
University of Alabama at Birmingham University of Alabama at Birmingham

UAB Digital Commons UAB Digital Commons

All ETDs from UAB UAB Theses & Dissertations

2019

A Scalable Nearline Disk Archive Storage Architecture for Extreme A Scalable Nearline Disk Archive Storage Architecture for Extreme

Scale High Performance Computing Scale High Performance Computing

Hampton Walker Haddock
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

Recommended Citation Recommended Citation
Haddock, Hampton Walker, "A Scalable Nearline Disk Archive Storage Architecture for Extreme Scale High
Performance Computing" (2019). All ETDs from UAB. 1834.
https://digitalcommons.library.uab.edu/etd-collection/1834

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F1834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/1834?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F1834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

A SCALABLE NEARLINE DISK ARCHIVE STORAGE ARCHITECTURE FOR

EXTREME SCALE HIGH PERFORMANCE COMPUTING

by

HAMPTON WALKER HADDOCK

PURUSHOTHAM BANGALORE, COMMITTEE CHAIR

MATTHEW CURRY

ROBERT HYATT

SIDHARTH KUMAR

ANTHONY SKJELLUM

A DISSERTATION

Submitted to the graduate faculty of The University of Alabama at Birmingham,
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

BIRMINGHAM, ALABAMA

2019

Copyright by

Hampton Walker Haddock

2019

A SCALABLE NEARLINE DISK ARCHIVE STORAGE ARCHITECTURE FOR
EXTREME SCALE HIGH PERFORMANCE COMPUTING

HAMPTON WALKER HADDOCK

COMPUTER SCIENCE

ABSTRACT
Parallel file systems that exploit Redundant Arrays of Inexpensive Devices (RAID)

as the mechanism for greater resilience are primarily intended to provide high bandwidth

and low latency. Quantifying and studying the trade-offs among reduced run time

(bandwidth and latency), resilience (availability and integrity), and cost (energy and

capital) is important. For instance, distributing the checksums of RAID systems appears

in conflict with the canonical parallel access patterns in high performance computing

such as long sequential reads, random access, and checkpoint operations. Choices

consequently have to be made between performance, concurrency, latency, energy,

capital, integrity and availability of the data for normal operation as well as during

recovery of a failed device. New strategies are emerging for exascale storage that

create additional layers in the storage hierarchy. These strategies are primarily designed

to take advantage of the economics of cloud storage technologies and especially the

benefits of erasure coding. The Los Alamos National Laboratory has implemented

a “Campaign” layer placed below the traditional Parallel File System where longer

latencies and lower bandwidth can be traded for lower cost and higher capacities. In

addition, Burst Buffers are now being used on top of the traditional Parallel File System

to provide higher bandwidth and lower latency for petascale and beyond. These new

layers are specialization over the Parallel File system based on trade-offs between cost

and performance.

In this dissertation we analyze the requirements of the HPC storage space and

identify special problems in the archive layers. We leverage the GPGPU to provide

erasure coding on large stripe sizes to increase performance and availability. We also

show that data confidentiality can be provided along with erasure coding on GPGPU

reducing the overall cost of data protection for nearline disk archive storage.

Keywords: GPU, erasure code, storage, high performance computing, encryption

iii

DEDICATION

To my wife, my children and their children.

iv

ACKNOWLEDGMENT

I would like to thank the National Science Foundations (NSF Grant Nos. ACI-

1541310, CNS-0821497, CNS-1229282, CCF-1562306, OAC-1642078, and CCF-

1822191) for providing the funding to UAB to acquire the parallel file system that

enabled a large portion of our research. Any opinions, findings, and conclusions or rec-

ommendations expressed in this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

I would like to thank Sandia National Laboratories, especially Matthew Curry, for

mentoring me on the art of erasure coding on the GPU platform as well as providing

insight into the real issues of high performance storage systems. This material is based

upon work supported by Sandia National Laboratories. Sandia National Laboratories is a

multi-mission laboratory managed and operated by National Technology and Engineering

Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc.,

for the U.S. Department of Energy’s National Nuclear Security Administration under

contract DE-NA-0003525.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

DEDICATION . iv

ACKNOWLEDGMENT . v

LIST OF TABLES . ix

LIST OF FIGURES . x

1. INTRODUCTION . 1

1.1 Motivations . 1
1.2 Goals and Metrics . 5
1.3 Dissertation Statement . 6
1.4 The Approach . 7

1.4.1 Methodology . 13
1.5 Contributions . 14
1.6 Broader Impacts . 15
1.7 Outline . 15

2. BACKGROUND . 16

2.1 Introduction . 16
2.2 Foundations of Computer File Systems 17

2.2.1 File Standards . 17
2.2.2 File System Abstractions . 18

2.3 Distributed File Systems . 22
2.3.1 Coda . 22
2.3.2 Swift . 23
2.3.3 NASD . 23
2.3.4 zFS . 24
2.3.5 pNFS . 25
2.3.6 Vesta . 26
2.3.7 Parallel Virtual File System (PVFS) 27
2.3.8 Hadoop Distributed File System (HDFS) 27
2.3.9 Lustre . 28
2.3.10 GFS: Google File System . 29

vi

2.3.11 GPFS: IBM’s General Parallel File System 31
2.3.12 Panasas . 31
2.3.13 Ceph . 32

2.4 Tape and Virtual Tape Archive Systems 33
2.5 Modeling Storage Systems . 34
2.6 Storage System Reliability . 39
2.7 Advanced Encryption System . 48
2.8 Summary . 51

3. THEORY AND PRACTICE . 53

3.1 Introduction . 53
3.2 Problems . 54
3.3 Failure in storage . 56
3.4 Requirements of a Nearline Disk Object Storage System 63

3.4.1 Baseline Architecture Design 65
3.5 Preliminary Investigation and Measurements 67

3.5.1 Raw Disk IO Measured with dd and fio 68
3.5.2 Bandwidth and IOPS Performance 69

3.6 Bandwidth of Data Path . 72
3.7 Comparison with other systems . 73
3.8 Architecture . 74
3.9 Cost Analysis . 81
3.10 Encryption . 81
3.11 Lazy Repair . 84

4. A NEARLINE DISK ARCHIVE STORAGE FOR HPC 87

4.1 Introduction . 87
4.2 Test Environment . 87
4.3 Measurements . 89

4.3.1 Baseline Performance of Ceph Erasure Coding 89
4.3.2 Performance of Storing Data in Object Storage 92

4.4 AES Encryption with Erasure Coding 99
4.5 Lazy Repair . 100

5. SUMMARY . 102

5.1 Dissertation Statement . 102
5.2 Contributions . 102
5.3 Broader Impacts . 103
5.4 Future Work . 103
5.5 Conclusion . 105

LIST OF REFERENCES . 107

Appendix A . 132

vii

A.1 Application design and implementation 132
A.1.1 Challenges . 132
A.1.2 Command Line Parameters . 134
A.1.3 Software Modules . 135

viii

LIST OF TABLES

Table Page

1.1 Dell R730 File Transfer Nodes. 13

2.1 Parameters Used for Archive Model 35
2.2 Erasure Coding Performance and Power Consumption 48
2.3 Comparison of High Performance Distributed File Systems 49

3.1 Combinations of RS(20.4) stripes with 1,000 disks. 61
3.2 Combinations of RS(120.24) stripes with 1,000 disks. 62
3.3 Example Nearline Disk Archive Storage System 67
3.4 Baseline Disk Performance . 68
3.5 Disk IO Bandwidth . 70
3.6 Disk IOPS . 72
3.7 Design Bandwidth . 72
3.8 Comparison with other systems . 75

4.1 Dell R730 Servers. 89
4.2 Comparison of Erasure Coding Performance. 96
4.3 Comparison of Erasure Coding Data Loss. 100

ix

LIST OF FIGURES

Figure Page

1.1 HPC Storage Architecture . 3
1.2 Data flows between PFS and NLDA 7
1.3 Erasure code stripe comparison . 10
1.4 Comparison between Ceph and Nearline Disk Archive erasure coding . 11
1.5 Comparison between Ceph and Nearline disk archive encryption 12

2.1 Conventional block based file systems compared 20
2.2 Distributed file system using Object Storage Devices 20
2.3 Erasure Code Matrix . 46

3.1 Data Replication . 58
3.2 XOR Coding Parity . 58
3.3 Erasure Coding Parity . 58
3.4 Disk Bandwidth measured with fio . 71
3.5 Disk subsystem IOPS measured with fio 71
3.6 HSM Data Flow . 77
3.7 Effect on erasure coding by shard count 79
3.8 Erasure repair of one erasure . 79
3.9 Erasure repair of four erasures . 80
3.10 Security Authorization Boundary . 83

4.1 Ceph Erasure Code Plugin . 88
4.2 Initial Erasure coding bandwidth . 90
4.3 Erasure coding bandwidth . 90
4.4 Erasure recovery bandwidth . 91
4.5 Erasure recovery bandwidth with 4 erasures 91
4.6 Baseline comparison of Ceph network performance 93
4.7 Baseline comparison of Ceph CPU performance 93
4.8 RADOS network performance on FTA 95
4.9 RADOS CPU performance on FTA . 95
4.10 AES Encryption with Erasure Coding on NVIDIA R© K40 Performance . 97
4.11 AES Encryption with Erasure Coding on NVIDIA R© K40 Power 97
4.12 AES Encryption with Erasure Coding on NVIDIA R© P4 Performance . . 98
4.13 AES Encryption with Erasure Coding on NVIDIA R© P4 Power 98
4.14 AES Encryption with Erasure Coding comparing Gibraltar with ISA-L . 99
4.15 Erasure Coding Data Loss Simulation 101

5.1 Erasure coding bandwidth comparison 105

x

CHAPTER 1

INTRODUCTION

1.1 Motivations

With the compute core density increasing per node in the past decade in High

Performance Computing (HPC), a trend which will likely continue for the next decade,

Input/Output (IO) bandwidth requirements per node have also increased. This increase in

computing power is putting pressure on the storage capacity and bandwidth throughout

HPC systems. To minimize the time required for applications to complete input-output

(IO) operations for initialization, checkpoint/restart (CR), and application-specific IO,

it is necessary to provide IO bandwidth to the compute nodes that is much higher than

today’s petascale supercomputers. The stated requirements for the exascale initiative is

for applications to run five times faster than they do on today’s 200 Peta Floating Point

Operations Per second (FLOPs) systems; scaling the IO bandwidth for this requirement

results in IO bandwidth speeds that are five times the speed of these systems. Los Alamos

National Laboratory (LANL) has introduced Burst Buffers (BB) as an intermediate tier

between the compute nodes and the Parallel File System (PFS) [3]. These BBs use Solid

State Disks (SSD) and Nonvolatile RAM (NVRAM) to provide high speed storage to

meet the faster IO requirements. The BBs enable the applications to complete the IO

operations in an acceptable time for Checkpoint/Restart (CR) or application recording

task and get back to making forward progress on the application problem solution.

Both BB and PFS file systems are more expensive than slower object and tape

archive systems. BBs and PFSs belong at the top of the storage pyramid having minimal

size due to cost but providing greater performance. This is analogous to the memory

hierarchy in the CPU. What are the optimal choices for the investment in BBs, PFS,

1

and archive systems to meet the requirements of the HPC system? Current choices are

based on experience. The Trinity supercomputer has a memory capacity of 2 PB and

the BB capacity is two times the amount of RAM in the compute nodes, 4 PB, with an

IO bandwidth of 4 TB/s. The PFS storage capacity for Trinity is 25 times the storage

capacity of the BBs, 100 PB, with an IO bandwidth of 1.2 TB/s [4, 5]. Requirements

also provide the constraints that the lifetime of the data in the CPU memory and the

BBs is hours, and the lifetime in the PFS is weeks. These working set data are the

ones being used by current compute jobs that are running on the cluster. The BBs are

referred to as tier one in the storage pyramid and the PFS are referred to as tier two. Data

that is needed to be kept for longer periods of time may be stored on lower tiers of the

storage pyramid where higher latency and lower bandwidth may be tolerated but with

greater integrity and availability requirements due to the longer life of the data residence.

Below the PFS a third tier has been identified that can store data for a period of time

that the research project is actively computing so that data can be quickly moved to the

PFS and BB when needed for computation and also so that data can be moved to the

third tier relatively quickly when it not necessary to keep it available for computation or

analysis. Gary Grider’s team has dubbed this tier storage the “campaign” storage layer

[6]. This campaign storage layer is a strong candidate for lower cost cloud type storage

that provides availability with erasure coding. Tier two storage is typically provided by

products like Lustre [7], which uses hardware Redundant Array of Inexpensive Disks

(RAID) 6 arrays or Grid RAID [8] and fault tolerant pairs of object storage servers

which are much more expensive than cloud based erasure coded storage which uses

standard components. An example of this storage hierarchy is shown in Figure 1.1.

Since campaign storage is an object storage system that is intended to provide a nearline

short-term archive between the PFS and tape archive systems, we call this type of system

Nearline Disk Archive (NLDA).

Another problem is the increasing trend in the amount of data that must be preserved

for the far distant future, practically forever. Tape has been the preferred solution for

2

HPC Storage Architecture

A

B

C

D

F

E

1

2

3

4 5

FIGURE 1.1: HPC Storage Architecture — Modern HPC Storage architecture showing
the use of Burst Buffers (B) and Nearline Disk Archive (F). Compute nodes (A) have
a data life measured in hours and need very high bandwidth to storage for Exascale.
This is provided by the Burst Buffers (B) at hundreds of TB/s (1). PFS (C) can provide
TB/s bandwidth (2). Hierarchical Storage Management (HSM) moves data between
PFS (C), Tape Archive (E) and/or NLDA (F) using File Transfer Appliances (FTA) (D)
at data rates of 100s of GB/s (4) and (5). Data lifetime on Burst Buffers (B) is hours;
data lifetime on PFS (C) is weeks; data lifetime on NLDA (F) is campaign duration,

months; and data lifetime on tape (E) can be forever.

3

archive storage which costs about $0.01 per GB [9] but bandwidth due to the cost of

tape handling systems (robotics) is a significant budget factor at refresh time. Increasing

disk drive capacities and falling cost per GB along with the advent of erasure coding

technologies being used for low cost cloud storage can provide a viable competitor. One

group of researchers have developed models for comparing the cost and performance of

various archive storage implementations between hard disk drives, solid state drives and

tape [10]. They have concluded that tape and hard disks for archive storage will remain

competitive for years to come. The choice depends on the frequency of access to the

files. This tends to reinforce the use of a nearline disk archive storage for data while

the access is relatively frequent but the use of tape archive when the data needs to be

retained for a long time without frequent access (possibly never).

Large HPC users such as National Nuclear Security Administration (NNSA) have

begun to implement these new layers of HPC storage into their infrastructure. An impor-

tant obstacle for the use of the cloud object storage technology is the large investment

in applications that depend on the Portable Operating System Interface (POSIX R©) file

system to perform IO. In addition, the users of these systems are very accustomed to

organization their data in the POSIX R© file system. These deeply rooted uses of POSIX R©

require that HPC storage must have a capability to provide POSIX R© interfaces for the

near to medium future and possibly longer. At the same time, some in the industry are

already declaring the death of the POSIX R© file system [11] and provide good reasons

why users should refactor their applications to use the much faster object Application

Programming Interfaces (API). However, there are very practical reasons for the tree

structured organization of artifacts, mostly because they are more natural for people to

understand; humans are able to process information better when there are no more than

about seven objects to track [12]. LANL has created a highly scalable POSIX R© file

system dubbed MarFS (Mar is taken from the Spanish word for sea). MarFS provides an

extremely scalable POSIX R© metadata architecture that can meet the LANL requirements

of billions of files per directory and trillions of files in the storage system. The MarFS

4

also handles files that are zetabytes big and one byte small. John Bent, of Seagate, argues

that the four layer storage stack will again converge to two layers consisting of BB like

storage services with low latency that are close to the computing elements that are backed

by slower and cheaper storage services that can store artifacts for long periods of time

[11, 13, 14].

Many data storage use cases require protection such as restricting access to authorized

users only. At a minimum, the Health Insurance Portability and Accountability Act

(HIPAA) requires protection of data at rest [15]. The Department of Defense and

National Security Agency have included encryption at rest as a requirement in their

Capability Gold Standard [16, 17]. An effective and acceptable control for meeting these

requirements is encryption. There are standards that specify the sufficient strength of

these encryption algorithms and their use such as the Federal Information Processing

Standards (FIPS) [18]. Some organizations have determined that very strong encryption

is required to protect data of a very sensitive nature to be able to defeat brute force attacks

and even the threat quantum computing methods to break the encryption and reveal the

data [17]. Providing encryption for the protection of data requires a very systematic

process to generate and manage the encryption keys [19–21]. The acquisition of the

keys by unauthorized users will render the control ineffective and can be used to reveal

the data by the unauthorized user. The loss of the encryption keys will render the data

unavailable to the owners of the data. The concerns about the impact of data availability

include the risks from the availability of the encryption keys. These risks are mitigated

through well engineered key management systems [19–21].

1.2 Goals and Metrics

In HPC, IO presents much opportunity for parallel processing. HPC storage systems

have exploited parallel IO for decades. The most popular medium for storing data

persistently and economically where it may need to be accessed frequently has been the

hard disk drive. While hard disk drive capacities have continued to increase over the

5

years, the rate that data can be read or written has not grown at the same rate. Modern

hard disk drives are now on the order of 14 TB with bandwidth around 200 MB/s.

In summary, the goals for our scalable nearline object storage architecture for

exascale and beyond is as follows:

1. Increase the ratio of usable storage to raw available storage through erasure coding

improving utilization

2. Improve performance by achieving erasure coding and repair operation at rates

greater or equal to other data flow constraints

3. Exploit parallelism by writing data to multiple media targets e.g., disk drives

concurrently

4. Improve reliability by meeting or exceeding the Mean Time To Data Loss (MTTDL)

requirements

5. Minimize capital costs by storing data on economical off the shelf systems

6. Minimize energy costs by reducing data movement and using efficient erasure

coding and encryption computing

1.3 Dissertation Statement

HPC storage architecture has several levels of performance ranging from very high

throughput for moving data into and out of powerful computing units to lower throughput

where data is not frequently accessed. Burst Buffers provide much higher throughput

than PFSs by using SSD devices which have several times the bandwidth of rotating disks

although at higher cost. PFSs that exploit Redundant Arrays of Inexpensive Disks (RAID)

as the mechanism for greater resilience are primarily intended to provide high bandwidth

and low latency. Tape archive throughputs are much lower than burst buffers and parallel

file systems but store data for long life times, possibly forever. We study an intermediate

storage layer between the parallel file systems and tape archive, nearline disk archive,

6

IB ETH

Memory

GPU

FTA

IB

PFS

ETH

NLDA

Write Data flow from PFS to NLDA via FTA

IB ETH

Memory

GPU

FTA

IB

PFS

ETH

NLDA

Read Data flow from NLDA to PFS via FTA

1) All data flows through the File Transfer Agents (FTA).

2) Data is pipelined through the GPU for encryption, erasure coding or repair.

3) Trinity concept of operation defines data life in Campaing Storage
for about 9 months.

FIGURE 1.2: Data flows between PFS and NLDA — In the top illustration, data flows
from the PFS to the NLDA via the FTA where erasure coding and encryption are
performed. In the bottom illustration, data flows from the NLDA to the PFS via the FTA

where decryption and erasure repair is performed when required.

where constrained requirements provide interesting opportunities for advancements. We

design an architecture for nearline disk archive storage that is more performant, of lower

cost, more energy saving, more secure, and more reliable than existing designs

1.4 The Approach

In this dissertation, we analyze the function and data flows in nearline disk archive

storage (NLDA) systems. These systems are based on object storage technology that

has provided economical performance for cloud providers. Based on this analysis, we

design a more performant and efficient architecture for extreme scale HPC by decoupling

erasure coding and encryption from the object storage system. This new design provides

concomitant benefits of reduced data communications costs, more tolerance of media

failures, reduced erasure repair costs, and greater enforcement of confidentiality. We

exploit the high performance of the Gibraltar erasure coding library [22] and modern

general purpose graphical processing unit (GPU) to encode or repair large stripe sizes

with high bandwidth [23] which lends to higher performance in the object storage

system [24]. Data movement to/from archive in HPC data centers is usually performed

by File Transfer Appliances (FTAs) as depicted in Figure 1.2. This architecture provides

for the use of resource management systems employed by the HPC system to perform

the data movements as a job which is submitted to the queuing system of the resource

7

manager. These jobs can be chained with compute or other analysis jobs so that the data

movement can occur before the other work is able to run. Jobs can be submitted to move

data from the higher performance storage systems to the archive by submitting a job

for this type of work. The FTAs enable interactive data movement as well so users can

manually issue the commands to move data to archive or from archive. Because all data

movements traverse the FTAs, this presents an opportunity to perform operations on the

data during the transit. Partitioning streams of data into stripes and performing erasure

coding over these chunks or shards of the data that is moving to the NLDA is one such

operation. Repairing erasures in stripes of data that are being moved from the NLDA to

PFS is another such operation. Indeed, data can also be encrypted while moving from

PFS to NLDA and decrypted when moving from NLDA to PFS.

Our NLDA achieves the following six objectives:

Erasure Coding — High performance erasure coding with a GPU enables stripes to

have many times more data shards, K, and checksum shards, M , than with CPU

based erasure coding. We use K to refer to the number of shards we divide a block

of data into in order to produce a stripe of data for storage. We also compute M

checksum shards using an erasure coding algorithm that is maximum-distance

separable (MDS) [25] that we store by concatenating to the K shards producing a

stripe that has N = K + M shards. This increases the storage efficiency ratio by

making K �M .

Lazy Repair — Data lifetime on nearline disk archive is expected to be relatively short

(months not years) [7] due to service level agreements (SLA) that are recommended.

Erasure coding redundancy can be set to exceed this lifetime making immediate

repair unnecessary. When users read data, data can be repaired at that time when

the data is transiting the FTA for the purposes of the user, avoiding the need to

read data solely for repair as is traditionally done in RAID and erasure coding

systems. Because the repairs occur at high performance, the user experience is not

noticeably affected.

8

Encryption — While data is being moved to NLDA and erasure coding is being per-

formed, the data can also be encrypted in the GPU without additional data move-

ment costs. Decryption is performed when the data is being moved from the NLDA

to the PFS. While data repair is not always necessary when transferring stripes of

data from the NLDA, if it is encrypted, it will have to flow through the GPU for

decryption.

Higher Performance — FTAs need to move data at high bandwidth between PFSs and

NLDAs. FTAs can be ganged together to provide a linear speedup in the data

bandwidth. Moving large files can be accomplished in P/N where P is the time

for a single FTA to transfer the data and N is the number of FTAs. The bandwidth

provided by an FTA will be the MIN(BW PFS, BW NLDA, BW GPU) where BW PFS

is the bandwidth provided by the PFS to the FTA, BW NLDA is the bandwidth

provided by the NLDA to the FTA, and BW GPU is the bandwidth of the erasure

coding and encryption on the GPU using the Gibraltar library.

Reduced Capital Costs — By moving the erasure coding and encryption functions

from the object storage system to the FTAs we reduce the compute and memory

requirements of the object storage servers (OSSs). Since the ratio of OSSs to FTAs

should be much greater than one in a typical HPC data center, this results in a

reduction in the cost of the servers for storage; also, the energy costs of operating

these servers is also reduced. Since modern GPUs cost is on the order of HPC

grade multi-core processors, by offloading the erasure coding and encryption to

the GPU, the high performance can be attained with servers on the same order of

cost as without the GPU.

Reduced Energy Consumption — Erasure coding and encryption of large stripes with

high data shard count and high checksum shard count is more energy efficient on

the GPU than using the Intel R© CPU.

9

(a)

(b)

FIGURE 1.3: Erasure code stripe comparison — Comparison between two stripe sizes.
In a) The current Trinity configuration, k=20, m=4, 24 shards per stripe set, total
storage available is k × shard size = total bytes per stripe. In b) our example
configuration k′ = 120, m′ = 24, 144 shards per stripe set, total storage available is

k′ × shard size = total bytes per stripe. Where k′ is 6× k in our example.

In order to understand these six objectives with our NLDA architecture that we

use, we show in Figure 1.3, which illustrates the typical stripe configurations for object

storage systems and the large stripe sizes that we propose. In the Campaign Storage

system used by Trinity [3], the stripe sizes are K = 20 and M = 4 providing a storage

efficiency ratio of K/M = 5. In our NLDA, we are able to create stripes that are much

larger; using the same storage efficiency ratio with six times the number of shards, we

will have K = 120 and M = 24. Data capacities of the stripes are also increased by

the same amount, six in this example. Because the NLDA may be used for archiving

petabyte sized files, larger stripe sizes reduce the number of storage elements that must

be tracked in the metadata. Assume that our NLDA has a 60 PB usable capacity. Adding

enough capacity for erasure code redundancy, we would need 1.2 ∗ 60 = 72 TB of

raw storage. Using 10 TB disk drives, we will need 7,200 disk drives. Modern storage

systems like Ceph distribute objects uniformly across all of the disks in the cluster. A

petabyte file will require many more than one million objects to store the shards of data

in the stripes so we are guaranteed that our data will be distributed across all of these

7,200 disks. Assuming a 5% annual disk failure rate, the EC(20, 4) Trinity configuration

would lose one to two shards in the first year and have a remaining redundancy of two

to three shards. In our NLDA configuration with 120x24 we would lose seven to eight

shards and have a remaining redundancy of 16 to 17 shards. The latter configuration

provides a much higher margin of safety to prevent data loss and enables the policy of

Lazy Repair.

10

A

B

d

C

D

a) Native Ceph Dataflow

A

B

d

C

b) NLDA Dataflow

FIGURE 1.4: Comparison between Ceph and Nearline Disk Archive erasure coding —
In a), with Ceph, erasure coding is done on the object storage server. In b), with NLDA,
erasure coding is performed on the FTA. The PFS is depicted as A in the illustration;
the FTAs as B and the Object Storage as C. In the left illustration, all of the data in a
stripe moves between the FTA and a specific OSS where it is erasure coded or repaired;
the shards are then copied to or from other OSSs. In the right illustration, all of the data
in a stripe is erasure coded on the FTA before the data shards and the parity shards are
copied directly to the OSS where it is stored. In the left figure the total data moved is
D + D×(K+M−1)

K bytes, where D is shown in the square box and represents the total
number of bytes of data in a stripe and d is shown in the smaller square box representing
D
K , while in the right figure, the total data moved is D×(K+M)

K bytes, resulting in a
reduction in communications of D − D

K .

11

A

B

d

C

D

a) Native Ceph Dataflow

Encrypted

A

B

d

C

Authorization
Boundary

Encrypted

b) NLDA Dataflow

FIGURE 1.5: Comparison between Ceph and Nearline disk archive encryption — Ceph
encryption is done on the object storage server. With NLDA, encryption is performed

on the FTA.

Present day object storage systems, like Ceph, perform erasure coding in the storage

clusters on the OSSs. This is a reasonable compromise in most cases, but with HPC

storage, where FTAs are used as data movers, it is not the optimal solution. When erasure

coding is performed on the OSSs, it raises the compute and memory requirements for

these nodes. Additionally, data will have an extra network transit to make due to this

design as shown in Figure 1.4. In our NLDA design, we decouple the erasure coding

from the storage system and perform this service on the FTA nodes. In the 60 PB

server described previously, having 30 disks per server, would require 240 OSSs. In

contrast, there would only need to be about 60 FTAs according to the requirements

for the Campaign Storage used on Trinity [7]. In the NLDA architecture, much lower

powered OSSs would be required which will reduce the capital costs and the operating

costs. Assuming that each FTA could process one GB/s giving a total capacity of 60

GB/s for the full set of FTAs, the one PB file could be written in 4.6 hours.

Currently, encryption is a feature provided by the object storage system. As shown

in Figure 1.5 the encryption is performed on the OSSs as the data are written to the object

12

store. In this mode of operation, the security enclave includes the object store. This

type of protection would not be sufficient for environments where some users are not

authorized to have access to some of the data that is stored in the object store. System

owners would have to choose between using some other archive system for their data

that provided the necessary confidentiality controls or encrypt the data before sending it

to the archive. By performing the encryption on the FTA, the protection can be provided

in an effective manner. Since the FTA will be a cluster resource for a user to perform

data movement tasks, the transfer will be performed at the user’s authorization level and

by a process with the user’s authorizations. Since the FTA can be provided in a secure

way, it can be logically within the authorization boundary, and when operated in this

manner, with encryption being performed on the FTA, the data being sent within an

erasure coded stripe to the object store will have confidentiality provided at the level of

encryption selected by the user and system operators.

1.4.1 Methodology

We conducted our measurements on Dell R730 servers with an NVIDIA R© K40m

GPU installed in each FTA. Table 1.1 lists the common configuration of our cluster. The

FTAs and Object Storage Servers (OSS) are interconnected via the 10 Gb/E network

fabric implemented with a Dell Force 10, S4810P switch. Each node has two SFP+ 10

GbE interfaces which are bonded together to provide 20 Gb/s total bandwidth. There are

four OSS nodes, two FTA nodes configured as shown with a third FTA node having dual

Intel R© Xeon R© E5-2660 v3 @ 2.60GHz. All nodes have Hyperthread-enabled and run 40

threads. We are using 48 six TB SAS disk drives on each OSS in the test configuration, a

total of 192 disks, to provide about one PB of total storage in the Ceph file system. The

one Gb/s network is used for management and control.

TABLE 1.1: Dell R730 File Transfer Nodes.

CPUs 2x Intel R© Xeon R© E5-2650 v3 @ 2.3 GHZ (Hyperthread-enabled: 40 threads)
RAM 128 GB 2133 MT/s RDIMM
Network Intel R© X520 DP 10Gb DA/SFP+, I350 DP 1Gb Ethernet
System Drives 2x 300 GB 10K SAS 2

13

With this configuration, we implement a Ceph storage cluster to measure the band-

width performance for writing and reading data into the NLDA from/to an HPC PFS.

The IO with the PFS is simulated in our software by creating buffers and writing data

patterns into them. This provides a convenient way to provide a consistent source by

eliminating variables that are outside the scope of these measurements. We use this

configuration to measure a baseline performance using the native Ceph configuration

with erasure coding performed on the OSSs. We also use this configuration to measure

the Intel R© ISA-L erasure coding library using our FTA method. Last, we measure the

bandwidth using the FTA method with the Gibraltar library.

We measure encryption using standard AES libraries as a baseline. We then measure

encryption using our implementation of AES on CUDA R© that we integrated with the

Gibraltar library. We compare these results to show that performing encryption with

erasure coding on the GPU is more performant than standard methods.

To measure the effect of lazy erasure repair on MTTDL, we use data provided

by Backblaze.com to develop stochastic models of disk failure. We then simulate the

impact of disk failures based on these models on several configurations to measure

the MTTDL. We simulate a standard configuration using immediate erasure repair to

establish a baseline. We compare the baseline with our implementation where we delay

repair and measure the MTTDL.

1.5 Contributions

The contributions of this dissertation include the following:

• NLDA Architecture with EC and Encryption on data in transit.

• Erasure coding of large stripe sizes with Gibraltar [22, 26–28] on FTA.

• Combining AES encryption with Gibraltar erasure coding library [22, 26–28].

• Provide a plausible example of a lazy repair policy.

14

1.6 Broader Impacts

This dissertation should have impact on HPC professionals and researchers that

are interested in investigation new approaches to large data storage systems, use of

GPU acceleration for erasure coding and encryption for data storage systems, and cost

reduction strategies for data storage. Storage system developers and early adopters will

also find this dissertation interesting in that it may provide an intriguing approach to low

cost, high performance archive storage and reduce the demands on longer term archive

storage systems.

1.7 Outline

The remainder of the dissertation is organized as follows: Chapter 2 presents back-

ground information on HPC file systems, HPC archive systems, object file systems,

erasure coding, and encryption. Chapter 3 describes practical and theoretical principles

concerning nearline archive disk storage systems. Chapter 4 provides the detail design

of our NLDA, experimental design and the evaluation of the results, while in Chapter 5

we give our conclusions and discuss the future work.

15

CHAPTER 2

BACKGROUND

2.1 Introduction

Persistent storage and sharing of data have been a problem in computer science from

the beginnings. Data sizes have grown due to advances in sensor technology, record

keeping in healthcare, business, science, government, the invention of social media

services such as Twitter, high definition cameras on smart phones, email, telephone

messages, high resolution imaging and many other reasons. Commodity storage costs

have declined from $1/MB for rotating disk storage in 1994 to less than $0.03/GB

today. Processing power has increased from one million instructions per second in the

1980’s to over two billion instructions per second on many cores today. The methods

for writing and reading the information stored on media have changed from proprietary

interfaces early in the digital age to interfaces based on standards such as the ST-506

standard based on the Seagate ST-506 disk drive, Small Computer System Interface

(SCSI), Integrated Device Electronics/Advanced Technology Attachment and the Serial

Attached SCSI [29, 30]. Media is available as hybrid electromechanical devices which

include tape and rotating disk drive using magnetic oxides and more recently on solid

state devices that use NAND flash memory [31].

But the persistent storage of data should have a high-level abstraction for appli-

cation programs, availability, integrity, access control and performance according to

the requirements of the task at hand. Locally attached media provides storage that is

directly accessible to programs running on the computer to which the media is attached.

Distributed storage is made available to one or more computers by systems that provide

16

storage services over a communications medium. The Network File System by Sun Mi-

crosystems is an example of such a storage service [32]. Storage Area Networks [33] and

Network Attached Storage [34] are other technologies for connecting storage to compute

systems to provide applications with access to their data. These types of problems have

been the interest of distributed file systems research for several decades and have moti-

vated a large number of contributions to the computer science literature [35–51]. Recent

needs to store and process “Big Data” has stimulated research and development in high

performance distributed file systems e.g., Lustre File System [52], Hadoop Distributed

File System [47] and Ceph High-Performance Distributed File System [53].

The world is moving towards exascale computing which is putting pressure on high

performance distributed storage systems to keep up. One group of researchers at the

DKRZ in Germany have provided a detailed analysis of the challenges to keep pace with

the exascale march in the storage area. In their publication they forecast that their storage

requirements will increase 300 times from their 2015 capacity to their exascale capacity

by 2020 while the compute capability increases by a much higher factor. At the same

time, the power budget for storage will increase 14 to 50 times where storage is 25% of

the compute power consumption [54].

2.2 Foundations of Computer File Systems

2.2.1 File Standards

A required feature of today’s operating systems include standard interfaces to stored

data which are referred to as files. Indeed, the UNIX R© and Plan 9 operating systems

treat all interfaces for programs as files. In 1985 Richard Stallman recommended to the

IEEE P1003 group to name the standard for UNIX R© type operating systems POSIX R©

for Portable Operating System Interface standards [55]. The first release of the standard

was in 1988 and now it has evolved into the IEEE Std. 1003.1, 2013 also known as

POSIX R©.1. This standard includes specifications for file and directory operations which

17

are concerns of this research [56].

However, the POSIX R© file interface presents a performance problem with the

hierarchical directory tree that serializes operations to the tree data structure including

add, remove and update operations. Ceph, Lustre, and GPFS, among others, have

addressed the serialization for metadata management for the POSIX R© file system by

providing multiple metadata servers allowing the workload to be distributed when there

are no data dependencies. As long as the load on the file system is spread out over

the hierarchical directory tree, sub-trees can be handed off to the other members of the

metadata servers to balance workload. The redistribution of the work comes at a cost,

however, because locality is often lost and the cost of management and process migration

are also expensive [49, 53, 57]. An approach to providing intelligent management of

the Ceph metadata services has been developed that uses the domain specific language,

Mantle, to write policies which program the Ceph Metadata Server load balancing

mechanism [58].

2.2.2 File System Abstractions

In the domain of high performance computing the principle media for storing data

are high speed cache memory devices, random access memory, non-volatile memory

devices, solid state disk devices, rotating disk devices and tape. The later media, tape,

is beginning to be overtaken by rotating disk but is still a large budget item in high

performance computing centers where it is supported by expensive robotics [2, 54, 59].

In the beginning of file system development these media were treated as blocks of n

bytes, usually 512 bytes or 1024 bytes in the interfaces to the lower-level drivers that put

to or get from the kernel services that managed the medium.

In the early 1990’s researchers proposed a higher-level abstraction for interfacing

to these medium. There are two abstractions for file systems to persist data to these

medium in high performance systems: block and object. Object storage systems were

presented in research on network attached storage devices by Gobioff in 1997 [39]

18

followed by a more complete concept of object storage by other researchers [40, 60].

The object file abstraction has been used in important high performance file systems

including GPFS [49], Panasas Parallel File System [50], Lustre [52], Ceph [53] and

others. However, the Google File System (GFS) continues to use the block abstraction

because of the more simple design and the decision to use block sizes of 64 MB [48].

GFS is used successfully in Map Reduce type computation at Google similar to the way

it is done in Hadoop [47, 61] where Hadoop Distributed File System (HDFS) uses 128

MB blocks for the chunks of files that are replicated across the storage nodes of the

cluster.

The introduction of the object abstraction to the storage medium has been very

important. Researchers have compared the typical file system layers and functions

between block based IO and Object based IO [1]. The illustration in Figure 2.1 shows

that the interface to the media has been pushed down into the object module. The

interface for the file system has a higher-level of abstraction relieving the complexities

of managing blocks on many types of devices on many types of operating systems

from the higher-level file API. The object abstraction is an important feature to support

high performance file systems. Object based file systems today implement interfaces as

defined in the SNIA and ANSI-T10 standards [62].

Another important performance improvement for high performance parallel file

systems is the separation of the concerns of metadata and file data storage functions.

The former requires many small atomic operations to be performed to record the state of

every file that is stored in the file system where the latter is, in most cases, a single write

of the contents of the file and many reads of the content having a higher ratio of data to

calls to the file system. Attributes that are stored in the metadata for each file include the

location the data are stored, the creation time, the modification time, the owner, access

permissions, etc. Mutual exclusion must also be maintained when modifying file data

which requires that a lock service be provided. Figure 2.2 illustrates the separation of

concerns of metadata and file data in a typical distributed file system using object storage.

19

Applications

Block Interface

System call interface

File system,
user component

File system,
Storage component

Block I/O manager

Storage device

Applications

System call interface

File system,
user component

File system,
Storage component

Block I/O manager

Object Interface

Storage device

Traditional model OSD model

FIGURE 2.1: Conventional block based file systems compared to object based file
systems [1].

Clients

Metadata
Servers

Metadata

Management

Parallel
read/write

Object Storage Devices

FIGURE 2.2: Distributed file system using Object Storage Devices [1] [2].

20

But the cost of performance and complexity required to maintain consistency of the

metadata due to synchronization which is required to have strong ACID properties can

be relaxed in many use cases. In these cases where the main requirements are access

control, reliability, high performance and lowest cost, the object interface along with

additional features is sufficient. Amazon Web Services introduced S3 [63] as a member

of their cloud product suite and the OpenStack group has developed Swift [64, 65].

The OpenStack Nebula product includes a simple object based interface for storage

named Cumulus [66] and Microsoft provides a product named Azure Blob [67]. All of

these provide a simple application programming interface (API) which provides strong

access controls, allows for unlimited file size, user choices of availability, user specified

attributes as key-value pairs, etc. The API provides the concept of an account to which

the user must authenticate. Objects are stored in the service using a name which is a

concatenation of the account and a string representing the user identification of the object

which can look like a UNIX R© path, e.g., data/experiment-1.

Other works to address the problem of many parallel instances writing output

products to a single file have been studied and implemented. Early solutions include

Vesta and the IBM AIX R© Parallel I/O File System product [44, 68, 69] and more recent

work has been done with the HDF5 file system in the Department of Energy (DoE)

Fast Forward Storage and I/O Project [70, 71]. These approaches treat files as multiple

segments instead of a single stream as in POSIX R©, much like columns of a matrix which

fits nicely into these structures. Combining multiple segment file systems with distributed

file system components can enable N to one write performance that approaches N to N

performance.

21

2.3 Distributed File Systems

2.3.1 Coda

Coda was developed at Carnegie Mellon based on five years of research on the An-

drew File System (AFS) [35] and retains some main features including scalability, a few

trusted servers with many clients, client caching of files, token based authentication and

end-to-end encryption [36]. The authors wanted to address resilience and to standardize

the file interface [37].

Coda introduced replication of files among the servers to mitigate the threat of

network failures or server failures. It also includes the feature of caching files that a user

has recently opened on each workstation which also provides some protection against

network or server failures within a short window of time. When a file with mutations is

closed, the client writes the entire file to all servers holding a replica. This reduces the

work burden on the servers and uses the client to perform the replication work.

Coda implements a POSIX R© compatible file interface using the Coda driver. All

files stored on the Coda file servers are seen under the global mount point which is /coda

on Unix operating systems. Metadata is also cached to each workstation and is stored

as files on the Coda servers. File creation and updates are passed immediately to the

servers. The Coda servers implement a callback cache coherency protocol to invalidate

cached artifacts on workstations when an update occurs so that the next use of the file

will require the client getting a fresh copy of the file.

The main goals of Coda are availability and providing simple file sharing services

for a large group of Unix clients. The major performance benefit is provided by the local

caching of files and metadata on each workstation under the assumption that the read to

write ratio is high and that there is not a great deal of write conflicts among users. Coda

implements parallel communication between clients and servers using multicast in the

form of MultiRPC [72].

22

2.3.2 Swift

Swift [38] was the first experiment in distributing chunks of data from a file across

multiple storage nodes over a network. The goal of Swift was to use parallelism to enable

I/O to provide data flow rates to match the needs of applications. When applications

are waiting for data due to the limit on the maximum transfer rate of the storage devices

(i.e., disks, tapes), then nearly linear scaling can be achieved by striping file data across

multiple nodes and reading or writing in parallel, a scatter and gather approach. In Swift,

objects are stored by storage agents. Clients interact with storage mediators which

generate a transfer plan that describes where the data is stored or will be stored. Clients

use the transfer plan to interact with the distribution agent to carry out the operation. In

Swift, the striping unit is determined by the storage mediator according to the bandwidth

SLA with the client. Other responsibilities of the storage mediator include the storage

of cryptographic keys for authentication and access control with the storage agents, the

configuration that determines replication levels or erasure coding. (Note: this is not the

same product as OpenStack Swift [64]).

Swift included the concepts for resilience in the prototype design [38]. In a later

work, the author demonstrated an implementation of Swift that provided distributed a

RAID levels 0, 4 and 5 using XOR parity [73]. The Swift library provides an application

interface that presents a set of UNIX R© file system operations to the client. The client

is not aware of the underlying implementation of the storage mechanism. The storage

mediator maintains metadata in memory and stores a copy within the persistent storage

system for restart and recovery. Persistence of metadata must be fault tolerant, loss of

metadata will result in the loss of the capability to read or mutate existing files. The

Swift file system was able to demonstrate near linear scaling for reads and N to N writes.

2.3.3 NASD

NASD provided important research work in distributed file systems which led to the

standardization of the object storage systems[39]. The main problem that the authors

23

were trying to solve was to store data over an untrusted network using network attached

storage devices. These prototype devices provided access controls to data objects stored

by using a central authentication service and a ticket system. Clients could then use

the tickets obtained from the central authentication service to prove their authorization

to use the resource. A capabilities architecture was included in the design of NASD

which included a capability key and capability arguments to convey all of the information

necessary to grant a request implemented as a cryptographic function. The NASD

enabled reliability by allowing clients to replicate data across storage devices on the

network. The research provided a proof of concept for storing data in an untrusted

network. Prototype file systems were implemented to demonstrate the capability and

performance using NFS and AFS. NASD is the fore runner to more modern object based

parallel file systems which continue to use the capability architecture and the network

attached object storage agents. The research showed that the I/O scaled linearly as

disks were added to the network but the overhead of the parallel file system limited the

performance [40].

2.3.4 zFS

zFS is an extension of an earlier IBM distributed file system, DFS [41] extending

it to use object storage. zFS was designed to scale to thousands of network clients

and to be built from commodity components. zFS contributes a cooperative cache

and distributed transactions for atomic metadata updates. The goals of zFS are high

performance with near linear scaling, off the shelf components and a distributed global

cache. zFS achieves scalability by separating the control and data concerns. Storage

management is encapsulated in the Object Storage Devices (OSDs) freeing the file

system from the storage management details. zFS stores files and directory objects in the

OSDs. zFS provides a Lease Manager which provides a locking service with timeouts to

provide atomicity and protect data integrity. A POSIX R© compliant interface is provided

by providing the hierarchical tree directory services. The metadata for the directory

24

is stored in its own objects in the OSDs. Atomicity in directory operations is attained

through the use of a Transaction Server. zFS keeps recently used pages in local caches

on nodes in the cluster and uses a cached copy to fill requests for any node in the cluster

avoiding a read from disk [42].

zFS depends on the underlying Object Storage Service to manage striping and

resilience mechanism. zFS presents a POSIX R© compatible interface. zFS provides a

hierarchical tree directory service that is stored in memory for speed and journaled to

the object store for resilience. All operations on the directory structure are handled by

the Transaction Server which obtains all leases required for the transaction. If a failure

occurs during the transaction, the state is rolled back to the last consistent state. zFS

performs on par with other distributed file systems in most cases. Because of its strong

POSIX R© compliance it does not perform as well for the N to one write case as do other

file systems that relax POSIX R© compliance [42]. (Note: The OpenZFS product which

derived from the Sun Microsystems ZFS product is not a parallel file system. It is a host

based file system, although it does provide for software RAID within the file system.)

2.3.5 pNFS

pNFS is an extension to NFSv4 that adds parallel concepts. In the base NFS design

there is a single point of mediation for all file operations between the client and server.

pNFS separates the metadata and data concerns. The metadata concerns are still between

the client and the NFSv4 server but the data concerns are between the client and the data

servers which can be distributed. pNFS adds a class of layout drivers that understands

how to access the blocks of data on the storage servers. pNFS can be implemented on

any of the many types of systems that support NFSv4 [43]. Currently pNFS is a part

of the NFSv4.1 specification with published RFC specifications for block [74, 75] and

object storage interfaces [76].

The Block specification of pNFS does not address resilience of the stored state on

the underlying disk storage, this must be provided by RAID and multi-path mechanism

25

that are typical for NFS file servers. The Object specification of pNFS does address the

capability of OSDs to provide resilience using replication, RAID and erasure coding

with Reed-Solomon [77] encoding scheme [76]. pNFS provides protocols for network

file services and requires a top-level file system to provide the file interfaces. pNFS adds

the layout driver layer which provides an abstraction to various configurations of block

level access in the storage network. pNFS provides the same single mediation access to

metadata that is provided by NFSv4. Concepts around the parallel distribution of data

are provided by the top-level file system interface that is provided.

pNFS provides increased performance by separating the control and data concerns.

Control operations are mediated by the single filer as in standard NFS but the system

can be configured to use many data servers. Because the flow of data are usually much

greater than the flow of control information, the distribution of data flow over many data

servers can provide an increase in performance over the standard NFS single mediation

configuration.

2.3.6 Vesta

Vesta is a distributed parallel file system that is focused on short to medium term

persistent storage for parallel applications. Data are distributed across multiple I/O nodes

to allow for parallel execution of input and output processing. Vesta extends the file as a

sequence of bytes into a sequence of segments. These segments are distributed among a

specified number of I/O nodes using a hashing algorithm [44].

Vesta does not provide any resilience mechanisms, it depends on the underlying

I/O node to provide this feature using lower-level storage systems such as provided

by SAN or Direct attached RAID devices [44]. Vesta presents its own interface which

allows applications to configure and control parallelism for optimal performance. It

also provides a generic POSIX R© wrapper that provides a basic configuration of its

interface to allow for applications to use the file system without adding the additional

complexity. The Vesta file interface is similar to object storage in that the management

26

of the persistence is pushed to the I/O nodes. It includes a concept of two dimensional

files which are compatible with the storage of matrices in rows and columns. Vesta

provides subfiles and cells which abstract the storage from the application. Subfiles are

file partitions that are usually accessed by the different members of a parallel compute

process and cells are the segments that subfiles are partitioned in to based on the Basic

Striping Unit (BSU) [44].

2.3.7 Parallel Virtual File System (PVFS)

The Parallel Virtual File system provides fast IO to compute clients of an multi-

computer cluster by striping files across many IO nodes. Metadata about files stored

in PVFS are managed by a single node which include properties such as owner, access

control, etc. This metadata is stored in regular PVFS files that are striped across the

cluster. PVFS presents a native API, POSIX R© and MPI-IO API to users for their

applications. The current version, PVFS2 provides an object interface to storage [45, 46].

PVFS is able to provide near linear scaling for read and write performance. Data

reliability depends on the underlying object storage provider.

2.3.8 Hadoop Distributed File System (HDFS)

The Hadoop file system was developed at Yahoo and contributed to the Apache

Software Foundation. Hadoop is packaged with a suite of other components that enable

it to perform MapReduce style applications with optimum performance. HDFS dis-

tributes data in 128 MB blocks across DataNodes and uses replication for data durability.

Metadata is managed by a NameNode which keeps an in memory copy of all of the files,

various properties, and the DataNodes on which the blocks are stored. The NameNode

stores a data structure on disk that contains the metadata of the Hadoop file system and

writes a journal when changes are made.

The key strength of the Hadoop Distributed File System is the feature of reporting

the DataNodes where data are stored to applications. Applications can schedule their

27

computation on the DataNode that has a copy of the data. When an application writes

data, it contacts the NameNode and receives a list of DataNodes where the data are to be

stored. The client application then sets up a pipeline and writes data to the first node in

the list. The second node receives a replica from the DataNode that received the first

write block. This pipeline of operations is continued until the data are replicated across

the complete list of DataNodes that were provided by the NameNode. Hadoop clusters

including their Hadoop Distributed File System component can scale to large numbers

of servers. One researcher from Yahoo has reported that they have Hadoop clusters that

contain over 25,000 nodes which have over 25 PB of data stored. The largest Hadoop

cluster they operate is 3,500 nodes [47].

2.3.9 Lustre

Lustre is a scalable, high performance, parallel, distributed file system that evolved

from research on the Coda project at Carnegie Mellon [37]. The name is derived from

Linux Cluster and it is an object based storage system. The major components of Lustre

are the clients, the Object Storage Targets called OST and the Metadata server (MS).

The clients run the Lustre file system. The MS in Lustre is a performance limiting hot

spot but clients read and write directly to the OSTs which are distributed across all of the

storage servers in the cluster each of which is referred to as an OSS [78].

Lustre does not provide resilience at the application but depends on the underlying

storage subsystem. It is very important to store metadata and data on storage that

is configured for high availability in Lustre. Storage for metadata should be on fast

components such as RAID1 or RAID10. In addition, due to the MTTR of today’s

high capacity disks (greater than 1TB) one parity disk in RAID is no longer sufficient

to protect against a second failure during the reconstruction of a failed disk. For the

data storage RAID6 or methods that provide more redundancy should be provided. A

recommended configuration for data storage is RAID6 with six data disks and two parity

disks [78].

28

Lustre presents a POSIX R© compatible file system interface and has a loadable

device driver for the operating systems that it supports. Lustre separates the concerns of

metadata from file data and provides metadata services via the Metadata Server (MS).

Lustre stores metadata on file systems that are mounted on the MS. Loss of metadata will

result in loss to the underlying file data because the system will no longer be able to look

up a path and filename and provide the information describing where the data are stored.

Lustre is a high performance file system and has a great number of small to large

cluster installations. The performance is derived from striping data across many Object

Storage Servers (OSS) which contain one to many Object Storage Targets (OST). Lustre

stores data in objects so that it does not have to manage the details of data storage to

the underlying devices. The performance is gained by adding the data bandwidth of the

number of stripes that are configured for the specific file.

2.3.10 GFS: Google File System

The Google File System was designed and implemented by Google to address

their specific needs for reading and writing very large amounts of chronologically

ordered data that are organized into records. This property is characterized by most

file mutation occurring by appends to files. The only constraint they have is that each

writer is able to complete the append of the record atomically. Because of these relaxed

requirements, the GFS does not implement a standard file system API. GFS does organize

files hierarchically and use path names for identification. GFS supports operations like

create, delete, open, close, read and write which are usually found in standard file

APIs such as POSIX R©. They have also added a snapshot operation and a record

append operation. Through a lease mechanism along with the specialized record append

operation, GFS is able to provide strong ACID properties. The architecture consists of a

single master and many chunk servers and clients. The master does not store state but

constructs metadata on startup by chatting with chunk servers. Changes to metadata are

written to a log on the local master disk with a replica stored on another chunk server to

29

protect in the event of a system failure. The master stores metadata in memory to provide

fast metadata operations for clients [48]

GFS provides resilience by

1. replicating chunks over chunk servers,

2. check summing over chunks and

3. writing metadata to multiple copies of a transaction log.

The GFS interface is non-standard but offers all of the POSIX R© operation along with

snapshot and record append. These mechanisms provide a greatly simplified ordering of

mutations from multiple clients which results in speed and correctness. The snapshot

operation allows an application to quickly make a point-in-time checkpoint of a file

for consistency. GFS maps from a PATH/filename name space to a list of chunks that

are stored on chunk servers. Chunks are 64 MB blocks that are allocated as needed

by a dialog between the master and the chunk servers. The master maintains an even

distribution of chunks over the set of chunk servers which include replicas. Changes to

metadata are written to an operation log which is replicated to chunk servers for resilience.

Operations to metadata are serialized through a locking mechanism. Performance is

achieved by storing metadata in memory data structures and using an efficient lease

mechanism. Only control communications occur between master, clients and chunk

servers, data flows are between clients and chunk servers.

The performance of GFS is excellent cases of N to one and N to N because of the

fast metadata operations and distributed data. If more parallelism is required, the number

of replicas can be increased. The number of metadata operations and the size of the

metadata data structures are reduced by having 64 MB chunk sizes. The record append

case provides write performance for multiple writers in the N to one case that approaches

that of a single writer to a file.

30

2.3.11 GPFS: IBM’s General Parallel File System

GPFS, General Parallel File System, which is also known as Spectrum Scale was de-

veloped by IBM [49, 79]. GPFS provides a POSIX R© file system interface to clients. The

interface provides byte-range locking and distributed lock management based on tokens

with journaling. GPFS also provides a MapReduce interface for Hadoop applications and

implements the OpenStack Object Store Swift interface for storing and retrieving large

object data using the simple application programming interface. GPFS provides for high

scalability and performance by distributing metadata management across the storage

nodes in the cluster. Reliability is provided by erasure coding providing greater than two

parity strips per stripe, typical configurations have stripes containing six data strips and

four parity strips to survive the loss of up to four strips. GPFS provides scalability to

thousands of storage nodes and linear bandwidth scaling for parallel reads. Distributed

locking and metadata management helps N to one writes scale.

2.3.12 Panasas

The Panasas file system provides a POSIX R© file system on a distributed cluster

of object storage nodes enabling good performance for high performance computing.

Panasas provides the file system as a kernel driver for Linux operating systems. It also

provides an NFS and CIFS file system for use by clients that cannot use the Panasas

FS components. Panasas consists of object storage servers which provide and object

interface to storage on the server consisting of off the shelf disk drives. These servers

manage the data on the disk using a specialized OSDFS which provides the essential

services to store data on the disk sectors and provides high performance. Panasas FS

provides reliability with replication and RAID5. The stripes for the reliable storage are

configured as pools across the storage servers and the parity for each stripe is computed

by the client when writing data. Parity computation is performed on a per file basis

which allows the Metadata Server to handle the reconstruction of parity when an OSD

fails. By striping data over multiple storage servers and distributing parity computation

31

to the clients, Panasas is able to provide excellent performance with linear scaling of

bandwidth [50, 51].

2.3.13 Ceph

Ceph is a distributed high performance file system that decouples metadata from data

and provides a deterministic function for mapping metadata to data location, CRUSH

– Controlled Replication Under Scalable Hashing [80]. Ceph is an object storage sys-

tem that uses peer to peer sharing of a compact hierarchical description of the cluster

configuration and a replication policy. This innovation distributes the computation to

determine replica placement to any member of the cluster, including clients and remov-

ing the serialization of determining data placement from a centralized metadata service.

The CRUSH algorithm uses rule sets to define policies on data placement and result in

evenly distributed storage of data across all of the OSDs in the cluster. The rules enforce

availability policies, for example, replicas must not be in the same rack or other defined

failure domain in the data center.

Ceph implements the data storage layer of file systems with the library librados

which exposes an interface to the Ceph object store. Typical block based file systems can

access the Ceph cluster object storage via Reliable Autonomic Distributed Object Store

(RADOS) Block Device, a driver for Linux kernels based on librbd [81]. The library

librbd provides an effective solution for legacy file systems to take advantage of the Ceph

storage cluster in much the same way that a block based interface is provided by other

SAN technologies. Because legacy file systems store metadata and data together, using

librbd for this purpose does not provide any significant performance benefits. Recent

research at CERN has provided performance data for Ceph at scale to 30PB [82].

Ceph has also included CephFS as a feature in the product which provides a POSIX R©

compatible, high performance distributed file system. CephFS provides an additional

service, the Metadata Service (MS), which provides the POSIX R© compatible file name

space features as well as the management of atomicity for operations, i.e., file creation,

32

file deletion, file renaming, attribute changes, permissions, locks, etc. CephFS consults

the MS to provide the client with the layout for the file that is being operated upon. The

layout informs the client where the file data is stored in the cluster. The layout specifies

the number of strips in a stripe of the file where the stripe spans a number of objects that

are configured. This feature distributes the client data access for reading and writing

across as many of the Object Storage Devices (OSDs) that are necessary to achieve the

performance objective. Ceph MS stores metadata in the Ceph Object Storage Cluster.

Configuring the metadata storage pool on fast devices with with replication provides the

best performance and reliability. Currently Ceph storage pools containing solid state

devices can provide the fastest performance although at higher cost than traditional disk

devices. Because metadata is typically less than 2% [78] of the size of the data stored,

this cost amortization may be justifiable. Ceph also provides a Hadoop File System,

HDFS, as a a plugin to CephFS.

CephFS provides a separation of metadata and file data concerns. Metadata services

for CephFS are provided by the Ceph MS component. Metadata are stored in a dedicated

Ceph storage pool to provide fast and resilient services. The MS enables a POSIX R©

compatible file system interface and enables a true distributed file system [83]. CephFS

is nearing production quality and will provide multiple MS nodes to distribute metadata

services across the cluster which will increase scalability and reduce metadata operation

hot spots. Recent research by Michael Sevilla, et al. has demonstrated a kernel plugin

system for Ceph metadata operations which implements agents to schedule MS workload

over a pool of MS nodes according to several properties. This work may provide optimal

metadata services for Ceph which will improve the scalability [58].

2.4 Tape and Virtual Tape Archive Systems

Magnetic tape storage has been a part of the information technology landscape for

nearly 70 years [84]. IBM announced their IBM Model 726 Tape Unit in 1952 to provide

an alternative to punched cards for data storage. Beginning in 1997, the storage industry

33

established the Linear Tape-Open standard (LTO) which has dominated the magnetic

tape for archive systems ever since. The current generation of magnetic tape is the

LT0-8 which has a raw capacity of 14 TB and a bandwidth of nearly 400 MB/s [85, 86].

NERSC has recently added a third tape library and currently stores 180 PB, growing at

the rate of 3 PB/month [87].

Another archive technology that emerged around 2000 was the Virtual Tape Server

(VTS) which presented an interface to disk storage systems that looked like the tape

archive systems that had dominated the landscape. IBM announced their IBM Virtual

Tape Server in 1952 that would emulate up to 256 tape drives on their direct access

storage device (DASD). VTS which the research authors call TLFS is shown to be faster

than tape libraries [88]. Also, a hybrid disk and tape archive system has been proposed

which provides an easier to use interface for the users, provides the performance of disk

storage and the economics of tape storage [89].

2.5 Modeling Storage Systems

Modeling and measuring the performance of computer systems has been important

throughout their existence. IBM published a book in the System Programming Series

in 1978 on the methodology of evaluating system performance [90]. We have found

some research that focused on modeling and performance of real-time systems [91].

Integer Programming was used for finding the optimal location to store shared files

among computers that were linked together based on the minimum cost of storage and

transmission [92].

Recent research has been published on methods for the modeling of storage systems

using Integer Programming. A feasibility study for using a Ceph storage system as

an archive tier for the University of Aukland. The authors used Integer Programming

to determine if the product could provide the minimal cost and meet the capacity and

bandwidth requirements of the University [93]. They used their institution cost rates

for operating expenses in the model including rack space costs and power consumption

34

TABLE 2.1: Parameters Used for Archive Model [10]

Parameter Value CAGR

Initial Capacity [95] 1 PB 30%
Minimum Read Bandwidth 100 MB/s 30%
Minimum Write Bandwidth 100 MB/s 30%
Cost of Electricity [96] $0.11/kwh 1.3%
Minimum Data Read Yearly [97] 3-75% -
Data Scrubbing Monthly or Annually -
Length of Simulation 25 years -

with functions based on the U size of the equipment and the wattage consumed by the

equipment respectively. They included a scalar variable for the number of years of

operations in these functions. A subsequent research paper was published by the same

group about their experience with bench marking a storage system and comparing it with

the Integer Programming model [94].

A recent study about the performance, cost and reliability of various media for

archive storage was done using simulation. The authors developed a model based on

several parameters and ran the simulation over 25 years making assumptions about

the compound annual growth rate (CAGR) and the technology progress of the various

media [10]. The parameters they used are shown in Table 2.1. Their model was informed

by their research in working archive workload studies. They developed the parameters

by analyzing the cost of the selected parameter of a multi-year period to determine

the CAGR. Their model consists of two parts: 1) the Storage Group Class, and 2) an

Archive Class. The Storage Group Class consists of the Archival System Components

which include media, drives, robotics, enclosures, and networking. This class stores

the configuration facts of the Storage Groups along with lifetime attributes to aid in

determining when the component has reached its useful life or has failed. The Archive

Class aggregates the Storage Group Classes and runs the steps of the simulation over

the time of the experiment, 25 years in the paper’s example. The simulation begins

with a one PB archive and grows it to 25 PB at the rate of one PB per year. Storage

35

components are replaced as they fail and upgraded to newer technologies when the earlier

components are no longer supported. The projected costs of the components are used

at the price/performance expected at the time in the future when they are brought into

the model. Assumptions were made that caused the cost of hard disk technology to be

projected at a much lower cost in the future which seems to contradict their argument

that the CAGR of hard disk storage has not met the prediction of Kryder’s Law [98, 99].

They also made assumptions that the cost of SSD technology would decrease at the

highest rate. The media lifetimes were given as Tape: 30 years, Optical Disc: 50 years,

HDD: 10 years, and SSD: 10 years. They presented an argument that SSDs would

actually last 15 years as archival storage since the data are Write Once, Read Many

(WORM). The bottom line of their analysis shows that tape, optical, and disk will have

about the same total cost of ownership (TCO) over the 25 year simulation. The study

showed that disk will use significantly more electrical power than the other media within

this TCO. The TCO for SSD systems was over 2.5 times the other media included in

the simulation. Under the constraint that energy consumption should be minimized in

modern data centers, then it would be prudent to use smaller amounts of disk storage

and more tape storage in the archive over the next 25 years. At some time in the future,

the SSD technology may become the most economical and would become the storage

medium of choice for archive.

We found one study that analyzed the cost of erasure coding for exascale stor-

age [100]. They chose to emphasize erasure coding on the OSSs in order to relieve

clients from the load of the erasure coding computation. In the study, they model the

component costs of this traditional server-based erasure coding scheme in detail which

provides an excellent understanding of the data transfer costs and the computational

burden on the OSSs. In another study the authors extended an analytical model which

studied the reliability of RAID 5 in order to understand the impact of irrecoverable read

errors (IREs) on RAID 6 systems [101]. They used Markov Chains to compute the

probability that the read of a third data chunk would fail in a RAID 6 reconstruction due

36

to an IRE. They concluded that declustered RAID 6 will increase the Mean Time To

Data Loss MTTDL due to IREs by a factor of 150 over standard RAID 6. They showed

that the MTTDL increases by a factor of two when scrubbing is performed annually and

that daily scrubbing will increase the MTTDL by a factor between 27 and 170 over the

case where data are not scrubbed. The conclusions were based on the assumption that

data parity would be recomputed when an error was detected by scrubbing and that the

rebuild would occur within a few seconds. While these researchers used the term IRE

to refer to these types of errors, other literature uses the term unrecoverable read error

(URE). We will use the appropriate term depending on the context.

A group of researchers have developed a tool to model the I/O path for parallel

file systems that uses a functional representation [102]. The tool has been helpful

for analyzing the functional components of file systems especially for determining

where to insert instrumentation for monitoring performance. The tool also helps in

identifying bottle necks and other constraints. The tool was developed in the style of The

Unified Modeling Language (UML) [103], the Model-Driven Architecture (MDA) [104],

Systems Analysis and Design (SAD) [105], and The Systems Modeling Language

(SysML) [106]. The modeling language represents logical functions as nodes and the

interactions between logical functions as edges. There are annotations that can be applied

to the model to inform the user about the logical function or the interaction. For example,

the name of a file would be a node, the persistent data structure that stores facts about

the file, an inode, would be represented as a node, and the linkage between the file name

and the inode would be shown as an edge. The modeling language includes hints such as

dashed lines to represent redundancy.

In another study the authors presented their analysis of the expenses for building

and operating exascale storage systems [54]. The study identified the requirements for

operating the DKRZ facility when the processing capacity reached exascale circa 2025.

They built models based on the past growth rates of various components of concern for

data storage including the data volumes, data velocity, and the long term preservation of

37

data. This analysis enabled them to identify bottle necks that would need attention in

order to operate the data center at that scale. A fact that became very obvious in their

study was that compute performance was increasing at a 20x rate while storage capacity

was only increasing at a 5x rate. This observation uncovered the storage crisis which

required solutions. They further analyzed techniques to reduce storage requirements

using: recomputing results, data deduplication, and data compression. Recomputing

results is challenging because results are dependent to the machine and software that

was used for the original answers. Changing software libraries and hardware will likely

make it impossible to recompute results. Data deduplication is not so useful for scientific

applications but could be used as a tool to identify users that keep multiple copies of the

same artifacts in storage. This problem could be addressed with user education. Data

compression provides promise to reducing the TCO for storage but may best be left to

the users. Selection of the compression method will need the domain expert’s input to

determine where lossy compression will not affect the quality of the data products.

Los Alamos National Laboratory (LANL) performed developed several models using

linear programming and several different solver tools to determine the optimal mix of

nearline disk archive storage and tape. Their findings were not as expected. Two models

that were homogeneous disk based archive and homogeneous tape based archive were

both much more expensive, on the order of $35M through 2026. However when they

combined the two models, they ended up with an investment of $14M. They reasoned

that the bandwidth constraints drove up the costs of the tape only solution due to the high

cost of robotics and tape drives while this constraint also caused an over provisioning of

disk drives. By mixing the models, the combined bandwidth was sufficient to allow the

disk provisioning and tape provisioning to track closer to their estimated data storage

requirements. Also, the cost of storing data on tape is much lower than the cost of

providing power to disk drives and the added maintenance for the number of disk drives

to satisfy their complete data archive requirements. The modeling included the resources

to migrate data from old tapes to newer, higher capacity tapes [59].

38

2.6 Storage System Reliability

Protection of data stored in data systems is a key requirement. Users demand that

storage providers are able to deliver their data to them when they ask for it. SLAs may

specify the measurement of determining success for meeting this requirement such as

“five 9’s” which means with a likelihood of success of 99.999% [107].

Since the redundant array of inexpensive disks was introduced in 1988 that made sys-

tems more resilient against data loss, research has continued to provide more techniques

for improving availability of data and improving performance [108]. The principle meth-

ods for mitigating the loss of data due to media or system failure has been replication,

RAID and erasure coding. The design choices between these methods must be balanced

between the higher cost of storage for replication of n x r where n is the size of the data

and r is the number of replicas plus one or the computational cost of parity generation

for RAID and erasure coding. Of course the trivial case of RAID are no replicas or one

replica also known as striping and mirroring respectively.

Erasure coding provides a higher degree of durability, i.e., the storage system can

survive the loss of a greater number of disks, using less additional storage than replica-

tion [109, 110]. The types of erasure codes that we study are called maximum-distance

separable (MDS) [25] codes which can provide for recovery as long as K shards are

available out of K + M previously computed shards. We use K to refer to the number

of shards we divide a block of data into in order to produce a stripe of data for storage.

We also compute M checksum shards using an erasure coding algorithm that is MDS

that we store by concatenating to the K shards producing a stripe that has N = K + M

shards. This stripe will have a storage efficiency ratio of N
K

. Erasure coding can provide

a higher order of redundancy by generating more than two parity disks has been heavily

studied by James Plank [111, 112, 112–115]. Matthew Curry showed how erasure codes

could be computed and decoded using GPUs [22, 26–28]. Another consideration for

data resilience is locality. Storage subsystems that replicate data or store parity on direct

39

attached medium can provide data storage services at a lower communications cost as

compared to storage systems that distribute replicas or parity throughout a set of storage

nodes that are connected over a high speed network. Especially in the case of recon-

struction parity for RAID 1, RAID 2 or erasure coding where the minimum set of data

or parity strips must be assembled in memory to recompute the missing data or parity.

Facebook studied the problem of parity reconstruction for erasure coded storage [116].

There is strong evidence that using erasure coding with commodity hardware for durabil-

ity in high performance computing is more economical and faster than dedicated storage

subsystems [117, 118]. Microsoft has chosen to implement the storage systems in their

Azure cloud service using erasure coding [119]. A thorough treatment of performance

measurement for erasure coding has been given in other research [120]. The power

efficiency of erasure coding has been discussed in other research [121]. DACO is a

design that proposes a scheme where remote code is executed by disk drive controllers

to update parity directly on the media saving on the data transfer costs that are usually

associated with updates to erasure coded stripes [122]. The DACO article provides a

very interesting description of the internal workings of the hard disk drive.

One research work has been done that uses large stripe sizes to archive data at

thousands of endpoints on the internet [109]. In this research, they use a combinatorial

method to count the number of parity shards to include in their stripes and compute the

likelihood of failure. In their discussion, they determine that the time to failure using two

way replication to be 54 years but the time to failure using K = 32 and M = 32 onto 64

endpoints to be 1020 years. In this model they assumed that all failures were independent

but gave some examples how smarter decisions could be made in their system to choose

storage endpoints that were less likely to have common threats, e.g., power outage,

tornadoes, earthquakes, etc.

Previous work has been done where clients performed the erasure coding and stored

the stripes on the storage nodes that were on the same network [123]. They determined

that using one KB shards would be the optimal configuration because erasure coding

40

costs increased as the shard sizes increased. They reported their performance topping

out at 200 MB/s during writes from up to 60 clients using 8 storage servers. Read

performance became better with the number of shards in the stripe topping out at nearly

two GB/s with 32 shards and 60 clients reading. In another research project a design

is presented for an erasure coded distributed storage system where clients perform the

erasure coding. The authors measured an average write bandwidth of 186 MB/s and an

average read bandwidth of 400 MB/s. In this paper, they reasoned using combinatorial

computations to show that the likelihood of failure using replication was greater than

with erasure coding [124].

One researcher has studied how using random nodes for erasure coding in a dis-

tributed system can reliably create erasure coded data stripes [125]. This article provides

a very detailed mathematical argument about the storage network and the proofs that the

data can be recovered as long as there are K shards that are available.

One group of researchers performed an extensive measurement of erasure coding

performance [126]. They reported that erasure coding performance began to flatten

out at shard sizes greater than 1,000 bytes due to the increase in cache misses but

performance increased with larger packets due to more reuse of data during the coding

computation, a trade off between these two resources. They also measured the difference

between GF (w4) and GF (232) and found that it had no performance effect with their

Jerasure [112] implementation as long as the CPU cache was large enough. They reported

a maximum erasure coding rate of 1.2 GB/s using RS(6, 2) and RS(14, 2) but it dropped

to 400 MB/s with RS(12, 4). Repair performance was nearly as fast as encoding since

they use the same algorithm. While they reported performance for the range of Galois

field sizes, we only mentioned the performance for the GF (28) size which we are most

interested in, especially since the larger sizes result in lower performance.

Storage services for high performance computing systems can be provided by storage

area networks (SAN) which provide data resilience and high speed communications over

specialized networks. Some of the high performance distributed file systems rely on

41

these types of storage providers where the responsibility for data resilience is handled by

the SAN [44, 52]. These file systems can also be configured to provide resilience against

the loss of data serving nodes by providing multi-path connections to the SAN storage.

The SAN subsystems present storage volumes to the storage servers in the form of LUNs

which are logical volumes of media blocks formed by the SAN subsystem that have

the resilience properties that have been specified by the administrator. Under the threat

of network or server failures file systems must consider the importance of consistency.

Pessimistic replication and optimistic replication are other strategies that address these

problems [127].

Lazy Recovery as a means of reducing the erasure repair workload impact on storage

systems has previously been studied [128]. The authors developed a Markov chain model

of MTTDL using knowledge of the reliability of the disks in their analytical system.

In their work, they showed that relaxing the urgency of erasure repair in an erasure

coded storage system using Reed-Solomon [77] K=10, M=4, that there should be no

reduction in MTTDL but they were able to reduce the repair bandwidth by a factor of

four. Research in reliability mechanisms for very large object storage systems also used

lazy parity backup (LPB) to generate parity over data that was relatively static [129] after

the replicas had been written to the object store.

The detection of latent failures in disk drive media, especially for large petabyte

storage systems, is important for preventing data loss. A technique called “scrubbing” has

been studied extensively and shown to reduce data loss [130, 131]. The system maintains

a signature of each data element stored in the system which is checked during the

scrubbing process by reading the data element, computing the signature and comparing it

to the value originally saved. If the signature does not match, the data element is flagged

for repair.

Erasure codes for cloud file systems have been studied to learn how to reduce I/O for

recovery and degraded reads [132]. Degraded reads occur when a stripe needs recovery

to repair erasures when the user has requested to read the data from the file system. The

42

study compared the impact of I/O for various erasure coding algorithms. They concluded

that shard sizes should be larger and that stripe sizes of 567 MB would be more preferred

over the 64 MB stripe sizes that are currently popular. They were able to achieve recovery

rates of 16 MB/s with K = 6 and M = 2.

Erasure coding has also been performed on Field Programmable Gate Arrays FPGA

devices [133]. The authors developed an OpenCL-Based Erasure Coding program and

measured the performance on several hardware platforms. The authors found that FPGAs

were able to maintain a high bandwidth as the number of shards were increased above

30. Their experiments showed that both GPU and multi-core CPU implementations were

faster than accelerated processing units (APU) and CPU implementations.

Research has been done that analyzed the likelihood of losing data with the Cloud-

RAID 6 implementation, a way of striping data across multiple cloud service providers [134].

They use the methods described in ”Complex System Reliability”, the element level

coverage (ELC) and the fault level coverage (FLC) models [135], to calculate the likeli-

hood of failure. The ELC model considers the element level failure and the FLC model

considers the fault level coverage of a system. The probabilities are time based and use

the assumption that failures are independent and the rate of occurrence is constant. The

authors ignore the other types of media failures such as UREs because they are looking

at the storage members as being provided by the service provider. Their analysis is only

with the system survivability for storing data with multiple cloud service providers while

using a RAID 6 configuration, i.e., each shard of a stripe is stored with a different cloud

service provider. Based on several time based failure rates and recovery time rates, they

use the Binary decision diagram (BDD)-based combinatorial models for their analysis.

They describe a BDD as an acyclic graph which has a root, i.e., a tree data structure, in

which the binary structure is based on the Shannon decomposition rule.

One study examined a design for increasing the reliability of storage systems that

replicate data [136]. They state that mirroring alone can provide 99.9% reliability but

because users require higher reliability, they posit that the mirroring can be supplemented

43

by generating erasure coded parity across the objects stored in the system, increasing

reliability with a lower storage costs than having a third replica of the data. They propose

to store the parity in NVRAM storage that is distributed across the system to reduce

the overhead of writing to disk. Because the target storage system for this technology

does not restrict data updates, i.e., the data stored is not immutable, the approach is

effective. However, generating the parity requires that all of the data on the storage

system must be read to compute the parity. When new data is added to the storage

system, the parity has to be updated, requiring a read of the parity and the generation

of the new code which includes the new data. When data are changed, the parity has to

be read and updated with the changed data. One of their approaches only generates a

single set of parity for each protected set of objects, the use of XOR coding is simple

and practical. Combining one replica and one parity is equivalent to providing the

capability of surviving the loss of two data units. Another approach was to increase the

number of parity shards per stripe by using Reed-Solomon [77] encoding; since their

method formed parity stripes with on the order of 3,000 objects, the use of a GF (28) was

not sufficient so they developed a GF (216) Reed-Solomon implementation to meet the

MDS [137]. Also given in this paper was a Markov model to predict the MTTDL where

they showed that their solution increased the time to failure by a factor of 4,000. The

authors use a population sampling approach to predict the reliability of their approach.

This method decouples the determination of failure from the complex failure of storage

system elements and provides a meaningful metric within the context of the SLAs.

In another work [138, 139] the author argues that the MTTDL metric that has been

in use since RAID was introduced nearly 30 years ago [40, 140] is not relevant. He gives

several reasons that it is not useful and provides a list of properties that a desired metric

should possess. A new metric, NOMDLt, is provided and explained. He concludes by

comparing the NOMDLt with four other storage system reliability metrics. NOMDLt is

computed with a Monte Carlo simulation which can be performed using the High-Fidelity

Reliability (HFR) Simulator. NOMDLt does provide a relevant and meaningful metric

44

for determining storage reliability in terms of data loss likelihood over a given mission

time for the system based on the parameters used in the Monte Carlo simulation.

Erasure coding used to mitigate lost data in storage units comes from Forward

Error Correction in Algebraic Coding Theory [25, 111, 141]. John Kerl provides a

very thorough review on Galois Fields by showing how these special fields are derived

from integral domains and giving us the acronym “FEPUI”, the meaning is shown

in Equation 2.1 [141] where PID is a principle ideal domain and UFD is a unique

factorization domain. Galois fields have as members, symbols, which can be determined

from Z modulo a prime integer p. For erasure coding, we set p = 2 so that the members

of GF (2) = {0, 1}. We then create polynomials of the form axn + bxn−1 + · · ·+ x + 1

in the field GF (2n) where the coefficients a, b, c, · · · are from GF (2). But, since

a, b, c, · · · ∈ {0, 1}, we usually write xn + xn−1 + · · · + x + 1 where the coefficient

of xn is certainly 1 and not 0, or we would not have included the term, hence, the

leading coefficient of the highest degree is one, a property known as monic. Kerl

thoroughly explains finite fields including the process of generating logarithms to perform

multiplication and division (inverse multiplication) using tables, a technique that trades

memory space for computation in erasure coding implementations. All of this provides

us a set of positive integers that have the properties required for computing linear

combinations over a vector space as shown in Figure 2.3. By over sampling our data and

creating a null space, we are able to compute any vector in the space, hence our ability to

regenerate a lost vector. The number of vectors that can be regenerated depends on the

size of the null space. To tolerate the loss of n vectors, we will need a null space with n

vectors.

fields ⊆ Euclidean domains ⊆ PIDs ⊆ UFDs ⊆ integral domains (2.1)

James Plank gives an instructive approach to writing programs in C to perform

erasure coding using the Reed-Solomon method [77] giving examples for fields in 4, 8,

45

1

1

1

1

1

1

B11 B12 B13 B14 B15 B16

B21 B22 B23 B24 B25 B26

B31 B32 B33 B34 B35 B36

B41 B42 B43 B44 B45 B46

n

n + m

B

*

D1

D2

D3

D4

D5

D6

=

D

D1

D2

D3

D4

D5

D6

C1

C2

C3

C4

D

C

FIGURE 2.3: Erasure Code Matrix — Erasure coding is produced by linear combinations
over finite fields.

46

and 16 space where he shows how to generate the log and inverse log tables that are used

for Reed-Solomon erasure coding. Both Kerl and Plank ground their instruction in the

number theory from several good sources [25, 142, 143]. Plank gives more examples on

computing higher order Galois fields [144]. Another author gives a detailed discussion

of the mathematics of RAID-6 [145]. Curry also explains how logarithms over GF (28)

are used in Gibraltar where the NVIDIA GPU is able to perform many table lookups

nearly concurrently to the log and inverse log tables, a performance feature that the GPU

has over CPU architectures [22].

The biggest concern with erasure coding is the cost of computing the erasures and

the additional network cost incurred due to the parity and the reconstruction of the

parity when repairs are required. Kim et al.studied these problems with various network

bandwidths from one GbE to 100 GbE and found that client overhead increases about

46% with erasure coding [100].

LANL studied the performance of two commercial object storage products. They

report the performance writing to the object storage system using a client file system

implementation to be 35 MB/s when writing 100 MB files but noted that it dropped off

quickly when file sizes approached 1 GB [146].

A study has been done on the performance and power consumption used by erasure

coding [147]. They observed that research in erasure coding had mainly focussed on

small data sizes that were used by user applications where there were small reads,

writes and update. In HPC storage applications where erasure coding would be used,

i.e., nearline archive disk storage, the data sizes will be much greater. The selected

several SIMD erasure coding libraries for the Intel R© CPU platform to perform their

experiments. In their experiments, they measured the power consumption of the system

under test under idle conditions. They then ran test where they read data from disk,

erasure coded the data and then wrote the data back to disk. They used a four TB hard

disk drive and a one TB FLASH drive for their tests. The results they measured are

shown in Table 2.2. The costs were computed based on the three year storage estimates

47

TABLE 2.2: Erasure Coding Performance and Power Consumption [147]

Method K, M I/O Coding Idle Power Cost

Jerasure 2.0 160,80 10% 11% 79% $18,218
Jerasure 2.0 160,40 13% 9% 78% $11,430
Jerasure 2.0 160,32 16% 7% 77% $10,464

at LANL for Trinity which total 120 PB using the electrical power cost rate of $10 per

KWH.

To make it clear when we are talking about the erasure coded data sets, we will

call the data sets with their parity “stripes”, the data members of the set will be called

“data shards”, and the parity members will be called “parity shards.” We will refer to the

number of data shards in the stripe as K and the number of parity shards in the stripe as

M ; e.g., the notation RS(K, M) will be used to describe a Reed-Solomon erasure coded

stripe with K data shards and M parity shards.

2.7 Advanced Encryption System

In 2001, The National Institute of Standards and Technology adopted the Advanced

Encryption Standard (AES) as a subset of the cryptographic algorithm developed by

Vincent Rijmen and Joan Daemen who submitted their product to NIST during the

selection process [148]. Their algorithm is a family of ciphers with various key and

block sizes. NIST selected a single block size, 128 bits and thee key lengths: 128,

192 and 256 bits [148]. In 2007, NIST released Special Publication 800-38D which

established the Galois Counter Mode (GCM) for AES encryption [149]. GCM provides

for authenticated encryption, a feature that computes a hash that can be used to verify

the integrity of the data. Because the GCM specifies an algorithm for independently

computing the initialization vectors that are used for each block of 128 bits that are

encrypted, these can be computed a priori and many 128 bit blocks of data can be

encrypted in parallel. The Federal Information Processing Standards (FIPS) require that

48

TABLE 2.3: Comparison of High Performance Distributed File Systems discussed
in section 2.3.

Product Storage Interface Performance Resilience
Coda Block POSIX R© Caches file replicas and

metadata on each client,
clients push updates to
each replica

Replication

Swift Object Unix
Library

Near linear scaling Replication and XOR
RAID

NASD Object POSIX R© Linear scaling depend-
ing on file system

Replication

zFS Object POSIX R©,
Unix
Library

Near linear scaling Depends on underly-
ing storage provider

pNFS Block,
Object

POSIX R©,
Unix
Library

Near linear scaling Block depends on
underlying storage
provider; Object
provides replication,
RAID and erasure
coding

Vesta Block Unix
Library

2 dimensional file struc-
ture for high rate N to 1
write operations

Depends on underly-
ing storage provider

PVFS(2) Block,
Object

POSIX R©,
MPI-IO,
API

Linear scaling Depends on underly-
ing storage provider

HDFS Block HDFS Super linear scaling
(compute and data
locality)

Replication

Lustre Object POSIX R© Linear scaling Depends on underly-
ing storage provider

GFS Block Unix
Library

Linear scaling, excel-
lent N to 1 write

Replication

GPFS Object POSIX R©,
HDFS,
Openstack
SWIFT

Linear scaling Replication, erasure
coding

Panasas Object POSIX R© Linear scaling Replication, RAID
Ceph Object POSIX R©,

HDFS,
Openstack
SWIFT

Linear scaling Replication, erasure
coding

49

the block cipher algorithms that implement AES be approved by an authorized testing

lab. Approved cryptographic modules are included in many software and hardware

products that are available on the market today. The OpenSSL software library that is

included in many Linux distributions and is available Open Source has approved AES

algorithms that meet the FIPS requirement. There have been a number of GPU based

implementations of AES and research has been done to refine these types of algorithms

and measure their performance. However, because modern instruction set architectures

have included special machine instructions that accelerate AES encryption, the GPUs

are disadvantaged due to the burden of offloading the data to the GPU for encryption.

AES encryption is based on Galois Finite Field arithmetic [148] so it is very similar

computationally to erasure coding. Since there are requirements in a number of high

performance computing work loads, to provide confidentiality, integrity, and availability,

there will be cases where erasure coding, authentication, and encryption will need to be

provided. In these cases, where there will be multiple reuses of the data for computation,

the cost of offloading data to the GPU will be amortized by a larger factor and becomes

a strong competitor with CPU based solutions.

Several research papers have been published on performing AES encryption on

GPUs. One research effort has produced an implementation of AES encryption using

the NVIDIA R© CUDA R© programming language [150]. This research implemented

several block cipher modes and compared the results with host CPU based encryption

performance, the concepts and computer code have been shared as open source software.

All of these produced encryption and decryption in the order of MB/s which do not meet

our bandwidth requirements. The reason for the lower performance was the smaller

block sizes being encrypted due to the use cases the works were scoped to. Also, none of

these efforts showed the benefits from data reuse for performing encryption with erasure

coding.

50

2.8 Summary

The fundamental storage unit in the object storage systems is the Object. The Object

is a higher-level of abstraction over the primitive storage elements in the persistent media

that we use for high performance computing. Hard disk media (rotating disks) and

solid state disk media both present groups of bits in the interfaces that are organized in

8-bit bytes. The size of these groupings are referred to as sectors that range in size of

512 bytes to 4,096 bytes in today’s products. Traditional file systems assemble these

sectors together in blocks, usually about four MiB, to link together to store a file’s data

in. In Object storage, the details of storage in the lower layers of the file system are

encapsulated by the object interface as illustrated in Figure 2.1 in chapter 2. Object

Storage systems provide an interface to create an object with a given name and then the

user can write data to the object, even specifying an offset into the object where the data

begins. Once data is written to an object, it can be read from the object storage system

by expressing the object name, the beginning offset and the length of the data to be read.

Object Storage Systems are formed with multiple servers, each of which is configured

with persistent storage media. These servers are interconnected by a network having

desired performance characteristics. Object Storage Systems differ in how they address

objects in the cluster. Ceph uses CRUSH to determine where an object can be found in

the cluster. Objects are owned by Object Storage Devices (OSDs) which usually consists

of a process that manages a single persistent storage device. There are usually several

OSDs deployed on each Object Storage Server (OSS) in the cluster.

The storage devices, called disks from here on out, are connected to the server’s

memory and compute components via the PCI bus, a Host Bus Adapter (HBA), either

a Serial Attached SCSI (SAS) or a Serial ATA (SATA) channel. The SAS bus is most

frequently used for HPC storage applications because of the rich control features of the

Small Computer Systems Interface (SCSI). Modern archive storage disks have read and

write bandwidths on the order of 200 MiB/s. The SAS-2 interface can provide 6 GiB

51

full duplex bandwidth for data transfer to a disk, up to 600 MiB/s. HBAs interface with

enclosure devices that connect several disk drives to the system, enclosures may contain

one to many disks, e.g., 60 disks. The HBAs typically provide four SAS channels to

connect to the disk enclosures over special cables. This gives an available bandwidth of

24 GiB/s for data to be read or written to the disks in the enclosure. Some HBAs provide

two sets of four SAS groups for connecting to two enclosure ports. The HBA usually

has eight PCI channels to move data to and from the computer memory, processor or

other devices on the PCI bus. With the PCI 3.0 specification, each channel can move 8

GT/s (billion transfers per second) each transfer is 128 bits giving 32 GiB/s. The peak

data transfer capability of the HBA is 256 GiB/s.

OSSs are interconnected between themselves and clients via a network fabric. For

example, these networks can be Ethernet fabrics with bandwidth ranging between one

Gb/s to 100 Gb/s, depending on the system requirements. The network adapters are also

connected to the server compute and memory via the PCI bus, usually using eight PCI

channels and having the same bandwidth capacity as given above for the HBA.

When using Object Storage for HPC nearline archive, the data will traverse the File

Transfer Appliances (FTA). FTAs will be connected to the high performance file systems

of the HPC system over the network fabric used for that system, e.g., Infiniband, as well

as the Object Storage System fabric discussed previously. The Infiniband bandwidth in

today’s systems is on the order of 100 Gb/s. The Infiniband adapters are connected to the

FTA compute and memory via the PCI bus, usually using eight PCI channels and having

a bandwidth capability of 256 GiB/s. The FTAs are also connected to the Object Storage

fabric with adapters appropriate for that fabric. When the FTA is configured with GPU

devices, these devices are connected to the server via the PCI bus with 16 PCI channels.

This gives a maximum bandwidth between the host and the GPU of 512 GiB/s.

52

CHAPTER 3

THEORY AND PRACTICE

3.1 Introduction

In this section we describe the architecture and performance of our nearline disk

archive storage system (NLDS). Because cloud storage has proven to be very economical

for highly aggregated services where latency is normal and expected, e.g., Amazon

EC2 R©, Google Cloud PlatformTM, Rackspace R©, and Microsoft R© Azure R© [119, 151–

153], the object technology behind cloud storage should provide the same benefits of cost

savings and reliability to the high performance computing (HPC) storage stack [147].

The need for NLDS is due to the scale of HPC computing which requires the expansion

of persistent storage due to the large scaling of the main compute and memory to reach

exascale. Because of the requirement for greater HPC storage capacity, it presents

economic opportunities for specialization. Where higher bandwidth is required on the

edge of the compute nodes, this storage need only be a few times the size of the compute

memory, so it is economical to use SSD technology here which provides several times

the bandwidth and lower latency than rotating disk media even though this media costs

about 20 times more. The performance gradient on the lower performance side of the

HPC storage is also an opportunity for economic optimization. Los Alamos National

Laboratory (LANL) [154] has planned to use 144 PB of cloud object storage between the

tape archive and the parallel file system by 2020. Our research is focused on the problems

of reliability, performance and energy costs of this cloud type storage used for nearline

disk archive storage in HPC. In this chapter, we discuss the problems that we address,

and the capabilities of the components. We introduce the ideas of large stripe sizes using

a GPU erasure coding to provide availability and encryption to provide confidentiality

53

while reducing the capital and operating costs of the total storage infrastructure. We

articulate our architecture and how we developed it.

We began this research project on HPC Storage to investigate the use of GPU for high

performance computing storage applications. The scope of the work included research,

prototyping, and ultra-reliable petascale storage for massive, fast, long-term storage. We

looked at using erasure coding to provide high availability at economical space savings

by trading off higher computation. This research leveraged previous research done

by Matthew Curry that produced the Gibraltar GPU Erasure Coding Library [22, 26–

28, 155]. The Gibraltar library provided an erasure coding and repair capability using

the GPU based on CUDA [156] but did not address erasure coding for the object storage

applications. Our first goal was to select an object storage system implementation to use

as a prototype to integrate Gibraltar erasure coding. By using Gibraltar and an existing

object storage system as a baseline, we were able to investigate the problems that we laid

out in chapter 1. After we carried out the research as described in chapter 2, we decided

on a Ceph file system for our prototyping. The reasons that we selected Ceph for our

prototyping were:

• Ceph already had an erasure coding implementation that was implemented with a

plugin architecture. This feature was important to us.

• The system configuration for a Ceph object storage cluster provided the maximum

capacity and performance for out budget.

• The software for Ceph was open source and very actively under development.

• There were already large users of Ceph, especially the OpenStack group.

3.2 Problems

The problem spaces in nearline disk archive storage are rooted in data availability,

disk IO bandwidth, capital cost, and energy cost. The availability problem in cloud

54

storage has been addressed using replication and erasure coding. For replication, the

best practice is to use a minimum of three replicas to enable the survival of a failed

media and the possibility that there might be a failure in the other copies during the

reconstruction. Research on reliability for very large storage systems has shown that

the mean time to data loss (MTTDL) increases by about 1 million times between two

replicas and three [129]. Other large capacity storage research has included ways to

handle data being unavailable due to network failures due to the Byzantine Generals

problem [157, 158]. The cost of providing this level of replication is three times the

capital and operating costs for the required amount of storage. When a lost member is

repaired, the system must copy the full amount of data to a new storage location. This

results in network utilization that must be accounted for in the design and acquisition

of the system. For example, the failure of an 8 TB disk drive that has a utilization of

60% will require the minimum read and write of nearly five TB of data for the repair.

Assuming that a 10 GbE network can move 1 GB/s and the data are repaired sequentially,

the time to move five TB is about 1.5 hours to read, and write out for 1.5 hours. With

replication, we can have parallelism because the unit of replication in object storage

systems is the object and there will likely be many objects stored on the failed disk.

Erasure coding provides an alternative for mitigating the availability problem that

trades disk storage space for compute, memory and network bandwidth. For example,

using Reed-Solomon [77] with 10 data shards and two parity shards RS(10, 2), the

system can provide the same level of reliability but with only 20% more storage space,

reducing the needed storage by 60%, i.e., RS(10, 2) requires 1.2/3.0 = 0.40, 40% of

the storage required by replication. From a cost perspective, RS(10, 2) requires 20%

additional capital and operation costs as compared with replication which requires 200%

additional capital and operational costs. However, the erasure coding to produce the

redundant parity shards generates a large compute load for the storage system [100].

Data communication costs requires that sufficient data be read to repair the erasures. In

the case of RS(10, 2) we say that K = 10 and M = 2, so at least K shards must be read

55

in order to regenerate the erasure(s). In RS(10, 2) we can tolerate the loss of two failed

shards and fully recover. The loss of three shards in the same stripe set will result in the

loss of the data. The same risk applies to replication in the case of three replicas.

3.3 Failure in storage

Data are written to storage media with an expectation it can be read back again

without error in the future. There are several threats to this expected integrity and

availability that must be understood and mitigated if the user’s expectations are to be

met. The stake holders must together decide based on the impact of the loss of data

how much risk to take which will in turn determine how much of the budget will be

allocated to prevent data loss or to what degree data loss is acceptable. In the context

of nearline disk archive for HPC, we will need to provide tens to hundreds of petabytes

of storage. With today’s disk drives having a capacity on the order of 10 TB each, this

will require thousands of disk drives. Disk drive failures include total unit failures due to

electronics, servomechanism or media failure. Disk drives also exhibit irrecoverable read

errors (IRE) at a predictable level of about one sector in 1015 bits read where a sector is

4,192 bytes 1. The impact of an IRE will be the loss of the data unit that is on the media

where the IRE occurred. In the case of object storage, the impact would depend on the

size of the object of which this sector was an element. In the case of unit failures, all

data stored on the unit will not be available 2.

The practical mitigations to the types of data loss discussed above have been replica-

tion and error correcting parity. Replication writes data to two or more storage places

as shown in Figure 3.1 so that data should still be available on one device if the other

has failed. This approach requires twice the amount of storage for data if one replica is

1The legacy size for disk sectors was 512 bytes. With larger disk capacities, the sector size is now
standardized at 4,192 bytes (4 KB).

2While this is true from a practical perspective, there are companies that specialize in data recovery
for those stake holders that did not take heed to mitigate against data loss. These services are very pricey
to those that determine the value of the data is worth the cost of the recovery. However, not all data is
recoverable even using this method.

56

created or three times the storage if two replicas are created. With today’s large capacity

storage devices, three replicas is considered the best practice. Error correcting parity can

mitigate against data loss by storing a parity which can be used to recreate the lost data.

The advantage is that parity can be generated across large sets of data and uses much

less storage than replication to provide an equivalent degree of protection. Additional

work is required to produce parity since it is a computation on the data shards using

Galois field algebra of a stripe to produce the parity shards that are linear combinations

of the data. Fortunately, these computations are independent and provide O(S
K
×M)

concurrency, where S is the number of computers performing the erasure coding. A

simple method of providing repair capability for the loss of a single data member is

to use the logical exclusive or (XOR) operation on the data. For example as shown

in Figure 3.2, a corresponding data sector on three disk drives which are used to store a

set of data that fits in two disk sectors, e.g., 1024 bytes (for 512) byte sectors, can be

XORed together to produce a third sector of parity. If one of the sectors fails, then the

XOR operation can be computed again with the two sectors that can be read correctly

to generate the missing third sector of data. In the latter example, the repaired sector

would be written back to disk. If the disk unit only had an IRE, then the drive controller

would automatically remove the bad sector from the map and replace it with a spare

sector for the repaired data to be stored to. To use the same example where a failure was

detected and a repair attempted, there is a risk that another failure may occur among the

same set of data. If this happens, then the set of data that were stored on the two sectors

cannot be recovered. For this reason with today’s larger capacity disk drives, two or

more parity units are preferred and can be generated using erasure coding. In Figure 3.3

we illustrate an RS(2, 2) configuration where we use erasure coding to produce two

shards of parity data using the Reed-Solomon algorithm [77], a similar construction as

a RAID 10 but able to tolerate double errors without failure while the RAID 10 can

only tolerate a single error without failure. Both provide a storage utilization of 50%.

Last, delays in detecting and repairing lost data set members increases the chance of data

loss. For the configuration where two parity units are provided for a healthy set of data,

57

D1

100110101 100110101

100110101 100110101

100110101 100110101

100110101 100110101

100110101 100110101

100110101 100110101

D2

100110101 100110101

100110101 100110101

100110101 100110101

100110101 100110101

100110101 100110101

100110101 100110101

Dual replication, e.g. Mirror or RAID 1

D1

100110101 100110101

100110101 100110101

100110101 100110101

100110101 100110101

100110101 100110101

100110101 100110101

D2

100110101 100110101

100110101 100110101

100110101 100110101

100110101 100110101

100110101 100110101

100110101 100110101

D3

100110101 100110101

100110101 100110101

100110101 100110101

100110101 100110101

100110101 100110101

100110101 100110101

Tripple replication

FIGURE 3.1: Data Replication — One common way to mitigate against data loss is
with replication. One or more replicas are made of the data which can be used to repair
a data loss. Replication also provides the benefit of providing multiple IO paths to the
data which can be used to improve performance where the data is read concurrently by

multiple consumers.

D1

00000001 10000000

00110101 01010101

11100111 10110110

11011101 10011001

00011100 00110011

01011100 11000111

D2

00110101 00110101

00110101 00110101

00110101 00110101

00110101 00110101

00110101 00110101

00110101 00110101

D3

00110100 10110101

00000000 01100000

11000010 10000011

11101000 10101100

00101001 00000110

11110010 11110010

XOR parity using three disks.

FIGURE 3.2: XOR Coding Parity — Another way to mitigate data loss is by computing
an exclusive or (XOR) of the data. This provides the ability to reconstruct a single lost

data element in a stripe.

D1

00000001 10000000

00110101 01010101

11100111 10110110

11011101 10011001

00011100 00110011

01011100 11000111

D2

00110101 00110101

00110101 00110101

00110101 00110101

00110101 00110101

00110101 00110101

00110101 00110101

D3

00110100 10110101

00000000 01100000

11000010 10000011

11101000 10101100

00101001 00000110

11110010 11110010

D4

00110100 10110101

00000000 01100000

11000010 10000011

11101000 10101100

00101001 00000110

11110010 11110010

Reed-Solomon erasure coding using four disks.

FIGURE 3.3: Erasure Coding Parity — To provide more than one parity shard for a
stripe we use erasure coding, such as Reed-Solomon, to compute additional sets of

parity data with linear combinations of the data over finite integer fields.

when a member fails, whether detected or not, the set is now only protected with a single

parity unit. Since IREs occur on a function of the amount of data read by the system, the

chances of an error occurring continue to rise. Total unit failures may also occur within

the same set of data which would also reduce the chances of survival [138].

The problem of protecting data from loss is not as hopeless as it sounds as disk

drive unit failures range from less than 1% per year to rare worst cases of 25% per

year. The norm seems to be more clustered around the 1.25% per year according to a

report by Backblaze for 2018 [159]. While IREs seem to be relentless, disk drives are

manufactured with thousands of spare sectors to be used when failures are detected. As

58

long as the system can repair the lost data and write it back, the full integrity can be

restored. The remaining problems are the costs of the mitigations. Either we pay for

two or three times the storage space to provide replication or we pay to compute parity

and use a much smaller amount of additional storage space. Both cases will also have

data transfer costs as well because to repair lost data members requires that the good

copy of the data be read from its storage location, repairing of the data, and writing it

back. In the case of replication, only a read and write of the failed sectors is required

but for parity based systems, a full stripe of data must be read to effectively perform the

repair. To reuse the earlier example of the failed 10 TB disk drive, with replication, no

more than the capacity of the disk drive would need to be recovered but with erasure

coded stripes, K times the size of the lost shards on the disk would need to be read to

reconstruct the lost data.

It is important to make clear that when storing the shards of data stripes, they do

not have to be one to one with a disk unit, e.g., data shard one goes to disk one, etc. It

is a much more common practice to uniformly distribute the shards of a stripe across

a large set of data storage units, especially for HPC NLDA. When the object storage

system places object across the storage system using a uniform distribution, like Ceph

does with CRUSH [80], the benefits are balanced work load and a reduction of failure

impact due to a more even distribution of failing devices. The shards of a data stripe

are stored in objects in the NLDA with an object storing shards for several consecutive

stripes, e.g., shard 1 of stripe 1 will be placed in Object.1 beginning at offset 0, shard

1 of stripe 2 will be placed in Object.1 at offset d where d is the size of the shard in

bytes, shard 1 of stripe 3 will be placed in Object.1 at offset 2 ∗ d, etc. After object.1 is

filled, Object.2 begins with the next stripe being stored at offset 0 and so forth, as with

Object.1. New objects are created to store subsequent stripes of data as required. The

number of shards stored in each object is a trade off between reducing the overhead of

object creation, reducing the number of objects tracked in the metadata, and the repair

cost. When a failure occurs that renders an element of a stripe unavailable, then K

59

objects must be read to repair the erasure. Having smaller objects results in a smaller

amount of data that will need to be read for repair. Having objects with too few shards

per object results in greater overhead to create the objects in the object storage system

and increases the number of objects that must be tracked in the metadata for the data set.

The number of possible different ways to store data stripes in an object storage system is

found by computing the combinations C of K + M among the Q disks in the storage

system Equation 3.1. If we count the number of objects that can be stored on each disk,

we will have even more ways to store a data stripe. Letting the size of an object be B

and using the multiplication principle for combinations [160], we will have CT ways

Equation 3.2.

C =
(

Q

K + M

)
(3.1)

CT =
(

Q

K + M

)
× Q

B
(3.2)

For example, given a storage system having objects with B = 256 MB of data stored

in each, k = 20 data shards per stripe, m = 4 parity shards per stripe, i.e., RS(20, 4),

with Q = 1, 000 10 TB disk drives (a total of 10 PB raw storage) provides about

40,000,000 objects in which these shards can be stored as shown in (3.3).

10 TB
256 MB × 1, 000 disks = 40, 000, 000 objects (3.3)

There are 4.8× 1052 ways to store the stripes of 24 shards in objects in the storage

system as shown in (3.4).

(
1000
24

)
× 10 TB

256 MB = 1000!
24!× (1000− 24)! × 40000 ≈ 4.8× 1052 (3.4)

60

TABLE 3.1: Combinations of RS(20.4) stripes with 1,000 disks.

f
fd

1 4 12 100 200

0 9.76E − 01 9.07E − 01 7.46E − 01 7.73E − 02 4.40E − 03
1 2.40E − 02 8.95E − 02 2.23E − 01 2.12E − 01 2.72E − 02
2 0.00E + 00 3.17E − 03 2.92E − 02 2.74E − 01 8.00E − 02
3 0.00E + 00 4.77E − 05 2.21E − 03 2.24E − 01 1.49E − 01
4 0.00E + 00 2.57E − 07 1.08E − 04 1.30E − 01 1.98E − 01

P (fd|f) ≈

(
1000−f
24−fd

)(
f
fd

)
(

1000
24

) (3.5)

P (fd|f) ≈

(
1000−f
144−fd

)(
f
fd

)
(

1000
144

) (3.6)

In Table 3.1 we show the likelihood of having fd disk failures in a stripe based on

the number of failed disks, f , in a system with 1,000 disks. We show the likelihoods of

having up to 4 failures in a stripe. The likelihood of having a stripe with fd bad shards

given there are f failed disks is given in Equation 3.5 for an RS(20, 4) configuration.

In Table 3.2 we show the likelihood of having fd disk failures in a stripe based on the

number of failed disks, f , in a system with 1,000 disks. We show the likelihoods of

having up to 24 failures in a stripe. The likelihood of having a stripe with fd bad shards

given there are f failed disks is given in Equation 3.6 for an RS(120, 24) configuration.

From Table 3.1 and Table 3.2, in the last row of each table, the likelihood of having

failures is greater for the RS(20, 4) configuration than for the RS(120, 24) configuration.

For the fd = 4, f = 200 case in Table 3.1 compared to the fd = 24, f = 200 case

in Table 3.2, the former is four times more likely.

61

TABLE 3.2: Combinations of RS(120.24) stripes with 1,000 disks.

f
fd

1 4 12 100 200

0 8.56E − 01 5.36E − 01 1.53E − 01 7.20E − 08 6.17E − 16
1 1.44E − 01 3.62E − 01 3.13E − 01 1.37E − 06 2.70E − 14
2 0.00E + 00 9.10E − 02 2.91E − 01 1.28E − 05 5.84E − 13
3 0.00E + 00 1.01E − 02 1.63E − 01 7.82E − 05 8.31E − 12
4 0.00E + 00 4.15E − 04 6.08E − 02 3.52E − 04 8.74E − 11
5 0.00E + 00 0.00E + 00 1.60E − 02 1.24E − 03 7.26E − 10
6 0.00E + 00 0.00E + 00 3.06E − 03 3.59E − 03 4.95E − 09
7 0.00E + 00 0.00E + 00 4.26E − 04 8.72E − 03 2.86E − 08
8 0.00E + 00 0.00E + 00 4.28E − 05 1.82E − 02 1.42E − 07
9 0.00E + 00 0.00E + 00 3.03E − 06 3.30E − 02 6.21E − 07
10 0.00E + 00 0.00E + 00 1.44E − 07 5.30E − 02 2.40E − 06
11 0.00E + 00 0.00E + 00 4.10E − 09 7.57E − 02 8.34E − 06
12 0.00E + 00 0.00E + 00 5.30E − 11 9.72E − 02 2.61E − 05
13 0.00E + 00 0.00E + 00 0.00E + 00 1.13E − 01 7.46E − 05
14 0.00E + 00 0.00E + 00 0.00E + 00 1.19E − 01 1.95E − 04
15 0.00E + 00 0.00E + 00 0.00E + 00 1.15E − 01 4.68E − 04
16 0.00E + 00 0.00E + 00 0.00E + 00 1.02E − 01 1.04E − 03
17 0.00E + 00 0.00E + 00 0.00E + 00 8.39E − 02 2.14E − 03
18 0.00E + 00 0.00E + 00 0.00E + 00 6.34E − 02 4.10E − 03
19 0.00E + 00 0.00E + 00 0.00E + 00 4.45E − 02 7.33E − 03
20 0.00E + 00 0.00E + 00 0.00E + 00 2.90E − 02 1.23E − 02
21 0.00E + 00 0.00E + 00 0.00E + 00 1.77E − 02 1.92E − 02
22 0.00E + 00 0.00E + 00 0.00E + 00 1.00E − 02 2.84E − 02
23 0.00E + 00 0.00E + 00 0.00E + 00 5.32E − 03 3.95E − 02
24 0.00E + 00 0.00E + 00 0.00E + 00 2.65E − 03 5.18E − 02

62

3.4 Requirements of a Nearline Disk Object Storage Sys-

tem

NLDA storage systems that will provide petabytes of storage will take up a significant

amount of space in the data center, and will require attention to the power and cooling

requirements. Disk drives are heavy and need to be mounted in a safe manner. Bandwidth

and availability requirements of the users must be met. LANL currently has 72 PB of

Campaign storage and plans to be at 144 PB by 2020 to handle the 4 PB of total system

memory for Crossroads. They need 1 GB/s of bandwidth per petabyte of storage. The

system will need to store three times the total Trinity system memory per month and

store the data for up to one year [154]. Categories:

• Power/cooling/data center

• Network bandwidth and redundancy

• File Transfer Appliances (FTA) and erasure coding

• Object Storage Servers

The requirements will depend on the priorities that the system owner assigns to these

categories. Given the weighting of these properties, the goal will be the intersection of

the solutions. Design choices will be made by decision makers based on their priorities.

Disk Bandwidth: Disk bandwidth can be increased by writing to more disks in parallel.

Disk bandwidth is limited by interconnect and spindle speed for spinning disks.

Faster spinning disks have higher bandwidth than slower spinning disks. However,

faster spinning disks are smaller in capacity than slower spinning disks. SSDs

have higher bandwidth than spinning disks but cost more per byte. SanDisk has a 1

TB SSD priced at $599 [161] while Seagate’s 16 TB disk is priced at $609 [162].

63

IO Operations Per Second (IOPS): Smaller write or read sizes will increase IOPS.

Random reads or writes on spinning disks will reduce IOPS. SSDs perform well

on small IO and random operations. For NLDA, larger write sizes result in greater

bandwidth.

Stripe Sizes: Larger stripe sizes with shards around 4 to 8 MB result in higher through-

put on the GPU.

Our design needs to provide policies and controls for dealing with several threats to

availability and performance. Some of these are permanent and will require the system

owners to replace failed components within a time frame that meets their SLA. Other

failures can be addressed less urgently due to system redundancy or self-healing. These

failure modes are:

• Temporary failure of a component that is repaired within the SLA. There is no

state change in this failure domain. The system is restored to the same state as

before the failure occurred within the scope of the affected objects in the failure

domain.

• Permanent failure resulting in the loss of objects. The objects can only be recovered

from the erasure coding service. This is mitigated by having a sufficient number of

coding shards per stripe. The goal is to avoid recovery until the object is read by

the user; reconstructed shards are then written back to the object storage system.

• Availability must always provide a minimum of K + x shards where x is required

to provide safety during any current recovery from a temporary or permanent

failure, including IREs.

• Power/Cooling/Data center: Scope is a single data center with high availability

power and cooling to meet or exceed the SLA. Power and cooling are likely

dependent so we will derive a cost unit based on the power consumption. Data

center space is the unit for cost and should be fixed.

64

• Network bandwidth and redundancy must meet the bandwidth requirements under

failure conditions. Bandwidth to/from the FTAs in total must be greater than the

required system bandwidth by the factor of coding redundancy. This bandwidth

must be matched by the aggregate bandwidth of the Object Storage Servers (OSS).

• The FTA and erasure coding must meet the bandwidth requirements to/from the

upstream file storage. Erasure coding throughput must be greater than or equal

to the system bandwidth times the coding redundancy factor. Additional FTAs

are provided to meet the bandwidth requirement under FTA failure. The failure

domain for an FTA includes the upstream network link, the FTA server and the

system network link. These are all temporary failure components. The assumption

is that the FTA is a shared-nothing implementation and the work can be restarted

on another FTA when failure occurs.

• Object Storage Servers can fail in both ways. Disk failures are probably not

temporary and all objects stored on the associated Object Storage Device (OSD)

are lost. Failures with the other components of the OSS are assumed to be

temporary and can be repaired within the SLA. Failed disk drives will be replaced

within the SLA but the objects that were stored on them must be recreated by the

erasure coding process and possibly stored on another OSD in the mean time.

3.4.1 Baseline Architecture Design

The design baseline architecture consists of the following assembly of components

in standard data center racks:

• Storage rack —A Top of Rack switch (TORS) to connect to each OSS at the leaf

connection speed of the storage network. The TORS will up link to the storage

system backbone fabric at leaf switch up link connection speed. The rack contains

O OSSs having D disks of capacity C and bandwidth B.

65

– The disks are Field Replaceable Units (FRU) and will be replaced upon

failure within the SLA to maintain the system raw capacity. The remainder

of the OSS is considered a FRU and failure will be in the temporary category.

Disks are transferred from the failed OSS to the replacement OSS and brought

back online within the SLA so the system state with regard to the affected

OSDs is restored to where it was at the time of failure.

– At any time there must be storage racks available with capacity greater than

or equal to the the object stripe size. A storage rack is a failure domain. A

storage rack can become unavailable due to a TORS failure or power failure

or cooling failure. Other failures within the rack would be confined to the

OSS. Disk failures are the minimal failure unit.

• Power, Cooling, Data center —We are assuming that the data center provides

power, cooling and physical space according to the SLA. Power is provided to each

rack through Power Distribution Units (PDU) and may disrupt service due to a

fault on an individual rack. Cooling faults are expected to have broader impact and

may result in a temporary system unavailability. Facility detection and protection

from fire or other environmental threats are outside of our scope.

• Network infrastructure backbone —Each FTA will have two full bandwidth

connections to the network backbone. The network will be configured to deliver the

required bandwidth during component failures. Redundant bandwidth is provided

to the TORSs. Each OSS will only have a single network connection. Failure of a

TORS will cause a temporary failure of the entire storage rack. The storage rack

will be brought back online after the TORS is repaired and the system state will be

restored.

• Number of storage racks —The number of storage racks required should be

greater than:

data shards + coding shards + fault tolerance on write

66

TABLE 3.3: Example Nearline Disk Archive Storage System Configuration

6 TB disks
25 PB data storage capacity
120 data shards per stripe and 24 coding shards per stripe

25 PB data + 5 PB coding = 30 PB raw
5,000 6 TB disks = 30 PB raw
5,000 / 144 shards == 35 disks per shard

• In order to maintain the full protection capability of erasure coding, the number

of available failure domains to support a write are available must be greater than

K + M when the system is online. This is to make sure that we have a place to

put all of the shards of a stripe.

For the example storage system configuration given in Table 3.3 we show 35 disks

per failure domain with 6 TB disks and a total capacity of 25 PB. A 42 U storage rack

can hold more than 33 disks. The following are some possible configurations for the

storage options:

1. 1U OSS with 3 disks each, total 11 servers + 1 TORS = 12 U.

2. Put 2 failure domains in each rack. Each with 11 servers, a TORS and two PDUs.

3. Put 3 failure domains in each rack with 3 TORSs and 3 PDUs.

The last option amortizes the cost of a rack and cuts the data center footprint by 1/3

of option one so this would be the most economical configuration. The heat load of 33

servers, 99 disk drives and three TORSs will be less than the 35 KW per rack limit.

3.5 Preliminary Investigation and Measurements

We did some early experiments to reproduce other research and better understand the

problems with object storage systems and erasure coding to see how they would fit in the

storage solutions for HPC. For the tests and curation of the results we used several tools

67

provided by the open source community. Running concurrent tests and measurements on

multiple systems in our test configuration was enabled by the GNU Parallel tool [163].

3.5.1 Raw Disk IO Measured with dd and fio

To develop our baseline we wanted to establish accurate ways to measure perfor-

mance. The UNIX R© dd command has been around for years and does basic IO. It is

often used to report IO throughput and its simplicity eliminates much of the software

stack from the measurement. We measured several sizes of write operations and read

operations to arrive at the maximum sequential performance for a single disk drive in the

Dell C8000 chassis. We also measured the bandwidth using fio to compare how these

two tools report the same performance property.

TABLE 3.4: Baseline Disk Performance — dd Version 8.22, fio Version 2.1.10

Bandwidth Single Disk Comparison between dd and fio
Op BS dd fio
write 512 B 26.0 KB/s 30 KB/s
write 4 KB 490 KB/s 7 MB/s
write 8 KB 956 KB/s 17 MB/s
write 128 KB 14.8 MB/s 136 MB/s
write 256 KB 26.4 MB/s 174 MB/s
write 1 MB 75.2 MB/s 194 MB/s
read 512 B 214 MB/s 50 MB/s
read 4 KB 221 MB/s 84 MB/s
read 8 MB 87 MB/s 112 MB/s
read 128 KB 221 MB/s 217 MB/s
read 256 KB 220 MB/s 188 MB/s
read 1 MB 178 MB/s 241 MB/s

We measured the performance of the components in the data path so that we will

understand what the capability of the system is. This has helped us to analyze the

performance and locate the bottlenecks. This information also helps us understand the

greatest constraints in the system which will impose an upper bound on the system

performance. In Table 3.4 we begin by measuring the bandwidth for various block sizes

to our storage disks using the dd tool and the fio tool. In this measurement we wanted to

learn what the read and write performance should be for each disk. With three disks per

68

server, 1 MB read or writes, we should expect approximately 600 MB/s as the maximum

bandwidth per node. We measured disk bandwidth on another system with dd and got

measurements more consistent with the fio. The differences were operating system, SAS

or SATA, PCI 3 or PCI2, among other things. See Table 3.8 in section 3.7 for the details

of these measurements. The higher bandwidth with the 1 MB block sizes is the behavior

that matters for our design.

3.5.2 Bandwidth and IOPS Performance

To determine the performance of the disk subsystem we performed measurements

of several disk configurations using fio. All of the tests were configured to write a total

of 8 GB using 20 jobs with a time limit of 240 seconds. The performance that is most

critical for distributed file system performance is the 512 byte read and write but the

performance at this size is very low. The larger sizes of operations will demonstrate

the maximum capabilities of the system. Table 3.5 shows the bandwidth performance

measured with 512 byte, 4 KB, 8 KB, 128 KB, 256 KB and 1 MB. These operation

sizes were all measured using the 1, 2, 4, 8, 24, 48 and 96 disk configurations. The disk

drives were selected to use IO data paths that provided the greatest resources for the test,

e.g., the two disk test used one disk on the first HBA and the second disk on the second

HBA. Table 3.6 shows the IOPS that were measured at the same time as the bandwidth

shown in Table 3.5. We have shown these results as bar charts in Figures 3.4 and 3.5.

The tests show that the IOPS peak for the 3 KB read operations. Write operations

are mediocre with maximums occurring at the two disk configuration where we have

one disk drive per HBA. The tests were configured to use the libaio driver, a queue depth

of four, direct IO and all writes are appending to the single file per disk (the raw device,

there are no file systems, e.g., /dev/sdf). Bandwidth peaks at 3.4 GB/s with the 1 MB

reads and writes. The read tests hit this 3.4 GB/s maximum with 24 disks drives. The

maximum read bandwidth for eight drives is 3.1 GB/s so the system appears to hit the

upper limit for bandwidth around 10 disk drives and adding more disk drives does not

69

increase the bandwidth. For the smaller size operations, the additional disks do make a

difference and the bandwidth increases proportionally to the number of disks for some

disk configurations. For others, the 4 K and 8 K writes and the 512 byte read, this doesn’t

hold.

The 8 KB writes are approximately two times the bandwidth of the 4 KB writes

so we can conclude that the system can perform the same number of IOPS for these

operation sizes and we get twice the bandwidth by doubling the size of the operation.

However, this does not hold between the 512 byte and the 4 KB operation sizes, though.

The speed of a one disk 512 byte write is 80 KB/s and the speed of the one disk 4 KB

write is seven MB/s which is a factor of 87 times and at 24 disks, the 512 byte write

bandwidth is 382 KB/s compared with the 4 KB write bandwidth at 20 MB/s giving a

ratio of 52 times. In order for the 512 byte write operation to produce the same bandwidth

as the 4 KB operation the system would need to perform 13,671 IOPS but the limit on

the Everest node is around 8,000 IOPS which is produced with the 4 KB write operation

on two disks where there are two HBAs in the system. This low IOPS performance is a

concern because our Red Mountain node is able to deliver more than 24,000 IOPS on

512 byte writes and nearly 22,000 IOPS for 4 KB writes Table 3.8.

TABLE 3.5: Disk IO Bandwidth — Raw disk bandwidth comparison. 1-48 with one
Dell C8000 chassis, 96 with two.

Bandwidth Disks
BS 1 2 4 8 24 48 96

Write
512 B 30.3 KB/s 61.2 KB/s 121 KB/s 240 KB/s 382 KB/s 732 KB/s 1.4 MB/s
4 KB 7.0 MB/s 32 MB/s 27 MB/s 25 MB/s 20 MB/s 28.8 MB/s 31 MB/s
8 KB 17 MB/s 63.3 MB/s 56 MB/s 50 MB/s 40 MB/s 55.5 MB/s 59 MB/s

128 KB 136 MB/s 228 MB/s 331 MB/s 291 MB/s 489 MB/s 996 MB/s 1.3 GB/s
256 KB 174 MB/s 265 MB/s 392 MB/s 563 MB/s 935 MB/s 1.7 GB/s 2.0 GB/s

1 MB 194 MB/s 366 MB/s 668 MB/s 1.1 GB/s 2.1 GB/s 3.4 GB/s
Read

512 B 50 MB/s 13 MB/s 23.6 MB/s 60 MB/s 46 MB/s 69.3 MB/s 171 MB/s
4 KB 84 MB/s 117 MB/s 161.6 MB/s 208 MB/s 1.4 GB/s 2.1 GB/s 1.4 GB/s
8 KB 112 MB/s 186 MB/s 213.6 MB/s 368 MB/s 672 MB/s 1.6 GB/s 1.7 GB/s

128 KB 217 MB/s 289 MB/s 525 MB/s 1.0 GB/s 3.2 GB/s 3.1 GB/s 2.1 GB/s
256 KB 188 MB/s 296 MB/s 791 MB/s 1.8 GB/s 3.4 GB/s 3.0 GB/s 2.0 GB/s

1 MB 241 MB/s 379 MB/s 1,743 MB/s 3.1 GB/s 3.4 GB/s 3.4 GB/s

70

0	
 5000000	
 10000000	
 15000000	
 20000000	
 25000000	
 30000000	
 35000000	
 40000000	

512	
 B	
 write	

4	
 KB	
 write	

8	
 KB	
 write	

128	
 KB	
 write	

256	
 KB	
 write	

1	
 MB	
 write	

512	
 B	
 read	

4	
 KB	
 read	

8	
 KB	
 read	

128	
 KB	
 read	

256	
 KB	
 read	

1	
 MB	
 read	

96	

48	

24	

8	

4	

2	

1	

FIGURE 3.4: Disk Bandwidth measured with fio

0	
 100000	
 200000	
 300000	
 400000	
 500000	
 600000	

512	
 B	
 write	

4	
 KB	
 write	

8	
 KB	
 write	

128	
 KB	
 write	

256	
 KB	
 write	

1	
 MB	
 write	

512	
 B	
 read	

4	
 KB	
 read	

8	
 KB	
 read	

128	
 KB	
 read	

256	
 KB	
 read	

1	
 MB	
 read	

96	

48	

24	

8	

4	

2	

1	

FIGURE 3.5: Disk subsystem IOPS measured with fio

71

TABLE 3.6: Disk IOPS — 1 - 48 measured with one Dell C8000 chassis, 96 with two

IOPs Disks
BS 1 2 4 8 24 48 96

Write
512 B 59 119 237 470 745 1,430 2,831
4 KB 1,744 8,013 6,875 6,157 5,028 7,031 7,745
8 KB 2,125 7,906 7,054 6,237 5,022 6,916 7,422

128 KB 1,064 1,781 2,590 2,274 3,818 7,939 10,077
256 KB 678 1,035 1,531 2,197 3,652 6,370 7,985

1 MB 189 357 652 1,140 2,104 3,377 2,004
Read

512 B 100,310 25,975 47,142 119,959 92,582 138,526 342,881
4 KB 21,019 29,361 40,411 51,970 364,459 512,106 367,003
8 KB 13,947 23,240 26,701 45,960 83,943 199,932 218,503

128 KB 1,698 2,256 4,103 8,178 25,207 25,179 16,597
256 KB 735 1,157 3,088 7,156 13,686 11,996 8,196

1 MB 235 370 725 3,121 3,402 3,403 2,083

TABLE 3.7: Design maximum data path bandwidth

Bandwidth Data Path
Component BW Capability
PCIe 3.0 8x 7.8 GB/s 8 lanes @ 985 MB/s per lane
LSI SAS 3 HBA 9.6 GB/s 8 lanes @ 12 Gb/s per lane
SAS 2 Expanders 4.8 GB/s 8 lanes per sled @ 6 Gb/s per lane

3.6 Bandwidth of Data Path

The bandwidth for data transfer to and from the disk drives and memory is limited by

the components it must pass through. The path consists of the PCI 3.0 bus, the two LSI

9300-8e SAS 3 controllers, the Dell C8000XD SAS 2 Expanders and the SAS interface

on each disk drive. The theoretical bandwidth for each of these components is showing

in Table 3.7.

We have two configurations under test. The first configuration in ?? provides 1 PB

disk storage and connects each Dell R730 with one C8000 chassis having 48 6 TB SAS

3 disk drives. This configuration provides 16 SAS lanes from the two controllers for

data flow to and from the 48 disk drives. In this configuration the data flow to each of

the four C8000XD disk sleds having 12 disk drives is provided by four SAS channels to

72

each sled giving a maximum bandwidth of 2.4 GB/s. The configuration provides four

SAS lanes to each sled. The maximum bandwidth provided by a single disk is 280 MB/s

so the 12 disks on a single sled can sink or source 3.360 GB/s. We conclude that the

limiting component in the data path is the SAS Expander giving a maximum bandwidth

per sled of 2.4 GB/s and a combined bandwidth of 4.8 GB/s for the two sleds connected

to each controller. This is well under the PCIe bandwidth so the maximum performance

of the disk subsystem for the single C8000 chassis is 9.6 GB/s. Averaging this over 48

disks indicates that the system can support a concurrent bandwidth of 204 MB/s read or

write per drive.

In the second configuration in ?? we have two C8000 subsystems giving a total

of 96 disk drives. But, we are still limited by the 16 SAS lanes from the two LSI

HBAs that are capped at 6 Gb/s giving 9.6 GB/s for the disk subsystem. Each of the

HBAs is now connected to one of the C8000 chassis providing two SAS lanes to each

C8000XD sled and serving 24 disk drives. Each C8000 chassis will have 4.8 GB/s of

bandwidth available through these eight lanes which now becomes the limiting factor.

This configuration has a 9.6 GB/s maximum theoretical bandwidth, too. Because we have

doubled the number of disks to 96 and use the same data path which has a bandwidth of

9.6 GB/s we reduce our maximum concurrent read or write bandwidth per disk to 102

MB/s.

3.7 Comparison with other systems

To validate the measurements that we have made on the Everest cluster with Dell

systems using the C8000XD storage solutions we compared them with other systems that

serve a similar purpose that we have on hand. The comparisons were only made using

one disk drive using the dd and fio tools of the same version. The configuration of the

systems that we have used for comparison are in our Red Mountain cluster. The systems

have two Intel Xeon X5650 @ 2.67 GHz, 24 GB RAM, LSI SAS2008, WD2003FYYS-

23W0B disk drives. The operating system on one of the Red Mountain nodes is Ubuntu

73

LTS 14.04 with 3.16 kernel and the other has the same distribution of CentOS 7.1 as

the Everest nodes. The Red Mountain CentOS node has the kernel included with the

distribution, 3.10, while we have upgraded the Everest nodes to the 3.18 kernel. The write

performance of the Everest nodes for 512 byte and 4 KB operations are significantly low

compared to the Red Mountain performance by an order of 100. We have also compared

the performance with the recent report from CERN for their 30 PB Ceph configuration

which they reported 110 MB/s write with 4 KB operations and 135 MB/s reads with the

same data size using dd [82]. Note that our measured dd performance for write was less

than our fio measurements by an order of 10 Our measurements are shown in Table 3.8.

3.8 Architecture

From our measurements we observed that our system architecture was capable of

performing above 1 GB/s if we used larger sized reads and writes however, most studies

were only showing performance in the tens to hundreds of MB/s range (see section 2.6

in chapter 2). We also observed that HPC was using disk storage between PFS and

tape archive as a holding area which was beginning to see growing capacity and data

lifetime. For example, at Lawrence Livermore National Laboratory they increased their

“grace period” for data in their HPSS disk cache from 20 days to 300 days with a recent

upgrade [164] and at Los Alamos National Lab they introduced Campaign Storage with

Trinity [3, 165]. Since the requirements for this tier of storage, a buffer between the high

performant storage layer and the long term tape archive layer constrained the usage to

larger file sizes, immutable files, and moderate data lifetime on the order of a year, we

found this to be an interesting problem for our research. Erasure coding on the GPU with

Gibraltar performed much better when we were able to do more compute on the data.

This property provided a good fit with the larger file size constraints for the nearline

archive storage, we investigated this more closely and decided to design an architecture

for NLDA that exploited the performance of Gibraltar with the large stripe sizes. With

larger stripe sizes, having the same storage efficiency as with smaller stripe sizes resulted

74

TABLE 3.8: Comparison between Red Mountain nodes and Everest nodes, single disk

Red Mountain R730
fio IOPS Ubuntu LTS 14.0.4 3.16 Centos 7 3.10 Centos 7 3.18
512 write 24556 24692 59
4k write 21743 21843 1744
8k write 15700 15969 2125
128k write 1578 1667 1064
512 read 26483 26519 100310
4k read 29107 26915 21019
8k read 19789 20041 13947
128k read 1992 2015 1698

fio BW (KB/s) Ubuntu 3.16 Centos 7 3.10 Centos 7 3.18
512 write 12278 12346 30
4k write 86972 87376 7000
8k write 12560 127758 17000
128k write 202031 213397 136000
512 read 13242 13260 50000
4k read 116431 107663 84000
8k read 158315 160335 112000
128k read 255045 258015 217000

dd IOPS Ubuntu 3.16 Centos 7 3.10 Centos 7 3.18
512 write 14928 13528 51
4k write 11500 10860 119
8k write 9400 9152 119
128k write 1147 1179 112
512 read 194881 226370 122732
4k read 38924 37777 36632
8k read 18006 18681 20701
128k read 1119 1149 1682

dd BW (KB/s) Ubuntu 3.16 Centos 7 3.10 Centos 7 3.18
512 write 4900 6900 26
4k write 47100 44500 490
8k write 77000 75000 981
128k write 150000 155000 14800
512 read 99800 116000 62800
4k read 159000 155000 150000
8k read 148000 153000 170000
128k read 147000 151000 221000

in a greater amount of parity shards. Also, since the cost of repairing erasures has the

cost of data transfer and compute, we were interested in learning how long we could

75

delay erasure repairs using the greater number of parity shards.

By reducing the urgency to repair erasures in nearline disk archive storage systems,

we can eliminate most of the additional work required by waiting until the user reads

the data to perform the repairs. When the user reads data from the nearline disk storage

system, K error free shards are read and repairs are performed to return the data stripe to

the full reliability configuration, i.e., RS(10, 2). Several studies [128, 138] have shown

that erasure repair at the RS(10, 2) and RS(20, 4) level can only be delayed for a short

amount of time before the risk of data loss becomes significant. We have shown that

erasure coding on GPU using the Gibraltar library [23, 24] can produce large stripe at

high bandwidth and low latency which does not affect the user experience for nearline

archive storage, e.g., the user expectations for bandwidth and latency for archive storage

is based on writing and reading magnetic tapes [23, 24]. When the stripe size is increased,

the number of parity shards can also be increased according to the ratio of K to M

that the system owners have established. For example, setting K = 120 and M = 24

provides the same storage efficiency as RS(10, 2). With the larger stripe sizes, we have

increased the number of redundant shards by a factor of 12.

HPC data center owners provide File Transfer Appliances (FTAs) as job resources

to users to move data between archive storage and the HPC compute storage i.e., PFS.

Since data would be moved by these appliances to and from the PFS to the NLDS, there

is an opportunity to perform the erasure coding and repair on the FTAs; this is a type

of computing on data in transit. Since there are an order of magnitude fewer FTAs

than storage servers, configuring the FTAs with GPU devices is an economical design

decision. The current market price for the NVIDIA P4 GPU device is around $2,000

which can be paired with the Intel E5-1630 v4 costing $450 for a total cost of $2,450

while the Intel E5-2966A v4 processor which would be required to meet the erasure

coding performance of the K40 costs around $4,000, these device configurations perform

about the same for erasure coding. This provides a capital savings of about 40% per

FTA. In addition, by removing the requirement to compute erasure coding on the OSSs,

76

FTA FTA FTA FTA

PFS

CampaignIB PCI RAM PCI GPU

1) All data flows through the File Transfer Agents (FTA).
2) Data is pipelined through the GPU for erasure coding

or repair.
3) Trinity concept of operation defines data life in

Campaign Storage for about 9 months.

FIGURE 3.6: HSM Data Flow — Data flow to/from the PFS to the NLDA.

they can be configured with less expensive CPUs that are sufficient to handle the storage

workload.

Figure 3.6 shows the data flow to or from the PFS via the FTAs. The data moves

over the network fabric from the PFS to the FTA into memory, it is off-loaded to the

GPU for erasure coding, and moved back to memory. This erasure coded stripe of data

is then stored on the NLDA by using the Ceph client API to write to storage. The Ceph

storage system places the data according to the CRUSH data placement system [166].

The data moves to the OSSs over the storage network fabric and is written to the disk

where it was assigned by the system. When reading data from the NLDA, the data flow

is in the reverse direction. When data is read from the disk it is stored in memory on

the OSS. It is then sent over the network fabric to the FTA. The data is moved to the

FTA memory, then to the GPU memory. Erasure repair is performed on the data. The

repaired shards are copied back to the FTA memory. The K data shards are sent to the

user out the Infiniband interface. The repaired shards are sent back to the object storage

system. In Ceph, there is a process that manages each disk drive in the system, called an

Object Storage Device (OSD), which handles the IO and bookkeeping required to store

or retrieve the data from the object. The object is the set of storage elements that are

used for keeping the data on the media. The OSD provides the object as an abstraction

over these elements. The applications only need to keep up with the name of the object

where the data are stored in order to retrieve them.

Some important properties about NLDA usage in HPC also make it possible to have

a more simple architecture. Data will usually be stored in objects that are on the order

77

of 1 GiB. Since the data are for archive of facts that do not change, the immutability

property removes the requirement to perform random updates on the data. Once it is

written, it will only be read when needed. Since the lifetime of some data may be quite

long and the number of times that it will be accessed are low, it is more economical to

store the data on magnetic tape. Magnetic tape does not require any energy for data at

rest, energy is only used when the tape is being written or read3. At DKRZ in 2015,

they expected to consume 250KW for 52 PB of disk storage while they only expected to

consume 25KW for 500 PB of tape storage [167]. For their case, disk storage consumes

about 50KW per PB while tape archive consumes 50W per PB! For this reason, the

lifetime of data on the NLDA is expected to be less than a year.

We have studied the use of object storage for nearline disk archive (NLDA) for

exascale computing [23, 24, 168]. By exploiting the HPC architecture which uses file

transfer appliances (FTAs) to move data between high performance file systems and

archive, we have shown that using GPUs can enable the use of larger stripe sizes. This

provides a means to increase the effectiveness of the erasure coding redundancy by

allowing the number of parity shards to increase while maintaining the storage efficiency

ratio. Because erasure coding is an embarrassingly parallel problem, GPUs are able to

excel in this application compared to typical typical CPU architecture. In Figure 3.7 we

compare erasure encoding between Gibraltar [22, 28] and Intel R© ISA-L [169] for various

stripe sizes. The CPU erasure coding performs as well up to about 20 shards but drops

off quickly afterwards. Gibraltar performance drops off much more gradually as the

number of shards increase. Erasure repair performance is similar as shown in Figure 3.8

and Figure 3.9. In the first repair example with a single erasure, the Intel ISA-L does a

fair job but with four erasures, the Intel ISA-L performance drops off significantly while

Gibraltar maintains the same performance.

3We are ignoring the energy costs to maintain the tapes in the archive in a controlled environment but
this is similar to the environment where other storage media might be used.

78

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 20 40 60 80 100 120 140

B
a

n
d

w
id

th
 G

B
/s

Number of shards

Erasure Encoding

Legend
Gibraltar encode 1GB
Gibraltar encode 512MB
ISA-L encode 1GB
ISA-L encode 512MB

FIGURE 3.7: Effect on erasure coding by shard count — Erasure coding bandwidth
results with increasing number of shards. Coding shards are held to a ratio of one coding

shard to five data shards.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 20 40 60 80 100 120 140

B
a

n
d

w
id

th
 G

B
/s

Number of Shards

Erasure Decoding, 1 Erasure

Legend
Gibraltar decode 1GB
Gibraltar decode 512MB
ISA decode 1GB
ISA decode 512MB

FIGURE 3.8: Erasure repair of one erasure — Erasure recovery bandwidth results with
increasing number of shards and one erasure. Coding shards are held to a ratio of one

coding shard to five data shards.

79

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 20 40 60 80 100 120 140

B
a

n
d

w
id

th
 G

B
/s

Number of Shards

Erasure Decoding, 4 Erasures

Legend
Gibraltar decode 1GB
Gibraltar decode 512MB
ISA decode 1GB
ISA decode 512MB

FIGURE 3.9: Erasure repair of four erasures — Erasure recovery bandwidth results
with increasing number of shards and four erasures. Coding shards are held to a ratio of

one coding shard to five data shards.

80

3.9 Cost Analysis

Acquisition costs of storage systems is difficult to find in the literature. Pricing for

storage is usually included as a feature in proposals having a bottom line price for the

entire system that is the subject of the acquisition. Since we have personal familiarity

of two recent Lustre parallel file systems by the U. S. Air Force, we will perform a

rough analysis to compare the cost of the high performance file system with the lower

performance object file systems. The cost for the object file system comes directly from

the system under test, see Table 4.1 in chapter 4. We have the following samples for our

analysis with the average cost of each type given:

• $500K Cost of 700 TB Dell Lustre system with two OSS nodes, two MDS nodes,

SAS-3 SAN, FDR Infiniband.

• $450K Cost of 500 TB DDN Lustre system with four OSS nodes, two MDS nodes,

SAS-3 SAN, EDR Infiniband.

• $250K Cost of 2 PB Dell system with four OSS nodes, three client nodes, SAS-2

SAN, FDR Infiniband, 10 GbE, NVIDIA K40 GPUs.

• $0.79 per GB Average cost of Lustre storage.

• $0.12 per GB Average cost of NLDA storage.

The cost of parallel file systems is six times greater than the cost of object storage

systems. It makes economic sense to move data from the parallel file systems to the

object storage systems when the data is not actively being used for computation or

analysis.

3.10 Encryption

In this research our goal is to show the practicality of performing encryption of data

while it is being moved to the storage destination. We also want to encrypt the data

81

while it is within a security boundary that can be established, guarded and monitored

with appropriate controls. By providing encryption while the data is resident on the FTA

and before it is stored in the object storage system, we can achieve this objective. Also,

we can benefit from additional computation on data that is already present in the GPU

memory providing a greater amortization of the cost to move the data onto and off of

the GPU. There is one difference that will increase the data communications cost when

we perform encryption on the GPU, the data will now be changed (encrypted) and will

have to be copied back to the host for transmission to the storage system. When we are

not encrypting, the data is not changed so only the parity shards need to be copied back

to the host. However, when we study other research about using GPUs for encryption,

they all have to contend with the same requirement. We used the AES CUDA encryption

functions that were developed by Berlanga in [150] in the CTR [170] mode where the

encryption for each 128 bit block begins with adding the initialization vector (IV) to the

CUDA block index, an approved optimization which enables the parallel encryption of

multiple 128 bit blocks of data. We used a 256 bit key for AES-256 encryption. We

only used the transformation tables from the Berlanga source code and the code for

performing the 14 rounds of encryption that are required with a 256 bit key. These

source code items were originally provided in the NIST documentation but coded as data

structures and operations in CUDA by Berlanga. In our design, we move a full stripe of

data to the GPU memory from the host, encrypt the data, perform the erasure coding,

and copy the data back to the host for storage in the object storage system. When reading

data back, data is copied to the GPU memory, erasures are repaired (if required, very

likely), decrypted, and copied back to the host.

Since the NVIDIA R© K40 GPU that we are using is capable of concurrently copying

data from the host to the GPU, executing a CUDA kernel, and copying data from the

GPU to the host using the streams feature, we decided to implement the feature in our

Gibraltar code. We expected this to provide a speedup of about 2X. We did not meet

all of the requirements to make our implementation of AES FIPS compliant but the

82

A

B

d

C

Authorization
Boundary

Encrypted

b) NLDA Dataflow

FIGURE 3.10: Security Authorization Boundary — By encrypting data on the FTA, the
scope of the authorization boundary can be reduced so that the object storage system is
not included. In the illustration, (A) is the PFS, (B) is the FTA, and (C) is the NLDA.

The data shards of a stripe are represented by [d].

performance and feasibility demonstrated by our prototype should give a good example

of the performance and practicality of this approach. For example, since we use the

CUDA index number of the block to increment the IV, each stripe of data that is executed

would have the same IV, a property that is not allowed for encryption [170]. In order to

comply with this requirement, an initialization vector (IV) would need to be created and

stored for each stripe of data. We are leaving the details of this to future research in order

to focus on the main goal of the prototype implementation.

By performing encryption on the FTAs the scope of the authorization boundary for

the system information security plan is reduced. The object storage system can be part of

a shared information system having lower security requirements since the more sensitive

data has been encrypted. This is illustrated in Figure 3.10.

83

3.11 Lazy Repair

In previous research the authors demonstrated that recovery could be delayed without

reducing the MTTDL while reducing the repair work and associated costs [128]. They did

this through the lens of small stripe sizes with few redundant shards for the stripe. Other

research has shown that Reed-Solomon [77] erasure coding could be combined with

replication to increase the MTTDL by a factor of 4,000 [136]. Both authors used a Monte

Carlo model to compute the MTTDL while another study used a combinatorial model to

show that the likelihood of failure was much less as the stripe sizes were increased [136].

The idea of delaying erasure repair can be extended with larger stripe sizes and with a

larger number of redundant shards to allow the deferral of repair much longer, possibly

beyond the lifetime of the data in the storage system. Under the constraint that the NLDA

is used for short term archive after which the data may no longer be required or the data

may be moved on to more economical long term archive storage, the lifetime of the data

on the NLDA will typically be on the order of six months. In addition, when data are

read from the NLDA during the lifetime, stripes are repaired and written back to the

NLDA to restore full redundancy, this occurs at little additional cost. More aggressive

repair strategies would require the complete read of data for each single erasure that was

detected. The likelihood of a data loss for traditional stripe sizes, e.g., K = 10, M = 4,

as shown in Silberstein et al., by delaying repair until there were two erasures was still

100 times lower than three replicas while reducing repair bandwidth by a factor of 12.

Adding one more redundant shard reduced the repair bandwidth by a factor of 20 with

slightly less likelihood of data loss. However, using immediate erasure repair lowered

the likelihood of data loss by another 1,000 times.

We envision a use case of the NLDA where the system owners determine the policy

for data reliability based on their SLA with their users. For example, the policy could

be that users must delete or archive their data within three months and assuming that

having RS(120, 12) would provide protection with lazy repair for up to three months.

84

Extending the example to an SLA that leads to a six month tenancy limitation which we

assume could be provided with a configuration of RS(120, 18). And the last illustration

of this use case would be to meet an SLA that provides nine months of tenancy with

an assumed RS(120, 24) configuration. There would still be a risk that outliers would

occur due to the many threats on storage media so mitigations could be provided to

repair the data automatically when a preset threshold has been reached. Thus, this model

for lazy repair provides ways for system owners to determine the best configuration for

their SLAs and assurances that they have detective means to avert data loss for extreme

conditions.

The architecture for Lazy Repair would operate in two modes. In the normal mode,

data are repaired when the user reads a stored item from the object storage system. In

this case, the system would select K good shards from each stripe in the data item, repair

each stripe, send the K elements of the data stripe on to the user application, write the

repaired shards from the K + M in the stripe back to the object storage system. This

would restore the stripe to full protection with K + M good shards. In the protection

mode, the system would be notified when the number of defective shards reaches a limit

set by the system administrators. When the limit value is reached, a read of the stripe

would be scheduled on one of the FTA nodes which would read K good shards, repair

the failed shards, and write the repaired shards back to the object store. The protection

mode would only be invoked once the number of failures reached the limit which would

reduce the number of repair jobs for a stripe. For example, if the stripe configuration

was RS(120, 24) and the protection limit was set to 18, then the repair of the previous

17 shard failures would have been avoided saving the need to read the full stripe of data

that 17 times.

As an example, we assume a storage system that starts up with 1,440 10 TB disk

drives and we store our data in 256 MB objects. No two objects in a single stripe are

stored on the same disk drive and the objects in the stripes are uniformly distributed

across the 1,440 disk drives in the system. In our model, we do not replace a disk that

85

fails and we assume that all of the data was stored in the storage system at startup. This

gives us 240,000 stripes in the system with RS(20, 4) and 400,000 stripes in the system

with RS(120, 24).

Using the combinatorial models from other research [136], we compare the like-

lihood of data loss of the RS(20, 4) configuration with the RS(120, 24) configuration

to show there is a significant difference in the likelihood of failure between the two

configurations. We assume that there are 40,000 256 MB objects stored on each disk so

p(k)× 240, 000 ≈ 10−4 in Equation 3.7 and the likelihood of data loss is 1− p(k) ≈ 1
106 .

In Equation 3.8 we compute the probability of a data loss for a single stripe with the

RS(120, 24) configuration is 10−26 so, with 40,000 stripes in the system, we have the

likelihood of data loss of 1− p(k)× 40, 000 ≈ 1
1022 .

p(k) =

(
24
5

)
(

1440
5

) ≈ 104

1013 ≈ 10−9 (3.7)

p(k) =

(
144
25

)
(

1440
25

) ≈ 1027

1053 ≈ 10−26 (3.8)

86

CHAPTER 4

A NEARLINE DISK ARCHIVE STORAGE FOR HPC

4.1 Introduction

In this chapter we describe our configuration and testing methodology for our

nearline disk archive storage system for high performance computing. We describe the

software features that allow us to select from available erasure coding libraries in Ceph,

our platform and the results of our measurements. When we compare the results with

the research reported in chapter 2 we see that the performance of the NLDA using the

Gibraltar erasure coding on the FTAs is the best solution.

4.2 Test Environment

We have implemented our features in Ceph which provides a convenient Application

Programming Interface (API) that we have used to implement our erasure coding on the

FTAs. The API also allowed us to use a plugin feature to integrate the Gibraltar library

into our environment as shown in Figure 4.1. This plugin is also used for several erasure

coding libraries that are already implemented in Ceph including the Intel R© ISA-L. This

feature provided a very convenient way to compare the performance of several erasure

coding libraries. Since the Intel R© ISA-L performed the best, we have only included

these results in our comparisons. Data are stored in a Ceph data structure called a

bufferlist which allows the Ceph product to manage the system memory efficiently. Data

being stored by the application is copied into K bufferlist data structures which are then

referenced by the API call for the erasure coding to be performed. When the library has

completed the erasure coding, it returns after creating M additional bufferlist objects that

87

Ceph

call

Gibraltar

encoding

plugin

Gibraltar

CUDA

encode/decode

return return

Interface to the Gibraltar Library
in the Ceph Plugin

Bufferlist is divided into k Data Shards and m Parity Shards

Ceph Bufferlist Object

k[0] k[1] m[n-2] m[n-1]

FIGURE 4.1: Ceph Erasure Code Plugin — Ceph calls the erasure code plugin to
configure the erasure coding library that is chosen by the application. Subsequent calls

are made via a handle to generate erasure coding shards or to repair data stripes.

88

TABLE 4.1: Dell R730 Servers.

CPUs 2x Intel R© Xeon R© E5-2650 v3 @ 2.3 GHZ (Hyperthread-enabled: 40 threads)
RAM 128 GB 2133 MT/s RDIMM
Network Intel R© X520 DP 10Gb DA/SFP+, I350 DP 1Gb Ethernet
System Drives 2x 300 GB 10K SAS 2

store the redundant erasure coding. The erasure repair process is similar except that the

library reconstructs erasures to the application.

We have built a test bed in order to measure the performance of the NLDA on a small

scale based on the Ceph Object storage system product. The test bed consists of four

OSSs and three FTAs. These servers are connected via a 10 GbE network fabric and we

have bonded two ports together on each machine to get 20 GbE of network bandwidth.

All servers have two Intel E5-2660 v3 processors and 128 GB of memory. The FTAs

have NVIDIA R© K40 GPUs installed. The OSSs each have Serial Attached SCSI (SAS)

Host Bus Adapters (HBAs). SAS enclosures house 98 six TB archive class disk drives

for each OSS. The general configuration of all seven servers is shown in Table 4.1.

4.3 Measurements

4.3.1 Baseline Performance of Ceph Erasure Coding

We first measured the performance of erasure coding between ISA-L, Jerasure, and

Gibraltar using a 1 MB data block with RS(10, 2), RS(10, 3), and RS(10, 4). This

benchmark matched the performance that we were able to get from the Ceph community

for the ISA-L and Jerasure algorithms [171]. The results of our experiments are shown

in Figure 4.2. The results did not provide any motivation to use the Gibraltar library

over the Jerasure or ISA-L implementations. After reviewing work done at LANL [147],

we repeated the experiments with 1 GB data blocks and found that Gibraltar performed

slightly better than Jerasure and ISA-L. We also observed that Gibraltar out performed

Jerasure and ISA-L as the number of shards were increased. With this insight, we focused

our attention on the use of a larger number of shards.

89

 2

 3

 4

 5

 6

 7

 8

 9

10/2 10/3 10/4

B
a

n
d
w

id
th

 G
B

/s

Stripe: Data/Checksum

Erasure Encoding 1 MB Stripe

Legend
Gibraltar K40
Jerasure
ISA-L

FIGURE 4.2: Initial Erasure coding bandwidth — Erasure coding with 1 MB stripes,
K = 10, M = 2, K = 10, M = 3, and K = 10, M = 4.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 20 40 60 80 100 120 140

B
a
n
d
w

id
th

 G
B

/s

Number of shards

Erasure Encoding

Legend
Gibraltar encode 1GB
Gibraltar encode 512MB
ISA-L encode 1GB
ISA-L encode 512MB

FIGURE 4.3: Erasure coding bandwidth results with increasing number of shards.
Coding shards are held to a ratio of one coding shard to five data shards.

90

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 20 40 60 80 100 120 140

B
a

n
d

w
id

th
 G

B
/s

Number of Shards

Erasure Decoding, 1 Erasure

Legend
Gibraltar decode 1GB
Gibraltar decode 512MB
ISA decode 1GB
ISA decode 512MB

FIGURE 4.4: Erasure recovery bandwidth results with increasing number of shards and
one erasure. Coding shards are held to a ratio of one coding shard to five data shards.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 20 40 60 80 100 120 140

B
a
n
d

w
id

th
 G

B
/s

Number of Shards

Erasure Decoding, 4 Erasures

Legend
Gibraltar decode 1GB
Gibraltar decode 512MB
ISA decode 1GB
ISA decode 512MB

FIGURE 4.5: Erasure recovery bandwidth with 4 erasures — Erasure recovery band-
width results with increasing number of shards and four erasures. Coding shards are

held to a ratio of one coding shard to five data shards.

91

We measured erasure coding and decoding performance to compare results between

the Gibraltar library [22] and the Intel R© ISA-L [169] using the NVIDIA R© GPU and

Intel R© Xeon R© CPU to determine the best configuration for providing a high bandwidth

method for our NLDA. In Figure 4.3 we show the encoding performance for stripe sizes

of 512 MiB and 1 GiB. With RS(20,4), the two implementations perform about the

same. As the stripe size increases, the ISA-L implementation performance drops quickly

performing below 500 MiB/s after a stripe size of RS(40,8). The Gibraltar implemen-

tation is able to perform above 1.5 GiB/s until the stripe size exceeds RS(100,20) and

performs a nearly 1.5 GiB/s through the last measured stripe size of RS(128,25). We

measured the decoding performance to determine how the implementation would be

able to recover erasures when the user reads from the NLDA showing the results for

repairing a single erasure in Figure 4.4. A second measurement was made showing

the results when recovering four erasures in Figure 4.5. The ISA-L repaired the single

erasure with RS(20,4) at over 10 GiB/s while the Gibraltar implementation performed

this operation in over 6 GiB/s. The performance for larger stripe sizes shows that the

ISA-L implementation drops to between 3 and 4 GiB/s throughout the remainder of

the test while the Gibraltar implementation performs between 4.5 and 6 GiB/s until

RS(100,20) where it drops to between 3 and 4 GiB/s. Both the 512 MiB and 1 GiB

Gibraltar stripes would provide more than 3.5 GiB/s performance for repairing 4 erasures

using stripe sizes up to RS(128,5).

4.3.2 Performance of Storing Data in Object Storage

We measured the native Ceph erasure coded pool performance to provide a baseline

against to compare our FTA erasure coding architecture. We only measure the perfor-

mance of the ISA-L for this baseline because we do not implement the Gibraltar library

on the Ceph storage cluster. This is a measurement of the native Ceph capability. In Fig-

ure 4.6 we show the network utilization and in Figure 4.7 we show the CPU utilization.

The network utilization and CPU performance were also measured using the FTAs to

92

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

N
e
tw

o
rk

 B
a
n
d
w

id
th

 (
M

iB
/s

)

a) Baseline RADOS Write Aggregate Network Utilization

Native Ceph Write BW
Native Ceph Secondary Write BW
Gibraltar Write BW
ISA-L Write BW, 2 EC Threads

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 200 300 400 500 600 700N
e
tw

o
rk

 B
a
n
d
w

id
th

 (
M

iB
/s

)

Time (seconds)

b) Baseline RADOS Read Aggregate Network Utilization

Native Ceph Read BW
Native Ceph Secondary Read BW
Gibraltar Read BW
ISA-L Read BW, 2 EC Threads

FIGURE 4.6: Baseline comparison of Ceph network performance — Comparison of
Ceph network write (graph a) and read (graph b) performance between native Ceph
erasure Coded pool with erasure coding on the FTAs. K=20, M=4, one thread of

Gibraltar encoding, two threads of ISA-L encoding.

 0

 5

 10

 15

 20

 25

 30

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

a) Baseline RADOS Write Aggregate CPU Utilization

Native OSS Write
Native CLIENT Write
Gibraltar OSS Write
Gibraltar CLIENT Write
ISA-L OSS Write
ISA-L CLIENT Write

 0

 5

 10

 15

 20

 25

 30

 100 200 300 400 500 600 700

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Time (seconds)

b) Baseline RADOS Read Aggregate CPU Utilization

Native OSS Read
Native CLIENT Read
Gibraltar OSS Read
Gibraltar CLIENT Read
ISA-L OSS Read
ISA-L CLIENT Read

FIGURE 4.7: Baseline comparison of Ceph CPU performance — Comparison of Ceph
CPU write (graph a) and read (graph b) performance between native Ceph erasure coded
pool with erasure coding on the FTAs, K=20, M=4, one thread of Gibraltar encoding,

two threads of ISA-L encoding.

93

perform the erasure coding. All of these were performed using RS(20,4) which was the

largest stripe that we could use on our Ceph object storage system. We ran this test using

three FTAs concurrently and have aggregated the total network bandwidth and CPU

utilization. The maximum network bandwidth as inferred from the network utilization

for the native Ceph erasure coded RS(20,4) pool using ISA-L was only around 250 MiB/s

while using the same configuration and performing the erasure coding on the FTAs with

the ISA-L implementation, we see peaking at 2.5 GiB/s on read and write. The Gibraltar

implementation performed nearly as well as the ISA-L in this test when run on the FTAs

where earlier, we showed that both perform erasure coding at nearly the same rate with

RS(20,4). Both the Gibraltar implementation and the ISA-L implementation performed

reads of the data at near the same rate except Gibraltar peaked around 3 GiB/s during the

reads while the native ceph implementation peaked around 250 MiB/s during the read

operations. The reads for this test did not measure any repair activity, e.g., these were

only the K data shards being read. The CPU utilization shows that erasure coding load

on the FTAs for the Gibraltar implementation and the ISA-L implementation are 3 to

4 % higher than the native Ceph erasure coding, the latter performs only data transfer

operations on the FTA, so the compute load for RS(20,4) is very light on this platform.

However, the CPU load on the OSSs shows that this light erasure coding load is being

performed on the OSS where most of the load comes from the Ceph processes to store

the data on the OSDs. The FTA implementations load the OSSs slightly less than the

CPU load measured for the native configuration. The erasure coding load in the native

Ceph implementation is spread over four OSS nodes while the erasure coding load that

was measured for the FTA implementations was measured over three FTAs. The CPU

load on the OSSs for erasure coding is expected to be about 8% less than the load on the

FTAs.

After showing that the FTA implementation out performs the native Ceph erasure

coding implementation, we ran tests to measure the performance with very large stripe

sizes choosing RS(120,24) as a meaningful configuration for NLDA which can provide

94

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 200 400 600 800 1000

N
e
tw

o
rk

 B
a
n
d
w

id
th

 (
M

iB
/s

)

Time (seconds)

RADOS Network Aggregate Utilization, On FTA

Gibraltar Write BW
ISA-L Write BW, 5 EC Threads
Gibraltar Read BW
 ISA-L Read BW, 5 EC Threads

FIGURE 4.8: RADOS network performance with write and read of 600 stripes, K=120,
M=24, shard size 8388608 bytes, one thread of Gibraltar encoding compared with five

threads of ISA-L encoding.

 0

 5

 10

 15

 20

 25

 30

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

a) RADOS Write Aggregate CPU Utilization

Gibraltar OSS Write
Gibraltar CLIENT Write
ISA-L OSS Write
ISA-L CLIENT Write

 0

 5

 10

 15

 20

 25

 30

 100 200 300 400 500 600 700

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Time (S)

b) RADOS Read Aggregate CPU Utilization

Gibraltar CLIENT Read
Gibraltar OSS Read
ISA-L CLIENT Read
ISA-L OSS Read

FIGURE 4.9: RADOS CPU performance with write and read of 600 stripes, K=120,
M=24, shard size 8388608 bytes, one thread of Gibraltar encoding compared with five
threads of ISA-L encoding. Write performance shown in graph a and read performance

shown in graph b.

95

TABLE 4.2: Comparison of Erasure Coding Performance.

Property Ceph FTA FTA
Pool ISA-L Gibraltar

Bandwidth Writea .22 1.9 1.7
Bandwidth Reada .23 .79 .84
FTA Write CPU 1% 2.5% 1.7%
FTA Read CPU 1% 1.7% 1.7%
OSS Write CPU 11% 10.9% 8.8%
OSS Read CPU 7% .9% .9%
aBandwidth is in GB/S.

stripe data storage sizes of 512 MiB using 4 MiB shards and 1 GiB using 8 MiB shards.

In Figure 4.8 we show the network utilization for these tests while writing 1.8 TiB of

data from our three FTAs and we show the CPU utilization in Figure 4.9. In these tests,

we configured the ISA-L implementation to run five concurrent erasure coding threads

in order to produce the same throughput as the single Gibraltar implementation which is

only running one stream on the NVIDIA R© GPU. In the read test, we simulated the repair

work load by having the application rebuild M = 24 data shards on each stripe read.

The CPU workloads for the OSS servers are similar for both reads and writes between

the Gibraltar implementation and the ISA-L implementation as we expect because the

workload consists only of performing Ceph processes. On the FTAs, we run five threads

of the ISA-L implementation and see that the CPU load is about three times that of the

Gibraltar CPU workload. We assume that if we subtract the baseline workload from

these measurements we would find that the CPU load for erasure coding on the ISA-L

implementation scales linearly with the number of threads and should be about five

times the Gibraltar utilization for this configuration. As expected, both implementations

produced about the same network utilization during the test writing the 1.8 TiB to the

storage system at peaks around 2.5 GiB/s.

In summary, Table 4.2 shows the average performance differences between all of

the configurations that we tested. The CPU comparisons with the native Ceph should

96

1
2
3
4
5
6
7
8
9

1: Stream 2 D to H memcpy
2: Stream 2 checksum kernel
3: Stream 2 H to D memcpy
4: Stream 2 AES 256 Encryption

5: Stream 1 D to H memcpy
6: Stream 1 checksum kernel
7: Stream 1 H to D memcpy
8: Stream 1 AES 256 Encryption
9: Stream 3 H to D Pageable memcpy

Asynchronous Gibraltar with AES 256 Encryption, 2 default threads on Nvidia K40.
8MiB chunks, K=120, M=24, 100 iterations.

100*120*1024*1024*8 = 100,663,296,000 bytes in 35 seconds.

2.88 GiB/s

5 10 15 20 25 30 35 40

FIGURE 4.10: AES Encryption with Erasure Coding on NVIDIA R© K40 Performance
— We performed AES 256 encryption and erasure coding on 100 stripes of RS(120,24)

with the NVIDIA R© K40.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70

P
o
w

e
r

(W
a
tt
s
)

Time (S)

Nvidia GPU Power Utilization
Average Power 133W

GPU Power W

FIGURE 4.11: AES Encryption with Erasure Coding on NVIDIA R© K40 Power — The
power consumption on the NVIDIA R© K40 averaged 133 watts during the full compute

load.

be adjusted to account for the difference in the amount of work performed. The FTA

implementations performed erasure coding at nearly 10 times the rate of the native Ceph

implementation so the native implementation took about 10 times longer to write or read

the same amount of data, hence, the CPU utilization is about 1/10 the utilization that the

FTA implementations consumed.

97

1
2
3
4
5
6
7
8
9

10
11
12

1: Stream 1 D to H memcpy
2: Stream 1 checksum kernel
3: Stream 1 AES 256 Encryption
4: Stream 1 H to D memcpy

5: Stream 2 D to H memcpy
6: Stream 2 checksum kernel
7: Stream 2 AES 256 Encryption
8: Stream 2 H to D memcpy

9: Stream 3 D to H memcpy
10: Stream 3 checksum kernel
11: Stream 3 AES 256 Encryption
12: Stream 3 H to D memcpy

Asynchronous Gibraltar with AES-XTS 256 Encryption, 3 streams on Nvidia P4.
8MiB chunks, K=120, M=24, 100 iterations.

100*120*1024*1024*8 = 100,663,296,000 bytes in 30 seconds.

3.36 GiB/s

5 10 15 20 25 30 35

FIGURE 4.12: AES Encryption with Erasure Coding on NVIDIA R© P4 Performance —
We performed AES 256 encryption and erasure coding on 100 stripes of RS(120,24)

with the NVIDIA R© P4.

 0

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60 70

P
o
w

e
r

(W
a
tt
s
)

Time (S)

Nvidia P4 GPU Power Utilization

P4 GPU

FIGURE 4.13: AES Encryption with Erasure Coding on NVIDIA R© P4 Power — The
power consumption on the NVIDIA R© P4 averaged 55 watts during the full compute

load.

98

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600

∫
20

400
 ≈ 35428 J, K40 GPU, Gibraltar

∫
20

400
 ≈ 94891 J, Server, Gibraltar ∫

20

600
 ≈ 120934 J, Server, ISA-L

Gibraltar ISA-L

Start Job

≈ 20.4 GB/KWH ≈ 16 GB/KWH

P
o
w

e
r

(W
a
tt
s
)

Time (S)

Encryption and Erasure Coding Power Utilization

ISA-L Server
Gibraltar Server
Gibraltar K40

FIGURE 4.14: AES Encryption with Erasure Coding comparing Gibraltar with ISA-L
— We performed AES 256 encryption and erasure coding on 500 1 GB stripes of data
using RS(120, 24). The Gibraltar K40 encrypted and erasure coded 20.4 GB per KWH

while ISA-L performed the same work yielding only 16 GB per KWH.

4.4 AES Encryption with Erasure Coding

We measured the performance of computing AES encryption in addition to erasure

coding in Figure 4.10 at 2.88 GiB/s. In Figure 4.11 we show that the power costs

of computing encryption and erasure coding on 100 GB averages about 133W for 35

seconds, about 13 mw per GB. With the NVIDIA R© P4 GPU in Figure 4.12 we measured

3.36 GiB/s on 100 stripes of RS(120,24) of 1 GiB with a power consumption for the

encryption and erasure coding on 100 GB about 55W for 30 seconds, about 4.6 mw per

GB shown in Figure 4.13.

In another experiment, we measured the power consumption to perform AES 256

encryption and erasure coding at RS(120, 24) on two Dell servers as specified in Ta-

ble 4.1. One server was chosen with the NVIDIA R© K40 where we encrypted and erasure

coded 500 1 GB stripes using Gibraltar. The other server did not have an NVIDIA R© K40

99

installed where we ran the ISA-L using OpenSSL AES 256 encryption and ISA-L for

erasure coding. The encryption using OpenSSL was performed using a single thread as

it is not thread-safe. We used five threads of the ISA-L to perform the erasure encoding.

As shown in Figure 4.14, we also measured the power used by the NVIDIA R© K40 using

the nvidia-smi tool which shows that 37% of the power is consumed by the NVIDIA R©

K40 GPU. In this test we show that Gibraltar is 27.4% more efficient than the ISA-L

implementation. Based on the comparison between the NVIDIA R© K40 Figure 4.11 and

P4 shown in Figure 4.13, the P4 should provide even greater power efficiency.

4.5 Lazy Repair

We simulated the operation of a cluster of 1,000 disks using 10 TB disk drives. We

used the High-Fidelity Reliability (HFR) Simulator [138, 139] to provide an estimated

data loss for various erasure code configurations. We configured the simulator to delay

the repair of a failure for 1 year. All of the erasure coding configurations were specified

in the simulator’s model database. Our parameters for the tests are given in Table 4.3.

The results of our experiment are shown in Figure 4.15. Compared to the RS(20, 4)

configuration that is commonly in use for object storage systems, which shows an average

data loss of 424 bytes, our NLDA with a stripe size of RS(120, 24) shows zero data loss.

TABLE 4.3: Comparison of Erasure Coding Data Loss.

Parameter Value
Duration 1 year
Iterations 100
Disks 1,000
Disk Size 10 TB
Failure Model (1.1, 230693)
Repair Model (1.0, 21474836480.0)

100

 0

 100

 200

 300

 400

 500

 600

10/2 12/4 16/4 24/4 120/24

0 Bytes lost

B
y
te

s
 l
o
s
t

Stripe: Data/Checksum

Comparing Erasure Encoding Data Loss

Legend
10/2
12/4
16/4
24/4
120/24

FIGURE 4.15: Erasure Coding Data Loss Simulation — Results from simulation of
data loss with repair delayed for 1 year.

101

CHAPTER 5

SUMMARY

5.1 Dissertation Statement

We design an architecture for nearline disk archive storage that is:

• more performant,

• of lower cost,

• more energy saving,

• more secure,

• and more reliable than existing designs.

5.2 Contributions

In this dissertation we have made the following contributions:

• The FTA erasure coding implementation was shown to be faster than the native

Ceph erasure coded pool implementation.

• The Gibraltar implementation was shown to be five times faster than the ISA-L

performance.

• We showed that performing erasure coding on the FTAs reduces capital and energy

costs.

• We have shown that performing encryption on the FTAs can reduce the scope of

the security boundary.

102

• We have shown that delaying erasure repair with large stripe sizes can be a strategy

for reducing the overall compute, storage and network capacity requirements.

5.3 Broader Impacts

The work here has greater impact than we could address in this dissertation. Listed

here are three of the major impacts:

• Feature detection — Our architecture can be extended to insert feature detection

into the erasure coding data flow. The feature detection would provide patterns

that describe the features of interest. The feature module would emit properties

of the detected features including the location, size, range, etc., which could be

provided to the metadata service.

• HDF5 — HDF5 is a data model that is well supported with tools. The HDF5 file

format allows for storing metadata with the data as well as providing multiple

streams for parallel IO. HDF5 can be implemented on our architecture to provide a

low cost, high performance object storage platform for large datasets. For example,

the USAF awarded a Phase I SBIR to the HDF group to provide a prototype of

storing the Chapter 10 IRIG 106 data sets to HDF5.

• Accumulo — Accumulo is a NOSQL database that is an open source Apache

project. Some implementations are using over 200 PB of HDFS storage. Our

architecture could be used to move colder “tablets” to object storage until needed,

reducing the amount of online Hadoop storage that is required. Another possibility

would be to classify the Hadoop nodes as FTAs and include the function of moving

data to the object storage system.

5.4 Future Work

There are opportunities to extend the research of this dissertation further. We give

these four areas which should have high value:

103

• Models for sizing HPC storage — With the continuing changes in the price,

capacity, and performance in the storage media markets, we need to have tools to

help in planning the allocation of storage system resources to meet the data center

requirements in a cost effective way. The model needs to consider the performance

time, the costs, the physical dimensions, physical weight, power consumption

and cooling requirements. Because some data life times exceed that of the media

service life, the data migration process must be included in the model.

• Encryption library for GPU — We have shown the practicality of including

encryption with erasure coding on the GPU with the Gibraltar erasure coding

library using the AES-CBC 256. However, there are several other encryption

algorithms and key sizes that might be needed by the users of the systems. The

development of other encryption options would make this capability more useful.

• Data Compression — Data compression of the data stream on the FTA is a hard

problem and would require domain specific knowledge to provide requirements for

specific use cases. However, data compression on GPUs has been done in research.

Also, studies have been done on the cost effectiveness of compressing data for

HPC storage at the DKRZ in Germany where they compared the use cases of the

user compressing the data while on the scratch workspace before moving it to

archive vs performing the compression enroute to the near line disk archive storage.

Furthermore, tape drives used for long term archive storage provide compression

as a common feature, for example, an LTO-8 tape stores 12 TB raw but up to 30

TB compressed. These tape drives also provide encryption of the data as well.

• Hadoop storage in NLDA — Since Hadoop and related applications are generally

based on pushing compute down to the data storage, there role is very similar to

the FTA. Providing an HDFS abstraction over the NLDA architecture that we have

provided should be able to perform well in many use cases. For example, where

there are HDFS clusters greater than 10 or 20 PB, these might be implemented

using our architecture and provide nearly equivalent performance at lower cost.

104

 0

 0.5

 1

 1.5

 2

 2.5

 3

20/4 1MB 120/24 1GB

B
a

n
d
w

id
th

 G
B

/s

Stripe: Data/Checksum

Comparing Erasure Encoding Performance

Legend
Native Ceph
ISA-L
Gibraltar K40

FIGURE 5.1: Erasure coding bandwidth comparison — Erasure coding with native
Ceph, ISA-L, and Gibraltar. K = 20, M = 4 and K = 120, M = 24.

Because we had assumed an immutable constraint for the NLDA architecture, this

may need to be relaxed for the HDFS file system, especially if the application, like

Accumulo, would be storing data in HDFS. However, if the application was read

only, then the constraint would not need to be relaxed.

5.5 Conclusion

We have designed an architecture for nearline disk archive storage that is more per-

formant, of lower cost, more energy saving, more secure, and more reliable than existing

designs. As shown in Figure 5.1 we have provided an architecture that outperforms

the native Ceph object storage system performance. In summary, we have satisfied our

objectives in the following ways:

• We demonstrated that the FTA erasure coding implementation was faster than

Ceph’s erasure coded pool implementation.

105

• We demonstrated that the Gibraltar implementation was faster than the ISA-L

performance.

• We described how performing erasure coding on the FTAs reduces capital and

energy costs.

• We gave an example of how performing encryption on the FTAs can reduce the

scope of the security boundary.

• We have explained how delaying erasure repair with large stripe sizes can be a

strategy for reducing the overall compute, storage and network capacity require-

ments.

106

LIST OF REFERENCES

[1] M. Mesnier, G.R. Ganger, and E. Riedel. Storage area networking - Object-

based storage. IEEE Communications Magazine, 41(8):84–90, August

2003. ISSN 0163-6804. doi: 10.1109/MCOM.2003.1222722. URL

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=1222722.

[2] Zuse Institute Berlin (ZIB). Fairness and Load in Distributed File

Systems, 2016. URL http://www.zib.de/features/

fairness-and-load-distributed-file-systems.

[3] David Morton. Trinity: DataManagement Scheme and Performance. American

Institute of Aeronautics and Astronautics, January 2017. ISBN 978-1-62410-

447-3. doi: 10.2514/6.2017-0812. URL http://arc.aiaa.org/doi/10.

2514/6.2017-0812.

[4] Gary Grider. Storage Lessons from HPC: A Multi-Decadal Struggle, Septem-

ber 2018. URL https://www.snia.org/sites/default/files/

SDC/2018/presentations/General_Session/Grider_Gary_

Storage_Lessons_from_HPC_A_Multi-Decadal_Struggle.pdf.

[5] LANL. Crossroads 2021 Technical Requirements Document, July 2018. URL

https://www.lanl.gov/projects/crossroads/Exhibit%20D%

20Technical%20Specifications%20Document%201-16.docx.

[6] Gary Grider. MarFS, May 2015. URL http://storageconference.us/

2015/Presentations/Grider.pdf.

[7] ACES Team. Trinity Platform Introduction and Usage Model, August 2015. URL

https://www.lanl.gov/projects/trinity/_assets/docs/

trinity-usage-model-presentation.pdf.

107

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1222722
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1222722
http://www.zib.de/features/fairness-and-load-distributed-file-systems
http://www.zib.de/features/fairness-and-load-distributed-file-systems
http://arc.aiaa.org/doi/10.2514/6.2017-0812
http://arc.aiaa.org/doi/10.2514/6.2017-0812
https://www.snia.org/sites/default/files/SDC/2018/presentations/General_Session/Grider_Gary_Storage_Lessons_from_HPC_A_Multi-Decadal_Struggle.pdf
https://www.snia.org/sites/default/files/SDC/2018/presentations/General_Session/Grider_Gary_Storage_Lessons_from_HPC_A_Multi-Decadal_Struggle.pdf
https://www.snia.org/sites/default/files/SDC/2018/presentations/General_Session/Grider_Gary_Storage_Lessons_from_HPC_A_Multi-Decadal_Struggle.pdf
https://www.lanl.gov/projects/crossroads/Exhibit%20D%20Technical%20Specifications%20Document%201-16.docx
https://www.lanl.gov/projects/crossroads/Exhibit%20D%20Technical%20Specifications%20Document%201-16.docx
http://storageconference.us/2015/Presentations/ Grider.pdf
http://storageconference.us/2015/Presentations/ Grider.pdf
https://www.lanl.gov/projects/trinity/_assets/docs/trinity-usage-model-presentation.pdf
https://www.lanl.gov/projects/trinity/_assets/docs/trinity-usage-model-presentation.pdf

[8] www.cray.com. WP-Cray-Sonexion-3000-Storage-0616www.cray.comCray R©

Sonexion R© 3000 Storage System, June 2016. URL https:

//www.cray.com/sites/default/files/resources/

WP-Cray-Sonexion-3000-Storage-Systems.pdf.

[9] Tom Coughlin. The Costs Of Storage, June 2016. URL https:

//www.forbes.com/sites/tomcoughlin/2016/07/24/

the-costs-of-storage/#2630382f3239.

[10] James Byron, Darrell D. E. Long, and Ethan L. Miller. Using Simulation

to Design Scalable and Cost-Efficient Archival Storage Systems. In 2018

IEEE 26th International Symposium on Modeling, Analysis, and Simulation

of Computer and Telecommunication Systems (MASCOTS), pages 25–39,

Milwaukee, WI, September 2018. IEEE. ISBN 978-1-5386-6886-3. doi:

10.1109/MASCOTS.2018.00011. URL https://ieeexplore.ieee.

org/document/8526869/.

[11] Nicole Hemsoth. The Slow Death of the Parallel File System. The Next Platform,

January 2016. URL https://www.nextplatform.com/2016/01/12/

the-slow-death-of-the-parallel-file-system/.

[12] George A Miller. The magical number seven, plus or minus two: Some limits on

our capacity for processing information. Psychological review, 63(2):81, 1956.

[13] John Bent. The Correct Number of Tiers is Two, July 2017. URL http:

//lustre.ornl.gov/ecosystem-2017/documents/Day-2_

Keynote-2_Bent.pdf.

[14] John Bent, B Settlemeyer, and G Grider. Serving Data to the Lunatic Fringe.

;login:, 41(2):34–38, 2016. URL https://www.usenix.org/system/

files/login/articles/login_summer16_08_bent.pdf.

[15] Center for Medicare and Medicaid Services. HIPAA Security Series - Se-

curity Standards: Technical Safeguards. 2(4), March 2007. URL https:

//www.hhs.gov/sites/default/files/ocr/privacy/hipaa/

administrative/securityrule/techsafeguards.pdf.

108

https://www.cray.com/sites/default/files/resources/WP-Cray-Sonexion-3000-Storage-Systems.pdf
https://www.cray.com/sites/default/files/resources/WP-Cray-Sonexion-3000-Storage-Systems.pdf
https://www.cray.com/sites/default/files/resources/WP-Cray-Sonexion-3000-Storage-Systems.pdf
https://www.forbes.com/sites/tomcoughlin/2016/07/24/the-costs-of-storage/#2630382f3239
https://www.forbes.com/sites/tomcoughlin/2016/07/24/the-costs-of-storage/#2630382f3239
https://www.forbes.com/sites/tomcoughlin/2016/07/24/the-costs-of-storage/#2630382f3239
https://ieeexplore.ieee.org/document/8526869/
https://ieeexplore.ieee.org/document/8526869/
https://www.nextplatform.com/2016/01/12/the-slow-death-of-the-parallel-file-system/
https://www.nextplatform.com/2016/01/12/the-slow-death-of-the-parallel-file-system/
http://lustre.ornl.gov/ecosystem-2017/documents/Day-2_Keynote-2_Bent.pdf
http://lustre.ornl.gov/ecosystem-2017/documents/Day-2_Keynote-2_Bent.pdf
http://lustre.ornl.gov/ecosystem-2017/documents/Day-2_Keynote-2_Bent.pdf
https://www.usenix.org/system/files/login/articles/login_summer16_08_bent.pdf
https://www.usenix.org/system/files/login/articles/login_summer16_08_bent.pdf
https://www.hhs.gov/sites/default/files/ocr/privacy/hipaa/administrative/securityrule/techsafeguards.pdf
https://www.hhs.gov/sites/default/files/ocr/privacy/hipaa/administrative/securityrule/techsafeguards.pdf
https://www.hhs.gov/sites/default/files/ocr/privacy/hipaa/administrative/securityrule/techsafeguards.pdf

[16] CGS Team. CGS Data Protection Capability, July 2012. URL https://iase.

disa.mil/cgs/Documents/Data_Protection_v1.1.1.pdf.

[17] National Security Agency. Information Assurance Capabilities - Data

at rest capability package, January 2018. URL https://www.nsa.

gov/Portals/70/documents/resources/everyone/csfc/

capability-packages/dar-cp.pdf.

[18] National Institute of Standards and Technology. Minimum security requirements

for federal information and information systems. Technical Report NIST FIPS

200, National Institute of Standards and Technology, Gaithersburg, MD, March

2006. URL https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.

FIPS.200.pdf.

[19] Elaine B. Barker, William C. Barker, William E. Burr, William T. Polk, and

Miles E. Smid. Recommendation for Key Management - Part 1: General (Revi-

sion 3), July 2012. URL http://www.nist.gov/customcf/get_pdf.

cfm?pub_id=910342.

[20] William C. Barker, Elaine B. Barker, William E. Burr, William T. Polk, and

Miles E Smid. Recommendation for Key Management Part 2: Best Practices

for Key Management Organization, August 2005. URL http://www.nist.

gov/customcf/get_pdf.cfm?pub_id=151315.

[21] Elaine B. Barker, William E. Burr, Alicia Clay Jones, William T. Polk, Scott W.

Rose, Miles E Smid, and Quynh H. Dang. NIST Special Publication 800-

57 Recommendation for Key Management Part 3: Application-Specific Key

Management Guidance, December 2009. URL http://www.nist.gov/

customcf/get_pdf.cfm?pub_id=903633.

[22] Matthew L. Curry, Anthony Skjellum, H. L. Ward, and Ron Brightwell. Gibraltar:

A Reed-Solomon coding library for storage applications on programmable

graphics processors. Concurrency and Computation: Practice and Experience,

23(18):2477–2495, December 2011. ISSN 15320626. doi: 10.1002/cpe.1810.

URL http://doi.wiley.com/10.1002/cpe.1810.

109

https://iase.disa.mil/cgs/Documents/Data_Protection_v1.1.1.pdf
https://iase.disa.mil/cgs/Documents/Data_Protection_v1.1.1.pdf
https://www.nsa.gov/Portals/70/documents/resources/everyone/csfc/capability-packages/dar-cp.pdf
https://www.nsa.gov/Portals/70/documents/resources/everyone/csfc/capability-packages/dar-cp.pdf
https://www.nsa.gov/Portals/70/documents/resources/everyone/csfc/capability-packages/dar-cp.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.200.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.200.pdf
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=910342
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=910342
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=151315
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=151315
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=903633
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=903633
http://doi.wiley.com/10.1002/cpe.1810

[23] Walker Haddock, Matthew L Curry, Purushotham V Bangalore, and Anthony

Skjellum. GPU Erasure Coding for Campaign Storage. In International Con-

ference on High Performance Computing, pages 145–159, Frankfurt, Germany,

June 2017. Springer.

[24] Walker Haddock, Purushotham V. Bangalore, Matthew L. Curry, and Anthony

Skjellum. High Performance Erasure Coding for Very Large Stripe Sizes. In

2019 Spring Simulation Conference (SpringSim), pages 1–12, Tucson, AZ,

USA, April 2019. IEEE. ISBN 978-1-5108-8388-8. doi: 10.23919/SpringSim.

2019.8732912. URL https://ieeexplore.ieee.org/document/

8732912/.

[25] Elwyn R. Berlekamp. Algebraic coding theory. Aegean Park Press, Laguna Hills,

Calif, 2. rev., ed edition, 1984. ISBN 978-0-89412-063-3. OCLC: 10787423.

[26] Matthew L. Curry, Anthony Skjellum, H. L. Ward, and Ron Brightwell. Accel-

erating Reed-Solomon coding in RAID systems with GPUs. In Proceedings

of the 2008 IEEE international parallel & distributed processing symposium,

pages 1–6, Miami, FL, USA, April 2008. IEEE. ISBN 978-1-4244-1693-6. doi:

10.1109/IPDPS.2008.4536322. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=4536322.

[27] Matthew L. Curry, H. L. Ward, Anthony Skjellum, and Ron Brightwell. A

Lightweight, GPU-Based Software RAID System. In 2010 39th International

Conference on Parallel Processing, pages 565–572, San Diego, CA, USA,

September 2010. IEEE. ISBN 978-1-4244-7913-9. doi: 10.1109/ICPP.2010.64.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=5599249.

[28] Curry, Matthew L. A highly reliable GPU-based RAID system. PhD thesis,

University of Alabama at Birmingham, 2010. URL http://contentdm.

mhsl.uab.edu/cdm/ref/collection/etd/id/854.

[29] A.D. Hospodor and A.S. Hoagland. The changing nature of disk controllers.

Proceedings of the IEEE, 81(4):586–594, April 1993. ISSN 00189219. doi:

110

https://ieeexplore.ieee.org/document/8732912/
https://ieeexplore.ieee.org/document/8732912/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4536322
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4536322
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5599249
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5599249
http://contentdm.mhsl.uab.edu/cdm/ref/collection/etd/id/854
http://contentdm.mhsl.uab.edu/cdm/ref/collection/etd/id/854

10.1109/5.219343. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=219343.

[30] S.S. Coleman and R.W. Watson. The emerging paradigm shift in storage system

architectures. Proceedings of the IEEE, 81(4):607–620, April 1993. ISSN

00189219. doi: 10.1109/5.219345. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=219345.

[31] Li-Pin Chang. A Hybrid Approach to NAND-Flash-Based Solid-State Disks.

IEEE Transactions on Computers, 59(10):1337–1349, October 2010. ISSN

0018-9340. doi: 10.1109/TC.2010.14. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=5383350.

[32] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon.

Design and implementation of the Sun network filesystem. In Proceedings of the

Summer USENIX conference, pages 119–130, 1985.

[33] B. Phillips. Have storage area networks come of age? Computer, 31(7):10–12,

July 1998. ISSN 0018-9162. doi: 10.1109/2.689672.

[34] Garth A. Gibson and Rodney Van Meter. Network Attached Storage Architecture.

Commun. ACM, 43(11):37–45, November 2000. ISSN 0001-0782. doi: 10.

1145/353360.353362. URL http://doi.acm.org/10.1145/353360.

353362.

[35] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols,

M. Satyanarayanan, Robert N. Sidebotham, and Michael J. West. Scale and per-

formance in a distributed file system. ACM Transactions on Computer Systems,

6(1):51–81, February 1988. ISSN 07342071. doi: 10.1145/35037.35059. URL

http://portal.acm.org/citation.cfm?doid=35037.35059.

[36] James H. Morris, Mahadev Satyanarayanan, Michael H. Conner, John H.

Howard, David S. Rosenthal, and F. Donelson Smith. Andrew: a distributed

personal computing environment. Communications of the ACM, 29(3):

184–201, March 1986. ISSN 00010782. doi: 10.1145/5666.5671. URL

http://portal.acm.org/citation.cfm?doid=5666.5671.

111

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=219343
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=219343
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=219345
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=219345
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5383350
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5383350
http://doi.acm.org/10.1145/353360.353362
http://doi.acm.org/10.1145/353360.353362
http://portal.acm.org/citation.cfm?doid=35037.35059
http://portal.acm.org/citation.cfm?doid=5666.5671

[37] M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki, E.H. Siegel, and

D.C. Steere. Coda: a highly available file system for a distributed workstation

environment. IEEE Transactions on Computers, 39(4):447–459, April 1990.

ISSN 00189340. doi: 10.1109/12.54838. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=54838.

[38] Luis-Felipe Cabrera and Darrell D. E. Long. Swift: Using distributed disk

striping to provide high I/O data rates. Computing Systems, 4(4):405–436, 1991.

[39] Howard Gobioff, Garth Gibson, and Doug Tygar. Security for network attached

storage devices. Technical report, DTIC Document, 1997.

[40] Garth A. Gibson, Jim Zelenka, David F. Nagle, Khalil Amiri, Jeff Butler, Fay W.

Chang, Howard Gobioff, Charles Hardin, Erik Riedel, and David Rochberg. A

cost-effective, high-bandwidth storage architecture. ACM SIGPLAN Notices,

33(11):92–103, November 1998. ISSN 03621340. doi: 10.1145/291006.

291029. URL http://portal.acm.org/citation.cfm?doid=

291006.291029.

[41] Zvi Dubitsky, Israel Gold, Ealan Henis, Julian Satran, and Dafna Sheinwald.

DFS - Data Sharing Facility. IBM Research Report H-0141, IBM Research

Division Haifa Research Laboratory, Haifa 31905, Israel, October 2002.

[42] O. Rodeh and A. Teperman. zFS - a scalable distributed file system using

object disks. In 20th IEEE/11th NASA Goddard Conference on Mass Storage

Systems and Technologies, 2003. (MSST 2003). Proceedings., pages 207–218,

San Diego, CA, USA, 2003. IEEE Comput. Soc. ISBN 978-0-7695-1914-2. doi:

10.1109/MASS.2003.1194858. URL http://ieeexplore.ieee.org/

document/1194858/.

[43] Dean Hildebrand and Peter Honeyman. Exporting storage systems in a scalable

manner with pNFS. In Mass Storage Systems and Technologies, 2005. Pro-

ceedings. 22nd IEEE/13th NASA Goddard Conference on, pages 18–27. IEEE,

2005.

112

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=54838
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=54838
http://portal.acm.org/citation.cfm?doid=291006.291029
http://portal.acm.org/citation.cfm?doid=291006.291029
http://ieeexplore.ieee.org/document/1194858/
http://ieeexplore.ieee.org/document/1194858/

[44] P. F. Corbett, D. G. Feitelson, J.-P. Prost, G. S. Almasi, S. J. Baylor, A. S. Bol-

marcich, Y. Hsu, J. Satran, M. Snir, R. Colao, B. D. Herr, J. Kavaky, T. R. Mor-

gan, and A. Zlotek. Parallel file systems for the IBM SP computers. IBM Systems

Journal, 34(2):222–248, 1995. ISSN 0018-8670. doi: 10.1147/sj.342.0222. URL

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=5387272.

[45] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thaku. PVFS: A parallel

file system for Linux clusters. In Proc. of 4th Annual Linux Showcase and

Conference, pages 317–327, Atlanta, GA, October 2000. USENIX Assoc.

[46] David Goodell, Seong Jo Kim, Robert Latham, Mahmut Kandemir, and Robert

Ross. An Evolutionary Path to Object Storage Access. pages 36–41. IEEE,

November 2012. ISBN 978-0-7695-4956-9 978-1-4673-6218-4. doi: 10.1109/SC.

Companion.2012.17. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=6495799.

[47] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.

The Hadoop Distributed File System. pages 1–10. IEEE, May 2010. ISBN

978-1-4244-7152-2. doi: 10.1109/MSST.2010.5496972. URL http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=5496972.

[48] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file

system. page 29. ACM Press, 2003. ISBN 978-1-58113-757-6. doi: 10.1145/

945445.945450. URL http://portal.acm.org/citation.cfm?

doid=945445.945450.

[49] Frank B Schmuck and Roger L Haskin. GPFS: A Shared-Disk File System for

Large Computing Clusters. In FAST, volume 2, page 19, 2002.

[50] Brent Welch, Marc Unangst, Zainul Abbasi, Garth A Gibson, Brian Mueller,

Jason Small, Jim Zelenka, and Bin Zhou. Scalable Performance of the Panasas

Parallel File System. In FAST, volume 8, pages 1–17, 2008.

113

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5387272
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5387272
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6495799
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6495799
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5496972
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5496972
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5496972
http://portal.acm.org/citation.cfm?doid=945445.945450
http://portal.acm.org/citation.cfm?doid=945445.945450

[51] Brent Welch and Garth A Gibson. Managing Scalability in Object Storage

Systems for HPC Linux Clusters. In MSST, pages 433–445. Citeseer, 2004.

[52] Peter J Braam and Philip Schwan. Lustre: The intergalactic file system. In

Ottawa Linux Symposium, page 50, 2002.

[53] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell D. E. Long, and Carlos

Maltzahn. Ceph: A scalable, high-performance distributed file system. In

Proceedings of the 7th symposium on Operating systems design and implemen-

tation, pages 307–320. USENIX Association, 2006.

[54] Julian Martin Kunkel, Michael Kuhn, and Thomas Ludwig. Exascale Storage

Systems — An Analytical Study of Expenses. Supercomputing Frontiers and

Innovations, 1(1), September 2014. ISSN 23138734. doi: 10.14529/jsfi140106.

URL http://superfri.org/superfri/article/view/20.

[55] Hal Jespersen. POSIX Retrospective. StandardView, 3(1):2–10, March 1995.

ISSN 1067-9936. doi: 10.1145/210308.210313. URL http://doi.acm.

org/10.1145/210308.210313.

[56] IEEE Computer Society, Portable Applications Standards Committee, England)

Open Group (Reading, and Institute of Electrical and Electronics Engineers. Stan-

dard for information technology: portable operating system interface (POSIX) :

base specifications, issue 7. 2013. ISBN 978-0-7381-8331-2 978-1-937218-28-7.

URL http://ieeexplore.ieee.org/servlet/opac?punumber=

6506089.

[57] S.A. Weil, K.T. Pollack, S.A. Brandt, and E.L. Miller. Dynamic Metadata

Management for Petabyte-Scale File Systems. pages 4–4. IEEE, 2004. ISBN

0-7695-2153-3. doi: 10.1109/SC.2004.22. URL http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1392934.

[58] Michael A. Sevilla, Noah Watkins, Carlos Maltzahn, Ike Nassi, Scott A. Brandt,

Sage A. Weil, Greg Farnum, and Sam Fineberg. Mantle: a programmable

metadata load balancer for the ceph file system. pages 1–12. ACM Press, 2015.

114

http://superfri.org/superfri/article/view/20
http://doi.acm.org/10.1145/210308.210313
http://doi.acm.org/10.1145/210308.210313
http://ieeexplore.ieee.org/servlet/opac?punumber=6506089
http://ieeexplore.ieee.org/servlet/opac?punumber=6506089
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1392934
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1392934

ISBN 978-1-4503-3723-6. doi: 10.1145/2807591.2807607. URL http:

//dl.acm.org/citation.cfm?doid=2807591.2807607.

[59] Jeff Inman, Gary Grider, and Hsing Bung Chen. Cost of Tape versus Disk

for Archival Storage. In 2014 IEEE 7th International Conference on Cloud

Computing, pages 208–215, Anchorage, AK, USA, June 2014. IEEE. ISBN

978-1-4799-5063-8 978-1-4799-5062-1. doi: 10.1109/CLOUD.2014.37. URL

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6973743.

[60] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor, N. Rinetzky, O. Rodeh,

J. Satran, A. Tavory, and L. Yerushalmi. Towards an object store. pages 165–176.

IEEE Comput. Soc, 2003. ISBN 0-7695-1914-8. doi: 10.1109/MASS.2003.

1194853. URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=1194853.

[61] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

[62] Brent Welch. Object Storage Technology, 2013. URL http://www.snia.

org/sites/default/education/tutorials/2013/spring/

file/BrentWelch_Object_Storage_Technology.pdf.

[63] M. Zhou, R. Zhang, D. Zeng, and W. Qian. Services in the Cloud Computing

era: A survey. In Universal Communication Symposium (IUCS), 2010 4th

International, pages 40–46, October 2010. doi: 10.1109/IUCS.2010.5666772.

[64] Openstack. OpenStack SWIFT, 2014. URL http://www.openstack.

org/software/releases/liberty/components/swift.

[65] Salman Toor, Rainer Toebbicke, Maitane Zotes Resines, and Sverker Holmgren.

Investigating an Open Source Cloud Storage Infrastructure for CERN-specific

Data Analysis. pages 84–88. IEEE, June 2012. ISBN 978-0-7695-4722-0 978-

1-4673-1889-1. doi: 10.1109/NAS.2012.14. URL http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6310879.

115

http://dl.acm.org/citation.cfm?doid=2807591.2807607
http://dl.acm.org/citation.cfm?doid=2807591.2807607
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6973743
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6973743
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1194853
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1194853
http://www.snia.org/sites/default/education/tutorials/2013/spring/file/BrentWelch_Object_Storage_Technology.pdf
http://www.snia.org/sites/default/education/tutorials/2013/spring/file/BrentWelch_Object_Storage_Technology.pdf
http://www.snia.org/sites/default/education/tutorials/2013/spring/file/BrentWelch_Object_Storage_Technology.pdf
http://www.openstack.org/software/releases/liberty/components/swift
http://www.openstack.org/software/releases/liberty/components/swift
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6310879
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6310879

[66] Yong Zhao, Yanzhe Zhang, Wenhong Tian, Ruini Xue, and Cui Lin. Designing

and Deploying a Scientific Computing Cloud Platform. pages 104–113. IEEE,

September 2012. ISBN 978-1-4673-2901-9. doi: 10.1109/Grid.2012.12. URL

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6319160.

[67] Thilina Gunarathne, Tak-Lon Wu, Judy Qiu, and Geoffrey Fox. MapRe-

duce in the Clouds for Science. pages 565–572. IEEE, November 2010.

ISBN 978-1-4244-9405-7. doi: 10.1109/CloudCom.2010.107. URL

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=5708501.

[68] P. F. Corbett, D. G. Feitelson, J. P. Prost, and S. J. Baylor. Parallel access to files

in the Vesta file system. In Supercomputing ’93. Proceedings, pages 472–481,

November 1993. doi: 10.1109/SUPERC.1993.1263495.

[69] Peter F. Corbett and Dror G. Feitelson. The Vesta parallel file system. ACM

Transactions on Computer Systems, 14(3):225–264, August 1996. ISSN

07342071. doi: 10.1145/233557.233558. URL http://portal.acm.

org/citation.cfm?doid=233557.233558.

[70] Gary Grider. Preparing Applicaions for Next Generaion IO/Storage. Technical

report, 2015.

[71] Jay Lofstead, Ivo Jimenez, and Carlos Maltzahn. Consistency and Fault Tol-

erance Considerations for the Next Iteration of the DOE Fast Forward Storage

and IO Project. pages 61–69. IEEE, September 2014. ISBN 978-1-4799-5615-9.

doi: 10.1109/ICPPW.2014.21. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=7103439.

[72] M. Satyanarayanan and E.H. Siegel. Parallel communication in a large dis-

tributed environment. IEEE Transactions on Computers, 39(3):328–348, March

1990. ISSN 00189340. doi: 10.1109/12.48864. URL http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=48864.

116

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6319160
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6319160
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5708501
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5708501
http://portal.acm.org/citation.cfm?doid=233557.233558
http://portal.acm.org/citation.cfm?doid=233557.233558
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7103439
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7103439
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=48864
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=48864

[73] Darrell DE Long, Bruce R Montague, and Luis-Felipe Cabrera. Swift/RAID: a

distributed RAID system. In Computing Systems. Citeseer, 1994.

[74] D. Black, S. Fridella, and J. Glasgow. Parallel NFS (pNFS) Block/Volume

Layout. RFC 5663, January 2010. URL http://tools.ietf.org/pdf/

rfc5663.pdf.

[75] D. Black, Ed., J. Glasgow, and S. Faibish. Parallel NFS (pNFS) Block Disk

Protection. RFC 6688, January 2012. URL http://tools.ietf.org/

pdf/rfc6688.pdf.

[76] B. Halevy, B. Welch, and J. Zelenka. Object-Based Parallel NFS (pNFS) Oper-

ations. RFC 5664, January 2010. URL http://tools.ietf.org/pdf/

rfc5664.pdf.

[77] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields.

Journal of the society for industrial and applied mathematics, 8(2):300–304,

1960.

[78] Lustre. Lustre* Software Release 2.x Operations Manual, September 2013.

URL https://build.hpdd.intel.com/job/lustre-manual/

lastSuccessfulBuild/artifact/lustre_manual.pdf.

[79] IBM. An introduction to IBM Spectrum Scale A fast, simple, scalable and

complete storage solution for today’s data-intensive enterprise, February 2015.

URL http://public.dhe.ibm.com/common/ssi/ecm/dc/en/

dcw03057usen/DCW03057USEN.PDF?

[80] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn. CRUSH:

Controlled, Scalable, Decentralized Placement of Replicated Data. In SC 2006

Conference, Proceedings of the ACM/IEEE, pages 31–31, Tampa, FL, USA,

November 2006. IEEE. ISBN 0-7695-2700-0. doi: 10.1109/SC.2006.19. URL

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=4090205.

117

http://tools.ietf.org/pdf/rfc5663.pdf
http://tools.ietf.org/pdf/rfc5663.pdf
http://tools.ietf.org/pdf/rfc6688.pdf
http://tools.ietf.org/pdf/rfc6688.pdf
http://tools.ietf.org/pdf/rfc5664.pdf
http://tools.ietf.org/pdf/rfc5664.pdf
https://build.hpdd.intel.com/job/lustre-manual/lastSuccessfulBuild/artifact/lustre_manual.pdf
https://build.hpdd.intel.com/job/lustre-manual/lastSuccessfulBuild/artifact/lustre_manual.pdf
http://public.dhe.ibm.com/common/ssi/ecm/dc/en/dcw03057usen/DCW03057USEN.PDF?
http://public.dhe.ibm.com/common/ssi/ecm/dc/en/dcw03057usen/DCW03057USEN.PDF?
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4090205
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4090205

[81] Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and Carlos Maltzahn. RA-

DOS: a scalable, reliable storage service for petabyte-scale storage clusters. In In

Proceedings of the 2nd international workshop on Petascale data storage: held

in conjunction with Supercomputing ’07 (PDSW ’07), page 35, Reno, Nevada,

2007. ACM Press. ISBN 978-1-59593-899-2. doi: 10.1145/1374596.1374606.

URL http://portal.acm.org/citation.cfm?doid=1374596.

1374606.

[82] Dan van der Ster and Herve Rousseau. Ceph ˜30pb Test Report. Technical

report, 2015. URL http://cds.cern.ch/record/2015206/files/

CephScaleTestMarch2015.pdf.

[83] Feiyi Wang, Mark Nelson, Sarp Oral, Scott Atchley, Sage Weil, Bradley W.

Settlemyer, Blake Caldwell, and Jason Hill. Performance and scalabil-

ity evaluation of the Ceph parallel file system. pages 14–19. ACM Press,

2013. ISBN 978-1-4503-2505-9. doi: 10.1145/2538542.2538562. URL

http://dl.acm.org/citation.cfm?doid=2538542.2538562.

[84] Richard Bradshaw and Carl Schroeder. Fifty years of IBM innovation with infor-

mation storage on magnetic tape. IBM Journal of Research and Development, 47

(4):373–383, 2003.

[85] Walter Hinton, Philip Sciuto, Lynn Orlando, Alain Dufaux, and Caryl Jones.

Preservation and Archive: The next 100 Years. pages 1–22. IEEE, October

2015. ISBN 978-1-61482-956-0. doi: 10.5594/M001645. URL http://

ieeexplore.ieee.org/document/7399633/.

[86] Jason Buffington and Adam DeMattia. Analyzing the Economic Value of LTO

Tape for Long-term Data Retention, February 2016. URL https://www.lto.

org/wp-content/uploads/2014/06/ESG-WP-LTO-EVV-Feb_

2016.pdf.

[87] Nick Balthaser. Tape’s Not Dead At LBNL/NERSC, May 2019. URL http:

//storageconference.us/2019/Invited/Balthaser.slides.

pdf.

118

http://portal.acm.org/citation.cfm?doid=1374596.1374606
http://portal.acm.org/citation.cfm?doid=1374596.1374606
http://cds.cern.ch/record/2015206/files/CephScaleTestMarch2015.pdf
http://cds.cern.ch/record/2015206/files/CephScaleTestMarch2015.pdf
http://dl.acm.org/citation.cfm?doid=2538542.2538562
http://ieeexplore.ieee.org/document/7399633/
http://ieeexplore.ieee.org/document/7399633/
https://www.lto.org/wp-content/uploads/2014/06/ESG-WP-LTO-EVV-Feb_2016.pdf
https://www.lto.org/wp-content/uploads/2014/06/ESG-WP-LTO-EVV-Feb_2016.pdf
https://www.lto.org/wp-content/uploads/2014/06/ESG-WP-LTO-EVV-Feb_2016.pdf
http://storageconference.us/2019/Invited/Balthaser.slides.pdf
http://storageconference.us/2019/Invited/Balthaser.slides.pdf
http://storageconference.us/2019/Invited/Balthaser.slides.pdf

[88] Dan Feng, Lingfang Zeng, Fang Wang, and Peng Xia. TLFS: High performance

tape library file system for data backup and archive. In Proceedings of 7th

International Meeting on High Performance Computing for Computational

Science. Rio de Janeiro, Brazil: Springer, 2006.

[89] Lingfang Zeng, Dan Feng, Fang Wang, Ke Zhou, and Peng Xia. Hybrid RAID-

tape-library storage system for backup. In Second International Conference on

Embedded Software and Systems (ICESS’05), pages 6–pp. IEEE, 2005.

[90] Hisashi Kobayashi. Modeling and analysis. The Systems Programming Series.

1978.

[91] Jane WS Liu. Real-time systems. Prentice Hall, 2000.

[92] W.W. Chu. Optimal File Allocation in a Multiple Computer System. IEEE

Transactions on Computers, C-18(10):885–889, October 1969. ISSN 0018-9340.

doi: 10.1109/T-C.1969.222542. URL http://ieeexplore.ieee.org/

document/1671135/.

[93] Michael O’Sullivan, Cameron Walker, and DongJin Lee. Designing data stor-

age tier using integer programing. In Proceedings of the 27th Annual ACM

Symposium on Applied Computing, pages 426–433. ACM, 2012.

[94] DongJin Lee, Michael O’Sullivan, and Cameron Walker. Benchmarking and

modeling disk-based storage tiers for practical storage design. ACM SIGMET-

RICS Performance Evaluation Review, 40(2):113, October 2012. ISSN 01635999.

doi: 10.1145/2381056.2381080. URL http://dl.acm.org/citation.

cfm?doid=2381056.2381080.

[95] D Reinsel, J. Gantz, and J. Rydning. Data age 2025: The Digitization of

the WorldFrom Edge to Core, November 2018. URL https://www.

seagate.com/files/www-content/our-story/trends/files/

idc-seagate-dataage-whitepaper.pdf.

119

http://ieeexplore.ieee.org/document/1671135/
http://ieeexplore.ieee.org/document/1671135/
http://dl.acm.org/citation.cfm?doid=2381056.2381080
http://dl.acm.org/citation.cfm?doid=2381056.2381080
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

[96] Energy Information Administration. Electric power monthly, February

2019. URL https://www.eia.gov/electricity/monthly/epm_

table_grapher.php?t=epmt_5_6_a.

[97] Ian F. Adams, Mark W. Storer, and Ethan L. Miller. Analysis of Workload

Behavior in Scientific and Historical Long-Term Data Repositories. ACM

Transactions on Storage, 8(2):1–27, May 2012. ISSN 15533077. doi: 10.1145/

2180905.2180907. URL http://dl.acm.org/citation.cfm?doid=

2180905.2180907.

[98] Preeti Gupta, Avani Wildani, Ethan L. Miller, Daniel Rosenthal, Ian F. Adams,

Christina Strong, and Andy Hospodor. An Economic Perspective of Disk vs.

Flash Media in Archival Storage. In 2014 IEEE 22nd International Symposium

on Modelling, Analysis & Simulation of Computer and Telecommunication

Systems, pages 249–254, Paris, France, September 2014. IEEE. ISBN 978-1-

4799-5610-4. doi: 10.1109/MASCOTS.2014.39. URL http://ieeexplore.

ieee.org/document/7033661/.

[99] David SH Rosenthal, Daniel C Rosenthal, Ethan L Miller, Ian F Adams,

Mark W Storer, and Erez Zadok. The economics of long-term digital storage.

2012.

[100] Dong-Oh Kim, Hong-Yeon Kim, Young-Kyun Kim, and Jeong-Joon Kim.

Cost analysis of erasure coding for exa-scale storage. The Journal of Su-

percomputing, October 2018. ISSN 0920-8542, 1573-0484. doi: 10.1007/

s11227-018-2663-4. URL http://link.springer.com/10.1007/

s11227-018-2663-4.

[101] Xuefeng Wu, Jie LI, and Hisao KAMEDA. Reliability modeling of declustered-

parity RAID considering uncorrectable bit errors. IEICE transactions on

fundamentals of electronics, communications and computer sciences, 80(8):

1508–1515, 1997.

[102] Julian Kunkel and Thomas Ludwig. IOPm – Modeling the I/O Path with a

Functional Representation of Parallel File System and Hardware Architecture.

120

https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a
https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a
http://dl.acm.org/citation.cfm?doid=2180905.2180907
http://dl.acm.org/citation.cfm?doid=2180905.2180907
http://ieeexplore.ieee.org/document/7033661/
http://ieeexplore.ieee.org/document/7033661/
http://link.springer.com/10.1007/s11227-018-2663-4
http://link.springer.com/10.1007/s11227-018-2663-4

In Rainer Stotzka, Michael Schiffers, and Yiannis Cotronis, editors, 20th Eu-

romicro International Conference on Parallel, Distributed and Network-Based

Processing, pages 554–561, Garching, Germany, 2012. IEEE Computer Society.

ISBN 978-0-7695-4633-9.

[103] Dan Pilone and Neil Pitman. UML 2.0 in a Nutshell. ” O’Reilly Media, Inc.”,

2005.

[104] Anneke G Kleppe, Jos Warmer, Jos B Warmer, and Wim Bast. MDA explained:

the model driven architecture: practice and promise. Addison-Wesley Profes-

sional, 2003.

[105] Alan Dennis, Barabara Haley Wixom, and David Tegarden. Systems Analysis and

Design UML Version 2.0. Wiley, 2009.

[106] Jon Holt and Simon Perry. SysML for systems engineering, volume 7. IET, 2008.

[107] F. Piedad, M. Hawkins, and M.W. Hawkins. High Availability: Design, Tech-

niques, and Processes. Enterprise computing series. Prentice Hall PTR, 2001.

ISBN 978-0-13-096288-1. URL https://books.google.com/books?

id=kHB0HdQ98qYC.

[108] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant

Arrays of Inexpensive Disks (RAID). In Proceedings of the 1988 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’88, pages 109–

116, New York, NY, USA, 1988. ACM. ISBN 0-89791-268-3. doi: 10.1145/

50202.50214. URL http://doi.acm.org/10.1145/50202.50214.

[109] Hakim Weatherspoon and John D Kubiatowicz. Erasure coding vs. replication:

A quantitative comparison. In Peer-to-Peer Systems, pages 328–337. Springer,

2002. ISBN 978-3-540-44179-3. 10.1007/3-540-45748-8 31.

[110] Rodrigo Rodrigues and Barbara Liskov. High availability in DHTs: Erasure

coding vs. replication. In Peer-to-Peer Systems IV, pages 226–239. Springer,

2005.

121

https://books.google.com/books?id=kHB0HdQ98qYC
https://books.google.com/books?id=kHB0HdQ98qYC
http://doi.acm.org/10.1145/50202.50214

[111] J. S. Plank. A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-

like Systems. Software – Practice & Experience, 27(9):995–1012, September

1997.

[112] J. L. Plank, S. Simmerman, and C. D. Schuman. Jerasure: A Library in C/C++

Facilitating Erasure Coding for Storage Applications. Technical Report Technical

Report CS-08-627, University of Tennessee, Knoxville, TN 37996, 2008. URL

http://www.cs.utk.edu/˜plank/plank/papers/CS-08-627.

html.

[113] J. S. Plank, M Blaum, and J. L. Hafner. SD codes: erasure codes designed for

how storage systems really fail. In FAST, pages 95–104, San Jose, CA, USA,

February 2013.

[114] J. S. Plank and M. G. Thomason. A practical analysis of low-density parity-check

erasure codes for wide-area storage applications. In Dependable Systems and

Networks, 2004 International Conference on, pages 115–124. IEEE, 2004. doi:

10.1109/DSN.2004.1311882.

[115] Deshmukh, Parth, Maginnis, Sean, and Chandler, Josh. Jerasure 2.0. PhD

thesis, University of Tennessee Honors Thesis Projects, University of Ten-

nessee – Knoxville, 2011. URL http://trace.tennessee.edu/

utkchanhonoproj/1362/.

[116] KV Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and

Kannan Ramchandran. A solution to the network challenges of data recovery in

erasure-coded distributed storage systems: A study on the Facebook warehouse

cluster. Proc. USENIX HotStorage, 2013.

[117] Yasushi Saito, Svend Frølund, Alistair Veitch, Arif Merchant, and Susan

Spence. FAB: building distributed enterprise disk arrays from commodity

components. In Proceedings of the 11th International Conference on Architec-

tural Support for Programming Languages and Operating Systems, ASPLOS

122

http://www.cs.utk.edu/~plank/plank/papers/CS-08-627.html
http://www.cs.utk.edu/~plank/plank/papers/CS-08-627.html
http://trace.tennessee.edu/utkchanhonoproj/1362/
http://trace.tennessee.edu/utkchanhonoproj/1362/

XI, pages 48–58, Boston, MA, USA, 2004. ACM Press. ISBN 978-1-58113-

804-7. doi: 10.1145/1024393.1024400. URL http://portal.acm.org/

citation.cfm?doid=1024393.1024400.

[118] K.V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur,

and Kannan Ramchandran. A ”hitchhiker’s” guide to fast and efficient data recon-

struction in erasure-coded data centers. In Proceedings of the 2014 ACM Confer-

ence on SIGCOMM, volume 44, pages 331–342, Chicago, Illinois, USA, 2014.

ACM Press. ISBN 978-1-4503-2836-4. doi: 10.1145/2619239.2626325. URL

http://dl.acm.org/citation.cfm?doid=2619239.2626325.

[119] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit

Gopalan, Jin Li, and Sergey Yekhanin. Erasure Coding in Windows Azure

Storage. In Usenix annual technical conference, pages 15–26. Boston, MA,

2012.

[120] James Lee Hafner, Veera Deenadhayalan, Tapas Kanungo, and KK Rao. Perfor-

mance metrics for erasure codes in storage systems. IBM Res. Rep. RJ, 10321,

2004.

[121] Kevin Greenan. Reliability and Power-Efficiency in Erasure-Coded Storage

Systems. Technical Report UCSC-SSRC-09-08, University of California, Santa

Cruz, December 2009.

[122] Mingqiang Li and Jiwu Shu. DACO: A high-performance disk architecture

designed specially for large-scale erasure-coded storage systems. Computers,

IEEE Transactions on, 59(10):1350–1362, 2010. doi: 10.1109/TC.2010.22.

[123] Marcos Kawazoe Aguilera, Ramaprabhu Janakiraman, and Lihao Xu. Using

erasure codes efficiently for storage in a distributed system. In Dependable

Systems and Networks, 2005. DSN 2005. Proceedings. International Conference

on, pages 336–345. IEEE, 2005.

[124] Huaxia Xia and Andrew A. Chien. RobuSTore: A Distributed Storage Architec-

ture with Robust and High Performance. In Proceedings of the 2007 ACM/IEEE

123

http://portal.acm.org/citation.cfm?doid=1024393.1024400
http://portal.acm.org/citation.cfm?doid=1024393.1024400
http://dl.acm.org/citation.cfm?doid=2619239.2626325

Conference on Supercomputing, SC ’07, pages 44:1–44:11, New York, NY,

USA, 2007. ACM. ISBN 978-1-59593-764-3. doi: 10.1145/1362622.1362682.

URL http://doi.acm.org/10.1145/1362622.1362682.

[125] Alexandros G. Dimakis, P. Brighten Godfrey, Yunnan Wu, Martin J. Wain-

wright, and Kannan Ramchandran. Network Coding for Distributed Storage

Systems. IEEE Transactions on Information Theory, 56(9):4539–4551, Septem-

ber 2010. ISSN 0018-9448, 1557-9654. doi: 10.1109/TIT.2010.2054295. URL

http://ieeexplore.ieee.org/document/5550492/.

[126] James S Plank, Jianqiang Luo, Catherine D Schuman, Lihao Xu, Zooko Wilcox-

O’Hearn, and others. A Performance Evaluation and Examination of Open-

Source Erasure Coding Libraries for Storage. In FAST, volume 9, pages 253–265,

2009.

[127] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. Consistency in

a partitioned network: a survey. ACM Computing Surveys, 17(3):341–370,

September 1985. ISSN 03600300. doi: 10.1145/5505.5508. URL http:

//portal.acm.org/citation.cfm?doid=5505.5508.

[128] Mark Silberstein, Lakshmi Ganesh, Yang Wang, Lorenzo Alvisi, and Mike

Dahlin. Lazy means smart: Reducing repair bandwidth costs in erasure-coded

distributed storage. In Proceedings of International Conference on Systems and

Storage, pages 1–7. ACM, 2014.

[129] Qin Xin, E.L. Miller, T. Schwarz, D.D.E. Long, S.A. Brandt, and W. Litwin.

Reliability mechanisms for very large storage systems. In 20th IEEE/11th

NASA Goddard Conference on Mass Storage Systems and Technologies, 2003.

(MSST 2003). Proceedings., pages 146–156, San Diego, CA, USA, 2003. IEEE

Comput. Soc. ISBN 978-0-7695-1914-2. doi: 10.1109/MASS.2003.1194851.

URL http://ieeexplore.ieee.org/document/1194851/.

[130] T.J.E. Schwarz, Qin Xin, E.L. Miller, D.D.E. Long, A. Hospodor, and Spencer

Ng. Disk scrubbing in large archival storage systems. In The IEEE Computer

Society’s 12th Annual International Symposium on Modeling, Analysis, and

124

http://doi.acm.org/10.1145/1362622.1362682
http://ieeexplore.ieee.org/document/5550492/
http://portal.acm.org/citation.cfm?doid=5505.5508
http://portal.acm.org/citation.cfm?doid=5505.5508
http://ieeexplore.ieee.org/document/1194851/

Simulation of Computer and Telecommunications Systems, 2004. (MASCOTS

2004). Proceedings., pages 409–418, Volendam, The Netherlands, EU, 2004.

IEEE. ISBN 978-0-7695-2251-7. doi: 10.1109/MASCOT.2004.1348296. URL

http://ieeexplore.ieee.org/document/1348296/.

[131] Jon G Elerath and Michael Pecht. Enhanced reliability modeling of raid storage

systems. In 37th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN’07), pages 175–184. IEEE, 2007.

[132] Osama Khan, Randal C Burns, James S Plank, William Pierce, and Cheng

Huang. Rethinking erasure codes for cloud file systems: minimizing I/O for

recovery and degraded reads. In FAST, page 20, 2012.

[133] Guoyang Chen, Huiyang Zhou, Xipeng Shen, Josh Gahm, Narayan Venkat,

Skip Booth, and John Marshall. OpenCL-based erasure coding on heterogeneous

architectures. pages 33–40. IEEE, July 2016. ISBN 978-1-5090-1503-0. doi:

10.1109/ASAP.2016.7760770. URL http://ieeexplore.ieee.org/

document/7760770/.

[134] Lavanya Mandava and Liudong Xing. Reliability analysis of cloud-RAID 6 with

imperfect fault coverage. International Journal of Performability Engineering,

130(3), 2017.

[135] Albert Myers. Complex System Reliability, volume 0 of Springer Series in

Reliability Engineering. Springer London, London, 2010. ISBN 978-1-84996-

413-5 978-1-84996-414-2. doi: 10.1007/978-1-84996-414-2. URL http:

//link.springer.com/10.1007/978-1-84996-414-2.

[136] Kevin M Greenan, Ethan L Miller, Thomas JE Schwarz, and Darrell DE Long.

Disaster Recovery Codes: Increasing Reliability with Large-Stripe Error Correc-

tion Codes. In In StorageSS’07. Citeseer, 2007.

[137] Kevin M Greenan, Ethan L Miller, and SJ Thomas JE Schwarz. Optimizing

Galois Field arithmetic for diverse processor architectures and applications. In

2008 IEEE International Symposium on Modeling, Analysis and Simulation of

Computers and Telecommunication Systems, pages 1–10. IEEE, 2008.

125

http://ieeexplore.ieee.org/document/1348296/
http://ieeexplore.ieee.org/document/7760770/
http://ieeexplore.ieee.org/document/7760770/
http://link.springer.com/10.1007/978-1-84996-414-2
http://link.springer.com/10.1007/978-1-84996-414-2

[138] Kevin M Greenan, James S Plank, Jay J Wylie, and others. Mean Time to

Meaningless: MTTDL, Markov Models, and Storage System Reliability. In

HotStorage, pages 1–5, 2010.

[139] Kevin M. Greenan. Reliability and Power-Efficiency in Erasure-Coded Storage

Systems. PhD thesis, University of California, Santa Cruz, December 2009. URL

https://www.ssrc.ucsc.edu/pub/ssrctr-09-08.html.

[140] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A.

Patterson. RAID: high-performance, reliable secondary storage. ACM Computing

Surveys, 26(2):145–185, June 1994. ISSN 03600300. doi: 10.1145/176979.

176981. URL http://portal.acm.org/citation.cfm?doid=

176979.176981.

[141] John Kerl. Computation in finite fields. Arizona State University and Lockheed

Martin Corporation, 2004.

[142] Rudolf Lidl and Harald Niederreiter. Encyclopedia of Mathematics and its

Applications, volume 20 of Algebra. Addison-Wesley, Reading, Mass., 1983.

ISBN 0-201-13519-1.

[143] Bruce Schneier. Applied cryptography: protocols, algorithms, and source

code in C. Wiley, New York, 2nd ed edition, 1996. ISBN 978-0-471-12845-8

978-0-471-11709-4.

[144] James Plank, Kevin Greenan, and Ethan L. Miller. Screaming Fast Galois Field

Arithmetic Using Intel SIMD Extensions. In Proceedings of the 11th Conference

on File and Storage Systems (FAST 2013), February 2013.

[145] H Peter Anvin. The mathematics of RAID-6. online paper, 2007. URL ftp:

//ftp2.de.debian.org/kernel/linux/kernel/people/hpa/

raid6.pdf.

[146] Blair Crossman-New Mexico Tech. Functional and Performance Assessment of

Erasure Coded Storage Systems. 2013.

126

https://www.ssrc.ucsc.edu/pub/ssrctr-09-08.html
http://portal.acm.org/citation.cfm?doid=176979.176981
http://portal.acm.org/citation.cfm?doid=176979.176981
ftp://ftp2.de.debian.org/kernel/linux/kernel/people/hpa/raid6.pdf
ftp://ftp2.de.debian.org/kernel/linux/kernel/people/hpa/raid6.pdf
ftp://ftp2.de.debian.org/kernel/linux/kernel/people/hpa/raid6.pdf

[147] Hsing-bung Chen, Gary Grider, Jeff Inman, Parks Fields, and Jeff Alan Kuehn.

An empirical study of performance, power consumption, and energy cost of

erasure code computing for HPC cloud storage systems. pages 71–80. IEEE,

August 2015. ISBN 978-1-4673-7891-8. doi: 10.1109/NAS.2015.7255220. URL

http://ieeexplore.ieee.org/document/7255220/.

[148] National Institute of Standards and Technology. Advanced encryption standard

(AES). Technical Report NIST FIPS 197, National Institute of Standards and

Technology, Gaithersburg, MD, November 2001. URL https://nvlpubs.

nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf.

[149] Morris J Dworkin. Recommendation for Block Cipher Modes of Operation:

Galois/Counter Mode (GCM) and GMAC| NIST. Technical Report NIST Special

Publication 800-38D, NIST, 2007. URL https://nvlpubs.nist.gov/

nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf.

[150] Jesús Martı́n Berlanga. GPU accelerated AES. June 2017. URL http://oa.

upm.es/47172/.

[151] Binbing Hou, Feng Chen, Zhonghong Ou, Ren Wang, and Michael Mesnier.

Understanding I/O Performance Behaviors of Cloud Storage from a Client’s

Perspective. ACM Transactions on Storage, 13(2):16, 2017.

[152] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon. RACS: a

case for cloud storage diversity. In Proceedings of the 1st ACM symposium on

Cloud computing - SoCC ’10, page 229, Indianapolis, Indiana, USA, 2010.

ACM Press. ISBN 978-1-4503-0036-0. doi: 10.1145/1807128.1807165.

URL http://portal.acm.org/citation.cfm?doid=1807128.

1807165.

[153] Yih-Farn Robin Chen. The Growing Pains of Cloud Storage. IEEE Internet

Computing, 19(1):4–7, January 2015. ISSN 1089-7801. doi: 10.1109/MIC.2015.

14. URL http://ieeexplore.ieee.org/document/7031827/.

[154] David John Bonnie, Susan K Coulter, Jason Cody Hick, Brett Jason Hollander,

Cory Lueninghoener, Jesse Edward Martinez, Michael A Mason, David Richard

127

http://ieeexplore.ieee.org/document/7255220/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://oa.upm.es/47172/
http://oa.upm.es/47172/
http://portal.acm.org/citation.cfm?doid=1807128.1807165
http://portal.acm.org/citation.cfm?doid=1807128.1807165
http://ieeexplore.ieee.org/document/7031827/

Montoya, Andrew J Montoya, Timothy C Randles, and others. Next Genera-

tion Infrastructure Plan FY18-FY22. Technical report, Los Alamos National

Lab.(LANL), Los Alamos, NM (United States), 2017.

[155] Matthew L. Curry, Anthony Skjellum, H. Lee Ward, and Ron Brightwell. Ar-

bitrary dimension Reed-Solomon coding and decoding for extended RAID on

GPUs. pages 1–3. IEEE, November 2008. ISBN 978-1-4244-4208-9. doi:

10.1109/PDSW.2008.4811887. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=4811887.

[156] NVIDIA. CUDA Parallel Computing Platform, March 2017. URL http:

//www.nvidia.com/object/cuda_home_new.html.

[157] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,

Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Chris

Wells, and Ben Zhao. OceanStore: An Architecture for Global-scale Persistent

Storage. In Proceedings of the Ninth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS IX,

pages 190–201, New York, NY, USA, 2000. ACM. ISBN 1-58113-317-0.

doi: 10.1145/378993.379239. URL http://doi.acm.org/10.1145/

378993.379239.

[158] Garth R Goodson, Jay J Wylie, Gregory R Ganger, and Michael K Reiter. Ef-

ficient Byzantine-tolerant erasure-coded storage. In Dependable Systems and

Networks, 2004 International Conference on, pages 135–144. IEEE, 2004. doi:

10.1109/DSN.2004.1311884.

[159] Klein Andy. Backblaze Hard Drive Stats for 2018, January 2019. URL https:

//www.backblaze.com/blog/hard-drive-stats-for-2018/.

[160] Judith L. Gersting. Mathematical structures for computer science. W.H. Freeman,

New York, 5th ed edition, 2003. ISBN 978-0-7167-4358-3.

[161] Michael Brown. SanDisk announces Extreme Pro enthusiast SSDs with

crazy long 10-year warranties, 2014. URL http://www.pcworld.

128

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4811887
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4811887
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://doi.acm.org/10.1145/378993.379239
http://doi.acm.org/10.1145/378993.379239
https://www.backblaze.com/blog/hard-drive-stats-for-2018/
https://www.backblaze.com/blog/hard-drive-stats-for-2018/
http://www.pcworld.com/article/2357767/ sandisk-announces-extreme-pro-\ssd-series-backs-drives-with-10-year- warranties.html#tk.fb pc
http://www.pcworld.com/article/2357767/ sandisk-announces-extreme-pro-\ssd-series-backs-drives-with-10-year- warranties.html#tk.fb pc

com/article/2357767/sandisk-announces-extreme-pro-\

ssd-series-backs-drives-with-10-year-warranties.html#

tk.fbpc.

[162] Jon L. Jacobi. Seagate is the first to hit 16tb capacity with its IronWolf, IronWolf

Pro, and Exos x16 hard drives, 2019. URL https://www.pcworld.com/

article/3399920/seagate-is-the-first-to-hit-16tb-\

capacity-with-its-ironwolf-ironwolf-pro-and-exos-\

x16-hard-drives.html.

[163] Ole Tange. Gnu parallel-the command-line power tool. The USENIX Magazine,

36(1):42–47, 2011.

[164] Lothlórien Watkins. HPSS: Data Archiving in a Supercomputing Environment,

January 2019. URL https://computation.llnl.gov/projects/

hpss-data-archiving-in-a-supercomputing-environment.

[165] K. Lamb. Trinity Campaign Storage and Usage Model, August 2015. URL

https://www.lanl.gov/projects/trinity/_assets/docs/

trinity-usage-model-presentation.pdf.

[166] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn. Grid

resource management—CRUSH: controlled, scalable, decentralized placement

of replicated data. page 122. ACM Press, 2006. ISBN 0-7695-2700-0. doi:

10.1145/1188455.1188582. URL http://portal.acm.org/citation.

cfm?doid=1188455.1188582.

[167] Jakob Luttgau, Jens Jensen, Julian Kunkel, and Bryan Lawrence. D4.1 Business

Model with Alternative Scenarios. Technical Report WP4 Exploitability, DKRZ,

February 2017.

[168] Walker Haddock, Matthew L. Curry, Purushotham V Bangalore, and Antho

Skjellum. Campaign Storage: Eraure Coding with GPUs. In SC ’17: Proceedings

of the International Conference for High Performance Computing, Networking,

Storage and Analysis, Denver, Colorado, 2017. ACM. ISBN 978-1-4503-5114-0.

URL http://sc17.supercomputing.org/.

129

http://www.pcworld.com/article/2357767/ sandisk-announces-extreme-pro-\ssd-series-backs-drives-with-10-year- warranties.html#tk.fb pc
http://www.pcworld.com/article/2357767/ sandisk-announces-extreme-pro-\ssd-series-backs-drives-with-10-year- warranties.html#tk.fb pc
http://www.pcworld.com/article/2357767/ sandisk-announces-extreme-pro-\ssd-series-backs-drives-with-10-year- warranties.html#tk.fb pc
http://www.pcworld.com/article/2357767/ sandisk-announces-extreme-pro-\ssd-series-backs-drives-with-10-year- warranties.html#tk.fb pc
https://www.pcworld.com/article/3399920/seagate-is-the-first-to-hit-16tb-\capacity-with-its-ironwolf-ironwolf-pro-and-exos-\x16-hard-drives.html
https://www.pcworld.com/article/3399920/seagate-is-the-first-to-hit-16tb-\capacity-with-its-ironwolf-ironwolf-pro-and-exos-\x16-hard-drives.html
https://www.pcworld.com/article/3399920/seagate-is-the-first-to-hit-16tb-\capacity-with-its-ironwolf-ironwolf-pro-and-exos-\x16-hard-drives.html
https://www.pcworld.com/article/3399920/seagate-is-the-first-to-hit-16tb-\capacity-with-its-ironwolf-ironwolf-pro-and-exos-\x16-hard-drives.html
https://computation.llnl.gov/projects/hpss-data-archiving-in-a-supercomputing-environment
https://computation.llnl.gov/projects/hpss-data-archiving-in-a-supercomputing-environment
https://www.lanl.gov/projects/trinity/_assets/docs/trinity-usage-model-presentation.pdf
https://www.lanl.gov/projects/trinity/_assets/docs/trinity-usage-model-presentation.pdf
http://portal.acm.org/citation.cfm?doid=1188455.1188582
http://portal.acm.org/citation.cfm?doid=1188455.1188582
http://sc17.supercomputing.org/

[169] Greg Tucker. ISA-L open source v2.14 API doc, April 2014. URL https://

01.org/sites/default/files/documentation/isa-l_open_

src_2.10.pdf.

[170] Morris Dworkin. NIST Special Publication 800-38A: Recommendation for Block

Cipher Modes of Operation: Methods and Techniques. NIST, December 2001.

[171] Loic Dachary. https://ceph.com/geen-categorie/ceph-

erasure-code-jerasure-plugin-benchmarks/, May 2014.

URL https://ceph.com/geen-categorie/

ceph-erasure-code-jerasure-plugin-benchmarks/.

130

https://01.org/sites/default/files/documentation/isa-l_open_src_2.10.pdf
https://01.org/sites/default/files/documentation/isa-l_open_src_2.10.pdf
https://01.org/sites/default/files/documentation/isa-l_open_src_2.10.pdf
https://ceph.com/geen-categorie/ceph-erasure-code-jerasure-plugin-benchmarks/
https://ceph.com/geen-categorie/ceph-erasure-code-jerasure-plugin-benchmarks/

Appendices

131

Appendix A

A.1 Application design and implementation

In order to measure the performance and effectiveness of the NLDA architecture,

we designed and implemented a benchmark application that created the processes that

are needed by the architecture and a front end to setup various test cases which could be

executed and measured. We began with an erasure code benchmark that is included with

the Ceph source code, ceph erasure code benchmark. This tool allowed for the selection

and configuration of the erasure code library and the specification of the benchmark to

be executed. We used this tool initially to measure the erasure coding performance of

the Jerasure, the ISA-L, and the Gibraltar libraries. This tool did not implement any

feature to interact with the object storage system. Another tool that is included in Ceph

is the radosbench.py which writes and reads data to the object store to measure the IO

performance. Ceph provides and application programming interface (API) to interact

with the object storage system along with some examples about how to use this API. We

decided to use the ceph erasure code benchmark tool and extend it with features that

allowed writing to the object storage system.

A.1.1 Challenges

In our original approach we expected that the Ceph erasure code plugin feature

would allow us to perform erasure coding on the OSSs just as it does with the CPU

based libraries. However, we found that this was not possible. Ceph assumes that all

compute nodes in the object storage systems, including the metadata servers, etc. will

have the same hardware capabilities. When we tried to create erasure coding pools on

the object storage system using Gibraltar, the system would panic. After much effort

132

debugging, we found that the metadata server was failing when the Gibraltar pool was

created because it did not have the GPU nor the NVIDIA R© CUDA R© libraries installed.

Even when we added these capabilities to the metadata server, the system continued to

fail. However, we did not have any problems running the Gibraltar libraries as a client

on the FTAs and we quickly realized that this was the superior configuration. We did not

continue to diagnose the problem with running the GPUs on the OSSs.

The other great challenge was to keep the Ceph API running at full utilization. This

required that a queue of objects needed to be provided for the modules that wrote objects

to the object storage system, performed erasure coding or encryption. When reading

from the object storage system, we needed to keep a queue of objects for the erasure

repair module and decryption modules to stay fully utilized. Another issue with using

the Ceph API concerned the memory buffer management. Ceph developed a “bufferlist”

data structure which efficiently manages the memory on the heap. The API depends on a

new bufferlist to be allocated by the API as an input to the write or read API calls. These

bufferlist objects are then managed by Ceph throughout their lifetime. After Ceph is

finished with an operation, write or read, it releases the memory resources and cleans up

the references to the data structure. Since a bufferlist is required for each object written

or read and we use an object to store a shard in, each stripe required K + M bufferlist

objects. The allocation of these bufferlists took a small amount of time to create and

would introduce delays in the pipeline. By creating a module to produce bufferlist objects

and push them to a queue, we were able to keep a ready supply for the other modules in

the pipeline.

We used the asynchronous API calls to write and read data to the object storage

system. Neither the API documentation nor the examples provided sufficient guidance for

using these API calls. We learned that several intuitive approaches did not work. Neither

did we find any discussion in the developer nor user community about using the Ceph

API asynchronous features. The trivial examples provided worked, but following this

approach would quickly result in failure when writing hundreds of objects concurrently

133

which was required to maximize performance. We spent a good amount of time studying

the tools provided in the Ceph source code where these API calls were used and learned

how to use the callback mechanism. This required a good bit of record keeping for each

shard that was written or read from the object storage system but worked very well after

we implemented and tested.

In the end, our extended version of the ceph erasure code benchmark has over 2,600

lines of code. We also had to extend the Gibraltar library API in order to interface

with the Ceph plugin and several header files were implemented to support the new

data structures and functions that were required to implement our highly concurrent

application. Next, we discuss the modules of the system.

A.1.2 Command Line Parameters

There are two main modes of operation for the benchmark application. The first is

to write data to the object storage system and the second is to read data from the object

storage system. The application has several configuration parameters that are supplied

on the command line to perform the test:

testname — Each test run is given a name. This name is used as the root for the object

names that store the data shards. Each shard is stored in an object that is named

based on the testname, the stripe number and the position of the shard in the stripe.

iterations — The number of stripes to be written or read during the experiment.

queuesize — The maximum number of shards that can be stored in any of the queues

at any time. As the data moves through the pipeline, each module puts a data

shard or stripe into an inter-module queue. The size of the queue is based on this

parameter which provides the maximum number of shards for the queues. In the

case of queues that hold stripes, each stripe has K + M shards.

mode — The modes are for writing or reading to the object store which are denoted as

encode and decode respectively.

134

pool — The pool that has been configured in the object storage system to store the

objects in.

plugin — The erasure code library to be used for the test. We used the ISA-L, Jerasure,

and the Gibraltar plugins.

technique — The erasure code libraries may provide multiple implementations of the

erasure coding algorithm. We used reed-solomon for Gibraltar and Jerasure and

cauchy for ISA-L.

shard-size — The data size is specified by the shard size. For our testing we used 4 MB

and 8 MB. With K = 120, this gave us stripe sizes of about 512 MB and 1 GB.

threads — This is the maximum number of Ceph API asynchronous writes or reads

that are allowed to be active at any time. This is intended to prevent overloading

the object storage system.

ecthreads — This is the number of instances of the erasure coding or erasure decoding

module that is running concurrently. In order to produce enough shards to keep

the object storage server busy when using the ISA-L or Jerasure libraries, it was

necessary to run multiple instances of these modules. For Gibraltar, we only run a

single thread.

A.1.3 Software Modules

There are seven major modules in our application with a few other utility modules

that facilitate moving data objects between the main modules. The main utility provided

is to assemble shards back into stripes for erasure coding or erasure repair. Some of the

modules operate on a stripe of data and others operate on individual shards.

Bufferlist Creator — This thread creates bufferlist objects and pushes them into a

bufferlist queue. A configuration parameter provides the upper limit for the size of

this queue. When the limit is reached, the module, running as a thread, waits until

135

the supply falls below the limit to run again. This keeps the queue filled so there

is a supply for the downstream operations to consume. We have implemented

a counter which checks the number of bufferlists that have been created against

the number of stripes that were configured for the benchmark. When the number

of required bufferlist objects for the test have been produced, the module exits.

The behavior of this module results in a rapid increase in the memory used by

the application at startup, a leveling off of the memory resources during the test,

followed by a rapid decrease in memory utilization after all of the buffers have

been produced, consumed and completed.

Erasure Encoding — The erasure encoding module also runs as a thread when the test

is configured to write data to the object storage system. The module pulls a stripe

of K data shards from a stripe queue and sends them to the erasure code library.

The stripe is returned with an additional M checksum shards that were computed.

After erasure coding a stripe, the shards are marshaled into queue that supplies the

write module.

Erasure Decoding — The erasure decoding module runs as a thread when the mode is

set to decode from the object storage system. A stripe of data is pulled from the

read data stripe queue and sent to the erasure code plugin for repair. The erasure

repair queue will also have to handle the configuration of the call to the plugin to

perform the repairs. K good shards must be provided and the decoding call will

need to be configured with the information describing the order of the shards in the

stripe. Some of the shards may be checksum shards that will replace defective data

shards. Also, when performing a repair, it may be necessary to recompute some

of the checksum shards. After the data are repaired, the benchmark application

discards the data and completes the read of the stripe unless we are decrypting. If

we are decrypting, the stripe is put into the decryption queue.

Object Write — The object write module runs as a thread when the mode is set to

encode. Shards are pulled from the input queue and written to the object storage

136

system using the asynchronous write call. One of the inputs to the call is a callback

object. The callback object provides a pointer to a function that is called with

a value after the operation completes. The write module creates a record of the

callback and stores it in a map. When the callback is executed by the Ceph API,

the index into the map is provided by the message. The function called looks

up the record from the map and deletes it. Once all of the entries in the map are

removed and the map has no more elements, all of the writes to the object storage

system have completed.

Object Read — The object read module runs as a thread when the mode is set to decode.

Based on the testname, K, M , shardsize, and iterations given on the command

line, stripes of empty bufferlist objects are created for reading. Since the name of

the objects that were stored in the object storage system were constructed from

these values, the read module begins to make asynchronous read calls to the object

storage system for each shard in each stripe. A callback object is created and

included in the API call. These callback objects are inserted into a map. When

the call completes, the function called by the callback module is executed. The

callback function looks the record up in the map, retrieves the data returned by the

call and writes it to the bufferlist for that shard. A utility thread watches the map

for completed shards in stripe order then shard order. As the shards are retrieved

from the object storage system, they are assembled into stripes and the callback

record is deleted. The completed stripes are pushed into a queue for downstream

operations.

Encryption Module — The encryption module runs as a thread when encryption is

enabled and the mode is encode. If we are encrypting data, the data is encrypted

prior to erasure coding. When the encryption module is running, a helper thread

pulls a stripe of data from the input queue and marshals the shards into a queue

for the encryption modules. There may be multiple encryption threads executing

for parallelism. Each encryption thread pulls a shard from the input shard queue

137

and performs encryption on it. The encrypted shards are pushed on to an output

queue. Another helper thread assembles the encrypted shards back into stripes in

the correct order and inserts the stripes into the input queue for the erasure coding

module.

Decryption Module — The decryption module runs as a thread when encryption is

enabled and the mode is decode. The decryption thread pulls shards from the

input queue and performs decryption. There may be multiple decryption threads

executing. The current application deletes the data after the decryption is performed

and completes the read operation for the stripe.

138

	A Scalable Nearline Disk Archive Storage Architecture for Extreme Scale High Performance Computing
	Recommended Citation

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENT
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Motivations
	1.2 Goals and Metrics
	1.3 Dissertation Statement
	1.4 The Approach
	1.4.1 Methodology

	1.5 Contributions
	1.6 Broader Impacts
	1.7 Outline

	2 BACKGROUND
	2.1 Introduction
	2.2 Foundations of Computer File Systems
	2.2.1 File Standards
	2.2.2 File System Abstractions

	2.3 Distributed File Systems
	2.3.1 Coda
	2.3.2 Swift
	2.3.3 NASD
	2.3.4 zFS
	2.3.5 pNFS
	2.3.6 Vesta
	2.3.7 Parallel Virtual File System (PVFS)
	2.3.8 Hadoop Distributed File System (HDFS)
	2.3.9 Lustre
	2.3.10 GFS: Google File System
	2.3.11 GPFS: IBM's General Parallel File System
	2.3.12 Panasas
	2.3.13 Ceph

	2.4 Tape and Virtual Tape Archive Systems
	2.5 Modeling Storage Systems
	2.6 Storage System Reliability
	2.7 Advanced Encryption System
	2.8 Summary

	3 THEORY AND PRACTICE
	3.1 Introduction
	3.2 Problems
	3.3 Failure in storage
	3.4 Requirements of a Nearline Disk Object Storage System
	3.4.1 Baseline Architecture Design

	3.5 Preliminary Investigation and Measurements
	3.5.1 Raw Disk IO Measured with dd and fio
	3.5.2 Bandwidth and IOPS Performance

	3.6 Bandwidth of Data Path
	3.7 Comparison with other systems
	3.8 Architecture
	3.9 Cost Analysis
	3.10 Encryption
	3.11 Lazy Repair

	4 A NEARLINE DISK ARCHIVE STORAGE FOR HPC
	4.1 Introduction
	4.2 Test Environment
	4.3 Measurements
	4.3.1 Baseline Performance of Ceph Erasure Coding
	4.3.2 Performance of Storing Data in Object Storage

	4.4 AES Encryption with Erasure Coding
	4.5 Lazy Repair

	5 SUMMARY
	5.1 Dissertation Statement
	5.2 Contributions
	5.3 Broader Impacts
	5.4 Future Work
	5.5 Conclusion

	LIST OF REFERENCES
	Appendix A
	A.1 Application design and implementation
	A.1.1 Challenges
	A.1.2 Command Line Parameters
	A.1.3 Software Modules

