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ABSTRACT

GEOMETRIC FITTING IN ERROR-IN-VARIABLE MODEL

QIZHUO HUANG

APPLIED MATHEMATICS

This dissertation is devoted to the study of a popular regression model: Error-In-

Variable Model, which has been commonly recognized as one of the key components

of computer vision research. In EIV model, a set of data points whose x, y coordi-

nates are subject to random errors is fitted by some geometric shapes such as lines,

circles and ellipses. The geometric fitting which minimizes the sum of orthogonal

distances from points to geometric shapes is universally recognized as the most desir-

able solution of the fitting problem. However, there is no explicit form of the solution

for nonlinear models (circles, ellipses etc). The problem of fitting circles has been

investigated intensively over past a few decades and all major issue appeared to be

resolved. Our analysis will focus on a more sophisticated model - fitting ellipses to a

set of points.

We will address the issues of existence and uniqueness of the best fitting solution,

study the parameter space of all quadratic curves and properties of the objective

function and show some peculiar feature of the estimates of geometric parameters for

the best fitting ellipse: they have no finite moments.

Our results promote understanding of why computer algorithms keep diverging,

return nonsense or crash altogether and help development of more robust, efficient

fitting schemes.
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Keywords: errors in variables (EIV) models, image processing, geometric fitting,

ellipse fitting.
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CHAPTER 1

INTRODUCTION

This dissertation investigates certain theoretic aspects of a popular regression

problem: fitting geometric contours (ellipses, hyperbolas, parabolas, etc,) to a set of

observed points which are measured imprecisely in both coordinates. This topic is

known as Error-in-Variables (EIV) model. It is fundamentally different and much

more complicated than the classical regression model which assumes that only one

variable is subject to random error (usually called response variable) while the other

variable (independent variable) is fixed.

The EIV regression model has been investigated by statisticians since the 1930s

[17, 18] and its importance has been recognized in many fields such as econometrics,

engineering science and image processing. The simplest model of fitting straight lines

to a set of observed points dates back to the 1870s [3, 4, 22]. All major problems

in linear EIV model were resolved by the late 1990s and much attention has been

given to nonlinear regression models (circle, ellipse etc) [5, 7, 29]. Fitting nonlinear

models to data with errors can be divided into two parts. In the first one, the main

goal is to approximate data points by a nonlinear function such as a polynomial or

an exponential function. The x and y are measured based on different units and

thus their errors may have different magnitude (see [10, 11] for detail). Second type

of nonlinear regression problem assumes both x and y variables are measured in the

same units and the choice of the coordinates system is completely arbitrary. Thus the

magnitude of errors in both variables are the same. This type of problem commonly

arises in the image processing where one often fits the geometric shape to data points

on 2D image. This dissertation will focus on geometric fitting used in the latter one.

The main frame of this regression problem can be formulted as follows:

1
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Suppose one observes n experitmental points (x1, y1), . . . , (xn, yn), which are as-

sumed random perturbations of some true points (x̃i, ỹi).

(1.1) xi = x̃i + δi yi = ỹi + εi i = 1, . . . , n

It is also assumed that all true points (x̃i, ỹi) i = 1, . . . , n all belongs to an unknown

geometric shape, i.e. P (x̃i, ỹi|Θ) = 0 (i=1,. . . ,n) where Θ is the unknown parameter

vector. The goal is to find an estimate of Θ so that the geometric shape represented by

y = P (x, y, |Θ) approximates the observed points the best. As a standard assumption

in the EIV literature, random errors δi’s and εi’s are considered as independently

distributed normal random variables with zero mean:

(1.2) δi ∼ N(0, σ2
x) εi ∼ N(0, σ2

y)

We can also make the following assumptions about the true points (x̃i, ỹi)’s.

First, we can treat the true points (x̃i, ỹi) (i = 1, . . . , n) as fixed parameters whose

values are normally of little interest in the fitting problem. This type of assumption

is known as the functional model. Or they can be regarded as realization of some

underlying random variables such as N(µ, σ2). Then µ and σ2 are considered as

parameters to be estimated along with the parameters of interest. Such a treatment

is known as structure model [20, 21]. The functional model has been intensively

studied and used in real application, especially in image processing. Therefore, this

model is adopted throughout this dissertation. We will turn to introduce the most

reliable fitting method for the EIV model.

1.1. Geometric fit

In EIV model, there are two approaches we can use to find a circle or ellipse

which best fits our data: algebraic fitting and geometric fitting. The geometric fit

which minimizes the sum of squares of orthogonal distances from points to the curve

is commonly regarded as being more accurate than algebraic fits. It has many nice

features:
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• It is invariant under translations, rotations, and scaling, i.e., the fitted geo-

metric fitting does not depend on the choice of the coordinate system.

• It coincides with the maximum likelihood estimate of the parameters of the

fitted geometric shape under standard statistical assumptions.

• Geometric fit sets a standard for testing the data processing software for

coordinate metrology [1]

Given some points P1, . . . , Pn ∈ R2, the objective function is the sum of squares

of the distances to a model object (in our case, conic) S:

(1.3) F(S) =
n∑
i=1

[
dist(Pi, S)

]2
,

The objective function depends on the points P1, . . . , Pn, but in practical settings

those are fixed, so the only variable is S, which is regarded as the sole argument of

F.

In the case of fitting line Ax+By+C = 0 to the data points, one can easily show

that

(1.4) F(A,B,C) =
1

A2 +B2

n∑
1

(Axi +Byi + C)2

By setting A2 + B2 = 1, one can find the minimzer for (1.6) explicitly(see section

3.1).

Suppose one try to fit a circle to the points. Then the distance between the circle

and each point are

(1.5) di =
√

(xi − a)2 + (yi − b)2 −R

where (a, b) denotes the center and R the radius of the circle. However, the mini-

mization of the objective function

(1.6) F(A,B,C) =
n∑
1

[
√

(xi − a)2 + (yi − b)2 −R]

has no closed form of solution. Its solution can only be approximated by iterative

algorithms such as Gauss-Newton or Levenberg-Marquard scheme which usually takes
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dozens or hundreds of iterations to converge, and there is a chance that they may

diverge, return nonsense or crash altogether [15].

The situation in ellipse fitting becomes worse. The orthogonal distance between

the ellipse and a given point do not even have simple analytic formula. The distance

can be computed by equivalently solving a polynomial equation of degree 4, which

again requires numerical schemes. The lack of explicit form of solution makes the

analytic investigation of the nonlinear model much more difficult. In this dissertation,

we will address several fundamental issues that will help promote understanding of

the geometric fitting in nonlinear case especially ellipse fitting.

1.2. Organization of the Thesis

Our analysis mainly focus on the following issues:

• Does the best fit always exists? Meaning: does the objective function F

always have a minimum?

• Is the solution always unique? (Meaning: is the minimum of the objective

function always unique?)

• The topological properties of the parameter space of quadratic curves and

how the objective function behaves in the parameter space

• The moments of estimates of geometric parameters.

The dissertation is organized as follows. The second chapter discuss the issue of

existence of the best fitting solution in a general sense. Our approach applies not

just to the model collection of ellipses but arbitrary closed sets. The third chapter

first reviews the issue of uniqueness of best fitting line and circle. And then provide

an example of multiple best fitting ellipse with a computer assisted proof. In chapter

4, we study the algebraic parameter space of quadratic curves confined to the unit

sphere in a topological manner. The unit sphere is divided into several domains based

on types of curve. We will analyse the topological properties of each domain both

seperately and together. Chapter 5 discusses important properties of the objective
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function such as continuity and differentiability. In the last chapter, we develop a

general strategy for checking infinite moments for geometric parameters and prove

that the geometric parameters of the best fitting ellipse do not have finite moments.

1.3. Special Remark

The first few chapters of my dissertation may appear quite similar to those of Ali

and especially Hui Ma (who defended her thesis in May). This is because they all

worked on the same general topic of fitting circles and ellipses, and in the first few

chapters the topic is introduced, with all definitions and general constructions which

are about the same for all of whole group.

At the same time their results are all different and there is no single joint result.

Hui Ma has mentioned that some theorems and facts are worked out by me and I

also quote her results in some of my sections. We all tried to be very discrete in this

respect.

The last chapter (Chapter 6) in my dissertation is very special, though. There

is nothing like it in Ali’s or Hui’s theses. It is about infinite moments of the el-

lipse parameter estimators (center and axes) which might be considered as the most

mathematically interesting.



CHAPTER 2

EXISTENCE OF THE BEST FITTING SET

In this chapter we will investigate the problem of existence of the best fitting curve

(also see [30]). To make a more general discussion, we will deal with all closed sets in

R2, not just some popular models (line, circle, ellipses) used in practical applications.

We will develop a general approach to the study of existence of the best fit and we

want to know if the objective function representing the sum of squares of orthogonal

distances could always achieve its minimum. Also another closely related question

about uniqueness will be discussed separately in the next chapter.

The problems of existence and uniqueness of the best fit are often ignored in the

real application as the chance that the best fit does not exist is not quite noticeable. If

they come up, one either assumes that the best fit exists and is unique, or just points

out examples to the contrary without deep investigation. However the investigation

might help understand why the computer algorithm fails to find the best solution

(diverge or crahes).

We will begin by introducing some basic notations in section 2.1. Then sections

2.2 to 2.6 will provide a theoretical analysis for the issue of best fit with some main

theorems. The discussion will involve concepts of continuity and compactness, which

we will engage also later in the section 2.8 to treat the models of ellipses and all

quadratic curves. Section 2.7 handles the problem of existence by a different approach.

2.1. Distances (review)

Since our fitting problem involves minimization of sum of squares of points to the

model object, let us begin by reviewing some necessary distance definition.

Distance between points:

6
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Figure 2.1: Distance from point to closed set

For any two given points P1 = (x1, y1) and P2 = (x2, y2), the standard “geometric”

(or “Euclidean”) distance is computed by

(2.1) dist(P1, P2) =
√

(x1 − x2)2 + (y1 − y2)2.

Distance from point to set

Given a point P and a set S ⊂ R2, the geometric distance from P to S is naturally

defined by

(2.2) dist(P, S) = inf
Q∈S

dist(P,Q),

When the set S is closed, the minimum take the place of the infimum (see proof

in Appendix), which provides a more practically convenient definition. If such a

minimum is attained, there exists a closest point Q ∈ S to the point P such that

(2.3) dist(P, S) = dist(P,Q) = min
Q∈S

dist(P,Q),

All model objects that are usually fitted to given points - lines, circles, ellipses and

other conics - are closed sets.

In most practical cases, the distance from a point P to a set S is obtained by pro-

jecting P onto S; then Q is the called the footpoint of the projection. See illustration

in the figure 2.1.

As one needs to use orthogonal projection, the distance from P to S is often called

orthogonal distance.
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Figure 2.2: Distance from set to set

(Shortest) distance from set to set

Given two sets S1, S2 ⊂ R2, the distance between S1 and S2 is defined by

(2.4) dist(S1, S2) = inf
P1∈S1,P2∈S2

dist(P1, P2),

which is the shortest distance from S1 to S2. See illustration in Figure 2.2.

The infimum in (2.4) may not be replaced by a minimum even if both sets S1 and

S2 are closed. For example, let S1 = {(x, y) : y = 0} be a straight line (the x axis)

and S2 = {(x, y) : xy = 1} be a hyperbola whose asymptotes are the x and y axes.

The distance between these sets is zero, i.e., dist(S1, S2) = 0, but there are no points

P1 ∈ S1 and P2 ∈ S2 such that dist(P1, P2) = 0.

However, if one set (say, S1) is closed and the other (S2) is compact, the infimum

in (2.4) can always be replaced by a minimum (see proof in Appendix). In that case

there are closest points P1 ∈ S1 and P2 ∈ S2 such that dist(S1, S2) = dist(P1, P2).

Note that circles and ellipses are closed and bounded, i.e., compact. On the other

hand, lines and hyperbolas are closed but not bounded.

Hausdorff distance from set to set

The shortest distance between two sets may be small, but the sets may be overall

very different from each other. To describe how far two sets are from each other

(or the dissimilarity of two shapes), we can use Hausdorff distance. Given two sets
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Figure 2.3: Hausdorff distance between two sets

S1, S2 ⊂ R2, the Hausdorff distance between S1 and S2 is defined by

(2.5) distH(S1, S2) = max
{

sup
P1∈S1

dist(P1, S2), sup
P2∈S2

dist(P2, S1)
}
,

which is the longest distance you have to travel if you need to move from one set to

the other or vice versa;

If two sets are closed and the Hausdorff distance between them is zero, i.e.,

distH(S1, S2) = 0, then they coincide: S1 = S2. If the Hausdorff distance is small,

the two sets nearly coincide with each other. When one set is closed and the oth-

er compact (or both are compact), the suprema in (2.5) can be more conveniently

replaced by maxima:

(2.6) distH(S1, S2) = max
{

max
P1∈S1

dist(P1, S2), max
P2∈S2

dist(P2, S1)
}
,

This completes our review of standard definitions of distances. Now we are ready to

introduce an important concept in the next section .

2.2. Convergence of sequences of sets

In this section we will introduce the notion of convergence for sequences of sets

which will involve some type of “distance”. Geometrically, a sequence of sets Si

(i = 1, . . .) converges to limit set S if they become indistinguishable from S. We will

make this intuition mathematically rigorous. As we see in the last section, Hausdorff
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Figure 2.4: Convergence of a sequence of circles

distance set a standard for measuring the “closedness”of two closed sets. However it

is only useful for compact sets.

Motivating example

Let us consider a sequence of Circles Cn = {x2 + (y−R)2 = R2} passing through

the origin (0, 0) and their radius R increases as n grows. Naturally, we would consider

this sequence as convergent: it converge to the line L: y = 0 as n→∞.

However, the Hausdorff distance between Cn and L is infinite, i.e., distH(Cn, L) =

∞ for every n. If you travel away from the point (0, x) on L to Cn, the distance

can be arbitrarily large. So the normal Hausdorff distance fails to characterize the

“closedness” between two sets even if they are indeed close.

Window-restricted Hausdorff distance Geometrically, we cannot see the

whole line L and circle Cn as n gets large but only the parts restricted to a certain

finite area move close to that of L, like in the above illustration. Suppose we see

objects in some rectangle

(2.7) R = {−A ≤ x ≤ A, −B ≤ y ≤ B},

which for the moment will play the role of our “window” through which we look at the

plane. Then we see segments of our circle and lines within R, i.e., we see intersections

Cn ∩R and L ∩R. Now clearly the segment Cn ∩R gets closer to L ∩R as n grows,

and in the limit n → ∞ they become identical. This is why we see the lines Cn

converging to L. We see this convergence no matter how large (or small) the window
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R is. Note that the Hausdorff distance between Cn ∩ R and L ∩ R indeed converges

to zero: distH(Cn ∩R,L ∩R)→ 0 as n→∞.

To take care of any type of closed sets (both compact or noncompact), we change

the definition of the classical Hausdorff distance between sets S1 and S2 as follows

(2.8) distH(S1, S2;R) = max
{

sup
P∈S1∩R

dist(P, S2), sup
Q∈S2∩R

dist(Q,S1)
}

if both S1 and S2, intersect the window R. Geometrically, it is the longest distance

you have to travel from one set two another, provided you begin within R.

If only one set intersects R, say S1, we can use the following expression:

(2.9) distH(S1, S2;R) = sup
P∈S1∩R

dist(P, S2).

or if nether set intersects R,

(2.10) distH(S1, S2;R) = 0

because we “see” two empty sets, which are not distinguishable.

W-convergence of sequences of sets (Main definition)

Now we use the Window-restricted Hausdorff distance to establish the convergence

of sets. Our definition uses restricted window hence we will call the resulting notion

“Window-convergence”, or “W-convergence”, for short.

Let Sn ⊂ R2 be some sets and S ⊂ R2 another set.

Definition 2.1. The sequence Sn converges to S if for any finite window R we

have

(2.11) distH(Sn, S;R)→ 0 as n→∞.

As it turns out that the sequence of lines Ln in the example indeed converges to

the limit line L. like circles or ellipses, The W-convergence can be used equivalently

as the convergence with respect to the Hausdorff distance.

The notion of convergence leads to constructions of topology and metric on the

space of model objects. This is done in the next section.
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2.3. Topology space of closed sets

In the last section we introduced the notion of convergence for a sequence of sets.

Here we discuss various aspects of this new concept.

Uniqueness of a limit set Before we make any further discussion. Let us first

consider such an example: let Ln = {y = x/n} be a sequence of lines, converging to

the x axis L = {y = 0} and L
′
a subset of L consisting of all points whose coordinates

are rational numbers. Then for any finite window R we have

(2.12) distH(Ln, L
′
;R)→ 0 as n→∞.

Thus, in the sense of W-convergence, the sequence Ln has two distinct limits: L

and L
′
. To avoid unnecessary complication, we will assume that all our sets S ⊂ R2

are closed. So we ignore any possible limits that is not closed. In this example L (a

line) is closed, but the other limit set L′ is not. In the problem of fitting curves, all

model objects in - lines, circles, ellipses and other conics are closed sets.

Topology on the collection of objects

To induce the topological structure on the space of model object, one need to

describe the collection of open sets. Let X denote the space whose elements are

subsets S ⊂ R2 (and remember we agree to consider only closed sets S, so this will be

assumed throughout). Having defined convergence of a sequence of sets Sn to a limit

set S, we can define closed sets Y ⊂ X as follows: a set Y ⊂ X is closed if for any

sequence of sets Sn ∈ Y converging to a limit set S the limit set also belongs to Y ,

i.e., S ∈ Y . Now we have the collection of closed sets Y ⊂ X. Then open sets U ⊂ X

are those whose complements X\U are closed, i.e., U ⊂ X is open if and only if X\U

is closed. One can easily check that the so defined open sets satisfy all axioms of a

topological space.

W-distance between sets

It would be easier for us if we could quantify the W-convergence, i.e., if we could

measure the distance between sets Sn and S in such a way that the W-convergence
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Sn → S is equivalent to that the distance between Sn and S converges to zero. As we

have seen, the Hausdorff distance from Sn to S would not do the job. Fortunately we

can define a distance that will work. Let Rk denote a square window of size 2k× 2k,

i.e.,

(2.13) Rk = {−k ≤ x ≤ k, −k ≤ y ≤ k}.

Now we define a W-distance (or a “Window-distance”) between two sets S1, S2 ⊂ R2

as follows:

(2.14) distW(S1, S2) =
∞∑
k=1

2−kdistH(S1, S2;Rk).

In this formula, we use a growing sequence of nested windows and the Hausdorff

distances between S1 and S2 within those windows balanced by the factors 2−k. In

the formula (2.14), the first non-zero term corresponds to the smallest window Rk

that intersects at least one of the two sets, S1 or S2. The sum in (2.14) is always finite.

Indeed, let us suppose, for simplicity, that both S1 and S2 intersect each window Rk.

Then (since the distance between any two points in Rk is at most 2
√

2k) the above

sum is bounded by 2
√

2
∑∞

k=1 k2−k < 6.

Metrizable topology

Our W-distance (2.14) has the following property: given a sequence of sets Sn and

a set S we have distB(Sn, S) → 0 as n → ∞ if and only if distH(Sn, S;Rk) → 0 for

each Rk (see proof in Appendix). Thus the sequence of sets Sn converges to a limit

set S if and only if distW(Sn, S) → 0. This means that our topological space X of

subsets of R2 can be completely described by W-distance (2.14). The fact that our

space X is metrizable will be useful later.

We remark that our W-distance is constructed rather arbitrarily. First, it uses

square windows, and we could have used rectangular or circular ones. Second, the

windows are centered on the origin (0, 0), while any other point would be just as good

as a common center for our windows. Third, the factors 2−k could be replaced with

a−k if we choose any other number a > 1, etc... etc... In fact the numerical value



14

Figure 2.5: Riemann sphere

of our W-distance distB(S1, S2) is pretty meaningless, the only important fact is that

when Sn converges to S, then distB(Sn, S)→ 0, and vice versa.

Riemann sphere

Our concepts can be described differently if we map the plane R2 onto the Riemann

sphere in the xyz space. Denote by

(2.15) S =
{

(x, y, z) : x2 + y2 + (z − 1
2
)2 = 1

4

}
the sphere in the xyz space (whose xy coordinate plane is our original plane R2) of

radius r = 1
2

centered on the point (0, 0, 1
2
). This is known as Riemann sphere (it

is often used in complex analysis). It “rests” on the xy plane and its north pole

N = (0, 0, 1) is the highest point. Now every point P = (x, y, 0) ∈ R2 in the xy plane

can be joined by a line with the north pole N of the sphere. This line PN intersects

the sphere in a unique point Q = S ∩ PN below the north pole. This defines a map

M : P 7→ Q from the xy plane R2 onto the sphere S. It can be visualized as the plane

R2 “wrapped around” the sphere S. It covers the entire sphere except the north pole

N .

Every set S ⊂ R2 on the plane is thus mapped onto a set S
′

= M(S) ⊂ S on the

sphere. If the set S is unbounded, then S
′

has the north pole N as a limit point,
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and we need to add it to S
′

to make S
′

closed. Now given a sequence of closed sets

Sn ⊂ R2 and a closed set S ⊂ R2 we get the corresponding closed sets S
′
n = M(Sn)

and S
′
= M(S) on the Riemann sphere S. The convenience of this transformation is

that we now can describe the W-convergence more easily than before: the sequence

Sn converges (i.e., W-converges) to S if and only if the Hausdorff distance between

their images on the sphere, S
′
n and S

′
, goes down to zero, i.e., distH(S

′
n, S

′
) → 0, as

n → ∞. Thus if one uses the Riemann sphere as above, there is no need for our

“window-restricted Hausdorff distances” or “W-distances”, one can just refer to the

regular Hausdorff distance on the Riemann sphere.

2.4. Continuity of the objective function

Our analysis of the problem of minimization of geometric distances from the given

points to a model object is based on the continuity of the objective function, which

allows us to use the classical extreme value theorem: A continuous function on a

nonempty compact space always attains its supremum and infimum.

Objective function

The function to be minimized is the sum of squares of the distances from the given

points to a model object:

(2.16) F(S) =
n∑
i=1

[
dist(Pi, S)

]2
,

where P1, . . . , Pn denote the given points and S a model object (from the given

collection). The given points are fixed and they are not listed as arguments of F.

The given collection of model objects will be denoted by M.

Model objects For the purpose of generality, we assume that model collection

M contains some closed sets in R2. The reason for this requirement was explained in

section 2.3. The collection M is then a subset of the topological space X of all closed

sets in R2. The topology and metric in X were also introduced in section 2.3; now M

automatically becomes a topological space and a metric space, too.

Redundancy principle
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For any object S ′ ⊂ S ∈M and a fixed point P we have

(2.17) dist(P, S) ≤ dist(P, S ′),

thus

(2.18) F(S) =
n∑
i=1

[
dist(Pi, S)

]2 6= F(S
′
)

So for the purpose of minimizing F, ignoring all proper sets may reduce the collection

M somewhat. This reduction is not necessary, since there is no harm in considering

any subset S ′ ⊂ S of an object S ∈M as a (smaller) object, too. If S ′ provides a best

fit (i.e., minimizes the objective function F), then so does S, because F(S) ≤ F(S ′).

Hence including S ′ into the collection M will not really be an extension of M, its

inclusion will not change the best fit.

Main Theorem (Continuity of the objective function)

For any given points P1, . . . , Pn and any collection M of model objects (reminder:

model objects are closed subsets of R2) the function F defined by (5.1) is continuous

on M. This means that if a sequence of objects Sm ∈M converges (i.e., W-converges)

to another object S ∈M, then F(Sm)→ F(S).

Proof. Since F(S) is the sum of squares of distances dist(Pi, S) to individual

points Pi, see (5.1), it is enough to verify that the distance dist(P, S) is a continuous

function of S for every given point P .

Suppose we are given a point P ∈ R2 and a sequence of closed sets Sm W-

converging to a set S. We denote by Q ∈ S the point in S closest to P , i.e., such

that

(2.19) dist(P,Q) = dist(P, S),

see section 2.1. Denote by D the disk centered on P of radius 1 + dist(P,Q); it

contains Q. Let R be a window containing the disk D (windows were introduced in

section (2.3)).
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Since R contains Q, it intersects with S, i.e., R ∩ S 6= ∅. This guarantees that

distH(Sm, S;R)→ 0, according to section 2.3. Thus, there are points Qm ∈ Sm such

that Qm → Q. Since dist(P, Sm) ≤ dist(P,Qm), we conclude that the upper limit of

the sequence dist(P, Sm) does not exceed dist(P, S), i.e.,

(2.20) lim sup dist(P, Sm) ≤ dist(P, S).

On the other hand, we will show that the lower limit of the sequence dist(P, Sm)

cannot be smaller than dist(P, S), i.e.,

(2.21) lim inf dist(P, Sm) ≥ dist(P, S),

The estimates (2.20) and (2.21) together imply that dist(P, Sm) → dist(P, S), as

desired, hence the distance function dist(P, S) will be continuous on M. It remains

to prove (2.21).

To prove (2.21), assume by way of contradiction that lim inf dist(P, Sm) < dist(P, S).

Then there is a subsequence Smk in our sequence of sets Sm such that

(2.22) lim
k→∞

dist(P, Smk) = lim inf dist(P, Sm) < dist(P, S).

Denote by Qm ∈ Sm the point in Sm closest to P , i.e., such that dist(P,Qm) =

dist(P, Sm). Then we have

(2.23) lim
k→∞

dist(P,Qmk) = lim
k→∞

dist(P, Smk) < dist(P, S) = dist(P,Q).
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Since the points Qmk are closer to P than the point Q is, we have Qmk ∈ D ⊂ R.

Recall that distH(Sm, S;R)→ 0, hence

(2.24) dist(Qmk , S)→ 0 as k →∞.

Denote by Hmk ∈ S the point in S closest to Qmk , i.e., such that dist(Qmk , Hmk) =

dist(Qmk , S). Now we have by triangle inequality

(2.25)

dist(P, S) ≤ dist(P,Hmk) ≤ dist(P,Qmk)+dist(Qmk , Hmk) = dist(P,Qmk)+dist(Qmk , S).

Now the limit of the first term on the right hand side of (2.25) is < dist(P, S) by

(2.23), and the limit of the second term is zero by (2.24). This implies dist(P, S) <

dist(P, S), which is impossible. The contradiction proves (2.21). And the proof of

(2.21) completes the proof of the theorem. �

We are now ready to proceed to the next section.

2.5. Closed collections of objects

Objective function

Recall that the function to be minimized is the sum of squares of the distances

from the given points to a model object:

(2.26) F(S) =
n∑
i=1

[
dist(Pi, S)

]2
,

where P1, . . . , Pn denote the given points and S a model object from the given col-

lection M.

Best fitting object

Our goal is to choose Sbest ∈M on which the function F takes its minimum value,

i.e., such that

(2.27) F(Sbest) ≤ F(S) for all S ∈M, or Sbest = arg min
S∈M

F(S).

The model object Sbest is called the best fit (or closest object) to the given points.

Our fitting problem has a solution if Sbest exists. Here we are preoccupied with the
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existence of Sbest. Does it always exist? If not, what issues can this cause? And how

can we resolve them?

Infimum versus minimum

The function F defined by (5.1) cannot be negative, thus it always has a greatest

lower bound :

(2.28) F0 = inf
S∈M

F(S).

So there always exists a sequence of objects Sn so that F(Sn) is arbitrarily close to

F0. However the existence of the best fitting object Sbest such that F(Sbest) = F0 is

not guaranteed.

Practical issues In practical terms an algorithm that executes a certain iterative

procedure produces a sequence of objects Sm (here m denotes the iteration number)

such that F(Sm) < F(Sm−1), i.e., the quality of approximations improves with every

step. If the procedure is successful, the value F(Sm) converges to the minimal possible

value, F0, and the sequence of objects Sm converges (i.e., W-converges) to some limit

object S0. Then the continuity of the objective function (which we proved in section

(2.4)) guarantees that F(S0) = F0, i.e., S0 indeed provides the global minimum of the

objective function, so it is the best fitting object: S0 = Sbest.

A problem arises if the limit object S0 does not belong to the given collection M,

hence is not admissible. Then we end up with a sequence of objects Sm, each of which

fits (approximates) the given points better than the previous one, but not as good as

the next one. None of them would be the best fit, and in fact the best fit would not

exist, so the fitting problem would have no solution.

Recall the example mentioned in the section 2.2. The sequence of circles Sm

defined by x2 + (y − R)2 = R2 will fit the points progressively better (tighter) as m

grows, so that F(Sm)→ 0 as m→∞. On the other hand, no circle can pass through

three collinear points, hence no circle S satisfies F(S) = 0. Thus the circle fitting

problem has no solution in this case.
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According to our section 2.2, the above sequence of circles Sm converges to the x

axis, which is a line, so it is natural to declare that the line is the best fit. Though

admittedly, in many practical applications one really needs to produce an estimate

of the circle’s center and radius. In that case a line would be of little help - it has no

center or radius. But if we want to present the best fitting object here, it is clearly

and undeniably the line y = 0.

Closed collections of objects

In order to guarantee the existence of the best fitting object in all cases, we need

to include in our collection M all objects that can be obtained as limits of sequences

of objects from M. Such “limit objects” are limit points of M, with respect to the

defined topology. For example, The collection ML of all lines in R2 is closed, as a

sequence of lines can only converge to a line. The collection MC of all circles in R2 is

not closed, as a sequence of circles may converge to a circle or to a line. The closure

of the collection of circles MC includes all circles and all lines, i.e.,

(2.29) M̄C = MC ∪ML.

(Strictly speaking, a sequence of circles may also converge to a single point, see

section 2.8, so singletons need to be included, too; this will be formally done later.)

The collection of ellipses and that of hyperbolas will be investigated later in section

2.8.

Closedness is necessary

We see that the collection M of model objects must be closed if we want the best

fitting object to exist in all cases. If M is not closed, we have to extend it by adding

all its limit points and thus make it closed.

To justify the necessity of closedness more formally, suppose the collection M

consists of curves of a certain type (lines, circles, conics, etc.) and it is not closed,
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i.e., there is a sequence of objects Sm ⊂ M that converges to a closed set S0 ⊂ R2

but S0 is not included in M. Let us place all the points P1, . . . , Pn on the set S0.

If n is large enough and the points P1, . . . , Pn are distinct, then there is at most

one object of the given type that interpolates all the selected points P1, . . . , Pn (for

example, there is a unique line interpolating two distinct points, at most one circle

interpolating three distinct points, etc.). Since the object S0 is not included in M,

there is no object S ∈ M that interpolates our points, i.e., F(S) 6= 0 for any S ∈ M.

On the other hand, since Sm → S, we have F(Sm)→ 0 as m→∞. We see that the

function F fails to take its minimum value (zero), hence the best fitting object (for

which F(S) = 0) does not exist in M. So a single object S0 that is not included in M

may cause the failure of the function F to take its minimum.

Closedness is sufficient

To ensure the existence of best fit in the collection M of model objects M, the

closedness is sufficient - the best fitting object always exists whenever M is closed.

Due to the importance of this fact, we will prove it in the next section.

2.6. Existence of the best fit

The purpose of this section is to prove that if the collection M of model objects

is closed, then the best fitting object exists (for any set of given points P1, . . . Pn). In

other words, the objective function F always attains its global minimum.

The key ingredients of our proof will be the continuity of the objective function

and the compactness of a restricted domain of that function. The following general

fact will be used:

A continuous real-valued function on a compact set always takes its

maximum value and its minimum value on that set.

Non-compactness of M
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In metric spaces like our M, a subset M0 ⊂M is compact if every sequence of its

elements Sm ∈M0 has a subsequence Smk that converges to another element S ∈M0,

i.e., Smk → S as k →∞.

We know that our objective function F is continuous; see section 2.4. Its domain

M is now assumed to be closed. If it was compact, the above general fact would

guarantee that F had a global minimum, as desired.

But is M compact? We can check this by referring to the above theorem again. If

it was compact, the function F would take both a minimum, and a maximum. And

this is impossible since the model objects can move arbitrarily far from the given

points, thus F(S)→ +∞.

Necessity of a restricted collection

The reason why M fails to be compact is that it is “too large”. It contains model

sets S ∈ M that are too far from the given points. It is exactly those objects which

prevent M from being compact: any sequence of model objects located farther and

farther away from the given points would “escape to infinity”, rather than converge

to any object S. So we need to find a smaller (restricted) subcollection M0 ⊂ M

which will be compact and then we will apply the above general fact.

Construction of a restricted collection

For a set of given points P1, . . . , Pn, find an r > maxi=1,...,n dist(Pi, (0, 0)). Besides,

let us assume that r is large enough so that the disk of radius r Dr = {x2 + y2 ≤ r2}

centered on the origin (0, 0) intersect at least one object S0 ∈ M. The distances

from the given points to S0 cannot exceed the diameter of Dr, which is 2r, hence

F(S0) ≤ (2r)2n.

Now we define our subcollection M0 ⊂ M: it consists of all model objects S ∈ M

that intersect the larger disk D3r of radius 3r. Objects that lie entirely outside D3r

are not included in M0. Note that the subcollection M0 contains at least one object:

it contains S0 mentioned above, because S0 intersects the smaller disk Dr. Hence M0

is not empty.
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Restriction to M0

Recall that all our given points P1, . . . , Pn lie in Dr. They are separated from

the region outside the larger disk D3r by the ring D3r \Dr, which is 2r wide. Thus

the distances from the given points to any object S which was not included in M0

are greater than 2r, hence for such objects we have F(S) > (2r)2n. Hence objects

not included in M0 cannot fit our points better than S0 does. Therefore they can be

ignored in the process of minimization of F. More precisely, if we find the best fitting

object Sbest within the subcollection M0, then for any other object S ∈ M \M0 we

will have

(2.30) F(S) > (2r)2n ≥ F(S0) ≥ F(Sbest),

which shows that Sbest will be also the best fitting object in the entire collection M.

Compactness of M0

It remains to check that the subcollection M0 is compact. Recall that the non-

compactness of the original collection M was caused by sequences of objects Sm ∈M

located progressively farther away from the given points (sequences of objects that

“escape to infinity”). In the subcollection M0 such sequences are impossible: all

objects S ∈ M0 are required to intersect the disk D3r, so they are all at a distance

< 6r from the given points (in fact, the distance is < 4r because the given points are

all in the smaller disk Dr).

Now since the subcollection M0 is compact and the objective function F is contin-

uous, it takes a minimum value by the above theorem, hence the best fitting object

exists.

Formal proof of compactness of M0 The above argument is rather informal.

We need to verify that every sequence of objects Sm ∈ M0 has a subsequence con-

verging to another object S∗ ∈M0.

We will use the following general fact: In a compact metric space any se-

quence of compact subsets has a convergent subsequence with respect to

the Hausdorff distance .
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Main Theorem (Existence of the best fit) Suppose the given collection M

of model objects is closed (see below). Then for any given points P1, . . . , Pn there

exists the best fitting object Sbest ∈M. This means that

(2.31) F(Sbest) ≤ F(S) for all S ∈M, or Sbest = arg min
S∈M

F(S),

i.e., the objective function F attains its global minimum on M. Recall: A collection

M of model objects is closed if for any sequence of objects Sm ∈M that W-converges

to an object S, the limit object S also belongs to M.

Proof. Now let j = [3r] + 1 be the smallest integer greater than 3r. Recall that

all the objects in M0 are required to intersect D3r, thus they all intersect Dj as well.

The sets Sm∩Dj are compact. By the above general fact, there is a subsequence S
(j)
k

in the sequence Sm and a compact subset S∗j ⊂ Dj such that distH(S
(j)
k ∩Dj, S

∗
j )→ 0

as k → ∞. Next, from the subsequence S
(j)
k we extract a subsequence, call it S

(j+1)
k

that converges in the larger disk Dj+1, i.e., such that distH(S
(j+1)
k ∩Dj+1, S

∗
j+1)→ 0

as k → ∞ for some compact subset S∗j+1 ⊂ Dj+1. Since distH(S
(j+1)
k ∩Dj, S

∗
j ) → 0,

we see that S∗j+1 ∩Dj = S∗j , i.e., the limit sets S∗j and S∗j+1 “agree” within Dj.

Then we continue this procedure inductively for the progressively larger disks

Dj+2, Dj+3, . . .. In the end we use standard Cantor’s diagonal argument [19] to con-

struct a single subsequence Smk such that for every i ≥ j we have distH(Smk ∩

Di, S
∗
i ) → 0 as k → ∞, and the limiting subsets S∗i ⊂ Di agree in the sense

S∗i+1 ∩ Di = S∗i for every i ≥ j. Then it follows that the sequence of objects Smk

converges (i.e., W-converges) to the closed set S∗ = ∪i≥jS∗i . The limit set S∗ must

belong to our collection M because that collection was assumed to be closed. Lastly,

since S∗ intersects the disk D3r, it also belongs to the subcollection M0. Our formal

proof is now complete. �

A different approach to the existence problem is given in the next Section.
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2.7. Megaspace

Introduction

Our conclusions can be illustrated by an interesting construction in a multidimen-

sional space (“megaspace”). It was first used by Malinvaud [24] and then by Chernov

( Section 1.5 and Section 3.4 in [12]).

Objective function (reminder)

Recall that given n data points P1 = (x1, y1), . . . , Pn = (xn, yn) and a model

object S (a closed subset of R2), the objective function F(S) is defined by

F(S) =
n∑
i=1

[
dist(Pi, S)

]2
and for the distance dist(Pi, S) we can write

[
dist(Pi, S)

]2
= min

(x
′
i,y

′
i)∈S

{
(xi − x

′

i)
2 + (yi − y

′

i)
2
}
.

Thus we can express the objective function F(S) as follows:

(2.32) F(S) = min

{ n∑
i=1

[
(xi − x

′

i)
2 + (yi − y

′

i)
2
]
; (x

′

i, y
′

i) ∈ S ∀i
}
.

Megapoints and megasets Now let us represent the n data points P1 = (x1, y1),

. . . , Pn = (xn, yn) by one point (“megapoint”) P in the 2n-dimensional space R2n with

coordinates x1, y1, . . . , xn, yn.

For the given object S, let us also define a multidimensional set (“megaset”)

MS ⊂ R2n as follows:

P
′
= (x

′

1, y
′

1, . . . , x
′

n, y
′

n) ∈MS ⇐⇒ (x
′

i, y
′

i) ∈ S ∀i.

Note that
∑n

i=1

[
(xi − x

′
i)

2 + (yi − y
′
i)

2
]

in (2.32) is the square of the distance from P

to P
′ ∈MS, in the Euclidean metric in the “megaspace” R2n. Therefore

(2.33) F(S) = min
P′∈MS

[
dist(P,P

′
)
]2

=
[
dist(P,MS)

]2
.
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Next given a collection M of model objects we define a large “megaset” M(M) ⊂ R2n

as follows: M(M) = ∪S∈MMS. Alternatively, it can be defined as

(x
′

1, y
′

1, . . . , x
′

n, y
′

n) ∈M(M) ⇐⇒ ∃S ∈M : (x
′

i, y
′

i) ∈ S ∀i.

We will describe the “megasets” M(M) for several commonly used model collec-

tions M (of lines, circles, and ellipses) in section 2.10.

Projecting megapoint onto megaset The best fitting object Sbest minimizes

the function F(S). Thus, due to (2.33), Sbest minimizes the distance from the “mega-

point” P representing the data set P1, . . . , Pn to the “megaset” M(M) representing

the collection M.

Thus, the problem of finding the best fitting object Sbest reduces to the problem

of finding the “megapoint” P′ ∈M(M) that is the closest to the given “megapoint”

P (representing the given n points). In geometric terms, we need to project the

“megapoint” P onto the ”megaset” M(M), and the footpoint P′ of the projection

would give us the best fitting object Sbest.

Closedness Conclusion: the best fitting object Sbest ∈ M exists if and only if

there exists a “megapoint” P′ ∈ M(M) that is the closest to the given ”megapoint”

P.

It is a simple fact in geometry (already mentioned in Section (2.1)) that given a

set D ⊂ Rd in a Euclidean space, the closest point X ′ ∈ D to a given point X ∈ Rd

exists for any X if and only if the set D is closed (in topological sense).

Thus the existence of the best fitting object Sbest requires the “megaset” M(M)

to be topologically closed. Again we see that the property of closedness is necessary

and sufficient for the fitting problem to have a solution.

The closedness of the model collection M guarantees the closedness of the megaset

M(M):
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Theorem 2.1. If the model collection M is closed (in the sense of the W-convergence,

as defined in Section 2.5), then the megaset M(M) is closed in the natural topology

of R2n.

The significance of this theorem is clear as it provides an alternative proof of the

existence of the best fitting object, provided the model collection M is closed. The

proof of the above theorem is given next.

Proof. Suppose a sequence of megapoints

P(k) = (x
(k)
1 , y

(k)
1 , . . . , x(k)

n , y(k)
n ),

all belonging to the megaset M(M), converges, as k →∞, to a megapoint

P(∞) = (x
(∞)
1 , y

(∞)
1 , . . . , x(∞)

n , y(∞)
n )

in the usual topology of R2n. This implies that for every i = 1, . . . , n the point

(x
(k)
i , y

(k)
i ) converges, as k → ∞, to the point (x

(∞)
i , y

(∞)
i ). We need to show that

P(∞) ∈M(M).

Now for every k there exists a model object S(k) ∈ M that contains the n points

(x
(k)
1 , y

(k)
1 ), . . . , (x

(k)
n , y

(k)
n ). The sequence {S(k)} contains a convergent subsequence

Skr , i.e., such that Skr → S as r →∞ for some closed set S ⊂ R2. The reason for the

existence of a convergent subsequence is the same as in the proof of the compactness

of M0 in the end of Section 2.6.

As we assumed that the collection M is closed, it follows that M contains the limit

object S, i.e., S ∈M. It is intuitively clear (and can be checked by a routine calculus-

type argument) that S contains all the limit points (x
(∞)
1 , y

(∞)
1 ), . . . , (x

(∞)
n , y

(∞)
n ).

Therefore the limit megapoint P(∞) belongs to the megaset M(M). This proves

that the megaset is closed. �

Two versions of closedness We defined the notion of “closed collections of

model objects” in the section 2.5. We proved that the closedness of the collection of

model objects is necessary and sufficient for the existence of the best fitting object.
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Here we introduced another notion of closedness: given a collection of model

objects M we constructed its megaset M(M) ⊂ R2n, and then used the closedness of

the megaset (with respect to the natural topology in R2n) to justify the existence of

the best fitting object.

A natural question is: Are these two types of closedness equivalent? We have

shown that the closedness of M implies that of M(M). Curiously, the converse is not

true. It may happen that M(M) is closed, but M is not, see examples below. So

these two versions of closedness are not equivalent.

We will argue, however, that those examples are in a way exceptional, and under

certain reasonable conditions the two versions of closedness are indeed equivalent.

Examples of exceptional cases First we point out some exceptions. For ex-

ample, let M be the collection of circles. It is not closed as we learned in section 2.8.

Suppose n = 2. Since every two points belong to some circle, we have M(M) = R4,

which is a closed set. Thus it is possible that M is not closed, but M(M) is closed.

As a more sophisticated example, let M be the collection of the following object-

s: all circles, all lines (with the exception of the x-axis), all singletons, all three-

point sets in the x-axis, and all two-point sets in the x-axis. We note that all sets

{(x1, 0), (x2, 0), (x3, 0)}, where x1, x2, x3 are arbitrary numbers (distinct or equal),

are included in M. We also note that this collection is not closed, because a sequence

of lines may converge to the x-axis, which does not belong to M (as it was specifically

excluded).

Now let n = 3. It is easy to check that “any” three points belong to one of the

objects in our collection M. Therefore, we have M(M) = R6, which is a closed set.

Thus again, M is not closed, but M(M) is closed.

The above examples are rather artificial, as it is unnatural to fit circles to n = 2

or n = 3 points. This is rather an interpolation problem, not a fitting problem. This

observation will help us to find a general approach to the issue.
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Equivalence of two versions of closedness Suppose that our collection of

model objects M has the following property: there exists n0 ≥ 1 such that any two

distinct objects can intersect in at most n0 points. This means that if S1, S2 ∈ M

are two distinct objects, i.e., S1 6= S2, then their intersection S1 ∩ S2 is a finite set

consisting of at most n0 points.

For lines n0 = 1, for circles n0 = 2, for ellipses and other conics n0 = 4 [?]. If

such n0 exists, then for any n0 + 1 distinct points there can be at most one object

containing all of those n0 + 1 points.

The number n0+1 can be described as follows: any object S ∈M can be identified

(i.e., uniquely determined) by any n0+1 distinct points in it. Any line can be identified

by two distinct points on it, any circle - by three distinct points on it, etc.

Now the equivalence of the above two versions of closedness holds only if n > n0+1.

For example, if our model collection consists of lines, then the equivalence holds for

n > 2. If our collection consists of circles, then n > 3, for ellipses and other conics

the requirement is n > 5.

We also need to assume a natural condition: if a sequence of objects Sm ∈ M

converges (in our sense, i.e., W-converges) to a closed set S∗, i.e., Sm → S∗, and S∗

is a subset of an object S ∈ M, i.e., S∗ ⊂ S, then S∗ ∈ M. This assumption agrees

with the Redundancy Principle, see section 2.4, as any subset of a legitimate object

S ∈M can be regarded as an object, too, for fitting purposes.

Theorem 2.2. (Equivalence of two versions of closedness) Let M be a collection

of model objects. Suppose any two distinct objects S1, S2 ∈M can intersect each other

in at most n0 points. Then M is closed (in the sense of section 2.5) if and only if for

any n > n0 + 1 the corresponding megaset M(M) ⊂ R2n is closed with respect to the

natural topology in R2n.

Proof. Part (i): If M is closed, then M(M) is closed.

By way of contradiction, let us assume that M(M) is not closed (in a natural

sense). This indicates that M(M) does not contain one of its limit point P0. Then
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there exists a sequence of megapoints

Pk = (xk1, yk1, . . . , xkn, ykn) ∈M(M) (xki, yki) ∈ Sk ∈M ∀i.

converging to P0 = (x1, y1, . . . , xn, yn). In addition, [dist(Pk, (0, 0, . . . , 0, 0))
]2
< D

(D ∈ R+) for all k. Let DM = {x2 + y2 6 D}. So DM intersects with all Sk and by

a similar argument as section 2.6, the subset of M containing every Sk is compact.

Let’s just assume {Sk} converges to a finite limit S0. Because of closedness of M,

S0 ∈ M. Since P0 does not belong to M(M), dist(S0, (xi, yi)) > 0 for some i. For

a finite window R = {−
√
D ≤ x ≤

√
D, −

√
D ≤ y ≤

√
D} which contains every

(xki, yki). Therefore

dist((xki, yki), (xi, yi)) > dist(S0, (xi, yi))− ε

which contradicts the fact that Pk converges to P0. The contradiction proves (i).

Part (ii): if M(M) is closed, then M is closed.

Assume that one of the limit points S0 (a nonempty closed set) of M does not

belong to M. In precise terms there exists a sequence {Sk} (k = 1, 2, . . .) in M

converging to a limit S0 6∈M in the space of all closed sets in R2). First, if S0 contains

more than n distinct points, pick n distinct points (xi, yi) ∈ S0 (i = 1, . . . , n). Let

R = {−A ≤ x ≤ A, −B ≤ y ≤ B} be a rectangle containing all data points (xi, yi)

(i = 1, . . . , n). For any ε > 0, distH(Sk, S0;R) < ε for large enough k. Let (xki, yki)

be the closest point in Sk to (xi, yi). Then

dist((xi, yi), Sk) = dist((xi, yi), (xki, yki)) 6 distH(Sk, S0;R) < ε

It follows that the sequence of megapoints

Pk = (xk1, yk1, . . . , xkn, ykn)→ P = (x1, y1, . . . , xn, yn) as k →∞.

Since M(M) is closed and Pk ∈ M(M), P ∈ M(M). Then there exists a model

object S
′
0 ∈ M containing (xi, yi) (i = 1, . . . , n). Remember that we assumed a

natural condition: if a sequence of objects Sm ∈M converges to a closed set S∗, i.e.,
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Sm → S∗ (in the sense of section 2.5), and S∗ is a subset of an object S ∈ M, i.e.,

S∗ ⊂ S, then S∗ ∈ M. So S0 can not be the subset of S
′
0 and there exists a point

(x
′
n, y

′
n) in S0 but not belonging to S

′
0 . Let us consider another set of n distinct

points (xi, yi) (i = 1, . . . , n − 1) and (x
′
n, y

′
n). It is easy to see that there exists an

S∗0 ∈M containing (xi, yi) (i = 1, . . . , n− 1) and (x
′
n, y

′
n). So

(2.34) S
′

0 ∩ S∗0 = {(xi, yi), i = 1, . . . , n− 1}

But recall that n − 1 > n0. Thus (2.34) contradicts our assumption that any two

distinct objects in M can intersect each other in at most n0 points.

Next, suppose S0 contains no more than n points (xi, yi) (i = 1, . . . , l 6 n). Let

us define a megapoint P by those l points and another n− l identical points at (xl, yl).

So

P = (x1, y1, . . . , xl, yl, . . . , xl, yl)

where (xl, yl) is repeated n− l+ 1 times. By similar argument as above, one can find

a sequence of megapoints

Pk = (xk1, yk1, . . . , xkn, ykn)→ P = (x1, y1, . . . , xl, yl, . . . , xl, yl) ∈M(M)

Then there exists a model object S
′
0 ∈M containing (xi, yi) (i = 1, . . . , l). This shows

that S0 ⊂ S
′
0 and S0 ∈M, which contradicts that S0 does not belong to M. Therefore,

M must contain all its limit points and it is closed. �

2.8. Model objects in 2D

In this section we will discuss the issue of existence for several popular models

widely used in practical applications: ellipses, hyperbolas, parabolas. The same type

of issues concerning circle fitting has been resolved and some exceptional cases can be

constructed to disclose a fact that there are some data sets for which the best fitting

circle that minimizes the sum of squares of orthogonal distances does not exists.

Recall an example of n (n ≥ 3) collinear data points. One can approximate those
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Figure 2.6: a sequence of circles converges to a line

Figure 2.7: a sequence of ellipses converges to a singleton, line, ray or line segment

points with a large circular arc and make the sum of squares arbitrarily small but no

the best fit will never be achieved (see Figure 2.6).

So no particular circle will provide the global minimum for F. This suggests that

nonexistence of the best fitting may arise when one tries to fit ellipse, parabola and

hyperbola as well. We will show all possible limiting object approached by our fitting

models and provide the sufficient condition for existence of the best fit.

Ellipses Fitting ellipses to data points is a common task in computer vision. Giv-

en data points P1, . . . , Pn, the best fitting ellipse Ebest minimizes the sum of squares

of the distances from P1, . . . , Pn to the ellipse. The model collection ME consists of

all ellipses E ⊂ R2 have several different types of limiting objects other than ellipse

and the collection ME of ellipses is not closed.

First, the limit object may be an ellipse E0 ⊂ R2. Since circles are also ellipses,

lines and singletons as limit points in the model collection of all circles should be also

included as the limit point in the closure of model collection of ellipses. Next, when a

sequence of ellipse with minor axis shrinking to 0, the limit object will be a line, line

segment or ray. They can be regarded as the degenerate ellipses with minor axis 0.
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Figure 2.8: a sequence of ellipses converges to a pair of parallel lines or parabola

Besides, the ellipse can also converge to a pair of parallel lines if the major axis

extend to infinity and minor axis stay constant or parabolas if both semi-axis extend

to infinity.

Since both singletons and line segments, as well as rays are part of lines, they

can be ignored based on the redundancy principle; see section 2.4. But lines, pairs of

parallel lines, and parabolas cannot be brushed off so easily.

Ellipses (extended)

By adding all the limit points (lines, pairs of parallel lines, parabola) into the

collection ME, we extended the original set into its closure denoted by M̄E:

(2.35) M̄E = ME ∪ML ∪M‖ ∪M∪,

where M‖ denotes the collection of pairs of parallel lines, and M∪ the collection of

parabolas.

By our main theorem (2.6), for any data points P1, . . . , Pn there exists a best fitting

object Sbest ∈ M̄E where the objective function (5.1) achieves its minimum. But keep

in mind, though, that the best fitting object may be a line, or a pair of parallel lines,

or a parabola, rather than an ellipse. We summarize this result as follows:

Theorem 2.3. Let B be a given compact set (Euclidean space) B containing all

the data points. Then the ’enlarged’ space Ω of ellipses, parabolas, lines(including rays
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and line segments, singletons), and pairs of parallel lines intersecting B is compact

with respect to the topology defined on the Ω (see section 2.3).

See section A.2 in appendix for the proof of the theorem.

Extension for ellipses: history

The ellipse fitting problem has been around since the 1970s. The need to deal

with limiting cases was first notice by Bookstein [8], who wrote: “ The fitting of a

parabola is a limiting case, exactly transitional between ellipse and hyperbola. As

the center of ellipse moves off toward infinity while its major axis and the curvature

of one end are held constant... ” A first theoretical analysis on the non-existence of

the best ellipse was done by Nievergelt in [26] who traced it to the non-compactness

of the underlying model space and concluded that parabolas needed to be included

in the model space to guarantee the existence of the best fit.

Quadratic curves Now we deal with a model collection which consists of all

quadratic curves, by which we mean all ellipses, parabolas and hyperbolas. Appar-

ently, in order to ensure the best fitting curve, one needs to include all types of model

objects in M̄E into the extended collection. In fact, we only need to investigate the

limit objects of hyperbolas. The hyperbola may converge to a pair of intersecting

lines or two opposite half-lines (rays)(see illustration in 2.10). Since half-line and two

opposite half-lines are a part (subset) of a full line, they can be ignored based on the

redundancy principle; see section 2.4. Besides, the hyperbola can also transform into

two parallel lines, single lines, rays or parabola, which are also limit objects included

in M̄E

Quadratic curves (extended) We denote that extended collection by M̄Q:

(2.36) M̄Q = MQ ∪ML ∪M‖ ∪M×,

where M‖ was introduced in (2.35) and M× denotes the collection of pairs of inter-

secting lines.
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Figure 2.9: a sequence of hyperbola converges to a pair of intersecting lines or opposite

rays

Now by our main theorem 2.6,the (extended) conic fitting problem always has

a solution: for any data points P1, . . . , Pn one can always find a best fitting ob-

ject Sbest ∈ M̄Q that minimizes the sum of squares of the distances to P1, . . . , Pn.

One has to keep in mind, though, that the best fitting object may be a line, or a

pair of parallel lines, or a pair of intersecting lines, rather than a conic.

Theorem 2.4. Let B be a given compact set containing all the data points. The

’enlarged’ set Ω of ellipses, parabolas, hyperbolas, lines (including rays and line seg-

ments, singletons and opposite rays), pairs of parallel lines, pairs of intersecting lines

crossing B is compact.

See Appendix for the proof of the theorem.

Remark

In the last two equations, (2.35) and (2.36), we could have ignored lines based on

the redundancy principle (see section 2.4) because every line is a subset of a pair of

parallel or intersecting lines. However, we choose not to do that. A single line is a

much simpler object than a pair of lines, so it is convenient to have a single line as

the best fitting object, whenever possible.
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2.9. Sufficiency and deficiency model

The secondary objects (lines, parallel lines, etc) are added to the model collection

merely for the purpose of ensuring existence of the best fit. Suppose one fits circles

to observed points. In order to close up the model collection of circles, one has to

add lines to it. So circles are primary objects, and lines - secondary objects. The

best fitting object to a given set of data points then will be a circle, or occasionally

a line (which is an less desirable result in a practical applications). Fortunately, the

probability of the best fit being a line has zero probability if the data points have

continuous distribution (see [12] (see Theorem 8 on page 68 there)). However, for

some more complicated model collections (ex, ellipses), there is an nonzero probability

of getting secondary object as the best fit.

Definition 2.2. A collection M of model objects is said to be sufficient (for fitting

purposes) if the best fitting object exists with probability one, assuming that the data

points are independent normally distributed random variables (or more generally, that

the coordinates of the data points have a joint probability density function). Otherwise,

it is deficient.

For any set of distinct 5 points in a general linear position (which means that

no three points are collinear), there exists a unique quadratic curve (conic) passing

through all of them (i.e., interpolates them);[?]. That conic may be an ellipse, a

parabola, a hyperbola. If 5 points are not in general linear position (i.e., at least

three of them are collinear), then they can be interpolated by a degenerate conic (a

pair of lines).

Probabilistic approach for n = 5 points Let us check the most trivial case of

fitting five distinct points (The analysis of samples of n > 5 points requiring more

sophisticated numerical tests done by Hui Ma)). If all five points are interpolated

by an ellipse, then it is obviously the best fit. But if the five points are interpolat-

ed by secondary objects (lines, parallel lines and parabola) in the closure of model
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collection of all ellipses, we have a unwanted event: a secondary object provides the

best fit. This, however, occurs with probability zero, so it is not a real concern. But

what if interpolating conic is a hyperbola or a pair of intersecting lines? We found

that there is no local minimum in the set of ellipses. More precisely, for any ellipse

E, there always exists a E′
such that F(E′

) < F(E) (see section A.1 in appendix).

It has been proven that the best fit should exist in the closure of set of all ellipses.

So the best fit has to be a secondary object. The numerical experiment shows that

random points were interpolated by an ellipse with probability 22% and by a hyperbola

with probability 78% (By Hui Ma) Thus the best fitting object Sbest is now a sec-

ondary one (a parabola, or a line, or a pair of parallel liner), i.e., an unwanted event

occurs. And this really happens with a positive probability.

Conclusion The collection of ellipses is not sufficient for fitting purposes. This

means that there is a real chance that for a given set of data points no ellipse could

be selected as the best fit to the points, i.e., the ellipse fitting problem would have no

solution. More precisely, for any ellipse E there will be another ellipse E ′ providing a

better fit, in the sense F(E ′) < F(E). If one constructs a sequence of ellipses that fit

the given points progressively better and on which the objective function F converges

to its infimum, then those ellipses will grow in size and converge to something different

than an ellipse. Most likely, they will converge to a parabola.

Speaking informally, whenever the best fitting ellipse fails to exist, the ellipse

fitting procedure attempts to move beyond the collection of ellipses, and ends up on

the border of that collection... Then it returns a secondary object (a parabola or a

pair of lines). In a sense, the scope of the collection of ellipses is too narrow for fitting

purposes. One may say that this collection is seriously deficient, or badly incomplete

for fitting purposes. It calls for a substantial extension.
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2.10. Megaspace on specific model collections

In Section 2.7 we defined a multidimensional set (“megaset”) M(M), which cor-

responds to a given collection M of model objects. We also showed that the task of

finding the best fitting object Sbest ∈M to a given set of points P1, . . . , Pn is equiva-

lent to projecting the “megapoint” P corresponding to P1, . . . , Pn onto the “megaset”

M(M). Here we describe the “megasets” for several model collections.

Megaset for Lines Let ML consist of all lines in R2. The corresponding “megaset”

M(ML) ⊂ R2n is described by Malinvaud (see Chapter 10 in [24]) and Chernov

(see Section 1.5 and Section 3.4 in [12]). A point (we also call it “megapoint”)

(x1, y1, . . . , xn, yn) belongs to M(ML) if and only if all the n planar points (x1, y1),

. . ., (xn, yn) belong to one line (i.e., they are collinear). This condition can be ex-

pressed by Cn,3 algebraic relations:

(2.37) det

 xi − xj yi − yj

xi − xk yi − yk

 = 0

for all 1 ≤ i < j < k ≤ n. Each of these relations means that the three points (xi, yi),

(xj, yj), and (xk, yk) are collinear. All of these relations together mean that all the n

points (x1, y1), . . ., (xn, yn) are collinear.

Note that ML is specified by n − 2 independent relations, hence it is an (n + 2)-

dimensional manifold (algebraic variety) in R2n. The relations (2.37) are quadratic,

so ML is a quadratic surface. It is closed in topological sense, hence the problem of

finding the best fitting line always has a solution.

Megaset for Circles

Let MC consist of all circles in R2. The corresponding “megaset” M(MC) ⊂ R2n

is described by Chernov (see Section 1.5 and Section 3.4 in [12]). A “megapoint”

(x1, y1, . . . , xn, yn) belongs to M(MC) if and only if all the n planar points (x1, y1),

. . ., (xn, yn) belong to one circle (in such a case we will say that these points are

cocircular). In that case all these points satisfy one quadratic equation of a special
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type:

(2.38) A(x2 + y2) +Bx+ Cy +D = 0.

This condition can be expressed by Cn,4 algebraic relations:

(2.39) det


xi − xj yi − yj x2

i − x2
j + y2

i − y2
j

xi − xk yi − yk x2
i − x2

k + y2
i − y2

k

xi − xm yi − ym x2
i − x2

m + y2
i − y2

m

 = 0

for 1 ≤ i < j < k < m ≤ n. Each of these relations means that the four points

(xi, yi), (xj, yj), (xk, yk), and (xm, ym) satisfy one quadratic equation of type (2.38),

i.e., they are either cocircular or collinear. All of these relations together mean that

all the n points (x1, y1), . . ., (xn, yn) satisfy one quadratic equation of type (2.38),

i.e., they all are either cocircular or collinear. Therefore the relations (2.39) describe

the union M(MC) ∪M(ML).

Relation between the megaset for Circles and the megaset for Lines

The determinant in (2.39) is a polynomial of degree four, and M(MC) ∪M(ML)

is an (n + 3)-dimensional algebraic variety (manifold) in R2n defined by quadratic

polynomial equations. Note that the dimension of M(MC) ∪M(ML) is one higher

than that of M(ML), i.e.

(2.40) dim(M(MC) ∪M(ML)) = dimM(ML) + 1.

A closer examination shows that M(ML) plays the role of the boundary of M(MC),

i.e., M(MC) terminates on M(ML). The megaset M(MC) is not closed, but if we add

its boundary M(ML) to it, it will become closed.

Megasets for Ellipses and other quadratic curves

Let ME consist of all ellipses in R2. The corresponding “megaset” M(ME) ⊂ R2n

can be described in a similar manner as above. A point (x1, y1, . . . , xn, yn) belongs

in M(ME) if and only if all the n planar points (x1, y1), . . ., (xn, yn) belong to one

ellipse (in such a case we will say that these points are coelliptical). In that case all
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these points satisfy one quadratic equation of a general type:

(2.41) Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0.

This equation actually means that the points belong to one conic (either regular or

degenerate). This condition can be expressed by Cn,6 algebraic relations:

(2.42) det



xi − xj yi − yj x2
i − x2

j y2
i − y2

j xiyi − xjyj

xi − xk yi − yk x2
i − x2

k y2
i − y2

k xiyi − xkyk

xi − xm yi − ym x2
i − x2

m y2
i − y2

m xiyi − xmym

xi − xl yi − yl x2
i − x2

l y2
i − y2

l xiyi − xlyl

xi − xr yi − yr x2
i − x2

r y2
i − y2

r xiyi − xryr


= 0

for 1 ≤ i < j < k < m < l < r ≤ n. Each of these relations means that the six

points (xi, yi), (xj, yj), (xk, yk), (xm, ym), (xl, yl), and (xr, yr) satisfy one quadratic

equation of type (2.41), i.e., they belong to one conic (either regular or degenerate).

All of these relations together mean that all the n points (x1, y1), . . ., (xn, yn) satisfy

one quadratic equation of type (2.41), i.e., they all belong to one conic (regular or

degenerate). Therefore the relations (2.42) describe a much larger megaset M(MQ)

corresponding to the collection of all quadratic curves, regular and degenerate, i.e.,

(2.43) MConics = ME ∪MH ∪M∪ ∪ML ∪M‖ ∪M×

where MH denotes the collection of all hyperbolas, and other notation was introduced

in section 2.8, in which we showed that MQ was topologically closed.

Relation between the megasets corresponding to different types of qua-

dratic curve

The determinant in (2.42) is a polynomial of the eighth degree, and M(MQ) is a

closed (n + 5)-dimensional algebraic manifold in R2n. It is mostly made of two big

megasets: M(ME) and M(MH), they both are (n + 5)-dimensional. Other megasets

listed in the decomposition (2.43) have smaller dimensions and play the role of the

boundaries of the bigger megasets M(ME) and M(MH).
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Figure 2.10: Projecting a set of points onto the megaspace of ellipses or general

quadratic curves

The structure of the megaset M(MConics) is schematically illustrated here, where

it is shown as the xy plane {z = 0} in the 3D space (which plays the role of the

megaspace R2n). The positive half-plane H+ = {y > 0, z = 0} represents the elliptic

megaset M(ME), and the negative half-plane H− = {y < 0, z = 0} represents the

hyperbolic megaset M(MH). The x-axis {y = z = 0} separating these two half-

planes represents all the lower-dimensional megasets M(M∪ ∪ML ∪M‖ ∪M×) in the

decomposition (2.43). The real structure of M(MConics) is much more complicated,

but our simplified picture still shows its most basic features.

Sufficiency and deficiency illustrated

Now recall that finding the best fitting solution corresponds to an orthogonal

projection of the given megapoint P in the megaspace R2n (in our illustration, it would

be a point (x, y, z) ∈ R3) onto the megaset M(MConics) (in our illustration - onto the

xy plane). Then the point (x, y, z) is simply projected onto (x, y, 0). What are the

chances that the footpoint of the projection corresponds to the “boundary” objects

M∪ ∪ML ∪M‖ ∪M× (i.e., to the secondary objects, in terms of Section 2.9) Clearly,

only the points of the xz plane {y = 0} are projected onto the line {y = z = 0}. If the

point (x, y, z) ∈ R3 is selected randomly with an absolutely continuous distribution

(which has a probability density), then a point on the xz plane would be chosen

with probability zero. This fact illustrates the sufficiency of the model collection of
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non-degenerate conics (even the sufficiency of ellipses and hyperbolas alone, without

parabolas): the best fitting object will be a secondary object with probability zero.

But what if our model collection consists of ellipses only, without hyperbolas?

Then in our illustration, the corresponding megaset would be the positive half-plane

H+ = {y > 0, z = 0}. Finding the best fitting ellipse would correspond to an

orthogonal projection of the given point (x, y, z) ∈ R3 onto the positive half-plane

H+ = {y > 0, z = 0}. Now if the given point (x, y, z) has a positive y-coordinate,

then it is projected onto (x, y, 0), as before, and we get the desired best fitting ellipse.

But if it has a negative y-coordinate, then it is projected onto (x, 0, 0), which is on the

boundary of the half-plane, so we get a boundary footpoint, i.e., a secondary object

will be the best fit. We see that all the points (x, y, z) with y < 0 (making a whole

half-space!) are projected onto the boundary line, hence for all those points the best

fitting ellipse would not exist! This fact clearly illustrates the deficiency of the model

collection of ellipses.

Sufficiency of circles versus deficiency of ellipses: a controversy or not?

One may wonder: How is it possible that the collection of circles is sufficient (as

we proved in section 2.8), while the larger collection of ellipses is not? Indeed every

circle is an ellipse, hence the collection of ellipses contains all the circles. So why

the sufficiency of circles does not guarantee the sufficiency of the bigger, inclusive

collection of ellipses? Well, this seemingly counterintuitive fact can be illustrated,

too.

Suppose the megaset M(MC) for the collection of circles is represented by the set

U = {y = x2, x 6= 0, z = 0} in our illustration. Note that U consists of two curves

(branches of a parabola on the xy plane), both lie in the half-plane H+ = {y > 0, z =

0} that corresponds to the collection of ellipses. So the required inclusion U ⊂ H+

does take place. The two curves making U terminate at the point (0, 0, 0), which does

not belong to U , so it plays the role of the boundary of U . Now suppose a randomly

selected point (x, y, z) ∈ R3 is to be projected onto the set U . What are the chances
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that its projection will end up on the boundary of U , i.e., at the origin (0, 0, 0)? It

is not hard to see (and prove by elementary geometry) that only points on the yz

plane may be projected onto the origin (0, 0, 0) (and not even all of them; points with

large positive y-coordinates would be projected onto some interior points of U). So

the chance that the footpoint of the projection ends up at the boundary of U is zero.

This illustrates the sufficiency of the smaller model collection of circles, despite the

deficiency of the larger model collection of ellipses (which we have seen above).

Our analysis of the existence of the best fitting object is now complete. We

proceed to the uniqueness issue in section 3.1.



CHAPTER 3

UNIQUENESS OF THE BEST FIT

In the previous chapter we have resolved the issue of existence of the best fitting

object, in a general setting and for specific classes of models. Here we start addressing

the uniqueness issue. Is the best fitting object unique? That is, does the objective

function take a unique global minimum? While for typical data sets which are ran-

domly generated, the best fit is unique, there are exceptions. We will deal with three

different popular models: line, circle and ellipse. We begin with the simplest fitting

model.

3.1. Uniqueness of the best fitting line

In the previous sections we have resolved the issue of existence of the best fitting

object, in a general setting and for specific classes of models. Here we start addressing

the uniqueness issue. Is the best fitting object unique? That is, does the objective

function take a unique global minimum?

Lines

We begin with lines, which are the simplest model objects on our agenda. The

uniqueness of the best fitting line has been studied long ago, and a recent summary

can be found in Sections 2.2 and 2.3 of [12]. We present that summary below.

Sample means and centroid

Given data points (x1, y1), . . ., (xn, yn) we denote by x̄ and ȳ the sample means

(3.1) x̄ =
1

n

n∑
i=1

xi and ȳ =
1

n

n∑
i=1

yi.

The point (x̄, ȳ) is called the center of mass, or the “centroid” of the given data set.

Scatter matrix

44
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We also denote by

sxx =
n∑
i=1

(xi − x̄)2

syy =
n∑
i=1

(yi − ȳ)2

sxy =
n∑
i=1

(xi − x̄)(yi − ȳ)

the components of the so called “scatter matrix”

(3.2) S =

 sxx sxy

sxy syy

 ,
which characterizes the spread of the data set about its centroid (x̄, ȳ).

This matrix is symmetric, so its eigenvectors are perpendicular to each other. It

is also positive-semidefinte, so its eigenvalues are non-negative numbers.

Scattering ellipse

The scatter matrix S is related to the “scattering ellipse”, which is defined by

equation  x− x̄

y − ȳ

T S−1

 x− x̄

y − ȳ

 = n− 1.

Its center is the centroid (x̄, ȳ). Its axes are spanned by the eigenvectors of the scatter

matrix S. The major axis is spanned by the eigenvector corresponding to the larger

eigenvalue. The minor axis is spanned by the eigenvector corresponding to the smaller

eigenvalue. The lengths of its axes are the square roots of the eigenvalues of S.

Next we find the best fitting line following chapter 2 in [12]. We will describe

lines in the xy plane by equation

(3.3) Ax+By + C = 0



46

Figure 3.1: Randomly generated data points and the scattering ellipse

where A, B, C are the parameters of the line. The distance from a point P = (x, y)

to a line L given by (3.3) is

(3.4) dist(Pi, L) =
|Axi +Byi + C|

A2 +B2

Now the best fitting line can be found by minimizing the objective function

(3.5) F(A,B,C) =
1

A2 +B2

n∑
1

(Axi +Byi + C)2

The parameters (A,B,C) need only be specified up to a scalar multiple. Thus we

can impose a constraint, for example

(3.6) A2 +B2 = 1

With this constraint, the formula for the objective function simplifies to

(3.7) F(A,B,C) =
n∑
1

(Axi +Byi + C)2

Since the parameter C is unconstrained, we can eliminate it by minimizing (3.7) with

respect to C while holding A and B fixed. Solving the equation ∂F/∂C = 0 gives us

(3.8) C = −Ax−By
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In particular, we see that the best fitting line always passes through the centroid

(x, y) of the data set. Eliminating C from (3.7) gives

F(A,B) =
n∑
1

[A(xi − x)2 +B(yi − y)2]2(3.9)

= SxxA
2 + 2SxyAB + SyyB

2

or in matrix form

(3.10) F(H) = HTSH

where H = (A,B) denotes the parameter vector. Minimizing (3.10) subject to the

constraint ||H|| = 1 is a simple problem of the matrix algebra: its solution is the

eigenvector of the scatter matrix S corresponding to the smaller eigenvalue. Observe

that the parameter vector H is orthogonal to the line (3.3), thus the line itself is

parallel to the other eigenvector. In addition, it passes through the centroid, hence

it is the major axis of the scattering ellipse. The above observations are summarized

as follows:

Main facts

Theorem 3.1. The best fitting line Ax + By + C = 0 always passes through the

centroid, i.e., Ax̄ + Bȳ + C = 0. It coincides with the major axis of the scattering

ellipse.

For typical data sets, the above procedure leads to a unique best fitting line. But

there are certain exceptions. If the two eigenvalues of S coincide, then every vector

H 6= 0 is its eigenvector and the function F(A,B) is actually constant on the unit

circle ‖ H ‖= 1 In that case all the lines passing through the centroid of the data

minimize F; hence the problem has multiple (infinitely many) solutions. This happens

if and only if S is a scalar matrix, i.e.

(3.11) sxx = syy and sxy = 0
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We emphasize that the orthogonal regression line is not unique if and only if both

equations in (3.11) hold. The above observations are summarized as follows:

Theorem 3.2. The best fitting line is not unique if and only if the eigenvalues of

the scatter matrix S coincide, so that the scattering ellipse becomes a circle. In that

case every line passing through the centroid (x̄, ȳ) is a best fitting line.

Dichotomy Thus we have a dichotomy:

• either there is a ‘single’ best fitting line,

• or there are ‘infinitely many’ best fitting lines.

In the latter case, the whole bundle of lines passing through the centroid (x̄, ȳ) are

best fitting lines.

Examples A simple example of a data set for which there are multiple best fitting

lines is n points placed at the vertices of a regular polygon with n vertices (n-gon).

Rotating the data set around its center by the angle 2π/n takes the data set back to

itself. So if there is one best fitting line, then by rotating it through the angle 2π/n

we get another line that fits equally well. Thus the best fitting line is not unique.

It is less obvious (but true, according to Theorem 3.2 above) that every line passing

through the center of our regular polygon is a best fitting line; they all minimize the

objective function.

Data points placed at vertices of a regular polygon seem like a very exceptional

situation. However multiple best fitting lines are much more common. The following

is true:

Theorem 3.3. Given any data points (x1, y1), . . ., (xn, yn) we can always move

one of them so that the new data set will admit multiple best fitting lines. Precisely,

there are always x
′
n and y

′
n such that the set (x1, y1), . . ., (xn−1, yn−1), (x

′
n, y

′
n) admits

multiple best fitting lines.
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In other words, the n − 1 points can be placed arbitrarily, without any regular

pattern whatsoever, and then we can add just one extra point so that the set of all n

points will admit multiple best fitting lines, i.e., will satisfy (3.11).

Still, the existence of multiple best fitting lines is a very unlikely event in prob-

abilistic terms. If data points are sampled randomly from an absolutely continuous

probability distribution, then this event occurs with probability zero. Indeed, equa-

tions (3.11) specify a subsurface (submanifold) in the 2n dimensional space with coor-

dinates x1, y1, . . . , xn, yn, That submanifold has zero volume, hence for any absolutely

continuous probability distribution its probability is zero.

However, if the data points are obtained from a digital image (say, they are pixels

on a computer screen), then the chance of having (3.11) may no longer be negligible

and may have to be reckoned with. For instance, a simple configuration of 4 pixels

making a 2 × 2 square satisfies (3.11), and thus the orthogonal fitting line is not

uniquely defined.

Next we turn to circles in Section Uniqueness of the best fitting circle.

3.2. Uniqueness of the best fitting circle

Introduction

After we have seen in Section (3.1) that the simplest fitting problem - involving

lines - had multiple solutions, it may not be too surprising to find out that more

complicated problems also have multiple solutions. Here we demonstrate this for

circles.

Unfortunately, we cannot describe all data sets for which the best fitting circle

is not unique in the same comprehensive manner as we did it for lines in the last

Section. We can only give some examples of such data sets.

Main idea: rotational symmetry All the known examples are based on the

“rotational symmetry” of the data set. We already used this idea in the last Section.

Suppose the data set can be rotated around some point O through the angle 2π/k
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for some k ≥ 2, and after the rotation it comes back to itself. Then, if there is a

best fitting circle, rotating it around O through the angle 2π/k would give us another

circle that would fit the data set equally well. This is how we get more than one best

fitting circle.

This is a nice idea but it breaks down instantly if the center of the best fitting

circle happens to coincide with the center of rotation O. Then we would rotate the

circle around its own center, hence we would get the same circle again. Thus one has

to construct a rotationally symmetric data set more carefully to avoid best fitting

circles centered on the natural center of symmetry of the set.

Example by Nievergelt

The earliest and simplest example was given by Nievergelt on pages 260-261 in

[27]. He chose n = 4 data points as follows:

(0, 0), (0, 2), (
√

3,−1), (−
√

3,−1)

Three last points are at the vertices of an equilateral triangle centered on (0, 0). So

the whole set can be rotated around the origin (0, 0) through the angle 2π/3 and it

will come back to itself.

Nivergelt claimed that the best fitting circle has center (0,−3/4) and radius R =

7/4. This circle passes through the last two data points and cuts right in the middle

between the first two. So the first two points are at distance d = 1 from that circle

and the last two are right on it (their distance from the circle is zero). Thus the

objective function is

(3.12) F1 = 12 + 12 + 02 + 02 = 2.

It is easy to believe that Nivergelt’s circle is the best, indeed, as any attempt to

perturb its center or radius would only make the fit worse (the objective function

would grow). However a complete mathematical proof of this claim would be perhaps

prohibitively difficult.

Proof of multiplicity in Nievergelt’s example
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Figure 3.2: Nievergelt’s example: Four data points (red) Three fitting circles (blue)

The goal is to show that “there are” multiple best fitting circles (without finding

them explicitly). And the multiplicity here can be proven fully in three easy steps.

Step 1. According to our section (2.8), for every data set the best fitting object

exists, which may be a circle or a line. If the best object is a circle, then its center is

either at (0, 0) or elsewhere. So we have three possible cases: The best fitting object

is a line. The best fitting object is a circle centered on (0, 0). The best fitting object

is a circle with a center different from (0, 0). In the last case our rotational symmetry

will work, as explained above, and prove the multiplicity of the best fitting circle. So

we need to rule out the first two cases.

Step 2. Consider any circle of radius R centered on (0, 0). It is easy to see that

the respective objective function is

F = R2 + 3(2−R)2 = 4R2 − 12R + 12.

Its minimum is attained at R = 3/2 and its minimum value is

(3.13) F2 = (3/2)2 + 3(1/2)2 = 3.
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This is larger than F1 = 2 in (3.15). Thus circles centered on the origin cannot

compete with Nievergelt’s circle and should be ruled out.

Step 3. Consider all lines. As we have seen in Section (3.1), for rotationally

symmetric data sets all the best fitting lines pass through the center. All of those

lines fit equally well. Taking the x axis, for example, it is easy to see that the

corresponding objective function is

(3.14) F3 = 22 + 12 + 12 + 02 = 6.

This is greater than F1 = 2 in (3.15) and even greater than F2 = 3 in (3.16). Thus

lines are even less competitive than circles centered on the origin, so they are ruled

out as well. The proof is finished.

Conclusion. The best fitting circle has a center different from (0, 0). Thus by

rotating this circle through the angles 2π/3 and 4π/3 we get two more circles that fit

the data equally well. So the circle fitting problem has three distinct solutions. The

alledged best fitting circles are shown in our illustration.

Other examples

After Nievergelt’s example, two other papers presented, independently, similar

examples of non-unique circle fits.

Chernov and Lesort [15] used a perfect square, instead of Nievergelt’s regular

triangle. They placed four points at the vertices of the square, and another 4 points

at its center, so the data set consisted of n = 8 points total. Then they used the

above strategy to prove that at least four different circles achieve the best fit.

Zelniker and Clarkson [31] used a regular triangle again, placed three points at its

vertices and three more points at its center (so that the data set consisted of n = 6

points). Then they showed that at least three different circles achieve the best fit.

These examples lead to an interesting fact that may seem rather counterintuitive.

Let C be a circle of radius R with center O. Let us place a large number of data

points on C and a single data point at the center O. Suppose the points on C are

placed uniformly (say at the vertices of a regular polygon). Then it seems like C is
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an excellent candidate for the best fitting circle it interpolates all the data points

and misses only at O, so F = R2. It is hard to imagine that any other circle or line

can do any better.

However, a striking fact proved by Nievergelt ([28], Lemma 7) says that the center

of the best fitting circle cannot coincide with any data point. Therefore in our example

C cannot be the best fitting circle. Hence some other circle with center O
′ 6= O fits

the data set better. And again, rotating the best circle about O gives other best

fitting circles, so those are not unique.

How unusual are multiple circle fits?

Rotationally symmetric data sets described above are clearly exceptional; small

perturbations of data points easily destroy the symmetry. But there are probably

many other data sets, without any symmetries, that admit multiple circle fits, too. We

believe that they are all unusual and can be easily destroyed by small perturbations.

Below is our argument.

Suppose a set of data points P1, . . . , Pn admits two best circle fits, and denote

those circles by C1 and C2. First consider a simple case: C1 and C2 are concentric,

i.e., have a common center, O. Let Di denote the distance from the point Pi to the

center O. By direct inspection, for any circle of radius R centered on O the objective

function is

F =
n∑
i=1

(R−Di)
2 = nR2 − 2R

n∑
i=1

Di +
n∑
i=1

D2
i .

This is a quadratic polynomial in R, so it cannot have two distinct minima. So the

two best fitting circles cannot be concentric.

Now suppose the circles C1 and C2 are not concentric, i.e., they have distinct

centers, O1 and O2. Let L denote the line passing through O1 and O2. Note that the

data points cannot be all on the line L (because if the data points were collinear, the

best fit would be achieved by the interpolating line and not by two circles). So there

exists a point Pi that does not lie on the line L. Hence we can move it slightly toward

the circle C1 but away from the circle C2. Then the objective function F changes
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slightly, and it will decrease at one minimum (on C1) and increase at the other (on

C2). This will break the tie and ensure the uniqueness of the global minimum.

We proceed to the section Uniqueness of the best fitting ellipse.

3.3. Uniqueness of the best fitting ellipse

Introduction

In Section (3.2) we showed several examples of data sets for which the best fitting

circle was not unique. It should not be surprising now that data sets exist for which

the best fitting ellipse is not unique either.

Rotational symmetry

The main idea of all known examples of multiple fits is the rotational symmetry of

the data set, as described in section (3.2). Suppose the data set can be rotated around

some point O through the angle 2π/k for some k ≥ 2 and after the rotation it comes

back to itself. Then if there is a best fitting object, rotating it around O through the

angle 2π/k would give us another object that would fit the data set equally well.

In fact the above example obeys this principle: rotating a perfect square around

its center through π/2 brings it back to itself. Likewise, rotating a perfect square

lattice of N ×N points around its center through 9π/2 brings it back to itself. Thus,

rotating one ellipse around its center by π/2 produces another best fitting ellipse.

Nievergelt-type example

In section (3.2) we described perhaps the simplest possible example of a multiple

circle fit, published by Nievergelt on pages 260 − 261 in [27]. It consisted of n = 4

data points: three were placed at vertices of an equilateral triangle, and the fourth

one - at its center.

Recall that a circle has three independent parameters, but ellipse - five. So it is

natural to generalize Nievergelt’s example by placing five data points at vertices of a

regular pentagon, and the sixth one - at its center. Thus we have n = 6 data points:

(0, 0), (0, 2),
(
±2 cos(π/10), 2 sin(π/10)

)
,
(
±2 cos(3π/10),−2 sin(3π/10)

)
.
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Figure 3.3: Nievergelt-type example: Six data points (red) Five fitting ellipses colors

We strongly believe that the best fitting ellipse passes through the last four data

points and the point (0, 1). These five points determine the ellipse uniquely. It is

obviously symmetric about the y axis, so its major axis is horizontal. This ellipse

cuts right in the middle between the first two data point. So those two points are

at distance d = 1 from that ellipse and the last four are right on it (the distance is

zero). Thus the objective function is

(3.15) F1 = 12 + 12 + 02 + 02 + 02 + 02 = 2.

Below we provide a partial proof of our claim that the above ellipse is the best.

We also describe a full computer-assisted proof that involves extensive numerical

computations.

Lastly, by rotating this ellipse through the angles 2πk/5 for k = 1, 2, 3, 4 we get

four more ellipses that fit the data equally well. So the ellipse fitting problem has five

distinct solutions; see illustration.
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Partial proof for our example

We will compare our ellipse to the best fitting circle centered on the origin and

the best fitting lines.

Consider any circle of radius R centered on (0, 0). It is easy to see that the

respective objective function is

F = R2 + 5(2−R)2 = 6R2 − 20R + 20.

Its minimum is attained at R = 5/3 and its minimum value is

(3.16) F2 = (5/3)2 + 5(1/3)2 = 10/3 = 3.333...

This is larger than F1 = 2 in (3.15). Thus circles centered on the origin cannot

compete with our ellipse.

Consider all lines. As we have seen in Section (3.1), for rotationally symmetric

data sets all the best fitting lines pass through the center. All of those lines fit equally

well. Taking the x axis, for example, it is easy to see that the corresponding objective

function is

(3.17) F3 = 22 + 2
(
2 sin(π/10)

)2
+ 2
(
2 sin(3π/10)

)2
= 10.

This is greater than F1 = 2 in (3.15) and even greater than F2 = 3.333 in (3.16).

Thus lines are even less competitive than circles centered on the origin.

Also, in the ellipse fitting problem, pairs of parallel lines are legitimate model

objects, see section (2.8). We examined the fits achieved by pairs of parallel lines.

The best fit we found was by two horizontal lines y = y1 and y = y2, where

y1 =
(
2 + 4 sin(π/10)

)
/4 and y2 = −2 sin(3π/10).

Note that y1 is the average y-coordinate of the first four points in our sample. Thus

the first line is the best fitting line for the first four points, and the second line passes

through the last two points. The objective function for this pair of lines is

(3.18) F4 = (2− y1)2 + 2
(
2 sin(π/10)− y1

)2
+ (0− y1)2 ≈ 2.146.
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This is pretty good, better than the best fitting circle in (3.16). But still it is a little

worse than the best fitting ellipse in (3.15).

Thus our ellipse fits better than any circle centered on the origin, any line, or any

pair of parallel lines. In order to conclude that it is really the best fitting ellipse,

we would have to compare it to all other ellipses and parabolas. This task seems

prohibitively difficult if one uses only theoretical arguments as above. Instead, we

developed a computer-assisted proof as described below.

Computer-assisted proof

The ellipse can be specified by five independent parameters, which can be selected

in many different ways(e.x. two axes, coordinates of the center and angle of tilt).

Suppose we select those parameters and denote them by (θ1, . . . , θ5). They vary in

some domain (parameter space), which we denote by Θ, so that (θ1, . . . , θ5) ∈ Θ ⊂ R5.

Now suppose θ̃ = (θ̃1, . . . , θ̃5) ∈ Θ is a certain point in the parameter space. It

corresponds to a certain ellipse, for which we can compute the value of the objective

function, F(θ̃). This value is expected to be greater than the value corresponding to

our best ellipse (3.15), i.e., F(θ̃) > 2. We proceed assuming that it is indeed, greater

than 2.

Suppose also that we estimate (from above) the partial derivative of the objective

function F with respect to each parameter θi. Such an estimate must be obtained

theoretically and it must be guaranteed to be valid within a certain interval of the

values of θi. That is, we must derive an upper estimate

(3.19) |∂F/∂θi| ≤Mi for all θi ∈ (θ̃i − ai, θ̃i + ai)

for some ai > 0. The details of our estimation of partial derivatives of F are given in

section A.3.

Theorem 3.4. Suppose we have estimates (3.19) and let 0 < bi < ai be some

numbers. Then for all parameter values (θ1, . . . , θ5) ∈ Θ such that θi ∈ (θ̃i−bi, θ̃i+bi)
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for every i = 1, . . . , 5, we have the following lower bound on the objective function:

F(θ1, . . . , θ5) ≥ F(θ̃)−
5∑
i=1

Mibi.

This theorem easily follows from the Mean Value Theorem in calculus.

Now we need to choose the bi’s small enough so that the above lower bound is

greater than 2, i.e.,

F(θ̃)−
5∑
i=1

Mibi > 2.

Then we can conclude that the objective function F does not attain its minimum in

the domain described by

(3.20) θ̃i − bi ≤ θi ≤ θ̃i + bi for every i = 1, . . . , 5.

This gives us a little domain (a block) in the parameter space, which is “safe” – there

are no ellipses there which could beat our best ellipse (3.15).

Of course, the numbers b1, . . . , b5 may be very small, and so the safety block (3.20)

may be very tiny. But it is just one small step in our computer-assisted proof. Then

we select another point θ̃ = (θ̃1, . . . , θ̃5) ∈ Θ near the current safety block (e.g., on

its boundary), construct another safety block, etc.

This process should be continued step by step, until we cover the entire parameter

space Θ by small safety blocks. This strategy resembles the work of a minesweeper in

a sea cleaning a large area by finding and disabling dangerous mines, one small area

at a time.

Of course there are at least five points in the parameter space Θ where the ob-

jective function F does take the value 2 (which we expect to be its global minimum).

Thus our procedure slows down in the vicinity of those five points, we will never be

able to reach them. So in fact our minesweeping strategy covers the entire parame-

ter space except small vicinities of five points corresponding to the ellipses described

above. This is still OK, as the following logical conclusion can be made.
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We know for sure that the objective function takes its global minimum in the

vicinity of one of those five points in Θ corresponding to the five ellipses described

above. In other words, we know for sure that the best fitting ellipse exists and is

quite close to one of the five ellipses described above. Then the rotational symmetry

guarantees that there are four more best fitting ellipses obtained by rotation through

angles 2kπ/5 for k = 1, 2, 3, 4. This completes our computer-assisted proof.



CHAPTER 4

PARAMETER SPACE FOR QUADRATIC CURVES

(CONICS) ON S5

In the regression model, parameters for the best fitting conic are estimated based

on the minimization of the objective function

(4.1) F(S) =
n∑
i=1

[
dist(Pi, S)

]2
,

where S belongs to our model collection. In this chapter the parameter space is

restricted the unit sphere S5 and investigate the theoretical properties of this reduced

space. Let us begin with some basic notations.

4.1. General quadratic equations and algebraic parameters

In the regression model of fitting any conic to points in R2, there are many types

of geometric objects such as ellipse, parabola and hyperbola. To ensure the existence

of the best fit, one has to include some degenerate conics (see section (2.8)). The

equation for conics has the following form:

(4.2) Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

where A,B,C,D,E, F are real numbers (“parameters” of the conic). If A = . . . =

F = 0, then the equation represents the entire plane R2. This unwanted “conic”

should be excluded, so we will always assume that at least one parameter is different

from zero, or equivalently A2 +B2 + . . .+ F 2 > 0.

Since A,B,C,D,E, F are the coefficients of a quadratic polynomial (i.e., an alge-

braic expression), they are often called “algebraic parameters” of the conic.

60
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Many people use a slightly different form:

(4.3) Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0

which we will see later has several advantages (see section (4.4)). In our studies we

adopt the form (4.3) and we call the algebraic parameters of the conic the coefficients

A,B,C,D,E, F that appear in (4.3).

Parameter vector on the unit sphere S5 Apparently, the equation for the

same conic is unique. For any t 6= 0

(4.4) tAx2 + 2tBxy + tCy2 + 2tDx+ 2tEy + tF = 0

represents the same conic as (2.41). The new equation (4.4) has parameters tA, tB, tC,

tD, tE, tF . its parameter vector is tP.

To avoid linearly dependent parameter vector, we can use a simple reduction to

the parameter space:

(4.5) A2 +B2 + C2 +D2 + E2 + F 2 = 1.

In other words, the parameter vector is always assumed to lie on the unit sphere S5 and

any quadratic curve can be represented by a point on S5. One could further reduce the

S5 to a half-sphere (a hemisphere) to avoid duplicity caused by two opposite parameter

vector −P and P , e.g., by requiring F ≥ 0. But such a further reduction has little

advantage but causes unpleasant technical complications in real applications. So we

will work with the sphere S5 and simply keep in mind that any two diametrically

opposite points always represent the same quadratic curve.

4.2. CLASSIFICATION OF CONICS

In the last section we introduce a simple reduction for the algebraic parameter

space:A2 +B2 +C2 +D2 +E2 +F 2 = 1. Thus any quadratic curve can be represented

by a point on the unit sphere S5. The equation for conics has the following form:

(4.6) Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0
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H ∆ J ∆ · I K F Conic

> 0 6= 0 < 0 Hyperbola

> 0 6= 0 0 Parabola

> 0 6= 0 > 0 < 0 Ellipse

> 0 6= 0 > 0 > 0 Imaginary ellipse

> 0 0 < 0 0 Intersecting lines

> 0 0 > 0 0 Single point

> 0 0 0 0 < 0 Distinct parallel lines

> 0 0 0 0 > 0 Imaginary parallel lines

> 0 0 0 0 0 Coincident lines

0 0 0 0 < 0 Single line

0 0 0 0 0 6= 0 Poles

Table 4.1: Classification of Conics

To determine the type of conic defined by (4.6), let us consider following matrices

and determinants:

∆ =

∣∣∣∣∣∣∣∣∣
A B D

B C E

D E F

∣∣∣∣∣∣∣∣∣ J =

∣∣∣∣∣∣A B

B C

∣∣∣∣∣∣ I = A+ C H = A2 +B2 + C2

K =

∣∣∣∣∣∣A D

D F

∣∣∣∣∣∣+

∣∣∣∣∣∣C E

E F

∣∣∣∣∣∣
The types of conics are classified in terms of the above quantities in the following

table 4.1 [9]:

Main types of quadratic curves and Imaginary objects The quadratic

curves and degenerate ones are represented by equation (4.3) if it has a real solution.

The “imaginary object” indicates that the equation (4.3) does not have a real solution

in R2 but corresponds to some specific quadratic curve on the complex plane (e.x
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Real non-degenerate Real degenerate Empty in R2

Ellipse x2 + y2 − 1 = 0 Intersecting line xy=0 Imaginary ellipse x2 + y2 + 1 = 0

Hyperbola x2 − y2 − 1 = 0 Parallel lines x2 − 1 = 0 Imaginary parallel lines x2 + 1 = 0

Parabola x2 + y = 0 Single line x = 0 or x2 = 0 Poles 1 = 0 and −1 = 0

Single point x2 + y2 = 0

Table 4.2: Examples of Conics

x2/3 + y2/4 = −1). Thus every parameter vector (A,B,C,D,E, F ) (known as one

type of algebraic parameters) either represents a conic in R2 or an imaginary conic

which can be considered as am empty solution for our model. Below we list the main

types of conics (real and imaginary), with examples of equations representing them:

Remark: There are two types of quadratic equations representing single lines:

• Equations with a non-zero quadratic part, such as x2 = 0, represent pairs of

coincident lines

• Equations with a non-zero quadratic part, such as x = 0, represent single

lines

Two poles Any point point on the unit sphere represents a conic (real or imag-

inary), except two points (0, 0, 0, 0, 0, 1) and (0, 0, 0, 0, 0,−1). They corresponds to

the equation:

(4.7) 1 = 0 − 1 = 0

which have no solution, either real or complex. We call them North Pole and South

Pole. They will play a special role in our analysis.

Geometric dimension and algebraic dimension The “geometric dimension”

is the number of parameters needed to specify a geometric figure of the given type.

For example, a single point requires two parameters - its x and y coordinates,

so the geometric dimension for the “single point” type is two. A line requires two

parameters (say, slope and intercept), so its geometric dimension is also two.
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Dimension= 5 Dimension= 4 Dimension= 3 or 2

Ellipse (E) Parabola (P) Parallel lines (PL)

Hyperbola (H) Single point (SP) Imaginary parallel lines (IPL)

Imaginary ellipse (IE) Intersecting line (IL) Coincident lines (CL)

Single line (SL)

Table 4.3: Dimensionality of Conics

A pair of parallel lines needs three parameters - one (common) slope and two

intercepts. A pair of intersecting lines needs two parameters for each line, a total of

four.

A parabola is completely specified by its directrix and focus. The directrix is a

line, so it requires two parameters; the focus is a point, so it takes two more. Thus,

the total is four.

An ellipse can be specified by five geometric parameters - the coordinates of its

center, the lengths of its axes, and the slope of its major axis. The same applies to

hyperbolas.

Empty objects need no geometric parameters.

The “algebraic dimension” of each type of conics characterizes the corresponding

set of parameter vectors in the unit sphere S5.

The sphere S5 itself is five-dimensional; But its parts may have different dimen-

sionality. Intuitively, the number of dimensions is the minimal number of internal

coordinates. Isolated points (like Poles) need no internal coordinates, so their di-

mension is zero. Lines and curves have dimension one. Planes and surfaces have

dimension two, etc. Larger, more complex parts of S5 have higher dimensions.

The algebraic dimension of each type of conics can be counted by the number

of ”equality constraints” required for that type. The constraints are listed in the

first five columns of the above table. “Inequality constraints”, like “> 0”, “< 0”, or
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“6= 0”, do not affect the algebraic dimension and should not be counted. But each

“pure zero” in the first five columns of the table should be counted.

Each equality constraint (shown as a “pure zero” in the table) reduces the algebraic

dimension by one, except the constraint H = 0, which reduces the algebraic dimension

by 3. Indeed, H = 0 implies that A = 0, B = 0, and C = 0, i.e., it enforces three

different equality constraints!

The rule is: the algebraic dimension of each type of conics is equal to five minus

the number of equality constraints.

This rule works for all types of conics except Poles. In that last case, the com-

bination of H = 0 and K = 0 implies not only that A = B = C = 0, but also

D2 +E2 = 0, hence D = 0 and E = 0. Thus the constraint K = 0, if combined with

H = 0, enforces two different equality constraints! Now we see that H = 0 eliminates

three dimensions, after which K = 0 eliminates two more, and we obtain 5−3−2 = 0

algebraic dimensions left.

Typically, the geometric dimension agrees with the algebraic dimension. But there

is one exception: the “single point” type has geometric dimension 2 and algebraic

dimension 4. While geometrically a point requires two coordinates, analytically its

equation involves four degrees of freedom, as we show next. We will show that a

single point with coordinates (p, q) is defined by equation

a2(x− p)2 + b2(y − q)2 + 2c(x− p)(y − q) = 0

where a and b are arbitrary non-zero numbers and c2 < a2b2. Indeed, the above

equation can be rewritten as[
a(x− p) +

c

a
(y − q)

]2

+
[
b2 − c2

a2

]
(y − q)2 = 0.

Due to our requirement on c we have b2 − c2

a2
> 0, so both coefficients are positive.

Thus each term in the above equation must be equal to zero. From the second term

we get y = q and then from the first we get x = p, hence the equation defines a single

point, (p, q).
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In the above equation all the five parameters a, b, c, p, q are free independent vari-

ables, except they must be constrained by the requirement that the resulting param-

eter vector (A,B,C,D,E, F )T belongs to the unit sphere S5. This leaves us with four

degrees of freedom.

4.3. Topological space on the unit sphere

Since space of all conics can be represented by points on the unit sphere S5, each

type of conic or imaginary conic hold a corresponding domain on S5. We will provide

a detailed analysis about their topological natures.

Domains on the unit sphere Recall that the conics represented by the equation

(4.6) can be classified into 8 different types. In addition, there are two poles: P1 =

(0, 0, 0, 0, 0, 1) and P−1 = (0, 0, 0, 0, 0,−1) on the sphere (“North Pole” and “South

Pole”) which have dimension zero. Accordingly, the unit sphere was divided into 10

domains according to types of conics (including imaginary ones and two poles). So

we have

(4.8) S5 = DE∪DH∪DIE∪DP∪DSP∪DIL∪DPL∪DIPL∪DCL∪DSL∪{P1}∪{P−1},

where the domains are coded by the names of the conic types, as shown in the table

(4.3).

Let us define following functions S5 → R using defined determinants and matrices

in section 4.2 :

f∆(P) = ∆ fJ(P) = J f∆I(P) = ∆ · I fK(P) = K fH(P) = H

where P = A,B,C,D,E, F . Apparently they are continuous everywhere on R5 and

the domain of points for each type of quadratic conics can be represented as follows:

(4.9)

DE = f−1
∆ ((−∞, 0)

⋃
(0,+∞))

⋂
f−1
J ((0,+∞))

⋂
f−1

∆I ((−∞, 0))
⋂

f−1
H ((0,+∞))

(4.10) DP = f−1
∆ ((−∞, 0)

⋃
(0,+∞))

⋂
f−1
J (0)

⋂
f−1
H ((0,+∞))
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(4.11) DH = f−1
∆ ((−∞, 0)

⋃
(0,+∞))

⋂
f−1
J ((−∞, 0))

⋂
f−1
H ((0,+∞))

Ellipse and Hyperbola

By definition of continuous function in a topological sense, f−1
∆ ((−∞, 0)

⋃
(0,+∞)),

f−1
J ((0,+∞)), f−1

∆I ((−∞, 0)) and f−1
H ((−∞, 0)

⋃
(0,+∞)) are open sets whose inter-

sections constitute DE. Similar reason prove that the openness of DH. Therefore both

DE and DH are open sets on S5. This also implies the there is nonzero probability of

a random parameter points falling into DE and DH. We will provide more detail in

the section (4.4).

Parabola

In expression (4.10), we see that DP is represented by the intersection of a closed

set f−1
J (0) and two open sets. But it is not clear whether DP is open or closed. In fact,

it is neither open nor closed. First, there exists a sequence of points in DP converge

to a limit point in DSL. Consider a sequence below:

(4.12) Pn =
1√

2n2 + 1
(1, 0, 0, 0, n, n) n = 1, 2, 3, ...

As n→∞, Pn approaches to a limit point (0, 0, 0, 0,
√

2/2,
√

2/2) which corresponds

to a horizontal line
√

2/2y +
√

2/2 = 0. Then DP is not a closed set. Next, for any

open neighborhood of point P ∈ DP that satisfies H > 0, ∆ 6= 0 and J = 0, there

always exits a point P
′

so that H > 0, ∆ 6= 0 but J 6= 0 (either ellipse or hyperbola).

Clearly, P
′

doesn’t belong to DP, which does not meet the requirement for open sets.

Degenerate conics

In a problem of fitting any quadratic curve , the closed space of models that ensures

existence of the minimum of sum of squares of distances consists of hyperbola, ellipse,

parabola and all their limiting objects. A quadratic curve may converge to an object

of many types. Besides the three major types, the limiting object might be a point, a

pair of parallel lines, a ray (one ray or two opposite rays), a line segment, a single line

and a pair of intersecting lines. We treat ray and line segment as a part of a full line

and include them into the domain of lines DL on the unit sphere. The domains of single
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points, distinct parallel lines, intersecting lines and coincident lines are characterized

by H > 0 and ∆ = 0 (see section (4.2)). They are neither open nor closed. Indeed,

for example, the sequence of unit parameter vectors

(4.13) Pn =
1√

4n4 + 2n2 + 2
· (1, 0, 1,−n,−n, 2n2) ∈ DSP n = 1, 2, 3, . . .

corresponding to single points converges to a limit (0, 0, 0, 0, 0, 1) for which H = 0.

Remember that this is a north pole on the unit sphere, which represents empty set.

Thus DSP is not closed.

Next, any neighborhood of a point (
√

2/2, 0,
√

2/2, 0, 0, 0) ∈ DSP contains a pa-

rameter vector (1−ε2/2, 0, 1−ε2/2, 0, 0, ε) ∈ DIE (ε2 > 0 is arbitrarily small). So DSP

is neither open nor closed. One could also see that the other domains (parallel lines,

intersecting lines, coincident lines) are neither open nor closed as well by considering

similar examples.

The domains of two coincident lines DCL and single lines DSP can be combined

as a domains DL as these two types of objects are geometrically equivalent. For

example, (
√

6/6,−2
√

6/6,
√

6/6, 0, 0, 0) and (0, 0, 0,
√

2/2,
√

2/2, 0) both correspond

to the “same line” x = y.

This simple observation proves that DL is not closed. Let us consider the sequence

of parameter vectors

(4.14) Pn = (0, 0, 0,
1

n
,

1

n
,

√
1− 2

n2
)(∈ DL)→ (0, 0, 0, 0, 0, 1)

where (0, 0, 0, 0, 0, 1) represents the north pole. Next, for any neighborhood of (
√

3/3,

−2
√

3/3,
√

3/3, 0, 0, 0), there exists a point (
√

3− ε/3,−2
√

3− ε/3,
√

3− ε/3, 0, 0,
√

6ε/3) corresponding to two intersecting lines. So DL are neither open nor closed.

Imaginary objects and Poles

There are three special domains where the parameter vectors do not describe

any real conic because their corresponding quadratic equations have no real solution.

They will play special roles in our analysis. Let DIE be the domain of parameter
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H ∆ J ∆ · I K F Type of conic

> 0 6= 0 > 0 > 0 Imaginary Ellipse

> 0 0 0 > 0 imaginary parallel lines

0 0 6= 0 Poles

Table 4.4: Imaginary objects and Poles

vectors for imaginary ellipses. It follows from classification table 4.4 that

(4.15)

DIE = f−1
∆ ((−∞, 0)

⋃
(0,+∞))

⋂
f−1
J ((0,+∞))

⋂
f−1

∆I ((0,+∞))
⋂

f−1
H ((0,+∞))

Thus DIE is an open set on S5.

The domain DIPL that represents vectors for imaginary parallel lines is neither open

nor closed, which could be easily followed using the similar way of checking openness

and closedness used for degenerate conics.

The parameter vector (0, 0, 0, 0, 0, 1) and (0, 0, 0, 0, 0,−1) are recognized as a emp-

ty solution which does not belong to any imaginary type. They occupy a domain of

two points on S5, which is a closed set.

Imaginary objects can not be considered as a valid solution for our model and

thus we include them into the empty set D0. Take a sequence of points corresponding

to imaginary ellipses:

Pn = (
2n√

5n2 + 1
, 0,

n√
5n2 + 1

, 0, 0,
1√

5n2 + 1
)→ (

2√
5
, 0,

1√
5
, 0, 0, 0)

where ( 2√
5
, 0, 1√

5
, 0, 0, 0) corresponding to the point (0, 0). A sequence in D0 converges

to a limit outside of D0. So D0 is not closed.

Also notice that every neighborhood of point (0, 0, 0, 0, 0, 1) corresponding to

“empty set” contains a parameter vector (0, 0, 0, ε, 0,
√

1− ε) corresponding to a sin-

gle line. Therefore D0 is not open either.

Compactness The unit sphere is a bounded and closed set in R6. Thus it is

compact where any continuous function should have global minimum and maximum.
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Type of conic Percentage

Ellipse 20.7

Hyperbola 76.8

Imaginary ellipse 2.5

Others 0

Table 4.5: Estimated volume of each open domain using adopted algebraic parameter

However, since a conic can be arbitrarily far away the any given set of points, ob-

jective function that represents the sum of squares of distances has no maximum.

So either the objective function is not continuous or the space is not compact? We

will prove that the objective function is continuous later in the next section Con-

tinuity of the objective function (defined on S5). So it is reasonable to blame on

the non-compactness of the space. In fact, the absence of maximum is caused by

the non-compactness of the subspace which consists of points corresponding to valid

solution for our model and makes the complement of the space of empty solutions on

the unit sphere. It is quite obvious that one can not evaluate the objective function

from a given point to an imaginary object. So the objective function is only defined

on the subspace containing ellipses,hyperbola,parabola and degenerate conics. In the

previous discussion, we see that the space of empty sets is neither closed nor open.

Its complement can not be a closed set. Therefore the subspace containing valid

solutions is not compact.

4.4. Volumes of domains of conics

Here we address an interesting issue: “volume” of each domain on S5.

By running a Monte-Carlo simulation for which we picked 10, 000 random points

from S5, we find the percentage of each type of conics including the imaginary ob-

jects(see table 4.5)
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Type of conic Percentage

Ellipse 26.5

Hyperbola 65

Imaginary ellipse 8.5

Others 0

Table 4.6: Estimated volume of each domain using standard algebraic parameter

The table shows that hyperbola, ellipse and imaginary ellipse dominate the unit

sphere. Any other conics are in minority classes. In the last section, we proved

that hyperbola, ellipse and imaginary ellipse have open domains on the unit sphere.

So they have nonempty interior and therefore positive measure while the others are

neither open nor closed and they have empty interior, implying zero measure.

Adjusted algebraic parameter scheme In the section 4.1, we introduced two

different algebraic parameters for conics: The first one (known as algebraic parameter)

is widely recognized by community.

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

The second one that we call adjusted algebraic parameter appears to be almost the

same as algebraic parameter except that the B,D and E are combined with the

coefficient 2.

Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0

Here we explain the advantage the second parameter scheme takes over the first one.

By imposing constraint A2 + · · ·+F 2 = 1, we run Monte-Carlo simulation to estimate

the percentage of each domain of conics under the algebraic parameter scheme (see

tabel 4.6)

Under such parameter scheme, we have a much higher percentage of imaginary

ellipse among randomly generated points. So by adding coefficient 2, we can expand

the domain of points that represents valid solutions for our model. When running a
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iterative numerical algorithm searching for the minimum of the objective, one should

avoid a situation that the iteration traps into the domain of empty set and return a

empty solution. The adjusted algebraic parameters resolve such a problem in a simple

way: one only needs to multiply B,D,E from the standard algebraic parameters by 2

respectively and reduce chance of achieving empty solutions.

4.5. Boundaries of open domains

Reminder: the partition of S5 into domains

Recall that the unit sphere S5 (the parameter space) is divided into 10 domains

corresponding to the main conic types, plus two extra points, the poles:

S5 = DE ∪ DH ∪ DIE ∪ DP ∪ DSP ∪ DIL ∪ DPL ∪ DIPL ∪ DCL ∪ DSL ∪ {P1} ∪ {P−1}.

The subscripts are the codes of the conic types: E - ellipses, H- hyperbolas, IE -

imaginary ellipses, etc.

The domains DE, DH, and DIE are five-dimensional, open, and they cover 100%

of the sphere S5, in terms of volume (numerical experiment by H.M). The other

domains have lower dimensionality and zero volume. They, in a sense, make pieces

of the boundaries of the principal domains DE, DH, and DIE.

Four-dimensional domains (hypersurfaces)

Four-dimensional domains DP (parabolas), DSP (single points), and DIL (intersect-

ing lines)in a five-dimensional space play a prominent role: they separate the space

into two parts (at least, locally). In geometry, they are called ”hypersurfaces”. Our

hypersurfaces DP, DSP, and DIL separate our open domains DE, DH, and DIE, or their

components, from each other; see below.

Single points DSP

The hypersurface DSP separates the open domain DE of ellipses from the open

domain DIE of imaginary ellipses. To illustrate this fact, consider the parameter

vector Pc = (−1, 0,−1, 0, 0, c), where c will play the role of a small variable (we will

not normalize Pc to keep our formulas simple). This parameter vector corresponds
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to the quadratic function

Q(x, y) = −x2 − y2 + c.

For c > 0, the equation Q(x, y) = 0 defines a small ellipse (more precisely, a small

circle of radius
√
c), i.e., Pc ∈ DE for c > 0. For c = 0, it is a single point, (0, 0), i.e.,

P0 ∈ DSP. For c < 0 it is an imaginary ellipse, i.e., Pc ∈ DIE for c < 0. As c changes

from small positive values to zero and then on to small negative values, the ellipse

shrinks and collapses to a single point, and then disappears altogether (transforms

into an imaginary ellipse). In the parameter space S5, this process corresponds to a

continuous motion from the domain DE to the domain DIE, across the hypersurface

DSP.

Intersecting lines DIL

The hypersurface DIL separates the two components D+
H and D−H of the open do-

main DH of hyperbolas from each other. To illustrate this fact, consider the parameter

vector Pc = (−1, 0, 1, 0, 0, c), where c will again play the role of a small variable. This

parameter vector corresponds to the quadratic function

(4.16) Q(x, y) = −x2 + y2 + c.

The equation Q(x, y) = 0 defines a hyperbola with center (0, 0), unless c = 0, in

which case it is a pair of intersecting lines, y = ±x. More precisely, for c > 0 it is

a hyperbola with a “positive center”, because Q(0, 0) > 0, i.e., Pc ∈ D+
H for c > 0.

For c < 0, it is a hyperbola with a “negative center”, because Q(0, 0) < 0, i.e.,

Pc ∈ D−H for c < 0. For c = 0, it is a pair of intersecting lines, i.e., P0 ∈ DIL. As

c changes from small positive values to zero and then on to small negative values,

the hyperbola with a positive center transforms into a pair of interesting lines and

then into a hyperbola with a negative center. In the parameter space, this process

corresponds to a continuous motion from the subdomain D+
H to the subdomain D−H,

across the hypersurface DIL (see Figure 4.1).

Parabolas DP
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Figure 4.1: Red color corresponds to positive values of Q(x, y) and blue color to its

negative values.

Figure 4.2: Red color corresponds to positive values of Q(x,y) and blue color to its

negative values.

The hypersurface DP separates the domain DH of hyperbolas from the domain DE

of ellipses. To illustrate this fact, consider the parameter vector Pc = (−1, 0, c, 0, 1, 0),

where c will again play the role of a small variable. This parameter vector corresponds

to the quadratic function

Q(x, y) = −x2 + cy2 + y = −x2 + c
(
y +

1

2c

)2

− 1

4c
.

For c > 0, the equation Q(x, y) = 0 defines a hyperbola, i.e., Pc ∈ DH for c > 0.

For c = 0, it is a parabola y = x2, i.e., P0 ∈ DP. For c < 0, it is an ellipse, i.e.,

Pc ∈ DE for c < 0. As c changes from small positive values to zero and then on to

small negative values, the hyperbola transforms into a parabola, and then into an

ellipse. In the parameter space, this process corresponds to a continuous motion from

the domain DH to the domain DE, across the hypersurface DP (see Figure 4.2).

Sign changes
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Figure 4.3: Principal domains and separating hypersurfaces. The labels correspond

to our notation in the text: H+ means DH
+ , etc.

A closer look at the above examples reveals that the “positive” subdomain D+
H

borders on the ”negative” subdomain D−E , and vice versa. Similarly, the “positive”

subdomain D+
E borders on the “negative” subdomain D−IE, and vice versa. Thus

the “sign” always changes when a parametr vector moves continuously from one

subdomain to another.

A simplistic diagram

The above analysis is summarized in the following schematic diagram illustrating

the structure of the parameter space, with all principal subdomains and the respective

separating hypersurfaces (see Figure 4.3).

4.6. Fine structure of parameter space

In the previous section, we only described the main boundaries of the open do-

mains, which are the hypersurfaces DP (parabolas) and DIL (intersecting lines), and

DSP (single points). We did not include domains of smaller dimension, i.e., DPL

(parallel lines) and DIPL (imaginary parallel lines) of dimension three, as well as DCL

(coincident lines) and DSL (single lines) of dimension two. Here we present a bigger

picture that includes all of these elements.

Smaller boundary pieces Generally, domains of higher dimension terminate on

domains of smaller dimension. In other words, domains of smaller dimension make

boundaries of domains of higher dimension. More precisely, we say that a domain D1
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Figure 4.4: Boundary structure of domains

terminates on a domain D2 if there is a sequence of points Pn ∈ D1 that converges to

a point P ∈ D2, i.e., Pn → P as n→∞.

The diagram 4.4 above shows how our domains terminate on each other. An arrow

from D1 to D2 means that D1 terminates on D2, i.e., there is a sequence of points of D1

that converges to a point of D2. The domains are named by the types of conics. The

diagram contains all parts of the parameter space: from the largest, five-dimensional

open domains to the smallest, two-dimensional regions. We note that all our domains

terminate on each pole, so there should be an arrow from every domain down to the

bottom line (Two Poles). For simplicity, we just put one large arrow pointing to the

poles.

Two types of convergence The diagram 4.4 shows how parameter vectors

P ∈ S5 may converge, from one domain to another. Since this convergence involves

algebraic parameters P = (A,B,C,D,E, F ), we will call it “algebraic convergence”.
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It will refer to the convergence of a sequence of parameter vectors Pn to a parameter

vector P on the sphere S5.

On the other hand, a sequence of conics Sn may converge to a conic S, in the sense

of section (2.2). We will call this “geometric convergence”. In particular, a sequence

of conics of one type may geometrically converge to a conic of another type. In section

(2.8) we described several examples of such a convergence: circles converging to a line,

ellipses converging to a parabola, etc.

A natural question is: Do algebraic and geometric types of convergence

agree?

They answer is YES, algebraic convergence agrees with geometric convergence in

most cases, but there are some notable exceptions.

Theorem 4.1. (Convergence of conics: general case) Suppose a sequence Pi of

parameter vectors corresponding to real (not imaginary) conics, Sn, converges to a

parameter vector P corresponding to a real (not imaginary) conic, S, which is not a

pair of coincident lines, i.e., P /∈ DCL. Then Sn → S geometrically, in the sense of

section (2.2).

Theorem 4.2. (Divergence of conics: general case) Suppose a sequence Pn of

parameter vectors corresponding to real (not imaginary) conics, Sn, converges to a

parameter vector P corresponding to an imaginary conic or to a pole, i.e., P ∈ DIPL

or P = P±1. Then Sn moves off toward infinity, i.e., for any point P = (x, y) ∈ R2

we have dist(P, Sn)→∞ as n→∞.

We note that the limit vector P cannot be in the domain of imaginary ellipses

DIE, because the latter is open.

Theorem 4.3. (The exceptional case of coincident lines) Suppose a sequence Pn

of parameter vectors corresponding to real (not imaginary) conics, Sn, converges to a

parameter vector P ∈ DCL corresponding to a pair of coincident lines; the latter make

a line in R2 which we denote by L. Then Sn gets closer and closer to L, as n grows.
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More precisely, for any rectangle

R = {−A ≤ x ≤ A, −B ≤ y ≤ B}

we have

max
P∈Sn∩R

dist(P,L)→ 0 as n→∞.

In other words, if we look “through the window” R, we will see that all the points

of Sn get closer and closer to L.

The proof of Theorem (4.1)-(4.3) are given in section (4.6).

Examples of algebraic convergence to coincident lines

On the other hand, the conics Sn in Theorem (4.3) may not converge to the line

L in the sense of section (2.2). For example, Sn may be parabolas that converge to

a half-line that is only a part of L. Or Sn may be hyperbolas that converge to two

opposite half-lines that are only parts of L (see illustrations in section section (2.8)).

Or Sn may be ellipses that converge to a segment of L (see illustrations in section

section (2.8)). Or Sn may be single points that converge to a point in L. Or Sn may

be any of the above but instead of converging to any part of L they may wander along

L back and forth, or go off toward infinity.

For example, let Sn be defined by

x2 +
αn(y + Cn)2

1 + C2
n

= βn,

where αn → 0 and βn → 0 as n→∞. Then algebraically this sequence converges to

x2 = 0, which is a pair of coincident lines. But geometrically Sn may be an ellipse or

a hyperbola or a single point, depending on the values (and the signs) of Cn, αn, βn,

and it may converge to various parts of L or move back and forth along L or move

off toward infinity altogether.



CHAPTER 5

OBJECTIVE FUNCTION FOR QUADRATIC CURVES

(CONICS)

In this chapter we study the objective function on the parameter space of conics,

i.e., on the sphere S5. Recall that given some points P1, . . . , Pn ∈ R2, the objective

function is the sum of squares of the distances to a model object (in our case, conic)

S:

(5.1) F(S) =
n∑
i=1

[
dist(Pi, S)

]2
,

The objective function depends on the points P1, . . . , Pn, but in practical settings

those are fixed, so the only variable is S, which is regarded as the sole argument of

F.

5.1. Continuity of the objective function on the sphere

Domain of the objective function The objective function (5.1) can be trans-

formed into an equivalent form with parameter vector as its argument:

(5.2) F(P) =
n∑
i=1

[
dist(Pi,P)

]2
,

Now F becomes a function defined on S5, except domains corresponding to imaginary

conics or poles:

DF = DE ∪ DH ∪ DP ∪ DSP ∪ DIL ∪ DPL ∪ DCL ∪ DSL.

We note that DF does not include regions DIE and DIPL corresponding to imaginary

conics, and it does not include the poles P±1.

79
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Theorem 5.1. Continuity of the objective function The objective function

F is continuous everywhere on its domain DF except on the region DCL corresponding

to coincident lines.

This theorem is an immediate consequence of Theorem 4.1 of section 4.6 and

main theorem of section 2.4. Indeed, we only need to apply a general principle: the

composition of two continuous functions is a continuous function.

Lower semi-continuity of the objective function

On the region DCL corresponding to coincident lines the objective function F

is badly discontinuous, according to Theorem 4.3 (and the discussion around it) in

section 4.6. We showed there that if Pn → P and P ∈ DCL corresponds to a coincident

line L, then the conics Sn corresponding to Pn may move back and forth along the

line L or move off toward infinity. Accordingly, the values of the objective function

F(Pn) may oscillate within a wide range or diverge to infinity.

But the objects Sn must get closer and closer to L, as n grows, they just may not

stretch all the way along L. This implies that the objects Sn, in the limit n → ∞,

cannot provide a better fit to the given points than the line L does. Thus any limit

value obtained from F(Pn) cannot be smaller than the value F(P), i.e.,

lim inf
n→∞

F(Pn) ≥ F(P).

Hence we obtain one more important fact:

Theorem 5.2. Lower semi-continuity of the objective function The ob-

jective function F is lower semi-continuous on the region DCL corresponding to coin-

cident lines.

Remember a function f(x) is lower semi-continuous at x0 if

lim inf
x→x0

f(x) > f(x0)

Since it is already known from Theorem (5.1) that F
′
(P) is continuous everywhere

except on the region DCL, it remains to show that F
′
(P) is lower semi-continuous



81

within DCL. Furthermore, it is enough to verify that the distance function dist(Pi, S)

is lower semi continuous at every point p within the domain of coincident lines. We

will prove for any given point P ∈ R2

lim inf
Pi→P0

dist(P,G(Pi)) > dist(P,G(P0))

where G(P) is the conic represented by Pi.

Proof. Let Pi = (Ai, Bi, Ci, Di, Ei, Fi) be a sequence of parameter points with a

limit P0 corresponding to a pair of coincident lines. Since dist(P,G(Pi)) = inf dist(P, Pi)

where Pi = (xi, yi) ∈ G(Pi),

Q(xi, yi|pi) = Aix
2
i + 2Bixiyi + Ciy

2
i + 2Dixi + 2Eiyi + Fi = 0.

Let us consider the following cases:

(i) lim infi→∞ dist(P, Pi) = c (c > 0).

There exists a subsequence of {Pi}, denoted by {Pij} such that

lim
ij→∞

dist(P, Pij) = c.

Furthermore, since {Pij} is bounded, one can always find a convergent subsequence

with a limit P0 = (x0, y0). For simplicity, let us assume {Pij} is convergent so that

lim
ij→∞

dist(P, Pij) = dist(P, P0) = c

Then

lim
ij→∞

Q(xij , yij |Pij) = Q(x0, y0|P0) = 0.

The last equality indicates P0 = (x0, y0) ∈ G(P0). So

dist(P,G(p0)) 6 dist(P, P0) 6 lim inf
i→∞

dist(P, Pi) = c

(ii) lim infi→∞ dist(P, Pi) =∞

It is quite obvious that dist(P,G(P0)) <∞. Therefore,

dist(P,G(P0)) < lim inf
i→∞

dist(P,G(Pi)).
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The proof is completed and now we see that F
′
(P) is lower semi continuity within

the domain of all real conics. �

Theorem 5.3. Growth near the imaginary conics and poles The objective

function F grows to infinity near the region DIPL and near the poles P±1. More

precisely, if Pn → P and either P ∈ DIPL or P = P±1, then F(Pn)→∞.

This theorem follows immediately from Theorem of section (4.6).

The existence of a global minimum revisited It follows from Theorem (5.3)

that the DF is not compact. But we can cut out and ignore a small open vicinity of the

region DIPL and the poles P±1 where the function is too big. Then the remaining part

of the domain DF will be compact. And now the lower semi-continuity of F (proven in

Theorem 5.1 + Theorem 5.1) guarantees the existence of its global minimum. Indeed,

any lower semi-continuous function on a compact domain attains its minimum;

The existence of a global minimum is nothing new, however, as we have proved

the existence of the best fitting object already in section (2).

We continue in next section.

5.2. Differentiability of the objective function on the sphere

Recall that the objective function is the sum of squares of the distances from the

given (fixed) points P1, . . . , Pn ∈ R2 to a (variable) conic S:

(5.3) F(S) =
n∑
i=1

[
dist(Pi, S)

]2
.

Its domain DF ⊂ S5 is a part of the sphere S5. It can be decomposed into subdomains

corresponding to different conic types:

DF = DE ∪ DH ∪ DP ∪ DSP ∪ DIL ∪ DPL ∪ DCL ∪ DSL.

In the previous section we showed that F is continuous on its entire domain DF except

a tiny subregion DCL ⊂ DF corresponding to coincident lines. On that latter region F
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is badly discontinuous, but at least we established that it was lower semi-continuous.

In this section we investigate the differentiability of F.

Differentiability of objective function: General considerations The deriva-

tives of given function F is often in fitting algorithms (such as the steepest descent,

Newton-Raphson, Gauss-Newton, or Levenberg-Marquardt). Some use the first or-

der derivative of F, others use the second order derivative, or approximations to the

second order derivative.

Thus it is essential that our objective function F is differentiable, at least once.

As F is the sum of squares of the distances, see (5.1), it will be enough to check that

[dist(Pi, S)]2, i.e., the square of the distance from the given point Pi = (xi, yi) ∈ R2

to the conic S, is differentiable with respect to the conic’s parameters.

We consider a more general problem. Given a point P = (x0, y0) and a conic S,

we will investigate the differentiability (with respect to the parameters of S) of the

function

[dist(P, S)]2 = [dist(P,Q)]2 = (x− x0)2 + (y − y0)2,

where Q = (x, y) is the projection of P onto the conic S; see section 2.1. To this

end it will be enough to check that the coordinates x, y of the footpoint Q of the

projection are differentiable with respect to the conic’s parameters.

One may guess, intuitively, that whenever the point P = (x0, y0) is kept fixed

and the conic S changes continuously, the projection Q of P onto S would change

continuously and smoothly. We will prove that generally this is true. However, there

are exceptional cases where the continuity breaks down.

Differentiability of objective function: Some exceptions

The reason for the breakdown is that the point Q on the conic S closest to the

given point P may be not unique. For example, if S is a circle and P is its center,

then all the points of S are equally distant from P , hence the point Q can be chosen

anywhere on the circle. Another example: S is an ellipse and P lies on the major

axis near the center. Then there are exactly two points on S closest to P (they
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are symmetric about the major axis of S). Similar situations occur when S is a

hyperbola or a parabola and P lies on its axis. See illustrations in the figure 5.2. In

these exceptional cases, if one changes such a conic S continuously, then the point Q

may instantaneously “jump” from one side (or branch) of S to another.

A more subtle exceptional case occurs when P lies at the center of curvature of

S at the point Q. This means that P coincides with the center of the osculating

circle [?] of the conic S at the projection point Q. Then the projection Q may be

technically unique, but “barely unique”, as to the second order all the points on S

close enough to Q will be equally distant from P . This is a subtle situation, we will

explore it separately.

Theorem 5.4. (Differentiability of projection coordinates) Let S be a con-

ic and P a given point. Suppose (i) the point Q on the conic S closest to the given

point P is unique and (ii) P is not the center of curvature of the conic S at the point

Q. Then the coordinates x and y of the point Q are differentiable with respect to the

conic’s parameters.

Theorem 5.4 is proved by implicit differentiation. See the proof in section A.5.

Our proof ensures the existence of the first order derivatives of x and y with respect

to the conic’s parameters. One can easily extend it to higher order derivatives, so

that x and y can be shown to have derivatives of all orders.

We note, however, that for practical purposes first order derivatives suffice. The

most popular minimization algorithms, such as Gauss-Newton and Levenberg-Marquardt

[23, 25], use approximations to the second order derivatives of the objective func-

tion F, and those approximations only require the first derivatives of the distances
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dist(Pi, S)’s. That is, only the first order derivatives of the coordinates of projection

points x and y with respect to the conic’s parameters are needed.

Next we turn to the exceptional case (ii) in the above theorem, i.e., suppose P is

at the center of the osculating circle of S at the point Q. Then the coordinates x and

y are not differentiable with respect to the conic’s parameters. But surprisingly the

distance dist(P, S) is differentiable with respect to the conic’s parameters.

Example of a point at center of osculating circle As a simple example,

consider a family of parabolas defined by equation

y = x2 − C,

where C is the only scalar parameter. For C = 0 we have the classical parabola

y = x2. At the point Q = (0, 0) of this parabola, the osculating circle has center

(0, 1/2) and radius 1/2. So let us put the data point P = (0, 1/2) right at the center

of the osculating circle. Then for C = 0 we get the (unique) projection Q = (0, 0)

of the point P onto the parabola y = x2 and the distance from P to the parabola is

d(0) = 1/2.

Let us see what happens when C becomes positive or negative. For C < 0, the

parabola moves up, toward the point P . That point still has a unique projection

Q = (0,−C) onto the parabola y = x2 − C. Thus the coordinates of the projection

point x(C) = 0 and y(C) = −C appear to be smooth functions.

However, for C > 0, the parabola moves down, away from the point P . Now P has

two projections onto the parabola y = x2 − C; their footpoints are Q± = (±
√
C, 0).

Thus the coordinates of the projection points are x(C) = ±
√
C and y(C) = 0.

We see that the y-coordinate y(C) of the projection point changes its slope at

C = 0, from y′ = −1 for C < 0 to y′ = 0 for C > 0. Thus the function y(C) is not

differentiable at C = 0, even though it has one-sided derivatives. The x-coordinate

x(C) of the projection point does not even have a one-sided derivative corresponding

to C > 0. Indeed, x′(C) = ±1/(2
√
C), which approaches infinity as C → 0. Hence

the slope of the function x(C) at C = 0 is vertical, its derivative turns infinite!
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We see that both coordinates, x(C) and y(C), of the projection point fail to be

differentiable at the parameter value C = 0, which corresponds to the data point P

right at the center of the osculating circle.

However, the distance d(C) from the fixed point P = (0, 1/2) to the parabola y =

x2 miraculously remains smooth, even at C = 0! Indeed, by elementary calculations

d(C) = 1/2 + C for C < 0 and d(C) =

√
1

4
+ C for C > 0.

Thus its derivative is

d′(C) = 1 for C < 0 and d′(C) =
1

2
√

1
4

+ C
for C > 0.

We see that at the junction point C = 0 both derivatives coincide, they are equal to

1. Thus the function has a continuous first order derivative at the value C = 0.

Remark: We must note, however, that the second order derivative d′′(C) is not

continuous at C = 0, thus it does not exist at this point.

Still, the existence and continuity of the first derivative looks like a stunning

miracle here. It calls for an explanation.

Fortunately, the existence and continuity of the first derivative is not just a sheer

luck that we observed in one particular example. It is a general fact that we prove in

section A.5 (see smoothness at centers of osculating circles).

Thus we get

Theorem 5.5. (Differentiability of distances) Let S be a conic and P a given

point. Suppose (i) the point Q on the conic S closest to the given point P is unique

and (ii) P coincides with the center of curvature of the conic S at the point Q. Then

the distance dist(P, S) is differentiable with respect to the conic’s parameters.

The proof is given in section (A.5).

Thus the objective function F is differentiable, unless the point P has more than

one projection onto the conic S.

Examples of non-differentiability
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Figure 5.1: Example of Non-differntiability

In rare cases where the condition (i) of Theorems 1 and 2 does not hold, the

objective function may not be differentiable. This happens, for instance, if S is an

ellipse and one of the data points Pi happens to lie on its major axis somewhere in

the middle of S (then Pi is equally distant from the two halves of the ellipse). Or if

S is a circle and one of the data points Pi is its center.

To illustrate the above effect let us consider a simplified family of conics defined

by

x2 + y2 + 2Dx+ 2Ey − 3 = 0

where only two algebraic parameters, D and E, are variable and all the others are

fixed (A = C = 1, B = 0, and F = −3). This is actually a family of circles with

center (−D,−E) and radius R =
√
D2 + E2 + 3. The distance from P = (x0, y0) to

this circle is given by

dist(P, S) =
∣∣∣√(D + x0)2 + (E + y0)2 −

√
D2 + E2 + 3

∣∣∣.
Figure 5.2is the graph of this distance, as a function of D and E, plotted by MATLAB

. We have set x0 = y0 = 0 and let D and E vary from −1 to 1. We clearly see a

sharp peak on the graph at the point D = E = 0, exactly where the point P = (0, 0)
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coincides with the center of the circle. The graph is a cone-shaped surface near the

peak with no derivatives at the summit.

To summarize, the cases of non-differentiability of the objective function F are

rare. They occur when one of the data points happens to be in an unusual place

where the distance to the conic may be computed in more than one way. Such points

“confuse” the objective function and cause the failure of its differentiability.

No local minima at singular points

It is important to explore what happens whenever the objective function F fails

to be differentiable. It turns out, fortunately, that in all such cases the shape of F

resembles a “peak” (pointing upward), as in the above illustration. It cannot have a

shape of a “pothole” (pointing downward).

Indeed, suppose a data point Pi can be orthogonally projected onto the conic S in

more than one way (meaning its projections on different parts or on different branches

of S). Denote the footpoints of those projections by Q
′
i, Q

′′
i , etc. Then

dist(Pi, S) = min{dist(Pi, Q
′

i), dist(Pi, Q
′′

i ), etc.}

Thus the distance is obtained as the minimum several smooth functions. And here is

a general fact: the minimum of several smooth functions can only have “peak-type”

singularities, not “pothole-type” singularities; see a simple illustration in figure 5.2.

In other words, F has “peaks”, or local maxima, at singular points.

Theorem 5.6. (Smoothness at local minima) The objective function F is

smooth at all its local minima. More precisely, the first order derivatives of F, as well

as those of the distances dist(Pi, S), exist and are continuous at all local minima.
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See a proof in section (A.5).

Since our main goal is minimization of F, i.e., finding its (local) minima, the

singularities of F will not really concern us, they will not be harmful. Standard min-

imization algorithms, such as Levenberg-Marquardt or Trust Region, are prohibited

from moving in the “wrong direction” where the function F increases. They will only

move if they find a smaller value of F. This restriction forces them to move away

from local maxima of F, in particular away from singular points of F.

If an algorithm converges to a limit, then F has a local minimum there, and by our

Theorem 3 the function F and the distances dist(Pi, S) have continuous first order

derivatives. Since the above mentioned algorithms only use the first order derivatives

of the distances dist(Pi, S), they should be able to find the local minimum of F and

converge quickly.

Summary

To summarize, we list all the domains where the minimization algorithms are

likely to “maneuver” searching for the best fitting conic and where the best fit can be

found: Ellipses DE, hyperbolas DH, parabolas DP, intersecting lines DIL and parallel

lines DPL. We formalize this in the following statement:

Theorem 5.7. (Essential domain) For any set of data points P1, . . . , Pn the

global minimum of the objective function F belongs to the union

(5.4) DF,ESS = DE ∪ DH ∪ DP ∪ DIL ∪ DPL.

If the objective function F has multiple global minima, then at least one of them

belongs to the above union. This union cannot be shortened, i.e., for any conic S in

this union of domains there exists a data set for which S provides the unique best fit.

See a proof in section (A.6).

We call DF,ESS the “essential domain, or the essential part of the domain DF,

of the function F. The above theorem basically says that all the other parts of the
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parameter space S5 can be ignored for the purpose of minimization of the objective

function. On those parts F is either not defined or tends to grow.



CHAPTER 6

GEOMETRIC FIT AND THE PROBLEM OF THE

MOMENTS

In EIV problems, the given points on the plane are subject to random errors

(usually normal r.v). Due to the complexity of curve fitting problems the exact

distribution and moments of parameters are hard to determine. It was already known

that the parameters in linear regression y = α + βx do not have finite absolute

moments

(6.1) E(|α̂|) = E(|β̂|) =∞

This fact was found by Anderson in 1976 [6]. Recently, Chernov discovered that the

parameters in circular regression (x− a)2 + (x− b)2 = R2 have infinite moments,too

[14]

(6.2) E(|â) = E(|b̂|) = E(|R̂|) =∞

In this chapter, we will investigate elliptical regression – fitting ellipses to observed

points whose both coordinates are measured with errors. We prove under any stan-

dard assumptions on the statistical distribution of errors that are commonly adopted

in the literature, the estimate for the major axis, center coordinates have infinite

moments. The minor axis have finite first moment but infinite second moment. Our

discussion will follow the general strategy used in [2] and [14].

6.1. Geometric elliptical fit

In the problem of fitting curve to given points, geometric fit which minimizes the

sum of squares of distances from points to the curve is considered as the most reliable

fitting method. Let us recognize the following important fact about the geometric fit.

91
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Theorem 6.1. In functional model, the maximum likelihood estimator of the pri-

mary parameters θ1, . . . , θk is attained on the curve that minimizes the sum of squares

of orthogonal distances to data points.

see [13] It is commonly regarded as the best (most accurate and reliable) fitting

method. However the corresponding parameter estimates often have a bizarre feature:

they do not have finite moment. On the other hand, classical estimates minimizing

vertical distances, even in the linear case [6], are known to have finite moments. But in

practical application, the classical estimates are known to be much less accurate and

have heavy bias in the estimates of some parameters. In other words, paradoxically, a

better estimate has infinite moments. (Theoretically, its mean squared error is infinite

and bias can not be measured) while a worse estimate has finite moments (so its bias

and mean squared error are finite).

Existence revisited

Before we proceed to any formal investigation, let us recall the issue of existence

arises in elliptic regression: there is a nonzero probability that the best fitting ellipse

would not exist. Strictly speaking, if one fits a quadratic curve (a conic section) to

observed points, then the best fitting conic may be (i) an ellipse or (ii) a hyperbola or

(iii) a parabola or (iv) a straight line or (v) a pair of straight lines. Even though lines

and parabolas occur with probability zero (thus they can be ignored), hyperbolas

occur with a positive probability and have to be reckoned with. When the best

fitting conic is a hyperbola, then the problem of fitting ellipses has no solution (see

section A.1 in appendix). In that case for any ellipse one can find another ellipse that

fits the given points better than the previous one (in the sense of a smaller sum of

squares of distances). A sequence of such ellipses that approximate these given points

progressively well will converge to a parabola [28]. In a numerical experiment of fitting

five random points generated by a continuous distribution (normal or uniform), the

ellipse turns up in 30% of the cases while the hyperbola occurs in 70%. This suggests

that there is a significant chance that the best fitting ellipse does not exists at all.
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Therefore our analysis has to be restricted to data sets where the best fitting ellipse

does exist (i.e., where the best fitting conic is an ellipse, rather than anything else).

The expectations of the geometric parameters in this chapter should be understood

as conditional expectations (i.e.,the integral of the estimates of the parameters for

the data sets for which the best fitting ellipse does exists).

6.2. General Strategy

In ellipse fitting problem one estimates two axes a, b, coordinates of the center

(Cx, Cy) and the angle of tilt α (the angle between the major axis the horizontal axis).

The angle α is commonly assumed to be between 0 and 2π. So its estimate α̂ should

have finite moment. The following analysis applies to the remaining parameters.

The absolute first moment of parameter estimate θ̂

(6.3) E(|θ̂|) =

∫ ∞
0

Prob(|θ̂| > x) dx

is infinite if the distribution has a power-law tail Prob(|θ̂| > x) ∼ x−γ as x→∞ with

γ ≤ 1. The reciprocal ζ = 1/θ̂ then satisfies Prob(|ζ| < y) ∼ yγ with γ ≤ 1. It is

easy to see that ζ vanishes as θ̂ grows to infinity. Thus we only need to check that ζ

has a positive density function which does not vanish at 0.

Suppose we can position n points (x1, y1), . . . , (xn, yn) so that the parameter es-

timate θ̂ will be infinite and hence ζ = 0. Also note that θ̂ and ζ are continuous

function of coordinates (x1, y1), . . . , (xn, yn). Next we fix all coordinates except only,

say x1 varies.

Lemma 6.1. Suppose that the derivative |∂ζ/∂x1| ≤ D for some D > 0. Then the

conditional absolute moment of θ̂ given that the coordinates y1, x2, y2, . . . , xn, yn (i.e.,

all but x1) are fixed, is infinite, i.e., E(|θ̂| | y1, x2, y2, . . . , xn, yn) =∞.

Proof. Since the original joint distribution of all the coordinates x1; y1; . . . ;xn; yn

has a strictly positive density, the conditional distribution of x1 (given that all the



94

other coordinates are fixed) also has a strictly positive density. And since |∂ζ/∂x1| ≤

D, the conditional density of ζ

(6.4) fζ(z|y1; . . . ;xn; yn) = |d(ζ−1(z))

dz
| · fx1(ζ−1(z)) = |∂x1

∂ζ
|ζ=z | · fx1(ζ−1(z)) > 0

Hence, as we have seen, the conditional expectation of θ̂ is infinite. �

The argument holds true if every coordinates is slightly changed, i.e., x2 ∈ Ii (i =

2, . . . , n) and yi ∈ Jj (j = 1, . . . , n) for some Ii and Jj. Therefore the unconditional

expectation E(|θ̂|) =∞.

Next we will construct such an example for which the moments of parameters for

an ellipse are infinite.

6.3. Elliptic regression (for five points)

When the total number of data points is n = 5, the argument is relatively simple

(see [2]). We have seen in the section 2.8 that two semi axes a ≥ b grows to infinity

as the ellipse converge to a parabola. Taking the clue from this fact, we can choose

five points (−2, 1), (2, 1), (−1, 0), (1, 0) and (0,−1/3). Then we fix four small squares

Bi (i = 1, . . . , 4) of size 2h2 × 2h2 centered at each of first four points and one small

rectangle B5 of size 2h2 × 2h (h is a small number such as 10−9) at the last point.

Then there always exists an interpolating object Sbest passing through five points

(quadratic curve or line) (see Figure 6.1).

We choose one points (x0, y0) in the rectangle B5 and one points (xi, yi) from

each square Bi(i = 1, 2, 3, 4). Note that y0 is allowed to vary within a interval of

size 2h while all other coordinates are restricted to much smaller interval of size

2h2 � 2h. By simple geometry, the best fitting (interpolating) object is an ellipse

when y0 = −1/3 +h or a hyperbola when y0 = −1/3−h. Let us fixed all coordinates

except y0. As y0 varies from −1/3+h to −1/3−h, the interpolating ellipse converges

to a parabola and than becomes hyperbola. We will only consider the part of the

interval (−1/3 + h∗,−1/3 + h) (−h < h∗ < h). The major axis â of the ellipse

reach at infinity when y0 = −1/3 + h∗ and the corresponding interpolating object is
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Figure 6.1: The best fitting conic for five points

a parabola. Let us define ζ = 1/â. Keep in mind that ζ is a function only depending

on y0. We will prove the following fact:

Theorem 6.2. For any fixed values x1, x2, y2, . . . , x5, y5, the function ζ(y0) has

bounded derivative, i.e. |∂ζ(y0)/∂y0| < D for some D > 0.

The above fact implies our desired result E(|â|) = ∞. And since Ĉy ≈ â − 1/3,

E(|Ĉy|) =∞. Rotating the construction by 2π, we can obtain E(|Ĉx|) =∞. Besides,

we will show that as the ellipse degenerates to parabola the minor axis b̂ will grow to

infinity as well but at a lower rate b̂ ∼ a1/2.

Proof of Theroem 6.2 Here we provide a proof for the infinite moment of some

of parameters (major axis and coordinates of the center) for the best fitting ellipse

which may illustrate our main idea of infinite moment for arbitrary n > 5. First we

fix five points at (−2, 1), (2, 1), (−1, 0), (1, 0) and (x0, y0) where x0 ∈ (−2h2, 2h2)

and y0 = z − 1/3 ∈ (−1/3 − 2h,−1/3 + 2h)(h = 10−9). Note that the best fitting

(interpolating) curve (including parabolas) will be an ellipse when x2
0 ≤ 3y0 and a

parabola when x2
0 = 3y0 (see figure 6.1). It is easy to obtain the corresponding

equation

(6.5) x2 + ty2 − (3 + t)y − 1 = 0
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where t will be determined by the the point (x0, y0):

(6.6) t =
3z − x2

0
4
9
− 5

3
z + z2

The equation (A.113) can be rewritten as

(6.7) x2 + t(y − 3 + t

2t
)2 =

9 + 10t+ t2

4t

The above equation corresponds to an ellipse if and only if t > 0 (3z > x2
0). Two

axes for the ellipse are

(6.8) â =

√
9 + 10t+ t2

2t
b̂ =

√
9 + 10t+ t2

2
√
t

So ζ = 2t√
1+10t+9t2

and

(6.9)
dζ

dy0

=
dζ

dt

t

y0

≈ 2

3

27

4
=

9

2

which justify our conjecture. Also note that (6.8) implies b̂ ≈ â1/2 and this shows the

minor axes has infinite second moment as well.

The conclusion also holds if the first four points are perturbed by ε within a square

of size h2 around its initial positions.

6.4. Elliptic regression (general case)

To prove the infinite moment for a model containing arbitrary number of points

(n > 5), we will modify our constructions as follows: we place n− 4 points in B3 and

choose h to be extremely small (i.e. h = 10−9/n2) so that the type of best fitting

curve is not changed. For every fixed points in B1, . . . ,B4 and the fixed x-coordinate

xn of the last point in B5, we will examine how the best fitting ellipse changes a

parabola as the y-coordinate yn of the last point changes from −1/3+h to y∗. As the

last point further moves down, the best fitting curve that fits to the points changes to

a hyperbola for which our geometric parameters are undefined (hyperbola does not

have semi axes).

Next we propose to describe ellipse by the following parameters: p1 = Cx, p2 =

1/(a+Cy), p3 = a−Cy, p4 = b2

a
and p5 = α. When the best fitting conic is a parabola,
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A,Cy reach infinity and therefore we define p2 = 0. Let us set ζ = p2. Also note that

p3 ≈ 1/3, p4 ≈ 3/2(see section A.7 in appendix). It is quite clear that derivative of ζ

does not exist when the parameters correspond to a hyperbola because the parameters

are undefined. So we have a modified Regularity Lemma below:

Lemma 6.2. [Regularity] For any fixed values (xi, yi), 1 ≤ i ≤ n− 1, and xn, as

above, the function ζ(yn) is differentiable and its derivative is bounded when ζ > 0.

Furthermore, ζ(yn) has bounded one sided derivative when ζ = 0. i.e. |ζ ′+(yn)| ≤ D

for some constant D > 0. Here D may depend on n and h but not on the fixed

coordinates (xi, yi).

It is enough to restrict the region of parameters corresponding to the best fitting

curve to

(6.10)

Ω =
{
|p1| ≤ 100h, 0 ≤ p2 ≤ 100h, |p3−

1

3
| ≤ 100h, |p4−

3

2
| ≤ 100h and |p5| ≤ 100h

}

By implicit differentiation of F(p1, p2, p3, p4, p5), we see that all elements in the Hessian

Matrix are bounded (see section (A.7) for detail):

(6.11)

H =



232
325

+ 8
13
n −20

39
+ 4

39
n 60

13
− 12

13
n 40

39
− 8

39
n −236

65
− 12

13
n

−20
39

+ 4
39
n 13162

2925
+ 2

117
n −682

325
− 2

13
n −6356

2925
− 4

117
n 10

13
− 2

13
n

60
13
− 12

13
n −682

325
− 2

13
n −232

325
+ 18

13
n 116

325
+ 4

13
n −90

13
+ 18

13
n

40
39
− 8

39
n −6356

2925
− 4

117
n 116

325
+ 4

13
n 2728

2925
+ 8

117
n −20

13
+ 4

13
n

−236
65
− 12

13
n 10

13
− 2

13
n −90

13
+ 18

13
n −20

13
+ 4

13
n 154

13
+ 18

13
n


+ χ

where each element in χ is a small quantity (that can be made as small as we

want by further decreasing h). In addition, each leading principal minor of the first
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matrix above is positive for n > 5:

M1 =
232

325
+

8

13
n

M2 =
934528

316875
+

21952

7605
n

M3 = −28889344

316875
+

1277056

38025
n

M4 = −5832704

950625
+

557056

316875
n

M5 = −8388608

950625
+

2097152

950625
n

Hence the objective function F is convex within the compact domain Ω and has unique

minimum. Let P̂ = (p̂1, p̂2, p̂3, p̂4, p̂5) be the unique minimum satisfying

Fpi(p̂1, p̂2, p̂3, p̂4, p̂5) = 0 i = 1, 2, 3, 4, 5

further differentiate each derivative with respect to yn gives

H � γ + η = 0

where γ = (p̂1
′, p̂2

′, p̂3
′, p̂4

′, p̂5
′)T (when P̂ corresponds to a parabola, p̂2

′, p̂3
′ and p̂4

′ are

replaced by one-sided derivatives) and η = (Fp1yn ,Fp2yn ,Fp3yn ,Fp4yn , Fp5yn)T
P̂

. Note

that each element of η is uniformly bounded on the compact domain Ω. Therefore,

we have ‖γ‖ 6 D and ζ(yn)′ = p̂2
′ < D. By the regularity lemma,

(6.12) E(|â+ Ĉy|) =∞

Since a−Cy ≈ 1/3 and b2

a
≈ 3/2, we conclude thata, b2, Cx and Cy do not have finite

moments.
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APPENDIX A

APPENDIX

Theorem A.1. Given a closed set S1 and a compact S2 on the plane, the distance

between S1 and S2 is defined by

(A.1) dist(S1, S2) = inf
P1∈S1,P2∈S2

dist(P1, P2)

If one set (say, S1) is closed and the other (S2) is compact, the infimum in (2.4) can

always be replaced by a minimum.

Proof. It is possible to find two sequences P1i ∈ S1, P2i ∈ S2 such that

dist(P
(i)
1 , P

(i)
2 )→ inf

P1∈S1,P2∈S2

dist(P1, P2)

By the compactness of S2, let us assume that P
(i)
2 → P

′
2 ∈ S2. The sequence P

(i)
1

has a subsequence either diverging to infinity or converging to a finite limit within S1

denoted by P
′
1. However, if the subsequence P

(i)
1 moves to infinity, dist(P

(i)
1 , P

(i)
2 )→

∞. For convenience, let us assume P
(i)
1 → P

′
1. Now we see that

dist
P

(i)
1 ∈S1,P

(i)
2 ∈S2

(P
(i)
1 , P

(i)
2 )→ distP ′

1∈S1,P
′
2∈S2

(P
(i)
1 , P

(i)
2 ) = inf

P1∈S1,P2∈S2

dist(P1, P2)

which implies

inf
P1∈S1,P2∈S2

dist(P1, P2) = min
P1∈S1,P2∈S2

dist(P1, P2)

. �

Theorem A.2. Given a sequence of sets Sn and a set S, we have

(A.2) distB(Sn, S) =
∞∑
k=1

2−kdistH(Sn, S;Rk)→ 0 as n→∞

if and only if

(A.3) distH(Sn, S;Rk) = max
{

sup
P∈Sn∩R

dist(P, S), sup
Q∈S∩R

dist(Q,Sn)
}
→ 0

101
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for each Rk (Rk = {−k ≤ x ≤ k, −k ≤ y ≤ k}).

Proof. Let us first suppose the distB(Sn, S) has a limit 0. If

distH(Sn, S;Rj) 6→ 0 as n→∞

for some j, there exists a subsequence

distH(Sni , S;Rj)→ c > 0 or +∞ as ni →∞

Then

distB(Sni , S) =
∞∑
k=1

2−kdistH(Sni , S;Rk) > 2−jc

for any ni or

distB(Sni , S)→ +∞

Which contradicts our assumptions.

Next, let us suppose

(A.4) distH(Sn, S;Rk) = max
{

sup
P∈Sn∩Rk

dist(P, S), sup
Q∈S∩Rk

dist(Q,Sn)
}
→ 0,

for any Rk. Note that

sup
P∈Sn∩Rk+1

dist(P, S) = distP∈Sn∩Rk+1,Q∈S(P,Q)

(A.5)

< distP∈Sn∩Rk+1,P
′∈Sn∩Rk(P, P

′
) + distQ∈S,P ′∈Sn∩Rk(P

′
, Q)

<
√

2(2k + 1) + sup
P∈Sn∩Rk

dist(P, S)

(The farthest possible distance between a point Q1 ∈ Rk and another Q2 ∈ Rk+1

is
√

2(2k + 1), See Figure A.1). It is easy to verify that
∑∞

k=j 2−k+1/2(k− j)(2k + 1)

has a finite limit for any fixed j. So for any ε > 0, there exists a p > j such that∑∞
k=p 2−k+1/2(k − j)(2k + 1) < ε. Since distH(Sn, S;Rp) → 0, distH(Sn, S;Rp) < ε
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Figure A.1: The farthest possible distance between one point in the inner square and

the other in the outer square.

for sufficiently large n. Then

distB(Sn, S) =

p−1∑
k=1

2−kdistH(Sn, S;Rk) +
∞∑
k=p

2−kdistH(Sn, S;Rk)(A.6)

<

p−1∑
k=1

2−kε+
∞∑
k=p

2−k(distH(Sn, S;Rp) + (k − p)
√

2(2k + 1))

<

p−1∑
k=1

2−kε+
∞∑
k=p

2−k(distH(Sn, S;Rp) + (k − j)
√

2(2k + 1))

< ε+ ε+ ε

< 3ε

indicating that distB(Sn, S)→ 0. The proof of our claim is complete. �

A.1. No local minima for five distinct points

Suppose five points P1, . . . , P5 are given. Then there exists an interpolating object

Sbest (quadratic curve or line). Thus the objective function F takes it global minimum

F(Sbest) = 0. A local minimum of F would be a conic S such that F(S) > 0 (i.e., S
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does not interpolate our points), but F(S) ≤ F(S ′) for any conic S ′ sufficiently close

to S (in the sense of our section (2.2)). It turns out that local minima does not exist.

Lemma A.1. For five distinct points that can be interpolated by an ellipse, if one

of them changes its position by a sufficiently small amount, there exists another ellipse

interpolating the new set of five points.

Proof. Suppose the five points are located at (xi, yi) i = 1, ..., 5, which uniquely

determine an ellipse:

(A.7) Ax2 +Bxy + Cy2 +Dx+ Ey + 1 = 0

where B2 − 4AC > 0 (see chapter ). Then

Ax2
i +Bxiyi + Cy2

i +Dxi + Eyi + 1 = 0 i = 1, . . . , 5

Suppose

Q = −
(

1 1 1 1 1
)T

and

X =



x2
1 x1y1 y2

1 x1 y1

x2
2 x2y2 y2

2 x2 y2

x2
3 x3y3 y2

3 x3 y3

x2
4 x4y4 y2

4 x4 y4

x2
5 x5y5 y2

5 x5 y5


The parameter vector θ = (A,B,C,D,E)T is uniquely determined by θ = X−1Q.

If we consider the first four points (xi, yi) i = 1, 2, 3, 4 as fixed and only move the

fifth (x5, y5) point within a region S = {(x5, y5)|det(X) 6= 0}. The parameters A,B

and C can be considered as functions of (x5, y5)( defined on S, denoted by f1, f2

and f3 respectively. Also note that 4f1(x, y)f3(x, y)− f 2
2 (x, y) > 0 when the equation

corresponds to an ellipse. Let F (x, y) = 4f1(x, y)f3(x, y) − f 2
2 (x, y). Apparently,

F (x, y) is a continuous function on S. Suppose I = (F (x5, y5) − δ, F (x5, y5) + δ)

where δ < F (x5, y5). Then (x5, y5) ∈ F−1(I) which is an open set in R. Furthermore,
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(x5, y5) has an open neighborhood U contained in F−1(I) and F (U) ⊂ I. Therefore

for any perturbation of (x5, y5) within U , the conic interpolating all points is still an

ellipse.

�

Lemma A.2. Suppose an ellipse E passes through 4 distinct points Pi, 1 ≤ i ≤ 4,

and T denotes the tangent line to the ellipse at P1. Then E is uniquely determined.

Proof. First, choose an appropriate coordinate system so that the given tangent

line passes through the origin and the P1 is in the upper half of the coordinate system

but not at the origin. Also assume the tangent line has a slope 0 < k < ∞. Let

x-coordinate of Q1 equals to 1/2 which indicates y1 = k/2. Then the orthogonal

vector (2Ax1 +By1 +D, 2Cy1 +Bx1 + E) at (x1, y1) satisfies

(A.8) 2Ax1 +By1 +D = −k(2Cy1 +Bx1 +E) or A+Bk + Ck2 +D + kE = 0

Consider the system of equations for the parameter vector of E below.

(A.9) Xθ =



x2
1 x1y1 y2

1 x1 y1

x2
2 x2y2 y2

2 x2 y2

x2
3 x3y3 y2

3 x3 y3

x2
4 x4y4 y2

4 x4 y4

1 k k2 1 k





A

B

C

D

E


=



1

1

1

1

0


The matrix on the left is invertible. Here is the reason: There is a unique conic passing

through five distinct pointsPi, 1 ≤ i ≤ 4 and (1, k). So the system of equations of θ

(A.10) Xθ = −(1, 1, 1, 1, 1)t

has an unique solution which implies det(X) 6= 0. Therefore there is an unique ellipse

E, which is determined by (A.9). �

Theorem A.3. In a model of fitting any conics (ellipses, parabola and hyperbola)

to 5 distinct points on R2, if all five points are interpolated by a hyperbola, there



106

Figure A.2: Five different projections

doesn’t exist a local minimum in the space of ellipses. More precisely, for any given

ellipse fitted to the points, one can find another ellipse that produces a smaller sum

of squares of orthogonal distances.

Proof. Let Q1, . . . , Q5 be five points on a hyperbola and E a given ellipse. It’s

necessary to discuss two possible situations:

(I)The points P1 through P5 have different projections on E (see Figure A.2.)

Let’s denoted by P1, . . . , P5 the projections of Q1, . . . , Q5. By lemma (A.1), there is

an open neighborhood of P1 denoted by U in which any perturbation of P1 will still

lead to an ellipse. Let us pick a arbitrary point P
′
1 ∈ U between P1 and Q1. Then

one can fit P
′
1, P2, . . . , P5 by another ellipse for which

[dist(Q1, P
′

1)]2 +
5∑
i=2

dist(Qi, Pi)]
2 <

5∑
i=1

dist(Qi, Pi)]
2

Therefore the new ellipse interpolating the new set of points fits the given points

Q1, . . . , Q5 better than E.

(II)Two points Q1 and Q2 share a projection P12 on E.

The rest of projections are three distinct points P3, P4 and P5. It is easy to see that

P1 and P2 can not be on E at the same time. Let us suppose P1 does not belong to

E. Pick a point P6 on E different from P12, P3, P4 and P5. Next move P6 to P
′
6 within
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Figure A.3: Two points share an identical projection

a certain neighborhood where the conic interpolating P12, P3, P4, P5 and P
′
6 is still

an ellipse E′ 6= E (by lemma (A.1)). By lemma (A.2), the new ellipse has different

tangent lines at P12, P3, P4 and P5. Then dist(E′
, Pi) < dist(E, Pi) (i = 12, 3, 4, 5).

So E′
has a smaller sum of squares of distances to given points than E (see figure

A.3).

(III)Q1, Q2 share a projection P12; Q3, Q4 share a projection P34

Suppose P5 has a projection Q5. Pick two points Q6 and Q7 on E other than Q12,

Q34 and Q5. Same argument will apply if one moves Q5 toward P5 within its small

neighborhood.

Remember we assume all five original points are on a hyperbola. If three of them have

the same projection, the best fitting conic can not interpolate three distinct points

on a straight line. So by checking the above situation, the proof is complete. �

A.2. Existence of the best fit: specific models

Here we provide sketchy analytic proofs as alternative to topological proofs given

earlier.

Theorem A.4. Let B be a given compact set (Euclidean space) containing all the

data points. Then the ‘enlarged’ space Ω of ellipses, parabolas, lines(including rays
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and line segments, singletons), and pairs of parallel lines intersecting B is compact

with respect to the topology defined on the Ω (see section (2.3)).

Proof. Let Si be a sequence of curve objects (ellipses, parabolas, lines, pairs of

parallel lines and singletons) that intersect B. Denote by dmax the longest distance

from the origin to a point in the box B. Then each line in the space Ω is uniquely

determined by the direction of the normal vector to the line 0 6 ω < 2π and the

distance from the origin to the line 0 6 d 6 dmax. So every sequence of lines in the

space contains a convergent subsequencein Ω.

If there are infinitely many ellipses, each of them is represented by its focuses fi,

gi and the semi minor axis bi. Then there is a subsequence of ellipses satisfying one

of the following conditions:

(i)fi → f0 and gi →∞;

Without loss of generality, let’s assume a sequence of ellipses with one focus fixed

on the origin and another one denoted by a polar coordinate (θi, 2ki) moving to the

infinity. Since 0 6 θi < 2π, let’s just assume θi → θ0. Such ellipses with length of

semi-minor axis bi can be represented by a family of equations:

(A.11) (k2
i sin2 θi + b2

i )x
2 + (k2

i cos2 θi + b2
i )y

2

− xyk2
i sin 2θi − 2kib

2
i (x cos θi + y sin θi)− b4

i = 0

(1)b2
i /ki → c ∈ [0,∞)

After dividing both side of (1) by k2
i and set ki →∞ which is already implied by the

assumption gi →∞, (1) becomes

(A.12) x2 sin2 θ0 + y2 cos2 θ0 − 2xy sin θ0 − 2c(x cos θ0 + y sin θ0)− c2 = 0

Since (−2 sin θ0)2−4 sin2 θ0 cos2 θ0 = 0, the above equation corresponds to a parabola

when the above equation corresponds to a parabola if c 6= 0 or a ray starting at the
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Figure A.4: ellipses converging to a ray or a parabola

limiting vertex:

lim((
√
b2
i + k2

i − ki) cos θi, (
√
b2
i + k2

i − ki) sin θi)

= ((
√

1 + c− 1) cos θ0,
√

1 + c− 1) sin θ0)

= (0, 0)

Thus we get the equation for the ray

y = x tan θ0


x ∈ [0,∞), if θ0 ∈ [0, π

2
]
⋃

[3π
2
, 2π];

x ∈ (∞, 0), if θ0 ∈ (π
2
, 3π

2
);

or

x = 0


y ∈ [0,∞), if θ0 = pi

2
;

y ∈ (∞, 0], if θ0 = 3pi
2

;

(2)b2
i /ki →∞

Apparently bi →∞ and ki/b
2
i → 0. Dividing both side of (1) by b4

i yields

(A.13) ((k2
i sin2 θi + b2

i )x
2 + (k2

i cos2 θi + b2
i )y

2

− xyk2
i sin 2θi − 2kib

2
i (x cos θi + y sin θi))/b

4
i − 1 = 0

The first fraction on the left side of (3) converges to 0 as i → ∞ and the equation

turns into −1 = 0 which does not represents any curve intersecting with B. There-

fore, subsequence of ellipses satisfying condition (i) could only converge to a parabola
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or a ray.

(ii)fi, gi →∞

Let’s denote by ai and bi the length of two semi axes of an ellipse.

(1)bi → b0 <∞

If dist(fi, gi) → d (i.e. 2
√
a2
i − b2

i → d), all ellipses have bounded semi axes. S-

ince they intersect with B, it can not happen that both focuses fi, gi → ∞. So

dist(fi, gi)→∞ ,let’s consider the canonic equation of an ellipse

(A.14) (X −Xc)
tA(X −Xc) = 1

where A is a symmetric matrix. The Singular value decomposition of A:

(A.15) U t

 λ1 0

0 λ2

U = λ1u
tu+ λ2v

tv

Note that u and v are the unit eigenvectors corresponding to the λ1 and λ1. Substi-

tuting (5) into (4) yields

(A.16) (x− xc, y − yc)(λ1u
tu+ λ2v

tv)

 x− xc

y − yc


Suppose u = (u1, u2) and v = (v1, v2). After expansion, (6) turns into

(A.17) λ1(u1x+ u2y)2 + λ2(v1x+ v2y)2

− 2[u1λ1(u1xc + u2yc) + v1λ2(v1xc + v2yc)]x

− 2[u2λ1(u1xc + u2yc) + v2λ2(v1xc + v2yc)]y

+ λ1(u1xc + u2yc)
2 + λ2(v1xc + v2yc)

2 = 1

Since the length of the major axis 2ai = 2√
λ1

grows to infinity,λ1 → 0. Next, let’s

recognize the following facts about the subsequence.

i.The distance from the major axis to the origin will not grow to infinity because the

length of the minor axis is bounded and the subsequence can not leave the box B

under the assumption.
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Figure A.5: Stretch ellipses to a pair of parallel lines

ii.Suppose u1x+ u2y + d1 = 0 and v1x+ v2y + d2 = 0 pass through the center of the

ellipse (xc, yc). Since ‖ui‖ = 1 , d1 and d2 are the distances from the minor and major

axes to the origin.

iii. Because of i, d2 → d
′
2 < ∞. Furthermore, if we draw a line through the origin

parallel to the minor axis, the length of the section between the line and the minor

axis is d1 which must be shorter than the major axis.

By above facts, we have

lim
λ1→0

d1

2a
= lim

λ1→0

−(u1xc + u2yc)

2/
√
λ1

= t ∈ [0,
1

2
]

Then

lim
λ1→0

λ1(u1xc + u2yc) = 0

lim
λ1→0

λ1(u1xc + u2yc)
2 = 4t2 = c ∈ [0, 1]

Suppose u→ u
′

and v → v
′

Therefore, the equation (7) will converge to

(u
′

1x+ u
′

2y)2 + 2v
′

1d
′

2x+ 2v
′

2d
′

2y + d
′2
2 =

1− c
4

b2
0

or equivalently

(u
′

1x+ u
′

2y + d
′

2)2 =
1− c

4
b2

0

The equation represents a pair of parallel lines u
′
1x+ u

′
2y + d

′
2 ±

√
1−c
2
b0 = 0 or a line

u
′
1x+ u

′
2y + d

′
2 = 0 if c = 1 or b0 = 0. See Figure 2.
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Figure A.6: Shrink ellipses to a line segment

(2)bi → ∞ As both axes stretch to infinity, the elliptic segment inside the box

would be straighten up and the subsequence of ellipses converges to a line.

(iii)fi → f0 gi → g0

Any sequence of ellipses satisfying (iii) in the space Ω must have bounded length of

axes. The subsequence of ellipses could either converge to an ellipse or a singleton

((both axes shrink to a point). However, if 2ai → dist(f0, g0) > 0 (equivalent to

the length of the minor axis 2b = 2√
λ2
→ 0, the limit of the subsequence is a line

segment.See figure 3. Suppose the f0 = (fx, fy) and g0 = (gx, gy). Then the equation

(7) converges to

u
′

1x+ u
′

2y + d
′

2 = 0 x ∈ [min(fx, gx),max(fx, gx)]

if u
′
1 6= 0 or otherwise

u
′

2y + d
′

2 = 0 y ∈ [min(fy, gy),max(fy, gy)]

Next, let’s prove that every sequence of parabolas or parallel lines contains a

convergent subsequence. If there are infinitely many parabolas in the sequence, each

of them uniquely determined by its directrix line and focus point. Given a sequence

of parabolas with the focus fi = (ki cos θi, ki sin θi) and the directrix line x cosαi +

y sinαi − di = 0 where αi is the direction of its normal vector and di is its distance
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to the origin, the parabola is naturally described by the equation

(A.18) x2 sin2 αi + y2 cos2 αi − xy sin 2αi − 2(ki cos θi − di cosαi)x

− 2(ki sin θi − di sinαi)y + k2
i − d2

i = 0

Suppose αi → α0, θi → θ0

(i)di → d0 ki → k0

If fi goes onto the directrix line, the points with equal distances to the directrix and

the focus form a ray orthogonal to the directrix line and starting from (k0 cos θ0, k0 sin θ0)

(e.x.di, ki → 0). Otherwise, the sequence converges to a parabola.

(ii)di →∞, ki → k0 or di → d0, ki →∞

(8) is equivalent to

(A.19) [x2 sin2 αi + y2 cos2 αi − xy sin 2αi − 2(ki cos θi − di cosαi)x

− 2(ki sin θi − di sinαi)y + k2
i ]/d

2
i − 1 = 0

which turns into −1 = 0 as di → ∞. Similar argument applies to ki → ∞while

di → d0. So such sequence does not exist in the space of parabolas intersecting B.

(iii)di →∞, ki →∞

(1)ki − di →∞

If we divide both side of (8) by (ki + di)(ki − di), we have following equation:

(A.20)
x2 sin2 αi + y2 cos2 αi − xy sin 2αi

(ki + di)(ki − di)
− 2(ki cos θi − di cosαi)x

(ki + di)(ki − di)
−2(ki sin θi − di sinαi)y

(ki + di)(ki − di)
+ 1 = 0

The first three fractions converge to 0 and it becomes 1 = 0 which again indicates

the absence of such type of sequence.

(2)ki − di → Q <∞

Since (ki−di)/di → 0, ki/di → 1. Then by dividing the second and the third fraction
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of above equation and set di →∞,

(A.21)
x2 sin2 αi + y2 cos2 αi − xy sin 2αi

ki + di
− 2(ki/di cos θi − cosαi)x

ki/di + 1

−2(ki/di sin θi − sinαi)y

ki/di + 1
+ ki − di = 0

one can obtain

(cos θ0 − cosα0)x+ (sin θ0 − sinα0)y −Q = 0

It represents a line when θ0 6= α0.

If θ0 = α0, we only need to consider the case Q = 0. Without loss of generality, we

assume θi = αi = 0 and ki = di for all i = 1, ...,∞. The ellipses are represented by

y2 = 4kix i = 1, ...,∞

which reaches the limit x = 0 as ki →∞. Thus, the sequence of ellipses converges to

a line through the origin.

In the end, one can easily investigate a sequence of two parallel lines, rays or line

segments in a similar manner and find their limits contained by the space Ω. So the

lemma is proved. �

Lemma A.3. Let A0x + B0y + C0 = 0 and A1x + B1y + C1 = 0 (A0B1 6= A1B0)

be asymptotes of some hyperbola. Then the hyperbola has an equation (A0x + B0y +

C0)(A1x+B1y + C1) = a (a 6= 0).

Proof. Geometrically, any hyperbola with its center at (x′, y′) and angle θ be-

tween major axis and horizontal axis can be achieved by transforming a hyperbola in

the standard position

x2

a2
− y2

b2
= 1

with shift and rotation. Let us consider the equation in matrix notation:

(A.22)
(
x y

) 1
a

1
b

( 1
a
−1
b

) x

y

 = 1
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Note that the corresponding asymptotes are x/a± y/b = 0. Applying transformation

to the hyperbola equivalently changes (A.22) to

(A.23)
(
x− x′ y − y′

)
R′

 1
a

1
b

( 1
a
−1
b

)
R

 x− x′

y − y′

 = 1

where R =

 cos θ − sin θ

sin θ cos θ

. Meantime, two asymptotes are geometrically trans-

formed in the same manner. So they have equations

(A.24)
(
x− x′ y − y′

)
R′

 1
a

1
b

 = 0

and

(A.25)
(

1
a
−1
b

)
R

 x− x′

y − y′

 = 0

which are two factors on the left side of (A.23). So the lemma is proved. �

Next, we will use this lemma in the formal proof of the following theorem.

Theorem A.5. Let B be a given bounding box containing all the data points.

The ’enlarged’ set Ω of ellipses, parabolas, hyperbolas, lines (including rays and line

segments, singletons and opposite rays), pairs of parallel lines, pairs of intersecting

lines crossing B is compact.

Proof. To justify the compactness of a set, by the conclusion in Existence of the

best fit, we only need to check if it contains all of its limit points. Again, convergence

of sequence of objects to a limit object is defined in . To search for the limit points

(objects) analytically, we will instead work with convergence of parameter vectors

which implies the convergence of sequence of objects (See section 4.6). Let us begin

by looking at a sequence containing infinitely many hyperbolas. By lemma A.3, each

hyperbola can be represented by equation:

(A.26) (x cos θi + y sin θi + di)(x cosϕi + y sinϕi + d
′

i) = ai i = 1, 2, . . .
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with associated asymptotes x cos θi + y sin θi + di = 0 and x cosϕi + y sinϕi + d
′
i = 0

(Lemma (A.3)). By requiring 0 6 θi 6 2π and di > 0, we gain some additional

benefits: θi, ϕi will be the direction of normal vectors to two asymptotes and di, d
′
i

the distance between the origin and the asymptotes.

The equation (A.26) is equivalent to a quadratic equation in the variable y

(A.27) y2 sin θi sinϕi + y(x sin(θi + ϕi) + d
′

i sin θi + di sinϕi)

+ x2 cos θi cosϕi + (d
′

i cos θi + di cosϕi)x+ did
′

i − ai = 0

when sin θi sinϕi 6= 0. The solution exists if and only if the discriminant

(A.28) ∆ = (x sin(θi − ϕi)− d
′

i sin θi + di sinϕi)
2 + 4ai sin θi sinϕi > 0

Since any bounded sequence always has a convergent subsequence, let us just assume

sin θi sinϕi → sin θ sinϕ. Note that sin θi sinϕi = 0 can be avoid because one has

freedom of choosing appropriate coordinate system such that sin θ sinϕ 6= 0. So we

can stick with the fact sin θ sinϕ 6= 0 and sin θi sinϕi 6= 0 for all i’s in the following

proof. Since two asymptotes of hyperbolas can not be parallel, θi−ϕi 6= 0, π and 2π

and we can rewrite (A.28) as

(A.29) (x− d
′
i sin θi − di sinϕi

sin(θi − ϕi)
)2 +

4ai sin θi sinϕi
sin2(θi − ϕi)

> 0

Let

(A.30) Ti =
d

′
i sin θi − di sinϕi

sin(θi − ϕi)
and Qi =

4ai sin θi sinϕi
sin2(θi − ϕi)

We will consider different cases based on the limits of the parameters.

(I) ai → 0.

(i) If di → d <∞ and d
′
i →∞, (A.26) is equivalent to

(A.31) (x cos θi + y sin θi + di)(
x cosϕi + y sinϕi

d
′
i

+ 1) =
ai
d

′
i
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Figure A.7: Hyperbolas converge to a pair of parallel lines or intersecting lines

which approximates to

(A.32) x cos θ + y sin θ + d = 0

after limits are taken on both sides. So the limit object represented by above equation

is a straight line.

(ii) If di →∞ and d
′
i →∞,

(A.33) (
x cos θi + y sin θi

di
+ 1)(

x cosϕi + y sinϕi
d

′
i

+ 1) =
ai
did

′
i

where the left side converges to 1 while the right side 0 as i → ∞. In fact, the

equations corresponds to a sequence of hyperbola moving away from Ω to infinity,

which contradict our primary assumption all model objects intersect with Ω.

(iii) If di → d <∞ and d
′
i → d

′
<∞, (A.26) transforms into

(A.34) (x cos θ + y sin θ + d)(x cosϕ+ y sinϕ+ d
′
) = 0

(1) If |θ − ϕ| 6= 0, π or 2π, the discriminant converges to

(A.35) (x sin(θ − ϕ)− d′
sin θ + d sinϕ)2 > 0 for any x ∈ R

The resulting equation (A.34) describes two intersecting lines.

(2) If |θ − ϕ| = 0, π or 2π, we have following situations regarding Qi:
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[1] Qi → Q > 0 or +∞. Then the solution set of (A.29) expands into the set of

all real numbers. So the sequence of hyperbolas converges to a pair of parallel lines

if θ − ϕ = π or a single line otherwise.

[2] Qi → Q < 0.

Apparently, sin θ sinϕ is nonzero. Ti either has a limit T < ∞ or diverges to ∞. If

Ti → T < ∞, the numerator d
′
i sin θi − di sinϕi → 0 since the denominator sin(θi −

ϕi)→ 0. It follows that d/d
′

= sinϕ/ sin θ > 0. Since ϕ− θ = 0 or 2π, d = d
′
. Thus

the limiting form of (A.34) is

(A.36) (x cos θ + y sin θ + d)2 = 0

Furthermore, (A.29) has a solution set x ∈ (−∞, T −
√
−Q)

⋃
(T +

√
−Q,∞). The

above equation represents two opposite rays. See example (A.1).

However, if Ti →∞, (A.29) has a solution set of all real numbers. Therefore, (A.34)

represents two coincident lines (single line) when d
′

= d and |θ − ϕ| = 0 or 2π.

Otherwise, it represents two parallel lines. See example (A.2) and (A.3).

[3] Qi → −∞.

First, let us suppose Ti → T < ∞. The solution set for (A.29) shrinks as i → ∞

and becomes an empty set in the end. Geometrically, the hyperbolas escape from Ω,

ending up with an empty set. But remember that the we must guarantees all model

objects intersect with Ω.

Next, if Ti →∞, (A.29) has the following possible limiting solution sets:

(1) ∅ if Ti −
√
−Qi → −∞ and Ti +

√
−Qi → +∞.

(2) (−∞, T −
√
−Q) or (T +

√
−Q,+∞) if one of Ti −

√
−Qi and Ti +

√
−Qi

has a finite limit (T −
√
−Q and T +

√
−Q can not be both finite under

the assumption). Without loss of generality, let us suppose Ti −
√
−Qi →

T −
√
−Q <∞. Then sin(θi − ϕi)(Ti −

√
−Qi)→ 0. More precisely,

(A.37) d
′

i sin θi − di sinϕi −
√
−4ai sin θi sin θiϕi → d

′
sin θ − d sinϕ = 0



119

If θ − ϕ = 0 or 2π and d
′
= d. The limiting object represented by

(A.38) (x cos θ + y sin θ + d)2 = 0 x ∈ (−∞, T −
√
−Q)

corresponds to a ray. Otherwise, d
′
= d = 0 and therefore the limiting object

represented by

(A.39) (x cos θ + y sin θ)2 = 0 x ∈ (−∞, T −
√
−Q)

corresponds to a ray which lies on a straight line passing through the origin.

See example (A.4).

(3) (−∞,+∞) if either T −
√
−Q → +∞ or T +

√
−Q → −∞. We only need

to study the case that T −
√
−Q→ +∞. Since d

′
i sin θi− di sinϕi → c <∞,

d
′

= d and |θi − ϕi| = 0 or 2π if c = 0 and the limiting object corresponds

to two coincident lines. If c 6= 0, d
′ 6= d and the limit object corresponds to

two parallel lines. See example (A.5).

The following examples (A.1)-(A.3) are taken under the assumption ai → 0, d
′
i →

d
′
<∞, θi − ϕi → 0, π, or 2π and Qi → Q < 0.

Example A.1. Ti → T <∞. Let us set θi = ϕi + 1/i, ϕ = π/2, ai = −1/i2

and d
′
i = di + 1/i. As i → ∞, Ti → 1 and Qi → −4. Solving (A.29) gives x ∈

(−∞,−1]
⋃

[3,∞). Then (A.34) has the form

(A.40) (y + d)2 = 0 x ∈ (−∞,−1]
⋃

[3,∞)

which represents two opposite rays. See Figure above.

Example A.2. Ti →∞. Let θi = ϕi + 1/i, ϕ = π/2, ai = −1/i2 and d
′
i =

di + 1/
√
i. The limiting solution set for (A.29) contains all real numbers and (A.34)

has the form

(A.41) (y + d)2 = 0 x ∈ (−∞,∞)
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Figure A.8: Hyperbolas converge to two opposite rays

which represents two coincident lines.

Example A.3. Ti →∞. Let θi = ϕi + π + 1/i, ϕ = π/2, ai = 1/i2 and d
′
i =

di + 1/
√
i. (A.34) has the form

(A.42) (y − d)(y + d) = 0 x ∈ (−∞,∞)

which represents two parallel lines.

The following examples (A.4)-(A.5) are taken under the assumption ai → 0, d
′
i →

d
′
<∞, θi − ϕi → 0, π, or 2π and Qi → −∞.

Example A.4. Ti →∞. Let θi = ϕi+1/i, ϕ = π/2, ai = −1/i and d
′
i = di+2/

√
i.

(A.34) becomes

(A.43) (y + d)2 = 0 x ∈ [d,+∞)

which represents a ray.

Example A.5. Ti →∞. Let θi = ϕi+1/i, ϕ = π/2, ai = −1/i and d
′
i = di+3/

√
i.

(A.34) becomes

(A.44) (y + d)2 = 0 x ∈ (−∞,+∞)
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which represents two coincident lines. For an example of two parallel lines, set

d
′
i = di + 1 + 3/

√
i and keep the rest conditions.

(II) ai → a 6= 0 or ∞.

(i) If di → d < ∞ and d
′
i → ∞, same strategy could be used from (I) (i). The

corresponding equation

(A.45) (x cos θi + y sin θi + di)(
x cosϕi + y sinϕi

d
′
i

+ 1) =
ai
d

′
i

transforms x cos θ + y sin θ + d = 0 corresponding to a straight line.

(ii) If di →∞ and d
′
i →∞, the situation becomes similar to (I)(ii).

(iii) If di → d <∞ and d
′
i → d

′
<∞, (A.26) transforms into

(A.46) (x cos θ + y sin θ + d)(x cosϕ+ y sinϕ+ d
′
) = a

(1) If |θ − ϕ| 6= 0, π or 2π, the above equation represents a hyperbola.

(2) If |θ− ϕ| = 0, π or 2π, let x cos θ+ y sin θ = t. The resulting equation (A.46)

becomes a quadratic equation in t:

(A.47) t2 + (d
′
+ d)t+ dd

′ − a = 0

if |θ − ϕ| = 0 or 2π or

(A.48) t2 + (d− d′
)t− dd′

+ a = 0

if |θ − ϕ| = π. Since a 6= 0, we only need to discuss the cases Qi → ±∞.

[1] Qi → +∞. It is always possible to choose a coordinate system so that sin θ sinϕ 6=

0. Then the (A.29) has a solution set x ∈ (−∞,+∞) for every i. Note that a > 0

when |θ−ϕ| = 0, 2π and a < 0 when |θ−ϕ| = π, leading to the positive discriminants

for (A.47) and (A.48):

(A.49) (d
′ − d)2 + 4a > 0 (d

′
+ d)2 − 4a > 0
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Therefore, the resulting equation represents two parallel lines for both cases.

[2] Qi → −∞. If Ti → T <∞, the same situation was explained in (I) [3] Qi → −∞

and Ti → T <∞.

If Ti →∞, (A.29) has the following possible limiting solution sets:

(1) ∅ if Ti −
√
−Qi → −∞ and Ti +

√
−Qi → +∞.

(2) (−∞, T −
√
−Q) or (T +

√
−Q,+∞) if one of Ti −

√
−Qi and Ti +

√
−Qi

has a finite limit. Without loss of generality, let us suppose T −
√
−Q <∞.

Then

(A.50) sin(θi − ϕi)(Ti −
√
−Qi)→ d

′
sin θ − d sinϕ−

√
−4a sin θ sinϕ = 0

It follows that (d
′ − d)2 + 4a = 0 if |θ− ϕ| → 0, 2π, and (d

′
+ d)2 − 4a = 0 if

|θ − ϕ| = π. Both of them ensure an unique solution for (A.47) and (A.48)

respectively. So the hyperbola will converge to a ray in both cases.

(3) (−∞,∞) if either Ti −
√
−Qi → +∞ or Ti +

√
−Qi → −∞. Without loss

of generality, let us suppose Ti −
√
−Qi → +∞. Then

(A.51)
d

′
i sin θi − di sinϕi

sin(θi − ϕi)
>

√
−4ai sin θi sinϕi

sin2(θi − ϕi)

for sufficiently large i′s. Squaring both sides yields

(A.52) (d
′

i sin θi − di sinϕi)2 > −4ai sin θi sinϕi

which indicates that (d
′−d)2 +4a > 0 if |θ−ϕ| = 0 or 2π or (d

′
+d)2−4a > 0

if |θ−ϕ| = π. Thus both (A.47) and (A.48) represent a pair of parallel lines.

(III) ai →∞.

(i) If di → d <∞ and d
′
i → d

′
<∞, consider an equivalent form of (A.26)

(A.53)
(x cos θi + y sin θi + di)(x cosϕi + y sinϕi + d

′
i)

ai
= 1

The above equation becomes invalid when both sides reach at the limit. Same type

of situation was explained in (I)(ii).

(ii) If di → d <∞ and d
′
i →∞, let us consider the following possible limits of

d
′
i

ai
.
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(1) If
d
′
i

ai
→ 0, (A.26) approximates to 0 = 1. The equation of hyperbola becomes

invalid, which indicates the violation of our assumption.

(2) If
d
′
i

ai
→ c 6= 0 and ∞, (A.26) approximates an

(A.54) x cos θ + y sin θ + d =
1

c

as i→∞. We need to deal with following limits of Qi.

[1]Qi → +∞. Then (A.29) has a solution set of x ∈ (−∞.+∞) for any sufficiently

large i. So

(A.55) x cos θ + y sin θ + d =
1

c
x ∈ (−∞.+∞)

corresponds to a complete straight line.

[2]Qi → −∞. Then (A.29) has a solution set (−∞, Ti−
√
−Qi)

⋃
(Ti+
√
−Qi,+∞).

Note that

Ti ±
√
−Qi =

d
′
i sin θi − di sinϕi

sin(θi − ϕi)
±

√
−4ai sin θi sinϕi

sin2(θi − ϕi)
(A.56)

=
d

′
i

sin(θi − ϕi)
(sin θi −

di
d

′
i

sinϕi ±

√
−4ai sin θi sinϕi

d
′2
i

)

→ +∞ or−∞

So the solution set expands into (−∞,+∞). The limit object corresponds to a

straight line.

(3)
d
′
i

ai
→∞

Same steps could be applied to show that x ∈ (−∞,+∞) when the limit object

is reached. So (A.26) approximates to

(A.57) x cos θ + y sin θ + d = 0

with x ∈ (−∞,+∞) which corresponds to a straight line.
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(iii) If di →∞ and d
′
i →∞, expand (A.26) into a standard form of the quadratic

equation (see 4.1)

(A.58) x2 cos θi cosϕi + xy(cos θi sinϕi + sin θi cosϕi) + y2 sin θi sinϕi

+ x(d
′

i cos θi + di cosϕi) + y(d
′

i sin θi + di sinϕi) + d
′

idi − ai = 0

(1) |θ − ϕ| 6= π. Note that

(d
′

i cos θi + di cosϕi)
2 + (d

′

i sin θi + di sinϕi)
2 = d2′

i + d2
i + 2did

′

i cos(θi − ϕi)(A.59)

→ +∞

So at least one of d
′
i cos θi + di cosϕi and d

′
i sin θi + di sinϕi must diverge to infinity.

Without loss of generality, let us assume that

|d
′
i cos θi + di cosϕi
d

′
i sin θi + di sinϕi

| → |c| < +∞

. Then

[1] If | d
′
idi−ai

d
′
i sin θi+di sinϕi

| → |c′| < +∞, d
′
idi − ai → ∞ and dividing both sides of

(A.58) by d
′
i sin θi + di sinϕi yields

(A.60)
x2 cos θi cosϕi + xy(cos θi sinϕi + sin θi cosϕi) + y2 sin θi sinϕi

d
′
i sin θi + di sinϕi

+
x(d

′
i cos θi + di cosϕi)

d
′
i sin θi + di sinϕi

+ y +
d

′
idi − ai

d
′
i sin θi + di sinϕi

→ xc+ y + c
′
= 0

which represents a straight line.

[2] If | d
′
idi−ai

d
′
i sin θi+di sinϕi

| → +∞, dividing both sides of (A.58) by d
′
idi − ai yields

(A.61)
x2 cos θi cosϕi + xy(cos θi sinϕi + sin θi cosϕi) + y2 sin θi sinϕi

d
′
idi − ai

+
x(d

′
i cos θi + di cosϕi)

d
′
idi − ai

+
y(d

′
i sin θi + di sinϕi)

d
′
idi − ai

+ 1→ 1

However, the left side of the equation stays at 0, leading to an impossible situation.

(2) |θ−ϕ| = π. If one of last three coefficients: d
′
i cos θi+di cosϕi, d

′
i sin θi+di sinϕi

and d
′
idi − ai diverge to infinity, we can follow the similar steps as above in (1) and
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draw the same conclusion. So we skip the technical detail and proceed to the case

when all three coefficients have finite limits. Recall that a quadratic curve in defined

by an equation

(A.62) Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0

in section (4.2). Note that J = B2 − AC = cos(θi − ϕi) → 0 as |θi − ϕi| → π. So

the limit object could be a parabola, two parallel lines or coincident line depending

on the value of ∆ and K (see section (4.2)) .

(A.63) ∆ = −sin2(θi − ϕi)(d
′
idi − ai)

4
− cos θi cosϕi(d

′
i sin θi + di sinϕi)

2

4

+
sin(θi + ϕi)(d

′
i sin θi + di sinϕi)(d

′
i cos θi + di cosϕi)

4

− sin θi sinϕi(d
′
i cos θi + di cosϕi)

2

4

The first term goes vanish since d
′
idi − ai has a finite limit. So we only need to

look at the remaining terms in the expression. Without loss of generality, Suppose

|d′
i/di| = c <∞. So

(A.64) d2
i (−

cos θi cosϕi(d
′
i/di sin θi + sinϕi)

2

4

+
sin(θi + ϕi)(d

′
i/di sin θi + sinϕi)(d

′
i/di cos θi + cosϕi)

4

− sin θi sinϕi(d
′
i/di cos θi + cosϕi)

2

4
) = d2

i∆
′

which has the same finite limit as ∆. Note that ∆
′ → 0 while d2

i → +∞. So if

d2
i∆

′ → c
′ 6= 0, the limit object will be a parabola.

However, if d2
i∆

′ → 0, the type of limit object is determined by

K = (A+ C)F −D2 − E2(A.65)

= cos(θi − ϕi)(did
′

i − ai)−
d2
i + d

′2
i + 2did

′
i cos(θi − ϕi)

4

(A.66)
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Figure A.9: Hyperbolas to Parabola

Type of curve limit point(s)

pairs of opposite rays ray, line

intersecting lines two coincident lines, two parallel lines

ray line

which is negative when (A.62) represents a hyperbola. Then we have two types of

limit objects based on the its limit value: a pair of parallel lines if K → K0 < 0 or

two coincident lines if K = 0 (Also D,E → 0). See example (A.6).

The following examples (A.6)- are taken under the assumption ai →∞, di →∞,

d
′
i →∞, θi − ϕi → π.

Example A.6. Let θi = π
2

+ 1/i, ϕi = 3π
2

+ 1
i
, di = d

′
i = i and ai = i2. Then J =

sin(1/i)
2
→ 0 and ∆ = i2 sin2(1/i)

4
→ 1/4. So the limiting object will be a parabola. But if

∆ = i2 sin2(1/i)
4
→ 1/4. di = d

′
i =
√
i, ∆ = i sin2(1/i)

4
→ 0 and K = −2i2−2i2 cos(π+1/i)

4
→

0. The limit object can be identified as two coincident lines based on our table in

section (4.2).

So now we finished our search for the limit point of a sequence of hyperbolas. As

for a sequence of pairs of opposite rays, intersecting lines and single rays , we skipped

the annoying technical steps and provides their limits below:
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It is unnecessary to repeat the search for the limit points of sequences of other

types of curves since these have been discussed in the proof of theorem (A.4). So

theorem (A.5) is justified. �

dist(P, S) = min
Q∈S

dist(P,Q)

Note that the minimum can be always achieved on S if S is closed.

Proof: Let {Qi} be a sequence of points such that dist(P,Qi) → infQ∈S dist(P,Q)

as i → ∞. Suppose dist(P,Qi) < r for i = 1, 2, .... Then the closed disk B(P, r) =

{x|dist(P, x) 6 r} contains the sequence {Qi}. Furthermore, B(P, r)
⋂
S is a com-

pact set in R2. So there exists a convergent subsequence {Qij} with a limit Q0 ∈

B(P, r)
⋂
S. Since limi→∞ dist(P,Qij) = dist(P,Q0) = infQ∈S dist(P,Q). The mini-

mum is attained by Q0 ∈ S.

A.3. Upper bounds for the partial derivatives

In this section we will derive the formulas for the first and the second partial

derivatives for a signed distance(i.e the actual distance combined with a sign depend-

ing on whether the point is inside or outside the ellipse) between the point and the

ellipse with respect to each geometric parameters: the major axis a, minor axis b,

coordinates of the center (c1, c2) and the angle θ between the major axis and the x

axis and then determine their upper bounds. Before running into the technical detail,

we’ll provide a glimpse of our final results:

Let (x, y) be the given point, (u, v) its projection on a given conic (ellipse, hy-

perbola, parabola) and Θ the parameter vector for the conic which can be described

as

(A.67) P (u, v; Θ) = 0
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Furthermore, let us denoted by d the distance between the given point and the ellipse.

If α and β are two independent parameters for the conic, then we have

dα =
Pα√

P 2
u + P 2

v

(see [16]) and

(A.68)

dαdβ + ddαβ = tPαβ − (Pα, tPuα, tPvα)


0 Pu Pv

Pu 1 + tPuu tPuv

Pv tPuv 1 + tPvv


−1

Pβ

tPuβ

tPvβ


where t = d√

P 2
u+P 2

v

. The upper bounds for partial derivatives with respect to each

geometric parameters are:

(1)major axis a:

|da| ≤ 1

(2)minor axis b

|db| ≤ 1

(3)center coordinates c1 and c2

d2
c1

+ d2
c2

= 1

(4)angle θ

|dθ| ≤ c =
√
a2 + b2

Technical calculations

By orthogonal conditions, we have

(A.69) x− u = t · Pu and y − v = t · Pv

where t is a parameter depending on the distance d. The square of the distance

between the points and the conic is

(A.70) d2 = (x− u)2 + (y − v)2
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Differentiating (A.67),(A.69) and (A.70), we have

(A.71) Pα = −Puuα − Pvvα

(A.72) −uα = tαPu + t(Pu)α − vα = tαPv + t(Pv)α

(A.73) d · (d)α = −(x− u)uα − (y − v)vα

Substituting (A.72) into (A.71),

Pα = Pu(tαPu + t(Pu)α) + Pv · (tαPv + t(Pv)α)(A.74)

= tα(P 2
u + P 2

v ) + t(Pu(Pu)α + Pv(Pv)α)

In (A.73), we can replace uα and vα by (A.72), (x− u) and (y − v) by (A.69):

d · dα = −(x− u)uα − (y − v)vα(A.75)

= tPu · (tαPu + t(Pu) + tPv · (tαPv + t(Pv)

= t · tα(P 2
u + P 2

v ) + t2 · (Pu(Pu)α + Pv(Pv)α)

= t · [tα(P 2
u + P 2

v ) + t(Pu(Pu)α + Pv(Pv)α)]

= t · Pα

The last equality follows from (A.74). If we replace x − u and u − v in (A.70) by

(A.69), we will have the following:

d2 = t2(P 2
u + P 2

v )

Thus yielding,

(A.76) d = t ·
√
P 2
u + P 2

v

It follows that

d · dα = t · Pα(A.77)

=
d√

P 2
u + P 2

v

· Pα
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Finally, we obtain a simple form for dα:

(A.78) dα =
Pα√

P 2
u + P 2

v

Let (x1, y1) and (x2, y2) be the two focuses of a ellipse and a be the semi-major axis.

Then the ellipse is described by the equation:

(A.79)
√

(u− x1)2 + (v − y1)2 +
√

(u− x2)2 + (v − y2)2 − 2a = 0

By differentiating (A.79) with respect to u and v, we have

(A.80) Pu = ((u− x1)2 + (v− y1)2)−1/2(u− x1) + ((u− x2)2 + (v− y2)2)−1/2(u− x2)

(A.81) Pv = ((u− x1)2 + (v− y1)2)−1/2(v− y1) + ((u− x2)2 + (v− y2)2)−1/2(v− y2)

So

√
P 2
u + P 2

v =

√
2 + 2

(u− x1)(u− x2) + (v − y1)(v − y2)√
(u− x1)2 + (v − y1)2

√
(u− x2)2 + (v − y2)2

(A.82)

=
√

2(1 + cosγ)(A.83)

where γ is the angle between two rays joining the point (u, v) and two focuses(see

illustration in the figure above).
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To rewrite (A.79) in geometric parameters (center (c1, c2), major axis a, minor

axis b and the angle θ between major axis and the x axis), we use following relations:

x1 = c1 +
√
a2 − b2cosθ x2 = c1 −

√
a2 − b2cosθ

y1 = c2 +
√
a2 − b2cosθ y2 = c2 −

√
a2 − b2cosθ

For the purpose of simplicity , we will use following shorthand notations:

df1 =
√

(u− x1)2 + (v − y1)2

df2 =
√

(u− x2)2 + (v − y2)2

c =
√
a2 − b2

Then we have derivatives with respect to each geometric parameters and their upper

bounds:

(i) |da| ≤ 1

da =
Pa√

P 2
u + P 2

v

=

a
c
(− (u−x1)cosθ

df1
− (v−y1)sinθ

df1
+ (u−x2)cosθ

df2
+ (v−y2)sinθ

df2
)− 2√

2(1 + cosγ)
(A.84)

Let s = (2a+2c)
2

= a+ c. Then

cos
γ

2
=

√
s(s− 2c)

df1df2

=

√
a2 − c2

df1df2

df1df2 =
a2 − c2

cos2 γ
2

we will use them later for further transformations.
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Since the upper bound of the partial derivatives does not depend on θ, (A.84) can

be simplified by setting θ = 0. Then

da =
a
c
(cosβ1 + cosβ2)− 2√

2(1 + cosγ)

=

a
c
(
d2f1+4c2−d2f2

4df1c
+

d2f2+4c2−d2f1
4df2c

)− 2√
2(1 + cosγ)

=

a
c
(
df1+df2

4c
+

c(df1+df2)

df1df2
− d3f1+d3f2

4cdf1df2
)− 2√

2(1 + cosγ)

=

a
c
( a

2c
+

2ac·cos2 γ
2

a2−c2 −
(df1+df2)((df1+df2)2−3df1df2)

4cdf1df2
)− 2√

2(1 + cosγ)

=

a
c
( a

2c
+

2ac·cos2 γ
2

a2−c2 −
8a3cos2 γ

2

4c(a2−c2 + 3a
2c

)− 2√
2(1 + cosγ)

=
a
c
(2a
c
− 2a

c
cos2 γ

2
)− 2

2cosγ
2

=
a2

c2
(1− cos2 γ

2
)− 1

2cosγ
2

Note that cosγ
2
∈ [ b

a
, 1]. Set x = cosγ

2
. Then

F (x) =
a2

c2
(1− x2)− 1

x
= −a

2

c2
x+ +

a2

c2
− 1

x

is monotonically decreasing on [ b
a
, 1](F ′(x) < 0). Hence,| da |≤| F (1) |= 1.

(ii)|db| ≤ 1

db =
Pb√

P 2
u + P 2

v

=

b
c
( (u−x1)cosθ

df1
+ (v−y1)sinθ

df1
− (u−x2)cosθ

df2
− (v−y2)sinθ

df2
)√

2(1 + cosγ)
(A.85)

By taking advantage of similarity between (A.84) and (A.85), we can skip intermediate

steps and reach the last equality:

db =

ab(cos2 γ
2
−1)

c2

cosγ
2

Let x = cosγ
2
. Then g(x) =

ab(x− 1
x

)

c2
is increasing on [ b

a
, 1]. So | db |≤ 1.

(iii)|dθ| ≤ c
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Since the derivative is not affected by the value of θ, let us set θ = π
2
.Then

dθ|θ=π/2 =
c(u−x1

df1
− u−x2

df2
)

2cosγ
2

=
c(−cosβ1 + cosβ2)

2cosγ
2

=
c · (−d2f1+4c2−d2f2

4df1c
+

d2f2+4c2−d2f1
4df2c

)

2cosγ
2

=
df1d

2
f2 − d2

f1df2 + 4c2(df1 − df2)− d3
f1 + d3

f2

8df1df2cos
γ
2

=
(df1 − df2)(4c2 − df1df2 − (df1 + df2)2 − df1df2))

8df1df2cos
γ
2

=
(df1 − df2)(4c2 − 4a2)

8df1df2cos
γ
2

= −
(df1 − df2)cos2 γ

2

2cosγ
2

= −1

2
(df1 − df2)cos

γ

2

So | dθ |=| 1
2
(df1 − df2)cosγ

2
|≤ c.

(iv)d2
c1

+ d2
c2

= 1

dc1 = −
u−x1
df1

+ u−x2
df2√

2(1 + cosγ)

dc2 = −
v−y1
df1

+ v−y2
df2√

2(1 + cosγ)

It follows that

d2
c1

+ d2
c2

=
1 + 1 + 2 (u−x1)(u−x2)+(v−y1)(v−y2)

df1df2

2(1 + cosγ)

=
2(1 + cosγ)

2(1 + cosγ)

= 1
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Next we will derive the formula for the second derivatives of the objective function

F. Notice that in (A.72) and (A.74)

(Pu)α = Puuuα + Puvvα + Puα

(Pv)α = Pvvvα + Puvuα + Pvα

By substitution, they turn into

(A.86) tαPu + (1 + tPuu)uα + tPuvvα = −tPuα

(A.87) tαPv + tPuvvα + (1 + tPvv)uα = −tPvα

(A.88) tα(P 2
u+P 2

v )+t(PuPuu+PvPuv)uα+t(PuPuv+PvPuv)vα = Pα−t(PuPuα+PvPvα)

With (A.86)·Pu+(A.87)·Pv- (A.88), we have

(A.89) Puuα + Pvvα = −Pα

Then


0 Pu Pv

Pu 1 + tPuu tPuv

Pv tPuv 1 + tPvv

 ·


tα

uα

vα

 =


−Pα

−tPuα

−tPvα




tα

uα

vα

 = −


0 Pu Pv

Pu 1 + tPuu tPuv

Pv tPuv 1 + tPvv


−1

·


Pα

tPuα

tPvα
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Differentiating (A.75) with respect to some parameter β yielding

dαdβ + ddαβ = tβPα + t(Puαuβ + Pvαvβ + Pαβ)

= (Pα, tPuα, tPvα) ·


tβ

uβ

vβ

+ tPαβ

= tPαβ − (Pα, tPuα, tPvα)


0 Pu Pv

Pu 1 + tPuu tPuv

Pv tPuv 1 + tPvv


−1

Pβ

tPuβ

tPvβ


Therefore,

Fαβ = 2
∑

(dαdβ + ddαβ)

= 2
∑

[tPαβ − (Pα, tPuα, tPvα)


0 Pu Pv

Pu 1 + tPuu tPuv

Pv tPuv 1 + tPvv


−1

Pβ

tPuβ

tPvβ

]

A.4. Fine structure of parameter space

Lemma A.4. Let P = (x0, y0) ∈ S0, there exists a point (x, y) on S such that

dist((x0, y0), (x, y)) < ε if dist(P,P0) < δ for some δ > 0 .

Proof. First, let S0 be a real conic other than single point or two coincident

lines. Then by Lemma A.5, for any point (x0, y0) ∈ S0 satisfying

(A.90) F (x, y|P0) = A0x
2
0 + 2B0x0y0 + C0y

2
0 + 2D0x0 + 2E0y0 + F0 = 0,

there exists two points (x−, y−) and (x+, y+) within the ε− open neighborhood of

(x0, y0) denoted by U((x0, y0), ε) such that F (x−, y−|P0) < 0 and F (x+, y+|P0) > 0.

Note that

G(P|x, y) = Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F
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is a continuous function on S5. SoG(P|x−, y−) = F (x−, y−|P) < 0 andG(P|x+, y+) =

F (x+, y+|P) > 0 if dist(P,P0) < δ for some δ > 0. Then by intermediate value the-

orem, there exists a point (x, y) ∈ U((x0, y0), ε) such that F (x, y|P) = 0, which

partially completes the proof. Next, let us check the case that S0 is a single point in

R2.

Single point

A single point P with coordinates (x0, y0) is defined by equation

a2(x− x0)2 + b2(y − y0)2 + 2c(x− x0)(y − y0) = 0

where a and b are arbitrary non-zero numbers and c2 < a2b2 (see section 4.2).

For any P0 ∈ S5 corresponding to a single point (x0, y0), there exists an open

neigborhood U containing P0 such that P ∈ U either corresponds to a single point or

an ellipse (see Figure 4.4). Also note that the quadratic equation for a given ellipse

takes the following form

d(x− x′

0)2 + f(y − y′

0)2 + 2e(x− x′

0)(y − y′

0) = l

where l 6= 0. The ellipse has its center Q at (x
′
0, y

′
0), and length of major axis a:

a =
2
√

2l√
(d+ f)−

√
(d− f)2 + 4e2

Since

Q = (x
′

0, y
′

0)→ P = (x0, y0)√
(d2 + f 2)−

√
(d2 − f 2)2 + 4e2 →

√
(a2 + b2)−

√
(a2 − b2)2 + 4c2 > 0

d→ 0

as P → P0, a < ε and dist(P,Q) < ε if dist(P,P0) < δ. So if P corresponds to a

single point (when d = 0) which is Q = (x
′
0, y

′
0), dist(P,Q) < ε. Or if P corresponds

to an ellipse (d 6= 0) with its center Q and major axis a < ε, there exists a point P ′ on

that ellipse such that dist(P, P ′) < ε. This completes the proof of lemma (A.4). �
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Lemma A.5. For any point (x0, y0) on a given model object S0 (other than single

point or coincident lines) described by the general quadratic equation

F (x, y|P0) = Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0

where P0 = (A,B,C,D,E, F ) ∈ S5 and ε > 0, there exists two points (x−, y−)

and (x+, y+) belongs to the ε neigborhood of (x, y) denoted by U((x, y), ε) such that

F (x−, y−|P0) < 0 and F (x+, y+|P0) > 0.

Proof. Let S0 be following model objects:

(i) Hyperbola, parabola, ellipse and a pair of parallel lines

For a given point (x0, y0) ∈ S0, pick (x
′
0, y

′
0) (x0 6= x

′
0) on S0. Then there exists a

straight line represented by a linear equation y = ax+ b passing through both points.

By substitution, (A.94) turns into a quadratic equation F (x, ax + b) = 0 which has

two distinct solutions x0 and x′0. Since F (x, ax+ b) = 0 is strictly monotonic around

x0, there exists x− and x+ within a ε neighborhood of x0 such that F (x+, ax+ +b) > 0

and F (x−, ax− + b) < 0. Set y∗ = ax∗ + b (∗ = +,−). Therefore, F (x−, y−|P0) < 0

and F (x+, y+|P0) > 0. for (x−, y−) and (x+, y+) ∈ U((x0, y0), ε).

(ii) Straight line

Any straight line can be expressed in a linear equation

F (x, y) = 2Dx+ 2Ey + F = 0

where D2 + E2 6= 0. Let us assume D > 0(any other different conditions can be

verified in a similar manner). Since 2Dx0 + 2Ey0 + F = 0, F (x0 + ε/2, y0) = Dε > 0

and F (x0 − ε/2, y0) = −Dε < 0. So the conclusion is justified for straight lines.

(iii) Intersecting lines

The quadratic equation F (x, y) for a pair of intersecting lines can be transformed

into a product of two linear relations:

(2Dx+ 2Ey + F )(2D′x+ 2E ′y + F ′) = 0
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where each linear relation on the left corresponds to one of straight lines. For every

point (x0, y0) satisfying 2Dx0 + 2Ey0 +F = 0 and 2D
′
x0 + 2E

′
y0 +F > 0 (the proofs

for other conditions are similar), it belongs to one line but not on the other. By the

proof showed in (ii), there exists two points (x−, y−) and (x+, y+) within U((x0, y0), ε)

for any ε > 0, such that 2Dx− + 2Ey− + F < 0 and 2Dx+ + 2Ey+ + F > 0. Note

that 2D
′
x∗ + 2E

′
y∗ + F

′
> 0 (∗ = +,−) for sufficiently small ε. Then

(2Dx+ + 2Ey+ + F )(2D
′
x+ + 2E

′
y+ + F

′
) > 0

(2Dx− + 2Ey− + F )(2D
′
x− + 2E

′
y− + F

′
) < 0

If (x0, y0) is at the intersection of two lines so that both factor the left side of (A.4)

vanish at (x0, y0), pick a point (x
′
0, y

′
0) ∈ U((x0, y0), ε/2) on one of the straight

line but on the other. Then by the proof of the first part, there exists two point

(x−, y−) and (x+, y+) within U((x
′
0, y

′
0), ε/2) and certainly within U((x0, y0), ε) such

that F (x−, y−) < 0 and F (x+, y+) > 0. The proof of lemma (A.5) is completed. �

Theorem A.6. (Convergence of conics: general case) Suppose a sequence

Pi of parameter vectors corresponding to real (not imaginary) conics, Sn, converges

to a parameter vector P corresponding to a real (not imaginary) conic, S, which is

not a pair of coincident lines, i.e., P /∈ DCL. Then Sn → S geometrically, in the

sense of section (2.2).

Proof. Let R be a rectangle in R2:

(A.91) R = {−A ≤ x ≤ A, −B ≤ y ≤ B},

Let’s consider following conditions:

(i)S ∩R = ∅

Since R is a compact set in R2, the continuous function

(A.92) F (x, y|P) = Ax2 + 2Bxy +Cy2 + 2Dx+ 2Ey + F > M > 0 (or < M < 0)
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for all (x, y) ∈ R. Then F (x, y|Pi) > M − ε > 0 for |Pi−P| < δ. By the assumption

of convergence of Pi, there exists a j such that |Pi −P| < δ for i > j. Thus Si does

not intersect with R and

distH(Si, S;R) = 0

for i > j. Now we have

(A.93) distH(Si, S;R)→ 0 as i→∞.

(ii)S ∩R 6= ∅

Let B(P, r) be the open disk of radius r with its center P ∈ R2. Then for any

ε > 0 and the set Q = {P |P ∈ S ∩ R} there exists finitely many distinct open

discs B(Pk, ε/2) (k = 1, 2, · · · , n) with Pk ∈ Q such that Q ⊂
⋃n
k=1 B(Pk, ε/2). So by

lemma (A.4), for each Pk, there exists a P
′

k ∈ Si (associated with the parameter vector

Pi ) such that dist(P
′

k, Pk) < ε/2 for |Pi − P| < δk. Apparently, dist(P
′

k, P ) < ε if

P ∈ B(Pk, ε/2). Set δ = min(δk). Since Pi converges to P, |Pi−P| < δ when i > N .

Then dist(P, Si) < ε for P ∈ S ∩ R if i > N , implying supP∈S∩R dist(P, Si) < ε.

Hence

sup
P∈S∩R

dist(P, Si)→ 0

Next, let us show

sup
Q∈Si∩R

dist(Q,S)→ 0

Suppose above condition does not hold. By way of contradiction there exists a σ > 0

such that for anyN > 0 one can always find some i0 > N with supQ∈Si0∩R dist(Q,S) >

σ. So dist(Q,S) > σ/2 for some Q ∈ Si0 ∩R. In other words, we can find a sequence

of conics Sij each containing a point Qij ∈ Sij ∩ R with dist(Qij , S) > σ/2. Since

dist(Qij , S) > σ/2 as ij → ∞, let us assume Qij converges to a limit Q = (x′, y′) ∈

R − S, implying F (x′, y′|P) 6= 0. Also let Qij = (xij , yij). Then F (xij , yij |Pij) = 0.

Since Pij → P and Qij → Q = (x′, y′), F (x′, y′|P) = 0, which contradicts the fact
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that F (x′, y′|P) 6= 0. Therefore,

sup
Q∈Si∩R

dist(Q,S)→ 0

So (A.4) and (A.4) imply

distH(S, Si;R) = max
{

sup
P∈S∩R

dist(P, Si), sup
Q∈Si∩R

dist(Q,S)
}
→ 0

By combining (i) and (ii), we have

distH(Si, S;R)→ 0 as i→∞.

for any finite window R. Now the proof of theorem is complete and we see that

Si → S as Pi → P

The proof is complete. �

Theorem A.7. (Divergence to Infinity)If a sequence of parameter vectors

converges to one of two poles (0, 0, 0, 0, 0,±1) or a point in the domain of imagi-

nary parallel lines, the objective function representing sum of squares of orthogonal

distances diverges to infinity.

Proof. (I)Poles

For a given set of n points, let dmax be the furthest distance between a point in the

set and the origin. Pick a sequence of parameter vectors Pk = (Ak, Bk, Ck, Dk, Ek, Fk)

converging to (0, 0, 0, 0, 0, 1) (the proof of (0, 0, 0, 0, 0,−1) easily follows). Suppose

ε � min(1/(M + dmax), 1/(M + dmax)
2) where M > 0. For any point (x, y) with

dist((x, y), (0, 0)) < M + dmax, since Ak, Bk, Ck, Dk, Ek < ε for sufficiently large k,

|Akx2 + 2Bkxy + Cky
2 + Dkx + Eky| � 1. Note that Fk ≈ 1. So Akx

2 + 2Bkxy +

Cky
2 +Dkx+Eky+Fk 6= 0. It follows that any points (x, y) with dist((x, y), (0, 0)) <

M + dmax can not satisfy the equation. Thus the conic corresponding to Akx
2 +

2Bkxy + Cky
2 + Dkx + Eky + Fk = 0 has a sum of squares of distances is larger

than nM2. Therefore, for any nM2 > 0, if k is large enough, the sum of squares



141

of distances is greater nM2 >. The objective function than diverges to infinity as

k →∞.

(II)Parallel lines

The imaginary parallel lines is another type of empty solution for our model.

Every sequence parameter vectors converging to a points in “IPL” corresponds to a

sequence of conics for which the objective function diverges to infinity. The proof is

similar to that of “two pole”. The imaginary parallel lines are naturally described by

the equation in a form of

(ax+ by + c)2 = d

where d < 0 (see detail in next section). Suppose a sequence of parameter vectors Pi

converging to a limit P0 corresponds to

(a0x+ b0y + c0)2 = d0 d0 < 0

For sufficiently large i, the conic corresponding to Pi can be represented by an equation

a1x
2 + b1xy + c1y

2 + d1x+ e1y + f1 + (a0x+ b0y + c0)2 = d0

where a1 · · · f1 are extremely small. So for any point (x, y) close to a given set of n

points,

a1x
2 + b1xy + c1y

2 + d1x+ e1y + f1 ≈ 0

Then (2) is approximately the same as (1) and (x, y) does not satisfy the equation

(1). By the similar argument used for the proof of “two poles”, the objective function

for the sequence Pi diverges to infinity. �

The equation of imaginary parallel lines Here we study the quadratic equa-

tion for the imaginary parallel lines. Recall that a given equation

(A.94) Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0,
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corresponds to a pair of imaginary parallel lines when

(A.95)

Q = A2 +B2 + C2 > 0 ∆ = det


A B D

B C E

D E F

 = 0 J = det

A B

B C

 = 0.

(A.96) K = det

A D

D F

+ det

C E

E F

 > 0

(see section (4.2)).

We see that

∆ = JF − E · det

A D

B E

+D · det

B D

C E

 = −AE2 + 2BDE − CD2 = 0

Then

(A.97) AE2 + CD2 = 2BDE.

Squaring both sides and using J = 0, we obtained

A2E4 + 2ACE2D2 + C2D4 = 4B2D2E2 = 4ACD2E2

(AE2 − CD2)2 = 0

. So AE2 = CD2. Since Q = A2 +B2 +C2 > 0 and B2 = AC, at least one of A and

C is nonzero. Let us consider the following cases:

(I)A 6= 0 and C = 0.

It immediately follows that B = 0 and E2 = CD2/A = 0. Then (A.94) simplifies

to

Ax2 + 2Dx+ F = 0.

which can be transformed into

(A.98) (x+
D

A
)2 = −AF −D

2

A2

where the right side −AF−D2

A2 = − K
A2 < 0.
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(II) A,C 6= 0.

Because of AE2 = CD2, we either have D = E = 0 or

(A.99) A = tD2 C = tE2

where t 6= 0. Furthermore, the sign of A and C must be the same. If the first case

holds, (A.94) becomes

Ax2 + 2Bxy + Cy2 + F = Ax2 ± 2ACxy + Cy2 + F = 0.

To make the positive coefficients for the quadratic term, we multiply both sides by

A+ C and get

(A.100) (
√

(A+ C)Ax±
√

(A+ C)Cy)2 = −(A+ C)F = −K < 0

If the latter case holds, Substitute(A.99) into (A.97). Then

B =
tD2E2 + tE2D2

2DE
= tDE.

Rewrite (A.94) in terms of t,D,E and F as follows:

tD2x2 + 2tDExy + tE2y2 + 2Dx+ 2Ey + F = 0

t(Dx+ Ey)2 + 2(Dx+ Ey) + F = 0

. By making the left side a perfect square, we have

(A.101) (Dx+ Ey +
1√
t
)2 =

1− tF
t2

.

Also note that

K = AF −D2 + CF − E2 = tF (D2 + E2)− (D2 + E2) = (tF − 1)(D2 + E2) > 0.

and therefore tF − 1 > 0. So the right side of (A.101) is again negative.

In conclusion, we showed that every quadratic equation for a pair of imaginary

parallel lines can be transformed into a standard form

(ax+ by + c)2 = d d < 0.
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which geometrically characterizes the imaginary parallel lines. We will use it for the

proof in the proof of Theorem .

Theorem A.8. (A basic fact about the sequence with a limit of coinci-

dent lines) Suppose a sequence Pn of parameter vectors corresponding to real (not

imaginary) conics, Sn, converges to a parameter vector P ∈ DCL corresponding to a

pair of coincident lines; the latter make a line in R2 which we denote by L. Then Sn

gets closer and closer to L, as n grows. More precisely, for any rectangle

R = {−A ≤ x ≤ A, −B ≤ y ≤ B} (R ∩ Sn, L 6= ∅)

( R∩Sn should be nonempty for the maximum to be well defined. The theorem doesn’t

cover the example that a sequence of conics go off to infinity when Pn → A.) we have

max
P∈Sn∩R

dist(P,L)→ 0 as n→∞.

Proof. By way of contradiction, let us assume that

lim
n→∞

max
P∈Sn∩R

dist(P,L) 6= 0.

or the limit does not even exists for some R.

Then there exists a ε > 0 such that

∀N > 0 max
P∈Sn∩R

dist(P,L) > ε

for some n > N . So we can find a sequence of conics Snm such that

max
P∈Snm∩R

dist(P,L) = dist(Pnm , L) > ε

where Pnm ∈ Snm ∩ R. Since R is compact, let us assume that Pnm converges to P0.

Clearly,

lim
nm→∞

max
P∈Snm∩R

dist(P,L) = lim
nm→∞

dist(Pnm , L) = dist(P0, L) > ε

Thus P0 6∈ L. Let Pnm = (xnm , ynm). Note that the quadratic equation

F (xnm , ynm|Pnm) = 0
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for all nms. So

lim
nm→∞

F (xnm , ynm|Pnm) = F (x0, y0|P) = 0

implying P0 ∈ L. But remember P0 6∈ L by our assumption. Therefore, we must have

lim
n→∞

max
P∈Sn∩R

dist(P,L) = 0.

�

A.5. Differentiability of the objective function on the sphere

Theorem A.9. (5.4)(Differentiability of projection coordinates) Let S be

a conic and P a given point. Suppose (i) the point Q on the conic S closest to the

given point P is unique and (ii) P is not the center of curvature of the conic S at the

point Q. Then the coordinates x and y of the point Q are differentiable with respect

to the conic’s parameters.

Proof. Let P = (x0, y0) be the given (fixed) point. The conic S is defined by a

quadratic equation,

F (x, y; P) = Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0

where P = (A,B,C,D,E, F ) represents the parameter vector. Let Q = (u, v) denote

he projection of P onto S. When the parameters A,B,C,D,E, F vary, the conic S

changes, and so does the projection point Q. Thus its coordinates u and v become

functions of the conic’s parameters A,B,C,D,E, F .

By orthogonality of the line PQ to the conic S we have

(A.102) Fu(u, v; P)(v − y0)− Fv(u, v; P)(u− x0) = 0,

where Pu and Pv denote partial derivatives of P with respect to u snd v. Also, since

Q lies on the conic S, we have

(A.103) F (u, v; P) = 0.

The coordinates u and v are now specified, implicitly, by (A.102) and (A.103).
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Next we apply Implicit Function Theorem. It guarantees that the coordinates

u and v have continuous derivatives with respect to the parameters A,B,C,D,E, F

provided a certain regularity condition is met. The regularity condition requires that

the matrix of partial derivatives of the right hand sides of (A.102) and (A.103), with

respect to u and v, is not singular. That is,

(A.104)

det

 Fuu(v − y0)− Fuv(u− x0)− Fv Fuv(v − y0)− Fvv(u− x0) + Fu

Fu Fv

 6= 0.

Suppose that the determinant is zero. Then

(A.105) (FuFvv − FuvFv)(u− x0) + (FvFuu − FuvFu)(v − y0) = F 2
u + F 2

v

According to the orthogonality relation (A.102), there exists a scalar t such that

(A.106) (u− x0) = tFu (v − y0) = tFv

Substitution of (A.106) into (A.105) and solving for t give

t =
F 2
u + F 2

v

F 2
uFvv − 2FuFvFuv + F 2

vFuu
.

Note that

(A.107)

dist(Q,P ) =
√

(u− x0)2 + (v − y0)2 = |t|
√
F 2
u + F 2

v =
(F 2

u + F 2
v )3/2

|F 2
uFvv − 2FuFvFuv + F 2

vFuu|
.

This expression coincides with that for the radius of curvature of S at the point

Q = (u, v). So (A.104) can only hold if the given point P = (x0, y0) happens to

be exactly at the center of curvature of S. In all the other cases Implicit Function

Theorem guarantees the existence of continuous derivatives of the coordinates u and

v with respect to the conic’s parameters.

Our theorem is now proved.
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Lastly we give an explicit formula for the derivatives of u and v with respect to

any parameter θ:

 du/dθ

dv/dθ

 =

 Fuu(v − y0)− Fuv(u− x0)− Fv Fuv(v − y0)− Fvv(u− x0) + Fu

Fu Fv

−1

(A.108)

·

 Fvθ(u− x0)− Fuθ(v − y0)

−Fθ

 .
Here θ denotes an arbitrary component of the parameter vector P, i.e., one can replace

θ with A, B, etc. �

Theorem A.10. (smoothness at centers of osculating circles) Let S be a

conic and P a given point. Suppose (i) the point Q on the conic S closest to the given

point P is unique and (ii) P coincides with the center of curvature of the conic S at

the point Q. Then the distance dist(P, S) is differentiable with respect to the conic’s

parameters.

Proof. . When the parameters of the conic S vary, the latter gets perturbed,

and we denote the new (perturbed) conic by S ′ and the projection of the fixed point

P onto the new conic by Q′. Clearly, Q′ changes continuously with the parameters

of the conic. Even if two distinct projections of P onto S ′ arise, both are close to the

original projection Q (see an illustration below). Also, the derivative of the distance

d =dist(P, S) with respect to the conic’s parameters is given by the following general

formula:

(A.109) ∇Pd =
∇PF (x̄i, ȳi; P)

‖∇F (x̄, ȳ; P)‖

where (x̄, ȳ) denote the coordinates of the projection point Q and

F (x, y; P) = Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F

denotes the quadratic polynomial corresponding to the parameter vector P = (A,B,C,

D,E, F ). The formula (A.109) is derived in [16]. The numerator of the fraction in
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Figure A.10: Red point lies at the center of curvature of the conic. Blue point has

two projections on the ellipse, but both are close to the projection of the red point

(A.109) contains the gradient of P with respect to the components of P and the de-

nominator – the gradient of P with respect to x and y. Both gradients are taken at

the projection point Q = (x̄, ȳ). Clearly, all the elements of the fraction in (A.109)

change continuously with Q (and hence with the conic’s parameters). This proves

that d is a smooth function of P, i.e., it has continuous first order derivatives with

respect to P.

If the conic S is a circle and the data point P is at its center, it has multiple

projections onto S, and this is precluded by the assumption (i) of the theorem. �

Theorem A.11. (5.6)(Smoothness at local minima) The objective function

F is smooth at all its local minima. More precisely, the first order derivatives of F, as

well as those of the distances dist(Pi, S), exist and are continuous at all local minima.

Proof. Recall that singularities of F(S) are caused by two factors: (i) a data

point Pi = (xi, yi) happens to be at the center of curvature of the conic S and (ii) a

data point Pi = (xi, yi) has multiple projections on the conic, i.e., there are (at least)

two distinct points Q
′
i, Q

′′
i ∈ S such that

dist(Pi, S) = dist(Pi, Q
′

i) = dist(Pi, Q
′′

i ).

Now we deal with case (ii). Suppose a data point Pi = (xi, yi) has two distinct

projections, Q
′
i and Q

′′
i , onto the conic S. Recall that a translation of a conic S
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along any vector v will be another conic. Let v = Q
′
iQ

′′
i , i.e., consider a vector from

Q
′
i to Q

′′
i . Then the translation of S in the direction of v will bring Q

′
i closer to

Pi and will move Q
′′
i farther away from Pi. The translation of S in the direction

of −v will have the opposite effect. In both cases the distance di from the data

point Pi to the conic will decrease. The translation of the conic along the vector v

corresponds to a directional derivative of the distance di in the parameter space. The

above argument shows that this directional derivative is discontinuous: the distance

di linearly decreases in both directions, whether the conic is shifted along v or along

−v. This creates a “peak” (local maximum) in the graph of the function di, and

hence a “peak” in the graph of the objective function F. The proof is completed. �

A.6. Objective function near boundaries

Theorem A.12. 5.7 For any set of data points P1, . . . , Pn the global minimum of

the objective function F belongs to the union

(A.110) DF,ESS = DE ∪ DH ∪ DP ∪ DIL ∪ DPL.

If the objective function F has multiple global minima, then at least one of them

belongs to the above union. This union cannot be shortened, i.e., for any conic S in

this union of domains there exists a data set for which S provides the unique best fit.

Proof. The existence of the best fitting conic has been shown in section (2.8). If

that conic does not belong to the essential domain DF,ESS, then it belongs to one of
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the remaining types of conics: DSL (single lines), DCL (coincident lines) or DSP (single

points). Each of these conics is a proper subset of another conic from the essential

domain DF,ESS. More precisely, intersecting lines or parallel lines suffice. So by the

redundancy principle (see section (2.4)) there will be a best fitting conic from the

union...

Now we prove that the union (A.110) cannot be shortened, i.e., no conic from the

essential domain DF,ESS can be discarded. If a conic S belongs to DE∪DH∪DP, then

it is a non-degenerate conic. Let P1, . . . , P5 be any five distinct points on S. Then S

interpolates those points, hence F(S) = 0. No other conic can interpolate those five

points (see wiki). Thus the best fitting conic S is unique.

Lastly, let a conic S belong to DIL ∪ DPL. Then S is a pair of (intersecting or

parallel) lines, say L1 and L2. Let P1, P2, P3 be any three distinct points on L1 and

P4, P5 be any two distinct points on L2 (if L1 and L2 intersect, we avoid the point of

intersection when selecting P1, . . . , P5, so these five points are truly distinct). Then

S interpolates those five points, hence F(S) = 0. They are not in general linear

position, so they cannot be interpolated by a non-degenerate conic. Suppose our five

points are interpolated by a degenerate conic S
′
, i.e., by two other lines L

′
1 and L

′
2.

By the pigeonhole principle, one of them must contain at least three of our points,

which is only possible if it contains P1, P2, P3, hence it coincides with L1. Now the

other line must contain P4 and P5, so it coincides with L2. �

A.7. Infinite moment of geometric parameters (General Case)

In this section we will derive the exact form of hessian matrix (A.129) used in the

proof of infinite moment of geometric parameters in the section 6.4. Recall that the

geometric parameters are center coordinates (Cx, Cy), two semi axis a, b and the angle

θ between major axis and x axis. Our configuration consists of n points: three points

in small squares Bi (i = 1, 2, 3) of size h2 ∗ h2 centered at (2, 1), (−2, 1), (1, 0), one

point in the small rectangle B4 of size h2∗h centered at (0,−1/3) and last n−4 points
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in the square B5 centered at (−1, 0). All n points are assumed to be fixed except

the fourth point in B4. As it moves down from the top of the B4 to the bottom ,the

best fitting conic changes from ellipse to parabola, then become a hyperbola. The

configuration is completely the same as the one in the proof of infinite moment for

five points in the section 6.3, except that n − 5 points are added to the square B5.

Moreover, we introduced a new set of parameters: Cx, 1/(a + Cy), a− Cy, b2/a and

θ (denoted by p1, . . . , p5 for which we will derive the hessian matrix.

Let (x, y) be the given point and (u, v) its projection on a given conic described

by the equation P (x, y; θ) where θ is a parameter vector for the conic. Furthermore,

let us denoted by d the distance between the given point and the conic. If α and β

are two independent parameters for the conic, we have

(A.111)

dαdβ + ddαβ = tPαβ − (Pα, tPuα, tPvα)


0 Pu Pv

Pu 1 + tPuu tPuv

Pv tPuv 1 + tPvv


−1

Pβ

tPuβ

tPvβ



where t = d√
P 2
u+P 2

v

. By simple geometry, the best fitting conic must pass through

B1, . . . , B5 and hence the distance di (i = 1, . . . , n) from each point to the curve

are less than h2. Furthermore, all derivatives Puu, Puv, Pvv, Puβ etc are uniformly

bounded by a constant M that may depend on n and h but not on point coordinates.

Thus (A.112) can be reduced to

(A.112)

Fαβ(θ) = −
n∑
1

(Pα, 0, 0)


0 Pu Pv

Pu 1 0

Pv 0 1


−1

Pβ

0

0

+ Xh =
n∑
1

PαPβ
P 2
u + P 2

v

+ Xh

where Xh is a quantity that can be made arbitrarily small by decreasing h). So we

only need the first derivatives of P with respect to each new parameters.
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In section 6.3, we found the equation of the quadratic conic passing through (1, 0),

(−1, 0), (2, 1), (−2, 1) and (x0, z − 1/3) (z > 0):

(A.113) x2 + ty2 − (3 + t)y − 1 = 0

where t will be determined by the the point (x0, y0):

(A.114) t =
3z − x2

0
4
9
− 5

3
z + z2

If 3z > x2
0, the quadratic curve corresponds to (A.113) is an ellipse with two semi

axis

(A.115) â =

√
9 + 10t+ t2

2t
b̂ =

√
9 + 10t+ t2

2
√
t

and y coordinates of two focuses (x coordinates are 0)

(A.116)
3 + t

2t
±
√

9 + 10t+ t2

4t2
− 9 + 10t+ t2

4t

So

(A.117)
b̂2

â
=

√
9 + 10u+ u2

2
→ 3

2
as u→ 0

As t→ 0, the y coordinate of upper focus (k1, h1)

(A.118) h1 =
3 + t

2t
+

√
9 + 10t+ t2

4t2
− 9 + 10t+ t2

4t
→ +∞

and the y coordinate of lower focus (k2, h2)

(A.119) h2 =
3 + t

2t
−
√

9 + 10t+ t2

4t2
− 9 + 10t+ t2

4t
→ 12

5

The above results can be considered as a approximation to our construction for

the general case. For convenience, we will use the following shorthand notations:

df1 =
√

(u− k1)2 + (v − h1)2 →∞

df2 =
√

(u− k2)2 + (v − h2)2 ≈
√
u2 + (v − 12

5
)2
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as ellipse changes to a parabola. Also we use following relations:

(A.120) A =
1

2
(1/p2 + p3) Cy =

1

2
(1/p2 − p3) B =

√
1

2
(1/p2 + p3)p4

Remember that a ellipse is described by the equation:

(A.121)
√

(u− x1)2 + (v − y1)2 +
√

(u− x2)2 + (v − y2)2 − 2a = 0

By differentiating (A.121) with respect to each new parameters when the best fitting

curve becomes a parabola, we have

(A.122) Pp1 = −u− k1

df1

− u− k2

df2

→ −u− k2

df2

+ X1

(A.123) Pp2 = − 9

16

v − h2

df2

− 9

16
+
u2

2
+ X2

(A.124) Pp3 =
v − h2

df2

− 1 + X3

(A.125) Pp4 =
1

2
(−1− v − h2

df2

) + X4

(A.126) Pp4 = u(1 +
5

12df2

) + X5

where X1, . . . ,Xh are small quantities (that can be made arbitrarily small by decreas-

ing h). Furthermore, we can also obtain

(A.127) Pu = u(u2 + (v − 5

12
)2)−1/2

(A.128) Pv = (u2 + (v − 5

12
)2)−1/2(v − 5

12
)− 1
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Now using (A.112) for each element of Hessian matrix, we obtain

(A.129)

H =



232
325

+ 8
13
n −20

39
+ 4

39
n 60

13
− 12

13
n 40

39
− 8

39
n −236

65
− 12

13
n

−20
39

+ 4
39
n 13162

2925
+ 2

117
n −682

325
− 2

13
n −6356

2925
− 4

117
n 10

13
− 2

13
n

60
13
− 12

13
n −682

325
− 2

13
n −232

325
+ 18

13
n 116

325
+ 4

13
n −90

13
+ 18

13
n

40
39
− 8

39
n −6356

2925
− 4

117
n 116

325
+ 4

13
n 2728

2925
+ 8

117
n −20

13
+ 4

13
n

−236
65
− 12

13
n 10

13
− 2

13
n −90

13
+ 18

13
n −20

13
+ 4

13
n 154

13
+ 18

13
n


+ χ

(the above result is also checked by Maple) where χ can be made as small as possible

by decreasing h.
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