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 APPLYING MARKOV PROCESSES TO MODEL DISABILITY 
IN RELAPSING MULTIPLE SCLEROSIS PATIENTS 

ANASTASIA HARTZES  

DOCTOR OF PHILOSOPHY IN BIOSTATISTICS 

ABSTRACT 

Modeling disability in multiple sclerosis (MS) is challenging due to its 

complexity and non-linearity, with utilized methodology having many limitations.   

Lack of a suitable biomarker has led to relying on statistical models to understand 

disease progression.  Markov methodology has been limitedly applied to the 

clinically-assessed Expanded Disability Status Score (EDSS), but not to patient-

reported Patient Determined Disease Steps (PDDS); both measure disease 

progression and disability, and neither have been analyzed using the Test of 

Lumpability (TOL).  It is common practice to aggregate these scores for 

computational or inferential convenience; in the case of Markov Chains (MC), 

combining states is referred to as lumping.  The resulting chain must be evaluated 

using the TOL to ensure retention of the Markov property.  Extending the TOL, we 

developed a goodness of fit (GOF) test with Pearson and likelihood ratio 

formulations to compare lumping schemes that pass the TOL; both were shown to 

follow a Chi-squared distribution.  Performance was evaluating using simulated and 

patient data.   

Lumping schemes were identified for each disability scale.  Using semi-

annual surveys from the North American Research Committee on Multiple Sclerosis 

(NARCOMS), PDDS was predicted using Markov models with and without covariates 
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for multiple lumping schemes; using semi-annual follow-up data from the CombiRx 

trial, EDSS scores were similarly modeled.  Disability scores were lumped with 

scientifically supported schemes.  Schemes were assessed for parsimony, clinical 

usefulness, and adherence to Markov property (lumpability); covariates were 

selected with scientific justification. 

Novel application to NARCOMS PDDS data will benefit from a larger sample 

size and wider range of disease statuses than are observed in clinical trials, 

enhancing generalizability; novel evaluation of lumpability to EDSS outcomes will 

extend current work.  Implementation of Markov methodology has the potential to 

provide fresh insight into MS disease progression. 

 

Keywords: Multiple sclerosis, Markov chains, lumpability, aggregating states, 

grouping states, disability prediction  
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I. Background

A. Disease background and public health importance

Multiple sclerosis (MS) is a demyelinating neurodegenerative disease facing men 

and women globally; it has no cure or known cause.   The disease most commonly 

presents in adulthood, with diagnoses occurring between the ages of 20 and 50; 

pediatric cases are rare.  Three primary types of the disease exist: relapsing 

remitting (RRMS), primary progressive (PPMS) and secondary progressive (SPMS).  

RRMS is the most commonly diagnosed.  Until recently, MS with relapse (RRMS and 

SPMS) were the only types of MS with an approved disease-modifying treatments; in 

March 2017, the Federal Drug Administration approved a therapy for PPMS (F. D. 

Lublin et al., 2014; Montalban et al., 2017; Mulero, Midaglia, & Montalban, 2018).  A 

chronic illness, it is characterized by periods of relapse and remission, where vision 

and mobility are affected.  Over the course of disease progression, patients 

experience depression, impaired motor function and decreased mobility, 

particularly following a relapse; daily activities are affected over time.  While other 

measures exist, the disease progression is typically monitored through MRI and 

Expanded Disability Status Scale (EDSS) and by Patient Determined Disease Steps 

(PDDS) (D. Goodin, 2014; D. S. Goodin et al., 2016).  The MRI functions to detect 

changes in the presence of plaques in the white matter while the EDSS is a measure 

of disability and disease burden; both are clinically-based (i.e., not self-reported).  
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The PDDS is a validated measure that was developed as a self-report surrogate of the 

EDSS (Learmonth, Motl, Sandroff, Pula, & Cadavid, 2013; Marrie & Goldman, 2007).  

On average, MS patients receiving first-line therapies experience 1 to 2 relapses per 

calendar year (Roskell, Zimovetz, Rycroft, Eckert, & Tyas, 2012); however, further 

elucidation is necessary to understand the relationship between relapse and 

mobility level, and the transitions between relapse and remission (D. S. Goodin et al., 

2016).   

To date, modeling MS disease course has been fraught with challenges, and any 

varied success contains limitations (Bergamaschi & Montomoli, 2016; M. 

Hutchinson, 2016; Taylor, 2016).  A complex disease, there is no known biomarker to 

indicate disease presence or disability progression; therefore, with EDSS and PDDS 

being the best available tools, we must devote efforts to clarifying their use in 

describing MS progression (F. D. Lublin et al., 2014; Taylor, 2016).  To that end, this 

work will endeavor to fill in the gaps of existing MS literature as it pertains to EDSS 

and PDDS analyses via Markovian methodology.  The ultimate goal is to have a 

clearer understanding of flow of disability over disease course and predict that 

disability over time.     

 

B. Data  

Methodology will be applied to three datasets; two are existing datasets, each with 

two different collection mechanisms and missing data structures, and the third will 

be created via simulation.  The first dataset is from the CombiRx trial, which has 
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very little missing data; all patients randomized were analyzed on the primary 

endpoint.  CombiRx was a 3-arm, double-blind, randomized North American clinical 

trial investigating the combination of the established disease-modifying treatments 

(DMT) interferon β 1-a (IFN) and glatiramer acetate (GA) in 1,008 patients with 

RRMS; patients were followed for 3 to 7 years, with enrollment beginning in 2005.  

Its baseline information and final study results have been published (Lindsey, et al., 

2011; Lublin, et al., 2013), with the extension study results published recently (F. D. 

Lublin et al., 2017).  The second dataset is from the North American Research 

Committee on Multiple Sclerosis (NARCOMS); adult (≥18 years) males and females 

with any form of MS voluntarily participate in this longitudinal registry.  Over 38,000 

patients are enrolled, contributing to more than 20 years of data (NARCOMS, 2017).  

Questionnaires encompass demographic and disease-course information (Cofield, 

Thomas, Tyry, Fox, & Salter, 2017).  Data are collected twice per year, after 

enrollment; because data are self-report, there is a larger number of missing 

observations than in clinical trials.   

Foundational theoretical work was performed based on data designed to evaluate 

our proposed methodology.  Data were simulated for methodology exploration and 

development and are described in Chapter III.  
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C. Methodology

1. Current status of methodology in disability analysis

1.1. Relapse 

A relapse is defined as experiencing a new or worsening symptom for at least 24 

hours; its occurrence must be at least 30 days from the previous relapse to be 

considered a separate event (Lindsey et al., 2012).  Relapse can be viewed either in 

terms of its short-term or its long-term effects on disability, as it is believed that 

accumulation of relapses are associated with decline in overall mobility and 

neurologic function (D. S. Goodin et al., 2016).  A (multivariate) Markov model was 

first used to analyze MS data in 1985, in an effort to model the natural history of the 

disease, with relapse as a primary covariate for the outcome consisting of five 

defined states (relapse, relapse with sequelae, progression, death, lost to follow-up) 

(C. Wolfson & Confavreux, 1985).  To date, there have been a variety of methods 

employed to model relapse in MS patients including Poisson regression, negative 

binomial regression, logistic regression, Kaplan Meier and Cox proportional hazards 

models (Fred D. Lublin et al., 2013; Mieno, Yamaguchi, & Ohashi, 2011; Y. C. Wang, 

Meyerson, Tang, & Qian, 2009).  Because of the relationship between relapse and 

disease progression, relapse reduction was the sole endpoint in most MS trials until 

the mid-1990s (Meyer-Moock, Feng, Maeurer, Dippel, & Kohlmann, 2014). 
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1.2. EDSS to measure disability  

Around the time the natural history Markov model was published , the EDSS was 

introduced and began being utilized as a means of quantifying disease progression 

(Kurtzke, 1955, 1983).   As mentioned earlier, relapse had been a primary endpoint 

in trials; however, in 1996, studies began implementing the EDSS to evaluate 

progression as a primary endpoint (Meyer-Moock et al., 2014).   

In a short term sense (six-month increments), EDSS scores have been used to model 

and predict short term-disability using a partial proportional odds model (Gauthier 

et al., 2007).  In clinical trials (like CombiRx) and in clinical settings, disability is 

measured largely using EDSS.  Scores range from 0 to 10 in half-point increments; 

higher scores indicate greater disability (D. S. Goodin et al., 2016; Kurtzke, 1983).  

Use of this score varies between studies to investigate long-term disability, such as: 

creating a change score; using the threshold of maintaining a score of 6 or 7; 

considering confirmed progression as having an increase of 1-2 points for a period 

of time (D. S. Goodin et al., 2016).  Further discussion of these methods and their 

disadvantages are explored in Chapter I, Section D (The EDSS as a Primary 

Endpoint). 

 

1.3 PDDS to measure disability  

The Patient Determined Disease Scale (PDDS) is a self-reported measure of 

disability in MS.  Scores range from 0-8 in one-unit increments.  Higher scores 
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indicate greater disability; scores of 0 represent “normal” mobility with no 

symptomatic impact on daily activity; scores of 8 indicate patient is bedridden 

(Hohol, Orav, & Weiner, 1999; Marrie & Goldman, 2007; Rizzo, Hadjimichael, 

Preiningerova, & Vollmer, 2004).     

The PDDS was based on the Disease Steps (DS) created by Hohol and colleagues 

(Rizzo et al., 2004).  The DS was developed to provide clinicians a simpler means of 

evaluating MS disease progression compared to the EDSS, and to be useful in the 

short term with the hope of demonstrating its long-term functionality, according to 

the authors.  At the time of its introduction, the EDSS was already the conventional 

choice for this purpose in clinical trials (Hohol, Orav, & Weiner, 1995; Hohol et al., 

1999).  However, due to the complexity of applying the EDSS, the intention was for 

non-MS specialists to have a means of evaluating disease progression.  Hohol and 

colleagues (1995) demonstrated strong correlation between DS and EDSS scores in 

the short term (22-month period); they later demonstrated this for the long term (1, 

2 and 3 years) (1999).  The PDDS has been validated and shown to be strongly 

correlated with the EDSS, although this relationship is not one-to-one (Hohol et al., 

1995; Learmonth et al., 2013; Marrie & Goldman, 2007).  It was created as a patient-

reported outcome (PRO) by researchers affiliated with NARCOMS.  Upon its creation, 

it was reported to have a correlation of 0.958 with the  EDSS (Rizzo et al., 2004). 

As an endpoint, the PDDS has been modeled most commonly using logistic 

regression, by dichotomously defining disability progression based on an increase in 

score (Cofield, Fox, Tyry, Salter, & Campagnolo, 2016; Liu et al., 2016).  The mean 
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change of PDDS has been modeled using linear regression (Cofield et al., 2016).  

Observed and categorized PDDS scores have also been modeled using ordinal and 

nominal logistic regression (Fitzgerald et al., 2018).  The NARCOMS registry collects 

this outcome in every survey in order to have a measure of patient disability.  

2. State of Markov methodology in MS research

Markov processes historically have been used in medical decision making and 

modeling lifetime health and life expectancy (Beck & Pauker, 1983; Regnier & 

Schecter, 2013; Sonnenberg & Beck, 1993).   While there is a history of applying 

Markov processes to a variety of MS data, it is limited.  The earliest use recorded in 

the literature was the work of C. Wolfson and Confavreux (1985) (mentioned earlier 

in this section), to model the natural history of MS; here, authors modeled 5 disease 

states based on relapse (C. Wolfson & Confavreux, 1985, 1987).  Markov models 

have been used to model relapses, alone, but primarily in the context of cost-analysis 

and not widely used for clinical trial data (Mieno et al., 2011; Palace et al., 2014).  

They have also been used to model disease progression for decision analysis 

regarding first-line treatment (Bargiela et al., 2017).  Markov models also have been 

applied to lesion count data (Altman & Petkau, 2005) and EDSS scores (Palace et al., 

2014).  Markov models have been predominantly used for determining the 

economics surrounding a particular treatment, although some authors have argued 

it is inappropriate to utilize the EDSS for this purpose (Fisk, et al., 2005).  
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Beyond these applications, Markov models have not been consistently employed to 

investigate various aspects of MS, of which modeling EDSS is a particular 

example.  Specifically, it is of particular importance in MS to have a clear 

understanding of disability over time, which is reflected in movement between EDSS 

states.  Finally, there is no identified evidence in the literature indicating Markov 

methodology has been applied to PDDS, nor has it been applied to NARCOMS data, in 

general. 

D. Explanation in support of new methodology

1. The EDSS as a primary endpoint

Use, meaning, strengths, weakness EDSS is the most commonly utilized method of 

evaluation for new therapies and disease progression, and is widely accepted as a 

strong endpoint in trials.  It is used as a primary endpoint and, to date, it is the most 

common secondary endpoint in relapsing-MS (RMS) clinical trials (Meyer-Moock et 

al., 2014).  Clinicians evaluate 8 functional systems of the central nervous system: 

vision, brainstem, pyramidal, cerebellar, sensory, bowel/bladder, cerebral, 

ambulation which results in a composite score reflecting disability (Baldassari, 

Salter, Longbrake, Cross, & Naismith, 2017; Kurtzke, 1983).  Scores of 0 represent 

normal neurologic function, and scores of 10 indicate death to MS.  Lower scores on 

the scale (EDSS ≤5.5) represent neurological impairments and higher scores (EDSS 

>6) represent disability; the intermediate scores (EDSS 4-6) are driven by mobility

(Meyer-Moock et al., 2014). 
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Using EDSS changes as an indicator, a clinical increase in disability (disease 

progression) is determined if (1) a baseline score is 5.5 or less and changes by 1.0 

point or (2) a baseline score is 6.0 or higher and changes by 0.5 point.  Further, this 

score change must be maintained for 12 or 24 weeks (this range varies in the 

literature).  Patient scores will increase and decrease over time, while overall 

consistently increasing; this is indicative of disease-worsening. 

While its weakness lies in known issues with consistency (inter- and intra-rater 

reliability) and sensitivity to change, it is relatively straight-forward to employ (D. S. 

Goodin et al., 2016; Meyer-Moock et al., 2014).  Additionally, because it is commonly 

used, comparison of published studies is efficiently performed. 

Statistical properties and considerations As described earlier, the EDSS consists 

of ordinal values ranging from 0.0 (no disability to 10 (death), by increments of 0.5; 

higher scores indicate greater disability and poorer mobility.  It has been shown to 

have a bimodal frequency distribution (J. Hutchinson & Hutchinson, 1995; Koziol, 

Frutos, Sipe, Romine, & Beutler, 1996; Sharrack, Hughes, C, Soudain, & Dunn, 1999; 

Willoughby & Paty, 1988), with peaks at 3.0 and 6.0 (Amato & Ponziani, 1999; 

Willoughby & Paty, 1988).  It is also non-linear; this has been demonstrated as it 

relates to quality of life (Twork et al., 2010; Vickrey, Hays, Harooni, Myers, & Ellison, 

1995).   The EDSS has been demonstrated to be curvilinear relative to actual daily 

function (Cohen, Kessler, & Fischer, 1993).  Because the EDSS are composite scores, 

the interval between scores are not the same; that is, the distance between scores do 

not have the same meaning (Meyer-Moock et al., 2014).  Since change scores of a 
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particular value do not have consistent meaning, the starting position related to the 

change score is essential to interpreting the change score.  Relatedly, use of a change 

score in this fashion requires controlling with a baseline EDSS measure.  As 

mentioned previously, EDSS regions can be defined by the following classifications: 

0-3.5 represent impairment based on functional system scores; 4.0-7.0 represent  a

combination of impairment and disability; 7.5 and greater represent requiring 

assistance for self-care (Amato & Ponziani, 1999).  These distinctions are 

advantageous for collapsing scores for practical and modeling purposes. 

The non-linear nature of EDSS eliminates several commonly used analytic 

methodologies; some authors have even argued against its use in the parametric 

setting at all (Amato & Ponziani, 1999).  Weinshenker and colleagues showed that 

the “mean staying times” varies at each score; specifically, patients tend to remain at 

scores in the extreme (upper and lower) regions of the scale, more so than in the 

middle (at scores 3.0 through 5.0) (Amato & Ponziani, 1999; Weinshenker et al., 

1989).  These considerations are compelling reasons to investigate other, potentially 

more appropriate paths, by treating it ordinally or nominally, or even collapsing 

scores to minimize groups, and even inclusion of covariates to predict EDDS scores 

(or change scores). Therefore, should the appropriate model assumptions be met, 

ordinal, nominal and logistic regression are all appropriate, as is using a longitudinal 

model, should data collection occur for multiple time-points.  The fact that an EDSS 

scores and change scores depend on the previous score suggests the 

appropriateness of utilizing Markovian methodology.  In further support is the fact 

that the literature demonstrates a variety of methods of grouping those scores for 
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analysis, lending itself for investigation regarding the nature of grouping of EDSS 

scores as an analytic outcome. 

2. The Nature of EDSS scores related to Markov models

The EDSS is well-suited to Markov modeling.  The simplest Markov model is a 

Markov chain; in this sense, we would assume that the EDSS scores only depend on 

the most recent score, thus meeting the Markov property.  However, this may not be 

conceptually reasonable, since various factors influence relapse and remission in 

MS.  Therefore, utilizing logistic regression (nominal or ordinal) is appropriate, 

allowing for other factors to account for the probability of movement between 

scores.  A Markov chain can be continuous or discrete; a discrete chain is one whose 

states and associated probabilities are measured over fixed time points.  A 

continuous chain is one whose states do not occur at specific intervals.  While 

disability may change at varying intervals, it is generally measured at semi-annual 

clinician visits; this is true whether or not a patient is enrolled in a clinical trial.  

Therefore, using a discrete chain is certainly appropriate to the typical EDSS data 

collection structure.  

While the 20 states of the EDSS can be modeled, appropriate grouping of states will 

also be explored.  This concept of collapsing states in the Markov context is known 

as lumping, and incorporates evaluating of maintaining the Markov property after 

state-grouping has occurred.  Further discussion of this topic is explored in Chapter 
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II (Theoretical Background).  Grouping the EDSS scores would be of interest, 

considering the distributional and statistical properties described earlier, as related 

to mean staying time at varying scores, and the range of scores defined by specific 

dysfunction. 

Because MS is a progressive disease characterized by relapse and remission, it may 

be reasonable that a more complex Markov model is appropriate.  That is, a higher 

order model where a future EDSS score is not solely predicted based on current 

EDSS score, but also the one(s) recorded previously.  

3. PDDS as a primary endpoint and Markov applicability

Use, meaning, strengths, weaknesses  The PDDS is a patient-reported assessment 

tool that is used for NARCOMS and in other studies where patient-reported 

outcomes are of interest, where it is not practical or possible to apply the EDSS, or it 

is the only means of assessing disability and disease progression (such as in a self-

report observational setting, like NARCOMS) (Coyle et al., 2017; Learmonth et al., 

2013; Rizzo et al., 2004).  It evaluates the areas of “mobility, hand function, vision, 

fatigue, cognition, bladder/bowel, sensory and spasticity” (Rizzo et al., 2004).  

Similar to the EDSS, the PDDS scores can be grouped according to what it measures.  

The strength of correlation between the EDSS and the PDDS has been demonstrated 

to be consistent regardless of disease severity (Learmonth et al., 2013).   Like the 

EDSS, the PDDS is driven, overall, by the mobility and motor skills of the patient 
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(Learmonth et al., 2013).  Relatedly, it is also influenced by a patient’s perception of 

disability (Schwartz, Vollmer, & Lee, 1999). 

Statistical properties and considerations  The PDDS, like the DS it was based 

upon, is an ordinal scale ranging from 0 to 8 with the following indications: 0: 

normal mobility, 1; mild disability, 2: moderate disability, 3:gait disability, 4: early 

cane use, 5: late cane use, 6: bilateral support, 7: wheelchair/scooter, and 8: 

bedridden (Rizzo et al., 2004).  While there is not a one-to-one correspondence 

between scores, there is a similarity in the symptoms they represent, and the PDDS 

can be utilized as a surrogate of the EDSS (Table 1) (Marrie, Cutter, Tyry, Vollmer, & 

Campagnolo, 2006). 

Table 1: Correspondence between PDDS and EDSS disability scales 

Symptomatic representation  PDDS Score1 EDSS Score 2 

Normal mobility, mild symptoms 0 0 

Gait disability, no assistive 
device3 

3 4—4.5 

Assistive device required  4, 5, 6 6—6.5 

Wheelchair-bound  7 7 

Bedridden  8 8 
1Patient-Determined Disease Steps  
2Expanded Disability Status Scale  
3EDSS scores 4-5.5 describes patients  with Gait Disability but without assistive devices 

4. The Nature of PDDS scores related to Markov models

Like the EDSS, the PDDS is also well-suited to Markov modeling; this is a logical 

extension of their demonstrated similarity.  The PDDS can be modeled as a discrete 

chain, since it is measured at fixed (bi-annual, 6-month) intervals.  While the 9 states 
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can be modeled, appropriate groupings (lumping) of states (PDDS scores) merits 

exploration.  Grouping the PDDS scores is of interest, as doing so might provide 

more information to patients and clinicians regarding mobility status and disability 

progression. 

 

E. Gaps and Contributions   

Application of Markov processes to MS outcomes has been accompanied with 

limitations related to sample size, study duration, covariate selection, MS definition 

and diagnoses changes, and logic behind collapsing of mobility states.  C. Wolfson 

and Confavreux (1987) created a Markov model to study the natural history of MS 

using a survival model to produce hazard ratios to represent the movement between 

disease states (1987; C. Wolfson & Confavreux, 1985). This was prior to the 

introduction of the PDDS and EDSS diagnostic tools and is based on data collected 

between 1956 and 1976, with a moderate sample size (N=278).  Albert (1994) 

employed a five-state Markov model to analyze relapsing-remitting behavior based 

on his categorization of disease worsening; however, this study was performed in 

mice with experimental allergic encephalomyelitis (EAE).  It occurred over 40 days 

in a small sample (N=10).  Mandel and Betensky (2008) illustrated their Markovian 

time-to event estimation in an MS population, but with a moderate sample size of 

267 MS patients.  Covariate selection was not explained, beyond availability.  Most 

recently, Healy and colleagues have published work using EDSS (and groups of EDSS 

scores) as outcomes in Markov chains to determine appropriate predictors 
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associated with change in disability level (Engler, Chitnis, & Healy, 2017; Healy & 

Engler, 2009).  However, these papers do not demonstrate evaluation of the resulting 

chains for retention of the Markov property.   

This work will yield contributions of statistical and public health importance:  we 

shall develop a goodness of fit (GOF) test that will compare lumped and unlumped 

(original) matrices, to be used after employing  the test for lumpability from Baran 

(2001) and Jernigan and Baran (2003) (further discussion is found in Chapter II, 

Section C).  Additionally, this work will endeavor to fill some gaps in the nature of 

studies investigating Markov models to predict the EDSS score.   Specifically, our 

work will focus on a comprehensive dataset, representative of RRMS patients from 

the CombiRx trial; and on a wider-range of MS patients from the NARCOMS registry.  

Both of these datasets have been extensively published and peer-reviewed. 

1. This work will involve larger sample sizes than seen in most prior studies, 

namely that of the CombiRx dataset (N=1008) and the NARCOMS dataset 

(N=2047).  It will utilize necessarily varying ranges of sample sizes for 

simulation purposes.  A particular strength of the CombiRx dataset is its low 

rate missing EDSS observations (the lowest is 22% missing during the 36-

month study period) due to rigorous follow-up procedures.  The only other 

comparable study was published in 2013, with approximately 2400 

participants (Mandel, Mercier, Eckert, Chin, & Betensky).  The strength of the 

NARCOMS data are its long-term observation periods and wide-range of MS 

disease severity included. 
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2. The larger sample sizes in these existing datasets will allow us to more 

accurately generalize results to RRMS (and lower disability scores) and a 

wider range of MS disease severities (and higher disability scores), and draw 

conclusions.  

3. Covariates for the model will be selected based on known conventional 

covariate-adjustments (such as age and gender).  This is particularly 

important, as the number of predictors and the predictors, themselves, can 

heavily influence model fit, results and conclusions. 

4. Any grouping performed on the outcome (EDSS, PDDS) will be done based on 

scientific importance and based on known distributional properties, not data 

availability. 

5. Application of Markov methodology to the PDDS, and to the NARCOMS 

dataset, will be novel. 

6. Evaluation of the retention of Markov property will be novel for NARCOMS 

and CombiRx datasets and for both outcomes (PDDS and EDSS). 
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II. Theoretical background 

A. Introduction and summary, notation  

1. Summary of stochastic processes and introduction of notation  

A stochastic process, represented by 𝑌(𝑡), is a group of random variables “…defined 

on a common probability space…” indexed by a set, T, such that {𝑌(𝑡), 𝑡 ∈ 𝑇}, and 

states, represented by 𝑦(𝑡),  are any values taken by the process (Bhat & Miller, 

2002; Resnick, 2002). Very often and in the context of this work, T represents time.  

The state space contains the possible values that the states can take; states can be 

discrete (countable) or continuous.  In a discrete state setting, the states are not 

required to be numerical, but can be categories.  Likewise, the index set can be 

discrete or continuous; that is, if we consider the typical index of time, T, it can be 

discrete.  The parameter space contains the range of values for the index, e.g., 

𝑡1, 𝑡2,, … , 𝑡𝑛 (Bhat & Miller, 2002).  In the context of time, the subscripts of the index 

set represent the points in time a value was measured or collected.  

 

2. Summary of and introduction to Markov processes  

A Markov chain is a stochastic process (also known as a Markov process) by which a 

unit transitions from one state to another with a given probability, which follows the 
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conventional definitions and restrictions of probabilities (i.e., 0 ≤ 𝑝 ≤ 1 and 

∑ 𝑝𝑖 = 1𝑖 ).  A Markov chain is one which follows the Markov property; that is, the 

current state is dependent only upon the most recent state, and no others.   Bartlett 

(1950) described it as being a “…process the memory of which does not extend 

beyond the previous instant.”  All Markov chains have a defined state space, denoted 

as S; for the EDSS outcome, this implies a maximum of 20 states (s=20).  For the 

PDDS, this implies a maximum of 9 states (s=9).  They are often depicted in the form 

of square matrices which shows probabilities of movement between states.  For 

instance, should we have the maximum 20 states, the transition matrix would have 

400 cells in which to put probabilities of movement; the PDDS would have 81 cells.  

We will note here that many of these transition probabilities would be very small 

(approaching zero), due to the high improbability of achieving certain transitions; an 

example would be moving from an EDSS of 9.5 to 1.0 (where 1.0 is minimal 

disability observed in one functional system; and 9.5 is confined to bed and entirely 

dependent upon assistance for mobility).  Later sections will describe the transition 

matrices in more detail. 

The initial state probability vector (𝒂𝑘) describes the probability distribution of the 

states at the beginning of the chain.  The initial probability distribution is important 

for determining the probability of transitions from one state to another, say from 

𝑖 to 𝑗 with probability 𝑝𝑖,𝑗 (Resnick, 2002).  Concerns often arise over deciding what 

the initial states of the model should be; these considerations tend to be practical in 

nature, and less theoretical.  The initial distribution can be determined based on 
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general population values, pilot data or baseline data.  An initial-state probability 

distribution can be estimated (or defined) from the observed data; as has been 

performed in the literature, baseline values are utilized for this purpose (Bickenbach 

& Bode, 2001; Mandel et al., 2013).  In context of MS clinical trials, it is reasonable to 

allow for the initial state to be that which with the patient begins, as recorded at 

baseline.  In general, clinical trials will restrict the range of EDSS scores for inclusion 

(for example, CombiRx limited the EDSS to ≤5.5); therefore, for those states not 

captured due to inclusion criteria would be given an initial probability of zero.  We 

can anticipate observing higher probabilities associated with these early states of 

EDSS, and probabilities of 0 for those higher than the inclusion criteria.  This 

disease-specific issue will influence the initial distribution seen based on the 

inclusion criteria.  Conversely, we can anticipate observing nonzero probabilities for 

a wider range of PDDS scores, as there were no inclusion criteria regarding disease 

severity in terms of PDDS scores.   

 

B. Description of Markov processes and chains  

1. Properties of Markov chains 

We will consider the situation of having discrete time points (or, indexing 

parameters) in the Markov chain for this work; the random variables 

𝑌(𝑡1), 𝑌(𝑡2),…  𝑌(𝑡𝑛) will have a specific kind of dependance among them, the 

simplest of which is a first-order dependence.  A Markov chain may be finite or 

infinite, referring to the number of countable states (Bhat & Miller, 2002).  Markov 
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chains allow us to estimate the probability of achieving a specific state (by way of 

transition probabilities) with any spatial separation (spacing) between these 

specific, finite states. Let the state space be denoted by S, such that S=[0,1,2…s], 

where s is the maximum number of states in the chain.  In order to build the chain, 

we must complete the following general steps.   

(1) Identify an initial distribution of the initial states of the process.  If the 

initial distribution is indicated by [𝑎𝑘], then ∑ 𝑎𝑘 = 1𝑠
𝑘=0  for k≥0 where 

0 ≤ 𝛼𝑘 ≤ 1, ∀ k 

(2) Obtain transition probabilities associated with movement between 

states.  Let these probabilities be denoted as 𝑃𝑖,𝑗 , where  

a. 0 ≤  𝑝𝑖,𝑗 ≤ 1 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖, 𝑗 = 0,1,2… 𝑠 

b. i=0,1,2,…,s indicates the current state  

c. j=0,1,2,…,s indicates the next state  

d. ∑ 𝑝𝑖,𝑗 = 1𝑠
𝑗=0 , therefore, each row of the matrix sums to 1. 

(adapted from Resnick (2002)).  

The probabilities associated with moving between these states are represented in a 

transition matrix, indicated by PT; a transition matrix is always square (with 

dimensions of 𝑠 × 𝑠).  Let the term, n-step, describe the gap of time between instance 

of the current step and the instance of the next step (Bhat & Miller, 2002).  Then, if 

𝑠 = 3 states, the transition matrix for any given time point, t, would take the form in 

Figure 1.  The states indicated in the vertical vector on the outside left of the matrix 

represent the current states; the states indicated on the horizontal vector on the 
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outside top of the matrix represent the next state after the current one.  The matrix 

entries are the probabilities of moving to the next state, given the current state.  

Figure 1 : Basic 3-state, one-step transition matrix for a given time, t 
               0       1        2 

𝑃𝑇 =
0
1
2

[

𝑝0,0 𝑝0,1 𝑝0,2

𝑝1,0 𝑝1,1 𝑝1,2

𝑝2,0 𝑝2,1 𝑝2,2

] 

 

For example, 𝑝0,0 indicates probability of remaining in state 0; and 𝑝0,1indicates 

probability of movement from state 0 to state 1, and so on, at any given time.  

In building the chain, we will indicate it as [𝑌𝑡 = 𝑖, 𝑡 ≥ 0], where 𝑌 is expressed as 

the state i  at time t (Ross, 2003).  A Markov chain will meet the following properties: 

(1) 𝑃(𝑌𝑡=0 = 𝑘) = 𝑎𝑘, therefore we are establishing the initial probability 

distribution of the state space. 

(2) 𝑃(𝑌𝑡+1 = 𝑗|𝑌𝑡 = 𝑖) = 𝑝𝑖,𝑗 , for all 𝑖, 𝑗 ≥ 0.  This indicates each entry in the 

transition matrix is a conditional probability, and thus based on those rules 

and assumptions thereby associated with conditional probability.  It is more 

typically expressed as:  

𝑃(𝑌𝑡+1 = 𝑗|𝑌𝑡 = 𝑖, 𝑌𝑡−1 = 𝑖𝑡−1, 𝑌𝑡−2 = 𝑖𝑡−2, … , 𝑌0 = 𝑖0) = 𝑃(𝑌𝑡+1 = 𝑗|𝑌𝑡 = 𝑖  )  

= 𝑝𝑖,𝑗  

Property 2 describes the Markov property (or Markov dependence), as mentioned in 

the introduction (Bhat & Miller, 2002; Resnick, 2002).  That is, the transition 

probability is conditioned only on the most recent state. 
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2. Higher order models 

Models which depend only upon the current state and no other earlier states are 

called first order.  Models of higher order describe situations where the probability 

of moving to the next state is conditioned on 2 or more previous states.  For 

example, we will consider a Markov chain of order 2 (second order), such that 

{𝑌𝑛 ,   𝑛 = 0,1,2,3… } and with 3 states, {1,2,3}.  Then a second order chain can be 

described using the following transition matrix (Figure 2b), which is an extension of 

the basic 3-state matrix introduced via Figure 1 (Figure 2a).  This is mathematically 

expressed by  

𝑃(𝑌𝑡+1 = 𝑘|𝑌𝑡 = 𝑖, 𝑌𝑡−1 = 𝑗𝑡−1, 𝑌𝑡−2 = 𝑗𝑡−2, … , 𝑌0 = 𝑗0)

= 𝑃(𝑌𝑡+1 = 𝑘|𝑌𝑡 = 𝑖, 𝑌𝑡−1 = 𝑗) 

                                                 = 𝑝𝑖,𝑗,𝑘  

Because it is not a square matrix, Figure 2b is not useful for many matrix 

manipulations; Bhat and Miller (2002) recommend putting the second order 

transition matrix in the format of a first order matrix for analytic convenience 

(Figure 2c).  We can then write the third property of Markov chains as it relates to 

higher order chains as: 

(3) Extending property (2) from the previous section, we may state the 

following: if we condition on several previous states, the probability of 

interest, 𝑝𝑖,𝑗 , is the same, and a next probability has a dependence only on the 

current state while being independent of time t. Then for any chain, 𝑌𝑛, 

integer, n (𝑛 = 0, 1, 2, 3 … ) and any state, s (s=0,1,…s), we have the following 

conditional probability  
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𝑃𝑖𝑗,𝑘 = 𝑃(𝑌𝑛 = 𝑘|𝑌𝑛−1 = 𝑗, 𝑌𝑛−2 = 𝑖) 

(adapted from Resnick (2002) and Bhat and Miller (2002)). 

Figure 2: Second order, 3-state, transition matrix for a given time, t 

2a: First order, 3-state probability 
transition matrix 

2b: Second order, 3-state, probability 
transition matrix 

               0       1        2                   0           1           2 

𝑃𝑇 =
0
1
2

[

𝑝0,0 𝑝0,1 𝑝0,2

𝑝1,0 𝑝1,1 𝑝1,2

𝑝2,0 𝑝2,1 𝑝2,2

] 

𝑃𝑇 =

00
01
02
10
11
12
20
21
22

  

[
 
 
 
 
 
 
 
 
𝑝00,0 𝑝00,1 𝑝00,2

𝑝01,0 𝑝01,1 𝑝01,2

𝑝02,0 𝑝02,1 𝑝02,2

𝑝10,0 𝑝10,1 𝑝10,2

𝑝11,0 𝑝11,1 𝑝11,2

𝑝12,0 𝑝12,1 𝑝12,2

𝑝20,0 𝑝20,1 𝑝20,2

𝑝21,0 𝑝21,1 𝑝21,2

𝑝22,0 𝑝22,1 𝑝22,2]
 
 
 
 
 
 
 
 

 

 
2c: Transition matrix useful for matrix operations; first-order form 

          00         01        02         10        11        12         20        21        22  

00
01
02
10
11
12
20
21
22

  

[
 
 
 
 
 
 
 
 
 
𝑝00,0 𝑝00,1 𝑝00,2 0 0 0 0 0 0

0 0 0 𝑝01,0 𝑝01,1 𝑝01,2 0 0 0

0 0 0 0 0 0 𝑝02,0 𝑝02,1 𝑝02,2

𝑝10,0 𝑝10,1 𝑝10,2 0 0 0 0 0 0

0 0 0 𝑝11,0 𝑝11,1 𝑝11,2 0 0 0

0 0 0 0 0 0 𝑝12,0 𝑝12,1 𝑝12,2

𝑝20,0 𝑝20,1 𝑝20,2 0 0 0 0 0 0

0 0 0 𝑝21,0 𝑝21,1 𝑝21,2 0 0 0

0 0 0 0 0 0 𝑝22,0 𝑝22,1 𝑝22,2]
 
 
 
 
 
 
 
 
 

 

 

3. Treatment of time  

To this point, the Markov concepts discussed have been under the consideration that 

the transition probabilities do not change with time.  A homogenous Markov chain 

(also known as stationary) is one which has the same probability of achieving a 
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certain state, independent of time, t.  This means the process is time-invariant.  In 

general, most Markov processes are not homogenous in a real-world setting 

(Resnick, 2002).  Considering the implications for MS, because of the progressive 

nature of EDSS and MS, it is not reasonable to assume this temporal homogeneity 

(stationarity) in the Markov chain; however, this property may be true under 

specific settings.  A chi-squared test of stationarity exists to evaluate this matrix 

property.  Pooled transition probabilities (over the entire time period in question) 

are placed in a single matrix; then, the data are divided into a specified number of 

time periods.  Thus, it evaluates the null hypothesis that the transition probabilities 

are the same between the pooled and sub-sampled matrices, versus the alternative 

that the probabilities are different (Bickenbach & Bode, 2001).  The test statistic has 

an asymptotic chi-squared distribution, with ∑ (𝑎𝑖 − 1)(𝑏𝑖 − 1)𝑁
i=1  degrees of 

freedom; and takes the following form 

𝑄𝑇 = ∑ 

𝑡

𝑡=1

∑ 

𝑛

𝑡=1

∑ 𝑛𝑖(𝑡)
(�̂�𝑖,𝑗(𝑡) − �̂�𝑖,𝑗)

2

�̂�𝑖,𝑗
𝑗∈𝐵𝑖

 

Where  𝑄𝑇  = the test statistic  

 𝑇 = time point of the matrix  

 𝑁 = number of estimated parameters (transition probabilities)   

 
�̂�𝑖𝑗 = 

probability of transition from state i to state j in pooled matrix 
(across all T  time points) 

 �̂�𝑖,𝑗(𝑡) = probability of transition from state i to state j the matrix for time T 

 𝐵𝑖 = All nonzero transitions for the entire sample   
 

𝐴𝑖 = Number of subsamples of T where nonzero subsamples are in the 
ith row 
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It would be of interest to evaluate this for the disability measures in an effort to 

determine where this temporal heterogeneity in the disease process occurs.    

 

4. Classification of states  

States are classified according to how they relate to other states in the chain.  State j 

is accessible from state i if there is a nonzero probability of reaching state j from 

state i, at any time point t.  Any two states that are accessible with one another are 

said to communicate with one another; those states that communicate are defined 

as being in the same class.  If i and j communicate, then this is expressed as 𝑖 ↔ 𝑗.  

States in communication have the following relationships:  

(1) A state communicates with itself (state i communicates with state i).   

(2) If i communicates with j, then j communicates with i. 

(3) If i communicates with j, and j communicates with k, then i communicates 

with k. 

(adapted from Ross (2003)).  

5. Classes are disjoint divisions in the state space; a Markov chain is irreducible 

if all states in the chain communicate with one another (therefore, there is a 

single class) (Bhat & Miller, 2002; Ross, 2003).  Applying this to the example 

in Figures 3 and 4: there are 4 classes in this chain: {𝐴, 𝐵}𝑠, {𝐶}, {𝐷} and {𝐸}.   
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A state may be classified in the following ways; these states are most easily 

examined by creating a diagram of the chain from the transition matrix (Figures 3, 

4).  

(1) Absorbing states are those, which, upon reaching them, there is zero-

probability of leaving.  That is, the transition probability of remaining in the

state is 1, such that 𝑝𝑖,𝑖 = 1 (state E, Figure 3).

(2) Recurrent states are those that will be visited an infinite number of times and

thus their probability of ever returning, is 1 (states A and B; Figure 3).

(3) Transient states are those which, upon leaving, there is a possibility (nonzero

probability) of never returning (state C; Figure 3).

(4) There is a special case for transient states where, upon leaving, there is zero

probability of returning to that state.  We shall refer to such states as super-

transient (state D; Figure 3).



 

Figure 3: Diagram of transitions between states A, B, C, D and E in a Markov Chain 

Arrows/connecting lines above the states represent transition to higher states; those below represent 
transitions to lower states or remaining in the same state.  

2
7
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Therefore, depending on what is being studied, probabilities might represent a move 

to the next state, to a previous state, remain in the same state (recurrent) or reach a 

state and be unable to move out of it (absorbing) (Resnick, 2002; Ross, 2003).  In the 

case of EDSS, we may consider this as probability of transitioning to a higher EDSS 

score, lower EDSS score and remaining with same EDSS score; the same considered 

transitions would be true for the PDDS. 

Figure 4: 5-State transition matrix associated with the Markov chain depicted in 
Figure 3 

A B C D E A B C D E 

𝑃 =

𝐴
𝐵
𝐶
𝐷
𝐸 [

𝑝𝑎,𝑎 𝑝𝑎,𝑏 𝑝𝑎,𝑐 𝑝𝑎,𝑑 𝑝𝑎,𝑒

𝑝𝑏,𝑎 𝑝𝑏,𝑏 𝑝𝑏,𝑐 𝑝𝑏,𝑑 𝑝𝑏,𝑒

𝑝𝑐.𝑎 𝑝𝑐,𝑏 𝑝𝑐,𝑐 𝑝𝑐,𝑑 𝑝𝑐,𝑒

𝑝𝑑,𝑎 𝑝𝑑,𝑏 𝑝𝑑,𝑐 𝑝𝑑,𝑑 𝑝𝑑,𝑒

𝑝𝑒,𝑎 𝑝𝑒,𝑏 𝑝𝑒,𝑐 𝑝𝑒,𝑑 𝑝𝑒,𝑒]

= 

𝐴
𝐵
𝐶
𝐷
𝐸 [

𝑝𝑎,𝑎 𝑝𝑎,𝑏 0 0 0

𝑝𝑏,𝑎 𝑝𝑏,𝑏 𝑝𝑏,𝑐 0 0

0 𝑝𝑐,𝑏 𝑝𝑐,𝑐 0 𝑝𝑐,𝑒

0 𝑝𝑑,𝑏 0 𝑝𝑑,𝑑 0

0 0 0 0 1 ]

C. Lumpability: collapsing states to reduce the size of the transition matrix

1. Description of lumpability

In the case of categorical data analysis or categorical predictors for continuous 

outcome, it is often the practice to collapse multiple categories into fewer categories. 

This can be to accommodate small cell size; to meet the theoretical assumptions of a 

specific test; because such granulation of a variable is not necessary; or to simplify 

interpretation.  In the specific case of EDSS, it is often the case to collapse the 20-

category scale to 3 or 4 groups, resulting in categories that are easier to interpret 

and often with more similar sub-sample sizes.   
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In the context of Markov chains, grouping categories of an outcome (states) together 

is called “lumping.”  Lumping is the process of grouping states in  a chain, such that 

the Markov property is preserved in the lumped chain (Barr & Thomas, 1977).  

Performing these groupings in the context of Markov models is not as 

straightforward as in other settings because not all chains have the property of 

being lumpable (Bhat & Miller, 2002).  Therefore, partitioning a transition matrix to 

achieve some grouping of the states might result in a process which is no longer 

Markovian, because this might interfere with the nature of dependence between the 

current and next states (Bhat & Miller, 2002).  Lumpability applies to specific 

partitions of the state space; and each time states are aggregated, lumpability must 

be evaluated (Bhat & Miller, 2002; Kemeny & Snell, 1960).   

If a chain is truly lumpable, then those rows desired to be combined will have the 

same sum across the probabilities.  For example, if we wished to move from a 3𝑥3 

matrix to a 2𝑥2 matrix and thus we wish to combine the rows A and B, then we have 

the following:  

Figure 5 : Lumping matrices 

Unlumped Matrix, 3 × 3 Equal probability sums Lumped Matrix, 2 × 2 

A B     C    AB  C 

P= 
A 

[

𝑝𝑎,𝑎 𝑝𝑎,𝑏 𝑝𝑎,𝑐

𝑝𝑏,𝑎 𝑝𝑏,𝑏 𝑝𝑏,𝑐

𝑝𝑐.𝑎 𝑝𝑐,𝑏 𝑝𝑐,𝑐

] 

𝑝𝑎,𝑎 + 𝑝𝑎,𝑏 = 𝑝𝑏,𝑎 + 𝑝𝑏,𝑏 AB 
[
𝑝𝑎,𝑎 + 𝑝𝑎,𝑏 𝑝𝑎,𝑐 + 𝑝𝑏,𝑐

𝑝𝑐.𝑎 + 𝑝𝑐,𝑏 𝑝𝑐,𝑐

] 
B C 

C 



30 

If this criterion is met, then states A and B can be lumped together into a single state, 

resulting in the second (lumped) matrix.  The resulting chain then retains the 

Markov property. 

2. Evaluating lumpability

Thomas and Barr (1977) developed an approximate chi-squared test to evaluate 

whether or not a chain is lumpable; this test was adapted and improved upon in a 

dissertation by Baran (2001) and published later by Jernigan and Baran (2003).  The 

test is based on the usual concepts of a chi-squared test, where the observed 

probabilities of the larger (original) transition matrix are considered in context with 

the expected probabilities for the collapsed (lumped, smaller) matrix.  The purpose 

of the test is that it evaluates whether probabilities can be grouped together, based 

on the observed values and associated estimated probabilities, while preserving the 

Markov property. 

The chi-squared test evaluates the null hypothesis that the chain is lumpable based 

on the proposed lumping scheme, versus the alternative hypothesis that the chain is 

not lumpable using the lumping scheme.  Therefore, the test must be performed for 

each lumping scheme proposed.   

Let “𝑜𝑘,𝑗 ” represent observed transitions from state “k” to lump “j” and let “i” 

represent each lump.  Then “n” refers to the counts associated with the rows from 
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the observed transition matrix, and “m” refers to the counts associated with the 

rows for the lumped transition matrix.  Let “n” also represent the number of states in 

the observed matrix, such that the observed matrix has dimension 𝑛 × 𝑛; then “m” 

represents the number of lumps (states) in the lumped matrix, such that the lumped 

matrix is 𝑚 × 𝑚. 

The test takes the following form, using lump, row and observed counts: 

𝛸2 = ∑ ∑
(𝑜𝑘,𝑗 −

𝑛𝑘∙𝑚𝑖.𝑗

𝑚𝑖∙
 )

2

𝑛𝑘∙𝑚𝑖.𝑗

𝑚𝑖∙

𝑚

𝑗=1

𝑛

𝑘=1

Thus, the test statistic takes the familiar form where the numerator is the observed 

minus the expected counts, divided by expected counts, where there are as much 

chi-squared values  as cells in the lumped matrix (therefore 𝑚 × 𝑚  chi-squared 

values) (Baran, 2001; Jernigan & Baran, 2003).   

As an example, we shall again, consider the simple case of a  3 × 3 being lumped to 

form a 2 × 2 matrix from Figure 5.   The matrices can be expressed using these 

terms as follows (Figures 6, 7).   The degrees of freedom (DF) are calculated as 𝐷𝐹 =

(𝑚 − 1)(𝑛 − 𝑚) (Baran, 2001; Jernigan & Baran, 2003). 

Figure 6: Original example matrix expressed with counts, 3 × 3 dimension 

A B C 
A 

[

𝑛𝑎,𝑎 𝑛𝑎,𝑏 𝑛𝑎,𝑐

𝑛𝑏,𝑎 𝑛𝑏,𝑏 𝑛𝑏,𝑐

𝑛𝑐.𝑎 𝑛𝑐,𝑏 𝑛𝑐,𝑐

] 

𝑛𝐴∙ 

B 𝑛𝐵∙ 

C 𝑛𝐶∙ 
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Figure 7: Lumped matrix expressed with counts, 2 × 2 dimension 

Lumped matrix, showing summation of states Final lumped matrix 

 AB  C AB C 
AB 

[
𝑛𝑎,𝑎 + 𝑛𝑎,𝑏 + 𝑛𝑏,𝑎 + 𝑛𝑏,𝑏 + 𝑛𝑏,𝑏 𝑛𝑎,𝑐 + 𝑛𝑏,𝑐

𝑛𝑐.𝑎 + 𝑛𝑐,𝑏 𝑛𝑐,𝑐

] 
AB 

[
𝑚𝑎𝑏,𝑎𝑏 𝑚𝑎𝑏,𝑐

𝑚𝑐.𝑎𝑏 𝑚𝑐,𝑐

] 
𝑚𝐴𝐵∙ 

C C 𝑚𝐶∙ 

D. Markov (transition) models

1. Using covariates to predict state transitions

Markov models are also known as transition models.  Modeling an outcome using 

the previous state (or outcome) as a predictor, along with other covariates, results in 

a transition model. These states are those nominal or ordinal outcomes we wish to 

model, over some time, T.  The simplest case of a Markov model is what we have 

previously seen, where no other predictors are utilized outside of the current state, 

to predict the next state.  Now, we shall consider a Markov model where covariates 

(in addition to the current state) are utilized to predict the next state.  Therefore, if 

we indicate the outcome as Y, then for each time, t, we have an outcome of 

𝑌1, 𝑌2, … , 𝑌𝑡 (Agresti, 2007).  The model generates the transition probabilities for the 

transition matrix; an appropriate logistic regression model (binary, nominal, 

ordinal) is fit for each time point.   A transition matrix is estimated for each time 

point; the probabilities produced at each time point are then associated with the 
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matrices.  Multiple time points means repeated observations per participant; 

because the models are fit per time point, each observation is considered 

independent because it is treated separately, as the time points are analyzed 

separately (Table 2) (Agresti, 2007).  



 

Table 2: Methods of estimating transition probabilities in logistic models 

Model Model expression Transition probability 

Binary 𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌𝑡 = 𝑗|𝑌𝑡−1 = 𝑖)] = 𝛼 + 𝜃𝑡−1𝑦𝑡−1 + ∑ 𝛽𝑙𝑥𝑙

𝑣

𝑙=1
 𝑃(𝑌𝑡 = 𝑗|𝑌𝑡−1 = 𝑖) =

exp (𝛼 + 𝜃𝑡−1𝑦𝑡−1 + ∑ 𝛽𝑙𝑥𝑙
𝑣
𝑙=1 )

1 + exp (𝛼 + 𝜃𝑡−1𝑦𝑡−1 + ∑ 𝛽𝑙𝑥𝑙
𝑣
𝑙=1 )

Nominal1 𝑙𝑜𝑔𝑖𝑡 [
𝑃(𝑌𝑡 = 𝑗|𝑌𝑡−1 = 𝑖)

𝑃(𝑌𝑡 = 𝐽)
] = 𝛼𝑗 + 𝜃𝑡−1𝑦𝑡−1 + ∑ 𝛽𝑙𝑥𝑙

𝑣

𝑙=1
 𝑃(𝑌𝑡 = 𝑗|𝑌𝑡−1 = 𝑖) =

exp(𝛼𝑗 + 𝜃𝑡−1𝑦𝑡−1 + ∑ 𝛽𝑙𝑥𝑙
𝑣
𝑙=1 )

1 + exp(𝛼𝑗 + 𝜃𝑡−1𝑦𝑡−1 + ∑ 𝛽𝑙𝑥𝑙
𝑣
𝑙=1 )

Ordinal2 𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌𝑡 ≤ 𝑗|𝑌𝑡−1 = 𝑖)] = 𝛼𝑗 + 𝜃𝑡−1𝑦𝑡−1 + ∑ 𝛽𝑙𝑥𝑙

𝑣

𝑙=1
 𝑃(𝑌𝑡 ≤ 𝑗|𝑌𝑡−1 = 𝑖) =

exp (𝛼𝑗 + 𝜃𝑡−1𝑦𝑡−1 + ∑ 𝛽𝑙𝑥𝑙
𝑣
𝑙=1 )

1 + exp (𝛼𝑗 + 𝜃𝑡−1𝑦𝑡−1 + ∑ 𝛽𝑙𝑥𝑙
𝑣
𝑙=1 )

1 Where each outcome (state) has its own intercept and set of coefficients; 0=baseline category (state in the Markov chain)  
2 Meeting the proportional odds assumption 
Where  j=current state for the time period=1, 2,…  𝐽 − 1  

i=previous state for the time period 
α =intercept  
x1, x2, …, xv are the covariates 
β represents the coefficient of the associated predictor  
θ represents the coefficient of the previous state used as a predictor 

3
4
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2. Higher order models

The models discussed to this point are first order, meaning each outcome only 

depend on the outcome observed at the most recent time point, and is used thusly in 

the model as a predictor.  Higher order models depend on a greater number of 

previous outcomes; for example, second order models utilize the previous two time 

points in the model as predictors.  As described earlier, transition matrix of a second 

order Markov chain is built on that of the first order chain (Figure 2).  The matrix 

clearly indicates the way in with the jth state is conditional upon the previous two 

states.  The associated logistic model would be conditioned on the previous 2 time 

points, and thus would both function as predictors in the model. 

We can express the logistic models seen earlier to reflect this second time point 

(Table 2).  A similar process would be employed if a third- or higher-order model 

was desired (Agresti, 2007).  In the simplest case (binary logistic regression) we 

would express the model as follows 

𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌𝑡 = 𝑗)|𝑌𝑡−1 = 𝑖, 𝑌𝑡−2 = ℎ] = 𝛼 + 𝜃𝑡−1𝑦𝑡−1 + 𝜃𝑡−2𝑦𝑡−2 + ∑ 𝛽𝑙𝑥𝑙

𝑣

𝑙=1
 

Utilizing higher order models in MS can be useful, when considering the nature of 

the disease (or what is being modeled).  For example, knowing the most recent 2 

EDSS states may be informative regarding how quickly mobility is deteriorating.  

Because there are multiple paths to an EDSS state, knowing the patients’ previous 

states (previous disability history) amounts to a general  understanding of whether 
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a patient is in remission (7.0 to 5.0), slowly progressing (4.0 to 4.5) or quickly 

progressing (for instance, 4.0 to 7.0, which may not be realistic). 

E. Context of Markov models and multiple sclerosis

1. Distribution of EDSS

Study data will influence the initial distribution and overall distributions of EDSS.  

First, the trial design, itself, will impact the EDSS distribution, simply based on 

inclusion/exclusion criteria.  The initial distribution (the baseline scores) might 

mimic the distribution of EDSS in the general population or may be influenced by 

the study design.  In the case of CombiRx, patients were excluded from enrollment if 

they had an EDSS of 6.0 or higher.  Because patients are enrolled for the more mobile 

portion of their disease, we will lack information about higher EDSS scores (greater 

disability) during the earlier part of the study.   Depending on the specific nature and 

course of each participant’s disease, this will likely also extend to the later part of 

the study, where we will again lack information regarding higher order EDSS scores.  

Second, there is bias present towards the patient pool, itself, as there might be 

something unique about those who engage in clinical trials versus not.   
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2. Distribution of PDDS

Survey data will influence the initial distribution and overall distributions of PDDS.  

First, the collection method, itself, will impact the PDDS distribution, based on 

factors at enrollment and over time.  The initial distribution (the baseline scores) 

might mimic the distribution of PDDS in the general population or may be 

influenced either by the self-reported nature of the variable and/or such factors as 

age, disease duration, or disease severity.  Response-rate over time might be 

influenced by disease progression, experience of relapse, and other social or medical 

factors (i.e., changing marital status, depression, degenerating fine motor skills, 

requiring a caregiver to complete the survey).  Because patients are engaged from 

enrollment onwards, and are encouraged to participate for as long as possible; 

therefore, there is potential for greater insight for later disease stages.  Therefore, 

there is opportunity to learn more about higher PDDS scores the disease and patient 

experience.  We will therefore be limited to the participants’ continuity of response.  

Second, there is bias present within the participant pool, itself, as there might be 

something unique about those who participate in observational studies versus not.   

3. Relevance of lumpability to EDSS and PDDS

The goal of the work is two-fold: application of an analytic method on an outcome 

for which previous methods are not entirely satisfactory, and using the EDSS in the 

most simple form possible, to facilitate interpretation in a clinical setting.  The EDSS 
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is a complex outcome, and as mentioned in the introduction, it has 20 states, which 

would result in an ungainly 400-cell transition matrix.  Grouping the EDSS scores in 

a meaningful way might provide insight to the disease and better reflect the disease, 

itself.   

The PDDS might have more patients whose mobility is worse than is observed in 

clinical trials, since it is obtained from patients in a registry.  Because of this it is 

more likely to represent MS population-level information and have less sparse data 

for more advanced disease.  

Statistically speaking, grouping the EDSS and PDDS would enable more tractable 

calculations and would allow for preservation of degrees of freedom in the model-

building setting.  Additionally, previous work of Markov model application to EDSS 

analysis did not evaluate the lumpability property.  Therefore, should we determine 

the most appropriate aggregation of EDSS scores, it is critical to know whether or 

not it is appropriate to proceed using Markov chain methodology (Kemeny & Snell, 

1960). 

F. Model selection and Goodness of Fit: previous methods, proposed considerations

1. Model selection to estimate parameters (transition probabilities)

Multiple aspects must be considered for rigorous model selection.  First, the nature 

of the outcome will inform the choice of model type (Table 2); this is related to 

determining the appropriate aggregation of EDSS, as described above.   Once this has 
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been established, the usual methods for detecting model fit must be employed.  

Specific consideration must be given regarding model fit between orders of models 

(e.g., between Markov transition models of order one and order two) and 

incorporation of random effects.  

2. Goodness of fit

Several variations of the likelihood ratio test (LRT) have been developed and 

employed to evaluate fit for different criteria.  Most recently, Mandel and Betensky 

(2008) employed likelihood ratio tests to compare models with/without random 

effects.  In a later paper, Mandel and colleagues (2013) evaluated their models by 

comparing the predictive performance of the models.  Specifically, they examined 

the expected proportion of transitions versus the observed ones; they also examined 

the binomial confidence intervals about the proportions. The order of Markov 

models have been evaluated using a chi-squared GOF test, as well as using the AIC 

and BIC (Baran, 2001; Jimoh & Webster, 1996; Katz, 1981).  While not a requirement 

for using these criteria, chains of different orders are truly nested models.   We have 

already described the use of the chi-squared test of lumpability (Baran, 2001; 

Jernigan & Baran, 2003).  The tests of stationarity and others utilize maximum 

likelihood methods and are describe in the work of Billingsley (1961). 

We are interested in extending the concept of lumping to determine if, given a matrix 

is lumpable according to a given lumping scheme, it is the best fit to the data.  
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Avenues of investigation will include development of an LRT to compare lumped and 

unlumped matrices, as well as a measure of comparing two lumping schemes for a 

given original, unlumped chain. 
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III. Foundational theoretical work and development of a Goodness of Fit Test

A. Introduction

The chi-squared test of lumpability by Thomas and Barr (1977) was updated by 

Jernigan and Baran (2001; 2003).  As an extension, it is of interest to consider the 

usefulness and appropriateness of lumping states at all.  If, according to the chi-

squared testing of lumpability the specified lumping scheme is acceptable and the 

chain is lumpable, a question naturally follows: does use of this scheme lead to the 

best fit for the data?  In order to compare the fit of the lumped and unlumped 

matrices, we propose two goodness of fit tests using likelihood ratio and Pearson 

formulations, and explore the properties of these tests via simulation. 

B. Methods

1. Description of simulated data and states

Data were simulated based upon matrices that were designed to be lumpable.  

These true matrices of transition probabilities, 𝐁𝟎 and row counts were 4 × 4 (four 

states: 𝐴, 𝐵, 𝐶, 𝐷), and whose lumped dimension was 2 × 2 (two states: 𝐴𝐵, 𝐶𝐷).  

Four matrices were considered and used to generate chains, which were later 

lumped using the same lumping scheme were developed to further assess our 
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proposed methodology; these matrices were numbered 1 through 4 (Table 3).  All 

chains shared the same initial probability distribution, such that when frequencies 

were simulated, equal probabilities were assumed for each state for the initial 

distribution, such that   𝑺𝟎 = [0.25 0.25 0.25 0.25]. 

2. Evaluation of lumpability

We employed Thomas and Barr (1977) chi-squared test of lumpability to examine 

the proposed lumping scheme (Figure 8).  The proposed four-state (unlumped) 

process is formally expressed as 𝑆 = {𝐴, 𝐵, 𝐶, 𝐷}.  The proposed two-state lumped 

process is formally expressed as 𝑆 = {𝐴𝐵, 𝐶𝐷} (Figure 8).  Therefore, the states A 

Table 3: Transition probabilities used for simulation 

Matrix “True” transition probabilities, 𝐁𝟎 

1* [

0.48 0.48 0.02 0.02
0.48 0.48 0.02 0.02

0.03125 0.03125 0.46875 0.46875
0.03125 0.03125 0.46875 0.46875

] 

2 [

0.44 0.46 0.04 0.06
0.4475 0.4275 0.0625 0.0625
0.03 0.02 0.47 0.48

0.03125 0.03125 0.46875 0.46875

] 

3 [

0.44 0.46 0.04 0.06
0.4475 0.4275 0.0625 0.0625
0.029 0.021 0.46 0.49
0.027 0.0555 0.47 0.4475

] 

4 [

0.48 0.48 0.02 0.02
0.4375 0.4375 0.0625 0.0625
0.03125 0.03125 0.46875 0.46875
0.03125 0.03125 0.46875 0.46875

] 

*Designed to be perfectly lumpable
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and B and states C and D are lumped together to form a 2-state process from a 4-

state process.   Multiple sample sizes (number of transitions) will be considered, as 

described in the next section. 

Figure 8: Lumping scheme implementation 

Unlumped matrix (𝟒 × 𝟒) 
expressed as probabilities 

Unlumped matrix 
expressed as counts 

   𝐴 𝐵 𝐶 𝐷    𝐴 𝐵 𝐶 𝐷 
𝐴
𝐵
𝐶
𝐷

[

𝑝𝑎,𝑎 𝑝𝑎,𝑏 𝑝𝑎,𝑐 𝑝𝑎,𝑑

𝑝𝑏,𝑎 𝑝𝑏,𝑏 𝑝𝑏,𝑐 𝑝𝑏,𝑑

𝑝𝑐,𝑎 𝑝𝑐,𝑏 𝑝𝑐,𝑐 𝑝𝑐,𝑑

𝑝𝑑,𝑎 𝑝𝑑,𝑏 𝑝𝑑,𝑐 𝑝𝑑,𝑐

]  

𝑝𝐴∙ = 1
𝑝𝐵∙ = 1
𝑝𝐶∙ = 1
𝑝𝐷∙ = 1

𝐴
𝐵
𝐶
𝐷

[

𝑛𝑎,𝑎 𝑛𝑎,𝑏 𝑛𝑎,𝑐 𝑛𝑎,𝑑

𝑛𝑏,𝑎 𝑛𝑏,𝑏 𝑛𝑏,𝑐 𝑛𝑏,𝑑

𝑛𝑐,𝑎 𝑛𝑐,𝑏 𝑛𝑐,𝑐 𝑛𝑐,𝑑

𝑛𝑑,𝑎 𝑛𝑑,𝑏 𝑛𝑑,𝑐 𝑛𝑑,𝑐

]  

𝑛𝐴∙

𝑛𝐵∙

𝑛𝐶∙

𝑛𝐷∙

 

Lumped matrix (𝟐 × 𝟐), 
showing summation of states Final lumped matrix 

𝐴𝐵 𝐶𝐷 𝐴𝐵 𝐶𝐷 
𝐴𝐵
𝐶𝐷

[
𝑛𝑎,𝑎 + 𝑛𝑎,𝑏 + 𝑛𝑏,𝑎 + 𝑛𝑏,𝑏 𝑛𝑎,𝑐 + 𝑛𝑏,𝑐 + 𝑛𝑎,𝑑 + 𝑛𝑏,𝑑

𝑛𝑐,𝑎 + 𝑛𝑐,𝑏 + 𝑛𝑑,𝑎 + 𝑛𝑑,𝑏 𝑛𝑐,𝑐 + 𝑛𝑐,𝑑 + 𝑛𝑑,𝑐 + 𝑛𝑑,𝑐
]

𝐴𝐵
𝐶𝐷

[
𝑚𝑎𝑏,𝑎𝑏 𝑚𝑎𝑏,𝑐𝑑

𝑚𝑐𝑑,𝑎𝑏 𝑚𝑐𝑑,𝑐𝑑
]
𝑚𝐴𝐵∙ 
𝑚𝐶𝐷∙

3. Proposed tests: exploration of the goodness of fit test statistics and degrees

of freedom

The proposed GOF tests evaluate the same hypotheses: the null hypothesis that the 

lumped matrix is a better fit to the data, versus the alternative that the unlumped 

matrix is a better fit to the data.  The first is a likelihood ratio test (LRT).  The second 

proposed test is a Pearson test, with the traditional formulation of observed and 

expected components.  Also developed is a measure of the degree of difference 

between the unlumped, perfectly lumpable matrix, and an actual matrix, the W-

score.  Both tests’ distributional properties were explored.  Degrees of freedom were 
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empirically determined via histogram with distributional overlay for the simulated 

test statistics. 

3.1 Likelihood estimation 

The first proposed GOF test employs a likelihood ratio; the LRT statistic takes on the 

usual form of the numerator being the likelihood of the data under the unlumped 

matrix, and the denominator being the likelihood under the lumped transition 

matrix.  To that end, realization of the LRT statistic and its components (i.e., 

numerator and denominator of the test statistic) were visualized via histogram and 

summarized using means, medians, minima and maxima. 

Let P describe the probability transition matrix; and let the maximum likelihood 

estimator (MLE) for a transition probability,  𝑝𝑖,𝑗 , be expressed as  �̂�𝑖,𝑗 =
𝑛𝑖,𝑗

∑ 𝑛𝑖,𝑗
𝑛
𝑗=1

(Bickenbach & Bode, 2001); the MLE for 𝑝𝑖,𝑗 is asymptotically normal and unbiased 

(Anderson & Goodman, 1957).  Now the log-likelihood of the data given p is as 

 ln(𝐿(𝑃)) = ∑ 𝑛𝑖,𝑗 ln(𝑝𝑖,𝑗)

𝑛

𝑖,𝑗=1

 

where 𝑛𝑖,𝑗  represents the number of observed transitions from i to j and 𝑝𝑖,𝑗 

represents the transition probability between states i and j.   

Now, let 𝑝𝑖,𝑗 and �̂�𝑖,𝑗 represent the associated transition probabilities for the 

unlumped (most often, the observed) matrix.  Let the likelihood be expressed as 
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ln(𝐿(𝑷)) = ∑

𝑛

𝑖=1

∑𝑛𝑖,𝑗 ln(𝑝𝑖,𝑗)

𝑛

𝑗=1

 

(Bhat & Miller, 2002). 

Now, let 𝑞𝑖,𝑗 and �̂�𝑖,𝑗 represent the associated transition probabilities for the lumped 

matrix; let 𝑚𝑖,𝑗 represent the observed transitions between the lumped states.  Then 

the LRT statistic which compares the unlumped (P) and lumped (Q) matrices takes 

the form: 

−2 ln(𝐿) = 2[𝐿(𝑸) − 𝐿(𝑷)]

= 2 [∑ 

𝑚

𝑖=1

∑𝑚𝑖,𝑗 ln(𝑞𝑖,𝑗)

𝑚

𝑗=1

− ∑

𝑛

𝑖=1

∑𝑛𝑖,𝑗 ln(𝑝𝑖,𝑗)

𝑛

𝑗=1

] 

3.2 Pearson test formulation 

The Pearson goodness of fit test statistic, Χ𝑃
2 , will take the conventional form using 

observed and expected values, based on the unlumped matrix.  Again, let 𝑛𝑖𝑗 

represents the number of observed transitions from i to j.  If any zero-cells exist in 

the observed transition matrix, the usual 0.5-integer correction is used, such that the 

“0” is replaced with “0.5.” The expected number of transitions are expressed as 

𝑝𝑖,𝑗𝑛𝑖,𝑗 .  The values that contribute to the Pearson test statistic are in the context of 

the unlumped matrix. 

Χ𝑃
2 = ∑

(𝑛𝑖,𝑗 − 𝑝𝑖,𝑗𝑛𝑖,𝑗)
2

𝑝𝑖,𝑗𝑛𝑖,𝑗
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3.3 W-score 

In an effort to understand how lumpable a matrix is compared to a perfectly 

lumpable matrix, we developed a statistic which we denote as 𝑊.  This describes a 

property of the unobserved, perfectly lumpable transition matrix and is a measure 

of the magnified of difference between a perfectly lumpable and actual matrix.  W 

takes into account the observed number of states, the number of observed states 

contributing to each lump and the probability of any state contributing to each 

lump.  A perfectly lumpable matrix has a W of 0.  Larger values of W indicate the 

chain is further from a perfectly lumpable matrix; and thus, it should be more likely 

that we reject the null hypothesis lumpability in favor of the unlumped matrix.  Let 

�̅�𝑙represent the mean transition probability for a lump, 𝑙, under the proposed 

lumping scheme.  Let 𝑛𝑙 indicate the number of cells from the unlumped matrix 

contributing to that lump. 

𝑊 = ∑
(𝑝𝑖,𝑗 − �̅�𝑙)

2

𝑛𝑙
𝑗∈𝑙

When performing the simulations, this statistic is useful to measure how lumpable 

the starting matrix was so that we could anticipate the results of the test of 

lumpability. 
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3.4 Simulation methodology 

In order to determine the distributional properties of the proposed test statistics, we 

simulated data based on 4 underlying transitions matrices, each 4 × 4 in dimension, 

using the reported initial distribution (Table 3).  These simulation steps are 

summarized in Table 4.  We considered 20 sample sizes to explore the LRT and 

Pearson statistics; these sample sizes ranged from 50 to 1,000, in increments of 50.  

For each of these sample sizes 1,000 iterations were performed, generating 1,000 

observed transition matrices.  All methods remain the same for each sample size, 

iteration and underlying Markov matrix.  Only sample sizes of 50, 200, 1000 and 

5000 were examined for distributional investigations. 

First, the transitions in each row were simulated based on the fact that each row 

follows a multinomial distribution, based on the 4 probabilities of the 4-state chain 

(𝑝𝑖 , where 𝑖 = 1, 2,… 4) for each of the 4 possible transitions and thus 𝑛(𝑛 − 1) 

parameters (transition probabilities) were estimated based on the observed chain.  

Second, lumped matrix was then created, by grouping states based on the proposed 

lumping scheme.  Third, each matrix pair (observed, unlumped and associated 

lumped) was then evaluated with the chi-squared test of lumpability (Jernigan & 

Baran, 2003; Thomas & Barr, 1977).  This test is considered Stage 1.  Fourth and 

finally, if the chain passed Stage 1 such that the chain was considered lumpable, it 

was then evaluated under Stage 2 whereby it was evaluated for goodness of fit, using 

the proposed GOF tests.  Thus, LRTs and Pearson statistics were then calculated for 

each pair of matrices.   
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The distributions for the LR and Pearson tests were then visualized via histogram, 

from which the degrees of freedom where empirically demonstrated and further 

examined via the Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tests.  We 

used the KS and AD tests to compare empirical distribution of the test statistics to 

the Chi-square distribution.  

Table 4 : Summary of general simulation steps 

1. Simulate initial states using 𝑆0

2. Simulation: simulate observed frequency transition matrix based on actual
probability transition matrix, 𝐵0

a. Matrix is dimension 𝑛 × 𝑛 and sample size N, based on the observed
𝑆0.

b. Each row is simulated separately using the multinomial
distribution.

3. Lumping: aggregate the frequency transition matrix of n states to m states
a. Done according to a pre-specified lumping scheme.
b. Lumped matrix is 𝑚 × 𝑚 in dimension.

4. Stage 1 testing: evaluate lumpability by performing chi-square test of
lumpability

5. Stage 2 testing: evaluate goodness of fit of lumping scheme by performing
a. Likelihood ratio test and Pearson test (half-integer corrected)

6. Iterate Steps 0-4 1000 times for sample sizes 50 to 1000 by 50.

4. Linear Algebra

4.1 Implementation of a lumping scheme and performing the test of

lumpability  

Mathematically, the simulation for a single iteration goes as follows, using the 

previously defined initial distribution, 𝑆0, and the true transition matrix for each 

chain.  Matrix algebra and notation for lumping has been adapted and extended from 
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Baran (2001).  We shall be using the conventional symbol of the Hadamard product, 

“∘”, indicating elementwise multiplication (Anton, 2010; Styan, 1973). To account 

for elementwise division, we shall use the Hadamard division operator, ⊘.  

For simplicity, we will outline the linear algebra only for Chain 3, such that its true 

transition matrix is defined as 𝐵0, such that 

𝐵0 = [

0.44 0.46 0.04 0.06
0.4475 0.4275 0.0625 0.0625
0.029 0.021 0.46 0.49
0.027 0.0555 0.47 0.4475

] 

After simulation is performed, the resulting frequency matrix is defined as follows, 

𝑁 = [

𝑛𝑎,𝑎 𝑛𝑎,𝑏 𝑛𝑎,𝑐 𝑛𝑎,𝑑

𝑛𝑏,𝑎 𝑛𝑏,𝑏 𝑛𝑏,𝑐 𝑛𝑏,𝑑

𝑛𝑐,𝑎 𝑛𝑐,𝑏 𝑛𝑐,𝑐 𝑛𝑐,𝑑

𝑛𝑑,𝑎 𝑛𝑑,𝑏 𝑛𝑑,𝑐 𝑛𝑑,𝑐

] 

The initial state distribution, 𝑺𝟎 = [0.25 0.25 0.25 0.25], established 

approximate equal proportions from each starting state for given time point.  We 

simulated from 400 total transitions, indicating we started with approximately 100 

transitions per row in the entire matrix at a single time point.  

Then an example of simulated transitions and estimated probability transition 

matrices are 

𝑁 = [

44 46 5 6
45 43 6 5
3 2 46 47
3 6 47 46

] 
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𝑁𝑝𝑟 = [

0.4356436 0.4554455 0.049505 0.0594059
0.4545455 0.4343434 0.0606061 0.0505051
0.0306122 0.0204082 0.4693878 0.4795918
0.0294118 0.0588235 0.4607843 0.4509804

] 

The lumping matrix, 𝐾, has dimension 𝑚 × 𝑛.  Entries of “1” represent inclusion in 

the lumped state; correspondingly, entries of “0” indicate a state(s) are not include 

in the lumped state.  Therefore, as we are interested in combining states 𝐴 and 𝐵 in 

a single state, 𝐴𝐵; and in combining states 𝐶 and 𝐷 into a single state, 𝐶𝐷, the 

appropriate lumping matrix is 

𝐾 = [
1 1 0 0
0 0 1 1

] 

The intermediate matrix of state-to-lump transitions is defined as 𝑉, with dimension 

𝑛 × 𝑚. 

𝑉 = 𝑁 ∙ 𝐾𝑇 

= [

44 46 5 6
45 43 6 5
3 2 46 47
3 6 47 46

] ∙ [

1 0
1 0
0 1
0 1

] 

= [

90 11
88 11
5 93
9 93

] 

Next, the lumped matrix, 𝑀, is calculated as follows, with dimension 𝑚 × 𝑚. 

𝑀 = 𝐾 ∙ 𝑁 ∙ 𝐾𝑇 

= [
1 1 0 0
0 0 1 1

] ∙ [

44 46 5 6
45 43 6 5
3 2 46 47
3 6 47 46

] ∙ [

1 0
1 0
0 1
0 1

] 

= [
178 22
14 166

] 
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We shall define the row sums of the observed frequency matrix as a column 

vector, 𝑛𝑘, of dimension 𝑛 × 1.  Similarly, the row sums of the lumped frequency 

matrix is the column vector, 𝑚𝑖 , of dimension 𝑚 × 1.   In the context of our example, 

these are expressed as 

𝑛𝑘 = [

101
99
98
102

]    and    𝑚𝑖 = [
200
200

] 

The following 4 matrices are defined for the purposes of expressing the linear 

algebra to reflect the proposed lumping scheme.  𝑁𝑖+ is the matrix of observed row 

sums, where the vector is repeated per number of desired lumps.  For instance, if a 

two-state chain is desired, then two-lumps is the desired result, and so the column 

will be repeated twice; thus, 𝑁𝑖+ has dimension 𝑛 × 𝑚. 

𝑁𝑖+ = [

101 101
99 99
98 98
102 102

] 

𝑀𝑠𝑥 is the matrix of repeated rows of the lumped matrix, as necessary. 

𝑀𝑠𝑥 = 𝐾𝑇 ∙ 𝑀

= [

1 0
1 0
0 1
0 1

] ∙ [
178 22
14 166

] 

= [

178 22
178 22
14 186
14 186

] 

𝑀𝑠+ is the matrix of repeated columns of 𝑚𝑖 , reflecting the number of desired lumps. 

The number of columns is the number of lumps. 
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𝑀𝑠+ = [

200 200
200 200
200 200
200 200

] 

If considering the conventional representation of a Chi-square test statistic formula 

where the numerator is the square of observed minus expected, then the square-

root of this is expressed as follows: 

𝑄 = 𝑉 − 𝑁𝑖+ ∘ (𝑀𝑠𝑥 ⊘ 𝑀𝑠+) 

= [

90 11
88 11
5 93
9 93

] − [

101 101
99 99
98 98
102 102

] ∘ ([

178 22
178 22
14 186
14 186

] ⊘ [

200 200
200 200
200 200
200 200

]) 

= [

0.11 −0.11
−0.11 0.11
−1.86 1.86
1.86 −1.86

] 

Then the Chi-square test of lumpability numerator, 𝑋𝑁𝑢𝑚, is expressed as 

𝑋𝑁𝑢𝑚 =  𝑄 ∘ 𝑄 

= [

0.11 −0.11
−0.11 0.11
−1.86 1.86
1.86 −1.86

] ∘ [

0.11 −0.11
−0.11 0.11
−1.86 1.86
1.86 −1.86

] 

= [

0.0121 0.0121
0.0121 0.0121
3.4596 3.4596
3.4596 3.4596

] 

The denominator, 𝑋𝐷𝑒𝑛 , is expressed as follows. Note that for ease of computation, at 

this stage, any zero-cells are indicated as missing values, and as such do not 

contribute to the test statistic. 
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𝑋𝐷𝑒𝑛 = 𝑁𝑖+ ∘ (𝑀𝑠𝑥 ⊘ 𝑀𝑠+) 

= [

101 101
99 99
98 98
102 102

] ∘ ([

178 22
178 22
14 186
14 186

] ⊘ [

200 200
200 200
200 200
200 200

]) 

= [

89.89 11.11
88.11 10.89
6.86 91.14
7.14 94.86

] 

In the usual calculations of the Chi-square test where two matrices of identical 

dimension are being tested (the observed and expected), there are the same number 

of component Chi-square statistics as there are cells in either matrix; these are then 

summed to produce the  final overall test-statistic.  In the case of the test of 

lumpability, the matrix of individual Chi-square components has 𝑛 × 𝑚 dimension; 

thus, the product of the observed states and desired lumps is the number of 

individual values which will be summed to produce the Chi-square test statistic for 

the test of lumpability.  For instance, in our particular example of moving from an 

observed 4-state chain to a 2-state lumped chain, we would have 𝑛 × 𝑚 = 4 × 2 = 8  

individual components, which would be summed to produce the overall test statistic 

evaluating lumpability of the chain according to the proposed lumping scheme.  

Accordingly, the individual Chi-square test statistic values representing the move 

from one state to one lump is obtained as 

𝑋2 = (𝑄 ∘ 𝑄) ⊘ (𝑁𝑖+ ∘ (𝑀𝑠𝑥 ⊘ 𝑀𝑠+))   

≡ 𝑋𝑁𝑢𝑚 ⊘ 𝑋𝐷𝑒𝑛 
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Therefore,  

𝑋2 = 𝑋𝑁𝑢𝑚 ⊘ 𝑋𝐷𝑒𝑛 

= [

0.0121 0.0121
0.0121 0.0121
3.4596 3.4596
3.4596 3.4596

] ⊘ [

89.89 11.11
88.11 10.89
6.86 91.14
7.14 94.86

] 

= [

0.0001346 0.0010891
0.0001373 0.0011111
0.5043149 0.0379592
0.4845378 0.0364706

] 

This matrix results in a grand sum of 𝑋𝑠
2 = 1.0657546 ≈ 1.07. 

Baran (2001) updated the degrees of freedom for the Chi-square test of lumpability; 

this revision accounts for the presence of zero-cells in the matrices (Jernigan & 

Baran, 2003).  Let 𝑀𝑠  be the vector of the number of non-zero cells in each row of 

the lumped matrix, 𝑀.  Then this vector, 𝑀𝑠, is 𝑚 × 1 in dimension.  Let the vector 𝑁𝑠 

represent the row sums of the lumping matrix, 𝐾; then this vector is also 𝑚 × 1 in 

dimension.  The degrees of freedom of the test is the grand sum of the following 

matrix product:  

𝐷𝐹𝑧 = (𝑀𝑠 − 1) ∘ ( 𝑁𝑠 − 1) 

= ([
2
2
] − [

1
1
]) ∘ ([

2
2
] − [

1
1
]) 

= [
1
1
] ∘ [

1
1
] 

= [
1
1
] 

This matrix results in a grand sum of 2, for 2 degrees of freedom.  Based on these 

particular results, we have evidence to support the proposed lumping scheme for 
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the data, as we fail to reject the null hypothesis of lumpability at the α=0.05 level 

(𝑝 = 0.5869138 ≈ 0.5869).  

It is important to note here the possibility of obtaining 𝐷𝐹𝑧 = 0; in this case, the test 

of lumpability is not valid and the proposed lumping scheme should be re-evaluated. 

4.2 Goodness of fit test statistics 

4.2.1 Likelihood ratio Goodness of Fit Test 

Full model likelihood The likelihood of what we shall call the “full model” 

(observed, unlumped matrix) will be obtained using the estimated probabilities of 

said matrix, and indicated by 𝑁𝑝𝑟 .  Any zero-cell elements in this matrix are treated 

as missing values and thus ultimately do not contribute to the likelihood ratio test 

statistic.  The transition probabilities of the lumped matrix are  

The grand sum of the matrix below represents the likelihood of the full model: 

𝐹 = 𝑁 ∘ ln(𝑁𝑝𝑟) 

= [

44 46 5 6
45 43 6 5
3 2 46 47
3 6 47 46

] ∘ ln([

0.4356436 0.4554455 0.049505 0.0594059
0.4545455 0.4343434 0.0606061 0.0505051
0.0306122 0.0204082 0.4693878 0.4795918
0.0294118 0.0588235 0.4607843 0.4509804

]) 

= [

−36.56096 −36.17804 −15.02841 −16.94017
−35.48058 −35.85855 −16.82016 −14.92841
−10.45907 −7.783641 −34.791 −34.53653
−10.57908 −16.99928 −36.41678 −36.63125

] 

Then the grand sum of this matrix produces a likelihood for the full model of 

𝐹𝑠 = −395.9919. 
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Reduced model likelihood The likelihood of what we shall call the “reduced 

model” (lumped matrix) is based upon the transition probabilities in the lumped 

matrix, indicated by 𝑀𝑝𝑟 ; the structure of this matrix is based upon the dimension of 

the original, unlumped matrix and the concept that each transition has equal 

probability within each lump.  For the actual lumped matrix, these can be obtained 

using the following expression:  

𝑀𝑝 = (𝑀 ⊘ 𝑚𝑖) ⊘ 𝑆𝑝𝑙  

Where 𝑆𝑝𝑙  is the matrix of states contributing to each lump, repeated for as many 

rows as there are lumps.   It is found by first obtaining the row sums of the lumping 

matrix, K, which represents the number of states contributing to each lump, 𝐾𝑠:  

𝐾𝑠 = [
2
2
] 

The transpose of 𝐾𝑠 is then repeated m=2 times, such that 𝐾𝑠
𝑇 = [2 2] such that

𝑆𝑝𝑙 = [
2 2
2 2

] 

Then, considering that each lump is comprised of 2 states, the (𝑛 × 𝑛) matrix of 

these probabilities, 𝑀𝑝𝑟 , is found as  

𝑀𝑝𝑟 = 𝐾𝑇 ⋅ ((𝑀 ⊘ 𝑚𝑖) ⊘ 𝑆𝑝𝑙) ⋅ 𝐾

Once again, any zero-cell elements are treated as missing values and do not 

contribute to the overall test statistic.  Then the likelihood of the reduced model is 

found in like manner as that for the full model, such that the grand sum of the 

following matrix represents the likelihood of the reduced model:  

𝑅 = 𝑁 ∘ ln(𝑀𝑝𝑟) 

Continuing our example, the “equal probabilities per lump” in matrix form is 
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𝑀𝑝 = (𝑀 ⊘ 𝑚𝑖) ⊘ 𝑆𝑝𝑙  

= ([
178 22
14 186

] ⊘ [
200
200

]) ⊘ [
2 2
2 2

] 

= [
0.445 0.055
0.035 0.465

] 

Then the matrix of probabilities is then found as 

𝑀𝑝𝑟 = 𝐾𝑇 ⋅ ((𝑀 ⊘ 𝑚𝑖) ⊘ 𝑆𝑝𝑙) ⋅ 𝐾

= [

1 0
1 0
0 1
0 1

] ⋅ (([
178 22
14 186

] ⊘ [
200
200

]) ⊘ [
2 2
2 2

]) ⋅ [
1 1 0 0
0 0 1 1

] 

= [

0.445 0.445 0.055 0.055
0.445 0.445 0.055 0.055
0.035 0.035 0.465 0.465
0.035 0.035 0.465 0.465

] 

The likelihood the reduced model can then be determined: 

𝑅 = 𝑁 ∘ ln(𝑀𝑝𝑟) 

= [

44 46 5 6
45 43 6 5
3 2 46 47
3 6 47 46

] ∘ ln([

0.445 0.445 0.055 0.055
0.445 0.445 0.055 0.055
0.035 0.035 0.465 0.465
0.035 0.035 0.465 0.465

]) 

= [

−35.62596 −37.24533 −14.50211 −17.40253
−36.43564 −34.81628 −17.40253 −14.50211
−10.05722 −6.704814 −35.22302 −35.98874
−10.05722 −20.11444 −35.98874 −35.22302

] 

Then the grand sum of this matrix is 𝑅𝑠 = −397.2897. 
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Overall likelihood ratio test statistic and degrees of freedom The overall 

likelihood ratio test statistic, 𝐿,  is found in the conventional manner such that 

𝑋𝐿
2 = −2 ⋅ (𝑅𝑠 − 𝐹𝑠)

= −2(−397.2897 − −395.9919) 

= 2.5956352 

≈ 2.60 

The associated degrees of freedom are found using the number of rows (states) in 

the observed, unlumped matrix and the number of rows (states) in the lumped 

matrix. Alternately, these expressions can be thought of in terms of columns, as only 

square matrices are employed in Markov methodology and mathematics.  The 

degrees of freedom, 𝐷𝐹𝐿, are found by 

𝐷𝐹𝐿 = 𝑛(𝑛 − 1) − 𝑚(𝑚 − 1) 

= 4(4 − 1) − 2(2 − 1) 

= 10 

These degrees of freedom are empirically demonstrated via simulation. The 

associated p-value provides evidence of the lumping scheme being a good fit to the 

data (𝑝 = 0.9894076 ≈ 0.9894). 

4.2.2 Pearson Goodness of Fit Test 

The observed lumped frequencies are those expressed in the matrix, 𝑀.  The 

expected lumped frequencies, 𝐸, are found as follows; consistent with previous 

procedures, we shall again treat any zero-cell elements as missing values.   
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𝐸 = 𝑀𝑝𝑟°𝑛𝑘 

= [

0.445 0.445 0.055 0.055
0.445 0.445 0.055 0.055
0.035 0.035 0.465 0.465
0.035 0.035 0.465 0.465

] ∘ [

101
99
98
102

] 

= [

44.945 44.945 5.555 5.555
44.055 44.055 5.445 5.445
3.43 3.43 45.57 45.57
3.57 3.57 47.43 47.53

] 

In order to calculate the matrix of chi-square values, we must define another matrix, 

𝑁𝑖𝑛𝑡 , which contains the half-integer correction (0.5) for any zero elements in the 

observed matrix of transition frequencies, 𝑁.  The overall corrected Pearson test 

statistic, 𝑋𝑃
2, is obtained by taking the grand sum of the following element-wise

matrix manipulations:  

𝑃𝑠𝑐𝑒𝑙𝑙 = (𝑁𝑖𝑛𝑡 − 𝐸)2 ⊘ 𝐸

= ([

44 46 5 6
45 43 6 5
3 2 46 47
3 6 47 46

] − [

44.945 44.945 5.555 5.555
44.055 44.055 5.445 5.445
3.43 3.43 45.57 45.57
3.57 3.57 47.43 47.53

])

2

⊘ [

44.945 44.945 5.555 5.555
44.055 44.055 5.445 5.445
3.43 3.43 45.57 45.57
3.57 3.57 47.43 47.53

] 

= [

0.0198693 0.0247642 0.05545 0.0389841
0.0202707 0.0252644 0.0565702 0.0363682
0.0539067 0.5961808 0.0040575 0.0448738
0.0910084 1.6540336 0.0038984 0.0431141

] 

The grand sum of this matrix results in 𝑋𝑃
2 = 2.7652784. The Pearson test-statistic

has the same number of degrees of freedom as the LRT, again demonstrated 

empirically.  Consistent with the LRT results, the Pearson test’s p-value provides 
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evidence of the lumping scheme being a good fit to the data (𝑝 = 0.986421 ≈

0.9864). 

 

4.2.3 The W-score  

Let the cell count, 𝐶𝑐 be a 𝐽𝑛, or the conventional 𝑛 × 𝑛 matrix of 1𝑠.  Then the 

number of cells from the observed matrix contributing to each lump is found by  

𝐶𝑙 =  𝐾 ⋅ 𝐶𝑐 ⋅ 𝐾𝑇  

Then the mean number of cells per lump, 𝑁𝑛𝑐𝑒𝑙𝑙 , is found by  

𝑁𝑛𝑐𝑒𝑙𝑙 = 𝐾𝑇 ⋅ 𝐶𝑙 ⋅ 𝐾 

The mean cell transition probability per state (for the unlumped matrix ) is then 

found as 

𝑀𝑝𝑟𝑜𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑁𝑝𝑟 ⊘ 𝑁𝑛𝑐𝑒𝑙𝑙  

The mean cell probability for the lumped matrix is found as follows 

𝑃𝑙𝑏𝑎𝑟 = 𝐾 ⋅ 𝑀𝑝𝑟𝑜𝑏𝑠𝑡𝑎𝑡𝑒 ⋅ 𝐾𝑇 

For computational purposes, we shall create an 𝑛 × 𝑛 matrix of the mean lumped 

transition probabilities  

𝑃𝑙𝑏𝑎𝑟,𝑟𝑒𝑝𝑒𝑎𝑡 = 𝐾𝑇 ⋅ 𝑃𝑙𝑏𝑎𝑟 ⋅ 𝐾   

The difference between the mean unlumped transition probabilities and the mean 

lumped transition probabilities are then obtained as  

𝑊𝑑 = 𝑁𝑝𝑟 − 𝑃𝑙𝑏𝑎𝑟,𝑟𝑒𝑝𝑒𝑎𝑡   
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After the square of the differences are obtained (as below), the grand sum of this 

matrix of squared differences yields the 𝑊-statistic. 

𝑊 = (𝑊𝑑)2

Then, continuing our example, we observe the following.  The number of cells from 

the observed matrix contributing to each lump 

𝐶𝑙 =  𝐾 ⋅ 𝐶𝑒𝑙𝑙𝑐𝑜𝑢𝑛𝑡 ⋅ 𝐾𝑇

= [
1 1 0 0
0 0 1 1

] ⋅ [

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

] ⋅ [

1 0
1 0
0 1
0 1

] 

= [
4 4
4 4

] 

The mean number of cells per lump, 𝑁𝑛𝑐𝑒𝑙𝑙 , is 

𝑁𝑛𝑐𝑒𝑙𝑙 = 𝐾𝑇 ⋅ 𝐶𝑙 ⋅ 𝐾

= [

1 0
1 0
0 1
0 1

] ⋅ [
4 4
4 4

] ⋅ [
1 1 0 0
0 0 1 1

] 

= [

4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

] 

The mean cell transition probability per state (for the unlumped matrix ) is then 

𝑀𝑝𝑟𝑜𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑁𝑝𝑟 ⊘ 𝑁𝑛𝑐𝑒𝑙𝑙  

= [

0.4356436 0.4554455 0.049505 0.0594059
0.4545455 0.4343434 0.0606061 0.0505051
0.0306122 0.0204082 0.4693878 0.4795918
0.0294118 0.0588235 0.4607843 0.4509804

] ⊘ [

4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

] 

= [

0.1089109 0.1138614 0.0123762 0.0148515
0.1136364 0.1085859 0.0151515 0.0126263
0.0076531 0.005102 0.1173469 0.119898
0.0073529 0.0147059 0.1151961 0.1127451

] 
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The mean cell probability for the lumped matrix is then 

𝑃𝑙𝑏𝑎𝑟 = 𝐾 ⋅ 𝑀𝑝𝑟𝑜𝑏𝑠𝑡𝑎𝑡𝑒 ⋅ 𝐾𝑇

= [
1 1 0 0
0 0 1 1

] ⋅ [

0.1089109 0.1138614 0.0123762 0.0148515
0.1136364 0.1085859 0.0151515 0.0126263
0.0076531 0.005102 0.1173469 0.119898
0.0073529 0.0147059 0.1151961 0.1127451

]

⋅ [

1 0
1 0
0 1
0 1

] 

= [
0.4449945 0.0550055
0.0348139 0.4651861

] 

The 𝑛 × 𝑛 matrix of the mean lumped transition probabilities is then 

𝑃𝑙𝑏𝑎𝑟,𝑟𝑒𝑝𝑒𝑎𝑡 = 𝐾𝑇 ⋅ 𝑃𝑙𝑏𝑎𝑟 ⋅ 𝐾

= [

1 0
1 0
0 1
0 1

] ⋅ [
0.4449945 0.0550055
0.0348139 0.4651861

] ⋅ [
1 1 0 0
0 0 1 1

] 

= [

0.4449945 0.4449945 0.0550055 0.0550055
0.4449945 0.4449945 0.0550055 0.0550055
0.0348139 0.0348139 0.4651861 0.4651861
0.0348139 0.0348139 0.4651861 0.4651861

] 
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The difference between the mean unlumped transition probabilities and the mean 

lumped transition probabilities are then 

𝑊𝑑 = 𝑁𝑝𝑟 − 𝑃𝑙𝑏𝑎𝑟,𝑟𝑒𝑝𝑒𝑎𝑡  

= [

0.4356 0.4554 0.0495 0.0594
0.4545 0.4343 0.0606 0.0505
0.0306 0.0204 0.4694 0.4796
0.0294 0.0588 0.4608 0.4510

]

− [

0.4449945 0.4449945 0.0550055 0.0550055
0.4449945 0.4449945 0.0550055 0.0550055
0.0348139 0.0348139 0.4651861 0.4651861
0.0348139 0.0348139 0.4651861 0.4651861

] 

= [

−0.009351 0.010451 −0.005501 0.0044004
0.009551 −0.010651 0.0056006 −0.0045

−0.004202 −0.014406 0.0042017 0.0144058
−0.005402 0.0240096 −0.004402 −0.014206

] 

The differences are obtained and the grand sum of this matrix of squared 

differences yields the 𝑊-score. 

𝑊 = (𝑊𝑑)2  = [

0.0000874 0.0001092 0.0000303 0.0000194
0.0000912 0.0001134 0.0000314 0.0000203
0.0000177 0.0002075 0.0000177 0.0002075
0.0000292 0.0005765 0.0000194 0.0002018

] 

The resulting grand sum is 𝑊𝑠 = 0.0004449 or 4.45 × 10−4.
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C. Results

1. Summary statistics

In general, the LRT had higher values for mean, median and variance compared to 

the Pearson, within the same sample size.  As the sample size increased, the LRT and 

Pearson statistics have similar summary statistics.  This finding is consistent with 

known behavior of the LRT and Pearson statistics when evaluating categorical data. 

We used Chain 1 to investigate the half-integer correction and distributional 

properties; only the first two rows have changed from the original actual transition 

matrix (Figure 1).  Note that under Chain 1 the null hypothesis is true, therefore the 

lumped matrix should provide a better fit to the data compared to the unlumped 

matrix.  

2. Distribution of test statistics and degrees of freedom

Using Chain 1, we investigated the distributional properties of the proposed test 

statistics.  For all sample sizes and test statistics, the respective histograms suggest 

that the statistics follow an asymptotic Chi-square distribution with 10 degrees of 

freedom (DF).  However, this is more apparent with the large sample size of 

N=5,000.   

Then the DF can be found by 

𝐷𝐹 = ((𝑛 × 𝑛) − 𝑛) − ((𝑚 × 𝑚) − 𝑚) 

≡ (𝑛2 − 𝑛) − (𝑚2 − 𝑚) 

≡ 𝑛(𝑛 − 1) − 𝑚(𝑚 − 1) 
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Per our example, we let 𝑚 = 2 and 𝑛 = 4; then the DF can be found as: 

𝐷𝐹 = 𝑛(𝑛 − 1) − 𝑚(𝑚 − 1) 

= 4(4 − 1) − 2(2 − 1) 

= 4(3) − 2(1) 

= 12 − 2 

= 10 

The test statistics’ degrees of freedom were depicted using only those simulated 

matrices (iterations) which were lumpable according to the first scheme (Chain 1); 

this is because it is only on these matrices that we can appropriately apply the test. 

While other degrees of freedom were investigated (i.e., 8, 9 and 10), the 

demonstrated degrees of freedom (degrees of freedom=10) appear to be the most 

appropriate, based on two key pieces of support.  First, the overlay of the curve for a 

Chi-square distribution with 10 degrees of freedom, and second, the performance of 

the Kolmogorov-Smirnov and Anderson-Darling tests (Figures 9-12, Table 6).  For 

the two smaller sample sizes (50, 200), the KS test does not support the 

appropriateness Chi-square distribution with DF=10; however, results for the larger 

sample size (5000) suggest that this distribution is appropriate to the data and so 

the distribution of the test statistics are asymptotically Chi-square, with DF=10.  It is 

possible that these results are an artifact of the known limitations of these tests in 

that they are sensitive to outliers and sample size. 
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Figure 9: Histograms of the Likelihood Ratio and Pearson test statistics; N=50 for 
927 iterations   
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Figure 10: Histograms of the Likelihood Ratio and Pearson test statistics; N=200 

for 970 iterations  
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Figure 11: Histograms of the Likelihood Ratio and Pearson test statistics; N=1000 

for 942 iterations  
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Figure 12: Histograms of the Likelihood Ratio and Pearson test statistics; N=5000 

for 949 iterations  
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D. Discussion 

1. Goodness of Fit  

These tests were developed under the notion of performing a two-stage process: 

first, determining if the chain was lumpable according to a given scheme; and 

second, if it is lumpable, determining if lumping is the best fit to the data.  In that 

sense, the proposed GOF tests are summarized based only on those lumpable chains, 

reflecting the appropriateness of performing the GOF.   

Both GOF statistics are structured to have the same hypotheses: the null hypothesis 

is that the lumped matrix (reduced) is a better fit to the data, versus the alternative 

that the unlumped (observed or saturated) matrix is a better fit to the data.  

Therefore, a large p-value is desirable in order to demonstrate that the lumped 

(reduced) matrix is the better fitting lumping scheme.  The summary statistics and 

comparison figures (presented and discussed in Section C.3) indicate the similar 

performance of the two GOF statistics.  As anticipated, values become more 

consistent between the statistics with an increase in sample size. 

 

2. W-score  

The W-score describes a property of the true transition matrix.  As mentioned 

earlier, it was developed to assist in the examination of different chains for the 

investigation of the proposed test statistics.  Its purpose was to demonstrate that 

the starting 4 chains had varying levels of lumpability (Tables 5, 6).  It was 
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summarized for all matrices simulated from each of the 4 chains, as it is intended for 

anticipating the results of the Test of Lumpability (Stage 1).  Importantly, it was 

difficult to predict the value of W, itself, because moving a zero-cell, very small 

probability, or even changing a probability slightly changed W in unpredictable 

ways. 

Table 5: Probabilities used for simulation 

Chain “True” transition probabilities, 𝐁𝟎 W- score Notes 

1* [

0.48 0.48 0.02 0.02
0.48 0.48 0.02 0.02

0.03125 0.03125 0.46875 0.46875
0.03125 0.03125 0.46875 0.46875

] 
0 Designed to be perfectly 

lumpable 

2 [

0.44 0.46 0.04 0.06
0.4475 0.4275 0.0625 0.0625
0.03 0.02 0.47 0.48

0.03125 0.03125 0.46875 0.46875

] 2.7 × 10−4 

Rows 1-3 had changes in 
entries; row 4 remained 
the same 

3 [

0.44 0.46 0.04 0.06
0.4475 0.4275 0.0625 0.0625
0.029 0.021 0.46 0.49
0.027 0.0555 0.47 0.4475

] 6.4 × 10−4 

4 [

0.48 0.48 0.02 0.02
0.4375 0.4375 0.0625 0.0625
0.03125 0.03125 0.46875 0.46875
0.03125 0.03125 0.46875 0.46875

] 9.0 × 10−4 
Entries in Row 2 are 
different from that in 
chain 1 
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Table 6: Summary of proposed test statistics  for Chain 1 lumpable matrices, 
lumpable matrices only 

Likelihood Ratio Test 
Simulation sample size 50 200 1000 5000 

No. of iterations (lumpable matrices), N (%) 927 (92.7) 970 (97.0) 942 (94.2) 949 (94.9) 

No. of matrices with ≥1 zero-cell, N (%) 92.7 (100) 904 (93.2) 17 (1.80) 0 (0) 

No. of zero-cells†, Mean (SD) 5.76 (1.23) 2.19 (1.22) 1.12 (1.74) 0 (0) 

Summary statistics 

Mean of test statistic 8.95 10.84 9.83 9.74 

Variance of test statistic 13.16 17.27 18.12 18.36 

Median of test statistic 8.46 10.22 9.42 9.20 

Minimum of test statistic 1.14 0.45 2.61 1.65 

Maximum of test statistic 28.02 31.41 21.61 41.68 

Goodness of fit to Chi-square distribution 

DF=10; Kolmogorov-Smirnov, p <0.0001 <0.0001 0.205 0.083 

DF=10; Anderson-Darling, p <0.0001 <0.0001 0.250 0.089 

Choice of lumped matrix (p>0.05), DF=10; N (%) 912 (98.38) 912 (94.02) 903 (95.86) 919 (96.84) 

Choice of Unlumped matrix (p<0.05), DF=10; N (%) 15 (1.62) 58 (5.98) 39 (4.14) 30 (3.16) 

Pearson Test 
Simulation sample size 50 200 1000 5000 

No. of iterations (lumpable matrices), N (%) 927 (92.7) 970 (97.0) 942 (94.2) 949 (94.9) 

No. of matrices with ≥1 zero-cell, N (%) 92.7 (100) 904 (93.2) 17 (1.80) 0 (0) 

No. of zero-cells†, Mean (SD) 5.76 (1.23) 2.19 (1.22) 1.12 (1.74) 0 (0) 

Summary statistics  

Mean of test statistic 7.87 8.39 9.59 9.70 

Variance of test statistic 11.71 12.90 17.24 17.90 

Median of test statistic  7.56 7.74 9.12 9.18 

Minimum of test statistic 0.71 0.45 2.14 1.64 

Maximum of test statistic 20.30 26.86 29.75 38.18 

Goodness of fit to Chi-square distribution 

DF=10; Kolmogorov-Smirnov, p <0.0001 <0.0001 0.049 0.055 

DF=10; Anderson-Darling, p <0.0001 <0.0001 0.018 0.055 

Choice of lumped matrix (p>0.05), DF=10; N (%) 922 (99.46) 961 (99.07) 909 (96.5) 922 (97.1) 

Choice of Unlumped matrix (p<0.05), DF=10; N (%) 5 (0.54) 9 (0.93) 33 (3.50) 27 (2.85) 

†In the unlumped, observed matrix  
‡Measure of difference between observed and lumped matrices 
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3. Performance of proposed goodness of fit tests

3.1 Type I error

Type I error (chain 1) was investigated for our proposed tests for each sample size.  

The LRT has greater type I error than the Pearson test.  However, the differences are 

observed to be greater at smaller sample sizes, with results becoming more 

consistent with each other as the sample size increases (Figure 13).  For the LRT, the 

type I error hovers about the desired 0.05 level most of the time.  The Pearson test is 

more conservative, with type I error consistently smaller than 0.05 for all sample 

sizes, although it approaches that 0.05-level as the sample size increases. 

Figure 13: Type 1 error plot, Chain 1 

3.2 Power  

Power (chains 2-4) was investigated for our proposed tests, with each chain and for 

each sample size.  For all chains, the LRT has more power than the Pearson tests 
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(Figure 14).  Again, the differences are observed at smaller sample sizes, with 

results becoming more consistent with each other as the sample size increases. 

Figure 14: Power plots, chains 2-4 

Chain 2 

Chain 3 

Chain 4 
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3.3 Comparing the Chains  

Stage 1 Larger values of W indicate we are more likely to reject lumpability.  

Therefore, the further we are from a perfectly lumpable matrix (W=0), we are more 

likely to reject the Test of Lumpability for that chain and scheme combination.  

These patterns were observed in our simulated data, again noting that the chains 

are ordered by increasing value of W-score (Figure 15).  As W increases, so does the 

tendency to reject the Test of Lumpability, and this occurs with increasing sample 

size.  When comparing the chains, themselves, we found that they do differ by 𝑊 

scores, and this is particularly observed as the sample size increases for each chain.   

Chain 4, for instance, as the highest 𝑊 score and its proportion of rejecting the test 

of lumpability increases with sample size at a greater rate than Chains 2 and 3; in 

fact, the proportion of rejected tests approaches 1.0 as sample size increases.  

 

Figure 15: Stage 1, rejecting the test of lumpability* 

 

*1000 iterations per sample size  
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Stage 2 For both tests and all chains, as sample size increases, so does the 

probability of choosing the unlumped chain.  It is interesting that the chains do not 

perform consistently relative to the W-scores.  That is, for both tests, Chain 1 is most 

consistent within the chain, across sample sizes, and whose proportion of rejecting 

the null hypothesis hovers closes to 1.0 as sample size increases.  Chain 2 has the 

next smallest 𝑊- score, and is closest to Chain 1’s curve; however, the next closest 

line in the figure is from Chain 4, which has the highest 𝑊-score (Figure 16).    

Figure 16: Stage 2, Choosing unlumped after determining lumpability 

Likelihood Ratio Test 

Pearson test, half-integer corrected 
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Choosing a lumped matrix after both testing stages Choosing the lumped chain 

varies with the chain, itself.  Chain 1 fluctuates around the 5% rate of choosing the 

lumped chain as the sample size increases (Figure 17).  With increasing sample size, 

Chains 2 and 3 exhibit a pattern of choosing the lumped chain after both stages of 

testing and under both GOF tests.  Likewise, Chain 4 demonstrates a pattern of not 

choosing the lumped chain with increasing sample size.  Because the chains are 

ordered by increasing W-scores, it may seem counterintuitive that we do not 

observe the same pattern in these figures (in terms of rejection) as we do for Figure 

16. However, this is due to the fact that we have a 2-stage process and the non-

lumpable chains are not considered here because they are filtered out in Stage 1. 
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Figure 17: Two-stage process, choosing lumped after both tests 
Likelihood Ratio Test  

 

Pearson test, half-integer corrected 
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E. Summary, Discussion and Conclusion  

Summary This chapter described how we extended current lumpability 

methodology by developing a GOF test with two formulations.  In doing so, we 

estimated transition probabilities and demonstrated that our proposed test 

statistics appear to follow a Chi-square distribution whose degrees of freedom 

depend on the number of states in the original, unlumped chain and the number of 

lumps in the lumped chain.  We also developed a comparator statistic, the W-score, 

which describes the lumpability of a matrix relative to one that is perfectly 

lumpable.   

Discussion Understanding the nuanced difference between the statistical 

appropriateness of a test and the best fit to the data at hand drove our investigation 

of goodness of fit of lumpability.  Simulation methods were implemented to assess 

our proposed statistics’ distributions, degrees of freedom and performance.   

While most chains were lumpable (Stage 1 testing), there was a difference across 

the 𝑊-score.  Increasing 𝑊-scores appear more likely to fail the Test of Lumpability 

with increasing sample size. 

Stage 2 testing resulted in inconsistent test rejection rates, therefore making it 

difficult to draw a conclusion regarding how the chains perform under each test 

condition, by the 𝑊-score.  This suggests a limitation in the 𝑊-score to the GOF tests 

and the fact that as a single number, it can only account for so much variation 
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between the lumped and unlumped matrices.  When considering the number of cells 

that the W-score is describing, this is not an unreasonable suggestion.   

The final pair of figures (Figure 17) addresses our initial question of the worth of 

statistically-supported lumping.  Overall, lumped chains were not chosen as 

frequently in the face of increasing sample size.  The fact that there is a decreasing 

change in choosing a lumped matrix in some cases as the sample size increases 

suggests that the utility of lumping lies with smaller sample sizes.  Therefore, larger 

sample sizes probably have large enough values in each cell of the transition matrix, 

and so lumping states together causes loss of information.   

All figures comparing test performance between chains demonstrate that the LRT 

and Pearson tests perform similarly.  However, implementation of these GOF tests 

on actual study data will provide greater insight into their performance and 

limitations.  

Upon establishing the lumpability goodness of fit test, the natural extension is to 

explore its performance in real data.  In order to observe how the data perform a 

larger sample size and over a longer period of time, we shall apply the Markov 

methodology to the NARCOMS data.   Because the EDSS is the gold standard in MS 

clinical trials, we will then consider Markov methodology in the CombiRx data.   Of 

interest will be to consider if the Markov models utilize similar lumping schemes 

and/or utilize similar predictors to produce the Markov chains.  We shall also be in 

the position of evaluating how the methodology performs under differing data 

patterns, over differing periods of time. 
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IV. Applications to NARCOMS Registry Data: PDDS and Lumpability  

A. Introduction  

The overarching goal of this chapter was to investigate disability progression using 

Markovian methodology to model the PDDS and employing covariates which 

contribute to the movement between PDDS scores, utilizing data from the North 

American Research Committee on Multiple Sclerosis (NARCOMS).  Our specific goals 

were to (1) identify and implement useful lumping schemes for PDDS; (2) 

demonstrate the applicability of the Test of Lumpability for the PDDS; and (3) 

implement the 2-stage lumpability assessment process.  Investigation of the PDDS 

via Markov methodology was novel, as was the implementation of the Test of 

Lumpability.   

 

B. Methods  

1. Study Design  

Study Design NARCOMS is associated with the Consortium of Multiple Sclerosis 

Centers (CMSC); it is an active, longitudinal registry for MS participants who provide 

self-reported health information.  Participants submit enrollment information, 

followed by bi-annual update surveys (by mail or online).  Updates provide socio-
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demographic and health information.  Disability status is recorded using Patient 

Determined Disease Steps (PDDS) (Hohol et al., 1999), a validated tool used a 

surrogate for with the Expanded Disability Status Scale (EDSS) (Learmonth et al., 

2013).  The PDDS measures disability level from the perspective of the participant 

(self-report); it is on an ordinal scale from 0 (normal, no disability) to 8 (bedridden) 

(Marrie & Goldman, 2007).  Patients were dichotomized into disability levels 

according to their PDDS at enrollment.  Patients with PDDS ≤4 were considered 

Mildly Impaired (MI) (N=1545); patients with PDDS ≥ 5 were considered Highly 

Impaired (HI) (N=502).  This stratification was consistent with a recent study on 

NARCOMS data (Liu et al., 2016). 

Protocol approval and patient consent All data were de-identified and participants 

gave informed consent. This study was approved by the institutional review board at 

the University of Alabama at Birmingham, Birmingham, Alabama.  

This was a longitudinal observational study.  Primary variables considered from the 

enrollment survey included date of birth (DOB), gender (male, female), year of MS 

diagnosis, age at enrollment, age at diagnosis, disease duration at enrollment, PDDS 

score at enrollment, and PDDS at follow-up (Tables 7 and 8).  Follow-up data 

included in the analyses was PDDS only.   

Participants Participants included adult male and female MS participants registered 

with NARCOMS.  There were 7,587 participants with enrollment data and at least 

one follow-up response during the 2007-2012 observation period.  Of those, 2,047 
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(27.0%) had complete PDDS response data; the remainder were excluded (see 

Inclusion Criteria).   

Inclusion criteria Participants with baseline enrollment PDDS and biannual PDDS 

updates between 2007-2012 were included.  Only participants with PDDS responses 

for each survey time during the observation period were considered. 

Exclusion criteria Participants with any missing responses for PDDS (enrollment and 

survey updates) were excluded from analysis.   

 

2. Preliminary Analysis  

Data were summarized using means, standard deviations (SD), frequencies (N) and 

medians.  Group comparisons were performed using Likelihood Ratio (LR) Chi-

squared, Analysis of Variance (ANOVA) or Wilcoxon test, and Fisher’s exact test, 

Binomial and Chi-square tests of proportion, as appropriate (Tables 7 and 8).   

 

3. Primary Analysis   

The primary outcome was the transition of PDDS scores, which was considered at 

all survey collection points between 2007 and 2012, and at enrollment.  Three 

samples were considered: overall and stratified by level of impairment at 

enrollment (Mildly, where PDDS ≤4 ; or Highly, where PDDS ≥ 5); the associated 

frequency transition matrices were calculated.  Three lumping schemes were 
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considered to reduce the number of states from the original 9-state chain (Figure 

18).   

Scheme 1 reflects the original scale for the Disease Steps (DS), the basis of the EDSS; 

only scores 7 and 8 are collapsed (Hohol et al., 1995; Rizzo et al., 2004).  While 

noting there is no one-to-one correspondence between EDSS and PDDS, Scheme 2 

was designed to reflect their similarity and approximate correspondence, where 

appropriate (Marrie et al., 2006; Marrie & Goldman, 2007) (Figure 18).  Scores 1 and 

2 were combined because they represent no disability, but mild symptoms; there is 

not clear correspondence with EDSS scores.  A score of 3 indicates some gait 

disability, but no requirement of assistive devices; this corresponds with an EDSS of 

4 and 4.5.  PDDS scores of 4, 5, and 6 indicate assistive devices are required for 

mobility; this corresponds with EDSS scores of 6 and 6.5.  PDDS score of 7 

corresponds with EDSS scores 7 and 7.5, and indicate a patient is wheelchair-bound.  

A PDDS score of 8 corresponds with an EDSS of 8 and indicates a patient is bed-

bound.  

Each scheme was applied to form a new, lumped chain and the Test of Lumpability 

was performed to compare the original, unlumped chain to the lumped chain.  Large 

p-values indicate that the chain is lumpable under the given scheme, so that the

Markov dependency is retained in the new, smaller chain; smaller p-values (p<0.05) 

indicate a chain is not lumpable under that scheme (Jernigan & Baran, 2003).  The 

proposed Chi-square goodness of fit tests comparing the lumped and unlumped 

chains were performed on the schemes with p≥0.05 for the test of lumpability.   
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4. Secondary Analysis

Transition probabilities were estimated for the overall sample and stratified by 

enrollment group, adjusting for covariates using a proportional odds model.  

Random effects (intercept) were included in the model, to account for the 

heterogeneous nature of the disease between participants.  The Newton-Raphson 

method was used for optimization; Compound Symmetry was used as the 

covariance structure.  Predictors included gender, race, relapse history, age of 

diagnosis, disease duration at enrollment, enrollment PDDS, and current PDDS to 

predict next PDDS.   For numeric stability and model convergence, Current PDDS 

and Enrollment PDDS were treated as numeric.  When using these lumped “current” 

PDDS scores, the mean PDDS score was used for prediction.  Specifically, for Scheme 

1 (Simple combination), all numeric values correspond one-to-one with the original 

scores, except for Scores 7 and 8, which are combined; in that case, the numeric 

value was 7.5.  For scheme 2 (EDSS Matching), the value of 0 was used for Lump A, 

1.5 was used for Lump B, 3 for Lump C, 5 for Lump D and 7.5 for Lump E. 

Statistical analyses were performed in SAS V9.4, SAS/IML v14.3 and JMP Pro V14.0 

(SAS Institute, Inc., Cary, NC) using an α=0.05 significance level. 
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Figure 18: Lumping schemes for the PDDS 

Scheme 1: Simple combination Scheme 2: EDSS matching 
States, N=9 Lumps, M=8 States, N=9 Lumps, M=5 

C. Results

1. Preliminary Analyses

Gender There were more females than males in both mobility categories, and with 

each enrollment disability group (χ2(df=1)=24.1, p<0.0001), following the general 

pattern of having more females (N=1,549) than males (N=498) overall 

(χ2(df=1)=539.6, p<0.0001; Table 7).   

Race There were more White patients than any other race (χ2(df=2)=3499.3, 

p<0.0001); the number of patients who are African American or responded “other” 

are not statistically different.  These proportions were consistent between the 

disability groups (MI: χ2(df=2)=2671.8, p<0.0001; HI: χ2(df=2)=827.9, p<0.0001).  

There was no association between race and enrollment disability group (p=0.2767; 

Table 7). 
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Marital status At enrollment, more patients were Married or Cohabitating, than 

Currently Single or Never Married (χ2(df=2)=1489.2, p<0.0001); the number of 

patients who are Currently Single or Never Married are not statistically different 

from each other.  This pattern remains true for each disability group (MI: 

χ2(df=2)=1091.2, p<0.0001; HI: χ2(df=2)=400.2, p<0.0001).  There was no 

association between enrollment marital status and disability group (p=0.1052; Table 

7). 

Age On average, patients with MI were younger than HI patients (p<0.0001) 

although the age of diagnosis is not statistically different between the disability 

groups (p=0.1221).  At enrollment, patients in the HI group have approximately 5-

years’ longer disease duration, on average, compared to those patients with MI 

(p<0.0001).  At the start of the observation period, 2007, patients with MI have 

shorter disease duration compared those with HI (F(1, 2045)=145.8 , p<0.0001; 

Tables 7 and 8). 

Relapse history More participants have reported experiencing a previous relapse 

(versus not experiencing relapse) for both disability groups, although a small 

percentage either did not respond to this question or were unsure.  There is some 

evidence of an association between relapse experience and enrolment disability 

group (χ2(df=2)=14.4, p=0.0007).  Overall, more patients experienced relapse at 

enrollment than otherwise (χ2(df=2)=2326.6, p<0.0001; Table 8).   

Disability There are more patients in the MI disability group than the HI group, 

indicating that more patients enroll with higher disability than lower disability, 
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according to this grouping strategy (χ2(N=502, df=1)=531.4, p<0.001).  Within each 

disability group, the proportions between the PDDS scores vary.  For the MI group, 

PDDS=2 appears with the lowest frequency; the remaining scores (0, 1, 3, 4) are 

similar in proportion (χ2(N=1545, df=4)=113.0, p<0.0001).  For the HI group, the 

proportion of patients in each score decreases as the score increases (χ2(df=2)=74.9, 

p<0.0001; Table 8). 



 

Table 7: Summary of cohort demographic characteristics at enrollment (N=2,047) 
Disability level at enrollment 

Demographics 
Overall 

2,047 
Mildly Impaired† 

1545 (75.5) 
Highly Impaired‡ 

502 (24.5) p-value*

    Gender, N (%) Female 1549 (75.7) 1211 (78.4) 338 (67.3) <0.00011 

Male 498 (24.3) 334 (21.6) 164 (32.7) 

 Race, N (%) 

 (23 missing: 18 for MI, 

 5 for HI) 

African American 27 (1.3) 17 (1.1) 10 (2.0) 0.27672 

White 1929 (95.3) 1491 (95.7) 468 (94.2) 

Other 68 (3.4) 49 (3.2) 19 (3.8) 

 Marital Status, N (%) Currently singleA 293 (14.3) 217 (14.1) 76 (15.1) 0.10523 

Married/cohabitating 1505 (73.5) 1127 (72.9) 378 (75.3) 

Never marriedB 249 (12.2) 201 (13.0) 48 (9.6) 

    Age (years) Mean(SDC) 47.6 (9.2) 46.4 (9.0) 51.3 (8.8) <0.00014 

Median (Min, Max) 48.0 (20.0, 76.0) 47.0 (20.0, 76.0) 52.0 (22.0, 75.0) NA 

    Age at diagnosis (years) Mean(SDC) 37.5 (9.4) 37.6 (9.3) 37.3 (9.7) 0.52315 

Median (Min, Max) 38.0 (13.0, 65.0) 38.0 (13.0, 64.0) 38.0 (15.0, 65.0) NA 

†Mildly impaired if PDDS≤4  ‡Highly impaired if PDDS≥5  
*Tests performed on between disability levels on means and proportions
ACurrently single divorced, widowed, separated) BNever married, currently single CStandard deviation
1LR χ2 (1, 2047)=24.1 2LR χ2 (2, 2024)=2.6 3LR χ2 (2, 2047)=4.5 4 F(1, 2045)=113.9 5F(1, 2045)=0.4

8
9

 



 

Table 8: Summary of cohort clinical characteristics at enrollment (N=2,047) 
Disability level at enrollment 

Clinical characteristics 
Overall 

2,047 
Mildly Impaired† 

1545 (75.5) 
Highly Impaired‡ 

502 (24.5) p-value*

  Disease Duration (years) 
Mean(SD1) 9.1 (8.3) 7.8 (7.7) 13.0 (8.9) <0.00012 

Median (Min, Max) 7.0 (0, 50.0) 5.0 (0, 50.0) 12.0 (0, 47.0) NA 

  Disease Duration in 2007 (years) 
Mean(SD1) 15.8 (8.9) 14.5 (8.3) 19.8 (9.5) <0.00013 

Median (Min, Max) 14.0 (1.0, 60.0) 12.0 (1.0, 60.0) 19.0 (1.0, 54.0) NA 

  Relapse history, N (%) 

  (14 missing, 7 per disability 

    level) 

Yes 1701 (83.7) 1314 (85.4) 387 (78.2) 

0.00074 No 220 (10.8) 145 (9.4) 75 (15.1) 

Unsure 112 (5.5) 79 (5.1) 33 (6.7) 

  PDDS (Numeric) 
Mean(SD1) 2.9 (2.1) 2.0 (1.5) 5.7 (0.8) 

NA 
Median (Min, Max) 3.0 (0, 7.0) 2.0 (0, 4.0) 5.0 (5.0, 7.0) 

  PDDS, N (%) 

0=Normal 395 (19.3) 395 (25.6) NA 

NA 

1=Mild disability 291 (14.2) 291 (18.8) NA 

2=Moderate disability 156 (7.6) 156 (10.1) NA 

3=Gait disability 361 (17.6) 361 (23.4) NA 

4=Early cane 342 (16.7) 342 (22.1) NA 

5=Late cane 257 (12.5) NA 257 (51.2) 

6=Bilateral support 138 (6.7) NA 138 (27.5) 

7=Wheelchair 107 (5.2) NA 107 (21.3) 

8=Bedridden 0 (0) NA 0 (0) 

†Mildly impaired if PDDS≤4  ‡Highly impaired if PDDS≥5  
*Tests performed on between disability levels on means and proportions
1Standard deviation
2F(1, 2045)=161.2 3F(1, 2045)=145.8  4LR χ2 (2, 2047)=14.4

9
0
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2. Primary Analyses

Without accounting for PDDS score at enrollment or other covariates, the frequency 

transition matrix depicts relative consistency of the PDDS score over time; this is 

true whether the chain is lumped or unlumped in the overall sample.  That is, most 

values are concentrated about the diagonal of the matrix (Tables 9, 10, 11).  The 

2,047 patients account for a total of 22,517 transitions across 10 time points.  The 

chain for the overall sample was not lumpable under either lumping scheme (all 

p<0.05; Table 18).  Examination of the state diagram of the overall depicts 

transitions between PDDS scores and provides a visual description of the complex, 

non-linear nature of the outcome (Figure 19). 

Mildly Impaired at Enrollment In this group, 1,545 patients account for a total of 

16,995 transitions across 10 time points (Table 12).  Similar to the transition matrix 

for the overall sample, transitions are concentrated about the diagonal.  The chain 

was not lumpable under either of the lumping schemes (all p<0.05; Tables 12-14, 

18).  Therefore, neither GOF test was performed for this subset. 

Highly Impaired at Enrollment In this group, 502 patients account for a total of 

5,522 transitions across 10 time points (Table 14).  Consistent with the overall 

sample and the MI transition matrices, transitions are concentrated about the 

diagonal.  The unlumped chain for the HI group was lumpable according to Scheme 

1 only; it was not lumpable according to the other proposed scheme (Tables 14-17; 

18; Figure 20).    
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The unlumped chain for the HI subset was lumpable only according to Scheme 1 

(Simple Combination) (Figure 20).  According to the Chi-square goodness of fit test, 

this lumping scheme produced a chain that was not a better fit to the data, 

compared to the unlumped chain.  The conclusions between the LRT (𝜒2(𝑑𝑓 =

16) = 3295.44, 𝑝 < 0.0001) and Pearson formulations (𝜒2(𝑑𝑓 = 16) =

3925.85, 𝑝 < 0.0001) of the test are consistent. 

Table 9 : Unadjusted, overall transition matrices (N=2,047) 

Frequencies 
0 1 2 3 4 5 6 7 8 

0
1
2
3
4
5
6
7
8 [

2362 567 72 32 7 4 2 1 0
529 1963 353 302 41 7 5 2 0
58 354 693 291 65 6 6 1 0
27 276 283 1478 349 26 12 1 0
7 37 56 269 2506 515 52 8 2
4 1 10 19 392 1973 352 26 1
2 4 5 13 32 238 2175 284 6
1 2 2 2 3 18 192 2882 49
0 0 0 0 2 1 3 37 159]

3047
3202
1474
2452
3452
2778
2759
3151
202

 

Probabilities 
0  1 2 3 4 5 6  7  8 

0
1
2
3
4
5
6
7
8 [

0.782 0.19 0.02 0.01 0.002 0.001 0.001 0.0003 0
0.173 0.61 0.11 0.09 0.01 0.002 0.002 0.001 0
0.044 0.24 0.47 0.20 0.04 0.004 0.004 0.001 0
0.015 0.11 0.12 0.60 0.14 0.01 0.005 0.0004 0
0.0026 0.01 0.02 0.08 0.73 0.15 0.02 0.002 0.001
0.0017 0.0004 0.004 0.01 0.14 0.71 0.13 0.01 0.0004
0.0018 0.001 0.002 0.005 0.01 0.09 0.79 0.10 0.002
0.0003 0.001 0.001 0.001 0.001 0.01 0.06 0.91 0.02

0 0 0 0 0.01 0.01 0.01 0.18 0.79 ]
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Table 10: Scheme 1: Unadjusted lumped transition matrix, overall (N=2,047; 9 
states to 8 lumps) 

Frequencies 
A B C D E  F G H 

𝐴
𝐵
𝐶
𝐷
𝐸
𝐹
𝐺
𝐻 [

2362 567 72 32 7 4 2 1
529 1963 353 302 41 7 5 2
58 354 693 291 65 6 6 1
27 276 283 1478 349 26 12 1
7 37 56 269 2506 515 52 10
4 1 10 19 392 1973 352 27
2 4 5 13 32 238 2157 290
1 2 2 2 5 19 195 3127]

3047
3202
1474
2452
3452
2778
2759
3353

Probabilities 
A B C D E F G H 

𝐴
𝐵
𝐶
𝐷
𝐸
𝐹
𝐺
𝐻 [

0.78 0.19 0.02 0.01 0.002 0.001 0.001 0.0003
0.17 0.61 0.11 0.09 0.01 0.002 0.002 0.001
0.04 0.24 0.47 0.20 0.04 0.004 0.004 0.001
0.01 0.11 0.12 0.60 0.14 0.01 0.005 0.0004
0.002 0.01 0.02 0.08 0.73 0.15 0.02 0.003
0.001 0.0004 0.004 0.01 0.14 0.71 0.13 0.01
0.001 0.001 0.002 0.005 0.01 0.09 0.79 0.11
0.0003 0.001 0.001 0.001 0.001 0.01 0.06 0.93 ]

Table 11: Scheme 2: Unadjusted lumped transition matrix, overall (N=2,047; 9 
states to 5 lumps) 

Frequencies A B C D   E 
𝐴
𝐵
𝐶
𝐷
𝐸 [

2362 639 32 13 1
587 3363 593 130 3
27 559 1478 387 1
13 113 301 8235 327
1 4 2 219 3127]

3047
4676
2452
8989
3353

 

Probabilities A B C D E 
𝐴
𝐵
𝐶
𝐷
𝐸 [

0.78 0.21 0.01 0.004 0.0003
0.13 0.72 0.13 0.03 0.0006
0.01 0.23 0.60 0.16 0.0004
0.001 0.01 0.03 0.92 0.04
0.0003 0.001 0.001 0.07 0.93 ]



 

Figure 19: State transition diagram for the overall sample, unlumped chain 

𝑝𝑖,𝑗 ≥ 0.10 Arrows/connecting lines above the states represent transition to higher states; 
those below represent transitions to lower states or remaining in the same state. 
Probabilities approximately 0 are not depicted. 

0.10 < 𝑝𝑖,𝑗 < 0.25 

0.05 < 𝑝𝑖,𝑗 ≤ 0.10 

𝑝𝑖,𝑗 ≤ 0.  05; values not shown 

9
4
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Table 12: Unadjusted transition matrices, Mild Impairment (N=1,545 for 16,995 
transitions) 

Frequencies 0 1 2 3 4 5 6 7 8 
0
1
2
3
4
5
6
7
8 [

2261 542 71 30 7 3 2 0 0
505 1910 340 299 40 6 3 1 0
56 342 665 284 57 2 3 1 0
26 271 274 1461 333 23 11 0 0
6 36 49 253 2319 440 42 7 2
3 1 7 16 327 1373 247 16 1
1 3 2 9 20 162 1024 110 4
0 0 1 2 2 11 60 550 18
0 0 0 0 2 1 2 16 21]

2916
3104
1410
2399
3154
1991
1335
644
42

 

Probabilities 0 1 2 3 4 5 6 7 8 
0
1
2
3
4
5
6
7
8 [

0.78 0.19 0.02 0.01 0.002 0.001 0.001 0 0
0.16 0.62 0.11 0.10 0.01 0.002 0.001 0.0003 0
0.04 0.24 0.47 0.20 0.04 0.001 0.002 0.001 0
0.01 0.11 0.11 0.61 0.14 0.01 0.005 0 0
0.002 0.01 0.02 0.08 0.74 0.014 0.01 0.002 0.001
0.002 0.001 0.004 0.01 0.16 0.69 0.12 0.01 0.001
0.001 0.002 0.001 0.01 0.01 0.12 0.77 0.08 0.003

0 0 0.002 0.003 0.003 0.02 0.09 0.85 0.03
0 0 0 0 0.05 0.02 0.05 0.38 0.50 ]

Table 13: Scheme 1: Unadjusted, lumped transition matrix, Mild Impairment 
(N=1,545; 9 states to 8 lumps) 

Frequencies A B C D E F G H 
𝐴
𝐵
𝐶
𝐷
𝐸
𝐹
𝐺
𝐻 [

2261 542 71 30 7 3 2 0
505 1910 340 299 40 6 3 1
56 342 665 284 57 2 3 1
26 271 274 1461 333 23 11 0
6 36 49 253 2319 440 42 9
3 1 7 16 327 1373 247 17
1 3 2 9 20 162 1024 114
0 0 1 2 4 12 62 605]

2916
3104
1410
2399
3154
1991
1335
686

Probabilities A B C D E F G    H 
𝐴
𝐵
𝐶
𝐷
𝐸
𝐹
𝐺
𝐻 [

0.78 0.19 0.02 0.01 0.002 0.001 0.001 0
0.16 0.62 0.11 0.10 0.01 0.002 0.001 0.0003
0.04 0.24 0.47 0.20 0.04 0.001 0.002 0.001
0.01 0.11 0.11 0.61 0.14 0.01 0.005 0
0.002 0.01 0.02 0.08 0.74 0.14 0.01 0.003
0.002 0.001 0.004 0.01 0.16 0.69 0.12 0.01
0.001 0.002 0.001 0.01 0.01 0.12 0.77 0.09

0 0 0.001 0.003 0.01 0.02 0.09 0.88 ]
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Table 14: Scheme 2: Unadjusted, lumped transition matrix, Mild Impairment 
(N=1,545; 9 states to 5 lumps) 

Frequencies A B C D E 
𝐴
𝐵
𝐶
𝐷
𝐸 [

2261 613 30 12 0
561 3257 583 111 2
26 545 1467 367 0
10 98 278 5954 140
0 1 2 78 605]

2916
4514
2399
6480
686

 

Probabilities A B  C D E 
𝐴
𝐵
𝐶
𝐷
𝐸 [

0.78 0.21 0.01 0.004 0
0.12 0.72 0.13 0.02 0.0004
0.01 0.23 0.61 0.15 0
0.002 0.02 0.04 0.92 0.02

0 0.001 0.003 0.11 0.88 ]

Table 15: Unadjusted transition matrices, High Impairment (N=502 for 5,522 
transitions) 

Frequencies 0 1  2 3   4 5 6  7    8 
0
1
2
3
4
5
6
7
8 [

101 25 1 2 0 1 0 1 0
24 53 13 3 1 1 2 1 0
2 12 28 7 8 4 3 0 0
1 5 9 17 16 3 1 1 0
1 1 7 16 187 75 10 1 0
1 0 3 3 65 600 105 10 0
1 1 3 4 12 76 1151 174 2
1 2 1 0 1 7 132 2332 31
0 0 0 0 0 0 1 21 138]

131
98
64
53
298
787
1424
2507
160

Probabilities 0 1 2 3 4 5 6 7 8 
0
1
2
3
4
5
6
7
8 [

0.77 0.19 0.01 0.02 0 0.01 0 0.01 0
0.24 0.54 0.13 0.03 0.01 0.01 0.02 0.01 0
0.03 0.19 0.44 0.11 0.13 0.06 0.05 0 0
0.02 0.09 0.17 0.32 0.30 0.06 0.02 0.02 0
0.003 0.003 0.02 0.05 0.63 0.25 0.03 0.003 0
0.001 0 0.004 0.004 0.08 0.76 0.13 0.01 0
0.001 0.001 0.002 0.003 0.01 0.05 0.81 0.12 0.001
0.0004 0.001 0.0004 0 0.0004 0.003 0.05 0.93 0.01

0 0 0 0 0 0 0.01 0.13 0.86 ]
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Table 16 : Scheme 1:  Unadjusted, lumped transition matrix, High Impairment 
(N=502; 9 states to 8 lumps) 

Frequencies 
A B C D E F  G H 

𝐴
𝐵
𝐶
𝐷
𝐸
𝐹
𝐺
𝐻 [

101 25 1 2 0 1 0 1
24 53 13 3 1 1 2 1
2 12 28 7 8 4 3 0
1 5 9 17 16 3 1 1
1 1 7 16 187 75 10 1
1 0 3 3 65 600 105 10
1 1 3 4 12 76 1151 176
1 2 1 0 1 7 133 2522]

131
98
64
53
298
787
1424
2667

Probabilities 
A B C D E F G H 

𝐴
𝐵
𝐶
𝐷
𝐸
𝐹
𝐺
𝐻 [

0.77 0.19 0.01 0.02 0 0.01 0 0.01
0.24 0.54 0.13 0.03 0.01 0.01 0.02 0.01
0.03 0.19 0.44 0.11 0.13 0.06 0.05 0
0.02 0.09 0.17 0.32 0.30 0.06 0.02 0.02
0.003 0.003 0.02 0.05 0.63 0.25 0.03 0.003
0.001 0 0.004 0.004 0.08 0.76 0.13 0.01
0.001 0.001 0.002 0.003 0.01 0.05 0.81 0.12
0.0004 0.001 0.0004 0 0.0004 0.003 0.05 0.95 ]



 

Figure 20: State transition diagram for lumped chain according to Scheme 1, High Impairment 

𝑝𝑖,𝑗 ≥ 0.10 Arrows/connecting lines above the states represent transition to higher 
states; those below represent transitions to lower states or remaining in the 
same state. Probabilities approximately 0 are not depicted. 

0.10 < 𝑝𝑖,𝑗 < 0.25 

0.05 < 𝑝𝑖,𝑗 ≤ 0.10 

𝑝𝑖,𝑗 ≤ 0.  05; values not shown 

9
8
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Table 18: Summary of results for complete case and stratified by enrollment 
disability, unadjusted probabilities   

Sample Scheme States Lumps 𝝌𝟐
† DF‡ p-value

Overall 1 9 8 17.92 7 0.0123 
(N=2,047) 2 9 5 1223.83 16 <0.0001 

Mildly Impaired 1 9 8 14.60 5 0.0122 
(N=1,545) 2 9 5 819.66 15 <0.0001 

Highly Impaired 1 9 8 7.68 6 0.2628 
(N=502) 2 9 5 248.24 15 <0.0001 

†Chi-square test of lumpability test statistic 
‡Degrees of Freedom 

3. Secondary Analyses

Overall sample For the overall, unlumped sample, only current PDDS and 

enrollment PDDS and race are associated with the transitions (p<0.05); no other 

predictors were associated with the transitions (Table 19).  Both PDDS predictors 

Table 17: Scheme 2 : Unadjusted, lumped transition matrix, High Impairment 
(N=502; 9 states to 5 lumps) 

Frequencies A B C  D    E 
𝐴
𝐵
𝐶
𝐷
𝐸 [

101 26 2 1 1
26 106 10 19 1
1 14 17 20 1
3 15 23 2281 187
1 3 0 141 2522]

131
162
53

2509
2667

Probabilities A B C D E 
𝐴
𝐵
𝐶
𝐷
𝐸 [

0.77 0.20 0.02 0.01 0.01
0.16 0.65 0.06 0.12 0.01
0.02 0.26 0.32 0.38 0.02
0.001 0.01 0.01 0.91 0.07
0.0004 0.001 0 0.05 0.95]
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has negative parameter estimates, therefore indicating a cumulative probability of 

higher scores (increased disability).  For both Scheme 1 and Scheme 2, enrollment 

PDDS, current PDDS and race were associated with the transitions (p<0.05); no 

other predictors were associated with the transitions (Table 19).  The parameter 

estimates for both schemes are consistent with the overall unlumped model: the 

parameter estimates are negative and therefore indicate a cumulative probability of 

higher PDDS scores. 

Table 19:  Summary of proportional odds models, overall sample†  

Lumping scheme Predictor Estimate (SE‡) p-value*

None Current PPDS (lumped) -2.51 (0.05) <0.0001 
Enrollment PDDS  -0.23 (0.01) <0.0001 
Gender (Female) 0.10 (0.03) 0.0017 
Race (African American) 
Race (Other) 

0.27 (0.11)
0.10 (0.07)

0.0219 

Age of MS Diagnosis  0.002 (0.001) 0.1123 
Relapse (No) 
Relapse (Unsure) 

-0.06 (0.05)
-0.09 (0.07)

0.2617 

Scheme 1 Current PPDS (lumped) -2.40 (0.05) <0.0001 
Enrollment PDDS  -0.21 (0.02) <0.0001 
Gender (Female) 0.09 (0.03) 0.0074 
Race (African American) 
Race (Other) 

0.21 (0.13)
0.08 (0.08)

0.1613 

Age of MS Diagnosis  0.001 (0.002) 0.4851 
Relapse (No) 
Relapse (Unsure) 

-0.05 (0.06)
-0.07 (0.07)

0.4540 

Scheme 2 Current PPDS (lumped) -1.08 (0.05) <0.0001 
Enrollment PDDS  -1.58 (0.07) <0.0001 
Gender (Female) 0.51 (0.15) 0.0006 
Race (African American) 
Race (Other) 

0.77 (0.54)
0.48 (0.37)

0.1662 

Age of MS Diagnosis  0.01 (0.01) 0.1555 
Relapse (No) 
Relapse (Unsure) 

-0.11 (0.23)
-0.31 (0.33)

0.5923 

†  Random effects (random intercept) model 
‡Standard Error 
*Type III Test of Fixed Effects
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Stratified by enrollment disability: Mildly Impaired  The proportional odds 

model with random intercepts was fit for the unlumped MI group (Table 20).  When 

fitting the random intercept proportional odds models to the lumped MI group, we 

found estimation of the model parameters to be numerically unstable and the 

models would not converge.  Thus the stratified samples with lumping were 

modeled using proportional odds models without random intercepts (fixed effects). 

In all cases current and enrollment PDDS were statistically associated with 

transitions, such that higher predictive PDDS scores are associated with an 

increased probability of higher “next” PDDS scores.  Gender was only associated 

with the transitions when implementing Scheme 2.  Race, relapse history and age of 

diagnosis were not significantly associated with score transitions in any of the 

stratified models (all p>0.05). 

Stratified by enrollment disability: Highly Impaired  The proportional odds 

model with random intercepts was fit for the unlumped HI group (Table 21).  When 

fitting the random intercept proportional odds models to the lumped HI group, we 

found estimation of the model parameters to be numerically unstable and the 

models would not converge.  Thus the stratified samples with lumping were 

modeled using proportional odds models without random intercepts (fixed effects).  

In all cases current and enrollment PDDS were statistically associated with 

transitions, such that higher predictive PDDS scores are associated with an 

increased probability of higher “next” PDDS scores.  Race was only associated with 

the transitions in the unlumped model.  Gender was only associated with transitions 

in the unlumped model and under Scheme 2; therefore, being female is associated 
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with having lower PDDS scores.  Relapse history and age of diagnosis were not 

significantly associated with score transitions in any of the stratified models (all 

p>0.05).

Table 20:  Summary of proportional odds models, Mildly Impaired 

Lumping scheme Predictor Estimate (SE1) p-value2

None† Current PPDS -2.39 (0.05) <0.0001 
Enrollment PDDS  -0.19 (0.02) <0.0001 
Gender (Female) 0.06 (0.03) 0.0801 
Race (African American) 
Race (Other) 

0.15 (0.12)
-0.02 (0.08)

0.4482 

Age of MS Diagnosis  -0.001 (0.002) 0.4497 
Relapse (No) 
Relapse (Unsure) 

-0.01 (0.05)
-0.9 (0.08)

0.4596 

Scheme 1‡ Current PPDS -2.34 (0.02) <0.0001 
Enrollment PDDS -0.21 (0.01) <0.0001 
Gender (Female) 0.07 (0.04) 0.0802 
Race (African American) 
Race (Other) 

0.11 (0.15)
-0.01 (0.09)

0.7588 

Age of MS Diagnosis  0.002 (0.002) 0.3077 
Relapse (No) 
Relapse (Unsure) 

-0.02 (0.05)
-0.09 (0.07)

0.4234 

Scheme 2‡ Current PPDS (lumped) -1.92 (0.02) <0.0001 
Enrollment PDDS  -0.29 (0.02) <0.0001 
Gender (Female) 0.13 (0.05) 0.0092 
Race (African American) 
Race (Other) 

0.06 (0.21)
0.002 (0.11)

0.9602 

Age of MS Diagnosis  -0.0004 (0.002) 0.8539 
Relapse (No) 
Relapse (Unsure) 

0.30 (0.70)
-0.07 (0.09)

0.6789 

† Random effects (random intercept) model 

‡ Fixed effects model 
1Standard Error 
2 Type III Test of Fixed Effects  
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Table 21:  Summary of proportional odds models, Highly Impaired 

Lumping scheme Predictor Estimate (SE1) p-value2

None† Current PPDS -2.73 (0.23) <0.0001 
Enrollment PDDS  -1.32 (0.21) <0.0001 
Gender (Female) 0.37 (0.17) 0.0327 
Race (African American) 
Race (Other) 

0.77 (0.31)
0.77 (0.38)

0.0119 

Age of MS Diagnosis  0.01 (0.01) 0.3451 
Relapse (No) 
Relapse (Unsure) 

-0.38 (0.23)
-0.14 (0.29)

0.2389 

Scheme 1‡ Current PPDS -2.75 (0.05) <0.0001 
Enrollment PDDS -0.65 (0.06) <0.0001 
Gender  0.16 (0.08) 0.0529 
Race (African American) 
Race (Other) 

0.33 (0.25)
0.34 (0.16)

0.0560 

Age of MS Diagnosis  0.004 (0.004) 0.2800 
Relapse (No) 
Relapse (Unsure) 

-0.19(0.11)
-0.03 (0.14)

0.2298 

Scheme 2‡ Current PPDS (lumped) -1.89 (0.04) <0.0001 
Enrollment PDDS  -0.75 (0.08) <0.0001 
Gender (Female) 0.38 (0.11) 0.0007 
Race (African American) 
Race (Other) 

0.49 (0.31)
0.23 (0.22)

0.1920 

Age of MS Diagnosis  0.004 (0.005) 0.4429 
Relapse (No) 
Relapse (Unsure) 

-0.18 (0.14)
0.06 (0.20)

0.4246 

† Random effects (random intercept) model 

‡ Fixed effects model 

1Standard Error 
2 Type III Test of Fixed Effects 

Summary These models consistently had negative parameter estimates for current 

PDDS and enrollment PDDS; therefore indicating a cumulative probability of higher 

scores (increased disability) with increasing current and enrollment PDDS.  Race 

and gender were not consistently associated with transitions.  Where gender was 

statistically significant, the nature of the relationship was consistent: being female is 



104  

 

associated with an increased probability of having lower PDDS scores.  For all 

models using the overall sample, gender is associated with the outcome; the HI 

sample did not have a consistent statistical association with gender.  For both 

disability groups, implementation of Scheme 1 did not yield an association with 

gender, but the relationship is present when implementing Scheme 2. 

 

D. Discussion and Conclusion  

This chapter explored the application of the Test of Lumpability and our novel, 

proposed Goodness of Fit test on patient reported disability scores (the PDDS) 

obtained from a registry.  We demonstrated the challenge involved with identifying 

a simultaneous parsimonious and useful lumping scheme that also retains the 

Markov property.  In doing so, we further demonstrated that even with retaining 

this property, lumping by a specific scheme may not be the best fit to the data.   

Primary results In the primary analyses, all transition matrices share a common 

characteristic of transitions being concentrated on the diagonal, confirming the 

inherent dependency on previous scores and that knowledge of previous disability 

status is highly informative for considering future disability.  In the matrix 

representing the overall sample, the distribution of transitions along the diagonal 

are relatively evenly distributed between the PDDS scores.  The distribution of 

transitions in the stratified samples are concentrated about those PDDS scores that 

drove the disability classification at enrollment.  That is, the matrix for MI sees most 
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of the transitions occur among scores ranging 0 to 6; in the HI matrix, the transitions 

are concentrated in among scores 5-8.  Interestingly, there are nonzero transitions 

at the lower scores (0-4) in the HI matrix.  While unusual, as the grouping is based 

on enrollment scores, there is the possibility that the enrollment scores were 

recorded while the patients was undergoing a relapse, their experience of using the 

PDDS improved over time, or reporting or recording error. 

However, in performing the Test of Lumpability, we observed that none of the 

chains were lumpable at the conventional 0.05 level for any other than the HI group 

under Scheme 1.  As it only experienced a combination of the highest 2 states (PDDS 

scores 7 and 8), these transitions are consistent with the observed states in the HI’s 

unlumped chain until state H (combination of 7 and 8).  Examination of the state 

diagram (Figure) demonstrates the complexity still present in the chain, and 

reinforces the motivation to identify useful lumping scheme(s).  The fact that this 

chain is for a subset of the NARCOMS sample suggests that such a scheme or 

schemes will need to be specific for certain disease stages in order for them to be 

accurate and useful.   Because disease worsens with time, and worsening disease 

(decreased mobility) is described by higher PDDS scores, these results support the 

concept that different stages of the disease should be treated differently.  Due to 

only a single scheme for a single subset being able to pass the test of lumpability, 

additional work to identify other scientifically supported and clinically meaningful 

schemes.   
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In performing the Test of Lumpability, we observed that most of the chains were not 

lumpable at the conventional 0.05 level (other than the HI group under Scheme 1).  

It is reasonable that with a large enough sample, there is not a great need to lump.  

Therefore it is not surprising that we fail the test; the results do lead us to our future 

work.  Because we observed the test of lumpability seems to be influenced by 

sample size, it seems further adjustment to the test is necessary so that the results 

are not driven by sample size.  Returning to the significance level, the larger sample 

size suggests we can be stricter about significance level, but more work needs to be 

done to develop guidelines on how to adjust an α-level according to sample size.  By 

extension, perhaps the Test of Lumpability is not adequately penalizing for the 

number of parameters, because as the sample increases, we are less likely to choose 

the lumped chain.  However, having a large sample is not a drawback, as it provides 

framework to be more specific in the model regarding number of states and lumps, 

and also the benefit of using covariates to obtained adjusted transition probabilities.  

Additionally, because it is implicit in the Test of Lumpability that the original chain 

and the lumped chain must share the same order (first order), there is the 

possibility that the lumped chain is larger than order 1.  

Secondary results The secondary results were for covariate-adjusted matrices.  

Because of the size of the dataset and the complexity of the model, we did have to 

determine which method would lead to model convergence.  While slower, Newton-

Raphson was selected due to its reliability.  For several of the models, SAS reported 

a log warning that “at least one element of the gradient is greater than 1e-3;” this 

warning was observed in the presence of random effects, but not when random 
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effects were removed.  This warning typically means we might have larger standard 

errors about our estimates; removal of random effects produced results highly 

similar to those observed with them, supporting continued use of random effects in 

the model.  Taken together with the value of accounting for disease heterogeneity 

via random effects, we proceeded in the presence of this message.  Other random 

effects were considered (namely, current PDDS); however, this introduced 

additional complicity to the model that generated convergence issues.  The fact we 

could not employ random effects models in certain settings demonstrates the 

complexity already present in the dataset and in the model. 

We observed largely consistent effects for those PDDS predictors with a statistically 

significant association with the outcome.  Of particular note is that in all model-

lumping scheme scenarios, the current and enrollment PDDS were associated with 

movement between states.  This provides further evidence supporting the nature of 

the disability changes is Markovian.   

Only the Overall sample has consistent predictor associations; upon stratifying, 

these associations varied between strata and lumping schemes.   Interestingly, the 

association with gender varied according to lumping scheme and was consistent 

between the two strata.  Race was only associated with transitions for the overall, 

unlumped sample; because the study sample is overwhelmingly Caucasian, any 

differences due to race would have been difficult to detect.  Gender differences were 

not observed for Scheme 1 (9 states to 8 lumps), but these differences are present 

under application of Scheme 2 (9 states to 5 lumps); this is counterintuitive, as 
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Scheme 1 has greatest resemblance to the original, unlumped chain compared to 

Scheme 2 and the unlumped chains.  A potential explanation is less sparseness in the 

transition matrix is observed for a chain with fewer states (Scheme 2) and therefore 

less variability between probabilities.  Additionally, it suggests further exploration is 

needed to tease out the influence of Gender. 

As one of our aims was to examine the relationship between relapse and transitions 

between scores, we were surprised that relapse history was not a significant 

predictor in the model.  It is possible that more specific information regarding 

relapse history might be useful (such as treatment details or disease duration), or 

else there is an interaction term involving relapse that might provide insight into 

the relationship.  

We did anticipate a problem with continuity of response and so although we began 

with an initial dataset that was a large, it was substantially restricted due to missing 

responses, a known issue encounter with self-report data collection.  Because of the 

inclusion criterion of having complete PDDS data, there is a potential for selection 

bias in our sample.   

It was of interest to evaluate the proportional odds assumption, particularly for the 

Current PDDS predictor.  However, due model complexity and the multitude of 

additional steps to resolve, this is an additional avenue of future work.  While we 

successfully modeled transitions using our chosen predictors, we did not perform 

tests on adjusted probability matrices.  This is a logical step to extend these analyses 

and will require different transition matrices for every subject at every time point in 



109 

order to obtain likelihood estimates, and ultimately perform the test of lumpability 

to determine if controlling for certain patient characteristics affects the lumpability 

of the Markov process. 

The primary results were for unadjusted matrices, and consideration of other 

lumping schemes are of interest are to be explored.  As mentioned earlier, we 

assumed time homogeneity because of the short period of observation, relative to 

lifetime disease duration. However, because the disease changes with time, albeit 

very slowly, it seems prudent for further investigations of the chains with 

consideration to disease duration.  This includes more extensive disease duration 

time periods (evaluation of stationarity), model order, whether certain schemes are 

more appropriate for specific disease duration.  Because of the sample size and long-

term nature of the registry, there is great potential to tease out where and how 

stationarity might change.  That is, where it might be appropriate to have a separate 

chain based on time periods of disease duration and even disability level.  Finally, it 

is of interest to apply this methodology to EDSS and compare identify common 

lumping schemes, GOF performance, and performance of proportional odds model 

and associated predictors.  
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V. Applications to the CombiRx Trial Data: EDSS and Lumpability

A. Introduction

The overarching goal of this section is to investigate disability progression using 

Markovian methodology to model the expanded disability status scale (EDSS) and 

employ covariates which contribute to the movement between EDSS scores, 

utilizing data from the Combination Therapy in Patients With Relapsing-Remitting 

Multiple Sclerosis (CombiRx) trial (N=725).  Our specific goals were to (1) identify 

and implement useful lumping schemes for EDSS; (2) demonstrate the applicability 

of the Test of Lumpability for the EDSS; and (3) implement the 2-stage lumpability 

assessment process.  While the EDSS has been modeled using Markov chains, 

implementation of the Test of Lumpability will be novel for this outcome (Engler et 

al., 2017)(Healy & Engler, 2009).  Additionally, analysis of the CombiRx data 

utilizing Markov methodology will also be novel. 

B. Methods

1. Study Design

Study Design CombiRx was a randomized, placebo-controlled, 3-arm, double-blind 

multi-site clinical trial (Phase III) (Lindsey et al., 2012).  Enrollment EDSS score less 
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than 5.5 was the cutoff for trial participation.   Patients were randomized to either 

Glatiramer acetate (GA) Interferon-β (IFN) or combination (IFN+GA).  Half of the 

patients were randomized to the combination therapy, with 25% in each of the 

remaining therapeutic arms.  Study duration was 36 months, with follow-up 

occurring every 3 months.  However, only the 6-month follow-up intervals were 

included in these analyses, so as to maintain ability for comparison between these 

results and those NARCOMS’s (previous chapter). 

Protocol approval and patient consent All data were de-identified and participants 

gave informed consent. This study was approved by the institutional review board 

at the University of Alabama at Birmingham, Birmingham, Alabama.  

This is a longitudinal interventional study. The primary variables of interest is EDSS 

at enrollment and at follow-up. Other enrollment variables considered included 

gender (male, female), race (African American, Caucasian, Other), body mass index 

(BMI), year of enrollment, age at baseline (years), year of MS diagnosis, age at MS 

diagnosis (years), time since symptom onset (years), disease duration at enrollment 

(years), number of relapses (in the previous 12 months and previous 3 years), 

treatment group (GA, IFN, IFN+GA), and marital status (divorced, 

married/cohabitating, single, separated) (Table 1). Follow-up data included in the 

analyses was EDSS only for every 6-month follow-up through 36 months, resulting 

in 6 time points. 

Participants Participants included adult male and female MS patients participating 

in CombiRx (aged 18-60 years). Of the 1,008 participants enrolled, 978 had at least 
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one update in the 3-year observation period; of those 725 had complete follow-up 

responses for EDSS. Therefore, only patients with complete-case follow-up 

responses for EDSS were included in the analytic cohort (N=725). 

Inclusion criteria Participants with baseline enrollment information and 6-month 

EDSS updates for the duration of the 3-year study period were considered for 

analysis. 

Exclusion criteria Participants with any missing EDSS responses (baseline and at 6-

month follow-up intervals) were excluded from analysis. 

Preliminary Analysis Data were summarized using means, standard deviations (SD), 

frequencies (N), medians, minima and maxima (Table 22). 

2. Primary Analyses

The primary outcome is the transition of EDSS scores, which is considered at the 6-

month follow-up points for the 3-year duration of the regular study period.  The 

original chain has 20 states (one state per EDSS score). The appropriate transition 

matrices are presented for the overall sample, without stratification and unadjusted 

for any covariates (Tables 23).  Due to the short study period relative to expected 

disease duration, the analyses were performed under the assumption of time 

homogeneity. Three lumping schemes were considered to reduce the number of 

states from the original chain (Figure 20).  Each scheme was implemented and Test 
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of Lumpability was performed on the pair of unlumped and lumped chains (Jernigan 

& Baran, 2003). 

While the unlumped chain should contain 20 states (Figure 20), based on the total 

number of EDSS scores observed, the unlumped chain in this case will be a 14-state 

chain, to reflect the maximum score observed in the study population.  Therefore, 

the unlumped chain is designated as Scheme 0 and contains 14 states.  Scheme 1, 

named “Baseline groupings,” reflects the CombiRx groupings for baseline EDSS, 

resulting in 4 lumps from 14 states (G. Wang et al., 2017). This lumping scheme is 

also supported by results produced by Engler et al. (2017).  Scheme 2, named 

“Simple Combination,” reduces the number of observed states to half, by combining 

every 2 contiguous states.  While again noting there is no one-to-one 

correspondence between EDSS and PDDS, Scheme 3, named “PDDS matching,”  

reflects their similarity (Hohol et al., 1995; Hohol et al., 1999; Learmonth et al., 

2013; Marrie et al., 2006; Marrie & Goldman, 2007). This lumping scheme is 

therefore similar to the method employed with aggregating the PDDS to reflect the 

correspondence between PDDS and EDSS (Figure 20-21). 

The proposed Chi-square goodness of fit tests comparing the lumped and unlumped 

chains were performed on the schemes with p≥0.05 for the test of lumpability.   
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3. Secondary Analyses

Transitions were modeled, adjusted for covariates using proportional odds 

modeling with random effects (intercept), for the overall sample.  Random effects 

were included to account for the heterogeneous nature of the disease between 

patients.  Optimization was performed via the Newton-Raphson method, and 

Compound Symmetry was used as the covariance structure.  Predictors included 

gender, race, age of diagnosis, EDSS at baseline, and current EDSS to predict the next 

EDSS.  These variables are consistent with those utilized in modeling PDDS, again 

for the purposes of comparison (refer to previous chapter).  For numeric stability 

and model convergence, Current EDSS and Baseline EDSS were treated as numeric.  

When using these lumped “current” EDSS scores, the mean EDSS score was used for 

prediction.  Specifically, for Scheme 1 (Simple combination), Lump A’s numeric 

value is 0.5, as it is the mean for 0 and 1.  Lump B’s numeric value was 1.75 (since 

1.5 and 2 are combined); Lump C is 2.75, and so forth. 

Statistical analyses were performed in SAS V9.4, SAS/IML v14.3 and JMP Pro V14.0 

(SAS Institute, Inc., Cary, NC) under an α=0.05 significance level, unless otherwise 

indicated. 



 

Figure 21: Proposed lumping schemes for all EDSS scores 

Scheme 1: Simple Combination Scheme 2: CombiRx baseline groups Scheme 3: PDDS matching 

States, N=20 Lumps, M=10 States, N=20 Lumps, M=4 States, N=20 Lumps, M=10 
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Figure 22 : Lumping schemes as applied to the EDSS scores from study period 

Scheme 1: Simple combination Scheme 2: CombiRx baseline groups Scheme 3: PDDS matching 

States, N=14 States, N=7 States, N=14 Lumps, M=4 States, N=14 Lumps, M=11 
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C. Results

1. Preliminary Analyses

Although not numerically the same, the summary statistics of the analytic cohort’s 

baseline characteristics are consistent with those reported at baseline for the entire 

randomized CombiRx cohort (Tables 22, 23) (Lindsey et al., 2012). There were 

patients with 2 protocol violations at baseline (EDSS=6 and 6.5) (Lindsey et al., 

2012); one of these patients is included in the analytic cohort (EDSS=6; Table 23).  

All participants had at least one relapse at baseline. 

Table 22: Summary of cohort demographics at enrollment or baseline 
(N=725) 

Demographics and diagnosis    N % 

Gender 
Female 521 71.9 
Male 204 28.1 

Race 
African American 48 6.6 
Caucasian 642 88.5 

Other 35 4.8 
Marital status 

Divorced 59 8.1 
Married/cohabitating 451 62.2 
Single 204 28.1 

Separated  11 1.5 
Year of Enrollment 

2005 120 16.5 
2006 268 37.1 
2007 182 25.1 
2008 118 16.3 

2009 36 5.0 

Mean (SD†) Median (Min, Max) 
Age at baseline (years) 38.4 (9.4) 38.0 (18.0, 61.0) 
Age at diagnosis (years) 39.6 (10.4) 39.0 (18.0, 78.0) 
Body Mass Index 28.8 (6.8) 27.5 (16.1, 58.5) 
† Standard deviation 
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Table 23: Summary of cohort clinical characteristics baseline (N=725) 

Baseline disease details N % 

Treatment Group 
GA 204 28.1 
IFN 166 22.9 
IFN + GA 355 49.0 

EDSS 
0 95 13.1 
1 99 13.7 
1.5 107 14.8 
2 179 24.7 
2.5 91 12.5 
3 61 8.4 
3.5 52 7.2 
4 25 3.4 
4.5 5 0.7 
5 4 0.5 
5.5 6 0.8 

6 1 0.1 

Mean (SD†) Median (Min, Max) 
Disease Duration (years) 1.1 (3.0) 0 (0, 23.0) 
Time since first symptom  
(years) 

4.3 (5.5) 2.0 (0, 39.0) 

Relapses in previous 12 months 1.7 (0.8) 2.0 (0, 6.0) 
Relapses in previous 3 years 2.4 (0.9) 2.0 (1.0, 10.0) 
EDSS (Numeric) 1.9 (1.2) 2.0 (0, 6.0) 

† Standard deviation 
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2. Primary Analyses

Without accounting for baseline EDSS or other covariates, the frequency and 

probability transition matrices depict relative consistency of the EDSS score over 

time.  Most values are concentrated about the diagonal of the matrix (Tables 25-29). 

The 725 patients account for a total of 3,625 transitions across 6 time points.   

The unlumped chain was lumpable only according to Scheme 3 (PDDS Matching); it 

was not lumpable according to the other proposed schemes (Table 24).  According 

to the Chi-square goodness of fit test, this lumping scheme produced a chain that 

was not a better fit to the data, compared to the unlumped chain.  The conclusions 

between the LRT and Pearson formulations of the test are consistent (LRT: 

 𝜒2(𝑑𝑓 = 72) = 235.37,𝑝 < 0.0001; Pearson: 𝜒2(𝑑𝑓 = 72) = 1907.80, 𝑝 < 0.0001) 

(Tables 24, 29; Figure 23).  

Table 24: Summary of results for unadjusted matrices, N=725 (α=0.05) 

Scheme N-states M-lumps 𝝌𝟐
† Degrees of Freedom p-value

1 14 7 155.82 32 0.0 
2 14 4 172.80 30 0.0 
3 14 11 32.55 21 0.0514 

†Chi-square test of lumpability test statistic 

Table 25: Unadjusted, overall frequency transition matrix (N=725) 

0  1   1.5 2 2.5 3 3.5   4 4.5 5 5.5 6 6.5  7 
0
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7 [

237 119 46 55 15 5 3 1 1 0 0 0 0 0
114 205 96 102 21 7 4 1 0 0 0 0 0 0
47 103 154 133 47 13 10 0 1 0 1 0 1 0
54 109 132 343 131 73 22 9 0 0 1 0 1 0
19 23 46 139 114 55 38 12 2 1 0 2 0 0
6 10 13 52 67 93 46 20 1 2 2 4 0 0
4 1 4 30 25 44 60 34 3 0 3 2 3 0
1 0 3 9 7 18 33 44 1 4 2 4 3 0
0 0 1 1 0 2 2 3 7 0 4 4 0 0
0 0 1 0 0 1 2 4 2 0 0 1 0 0
0 0 1 1 0 0 2 2 2 3 7 3 0 0
0 0 0 2 1 0 3 2 2 0 3 16 2 0
0 0 1 0 0 0 1 1 0 0 0 0 8 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0]

482
550
510
874
451
316
213
129
24
11
21
31
12
1



 

Table 26: Unadjusted, overall probability transition matrix (N=725) 

0 1 1.5  2  2.5 3 3.5 4 4.5  5  5.5 6 6.5  7 
0
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7 [

0.49 0.25 0.09 0.11 0.03 0.01 0.01 0.002 0.002 0 0 0 0 0
0.21 0.37 0.17 0.18 0.04 0.01 0.01 0.002 0 0 0 0 0 0
0.09 0.20 0.30 0.26 0.09 0.02 0.02 0 0.002 0 0.002 0 0.002 0
0.06 0.12 0.15 0.39 0.15 0.08 0.02 0.01 0 0 0 0 0.001 0
0.04 0.05 0.10 0.31 0.25 0.12 0.08 0.03 0.004 0.002 0 0.004 0 0
0.02 0.03 0.04 0.16 0.21 0.29 0.14 0.06 0.003 0.01 0.01 0.01 0 0
0.02 0.002 0.02 0.14 0.12 0.21 0.28 0.16 0.01 0 0.01 0.01 0.01 0
0.01 0 0.02 0.07 0.05 0.14 0.25 0.34 0.01 0.03 0.01 0.03 0.02 0
0 0 0.04 0.04 0 0.08 0.08 0.12 0.29 0 0.02 0.17 0 0
0 0 0.09 0 0 0.09 0.18 0.36 0.18 0 0 0.09 0 0
0 0 0.05 0.05 0 0 0.09 0.9 0.09 0.14 0.33 0.14 0 0
0 0 0 0.06 0.03 0 0.10 0.06 0.06 0 0.10 0.52 0.06 0
0 0 0.08 0 0 0 0.08 0.08 0 0 0 0 0.67 0.08
0 0 0 0 0 0 0 0 0 0 0 0 1 0 ]

1
2

0
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Table 27: Scheme 1: Simple combination, unadjusted transitions (14 states to 7 
lumps) 

Frequencies 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 
𝐴
𝐵
𝐶
𝐷
𝐸
𝐹
𝐺 [

675 299 48 9 1 0 0
313 762 264 41 1 1 2
58 250 329 116 6 8 0
6 46 94 171 8 11 6
0 3 3 11 9 9 0
0 4 1 9 7 29 2
0 1 0 2 0 0 10]

1032
1384
767
342
35
52
13

Probabilities 𝐴   𝐵 𝐶 𝐷 𝐸 𝐹  𝐺 

 

𝐴
𝐵
𝐶
𝐷
𝐸
𝐹
𝐺 [

0.62 0.29 0.05 0.01 0.001 0 0
0.23 0.55 0.19 0.03 0.001 0.001 0.001
0.07 0.32 0.43 0.15 0.01 0.01 0
0.02 0.13 0.27 0.50 0.02 0.03 0.02
0 0.08 0.08 0.31 0.26 0.26 0
0 0.08 0.02 0.17 0.13 0.56 0.04
0 0.08 0 0.15 0 0 0.77 ]

Table 28: Scheme 2: Baseline groupings unadjusted transitions  (14 states  to 4 
lumps) 

Frequencies 𝐴 𝐵 𝐶 𝐷 
𝐴
𝐵
𝐶
𝐷

[

675 299 48 10
313 762 264 45
58 250 329 130
6 54 98 284

]

1032
1384
767
442

Probabilities 𝐴  𝐵 𝐶 𝐷 
𝐴
𝐵
𝐶
𝐷

[

0.65 0.29 0.05 0.01
0.23 0.55 0.19 0.13
0.08 0.33 0.43 0.17
0.01 0.12 0.22 0.64

] 
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Table 29: Scheme 3: PDDS Matching, unadjusted transitions   (14 states to 11 
lumps) 

Frequencies 
A B C D E F G H I J K 

𝐴
𝐵
𝐶
𝐷
𝐸
𝐹
𝐻
𝐼
𝐽
𝐾 [

237 119 46 55 15 5 3 2 0 0 0
114 205 96 102 21 7 4 1 0 0 0
47 103 154 133 47 13 10 1 1 1 0
54 109 132 343 131 73 22 9 0 1 0
19 23 46 139 114 55 38 14 1 2 0
6 10 13 52 67 93 46 21 4 4 0
4 1 4 30 25 44 60 37 3 5 0
1 0 4 10 7 20 35 55 10 11 0
0 0 2 1 0 1 4 10 10 4 0
0 0 1 2 1 0 4 5 3 26 1
0 0 0 0 0 0 0 0 0 1 0]

482
550
510
874
451
316
213
153
32
43
1

 

Probabilities 
A B C D E F G H I J K 

𝐴
𝐵
𝐶
𝐷
𝐸
𝐹
𝐻
𝐼
𝐽
𝐾 [

0.49 0.25 0.10 0.11 0.03 0.01 0.01 0.004 0 0 0
0.21 0.37 0.17 0.19 0.04 0.01 0.01 0.002 0 0 0
0.09 0.20 0.30 0.26 0.9 0.03 0.02 0.002 0.002 0.002 0
0.06 0.12 0.15 0.39 0.15 0.08 0.03 0.01 0 0.001 0
0.04 0.05 0.10 0.31 0.25 0.12 0.08 0.03 0.002 0.004 0
0.02 0.03 0.04 0.16 0.21 0.29 0.15 0.07 0.01 0.01 0
0.02 0.005 0.02 0.14 0.12 0.21 0.28 0.17 0.01 0.02 0
0.01 0 0.03 0.07 0.05 0.13 0.23 0.36 0.07 0.07 0
0 0 0.06 0.03 0 0.03 0.13 0.31 0.31 0.13 0
0 0 0.02 0.05 0.02 0 0.09 0.12 0.07 0.60 0.02
0 0 0 0 0 0 0 0 0 1.0 0 ]



 

Figure 23 : State transition diagram for lumped chain according to Scheme 3 (PDDS matching) 

𝑝𝑖,𝑗 ≥ 0.10 Arrows/connecting lines above the states represent transition to higher states; those 
below represent transitions to lower states or remaining in the same state. Probabilities 
approximately 0 are not depicted. 

0.10 < 𝑝𝑖,𝑗 < 0.25 

0.05 < 𝑝𝑖,𝑗 ≤ 0.10 

𝑝𝑖,𝑗 ≤ 0.  05; values not shown 

1
2

3
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3. Secondary Analyses

Proportional odds models with random effects models were fit for all 4 situations: 

overall (unlumped) and for each of the 3 lumping schemes.  In all cases, parameter 

estimates were small.  Current EDSS, baseline EDSS, and age of diagnosis were 

statistically associated with transitions in all models (Table 30); only for the overall, 

unlumped model was race associated with transitions.  Race, number of relapses in 

the past 12 months and gender were not associated with score transitions in any 

model (all p>0.05; values not reported). 

For each model, the parameters consistently had negative parameter estimates for 

each predictor; therefore, there is a decreased probability of larger scores 

(decreased mobility).  In general, for the enrolment and current EDSS, this means a 

patient is more likely to remain close to their starting or current score than move up 

to the higher end of the scale (higher scores).  These results are consistent between 

each lumping scheme. 
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Table 30 : Summary of proportional odds models with random effects 

Lumping Scheme Predictor Estimate (SE1) p-value2

None Current EDSS  -0.61 (0.09) <0.0001 
Enrollment EDSS -1.18 (0.10) <0.0001 
Gender (Female) 0.11 (0.14) 0.4115 
Age of Diagnosis  -0.04 (0.01) <0.0001 
Number of Relapses 0.05 (0.08) 0.4689 
Race (African American) 
Race (Other) 

-0.28 (0.23)
-0.23 (0.26)

0.3495 

Scheme 1 Current EDSS  -0.65 (0.09) <0.0001 
Enrollment EDSS -1.16 (0.10) <0.0001 
Gender (Female) 0.08 (0.14) 0.5376 
Age of Diagnosis  -0.04 (0.01) <0.0001 
Number of Relapses 0.06 (0.08) 0.4676 
Race (African American) 
Race (Other) 

-0.25 (0.23)
-0.23 (0.28)

0.4133 

Scheme 2 Current EDSS  -0.41 (0.06) <0.0001 
Enrollment EDSS -1.25 (0.09) <0.0001 
Gender (Female) 0.07 (0.15) 0.6090 
Age of Diagnosis  -0.04 (0.01) <0.0001 
Number of Relapses 0.04 (0.08) 0.6585 
Race (African American) 
Race (Other) 

-0.33 (0.25)
-0.28 (0.29)

0.2896 

Scheme 3 Current EDSS  -0.60 (0.09) <0.0001 
Enrollment EDSS -1.17 (0.09) <0.0001 
Gender (Female) 0.12 (0.14) 0.3700 
Age of Diagnosis  -0.04 (0.01) <0.0001 
Number of Relapses 0.06 (0.07) 0.4524 
Race (African American) 
Race (Other) 

-0.27 (0.22)
-0.24 (0.26)

0.3389 

1Standard error 
2Type III Test of Fixed Effects  
3Number of Relapses in the last 12 months leading up to baseline 
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D. Discussion  and Conclusion

This chapter explored the application of the Test of Lumpability and our novel, 

proposed Goodness of Fit test on clinician-evaluated disability scores (the EDSS) 

obtained from a clinical trial.  We demonstrated the challenge involved with 

identifying a simultaneous parsimonious and useful lumping scheme that also 

retains the Markov property.  In doing so, we further demonstrated that even with 

retaining this property, lumping by a specific scheme may not be the best fit to the 

data.   

Primary results In the primary analyses, all transition matrices share a common 

characteristic of transitions being concentrated on the diagonal, confirming the 

inherent dependency on previous scores and that knowledge of previous disability 

status is highly informative for considering future disability.   

In the matrix representing the overall sample, the distribution of transitions along 

the diagonal are concentrated between 0 and 3.5 for the current EDSS and between 

0 and 4.5 for the next EDSS scores.  This is an artifact of the disability inclusion 

criterion for the study.  This pattern is also true for Scheme 1 and so some degree, 

Scheme 3; most likely because these states are more granular compared to Scheme 

2, which produces substantially fewer states in the lumped chain.  In scheme 2, we 

observe a more even distribution of scores along the diagonal. 

The fact that the transition matrices share a common characteristic of transitions 

being concentrated on the diagonal, supports the inherent dependency on previous 

scores and that knowledge of previous disability status is highly informative for 
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considering future disability.  Because the disease is a slowly progressing one, it is 

reasonable that scores do not increase drastically during the relatively short 

observation period; but rather, just transition back and forth between scores.   

Lumps utilized were proposed with scientific justification; upon aggregation, we 

observed the unlumped chain was lumpable according to only one scheme (PDDS 

matching).  However, this p-value is only nominally different from 0.05 and so the 

result is questionable; additionally it failed both tests of GOF.  Since we have 

observed that the Test of Lumpability appears to be driven by sample size, the other 

lumping schemes might still be useful, and perhaps investigation other strategies for 

lumping might yield more promising results and lead to greater insights into 

disability progression.  Because only one scheme passed the Test of Lumpability, 

additional work to identify other scientifically supported and clinically meaningful 

schemes.  The state diagram is also more evidence for a useful umping scheme, as it 

its complexity renders it challenging to reference. 

Because of the study design, our sample has less variability, is healthier and more 

homogenous with lower EDSS scores.  Perhaps fewer transitions in the matrix later 

in the scale also drove our observed results.  We anticipated a problem with 

sparseness the upper range of scores due to the CombiRx study design; inclusion 

criteria required that enrolling patients not have an EDSS greater than 5.5.  

Therefore, sparseness was observed for the latter parts of the scale (greater than 

5.5); at the early follow-up points of the study, we observed the matrices were 

weighted by those scores 5.5 and less.  As a result, we had to truncate our original, 
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unlumped chain from 20 states to 14 states.  By extension, the results of the matrix 

are more informative for the earlier part of the disease course (lower scores); we 

expected fewer participants in the latter part of the scale even towards the end of 

the study period, because patients were recruited earlier in the disease course.  

Thus, little knowledge was be gained regarding the later part of the scale (higher 

scores). 

Secondary results The secondary results were for covariate-adjusted transition 

probabilities.  Consistent results regarding predictors is promising, and lends more 

confidence in their use as predictors of EDSS scores. However, other predictors 

beyond those considered be yet be useful.  Investigation of the relationship between 

relapse and the transitions was one of our goals; however, number of relapses was 

not statistically associated with these transitions in the model.  The relationship 

may yet be there, but due to the fact that all patients in the sample were on a disease 

modifying therapy, their number of relapses were reduced during the study period, 

therefore influencing the change in EDSS scores during this time. 

Future work It was of interest to evaluate the proportional odds assumption, 

particularly for the Current EDSS predictor.  However, due model complexity and 

the multitude of additional steps to resolve, this is an additional avenue of future 

work.  While we successfully modeled transitions using our chosen predictors, we 

did not perform tests on adjusted probability matrices.  This is a logical step to 

extend these analyses and will require different transition matrices for every 

subject at every time point in order to obtain likelihood estimates, and ultimately 
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perform the test of lumpability to determine if controlling for certain patient 

characteristics affects the lumpability of the Markov process.  The large number of 

parameters that must be estimated (due to length of the chain) are further 

indication that a lumped process is desirable, as it would ease computation.  

Although the starting dataset was a large sample size, it was restricted due to 

missing responses, a challenge with any kind of data collection.  These results are 

not generalizable to patients with increased disability, by design of the study; this 

might also be true for MS patients not receiving any kind of treatment.   

The primary results were for unadjusted matrices, and consideration of other 

lumping schemes are of interest are to be explored.  It is of interest to extend these 

results through analyses via consideration of higher order models; consideration of 

other covariates; estimation of adjusted transition probabilities examination; 

evaluating lumpability for adjusted probability matrices; and partial proportional 

odds models. 
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VI. Summary, conclusion, next steps

It is common practice to group levels of categorical variables for statistical or 

sample size considerations.  However, in the case of Markov chains, this aggregation 

can affect the properties of the resulting chain, including whether or not the new 

chain retains the eponymous Markov property.  Because multiple lumping schemes 

might be appropriate for a set of data and because multiple might still retain Markov 

dependency, we proposed a GOF test to compare lumped and unlumped chains, and 

a comparator statistic to compare chains which further pass the GOF.  Upon 

establishing the GOF tests to evaluate lumpable matrices and examining their 

performance in simulated, the natural extension was to explore their performance 

in real data.  In order to observe how the methodology performs in a larger sample 

over a longer period time, we employed these Markov methods in NARCOMS data 

on the PDDS.  Because the EDSS is the gold standard in MS clinical trials, we 

explored Markov methodology in the CombiRx data.  We were interested in whether 

these data sets produced similar results regarding lumping schemes, and later, for 

predictive variables.  These datasets, while created under the requirement of 

complete-response data (for disability scores), still had differing patterns when it 

came to having zero cells in their transition matrices, allowing us also to consider 

performance based on how the matrix was filled. 
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A. Implementation of the Test of Lumpability and Novel test development and

exploration

A nuanced and important difference is between statistical appropriateness of a 

model and what best fits a particular data set.  This understanding motivated the 

investigation of a GOF measure.  Simulation methods demonstrated the performance 

of our proposed test under pre-specified settings and set the stage for investigating 

their applications in real data.  Our chains were lumpable by design, but the results 

did vary according to sample size.  Smaller sample sizes influenced the results; for 

those simulated matrices whose overall sample size was N=50, fewer were 

consistently lumpable (𝑝 < 0.05).  Use of smaller sample sizes were observed with 

smaller values for the LRTs.  Bickenbach and Bode (2001) point out that there 

challenge between having enough transitions to obtain stable transition probability 

estimates, while the increasing sample size can lead to losing the Markov 

dependency.  Therefore, further work is warranted examining the performance of 

the test with both smaller and increasingly larger sample sizes, and likely shall 

require a restriction on the sample size appropriate for whatever test is 

implemented.   

The matrix dimension also appears to influence results; the number of cells in a 

matrix can have wildly varying entries, further complicating the prospect of a single 

score to account for so much variability.  Therefore, further investigation should 

balance total number of transitions per matrix, sparseness, location of sparseness 

and number of cells (dimension).  This also suggests a potential approach of moving 
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forward is to consider breaking up the chain by some technique that is appropriate 

to the process being modeled and some test of the chain is desired.  The issues of 

balancing sample size, sparseness and, matrix dimension demonstrate a multi-

layered problem. 

 

B. Comparison of NARCOMS and CombiRx results  

Comparison of study design characteristics For the PDDS outcome (NARCOMS), we 

hoped to capture a larger cohort (compared to CombiRx) that would inform the 

probability of transitioning between disability states towards the later end of the 

scale, and so gain information regarding the nature of disability with disease 

progression.  NARCOMS sample provides are more population general and includes 

patients of greater disease severity and longer disease duration, allowing us to 

consider stratification based on baseline enrollment.  Information regarding 

treatment is less certain, as this is self-report.  For the EDSS outcome (CombiRx), we 

expected issues with sparseness in the later parts of the score due to study design 

and inclusion criteria.  We did observe this to be the case, and had to truncate our 

starting chain accordingly from 20 states to 14 states.  Relatedly, there was no 

baseline disability stratification due to the nature of the study’s eligibility criteria.  

As anticipated, we did not observe many transitions in the later part of the scale. 

Comparison of sample results and future work Methodology was consistent between 

the NARCOMS and CombiRx datasets in order to draw accurate comparisons 
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between performance of methodology and similarity (or differences) between 

scales.  In general, we did observe highly similar results between these 2 outcomes. 

A substantial difference is the disease duration at the start of the observation 

period; on average CombiRx patients had the disease for less time (1.1 years 

(SD=3.0)) than NARCOMS patients (15.8 years (SD=8.9).  They also have a shorter 

observation period than NARCOMS (3 years in CombiRx, 5 years for NARCOMS).  

CombiRx patients are certainly are on some kind of therapy, per the protocol of the 

clinical trial, whereas the treatment regimen of the registry participants is going to 

be more variable. CombiRx patients are healthier, with less disability overall (mean 

EDSS 1.9 (SD=1.2)) compared to NARCOMS patients (mean PDDS 2.9 (SD=2.1)).  

This is in-keeping with what we expected regarding patient characteristics and also 

generalizability.  This was further demonstrated in the concentration of the 

transitions within each transition matrix.   

Let us consider transition activity to include only transition probabilities larger than 

0.10.  The CombiRx patients have similar disability status to the patients in the MI 

subset of NARCOMS.   They also have more transition activity (that is, transitions 

paths to other states) than the NARCOMS HI subset (particularly for transitions from 

higher states to lower states), as examination of the state diagrams demonstrates 

(Figures 19, 22).  Then we can think of this comparison as between patients with HI 

and MI and this difference is perhaps driven by disease duration differences: 

patients in the earlier stages of the disease have a less severe disease state and tend 

to fluctuate in their scores due to the relapsing-remitting nature of the disease.  



134  

 

Conversely, the NARCOMS HI patients have had the disease for longer, hence why we 

observe scores in the later end of the scale (while again noting that we did not 

restrict patients’ inclusion to the NARCOMS sample based on disease status).  This 

observation further suggests examination along these lines is warranted along. 

While it is true that there is not one-to-one correspondence between disability 

scales, their similarity does allow for some general comparisons to be made in 

context of Markov chains regarding their results.  The results support 

correspondence between the two scales.  Similar associations between predictive 

variables and the movement between scores, particularly in how transitions are 

concentrated along the diagonals of all matrices considered.  The state diagrams 

were presented for the scheme from each dataset which passed the Test of 

Lumpability.  Examination of both demonstrate the complexity present in the 

models, even after lumping, and further support the need for identification of a 

useful lumping scheme, as such  a complex figure has limited usefulness.   

MS is a progressive disease whose periods of relapse and remission are its hallmark.  

Therefore, investigating model order would add another level of understanding to 

disease progression, as well as model complexity.  To this point, only transition 

matrices at a single point in time have been considered.  Stationarity should also be 

evaluated.  Such a determination can have implications for the MS data, as it could be 

that a specific transition matrix is only appropriate and applicable to a certain stage 

or groups of stages (related to disability status) in the disease  or specific disease 

durations.  Because of the sample size and the long-term nature of the registry, there 
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is also great potential to tease out where and how stationarity of the Markov chain 

might change—that is, where it might be appropriate to have a separate Markov 

chain.  This could be based on a combination of disease duration and disability.  Such 

implementation may prove more difficult, however, for the CombiRx data, as the 

observation period is relatively short, even including the extension phase of the 

study.  Additionally, because it is implicit in the Test of Lumpability that the original 

chain and the lumped chain must share the same order (first order), there is the 

possibility that the lumped chain is larger than order 1. 

In both datasets, we observed most chains were not lumpable according to given 

schemes at the conventional 0.05 level.  However, in both datasets, we were 

analyzing a large sample size, therefore it was not entirely unanticipated that we 

failed the Test.  Larger sample sizes suggest less of a need to lump because a lot of 

detail is available from the dataset at a more granular level; however, as 

demonstrated, more states in a chain means substantially more model complexity, 

which can have implications for interpretability, computation, and model usefulness. 

This does allow for several avenues of future work.  First, because we observed that 

the Test of Lumpability appears to be driven by sample size we can be stricture 

about significance level; therefore, development of guidelines on how to adjust the 

α-level according to sample size would be useful; Second and by extension, perhaps 

the Test of Lumpability is not adequately penalizing for the number of parameters, 

because we are less likely to choose the lumped chain with an increasing sample 

size.  Third, because we were working with large sample sizes for both the simulated 

and real-world data, one approach to identifying a lumpable scheme might be to 
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perform random sampling with replacement from the larger sample, implement the 

scheme, perform the Test of Lumpability and then determine what proportion of 

“passes” were achieved.  This would, however, introduce questions about what a 

reasonable sample size might be and how many random samples to draw.   

Importantly, a large sample is a benefit, because it does allow for accuracy model 

complexity regarding design and use of covariates when obtaining adjusted 

transition probabilities.   In the context of building covariate-adjusted probability 

models (whether partial proportional odds or proportional odds), future work may 

see utilization of AIC and BIC, and potential implementation of the Vuong test, which 

allows comparison of non-nested models, as it has not yet been established if 

lumped chains are nested in their associated unlumped chains (Vuong, 1989). 

It was of interest to evaluate the proportional odds assumption, particularly for the 

Current PDDS and EDSS predictors.  However, due model and computational 

complexity and the multitude of additional steps to resolve, this is an additional 

avenue of future work.  While we successfully modeled transitions using our chosen 

predictors, we did not perform tests on adjusted probability matrices.  This is a 

logical step to extend these analyses and will require different transition matrices 

for every subject at every time point in order to obtain likelihood estimates, and 

ultimately perform the test of lumpability to determine if controlling for certain 

patient characteristics affects the lumpability of the Markov process.  The large 

number of parameters (transition probabilities) that then must be estimated (due to 
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length of the chain) are further indication that a lumped process is desirable, as it 

would ease computation.  

The structure of the matrices, themselves can influence results, including the 

location of zero-cells within the matrix.  While lumping may get rid of zero-cells, in 

the context of MS their presence is informative as it is a characteristic of the disease 

progression.  However, it could be that stratification alleviates or even eliminates 

this issue. Thus, it is of interest to evaluate the performance of the test with and 

without certain levels of sparseness.  Additional considerations include imposing 

restrictions on the number of allowable “zero” cells, as is done in the test for 

stationarity (Bickenbach & Bode, 2001) and expected cell count limitations.   

C. Conclusion

Markov processes are easier to implement due to increased computing power, but 

still have areas of complexity that require balancing sample size (number of 

transitions) and matrix dimension.  Lumping states can ease interpretability and 

computation of complex models. However, it must be justified by scientific and 

statistical considerations, including confirmation that chain is still Markov.  While a 

simpler matrix could be preferable, a more appropriate and larger one might 

provide greater insight and superior fit to the data.  Though we are in the early 

stages of determining useful lumping schemes for MS, there is potential to expand 
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this knowledge with positive implications modeling a complex outcome for a better 

understanding of disease progression.  
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VII. Index of notation

Term Description 

𝒀(𝒕) 
Stochastic process; in this case, a Markov chain   
Markov chain whose probabilities are produced via 
logistic regression 

𝒀(𝒕𝒊) Random variable in the stochastic process 

𝑿𝒏 = 𝒊 Probability of being in state i at time n 

𝑻,𝐰𝐡𝐞𝐫𝐞  𝑻 = 𝒕𝟏, 𝒕𝟐, 𝒕𝟑, … 𝒕𝒏 Index set, usually time  

𝒂𝒌 Initial probability distribution; always in vector form 

𝑺, where 𝑺 = {𝟏, 𝟐, … 𝒔} State space  

𝒊, where 𝒊 = 𝟎, 𝟏, 𝟐, … , 𝒔 Current state, index  

𝒋 , where 𝒋 = 𝟎, 𝟏, 𝟐,… , 𝒔  Next state, index  

𝒑𝒊,𝒋 Probability of transitioning from state i to state j 

𝑷𝑻 Transition matrix at time T 

Y Probability estimated from logistic regression   

N Sample size  

n 
Referring to number of states in the observed 
(unlumped) matrix; used to indicate dimension and 
perform calculations  

m 
Referring to the number of lumps in the lumped matrix; 
used to indicate dimension and perform calculations 
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