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DEVELOPMENT OF A HIGH-THROUGHPUT SELF-INTERACTION 
CHROMATOGRAPHY SYSTEM 

 
DAVID H. JOHNSON 

BIOMEDICAL ENGINEERING 

ABSTRACT 

The first recombinant human protein drug, insulin expressed in e.coli cells, was 

approved by the FDA in 1982.  Since then, protein therapeutics have become the fastest 

growing segment of the pharmaceutical industry and include immunoglobulin-g (IgG) 

directed cancer and immune disorder treatments.  A major difficulty to bring protein 

drugs to market is the requirement that they be concentrated up to 150 mg/ml without 

aggregation for efficacy in a small injection volume.  One way to improve protein drug 

solubility is to include additives that reduce protein-protein attraction and increase 

protein-protein repulsion thereby preventing protein molecules from coming together to 

form aggregates.  However, hundreds of individual additives are approved by the FDA 

for injection and just ten additives at four possible concentration levels provides over a 

million (410) possible formulations.  To address this formulation search problem, 

automated hardware and screening techniques are applied to evaluate the effect of 

additives on protein-protein interactions.  These interactions are quantified by the second 

virial coefficient (B value), a thermodynamic parameter that is the sum of forces between 

two protein molecules at all orientations and distances in a solution.  B values are 

measurements made by self-interaction chromatography.  Contributions to the 
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formulation search problem include hardware, software and screen methodology 

improvements.  The hardware consists of 1) robotic formulation delivery and system 

equilibration, 2) a reduced-cost flow cell design with protein detection utilizing UV 

LEDs and 3) a multi-column system for parallel experimentation.  The software includes 

two parts 1) automation of the self-interaction chromatography experiment and 2) a 

neural network model of additive influence on protein-protein interactions.  The hardware 

and software components are utilized in a tiered additive screen including individual 

additive evaluation (initial screen), a complex formulation evaluation (incomplete-

factorial) and training of a neural network to model the additive influence on protein-

protein interactions.  The neural-network model is then used to predict the B value of 

additive combinations not previously measured and the prediction capability of the model 

is evaluated.  The system was evaluated using an IgG drug candidate protein from 

Minerva Biotechnologies and predictions from the neural network produced a 100 fold 

increase in solubility. 

 

 

Keywords: pharmaceutical formulations, protein solubility, physical stability, high-

throughput screening, neural network, design of experiments 
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INTRODUCTION 

Pharmaceutical Formulations and the Importance of Solubility 

A new era of drug therapy began in 1982, with FDA approval of recombinant 

human insulin protein expressed in Escherichia coli cells1.  The ability to deliver 

engineered proteins allows for replacement of missing protein and introduction of 

modified proteins to affect functional pathways.  Therapeutic proteins are the fastest 

growing market segment of the pharmaceutical industry2.  However, there are many 

challenges associated with protein drugs.  High solubility is generally required for 

efficacy yet high-concentration protein formulations are typically prone to aggregation 

which reduces efficacy, shelf-life and has the potential to cause immunological response 

in patients3–9.  Each potential protein drug requires the determination of a formulation to 

maintain its solubility and shelf-life.  Additives can affect protein-protein interactions that 

influence aggregation and precipitation. 

Pharmaceutical formulations may contain any additive provided it has been 

previously recognized as safe by the Food and Drug Administration (FDA).  The FDA 

has approved over 200 unique additives that qualify as inactive and therefore “safe” 

ingredients10.  Three to five unique additives (each at a different concentration) are often 

used in combination to prepare a useful formulation that provides optimum protein 

solubility and stability. If one considers the total number of possible combinations for 
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these 200 additives (i.e. the “space” of possible formulations, limited to just presence or 

absence of each additive) the mathematical result is 2200 formulations.  This upper bound 

includes the unlikely formulation containing all 200 additives.  However, if the choice is 

reduced to no more than 5 additives from the pool of 200 there are still over 2.5 billion 

options.  Thus, it is simply not feasible to determine the effect of every additive 

combination on protein-protein interaction. The research presented here provides a 

system that reduces the number of additive combinations and concentrations that must be 

evaluated thereby providing a rapid method to determine the optimum formulation for a 

particular protein.  In addition, this novel methodology and supporting automated 

technology reduces manual operations and the amount of protein required. 

 Design of biomedical instrumentation is inherently multi-disciplinary and 

includes hardware and software engineering design with consideration of system safety 

and efficiency as well as protein thermodynamics and formulation development.  The 

project presented here uniquely addresses each component in the development of a high-

throughput self-interaction chromatography system.  Challenges to address safety, 

efficiency and potential failure of system components are addressed in “Hazard Analysis 

and Risk Assessment in the Development of Biomedical Drug Formulations”.  

Application of an artificial neural network to improve efficiency by minimizing of the 

number of physical experiments required is addressed in “Applications in Protein 

Formulation Prediction”.  A multi-tiered screening process identifies false positive results 
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due to protein denaturation and this full process is described in “Protein Solubilization: A 

Novel Approach”.  Each manuscript address a different aspect of the challenges 

presented in the design of an automated drug formulation system: 1) design for safety, 

efficiency and fault tolerance, 2) effects modeling and model validation and 3) quality 

control and system verification with increased solubility formulations for pharmaceutical 

proteins. 

 

Protein Physical Stability 

The physical stability of a protein molecule in solution depends on non-covalent 

intermolecular forces such as hydrophobic, electrostatic and Van der Waals forces all of 

which are influenced by additives contained in the solution11,12.  There are many ways to 

assess physical stability -- both quantitatively and qualitatively. Qualitative methods 

include light obscuration, coulter counting, size exclusion chromatography (SEC) and 

dynamic light scattering (DLS)13–15.   These methods determine the level of aggregation 

that exists in a solution.  Quantitative methods, which can measure protein-protein 

interaction, include static light scattering (SLS)16, analytical ultracentrifugation17, 

osmotic pressure18 and self-interaction chromatography19. 

Some form of particle visibility study is required for FDA approval of a protein 

pharmaceutical drug.  The protein must remain in solution without forming visible 
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aggregates under stress.  Stressors include high temperature and both high and low pH 

compared to storage conditions.  This is the simplest method for determining protein 

aggregation.  The protein is placed under a specific stress for a period of time and then 

visually inspected to assess aggregation20.  Alternate methods exist to identify 

microscopic particles, including light obscuration, coulter counting and dynamic light 

scattering.  Although each method can quantify a level of aggregation they do not 

quantify the underlying molecular forces involved. 

The sum of forces between pairs of particles in a dilute solution is quantified by 

the thermodynamic parameter, second virial coefficient (B). McMillan-Meyer theory21 

applies the ideal gas law to canonical distributions of non-ideal gasses, taking into 

account interactions between particles.  The theory is applied to solutions of large 

molecules by Zimm22 and the formulation is given succinctly by Neal, et al16: 

Eq 1. P=RTcp( 1/MW + Bcp + … ) 

In equation 1, P is the osmotic pressure (atm), R is the gas constant (L atm mol-1 

K-1), T is temperature (K), cp is the protein concentration (g/L) and MW is the molecular 

weight (g/mol). The second virial coefficient, B, (mol * ml / g2 * 104) represents the sum 

of forces between 2-body interactions and the ellipses represent higher order, N-body, 

interactions.  Without the B value and higher order components the formulation reduces 

to an ideal, non-interacting solution. 
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The second virial coefficient of a dilute protein solution can be measured directly 

via several methods, including static light scattering, sedimentation equilibrium, osmotic 

pressure and self-interaction chromatography. 

 

Self-Interaction Chromatography 

Self-interaction chromatography (SIC) is a technique to measure B values with 

reduced time and protein requirements compared to the methods described above.  SIC is 

an affinity chromatography method in which the protein of interest is covalently bound to 

chromatography media and packed into a column.  The formulation is flowed over the 

media and a bolus of protein is injected into the flow path.  The amount of time required 

for the injected protein to elute from the column, compared to a non-interacting molecule, 

is directly related to the B value of the protein in the mobile phase solution.  Lenhoff19 

describes the relation between B value and the ratio of interacting to non-interacting 

retention volumes as follows: 

Eq. 2  B=NA/MW2(Vhs – k’/phi/rho) 

Where k’ is the retention factor – the ratio of interacting to non-interacting elution 

volumes centered about zero.  NA and MW are Avogadro’s number and molecular 

weight (mg/mL), respectively.  Vhs is the hard sphere (excluded volume, mL) 
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contribution to B value.  The ratio of volume to surface area of the media is phi and rho 

(mol/L) is the binding density of the protein on the media. 

To prepare a self-interaction chromatography column requires less than 1 mg of 

protein per column.  After protein is bound to the media, different formulations can be 

tested as the mobile phase in the system.  The test of each additional formulation requires 

only 1 ug of additional protein injected into the system.  Up to one-hundred formulations 

can be evaluated on a single column for an average protein consumption of 11 

micrograms of protein per B value determination -- 10 micrograms prorated over the 

screen for the static phase and 1 microgram for the mobile phase . 

A chromatography based system provides additional advantages besides its 

reduced protein consumption.  As a standard technique for protein purification, 

chromatography systems are nearly ubiquitous in molecular biology labs.  The operation 

of a liquid chromatography system does not require specialized expertise as is required 

for static light scattering.  

 

HSC System 

The HSC System is a novel, high-throughput, automated platform for B value 

measurement of a set of formulations.  The system consists of four primary components: 

formulation delivery, injection system, data acquisition and control software.  
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Formulation delivery is provided by a syringe pump (formulation pump) and valve 

(formulation valve) which directs the pump to a reservoir to withdraw formulations into 

the syringes and then directs the pump to the rest of the system to deliver formulations. 

The injection system consists of a second syringe pump (injection pump) which 

contains the protein of interest at a concentration of approximately 1 mg/ml and a valve 

(injection valve) that allows flow from either the formulation pump or the injection 

pump.  During injection the formulation flow is halted, the injection valve is switched 

from formulation flow to injection flow and 1 ul of the protein is injected into the system.  

After injection, the injection valve switches back to formulation flow and the formulation 

pump continues to flow the remaining formulation (and protein injection) over the 

columns and through a flow cell. 

Data acquisition operates at the flow cell downstream of the column.  The flow 

cell contains a UV light source and UV diode detector.  Similar to all HPLC systems the 

UV source and detector are separated from the flow by a quartz window and the protein 

concentration between the two windows follows Beer-Lambert law.  The first prototype 

uses flow cells and a light source from Ocean Optics with the light delivered by fiber 

optic cable.  The second prototype uses a custom flow cell design with direct UV LED 

illumination and flow through 0.02” i.d. peek tubing. 
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Custom control software handles pump and valve control for formulation delivery 

and protein injection. Data management is handled by the control software via a 

Measurement Computing (USB-1608FS) analog to digital converter.  Incoming data from 

the system includes the UV transmission voltage from the UV diode detector and the 

pressure of each column as measured by four DJ Instruments DF2 pressure transducers. 

Pressure sensing and detection during a screen is one of three major improvements driven 

by a failure mode effects and analysis and reported in the manuscript, “Hazard Analysis 

and Risk Assessment in the Development of Biomedical Drug Formulations”.  The 

pressure sensor is necessary to detect aggregation of protein on the columns (a potential 

high risk failure because it can ruin a column containing milligram quantities of protein).  

This potential hazard also necessitates the ordering of additives such that lower 

concentrations of individual additives are evaluated before complex formulations.  

Another common failure mode in chromatography systems – the introduction of air 

bubbles into the system – is addressed by including bypass valves.  The addition of 

bypass valves allows the system to be flushed at higher flow rates to move air bubbles 

through the system without producing pressure in the columns.  Although this 

configuration is not novel to HPLC systems the automated control of the HSC system 

means that an unattended failure due to air would be damaging to multiple experiments.  

Automated clearing of air bubbles as part of the protocol developed to change 
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formulations between experiments is one of the ways identified to mitigate the potential 

hazard. 

 The ability to rapidly measure B value of a protein in different formulations 

allows for a more comprehensive screening process with hundreds of physical B value 

measurements.  In order to optimize use of the instrument a multi-tiered screen is used to 

systematically search for additives and combinations of additives which increase B value 

formulation.  The search space of possible additives is first restricted by evaluating a 

formulation with a single additive.  Measurement of B value with single additive 

formulations allows for the ordering of many additives due to only needing a single 

machine run per additive.  However, this does not reveal anything about how additive 

concentration affects B value nor anything about the effect of additive combinations.  

Therefore, the next screen tier uses more complex formulations with two to three 

additives in combination and at varying concentrations -- chosen from the most 

promising additives of the initial screen.  The experiment design for this screen is based 

on an orthogonal array to ensure a distributed sampling throughout the possible space of 

formulations.  After two tiers of physical B value measurements the effect of additives on 

B value is modeled with an artificial neural network.  The model is used to generate 

(predict) all combinations of additives and concentrations in the space of formulations 

that was originally sampled with the orthogonal array.  The neural network model is 

evaluated by physically measuring the formulation B values using the HSC system.  
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Details of the artificial neural network model are given in “Applications in Protein 

Formulation Prediction”.  The multi-tiered screen process is described in more detail in 

“Protein Solubilization: A Novel Approach”.  The remaining methods detail the 

individual techniques used with the instrument to acquire B value measurements. 

 

HSC Methods 

Self-interaction chromatography (SIC) is an affinity chromatography technique 

used to determine B value (integral sum of all 2-body interactions) of a protein in a test 

formulation. The protein of interest is bound to chromatographic media as the stationary 

phase.  The test formulation is flowed through the system as the mobile phase and a bolus 

of the protein is injected into this mobile phase.  The elution volume of the protein is 

indicative of the protein self-interaction (or cross-interaction for different immobilized 

and injected molecules).  The working equation [Tessier, Lenhoff] for the B value 

calculation is: 

Eq 3. 𝐵 = 𝑁𝐴
𝑀𝑊2  �𝐵𝐻𝑆 −

𝑘′

𝜙𝜌
� 

Where NA is Avogadro’s number and MW is the molecular weight of the protein 

(g/mol).  Inside the parenthesis, BHS is the hard sphere contribution of the excluded 

volume (based on a globular model of protein volume as a function of molecular weight) 

and ρ is the amount of protein bound to the column in molecules per unit area 
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(molecules/cm2).  The phase ratio, φ, is the ratio of surface area to volume of the 

chromatographic media (cm2/ml) (dependent on the media and protein volume) and is 

calculated according to the experimental characterization of the phase ratio of 

chromatographic media by DePhillips and Lenhoff23.  All of these variables are constant 

for a given column with bound protein.  The retention factor, k’, is a standard 

chromatographic measure, which is a function of the retention volume of the protein and 

the retention volume of a hypothetical non-interacting molecule of the same size.  Note 

that if the retention factor is negative, then the overall B value is positive.  The retention 

factor is calculated by the formula: 

Eq 4.  𝑘 ′ =  𝑉𝑝− 𝑉0
𝑉0

 =  𝑉𝑝
𝑉0
−  1 

In this equation, Vp is the retention volume of the protein and V0 is the retention 

volume of an equivalent, but non-interacting molecule.  Obviously, it is not possible to 

construct an exactly equivalent non-interacting marker, so there are two alternative ways 

to calculate the non-interacting volume: 1) an acetone marker (2% v/v) or 2) the protein 

injected over a “dead” column which has no protein bound (and has been capped to 

prevent protein binding during the experiment). 

In review, the SIC experiment requires the following steps: 

1) Bind the protein to chromatographic media 

2) Cap chromatographic media 
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3) Pack media into column and determine the concentration of bound protein by 

BCA assay 

4) Attach the column to the HSC system 

5) Flush the system with the formulation of interest 

6) Inject a bolus of the protein into the mobile phase 

7) Measure the retention volume of the protein at fixed flow rate (8 ul/min) 

8) Determine the non-interacting volume   

9) Calculate B value 

The first four steps are part of column preparation and the last four steps are part 

of the HSC operation.  More detail regarding both parts will be covered in the next two 

sections. 

 

Column Preparation 

Four media types designed for protein binding are available from Tosoh Haas, 

each with different binding chemistry.  The media names are given by the active binding 

group: formyl, tresyl, carboxy and amino.  During the initial evaluation of a protein, 

different binding chemistries are tested in small batch (20 ug of media, 20 ul protein) to 

identify the chemistry with the highest binding affinity for the specific protein.  The 
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media with the highest binding affinity is chosen for the stationary phase in the HSC 

system.  The available resins are given in the following table: 

Table 1. Available chromatographic media 

Media 
Binding 
Group pH Buffer Reagents pH Capping 

Tresyl -NH2,-SH 8 PBS None 8 0.5M Ethanolamine 
Formyl -NH2 8 PBS NaCNBH4 8 0.5M Ethanolamine 
Amino -COOH,-COH 6 MES EDC/NHS 6 0.5M 3HP 
Carboxy -NH2 6 MES EDC/NHS 6 0.5M Ethanolamine 

For binding, it is important to use a formulation that does not contain the active 

binding groups in the additives.  We use a formulation as close as possible to the storage 

formulation (received formulation) excluding any additives (or buffer systems) that 

contain the binding groups.  The binding concentration for each media is determined via 

Pierce BCA assay using bovine serum albumin (BSA) for the standard curve.  The media 

that binds at the highest concentration is used for all subsequent large scale media 

preparations.  The preferred binding concentration is at least 5 mg/ml. 

For SIC columns, the protein is bound to the media and capped in bulk. For the 

“dead”, non-interacting, column a separate batch of media is subjected only to the 

capping process.  Activation reagents for the different media (if necessary) are given in 

Table 1.  After media is capped (with or without the protein binding step) it is packed into 

tubing 18 cm long, 0.5 mm i.d.  Two additional cm of column are packed and cut from 

the end.  These two clippings (1cm each) are subjected to a BCA assay to determine the 



 

14 
 

amount of protein bound in the packed column.  The beads are agitated in the BCA 

reagents to free the beads from the column clippings.  The concentration of bound protein 

(in mg/ml) is then used to determine ρ ( molecules / area ) for the B value calculation. 

 

HSC Operation 

The HSC system has four separate channels each with a UV280 detector and 

injection syringe.   In addition to separate channels there is also a formulation reservoir 

connected to a robotic platform that provides automated system washing (via column 

bypass) and replacement of formulations.  The layout of the four channels on the machine 

is given in Figure 1. 
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Reservoir

SIC 1
LIVE

SIC 2
LIVE

DEAD

Injection

Guard 1 Guard 2 Guard 3 Guard 4

Reservoir

Injection

Reservoir

Injection

Reservoir

Injection

Guard
Only

UV280 UV280 UV280 UV280

Waste Waste Waste Waste

Channel 1 Channel 2 Channel 3 Channel 4

 Figure 1. HSC Channel Layout 

Note that guard columns, not previously discussed, are present immediately after 

the injection port.  The guard column, packed with Sephadex-G15, is used to ensure that 

the protein traveling through the SIC column is equilibrated in the mobile phase 

formulation and separated from injection formulation components (including the acetone 

marker). 

An injection formulation containing the protein and 2% acetone (v/v) gives an 

ideal chromatogram consisting of two separate gaussian peaks.  The first peak is the 
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protein molecule and the second is the acetone marker.  The MW cutoff of the Sephadex 

G15 media is 1.5 kDa, therefore any protein above that molecular weight is expected to 

be separable from the injection formulation.  A minimal formulation is identified during 

the pre-screen that produces two gaussian peaks over guard and dead columns.  This 

minimal formulation is used as a baseline formulation throughout the screening process 

to ensure the system gives consistent retention times. 

Figure 1 represents the channel layout during measurement of retention volumes 

used to calculate B values.  Prior to the layout pictured in Figure 1, the volume required 

to elute both protein and acetone through the system without a SIC column is determined 

experimentally by injection of a bolus of protein into the reference formulation with only 

guard columns attached in all four channels (as in channel 4).  This gives the “system 

volume” for the protein and acetone which is specific to each channel and guard column.  

The system volume per channel is subtracted from each retention volume measurement to 

determine protein and acetone retention volumes through the SIC columns.  Subtraction 

of the system volume, Vs, from each retention volume results in an updated equation for 

retention factor: 

Eq 5. 𝑘 ′ =  (𝑉𝑝−𝑉𝑠)− (𝑉0 –𝑉𝑠)
(𝑉0−𝑉𝑠)

 =  (𝑉𝑝−𝑉𝑠)
(𝑉0− 𝑉𝑠)

−  1 

Expected retention times for guard only elutions are 1000 s for protein and 1700 s 

for acetone.  If a peak is non-gaussian or the retention times are outside a +/- 200 s range 
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then the injection is considered failed.  Figure 2 gives an ideal chromatogram for guard 

only elutions. 

 

Figure 2. Ideal chromatogram for guard only elutions. 

After measurement of system volume, the system is set up according to Figure 1 

with live columns (protein bound) connected to channels 1 and 2, a dead column (no 

protein) connected to channel 3.  Channel 4 remains guard-only to measure system 

volume excluding the self-interaction chromatography column..  In the case of a failure 

the chromatogram of channel 4 gives an indication of whether interactions between the 

protein and guard media contribute to the failure.  However, after identification of a 

minimal formulation, we generally do not see failures of this type. Channels 1 – 3 are 

used to calculate B values.  Figure 3 represents an ideal chromatogram for live column 
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elutions.  Note that this chromatogram is almost identical to the guard-only 

chromatogram except that the peaks elute ~400 seconds later. 

 

Figure 3. Ideal chromatogram for live column elutions. 

B value calculation.  Retention times through the SIC column are calculated for each 

channel by subtracting guard only retention times from the experimental retention time.  

These retention times through the SIC column are used to calculate retention factor.  Note 

that, at constant flow provided by the formulation syringes, a ratio of retention times is 

equivalent to a ratio of retention volumes.  Therefore, retention times are used in place of 

the physical retention volumes when calculating the retention factor, k’. 
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The two methods to calculate B value differ in which retention volume is used for 

the “non-interacting” retention time for calculation of the retention factor.  Either the 

acetone retention volume or the dead column retention volume can be used.  The method 

reported in the literature uses acetone as a non-interacting marker.  This is how we 

calculate and report B values.  However, we suspect that the dead column may be a better 

representation of the non-interacting retention volume in the case where protein-media 

interactions are significant.  This has been observed when an additive causes denaturation 

of the protein in aggressive solubility screens.  We are in the process of identifying 

formulations which give significantly different B value measurements between the 

acetone volume method and dead volume method.  Evaluation of these formulations by 

an independent B value measurement, such as static light scattering will be able to 

identify which method is more accurate.  Until a definitive conclusion is reached, the 

policy of Soluble Therapeutics is to calculate and report B values using an acetone 

marker as non-interacting, but to also collect and calculate B values using the dead 

column as non-interacting.  Table 2 shows typical parameters and retention times when 

calculating B values for IgG proteins. 

Table 2. Typical B value parameters for IgG 

Parameter Value Units Description 
Binding Concentration 5 mg/ml Minimum 
Phase Ratio (phi) 5.79 m^2/ml Media Area/Volume 
Molecules / Area (rho) 2.94E+15 molecules/m^2 IgG at 5 mg/ml 
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Retention Factor (k') 0.012 ratio non-interacting 
Bhs 7.16E-19 ml/molecule for IgG 

    Protein RT Guard-SIC 1250 seconds Typical 
Protein RT Guard 950 seconds Typical 
Protein RT SIC Only 300 Seconds Typical 

    Acetone RT Guard-SIC 2000 Seconds Typical 
Acetone RT Guard 1700 Seconds Typical 
Acetone RT SIC Only 300 seconds Typical 

 

Validation – During Screen 

B value deviations in the minimal formulation greater than 1 B unit (mol*ml / g2) or 

retention time deviation in the minimal formulation greater than 10% result in re-

evaluation of the formulation immediately after the failed minimal formulation and 

column replacement if the deviation persists through more than one minimal formulation. 

 

Validation – Post Screen 

After the initial screen the nine formulations with the most positive B values are 

evaluated by dynamic light scattering (DLS) and differential scanning calorimetry (DSC) 

to confirm that the formulation does not give a false positive B value, actually producing 

aggregates or denaturing the protein.  DLS results that indicate a majority of scattering 

intensity is due to higher order aggregates than observed in the minimal and storage 
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formulations are considered failures.  DSC results that indicate a denatured protein (no 

signal) or an onset of unfolding less than 37 oC are considered to failures.  Any 

formulation that fails this step does not proceed to the discovery screen (incomplete 

factorial) and is replaced by the next most positive B value measured (which are also 

validated by DLS and DSC). 

The high-throughput and automated HSC system provides a platform to screen a 

large number of formulations.  Selection of the additives to screen is determined in three 

phases:  initial screen, incomplete factorial screen and neural-network screen.  The initial 

screen consists of individual additives to identify those single additives which most 

reduce protein-protein interactions.  Additives which give the nine most positive B values 

are chosen for the incomplete factorial screen.  To test all additive combinations at all 

concentrations would require millions of formulation conditions.  Therefore the 

incomplete factorial screen takes an orthogonal subset of the formulations – orthogonal 

so that each additional formulation tested provides additional information about the effect 

of the individual additives and how they interact with other additives.  Results of the 

incomplete factorial screen are used to train an artificial neural network for the third 

phase. 

Two key aspects of the incomplete factorial design contribute to success of neural 

network training.  The first is the basis on an orthogonal array.  The orthogonal array 

provides a balanced representation of each additive with each other additive within the 
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screen.  This serves to maximize the information available to the neural network for each 

additive.  Another factor in the success of the incomplete factorial is pre-selection of 

additives based on the initial screen.   Additives which have been pre-selected for 

positive B value (and screened against denaturation using DSC) are less likely to cause 

chromatographic problems due to aggregation. 

The artificial neural network is a model of how different additives affect B value.  

Training of the ANN is performed using back-propagation.  Initial weighting of the 

neural network is randomized and a B value is calculated for each formulation using the 

random weighting.  The error is calculated between the neural network output and the 

measured B value.  This error is used to adjust the weights based on their relative 

contribution to the error.  This process is repeated to reduce error for a subset of the 

formulations with measured B value.  Overfitting of the network to the error in the 

training set is avoided by monitoring the training process with a validation set.  The ANN 

is used to calculate B values for a set of formulations not previously used to modify 

weights.  As long as the training process produces a decrease in error of the validation set 

the training continues.  When weight modification based on the training set data produces 

an increase in error of the validation set the training is halted and the previous weight set 

is identified as optimal. 

Three manuscripts are presented which track development of the HSC System 

through concept, design and implementation.  The first publication, “Applications in 
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Protein Formulation Prediction” focuses on the neural network aspect of the system.  

That is the ability of a neural network, when trained on measured B values of an 

incomplete factorial screen, to predict B values of formulations previously not measured 

by self-interaction chromatography.  The second publication, “Hazard Analysis and Risk 

Assessment in the Development of Biomedical Drug Formulations” covers the design of 

the instrument and analysis of potential hazards, both operational and physical in creating 

the HSC system.  The final publication, “Protein Solubilization: A Novel Approach”, 

demonstrates the full screening process using the HSC instrument on a pharmaceutical 

drug target.  The screen process is able to improve solubility of the target protein one-

hundred fold. 



 

24 
 

HIGH-THROUGHPUT SELF-INTERACTION CHROMATOGRAPHY: 
APPLICATIONS IN PROTEIN FORMULATION PREDICTION 

 

 

 

 

 

by 

 

DAVID H. JOHNSON, ARUN PARUPUDI, W. WILLIAM WILSON, 
LAWRENCE J. DELUCAS 

 
 

 

 

 

 

 

 

Pharmaceutical Research 26, 296–305 (2009) 

Copyright 2009 
by 

David H. Johnson 
  

Format adapted for dissertation



 

25 
 

Abstract 

Purpose. Demonstrate the ability of an artificial neural network, trained on a formulation 

screen of measured second virial coefficients, B, to predict protein-protein interactions 

for untested formulation conditions. 

Materials and Methods.  Protein-protein interactions, quantified by the second virial 

coefficient, B, are measured by self-interaction chromatography (SIC).  The B value of 

lysozyme is measured using an incomplete factorial of 81 formulation conditions.  The 

influence of screen parameters (pH, salt, additives) on B value is modeled by training an 

artificial neural network on B value measurements.  After training, the neural network is 

asked to predict the B value for the complete factorial of parameters screened (12,636 

conditions).  Twenty of these predicted values (distributed throughout the range of 

predictions) were experimentally measured for comparison.   

Results.  The neural network was able to predict lysozyme B values with a significance of 

p<0.0001 and RMSE of 2.6 mol ml / g2. 

Conclusions.  The results indicate that an artificial neural network trained on measured B 

values for a small set of formulation conditions can accurately predict B values for 

untested formulation conditions.  As a measure of protein-protein interactions correlated 

with solubility, B value predictions based on a small screen may enable rapid 

determination of high solubility formulations. 
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Introduction 

 A protein's interaction with itself and with other proteins affects important 

characteristics such as its solubility1, aggregation2 and ability to crystallize3.  

Measurement of the second virial coefficient, B4, provides one method to quantify protein 

interactions at the molecular level.  B is a measure of the entirety of two body (protein-

protein) interactions that includes contributions from excluded volume, electrostatic 

factors (attractive and repulsive) and hydrophobic interactions.  In terms of McMillan-

Meyer solution theory5, B is related to a potential of mean force, which describes all of 

the interaction forces between two protein molecules in dilute protein solution. Positive B 

values correspond to net repulsive forces between proteins and are correlated with 

increased protein solubility in solution1, 6 whereas values in the negative range 

correspond to the net attractive forces required for protein crystallization3.  Identified as 

one indicator of the physical stability of proteins in solution7, the second virial coefficient 

depends on a variety of solution formulation parameters including temperature, pH and 

the type and concentration of salts and excipients (additives). 

 The initial evaluation of a protein's function in human pathology is often 

facilitated by study of the protein's structure by means of x-ray diffraction.  The second 

virial coefficient can provide functional insight at every step in the drug discovery 

process.  George and Wilson have shown3 that proteins generally will crystallize when 

their B values are in a "crystallization slot" ranging from approximately -0.2 to -8 (x 10-4 

mol ml/g2).  This B value range represents slightly to moderately attractive forces 

between proteins, a condition that appears to be important for nucleation and subsequent 

crystal formation.  The George and Wilson crystallization slot has been confirmed by 
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several research groups on a variety of different proteins2, 8-10.  Crystallization conditions 

which fall within the crystallization slot do not necessarily produce protein crystals.  

However, crystallization conditions which fall outside the crystallization slot have protein 

interaction dynamics in which proteins either come together too quickly to form 

unordered precipitation or do not come together at all. Knowledge of a protein's B value 

in a crystallization condition could therefore be used to reduce the number of false leads 

pursued by crystallographers by the exclusion of conditions that result in protein B values 

that fall outside the crystallization slot. 

 The determination of solution conditions yielding diffraction quality crystals as 

well as low solubility and/or unwanted nonspecific aggregation of proteins expressed in 

prokaryotic and eukaryotic systems represent major bottlenecks in high-throughput 

protein structure determination11, 12.  Although there have been advances in the ability to 

recover bioactive protein from the inclusion bodies of various expression systems13 these 

techniques require customization to the protein of interest, a requirement that is not 

conducive to high throughput methods.  The mathematical relationship between the B 

value and solubility, derived by Haas et al1, indicates a marked increase in solubility with 

increasing B value.   This relationship has been validated experimentally for a variety of 

proteins1, 6, and 8.  Thus, a second application of the second virial coefficient involves its 

use as a diagnostic for protein solubility. 

 In addition to the role of solubility in protein expression and structural studies, 

various human pathologies are directly linked to solubility and protein aggregation.  

Alzheimer's disease, Parkinson's disease14 and cataracts15 are some examples of disease 

pathologies caused by abnormal protein aggregation.  Measurement of protein-protein 
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interactions quantified by the second virial coefficient has been used to determine 

aggregation likelihood16.  This implies that the second virial coefficient could be used to 

directly assess the effect of therapeutic agents (both protein and small molecule) on the 

protein-protein interactions that result in specific disease pathologies. 

 Protein solubility and stability are as important in the evaluation of therapeutic 

proteins as they are to the study of proteins involved in disease pathology.  Food and 

Drug (FDA) evaluation of a drug candidate includes two primary criteria:  solubility and 

membrane permeability17.  Not only is solubility required for membrane permeability, but 

orally active (i.e. drugs taken by mouth as opposed to injection) candidates require an 

even higher level of solubility.  In a recent overview of pharmaceutical drug screening 

techniques18 three methods of solubility screening were identified: UV absorption, 

nephelometry and flow cytometry.  These methods, developed for analysis of small 

molecules, are used to calculate current or potential solubility of a specific drug 

formulation and can be performed in a high throughput manner.  However, they do not 

directly quantify the protein-protein interactions that influence solubility and aggregation 

of protein therapeutic molecules.  A high throughput screen of second virial coefficients 

would enable rapid quantification of protein-protein interactions for a large number of 

formulation conditions. 

 Measurement of the second virial coefficient is traditionally performed using 

static light scattering (SLS)3.    SLS is an application of the same light scattering 

phenomenon used in nephelometry for determining solubility.  However, with SLS the 

scattered light is measured in increments of known protein concentration which enables 

calculation of the underlying second virial coefficient.  This traditional method of 



 

29 
 

determining B consumes a significant amount of protein and time (multiple light 

scattering readings are necessary to calculate one B value) and it requires careful 

attention to solution clarity. 

 In contrast, a second method for determining the second virial coefficient known 

as self-interaction chromatography (SIC) provides advantages to each of the constraints 

of the SLS method referenced by Tessier et al.  SIC initially requires chemical coupling 

of protein to a solid support  followed by careful packing of the support in a small 

chromatography column (70 mm long, 0.4mm ID).  Once prepared, however, the column 

is very stable and can be repeatedly used to measure B values about every 8 minutes, 

making it more applicable to high-throughput techniques.  Each measurement consists of 

flowing a mobile microgram injection of the protein across the immobilized protein 

particles using a high-precision HPLC.  The retention time of the mobile protein is 

directly related to its interaction with immobilized column protein19, thereby providing a 

direct measurement of how two proteins (bound and injected) interact with one another.  

Formulas relating the chromatographic retention time to B values can be found in 

Tessier's work20.  This technique has been successfully used with low throughput screens 

(16 conditions) to measure the interactive effects of two formulation parameters on B21. 

 In this study we measure the B value for 81 solution formulations in a high 

throughput screen using self-interaction chromatography.  The screen measures the pair-

wise effects of nine different additives on the self-interaction of the protein hen egg-white 

lysozyme.  The well known incomplete factorial experimental design technique, which 

was applied to crystallization screening by Carter22, is used to ensure wide coverage of 

the search space with a reduced number of test conditions.  The incomplete factorial 



 

30 
 

design is accomplished by mapping the parameters of interest (pH, salts, additives, 

concentrations) onto an orthogonal array23,24.  Mapping parameters to an orthogonal array 

allows equal representation of parameter levels throughout the search space while 

reducing the over 12,636 possible parameter combinations down to a reasonable screen 

size of 81 conditions.  The B values are measured to quantify the degree of lysozyme self 

interaction in each formulation. 

 The results of the screen are first analyzed by manually examining the linear and 

quadratic trends of each formulation parameter on B value.  The parameters with the 

most statistically significant effect on protein-protein interaction (B value) of lysozyme 

are identified within the screen.  These parameters with strong influence on protein 

interactions (such as NaCl) are shown to have an effect on B value regardless of the 

presence of other additives in varying formulations.  This allows for the rapid 

identification of additives which could be used to modify protein-protein interactions. 

 While a manual examination of parameter effects can identify the strong 

correlations of single parameters this initial analysis does not examine the effect of 

parameter interactions.  To analyze the effect of additive combinations on protein-protein 

interaction we model the results of the B value screen using an artificial neural network 

(ANN).  Artificial neural networks have utility when the effect of specific combinations 

of a large number of variables/parameters as well as each variable's level (i.e. 

concentration of various chemicals) must be analyzed to determine the optimal 

combination to yield a desired outcome.  The large number of potential additive 

combinations and their possible levels defines a search space that precludes manual 

inspection of the data as a reasonable method for finding the optimum parameters and 
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parameter concentrations.  Artificial neural networks are able to utilize an incomplete 

factorial subset of parameter combinations to determine correlations between discrete 

variables combinations and their respective levels.  Neural network modeling has been 

used to predict novel crystallization conditions25 and to confirm theoretical calculations 

of B for very small molecules26. 

 An ANN is essentially a set of non-linear weighted functions which map input 

variables (screen parameters) into output variables (B value)27.  The weights are 

initialized to random values which results in a random mapping of the screen parameters 

onto B values.   The subsequent process to determine optimal weights and training is 

performed by iteratively updating the weights to reduce error between the ANN output 

and observed values (B screen).  For each iteration, the ANN attempts to produce B 

values closer to the observed B values for the given input parameters.  After the training 

process is complete, the neural network model is used to produce B value predictions for 

all possible formulations of one or two additives. 

 ANN B value predictions for twenty different formulation conditions were 

experimentally validated via SIC B values of lysozyme dissolved in each condition.  The 

chosen conditions included ten from the most positive and negative B value predictions 

combined with ten spread throughout the range of predicted B values. The results 

demonstrate that an artificial neural network trained using an incomplete factorial subset 

of a total additive screen can accurately predict the second virial coefficient of previously 

untested formulations. 
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 Finally, the ANN model is compared with a more traditional generalized linear 

model (GLM).  Identical parameters used as inputs for the artificial neural network are 

included for consideration by the GLM.  In the stepwise procedure the GLM uses an 

iterative process to determine which parameters significantly influence the second virial 

coefficient.  For GLM analysis, the gradual process of ANN weight determination during 

each iteration is replaced by linear regression to calculate optimal linear model 

coefficients.  The significance of each parameter is considered during each iteration, with 

new parameters added or removed based on a predetermined alpha value threshold.  Once 

significant parameters are identified by this stepwise process, linear model coefficients 

are calculated by linear regression.  The GLM, like the trained ANN, can be used to 

predict the B values of untested formulation conditions.  Comparison of the GLM 

predictions to the ANN predictions indicates that, for this application, the ANN produces 

a more accurate and robust model than the GLM. 

 

Materials and Methods 

Screen Conditions 

 Hen egg-white lysozyme was purchased from Calbiochem.  The chromatography 

particles, Toyopearl AF-Formyl-650M, were purchased from Tosoh Bioscience.  Buffer 

formulation chemicals include glycerol, glycine, glutamic acid, mannitol, sodium citrate, 

sodium acetate and acetic acid; all purchased from Fisher Scientific.  Additional 

formulation chemicals PEG4000, MPD and trehalose were purchased from Sigma-

Aldrich under the Fluka brand name.  Sigma-Aldrich was also the source for 
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chromatography bead capping agent, ethanolamine, as well as the formulation chemicals 

Na2SO4, Na HEPES, HEPES acid and citric acid.  The final two formulation chemicals, 

succinic acid and arginine, were purchased from Acros Organics. 

 Each of the 81 solution formulations contain buffer, salt and one or two co-

solvents listed in Table I.  The identity of each formulation was determined by mapping 

these parameters onto an orthogonal array design as described by Sloane, et. al.(Sloane).  

This mapping produces formulation targets in which each pair of variables are equally 

represented throughout the screen (thereby producing a balanced screen with respect to 

the influence of individual parameters). 

 

 

Table 1. List of additives, salts and buffers utilized in the formulation screen. 

Buffers Salts Additives 
Acetate (pKa 4.7) NaCl Arginine Sucrose MPD 

Succinate (pKa 5.6) NaCitrate Glutamic Acid Mannitol PEG4000 
MES (pKa 6.1) Na2SO4 Glycine Trehalose Glycerol 

HEPES (pKa 7.5)     
 

 The water source for formulations was pre-filtered at 18MΩ by a Millipore 

MilliQ system with trace sodium azide added to retard bacteria growth. Sodium and acid 

forms of 0.1 M buffers are mixed at their pKa in the presence of co-solvents (except in 

the case of the succinic buffer which was adjusted to pH with NaOH).  The pH of each 

solution was confirmed via a Corning 430 pH meter with the final pH adjusted solutions 

filtered (0.22µm (Fisher Scientific) syringe filter) and stored at room temperature. 
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Protein Immobilization 

 Lysozyme (LYZ) was immobilized to AF-Formyl-650M beads as described by 

Valente et al28 with only slight modification.  One ml of 1M K2HPO4 at pH 7.0 was 

added to 350µl of AF-Formyl-650M beads followed by centrifugation (bench-top, 30 

seconds 7k rpm).  The wash was performed an additional two times to remove excess 

packing buffer. LYZ (5mg) was dissolved in the phosphate buffer and incubated with the 

beads.  Fifteen mg of sodium cyanoborohydride was added to the bead mixture to 

activate the binding chemistry and mixed via rotary mixer at room temperature for 90 

minutes.  A 5µl sample of the supernatant containing unbound LYZ was diluted with 

45µl of 0.1M sodium acetate buffer pH 4.7 and assayed via a bicinchoninic acid (BCA) 

assay (Thermo Scientific).  The beads were centrifuged and washed twice with phosphate 

buffer plus 5% (w/v) NaCl to remove any remaining LYZ.  After binding and washing, 

unreacted formyl groups were capped by adding 1ml of 1M ethanolamine at pH 8.0 and 

10mg sodium cyanoborohydride, followed by additional rotary mixing for 90 minutes.  

After this final step of immobilization the beads were washed twice with 1mL of the 

sodium acetate buffer. 

 

Self-Interaction Chromatography 

 Immobilized beads were packed into a micro-column consisting of teflon FEP 

tubing (i.d. 0.03", o.d. 1/16") and blocked at one end by a stainless steel frit (Valco).  

Two 1.1cm lengths of the packed tubing (~5µl each) were cut from the packing end, 
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diluted with 45µl of sodium acetate buffer and assayed using the BCA assay (Pierce 

Biotechnology) to determine protein binding density on the column.  The packing end of 

the column was then cut to 18cm length, sealed with an additional frit and stored with the 

0.1M sodium acetate buffer pH4.7 at 4 °C when not in use.  A second column, referred to 

as the dead column, was packed with beads that have been subjected to only the capping 

portion of the immobilization procedure.  Acetone was used as a non-interacting void-

volume marker and was dissolved in water at 3% (v/v) for injections.  The protein 

injection solution consists of 5mg of lysozyme dissolved in 1ml of each of the four 

separate 0.1M buffers (Table I). 

 All chromatograms were generated using a High Performance Liquid 

Chromatography (Shimadzu) system consisting of two pumps, an autosampler for sample 

injection, column oven, 280nm UV detector and software for automatic retention-time 

calculation.  Each screen formulation was run through the column at 60 µl/min and the 

auto-sampler was used to inject 1µl of the 5mg/ml LYZ solution in buffer identical to the 

formulation buffer applied to the column.  Column temperature was maintained at 23 °C.  

Injections were performed in triplicate over the same column and B values measured for 

the entire 81-condition screen on two columns with final B values averaged for each 

column.  Solutions with outlying (1.5*IQR) variance (N=9) between two columns were 

measured on a third column.  If the B of two columns were within the average standard 

deviation between 2 columns (1.7 B units) the disagreeing measurement was excluded.  

Sample chromatograms shown in Figure 1 demonstrate the influence of NaCl on 

retention time measured at peak elution. 
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Figure 1. Retention times for lysozyme in 5% NaCl and 0% NaCl in 0.1M sodium acetate 
buffer demonstrates the affect of NaCl on lysozyme self-interaction.  The retention time 
for 3% acetone in the same buffer with 5% NaCl provides a reference point for 
conversion of retention times to B values. 

 

 In the primary equation used to calculate B values, Eq. 1,  NA is Avagadro's 

number and MW is the molecular weight of the protein.  The phase ratio, ϕ, is the ratio of 

the available surface area per unit of null volume and has been calculated for a variety of 

different chromatography particles29. 
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The density of protein immobilized on the column is rho.  The variable k' is the 

chromatographic retention factor calculated from the protein retention time (tr) and 

acetone retention time (t0) given by the equation: 
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In this equation, Eq. 2, the acetone retention time (t0) acts as a non-interacting marker to 

establish the relationship between non-interacting molecules with bound protein 

compared to interacting molecules with bound protein. 

 

Static Light Scattering 

 The traditional static light scattering (SLS) experiment requires measurement of 

the scattered light intensity from a protein solution in excess of background as a function 

of protein concentration.  We have modified the traditional SLS experiment in two 

important ways in order to minimize both time and protein required for a single B 

measurement30.  The first modification is the incorporation of a low volume (~ 1 μL) 

scattering cell.  The second modification is a configuration allowing the simultaneous 

measurement of scattering intensity and protein concentration.  In short, this is 

accomplished by using a bifurcated fiber to deliver both the incident laser beam for 

scattering and the incident UV beam for absorption (protein concentration) 

measurements.  The advantage of this configuration is that the simultaneous measurement 

of light scattering intensity and protein concentration allows the determination of the 

second virial coefficient from a single injection of protein sample into a flow system.   

Typically, 5 – 10 µl of protein solution at 1 – 2 mg/ml protein concentration were 

required for a single B measurement. 
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 The intensity and concentration data were treated according to the SLS working 

equation31: 

B
MR

K c 21

9 0

+=  (3) 

where K is an optical constant (cm2 mol g-2) given by K = 4 2 (dn/dc)2 no
2 / (NA 4), c is 

the protein concentration (g cm-3), R90 is the Rayleigh factor (cm-1) at angle 90 , M is the 

molecular weight of the protein (g mol-1), B is the second virial coefficient (mol ml g-2), 

dn/dc is the refractive index increment (cm3 g-1), n0 is the solvent refractive index, NA is 

Avogadro’s number (mol-1), and  is the wavelength        

vacuum.  According to Eq. 3, a plot of Kc/R90 vs c (often called a single angle Zimm 

plot) linearizes the SLS data and B is determined from the limiting slope. 

 

Artificial Neural Network (ANN) 

 Artificial neural network modeling was performed using the Java Object Oriented 

Neural Engine (JOONE)32.  Figure 2a shows the overall network topology of the neural 

network used in this study including inputs, node configuration and B value output.  Each 

node represents a nonlinear transformation of inputs and is grouped into one of two layers 

according to distance from the input parameters.  Regardless of position in the topology, 

the output of each node is calculated by two steps shown in Figure 2b.  First a weighted 

sum of inputs to the node is calculated, z.  The hyperbolic tangent is taken of this 

weighted sum to calculate node output.  Each node in layer 1 takes as input all 

formulation parameter while each node in layer 2 takes all outputs from layer 1 as input.  



 

39 
 

The final B value output is calculated as a simple weighted sum of layer 2 outputs 

without a nonlinear transformation.  This permits the range of output values to match the 

range of screened B values rather than the (-1,1) range of the hyperbolic tangent function.  

Through calculation of each layer's outputs in sequence this architecture is able to 

estimate a B value for a given set of condition formulation parameters.  The weights 

associated with each input node are the variables subject to training thereby creating a 

network function that most accurately represents B values over all given formulation 

parameters. 
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Figure 2. The artificial neural network topology (a) uses parameters of a single 
formulation as input to each node in Layer 1.  Each node's output (b) is calculated by an 
activation function (tanh) whose input is a weighted sum of the node input.  The output of 
nodes in layer one are forwarded as the input to Layer 2.  The output of nodes in Layer 2 
are weighted and summed to produce a B value prediction based on the input 
formulations. 

 

 This architecture (input vector, layers, and output) is generally referred to as a 

feed-forward multilayer perceptron and is capable of modeling a continuous function to 

arbitrary accuracy given a sufficient number of nodes27.  Arbitrary accuracy is apparent if 

one considers a network topology containing one node for each formulation condition 

(N=81).  After training the weight parameters, the response of each node could represent 
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the measured B value for each specific formulation condition.  Such an exact fit to the 

screen would result in over-fitting to the error inherent to the screen and would therefore 

not provide a good generalized response to formulation conditions outside the screen on 

which it is trained. 

 To address the problem of over-fitting we split the set of screen conditions into a 

training set (90%) and a validation set (10%).  During training the weights are iteratively 

adjusted using the gradient decent algorithm of back-propagation.  This algorithm assigns 

an error contribution and updates each weight based on the root mean square error 

(RMSE) between the neural network output and the measured second virial coefficient 

for each formulation condition in the training set.  RMSE is also calculated between the 

neural network output and measured B values in the validation set for each iteration.  

This validation RMSE is not used to improve weight values, but instead acts as the basis 

for deciding when to terminate the training procedure.  The network weights are fixed at 

the minimum validation RMSE over a fixed number of iterations (1000).  Validation set 

RMSE is also used as a measure of how well a network topology is able to generalize to 

untested formulation conditions.  All network topologies from 1x1 to 6x6 nodes were 

evaluated by a validation set RMSE to determine the 3x2 network topology used for this 

study.  Further details about neural network algorithms and methods can be found in 

Bishop's review27 of the subject as well as in the JOONE software documentation32. 
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Stepwise Generalized Linear Model (GLM) 

 The stepwise generalized linear model was performed using the JMP33 statistical 

software package.  The neural network inputs shown in Figure 2 were also the parameters 

used for the GLM.  However, with GLM interaction and higher order terms must be 

explicitly identified for consideration.  In addition to the neural network inputs, all 

pairwise interactions and square terms of the formulation screen were included for 

consideration.  The stepwise algorithm was configured to include terms with a 

significance of alpha < 0.20 with higher order and interaction terms restricted to only 

those whose lower order terms were also significant.  

 

Prediction Verification 

 The second virial coefficient for all combinations of buffer, salt and a maximum 

of two excipients (12,636 conditions) were predicted by the trained ANN.  Five 

conditions from the most positive B values and five of the most negative B values as well 

as ten equally spaced throughout the range of predicted B values were selected for 

experimental confirmation.  These 20 verification formulations (not included in the 

training process) were prepared and B values experimentally measured using the identical 

method as the original 81 screen conditions. 

 The question of whether 81 screen conditions are necessary or whether a smaller 

subset would suffice was addressed by evaluating the ability of the neural network to 

predict the verification B values while training on a reduced set of the initial screen.  First 

a condition was randomly removed from the original training set of the neural network.  
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The training process described above was repeated on the reduced training set with the 

same validation set size remaining constant (deemed a valid indication of the overall 

population).  Then the neural network, trained on a reduced set of the original 81 

condition screen, was used to calculate predictions for the verification B values.  

Progressively reducing the sample size, followed by training and prediction, allows error 

as a function of sample size to be evaluated. 

 To determine how sample size affects neural network B value predictions, the 

validation set was kept constant while iteratively removing a random condition from the 

training set.  As there is no consensus in the literature as to how this type of analysis 

should be performed a constant validation set was chosen as a good measure of the ability 

for the network to generalize.  In keeping the same validation set through repeated 

reductions in the training set size we are able to see how available training data 

influences accuracy. 

 

Results and Discussion 

Confirmation by Static Light Scattering 

 A strong correlation (r=0.97) between static light scattering and self-interaction 

chromatography was observed (Table II) for ten test conditions as has been previously 

reported by other laboratories20,28.  The primary differences between the two 

measurements were found with very positive values.  Values in this range were expected 

to exhibit greater error since large positive B values have been shown to correspond to 

very high levels of solubility1, 6. Thus a small difference in B value represents a larger 
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difference in solubility.  Therefore, from a practical perspective all high positive B values 

represent regions of high protein solubility even though individual B value errors are 

larger in this region. 

 

Table 2.  Comparison between B values measured by static light scattering (SLS) and 
self-interaction chromatography (SIC). 

Condition ID SLS Ba SIC Ba 

9 9 9.3 
24 -1.4 -1.3 
27 14 11 
35 9 5.3 
36 1.4 2.1 
39 -1.4 -1.3 
46 -0.5 0.0 
60 7 7.7 
72 3.7 3.8 
79 -5 -3.6 

a measured in * 10-4 mol ml / g2 

 
 

Screen Results 

 The full screen of 81 formulation conditions demonstrates some characteristics 

expected of lysozyme.  For example, the mean B of the screen is positive 1.1 which is 

reflective of the general soluble nature of lysozyme. Additionally, a majority of the 

formulation conditions (55%) reside in the crystallization slot identified by George and 

Wilson3 (George) which is approximately [-8,-0.2] x 10-4 mol ml/g2.  This is indicative of 

the ease with which lysozyme crystals are formed.  It is also of interest to note that the 

average standard deviation between measurements was 1.7 x 10-4 mol ml/g2.  This 
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suggests that B measurements produced using self-interaction chromatography are 

reproducible throughout a large range of different solution conditions. 

 Interesting trends are also observed when viewing the influence of a single 

parameter throughout the screen.  Figure 3 shows a graph of B value vs three individual 

parameter concentrations.  The variation between plotted B values at a fixed 

concentration is due to the fact that other additives change with each condition.  Error 

bars around each point indicate the error from measurement to measurement for each 

specific formulation.  The increasing lysozyme self interaction (decreasing B) with 

increased concentration of sodium chloride (Figure 3a) is expected and has been 

demonstrated in other studies by both SIC and SLS28.  At the mid and high concentrations 

of NaCl, four of the five conditions with positive B values contain MPD.  This combined 

with the fact that MPD shows a trend (Figure 3b) of decreasing lysozyme self interaction 

(increasing B) with increasing concentration identifies MPD as a potential solubilizing 

agent for lysozyme.  Quadratic relationships between additive concentration and B value, 

such as that apparent in glycine (Figure 3c) could also indicate an additive which might 

help stabilize protein self-interaction at a specific level.  These single factor cross 

sections are useful for identifying individual additives which have a strong influence on 

B value.  However, the prediction capability of single variable linear and quadratic 

regression models is obviously not sufficient to capture the variability in protein-protein 

interactions caused by formulations with multiple additives. 
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Figure 3.  Response of B value for lysozyme by (a) NaCl (F-test;df=1;p=0.0006) ,  (b) 
MPD (F-test;df=1;p=0.001) and (c) Glycine (F-test;df=2;p=0.006) throughout all screen 
conditions containing the additive of interest.  Error bars represent standard error between 
SIC measurements between whereas variability between points at a fixed additive 
concentration is attributed to changes in formulation parameters outside the additive of 
interest.  Scatter along the abscissa is added to prevent overlapping of error bars. 

 

 

Modeling and Prediction Results 

 The neural network trained on all conditions, except for 9 (10%) reserved for 

validation, produces a model which predicts the original screen with a RMSE of 1.7 x 10-

4 mol ml/g2.  This is equal to the observed average standard deviation between measured 

B values and reinforces the notion that early termination of training based on the 

validation set error prevents over-fitting of the screen.  Upon completion of training, the 

neural network is used to predict B values for all possible variable combinations with one 

or two additives (12,636 formulation conditions).  From this entire number of predictions, 
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twenty predictions were chosen for verification.  These twenty conditions were chosen to 

represent the entire solubility range, with some from the most positive and negative 

predicted B values.  These formulation conditions and their predicted second virial 

coefficients are shown in Table III.  The experimental formulations in Table III were 

prepared and their effect on lysozyme’s second virial coefficient measured via SIC.  The 

plot of measured B values versus ANN predicted values in Figure 4 demonstrates that the 

neural network is able to predict second virial coefficients with an accuracy of 2.6 x 10-4 

mol ml/g2. 

 

Table 3. ANN Predictions of 20 formulations selected for verification. 

Buffer Salt Excipient 1 Excipient 2 Predicted Ba 

 
0.1M HEPES 0.5M NaCl 0.04M Glycine 0.04M Arginine -6.0 
0.1M Succinate 0.5M Na2SO4 0.06M Glycine 0.2M Mannitol -5.8 
0.1M HEPES 0.5M NaCl 0.04M Glutamic Acid 0.3M Mannitol -5.5 
0.1M Acetate 0.5M Na2SO4 0.06M Glycine 0.1M Sucrose -5.1 
0.1M MES 0.5M NaCl 0.3M Mannitol 0.2M Trehalose -5.1 
0.1M Succinate 0.5M NaCl 0.06M Glycine 0.3M Sucrose -3.6 
0.1M HEPES 0.5M Na2SO4 0.06M Arginine 0.1M Mannitol -2.6 
0.1M HEPES 0.1M Na2SO4 0.02M Arginine 0.1M Mannitol -1.8 
0.1M Succinate 0.5M NaCl 0.3M Trehalose 5% MPD -1.1 
0.1M Succinate 0.5M NaCitrate 0.02M Glycine 0.3M Sucrose -0.4 
0.1M Acetate 0.3M Na2SO4 0.06M Arginine 0.2M Trehalose 0.4 
0.1M Acetate 0.1M NaCl 0.06M Arginine - 1.5 
0.1M Succinate 0.1M Na2SO4 0.2M Mannitol 10% PEG4000 2.8 
0.1M MES 0.3M NaCl 15% MES - 4.4 
0.1M HEPES 0.3M NaCl 10% MPD 9% Glycerol 6.8 
0.1M MES 0.3M NaCitrate 9% Glycerol 10% PEG4000 9.1 
0.1M MES 0.3 NaCl 0.04M Glycine 15% PEG4000 9.3 
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0.1M MES 0.1M Na2SO4 0.06M Glycine 15% MPD 9.8 
0.1M HEPES 0.3M NaCitrate 0.1M Trehalose 15% MPD 13 
0.1M HEPES 0.3M NaCitrate 10% MPD 10% PEG4000 14 

a measured in * 10-4 mol ml / g2 

 
 

Figure 4. ANN predicted B value vs measured B values of the 20 verification 
formulations (F-test;df=1;p<0.0001;RMSE=2.6 x 10-4 mol ml/g2). 

 

 Sample size plays a role in how accurately the ANN model is able to predict 

untested formulation conditions.  Figure 5 shows that the prediction error of ANN 

increases as the size of the available training set decreases.  Although prediction error 

increases as training size decreases an error of 3 B units is still attainable with a sample 

size of 45 screen conditions.  Also, while prediction error decreases as training size 

increases the error reduction appears to diminish with a larger sample size.  However the 

curve does not completely flatten suggesting a screen size of over 100 conditions could 

permit ANN prediction with an error closer to 2 B units. 
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Figure 5. ANN RMSE vs sample size.  Incremental reduction in sample size shows an 
increase in error for artificial neural network predictions of the 20 verification 
formulations.  Dashed line indicates the error between B value measurements by SIC 
between columns (1.7 mol ml / g2). 

 

 The standard generalized linear model provides a comparison of the ANN with a 

standard linear regression technique used for data analysis/predictions.  The terms of the 

GLM were determined by considering all single terms, interaction terms and square terms 

and incrementally adding the most significant remaining parameter until there are no 

more parameters with a significance of alpha < 0.20.  The GLM parameters and their 

significance level generated by this method are listed in Table IV.  This table 

demonstrates one benefit of the GLM over ANN.  Incremental analysis of each parameter 

produces a list of significant factors.  This helps identify specific formulation parameters 

which could increase solubility.  However, when predicting the second virial coefficient 

of protein in previously unformulated conditions the GLM does not perform as well as 

the ANN.  The plot in Figure 6 shows the same 20 measured B values for ANN 
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validation versus the GLM predictions.  Although both predictions are statistically 

significant (F-test;df=1;p<0.0001), the GLM is accurate with a RMSE of 3.3 x 10-4 mol 

ml/g2 which implies the ANN is approximately 25% more accurate than the GLM.  

However both techniques are be useful for formulation prediction based on a small subset 

of conditions. 

 

Table 4. Additives with statistically significant influence as determined by stepwise 
GLM. 

Factor p-value Magnitude 
Glycine < 0.0001 -1.5 
MPD < 0.0001 2.5 
NaCl < 0.0001 1.4 
PEG4000 < 0.0001 2.1 
Arginine 0.0001 -1.3 
Citrate 0.0004 0.5 
Mannitol 0.0127 -0.6 
Glycerol 0.0562 -1.4 
Glycine * PEG4000 < 0.0001 1.7 
Arginine * Glycine 0.0002 -2.2 
NaCl * MPD 0.0099 -0.5 
NaCl * Mannitol 0.0154 -0.4 
Citrate * Glycine 0.0272 0.3 
Citrate * Mannitol 0.1573 -0.2 
Glycine * Glycerol 0.1685 -0.5 
NaCl2 < 0.0001 -0.7 
Glycerol2 0.0108 1.0 
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Figure 6.  GLM predicted B values vs measured B values of the 20 verification 
formulations (F-test;df=1;p<0.0001;RMSE=3.3 x 10-4 mol ml/g2). 

 

 

 

Limitation 

 A limitation of this screen and formulation prediction technique is in the ability to 

predict formulation conditions with parameter concentrations well outside the screened 

range.  The inability for statistical models to extrapolate results outside their original 

input range is well known.  This implies that the range of pH and salt/additives 

concentrations must be chosen based on an estimation of the effective range for each 

parameter.  For example the pH range of interest might be a region in relation to the 

expected pI of the protein.  It is important to note that once parameter ranges are 

determined the screen and resulting statistical models will not be able to predict the B 
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value of formulations with parameters significantly outside these ranges.  However, this 

does not diminish the fact that the statistical models can accurately predict the B value of 

a large number of novel formulation conditions based on parameter combinations not 

measured in the original screen. 

 

Conclusions 

 As hypothesized in previous publications9,21,25, high throughput screening of 

second virial coefficients shows promise for evaluating the interactions of proteins in 

solution.  We have demonstrated that an incomplete factorial screen combined with a 

neural network model can be used to accurately predict second virial coefficients for 

untested formulations.  A B value screen of only 81 formulation conditions was used to 

predict the B values for 12,636 possible formulations with an accuracy of 2.6 * 10-4 mol 

ml / g2.    These preliminary studies suggest that a high-throughput chromatographic SIC 

system with increased automation may enhance and accelerate determinations of the 

optimum conditions that improve the physical solubility/stability of drug formulations.  It 

also suggests that the same technology may be useful to predict formulation adjustments 

required for optimized protein expression and/or crystallization. 

 The current time required to run self-interaction chromatography in triplicate is 

approximately 30 minutes.  While 30 minutes per experiment by SIC is much faster than 

previous SLS methods20, the use of B values for these applications would benefit 

significantly by increased throughput via parallelization, robotic automation and 

integration of analysis techniques into a single platform. 
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Abstract 

 Hazard analysis and risk assessment techniques are utilized within many private 

sector industries and government agencies, including the medical device and 

pharmaceutical industry, within a structured process to control human injuries and 

environmental and property damage. In the U.S. the Federal Drug Administration (FDA) 

requires a hazard analysis be performed on all medical devices.  While there are 

biomedical engineering applications reported which deal with human hazards in clinical, 

patient care environment, no previous studies extend these traditional techniques to a 

university-based, research environment.  This study applies a tiered approach to hazard 

analysis and risk assessment to a biomedical, university-based, research environment in 

the design of a high throughput platform that screens chemical excipients (additives) for 

their ability to increase protein solubility.  Each design stage (conceptual, preliminary, 

system and detailed) requires a unique hazard analysis technique based on available 

information.  The analysis techniques applied here are evaluated for their use in a 

biomedical research environment where experiment accuracy is a primary concern. 

 

Key Terms: hazard analysis, risk assessment, risk reduction, failure mode effects 

analysis, ANSI, GEIA, self-interaction chromatography 
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Introduction 

 Hazard analysis and risk assessment techniques are utilized within many private 

sector industries and government agencies, including the medical device and 

pharmaceutical industries1,5,8. A hazard is most generally defined as a potential source of 

harm1 and more specifically, a source of physical harm to people, property and/or the 

environment 7.  A hazard may also refer to an interruption in function or operations.  In 

hazard analysis, potential sources of physical and/or functional harm are identified, 

prioritized and mitigated in a structured manner.  The practical goal of hazard analysis is 

to identify ways to reduce risk to an acceptable level where the next incremental 

reduction in risk potential is not justified by the cost of further risk reduction 7.  To 

determine this threshold for deciding against further action,  the potential risk associated 

with each hazard must be identified and analyzed – a process known as “risk 

assessment.”  The risk associated with a given hazard is a function of both the severity of 

potential outcome from the hazard, as well as, the expected probability that an incident 

(harm) will occur.  Risk assessment focused on the probability of failures is well 

established in probabilistic risk assessment and fault tree analysis.  Thus, risk assessment 

based on objective analysis of hazard severity and probability of occurrence can provide 

an important guide to determine the amount of resources that should be effectively 

invested in reducing a given risk, as well as, identifying unacceptable risk.   

The risk assessment process involves four discreet steps over the entire lifecycle 

of a system after program initiation (Figure 1).  These include (1) hazard identification, 

(2) risk assessment, (3) risk reduction and (4) risk acceptance.  The process also requires 

continuous hazard tracking.  
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FIGURE 1:  The Risk Assessment Process (Adapted from ANSI/GEIA-STD-00101) 

 

Identifying hazards is the first step in the risk assessment process.  The field of 

system safety relies upon seven basic hazard analysis types, which provide the 

framework for over one hundred different hazard analysis techniques. [Ericson4, p.31] A 

hazard analysis type establishes a specific analysis task at a specific time in the program 

or system life cycle, whereas, a hazard technique establishes a specific and unique 

analysis methodology.  The seven basic hazard analysis types and common analysis 
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techniques associated with those types are provided in Table 1.  A comprehensive review 

of the benefits and limitations of each technique can be found in Ericson4. 

Table 1: Common Hazard Analysis Types and Techniques (Ericson, p. 48) 

Primary Analysis Technique Hazard Analysis Type 
Preliminary Hazard List                           

(PHL) 
Conceptual Design Hazard Analysis Type  

(CD-HAT) 
Purpose is to compile a list of hazards very 
early in the system development life cycle 

 
Preliminary Hazard Analysis  

(PHA) 

 
Preliminary Design Hazard Analysis Type   

(PD-HAT) 
Purpose is to identify system-level hazards and 

to obtain initial risk assessment of a system 
design 

 
Failure Mode & Effects Analysis (FMEA); 
Hazard and Operability Analysis (HAZOP) 

 
Detailed Design Hazard Analysis Type 

(DD-HAT) 
Purpose is to identify single-point failures in 

an analysis of the detailed design. 
 

Functional Hazard Analysis (FuHAT); 
Fault Tree Analysis (FTA); Event Tree 

Analysis (ETA) 

 
System Design Hazard Analysis Type 

(SD-HAT) 
Purpose is to evaluate the integrated system 

design and identify subsystem interface 
hazards 

 
Operations & Support Hazard Analysis 

(O&SHA) 

 
Operations Design Hazard 

(OD-HAT) 
Purpose is to evaluate operations and support 
functions involved with the system, including 

consideration of human limitations 
 

Health Hazard Assessment  
(HHA) 

 
Health Design Hazard Analysis 

(HD-HAT) 
Purpose is to identify human health hazards 

 
Safety Requirements/Criteria Analysis  

(SRCA) 

 
Requirements Design Hazard Analysis   

(RD-HAT) 
Purpose is to verify and validate the design 

safety requirements and ensure that no safety 
gaps exist in written requirements 
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 The time period for performing specific hazard analysis techniques in an 

engineering development life-cycle is illustrated in Figure 2. The timeframe for three 

significant design review meetings is also shown in Figure 2. 

 

Figure 2: Overall timing of hazard analysis types in the life cycle of an engineering 

design. 

 

The Functional Hazard Analysis (FuHA) technique, a system design hazard 

analysis type, is particularly well suited for use in the laboratory research environment. 

The primary purpose of FuHA is to identify hazards through an analysis of a system’s 

functions. Outcomes from a FuHA include the consequences of a system function, which 

fails to operate, operates incorrectly and/or operates at the wrong time. A safety critical 

function is defined as “any function whose failure or misbehavior could result in 

death/injury and/or system loss.” [Ericson4, p. 478] While FuHA is common in aerospace 
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and military applications, the technique is mentioned in neither ISO international 

standards, nor FDA regulations and guidance documents.  To the authors’ knowledge, the 

FuHA has not been previously applied in the field of biomedical engineering, in general, 

and research laboratories, in particular.  Functional hazard analysis can provide a tool for 

structured identification and robust evaluation of those hazards (experimental variables 

and/or design issues), which can adversely affect the validity of research findings. 

 

Purpose 

The purpose of this study was to conduct a risk assessment on a novel, custom-

designed system for the development of biomedical drug formulations and in doing so, 

demonstrate the applicability and utility of functional hazard analysis in biomedical 

engineering design. 

 

Methods 

 In this study, we assessed the risks associated with a custom-designed, high 

throughput platform designed to screen chemical excipients (additives) for their ability to 

increase protein solubility (“System”).   This system involves a university-based, 

biomedical research laboratory, which specializes in the development and optimization of 

protein drugs, which play a role in many disease therapies, including insulin and 

antibody-targeted chemotherapy. A brief review of the scientific principles in this 
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research is necessary in order to appreciate the need for and ultimate conclusions reached 

from a comprehensive hazard analysis and risk assessment process. 

A key component of drug design is an understanding of the interactions between 

protein molecules.  These interactions between proteins are critical to both the solubility 

of proteins and their abililty to crystallize.  Slight attraction between protein molecules is 

required for protein molecules to gently come together to form a crystal lattice and when 

combined with xray diffraction analysis, provides the most accurate way to determine the 

structure of protein molecules.  Knowledge about a protein structure is useful for the 

determination of that protein's function in the body and for the understanding of how 

protein defects can cause disease states in humans.  While slightly attractive forces 

between protein molecules are necessary for crystal formation, repulsive forces between 

molecules are associated with increased solubility.  Protein drug therapies that aggregate 

can reduce the efficacy of the drug and potentially cause an immune response in 

patients11.  Therefore, the U.S. Food and Drug Administration (FDA) requires protein 

drugs to be soluble and physically stable at a high concentration.  The identification of 

formulations in which protein molecules repel each other is a critical step to produce safe 

and usable protein drug therapies. 

 A novel design for a high-throughput self-interaction chromatography (HSC) 

machine was conceived and developed by the authors to rapidly determine the influence 

of chemical formulation excipients on protein-protein interactions.   This information is 

used to identify high solubility or slightly insoluble formulations depending on whether 

or not the application is protein drug therapeutics or structure studies by x-ray 

crystallography, respectively.  Excipient influence on protein self-interaction is 
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established in two stages: the excipient screen and excipient influence analysis.  During 

the screening process each excipient formulation is sequentially delivered to a custom, 

four-channel, liquid chromatography system.  The conception and development of the 

hardware and software to measure protein-protein interactions in a variety of formulation 

conditions was defined as the system for this hazard analysis and risk assessment.   

A schematic diagram of the formulation flow system is illustrated in Figure 3.  

The main formulation pump drives the formulation to be analyzed through the system.  

When withdrawing a formulation, the formulation valve is switched to the reservoir tray 

located on the formulation platform (Figure 4). There is an option valve which can 

deliver the formulation through either an acetone (control) or protein injection valve 

depending on which fluid is to be injected.  When a protein is injected, the protein 

injection valve switches the flow from the formulation pump through the column to the 

protein pump through the column.  The same procedure occurs for injection of acetone 

using the acetone injection valve and acetone pump.  After injection the injection pump 

switches back to allow the formulation pump to push formulation (with a bolus of protein 

or acetone) through the system.  The injected volume flows over the column, and is 

detected by UV absorbance after the column. The time required to push the protein 

through the column compared to the non-interacting marker at the same flow rate is used 

to calculate the B value.  Longer retention times of the protein compared to the non-

interacting marker correspond to greater protein-protein interactions and more negative B 

values. 
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Figure 3:  High-Throughput Self-Interaction Chromatography (HSC) flow diagram  
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Figure 4:  Formulation platform diagram 

 

Four hazard analysis techniques were used in conducting the system risk 

assessment: (1) Preliminary Hazard List (PHL), (2) Preliminary Hazard Analysis (PHA), 

(3) Failure Mode Effect Analysis (FMEA), and (4) Functional Hazard Analysis. These 

four techniques corresponded to the Conceptual Design, Preliminary Design, Detailed 

Design and System Design hazard analysis types, respectively.  They were chosen to 

correspond to the current state of the System; the Concept and Development stages of the 

system life cycle are completed (refer to Figure 2). The detailed methodology for the 

PHL, PHA and FMEA techniques are well accepted and published in the biomedical 
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literature and standards1-10,12,13.  The methodology associated with the Functional Hazard 

Analysis technique is provided in Table 2. 

Table 2:  Functional Hazard Analysis Methodology (Ericson, p 274) 

Step Task Description 

1 Define operation 
Define the scope and boundaries of the operation under 
study.  In this study, the scope was both hardware and 
software associated with the system. 

2 Acquire data 

Acquire detailed operational data for the system, which 
includes schematics, walkthroughs, manuals, standards, 
etc. In this study, all of the above were utilized for the 
FuHA 

3 List functions 
Create a detailed list of all functions to be considered in 
the FuHA.  This study evaluated both hardware and 
software system functions. 

4 Conduct FuHA Evaluate the effect of each functional failure mode in the 
system function list. 

5 Evaluate system 
risk 

Identify the level of mishap associated with each of the 
hazards.  This study utilized the risk assessment matrix 
provided in Table 3. 

6 Identify safety 
critical functions 

Identify those functions, which are considered safety 
critical.  In this study, those functions  relate to people, 
property and experimental accuracy 

7 Recommend 
corrective action 

Recommend corrective action.to eliminate or mitigate the 
hazards related to people, property and experimental 
accuracy 

8 Monitor corrective 
action 

Review design requirements to ensure that appropriate 
corrective action is being taken.  In this study, corrective 
action was evaluated and taken at the preliminary design 
stage. 

9 Track hazards Record hazards in appropriate hazard tracking system. 
10 Document FuHA Document the FuHA process on worksheets. 

 

Two approaches were used to identify preliminary hazards: a walkthrough of how 

the system is typically used and a review of mandatory, government standards.  

Regulations, which were reviewed, included the FDA’s ISO 17941, Environmental 

Protection Agency's (EPA) Good Laboratory Practice Standards 5 and the Occupational 



 

68 
 

Safety and Health Administration's (OSHA) standard for Toxic and Hazardous 

Substances 9.   

Table 3:  Risk Assessment Matrix 

 
FREQUENCY 

 
SEVERITY 

Catastrophic (1) Critical (2) Marginal (3) Negligible (4) 
Frequent (A) 1 2 4 7 
Probable (B) 3 5 8 11 
Unlikely (C) 6 9 12 14 

Improbable (D) 10 13 15 16 
 

 According to ANSI/GEIA-STD-0010-2009, severity and probability 

measurements can be evaluated on either a subjective (qualitative) or quantitative scale1. 

A 4x4 quantitative risk assessment matrix was used for all analyses (Table 3).  Severity 

and frequency scales utilized in this study reflect the potential harm to people, equipment 

and experimental accuracy (Tables 4 and 5).  The human injury severity scale was based 

on OSHA reportability requirements (an injury requiring more than first aid).  Hazard 

severity relative to equipment were defined on the basis of the replacement cost of a 

specific piece of damaged equipment with the minimum and maximum values 

established commensurate with the operational budget of our specific research 

environment.  Hazards to experiment accuracy were identified using functional hazard 

analysis (FuHA) and based on the ability of the system to collect accurate data during a 

screen of 80 formulation conditions. 

Table 4. Hazard severity to Humans, Equipment and Experiments 

Category Human Equipment Experiment* 

Catastrophic (1) 
Serious disability, 
death > $50,000 

Invalidate > 32 
conditions (40%) 
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Critical (2) 
Multiple days lost, 
minor disability < $50,000 

Reduced resolution > 32 
conditions (40%) 

Marginal (3) 
Up to a day lost, 
OSHA Reportable < $5,000 

Reduced resolution > 8 
conditions (10%) 

Negligible (4) 
First aid only, not 
OSHA Reportable < $500 

Reduced resolution < 8 
conditions (10%) 

* Percent based on 80 conditions per screen. 
 

Table 5. Hazard frequency in terms of system use. 

Category Description Experiment 
Frequent (A) Frequently observed. < 10 screens per incident 
Probable (B) Rarely observed, but expected. > 10 screens per incident 
Unlikely (C) Not yet observed or observed very rarely* > 100 screens per incident 
Improbable (D) Not yet observed. Unexpected. Unexpected 
*Reasonable to expect in system lifetime (15 years).  

 

 Risk reduction efforts were prioritized for each hazard based on the assigned risk 

category.   Risk reduction techniques evaluated potential changes to both procedures and 

system design.  Changes to the standard operating procedures were evaluated to produce 

a more robust evaluation of proteins prior to screening.  Changes to the system design, 

which were evaluated included increased monitoring and fail-safe controls.  In our 

research environment, it was determined that the most critical monetary risk was less 

significant than moderate risk of human injury.  Thus, all risks to people above a low 

level were ranked as a higher priority than operational risks. 

 

Results 

The risk assessment results are presented according to the position of the hazard analysis 

type on the engineering design life cycle (Figure 2). 
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Conceptual Design Hazard Analysis – Preliminary Hazard List (PHL) 

 The preliminary hazard list is an initial list of hazards in the system, determined in 

the early conceptual design phase (Appendix 1).  For the HSC system the PHL identified 

ten hazards to humans, one to the environment, three to equipment and thirteen to 

operations for a total of 27 hazards.  A significant design decision was made at this point 

to split the flow path for protein and acetone to avoid contamination of the signal 

between protein and control experiments.  Hazards identified in the PHL are tracked and 

used in subsequent design stages as the minimum hazards to be addressed with the 

expectation that additional hazards will be identified as the design progresses. 

 

Preliminary Design Hazard Analysis – Preliminary Hazard Analysis (PHA) 

The preliminary hazard analysis identified potential hazards to people, equipment, 

operations and the environment and their causes and effects (Appendix 2).  Potential 

hazards identified for people include slip hazards, uncontrolled system pressure release 

and screen formulation chemical interactions.  Characterization of the hazards depended 

upon both the severity of the hazard and probability of occurrence.  In the discussion we 

describe the hazard characterization, risk assessment and actions identified to improve the 

safety and productivity of our laboratory environment.  Applicability to other research 

and clinical evironments is also discussed later. 
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System Design Hazard Analysis – Functional Hazard Analysis (FuHA) 

 First, a list of thirty-seven system functions was enumerated using test case 

scenarios (Appendix 3). Each function was evaluated for failure, malfunction or 

corruption.  The functional evaluation included both hardware and software functions 

during data collection of a full screen of formulation conditions. 

 

Detailed Design Hazard Analysis – Failure Mode and Effect Analysis (FMEA) 

FMEA, a detailed design tool, was used to evaluate specific modes of failure of 

subsystems and components which could affect system reliability.  FMEA (Appendices 

4-5) evaluated individual components to identify seventy-four failure modes, including 

protein precipitation in the system (operational) and syringe plunger impact in the syringe 

barrel (equipment) and a potential reaction of excipients in the waste receptacle.  Six 

hazards, representing all four hazard categories (operational, environmental, equipment 

and human) were prioritized for immediate action (Table 6). Specific action 

recommendations for design interventions were made for risk mitigation and/or 

elimination. 

Table 6. Selected Risks and Recommended Actions. 

Hazard Category Risk Recommended Action 

Aggregation on injection Operational High Inline washable filter, order 
formulation screen. 

Multiple Peaks Operational High Track multiple peaks, 
confirm peak id by DLS. 



 

72 
 

Plunger impact on injection Operational Serious 
Physical pump stop to 
prevent damage, contact 
switch. 

Reaction in waste receptacle Environmental Serious Limit all screen components 
to MSDS level 2 or below. 

Plunger barrel corrosion Equipment Medium 
Implement cleaning 
procedure between 
experiments. 

Burst fitting, sprayed 
formulation. Personal Medium Require lab coats / goggles, 

pressure transducer. 

 

Discussion 

 Although hazard analysis is well established in clinical biomedical engineering 

applications this case study provides an excellent opportunity to apply hazard analysis to 

the laboratory setting.  During the hazard analysis, it became clear that both physical and 

functional (operational) hazard analysis should be equally considered in the research 

laboratory environment.  The classical approach to hazard analysis focuses primarily on 

physical hazards, which have the potential to harm people, property and the environment.  

From a safety perspective, physical hazards are more important than operational hazards.  

However, in a laboratory environment, whether research or clinical, the accuracy of 

experimental data is necessary to successful operation.  In research, accurate 

experimental results are required to establish the validity of the science being performed.  

In the clinical environment, accurate experimental results are critical to the proper 

diagnosis and treatment of patients.  In this case, operational hazards can significantly 

overlap with physical hazards in terms of harm to people.  Thus, operational or functional 
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validity is a necessary and important aspect of biomedical hazard analysis and risk 

assessment, regardless of the environment. 

 At the beginning of a biomedical engineering development project system 

validation is the primary interest.  The question of whether or not a system will perform 

its designed function and whether or not it will improve upon an existing evaluation or 

treatment method is a fundamental question.  Hazard analysis techniques directly address 

the validation question by requiring the researcher to ask, “What could go wrong with 

this system, and what is the likelihood and consequence of each potential failure.”  The 

conceptual and preliminary hazard analysis techniques establish an initial list of potential 

hazards and consequences.  This list provides insight into the types of experiments and 

testing that should be performed in order to validate the system.  For example, in the HSC 

hazard analysis complete replacement of one formulation with the next was identified as 

a requirement for accurate evaluation of protein-protein interactions in each formulation.  

Therefore flushing characteristics of the system were tested as part of the validation 

process.  The components identified as critical to safety and function by various hazard 

analysis techniques will be candidates for verification as the project transitions from 

development to production and operation. 

 Regulatory and best practices standards provide important guidelines for 

developing a hazard analysis framework.  Relevant regulatory agencies for the 

biomedical research laboratory environment in the United States include the Food and 

Drug Administration (FDA), Occupational Safety and Health Administration (OSHA) 

and the Environmental Protection Agency (EPA).  It is necessary to review regulations 

promulgated by these agencies throughout the hazard analysis process.  The regulations 
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most appropriate to our laboratory environment related to the chemical safety of 

formulation conditions.  Regulatory requirements to control such hazards are generally 

personal protective equipment and barrier mechanisms, neither of which address the 

underlying cause of a hazard.  Hazard analysis best practices, such as those described by 

ISO 149715 and ANSI 1, outline additional steps to identify the cause of hazards and 

eliminate the hazard through design changes throughout the development process. 

 Successful implementation of hazard analysis, in any setting, requires multiple 

stages of implementation.  For this study the techniques implemented include preliminary 

hazard list (PHL), preliminary hazard analysis (PHA), Functional Hazard Analysis 

(FuHA), Failure Mode and Effect Analysis (FMEA). These techniques cover all four 

steps of hazard analysis – hazard identification, risk assessment, risk reduction and 

acceptance.  There are alternative techniques for each stage of hazard analysis that may 

be employed in other biomedical applications.  Here we discuss the benefits of each 

analysis technique chosen and its contribution to the hazard analysis.  

 First, the preliminary hazard list is an enumeration of potential hazards in the 

system based on the initial conceptual design.  At this stage of development the design – 

and inputs to the PHL -- includes only rough outline of operations and concept sketches.  

This phase provides the best opportunity to make design changes with minimal impact on 

project cost.  In the design concept phase there specific causes and failure modes are not 

identified.  Instead, general hazard sources are identified based on the conceptual design. 

 Next, the preliminary hazard analysis (PHA) is used to assess hazard risks for the 

first time.  In order to assess risk three factors must be determined:  1) hazard severity 
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and probability scales, 2) cause and effect for each hazard, 3) probability of each hazard 

to cause harm and severity of that harm.  Hazard analysis / risk assessment standards1,4,5 

recommend logarithmic scales for severity and probability; however the range will 

depend on the system. Budget constraints for this study mandated a catastrophic 

equipment failure above $50,000.  By contrast, a commercial application might only 

consider a catastrophic equipment failure to be one over $500,000.  The probability and 

severity scales chosen in Tables 4 and 5 are based on the HSC system.  It is important to 

note that probability and severity scales are dependent on the system to be analyzed. 

 The probability of each hazard to cause harm and the severity of that harm cannot 

be determined until a specific failure state is identified.  After cause and effects of each 

failure state (whether physical or functional) are determined probability of the cause to 

occur and severity of the effects can be estimated.  After the probability and severity 

scale is established and causes and effects are determined for each failure state the 

probability and severity for the hazard is assigned.  During PHA the failure states are 

based on the preliminary design specification and expert opinion of the hazard analysis 

team.  After each step of the design process accompanying hazards are review and 

recommended actions taken according to the priority established by the decision matrix 

(Table 7). 

Table 7. Risk acceptance decisions were based upon a Decision Matrix. 

 
Level of Action Required 

Mishap Risk Indices 
Equipment and Functional 

Risks 
Human Injury Risks 

High Risk 
Immediate action needed 1-3 1-5 

Serious Risk 4-6 6-9 
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Action needed as soon as 
possible 
Moderate Risk 
Action needed some time in 
the future 

7-13 10-13 

Low Risk 
No action needed 14-16 14-16 

 

 At the system design level a functional hazard analysis (FuHA) identifies and 

evaluates functional hazards in the system.  The information required for FuHA is: a list 

of all functions in the system, function flow and the preliminary hazard list and analysis 

[Ericson]. Each function in the list is evaluated for potential failures, incorrect behavior 

or invalid data.  The FuHA is particularly well suited to identify hazards in software 

modules as they are primarily functional components -- for example the failure of the 

software to detect a protein elution peak. 

 The next design level hazard analysis technique applied to the HSC system is 

failure mode and effect analysis (FMEA).  The FMEA is a detailed design hazard 

analysis performed at the component level where the component can mean individual 

hardware components, assemblies and subsystems or functions.  While there is overlap 

between FuMA and FMEA, the latter is considered a bottom up approach.  The approach 

is used here to focus on more detailed analysis of individual components of the HSC. 

 Additional hazard analysis techniques considered were Fault Tree Analysis (FTA) 

in the system design phase and Hazard and Operability Analysis (HAZOP) in the detailed 

design phase.  In the design phase FuHA was chosen over FTA, a detailed failure event 

analysis.  The functional approach was considered more applicable to the system because 

of the relatively low complexity of the failures identified in the preliminary hazard list 
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and preliminary hazard analysis.  HAZOP, a technique used to analyze chemical 

processes in chemical engineering applications, was determined to be unnecessary in the 

detailed design phase.  This was determined after the decision was made to use only 

chemicals with MSDS hazard category of two or below and to only use FDA approved 

inactive ingredients for pharmaceutical formulation screening.  Inherently Safer Design 

(ISD) techniques focus on chemical safety by reducing storage quantities, safe storage, 

and reduction of potential interactions of chemicals and are appropriate for projects with 

more complex chemical safety concerns. 

Actions taken for risk reduction include both procedural 6 and design 10 changes.  

An example of a design improvement to our system prompted by FMEA was pressure 

monitoring and disabling of pumps when system pressure rises above a set level.  This 

improvement reduced the probability of a pressure burst and improved the risk index of 

the hazard from 9 to 13 by improving both a human risk (chemical exposure) and an 

operational expense (invalidation of the experiment).  An example of a procedural 

improvement was the re-ordering of formulation conditions such that excipients, which 

more commonly cause protein precipitation, are tested last.  An increase in the number of 

formulations tested before precipitation is observed decreases the operational impact 

associated with protein precipitation in the system and reduces the risk index of the 

hazard from 1 to 9.  These examples demonstrate systematic improvements in the design 

and operating procedures in a biomedical research environment. 

The flexibility of hazard analysis makes it customizable to different lab 

environments -- whether clinical or experimental -- throughout a device or process 

lifecycle.  The preliminary hazard list and preliminary hazard analysis (PHL/PHA) is 
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used to identify major potential hazards of the primary system components.  In the HSC 

system functional hazards were quickly identified to be the most important.  In the design 

of an implantable device or when evaluating procedures in a clinical laboratory human 

safety hazards would be identified as higher priority due to increased probability and 

severity estimates. 

Regardless of whether or not a product or process is being developed or evaluated 

in a laboratory or field setting the PHL/PHA provides the basis for further hazard analysis 

techniques. The selection of subsequent techniques depends on the identified hazards and 

the current design phase.  The HSC design, being in the development stages, benefited 

from FuHA and FMEA.  Functional hazard analysis organizes hazards from a top-down 

approach and is useful when evaluating multi-step laboratory and device processes.  For 

the HSC system FuHA was used to identified potential hazards with the data analysis and 

software control systems during the conceptual and testing design phases.  The FuHA 

was also helpful for developing standard operating procedures that will be used in the 

transition from development to production and operation.   FMEA, on the other hand, 

focuses on a bottom-up approach examining individual components.  FMEA is more 

applicable during the detailed design phase of development when components are 

specified and to establish maintenance schedules.  Although this paper focuses on hazard 

analysis in the development process, an established laboratory environment can use 

hazard analysis for existing equipment and processes to improve the safety and 

effectiveness of operating procedures. 
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Conclusion 

 A structured hazard analysis and risk assessment process provides a systematic 

way to identify and prioritize the mitigation of  risks to people, the environment, 

equipment and operations within a system.  Here we have applied hazard analysis and 

risk assessment in a biomedical research laboratory environment to improve the safety 

and productivity of a high-throughput analysis system in the field of drug design and 

optimization. Early stage hazard analysis includes the first step of hazard tracking – 

identifying and recording hazards (Appendices 1-5).  These improvements demonstrate 

that best practice standards such as ANSI/GEIA-0010-2009 are relevant and applicable to 

research environments. 

 This case study covers hazard analysis in the design stages of a project where 

changes to the design are able to improve safety and reliability with the least amount of 

cost.  It is important to note, however, that hazard analysis is a continual process which 

must be revisited during iterative design changes and as additional information on 

failures in the field is collected.  By collecting and maintaining information about hazards 

even when the risk has been reduced future changes and information can be evaluated in 

the context of expected hazards.  In fact, the FDA requires that medical device failures 

are reported in a timely manner through the Manufacturer and User Facility Device 

Experience (MAUDE) database.  Even in the case of research laboratories a basic failure 

tracking system combined with the linkage of expected failures to specific functions and 

components is expected to help identify potential system improvements. 
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 Although the quantitative aspects of our hazard analysis, such as the quantitative 

hazard frequency and equipment severity scales are specific to our high-throughput 

system, the methods are expected to be applicable to both clinical and research laboratory 

environments.  In this study standard hazard analysis techniques in the early design phase 

(PHL, PHA) identified many potential improvements in the system.  Another common 

technique for detailed hazard analysis, FMEA, also identified specific component 

improvements.  We found the most useful hazard analysis technique in the biomedical 

research laboratory to be the functional hazard analysis.  The evaluation of each system 

function identified hazards which could cause harm to the proper functioning of the HSC 

system.   
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Abstract 

Formulation development presents significant challenges with respect to protein 

therapeutics.  One component of these challenges is to attain high protein solubility (> 50 

mg/ml for immunoglobulins) with minimal aggregation.  Protein-protein interactions 

contribute to aggregation and the integral sum of these interactions can be quantified by a 

thermodynamic parameter known as the osmotic second virial coefficient (B-value).  The 

method presented here utilizes high-throughput measurement of B-values to identify the 

influence of additives on protein-protein interactions.  The experiment design consists of 

three tiers of additive screens used to ultimately determine novel solution conditions that 

improve protein solubility. The first screen identifies individual additives that reduce 

protein interactions. A second set of B-values are then measured for different 

combinations of these additives via an incomplete factorial screen.  Results from the 

incomplete factorial screen are used to train an artificial neural network (ANN).  The 

“trained” ANN enables predictions of B-values for more than 4,000 formulations that 

include additive combinations not previously experimentally measured.  Validation steps 

are incorporated throughout the screening process to ensure that 1) the protein’s thermal 

and aggregation stability characteristics are not reduced and 2) the artificial neural 

network predictive model is accurate.  The ability of this approach to reduce aggregation 

and increase solubility is demonstrated using an IgG protein supplied by Minerva 

Biotechnologies, Inc.  
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Introduction 

Protein therapeutics is the fastest growing class of drugs in the pharmaceutical 

industry [1].  As basic research reveals biological pathways, protein 

deficiencies/abnormalities and key protein targets involved in disease states, we gain a 

greater understanding of how protein molecules can be used to influence those diseases.  

The first clinically demonstrated example of a protein therapeutic involved replacement 

of human insulin for diabetes treatment [2].  Even in those cases that do not involve 

direct protein replacement, engineered immunoglobulins or other proteins have been 

demonstrated to influence disease pathways [3]. 

To achieve an effective protein dose using a small injection volume, the 

concentration of clinically-approved protein drugs typically exceeds 100 mg/ml [4].  

Physical stability of the protein at these high concentrations is a critical concern due to 

potential for an immune response to protein aggregates [5]. Therefore, solubility and 

physical stability are key variables that must be addressed when developing a protein 

therapeutic.    The International Conference on Harmonization (ICH), whose objective is 

to harmonize requirements for safety, effectiveness and quality for pharmaceutical 

products, includes molecular characterization as one factor of a stability indicating profile 

[6]. To maintain physical stability at high concentration, a large number of different 

formulations must be evaluated followed by additional optimization of promising 

candidates – a process that may require several months, consuming significant quantities 

of protein.  A process is needed to efficiently evaluate solubility behavior of protein drug 

formulations.  The following presents a general method to improve colloidal stability of 

protein solutions based on a novel high-throughput HPLC system and a sequential design 
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of experiments (DOE) that provides rational screening of formulations (beginning with 

individual buffered additives and progressing to complex formulations). 

Evaluation techniques used to determine protein solubility behavior can be 

grouped into two broad categories; 1) detection of aggregates and 2) measurement of 

protein-protein interactions.  Examples of aggregate detection methods include size-

exclusion chromatography, analytical ultracentrifugation and dynamic light scattering 

(DLS).  The integral sum of protein-protein interactions (as opposed to site-specific 

interactions) is typically quantified by a thermodynamic parameter known as the osmotic 

second virial coefficient (also referred to as the B-value) [7–10].  The B parameter is 

correlated with both protein solubility [11–13] and the ability of a protein to crystallize 

[11,13–15,15–17] depending on whether the protein-protein interactions are repulsive 

(positive B values) or attractive (negative B values), respectively.  Several methods exist 

to measure B values, including osmotic pressure [18], analytical ultracentrifugation [19], 

static light scattering [14,20] and self-interaction chromatography [8] (SIC). 

We previously described the development process of a novel, high-throughput 

instrument that uses an established technique, self-interaction chromatography (SIC) to 

rapidly measure B-values [8,9,21,22].  SIC requires that the protein of interest is 

randomly bound to column media (static phase) while the column is equilibrated with the 

formulation being tested.  A small bolus of protein (1 uL) is injected onto the column and 

its elution volume/time measured by UV absorption.  The volume required to elute the 

protein of interest from the column is related to the protein-protein interactions of the 

injected bolus of protein with randomly oriented stationary protein.  Other variables 

affecting B-value calculations such as the concentration of bound protein and nonspecific 
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protein-media interactions are discussed in the methods section.  The initial protein-

media binding step requires up to 2mg of purified protein with each experimental B-value 

measurement in different test formulations consuming an additional 1 ug of protein.  The 

time required for each measurement is approximately two hours (~30-45 minutes for 

protein elution and an additional hour for re-equilibration in a new formulation 

condition).  The advantages of SIC over other methods to calculate B-values include: 1) 

relatively straightforward, automatable experimental protocol that does not require 

specific operator expertise/experience, 2) low total protein consumption, 3) dead column 

reference and multiple B value measurements per run and 4) ability to use the technology 

for both aqueous and membrane proteins. 

The high-throughput self-interaction chromatography instrument (HSC) described 

in the following sections consists of several key technological improvements including: 

1) simultaneous use of four columns, 2) miniaturization of column dimensions resulting 

in a significant reduction in total protein consumption,  3) a high capacity formulation 

reservoir with automated robotic dispensing of different formulation conditions, 4)  

automated data acquisition.  This lab previously reported the hazard analysis process 

which was used in the development of the HSC [23].  Use of the HSC instrument is 

combined with an approach that includes multiple levels of formulation screens and 

validation steps to assess: a) additive influence on protein thermal stability, b) protein-

protein interactions and c) identify formulations with improved solubility. 
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Material and Methods 

Multi Tiered Additive Screen 

The approach described in this paper provides a rapid, cost effective method to 

determine solution conditions that optimize protein solubility.  It requires 10 to 30 mg of 

protein and two to six weeks depending on the number of conditions needed to optimize 

solubility. The approach includes multiple levels of high throughput screening along with 

validation steps at each stage of the screening process.  The overall goal of the approach 

is to determine which combination and concentration of additives minimize protein-

protein attraction, thereby increasing protein solubility. 

 The flow chart presented in Figure 2 shows that the entire formulation screen is 

performed in five distinct phases: baseline measurements, initial screen, incomplete 

factorial screen, neural network modeling and confirmation with integrated quality 

control steps.  Each screening step is described in more detail in the following sections. 

 

Figure 1. Experiment Flow.  Flow chart of the experiments conducted to identify 
formulations with reduced aggregation.  Most steps are followed by two actions: 
validation and comparison with baseline and the next experiment in the screening 
process. 

In the first stage, additives are screened individually via experimentally measured 

B-values to identify those most effective at reducing protein-protein interactions.  More 
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than 300 additives are approved by the FDA for use in injectable drug formulations as 

inactive ingredients [24].  If all 300 were to be assessed, just three concentration levels of 

two additives at three pH levels would result in over 1.2 million possible formulation 

conditions.  To reduce the number of individual measurements needed to optimize a 

protein’s solubility, our initial screen simply identifies which additives individually 

reduce protein-protein interactions.  Those additives are then combined using an 

orthogonal array (assuring combinations of additives are equally represented throughout 

the screen) into formulations based on a balanced combination of each additive and 

additive concentration. For each protein studied a numerical model of how additives 

affect protein-protein interaction (B-value) is created by training an artificial neural 

network (ANN) using experimental data generated from the balanced screen.  The neural 

network model is used to predict the B-value of the full factorial of screened additives.  

The following experimental results demonstrate the ability of an HSC system combined 

with this multi-tiered screening process to rapidly determine formulations with improved 

solubility behavior for a candidate IgG protein therapeutic compared to its original 

formulation. 

 

High-throughput Self-interaction Chromatography (HSC) 

HSC requires covalent attachment of the protein of interest (~2 mg) to media 

contained in a chromatography column.  The same protein is injected into the mobile 

phase and retention times measured.  Protein retention time measurement in each 

formulation requires approximately 1 ug of additional protein per column.  Each 
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experiment requires approximately two hours using traditional column sizes and a 

precision HPLC.  To reduce experiment time and protein consumption compared to 

traditional B measurement techniques, this laboratory reduced column dimensions 

(0.5mm x 180mm) and developed an automated high-throughput screening system to 

enable uninterrupted, simultaneous data acquisition from four chromatographic columns. 

A schematic drawing of the HSC system is shown in Figure 1. Four valves control 

fluid flow throughout the system including the formulation, injection, and bypass valves. 

The formulation valve controls access of the formulation pump to the reservoir or other 

portions of the system. This pump withdraws formulations from the reservoir to the 

formulation syringe which then extrudes these solutions over one of the four columns.   

Bypass valves enable flushing the entire system with new formulations. This process is 

fully automated, accommodating 48 different formulations in 10 mL reservoirs.    After 

column equilibration with new formulations, the protein is automatically injected over 

each column via the injection valve. The retention time of the eluted protein is 

determined using a UV280 detector. 
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Figure 2. Schematic drawing of the HSC system.  For clarity, this figure shows only a 

single flow path.  The valves, platform and detectors handle four channels in parallel. 

Baseline Measurements.  Protein purity is initially confirmed via SDS PAGE and staining 

with BioSafe Coomassie. Protein B-value measurements are established using a 

“reference buffer” solution which provides a baseline reference for subsequent 

comparisons to identify formulation improvements.  The reference buffer is typically a 

previously identified “good formulation” solution,  judged by the extent of nonspecific 

protein aggregation using size exclusion chromatography (SEC) and/or dynamic light 

scattering (DLS).  To ensure conformational consistency of the protein, the unfolding 

temperature is measured using a MicroCal VP-capillary differential scanning calorimetry 

system.  The B-value for the protein in the reference buffer can be measured via SIC 

using either a Shimadzu HPLC or the custom HSC system.  This B-value measurement is 

the primary metric by which additives and formulations are evaluated.   Baseline 
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measurements are repeated between screens to ensure that the integrity of the column is 

not adversely affected due to changes in capacity (due to irreversible protein binding) and 

degradation of the media and/or media packing (caused by excessive back-pressure, non-

specific irreversible protein binding).  The reference buffer for the Fab protein presented 

in this paper is phosphate buffered saline (PBS -- diluted 1x contains 137 mM NaCl, 2.7 

mM KCl, 10mM Na2HPO4, 2 mM KH2PO4, pH 7.4). 

 

Self Interaction Chromatography 

 From a broad perspective, self-interaction chromatography is an affinity 

chromatography technique that involves binding the protein of interest to 

chromatography media, injecting a bolus of protein over the column, and measuring the 

retention time of the protein as it passes through and interacts with the protein bound to 

the media.  Longer retention times are associated with increased protein-protein 

interaction [7,22].   The following sections provide a detailed description of the SIC 

method including media selection (based on evaluation of the concentration of bound 

protein), column preparation, retention time measurement and B-value calculation based 

on protein retention time. 
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Table 1. Chromatography Media Binding Test 

  
Binding 
Group 

Binding 
pH Reagents 

Binding 
Time Blocking 

Blocking 
Time 

Formyl -NH2 6.9 - 9.0 NaBH3CN 4h Ethanolamine 1h 
Tresyl -NH2, -SH 7.0 - 9.0 None 24h Ethanolamine 4h 

Amino -HOOC,  
-OHC 4.5 - 6.0 EDC1/NHS2 24h 3HP3 4h 

Carboxy -NH 4.5 - 6.0 EDC1/NHS2 24h Ethanolamine 4h 
1 ethyl(dimethylaminopropyl) 
carbodiimide 
2 n-hydroxysuccinimide 
3 3-hydroxypropionic acid 

    
    

    
Binding test. There are multiple protein binding chemistries available to covalently bind 

protein to media such that the point of attachment between the protein’s surface and the 

media is random (this is accomplished by using free amine or carboxyl functional R-

groups associated with amino acids).  To identify optimal binding conditions, four 

different chemistries available from TosoHaas are considered: formyl, tresyl, amino and 

carboxy.  For each media type, 20 ul of beads are washed three times with 1mL of the 

appropriate binding buffer for the given media (MES or phosphate buffer at pH 6.0 or 8.0 

depending on the media).  The binding tests are performed by adding 20 ul of 5 mg/ml 

protein to each sample of washed beads.  Reagents are added according to the given 

chemistry.  Table 1 displays the media options tested, their binding formulations, 

reagents required and binding times.  After the binding process is complete, the media, 

now bound with some quantity of protein, is washed again three times with 200 uL of the 

binding buffer.  A BCA assay is performed on each media sample to precisely quantify 

the amount of bound protein.  This process requires ~0.4 mg of protein (20 ul * 5 mg/ml 

* 4 tests).  In addition to identifying the media with the highest binding capacity, DSC is 

performed on the protein in the binding buffer, as a quality control step, to confirm that 
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the binding buffer does not destabilize or partially denature the protein.  The binding 

chemistry with the highest quantity of bound protein, as determined by the BCA assay, is 

used for subsequent preparation of the SIC columns. 

Binding and packing a column.  For each protein investigated, the protein chemical 

binding process is scaled up 15-fold to support simultaneous use of three “live” columns 

(“live” column = column with protein).  A fourth “dead” column (“dead” = column 

without protein) is prepared to serve as a control to assess protein interactions with the 

chromatographic media.  The binding process for the live columns consists of adding 300 

uL of 5 mg/ml protein to 300 uL of media.  The appropriate reagents are added to the 

protein media solution followed by placement of samples on a rotating mixer for an 

appropriate amount of time according to Table 1.  After completion of the protein binding 

step, the media is washed three times with 2 mL of the binding buffer.  Using the 

identical binding reaction, remaining active sites of the media are capped with a capping 

reagent (0.5 M ethanolamine or 3-hydroxypropionic acid) used in place of the protein 

solution.  At this point, 100uL of media is prepared with the capping reagent (no protein) 

to produce a capped-only “dead” column media.  It should be noted that the covalently 

bound protein assures several different orientations on the column media due to the fact 

that the protein’s covalent bond is formed with free amine nitrogens (which are typically 

available at multiple positions along the proteins exterior surface).  Thus SIC-determined 

second virial coefficients are not less due to a specific protein-media orientation that 

would prevent interaction with various regions on the protein’s surface. 

 The prepared media is packed into 0.02” i.d., 1/16” o.d. and 20 cm length 

columns consisting of teflon FEP tubing (IDEX) sealed at one end with a union (Valco 
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ZU1CFPK) containing a 2 micron frit (Valco 2SR1-10).  Two 1cm sections are cut from 

the end of each column for protein analysis via Pierce BCA assay to determine the 

protein concentration bound to the column media.  The concentration of bound protein is 

a critical variable required to calculate B from the measured protein retention time. 

Generally, for a 150 kDa protein (IgG) a minimum binding concentration of 5 mg/ml is 

required to yield a sufficient number of protein interactions to provide the sensitivity 

needed to accurately measure B-values for each solution condition.  Finally the packed 

column is sealed with a union containing a 2 micron frit. 

 To separate injected protein from the storage buffer in which it is contained a 

desalting “guard” pre-column is also prepared for each live column and the dead column.  

This ensures the protein is fully equilibrated in the formulation of interest before it passes 

over the SIC column.  The 60 cm, 0.03” i.d., 1/16” o.d. teflon FEP guard column uses 

Sephadex G-25 media.  The media is prepared by soaking in a phosphate buffered saline 

(PBS) solution, pH 7.4, for 4 hours and rinsed 4 times with 5 mL of PBS.  The media is 

packed into the column tubing and sealed at both ends as described for the SIC columns. 

Retention time measurements. A guard column is positioned prior to each live and dead 

column to separate absorption peaks caused by salts, buffer and other small molecules 

contained in the base buffer used to solubilize the protein (these small molecules 

sometimes absorb at or close to 280nm and co-elute close to the protein absorption peak).    

The system is equilibrated in the formulation of interest by passing approximately 5 

system volumes of formulation solution through the columns.  After equilibration, a 

standard affinity chromatography experiment is performed by injecting the protein of 

interest in the mobile phase formulation at a constant 8 uL / min flow rate and protein 
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elution time is measured from the time of injection until the time of elution from each 

column (protein elution is detected via U.V. absorbance at 280 nm).  The retention time is 

defined as the time required for the protein to pass through the SIC column only -- total 

elution time through both columns minus the elution time through the guard column, 

measured separately.  This process is repeated for each of the additive formulations 

contained in the initial and incomplete factorial screens.  

 

DSC Confirmation 

B-values for protein in each formulation are measured followed by assessment of 

protein integrity for the nine additives yielding the most positive B-values (this is 

assessed using DSC measurements of protein thermal stability).  This step serves as a 

quality control measure to ensure that protein denaturation is not a significant factor 

affecting protein retention times.  Samples are prepared for DSC by buffer exchange 

using a centrifugal concentrator.  A quantity of 0.25 mg protein from solution is added to 

the centrifuge tube. Three mL of formulation is added and spun down at 3000rpm in an 

Eppendorf-5810R centrifuge to 500 uL and this is repeated four times for a buffer 

exchange of over 99.9%.  The final effluent is used as the blank control for the DSC 

experiment.  If a formulation fails the DSC confirmation step (a drop in unfolding 

temperature of more than 4oC) the next most positive B-value formulation is evaluated 

until nine additives are identified that improve B-value without significantly reducing 

protein unfolding temperature. 
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B Value Screens 

Initial screen.  The initial screen is used to identify individual additives that contribute to 

protein-protein repulsion (positive B-value).  The formulations for the initial screen are 

prepared by combining 10x concentrated phosphate buffered saline (PBS -- diluted 1x 

contains 137 mM NaCl, 2.7 mM KCl, 10mM Na3PO4, 2 mM KH2PO4), and a single 

additive from concentrated stock, filled to 90% volume with Millipore H2O and titrated 

with NaOH or HCl to pH 7.4.  The list of forty additives, each tested individually in the 

initial screen, can be found in Appendix A.  The B-value of the protein of interest is 

measured in each formulation using SIC.  The additives most beneficial to reduce 

protein-protein interactions are not known a priori.  Therefore, the purpose of the initial 

screen is to identify additives that reduce protein-protein interaction for a given protein.  

Thermal stability of the protein combined with those individual additives exhibiting the 

nine highest B-values is then confirmed using DSC.  Three salts and six additives with 

the highest B-values which also maintain thermal stability via DSC (defined as those 

additives that do not result in more than a negative 4oC temperature shift) are chosen for 

the incomplete factorial screen. 

Incomplete factorial screen.  After completion of the DSC tests, the top nine solutions are 

combined in an incomplete factorial using an orthogonal array according to the Taguchi 

method [25].  This method ensures that additive identity and additive concentration are 

equally represented throughout the incomplete factorial screen.  The screen specifies 

more complex formulations with multiple additive components at high, medium and low 

concentrations.  B-values of the protein in each formulation of the incomplete factorial 

screen can be measured by SIC using either the HSC system or a Shimadzu HPLC.   
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Neural network training.  The measured B-values are used to create a numerical model of 

how specific additives in the formulation affect protein-protein interaction.  An artificial 

neural network (ANN) model [26] is first trained five separate times using a different 

random set of 4/5 of the data with the remaining 1/5 of the data used for validation.  The 

weights of the neural network are adjusted based on the training set using a standard 

back-propagation algorithm until the error of the validation set (not used to adjust 

weights) is no longer improved by incremental changes to the ANN weights.  This is an 

established method to train and prevent over-fitting of an ANN and is described in 

Bishop’s book, Neural Networks for Pattern Recognition [27].  In a previous publication 

[28], our lab compared this method to that of a standard general linear model (GLM) and 

found the ANN to exhibit reduced prediction error compared to the GLM. 

Neural network prediction and confirmation.  The trained ANN returns a B-value given a 

formulation where the output is based on previously measured B-values.  After training is 

complete the neural network is presented with each formulation in the complete factorial 

combination of all parameters measured.  This consists of over 4,000 possible 

formulations that combine one or two additives, a salt and a buffer.  The ability of the 

ANN to predict B-values of novel formulations is evaluated by B-value measurement (by 

SIC) of several predicted formulations, chosen throughout the predicted B-value range.  

A root mean square error (RMSE) is determined for the model predictions compared to 

the actual B-values measured.  Confirmation measurements serve two purposes: an 

evaluation of the model predictions and confirmation of predicted formulations with 

improved B-values. 



 

99 
 

Thermal stability confirmation. The predicted formulations with increased B-value 

measurements are experimentally validated followed by DSC confirmation of protein 

thermal stability in these new formulations. 

Indirect Solubility Testing. Dynamic light scattering (DLS) is used to indirectly test the 

solution solubility characteristics of the protein by evaluation of the aggregation 

properties of the protein as protein concentration is increased.  Due to a limited supply of 

protein (the proprietary Fab protein, provided by Minerva Biotechnologies, Inc., used for 

these experiments was of limited supply), DLS measurements were restricted to the most 

positive B-value formulation (by prediction and measurement) and the most negative B-

value formulation from the initial screen.  The rationale is to determine if more positive 

B-value predicted formulations produce significant improvements in solubility behavior.  

Each protein formulation is filtered through a 0.22 micron filter into a 10 uL quartz 90o 

scattering cell.  Scattering counts are measured using a Wyatt DynaPro Titan DLS system 

to confirm that there is not a significant scattered light signal from the buffer itself.  The 

protein is buffer-exchanged into each formulation using centrifugal concentrators.  

Diffusion coefficients and apparent hydrodynamic radii of the protein are measured in the 

solution at a fixed concentration.  The Fab sample is concentrated with DLS 

measurements taken at various points during in the concentration process.  The 

aggregation behavior of the protein is compared as a function of protein concentration for 

each formulation.  The minimal use of protein required for DLS measurements and the 

fact that protein can be recovered for additional tests resulted in this being the method of 

choice for comparing aggregation behavior of the protein.   
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Calculation of B Value 

 The standard method of B value calculation, published by Tessier, Lenhoff and 

Sandler [8], is used in this research: 

𝐵 =
𝑁𝐴
𝑀𝑊2 �𝑉𝐻𝑆 −

𝑘 ′

𝜑𝜌
� 

In this equation, NA is Avogadro’s number (molecules/mol) and MW is molecular weight 

(g/mol).  VHS (ml/molecule) is the hard sphere volume of the protein of interest.  The 

parameter, φ (cm2/mL), is the phase ratio of the media defined as the ratio of the surface 

area available to that of the volume available to a mobile phase protein passing through 

the media.  Phi is a characteristic of the media used and molecular weight of the protein 

and has been determined for several media types including TosoHaas affinity media [29].  

The parameter ρ (molecules/mL)is the amount of protein per unit volume bound to the 

media (determined via the BCA assay as described previously). 

 The final parameter k’ is the retention factor.  While the other parameters are 

fixed for a given column, the K’ measurement is the primary variable associated with 

changes in protein-protein interactions.  K’ is calculated according to the following [8]: 

𝑘 ′ =
(𝑉 − 𝑉0)

𝑉0
 

V is the retention volume of the protein over the live column and V0 is the retention 

volume of an equivalently sized non-interacting marker.  Previously an acetone marker 

has been used as the non-interacting marker and a correction was used to adjust for the 

small size of the acetone marker compared to the protein [8,9,30].  However, the addition 
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of the guard column used to equilibrate the protein in the mobile phase substantially 

shifts the acetone marker with respect to the protein marker.  In the multi-column system, 

the dead column is used to identify the non-interacting retention volume.  Therefore, V0 

is the retention volume of protein eluted from the dead column in the formulation of 

interest.  This method has the added benefit of accounting for changes in protein-media 

interactions in the presence of different formulations. 

 

Results 

 Fab protein was subjected to the three-tiered screening process.  The specific 

antigen is proprietary and not known to our laboratory. 

 

Minerva Fab – Initial Screen 

The primary goal of the Minerva project was to produce a highly soluble storage 

solution for the protein, not a solution for direct injection.  Therefore, this screen contains 

additives and concentrations not approved for human use.  Identifying such a formulation 

is useful for long-term storage of protein produced on a large scale and for preliminary 

formulations that can be used with other structure-function analysis methods as well as 

for in-vivo animal studies. With different initial screen components the screening 

methodology and high-throughput technology are applicable to preparation of solution 

conditions for pre-clinical evaluation.  Minerva provided our lab with ~25 mg of the Fab 

portion of a proprietary monoclonal antibody (Mab) being considered for future clinical 
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trials. It was assumed that if improved solubility conditions could be discovered for the 

Fab, these conditions would also exhibit improved solubility for the complete monoclonal 

antibody.  Components and concentrations of the additives used in this screen can be 

found in Appendix A.   

Table 2. Most positive B-values of Minerva Fab Initial Screen 

Additive Name B-value1 
Measured 

Delta TM  
(oC) 

Default Buffer - PBS 0.2 +0.0 
1.  0.1M Arginine 5.8 +0.6 
2.  400mM LiCl 5.1 -1.6 
3.  400mM Na Thiocyanate 4.4 -3.7 
4.  0.1M Arg., 0.1M Glu. Acid 3.2 NA 
5.  400mM LiSO4 1.2 -9.0 
6.  0.1M Glucose 0.8 -0.6 
7.  400mM Na Citrate 0.1 +2.5 
8.  0.1M Trehalose 0.0 -0.1 
9.  10% (w/v) 1,6 Hexanediol 0.0 -10.5 
10. 400mM NH4 Citrate -0.6 -2.3 
1 ( * 10-4 mol*ml/g2)   

Table 2 shows the additives producing the nine highest B-values chosen from the 

initial screen.  This includes the additives that failed DSC confirmation (1,6-hexanediol 

and Li2SO4).  These two additives were replaced with those producing the next most 

positive B-values, NaCl and Glutamic Acid.  The additives chosen from the initial screen 

are applied to an orthogonal array [31] to determine the additives and concentrations used 

for each formulation condition in the incomplete factorial screen.  A full list of the 36 

formulations in this phase of the screen can be found in Appendix B and the most 

positive B-values identified in the screen are in Table 3. 
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Table 3. Most positive B-values From Minerva Fab Incomplete Factorial Screen 

Formulation B-value1 
Measured 

Default Buffer – PBS 0.2 
1.  0.1M Phosphate pH 7.4, 0.15 M NaCl, 0.2 M Na Citrate, 0.6 M NH4 
Citrate 

5.6 

2.  0.1M Phosphate pH 7.4, 0.15 M NaCl, 0.1 M Trehalose, 0.05 M Glucose 4.1 
3.  0.1M Tris pH 8.0, 0.05 M LiCl, 0.4 M Na Citrate 2.7 
4.  0.1M Phosphate pH 7.4, 0.05 M NaSCN, 0.4 M NH4 Citrate, 0.15 M 
Arginine 

2.1 

5.  0.1M MES pH 6.1, 0.1 M NaCl, 0.05 M Glutamic Acid, 0.15 M 
Trehalose 

1.9 

6.  0.1M Phosphate pH 7.4, 0.05M LiCl, 0.15 M Trehalose 1.4 
7.  0.1M Tris pH 8.0, 0.1 M NaCl, 0.1 M Trehalose, 0.15 M Arginine 1.4 
8.  0.1M MES pH 6.1, 0.15 M NaSCN, 0.1 M Glutamic Acid 1.4 
1 ( * 10-4 mol*ml/g2)  

From the 27 different neural networks trained, the 5 x 2 topography provides the 

smallest validation error across all validation sets for the Minerva Fab protein.  The 

average validation error is 1.2 B units.  The trained neural network produces a range of 

B-value predictions from -5.4 to 4.3 B units and 4 formulations from the top quartile of 

B-values are chosen to yield improved formulations.  Different topologies represent a 

different number of variables considered for influence on B-value.  It is expected that 

some topologies (those that consider too few or too many variables) would produce lower 

validation errors than others.  The evaluation of multiple topologies is automated and 

does not require additional effort and accounts for the fact that the number of variables 

which influence B-value are expected to differ from protein to protein.  The measured 

confirmation of B-value by SIC and change in unfolding temperature by DSC are given 

in Table 4. 
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Table 4. B-value Confirmations and DSC Unfolding Temperatures for Fab 

Formulation 
B-value1 
Predicted 

B-value1 
Measured 

Delta 
Tm 
(oC) 

1. 100mM Tris pH 8.0, 100mM NaCl, 150mM 
Trehalose, 400mM NH4 Citrate 3.4 0.8 +5.4 
2. 100mM Tris pH 8.0, 150mM NaSCN, 100mM 
Trehalose 600mM NaCitrate 1.6 1.6 +5.0 
3. 100mM Tris pH 8.0, 150mM LiCl, 150mM Arg-
HCl, 50mM Glucose 1.0 0.9 +0.2 
4. 100mM Phosphate pH 7.5, 150mM NaCl, 100mM 
Trehalose, 100mM Glutamic Acid 4.1 2.1 +1.9 
1 ( * 10-4 mol*ml/g2)  

  
The restriction on protein quantity received (25mg) limits the maximum solubility 

that can be determined for a given formulation.  In the case of the Minerva Fab the 

formulations submitted to the company were tested by the company with larger protein 

quantities.  Minerva concentrated the complete monoclonal antibody (Mab) in each 

formulation until visible precipitation was observed.  These results are shown in Figure 3. 

 

Figure 3. Solubility estimates of Fab from Minerva 
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Discussion 

Comparison of results at each step in the screening process demonstrates the 

importance of each step in evaluating formulations.  The following discussion compares 

the results of the two proteins evaluated for each step.  Each of the following subsections 

is focused on a single step in the screening process outlined in Figure 1. 

 

Baseline 

Baseline measurements are important for both quality assurance (of the initial 

quality of the protein) and quality control (of formulation improvements).  The baseline 

unfolding temperature provides a reference to quantify shift in unfolding temperature for 

protein equilibrated in each formulation.  In the case of denatured protein, DSC does not 

result in a positive heat capacity signal and can be used to identify formulations which 

denature the protein.  An additional quality assurance step includes evaluation of protein 

binding to a small quantity of each media type to identify the optimum binding chemistry 

for a particular protein.  Both proteins bound to Tresyl media at greater than 7 mg/ml and 

demonstrated typical IgG unfolding temperatures from 60oC to 90oC.  This ensures that 

the best media is chosen for protein binding. 

Regarding use of PBS as the baseline formulation, it should be noted that 

antibodies are generally not optimally soluble in PBS, and that often a low pH buffer 

solution can improve solubility.  This was not the case for the Fab obtained from 

Minerva.  This protein and most other proteins evaluated are generally “problem” 

proteins (proteins that exhibit low solubility).  The starting point for the formulation 
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screen for Minerva’s Fab was the best available based on information provided by 

Minerva (the company approached Soluble Therapeutics due to their prior difficulty 

improving the solubility of the protein). Obviously, no single screening process can 

always produce and guarantee the maximally optimal formulation.  That would require a 

complete factorial testing of the search space. As noted in the introduction, even with 

severe limitations on the dimensionality of the search space (2 additives, 3 concentration 

and pH levels) an exhaustive search of the space is not feasible.  Soluble Therapeutics’ 

screening process is designed to improve formulations with an approach that begins with 

identification of individual additives that influence protein-protein interactions followed 

by expansion to more complex formulations that contain multiple additives and additive 

concentrations.  After individual additives are selected, an incomplete factorial additive 

screen is used to improve the chance of identifying combinations of additives that work 

well together.   

 

Initial Screen 

The initial screen of individual additives includes additives not in the FDA 

database.  A wide range of additives was chosen in order to evaluate the overall system’s 

capability to predict B-values that modify solubility behavior.  Each additive formulation 

is screened using SIC to identify the B-value associated with the additive.  Individual 

additives with the highest B-values from the initial screen are identified in Tables 2 and 5 

for the Minerva Fab.  Formulation optimization experiments performed with proprietary 
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proteins (both IgGs and other protein classes), using FDA-approved additives, resulted in 

alternative additives and additive concentrations. 

As noted earlier, PBS was both the starting point for the initial screen and the 

“best” formulation available (defined as the base buffer) at the time.  This is usually not 

the case.  However, when a more optimally soluble formulation is available it is not 

necessarily the best starting point for the initial screen.  Beginning with a complex 

formulation augmented with additives is likely to result in a search space located around 

a local maximum (but not necessarily the global maximum).  Identification of a minimal 

buffer (such as PBS) allows for the inclusion of individual additives that may have a 

significant impact on protein-protein interactions; this may not be distinguishable in an 

already complex formulation.  Thus, the minimal buffer formulation enables broadening 

of the search space to include more diverse formulations for the incomplete factorial 

screen. 

 

Incomplete Factorial 

The incomplete factorial screen design is based on experimental results from the 

initial screen.  Additives identified in the initial screen (a different set for each protein) 

are combined using an orthogonal array to ensure equal representation of each additive 

throughout the screen.  Each formulation in the incomplete factorial is evaluated by SIC 

to determine the B-value of the protein in the formulation.  Appendices 3 and 4 identify 

all additives in the incomplete factorial for the Minerva Fab.  The formulations from the 

incomplete factorial with the most positive B-values are listed in Table 3. 
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Neural Network 

Neural network training produced a Fab validation error 1.2 B units and a percent 

validation error of 12.4%.  After training, prediction of the complete factorial of additive 

combinations resulted in both positive and negative B-value predictions.  The range of B-

values predicted for the Minerva protein was -5.4 to +4.3 B units.  Even before empirical 

confirmation, the broad range of these B-values included many formulations that were 

expected to have high solubility.  Literature on the empirical relationship between B-

values and solubility [11–13,32], indicates that protein solubility increases as B-value 

approaches zero.  The solubility reported by Minerva (Figure 3) confirms that the 

formulations with high positive predicted B value have improved solubility. 

 

Conclusion 

The results demonstrate a significant improvement (i.e. more positive B-values) 

for the predicted formulations versus the base buffer as did Minerva’s non-quantitative 

solubility assessment of the top four predicted formulations.  The approach utilizes our 

novel technology (HSC) and design of experiments to evaluate multiple tiers of additive 

formulations.  The results from these screens are evaluated with an artificial neural 

network model to identify formulations with improved solubility behavior.  The 

formulations identified for the Minerva Fab improved solubility one-hundred fold over 

the existing baseline formulation and enabled the protein to advance to animal trials using 

two of the best predicted formulations. 
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It is important to emphasize the baseline checks throughout the process.  

Differential scanning calorimetry is essential to exclude false positives.  After the initial 

screen of formulation additives, it is common to have at least one or two additives which 

reduce the unfolding temperature of the protein or result in denaturation, but result in 

positive B-values due to size exclusion effects.  One could argue that a reduction in 

unfolding temperature of 2-3oC is not significant in the thermal stability of a protein—

especially if those temperatures are around 80oC.   However, a strong relationship 

between unfolding temperature and protein activity has not yet been evaluated for a 

significant number of proteins.  In this screening process a cautious approach is taken to 

eliminate additives which could alter activity due to a conformational change.  This is 

acceptable due to the large number of additives evaluated and the small incremental cost 

due to additional protein consumption.   As more evidence is gathered regarding the 

nature of unfolding temperatures, solubility and activity, operating procedures will be 

adjusted.  The evaluation presented in this paper provides a snapshot of a current 

screening technique to improve solubility behavior of therapeutic proteins.  An aspect of 

this research that must be emphasized is that of solubility behavior vs absolute solubility.  

Absolute maximum solubility is difficult to measure for a protein solution because of the 

ability of a protein to super-saturate and result in significantly different solubility 

maximums in slightly different formulation conditions.  Therefore, one approach that 

may prove useful is to evaluate the tendency of the protein to aggregate at increasing 

concentrations.   Laser light scattering (and an observed A280 signal decrease) can be used 

to assess the tendency of different formulations to produce increasing protein 

aggregation. This technique allows protein solubility assessment with a small amount of 
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protein.    To our knowledge, a method does not exist (when only small quantities of 

purified protein are available) to evaluate absolute protein solubility for proteins 

exhibiting a high maximum solubility. 

The improvement of Mab solubility based on Fab screening suggests that 

problematic protein domains could be formulated separately to improve solubility of the 

complete protein.  It is logical to assume that solubility improvements for a portion of a 

protein (i.e. protein domain that exhibits poor solubility) may also improve the solubility 

of the complete protein. Improvements to each step in the evaluation process can 

potentially reduce protein use and time.  In addition to efficiency (time and protein) 

optimizations, we are exploring expansion of applications.  For example an additional 

improvement would include use of circular dichroism as a reference to ensure that the 

protein structure is not significantly changing.  This would be beneficial for therapeutic 

proteins at the pre-clinical stage in which end point results are undergoing additional 

analytical evaluations (e.g. the Minerva Fab). 
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Appendices 

Supporting information includes two appendices containing the full list of 

formulations screened by self-interaction chromatography.  They are the initial screen 

additives (Appendix A) and the incomplete factorial screen for Minerva Fab (Appendix 

B). 
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CONCLUSIONS 

The manuscripts presented here demonstrate a consistent progression in the 

development of the HSC system.  The first manuscript, subtitled, “Applications in Protein 

Formulation Prediction” uses a traditional HPLC instrument to measure B values.  The 

unique contribution of the manuscript is to demonstrate the ability to train an artificial 

neural network to predict B values of novel formulations based on B value 

measurements.  The limitations of this initial work are two-fold:  1) lysozyme is a 

relatively low molecular weight and inherently stable protein and 2) the low-throughput 

HPLC is only able to measure a single B value every two hours.  The next two 

manuscripts address these issues through development of high-throughput hardware and 

evaluation of an antibody fragment. 

The second manuscript, “Hazard Analysis and Risk Assessment in the 

Development of Biomedical Drug Formulations”, applies hazard analysis techniques to 

the HSC system design.  Traditional hazard analysis in the clinical environment focuses 

on patient health and safety.  In development of the risk assessment procedure, applied to 

academic research, it became clear that experiment accuracy and integrity is the central 

concern.  This process led to the introduction of a pressure sensor to identify problems 

with precipitating protein and the inclusion of a software specified cutoff when system 

pressure reaches a level that might damage the chromatography columns. 
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The final manuscript, “Protein Solubilization: A Novel Approach”, describes a 

comprehensive screening method that incorporates two additional screening tiers, a pre-

screen to identify the chromatography media with the highest concentration binding and 

an initial screen to evaluate individual additives. The pre-screen is a quality control step 

used to evaluate the efficiency of four different protein binding chemistries that couple 

protein to the chromatographic media.    The goal of this pre-screen is to find the 

optimum binding chemistry (that which results in the highest protein concentration bound 

to the media).  The initial screen, which measures B values of individual additives in a 

minimal formulation, allows for evaluation of a greater number of unique additives than 

could be accommodated in the more complex incomplete factorial screen.  Individual 

additives with the highest B values are chosen for the incomplete factorial screen.  As in 

“Applications in Protein Formulation Prediction”, B values are measured for each 

formulation in the incomplete factorial and these results are used to train the artificial 

neural network.  Predictions made by the trained neural network model for the complete 

factorial of combinations and a subset of the predictions are measured by self-interaction 

chromatography. 

Hardware improvements that have contributed to the successful implementation 

of the HSC System include: dual-detectors, robotic formulation delivery and pressure 

monitoring.  Placement of a detector before and after the SIC column (dual detectors) 

prevents guard column variations from affecting B value calculation.  The robotic 

formulation delivery allows for uninterrupted evaluation of 48 formulations and pressure 

monitoring is able to identify over-pressure issues due to aggregation or other line 

obstructions. 
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Future Work 

There are many potential topics of research both in system design and application.  

Primary areas of improvement in system design include screening methods, analysis and 

hardware.  For screening methods, novel additives and sets of additives can be identified 

for particular protein or class of proteins, such as IgG.  Identification of additive sets will 

require storage of formulation B values across different formulations and different 

proteins along with their protein class.  A database to handle this information is currently 

under development.  New hardware/method improvements include reduction in column 

diameter, monolithic columns (in-column polymerization) and on-column binding 

systems (binding protein to a pre-packed column) for a more simple experiment setup. 

On-column binding has been evaluated previously23 for larger volume columns and we 

are in the process of evaluating on-column binding with the smaller diameter columns 

used in the HSC System. 

The applications of the HSC technology include solubilization of viral capsids for 

vaccines and cross-interaction chromatography.  One issue with evaluating B values of 

whole viral capsids is that they are typically at very low concentrations (micromolar).  

Based on the improved solubility of the Minerva IgG protein by solubilizing a sub-

domain we are interested identifying whether or not constituent capsid proteins can be 

solubilized to improve whole capsid solubility.  With cross-interaction chromatography 

instead of self-interactions, the interactions between two different protein molecules are 

evaluated.  Identification of formulations that form stable protein complexes has potential 

use in both crystallization and storage stability.  Overall, the multiple improvements 

made in the HSC system have resulted in higher throughput and accuracy while lessening 
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the need to manual intervention/monitoring.  These accomplishments enable the 

experimenter to more efficiently explore the multiple applications of this technology.  

  



 

118 
 

 

 

REFERENCES 

1. Johnson, I. S. Human Insulin from Recombinant DNA Technology. Science 219, 
632–637 (1983). 

2. Arnum, P. V. Evaluating the Pieces in Big Pharma’s Manufacturing Investments. 
Pharm. Technol. 37, 38–41 (2013). 

3. Shire, S. J., Shahrokh, Z. & Liu, J. Challenges in the development of high protein 
concentration formulations. J. Pharm. Sci. 93, 1390–1402 (2004). 

4. De Groot, A. S. & Scott, D. W. Immunogenicity of protein therapeutics. Trends 
Immunol. 28, 482–490 (2007). 

5. Schellekens, H. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat 
Rev Drug Discov 1, 457–462 (2002). 

6. Schellekens, H. Factors influencing the immunogenicity of therapeutic proteins. 
Nephrol. Dial. Transplant. 20, vi3–vi9 (2005). 

7. Frokjaer, S. & Otzen, D. E. Protein drug stability: a formulation challenge. Nat. Rev. 
Drug Discov. 4, 298–306 (2005). 

8. Shire, S. J. Formulation and manufacturability of biologics. Curr. Opin. Biotechnol. 
20, 708–714 (2009). 

9. Chirino, A. J., Ary, M. L. & Marshall, S. A. Minimizing the immunogenicity of 
protein therapeutics. Drug Discov. Today 9, 82–90 (2004). 

10. Center for Drug Evaluation and Research. Drug Approvals and Databases - Inactive 
Ingredients Database Download. at 
<http://www.fda.gov/Drugs/InformationOnDrugs/ucm113978.htm> 

11. Chi, E. Y., Krishnan, S., Randolph, T. W. & Carpenter, J. F. Physical Stability of 
Proteins in Aqueous Solution: Mechanism and Driving Forces in Nonnative Protein 
Aggregation. Pharm. Res. 20, 1325–1336 (2003). 

12. Manning, M. C., Chou, D. K., Murphy, B. M., Payne, R. W. & Katayama, D. S. 
Stability of Protein Pharmaceuticals: An Update. Pharm. Res. 27, 544–575 (2010). 

13. Ye, H. Simultaneous determination of protein aggregation, degradation, and absolute 
molecular weight by size exclusion chromatography–multiangle laser light scattering. 
Anal. Biochem. 356, 76–85 (2006). 



 

119 
 

14. Demeule, B., Messick, S., Shire, S. J. & Liu, J. Characterization of Particles in 
Protein Solutions: Reaching the Limits of Current Technologies. AAPS J. 12, 708–
715 (2010). 

15. Rhyner, M. N. The Coulter Principle for Analysis of Subvisible Particles in Protein 
Formulations. AAPS J. 13, 54–58 (2010). 

16. Neal, B. L., Asthagiri, D. & Lenhoff, A. M. Molecular Origins of Osmotic Second 
Virial Coefficients of Proteins. Biophys. J. 75, 2469–2477 (1998). 

17. Berkowitz, S. A. Role of analytical ultracentrifugation in assessing the aggregation of 
protein biopharmaceuticals. AAPS J. 8, E590–E605 (2006). 

18. Moon, Y. ., Anderson, C. ., Blanch, H. . & Prausnitz, J. . Osmotic pressures and 
second virial coefficients for aqueous saline solutions of lysozyme. Fluid Phase 
Equilibria 168, 229–239 (2000). 

19. Tessier, P. M., Lenhoff, A. M. & Sandler, S. I. Rapid Measurement of Protein 
Osmotic Second Virial Coefficients by Self-Interaction Chromatography. Biophys J 
82, 1620–1631 (2002). 

20. Bakshi, M. & Singh, S. Development of validated stability-indicating assay methods-
-critical review. J. Pharm. Biomed. Anal. 28, 1011–1040 (2002). 

21. McMillan, W. G. & Mayer, J. E. The Statistical Thermodynamics of Multicomponent 
Systems. J. Chem. Phys. 13, 276–305 (1945). 

22. Zimm, B. H. Application of the Methods of Molecular Distribution to Solutions of 
Large Molecules. J. Chem. Phys. 14, 164–179 (1946). 

23. Rakel, N., Schleining, K., Dismer, F. & Hubbuch, J. Self-interaction chromatography 
in pre-packed columns: A critical evaluation of self-interaction chromatography 
methodology to determine the second virial coefficient. J. Chromatogr. A 1293, 75–
84 (2013). 

 


	Development of a High-Throughput Self-Interaction Chromatography System
	Recommended Citation

	DAVID H. JOHNSON
	LAWRENCE J. DELUCAS, COMMITTEE CHAIR
	A DISSERTATION
	BIRMINGHAM, ALABAMA
	DAVID H. JOHNSON
	PHARMACEUTICAL FORMULATIONS AND THE IMPORTANCE OF
	LIST OF TABLES
	INTRODUCTION
	PROTEIN SOLUBLIZATION: A NOVEL APPROACH
	LIST OF FIGURES
	INTRODUCTION
	PROTEIN SOLUBLIZATION: A NOVEL APPROACH
	LIST OF ABBREVIATIONS
	SIC: self-interaction chromatography
	INTRODUCTION
	Pharmaceutical Formulations and the Importance of Solubility
	Protein Physical Stability
	Self-Interaction Chromatography
	Pressure sensing and detection during a screen is one of three major improvements driven by a failure mode effects and analysis and reported in the manuscript, “Hazard Analysis and Risk Assessment in the Development of Biomedical Drug Formulations”.  ...
	The ability to rapidly measure B value of a protein in different formulations allows for a more comprehensive screening process with hundreds of physical B value measurements.  In order to optimize use of the instrument a multi-tiered screen is used ...
	Column Preparation
	Four media types designed for protein binding are available from Tosoh Haas, each with different binding chemistry.  The media names are given by the active binding group: formyl, tresyl, carboxy and amino.  During the initial evaluation of a protein,...
	The HSC system has four separate channels each with a UV280 detector and injection syringe.   In addition to separate channels there is also a formulation reservoir connected to a robotic platform that provides automated system washing (via column byp...
	Validation – During Screen
	B value deviations in the minimal formulation greater than 1 B unit (mol*ml / g2) or retention time deviation in the minimal formulation greater than 10% result in re-evaluation of the formulation immediately after the failed minimal formulation and c...
	Validation – Post Screen
	DAVID H. JOHNSON, ARUN PARUPUDI, W. WILLIAM WILSON,
	Copyright 2009
	by
	David H. Johnson
	Abstract
	Introduction
	Materials and Methods
	Screen Conditions
	Protein Immobilization
	Self-Interaction Chromatography
	Static Light Scattering
	Prediction Verification
	Results and Discussion
	Confirmation by Static Light Scattering
	Screen Results
	Modeling and Prediction Results
	Limitation
	Conclusions
	Acknowledgements
	References
	David H. Johnson, Martha W. Bidez, Lawrence J. DeLucas
	Abstract
	Introduction
	FIGURE 1:  The Risk Assessment Process (Adapted from ANSI/GEIA-STD-00101)
	Purpose
	Figure 4:  Formulation platform diagram
	Table 3:  Risk Assessment Matrix
	Table 4. Hazard severity to Humans, Equipment and Experiments
	Results
	Conceptual Design Hazard Analysis – Preliminary Hazard List (PHL)
	Preliminary Design Hazard Analysis – Preliminary Hazard Analysis (PHA)
	System Design Hazard Analysis – Functional Hazard Analysis (FuHA)
	Detailed Design Hazard Analysis – Failure Mode and Effect Analysis (FMEA)
	References
	PROTEIN SOLUBILIZATION: A NOVEL APPROACH
	DAVID H. JOHNSON, W. WILLIAM WILSON, LAWRENCE J. DELUCAS
	Abstract
	Keywords
	Abbreviations
	Introduction
	Material and Methods
	Multi Tiered Additive Screen
	Baseline Measurements.  Protein purity is initially confirmed via SDS PAGE and staining with BioSafe Coomassie. Protein B-value measurements are established using a “reference buffer” solution which provides a baseline reference for subsequent compari...
	Self Interaction Chromatography
	Binding test. There are multiple protein binding chemistries available to covalently bind protein to media such that the point of attachment between the protein’s surface and the media is random (this is accomplished by using free amine or carboxyl fu...
	Binding and packing a column.  For each protein investigated, the protein chemical binding process is scaled up 15-fold to support simultaneous use of three “live” columns (“live” column = column with protein).  A fourth “dead” column (“dead” = column...
	Retention time measurements. A guard column is positioned prior to each live and dead column to separate absorption peaks caused by salts, buffer and other small molecules contained in the base buffer used to solubilize the protein (these small molecu...
	DSC Confirmation
	B Value Screens
	Initial screen.  The initial screen is used to identify individual additives that contribute to protein-protein repulsion (positive B-value).  The formulations for the initial screen are prepared by combining 10x concentrated phosphate buffered saline...
	Incomplete factorial screen.  After completion of the DSC tests, the top nine solutions are combined in an incomplete factorial using an orthogonal array according to the Taguchi method [25].  This method ensures that additive identity and additive co...
	Neural network training.  The measured B-values are used to create a numerical model of how specific additives in the formulation affect protein-protein interaction.  An artificial neural network (ANN) model [26] is first trained five separate times u...
	Neural network prediction and confirmation.  The trained ANN returns a B-value given a formulation where the output is based on previously measured B-values.  After training is complete the neural network is presented with each formulation in the comp...
	Thermal stability confirmation. The predicted formulations with increased B-value measurements are experimentally validated followed by DSC confirmation of protein thermal stability in these new formulations.
	Indirect Solubility Testing. Dynamic light scattering (DLS) is used to indirectly test the solution solubility characteristics of the protein by evaluation of the aggregation properties of the protein as protein concentration is increased.  Due to a l...
	Calculation of B Value
	Results
	Minerva Fab – Initial Screen
	Figure 3. Solubility estimates of Fab from Minerva
	Discussion
	Baseline
	Initial Screen
	Incomplete Factorial
	Neural Network
	Conclusion
	Acknowledgements
	Appendices
	References
	CONCLUSIONS
	Future Work

