate at choosing an appropriate combi-

nation of spatial and temporal correlation functions that conserve the Type I error rate and

maximize statistical power[1]. We have also demonstrated that such a model is better at

conserving the Type I error rate and has higher power compared to certain summary meth-

ods (i.e. regional averages, endpoint and slope analysis) which have previously been used

to analyze longitudinal imaging studies[2, 3, 4].

The goal of this paper is to demonstrate how such a model would be applied to real-

world longitudinal imaging data. The demonstration includes how a separable correlation

structure can be chosen and evaluated, what kinds of inferences can be made using this

model, and how the ever-present concern of missing data can be addressed.

The data used in this example analysis was first reported in the paper by Ahmed et

al. (2012) [3]. This study was a randomized controlled phase IIb trial for the use of Toprol,

a beta-blocker, in the treatment of patients with chronic degenerative mitral regurgitation.

This approach of beta-blockers is done due to evidence of an elevated adrenergic response

in MR patients[5] and how hyperactivation of the β-adrenergic pathway leads to a decrease
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in viability in myocardial cells[6], possibly via oxidative stress[7]. Supported by promising

results in canine models[8], the intent was that treatment with β-blockers would prevent the

stress and subsequent decompensation typically seen in MR patients.

Our example will consider the radius of curvature-to-wall thickness ratio (R/T ratio)

as an outcome measured repeatedly at multiple spatial locations. The R/T ratio is meant to

be a measure of the sphericity of the left ventricle, which is relevant to mitral regurgitation

as part of the natural progression of the disease is the left ventricle becoming more spherical

rather than the healthy ‘bullet’ shape. The R/T ratio had been previously considered but

only at the level of a global average or level-based averaged analyzed separately[4], while

this paper considers it for multiple segments with spatial correlation explicitly modeled.

Thus, we shall consider whether the treatment has an effect on the R/T ratio over time,

such that a clinically important finding would be that it significantly reduces the increase

in sphericity over time relative to placebo.

STATISTICAL MODEL

In order to analyze the longitudinal imaging data, we look to use a linear model with

a separable parametric correlation structure. The theoretical and technical details have been

described in our previous work[1, 2], but it is worth breaking down the different parts of

the model. The base is a linear model, where the mean response is a sum of predictor

variables and their estimated coefficients (such as the commonly used simple linear and

logistic regression models). This structure allows for the use of subject-specific predictors

(i.e age, sex, race), time-varying predictors (i.e. systolic blood pressure at each visit),

space-varying predictors (such as what part of the heart an outcome is from), and linear (or

higher order) trends over time or space. We assume a multivariate normal distribution with

constant variance for a subject’s responses.

The other parts refer to how the spatial and temporal correlation is modeled. Unlike
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simple linear regression, where all of the observations are independent and uncorrelated,

our model directly quantifies the correlation between the outcome measurements. The

separable nature of the correlation structure means that the spatial and temporal correlation

can be handled separately so that how correlation changes over space does not influence

how it changes over time. The assumption of separability not only makes interpretation

easy but it makes the math simpler as well: the correlation between two observations is the

product of their spatial and temporal correlations.

Parametric refers to how the correlation over space or time is modeled as a para-

metric function. For example, an exponential or autoregressive-1 function implies that the

correlation decreases exponentially at a constant rate over space or time, respectively. The

benefit of parametric functions is that they allow for the modeling of correlation between a

large number of observations while only estimating a small number of parameters. This is

in contrast to an unstructured correlation model which has no functional form and increases

with the square of the number of locations; 16 spatial locations results in an unstructured

matrix requiring the estimation of 120 parameters which may be inefficient (if not impos-

sible) for an imaging study where the number of subjects is often limited. If the number

of repeated measures is small, such as for a limited number of follow-up visits, then the

unstructured correlation model may be viable.

Estimation of our model is best done using restricted maximum likelihood estima-

tion (REML), as discussed previously[1]. Unfortunately, the estimation of a linear model

with the kind of separable parametric correlation structure we proposed is not currently

supported by common statistical software such as SAS (v9.4)[9] or R (lme4 package v1.1-

7)[10]. Therefore the estimation would need to be done by hand-coding an estimation

algorithm or by utilizing specialized commercial statistical software such as ASReml[11].

One challenge in implementing this model is the selection of parametric functions

for the correlation structure. In some ways this can be seen as needing to be done twice
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since a spatial function and a temporal function must be chosen, but it is best to examine

many potential combinations concurrently. In practice, it may be necessary to fit a large

number of combinations to be comfortable that one models the correlation well. Numerous

resources exist that define spatial[12] and temporal[13, 14, 15] correlation functions. It

is often but not always the case that functions with a larger number of parameters offer

a better fit to the observed correlation. In general, one wishes to balance the number of

parameters in the correlation structure with the goodness-of-fit of the model. To this end,

we found that, in the scenarios we considered, information criteria were highly (over 90%

in some cases) accurate at choosing the true correlation structure, and that at the least they

reliably choose a structure that will conserve the Type I error rate and maximize power

when given a sufficient number of structures to choose from[1]. Information criteria are

simple to use, as each structure is given a score and the one with the smallest score is the

‘best’ model. Although there are a large number of information criteria that one could use,

the most popular two (AIC and BIC) appear in most statistical programs; note that of the

two the BIC may be much more accurate at correlation structure selection than the AIC[1].

CLINICAL TRIAL DESIGN AND DATA STRUCTURE

The data used in this paper comes from the UAB SCCOR (Specialized Centers of

Clinically Oriented Research) study, specifically Project 1-Aim 1. In order for MR patients

to be eligible they had to have moderate to severe mitral regurgitation characterized by

mitral valve prolapse and thickening of its leaflets (assessed by an echocardiograph), left

ventricular end-systolic dimension under 40mm, and left ventricular ejection fraction over

55%. Exclusion criteria included heart failure, prior myocardial infarction, coronary artery

disease, kidney failure (assessed via creatinine levels), hypertension, and other valvular

disorders. In other words, the patient cohort had normal cardiovascular health with the

exception of having advanced mitral regurgitation. Patient allocation began with 19 in the

treatment group and 19 in the placebo group. The baseline characteristics of the cohort
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are detailed in Ahmed et al. (2012) where the study was first reported, but a brief version

is that the two treatment groups were balanced in size and did not significantly differ in

demographics (age, sex, race) or baseline MRI-derived outcomes (end-diastolic volume,

ejection fraction, peak early filling rate) and physical exam findings (blood pressure, pulse,

New York Heart Association class).

After randomization, patients were dosed daily with either Toprol XL (a β1-adrenergic

receptor blocker) or placebo and followed for two years. Per protocol, cardiac MRI scans

were taken at baseline and every six months after, giving cardiac imaging data for five

discrete time points. The 3D MRI scans gave information regarding the geometry and

structure of the myocardium, and employed tissue tagging and harmonic phase analysis

to quantify functional parameters such as wall stress and maximal strain. The image was

then mapped to the standard 17-segment AHA model[16], where structural and functional

outcomes were taken by averaging over each segment. Segment 17 at the tip of the apex

was excluded, giving us outcomes measured at 16 spatial locations from a given imaging

session. The 16 segment model was fit to a unit circle with the intersegment distances being

the Euclidian distance between the centroids of each segment, shown in Figure 1 and quan-

tified in Table 1. The figure also denotes the levels and which coronary arteries feed each

segment. Considering both spatial and temporal points, in the complete case each subject

had 80 observations (16 spatial observations at each of 5 time points). The mean R/T ratio

for each group at each segment and time point is given in Figure 2; note that this figure is

meant to be descriptive of the time courses for each segment and that the error bars should

not be used for inference as doing 80 simultaneous correlated tests without correction is

statistically unsound.

In this analysis, we initially considered the 38 randomized subjects who had lon-

gitudinal imaging data: 29 subjects had complete data with the other 9 subjects having

missed one or more follow-up visits (3 on Toprol, 2 on placebo) or attended but were miss-
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ing some MRI data (2 Toprol, 2 placebo). A total of 9 follow-up visits were missed for a

loss-to-follow-up rate of 5%. In addition, 8 subjects (6 placebo, 2 Toprol) had their mitral

regurgitation progress far enough during the study to make surgical intervention necessary;

two of the placebo group underwent surgery immediately following randomization but had

all five visits recorded as part of a separate arm of the SCCOR study. The initial analysis

was performed using an intent-to-treat design that included all of the observations from sub-

jects undergoing surgery (including the two who had immediate surgery), but a secondary

sensitivity analysis was performed with those subjects’ post-surgery observations excluded

from the analysis as the patients were removed from Toprol or placebo after surgery. Along

the lines of intent-to-treat, the planned visit times were used in the analysis as the time for

the subjects’ visits.

STATISTICAL ANALYSIS

One possible measure of the left ventricular remodeling and associated increase in

sphericity is the radius of curvature-to-wall thickness (R/T) ratio. Previous work has shown

that in healthy mammalian hearts, the R/T ratio is approximately constant from the base to

the apex of the left ventricle[18]. Thus, the R/T ratio may be a better indicator of departure

from the normal ventricular structure as it does not vary between segments to the extent of

wall thickness or radius of curvature alone.

Linear Model with a Separable Parametric Correlation Structure

In order to compare statistical methodologies, we analyzed the SCCOR data with

our proposed model as well as with a battery of summary measures. Our linear model has

the form

Yi = Xiβ + εi (1)

where Xiβ are predictor variables and their associated parameters and Yi are the observed
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end-diastolic R/T ratios for subject i. In our application, we are looking to fit the model

Xiβ = β0 + β1Sexi + β2Groupi + β3Timeij + (β4Midk + β5Apexk)

+ (β6RCAk + β7LCXk) + β8TimeijSexi + β9Timeij ∗Groupi

+ (β10Timeij ∗Midk + β11Timeij ∗ Apexk)

+ (β12Timeij ∗RCAk + β13Timeij ∗ LCXk) (2)

where Timeij was the time of subject i’s jth observation; Sexi was an indicator variable

for whether the subject was male(=1) or female (=0); Groupi was an indicator variable for

the treatment group for subject i, be it placebo (=0) or beta-blocker (=1); Midk and Apexk

were indicator variables for whether the ijkth observation was from the mid or apex of the

left ventricle, respectively, with the base as the reference group; RCAk and LCXk were

indicator variables for whether the ijkth observation was from the a segment supplied by

the right coronary artery (RCA) or the left circumflex(LCX), respectively, with the left an-

terior descending (LAD) as the reference group. Note that the coronary artery designation

should not be interpreted as cardiac perfusion necessarily being related to ventricular re-

modeling in mitral regurgitation patients; we simply use it as a convenient way to spatially

subdivide the left ventricle circumferentially as the six segments in the base and mid do

not neatly subdivide into non-overlapping anterior/inferior and lateral/septal groups. Thus,

dividing the segments into three circumferential regions allows us to test differences be-

tween the sides, as the radius and wall thickness are known to vary circumferentially. The

parentheses denote terms corresponding to the level of the left ventricle or the side of the

heart, such that inferences made about the terms inside are done together in a two degree

of freedom test. A quadratic time effect was considered but dropped as it was not found to

be significant.

Our model also assumes that εi follows a multivariate normal distribution with

mean zero and a separable parametric correlation structure. For the correlation structure,
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we considered all twelve combinations of three spatial correlation functions (exponential,

spherical, and Matérn) crossed with four temporal correlation functions (compound sym-

metric[CS], autoregressive-1[AR-1], Toeplitz, and unstructured[UN]). We chose a working

correlation structure via BIC with a sample size adjustment of the total number of subjects

in the dataset, which we found to be reliably accurate at choosing the true correlation

structure[1]. To confirm our choice, we also plotted the estimated spatial and temporal

correlation functions versus the observed correlation between pairs of observations. To

calculate the 120 unstructured spatial correlation parameters, we fit the model on pairs of

segments from all subjects at all observed time points with an unstructured temporal corre-

lation model.

Although the correlation structure is very important, the assumption of normality is

also essential to check. Despite the correlation, when looked at individually the residuals

in our model are assumed to have a normal distribution with mean 0 and variance σ2.

Unfortunately, initial diagnostics suggest that the end-diastolic R/T ratio does not follow a

normal distribution and is in fact skewed (Figure 3). The histogram suggests that the R/T

ratio is skewed upwards, a common concern in ratios when the denominator gets small but

appeared to be corrected by a log transform. The lack of normality is easily seen in the QQ

plot of the R/T ratio, which has a distinct curved pattern that does not follow along the line.

The QQ plot also implies that the log transform ‘fixed’ the skewness, as it closely follows

a straight line indicating a normal distribution is a good fit.

The linear models were fit using the ASReml-R package (v. 3.0, VSN International,

Hemel Hempstead, UK)[11]. The model with the chosen covariance structure then had its

fixed effects tested with a conditional F-test with a Kenward-Roger adjustment for the de-

nominator degrees of freedom at an α-level of 0.05[19]. The corrected F-test is generally

considered to be better to use than a simple Wald’s test when there are correlation pa-

rameters in the model and the sample size is small; this assertion supported by simulation
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studies which found the corrected F-test to conserve the Type I error rate better without

a meaningful loss in power for sample sizes comparable to typical longitudinal imaging

studies[2].

Summary Methods

We also implemented various summary measures in space and time in order to

demonstrate the benefits of our model compared to previous methods for analyzing longi-

tudinal imaging data. The spatial summary measures considered included a global average

of all 16 segments and averages with the levels (base, mid, and apex) analyzed jointly re-

sulting in one and three spatial observations per subject per time, respectively. The temporal

summary measures used were slope and endpoint analysis. Endpoint analysis considered

the change between the baseline and two-year observations, and was coded as missing if ei-

ther of those two observations were missing. Slope analysis considered the slope estimated

via simple linear regression on the relevant spatial unit (segment, level, or ventricle) and

was only missing if the subject had only one visit. Note that when the temporal summary

measures were used, the fixed effects relate whether a predictor (such as treatment group)

affects the overall change over time or estimated slope in endpoint and slope analysis, re-

spectively. All combinations of these summary measures along with the direct modeling of

spatial and temporal correlation led to a total of nine models to compare. When one of the

models needed a parametric correlation function chosen, the BIC was used. Convergence

of the model estimation was only an issue for the level averages as the inter-level correla-

tions were near 1; these problems were overcome by setting initial values of the correlation

parameters to be the Pearson correlation estimates between levels.

The fixed effects used in the nine models are detailed in Table 2, and were chosen

for uniformity in what the models controlled for. All of the models allowed for the use

of subject-level predictors such as the treatment group and the subject’s sex. Sex was

chosen as it may relate to the geometry of the heart through a subject’s size or shape. The
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summary measures may restrict the use of other predictors, however. The level averages

prevent the use of space-varying covariates besides those identifiable at the subject level; in

our example the side of the heart cannot be modeled when the level averages are used. The

temporal summary methods similarly prevent the use of time-varying covariates or even the

use of the subject’s exact visit time as a predictor. The exact times of observation are used

in the calculation of each subject’s slope in slope analysis, a summary measure previously

found to be highly competitive with the temporal correlation model when the data is truly

linear[2], but not in endpoint analysis.

RESULTS

Linear Model with a Separable Parametric Spatiotemporal Covariance Structure

Let us first focus on the application of our previously proposed spatiotemporal

model. The first step when using it is to choose appropriate spatial and temporal corre-

lation functions. Using the BIC to pick a model, we found that a Matérn-by-unstructured

correlation model provided the ‘best’ balance of goodness-of-fit and simplicity for the ob-

served data (Table 3). This was the most complex correlation structure we considered, so

it warranted investigation of how well the model truly fit the data.

Figure 4 shows the estimated correlation functions along with the unstructured cor-

relation estimates between time points and segments. The unstructured temporal correla-

tion provides the best possible fit, and we can see that the simpler parametric functions do

not necessarily fit the observed correlation very well. We observed that the unstructured

spatial correlation seemed to have a random scatter when plotted versus the distance be-

tween segments, which would make parametric modeling extremely difficult. However, of

the three functions considered it did seem that Matérn gave the best fit, as the others more

severely underestimated the true correlation between far apart segments. For completeness,

a compound symmetric model was tried but its associated BIC (-9313.348) was not supe-
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rior to a Matérn function, suggesting there is indeed a slight downward trend of correlation

over distance. Note that this approach of graphically examining the fits of the estimated

correlation functions can also be highly useful when multiple information criteria provide

conflicting answers for which model is ‘best.’

After the correlation structure has been chosen and the assumption of normality has

been checked, the next step is to review the estimates and inferences about the predictors

in the model. The estimates of the parameters given in Equation 2 are given in Table 4

along with their associated test statistics and p-values. As mentioned, we used a F-test

with a Kenward-Roger correction for the denominator degrees of freedom; the effect of the

correction can be seen in the reported test statistics as the denominators are not integers.

We have seen in previous work that the corrected F-test is more reliable at conserving the

Type I error rate than the simpler Wald’s test when analyzing highly correlated data such

as in longitudinal imaging studies[2].

The parameter of interest, the treatment-by-time interaction β9, was not signifi-

cantly different from zero (p=0.2073). The linear trend over time was also not significant

(p=0.1365) which suggests that the R/T ratio is simply not changing very much over the

twenty four months of observation. The effect of sex was strongly significant (p< 0.0001),

with men having slightly smaller R/T ratios than women; this is likely due to men being

larger and having larger hearts such that the larger wall thickness overrides the larger radius

of curvature. The level of the left ventricle was also highly significant (p< 0.0001) with

the R/T ratio increasing from the base down to the apex. We expected to see this trend

as it matches what is seen in the natural progression of left ventricular remodeling due to

mitral regurgitation. The side of the left ventricle was also significantly associated with

the R/T ratio (p< 0.0001) such that the lateral side (LCX) had the highest ratio, followed

by the anterior/septal side (LAD), with the smallest R/T ratio on the inferior/septal side

(RCA) It is possible that this trend is due to the balancing forces from other chambers of
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the heart, especially the right ventricle opposite the septum, that are lacking in the lateral

side which only has the pericardium restraining the myocardium. Although the pericardium

is not elastic and typically acts to prevent ballooning of the left ventricle, it can weaken and

stretch over time with chronic pressure from an overloaded left ventricle. However, there is

a natural difference in the R/T ratio between the septal and lateral ventricular walls seen in

healthy patients that may be the source of this statistically significant difference. Assuming

the R/T ratio is a valid measure of sphericity, this may suggest that the highest sphericity

in mitral regurgitation patients is in their left ventricles’ lateral and apical region. These

results can be seen in Figure 2.

The sensitivity of the intent-to-treat analysis strategy was considered by a secondary

analysis where all observations taken after surgery were excluded from the dataset. Eight

subjects had surgery, two from the medical therapy group and six from the placebo group.

Two subjects from the placebo group had surgery after randomization but before the base-

line MRI scan. The results of the analysis did not noticeably change, as the BIC still chose a

Matérn-by-unstructured model (Table 3) and none of the inferences changed at a α = 0.05

level (Table 4). The estimates themselves changed slightly, suggesting that surgery may

not be independent of the R/T ratio.

Summary Methods

Now that we have considered the results of applying our proposed model to the

UAB SCCOR data, it is of interest to compare it to the results from summary methods

commonly used in longitudinal imaging data analysis. For the sake of brevity, we shall

only consider inference upon the effect of medical therapy on the time course of the end-

diastolic R/T ratio, log-transformed to correct for skewness. The test statistics for the

corrected F-test and associated p-values for the nine models are given in Table 5 along with

what correlation structure was chosen (if applicable) via BIC to fit the data.
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The first thing to note is that our model that used a spatiotemporal correlation struc-

ture had the second smallest p-value and test statistic, passed only by slope analysis using

all 16 segments, although as mentioned before it was not significant at a α-level of 0.05.

We can also note that the denominator degrees of freedom are the largest for our model, and

much smaller for the summary methods. In every case the corrected degrees of freedom are

smaller than the number of observations used in the analysis, although the difference varies

with the summary measure used. The spatial summary measures only slightly reduced

the degrees of freedom despite a large reduction in the number of observations, while the

temporal summary measures reduced the degrees of freedom to around the number of inde-

pendent subjects. This reduction in the degrees of freedom is expected in a Kenward-Roger

adjustment, and reflects how the information is condensed and possibly lost. It may also

reflect how despite summary measures simplifying the dimension of correlation among the

observations, they may increase the correlation between the remaining measures. For ex-

ample, the correlations between the level averages were around 0.9, which suggests that the

information from those three observations is far less than three independent observations

and closer to a single observation.

Comparing the different methods, it seems that the use of spatial correlation esti-

mated a larger treatment-by-time effect than spatial summary measures, despite the target

of inference not having a spatial component. On the temporal side, slope analysis estimated

a larger treatment effect than a temporal correlation model resulting in a smaller p-value,

though the two models are fairly similar which is not surprising based on the results of

simulation studies[2] and how both models assume a linear time course. There are many

possible reasons the endpoint analysis lagged behind slightly: endpoint analysis induces

more missing observations, it uses fewer temporal observations than slope analysis and

may have a higher variance[2], and it measures changes over time in a slightly different

way. Regardless of the reason, it seems that a temporal correlation model or slope analysis

are preferable for longitudinal data when a linear time course is assumed. Endpoint anal-
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ysis needs a valid scientific reason to be preferable to the other methods, such as a time

course that is known to be non-linear but a total change over time is of interest.

The results of the summary method comparison were slightly different when the

post-surgery observations were excluded, as seen in Table 6. As mentioned above, there

were four from the placebo group and two from the treatment group who underwent surgery

before the end of the two-year follow-up. The spatial comparison did not change, as the

use of a spatial correlation model still provided greater estimates and smaller p-values than

spatial summary measures. The temporal methods changed, as they were not equally af-

fected by the loss of data. The temporal correlation approach lost the relevant observations

but still retained the six subjects’ pre-surgery data. The nature of the cutoff meant that end-

point analysis had to count the eight as missing, dropping the number of included subjects

from 36 to a mere 28. On the other hand, slope analysis was mostly unimpeded by the

exclusion as it lost only the subjects who had only post-surgery observations, although the

slopes from the other six subjects certainly changed.

Of the nine methods, all still had p-values greater than 0.05. The temporal correla-

tion model had slightly smaller estimates and only a small loss in the denominator degrees

of freedom. Slope analysis had much larger estimates and essentially the same degrees of

freedom, resulting in smaller p-values. However, endpoint analysis had much smaller esti-

mates and noticeably reduced degrees of freedom which led to much larger p-values. Some

of these changes could be due to how the methods handle missing data, but there is also

the concern regarding this type of missingness. Since the excluded observations are from

subjects who underwent valve repair surgery and surgery is only done on patients whose

mitral regurgitation has progressed far enough, then any measure of disease progression

(such as the R/T ratio) could not be missing completely at random if post-surgery observa-

tions are excluded. The missingness also did not affect the two groups equally; six versus

two may seem trivial, but when the original group sizes were nineteen and the missingness
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is not completely at random it is plausible that it could affect inference to the extent we

have observed.

It should also be noted that although in this study the qualitative results (all p >

0.05) did not change between the methods, the numbers themselves did. It would certainly

be possible for significance to change between the methods when they are applied to a

different dataset. As always, scientific justification should be used to choose a method

instead of ‘cherry picking’ the one that gives the most favorable p-value.

DISCUSSION

In this paper we have described how a linear model with a separable parametric

correlation structure could be used in practice, and have illustrated the method using data

from a longitudinal imaging study. Only general guidelines can be given, as each appli-

cation has its own nuances. A general strategy for implementing our proposed model on

spatiotemporal data could be considered as such:

1. Decide on all of the predictors in the analysis that would be of interest to scientific

investigators.

2. Decide on a number of spatial and temporal correlation functions to try to fit to the

data. Functions with different properties should be considered, such as different

shapes and a mixture of simpler functions and more complex functions which may

have greater flexibility. This step should also be a collaboration between statistician

and investigator, as the functions should be able to model the correlation behavior

expected by prior scientific knowledge.

3. Fit linear models with all of those predictors included in the fixed effects for a wide

variety of combinations of spatial and temporal correlation functions. If the number

of combinations considered is too small, it is possible that none of them will model

the correlation sufficiently well.
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4. Choose between models using information criteria. One should also compare the

estimated correlation to the observed correlation; graphical methods are highly useful

to assess goodness-of-fit. If none of the fitted structures seem appropriate, additional

approaches to modeling the covariance should be considered.

5. Perform inferences upon the fixed effects using the model with the chosen correlation

structure.

6. If some predictors are not significant, a more parsimonious model can be obtained

with backwards selection. Note that the above steps for choosing a correlation struc-

ture must be repeated for each new set of fixed effects.

The greatest challenge to this approach is finding a correlation structure that fits

the data well. There has been an immense amount of work done to define valid para-

metric correlation functions (too many to list exhaustively here) so one option would be

to simply try more structures, such as the flexible linear exponent autoregressive (LEAR)

function[20]. This may require statistical programming to augment or develop the model

estimation software if the desired functions are not already supported. Another point that

should be considered is the assumption of separability; if there is an interaction between

spatial and temporal correlation then no pairing of separate functions will properly model

the true correlation. Much work has been done to test this assumption of separability, but a

good starting point would be recent likelihood ratio test proposed by Simpson et al. that was

designed with longitudinal imaging studies in mind[21]. More statistical research needs to

be done to determine how sensitive a model like ours is to violations of separability and

what nonseparable methods are appropriate to use in our given application. The assump-

tion of multivariate normality is also highly important and should be checked; deviations

can possibly be helped by a transformation to the outcome values.

One option would be to consider summary methods, but as we have seen they can

produce mixed results. We have seen that spatial summary methods may be a poor choice in
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practice even if the predictor of interest is not space-varying. Previous work has shown that

the common practice of analyzing multiple spatial summary measures separately has very

poor statistical properties and should be avoided[2]. It should be noted that the AHA’s

model is a case of a spatial summary measure, where the thousands of voxels from a

three-dimensional image are mapped to the 16 segments of the heart[16]. One justifica-

tion for this approach is that many of the functional and geometric outcomes (such as wall

thickness) are not voxel-specific and in fact require several voxels to calculate; since some

aggregation is required, it is reasonable to aggregate them to a manageable number of sub-

regions while still maintaining lateral and circumferential resolution of the ventricle. Some

outcomes, such as perfusion and oxygen consumption in fMRI studies, do have voxel-level

outcomes which allows for greater complexity in the analysis of the imaging data. It is

up to the statistician and scientist to jointly decide whether the voxel-level data should be

used in these studies, or if the loss of resolution is worth the gain in interpretability by

summarizing over cerebral structures while still controlling for spatial correlation.

Temporal summation may be valid when a change over time is of interest, but it

is unknown how they fare when drawing inference about other types of predictors. Slope

analysis may provide good power for testing changes over time and can be resistant to

uneven follow-up times or data missing completely at random. However, it assumes a

linear time course and precludes the use of time-varying covariates and the ability to test

for anything not related to a linear interaction with time. Endpoint analysis is worse, as

it is extremely sensitive to missing data or uneven follow-up times along with the same

limitations on predictors as slope analysis. In general, it should only be used when a total

change over time is of interest and the time course is non-linear.

Another issue to consider when doing the analysis is how to handle the imperfec-

tions of real data. Missing values can be handled reasonably well by using a submatrix

of the full correlation structure that pertains to each subject’s observed outcomes. Uneven
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follow-up times are more difficult, as they preclude the use of many temporal correlation

functions that assume there are a finite number of evenly spaced observations. One option

(which we have used in this paper) is to use the planned observation times; this allows

the use of an unstructured temporal correlation model which is desirable but does involve

ignoring information that was collected. One possibility would be to utilize correlation

functions that were traditionally considered to be spatial, using the true observation time

as the distance, but such an approach needs statistical validation before it can be recom-

mended.
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Table 1: Spatial coordinates of the 16 segments in the model of the left ventricle[17]. They
are denoted as their level (base, mid, apex), orientation (anterior, septal, inferior, lateral),
and index number.

Base, Ant. (1) (0,5
6 ) Mid, Ant. (7) (0,1

2 ) Apex, Ant. (13) (0,1
6 )

Base, Ant.Sep. (2) (−5
√

3
12 , 5

12 ) Mid, Ant.Sep. (8) (−
√

3
4 ,1

4 ) Apex, Sep. (14) (−1
6 ,0)

Base, Inf.Sep. (3) (−5
√

3
12 ,−5

12 ) Mid, Inf.Sep. (9) (−
√

3
4 ,−1

4 ) Apex, Inf. (15) (0,−1
6 )

Base, Inf. (4) (0,−5
6 ) Mid, Inf. (10) (0,−1

2 ) Apex, Lat. (16) (1
6 ,0)

Base, Inf.Lat. (5) (5
√

3
12 ,−5

12 ) Mid, Inf.Lat. (11) (
√

3
4 ,−1

4 )
Base, Ant.Lat (6) (5

√
3

12 , 5
12 ) Mid, Ant.Lat (12) (

√
3

4 ,1
4 )
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Table 2: Nine linear models made from combinations of spatial and temporal methods,
the form of their fitted predictors, and what predictor is the focus of hypothesis testing for
whether the treatment (Trti) changes the time-course of disease progression.

Spatial Temporal Fitted Model Tested
Method Method Predictor

Correlation
Correlation

E[Yijk] ∼ 1 + Sexi + T imeij + Trti + Midk + Apexk

T imeijTrti+RCAk + LCXk + T imeijSexi + T imeijTrti
+T imeij(Midk + Apexk) + T imeij(RCAk + LCXk)

Endpoint E[Yik] ∼ 1 + Sexi + Trti + Midk + Apexk + RCAk + LCXk Trti
Slope E[Yik] ∼ 1 + Sexi + Trti + Midk + Apexk + RCAk + LCXk Trti

Level Correlation E[Yijm] ∼ 1 + Sexi + Trti + T imeij + Midm + Apexm T imeijTrtiAverage, +TimeijSexi + T imeijTrti + T imeij(Midm + Apexm)
Together Endpoint E[Yim] ∼ 1 + Sexi + Trti + Midm + Apexm Trti

Slope E[Yim] ∼ 1 + Sexi + Trti + Midm + Apexm Trti
Global Correlation E[Yij ] ∼ 1 + Sexi + Trti + T imeij + T imeijTrti + T imeijSexi T imeijTrti

Average Endpoint E[Yi] ∼ 1 + Sexi + Trti Trti
Slope E[Yi] ∼ 1 + Sexi + Trti Trti
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Table 3: Table of the BIC for each of the twelve fitted correlation structures, for the datasets
with all observations or with the follow-up visits post-surgery excluded from the model.
The smallest value in each column is the chosen model for that given criterion and is de-
noted in bold.

Correlation Length BIC
Structure of θ All Data Post-Surgery Excluded
EXP⊗CS 3 -9433.689 -7966.974
SPH⊗CS 3 -9234.837 -7799.790
MAT⊗CS 4 -9505.525 -8027.130

EXP⊗AR-1 3 -9249.962 -7837.511
SPH⊗AR-1 3 -9062.495 -7681.949
MAT⊗AR-1 4 -9305.186 -7880.888
EXP⊗TOE 6 -9467.324 -7994.755
SPH⊗TOE 6 -9269.310 -7828.571
MAT⊗TOE 7 -9537.101 -8052.622
EXP⊗UN 12 -9480.570 -8013.066
SPH⊗UN 12 -9285.138 -7850.161
MAT⊗UN 13 -9544.087 -8063.303
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Table 4: The parameter estimates and associated statistical inference for each of the pre-
dictors in the model for the natural log of the R/T ratio with a Matérn-by-unstructured
correlation matrix, both with and without post-surgery observations.

All Data Post-Surgery Excluded
Parameter Parameter

Predictor Estimate F p-Value Estimate F p-Value
Intercept 1.44647 F1,162 = 4864.00 < 0.0001 1.41065 F1,145.6 = 4697.00 < 0.0001
Sex (Male) -0.18809 F1,162 = 22.30 < 0.0001 -0.16339 F1,145.8 = 16.22 < 0.0001
Time -0.00313 F1,159.9 = 2.24 0.1365 -0.00225 F1,139.7 = 0.11 0.7400
Treatment 0.01022 F1,162 = 0.92 0.3398 0.03049 F1,145.9 = 1.81 0.1786
Mid 0.15700 F2,532.5 = 152.50 < 0.0001 0.15847 F2,498 = 152.90 < 0.0001
Apex 0.20666 0.21457
RCA -0.06461 F2,566.6 = 56.62 < 0.0001 -0.06755 F2,529.5 = 55.21 < 0.0001
LCX 0.07954 0.08349
Sex*Time 0.00182 F1,159.9 = 1.12 0.2917 0.00162 F1,139.6 = 0.76 0.3850
Treatment*Time 0.00217 F1,159.9 = 1.60 0.2073 0.00198 F1,139.8 = 1.12 0.2909
Mid*Time 0.00012 F2,548.1 = 0.07 0.9337 0.00055 F2,476.8 = 0.60 0.5485
Apex*Time -0.00005 0.00039
RCA*Time -0.00038 F2,550.5 = 0.19 0.8277 -0.00015 F2,474.2 = 0.02 0.9774
LCX*Time -0.00009 0.00001
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Table 5: Inferences about a treatment effect over time on the log of the end-diastolic R/T
ratio from the nine combinations of spatial and temporal methods from the UAB SCCOR
study using all observed outcomes.

Spatial Temporal Number of Fitted Σ Tested Est. Effect Test
p-ValueMethod Method Observations Structure Predictor per Month Statistic

Correlation Correlation 2894 Matérn⊗UN T imeijGroupi 0.00217 F1,159.9 = 1.60 0.2073
Endpoint 574 Matérn Groupi 0.00204 F1,37 = 1.17 0.2862

Slope 592 Matérn Groupi 0.00310 F1,35 = 1.83 0.1848
Level Correlation 543 UN⊗CS T imeijGroupi 0.00147 F1,154.0 = 0.83 0.3646

Average, Endpoint 108 UN Groupi 0.00151 F1,32.9 = 0.57 0.4674
Together Slope 111 UN Groupi 0.00205 F1,34 = 0.99 0.3267
Global Correlation 181 CS T imeijGroupi 0.00148 F1,141.2 = 0.91 0.3416

Average Endpoint 36 N/A Groupi 0.00144 F1,33 = 0.53 0.4709
Slope 37 N/A Groupi 0.00215 F1,34 = 1.01 0.3213
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Table 6: Inferences about a treatment effect over time on the log of the end-diastolic R/T
ratio from the nine combinations of spatial and temporal methods from the UAB SCCOR
study excluding all outcomes observed after surgery.

Spatial Temporal Number of Fitted Σ Tested Est. Effect Test
p-ValueMethod Method Observations Structure Predictor per Month Statistic

Correlation Correlation 2558 Matérn⊗UN T imeijGroupi 0.00198 F1,139.8 = 1.12 0.2909
Endpoint 446 Matérn Groupi 0.00138 F1,26.1 = 0.40 0.5326

Slope 560 Matérn Groupi 0.00416 F1,31.9 = 2.20 0.1482
Level Correlation 480 UN⊗CS T imeijGroupi 0.00101 F1,134.6 = 0.34 0.5618

Average, Endpoint 84 UN Groupi 0.00041 F1,24.9 = 0.03 0.8589
Together Slope 105 UN Groupi 0.00373 F1,31.9 = 2.44 0.1285
Global Correlation 160 AR-1 T imeijGroupi 0.00161 F1,152.9 = 0.36 0.5488

Average Enpdoint 28 N/A Groupi 0.00065 F1,25 = 0.09 0.7681
Slope 35 N/A Groupi 0.00385 F1,32 = 2.15 0.1525
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Figure 1: Plot of the 16 segments of the left ventricle. The outer ring corresponds to the
base, the middle ring to the mid, and the inner circle to the apex[16, 17]. The right region
corresponds to the segments supplied by the left circumflex (LCX), the upper left those
supplied by the left anterior descending (LAD), and the bottom left those supplied by the
right coronary artery (RCA). The numbers correspond to the segment’s index as defined in
Table 1.
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Figure 2: Plot of the time courses of the mean end-diastolic R/T ratios among all subjects
in each group at the 16 segments of the left ventricle. The solid lines represent the average
time courses of the placebo group, and the dashed line the courses of the treatment group.
The error bars demark one standard error of the mean in each direction (total width is two
standard errors) and are shown for the purpose of describing the spread of the R/T ratio
among subjects and should not be taken as formal inference.
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Figure 3: Histogram of the residuals of the end-diastolic R/T ratio and the log of the end-
diastolic R/T ratio in the SCCOR study, for a fitted MAT⊗UN correlation structure, across
all observations from Equation 2.
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CONCLUSION

Summary

The statistical model discussed in this dissertation allows longitudinal imaging stud-

ies to make greater use of the outcomes observed through imaging modalities. Instead of

being reliant on summary methods to eliminate the correlation among observations, our

model lets investigators take a multivariate approach and use outcomes from multiple loca-

tions in the image and quantify how they change over time. This allows for greater spatial

resolution of anatomy and physiology in the analysis that could potentially lead to more

powerful studies or more sensitive diagnoses and thus better patient outcomes.

Simulation studies showed that our model may have higher power than summary

methods and be better at controlling the rate of false positives, justifying the added com-

plexity. Our model also offers more flexibility in predictors than summary methods as it

can utilize time- and space-varying covariates. The simulations also demonstrated that the

practice of analyzing regions separately, ignoring their spatial correlation, has very poor

statistical properties and should not be used.

The core of our model is the separable parametric spatiotemporal correlation struc-

ture. By assuming separability, one can consider how correlation changes over space and

time independently which makes interpretation easier. The use of parametric correlation

functions can improve the efficiency of the analysis and also improves the interpretability of

the model as one can plot the estimate for how quickly correlation decreases with distance.

Our research found that the properties of statistical inference about predictors in the linear

model depend strongly on whether the correlation structure used is a good approximation

for the true correlation; a good fit leads to high power and a reliable false positive
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rate while poor modeling of the correlation may lose power or have an increased rate of

false positives. We found that, for the scenarios we considered, information criteria are very

good at choosing a working correlation structure that is ’close enough’ to the data to have

good statistical properties. However, the selection relies on having the proper predictors

in the model and appropriate correlation functions to choose from which means that there

must be collaboration between the statistical and clinical investigators when applying our

model.

Future Directions

As always, there is still much work to be done in this research area. Some of

it involves further validation of our proposed model under different scenarios to make it

more generalizable, while other future directions involve taking our model further.

One of the biggest assumption of our proposed model is that of separability of

spatial and temporal correlation. Although some work has been done on separability in

longitudinal imaging data by groups such as Simpson et al., there are still many questions

left unanswered. A nonseparable unstructured model may be inefficient for applications

with enough observations in space or time, while the practice of relating distance in space

and time through a velocity may not be a reasonable assumption for anatomical outcomes

such as wall thickness. It is important to understand what kinds of nonseparable parametric

spatiotemporal correlation functions are appropriate for use on longitudinal imaging data,

and to validate means of choosing between them and separable alternatives.

In addition to separability of the correlation, we assumed homoscedasticity of the

outcomes. However, in practice the variance may change over time or over space. It is

therefore highly relevant to quantify how sensitive our model is to heteroscedasticity, and

to research how our model could be extended to directly model heterscedasticity in space

and/or time.
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One result of our work is that we quantified the effect on statistical inference when

correlation structures are misspecified. However, we only looked at three spatial and four

temporal correlation functions; it would be useful to know whether a wider variety of func-

tions can approximate one another. Along these lines, it would be of interest to research

how spatial structures can be used to model temporal correlation. Most temporal correla-

tion functions assume observations to be evenly spaced which never occurs in practice; it is

possible for the models to fit better (which could improve power) if the exact observation

times are used. In our specific application of the 16 segment model to left ventricular MRI

scans, it would also be of clinical interest to research new ways to define spatial distance;

the anatomical structure is not actually two-dimensional so it may be more accurate to use

a three-dimensional measure of distance.

In the simulation study of the second paper, missingness was designed to be com-

pletely at random. However, as we saw in the third paper, missing data may not occur at

random. Although the likelihood-based approach offers some protection against data that

is strictly missing at random (MAR), it may not perform well when the data is not missing

at random (NMAR). Before our model can be deemed viable for widespread application, it

is necessary to first understand how it fares when presented with MAR or NMAR data.

We know from the theory of REML and the demonstration in the first paper that

the predictors can affect the selection of a parametric correlation structure. However, we

do not know exactly how sensitive information criteria are to over- or underspecified mean

structures. It could be useful to quantify how the observed and predicted correlation change

with different sets of predictors.

In all of our simulations we simulated data with a linear time course and performed

inference about a linear treatment-by-time effect. This was done in the context of a lon-

gitudinal clinical trial, where such an effect is the primary focus of the study. However, it

would be of great interest to see how the findings of our simulation study change when the
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target of inference is something different such as a space-varying predictor, or a three-way

interaction. The effects of a non-linear time course would also be relevant.

Finally, it would be useful to explore how our model can be used in the design of

a longitudinal imaging study. Specifically, how can our model be used to estimate sample

size of a potential study? There are many factors to consider beyond the typical projections

of effect size and variance of the outcome, such as different spatial and temporal correlation

functions and degrees of correlation. It would also be extremely interesting to see how the

degree of temporal correlation influences the tuning of more follow-up visits (J) versus

more independent subjects (N) in the context of imaging-derived outcomes.
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