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AN ITERATIVE PRICING CONTROL SCHEME FOR RENEWABLE 
INTEGRATION IN RESIDENTIAL APPLICATIONS USING INHERENT THERMAL 

ENERGY STORAGE  
 

JUSTIN M. HILL 
 

INTERDISCIPLINARY ENGINEERING 
 

ABSTRACT  

 Renewable energy continues to proliferate throughout the world as costs decrease 

and the public desire for clean energy rises.  These sources are intermittent by nature, 

providing added complexity to its integration with existing grid infrastructure.  This paper 

proposes an iterative pricing and energy consumption strategy between a utility and home 

energy management (HEM) system, acting on behalf of homeowners, with the goal of 

easing this integration while also decreasing homeowner energy costs, increasing utility 

profit and minimizing utility energy storage requirements.  

 The strategy begins with a day-ahead energy cost profile developed by the utility 

using a mix of traditional and renewable resources. The HEM receives this cost profile and 

develops a schedule for the home based on preprogrammed preferences.  The HEM then 

estimates its energy usage profile and sends it to the utility, who receives one aggregated 

profile from all participating homes.  The utility then calculates an updated pricing scheme 

to encourage a shift of usage towards times where generation is in excess of demand.  This 

process iterates until the supply and demand of energy are reasonably aligned, annual 

homeowner energy costs are decreased and utility profit is increased.  Finally, a new 

fifteen-minute ahead price is sent to the HEM throughout the day to address forecasting 

errors and is associated only with energy storage devices within the home. 
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 The algorithm’s effectiveness was simulated with a group of ten homes.  

Implementation resulted in an increased correlation between usage and renewable 

generation from 12% to 40%, reduced the annual energy costs to consumers by 4%, 

increased utility profit by 2% and decreased energy storage requirements by 46%.  A 

second simulation was performed with highly efficient homes, which resulted in an 

increased correlation coefficient of 43%, decreased energy costs of 5%, an increase in 

profit by 6% and a decrease in energy storage requirements of 32%. 

 

Keywords: renewable integration, real-time pricing, home energy management, iterative, 
optimization, thermal energy storage 
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INTRODUCTION 

 As demand for low cost and clean renewable energy continues to be pushed 

globally  [1], [2], [3], the need for developing strategies to match demand side resources 

more closely with supply side electricity availability is becoming increasingly important.  

This is necessary because certain issues are created when utilizing renewable generation, 

some of which are often overlooked by conservation groups, such as a lack of base load 

generation resources and the intermittent (constant cycling based on weather patterns) 

nature of renewables [4].  Matching electricity supply and demand resources allows the 

electric generating utility to more fully utilize these intermittent renewable generation 

resources such as wind and solar [5] which allows the utility to decrease the amount of 

time it must operate expensive and/or inefficient peaking generation assets which are 

generally only used to meet high electrical demand over short periods of time.  An 

additional benefit to matching these resources is that it also reduces the amount of energy 

wasted through spinning reserves on the grid - a spinning reserve is an on-line reserve 

generating capacity that is operating synchronized with the grid system and is ready to meet 

electrical demand within 10 minutes of dispatch [6].  This capability is afforded because 

matching the supply and demand creates less uncertainty in the load disparity and can act 

like a buffer to account for rapid changes in either demand or generation, which would 

normally be addressed with spinning reserves.  
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Another major concern that matching these two entities helps alleviate is that 

current approaches of integration utilize fossil fuel plants out of their initial design 

condition for ramping up and down to match the supply with demand.  This has been shown 

through an Electric Power Research Institute (EPRI) study to cause premature failure of 

the system’s components, increasing the cost to generate electricity for the utility while 

increasing the imbalance with the demand side even further  [7].  Furthermore, relying on 

these plants to match the system demands could potentially offset a portion of the 

environmental savings seen from renewable generation and will increase local emissions 

at these generation plants as they will operate at lower efficiency levels than under optimal 

operating conditions  [8], [9].  Finally, matching the supply and demand of energy reduces 

the amount of time each year where free renewable generation is curtailed and wasted even 

when the resource is available [10].  With no intervention from electric utilities, this 

mismatch will only continue to increase as more and more intermittent renewable energy 

is introduced onto the grid. 

The most prominent examples of intermittent renewable energy generation sources 

are wind and solar photovoltaic (PV).  Their addition onto the grid is coming at a rapidly 

increasing pace [11], [12], therefore there is a growing need from the utility to ensure that 

homeowners do not encounter an interruption in their electrical service as a cloud passes 

or the wind ceases to blow.   

The consequences that result from this variability not only include grid reliability 

issues but also the generation output variability can cause large fluctuations in energy 

delivery costs throughout the day depending on the resource availability and the amount of 

base load generation currently operating on the system. This is already becoming a reality 
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in some cases, particularly in the mid-west, where prices have reached $0/kWh (free) or 

even negative where the utility pays the consumer to take the energy during the night while 

wind is abundant and power demand is low  [13].  This represents a large incentive to the 

consumer to receive low cost energy off-peak and give them the potential to lower their 

energy costs substantially while also benefiting the utility by helping to balance the grid in 

times of high or low renewable production.  

Additionally, increasing the amount of intermittent renewables on the grid greatly 

increases the complexity of deploying generation assets to meet the current and future 

demand.  Currently the electric grid is controlled and scheduled based on hour-ahead 

energy demand forecasts which are used to match hourly energy generation projections.  

This information is used by the utility to determine the best mix for generation resources 

that can be combined to meet the load requirements based on fuel costs, ramp rate, capacity, 

maintenance schedules, emission rates, etc. [14].  The system then designates certain 

generation resources with fast ramping capabilities such as hydro, combustion turbines, 

etc. to follow the electricity demand and compensate for any errors in the demand side 

forecasts.  However, with the introduction of intermittent renewable energy generation, an 

extra layer is added to the complexity of this approach by causing the generation side to 

vary along with the demand side and very likely taking the load following resources outside 

their generation capabilities.  
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Problem Statement 

The factors described above have led to the realization that a relatively low-cost 

and effective method for storing energy when it is abundant and minimizing the energy 

production requirements when it is not must be developed if the renewable energy 

generation era is to continue.  This project seeks to addresses this mismatch in energy 

supply and demand and develops a method for integrating intermittent renewable energy 

into the grid utilizing some form of distribution level energy storage and existing 

infrastructure on the customer side through demand response.  This concept development 

can be seen graphically in Figure 1 and is seen as the most economically and 

technologically feasible approach for the near to mid-term future.     

 

Figure 1. Overview of Project Concept Development. 
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Project Strategy 

It has already been noted that it is very costly and undesirable or sometimes even 

impossible to manipulate traditional generation levels to match the real-time energy 

demands of customers when high penetration level of renewable generation resources 

exists [4].  Therefore, other approaches must be taken to absorb the energy fluctuations 

caused by the constant increase and decrease of energy output caused by renewable energy 

generation [15].  Figure 2 describes the way the grid network is setup and can be used to 

visualize methods available to match the supply with the demand of energy. 

 

Figure 2. Grid Interactions with Current Infrastructure. 

 

The two sides around the transmission and distribution systems in the figure must 

become more in sync with one another and be able to respond, up or down, depending on 

what the other is doing.  This change must occur at a dynamic pace and can be seen as a 

balancing act with the existing infrastructure acting as the center of the scale (imagine the 

Legal Scales of Justice) and the supply and demand for electricity moving up and down to 
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keep the system balanced. Take for example the electricity generation of the wind farm 

shown in the left chart in Figure 2.  The output is steady at 600 MW of output at 7am but 

the wind suddenly slows from 25 mph to a calmer 10 mph, which decreases the output of 

the wind farm substantially.  To compensate for this reduction in wind energy generation 

there must either be an increase in some other generation source to match the energy 

demanded or the energy demanded on the system must be reduced to match the reduction 

in the wind energy generation.  The next portion of the paper seeks to describe the generic 

proposed approach for compensating for this discrepancy.  

 

 

Current Options for Supply and Demand Balancing 

Today there are three major options which can be utilized to help match the supply 

and demand of energy from situations similar to the example above and prevent issues on 

the grid which can lead to failures, brown-outs and even black-outs [8].  The strategies are 

shown below in Figure 3 and are explained in more detail later in this section and in future 

sections.  

1. Vary the output of traditional generation assets (coal, combustion turbines, 

combined cycle plants, etc.) to follow the difference between the energy demanded 

from the system and the generation supply, including the variability in renewable 

generation. 

2. Install energy storage into the grid which can absorb energy as renewable energy 

generation output is high and discharge energy as renewable energy generation 

decreases. 
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3. Utilize energy storage existing on the grid such as water heaters, HVAC and plug-

in electric vehicles (PEVs) through demand response to absorb or discharge energy 

as needed.   

 

 

Figure 3. Current Options for Supply and Demand Balancing. 

 

Traditional Generation. The first strategy available is to vary the output of 

traditional generation plants (e.g. coal, hydro and natural gas) up and down continuously 

to match the demand of the system.  This section is meant to describe a portion of how the 

grid is operated today which are seen as relevant to this research topic and is only described 

at a generic level.  This information is intended to be used for background support material 

for the reader to understand some of the complexities associated with operating an electric 

grid.   

 The most important thing to note about the current operation of the electrical grid 

is that it is continuously operated in real-time since there is little to no way for the utility 

to store the energy once it is produced.  This implies that the energy must only be generated 

Renewable 
Generation
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when it is required or demanded from the energy consuming devices on the grid, however 

there are relatively few parameters at which the grid can be controlled.  These include 

things such as voltage readings, frequency guidelines and import/export energy readings 

between a utility’s physical boundary and another utility’s through their interconnection.    

 To plan for generation resource a utility develops an inventory of their generating 

units and purchasing options – or demand response options where applicable.  The units 

are put into a “stack” from least costly to operate to the most expensive and are dispatched 

in the order to meet the system’s energy demands.  Note that the cost of operation is a very 

broad term and includes things such as maintenance schedules, fuel costs, environmental 

costs, heat rate, start up and shut down costs, etc. [14].  This process is generally performed 

as an hourly day-ahead forecast based on projected hourly energy demand at which point 

the units are committed to ensure they are online when necessary [16].   

This process is then re-optimized on an hourly basis throughout the day with intra-

hour discrepancies being accounted for through different reserve options, known as 

operating reserves which are basically capacity that is available and awaiting dispatch 

beyond what the demand on the system is forecasted to be.  The first type of operating 

reserve is regulating reserves which are setup to follow advanced generator controls (AGC) 

to account for rapid variations in demand by ramping available, on-line, generating units 

up and down.  The AGC signal is determined based on the grid control parameters 

mentioned earlier but focus mostly on maintaining the expected import/export of energy at 

the utility’s interconnection.  The second type of operating reserve is a contingency reserve 

which purpose is to be available in the event an operating unit trips and is unable to produce 

generating capacity suddenly.  This type of reserve is often referred to as a spinning reserve 
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since it is required to be available on the system in a very short time period; therefore, it is 

required to be synchronized with the grid and available for dispatch within ten minutes [6].  

Thirdly, electric utilities are beginning to add flexible generation reserves which are 

intended to respond to additional changes on the grid that are not captured in the other 

reserve categories and are used to meet ramping needs between dispatch intervals – see the 

CAISO report on the “Duck Curve” [17].    

 

Grid Scale Energy Storage. The second approach for integration is to introduce 

energy storage onto the system which can be used to store large amounts of energy (and 

power) while demand is low and renewable energy generation is high and release this 

energy as demand increases [9].  This option can require very high capital investments 

from the utility and, for the most part, the technology has not been proven to be a long-

term reliable solution e.g. battery storage [18].  However, there are technology options 

available that can act on a smaller scale, most notably distribution level energy storage, 

which can have a lesser energy and power capacity but are much more economical and can 

be used as an enhancement of a secondary option to assist with the integration process.  

These smaller scale energy storage technologies have been reported to be decreasing in 

cost at a rapid rate as the technology continues to advance and mature while also not having 

to deal with the same issues of scalability associated with grid level energy storage  [19].   

 

Energy Storage through Demand Response. Finally, the third option considered a 

feasible approach is to utilize energy storage that is already in place on the grid, either 

consumer or utility owned, to absorb the fluctuations in supply by altering end-device 
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demand.  This method utilizes a form of demand response and can signal end devices to 

either absorb energy or shed energy based on supply availability and can come in the form 

of an economic incentive to the customer.  Demand response (DR) can be defined several 

ways and can include many different approaches but according to FERC (Federal Energy 

Regulation Commission) it is “changes in electric usage by demand side resources from 

their normal consumption patterns in response to changes in the price of electricity over 

time, or to incentive payments designed to induce lower electricity use at times of high 

wholesale market prices or when system reliability is jeopardized”  [20].  This approach 

of using DR to address this integration problem is already not unheard of and one study 

suggests that 50% of utilities facing this integration problem will use some type demand 

response to mitigate complex commodity management brought on by intermittent 

renewables  [15]. 

 

 

Choosing the Project Strategy  

As noted in the previous subsections, the electric utility industry is currently 

developing strategies of how to integrate renewables into the grid.  To date, these 

approaches have all been unitary solutions and are individualized from one another.  This 

solitary method of integration leads to potentially significant negative impacts caused to 

the utility as well as their customer.  These impacts could include things such as increased 

costs of implementation and operation, high homeowner comfort or operational impacts, 

and even brownouts or blackouts.  Therefore, the proposed project is to utilize a demand 
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response approach paired with a distribution level energy storage system to integrate 

intermittent renewable generation into the grid.  This is demonstrated in Figure 4.   

 

Figure 4.High-Level Project Research Strategy. 

 

This project seeks to prove that this strategy is an economically and technologically 

feasible approach for the short to mid-term to solve the issue for both grid scale and 

distributed scale renewable energy generation integration. In the long-term future, 

additional technological advancements in battery and other storage technologies could be 

used to solve the majority of this issue [21], [22], however the rapid increase in deployment 

of renewable technologies forces a need for a short to intermediate term solution that can 

be provided at a lower cost while still being reliable and operationally functional.  
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Project Control Strategy Overview 

 The following sections describe the research area of the project going forward.  The 

strategy is shown here as an overview and only touches on the major points in the strategy.  

More details are discussed in subsequent sections that seek to answer relevant research 

gaps and justify the strategy chosen by providing modeling results. 

 On the highest level, the overall strategy chosen for research is to utilize energy 

storage on the grid through demand response through the use of real-time pricing (RTP) 

rate structures and more sophisticated control algorithms compared to current controls on 

the grid and distribution level energy storage technologies.  For this research, residential 

homes were chosen exclusively to investigate due to their more simplified and well 

understood energy usage patterns.  However, this strategy is intended to be generic enough 

to incorporate commercial applications as an extension of the same control algorithms. 

 The following list focuses on the initial six steps that will be included during the 

control sequence: 

1. The electric utility will develop sub-hourly, day-ahead energy supply projections 

and convert that into a cost pattern for residential customers.  This task will be 

undertaken similarly to current day-ahead RTP rate structures and will be estimated 

based on demand projections from historical Advanced Metering Infrastructure 

(AMI) data, weather patterns, etc.  The hourly energy costs developed will take the 

traditional energy generation source costs and include critical information from 

projected renewable energy generation output from the utility scale (this step should 

not consider consumer owned distributed generation output at this point as this will 

be considered as a negative energy consumption from the home).  An example of 
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this is shown in Figure 5 which is used as an illustration of what a pricing scheme 

would resemble.  This process will output a cost data set that includes fossil fuel 

generation as well as renewable sources. 

 

Figure 5. Example Time-Varying Cost of Energy 

 

2. This developed hourly energy cost information shown in Figure 5 will be sent from 

the utility to the residential homeowner, as shown in Figure 7.   

 

Figure 6. Flow of Pricing from Utility to Consumers 
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The homeowner then inputs the pricing information into an advanced home energy 

management system and builds granular energy consumption profiles, which are based on 

pricing and their specific homeowner preferences.  Note that this will change from 

homeowner to homeowner and will ultimately be in the homeowner’s complete control to 

use energy as they wish.  This is illustrated in Figure 7 where the control system combines 

energy costs and homeowner preferences to develop a daily load schedule for appliances. 

 

Figure 7. HEM Optimizing Energy Usage based on Preference and Energy Cost 

 

3. Once each home within the distribution network has developed their daily schedule 

for both energy demand and usage, the energy usage profiles are aggregated and 

sent to the utility as one combined load shape.  An example of this is shown in 

Figure 8.   
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Figure 8. Energy Usage Information Aggregated and Sent to Utility. 

 

4. The electric utility then takes this information, combines it with details about the 

available distribution level energy storage capabilities for the day, and develops an 

optimized energy storage dispatch strategy to achieve the lowest energy costs for 

the load shape scenario.  Based on this information the utility then republishes the 

sub-hourly energy costs to the homeowners as it did in Task 1. 

5. Each home then individually receives the new sub-hourly energy cost data and 

reevaluates its daily energy consumption strategy.  Once this has been redefined 

based on the new energy cost, the system’s sub-hourly load shape is sent back to 

the utility.   

6. At this point, steps 4 and 5 are iterated until a reasonably accurate alignment of 

energy supply and demand can be found.  Steps 4 through 6 are shown in Figure 9. 

Aggregation Point

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

En
er

gy
 U

sa
ge

 (k
W

h/
hr

)

Hour of Day

Home 1 Home 2 Home 3 Home 4 Home 5
Home 6 Home 7 Home 8 Home 9 Home 10

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ag
gr

eg
at

e 
En

er
gy

 U
sa

ge
 (k

W
h/

hr
)

Hour of Day



16 
 

 
 

 

Figure 9. Iteration of Steps 4 to 6. 

 

 Although this process outlined above will allow the utility to have a reasonably 

accurate load profile for the upcoming day there will still be two major issues to overcome.  

The first issue is intra-hour inaccuracies in renewable energy generation output.  In 

addition, there will also be inconsistencies from the energy consumption patterns 

developed and reported to the utility and their actual sub-hourly (2) and hourly (3) energy 

consumption.   

 To help address the issues presented by items one and two, the homeowner’s water 

heating (presumably electric resistance or heat pump) and any on-site energy storage will 

be implemented on a separate RTP rate which is calculated and redistributed to 

homeowners on a fifteen-minute basis based on the updated renewable energy generation 

output and projected energy demand forecasting.  This updated RTP rate will only be 

applicable to energy storage devices within the home and will require additional sub-
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metering of loads which for these scenarios makes sense at the circuit breaker level.  This 

can be referred to as step 7 in the control strategy. 

 The following subsections introduce the topics in slightly more detail and reference 

the sections of the report where more details can be found into how each step of the control 

algorithm will be setup and executed.   

 

 

Step 1: Utility Hourly Cost Estimation 

 The first step in the control strategy requires the utility to develop a fifteen-minute 

energy cost profile for each day, the day prior.  This type of energy cost profile is already 

done in today’s energy markets and are available to customers, [23], [24], although not 

typically in intervals lower than hourly.  These rate structures are also typically only 

available to large commercial and industrial customers where large energy consumption is 

present.  Even though these rates are typically only available to large customers that have 

the means available to control their energy usage in a more real time manner through 

automation, it is not seen as a large hurdle to translate the energy costs on a sub-hourly 

basis to the residential market.  Examples of this type of pricing structure can already be 

seen in Comed’s Hourly Pricing Program [25] which is a program where their customers 

can pay the PJM market price in either a real-time manner or based on the day ahead PJM 

hourly wholesale market rate.  This rate is a pass through of PJM market prices to 

customers which does not exist throughout the country but all energy markets would have 

some type of market cost mechanism to allow for the utility to implement a similar type of 
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rate structure.  Additional details on the rates are discussed in the section titled Rate 

Structures on page 26. 

 

 

Step 2: End-Device Load Management Selection Process 

The second step in the process begins with transmitting the pricing rates to the 

homeowner.  This can be done today using different automated metering infrastructure 

(AMI) that is used for billing purposes and is used in current rate structures similar to the 

ones described in Step 1.  Other methods of delivering the rate structure can be 

implemented and the control strategy is agnostic to the method of delivery.  The key is to 

have the rates available and to be received by the homeowner’s home automation system.   

Once the pricing schemes are delivered to the homeowners, a home automation 

system must be in place that is capable of receiving the energy costs as an input and is 

connected to the necessary appliances with the ability to control their operation and have 

scheduling capability.  The key appliances in this control algorithm are the HVAC through 

the thermostat, electric water heater, clothes washer and dryer and the oven.  These devices 

are all commercially available as of this writing by multiple large manufacturers.   

In the future, this profile will be developed with systems similar to the research 

performed in [26], [27], [28], [29], [30], [31], [32], [33], [34], [35] and will be tailored to 

the homeowner’s preferences and ultimately be fully controllable by the end user.  These 

systems utilized advanced optimization algorithms and cost minimization techniques 

which replicating is out of the scope of this project.  For the research and model presented, 
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a simplified home automation controller was developed to demonstrate the results which 

can be improved as more advanced home optimizations are put in place. Additional details 

can be found in the section titled Load Management within the Home on page 30. 

 

 

Step 3: Delivering Energy Consumption Profile to Utility 

 Individually all the homes in the program will develop their daily load shape based 

on when their appliances will operate and forecasted HVAC usage.  These individual 

energy profiles will be combined into aggregate load shapes as the information gets closer 

to the utility.  This can be done at a community, substation or down to the neighbor level 

with the intent being at each layer, less and less data sharing is required.  An example of 

this communication and data architecture is shown in Figure 10. 

 

Figure 10. Tree Communication Setup Example 
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Step 4: Aggregating Energy Usage and Combining with Energy Storage 

 Once the utility receives the combined load shape from all of the participating 

homes, the next step is to include any energy storage the system contains.  This will further 

enhance the ability to shift energy usage from low renewable energy generation times to 

over-generation times by storing energy within a battery or similar technology.  This 

flexibility added to the system gives the operator and grid-controls many options of how 

to better optimize the grid but for this study, cost reduction by aligning energy usage with 

generation is assumed to be the priority.  However, this does require some type of control 

logic to not charge when prices are above a certain threshold and discharge when the energy 

prices are below a threshold.  The control algorithm and sizing method can be seen in the 

section titled Scaling Renewable Energy Output on page 61. 

 

 

Step 5: Iterating the Energy Usage Profile Based on New Energy Costs 

 Now that the utility has received the energy usage load shapes for all the homes in 

the program for the upcoming day and combined that with an optimized battery dispatch, 

the algorithm now recalculates a price of energy for each timestep and sends that 

information back out to the individual homes.  These new energy costs are based on the 

fifteen-minute difference between the energy usage in that time period and the renewable 

energy generation for that same period.  If the energy usage is greater than the renewable 

generation, the energy cost will increase to incentivize the homeowners to shift their usage 

to lower cost time-periods.  These lower costs time-periods occur when the renewable 
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energy generation is higher than energy usage, which drives the cost lower with each 

iteration.  Once the homeowner receives the updated price, their home automation system 

then develops a new fifteen-minute profile for the upcoming day based on the new energy 

costs and their previously entered preferences.   The information is then fed back to the 

utility as previously described.  The method for updating the energy costs to be resupplied 

to the homeowner is discussed in the section titled Calculating an Updated Fifteen-minute 

Energy Cost on page 87. 

 

 

Step 6: Continue the Process until Reasonable Alignment Occurs 

 At this point, the components of the control algorithm have been put into place and 

implemented between the utility and the homeowner.  The process is then repeated multiple 

times until a reasonable alignment of the usage and generation occurs.  For the purposes of 

this model, a set of parameters are established to demonstrate the concept but reduce the 

computing power required to run the system to that of a desktop PC.  These parameters 

include to reduce the annual energy costs to all of the homeowners, increase the profit by 

a minimum of 1% while decreasing the energy storage requirements by 15%.  This portion 

of the control algorithm is discussed in the section titled Modeling the Control Algorithm 

on page 98. 
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Step 7: Supply energy storage systems an updated RTP rate 

 Since the daily schedules are developed for each home on a day ahead basis, there 

will ultimately be errors in daily forecasting for both renewable energy generation and 

energy consumption.  To help alleviate these forecasting errors, a final step is introduced 

in the control algorithm.  This final step works on a fifteen minute ahead forecast of both 

energy generation and consumption and sends an updated RTP rate to energy storage 

specific devices within the homes.  This updated cost is meant to encourage energy storage 

devices within the home – e.g. battery energy storage, electric vehicles, electric water 

heating – to either consume or shift energy consumption to better align the energy 

consumption with renewable energy generation.  This portion of the control algorithm is 

explained in more detail in Adding in Thermal Energy Storage to improve flexibility on 

page 91. 

 

 

 What the Control Strategy is aimed to Solve and What it is not 

 It is very important to the research project to define what issues the proposed 

control strategy is meant to solve and what is beyond the scope of this solution.  This allows 

the project to focus on its major research goals without expanding beyond them to solve 

issues that are better fit for other solutions and technologies.   

The core technology involved with this control strategy, homeowner appliances, is 

a device not owned by the electric utility.  This is fundamentally different from virtually 

all other programs developed today.  It can be argued that battery storage is also a core 
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technology but it is seen as a supplemental piece of this strategy and the goal is to minimize 

its size as much as possible with customer owned assets.  This leads to requiring a different 

set of rules and considerations before focusing solely on the more traditional economic 

decision making from the utility perspective.  These considerations include homeowners 

comfort impacts and allowing the homeowner to maintain control of their energy usage 

however they see fit for their lifestyle.  This means that for this control strategy, the electric 

utility can provide a homeowner with a pricing signal meant to incentivize them to shift 

their energy consumption but ultimately has no control over how much or when the 

homeowner chooses to use the energy.  This is similar to how c homeowner utilize energy 

today but is in sharp contrast to most demand response programs which typically use direct 

load control as a means to reduce energy consumption immediately when the utility needs 

it.   

Additionally, since the core technology is owned by the homeowner, a lower limit 

on a timeframe of events must be made.  As was mentioned previously in this report, a 

major issue utilities face when integrating renewable energy is the second-by-second 

changes that can be seen on the grid caused by rapid fluctuation in renewable energy 

generation output.  This however is not the focus of the proposed control strategy and is 

outside the scope of the project.  While the energy storage aspect of the strategy may be 

capable of performing a limited amount of this service, the proposed control strategy is 

only meant to better align the supply and demand of energy so that the issues related to 

sub-second or even sub-cycle can be handled with dedicated assets.  Therefore, the 

timeframe chosen for the project is fifteen-minutes, which is seen as adequate for helping 

aligning supply and demand while also not causing negative impacts to the consumer.   
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Although PJM operates in timeframes down to five minutes [23] a fifteen-minute 

timeframe is chosen for multiple reasons, most notably the facts that 1) a residential or 

commercial customer will only have a limited amount of appliances that can react in a 

shorter timeframe and 2) to minimize any maintenance issues that could be caused by 

increased cycling of equipment.  The best example for both of these criteria is the home’s 

HVAC system.  For the first situation, a home’s HVAC system will typically take several 

minutes of operation to reach a steady-state of operation [36] where the output of the 

system increases throughout that time while energy consumption stays relatively constant.  

This means that ideally an HVAC system should operate for longer run times at a smaller 

kW capacity and without frequent on and off commands.  The second reason listed is done 

to prevent rapid cycling of the HVAC system.  While [36] points out that efficiency can be 

negatively impacted by operating the unit for short timeframes, turning equipment on/off 

rapidly can cause increased maintenance issues and decreased lifespan of the equipment. 

These constraints on the control strategy are not seen as limiting factors which 

decrease its value, rather the whole strategy is seen as a way to help optimize the way 

energy is consumed to match renewable generation and not as a “fix-all” solution.  This in 

turn will allow other technologies and ancillary services to perform their tasks more 

effectively and have their required installed capacity and costs reduced.    
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LITERATURE SURVEY AND DIFFERENTIATION METHODS 

There have been several studies published which focus on developing the best 

approach to autonomously integrate homes into a variable pricing rate structure with cost 

minimization to the customer being the common end goal between them.  All the systems 

require some form of home energy management (HEM) system which communicates to a 

set of the homeowner’s appliances and has the ability to control the state in which the 

appliance is in, e.g. on or off, it can also have control of temperature setpoints on systems 

such as Heating, Ventilation and Air Conditioning (HVAC) and water heating. This section 

seeks to discuss a number of these approaches and how they can be used as a tool to meet 

the overall goal of this project.  This section is broken down into four major subsets, the 

first focusing on the overall control strategy and how previous research can be leveraged 

to enable this type of algorithm.  The second section discusses what type of utility rate 

structure is the most effective for flattening the overall demand load shape and how this 

strategy can be used to avoid load synchronization with real time pricing.  The third section 

focuses on control within the home and what local control strategies exist to convert the 

interval pricing delivered to the home into a meaningful schedule.  Finally, the fourth 

section focuses on how different appliances are labeled and quantified in the load 

management system. 
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Overall Control Strategy  

Previous work in this field has been performed, most notably the work done by 

Bakker et al. in [32] and [35] which presents a three step optimization methodology which 

includes building a daily load shape for the house and can be used to find an optimal 

solution for different use cases by making operating decision for all appliances in real time 

using a centralized controller.  This approach stops short of utilizing any inherent thermal 

energy storage in the home and its appliances and also does not provide negotiations 

between the homeowner and the utility to provide a more optimal solution.  This approach 

also provides the utility the ability to perform real-time control of appliances within the 

home and also leans more towards traditional load control programs which removes the 

customer’s ultimate control of their systems and can lead to comfort impacts and negative 

homeowner satisfaction.  Another noteworthy project is presented by Li et al. in [26] which 

presents a method to determine the daily energy usage of a home and optimize its 

performance based on a learned thermal model of the home from thermostat data.  

 

 

Rate Structures 

There has been a large amount of research into what types of varying rate structures 

can be implemented by utilities to encourage customers to more closely align their energy 

consumption patterns to the cost-to-serve from utilities.  Today, typical rate structures do 

not vary throughout the day, with research from the Brattle Group stating that only about 

one percent of the United States population is on a dynamic rate structure [37].  These 
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traditional rates change only based on an inclining or declining block rate structure – an 

inclining or declining block rate is one in which the cost per energy unit increases or 

decreases after a certain amount of energy is consumed, respectively.  However, a more 

effective method of matching the demand for energy with the supply is to implement a 

variable pricing rate structure that changes throughout the day, including real-time pricing, 

day-ahead pricing, time-of-use pricing and critical-peak pricing [38].  This not only closer 

matches supply costs to rates paid by customers but it also encourages consumers to shift 

when they use energy to lower cost periods during the day.  While encouraging customers 

to control their usage and shift to lower cost periods is a major goal of variable pricing rate 

structures, too much success at large scales of the program during a certain time period can 

actually cause too drastic of a shift and create a new, artificial peak caused by everyone 

shifting their usage to the lower cost time – referred to as load synchronization [34], [39].    

Multiple approaches have been documented in research on how to avoid this 

problem, the first can be found in [32] as presented by Bakker et al.  This research presents 

a method of randomly assigning energy costs to different customers throughout the day, 

within a certain band, to spread out and flatten the load shape as an aggregate.  This 

research makes sense on a theoretical level as it would incentivize customers at a different 

level to use energy at the optimal time and quantity which meets the goals of a variable 

pricing program from the utility perspective.  However, charging customers within the 

same neighborhood a different cost for energy throughout the day while the cost-to-serve 

remains uniform between them makes an approach like this nearly impossible to implement 

in a highly regulated industry.  This would be true even if randomization were setup to 

equalize the pricing structures over time for each customer.  The second resolution is 
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proposed in [38] which implements a simple addition of an inclining block rate on top of 

the real-time pricing component.  This allows the customer to respond to true market 

signals through real-time pricing rates but also allows the utility to cap the number of kWhs 

consumed at each pricing tier per customer during a particular time block.  This approach 

incentivizes the customer to flatten their load shape to remain in the low-cost tier of the 

inclining block rate structure while optimizing their building’s energy usage to reduce their 

utility bills, preventing load synchronization from occurring.   

A third approach to avoiding load synchronization is presented in this research.  By 

allowing the homeowners in the program across the territory and the utility to negotiate a 

day-ahead sub-hourly pricing schedule, a true cost-of-service can be achieved and passed 

along to the customer.  The algorithm developed for this research runs through many 

iterations and negotiations between the homeowner and the utility (see steps 4-6 in Project 

Control Strategy Overview on page 12).  This algorithm sends the same fifteen minute, 

day-ahead pricing scheme to each participant’s home automation system who then 

calculates the energy usage for each time period throughout the day based on that price.  

This information is aggregated and sent back to the utility.  At this point, the algorithm 

calculates the difference between the energy generation profile (including renewables) and 

the energy consumption profile on an aggregate and if adjusts the price accordingly.  This 

means that as the energy consumption is greater than the energy generation profile, the 

price will increase and if the energy consumption profile is less than the generation profile 

the energy costs will decrease in that time block.  This is iterated until certain parameters 

are met, changing the price at each iteration for each timestep.  This will be shown in the 

section titled Annual Energy Costs to Home Owners on page 114 to actually reduce the 
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annual energy costs to the customer while also increasing the profit a utility can make 

which is shown in the section titled Profit earned by the Energy Utility on page 118.   

Another issue that must be taken into consideration is the frequency of rate structure 

changes and how often rate prices are updated.  This issue influences three major areas, the 

first of which is the ability for HEM to optimize the home’s energy consumption at the 

chosen time step.  The development of an optimized control strategy requires time and 

computational power, which could render a previous iteration obsolete if the energy price 

changes mid-calculation [32].  In addition, secondly, several appliances within a home are 

damaged with frequent cycling on and off – see an incandescent lightbulb and more 

importantly the lockout timer on an HVAC system [36].  When the pricing structures are 

chosen to be too short then the risk of premature failure of the homeowner’s equipment 

becomes important although having a time step too large can minimize the benefits of the 

variable pricing program.  The third majorly impacted area is the communications network 

that must be implemented to support sending and receiving these pricing signals.  

Communications networks have come a long way over the past decade there are still many 

challenges that must be overcome to ensure information can be safely and securely passed 

between the utility and the customer [40].  Even with these advances, the more bandwidth 

and throughput of communication signals that are required, the more the upfront and 

recurring costs for the system will be.  Authors in [32] attempted to alleviate the bandwidth 

issue by developing a control scheme that spreads out the resources and combines them 

into a tree structure with less and less data being passed at each level, minimizing the 

communications infrastructure requirements at the utility.   
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Currently, electric utilities operate down to five minute increments in real-time 

bidding markets like PJM [23] which calculate locational marginal prices based on grid 

operating conditions.  Other utilities operate their real-time pricing structures based on 

hourly marginal costs such as Georgia Power’s Real Time Pricing – Day Ahead Schedule 

[24] and PJM’s day-ahead energy market [23]. 

Based on the current industry practices and to accommodate the communications and home 

owner reliability issues, the modeling in this project focuses on a combined approach.  This 

approach provides day-ahead, fifteen minute pricing to the customer to allow their home 

energy usage to be optimized but provides cost updates throughout the day based on short-

term forecasted renewable energy generation which will be used by the homeowner to 

control things such as electric water heating (see Interruptible loads in the section titled 

Categories of Appliances) and any energy storage systems to help compensate for errors in 

the day-ahead renewable energy generation forecasting.  

 

 

Load Management within the Home 

After the utility provides the customer with interval rates, the customer must then 

be able to take that information and perform actions based upon it.  This is where load 

optimization platforms come into play and can be used to develop energy consumption 

strategies to meet the customer’s needs while shaping their energy usage around the needs 

of the utility.  Research has been performed in this area and this section summarizes some 

of the relevant systems found and how they apply to this project.  All the systems found 
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have the initial goal of reducing the home owner’s energy bill with the secondary benefit 

of matching their energy consumption with the supply of energy available.  The research 

in this report does not contradict any of those benefits but refocuses the primary objective 

on matching the home’s energy demand with the supply of energy available while also 

maintaining the home owner’s comfort within certain boundaries and lowering their energy 

bill.   

The first set of HEM platforms focus on optimizing a single home’s energy use 

with battery energy storage and time varying pricing.  This is the simplest method of 

optimization which uses a form of energy arbitrage to store as much energy as possible in 

the batteries when it is at a low cost and then consume the energy from the batteries rather 

than the grid as prices rise.  In [41], a model is built around this concept to develop a Nash 

equilibrium game theory control method to determine the optimal control method for the 

batteries in the home.  Nash equilibrium is a form of game theory where each player acts 

separately and selfishly and meets equilibrium when none of the participants can gain by 

changing their strategy to the game [42].  These control strategies are enacted based on 

home load shapes, energy supply load shapes which translate into pricing signals from the 

utility in each time period – generally an hour and generally in a day-ahead market.  This 

means that the utility tries to influence the patterns of the home by utilizing pricing signals 

but ultimately has no control over any of the customer’s loads directly.  A similar study 

was done in [28] which focuses on a stochastic optimization of HEMs when a home has 

onsite renewable generation and battery energy storage.  This study adds in the element of 

uncertainty in both load demand and generation which is accounted for by their method of 

estimating the future energy usage impacts from control decisions. 
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There have been several other research projects found related to this topic and serve 

as a foundation for this project, however the available research focuses on different 

objectives. These include factors like solely minimizing the cost to the customer and do 

not allow the utility to utilize the information to optimize the grid and benefit all consumers 

served [26], [28], [29], [30], or focus on only one technology in the home [31], or plan to 

operate in a continuous real-time manner [32], [33], [27], [34] requiring unnecessarily high 

levels of computing power, communication bandwidth and has a high potential to cause 

customer inconvenience.  

The research of this paper builds upon the separate research performed in the papers 

discussed in this section but also includes major differences such as a) longer time horizons 

for scheduling of different appliances, b) overall simulation goals of incorporating 

renewable generation sources using demand side resources and energy storage to 

supplement the grid rather than having an additional local fuel based generation source c) 

optimizing the grid rather than solely minimizing the energy costs to the customer and d) 

utilizing the same pricing signal to all customers at all times rather than steering customers 

individually with customized cost signals.  These four major differences are seen as gaps 

in the present research in the area and can be used to improve the work done previously 

while also making it more relevant to current US energy market.   

The first change (a) allows for sub-hourly planning of individual appliances through 

the use of pricing signals, increasing the granularity of accuracy while also adding rules to 

the algorithm to prevent the systems from short cycling by implementing a minimum run 

time.  This is done day-ahead. The control strategy also includes a more real-time approach 

to send a second pricing scheme to energy storage devices which can be used to compensate 
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for errors not seen in day-ahead forecasting.  The second change (b) shifts the overall focus 

of the research from a self-serving algorithm to minimize the cost for one individual to a 

system which allows the players involved to minimize their energy costs while also 

working together to optimize the grid and decrease the amount of fossil fuel based 

generation required to meet their needs.  This also allows the utility to ensure they are 

increasing their profit, providing a business justification. The third change (c) addresses a 

major flaw with high penetration of real-time pricing rates, load synchronization.  This is 

when virtually all shiftable energy usage moves to the lowest cost period in the day.  By 

including multiple negotiations between the homeowner and utility, this synchronization 

can be avoided by leveraging the iterations to flatten energy usage out over the true low 

cost periods.  Finally, the fourth change (d) is implemented to maintain fairness to all 

customers involved.  This change increases the complexity of the algorithms required and 

also increases the number of iterations required but is seen as the only feasible option for 

field implementation due to the amount of government regulation in the utility industry and 

maintaining an unbiased control algorithm. 

 

 

Categories of Appliances 

To be able to interact with household appliances in a near real-time manner, the 

load management system must know which loads can be shifted, started and stopped or 

ones that are mandatory to operate when the customer requests.  Several research reports 

were found that have investigated this breakdown [34], [28], [43], [44].  The research in 

[28] utilizes a system that breaks out appliances into two categories; controllable and must-
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run.  The controllable appliances include things like electric stoves, clothes dryers and pool 

pumps and represent appliances that operate over longer periods of time and the impact to 

the consumer by interrupting the device is minimal.  The must-run appliances are things 

that could potentially cause the customer a large and immediate impact if their power 

source were interrupted including a television, a desktop computer and clothes iron.  In 

[43] the authors also include energy storage devices as a final category which can be used 

to charge or discharge at any time based on market prices, capacity and storage capabilities.  

For a more complete categorical breakdown of appliances, more options were 

needed to ensure that the system can operate with full functionality.  In [34], the loads are 

split into three categories; first are delayed appliances which can be postponed if they are 

already in the off position but if they are already turned on then they will remain in the on 

position.  An example of this is a washing machine which can generally easily be shifted 

but cycling the machine mid-cycle could damage the equipment, clothing or just cause 

unnecessary inconvenience on the customer.  The second category are appliances that are 

interruptible no matter which mode they are currently in – the best example of an 

interruptible appliance is a water heater since its energy consumption pattern can easily be 

manipulated due to the thermal energy storage buffer built in with the hot water storage 

tank.  Finally, the third category mentioned are non-interruptible appliances such as a 

television or a desktop computer. A fourth category is added in [44] which includes 

appliances that have elastic energy consumption with storage available.  The best example 

of this category of appliances is an electric vehicle (EV) with a varying charge rate.  This 

type of device can have its energy consumption rate manipulated overnight since the only 

thing the consumer is concerned with is the state of charge in the morning.  
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HOUSE ENERGY MODELING 

 For the research project to be evaluated, a detailed building energy model must be 

developed which includes all the appliances included in Table 1 along with any others 

which will be beyond the scope of this project to control.  There are several options 

commercially available which can be utilized for home energy modeling.  The first set of 

software packages are developed and distributed by major HVAC manufacturing 

companies and provide hourly breakdowns of energy usage for the building and also offer 

recommended HVAC product sizing based on these models, including Carrier Hourly 

Analysis Program (HAP) [45] and Trane Trace [46].  These two programs are largely 

focused on commercial building, are not designed for residential applications, and are 

therefore not the best option for this project.  The second set of energy modeling programs 

are based off a simulation engine developed by Lawrence Berkeley National Labs for the 

US Department of Energy called DOE-2 [47], which is able to predict energy usage and 

costs for all types of buildings – including residential [48].  From this simulation engine, 

visual based front-ends have been developed including eQuest [49] and VisualDOE [50].  

This simulation engine and its associated tools have since been replaced with an updated 

building energy modeling engine called EnergyPlus which contains additional advanced 

features such as variable speed heat pumps and thermal energy storage [51]. EnergyPlus is 

a text based platform, which does not contain a graphical user interface, therefore other 

software packages have been developed to pass information to the EnergyPlus engine and 

return the outputs, which can be found at the EnergyPlus website.  The most prominent 
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frontend for residential applications is BEopt, which was developed by the National 

Renewable Energy Lab as part of the US DOE Building America Program to assist 

engineers in developing minimum energy designs and retrofits for homes across the 

country [52].   

 

 

Building Energy Model and Verification 

 For the project a typical home was modeled in BEopt where a reasonably accurate 

inventory of appliances and their usage schedules were known along with the major 

structural and architectural features of the home.  The home, shown in Figure 11, was 

chosen because, along with the appliance inventory and architectural data, the author has 

access to interval meter data and the permission to utilize this information to develop a 

side-by-side comparison to ensure the accuracy of the thermal characteristics from the 

BEopt model to the actual performance of the home.   

 

Figure 11. Model Home for Building Simulation Verification. 
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  This home is located in a suburb south of Birmingham, AL and is a one story, ranch 

style home with three bedrooms, two baths and is approximately 1,850 square feet.  The 

physical dimensions of the home were found using satellite imagery software to estimate 

the various dimensions needed and a thorough walkthrough provided the structural 

information needed such as windows and types, wall thickness, insulation levels in the 

attic, etc.  This information was entered into the BEopt software package and the layout of 

the home is shown in Figure 12. 

 

Figure 12. Modeling Layout and Dimensions of Residential Home. 

 

The home contains both electric and gas appliances which are all included in the 

model.  The major appliances and their size and efficiency are described in more detail in 

Table 1 which is utilized as an input to the simulation model while the smaller, remaining 

energy consuming devices were combined into a miscellaneous category but still entered 

into the model to account for its energy usage and internal heat gain to the space. 
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Table 1. Major Appliance Descriptions 

Appliance Type Fuel Type Size Efficiency 
Central HVAC  Heat Pump with NG Aux Heat 3.5 tons 15 SEER/9 HSPF 
Water Heater Natural Gas 50 gal Approx. 59% 
Stove/Oven Electric 5 kW* n/a 
Refrigerator Electric 157 W* Standard 
Dishwasher Electric 1 kW* Standard 
Clothes Washer Electric 400 W* Standard 
Clothes Dryer Electric 4.6 kW* Standard 
Lighting Electric 400 W* CFL/LED mix 
Microwave Electric 1.1kW Typical 
* Design wattage but will vary depending on mode of operation 
 

The schedules of these appliances and temperature setpoints are required by the 

energy model to replicate the internal loads imposed on the space and also to tell the HVAC 

system what temperature to maintain the space.  To do this, several weeks of circuit level 

sub-metered data and thermostat setpoint data was recorded in one-minute and five-minute 

intervals, respectively.  The first use of this information was to develop detailed schedules 

for appliances and the thermostat setpoints throughout the day to match the model with the 

actual energy consumption characteristics of the home.  Major appliances were separated 

and had their own schedules developed to match their energy usage while a miscellaneous 

category was also created to compensate for the energy usage that was not submetered.  

This was done by calculating the maximum energy consumption over a fifteen-minute span 

and then dividing the measured energy consumption at each time-step into that number to 

create a fractional schedule.  The thermostat setpoints were added into the model in fifteen-

minute intervals for the entire year corresponding the data gathered from the thermostat.  

The appliance schedules and thermostat setpoints were input to the EnergyPlus model 

directly by referencing them in a comma separated variables (.CSV) file which must be 

done using the tool’s built in IDF editor and cannot be done using BEopt.   
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 The final step needed before being able to accurately model the home, a weather 

file containing actual data for the time period consider must be created rather than relying 

on a typical meteorological year (TMY) data set.  To do this, a software tool developed by 

Big Ladder Software and the Rocky Mountain Institute entitled Elements [53] was used to 

combine weather data from multiple sources into the correct format to be modeled in 

EnergyPlus.  The air side of the weather such as temperature, relative humidity and dew 

point temperature were found using the Iowa Environmental Mesonet [54] website which 

includes historical weather data for locations across the country.  The data was found for 

the Birmingham, AL airport and includes hourly data for dates specified by the user – for 

this evaluation August 28, 2014 to August 27, 2015 were used to align with the submetered 

data on the house.  This data was downloaded and imported into a spreadsheet where 

missing data was replaced with the preceding and/or following weather information and 

times where multiple readings were taken in a single hour were removed to reduce the data 

set to 8,760 hours.  The second set of weather data needed is the solar radiation data which 

is not available through [54] but is available from SolarAnywhere [55] and the information 

was downloaded for the same time scale as the air side weather data.  This data was already 

cleaned before downloading so it was given in an 8,760 format.  These two sources of data 

were then pasted into their corresponding columns in the Elements software and an 

EnergyPlus weather file was created.   

 Once the input file (.idf for EnergyPlus) and the weather file (.epw) have been 

developed, the model is ready to be simulated.  Since customized schedules and inputs 

were made for the input file, this simulation must occur directly in the EnergyPlus launch 

window shown in Figure 13.   
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Figure 13. EnergyPlus Simulation Launcher 

 

This window only contains two locations to add information which are the paths 

for the program to find the input file and the weather file.  Once these two paths are set, 

the Simulate icon is pressed and EnergyPlus opens a command line window that shows the 

simulation status and progress.  An example of this is shown in Figure 14. 

 

Figure 14. EnergyPlus Simulation Progress. 
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 Once the simulation is completed, a list of errors and warnings are shown to notify 

the user of any missing information, convergence issues during the simulation process or 

similar issues that occur within the model.  However not all issues cause the model to lose 

any accuracy and may just be caused by extra information in the input file.  Finally a list 

of all the meters entered into the input file will provide an hourly interval energy 

consumption output for each.  The model shows items such as cooling energy, heating 

energy, HVAC fans, appliances, water heating and a total facility output.  This information 

was utilized to compare the simulation results to the baseline meter data.   

 Once the model was simulated in 15 minute intervals over the full year, the results 

from the simulation were compared to the measured baseline for this model.   The relevant 

data from the model that can be compared is from 08/05/2015 through 08/21/2015 which 

is the timeframe where minute-by-minute sub-metered data is available for the home.  The 

first simulations demonstrated a similar load shape as the metered data, however the 

magnitude of the peaks were not aligned.  The unknowns in the model were tweaked, most 

notably the air infiltration rate but other items were investigated such as the performance 

of the HVAC system and the occupancy patterns for people in and out of the conditioned 

space.  The model was simulated several times, making minor adjustments each time to 

increase the accuracy of the model compared to the baseline data until the model output a 

very similar total home and HVAC load shape while also matching the energy usage 

closely.  The simulated and measured home and HVAC usage for this time period is shown 

in Figure 15. 
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Figure 15. Hourly Simulation vs. Metered data for Model Home 08/05 – 08/21. 

 

 The data in Figure 15 shows hourly energy usage data for the measured HVAC 

usage (purple line) and simulated HVAC usage (light green line) at the top and also the 

whole home hourly usage data in the bottom graph.  The bottom chart shows the measured 

energy usage in dark green and the simulated energy usage in red.  As can be seen in Figure 

15, the data does not align perfectly for each simulation period but the overall trends are 

very similar and the energy consumption totals and peaks are nearly identical.  This 

information can be seen in Table 2. 
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Table 2. Comparison of Simulated and Metered Energy Usage. 

 Usage (kWh) Peak Hourly Demand (kW) Percent Diff. 
Metered HVAC 306 3.55 0.5%, 3.4% Simulated HVAC 304 3.44 
Metered Home 470 6.8 1.4%, 14.2% Simulated Home 478 5.9 

 

While most parameters in the building model are within a 5% accuracy, the 

simulated peak hourly kW is slightly above 14% different.  This error in the model is 

related to multiple sources including variations in actual weather conditions from the home 

site to the measurement source, inaccuracies in sub-meters used for baseline data, missing 

data from sub-meters.  The simulation is still seen as a representative model of the actual 

home as the load shapes follow each other rather closely in Figure 15 while the overall 

HVAC energy consumption matched almost identically in Table 2. 

Since modeling the control strategy requires a number of houses that can represent 

a neighborhood or a group of homes that aggregate together and use their combined load 

shapes to feed into the utilities planning, other building models must be developed that can 

accurately simulate the effects of changing schedules and temperature setpoints on a home.  

To do this, the US Department of Energy has released single-family home models in the 

EnergyPlus (version 5.0) format that meet the requirements in each of the fifty states for 

energy codes in the years of 2006, 2009 and 2012 [56].  For the purposes of this project, 

homes in Alabama were chosen which contained heat pumps as their primary form of 

heating to give the most effective integration into the control strategy.  Additionally, the 

building models have the option of four foundation types; slab, crawlspace, heated 

basement or unheated basement.  This provides a total of twelve building models to choose 
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from, however multiple fatal errors were found when modeling the heated and unheated 

basement.  This was determined to be caused during the transition of versions from 5.0 to 

the version used in this project, version 8.4.  To avoid these errors, the homes chosen for 

the simulation were limited to the slab and crawlspace foundation types for each code year.  

Table 3 summarizes the ten homes used in the modeling of this project. 

 

Table 3. Energy Model Home Types 

Home Number Foundation Type Code Year  
1 Slab 2006  
2 Slab 2009  
3* Slab n/a  
4 Slab 2012  
5 Slab 2006  
6 Slab 2009  
7 Slab 2012  
8 Crawlspace 2006  
9 Crawlspace 2009  
10 Crawlspace 2012  

*not part of DOE models, home model verified as part of this project  

 

As can be seen in Table 3, the majority of the homes are built on a slab foundation, 

which follows the general trend of homes being produced today.  It is also important to 

note that Home 3 is the home previously described in this section and is not included in the 

DOE set of homes.   

These homes are used as the basis for the system modeling, however certain 

changes to each of the homes were made to provide a diversity of loads and occupancies 

to more accurately simulate a neighborhood or group of homes.  Additionally, the home 

models were initially setup to autosize all water heating and HVAC equipment.  This was 
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seen as a way to introduce unnecessary error into the modeling since the HVAC systems 

would change size based on internal loads during each iteration of modeling which is not 

realistic to how homes operate today.  Therefore, all the autosizing features were 

overwritten by simulating the homes individually and replacing the autosize commands 

with the output from the model.  Also, occupancy and occupancy patterns were updated 

and changed to simulate diversity in home and away patterns and to take into account 

different total number of occupants in the home from a single owner to five total occupants.  

Lastly the appliance energy usages and miscellaneous schedules were updated to match the 

styles needed for to model them as a system. 

 

 

Developing Fifteen-minute RTP Starting Point data 

 To model the system for the project, a basis for the initial set of day-ahead pricing 

must be developed to describe a day-ahead pricing scheme from the utility.  This allows 

the home’s control system to develop realistic schedules based off of this information.  To 

develop this starting point for the pricing scheme, data was pulled from several publicly 

available sources for both typical costs of supplying energy in today’s market and the 

variability of wind and solar generation sources. 

 The first set of data needed is a historical annual real-time pricing cost structure.  

This information can be found through publicly available sources for different energy 

markets throughout the country.  This data provides a baseline proxy to correlate the energy 

demand on the grid for each hour of the year.  This allows the model to begin utilizing 
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realistic historical data to estimate the demand which will be seen during the coming day.  

This data is available for and can be found where electric markets are operated in either an 

unregulated market such as Texas or in large geographic areas where the grid is controlled 

and managed by a separate entity than the one serving the end-consumer such the 

independent system operator (ISO) and regional transmission organizations (RTO) 

markets.  There are several ISOs and RTO located in the US, however the three major are 

PJM [23] which is located in the northeast, CAISO [57] which is the California ISO and 

ERCOT [58] which is the Electric Reliability Council of Texas.  Since the project consists 

of modeling in the southeast US, the northern ERCOT market was chosen due to its most 

similar longitude and climate.  The most recent data set available at the time of the 

download, 2014, was chosen to most accurately represent energy prices which were 

provided at a wholesale rate.  A sample of this data is shown in Figure 16 which shows the 

hourly cost data for February through April.  Note that overall the cost is consistently under 

$0.10 per kWh but during early March 2014, the wholesale cost of energy spiked to over 

$1.30 per kWh for a short period of time.  

 

Figure 16. Sample Real-Time Cost Data from ERCOT February to April 2014 [58]. 
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 The next set of data that is needed for the development of the real-time pricing 

scheme to be used for modeling is wind and solar generation output over a full year in 

fifteen-minute intervals.  For the wind data, there are two major sources of data which are 

freely available to the public and both are provided through the National Renewable Energy 

Lab (NREL).  The first set of data comes from a project that focuses on the eastern grid 

wind integration [59] and contains simulated wind farm output data in ten minute intervals 

over a three-year period from 2004 to 2006 for 1,326 locations in thirty-four states.  

However, Alabama was not included in this initial data set so another data set option was 

investigated.  The second set can be found using the NREL Wind Prospector tool [60] 

which is a graphical map overlay that houses many different types of wind energy data 

from environmental concerns to wind generation potentials.  Within this tool, two sites 

were found in the Birmingham, AL area (sites 12,747 and 12,865) which are both simulated 

to be 16 MW generating capacity and provide energy output in five minute intervals.   

 Finally, the model must have fifteen-minute solar energy output from the same area 

to simulate a mixture of both major types of renewable energy.  This information is also 

provided by NREL and was used during their transmission renewable generation 

integration study.  This data is simulated at five minute intervals using sub-hour irradiance 

algorithms and any of their approximately 6,000 sites can be downloaded on a state-by-

state basis from their website [61].  The two sites chosen for this project are simulated at 

39 MW capacity each and are located in the Birmingham, AL area; one at the airport and 

the other located southwest of the city along Red Mountain.   

 The latest year of data available to the public from NREL for wind energy 

generation was 2012 and the latest available data for solar PV output was 2006.  While 
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these dates do not align with each other or the real-time pricing data from the previous 

section, it was decided to be irrelevant since the modeling is based on typical weather data 

and is used to prove the concept on a more generic basis which is based on realistic data 

but not all conditions present during one specific timeframe.   All four sites, two wind and 

two solar, are shown in Figure 17 for a typical daily load pattern averaged over each day 

in the month of June.   

 

Figure 17. June Daily Load Profile for Wind and Solar PV Generation [60], [61]. 

 

 As can be seen in Figure 17 where the Y-axis corresponds to percent output as a 

function of total capacity and the X- axis corresponds to the hour of the day, the two wind 

profiles (red and gold) and the two solar PV profiles (green and blue) follow very similar 

patterns however they do differ some throughout the month.  The other months have a 

similar profile as June where solar peaks around noon and drops to zero output once the 

sun sets.  Wind has a less defined profile and does not have a set peak and valley since the 

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Pe
rc

en
t O

ut
pu

t (
%

 o
f C

ap
ac

ity
)

Time of Day

Solar RM  (% Output) Solar AP (% Output) Wind 12747  (% Output) Wind 12865  (% Output)



49 
 

 
 

wind is still active during all hours of the day.  Figure 18 shows the same generation output 

data on an hourly percentage output scale. 

 

Figure 18. Hourly Renewable Output Data; June 25 to June 27 [60], [61] 

 

  The data in Figure 18 shows a greater variability throughout the day for each site 

which becomes an important variable when developing the hourly cost of energy profile 

and also demonstrates the difficulties in accurately predicting the output of each system 

throughout the day. The next figure, Figure 19, shows the combined weighted average 

output from all four sites.   
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Figure 19. Combined Weighted Average of all Four Selected Sites [60], [61]. 

 

 The data represented in Figure 19 shows three days of hourly generation data 

weighted for the size of generation capacity of each unit and is what will be used as an 

input to the price cost model as the electric utility as well as the customer will see only the 

aggregated output from these sources.   

 Once a baseline of actual hourly energy costs and renewable generation has been 

found, the next step is to develop a way to combine these two sets of information and 

develop a combined, new annual real-time pricing scheme at each fifteen-minute interval.  

To begin this process, an impact curve was developed to correlate the amount of renewable 

energy generated in each period to a cost multiplier.  For example, if the amount of 

renewable being generated is very small it will increase the fifteen-minute price of energy 
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whereas if the energy generation is very high it will reduce the energy cost for that period.  

It was decided that this was not a linear relationship and not a continuous function so the 

correlation was broken into four separate sections.  There is one correlation curve for when 

energy generation is between 0 and 25% output, a second curve for generation between 25-

50%, a third for 50-75% and finally a curve for 75-100%.  Note that although each of these 

intervals use a different cost curve shape, they align at the endpoints as to not affect the 

results if either equation is used for the transition points.  The curve and the associated 

formulas are shown in Figure 20. 

 

Figure 20. Renewable Energy Generation and Cost Correlation Curve. 

 

 This curve was developed to account only for the portion of renewable energy in 

the utility’s cost plan, for example if the renewable portfolio standards of California were 
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met at 33% by 2020 [1], this cost curve would be applied to 33% of the total cost of energy 

to the customer.  This assumes that at all times throughout the year, renewable energy 

makes up 33% of the cost to serve the energy and not necessarily that renewable energy 

makes up 33% of the generation at any one time.  This assumption is a simplification of 

the actual energy market but detailed analysis on the breakdown of energy supply and costs 

would require knowledge about the generation stack for the utility, their associated costs 

and demand on the grid at fifteen-minute intervals which is not publicly available 

information.  Therefore, the assumption must be made that this breakdown is reasonably 

accurate for the purposes of this project.   

 A spreadsheet was developed that includes fifteen-minute ERCOT real-time price 

data (each hourly price is repeated four times to get to fifteen-minute intervals) and 

renewable energy data from each of the previously described four sites.  This tool is then 

used to calculate the cost multiplier from the renewable energy output at each time step for 

four different scenarios using the formulas previously described.  The first scenario 

evaluated includes all four renewable sites combined, the second combines the two wind 

profiles with one solar, the third combines the two wind profiles with the other solar and 

finally the forth combines one wind with one solar PV system. These scenarios were chosen 

to investigate the diversity of each combination and look at each for the best fit.  Ultimately 

it was decided to use the combination of all four sources since it would more accurately 

represent a long term look at renewable generation with larger amounts of diversification 

of the generation would lead to a slightly smoother load shape.   

 After the cost multiplier was calculated, the updated cost of energy supply must be 

calculated.  This process includes several variables that are identified in Table 4.  
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Table 4. Variables for Rate Setup 

Variable Type Amount  
Renewable Energy Base Cost [62] $0.025 /kWh 
Percentage Renewable Energy Generation [1] 33 % 
Multiplier from wholesale energy costs to delivered cost [58], [63] 3.15  

  

The information in this table was found from several sources, the first one about 

the base cost of renewable energy comes from a report released by the US DOE office of 

Energy Efficiency and Renewable Energy (EERE) about the market of wind technologies 

[62].  In this report, there is a summary of recent power purchase agreements (PPAs) made 

with time horizons of the year 2040 where the cost of energy remains relatively constant 

at less than $25 per MWh ($0.025/kWh).  The second variable was chosen to model after 

the California Public Utilities Commission ruling requiring 33% of energy load come from 

renewable energy sources [1].  The third variable is a multiplication factor used to convert 

the wholesale energy costs downloaded from the ERCOT site [58] to the cost of energy 

delivered to customers.  

 The spreadsheet is then able to calculate the combined energy cost by first adding 

the weighted amount of renewable and traditional energy and multiplying it all by the 

multiplier described above.  This process is repeated for each fifteen-minute period in the 

year and is shown, along with the combined renewable energy generation and the baseline 

RTP data from the ERCOT market [58] for the same period.  This information can be seen 

in Figure 21. 



54 
 

 
 

 

Figure 21. Monthly Profile of Energy Cost and Renewable Output – August 

 

 In Figure 21 it can be seen that, in general, when the renewable generation (red 

line) increases, the calculated energy costs (blue line) decreases.  This is not always true 

since the cost is heavily tied to the traditional generation cost as well which can be seen by 

the orange line in the figure. 
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Finding End-Use Load Shapes 

 The next type of data needed to build the model is customer energy usage data and 

their characteristics which is used to come up with a more accurate representation of how 

human behavior is a factor in energy consumption and to minimize the risk of forcing an 

appliance to operate in the model when a resident would not want it to.  To do this, actual 

sub-metered data was utilized.   This data is made available to the public through a project 

located in the Pacific Northwest, United States and sponsored by the Northwest Energy 

Efficiency Alliance (NEEA) and conducted by Ecotope, Inc. in coordination with 

Bonneville Power Administration (BPA) [64].  The referenced project is called the 

Residential Building Stock Assessment (RBSA) and contains appliance level sub-metered, 

fifteen (15) minute energy usage data for 101 homes in the Pacific Northwest starting in 

April 2013 through July 2014, which can be downloaded from the project’s website [65].   

 While this information is very valuable to the project, the climate region for the 

data is vastly different from the region of the country being modeled.  However, it is 

reasonable to believe that not all appliance energy consumption and their times of operation 

vary based on weather, such as a clothes washer and dryer, oven and a dishwasher.  For 

this reason, the project is able to include these non-weather dependent loads as a basis to 

determine typical load shapes and behavior patterns to expect.   

This data was downloaded in a tab-delimited format and imported into a database 

viewing software to observe.  This allows the user to view all the raw data and sort and 

filter different appliances, components and between participating homes.  Since the data 

set is very large (all combined is approximately 7.5 million rows), randomly selected 

homes were extracted from the database and put into a spreadsheet.  From there, appliance 



56 
 

 
 

level data was collected and put into a separate spreadsheet that consists of a full year’s 

data for four major non-weather dependent appliances – oven, clothes washer and dryer 

and dishwasher.  Since the initial download, the data has been uploaded to the EPRI Load 

Shape Library 3.0 [66], which allows users to more easily view and download the RBSA 

data.  This same library is used for additional load shapes and is discussed later in this 

section.   

The data sets for each appliance contain some missing data at sporadic intervals, 

presumably due to communication and hardware issues from the large deployment project 

and the vast amount of sensors involved.  To help alleviate this issue, a formula was added 

to the spreadsheet to assign each missing data point to a zero value and then two homes 

were averaged together to account for any gaps.  By averaging multiple homes for a single 

load shape in the model, a potentially larger diversity set of run times to allow a modeled 

home to operate each appliance within a certain timeframe.  This does not affect the energy 

usage of the home and is only used to determine when appliances should be operated based 

on actual home data and will be explained in more detail later.  This also takes into account 

the behavior load shapes over multiple years of a single homeowner.  This averaging allows 

the control algorithm to operate more effectively while also still keeping the appliance 

energy usage within the timeframes the homeowner wants.  

Finally, to provide the algorithm with more options to shift energy consumption of 

the clothes washer and dryer, dishwasher and oven, the EPRI Load Shape Library [66]  was 

used to input average energy usage patterns into the customer’s home automation 

algorithm.  The intent of this load shape data is only to provide additional flexibility to the 

controller and not increase the energy usage of the home or shift the usage of the appliances 
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outside of their preferred operating hours.  Therefore, if there is no energy usage of a 

specific appliance for a day as determined by averaging the RBSA data, the EPRI load 

shape data was not input into the schedule to maintain no energy usage of that appliance 

for that specific day.   

Load shapes for both lighting and miscellaneous plug loads are needed to build the 

whole home load shapes but are not manipulated by the control strategy.  For lighting 

schedules two sources of data were used, the EPRI Load Shape Library [66] and a 

residential lighting hours-of use study performed by NMR Group, Inc. [67].  These reports 

provided an hourly overview of what percentage of lighting is used during different periods 

of the year, included summer and winter months.  These end-use surveys were then utilized 

to generate average lighting usage profiles for a home.  For miscellaneous plug loads, the 

default data in BEopt was used which is pulled from a study performed by NREL for the 

Building America program and sets baseline energy usage in residential applications to 

assist engineers when comparing energy retrofit options [68].  To create diversity between 

the national average home and the homes used in the model simulations a randomized 

multiplier was added to the default data with the overall energy consumption remaining 

constant.  This was seen as the most accurate way to represent both lighting and 

miscellaneous plug loads in simulation models where physical metered data is difficult to 

gather and verify.   
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Modeling it All Together 

The background information described earlier in this section is utilized as input to 

model the overall control strategy for the project utilizing detailed annual home energy 

simulations.  An initial model was developed for a single home as a means to troubleshoot 

the modeling approach and ensure its accuracy and model flow.  The model was created 

utilizing a Matlab [69] script that calls an external command to operate an EnergyPlus 

batch file to simulate the home’s energy usage.  The Matlab script calculates the inputs to 

the EnergyPlus model by reading and writing CSV files which can be used by EnergyPlus 

as schedule inputs.  Figure 22 summarizes the flow of the model simulation. 

 

Figure 22.  Simulation Flowchart. 
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 The following subsections describe the different components shown in Figure 22 

and go into detail on how each of the schedules are developed and input into the EnergyPlus 

model along with how the results from the model are utilized.   

 

 

Baseline Energy Model 

 To begin the model with an accurate representation of how the homes in the control 

strategy perform under traditional circumstances with a flat electric rate, compared to the 

results from the modified control strategy, a baseline model was developed.  The model 

takes the same homes described in Table 3 and uses default schedules available in BEopt 

for all of the appliances.  These schedules were developed by the US Department of Energy 

under the Building America program and are used as a simulation baseline for comparing 

energy efficiency retrofits when using building simulation software [68].  All other items 

remain consistent between the baseline model and all future models except for the four 

appliance schedules and thermostat setpoints for HVAC and water heating.  These changes 

are discussed in greater detail in future sections of this report starting in 

 

Implementing the Control Strategy, Part I on page 67.    

 For the baseline energy model using one home, for troubleshooting purposes, the 

first step is to call for an external command using the Matlab function “!” to activate the 

EnergyPlus simulation to run in the Windows command prompt.  For the simulation(s), the 

built in EnergyPlus batch file titled “RunDirMulti.bat” is used which executes all IDFs – 
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EnergyPlus input files – in parallel that are located in the same directory using the 

designated number of processors available.  Finally, the Matlab script is paused using the 

“pause” command.  This is done to allow the EnergyPlus files to complete their simulations 

and output their results before the Matlab script continues as there is no direct feedback 

from the Windows command module to Matlab indicating when the simulations are 

complete.  The Matlab syntax for this is shown below in Figure 23 and is described further 

in the section titled Running EnergyPlus from Matlab on page 84. 

 

Figure 23. Use Matlab to Call EnergyPlus Batch File for Baseline Model. 

 

 The baseline energy model then imports the energy usage output files from the 

EnergyPlus model by utilizing the built-in Import Data Tool for both the facility total and 

the water heating energy usage.  This tool generates a script that imports the fifteen-minute 

energy consumption data from EnergyPlus’ CSV output files and converts it into a matrix 

in Matlab.  The Matlab syntax for this process is shown below in Figure 24 but a more 

detailed description of this process is given in the section titled Importing the EnergyPlus 

Results into Matlab on page 86.  
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Figure 24. Import Data from EnergyPlus Output Files into Matlab. 

 

 

Scaling Renewable Energy Output 

 The baseline model is also used to calculate how to scale the renewable energy 

generation so that results from the overall control strategy can be seen in the results.  To 

do this scaling, it was chosen to simulate the renewable energy generation required to make 

the system net zero over the course of the year.  The Matlab syntax is shown in Figure 25. 

 

Figure 25. Renewable Generation Scaling Calculation. 
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  The script first defines the variable “RenOutput_raw” as the raw data used from the 

NREL energy generation data [60], [61].  This is done by using the csvread function in 

Matlab which pulls in the available CSV file and converts it into a matrix containing the 

data from the original file.  Next multiple variables are defined as global in Matlab as they 

will be used later in the control scheme model.  The next line redefines the combined 

energy usage of the neighborhood, for this model it is only one house but will be multiple 

homes in future models, to be “EPlusUsage_BL”.  After that has been completed, Matlab 

calculates the actual energy generation during each timestep, “RenOut_generation_bl”, by 

multiplying the “RenOutput_raw” data which is in the form of a percentage by the total 

renewable energy generation capacity, “Total_RenGen_Capacity”, as defined from the 

NREL installed capacity data [60], [61].  The generating capacity is divided by four since 

the energy generation is in fifteen-minute timesteps rather than hourly.  The annual energy 

generation, “RenOutsum” is then calculated by adding the generation in each time period 

into one total number.  The next line, “ScaleFactor_multip_bl” refers to the slight increase 

in total annual renewable generation that is to compensate for inefficiencies the control 

algorithm cannot address.  Finally, a scale factor is calculated, “ScaleFactor_energy_bl” 

that moves the renewable energy generation output to the same output, plus the buffer, as 

the total EnergyPlus energy usage data.   

 An alternative approach to scaling the renewable energy generation was also 

investigated however it was determined that using a total energy usage method where the 

energy generated is equal was more effective.  This also aligns the research with projects 

ongoing in the industry where net-zero neighborhoods are being investigated as a way to 

cost-effectively install energy storage and renewable generation into the grid, such as a 
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project currently under construction in California [70].  Other details about this can be 

found in the Major Challenges Improved from Initial Model Approach section found on 

page 164.  It should be noted however that the purpose of this research is not to enable net-

zero energy communities, rather serves as an appropriate use case but will perform better 

as more and more homes participate to provide additional load side flexibility.   

 

 

Sizing a Distribution Scale Energy Storage system for the Model 

 The baseline model then calculates the size of energy storage that would be required 

to operate the system of homes without energy from the grid for a defined number of hours 

within the year.  To calculate the storage capacity required, a state-of-charge (SOC) 

calculation is performed based off the methodology presented in [71] which uses an eight-

step process and adds a lower limit on the battery SOC to 30% which is meant to prevent 

over discharging the battery and causing permanent damage.  While the methodology from 

[71] was used, several steps were not relevant to this application and were therefore 

skipped.  The first portion of the Matlab syntax used to calculate the energy storage 

capacity needed is shown in Figure 26. 
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Figure 26.  Energy Storage Sizing Tool Using SOC Calculations – Setup 

 

 The SOC model begins by defining a matrix of all zeros in Matlab the correct size 

that the final solution will be presented, “SOC_calc_mBL”.  This is done as a time saving 

step within Matlab.  Next an initial value is setup for both the amount of times the model 

calculates a value under the minimum state of charge, “Undermin_charge_mBL” and the 

initial energy storage multiplier, “Battery_multiplier_mBL.  These were chosen to ensure 

the model always ran and converge to a correct solution in a reasonable amount of time.  

Additionally, the energy storage system load shape, “BatteryLoadShape_bl” is calculated 

over each timestep in the year by subtracting the energy usage output from the EnergyPlus 

model(s) from the updated renewable energy generation. The next parameter to be defined 

is the storage/discharge rate capacity of the system which is set by 

“Battery_max_add_fromGrid” to be the max energy export or import from the grid to 
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ensure the capacity required is always available.  Finally, the energy costs that signal the 

energy storage system to not receive or discharge energy to the homes are defined.  The 

“Charge_Cost” variable is set at $0.05/kWh to tell the system to never discharge to the grid 

when the energy costs are below while the “Discharge_Cost” variable is set at $0.25/kWh 

and does the opposite.   

 The script then enters a “for” loop and calculates at each timestep the amount of 

charge or discharge from the energy storage system requested.  The fist loop calculates 

when the energy storage system should receive energy from the grid or renewable energy 

generation while the second “for” loop calculates when and the amount of energy to be 

supplied to the homes when not enough renewable energy is present.  This information is 

used as an input to the remainder of the energy storage model, shown in Figure 27. 

 

Figure 27. Energy Storage Sizing Tool Using SOC Calculations 
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 The actual energy storage model begins with the “while” loop which runs the model 

as-long-as the number of instances where the energy storage SOC is outside of the 

parameters setup on min/max SOC is greater than the maximum set by the user.  Within 

the while loop, variables are defined which are used in the SOC calculation including the 

initial SOC for the battery at time zero, “SOC_initial_mBL” and the energy storage loss 

coefficient, “Loss_coeff_mBL” which is a representation for the energy storage system’s 

round trip efficiency.  The battery energy capacity, “BatteryEnergyCapacity_mBL” is used 

to incrementally increase the energy storage size after each iteration which corresponds to 

a variable multiplier, “Battery_multiplier_mBL”. 

The next portion of the “while” loop calculates the SOC at each time step using the 

formula provided in [71].  This calculates the SOC at each timestep without considering 

any practical limits to the technology, namely the maximum and minimum SOC.  To create 

a model where the SOC cannot exceed one or go below the predefined minimum, a second 

calculation is performed at each time step where an IF statement is included to reference 

back to the original calculation and if the SOC is less than one but greater than the 

minimum, the calculation is performed as provided in [71].  However, if the SOC found in 

the original calculation is greater than one or less than the minimum, the new SOC 

calculation is reset to where the initial SOC of the energy storage system can be no greater 

than the maximum or less than the minimum at that timestep.  Although this resets the 

maximum state of charge to initially be the max or min at each timestep, if there is excess 

renewable energy available, the final calculation can still remain above the physical 

limitation of the maximum SOC or vice versa for the minimum.  To correct this, all values 
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in the new SOC calculation which are greater than 100% are reset to the maximum SOC 

physically possible.  

At this point in the model the number of instances where the calculated SOC is 

found to be at or below the minimum state of charge as defined by the user is counted.  

This information is used to determine whether or not to continue looping the calculation.  

Once this variable has been defined, the minimum SOC physically possible must also be 

reset to the value defined by the user, similar to before when the maximum value possible 

was reset.   

Finally, the variable “Battery_multiplier_mBL” is incremented up and the loop 

repeats again until the amount of the timesteps below the battery minimum SOC are less 

than the total number defined by the user.  This information can then be used to compare 

the effectiveness of the control strategy as it is utilized in all three phases of the modeling 

process and the variable related to energy storage capacity will decrease as the supply and 

demand for energy become more aligned throughout the year.   

 

 

Implementing the Control Strategy, Part I 

 The next portion of the report focuses on the main portion of the control strategy.  

This includes components from Steps 2 through 6 as described in the section titled Project 

Control Strategy Overview found on page 12.  The section discusses how appliance 

schedules and thermostat settings were developed based on a probability of operation 

determined using load shape data and on the energy costs provided by the utility during 
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each time step.  Next it discusses how an EnergyPlus model for the home is executed with 

the updated appliance schedules and how the energy usage data is brought back into Matlab 

to use in future calculations.  The updated energy cost data is then calculated for each 

timestep and sent back to the homeowner.  Finally, an energy storage system is simulated 

to determine the capacity requirements to maintain the system above its minimum state of 

charge for the desired number of hours in the year before starting the model again using 

the updated energy cost data. 

 

 

Creating Clothes Washer Schedules 

 To begin the process of developing the EnergyPlus model inputs, two sources of 

information which were previously discussed are called into Matlab using the csvread 

command.   The two sources of data are combined line-by-line in a manner to represent the 

probability of a homeowner operating an appliance divided by the energy costs for that 

same time period.  This input is shown in Figure 28 where ECost is equal to the fifteen-

minute energy cost calculated using the method earlier and i_A_CWash represents the base 

load shape for the clothes washer. 

 

Figure 28. Matlab Syntax to combine Clothes Washer Probability with Energy Costs  
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 Once the energy cost and load shape probability are combined, the next step of the 

model is to search for the period during each day where the highest probability of the 

customer operating the clothes washer but also when the lowest cost to operate is achieved 

– lowest cost and highest operation likelihood.  To do this, the appliance run time and 

energy usage during each time period must be determined.  This information was found 

using sub-metered data from an actual clothes wash cycle, the energy usage load shape 

over two cycles is shown in Figure 29.   This approach is used for modeling purposes while 

in reality the customer would be able to choose which time period to operate the appliance 

based on the provided cost information if desired.   

 

Figure 29. Clothes Washer Energy Usage Load Shape, as Measured 

 

 Using the information available in Figure 29, the clothes washer’s average run time 

was found to be 45 minutes and the energy usage in each fifteen-minute time step is shown 

below in Table 5 which was derived from Cycle 1. 
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Table 5. Clothes Washer Load Factor  

 Usage (kWh) Max Usage Possible (kWh) Load Factor (%) 
Time step 1 0.033 0.10175 32.4 
Time step 2 0.024 0.10175 23.6 
Time step 3 0.027 0.10175 26.5 

 

The Matlab script takes this information and searches for the maximum consecutive 

forty-five-minute period during each day of the year from the file generated previously by 

dividing the usage probability by energy cost.  When this maximum forty-five-minute 

period is found, the load factors shown in Table 5 are substituted into their timeslot in a 

separate CSV file while all other time periods of the day are changed to have a zero for 

energy usage.  This process is repeated for each day of the year and add generates a fifteen-

minute schedule for the clothes washer throughout the year (35,040 data points).  Although 

the Matlab script is setup to search for the maximum probability of operation of each day 

it is known that not all homes will operate all appliances each day of the year.  To account 

for this, the algorithm will fill in all zeros into days where there is a zero probability of 

usage from the combined data, therefore not running the appliance in the model.  The newly 

generated CSV file is supplied to the EnergyPlus model as the energy usage schedule for a 

home’s clothes washer.  The syntax from the Matlab script is shown in Figure 30. 
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Figure 30. Matlab Syntax for Clothes Washer Schedule Generation 

 

 

Creating Dryer Schedules  

 The same approach was used when determining the dryer schedule as before with 

the clothes dryer.  The RBSA and the EPRI Load Shape Library data was used as a starting 

point for the initial probability of the appliance operating at any given fifteen-minute period 

of the year.  This data was combined with the fifteen-minute energy costs for the year by 

dividing the probability of operating by the energy rate.  This portion of the model in shown 

in Figure 31 where i_A_Dryer is defined as the dryer probability matrix and i_C_Dryer is 

defined as the combined matrix of probability and energy costs. 
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Figure 31. Matlab Syntax to combine Dryer Probability with Energy Costs 

 

 Again, the next step in the model is to search for the period of each day where there 

is the highest probability of the dryer operating at the lowest cost.  This process takes the 

most effective run time for energy cost and probability and substitutes the appliance load 

shape into a CSV file to be used in the EnergyPlus model to simulate its impact on the 

overall control strategy.  For this to occur the fifteen-minute load shape for a typical dryer 

cycle must be known.  A dryer was submetered and energy data was recorded in five second 

intervals during the span of three complete cycles, all set to automatic mode where the 

cycle completed once the clothes were sensed to be dry.  Each cycle contained different 

clothing and was meant to get a representation of different cycle lengths and energy usage.  

This information is shown in Figure 32.  



73 
 

 
 

 

Figure 32. Dyer Energy Usage Load Shape, as Measured 

 

 This submetered data was then used to calculate a typical load shape for a dryer 

that can be input into EnergyPlus to simulate the dryer energy usage.  To do this the 

averages were taken and converted into a fifteen-minute load shape over a forty-five-

minute time period.   

 

Table 6.  Dryer Load Factor 

 Usage (kWh) Max Usage Possible (kWh) Load Factor (%) 
Time step 1 0.91 0.155 78.8 
Time step 2 0.73 0.155 63.2 
Time step 3 0.41 0.155 35.5 

  

 The Matlab script then finds the daily location of the maximum forty-five-minute 

period for the largest probability at the lowest operating cost.  The load factors are then 
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input into those time periods while all other schedule values are set to zero, indicating no 

energy consumption during those times.  The script outputs a CSV file which is used by 

EnergyPlus as the annual, fifteen-minute schedule for the dryer (35,040 data points).  The 

syntax for this operation in Matlab is shown in Figure 33. 

 

Figure 33. Matlab Syntax for Dryer Schedule Generation 

 

 

Creating Dishwasher Schedule 

 Again, a similar approach was taken to develop the dishwasher schedule as was 

demonstrated previously in the clothes washer and dryer section.  The Matlab script 

combines the fifteen-minute energy cost and the probability of running and seeks to 

generate an energy usage schedule to be output and used in the EnergyPlus model to 
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simulate the dishwasher energy usage.  This process is shown in Figure 34 where 

i_A_DWash is defined as the probability of dishwasher operation and i_C_DWash is equal 

to the combination of the cost and probability.   

 

Figure 34. Matlab Syntax to combine Dishwasher Probability with Energy Costs 

 

 The next step is to determine the load shape of a dishwasher cycle that can be input 

into the EnergyPlus model to simulate the dishwasher energy usage.  The same 

submetering setup as before was utilized where a full cycle energy usage pattern was 

recorded in five second intervals.  This load shape is shown in Figure 35. 

 

Figure 35. Dishwasher Energy Usage Load Shape as Measured. 
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 This load shape is converted from the five-second interval data into fifteen-minute 

average energy consumption to be used as an input to the EnergyPlus model.  The 

dishwasher load shape is different from other appliances in the model however, since, as 

can be seen in Figure 35, a full cycle lasts for multiple hours.  This leads to the following 

data shown in Table 7, which totals two hours and forty-five minutes for the full cycle, 

start to finish. 

 

Table 7. Dishwasher Load Factor 

 Usage (kWh) Max Usage Possible (kWh) Load Factor (%) 
Time step 1 0.120 0.254 4.7 
Time step 2 0.159 0.254 62.5 
Time step 3 0.084 0.254 33.0 
Time step 4 0.015 0.254 5.9 
Time step 5 0.015 0.254 5.9 
Time step 6 0.231 0.254 90.9 
Time step 7 0.135 0.254 53.1 
Time step 8 0.051 0.254 20.1 
Time step 9 0.072 0.254 28.3 
Time step 10 0.075 0.254 29.5 
Time step 11 0.057 0.254 22.4 

 

 The Matlab script then determines the daily location of the maximum two hours 

and forty-five-minute period for the largest probability at the lowest operating cost.  The 

load factors are then input into those time slots while all other schedule values are set to 

zero, indicating there will be no energy consumption from the dishwasher during those 

times.  The script then writes a CSV file with these values which is used by EnergyPlus as 

the annual, fifteen-minute schedule for the dishwasher (35,040 data points).  A portion of 

the syntax for this operation in Matlab is shown in Figure 36.  The equation to calculate 
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the sum of the combination of energy cost and the probability for dishwasher cycle, 

“i_DWash_PTS_a”, is cut off in the figure but continues to complete all eleven timesteps.  

 

Figure 36. Matlab Syntax for Dishwasher Schedule Generation 

 

 

Creating Oven Schedule 

 The final appliance included in the Matlab script to change the operational schedule 

based on the energy costs is the oven – see the section titled Categories of Appliances on 

page 32 for a breakdown of why certain appliances were included or excluded. For this 
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portion of the model the same approach was taken as with other appliances where the 

algorithm seeks to determine a time where a homeowner is most likely to use an oven while 

also using energy cost data to perform that at the lowest possible operating cost.  To find 

this time energy cost data and oven energy usage load shape data were combined as shown 

in Figure 37. 

 

Figure 37. Matlab Syntax to combine Oven Probability with Energy Costs 

 

 Once this data is combined, the next step in the process is to convert a typical oven 

cycle energy usage data into a form that can be used by EnergyPlus to simulate the impacts 

to a home’s energy usage.  For this, a submetering system was installed to monitor the 

energy usage profile of actual oven cycles.  Multiple oven times and food preparations 

were monitored and averaged to develop an average load shape.  This data was recorded 

in one-minute intervals and was not from the same metering system as the previous 

appliances were and because of this, an example of one of the oven cycles used in the 

analysis is shown in Figure 38.  This cycle takes place for a 350°F baking of a casserole, 

demonstrating that the oven modulates the heating elements on/off to control the 

temperature throughout the cycle.  
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Figure 38. Oven Energy Usage Load Shape as Measured. 

 

 This information is used to develop the fifteen-minute schedules for the oven in the 

model for the year.  This requires converting the minute-by-minute data into a fifteen-

minute average and a total runtime must be chosen.  From the data gathered, the average 

time for the oven to operate is around one hour and thus four fifteen-minute periods were 

chosen as the typical oven cycle to add into the EnergyPlus model.  The oven’s load factor 

information used in EnergyPlus scheduling is shown in Table 8. 

 

Table 8. Oven Load Factors 

 Usage (kWh) Max Usage Possible (kWh) Load Factor (%) 
Time step 1 0.45 3.5 12.96 
Time step 2 1.56 3.5 45.44 
Time step 3 0.725 3.5 20.71 
Time step 4 0.475 3.5 13.58 
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 The Matlab script then takes the previous information and searches for the most 

cost effective time to operate the oven, taking into account when the homeowner would 

want to operate it based on the RBSA and EPRI Load Shape data.  The load factors shown 

in Table 8 are input into the schedule while all other time periods are filled with zeros to 

indicate the oven is not operating during these times.  The Matlab script then writes the 

data to a CSV file which is used by EnergyPlus as the fifteen-minute schedule.  The syntax 

for the script is shown in Figure 39. 

 

Figure 39. Matlab Syntax for Oven Schedule Generation. 
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Creating Thermostat Setpoint Schedule 

 To define what the thermostat settings should be for the home a simple process is 

used where the homeowner would define their comfort settings based on the time of day 

and the cost of energy.  This process is replicated to develop setpoints for the heating season 

too, based on the time of year – for the purposes of this model the cooling season is from 

May to October and the heating season makes up the remainder of the year.  The comfort 

settings for the first home is shown in Table 9.     

 

Table 9. Home i Thermostat Comfort Settings (°C) 

 

Lowest 
Cost 

Low 
Cost 

Normal 
Price  

High 
Price 

Highest 
Price 

Cooling Setpoint – Pk hours 20 22.2 23.3 25 27.7 
Cooling Setpoint – Offpk hours 21.5 23.7 24.8 26.5 29.2 
Heating Setpoint – Pk hours 23.9 22.8 21.1 19.4 17.8 
Heating Setpoint – Offpk hours 22.4 21.3 19.6 17.9 16.3 

 

 These temperature settings correspond to changing energy costs which are shown 

in Table 10.  For example, when the cost of energy is $0.025/kWh the peak time cooling 

setpoint would be 20°C but as the energy cost changes to $0.05/kWh, the cooling setpoint 

is increased to 22.2°C.  This table can be read from left to right where the energy cost listed 

is the maximum cost per kWh where the temperature setting is used, therefore any price 

greater than $0.45/kWh signals the temperature setting to be the far-right column in Table 

9. 
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Table 10. Home i Energy Cost Breakpoints ($/kWh) 

 

Lowest 
Cost 

Low 
Cost 

Normal 
Price  

High 
Price 

Energy Cost Breakpoint 0.035 0.085 0.165 0.45 

  

 A simple Matlab script with IF statements was then created to read the home’s 

cooling comfort setting preferences and the fifteen-minute energy costs and generate a 

temperature setpoint for each period of the year.  This script goes through each hour of the 

day and, based on which hour is defined as peak and off peak, will write the temperature 

based solely on the energy cost during that time period.  Once that temperature setting has 

been determined the script moves onto the next timestep and repeats the process until 

35,040 settings are generated, or an annual profile in fifteen-minute increments.  This 

information is then written to a CSV file and used by EnergyPlus as the thermostat settings 

for the energy simulation.  This process is then repeated for the heating setpoints and 

follows the same process, only now it writes the temperature settings for the months of 

January 1 through April 30th and November 1 to December 31st.  It should be noted that for 

each respective script, the opposing months, May to October for the heating setpoints, must 

be written to include a temperature that does not conflict with the cooling schedule.  

Otherwise, the EnergyPlus model will fail on an error message where the thermostat does 

not understand what to set the temperature to within the home.  A sample of the Matlab 

script is shown in Figure 40 where each time step is evaluated to determine which hour of 

the day it falls into and the energy cost during that fifteen-minute window and determines 

the thermostat setting based on the homeowner’s preprogrammed preferences.   
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Figure 40. Example Portion of Matlab Script to Calculate Temperature Settings. 

 

 

Creating Other Appliance Schedules 

 Other Appliances exist within the home that are not included in the Matlab script 

to generate and vary depending on the energy costs.  These other appliances are seen as 

either non-interruptible or in Category 3 as described on page 32.  The most notable of 

these appliances are lighting and miscellaneous plug loads.  For lighting schedules two 

sources of data were used, the EPRI Load Shape Library [66] and a residential lighting 

hours-of use study performed by NMR Group, Inc. [67].  These reports provided an hourly 

overview of what percentage of lighting is used during different periods of the year, 
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included summer and winter months.  These end-use surveys were then utilized to generate 

average lighting usage profiles for a home.  For miscellaneous plug loads, the default data 

in BEopt was used which is pulled from a study performed by NREL for the Building 

America program and sets baseline energy usage in residential applications to assist 

engineers when comparing energy retrofit options [68].  To create diversity between the 

national average home and the homes used in the model simulations a randomized 

multiplier was added to the default data with the overall energy consumption remaining 

constant.  This was seen as the most accurate way to represent both lighting and 

miscellaneous plug loads in simulation models where physical metered data is difficult to 

gather and verify.   

 Lastly, a major energy consuming device is missing from this section and for now 

is set to the default temperature and let to run as needed.  This is the water heating 

equipment and is not included in this portion of the simulation because it is utilized 

exclusively in a different portion where its thermal energy storage characteristics can be 

utilized to maximize the benefits to both the homeowner and the electric utility.  More on 

how this is utilized is explained in Adding in Thermal Energy Storage to improve flexibility 

on page 91. 

 

 

Running EnergyPlus from Matlab 

 The previous subsections discuss how appliance schedules are generated and the 

logic that goes behind their creation.  Once they have been generated and output into a 
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CSV file, the next step in the modeling process is to simulate the home using EnergyPlus 

with the updated appliance schedules for a typical weather year in the Birmingham, AL 

area.  To do this a simple command is used in Matlab to call an external command, in this 

case an EnergyPlus batch file that calls the simulation files and executes them.  The Matlab 

syntax for this is shown in Figure 41.  The “cd” command is used to change the Matlab 

directory to the location where the EnergyPlus simulation file is housed and the “!” 

command is used to signal an external command, the EnergyPlus batch file, to execute in 

the operating system command window.  Once this command is executed, the “cd” 

command is utilized again to change the Matlab directory back to its original state. 

 

Figure 41. Matlab Syntax to Call an External Command 

 

 The “RunDirMulti.bat” is a batch file that comes with the standard EnergyPlus 

download and is used to execute all the EnergyPlus IDF files in the directory where it is 

located [72].  This means that all the IDF files that are maintained in the directory shown 

in Figure 41 are executed in parallel once the command is called – IDF files are the text 

files that contain all the details for an energy simulation and is what is read by the 

EnergyPlus simulation engine as the input file.  Finally, the “pause” function is used to 

pause the Matlab script from continuing to execute as there is no feedback from the 

Windows command windows to indicate when the simulation files are complete.  This is 
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an important step to ensure that the remainder of the Matlab script can execute properly 

and use the correct output files from the EnergyPlus simulation. 

 

 

Importing the EnergyPlus Results into Matlab 

 At this point in the model appliance schedules have been generated and EnergyPlus 

has utilized these schedules to simulate the energy usage profile for the home in fifteen-

minute increments over a full year.  These profiles are output from the EnergyPlus model 

as CSV files and are housed external to Matlab.  To allow Matlab to use this information 

for future calculations, it must be imported as a matrix.  To do this the built-in Import Data 

Tool in Matlab was utilized which allows the user to select a set or subset of data from a 

spreadsheet (or CSV) file and import it directly into the Matlab directory as a matrix 

variable.  This tool also gives the user the option to auto generate a script to perform this 

task multiple times.  The output of this auto-generated script was slightly modified for the 

specific application and is shown in Figure 42. 

 

Figure 42. Script to Import EnergyPlus Output Data into Matlab. 
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 This same step is repeated to import the water heater energy consumption as well 

for the home energy model.  This information, “i_ElectricityFacilityJTimeStep”, can then 

be used in the model as any other matrix.  For future models, it can be added together with 

other home’s energy usage to allow the utility to only see the energy usage as one aggregate 

and develop its updated pricing based on that one number.  It is important to note that the 

EnergyPlus output files are in Joules rather than kWh so they must be converted before 

calculations are performed.   

 

 

Calculating an Updated Fifteen-minute Energy Cost 

 Now that the energy usage profile for the home has been simulated and imported 

into Matlab (simulating that the utility has now received the energy usage data back from 

all participating homes) and the renewable energy generation is known, the utility now 

must calculate updated fifteen-minute energy costs.  To do this, the combined energy usage 

of the homes must be subtracted from the renewable energy generation that is projected.  

This difference is used to determine how much the updated energy cost needs to be scaled 

during each fifteen-minute time difference.  This relationship is setup to encourage energy 

usage to match the renewable energy generation at each time step where the larger the gap 

in usage, the higher the change in cost.  Figure 43 shows the relationship.   
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Figure 43. Cost Multiplier equations to equalize renewable generation & usage 

 

This information is based on the scaled renewable output and the combined energy 

usage of the homes participating in the program.  As the gap between the two components 

gets larger, the cost multiplier is increased (further away from one) while as the gap shrinks, 

the cost multiplier gets closer to unity.  To keep the cost contained to reasonable numbers, 

for instances where the gap is greater than ten or negative twenty, the multiplier is capped 

at 0.7 and 1.125 respectively.  The cost multiplier calculated using the equations in Figure 

43 are performed at each timestep and multiplied by the original energy cost supplied from 

the previous iteration of the model.  A sample of this method is in Table 11. 
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Table 11. Sample of Updated Energy Costs Methodology 

Date Time 

Renewable 
Generation 

(kWh) 

Energy 
Usage 
(kWh) 

Difference(
kWh) Multiplier 

Original 
Cost 

($/kWh) 

Updated 
Cost 

($/kWh) 
1/1 0:00 1.816 2.708 -0.893 1.026 0.139 0.143 
1/1 0:15 2.081 3.569 -1.488 1.026 0.134 0.138 
1/1 0:30 2.441 2.821 -0.380 1.025 0.128 0.131 
1/1 0:45 2.890 2.941 -0.051 1.024 0.120 0.123 
1/1 1:00 3.182 3.141 0.041 0.928 0.109 0.101 

 

 Once this process has been completed for each timestep in the year, the data is 

written to the original energy cost CSV file and overwrites the original data.  This 

information is used later as the base energy cost for the next iteration of the model.   

 

 

Calculating the Size of Energy Storage Required for Current Configuration 

   The next step of the model is to calculate the amount of energy storage that must 

be present in the system to compensate for the differences between renewable energy 

generation and the energy usage.  A state-of-charge (SOC) analysis using the method 

presented by Kalkhambkar, Kumar and Bhakar in [71] was performed to find the required 

energy storage capacity.  This storage capacity was set to limit the number of times the 

SOC goes above or below a minimum and maximum threshold, 30% minimum and 100% 

maximum.  The limits were set at a total of 10,512 timesteps as the maximum amount of 

times the SOC can be outside of either threshold, which equates to 2,628 hours a year 

outside of the limits, or 30% of the year.  Since the system is connected to the grid, the 

energy storage system, mixed with the renewable energy generation is not required to 
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supply the full energy requirements to the group of participating homes, greatly reducing 

the size of the energy storage.  The Matlab script is shown in Figure 44. 

 

Figure 44. Battery SOC Calculation Script 

 

 This script begins by defining the desired energy storage input/output to 

compensate for the remaining mismatch of energy usage and renewable generation.  This 

is shown in the first two “for” loops at the beginning of Figure 44.  Next the local variables 

used to calculate the SOC of the energy storage are defined.  The script uses a While loop 

to continue adding to the energy storage capacity until the conditions are met to where the 

amount of time outside of the minimum and maximum thresholds are under the defined 

amount – 10,512 timesteps for this model.  The initial SOC is set to 65% and a round trip 

efficiency of 92% is assumed.  The first “For” loop is used to calculate the SOC, assuming 

that the capacity of the system can range infinitely.  However, this is not realistic so the 



91 
 

 
 

second For loop ensures that once the energy storage goes outside of the bounds of the 

system, energy is neither consumed nor added.  After the SOC calculations are completed, 

the number of times the system is outside of the thresholds are counted.  If the threshold 

requirements are not met, the storage multiplier is increased to increase the energy storage 

capacity.  This process is repeated until the thresholds are met, at which point the 

calculations from all the previous sections are written to CSV files for later use and 

evaluation.  This process is the same as discussed beginning on page 63. 

 

 

Adding in Thermal Energy Storage to improve flexibility  

 To provide additional flexibility to the model and to account for errors in renewable 

energy generation forecasting, a new model is created to calculate an updated energy cost 

for each fifteen-minute interval of the year.  This new energy cost is passed to the homes 

and is only applied to the water heater energy usage but in return directs the temperature 

setpoints.  This portion of the model is intended to be a more real-time control strategy 

when implemented in the field as the impact to changing the water heater setpoints are 

minimal to the customer while having the potential to store large amounts of energy when 

desired.   

 This model begins by importing the renewable energy generation at each fifteen-

minute interval as well as the combined energy usage of all participating homes at each 

interval outputted from the previous model.  This information is used to determine a new 
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difference between the energy usage and the renewable energy generation for each fifteen-

minute interval which will in turn help determine the updated cost of energy.   

 A personalized cost curve is necessary for this model to be effective.  To begin the 

development process, the ERCOT for each interval must be known to represent the utility’s 

cost to serve in each time interval.  A profit margin is then set to ensure energy sales are 

profitable when having real-time influence over the thermal energy storage within a water 

heater.  This cost of service and profit number is then used as the minimum cost for perfect 

alignment of energy usage and renewable energy generation and times when renewable 

energy is generated in excess of demand.  For times when the energy demand is greater 

than renewable energy generation, the energy cost grows using a second order polynomial 

up to the maximum cost of $2/kWh.  The correlation between energy costs and the energy 

usage and generation gap is shown in Figure 45.   

 

Figure 45.  Model iii Energy Cost and Renewable Generation & Usage 
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 This process calculates a new energy cost for all timesteps in the model and assigns 

the appropriate energy costs using the method shown in Figure 45.  This information is 

sent to the homeowner’s energy management system where the cost signals are passed 

along to the water heater.  Customer preferences dictate the individual response to the 

signal but each home maintains a maximum safe water temperature of 90°C (194°F) as 

defined in [73].  An example of the response of a home to the energy cost signal is shown 

in Figure 46. 

 

Figure 46.  Home Water Heater Setpoint Response to Energy Costs 

 

 As can be seen by the small blue line in Figure 46, there is a dead-band where the 

temperature stays the same over a small level of cost change.  This was found necessary in 

each home as the energy usage impact of water heaters when the difference between 

renewable generation and energy usage is small can cause the relationship to reverse and 
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overshoot the goal of the program.  The program calculates an updated water heater 

temperature for each timestep and then writes the values to a CSV file, used in a new 

EnergyPlus simulation. 

 The EnergyPlus simulation is called in the same method as presented on page 84 

and the energy usage and water heater temperatures are imported into Matlab using the 

Import Data tool.  Finally, a battery-sizing model is performed to compare with the baseline 

and initial model.  This process is the same as presented beginning on page 63 and on page 

89.   

 

 

Annual Energy Cost & Utility Profit Calculations 

 To complete the model and to enable comparisons of the effectiveness for each 

model scenario, the annual energy costs to the customer are calculated for each scenario as 

well as the revenue comparison of each model run to the energy utility.   

 Calculating the annual energy costs to the customer requires importing the energy 

costs from the utility in each scenario and for each iteration of the model run.  For each 

run, there are three types of energy cost calculations that must be performed.  This includes 

using the base energy cost ($0.1252/kWh) as the flat rate year round.  This energy cost 

represents the average energy costs for residential energy costs in the US for 2014 [63].  

The second type uses the RTP developed for each iteration in the second model and finally 

using the RTP from the second model for all the energy consumption except the water 

heating and assigning that energy cost to the RTP developed in model iii.  The equations 
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used for these calculations with the baseline energy costs are shown in Figure 47.  Similar 

calculations are used for the remaining annual energy costs. 

 

Figure 47. Annual Energy Costs to Consumers in Modeled Scenarios 

 

 Finally, the profit generated by the utility in each of the scenarios are calculated 

and written to an Excel file for later comparison.  To do this, the initial RTP rate is used as 

the true cost to the utility to generate and supply the energy to the end customer.  Therefore, 

it is assumed that this is the true cost to them.  For calculating the profit for the baseline 

model described in the report, the profit to the utility is found first by summing the total 

amount of energy used by the participating customers over the course of the year at each 
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timestep.  Next, the program subtracts the initial RTP rate at each timestep from the base 

energy rate ($0.1252/kWh).  This number can be either positive or negative and describes 

whether the utility is profiting or losing money from each kWh sold in that particular 

timestep.   

 To calculate the profit to the utility for the second model, the same basic structure 

is used where the only difference is that the cost to the customer now changes at each 

timestep too.  The calculation can still output a positive or negative number and describes 

if the utility is making or losing money at each particular timestep.  This process is repeated 

for each iteration and the equations used in the program are shown in Figure 48. 

 

Figure 48. Profit Calculations for Model ii Simulations 

 

 The calculations for model iii are similar to the results in Figure 48.  However, for 

this calculation, the water heating energy usage must be separated as the customer is 

presented with a new price for energy specifically for it.  This calculation can be seen in 

Figure 49 where the first equation calculates the profit from the water heater usage and the 

third equation calculates the profit from the remaining energy consumption.  Finally, the 
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final equation in Figure 49 combines the two profit streams to calculate the true profit of 

model iii. 

 

Figure 49. Model iii Profit Calculation 
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 MODELING THE CONTROL ALGORITHM 

 The previous section discussed the process and flow of the model for one home.  

However, this control scheme works best with large number of homes where the effects 

from diversity of loads and the impact of aggregating multiple users to absorb or dissipate 

energy usage while reducing the negative drawbacks from manipulating temperature 

setpoints.  Therefore, for this model, ten homes were included at once.  These homes are 

described in Table 3 on page 44.   

 The program follows the same structure, shown in Figure 22 on page 58, as the 

single home model.  The difference being that development of schedules must be 

performed over the population of homes individually and input into separate EnergyPlus 

models.  This information must also be imported separately into Matlab for evaluation.  

This information is summed into one aggregated data set, since to the energy provider the 

system does not differentiate between homes and only seeks to supply the appropriate 

energy requirements for all homes at once.  Each of the calculations are based on a timestep 

(or fifteen-minute) analysis and provides the same granularity as before.   

 The combined model is run from the initial Matlab script screen which calls several 

additional Matlab scripts to complete the simulation.  This screen is shown in Figure 50 

and includes variables that are used throughout the simulation.  The “pause_all” parameter 

is described in the Baseline Energy Model section on page 59 but is used to pause the 

Matlab model to allow the EnergyPlus home simulations to complete since there is no 
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direct way to receive feedback between the two programs.  The 

“Outside_charge_Limit_max” variable defines the number of timesteps the energy storage 

calculations can be outside of the set state-of-charge.  The 10,512 timesteps corresponds to 

30% of the year, meaning that the energy storage system remains within its operating 

parameters for the other 70% of the time.  The “Avg_BasekWhrate” variable defines the 

average energy costs used for baseline energy cost calculations and corresponds to the 

average energy costs in 2014 [63].  Finally, ‘SOC_min” defines the minimum state of 

charge the energy storage system will allow. 

 

Figure 50. Start Screen for Combined Control Algorithm Model 

 

 The “run” functions are then used to execute other Matlab scripts within the same 

directory.  The first run function calls for a reset in all the parameters and reads a core set 

of CSV or Excel files and overwrites any changes made in a previous run of the program.  

This ensures that all data in the model is current and is not the result of a previous 

simulation with different parameters included.  The next script simulates the baseline 

energy usage of the ten homes.  Thirdly, variables such as thermostat setpoints and price 
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sensitivities are defined for each home.  The “e_Combined_multiplehomes2” script runs 

several subscripts to complete the majority of the model while 

“o_Random_renewable_wDiff_2_1” initiates the thermal energy storage portion of the 

model and calculates water heating temperature setpoints for each home.  The final two 

scripts calculate the annual energy costs, profit to the utility and produce graphs showing 

the results.  The following paragraphs go into more detail into these steps of the model. 

 During the baseline energy calculation, the EnergyPlus batch file initiates once 

called by Matlab, and begins each of the ten homes to start their simulations.  The 

“pause_all” function is setup to pause the Matlab simulation to wait for all ten EnergyPlus 

simulations to complete.  Once the EnergyPlus simulations are completed and the 

“pause_all” function releases the Matlab script, the whole home and water heating energy 

usage from each of the homes is imported and summed together to get the neighborhood’s 

combined energy load shape throughout the year.  The same process as with the single 

home simulation is used to calculate the scaled renewable energy generation magnitude 

and then to calculate the baseline energy storage capacity.  

 The combined model then calculates the load-shapes and homeowner setpoints for 

each of the ten homes.  This information is set to demonstrate the variation in customer 

preferences for space temperature and water heater setpoints.  This information was found 

by performing an informal survey of peers.  This information is passed along to the 

combined homes iteration model which is demonstrated by column 4 in Figure 22 on page 

58.  This model establishes a While loop to perform iterations of negotiations between the 

utility and each homeowner until three parameters are met. These three parameters are used 

as the basis for analyzing the effectiveness of the algorithm and include the annual energy 
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cost to the customer, annual profit to the utility and the energy storage capacity required 

for the set of homes.  These parameters are discussed more in the results section starting 

on page 114.  For each iteration, the Matlab script shown in Figure 51, calls a program to 

generate each of the ten home’s schedules for clothes washer, dish washer, clothes dryer, 

oven and thermostat setpoints.   

 

Figure 51. Combined Homes Iteration Model Matlab Script 

 

During the “l_importandupdate” script, EnergyPlus is called to perform an energy 

simulation on each of the ten homes and then import the results from the simulations into 

Matlab for evaluation.  The combined energy usage load-shape for the iteration is used to 

calculate a required energy storage capacity to meet the defined requirements.  The relevant 

information is written to files for comparison and then the model returns to the beginning 

and cycles through each step of the analysis again, further optimizing the outcomes.  
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The next step in the model, column 5 in Figure 22, adds in a new cost structure used 

for local energy storage systems, in this model an electric resistance water heater.  The 

energy cost structure is created based on the remaining differences between renewable 

energy generation and energy usage of the ten homes.  This cost is passed on to each home, 

which is able to respond accordingly for either consuming or shedding energy usage.  Once 

the new temperature setpoint schedules are created, EnergyPlus simulations for each of the 

ten homes must be completed once again.  The updated energy usage load-shape is 

imported into Matlab and used to calculate a new required energy storage capacity with the 

same stipulations as the baseline and iterative model.         

To complete the Matlab model, the energy costs and utility profit models are 

completed.  Once again, this is performed in a similar method as described in Annual 

Energy Cost & Utility Profit Calculations on page 94.  All the information is stored and is 

used to evaluate the effectiveness of the control algorithm, which is discussed in the 

following section.   

  



103 
 

 
 

 

 

RESULTS OF CONTROL ALGORITHMS 

 The results of the control algorithm are discussed in this section.  To understand 

how well the control algorithm performed, the objective of the system must be known.  

This can be summarized to two major points, which often become the same, but may occur 

at different times depending on the scenario.  The first objective (1) is to align energy 

consumption with the lowest cost of energy generation.  Secondly, (2), the goal of the 

algorithm is to align energy consumption with the load shapes presented by renewable 

energy generation.   

For this model, the three parameters that determine the number of iterations 

performed between the homeowner and the utility are met after nine iterations.  This means 

that during the negotiations, the annual energy costs for each customer are reduced 

compared to their baseline energy costs.  This also means that the energy storage 

requirement is at least 15% lower than during the baseline scenario and the annual profit 

to the utility is positive and increased by at least 0.5% over the baseline (see Figure 51 on 

page 101).   

 

 

Alignment of Energy Usage and Renewable Energy Generation 

The data in Figure 52 shows the scaled renewable energy generation for the 

simulations.  The renewable energy generation capacity has a maximum generating output 
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of about 90kW throughout the year, with a maximum energy generation of about 23 kWh 

in one fifteen-minute timestep.  This shows the variations from minute-to-minute and 

demonstrates the target for energy consumption to align.  For this comparison, a random 

time slot is used for all the graphical comparisons – this translates to January 22nd to 

January 30th as the dates.  

 

Figure 52. Renewable Energy Generation Load Shape 

 

 The renewable energy generation load shape can then be compared to the combined 

energy usage of the simulated homes for each model.  This information shows, at a high 

level, whether or not the control algorithms help align the generation with the energy usage.  

To start, Figure 53 shows the data from the baseline energy model scenario and tracks 

renewable energy generation in the black line and the baseline energy consumption in 

purple. 
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Figure 53. Baseline Energy Load Shape Compared to Renewable Generation 

 

 In Figure 53 it can be seen that there is not a direct correlation between energy 

usage and renewable energy generation and the two variables operate almost completely 

independent of one another in this model.  This can be seen by calculating the correlation 

coefficient over the year between the renewable energy output and the baseline energy 

consumption, which yields an 11.5% linear correlation.  The peaks in both usage and 

generation occur in the day when the sun is both generating solar energy and increasing 

the solar heat gain on the homes.  However, note that when using the local time for both 

energy generation and usage, the energy usage tends to peak later in the day than the 

renewable energy generation (PV specifically) since, for a large portion of the year, the 

time when families arrive home is after the time of day when the largest PV generation 

occurs.  This relationship can be seen in Figure 54 where the energy usage and renewable 

energy generation for July 13th are shown.  Note that the energy usage continues to remain 

high after the renewable energy generation drops to almost nothing.   
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Figure 54. Shift of Energy Usage from PV generation 

 

 The next step in the model is to negotiate a price and energy usage load shape 

between the utility and the homeowner’s energy management system.  This provides the 

first level of optimization within the control algorithm and should begin moving the energy 

usage load shape towards the renewable energy generation load shape for each timestep in 

the year.  This will never be a perfect alignment since the homeowner maintains their free 

will to use energy whenever they prefer.  This process iterates for ten times before moving 

on to the next model, with each pass adjusting the schedule of appliance to better align the 

usage to generation.  Figure 55 shows the difference in the renewable energy generation 

and the combined energy usage for each model iteration on January 23rd.  Each line 

represents and follows an hour for each of the iterations as the strategy attempts to move 

each line to the zero on the Y-axis by iteration ten.          
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Figure 55. Renewable Gen. minus Usage at Model Iterations per Timestep. 

 

 The data shows that the general trend after each iteration is to move the energy 

consumption to the target area for the control algorithm but with some exceptions.  This 

shows that the algorithm proposed is working as expected but does show that homeowner 

energy consumption is not infinitely flexible and will never allow for a perfect match.  Hour 

five (top orange line) in Figure 55 shows that the algorithm will not always align the energy 

usage and renewable generation and that the relationship between hour-to-hour energy 

usage can affect how well other hours align, since energy usage remains relatively constant 

and usage is merely shifted.  In this case, the variance occurs at 6am on a winter morning 

when morning activity is at its peak and thermostat schedules begin to switch from their 
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nighttime setback, thus showing that energy usage is not completely flexible as long as 

homeowners have ultimate control of their energy usage.   

 The combined energy usage at the completion of model ii is plotted and compared 

to the renewable energy generation in Figure 56.   

 

Figure 56. Model ii Energy Load shape Compared to Renewable Generation 

 

 The information in Figure 56 shows a better correlation between energy usage and 

renewable energy generation.  Although it is not easy to tell from this graph, the annual 

correlation coefficient is increased to 33.2%.  Figure 57 shows the energy usage load shape 

for the baseline energy model (purple) and the results from model ii (red), both compared 

to the renewable energy generation (black).   
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Figure 57. Baseline & Model ii Usage Load shape vs. Renewable Generation 

 

 Figure 57 demonstrates that there is some optimization in the load shapes, 

especially when there is lower energy generation.  The control algorithm, while not perfect, 

does attempt to shift the energy usage, red line, toward the renewable energy generation in 

black.  This remains a non-perfect method as residential energy usage is typically peaky – 

meaning there are a limited number of appliances that make up a large portion of the energy 

demand which are generally have an on/off control strategy.  This implies that when one 

of those appliances come on, the energy usage for that time period increases substantially.  

Additionally, for safety and comfort reasons, certain loads cannot be shifted outside of low 

renewable energy generation periods – for the January time frame an example would be 

the space heating overnight when temperatures are below freezing outside and no PV is 

generating.  There are certain comfort and safety impacts that come with not operating the 

heating system, therefore those take precedence over the control algorithm goals.   
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 The third portion of the control algorithm is to implement an additional control 

strategy affecting the energy storage systems available at the homeowner’s site.  In the 

model presented, this specifically refers to electric water heaters, but could apply to any 

designated thermal energy storage systems for HVAC or even battery energy storage when 

available.  The goal of this portion of the control algorithm is to additionally shift, in a 

more real-time manner, the energy usage in a home to match the renewable generation by 

sending an updated pricing signal to the water heater and manipulate the water heater 

temperature while not impacting customer comfort.  Figure 58 shows the combined energy 

usage load shape, in blue, plotted against the renewable energy generation in black.   

 

Figure 58. Model iii Energy Load shape Compared to Renewable Generation 

 

 The data presented in Figure 58 shows overlap in the combined energy usage of the 

homes and the renewable energy generation but still does not provide exact alignment 

between the two.  Again, this is due to comfort and safety concerns along with the 

limitations of having a fixed wattage under control.  The water heaters are controlled under 
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a minimum and maximum temperature band and must maintain a temperature between 

them and average out to approximately the midpoint to ensure comfort.  This also ensures 

a safe operation of the system by limiting the maximum and minimum temperatures to 

remain within an acceptable water temperature range, e.g. not boiling.  This setup does 

require a mixing valve to be installed to ensure scalding does not occur at higher 

temperatures.  One auxiliary benefit of increasing the temperature is an improvement in 

the safety of water by killing any bacteria associated with Legionnaires’ disease.  

According to OSHA [74], 100% of the bacteria are rapidly killed at temperatures above 

160°F and therefore storing energy in hot water above that temperature effectively 

eliminates the risks associated with Legionnaires’ disease from domestic hot water.  

 The results from Model iii include a correlation coefficient of 40.2%, which 

continues to improve from the previous model iterations.  To demonstrate how the results 

from Model iii continue to align the energy usage with renewable energy generation over 

the baseline models and even Model ii, a chart was developed presenting all three model 

results compared to the renewable energy output.  This information is shown in Figure 59. 
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Figure 59. Renewable Generation Comparison to Energy Usage Models 

 

  The data shows a general trend of the energy usage in Model iii to align better than 

the other two models to the renewable energy generation.  There are instances where the 

energy usage attempts to align with the renewable energy but overshoots the target, see 

Figure 60.   

 

Figure 60. Energy Usage Overshooting Renewable Generation 
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 This over compensation is exaggerated in this model with the low number of homes 

(ten) as each home contributes a large percentage of the flexibility and can be spread out 

more evenly between participants when a large penetration can be seen, thus minimizing 

this over usage.  Figure 59 and Figure 60 show that, on average, the alignment of energy 

usage and renewable energy generation improve after each model iteration.  This is 

summarized for each model simulation in Table 12. 

 

Table 12. Model Iteration Correlation Coefficient 

Model Iteration Correlation Coefficient 
Baseline  11.5% 
Model ii 33.2% 
Model iii 40.2% 

 

The data shows for the baseline energy usage is almost completely independent of 

the generation, resulting in patterns that respond independently and are only loosely 

coupled by solar radiation impacts on PV generation and heating and cooling loads within 

the home.  However, in Model ii, adding a proxy for the energy generation in the form of 

pricing signals helps encourage the homeowner to shift their usage from low generation 

periods to higher generation periods, within certain limits.  This is further improved in 

Model iii where water heating can be used as thermal energy storage and responds to an 

updated energy cost to further encourage the homeowner to shift their usage to a mutually 

beneficial time.   
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Comparison of Three Major Model Outputs to Verify Modeling Approach 

Beyond demonstrating that the algorithm helps align energy usage with costs and/or 

renewable energy generation, three major outputs from the model are used to determine 

the effectiveness of the control algorithm.  The first parameter is the annual energy cost to 

the customer for each home and to make sure the algorithm reduces the energy costs from 

the baseline energy model to the final output of model iii.  The second parameter is the size 

of energy storage calculations for each model and to ensure the required capacity decreases 

after each model iteration.  Finally, the third parameter is to compare the profit to the utility 

and confirm the profit remains constant or increases from the baseline model to the output 

of model ii.  With all three of these parameters being met, the algorithm can show that by 

aligning energy usage with renewable energy generation in an iterative manner, it can 

reduce the annual energy costs to the customer while also increasing profits to the utility 

and reducing the amount of energy storage required to optimize the system.   

 

 

Annual Energy Costs to Home Owners 

 The first consideration is the annual energy costs to the customer.  The results from 

the model are shown in Table 13.  This baseline energy costs information is calculated at a 

flat rate of $0.1252/kWh [63] and is multiplied by the annual energy consumption.  There 

are no other taxes or fees considered for this comparison.  In the completed algorithm 

energy costs, the annual energy cost is calculated using the results from model ii to 

calculate the energy costs for all non-energy storage devices.  The water heating energy 
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costs are then calculated using the results from model iii cost data and multiplying the 

usage by the cost at each time-step.  

 

Table 13.  Annual Cost Reductions with Algorithm 

House 

Baseline 
Energy Costs 

($/yr) 

Completed 
Algorithm Energy 

Costs ($/yr) 

Percent Reduction 
in Energy Costs 

(%) 
1 $2,372 $2,319 2.3% 
2 $2,561 $2,463 3.8% 
3 $2,386 $2,297 3.8% 
4 $2,360 $2,234 5.4% 
5 $2,664 $2,591 2.8% 
6 $2,419 $2,334 3.5% 
7 $1,952 $1,835 6.0% 
8 $2,550 $2,483 2.6% 
9 $2,268 $2,164 4.6% 
10 $2,465 $2,380 3.5% 

Total $23,998 $23,100 3.8%  

  

 The data in Table 13 shows that it is possible to reduce the energy costs of to the 

customer with this algorithm.  This data does not represent a large reduction in energy costs 

but is only a portion of the advantage of the control algorithm.  The information in Figure 

61 and Figure 62, on pages 117 and 119 respectively, show that the algorithm can greatly 

reduce the energy storage requirements and increase profit to the utility.  The prioritization 

of these parameters can be debated in future implementations but for now, demonstrates 

that all three benefits are possible with this algorithm.   
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Energy Storage System Requirements  

 The second major consideration is the energy storage capacity required to ensure 

the state-of-charge calculation remains above the lower threshold (30% SOC) and below 

the maximum threshold for a combined maximum of 10,512 timesteps (2,628 hours).  It 

was assumed for these calculations that the energy storage has a minimum state-of-charge 

of 30% of its maximum capacity and the maximum storage capacity is 100%.  The 

significance of this calculation is to show how much closer, in terms of time, the renewable 

energy generation and energy usage are.  It is also assumed that the energy storage has the 

charge/discharge capacity to meet the cycling needs for the entire year – which for these 

ten homes was always found to be less than 120kW.  This is set to the maximum difference 

in energy generation and supply and is shown as the blue line in Figure 61 .  The required 

energy storage capacity to meet the previously listed requirements during the three major 

system models is shown in Figure 61 with the baseline capacity the green column, the 

results from model ii as the gray column and finally the yellow column representing the 

results from model iii. 
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Figure 61. Energy Capacity Requirements per Model Run 

 

 The data in Figure 61 shows that about half of the optimization occurs during the 

day-ahead negotiations between the home automation system and the utility, decreasing 

the energy storage requirements by 24%.  Further optimization in the system is seen when 

adding in the element of thermal energy storage as additional energy storage is introduced 

into the system.  This leads to a reduction of an additional 29% in energy storage 

requirements, or 46% reduction from the baseline model.  The maximum charge/discharge 

rate is fairly constant throughout but does increase by 4.7% from the baseline to the results 

from Model ii and then increases by 2.7% during Model iii.  This increase in maximum 

charge/discharge rate from Model ii to Model iii is due to the overcompensation of water 
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heater energy usage as discussed previously in Figure 60 and also includes energy usage 

as a result of encouraging it during low cost periods.   

 It is interesting to note that under the parameters listed for the energy storage system 

calculations, the model’s sizing is driven by the minimum state-of-charge condition.  This 

means that the storage capacity is increased because it is not capable of supplying energy 

to the homes and must pull additional energy from the grid.  Model iii shows a much better 

alignment between the two parameters than either of the previous models.  This 

demonstrates that the water heaters are able to absorb energy in the form of hot water when 

excess renewable energy generation is present and store that energy so it is not required to 

run as often when low renewable energy generation is present.     

 

 

Profit earned by the Energy Utility  

 The final major parameter analyzed for the control algorithm is the profit to the 

utility.  The idea is that, even with less energy sales to customers, having more energy sold 

at times when it is more profitable and less energy sales when the utility loses money can 

lead to increased profits.  For the control algorithm to be effective, the balance between the 

annual energy cost to the customer and the utility must be aligned so that more profitable 

energy sales are increased while also decreasing the total cost to the customer.  The 

calculation methodology for this is discussed in Annual Energy Cost & Utility Profit 

Calculations on page 94 and the results are shown in Figure 62. 
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Figure 62. Utility Profit for each Model Run 

 

 The data shows that the baseline model provides a profit of $16,032 per year for 

the ten homes in the model.  This is operating at a flat rate to the customer and ranges 

anywhere from losing money for each kWh sold to greatly overcharging the customer to 

use energy during super off-peak hours.  This rate only attempts to average that cost over 

the course of the year and does not account for variations in true generating costs nor does 

it align the true costs to the consumers causing it.  When beginning optimization in the 

model, the homeowner’s system set to develop their energy usage model based on their 

preferences, which do not typically align with the lowest cost to produce energy.  As the 

negotiations continue between the utility and the home automation system, it can be seen 

by the upwards trend that energy usage is incentivized to adjust to the more profitable hours 

and profits are increased while energy cost to customers remain below the baseline.  
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Finally, in Model iii, the water heater energy usage is aligned directly with the cost of 

energy and allows for further reduction in annual energy costs to customers by shifting 

usage to lower cost and increasing the profit to the utility over the baseline case.  This 

results in a new profit of $16,363 in the year for those ten homes or an increase of 2.1%   

 

 

Advanced Home Equipment to Improve Performance of Control Algorithm 

 To improve the control strategy and understand how the control algorithm will react 

in the future when variable speed HVAC systems, rooftop PV generation, and large thermal 

energy storage capacity water heaters are prevalent.  For this simulation, the same ten 

homes are used from before but each is equipped with high efficiency, variable capacity 

HVAC and an 80-gallon resistive water heater to maximize energy storage capacity.  

Additionally, a 4.5kW PV system was added to a subset of the homes which provide energy 

for the home and back to the grid when available.  The breakdown of new features is shown 

in Table 14. 
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Table 14. Advanced Home Equipment Features 

Home Variable Capacity HVAC 80-gallon Water Heater Rooftop Solar PV 

1 Y Y 4.5 kW 
2 Y Y 0 kW 
3 Y Y 4.5 kW 
4 Y Y 0 kW 
5 Y Y 4.5 kW 
6 Y Y 4.5 kW 
7 Y Y 0 kW 
8 Y Y 0 kW 
9 Y Y 4.5 kW 

10 Y Y 0 kW 

  

 The same control strategy and user parameters are used for the advanced home 

model, with the exception of two changes.  This was to maintain consistency between 

models but negative comfort impacts will be reduced with the advanced equipment since 

there is greater control and flexibility with the newer equipment.   

The first change for the advanced home model is to how the water heater 

temperature setpoint is calculated in the third portion of the model.  While in the base case 

home model, the water heater temperature increased as cost decreased in steps, the 

advanced home is continuous.  Due to the increased thermal storage capacity and added 

flexibility offered, this continuously variable temperature setpoint was found to greatly 

enhance the effectiveness of its storage capability and decreased the homeowner’s energy 

costs while improving the ability to reduce energy storage needs.  An example of the 

updated response can be seen in Figure 63.  It can be seen that the dead band is still included 

to maintain the base temperature setting for small energy cost changes.   
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Figure 63. Example Updated Model iii Water Heater Response 

 The second change also relates to the water heater response in Model iii but now 

includes an increase in the profit margin implemented by the utility.  This allows the utility 

to compensate for the additional thermal energy storage and flexibility with the larger 

storage tanks while maintaining a positive profit in the overall control strategy and still 

reducing the overall energy costs to the homeowner. The results to the Advanced model 

are discussed in the following section. 

 

 

Advanced Home Model Results 

The results from this model follow the same general trends as the previous models 

where the annual energy cost to the customer and the energy storage requirements are 

reduced while the profit to the utility is increased.  In this section, the same results as in 
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Results of Control Algorithms on page 103 are discussed and while the general trends are 

the same, some interesting differences are also noted and discussed later in the section titled 

Advanced Home Model Differences on page 133.  The three parameters that continue the 

negotiations between the homeowner and the utility – annual energy costs, energy storage 

capacity reduction by 15% and an increase in profit by 1.5% – were satisfied after thirteen 

iterations.    

For the advanced home model, the same method for calculating the scaled 

renewable energy is used which pulls data from the same energy generation load shape.  

This results in the same energy generation shape but a different magnitude since the homes 

now consume less energy than before.  The same time frame for energy generation as in 

Figure 52 is shown here in which corresponds to January 22nd to January 30th as the dates.   

 

Figure 64. Renewable Energy Generation Load Shape – Advanced Homes 

 

When comparing the results from Figure 64 to those of Figure 52, the load shape is 

exactly the same.  However, the magnitude is reduced from a peak generation previously 
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of around 80 kW to a current peak of just over 60 kW in Figure 64. The renewable energy 

generation is then used to compare the energy consumption load shape for each model 

iteration to visually compare how well the generation and energy consumption align. 

As with the typical home model from before, the baseline energy consumption of 

the advanced homes does not show a direct correlation between energy usage and 

renewable energy generation as these two things are still only loosely coupled by thermal 

heat gain.  This actually proves to have less of an impact when homes are built tighter and 

with better insulation as the impacts are reduced and/or delayed, causing an even smaller 

correlation.  For the results in the advanced home baseline model, the linear correlation 

between energy usage and renewable generation for the entire year is -0.139 (-13.9%) 

which means there is a negative correlation between the two.  This implies that at a given 

timestep, as the energy generation increases over the year, the energy consumption tends 

to decrease and vice versa.  This is the opposite of the desired behavior as the goal is to 

align the energy consumption to the renewable energy generation as closely as possible.  

 The second portion of the model uses the iterative process to help align the energy 

consumption to the generation.  The same process of alignment was used as in the initial 

home model and the same temperature setpoints and appliance usage requirements were 

carried over.  The results after the ten iterations for this model lead to a linear correlation 

of 0.092 (9.2%) between the renewable generation and the energy consumption.  This is an 

improvement from the negative correlation in the baseline model but still only shows a 

very small correlation between usage and generation.  The combined energy usage of the 

ten homes is plotted for both the baseline and for Model ii case and compared against the 

scaled renewable energy generation in Figure 65. 
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Figure 65. Baseline & Model ii Load shape vs. Ren. Generation – Adv. Homes 

 

 This information shows that the iterations of this model help bring the energy usage 

towards the renewable generation – the red line attempts to either increase or decrease in 

several locations to match the black line.   

 The third portion of the model (Model iii) is used to supplement the results from 

Model ii to help match the energy usage to the renewable energy generation by storing 

thermal energy in water heaters.  This concept can be applied to any device that can store 

energy, electrical, chemical or thermal, however for this model only the water heater is 

used to minimize cost and comfort impacts to the homeowner.  This portion of the model 

is also improved over the initial homes model as the tank size is increased from 50 gallons 

to 80 gallons.  Additionally, the same temperature setpoints are used which range from 20-

90°C (68 – 194°F).  The results of Model iii are plotted with the results of Model ii and the 

baseline energy usage profile against the energy generation in Figure 66 to show the 

improvement as the model progresses.   
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Figure 66. Renewable Generation vs. Energy Usage Models – Adv. Homes 

 

 The data again shows a general trend to move the energy usage towards the energy 

generation (blue line towards the black line).  This is better demonstrated with the linear 

correlation coefficient which for this model is 0.295 (29.5%) which is an increase from 

9.2% at the end of Model ii.  This information is summarized in Table 15. 

 

Table 15. Model Iteration Correlation Coefficients – Advanced Homes 

Model Iteration Correlation Coefficient 
Baseline  -13.9 % 
Model ii 9.2 % 
Model iii 29.5 % 

  

 The data in Table 15 shows the same basic trend throughout the advanced home 

model process as with the traditional homes model where it starts with a low correlation in 

the baseline model, is improved after Model ii and is further improved after Model iii.  The 
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results in the advanced home model are consistently less correlated to the renewable 

generation than it was previously in the traditional home model.  This is due to the addition 

of rooftop PV into half of the advanced homes and is discussed in more detail in Advanced 

Home Model Differences on page 133. 

 

 

Comparison of Three Major Model Outputs to Verify Approach – Adv. Homes 

 To demonstrate that the algorithm not only helps align the energy usage with the 

renewable energy generation output, but also helps reduce the energy costs to customers 

while also increasing the profit to the utility, three parameters were analyzed.  The first is 

the annual energy cost to the homeowner that shows shifting energy usage to lower cost 

times will lower their annual energy bills.  The second is the sizing of energy storage 

requirements to ensure capacity is decreased after each model is completed.  Thirdly, the 

profit to the utility is compared for all models to ensure both parties benefit from the control 

algorithm.  With all three of these parameters being met, the algorithm can show that by 

aligning energy usage with renewable energy generation in an iterative manner, it can 

reduce the annual energy costs to the customer while also increasing profits to the utility 

and reducing the amount of energy storage required to optimize the system.  It is important 

to note that this is the same set of parameters evaluated in the tradition home model and all 

the same setup parameters are used.   
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Annual Energy Costs to Home Owners 

 The first consideration for the model is to ensure the annual energy cost to the 

homeowner is reduced, providing the incentive to participate in this type of program.  The 

comparison of costs is shown in Table 16.  The energy costs are calculated using the same 

method described in Annual Energy Costs to Home Owners on page 114 but in summary 

calculates the baseline energy cost as the annual energy usage multiplied by the average 

energy rate.  The completed algorithm energy cost is calculated at each fifteen minute 

timestep by multiplying the energy consumed in that timestep by the final energy cost for 

that same time period.  This energy cost is also separated with the water heater charged on 

a different rate (see page 114) and its energy costs are calculated separately.  Finally, the 

total energy cost in each timestep are summed over the course of the year and presented in 

Table 16. 

 

Table 16. Annual Energy Costs with Algorithm – Adv. Homes 

House 

Baseline 
Energy 

Costs ($/yr) 

Completed 
Algorithm Energy 

Costs ($/yr) 

Percent Reduction 
in Energy Costs 

(%) 
1  $2,163  $2,127 1.7% 
2  $2,313  $2,234 3.4% 
3  $2,265  $2,170 4.2% 
4  $2,034  $1,979 2.7% 
5  $2,458  $2,349 4.4% 
6  $2,197  $2,093 4.7% 
7  $1,743  $1,522 12.7% 
8  $2,341  $2,114 9.7% 
9  $2,020  $1,971 2.4% 
10  $2,581  $2,486 3.7% 

Total $22,116 $21,045 4.8%  
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 The energy costs are reduced on average by just under 5% with a maximum annual 

reduction of 12.7% and a minimum reduction of 1.7%.  The total energy cost reduction for 

the ten homes was $1,071.  This cost reduction is higher than the average savings of about 

3.8% in the traditional home model.  The two major contributors of this much larger energy 

savings is the variable capacity heat pumps capability to operate in part-load conditions 

when energy is expensive.  Additionally, the larger capacity water heater allows for most 

of the water heating to be accomplished at the lowest cost possible and stored while the 

energy costs are high, thus minimizing the energy costs associated with hot water.   

 

 

Energy Storage System Requirements – Advanced Homes 

 The second parameter that is evaluated is the energy storage capacity required to 

ensure that the system of ten homes can maintain within the state-of-charge limits for a 

minimum of 10,512 timesteps over the year.  The maximum state-of-charge is set to 100% 

with the minimum state-of-charge set at 30%.  This calculation helps in understanding how 

well the energy usage lines up with the energy generation where the excess generation is 

stored and provided back to the set of homes when under-generation occurs.  The results 

of the energy storage capacity are shown in Figure 67. 
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Figure 67. Energy Capacity Requirements per Model Run – Adv. Homes 

 

  The information presented in Figure 67 represents the energy storage requirements 

to ensure that a system’s state-of-charge (SOC) does not go outside of its boundaries (30%-

100%) over 30% of the year.  This timeframe was chosen to decrease the energy storage 

capacity and since the system is grid-connected, there is no need for the storage to be 

capable of supplying the entire energy the ten homes need.  The method of calculation was 

discussed in Calculating the Size of Energy Storage Required for Current Configuration on 

page 89 and uses the maximum difference of energy generation and usage as the 

charge/discharge capacity for the system to ensure all hours of the year can be served from 

the energy storage system.  This information can be seen in Figure 67 with the blue line.  

The storage size remains relatively constant through all three of the models, with only a 
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slight reduction from 99 kW to 92 kW for both Model ii and Model iii, this is a reduction 

of 7%.  When looking into the storage energy capacity, the baseline requirement is a 

capacity of 236 kWhs.  After implementing the initial negotiation between the home 

automation and the utility, the energy capacity is reduced by 18% to 193 kWhs.  After the 

thermal energy storage algorithms are introduced in the system, the energy capacity is 

further reduced by an additional 17% to 161 kWhs.  This is a total reduction from the 

baseline model to the results from Model iii of 32%.  This shows the control algorithm, 

when fully implemented, can greatly reduce the size of energy storage needed to meet the 

needs of the ten homes.  This translates into reduced upfront costs due to, in this scenario, 

only requiring about sixty percent of the energy to be stored in the battery at one time. 

 

 

Profit earned by the Energy Utility – Advanced Homes 

 The third parameter analyzed, as with the traditional home model, is the profit to 

the utility.  The calculation methodology for how this profit was determined is discussed 

in Annual Energy Cost & Utility Profit Calculations on page 94 but in short the energy 

consumed in each time-step is compared to the real-time costs calculated from the hub 

prices in the ERCOT market.  This is feasible even with reduction in annual energy costs 

– decreased revenue to the utility – because times when real-time costs are above the rate 

charged to the customer will be reduced and more profitable energy sales outweigh the loss 

in revenue.  Therefore, the goal of the algorithm is to reduce energy costs to consumers 

while increasing the profit of the utility which can be seen in Figure 68.   
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Figure 68. Annual Utility Profit for each Model Run – Adv. Homes 

 

 The simulation results in an annual profit for all ten homes of $12,720 for the 

baseline model and a profit for the same ten homes of $13,425 after the completion of the 

control algorithm in Model iii.  This demonstrates an increase in profit from the baseline 

run to the results in Model iii of 5.5%.  It is important to note that this increase in profit 

occurs while decreasing the annual energy cost by an average of 4.8%, which is shown in 

more detail in Table 16.  As mentioned previously, it was the intent of this simulation to 

show the feasibility of increasing profit to utilities while reducing costs to the customer 

with minimal impact on their comfort and the priorities can be adjusted later to bring the 

profit and energy cost savings better in line.   
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Advanced Home Model Differences 

The first major difference in the model is the necessary profit parameter changes 

from the base model.  This can be seen in Model ii by changing the iteration While loop 

requirements from a 0.5% to a 1.5% increase in profit.  Additionally, this can be seen during 

Model iii when the profit margin applied to the more real-time pricing scheme is increased 

to 33% from the 10% applied in the base model.  These changes are due to the increased 

flexibility with end uses – variable speed HVAC and increased hot water storage.  This 

added flexibility allows the homeowner to meet their comfort needs while shifting more 

energy from high cost times to a much lower cost period.  Therefore, the model must be 

adapted to the changes seen with highly flexible homes to compensate for their ability to 

use energy in different time frames with little-to-no impact on comfort. 

The second difference seen is an increased energy storage capacity required for all 

three model iterations; the baseline, model ii and model iii.  This is attributed to the homes 

with additional rooftop PV installed since this further increases the local energy mismatch 

to the grid scale renewable generation.  For example, rooftop PV generation will more-or-

less align with the utility PV.  This causes an increased mismatch in the home energy usage 

since the utility is encouraging additional usage during that period, however the rooftop 

PV is locally reducing or eliminating the energy consumed by that home.  This is also 

apparent when investigating the linear correlation between the energy consumption and the 

renewable energy generation.  The results of both models are shown in Table 17.  
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Table 17.  Summary of Correlation Coefficients for both Models 

Model Iteration 
Correlation Coefficient  

Typical Homes 
Correlation Coefficient  

Advanced Homes 
Baseline  11.5% -13.9 % 
Model ii 33.2% 9.2 % 
Model iii 40.2% 29.5 % 

 

 Both models show the same trend of starting with a small correlation and improving 

over the course of the model.  However, the results are consistently lower in the advanced 

home model when compared to the typical home.  This is due to the addition of rooftop 

solar PV in a subset of the advanced homes.  The model is built to optimize for the 

forecasted renewable energy generation of the system in a wide area, say the entire state.  

The model also relies on a limited number of homes and therefore a limited number of 

appliances available to shift to times of need.  This can be partially improved by adding in 

additional homes without rooftop PV but for this model, the outcome is the increased 

battery storage as described earlier in this section.  Other options that can improve the 

performance is to have the home automation platform capitalize on this and optimize the 

home with the inclusion of the local generation and use energy arbitrage to sell energy back 

to the grid when the costs are high and use energy at its lowest cost.  Another is to include 

local energy generation forecasting at each PV generation site and input that information 

to the day-ahead energy usage profile as a negative usage when over generation occurs.  

This option allows the energy provider to optimize their system based on all the available 

data rather than being blind to local PV generation on the system.  It also allows the utility 

and homeowners to negotiate a more appropriate price for each timestep as they are more 

representative of the true costs and allow energy consumption to align more directly with 

the totalized renewable energy generation.     
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The advanced model shows improvement through all three model components, 

however it was noticed that the larger water heater capacity limited the amount of 

additional load shed possible within the homes but improved the capability to add load to 

the system.  This is due to the larger water volume storage capacity holding more thermal 

energy and in times when water usage is normal, the system is able to maintain the setpoint 

without using additional energy, therefore is typically not available (turned on) during these 

times when load is needed to be reduced.   

A final difference noted between the traditional home model and the advanced 

home model is the trend in utility profit.  In the traditional home model the profit is high in 

the baseline case, drops substantially in the model ii results but increases from iteration one 

to iteration seventeen.  The profit then jumps to levels right at the baseline in Model iii.  

This can all be seen in Figure 62 on page 119.  This differs from the results in the advanced 

home model – see Figure 68 on page 132.  The results in the advanced home model show 

a lower profit in the baseline run with increasing profits through Model ii iterations, then 

for Model iii, the profit increases to a level higher than the baseline. This can be explained 

by the advanced home’s ability to quickly adjust its usage from high price periods to low 

price periods which, at each iteration becomes times of higher margins.   

 

 

Model Run with Updated ERCOT Prices 

 Since beginning the development of the model, an updated cost profile has been 

released by ERCOT.  To verify that the algorithms work independently from the specific 

cost profile, the updated costs were fed into the existing model to analyze the differences.  
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The initial data set was for 2014 and described earlier in Developing Fifteen-minute RTP 

Starting Point data on page 45.  The updated data set of data comes from the 2015 historical 

real-time market Load Zone and Hub Prices downloaded directly from the ERCOT website 

[58].  From the data, the market prices for Houston were selected and are given in each 

fifteen-minute increment for the year.  The starting price to the consumer was calculated 

the same was as before, described in the section titled Developing Fifteen-minute RTP 

Starting Point data on page 45 where the average rate throughout the year is set to a cost 

below the average energy cost of the year.  This was done to allow the average energy cost 

to be driven higher by the algorithm without automatically starting at a point above the 

annual baseline energy costs.  This updated cost information was input into the model by 

updating the CSV file titled “StartingPt_EnergyCosts_allcombined.CSV” which is used to 

reset the model to the original costs as the model initiates.  The model was then completed 

as before.  The comparison of both the traditional model and the advanced model are shown 

below.   

 

 

Traditional Home Model – Updated ERCOT Costs 

 To measure the success of the algorithm, the same measures were compared for the 

model with updated starting costs.  The first parameter compared is the correlation 

coefficients for each model run to ensure they are increasing as the algorithm progresses.  

The second is the annual energy costs of the homeowner during the baseline model, after 

model ii and finally after model iii.  Thirdly, the energy storage system requirements are 
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compared after all three segments.  Finally, the profit to the utility is compared to ensure 

both the homeowner and the electric utility is benefiting from this algorithm. 

 The updated costs in the new model do not impact the baseline energy usage or 

baseline energy costs as they are not coupled to any variable pricing scheme and operate 

under the assumption that energy costs are constant throughout the year.  Because of this, 

the following section will focus on the results after the baseline model has been developed.  

It is useful to remember that the correlation coefficient in the baseline model is 11.5% 

between energy usage and renewable energy generation.   

 The model’s iterative process operates the same way as before and continues 

looping between negotiations (up to 30 times due to limited computing power – 30 since 

the iterations are n-1) until each homeowner’s annual energy cost to the consumers is lower 

than their baseline energy cost, the profit to the utility is increased by at least 0.5% over 

the baseline case and the energy storage capacity is lowered by at least 15%.  For this 

model, this negotiation takes place eleven times.  The graphical results of Model ii are 

shown in Figure 69.   
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Figure 69. Baseline & Model ii Load shape vs. Ren. Generation – Updated Costs 

 

 Figure 69 can be compared to the results in Figure 57 on page 109 for the original 

energy cost breakdown and corresponds to a new correlation coefficient of 35.9% 

compared to the original of 33.2%.  At this point, the simulation then moves on to Model 

iii where the thermal energy storage is included and continues to improve the correlation 

between energy usage and renewable energy generation.  For this model, the profit margin 

was increased to 27.5% from 22.5% in the previous cost structure.  This is to ensure all 

three parameters are effectively met for the simulation.  The results are graphically shown 

in Figure 70.   
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Figure 70. Renewable Generation vs. Energy Usage Models – Updated Cost 

 

 As with the previous model, the correlation continues to improve after the thermal 

energy storage is introduced into the control algorithm.  For this model, the updated 

correlation is 43.1% between the energy usage and the renewable energy generation.  This 

shows an increase of 7.2% with the addition of thermal energy storage in this model and is 

in line with the results from the original ERCOT pricing scheme.  The comparison for 

correlation coefficients between the original and the updated cost profile are shown in 

Table 18. 

 

Table 18.  Correlation Coefficient Comparison for Updated Cost Profile. 

Model Iteration 
Correlation Coefficient  
Original Cost Profile 

Correlation Coefficient  
Updated Cost Profile 

Baseline  11.5% 11.5% 
Model ii 33.2% 35.9% 
Model iii 40.2% 43.1% 
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 Since the control algorithm was able to improve the correlation between energy 

consumption and renewable energy generation, the next step to ensure the algorithm is 

independent of the original cost profile is to compare the three major components of the 

updated cost model.  These three parameters are the annual energy cost to the homeowner, 

the energy storage capacity requirements and the annual profit to the utility.  These 

parameters are all calculated using the exact method presented in the original cost profile 

case.   

 The annual cost to the homeowner is calculated using an average energy cost of 

$0.1252/kWh with no additional fees included.  This energy cost is simply multiplied by 

the energy consumption for each home.  The energy costs at the end of the control 

algorithm use the energy costs from the final iteration of Model ii as the energy charge for 

all devices in the home that are not considered energy storage devices while the remaining 

usage is charged at the rate developed in Model iii.  The results for the updated cost model 

are shown in Table 19.   
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Table 19. Annual Cost Reductions with Algorithm – Updated Cost 

House 

Baseline 
Energy Costs 

($/yr) 

Completed 
Algorithm Energy 

Costs ($/yr) 

Percent Reduction 
in Energy Costs 

(%) 
1 $2,377 $2,339 1.6% 
2 $2,567 $2,506 2.4% 
3 $2,388 $2,321 2.8% 
4 $2,363 $2,300 2.7% 
5 $2,670 $2,598 2.7% 
6 $2,424 $2,337 3.6% 
7 $1,956 $1,823 6.8% 
8 $2,555 $2,479 3.0% 
9 $2,270 $2,163 4.7% 
10 $2,470 $2,358 4.5% 

Total $23,998 $23,223 3.2%  
  

 The data shows that the baseline energy consumption remains constant to the 

original cost model, as expected.  The updated cost algorithm costs are increased slightly 

when compared to the information before but, as will be seen later, the profit follows this 

relationship inversely.  However, it should be noted that the energy cost to the homeowner 

remains at levels below that of the baseline energy model.  These are rather modest savings 

(average of $78 per homeowner over the course of the year) but do signify that energy cost 

savings can be seen under this control algorithm.   

 The second parameter to be evaluated in the updated cost model is the energy 

storage capacity after each model iteration.  Again, note that the change in cost profile does 

not impact the results from the baseline model and the storage capacity remains constant 

at 278 kWhs and a maximum output of 107 kW required.  This information and the results 

from the other model iterations are shown in Figure 71. 
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Figure 71. Energy Capacity Requirements per Model Run – Updated Cost 

 

 The results show a similar trend as the original model.  The storage size increases 

from 115kW max to a new maximum of 144kW however after the algorithm is completed 

is reduced down to 133kW.  This is caused by an increased maximum energy usage during 

a single fifteen minute timestep and can be correlated to a low-cost period where a shift in 

energy usage is encouraged and achieved.  The storage capacity also follows a similar trend 

which is summarized in Table 20.  
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Table 20. Energy Storage Capacity Requirement Comparison  

Model Iteration 
Original Cost 
Profile (kWh) 

Updated Cost 
Profile (kWh) 

Baseline  278 278 
Model ii 211 201 
Model iii 149 145 

 

As can be seen in Table 20, the baseline energy storage requirements are the same 

while the results after Model ii are within ten kWhs of each other.  Finally, the energy 

storage capacity at the completion of the control algorithm is within four kWhs of the 

original cost model.  This demonstrates that the energy storage calculations are independent 

of the cost profile and the control algorithm is able to adjust the load shape of homes 

regardless of the starting cost profile.   

 The final parameter that must be validated is the annual profit to the utility.  This 

information is calculated using the method described in Annual Energy Cost & Utility 

Profit Calculations on page 94.  Unlike the other parameters, the baseline model profit is 

not the same as in the original cost profile since the cost-to-serve data has changed with 

the updated ERCOT data.  The annual profit for the utility was calculated for each model 

iteration – baseline, Model ii and Model iii.  This information is shown in Figure 72 and 

starts on the left with the baseline model profit then shifts to each of the iterations of Model 

ii until the results from Model iii are shown on the far-right hand side. 
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Figure 72. Utility Profit at each Model Run – Updated Cost 

 

 The profit for the baseline model increases to $19,002 for the ten homes due to a 

drop in cost-of-service in year 2015.  The profit immediately drops when starting the 

negotiations between the utility and the homeowner.  This profit then gradually increases 

over the course of the eleven iterations as energy usage is encouraged to lower cost time 

periods.  The results from Model iii then decreases the profit to a level slightly higher than 

the baseline energy usage model.  This increase is only 0.2% but again represents the 

potential to increase the profit to the utility while reducing the energy costs to homeowners.  

This profit is also supplemented in the control algorithm by the reduced capital cost 

requirements with the reduced energy storage requirements.  This too shows that the 

control algorithm works in multiple cost profile setups and meets all the defined success 

criteria under both the original energy cost profile and the updated ERCOT cost data.   
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Advanced Home Model – Updated ERCOT Costs 

 Identically to the traditional home model, the same parameters are compared and 

presented within this section to demonstrate that the algorithm is able to improve the 

alignment of energy usage and renewable energy generation using the advanced homes.  

This is also meant to prove that the algorithm is agnostic to the starting point energy cost 

and improves the alignment of usage and generation independently while also providing 

value to consumers and the utility.  The same results as shown in Traditional Home Model 

– Updated ERCOT Costs on page 136 are presented in this section for the advanced home 

model.  Also, note that the results from changing the real-time pricing structure does not 

change any output from the baseline energy models, therefore they will not be discussed in 

this section.   

 The graphical results showing the energy consumption at each timestep for the 

renewable energy generation, baseline energy usage and the results after Model ii is seen 

in Figure 73.  This represents a snapshot of the annual energy usage and demonstrates how 

the control algorithm attempts to shift energy usage towards the renewable energy 

generation when possible.  This is limited by the number of adjustable loads within a home 

as well as the number of homes in the simulation which limits the diversity of usage.   
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Figure 73. BL & Model ii Load vs. Renewable Gen. – Updated Costs, Adv. Homes 

 

 In Figure 73, the relationship between the energy usage is difficult to determine so 

a correlation coefficient was calculated for the baseline energy profile and the Model ii 

profile.  The baseline coefficient remains steady at -13.9%, the same as in the original cost 

model, while the coefficient on the results of Model ii is at 11.7%.  This is in comparison 

to 9.2% in the original cost model.   

 The model then adds in the additional thermal energy storage in the form of electric 

resistance water heaters.  The energy usage in all three portions of the model, as well as 

the renewable energy generation are shown in Figure 74.  This data shows that the blue 

line (results from Model iii) trends closer to the renewable energy generation throughout 

the time-period.  This is not uniformly true as some portions are overshot by over 

incentivizing homeowners to shift their usage to certain periods of the day.  This is caused 

by the lack of granularity and diversity in loads within these ten homes.  This would be 
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levelized when greater adoption is implemented as each home’s impact to the load shape 

becomes less.  

 

Figure 74. Renewable Gen. vs. Energy Usage Models – Updated Cost, Adv. Homes 

 

 The correlation coefficient of Model iii is 34% for this model, which is in line with 

the coefficient of 29.5% under the original cost profile.  Table 21 compares the correlation 

coefficients for each portion of the model from the original cost model and the updated 

cost model.   
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 This information shows that the new cost profile does not negatively influence the 

results of the control algorithm and actually improves the outcome.  Both models start with 

a negative correlation between usage and generation in the baseline scenario that improves 

to a correlation slightly above zero after Model ii.  In both cases, the correlation is improved 

greatly with the addition of thermal energy storage to around one-third.   

 Although the correlation between energy usage and renewable energy generation is 

consistent with the results from the original cost model, the other three parameters must 

also be verified to demonstrate that changing the cost profile does not ruin the control 

algorithm’s effectiveness.  The first parameter is the annual energy costs to the homeowner, 

the second is the energy storage capacity requirements and the final parameter is the profit 

to the utility.  These parameters are all calculated using the same methods as before in the 

original cost profile case.   

 The annual cost to the homeowners utilize a flat energy rate of $0.1252/kWh and 

the costs are simply multiplied by the energy usage to calculate the energy costs for the 

year.  The energy cost calculations after the control algorithm are more complicated and 

include charging the homeowner based on the final energy rate as calculated in Model ii 

for all appliances in the home with the exception of energy storage systems.  Those systems 

are then charged a separate rate calculated during Model iii – for this model the electric 

water heater is the thermal energy storage system and is the only appliance charged on this 

rate.  The summary of annual energy costs is shown in Table 22. 
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Table 22. Annual Cost Reductions with Algorithm – Updated Cost, Adv. Homes 

House 

Baseline 
Energy Costs 

($/yr) 

Completed 
Algorithm Energy 

Costs ($/yr) 

Percent Reduction 
in Energy Costs 

(%) 
1 $2,163 $2,086 3.6% 
2 $2,313 $2,225 3.8% 
3 $2,265 $2,143 5.4% 
4 $2,034 $1,993 2.0% 
5 $2,458 $2,313 5.9% 
6 $2,197 $2,062 6.1% 
7 $1,743 $1,483 14.9% 
8 $2,341 $2,101 10.3% 
9 $2,020 $1,955 3.2% 
10 $2,581 $2,478 4.0% 

Total $22,116 $20,840 5.8%  
 

The annual energy costs to the homeowners are reduced by an average of 5.8% with 

a maximum decrease of just under 15% and a minimum cost reduction of 2%.  This 

variance is correlated to the amount of flexibility in the homeowner’s load shape, if there 

is greater flexibility then there is the potential for much larger energy savings.  This savings 

amount is in line with the energy savings in the original cost profile, which was 4.8%.  This 

implies that the updated cost profile does not negatively affect the results of the control 

algorithm as is relates to the annual energy costs to the homeowner.   

 The next parameter to be evaluated is the energy storage capacity required to 

maintain the system within the operating parameters for at least 70% of the year (6,132 

hours of the year).  This parameter evaluation helps describe how well the energy usage is 

aligned with the renewable energy generation throughout the course of the year and 

includes storing excess generation and providing energy back to the homes when 
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renewable generation is not able to meet the demand.  The results for each model iteration 

for both storage size (kW) and energy storage capacity (kWh) are shown in Figure 75. 

 

Figure 75. Energy Storage Capacity per Model Run – Updated Cost, Adv. Homes 

 

 The energy storage size in the new model increases compared to the original cost 

analysis by increasing after both Model ii and Model iii.  The storage size goes from 99 

kW in the baseline model to 127 kW after Model ii and back down to 109 kW after Model 

iii.  While the energy storage requirements are increased, the energy storage capacity 

during all three models is similar to the base pricing model.  This shows that overall energy 

consumption during a singular timestep in the year is increased by 10% for Model iii in 

this pricing scenario, however the energy storage capacity decreases to 159 kWhs which 
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allows the system to remain inside the parameters for the year.  The comparison of energy 

storage capacity for the original cost profile and updated cost profile are shown in Table 

23. 

 

Table 23. Energy Storage Capacity Comparison – Adv. Homes 

Model Iteration 
Energy Storage Capacity (kWh) 

Original Cost Profile  
Energy Storage Capacity (kWh) 

Updated Cost Profile 
Baseline  236 236 
Model ii 193 189 
Model iii 161 159 

 

The data in Table 23 shows that the baseline energy storage capacity remains 

consistent with the energy storage capacity after Model ii being reduced to around 190 

kWh for both cost profiles.  The results for Model iii output are also consistent between 

cost profile models with the original cost profile resulting in 161 kWhs and the updated 

profile output being 159 kWhs.  These results show that the change in cost profile does not 

negatively impact the results of energy storage capacity.   

 The final parameter to be analyzed is the annual profit to the utility.  This is 

calculated using the raw ERCOT data as the cost of service from the utility at each timestep 

and using that information to determine how much profit is received from each kWh sold 

during that timestep.  During this calculation, the baseline data changes from cost profile 

to cost profile as the cost of service to the utility changes based on the ERCOT data profile 

even when the rate charged to the customer remains constant.  The annual utility profit is 

summarized in Figure 76 and shows a trend similar to the traditional homes model using 

the original cost profile.   
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Figure 76.  Annual Utility Profit for each Model Run – Updated Cost, Adv. Homes 

 

 For this model, the baseline model yields a profit of $15,219 for the ten homes over 

the year.  The utility profit drastically drops once negotiations begin but slowly increases 

over each iteration.  After the model runs its thirteen iterations, the profit is already 

increased above the baseline profit.  After Model iii is completed, the annual profit for the 

ten homes is $15,500.  This represents a small increase of 1.8% in profit.  This is a decline 

from the original model which resulted in a profit increase of 5.5%.  However, the gain 

shows that the updated cost profile does not prevent the functionality of the control 

algorithm.     
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Suboptimal Solutions in Updated ERCOT Costs 

 The control algorithms, as run for differing cost basis years, show that the grid and 

the homes work together and are able to find a solution to increasing profits and decreasing 

costs.  The solution is not always optimal, meaning the results are swayed to benefit the 

consumer or the utility but not finding a balance between the two and can show limited 

incentive for the homeowner or the utility to participate.  Additional test runs of the model 

showed that by altering the method in which Model iii pricing is calculated, changing the 

coefficients to the pricing change polynomial, and/or changing the method of recalculating 

pricing between iterations in Model ii, the results can be improved for each specific test 

case.  These test runs were not optimized for both solutions but demonstrate that the control 

algorithm may require adjustment, within an acceptable band, throughout the year to 

provide the best results while maintaining the ability to increase profits and reduce energy 

costs to the customers.   

 

 

Daily Control Strategy Implementations 

 The final simulation performed for the control strategy was on a daily optimization 

of the homes with the grid.  This was performed to demonstrate that allowing adjustments 

of the model on a day-by-day basis to account for variations in weather and demand can 

improve the results. This change allows the model to optimize for only the upcoming day 

and not over the entire year, allowing for a more optimal solution rather than a yearly 

optimal solution.  For the simulations, three days were randomly selected to represent 



154 
 

 
 

different seasons along with the winter and summer design days for Birmingham that were 

also included.  The first day is January 21st to represent winter (heating design day), the 

second is April 12th to represent spring, next is July 21st as the cooling design day, August 

14th to represent summer and finally October 25th to represent fall. 

 

 

Results of Daily Implementation 

 The first day simulated was January 21st and is the design day for Birmingham, AL 

in the EnergyPlus model.  This date was chosen as a representation of winter and, since it 

is the chosen design day, can be assumed to be the worst-case scenario for the control 

strategy for those months.  The model utilized the same structure as the full year model, 

but was developed to only import data for the day of interest and EnergyPlus was modified 

to only simulate the one day. The only difference for the daily model was the criteria 

needed to move from Model ii to Model iii.  These requirements were relaxed to 

accommodate the fact that not all three parameters will “win” each day in the year but will 

over the course of the year.  The new requirements were that eight of the ten homes must 

have lowered energy costs and the profit margin required was reduced.   

 

 

Day 1 – January 21st 

The first model, for January 21st, iterated eight times before moving on to the 

thermal energy storage portion of the simulation.  The average energy savings for the ten 
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homes was 2.7% for the day (seven saving and three losing) and the profit to the utility was 

found to be decreased by $0.04 (0.1%) compared to the baseline model.  The load shapes 

for the baseline and the final results energy consumption is plotted in Figure 77 along with 

the cost of service profile for that day.   

 

Figure 77. Daily Control Strategy Alignment – Jan. 21 

The figure shows the energy usage results after the baseline model (magenta line) 

for January 21st, before any of the control strategy is implemented.  As can be seen, the line 

does not correlate well with the renewable energy generation or cost of service.  The results 

after the implementation of the control strategy are shown by the blue line and show the 

group of home’s energy usage response to both the renewable energy generation and the 

cost of service.  The results attempt to align with the renewable energy generation through 

the proxy of energy costs.  These costs are driven by the utility cost of service (red line) 

which is influenced by the amount of renewable energy generation at each time step.   
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Day 2 – April 12th  

 The same analysis was performed for the representative spring day, April 12th.  The 

strategy iterated fifteen times before moving to the thermal energy storage model.  The 

average energy cost savings were 1.7% with seven homes saving money compared to the 

baseline and three losing money for the day.  It is important to note that while three homes 

are losing money on both January 21st and April 12th, these three homes are not the same 

for both days – this implies that the daily strategy can lose money while annually the home 

can still benefit.  The profit to the utility was increased by $0.39 (0.7%) compared to the 

baseline energy model.  The load shapes for the energy usage for the baseline model and 

after the completed algorithm are presented in Figure 78.  This figure also contains the 

renewable energy generation and the utility cost of service for comparison. 

 

Figure 78. Daily Control Strategy Alignment – April 12th  

 The data in Figure 78 shows the completed algorithm (blue line) attempts to track 

the renewable energy generation (black line) and the inverse of the cost of service (red 
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line).  This is in contrast to the baseline energy usage which maintains the same load shape 

independently of the renewable generation or the utility’s cost of service.   

 

 

Day 3 – July 21 

Again, the analysis was repeated for the summer design day – July 21st.  The 

strategy iterated nine times before moving to the thermal energy storage model.  The 

average energy cost savings were 3.9% with eight homes saving money compared to the 

baseline and two losing money for the day – it should be noted that one of these two homes 

saw an increase in energy cost of $0.013 during day or 0.17% increase.  The profit to the 

utility was increased by $0.70 (0.3%) compared to the baseline energy model.  The load 

shapes for the energy usage for the baseline model and after the completed algorithm are 

presented in Figure 79.  This figure also contains the renewable energy generation and the 

utility cost of service for comparison. 
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Figure 79. Daily Control Strategy Alignment – July 21st  

 

 

Day 4 – August 14th  

 The fourth day simulated was meant to be representative of the summer period – 

August 14th.  The strategy iterated fourteen times before moving to the thermal energy 

storage model.  The average energy cost savings were 0.98% with eight of the homes 

saving money compared to the baseline and the other two losing money for the day.  The 

profit to the utility was decreased by $1.50 (4%) compared to the baseline energy model.  

The load shapes for the energy usage for the baseline model and after the completed 

algorithm are presented in Figure 80.  This figure also contains the renewable energy 

generation and the utility cost of service for comparison. 
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Figure 80. Daily Control Strategy Alignment – August 14th  

 

 

Day 5 – October 15th  

The final day simulated was meant to be representative of the autumn period – 

October 15th.  The strategy iterated eleven times before moving to the thermal energy 

storage model.  The average energy cost savings were 1.2% with six of the homes saving 

money compared to the baseline and the other four losing money for the day – one of these 

homes has an increase in energy costs of $0.012 for the day.  The profit to the utility was 

increased by $1.14 (3.5%) compared to the baseline energy model.  The load shapes for 

the energy usage for the baseline model and after the completed algorithm are presented in 

Figure 81.  This figure also contains the renewable energy generation and the utility cost 

of service for comparison. 
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Figure 81. Daily Control Strategy Alignment – October 15th  

 

 

Overall Daily Results  

 When the control algorithm was implemented as-is on a daily basis, the results 

show that the system is optimized around the annual simulation method.  This allows for 

higher losses and gains for each day, averaging out to improve the profit and the energy 

savings over the annual timeframe.  When implementing on a daily basis, the algorithm 

narrows the energy cost savings but also increases the profit over the same days.  This can 

be seen in Figure 82 and Figure 83.  

00:00 06:00 12:00 18:00 00:00

Timestep (15mins/timestep) Oct 25, 2012   

0

10

20

30

40

50

60

70

En
er

gy
 U

sa
ge

/G
en

er
at

io
n 

(k
W

)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

U
til

ity
 C

os
t o

f S
er

vi
ce

 ($
/k

W
h)

Baseline Energy Usage

Energy Usage Model iii
Renewable Energy Generation
Cost of Service



161 
 

 
 

 

Figure 82. Daily vs. Annual Control Strategy Implementation 

  

 The algorithm results on homeowner energy savings are shown in more detail in 

Table 24 for the daily models.  The sum of all the homes’ energy costs is reduced for each 

day.  However, some homes save energy costs while others lose money compared to the 

baseline.  The results for the daily optimization shows a decrease in energy cost savings by 

homeowners but does show an increase in utility profit for the days considered – this 

increase is shown in Figure 83. 
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Table 24. Energy Cost Savings Compared to Baseline 

House Jan 21 April 12 July 21 August 14 October 25 
1 $0.31 $0.52 $0.68 $0.10 $0.69 
2 $0.35 $0.15 -$0.49 -$0.12 -$0.46 
3 $0.51 -$0.26 $0.50 $0.02 $0.29 
4 -$0.66 $0.09 -$0.01 $0.01 $0.11 
5 $0.29 $0.33 $0.49 $0.67 $0.15 
6 $0.89 $0.20 $0.38 $0.06 $0.03 
7 $0.24 $0.24 $0.61 -$0.46 $0.31 
8 $1.33 $0.15 $0.28 $0.16 -$0.27 
9 -$0.24 -$0.34 $0.15 $0.05 -$0.01 
10 -$0.10 -$0.31 $0.27 $0.07 -$0.28 

Total $2.93 $0.76 $2.87 $0.56 $0.55 

 

 The data in Figure 83 shows the change in utility profit for each day ran in the 

simulation when compared to its respective baseline.  As can be seen, the total profit to the 

utility is increased substantially over the annual model to a slightly positive number from 

a loss of over $20.  This increased profit reallocates the reduction in energy cost savings to 

the homeowner for the daily models.   
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Figure 83.  Profit differences in Daily and Annual Models  

  

 While the daily simulations show the daily profit to the utility is greatly increased, 

it also shows a reduction in energy cost savings to the customer.  This balance has been 

noted in this report several times and the ultimate determination of priorities will vary 

depending on many factors and can vary state-to-state or even locality to locality.  The goal 

of this research was not to develop if the utility or the homeowner gained the largest 

financial incentive, rather it is meant to demonstrate that both parties can benefit from the 

presented control strategy.   

 

 

 $(25)

 $(20)

 $(15)

 $(10)

 $(5)

 $-

 $5

Winter
Design

Spring Summer
Design

Summer Fall Total

Daily Annual



164 
 

 
 

Major Challenges Improved from Initial Model Approach 

 While creating the model, there were several lessons learned when running the 

simulations that led to improvements in different model versions.  These also shed light 

onto some of the unforeseen interactions between different components of the model when 

everything was tied together.  This section of the report focuses on these improvements 

and how the model evolved because of them.   

 

 

Scaling Renewable Energy to match Energy Consumption Magnitude 

 It was known going into the model that selecting a magnitude of several MWs of 

renewable energy generation would overwhelm and overshadow any of the energy 

consumption variations of ten homes – which typically would have a maximum peak 

demand of about 100 kW if each home peaked at the same time.  To account for this 

mismatch in magnitude, a scaling factor was needed.  To calculate this scaling factor there 

were two options seen as viable solutions which were both based off baseline energy 

consumption for the combined ten homes in the study.  The first option was to sum the 

energy consumption over the full year and match the total renewable energy generation to 

that of which was consumed, e.g. match total kWhs generated by renewable energy sources 

with kWhs consumed by the homes combined.  This does not imply that all energy is 

provided from the renewable sources and would require times of over-generation and 

pushing energy back to the grid to compensate for times when the renewable energy cannot 

supply 100% of the energy demand.   This option emulates a definition of a net-zero energy 
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community whereas the energy generated by the community is equal to the energy 

consumed by the homes over the course of a year.  This is not the same as the definition 

according to the US Department of Energy which requires the amount of energy generation 

to match the source energy input over a year – this include inefficiencies in electricity 

generation and transportation [75].  Since net-zero energy communities was not the goal of 

the model, this extra renewable energy generation was ignored.  The second option was to 

determine the maximum hourly demand caused to the electric grid from the ten homes and 

size the renewable energy generation to match that peak kW impact, e.g. match peak kW 

of the renewable energy generation with the peak kW seen throughout the year of the 

combined homes.   

 Both methods were tested in the model and it was determined that since the group 

of ten homes was never intended to be fully served by the renewable energy generation in 

an off-grid scenario, the approach to scale the renewable energy generation to match the 

annual energy consumption was chosen.  This implies that renewable energy was not 

always available to supply the energy needs of the group of homes and therefore required 

the energy storage and/or grid as a backup.  This option also provided a better opportunity 

to demonstrate influencing energy consumption in both the up and down direction since 

there was no dictated limit to the capacity of renewable energy generation.  Finally, 

although not the goal of the study, this was also seen as the preferred design solution in the 

future as the country moves towards net-zero energy homes at a much faster pace than 

moving to off-grid homes and/or neighborhoods.   The final sizing methodology for the 

renewable energy generation is shown in Scaling Renewable Energy Output on page 61. 
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Energy Cost Calculations for Water Heating in Model iii 

 The original model was developed to have the energy costs for Model iii be 

determined based on the interval energy costs that were output from Model ii – the energy 

cost in Model iii would include the output of Model ii multiplied by a certain percent 

multiplier.  This was seen as a way to incentivize homeowners to shift their water heating 

energy consumption while still maintaining consistency with the day-ahead cost timeframe 

developed in Model ii.  However, as the model was run it was noted that basing the “real-

time” pricing signals on the day-ahead pricing signal caused undesirable results and 

actually decreased the value of the model.  This was because the intention of Model iii is 

to use the thermal energy storage capability of the water heater to more closely align the 

renewable generation with the energy consumption on the grid.  However, the water heater 

setpoints were setup to change based on an absolute price rather than a relative price which 

was how the signals in the original model were being sent – the homeowner sets the water 

heater setpoints based on a certain energy cost, not based on a percent change in energy 

cost. 

  Another issue that the relative pricing model did not compensate for is times when 

the output of Model ii had overshot the desired energy usage.  This relative pricing signal 

then exacerbated the problem by encouraging the water heater to continue in the same 

direction of energy usage that caused the initial issue.  By keeping the two energy costs 

independent, the price signals are able to meet the grid needs as they occur in real-time.  

This means that no matter the outcome of Model ii, the energy storage in Model iii can be 

properly incentivized to consume or shift energy usage to meet the disparity between 

energy generation and consumption.  Therefore, in the finalized version of the model, the 
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energy costs charged to the homeowner are independent of the costs in Model ii and have 

led to the results presented.   The method for calculating the energy costs in Model iii are 

shown in Adding in Thermal Energy Storage to improve flexibility on page 91. 

 

 

Calculating the Water Heating Response to Pricing Signals 

 Although the energy costs in Model iii are able to be operated independently of the 

energy costs in Model ii, the response of the water heater at the different prices was found 

to impact how well the algorithm performed.  Several approaches were tried before settling 

on the approach discussed in Calculating an Updated Fifteen-minute Energy Cost on page 

87.  For reference, see Figure 46 on page 93.  This figure shows a linear response to energy 

costs between the maximum water heater temperature down to the typical water heater 

setpoint, a dead-band where a small cost change will not move the temperature setpoint 

and finally a linear reduction of the temperature setpoint in the tank as the cost increases.  

Other previous variations included an exponential growth or decay from the typical 

temperature setpoint and a second and third order polynomial relationship.  These 

relationships did not cause the algorithm to function improperly, however they were not 

found to be an optimal solution.  Finally, the relationship was setup with no dead-band at 

the typical setpoint.  This caused the thermal storage to over compensate for slight changes 

in price, leading to a worsening control algorithm.  However, a small dead-band vastly 

improves this response and decreased the amount of overshoot caused by water heating in 

the strategy.   
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 Another issued that caused the algorithm to perform sub-optimally was the upper 

limit on the water heater.  This limited the amount of energy that can be stored in the water 

heater at a given time and was initially set at 160°F but did not provide the amount of 

flexibility when only ten homes were included in the model.  Therefore, the upper bound 

of temperature was increased to 90°C (194°F) which was found in the literature survey to 

be the maximum temperature allowable [73].   Several companies exist today that perform 

energy storage in water heaters such as Carina [76] and Steffus [77] that do not increase 

the temperature to levels that high but are able to achieve some success in utilizing water 

heaters as thermal storage mediums.  Therefore, it is reasonable to believe that once a large 

number of homes participate in the program, each home’s contribution to thermal energy 

storage can be decreased and therefore will decrease the maximum temperature setting on 

the water heater. 

 

 

MODEL VERIFICATION 

 The individual models for each of the ten homes were independently verified under 

normal operating conditions.  Nine of the homes by the US Department of Energy [56], the 

tenth (home iii) can be seen in Building Energy Model and Verification on page 36. 

However, to further validate the energy consumption and cost savings from the control 

algorithm, the model outputs for temperature setpoints and appliance schedules were 

duplicated in an existing home – home iii, see Figure 11 on page 36.  This verification is 

meant to demonstrate the cost savings potential available using the control algorithm and 
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to verify the ability to shift energy consumption while not negatively impacting comfort 

and convenience.   

 

 

Data gathering 

 To assist in verification, circuit level energy monitoring was installed and data was 

collected for individual circuits for approximately one year at home iii.  This information 

is summarized and shown in Figure 84 and represents the average daily load shape for the 

home.   

 

Figure 84. Average Daily Load Shape for Home iii. 

 The raw data for the month of June can also be seen in Figure 85.  This data shows 

the whole home energy consumption in minute intervals and is the aggregate of all 
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appliances within the home.  It should be noted that this data does not include water heating, 

as the setup includes a natural gas system.   

 

Figure 85. Hourly Data for June – Home iii 

 

This data, when coupled with outdoor temperature data and heating/cooling degree 

days, can be considered as the operation of the home under a normal pricing scenario and 

used as the baseline energy consumption to compare the control algorithm. 

 

 

Weather Forecasting 

 To better predict the response of the home to the control algorithm in the model, a 

weather forecast must be used and input into the home energy model’s weather file.  This 

allows the model to realistically predict the thermal infiltration and heat or cooling loads 
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on the home.  To do this, two major items are needed.  The first is the day-ahead, hourly 

weather forecast and the second is a tool to convert this information into the EnergyPlus 

weather file. 

 The tool used to convert the weather forecast into a usable format also ensures that 

the appropriate information is input from the forecast.  This tool is Elements which was 

developed by Big Ladder Software in collaboration with the Rocky Mountain Institute [53].  

The data required to complete the updated weather file is shown in Table 25 and these are 

used to calculate additional necessary parameters. 

Table 25. Weather Forecast Parameters 

Parameter Units 
Dry Bulb Temperature °C 

Relative Humidity % 
Atmospheric Pressure kPa 

Direct Normal Irradiance W/m2 

Diffuse Horizontal Irradiance W/m2 

Wind Speed m/s 

  

The data shown in Table 25 is the ideal weather information needed for creating an 

energy simulation weather file to be input into EnergyPlus, however not all of this 

information is readily available to the public as a typical forecast.  The global solar 

irradiance information can be estimated using the cloud cover forecast as described in [78].  

This gives an output of global solar irradiance but does not break the information into direct 

normal or diffuse horizontal irradiance.  Since this information cannot be calculated using 

the limited information available in weather forecasts, a sensitivity analysis was performed.  

This analysis was performed on the EnergyPlus model for home iii to determine the 

impacts of only having the global solar irradiance rather than having it split into diffuse 
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and direct.  The results are summarized in Table 26.  The first model uses the complete 

TMY3 weather data which contains all three types of solar irradiation data; global, direct 

and diffuse.  The second model includes removing all the solar irradiance data from the 

weather file and reinserting the global solar data back into the software.  The Elements 

software program then calculates the normal solar radiation based on the global solar input 

while leaving the diffuse solar irradiance at zero.  The final model removes all solar 

irradiance from the model and therefore removes the solar heat gain impacts from the 

thermal model and only includes weather data and internal heat gains.  

Table 26. Sensitivity Analysis for Solar Irradiance Data, home iii 

Weather Data Version 

Premise 
Usage 

(kWh/yr) 
% 

Diff. 

Heating 
Usage 

(kWh/yr) 
% 

Diff. 

Cooling 
Usage 

(kWh/yr) % Diff. 
Complete TMY 15,457 n/a 2,096 n/a 2,377 n/a 

Global Irradiance Input 15,179 -1.8% 2,004 -4.5% 2,254 -5.3% 
No Solar Irradiance 14,745 - 4.7% 3,440 48.5% 694 -109.6% 

 

The results from the analysis shown in Table 26 demonstrate that the impact from 

only having the global solar irradiance data is minimal with less than a 2% decrease in 

overall energy consumption of the home over the year and a decrease of about 5% in both 

heating a cooling energy usage throughout the year.  Therefore, for the model verification, 

the cloud cover data is deemed sufficient to approximate the forecasted solar irradiance.   

The remaining information is available through Weather Underground [79] using 

their ten-day weather forecast.  Information can be found hourly for temperature, relative 

humidity, atmospheric pressure, wind speed and direction along with cloud cover.  This 
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data for the simulated day, combined with the solar irradiance data is input into the 

Elements software package to create an EnergyPlus weather file used in the simulation.   

 

 

Day-Ahead Pricing Outlook 

 Since the model focuses on a local energy model for the home but a macroscale 

energy cost estimate, the day-ahead pricing outlook is assumed to be the same for the initial 

model and the actual weather model.  This is because the diversity of generation sources 

and the location of renewable energy generation is not directly linked to the localized 

weather of an individual home.   

 

 

Modeling the Control Strategy with Forecasted Data 

 The initial model results were based on TMY data, or a typical meteorological year.  

This data is an average of how a typical year of weather performs in the specific area.  This 

information is used to represent a response to typical weather data rather than a year of 

actual weather data.  To compare the response of the algorithm and compare it to a real-

world example, the weather forecast data was input into the overall weather file used for 

all ten home models simulated in EnergyPlus.  The control strategy was then simulated as 

normal and operated until the parameters described earlier are met – reduced annual energy 

costs, increased profit to the utility and reduction of energy storage requirements. 
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 The results from this simulation are then implemented into the actual home with 

schedules either manually or automatically implemented to match the home energy model.  

However, the home currently has natural gas water heating so to properly simulate this 

portion of the model, a lab setup to mimic the water consumption and water heating 

temperature setpoints was created.  This analysis is deemed acceptable since the thermal 

envelope of the building and the thermal heating and cooling loads are minimally impacted 

by the water heating system.   

 

 

Automating Response within Home 

 The home being modeled is partially automated and contains a home automation 

system and Wi-Fi connected thermostat.  The other devices included in this simulation are 

not automated and will be manually turned on and off based on schedules developed by 

the control algorithm.  Additionally, other energy consuming devices that are not included 

in the control strategy (all except dishwasher, clothes washer and dryer and oven) will be 

operated as normal and not differentiated from a typical day.  A test setup system will be 

used to automate the water heater and the water consumption to mimic the usage pattern 

of the home and the tank temperature setpoints.  

 To automate the thermostat setpoint, the home automation system platform, 

Samsung Smartthings, was linked to the Ecobee 3 Wi-Fi enabled thermostat.  This link 

must be established rather than using the thermostat directly as the minimum increments 

for temperature settings are thirty minutes.  The first step in doing this automation after the 
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two systems are linked together is to setup an automation, or routine, to set a thermostat 

setpoint.  This portion of the process is shown in Figure 86. 

 

Figure 86. Temperature Automation – Step 1 & 2 

  

This temperature setting can be automated and performed at a certain time of the 

day in any increment desired.  For this demonstration, fifteen minute increments are desired 

and are setup using the process shown in Figure 87. 
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Figure 87. Automating Thermostat Setpoint Changes at Specified Times 

 

 This process is then repeated for a total of 96 temperature setpoints throughout the 

day as defined by the control algorithm – four settings per hour times twenty-four hours.  

Also, the temperature does not change at each time increment, therefore reducing the 

number of setpoint programs to a number around twenty per day.  This reduced number of 

setpoints still seems extensive and would likely never be done manually to optimize the 

energy consumption of a home, however a home automation system with an optimization 

engine could easily manipulate this number of settings for a day.  This further demonstrates 

the need for an optimization platform to improve the control algorithm.   

 To simulate the water heater energy usage and profile for the home, a test setup was 

developed to change the water heater setpoint temperature according to the simulation 

output as well as manipulating the hot water flow throughout the day.  The test setup 

includes a Wi-Fi communicating hybrid heat pump water heater that allows remote control 

of temperature settings.  The heat pump mode is turned off for the testing to match the 
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energy usage of a typical electric resistance water heater.  The water heater, along with the 

data monitoring and recording setup can be seen in Figure 88. 

 

Figure 88. Lab Test Setup for Water Heating Simulation 

 

To enable the automation of temperature settings throughout the day, IFTTT [80] 

was connected to the water heater and rules were developed to push temperature setpoints 

as needed.  IFTTT is a simple rules engine application which stands for IF This, Then That.  

This program allows linking two unrelated products and when an event occurs, a command 

is sent to the second program to perform an action – these are called Applets.  For the water 

heater testing, Applets were created that connect the Date & Time application to the GE 

Geospring Heat Pump Water Heater application.  At each timestep, a trigger is sent to the 

water heater to adjust the temperature to the setting output by the control algorithm.  The 

exception to this is when the temperature is called to be over 140°F by the control 

algorithm.  This temperature is the maximum rated temperature available on the water 
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heater as set by the manufacturer. For the day tested, this scenario occurred during several 

timesteps and each of the settings were set to the maximum allowable temperature of 

140°F.  A sample of the Applets can be seen in Figure 89. 

 

Figure 89. IFTTT Applets to Automate Water Heater Temperature Settings 

 

 To simulate the hot water flow rate throughout the day, a system was developed 

using a motorized control valve and an Arduino UNO.  The motorized control valve used 

was a Belimo Characterized Control Valve [81], which was setup to respond to a 2-10V 

DC control signal.  The Arduino utilized is capable of outputting a voltage of 0-5 Volts DC 

through a pulse width modulation port that can be programmed and used as the control 

voltage for the valve.  To align the voltage requirements of the driving signal and the 

valve’s input, the circuit in Figure 90 below was developed using the resource found in the 

Arduino help forum [82].   
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Figure 90. Breadboard Setup to Manipulate Control Voltage. 

  

 Once the valve was able to receive the correct range of control voltages, the 

Arduino was linked to Matlab and a schedule was developed to match the hot water usage 

to the EnergyPlus model.  The script in Figure 91 is used to connect Matlab to the Arduino 

through the computer’s COM port 4 and defines the Arduino pin to be used for control.  

The script also defines parameters around the test setup, specifically the length of the total 

test and the interval that the water flow rate changes – for this test it is fifteen minutes to 

match the EnergyPlus models.  Finally, the Arduino output voltage (0-5V DC) from an 

Excel file was imported into Matlab and used as the supply control voltage at each timestep. 
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Figure 91. Matlab Script for Arduino Schedule 

  

 The script then begins a “While” loop which pulls the control voltage from the 

Excel spreadsheet and writes that data to the Arduino.  The loop then pauses for the time 

interval selected, fifteen minutes for this project.  Once the interval time has completed, 

the script moves down one row and grabs the updated control signal and writes this to the 

Arduino, causing the control valve to open or close to the correct position.  This process 

repeats until the total duration of the test is completed. 

The valve and Arduino setup was then tested to determine the flow rates at different 

voltage inputs.  The test was done on the same water heater and visually documented flow 

rates in gallons per minute from an inline flow meter attached to the cold-water inlet of the 

water heater.  The testing shows that the valve’s water flow rate follows a third order 

polynomial as shown in Figure 92. 
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Figure 92.  Water Flow Rate through Valve at Different Output Voltages 

 A program was written using Excel VBA to use the Goalseek function during each 

timestep to convert the desired flow rates from the EnergyPlus model into an output 

voltage.  This voltage then is passed to the Arduino setup using the Matlab script shown in 

Figure 91 on page 180.  The test data and results are discussed in the following section. 

 

 

Results of Verification – Day 1 

 The first day of implementation within a real home was done on December 10, 

2016.  The model was used to develop thermostat setpoints for both the water heater and 

the HVAC system.  Additionally, the model output the times when the oven, clothes washer 

and dryer and dishwasher should be operated.  This information was automated to the 
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extent possible as described in Automating Response within Home and setup to replicate 

the information output by the control algorithm.   

 As the information was being gathered by circuit level energy monitors and an 

internet connected thermostat, a similar day was investigated that would serve as a baseline 

for comparison.  For this comparison, historical weather data was investigated and 

parameters such as min/max temperature, heating degree days, precipitation and wind 

speed were compared.  This investigation led to January 24, 2016 as the most similar day 

to December 10, 2016 where the same level of home data was available.  The information 

was found using [79] and presented in Table 27. 

Table 27. Weather Data Comparison for Baseline 

Weather Parameter 01/24/2016 12/10/2016 
Mean Temperature (°F) 37 38 
Max Temperature (°F) 51 52 
Min Temperature (°F) 23 24 
Heating Degree Days 28 27 
Precipitation (inches) 0.00 0.00 
Wind Speed (mph) 2 2 

 

 The average and min/max temperatures along with total heating degree days for 

these two days are very similar, with only one degree Fahrenheit difference in each.  

Additionally, five-minute outdoor temperature data for both days was downloaded using 

the internet connected Ecobee 3 thermostat installed in the home.  This information is 

assembled and shown in Figure 93 for each day.  As can be seen, the local temperature 

maintains the same trend throughout the day and maintains a similar temperature at each 

timestep during the day. 
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Figure 93. Temperature Profile Comparison for Baseline Day. 

  

 The internal temperature setpoints can also be tracked and shown in Figure 94.  This 

shows that on January 24th, the temperature settings were consistently lower than on 

December 10th with only a couple exceptions.  The temperature settings on January 24th 

remain at a base of 68°F and adjust down to either 63°F or 64°F during night and away 

hours.  A similar setback at night and away is present during December 10th, however the 

temperature setting is adjusted to a maximum of 78°F to take advantage of lower energy 

costs during those periods and shift more expensive energy usage to those times.  
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Figure 94.  Heating Temperature Setpoints for Baseline Comparison. 

 

 Once the day was chosen for the baseline, the comparison of energy usage and cost 

was then performed to help demonstrate the energy costs reduction by aligning the energy 

usage to the renewable energy generation.  For this analysis, water heating is not included 

and will be compared later.  This is due to the home’s configuration and presence of natural 

gas water heating.  The impacts of water heating will be discussed later on page 187. 

 The whole home energy consumption is compared for both days and is shown in    

Figure 95.  The dark grey line is the energy consumption when optimized around the 

pricing in the control strategy and the green line represents the energy consumption for the 

baseline day of January 24th.   

60

62

64

66

68

70

72

74

76

78

He
at

in
g 

Se
tp

oi
nt

 Te
m

p.
 (F

)

Time of Day

Heat Set Temp (F) - 01.24.2016 Heat Set Temp (F) - 12.10.2016



185 
 

 
 

 

Figure 95. Comparison Energy Consumption Data for Baseline. 

  

 This information shows the load shapes for each day but it is difficult, if not 

impossible to understand the details form this data.  Table 28 summarizes the total energy 

consumption on both days and shows the breakdown of energy usage between appliances 

included in the control strategy.   

Table 28.  Energy Consumption Breakdown between Days 

Metering Information  
Energy Usage (kWh/day) 

01/24/2016 
 Energy Usage (kWh/day) 

12/10/2016 
Whole Home 27 35 

HVAC 4.2 17.3 
Oven 0.7 1.1 

Clothes Dryer 5.6 3.3 
Dishwasher 1.5 1.5 

 

 Based on the data shown in Table 28, the increase in energy consumption between 

January 24th and December 10th can be attributed to the increase in HVAC energy 
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consumption.  There are two reasons to explain this difference, the first being natural gas 

backup heat usage during the January 24th day which would decrease the energy usage 

metered by electricity monitors.  The thermostat setting to enable backup heating was 

changed and an electric heat pump was used more often to meet the heating demands on 

December 10th – 165 minutes vs. 225 minutes on January 24th.  It should be noted that the 

use of natural gas backup heating typically occurs during the coldest hours of the day when 

the cost of electricity is usually highest, thus forcing December 10th to bare more of the 

cost during heating in this demonstration.  The second parameter that led to the increase in 

energy consumption is the thermostat settings which are shown in Figure 94 on page 184. 

 Although the energy consumption is different between the two days, the goal of the 

control algorithm is to minimize the cost to the homeowner.  To show that this is possible, 

the daily fifteen-minute cost profile is used to calculate the daily energy costs for December 

10, 2016.  This information is then compared to the total energy consumption from January 

24th charged at the flat rate of $0.1252/kWh.  This information is summarized in Table 29. 

Table 29. Summary of Daily Energy Costs – no water heating 

 Information Date 
Daily Energy 

Usage (kWh/day) 
Daily Energy 
Costs ($/day) 

January 24, 2016 27 3.38 
December 10, 2016 35 2.53 

 

 The information contained in Table 29 demonstrates that the control strategy 

performs as desired.  Although the energy consumption on December 10th is increased by 

30%, the energy costs for the day are decreased by 25% when compared to January 24th.   
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 The water heater analysis utilized a lab setup to mimic the flow rate of hot water 

throughout the day and recorded the energy consumption.  The flow rate of hot water and 

the water heater setpoint temperature for the first day of testing is shown in Figure 96.  The 

first morning peak around 6:15 am is for two morning showers, the mid-day peak is the 

dishwasher and clothes washer and the afternoon peaks are handwashing and other minor 

uses of hot water.   

 

Figure 96. Day 1 Hot Water Flow Rate & Temperature Settings 

 This flow data was converted to a voltage and input into the Arduino and valve 

setup and the temperature settings were delivered using the IFTTT setup described earlier 

on page 178.  The first day of testing utilized the flow rate and temperature profile shown 

in Figure 96 and was compared to a baseline day with the same flow rate but with the water 

heater temperature setting at a constant 125°F.   
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 The updated model attempts to align the energy consumption with the renewable 

energy generation by associating a pricing signal at each timestep to encourage different 

setpoints.  The change in energy usage based on cost (a proxy to renewable energy 

generation) can be seen in Figure 97.  The black line represents the energy cost to energy 

storage systems in the home while the blue line is the updated energy usage based on this 

price.  The usage attempts to shift usage to low cost periods while minimizing the amount 

of energy consumption during high-cost periods – compared to the magenta line for 

baseline energy usage.   

 

Figure 97. Day 1 Shift in Water Heater Energy Usage. 

 The updated energy cost for the water heater energy consumption is comparable to 

the baseline energy usage day despite having an average energy cost increase of almost 

300% directed to the energy storage systems.  This shows that the energy costs can be 

decreased or remain constant during a high cost day by shifting energy usage from high 

cost to low cost periods.  This also implies that the results can be improved during days 

where the average energy cost is decreased or when more opportunities are provided to 
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charge the water heater during off-peak times.  The energy consumption decreased in the 

new pricing scenario over the baseline operation, a reduction of 13%.  This information is 

summarized in Table 30. 

Table 30. Day 1 Summary of Results 

Information Date 
Daily Energy 

Usage (kWh/day) 
Daily Energy 
Costs ($/day) 

Average Energy 
Rate ($/kWh) 

Baseline Day 31 3.87 $0.1252 

December 10, 2016 27 3.86 $0.4968 

  

 For the final comparison of Day 1, the water heating energy usage and costs are 

combined with the remainder of the home.  The results are shown in Table 31 and include 

the total energy consumption and the total energy cost for the baseline day (January 24, 

2016 plus the baseline lab test day) and the test day of December 10, 2016.  

Table 31. Complete Energy Cost Comparison – Day 1 

Information Date 
Daily Energy 

Usage (kWh/day) 
Daily Energy 
Costs ($/day) 

Baseline 58 $7.25 
December 10, 2016 62 $6.39 

  

 The data shows a slight increase in energy usage of 4 kWhs or 7% for the control 

strategy testing day over the baseline.  The total energy costs are reversed and the baseline 

day is $0.86 more expensive than when the control strategy is implemented.  This 

represents a decrease of 12% in energy costs.  This shows that the control strategy 

performed as expected and helps demonstrate that the timing of energy usage is more 

important than the total amount consumed.  
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Results of Verification – Day 2 

 The control algorithm was implemented for a second day on December 11, 2016 to 

continue to understand the benefits of the strategy.  The same setup process was performed 

as was done in day one with the additional weather data added the previous weather file to 

update the forecasted temperatures, wind and solar radiation.  The control algorithm was 

run to gather the HVAC and water heating setpoints along with the appliance schedules.  

The schedules and setpoints were then implemented into the home through the internet 

connected thermostat and by manually turning appliances on and off at the appropriate 

time.   

 To determine what day in the past contains similar enough weather and schedules 

to be considered a baseline to compare the effectiveness of the control algorithm.  The 

same website [79] was used to find an appropriate day where weather was similar and then 

historical energy usage data was used to ensure that day was occupied and had a similar 

usage pattern.  The date chosen for comparison was December 20, 2015 and the weather 

comparison is shown in Table 32. 

Table 32. Weather Data Comparison for Baseline – Day 2 

Weather Parameter 12/20/2015 12/11/2016 
Mean Temperature (°F) 44 45 
Max Temperature (°F) 57 62 
Min Temperature (°F) 31 28 
Heating Degree Days 21 20 
Precipitation (inches) 0.00 0.00 
Wind Speed (mph) 3 4 
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 The baseline day does not reach the same extremes in high and low temperatures 

but does come within one degree Fahrenheit of the mean temperature and within one 

heating degree day.  This day was also chosen because they are both Sundays and therefore 

had a similar usage pattern.  The five-minute outdoor temperature data from the Ecobee 3 

thermostat on both days is presented in Figure 98.  The data shows that the temperature in 

the morning hours remains virtually the same on both days but in the afternoon, the outdoor 

temperature continues rising on December 11, 2016 to 62°F while the temperature fades 

sooner on December 20, 2015.  

 

Figure 98. Temperature Profile Comparison for Baseline Day – Day 2 

 

 The thermostat data can also track the internal temperature setpoints and is shown 

in Figure 99.  This data shows that the temperature settings remain between 65°F – 72°F 

during the baseline day and in the test day range from 61°F and 74°F.   
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Figure 99. Heating Temperature Setpoints for Baseline Comparison – Day 2 

 

 Similar to the first day in the test, the energy consumption and costs are compared 

between the test day and the baseline – excluding water heating energy consumption which 

will be evaluated separately.  This separate analysis begins on page 196. 

 The whole home energy consumption load shape for both days is plotted and shown 

in Figure 100.  The green line represents the baseline (12/20/2015) energy usage profile 

while the dark grey line shows the test day load shape (12/11/2016).  The total energy 

consumption is greater in the test day but the peaks in energy usage are located in different 

times of the day.  The absence of the morning peak in the baseline day can be attributed to 

the use of natural gas backup heating rather than electrical heating using a heat pump.   

60

62

64

66

68

70

72

74

76

78

He
at

in
g 

Se
tp

oi
nt

 Te
m

p.
 (F

)

Time of Day

Heat Setpoint (F) 12.20.2015 Heat Setpoint (F) 12.11.2016



193 
 

 
 

 

Figure 100. Comparison Energy Consumption Data for Baseline – Day 2. 

 

 Figure 100 shows the profile of energy consumption throughout both days but does 

not show the breakdown of appliances or total energy consumption well.  This information 

is summarized in Table 33.  The energy consumption in the baseline day is 31% less than 

during the test day with a reduction of 74% in HVAC energy usage.   

Table 33. Energy Consumption Breakdown between Days – Day 2 

Metering Information  
Energy Usage (kWh/day) 

12/20/2015 
 Energy Usage (kWh/day) 

12/11/2016 
Whole Home 27 37 

HVAC 7.7 16.8 
Oven 0 2.5 

Clothes Dryer 6.8 0 
Dishwasher 0 1.5 

 

 The reduction in HVAC usage can be attributed to the reduction in heat pump run 

hours and an increase in natural gas heating.  The natural gas heating ran for approximately 
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145 minutes in the baseline case and did not operate during the test day.  Table 34 shows 

an estimated electrical energy consumption for the natural gas heating by assuming the 

heat pump is operating those 145 minutes.  The circuit level energy metering shows the 

average power draw of the heat pump is approximately 3 kW when operating.  

Table 34. Updated Energy Usage with Estimated Heat Pump Usage Included 

Metering Information  
Energy Usage (kWh/day) 

12/20/2015 
 Energy Usage (kWh/day) 

12/11/2016 
Whole Home 34* 37 

HVAC 7.7 16.8 
Oven 0 2.5 

Clothes Dryer 6.8 0 
Dishwasher 0 1.5 

Estimated Heat Pump 7.5* n/a 

 

 Even with the accounting for natural gas heating during the baseline day, the energy 

consumption during the test day was 8% more.  However, the goal of the control algorithm 

is not necessarily to reduce energy consumption but rather to reduce the usage of high cost, 

peaking energy and to consume renewable energy generation as it is available.  Therefore, 

the energy costs of each day must be analyzed.  This data is shown in Table 35 where the 

first set of information for the baseline day excludes the estimated natural gas heating but 

is included in the second row denoted by the * at the end of the date.  The daily cost for the 

baseline energy consumption is calculated by multiplying the daily energy consumption by 

the flat energy rate ($0.1252/kWh) while the test day energy costs are calculated by 

summing the energy costs at each time interval based on the calculated fifteen-minute 

energy cost from the control algorithm. 
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Table 35. Summary of Daily Energy Costs – Day 2 

Information Date 
Daily Energy 

Usage (kWh/day) 
Daily Energy 
Costs ($/day) 

December 20, 2015 27 3.36 
December 20, 2015* 34 4.30 
December 11, 2016 37 3.95 

 

 The calculations show that in the true metered comparison, an increase in energy 

usage of 37% also resulted in an increase in energy costs of 18%.  However once a better 

representation of the HVAC energy consumption was included, the energy consumption 

was increased by 9% but resulted in a decrease in daily costs of 8.1%.  This shows that 

with the implementation of interval pricing and flexible loads within the home, an increase 

in energy consumption can still translate into a lower energy bill. 

 The water heater analysis was performed in the same manner as Day 1 and utilized 

a lab setup to mimic the hot water flow rate of a typical day in a home and recorded its 

energy consumption in minute-by-minute increments.   The flow rate and temperature 

settings used for the second day are shown in Figure 101.  The early morning peak 

represents two showers around 6:15am, the mid-morning spike represents the dishwasher 

and the remaining usage is from hand washing and other miscellaneous uses.   This 

temperature profile was compared to a constant setting of 125°F with the same flow rates. 
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Figure 101. Day 2 Hot Water Flow Rate & Temperature Settings 

 

 The flow data and temperature setpoints are shown in Figure 101 and are used in 

the test setup.  The first day of testing utilizes both the temperature and the flow rates that 

were programmed into the water heater and automated control valve respectively.  The 

second test day utilized the same flow rate as described and programmed into the 

automated control valve but the water temperature setpoint maintained a constant 

temperature of 125°F.   

 The results for the second day follow a similar pattern as day 1 where the algorithm 

shifts energy usage, as best it can within the parameters setup by the homeowner, to lower 

cost times of the day when renewable energy is abundant.  This pattern can be seen in 

Figure 102 where the blue line is the updated energy usage compared to the baseline 

represented by the magenta line.  The black line represents the updated energy storage rate 
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and it can be seen that the completed algorithm energy usage avoids the high cost periods 

by shifting the energy usage.   

 

Figure 102. Day 2 Shift in Water Heater Energy Usage 

 The updated energy cost for the second day of the water heater test show a decrease 

in energy consumption by 2.7 kWhs, or 12%, for the updated energy cost profile when 

compared to the baseline.  The energy costs for the day are reduced by 32% during the 

variable price structure after Model iii when compared to the same profile during the 

baseline model.  When the baseline energy usage was decreased to match the usage during 

the control algorithm day, the cost remains 28% higher than the results after Model iii.  

This occurs with the average energy rate charged to the energy storage increasing during 

Model iii from $0.1252/kWh to $0.4467/kWh.  This implies that the flexibility in the water 

heater can enable the energy costs to be reduced when the average rate is increased.  This 

information is summarized in Table 36.   
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Table 36.  Day 2 Summary of Results 

Information Date 
Daily Energy 

Usage (kWh/day) 
Daily Energy 
Costs ($/day) 

Average Energy 
Rate ($/kWh) 

Baseline Day 31 3.86 $0.1252 

December 10, 2016 27 2.64 $0.4467 

    

 The information was then combined with the remainder of the home’s energy 

consumption and costs and are shown in Table 37.  This data is for the baseline day, 

December 20, 2015 and the baseline water heater day, compared to the testing day of December 

11, 2016. 

Table 37.  Complete Energy Cost Comparison – Day 2 

Information Date 
Daily Energy 

Usage (kWh/day) 
Daily Energy 
Costs ($/day) 

Baseline 65 $8.16 
December 11, 2016 64 $6.59 

 

 From the testing, a slight decrease in energy usage is seen after implementing the 

control algorithm of 1.5%.  In addition to the energy savings, the energy cost savings result 

in a reduction of $1.57 for the day or almost 20%.  This, combined with the test results 

from Day 1 demonstrate that the control algorithm can be effective at manipulating energy 

usage within a home to minimize cost while maintaining homeowner comfort.    
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FUTURE RESEARCH  

The Matlab and EnergyPlus modeling presented in previous sections coupled with 

the lab and field testing demonstrate the algorithm can be effective at aligning energy 

consumption in a group of homes with renewable energy generation over a wide area.  The 

project focused on the higher-level optimization scheme at the utility end by adjusting rates 

for their customer to encourage energy consumption to shift to low cost periods from higher 

cost, lower renewable energy generation times.  This optimization scheme is dependent on 

the homeowner’s response to pricing signals and their flexibility to change usage patterns. 

As more and more homes participate in the scheme, the response will become more 

uniform and predictable as daily changes in one home are averaged out.  Additionally, the 

amount of response desired by differing utilities will be different as differing renewable 

penetrations drive different use cases.  Therefore, it is foreseen that the equations shown in 

both Figure 20 on page 51 and Figure 43 on page 88 will need to be slightly modified and 

updated to meet the needs of each utility.  Even with these modifications, the core algorithm 

remains the same and allows it to meet additional utility industry needs. 

Another key portion of this control algorithm is the home automation and optimization 

scheme.  For this research, a simplified system was implemented using historical appliance 

usage data combined with updated energy pricing to find the lowest cost combined with 

the highest historical probability of usage.  It was understood throughout the research that 

this approach is an over simplification of residential energy usage and control but was seen 

as a realistic method of including diverse load shapes within the ten homes, based on actual 
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usage data, that can allow the focus of the research to be implemented.  In the future, home 

automation and optimization systems will become more advanced and sophisticated and 

will be able to implement model predictive controls that can incorporate different 

forecasting models to improve the optimization of the home’s energy usage.  These systems 

will also implement more advanced solving algorithms to greatly reduce the computing 

time and resources required, similar to the one presented in [83].  These advancements are 

only seen as a way to further improve the value of this project and should be a focus area 

for future research to advance the level of renewable energy penetration on the grid.   
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CONCLUSION  

 Although the energy generation landscape is changing with new government 

regulations and consumer preferences that create new challenges to the electric utility 

industry, strategies are being developed to address these changes and ensure the grid is 

supplied with clean, safe and affordable energy for decades to come.  The control strategy 

presented herein allows the electric utility and a group of homeowners to negotiate 

schedules for their day through an automated home automation system to provide the 

lowest cost to both parties as well as having a fifteen minute ahead pricing structure just 

for energy storage systems to absorb or generate quickly to align energy usage to renewable 

generation.  This strategy can benefit all parties involved by shifting energy usage during 

high cost generation times to lower costs and passing that savings onto the homeowner.  

The three major goals in this research was to reduce the annual energy costs to the 

homeowner while increasing the profit to the utility and reducing the overall energy storage 

requirements for a group of homes in this program.  To demonstrate the effectiveness of 

the strategy several models were developed and a home and lab test site were developed.   

 The first set of simulations included ten residential homes, one which was verified 

to be thermally accurate for this project in Building Energy Model and Verification on page 

36 and nine other homes developed by the US Department of Energy for different code 

years [56] – these home types are summarized in Table 3 on page 44.  These homes were 

modeled in EnergyPlus using typical schedules found from the US Department of Energy’s 

Building America program [68] and used as a baseline to compare the energy usage output 
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of the control algorithm.  A set of Matlab scripts were created to develop the schedules 

used as inputs to the home simulation models as well as calculating the updated utility 

pricing signals.  This process is summarized in Figure 22 on page 58 and demonstrates the 

link between the Matlab scripts and the external command to initiate EnergyPlus models 

of each home.  The model was setup to iterate the process until three parameters were met; 

a reduction in each of the ten home’s annual energy costs, a reduction in energy storage 

requirements by at least 15% and an increase in utility profit of at least 0.5%.  The 

algorithm was able to meet these requirements after nine negotiation iterations and resulted 

in an average energy cost savings of 3.8%, a 46% reduction in energy storage requirements 

and increase the utility profit by 2%.  Lastly the linear correlation between energy usage 

and renewable energy generation was analyzed and the correlation increased from 11.5% 

in the baseline model to 40.2% after the control strategy was implemented.   

 To address future improvements in residential end device flexibility through the 

adoption of variable capacity HVAC systems and larger capacity water heaters for 

improved thermal energy storage along with the increasing proliferation of rooftop PV, a 

second model was developed for the same homes with these new features.  To provide 

differentiation, as not all homes will be right for solar PV due to shading and orientation, 

a summary of which homes contained rooftop PV is shown in Table 14 on page 121.  The 

same control algorithm and model were run with identical parameters to simulate how 

effectively the concept aligns energy usage with generation when the new technologies are 

introduced.  The results from the updated run show an improvement over traditional 

technologies, despite the addition of rooftop PV which counteracts the effectiveness by 

adding additional generation when generation costs are typically low.  This counteraction 
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is outweighed by the flexibility enabled by the variable speed HVAC system and increased 

thermal energy storage capacity in larger hot water tanks.  

 For this second model, the algorithm is able to converge and meet the requirements 

after thirteen iterations and shows an average decrease in annual energy costs of just under 

5%.  The energy storage requirements are initially increased in the baseline scenario 

compared to the first model with the addition of rooftop PV but after the control algorithm 

is implemented, the storage requirements are reduced by 32% to a level similar to the one 

found in the first model.   The third parameter, utility profit, is increased by 5.5%.   Finally, 

the linear correlation between renewable energy generation and the energy consumption in 

each timestep is improved from -13.9% (an opposite of desired correlation) to 29.5%.  This 

final correlation is lower than during the typical home model but shows a greater 

improvement of over 40% in correlation between the two variables.  This shows that all 

three parameters can be effectively improved by implementing a negotiation strategy 

between the utility and the homeowner while also implementing a more real-time pricing 

strategy to shift the usage of water heating energy consumption.  This analysis also shows 

that as flexible HVAC and larger thermal energy storage systems increase in adoption, the 

control algorithm’s value becomes even greater as it enables better alignment and 

flexibility with end loads.    

 Two additional models were simulated for the control algorithm with identical 

setups as before with the only exception being an updated utility cost profile – 2014 

historical ERCOT data updated to 2015 historical ERCOT data for Houston, Texas.  This 

was done to verify the control algorithm could perform effectively independent from the 

starting energy cost profile.  For the traditional home model, the results from the updated 
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model show a decrease in annual energy costs by an average of 3.2%, a 48% decrease in 

energy storage requirements and an increase in profit of 0.2%.  This model converged after 

eleven iterations with a new linear correlation of 43.1%.  The results from this updated cost 

model were found to be in line with the original ERCOT cost profile.  The advanced home 

model was able to converge after thirteen iterations with a new linear correlation coefficient 

of 34%.  The annual energy costs to homeowners was reduced by an average of 5.8%, the 

energy storage requirements were reduced by 33% and the utility profit increased by 1.8%.  

This too is found to be similar to the results from the original cost profile.  These results, 

seen in each of the new models, show that the control algorithm is able to work effectively 

with different starting energy cost profiles and will be able to adapt to changing energy 

generating cost profiles. 

 The last models simulated for the control strategy was on a daily basis rather than 

annually as previously discussed.  This allows the algorithm to optimize the energy 

consumption and costs for each day individually and vary the number of iterations of 

negotiations between the homeowner and the utility.  Five days were chosen to represent 

each of the four seasons plus one additional summer day.  For the days chosen, the results 

showed a shift in the beneficiary of the control algorithm from the homeowner to the utility 

by reducing the amount of cost savings to but increasing the profit.   While this occurred 

in each of the days involved, it showed a leveling out of the results to meet both needs by 

creating less extremes from day-to-day.   Therefore, it was determined that the daily control 

strategy would maintain the same results, or better, for all parties if implemented in 365 

individual models.    

 Finally, a lab and field test was performed to further validate the control algorithm 
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performance in a real-world environment.  The thermal envelope of home iii was used in 

the field evaluation and a GE Geospring heat pump water heater in electric resistance 

heating mode only was using in a lab with automated controls to model the water heating 

energy usage.   The control model was run using forecasted weather data and the historical 

energy costs to develop the appliance and thermostat schedules for two days, December 10 

and December 11, 2016.   The energy costs for the day were compared to a similar weather 

day which occurred in the previous year in the same home with similar schedules.  The 

results from the first day show an increase by 25% in energy usage, with the breakdown 

summarized in Table 28 on page 185.  Even with tis energy usage increase, the total energy 

cost for the day was reduced by 28.6 %.  Similar results were seen in the second day of the 

analysis where the adjusted energy usage is 8.5% lower, however the energy costs for the 

day are reduced by 8.5%. 

 The water heating testing demonstrated the impact on energy costs by shifting 

energy usage from high to low cost times.  The first day of water heater lab testing was 

simulated with a prescribed flow rate and at a constant temperature setting of 125°F while 

the second day was simulated using the same flow pattern but varying the temperature 

setting based on energy rates in each time increment.  The first simulation resulted in a 

similar energy cost compared to a baseline but with an average energy cost of almost 300% 

greater than the flat rate of $0.1252/kWh.  The second test period, representing December 

11, 2016, resulted in a reduction in energy costs of 32% even with an increase in average 

energy costs of 257%.  This information, when combined with the remainder of the home’s 

energy usage for the two test days, represent a decrease in energy costs by implementing 

the control strategy.   
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