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EXPONENTIAL LAMINATIONS

PATRICK BARRY HARTLEY

MATHEMATICS

ABSTRACT

Laminations have proved useful in proving facts about polynomial Ju-

lia sets. In this thesis, a process by which to construct laminations for

certain exponential Julia sets will be presented. This thesis will consider

those exponential Julia sets where hairs are identified at a single repelling

fixed point, as opposed to multiple repelling fixed points or repelling pe-

riodic points. This construction will make use of known facts about the

complex exponential function and an itinerary system similar to those used

in polynomial laminations.
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Abbreviations and Symbols

R will stand for the real line

C will stand for the complex plane

Eλ will stand for λez, the complex exponential function with complex parameter
λ

J(Eλ) will stand for the Julia set of Eλ

F (Eλ) will stand for the Fatou set of Eλ
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1 Introduction

In this paper we will step through a description of a structure of the Julia set

J(Eλ) for the complex exponential function, where Eλ(z) = λez, from [BD00] and

then use that structure to construct a combinatorial model called a lamination.

0

1

-1

Figure 1: Example of an exponential Julia set and associated partial
lamination for parameter λ = 3 + πi.

Laminational models have been used to study the Julia sets for complex

polynomial functions for some time. At first laminations were constructed by

taking a known quadratic Julia set and building a model that represented it and

its dynamics. Then a set of rules was developed such that any connected,

quadratic Julia set will be represented as a lamination. In addition, any

lamination following those rules potentially could represent an actual polynomial

Julia set. This led to studying laminations and the dynamics on them with the

knowledge that theorems proved about laminations would have implications for

polynomial Julia sets as well. An example of such a theorem is the central strip

lemma for quadratic polynomials Pc(z) = z2 + c, for complex parameter c.

Proved by Thurston in [T09], the central strip lemma describes some limitations

on the movements of chords in a lamination under iteration. This was then used

to show that there are specific dynamical behaviors that cannot occur in Julia

sets of quadratic polynomials.
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Figure 2: A Douady Rabbit quadratic Julia set, Pc(z) = z2 + c for parameter
c = −.125 + .75i, and associated lamination.

The Julia set J(Eλ) is defined as the closure of the set of points that escape to

∞ under iteration, and the Fatou set F (Eλ) as the complement of the Julia set.

Analogously in the polynomial case, the Julia set is the boundary of the set of

points that escape to ∞ [M06]. The exponential function is strongly analogous

to the quadratic function because they both have just one singular point.

Quadratic functions have one critical point and the exponential function has one

omitted value. To get an idea of the behavior of Eλ, we take a look at it’s

dynamics under only a few iterations with λ = 1. Eλ maps vertical lines to

circles around the origin, the half plane to the left of that line inside of the circle,

and the other half plane to the outside of the circle. This shows that every

horizontal strip of width 2π maps over C \ {0}. Because of the 2π periodicity of

Eλ up and down the imaginary axis, we get infinitely many horizontal strips of

width 2π that map over C \ {0}. If we choose our strips so that the horizontal

border lines (height odd multiples of π) map to the negative real axis, under two

iterations a π wide strip around each of them will map into the interior of a circle

about the origin. It is known that in the case of an attracting fixed point, points

near enough to the origin will be attracted to said fixed point. This implies, if we

have an attracting fixed point, that far enough to the right our strips that map
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into a circle about the origin in two steps will map into a small enough circle

that they will ultimately be attracted to the attracting fixed point. This shows

that the strips in question will not be in the Julia set and thus will fall in the

Fatou set. Changing λ results in a few changes. Changing the argument of λ

results in shifting horizontally the strips that map in two iterations into a circle

about the origin, and changing the modulus of λ changes the radius of the

aforementioned circle about the origin. This ultimately results in shifting up or

down our strips in the far right half plane that are in the Fatou set.

Knowing this, we would expect an image of an exponential Julia set to show

infinitely many horizontal strips in the far right half plane lying in the Fatou set

and the Julia set lying between these strips. This can be seen in Figure 3. Closer

to the vertical axis is where things get more complicated.

In the case of a λ that admits an attracting fixed point, it is known that the Julia

set is a Cantor Bouquet (Figure 3)[BD00][DG87][B99]. In this paper we will look

at the case when there is an attracting cycle of period n ≥ 3. (The case for an

attracting fixed point n = 1, is covered in [DG87]. The case for n = 2 is trivial.)

Figure 3: An exponential Julia set with an attracting fixed point. Parameter
λ = −2

Another behavior of note is what we call pinching. In the quadratic case

Pc(z) = z2 + c, as can be seen in Figure 4, with a parameter c = 0 the Julia set is

the unit circle. As the parameter is moved, points on the circle begin to come

3



Figure 4: Example of the pinching of a quadratic Julia set. For parameters c = 0,
c = −.125 + .625i, c = −.125 + .67i respectively.

Figure 5: Example of the pinching of an exponential Julia set. For parameters
λ = −2, λ = .55− 1.56i, λ = .8− 1.75i respectively.

together. We say these points are being pinched together. Once the parameter

crosses a threshold, the points that are being pinched actually come all of the

way together and become identified. A similar behavior occurs with exponential

Julia sets. Starting with a parameter λ that admits an attracting fixed point we

see in Figure 5 that the Julia set is a Cantor Bouquet. As we move the

parameter we see that some points are coming closer together in a manner

reminiscent of pinching in the quadratic case. Again, crossing a threshold with

λ, it appears that these points come all of the way together and are identified. It

turns out that is exactly what is happening and we will elaborate on it later.

The goal of this paper is to use the above behaviors to build a representative

laminational model for the complex exponential function, as seen in Figure 1,

that, in the future, could be used to study further the Julia sets of the complex

4



exponential function in an manner analogous to polynomial laminations and

polynomial Julia sets.

2 Kneading Sequence, Itineraries, and Hairs

In this section we will closely follow [BD00]. That paper details the structure of

the attracting domain(s) of the Julia set of Eλ(z) = λez for those λ where there is

an attractive periodic orbit in the Fatou set F (Eλ); uses that structure to assign

itineraries to points in the Julia set; constructs a kneading sequence; uses that

kneading sequence to augment the previous itineraries; and uses the augmented

itineraries to determine the behavior of parts of the Julia set known as hairs.

2.1 Approximating Fundamental Sets of Attracting Domains

To begin, we will describe a convenient structure for a given attracting periodic

orbit. First, we need to introduce a definition from [BD00] which will be used

throughout this section.

Definition 1. An unbounded, simply connected F ⊂ C is called a finger of width

c if

1. F is bounded by a simple curve γ ⊂ C

2. There exists a ν > 0 such that F ∩ {z|Re(z) > ν} is simply connected,

extends to infinity, and satisfies

{F ∩ {z|Re(z) > ν}} ⊂ {z|Im(z) ∈ [ξ − c

2
, ξ +

c

2
]}

for some ξ ∈ R

We then let z0, ..., zn−1 be an attracting periodic orbit for Eλ = λez with n ≥ 3.

Suppose 0 ∈ A∗(z1) where A∗(z) is the immediate basin of attraction of z. Then

it is known [BD00] that there exist disjoint, open, simply connected sets

C1, ..., Cn−1 such that:
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1. zj ∈ Cj, Cj ⊂ A∗(zj)

2. Eλ(Cj) = Cj+1, j = 0, ..., n− 2 and Eλ(Cn−1) ⊂ C0

3. C1, ..., Cn−1 are fingers of width cj ≤ 2π

4. The complement of C0 consists of infinitely many disjoint fingers.

We note that the fingers Cj for j = 1, ..., n− 1 do not contain any points of

J(Eλ), however the fingers in the complement of C0 contain all of J(Eλ) as well

as all of the other Cj. A collection of such sets will become important so we will

use the following

Definition 2. A collection of open subsets C0, ..., Cn−1 satisfying the above

conditions is called a fundamental set of attracting domains for the cycle

z0, ..., zn−1.

These attracting domains are fingers and subsets of the A∗(zj), but beyond this

we don’t know anything about them. We would like to have an idea of their

sizes. To that end, we have

Definition 3. A smooth curve γ(t) is called horizontally asymptotic to c if

1. limt→∞Re(γ(t)) = +∞

2. limt→∞ Im(γ(t)) = c

3. limt→∞ arg(γ′(t)) = 0

In [BD00], the authors show the following

Theorem 2.1. For a cycle z0, ..., zn−1 there exists a fundamental set of

attracting domains, denoted Bj for j = 0, ..., n− 1, with the following properties.

There are integers kj and a parameterization γj(t) of the boundary of Bj which is

horizontally asymptotic to

1. 2πkn−1 − arg(λ)± π
2

if j = n− 1
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2. 2πkj − arg(λ) if j = 0, ..., n− 2

where kj ∈ Z

From here on we will assume the fundamental set of attracting domains is chosen

to satisfy the above conditions. We note that Figure 6, and others like it in this

π

2π

3π

B0

z1

z2
z0

B1

B2

Figure 6: Fundamental domains of attraction for λ = 3 + πi.

paper, is not to scale, because as seen in Theorem 2.1, Bn−1 will have width π

and the other Bj for j = 1, ..., n− 2 can have arbitrarily small width.

2.2 Symbol Space

We now turn our attention to defining a symbol space that we will use to

describe the dynamics of Eλ on its Julia set. We start by recalling that the

complement of B0 is the union of infinitely many closed, unbounded fingers in

the right half-plane. We label these fingers by Hk where k ∈ Z and we index

them so that 0 ∈ H0 and k increases with increasing imaginary parts. Note that

because J(Eλ) is contained in the complement of B0 and ∪z∈ZHk is the

complement of B0, J(Eλ) ⊂ ∪z∈ZHk.

Consider the set Σ = {(s) = (s0s1s2...)|sj ∈ Z for each j}. Σ is known as the

sequence space. There is a map on Σ called the shift map, denoted σ and given

by σ(s0s1s2...) = (s1s2s3...). We now have the tools to formulate the following

7



Definition 4. For z ∈ J(Eλ) we call S(z) the itinerary of z when

S(z) = (s0s1s2...) where sj = k iff Eλ
j(z) ∈ Hk.

Note that S(Eλ(z)) = σ(S(z)).

A version of this construction appears in [BD00],[DG87],[D91], and [B99]. We

follow [BD00].

Our primary concern will be with itineraries with bounded entries. With that in

mind, we add the following

Definition 5. We call ΣN = {s ∈ Σ| |sj| ≤ N for each j} the set of itineraries

with entries bounded by N.

It is at this point that we will take a brief side trip to establish a few facts that

will prove useful later on.

We start by noticing that Eλ(B0) = B1 − {0}. From there it follows that

Eλ(Hk) = C−B1 for each k. Using this we can define a function Lλ,k as

Lλ,k : C−B1 → Hk : z 7→ Eλ
−1(z). That is, Lλ,k is the branch of the inverse of

Eλ on C−B1 which takes values in Hk. Another way of thinking of Lλ,k is as

essentially a branch of the logarithm corresponding to Eλ which takes value in

Hk. This function will be useful later on, but more immediately it is used in the

proof of

Theorem 2.2. For each N > 0 there is an invariant subset ΓN of J(Eλ) that is

homeomorphic to ΣN and on which Eλ is conjugate to the shift map.

The proof of this theorem is sketched in [BD00] and detailed in [B99]. We will,

however, provide a brief summary of the construction. We first define sets Vk as

the set of all points with real part less than or equal to a real number τ >> 0

that lie in a subset of the complement of B0 that lies in Hk but not in Bn for

n = 1, ..., n− 1 (see Figure 7). We note that Eλ maps each Vk over all of the Vk.

Then Lλ,k is well defined and maps ∪Vj into Vk. Given s = (s0s1s2...) ∈ ΣN we

can use the sn as parameters of Lλ,sn and see that an appropriate composition

Lnλ of Lλ,sn maps Vk properly into itself [BD00]. For this reason, Lnλ is a

8



contraction in the Poincaré metric on Vk. It follows that γs = lim
n→∞

Lnλ exists and

is independent of z ∈ Vk. Let ΓN denote the union of the γs for s ∈ ΣN . It can

be seen that the map s→ γs is a homeomorphism between ΓN and ΣN . It is

well-known that ΣN is a Cantor set and thus so is ΓN [BD00][B99]. It can also

be seen that the action of Eλ on ΓN is conjugate to the shift map σ on ΣN . The

Cantor set ΓN in J(Eλ) consists of endpoints of ”hairs” in J(Eλ), to be defined

later. This completes our construction.

B0

B1

B2

τ

0

V0

V1

H0

H1
V1

Figure 7: Construction of the Hk and Vk for λ = 3 + πi.

2.3 Kneading Sequence

Now that we have established a symbol space for use in specifying itineraries, we

will put it to use. It seems natural to start with the attracting cycle. We would

like to create a sequence that details which fundamental attracting domains the

attracting cycle visits and the order in which they are visited. However, we may

not always know the points in the cycle. It is known for entire functions that the

immediate basins of attraction for any attracting cycle must contain the orbit of

a singular point [BD00][Bk84]. Singular points consist of critical points and

omitted values. The exponential function has no critical points, but it does have

an omitted value, namely 0. This is very helpful because we know that the

9



fundamental attracting domains that 0 visits are the same ones that the

attracting cycle visits [BD00]. With this in mind we define a kneading sequence

as

Definition 6. Let Eλ have an attracting cycle of period n ≥ 3. The kneading

sequence is the string of n− 2 integers

K(λ) = 0k1k2...kn−2∗

where ki = j iff Eλ
i(0) ∈ Hj.

Note that our kneading sequences always start with 0 and end with ∗. This is

because by definition 0 lies in H0. Also Eλ
n−1(0) lies in B0 which is the

complement of the Hk so we denote this by ∗.

We now use the kneading sequence to further partition up the plane so we can

more precisely determine how points of J(Eλ) move under iteration of Eλ.

For τ >> 0 as defined above, set

Λτ = {z ∈ C |Re(z) ≥ τ} −
n−1⋃
i=0

Bi

Note that Λτ consists of infinitely many closed fingers extending to infinity to

the right. Because B0 is removed with all of the other Bi, each finger of Λτ lies

in exactly one Hj. For a given integer j, there are two cases to consider; j is not

an entry in the kneading sequence; and j is an entry in the kneading sequence.

In the first case there is only one finger of Λτ that lies in Hj, the far right

portion of Hj itself. This finger in Λτ we denote Hj. In the second case there is

more than one finger of Λτ that lies in Hj because the Bj separate Λτ ∩Hj into

at least two fingers. For a given j in the kneading sequence we denote the fingers

lying in Λτ ∩Hj as Hjk where jk orders them with ascending imaginary part

beginning with j0. As a final note, because the Λτ lie in the half plane

Re(z) ≥ τ , so do the Hj and Hjk .

10



B0

B1

B2

τ

0

H01

H02

H00

H0
B1

B2

Figure 8: Construction of the Hjk for λ = 3 + πi.

2.4 Augmented Itinerary

Now that we have further partitioned the plane, let’s use this new structure. We

have already given points in J(Eλ) itineraries, but we have a potential issue. For

a given point, it’s itinerary keeps track of which Hk it visits. It is possible,

however, for a point to visit a single Hk multiple times in a row. This would

yield an itinerary like (0). This provides some information, but we would like

more. To that end we will use the Hjk we specified in the previous section to

augment our itineraries.

We note that we will define augmented itineraries for only those

z ∈ J(Eλ) ∩ {z ∈ C |Re(z) ≥ τ}, and then relate this to our Cantor set ΓN later.

To start, let Z′ be the set whose elements are either integers not in the kneading

sequence or subscripted integers jk corresponding to an Hjk if j is in the

kneading sequence. Then, following [BD00], we have

Definition 7. The augmented itinerary of z is

S ′(z) = (s0s1s2...)

where each sj ∈ Z′ and sj specifies the finger in Λτ containing Eλ(z).

Let Σ′ denote the set of augmented itineraries. It is worth nothing that the

augmented itinerary is defined only for points whose orbits always remain in Λτ .

11



It will be useful to be able to convert from augmented itineraries back to

itineraries. With that in mind we have, following [BD00]

Definition 8. The deaugmentation map is a map D : Σ′ → Σ such that if

sn = jk then (D(s))n = j. If sn = j then (D(s))n = j.

The deaugmentation map simply removes the subscript from each subscripted

entry in a sequence in Σ′ and does nothing to the other entries.

As it happens not all augmented itineraries correspond to an orbit in the far

right half plane [BD00]. We then introduce the idea of allowable transitions to

specify which augmented itineraries do correspond to points in J(Eλ).

Definition 9. Let s = (s0s1s2...) ∈ Σ′. A transition is defined as any two

adjacent entries (si, si+1) in s. The transition is called allowable if

Eλ(Hsi) ∩Hsi+1
6= ∅.

In this case we say Eλ(Hsi) meets Hsi+1
. An allowable transition will be denoted

as si → si+1. An itinerary s′ ∈ Σ′ will be called allowable if for all sj it follows

that sj → sj+1. The set of allowable itineraries will be denoted Σ∗.

Now we will define some symbols we will use for the rest of the paper. From here

on we will assume that N satisfies |kj| ≤ N for all entries kj in the kneading

sequence. Let Σ∗N denote the set of sequences in Σ∗ whose deaugmentation is a

sequence in ΣN .

2.5 Hairs: Points with Common Itinerary

We have now described a way to give points an itinerary that represents where

they move. It happens that multiple points may share the same itinerary. Points

that share the same itinerary s ∈ Σ∗N actually form a continuous curve that

tends to ∞ in the right half plane and limits to γD(s) ∈ ΓN [B99] [BD00]. We

first limit our attention to points in the far right half plane (Re(z) ≥ τ). As

stated in [BD00], we have that we may choose τ large enough so that if jl → ik

12



for a sequence in Σ∗N , then {Λτ ∩ Lλ,sj(Hik)} ⊂ Hjl is a closed finger that is

bounded on the left by Re(z) = τ and completely contained inside some Hjl .

Using arguments in [B99] it can be shown that given s′ ∈ Σ∗N ,

lim
n→∞

Λτ ∩ [Lλ,s′0 ◦ ... ◦ Lλ,s′n(Hs′n+1
)]

is a closed and connected set that meets ∞ and Re(z) = τ , and is a continuous

curve which we may parameterize by hλ,s′ : [t0,∞)→ Hs′0
with

Re(hλ,s′0(t0)) = τ . This curve we call the tail of a hair in J(Eλ). From the above

we now have [B99]

Proposition 2.3. Let s ∈ Σ∗N . There is a unique tail of a hair in Λt ∩ J(Eλ)

that has augmented itinerary s.

Now we have a well defined hair in the far right portion of the Julia set that has

itinerary s′ for each s′ ∈ Σ∗N . We now recall the Cantor set ΓN we previously

constructed. We will now relate these hairs to ΓN . Given the hair hλ,σ(s)(t), we

first note that Eλ ◦ hλ,s(t) is properly contained in hλ,σ(s)(t). This means that by

applying Lλ,s0 we may pull back hλ,σ(s)(t) into the region Re(z) < τ . Thus, by

applying

Lλ,s0 ◦ ... ◦ Lλ,sn

to the hair hλ,σn+1(s)(t) we extend that hair back into the aforementioned region.

We can use the proof that ΓN is a Cantor set conjugate to ΣN to see that a hair

extended in this way will tend to a unique point in ΓN [BD00]. This shows that

there is only one point in ΓN that has the same non-augmented itinerary as our

hair, specifically the point whose deaugmented itinerary is given by D(s).

Now we let hτλ,s be the set of points on the tail of the hair hλ,s(t) where

t ∈ [τ,∞). We can how define a full hair as

13



Definition 10. The full hair corresponding to the sequence s ∈ Σ∗N is given by

lim
n→∞

Lλ,s0 ◦ ... ◦ Lλ,sn(hτλ,σn+1(s)).

Putting this all together we have now shown, following [BD00] and [B99]

Theorem 2.4. Let s ∈ Σ∗N . The full hair corresponding to s is a curve in the

Julia set that tends to ∞ in the right half plane and limits on γD(s) ∈ ΓN .

If we have two hairs that correspond to different sequences in Σ∗N that have the

same deaugmentation then it follows from Theorem 2.4 that they must limit on

the same point in ΓN . When this happens we say the hairs are attached to the

same point. This is the pinching that we observed in the introduction.

3 Laminations

We have now constructed an itinerary system for continuous curves of points,

called hairs, that approach ∞ in the right half plane and limit on points of a

Cantor set ΓN on the left. We’ve seen that it is possible for multiple hairs to

limit on the same point on the left. The coordinates used in our itineraries are

based on the domain(s) of attraction of our attracting point(s). We started with

an attracting cycle z0, ..., zn−1, described its domains of attraction, then

approximated the attracting domains with domains B0, ..., Bn+1 bounded by

smooth curves that we called a fundamental set of attracting domains. We noted

that the complement of B0 is the union of infinitely many closed, unbounded

fingers in the right half-plane. If we look at the numerically generated picture of

our example Julia set (see Figure 1) we see that there are apparent fingers in the

right half-plane; we call these natural fingers. It would be natural to suspect that

the natural fingers are the same as those in the complement of B0. It turns out

that these only coincide when the attracting cycle is made up of a single point,

also known as an attracting fixed point, and B0 is the only attracting domain.

The basic case we are interested in is when we have an attracting cycle
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z0, ..., zn−1 with n ≥ 3 and with a kneading sequence of the form 00...0∗. In this

case the fingers in the complement of B0 do not coincide with the natural fingers.

3.1 Natural Coordinates

We would like to have an itinerary system, as exists for polynomial Julia sets,

that does not change with the attracting cycle. To begin, we note that we can

see from Theorem 2.1 that the vertical width of Bn−1 is π. Eλ maps an

unbounded finger of vertical width π to a left half-plane. This means that Bn−1

corresponds to the large gaps between the natural fingers. We will make use of

this fact to help define our natural itinerary system. We first recall the Hjk from

section 2.3. We are only interested in the Hjk with j in the kneading sequence.

That is, those Hjk that are double subscripted. From their definition it is clear

that for z ∈ Hjk , and z′ ∈ Bn−1, there will be some j, k ∈ Z such that

Im(z) > Im(z′) and other j and k such that Im(z) < Im(z′). As noted in

section 2.1, Bn−1 is a preimage of part of B0. Due to the periodic nature of Eλ

there are infinitely many preimages of B0 up and down the imaginary axis, 2π

apart, and of vertical width π, like Bn−1. We label these preimages Gl where

Gl ⊂ Hl. We now use these facts to get

Definition 11. Let Gl be preimages of B0 as described above and τ >> 0. We

have two case to consider. Let z ∈ B1 and z′ ∈ Bn−1 then

1. When Im(z) < Im(z′) we define

Np := {z ∈ J(Eλ) | ∀zp ∈ Gp,∀zp−1 ∈ Gp−1, Re(z) > τ, Im(zp−1) < Im(z) < Im(zp)}

2. When Im(z) > Im(z′)

Np−1 := {z ∈ J(Eλ) | ∀zp ∈ Gp,∀zp−1 ∈ Gp−1, Re(z) > τ, Im(zp−1) < Im(z) < Im(zp)}

That is when Bn−1 is above B1, the Np are all of the points in J(Eλ) and in the

far right half plane that fall vertically in between Gp and Gp−1, and between Gp

and Gp+1 when Bn−1 is below B1. In H0 where we have been focusing we get
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that the tails of all of the hairs in the Hjk that are below Bn−1 = G0 are in N0

and those tails in the Hjk that fall above Bn−1 are in N1.

B0

B1

B2

τ

0 N0

N1

H0

B0

B1

B2

τ

0 N0

H0

N-1

Figure 9: Construction of some of the Np for λ = 3 + πi and λ = 3− πi.

We will now use the symbol space put forth in Section 2.2 to assign itineraries to

the tails of hairs in the Np.

Definition 12. Let T ⊂ J(Eλ) be the tail of a hair. We call SN(T ) the natural

itinerary of T when

SN(T ) = (s0s1s2...) where sj = k iff Eλ
j(T ) ⊂ Nk.

We now have assigned natural itineraries to the tails of hairs, but our goal is to

assign natural itineraries to entire hairs. We know from arguments put forth in

Section 2.5 that each tail of a hair is part of only one hair and is connected to a

point of the Cantor set ΓN . This allows us to assign entire hairs the natural

itinerary associated with its tail. This can, as in our example, cause a single

point of ΓN to be assigned multiple natural itineraries. This is acceptable and a

way we can use our natural itineraries to identify points in ΓN with multiple

hairs attached to them.
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3.2 Leaves of the Lamination

Now that we have natural itineraries for the hairs in J(Eλ), we can use them to

construct our laminational model. We start off with a vertical axis with evenly

spaced tick marks all along it. We label the intervals between tick marks with

integers. We pick an arbitrary interval at which to start and label it 0. We label

the interval above 0 as 1 and the interval below 0 as −1. We continue labeling

all of the intervals in this manner (see Figure 10). Inside of each of these

intervals is a copy of the initial set of intervals labeled as (w0w1) with w0 the

number of the containing interval and w1 the subinterval numbered like the

initial set of intervals. The heights of each of these subintervals won’t be uniform

as they need to fit inside of a single interval from our original set. Inside each

subinterval is also a copy of the initial set of intervals labeled (w0w1w2), and so

on. Each arbitrarily small interval contains a copy of the initial set of intervals

inside of it (see Figure 10).

0

1

2

-1

-2

...

...

0 00

01

02

0-1

0-2

...
...

Figure 10: Labeling our vertical axis and a closer look at the 0 interval.

If we consider a label with infinitely many entries, such as (001) we get an

infinite intersection of ever smaller intervals. Because all of these intervals are

compact sets with diameter going to 0 and each interval is contained within the
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previous one, it is known that their intersection will be exactly one point. From

here on we let V be the set of points on our vertical axis that represent hairs. For

x, y ∈ V , we define an order on V as x > y iff x is above y on our vertical axis.

We note the similarity between our labeling scheme for the vertical axis and our

natural itineraries for hairs. This is intentional. We now relate the two by letting

a hair in J(Eλ) with natural itinerary (s1s2s3...) be represented by a point on

our vertical axis with label (s1s2s3...). It is worth noting that not every point on

our vertical axis will represent a hair in J(Eλ). It turns out that both the set of

points representing hairs and it’s complement are dense in the vertical axis and

separate each other [DG87].

0

1

2

-1

-2

100

010

001

Figure 11: Our vertical axis with initial set of leaves for λ = 3 + πi in red.

When we were assigning natural itineraries to hairs we noted that it is possible

for an end point of a hair to be assigned multiple different natural itineraries. In

that case we said that we have multiple hairs attached to the same point. We

represent this in our combinatorial model as chords connecting the points that

represent the hairs that are attached to the same point (see Figure 11). In the

laminational model, we call these chords leaves. When we only have 3 hairs

coming together this is a straight forward process as there is only one way to
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connect the points in our model. However, when we have 4 or more points there

are multiple ways to connect them so we will put some constraints on how they

may be connected. The leaves in our model represent the basins of attraction of

our attracting cycle. Because of this, leaves connecting points may not cross. If

we had two leaves crossing that would indicate two domains of attraction

intersecting. In that case we would only have one domain of attraction not two.

3.3 Initial Data and Critical Chords

Now that we’ve established a basic version, we would like our laminational model

to include information representing the dynamics of Eλ. First we note that it is

easy to see that Eλ on the hairs of J(Eλ) is conjugate to the shift map σ on our

natural itineraries. Next we consider a point with n hairs tied to it. For a hair T

consider the set of hairs Ti such that Eλ(Ti) = T . We call this the set of

pullbacks of T . As these hairs are in the Julia set, they are represented by points

on the vertical axis in our model. We can also get to these points by way of our

model. Start with a hair T and consider its natural itinerary SN(T ) of the form

(s0s1s2...). Now consider the set of itineraries PT = (ns0s1s2...) where n ∈ Z. We

claim that the elements of PT represent the hairs in the pullback of T . This can

be seen by the fact that Eλ is conjugate to the shift map σ and that applying σ

to any element of PT results in SN(T ).

To add the idea of pullbacks to our model we need one more idea. We take two

points x, y ∈ V such that σ(x) = σ(y) and a chord connecting them. We call

such a chord a critical chord (see Figure 12).

3.4 Simplest Pullback Lamination

We now combine these ideas to complete our model. We start with a set

P = x1, x2, ..., xn of points on our vertical axis connected by leaves. We take the

point xk ∈ P such that xk ≥ xi for all i = 1...n and the set X of points y ∈ V

such that σ(xk) = σ(y). We now connect the points in X in such a way that

each point is connected to the next greater and next smaller points and no
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Figure 12: Our vertical axis with initial set of leaves for λ = 3 + πi in red and
natural critical chord in green.

others. We note that these chords are critical chords. We now consider the sets

Pi of pullbacks of xi ∈ P . We connect the points in the union of the Pi in such a

way that the new leaves do not cross any existing leaves, including the critical

chords, so that they form disconnected pieces where each piece contains exactly

one point from each Pi, and so that the order of the points in each piece is a

rotation of the order of the points in P . We call what we have now a partial

lamination (see Figure 13). We could continue this process by considering the

set of points in the pullbacks of each Pi and connecting them with leaves

according to our rules. We define a full lamination as the limit of infinitely

repeating this process with each new set of pullbacks and taking the closure.

Note that because the leaves don’t cross in the finite partial pullback they will

not cross in the closure. Also, in the case we are considering of kneading

sequence 00...0∗, and with our natural choice of critical chords, there are no limit

leaves, all limits are points on the vertical axis. We also note that given an

initial set of points and leaves connecting them, there are many choices of critical

chords that will work and will result in different laminations. The set we have

specified is simply the most natural and simplest set of critical chords to chose.
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Figure 13: Partial lamination for λ = 3 + πi

3.5 Rotation Number In Figure 2 we see the Julia set and partial lamination

for a polynomial function known as a Douady rabbit. As indicated in Figure 4,

this Julia set can be viewed as a circle that has been pinched together. In the

lamination in Figure 2 the points connected by chords represent the places on

the Julia set where the circle has been pinched together. In the case of Eλ, we

can see in Figure 5 that there is also a sort of pinching happening and the

example lamination represents these pinchings in the same manner as in the

Douady rabbit lamination.

Another behavior to note, seen in Figure 14, is the rotation of points around the

point at which the circle is pinched. This is noted by what is called a rotation

number. In Figure 14 the indicated point moves, informally, one tick counter

clockwise with each iteration and returns to the domain where it started in 3

iterations. We say the rotation number of the pinched point is 1
3
. In a similar

manner, points in Eλ rotate around the pinch point and the pinch point is also

assigned a rotation number. In the exponential case these rotation numbers fall

between −1
2

and 1
2
. In Figure 15 we see examples of exponential Julia sets with

rotation numbers 1
3

and −1
3

respectively. In the cases we are studying, that of a
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Figure 14: Quadratic Julia set with labeled orbits for c = −.125 + .75i

Figure 15: Exponential Julia sets with labeled orbits for λ = 3+πi and λ = 3−πi
respectively

kneading sequence with a finite number of entries all zero, there are finitely

many hairs coming together at a repelling fixed point. By König′s

Linearization in [M06] the action of Eλ is conjugate to rotation with expansion

about a repelling fixed point. Because in our case there are finitely many hairs

connected to our repelling fixed point and the hairs are permuted in an

orientation preserving manner, we get that our combinatorial rotation numbers

will all be rational, even if the analytic rotation at the fixed point is irrational.
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4 Conclusion and Future Work

4.1 Summary

In this paper we stepped through the construction of fundamental domains of

attraction for exponential Julia sets. We used these domains to assign itineraries

to points in J(Eλ) based on where they go under iteration. We saw that these

itineraries were not enough to pull out the structure we were going for. We then

constructed a kneading sequence for our attracting cycle and used that to

augment our itineraries. From there we showed that smooth curves of points,

called hairs, share augmented itineraries and that, in the case of an attracting

cycle of period more than 2, some of these hairs meet at a point.

We then used parts of that construction to construct a natural itinerary system

for the hairs. We used our natural itineraries to associate hairs to points on a

vertical axis and to define the notion of critical chords. We then used our natural

itineraries and critical chords to define some basic rules for connecting the

aforementioned points on the vertical axis with chords. We presented a system

for generating a pullback given a set of points, leaves, and critical chords in our

model and defined a full lamination as the limit of iterating said pullbacks and

taking the closure.

4.2 Future Work

We now put forth some conjectures for future study of our laminational model.

We considered only kneading sequences 00...0∗. However, we conjecture that our

natural coordinates will work for all J(Eλ) when there is an attracting periodic

orbit in F (Eλ). Given a λ, the Julia set J(Eλ) generated by it, a full lamination

L constructed in the manner set forth in this paper with appropriate choice of

critical chords, and in analogy with the quadratic case, we conjecture

1. Every set of points connected by non-critical chords in L represents

multiple hairs attached to a single point in J(Eλ).

2. J(Eλ) is homeomorphic to the quotient map on the Cantor Bouquet
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represented by V that identifies points that are connected by (non-critical)

chords.

3. Every identification of hairs at a single periodic point has a well-defined

rational rotation number, and Eλ is transitive on attached hairs.

4. Every possible rotational number for n ≥ 3 attached hairs that is transitive

on hairs is represented by an exponential Julia set.

5. All orbits n ≥ 3 of attached hairs are eventually periodic; that is, there are

no wandering branch points for exponential Julia sets.
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