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EXTREMA BASED SIGNAL TRANSFORMS FOR BIOMEDICAL SIGNAL ANALYSIS

BHADHAN ROY JOY

ELECTRICAL AND COMPUTER ENGINEERING

ABSTRACT

Signal transforms are very important tools to extract useful information from scientific,

engineering, or medical raw data. Unfortunately, traditional transform techniques impose

unrealistic assumptions on the signal, often producing erroneous interpretation of results.

Well-known integral transforms, such as short time Fourier transform, though have fast

implementation algorithms (e.g., FFT), are still computationally expensive. They have

multiple parameters that should be tuned, and it is not readily clear how to tune them for

long-duration nonstationary signals. To solve these problems, one needs a computationally

inexpensive transform with no parameters that will highlight important data aspects. We

propose a simple transform based on extrema points of the signal. The transform value at a

given point is calculated based on the distance and magnitude difference of two extrema

points it lies between, rather than considering every point around it. We discuss implementa-

tion of the developed algorithm and show examples of successfully applying the transform

in detecting Delta waves in brain EEG signal. Ideas for improvement and further research

are discussed.

Keywords: Parameterless Transform, Extrema Transform, EEG, Delta wave, Hilbert-Huang

Transform, HHT, Empirical Mode Decomposition, EMD
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1. INTRODUCTION

Human body mechanism is controlled by the nervous system. As the central part of

the system, the brain receives outside world signal, processes it and triggers a reaction.

Brain signal changes during cognitive activities and in different sleep stages. Neurological

disorders such as epilepsy, or sleep disorder cause abnormalities in the brain signal [1].

Therefore, brain signal analysis is necessary for disease detection, cognitive brain and sleep

study.

Multitude of other applications require analysis of nonstationary signals. Study of

seismic wave reveals the energy density associated with an earthquake [2]. Speech signal

analysis can lead to noninvasive and cheap detection method of Parkinson’s disease [3]. Ap-

plication of signal transform methods on data like global temperature or CO2 concentration

can reveal inherent periodicity and increasing or decreasing trend buried in the data [4].

Due to these and other applications in the broad range of fields, many different transform

methods were proposed in the past.

1.1. Motivation Behind Development of a New Transform

Practical signals are nonstationary. EEG, ECG, seismic wave, financial data- frequency

spectrum of these signals vary over time. But in many existing transform methods, the

signal is considered to be periodic, stationary, or piecewise periodic. In conventional

transforms, signal analysis is done by projecting it onto a priori selected basis vectors,

which remain unchanged during analysis. But adaptability is a necessary criterion for the

basis for expanding non-stationary signal [5]. As the spectrum of nonstationary data is

not static while basis vectors remained unchanged during analysis, the methods may not

capture the varying nature of signal efficiently under all conditions. In addition to that, real

world signals are noisy, where the noise often can be orders of magnitude stronger than the

signal itself. Often, signal and noise are mixed and difficult to separate. In these situations,
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removing a lot of noise would also lead to the removal of some signal [6]. Designing suitable

filter to remove noise introduces extra complexity for the signal analysis process. Moreover,

the performance of most existing transform depends on the judicious selection of parameters.

Often signals for analysis are of long duration. For example, sleep study requires analysis

of EEG signal couple of hours long. Computationally expensive traditional methods are

not ideal for fast analysis of long duration signals. In this dissertation, we address the

shortcoming of traditional transforms and develop a parameterless and computationally

inexpensive signal transform.

1.2. Literature Review

Traditionally, signal analysis field has been dominated by Fourier Transform [7], [8] to

find energy distribution of the signal in the frequency domain. In Fourier transform, the

signal is decomposed into a combination of sinusoids. Generally, when performing Fourier

transform, one assumes periodic and stationary signal to make sense from the result. As

a sinusoid is infinite in the time domain with fixed amplitude, more sinusoids in the time

domain are necessary to represent a sudden jump in the signal. Next, sharp change and

discontinuity result in spreading of Fourier spectra in the frequency domain. To overcome

the shortcomings of Fourier transform, Short-Time Fourier Transform (STFT) has been

developed [9], [10]. In STFT, time-frequency distribution is computed by applying and

successively sliding a short-time duration window along the time axis. Data is assumed to

be piecewise stationary during this short period. Here, the frequency resolution is controlled

by the selection of window size at the beginning of analysis whereas the nature of the signal

is generally not known a priori; that makes the choice of a suitable window size challenging.

The window width must be small to localize an event in time. On the other hand, long time

span is necessary to determine frequency resolution, thus requiring a compromise between

two conflicting requirements. [11]. Moreover, type of the window and consecutive windows

overlapping intervals should be chosen manually to get quality results.
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In the late 1970’s, J. Morlet developed an alternative to STFT, which consisted of first

windowing a signal, and then computing its Fourier coefficients. Prudent choice of the

window resulted in better extraction of signal information in both time and frequency domain.

Works based on the idea led to the development of Wavelet transform [12]. In her seminal

paper on wavelets [13], Daubechies constructed orthonormal bases of compactly supported

wavelets to give the field a solid mathematical foundation. As a vast improvement of STFT,

wavelet analysis has numerous applications in disparate fields even though it has some

limitations. It uses a predefined set of basis vectors of finite length, and the selected set may

not be suitable for analyzing the signal in consideration. In wavelet analysis, good frequency

and poor time resolution are observed at low frequency and the contrary at high-frequency

range [14].

More recently, a new signal analysis method, namely Hilbert-Huang Transform (HHT),

has been proposed [5], [15], [16]. In HHT, frequency change in the signal is considered

at a very local level, which makes it particularly suitable for non-stationary data analysis.

HHT algorithm can be divided into two parts: (a) Empirical mode decomposition (EMD),

(b) Hilbert transform to calculate time-frequency-energy from EMD signals [17]. In EMD,

the signal is decomposed into a finite and generally small number of base functions called

Intrinsic Mode Functions (IMF). Those functions have the following properties:

(1) The number of extrema points and the number of zero-crossings of IMF differ by

at most one [5, 18].

(2) At any point, the mean value of the envelope defined by local maxima and the

envelope defined by local minima is zero [5, 18].

The EMD algorithm employs an iterative sifting process which is as follows:

(1) Determine the local maxima and minima of the signal x(t).

(2) Connect the maxima with an interpolation function to create an upper envelope

emax(t) and repeat the procedure for the minima to create lower envelop emin(t).
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(3) Compute the mean m(t) of extrema envelopes.

m(t) =
emax(t)+ emin(t)

2
(1.1)

(4) Calculate residual c(t) = x(t)−m(t).

(5) Iterate over the residual c(t) until it meets the criteria of IMF.

Once one IMF is calculated, it is subtracted from the original signal and sifting process

is repeated on reminder signal to extract the next IMF. This is repeated to extract n number

of IMFs until the residual rn is less than a predefined tolerance value, or when rn becomes a

monotonic function [5], [19].

After the signal x(t) is fully decomposed, it can be expressed as the sum of the IMFs

and final residue.

x(t) =
n

∑
j=1

c j + rn (1.2)

Here, n is the number of IMFs, c j is a decomposed IMF, which has well-behaved Hilbert

transform and rn is the residue after the sifting process ends. For IMF c j Hilbert transform

is:

H[c j(t)] = ỹ j(t) =
1
π

PV
∫

∞

−∞

c j(t ′)
t− t ′

dt ′ (1.3)

Here, PV is the Cauchy principal value [4]. For each IMF, we can calculate instantaneous

frequency ω j, j = 1,2, ...,n and amplitude a j, j = 1,2, ...,n using (1.4), (1.5).

c j(t)+ iỹ j(t) = a j(t)eiθ(t) (1.4)

where a j(t) =
√

c2
j(t)+ ỹ2

j , θ(t) = arctan( ỹ j
c j
) and i =

√
−1

a j(t) and θ(t) are the instantaneous amplitude and phase functions of IMF c j [4]. The

instantaneous frequency is the time derivative of the phase.

ω j =
dθ j(t)

dt
(1.5)
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From instantaneous frequency and amplitude original signal can be reconstructed using

(1.6).

x(t) = Real
N

∑
j=1

a j(t)ei
∫

ω j(t)dt (1.6)

HHT is useful in the analysis of nonlinear non-stationary data. So it has been successfully

applied in diverse fields. The method has been employed in distorted power quality analysis

[20–22], speech analysis [23–27], financial [18, 28, 29] and geophysical data study [19, 30,

31], mechanical fault detection [32–34], signal filtering [35–39], to name a few. Because

of human body signals being non-stationary in nature, HHT is particularly suitable for

biosignal analysis. It has found application in heart signal analysis [17, 40–43], blood

flow and pressure measurement [44–46], EEG study [47–53]. Though versatile, it also

suffers from some limitations. HHT is not effective on narrow-band signal [54] and is

computationally expensive. Keeping in mind the shortcomings of existing signal analysis

tool, we develop a new, parameterless, computationally inexpensive signal transform. The

transform does not require a priori basis, takes frequency range to search for as input and

produces large value at times when the provided frequency range is dominant in signal in

consideration.

1.3. Organization of the Thesis

This thesis develops a new extrema based computationally inexpensive transform for signal

analysis. The primary objective of this research is to develop the algorithm and explores the

mathematical properties and application of the transform.

In Chapter 2, description and algorithm of the transformation are presented. In Chapter 3,

general transform properties are discussed and proved. Some typical examples are provided

to demonstrate those properties. We compare the performance of existing transforms to our

transform in Chapter 4. In the first example, we consider a noise corrupted linear chirp signal

to search the time and duration of a particular frequency range using developed transform

and compare the performance with HHT. In the next example, we analyze the effect of

5



noise and demonstrate that the transform is robust to noise. We conclude the chapter with

another example showing the application of signal in detecting delta wave in EEG signal.

Limitations, future research ideas for improvement are discussed in Chapter 5.
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2. TRANSFORM DEFINITION AND ALGORITHM

The proposed transform involves well-defined iterative steps based on extrema points

applied to the signal x(t). Let’s assume that the signal is given by x(t) for t ≥ 0. All

its discrete local extrema points are denoted by Ei, including the starting point E0 = x(0).

Those extrema points appear at times {t0 = 0, t1, ..., ti, ...}. The first level transform is defined

by two discrete vectors {ti} and {|Ei+1−Ei|}, which is the vertical distance between the

consecutive extrema points. The next transform level is computed by constructing piecewise

linear signal x1(t) connecting the points {ti + ti+1

2
,
Ei +Ei+1

2
}. Practically, this means a

piecewise linear curve passing between the extrema points of the original signal, providing

smoothing to the signal x(t). For level 2, another pair of discrete vectors of time and vertical

distances is computed from x1(t) using the same approach from the level 1. The process is

continued for additional levels. Generally, less than 10 levels are needed for the analysis.

One important use of the proposed transform is the detection of signal in noise; more

specifically, detection of nonstationary periodic signals in a predefined frequency range. For

that, in each step, the signal component in the provided frequency range is searched and if

found the regions are marked. The expanded transform is the summation of values in the

marked region. The algorithm is described below:

(1) Given the range of desired frequencies [ fmin, fmax], calculate the range for a number

of sample points, Imin and Imax, between two successive extrema:

Imin =
Fs

2 fmax
,

Imax =
Fs

2 fmin
.

(2.1)

Here, Fs is the sampling frequency of the signal.

(2) Create a zero vector v1 of the same size of original signal x(t).
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(3) Calculate all extrema points {E0 = x(0),E1, ...,Ei,Ei+1, ...} at time {t0 = 0, t1, ...,

ti, ti+1, ...}. If all the samples have the same value, then consider the first and last

sample as two consecutive extrema points.

(4) If the distance between two successive extrema points Ei and Ei+1 at time ti and

ti+1, respectively is in between Imin and Imax, then put value |Ei+1−Ei| for every

data sample in between ti and ti+1. For sample k in between ti and ti+1,

v1(k) =


|Ei+1−Ei|, if Imin ≤ ti+1− ti ≤ Imax

0, otherwise
(2.2)

(5) Update the signal x(t) for next level with the average values of the successive

extrema points placed at the mid point between them. All other non-extrema points

are discarded.

t ′i =
ti + ti+1

2
,

x1(t ′i) =
Ei +Ei+1

2
.

(2.3)

(6) Continue step 2 - 5 for n number of times for level 2,3, ...,n until the total number

of samples in the signal becomes 3 or less.

(7) After n number of iterations, we have vector v1,v2,v3, ...,vn created in each iteration.

The expanded transform T [x(t)] is the summation of all the vectors.

T [x(t)] =
n

∑
j=1

v j (2.4)
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3. MATHEMATICAL PROPERTIES

Let the transform of signal x(t) be defined as X(t).

T [x(t)] = X(t) (3.1)

3.1. Transform of a Constant

The Extrema transform of a constant signal x(t) = c is 0.

T (c) = 0 (3.2)

Proof: During the step 3 of first iteration, the extrema are E0 = E1 = c located at t0 and t1

samples, where t0 and t1 are the first and last sample, respectively. As E1−E0 = 0, so for

both cases of (2.2),

v1 = 0 (3.3)

The updated point, form (2.3) is x1 =
E1+E0

2 = c at time t0+t1
2 . As only one sample remains

after update, so according to step 6, it is the final iteration and the transform is T [x(t)] =

v1 = 0.

3.2. Transform of a Sinusoid

Transform of sinusoid x(t) = Asin(2π f +θ) is

T (x) =


2A, if fmin ≤ f ≤ fmax

0, otherwise
(3.4)

Proof: Let the extrema points of the sinusoid are {E0 = x(0),E1, ...,Ei,Ei+1, ...} at time

{t0 = 0, t1, ..., ti, ti+1, ...}. The sampling frequency is Fs. Here, |Ei+1−Ei|= 2A.
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Assuming the sampling frequency high enough, the distance between two consecutive

extrema points of same phase is 1
f sec = Fs

f samples.

As there is an extrema of opposite phase at the midpoint of two same phase extrema, the

number of samples between two consecutive extrema is Fs
2 f samples.

During first iteration of the algorithm, according to (2.2),

v1(k) =


2A, if Imin ≤ t ≤ Imax

0, otherwise
(3.5)

Here, Imin =
Fs

2 fmax
, t = Fs

2 f and Imax =
Fs

2 fmin
. The inequality, after simplification becomes

fmin ≤ f ≤ fmax. We get,

v1 =


2A, if fmin ≤ f ≤ fmax

0, otherwise
(3.6)

In the next step, update of each consecutive extrema pair Ei and Ei+1 at time ti and ti+1

samples is calculated by (2.3),

t ′i =
ti + ti+1

2
,

x1(t ′i) =
Ei +Ei+1

2
= 0

(3.7)

Updated signal is a constant 0 valued signal. In second iteration, produced vector v2 is

zero vector according to (3.3) and iteration stops after second iteration.

v2 = 0 (3.8)

Transform is summation of v1 and v2.

T (sine) = v1 + v2 =


2A, if fmin ≤ f ≤ fmax

0, otherwise
(3.9)
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In Fig. 1 (a) and 2 (a), frequency of the sinusoid is f = 10Hz and amplitude A = 1.

Transform is applied on the same signal, in first case with fmin = 9Hz and fmax = 11Hz.

fmin < f < fmax, so from (3.9) the transform is T (sine) = 2, which can be seen in Fig. 1 (c).

In the next example, fmin = 14Hz and fmax = 16Hz while the signal remains unchanged. As

f > fmax, the output of the transform in this case is 0, which is displayed in Fig. 2 (c).

Figure 1: (a) Sinusoid of frequency 10Hz. (b) Image representation of transform: fmin = 9
and fmax = 11. (c) Extrema transform applied to sinusoid with the parameters.

3.3. Amplitude Scaling

Amplitude scaling of signal

T [a(x(t))] = aX(t) (3.10)

Proof: Let, {E0 = x(0),E1, ...,Ei,Ei+1, ...} at time {t0 = 0, t1, ..., ti, ti+1, ...} are the extrema

of x(t) and for scaled signal a(x(t)) the extrema are {a.E0 = a.x(0),a.E1, ...,a.Ei,a.Ei+1, ...}

at time {t0 = 0, t1, ..., ti, ti+1, ...}. At the beginning of first iteration, maxima of the original

and scaled signal are at the same location and second signal’s maxima are scaled by factor a.

11



Figure 2: (a) Sinusoid of frequency 10Hz. (b) Image representation of transform: fmin = 14
and fmax = 16. (c) Extrema transform applied to the sinusoid with the parameters.

Let us suppose at the beginning of j− th iteration, the maxima of both signals are at the

same location. For signal x j−1(t) at j− th iteration, any k− th sample value of vector v j

between two consecutive extrema at time ti and ti+1 is,

v j(k) =


|Ei+1−Ei|, if Imin ≤ ti+1− ti ≤ Imax

0, otherwise
(3.11)

Here, ti ≤ k < ti+1, Ei and Ei+1 are two consecutive extrema points at time ti and ti+1 of

x j−1(t).

Updated signal point for the extrema pairs is

t ′i =
ti + ti+1

2
,

x j(t ′i) =
Ei +Ei+1

2

(3.12)
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On the other hand, for scaled signal ax j−1(t), at j− th iteration, sample values of vector

v∗j between ti and ti+1 is,

v∗j(k) =


|a.Ei+1−a.Ei|= |a(Ei+1−Ei)|, if Imin ≤ ti+1− ti ≤ Imax

0 = a.0, otherwise
(3.13)

The update point for the pair would be

t∗i =
ti + ti+1

2
,

x∗j(t
∗
i ) =

a.Ei +a.Ei+1
2

=
a(Ei +Ei+1)

2

(3.14)

Comparing (3.11) with (3.13) and (3.12) with (3.14) we get,

v∗j = a.v j,

t∗i = t ′i ,

x∗j(t
∗
i ) = a.x j(t ′i)

(3.15)

It can be noticed from (3.15) that at the beginning of j+1− th iteration, the update of

scaled signal would have samples at the same location as the updated original signal, and

scaled by factor a. Following same steps in j+1-th iteration we would get

v∗j+1 = a.v j+1 (3.16)

The stopping criteria does not include sample values, it depends on the number of points left

after each iteration, so for both cases it would stop after the same, say n, number of iteration.

Using (2.4) for scaled signal,
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T [a(x(t))] =
n

∑
j=1

v∗j ,

= a
n

∑
j=1

v j

= a.X(t)

(3.17)

3.4. DC Offset

T [(x(t))+ c] = X(t) (3.18)

Proof: Let, {E0 = x(0),E1, ...,Ei,Ei+1, ...} at time {t0 = 0, t1, ..., ti, ti+1, ...} are the ex-

trema of x(t) and for signal x(t)+ c the extrema are {E0 + c,E1 + c, ...,Ei + c,Ei+1 + c, ...}

at time {t0 = 0, t1, ..., ti, ti+1, ...}. At the beginning of first iteration, the maxima of original

and offset signal are at the same location and second signal’s maxima values are shifted by

c.

Let us suppose during the beginning of j− th iteration, the maxima of both signals are

at the same location. For x j−1(t) at j− th iteration, the sample values of vector v j between

consecutive extrema at time ti and ti+1 are expressed by (3.11) and updated signal point is

calculated by (3.12).

On the other hand, for DC offset signal x j−1(t)+ c, at the beginning of j-th iteration,

the sample values of v∗j between two consecutive extrema at ti and ti+1 are,

v∗j(k) =


|Ei+1 + c− (Ei + c)|= |Ei+1−Ei|, if Imin ≤ ti+1− ti ≤ Imax

0, otherwise
(3.19)
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The updated point for the pair would be

t∗i =
ti + ti+1

2
,

x∗j(t
∗
i ) =

Ei + c+Ei+1 + c
2

=
Ei +Ei+1

2
+ c

(3.20)

Comparing (3.11) with (3.19) and (3.12) with (3.20) we get,

v∗j = v j,

t∗i = t ′i ,

x∗j(t
∗
i ) = x j(t ′i)+a

(3.21)

It can be noticed from (3.21) that at the beginning of j+1− th iteration, the update of

offset signal would have samples at the same location as the updated original signal, and

offset by value c. Following same steps in j+1-th iteration we would get

v∗j+1 = v j+1 (3.22)

The stopping criteria depends on the number of points left after each iteration, for both cases

it would stop after same number of iteration. As noticed in (3.22), in both original and offset

signal, the vectors output after each iteration are the same. That implies in both cases the

transform would yield the same result, as the transform is summation of th output vectors.

We get,

T [x(t)+ c] = X(t) (3.23)

3.5. Time Shift

T [x(t− τ)] = X(t− τ) (3.24)

Proof: Let, {E0 = x(0),E1, ...,Ei,Ei+1, ...} at time {t0 = 0, t1, ..., ti, ti+1, ...} are the extrema

of x(t) and {E0 = x(0),E1, ...,Ei,Ei+1, ...} at time {t0 + τ , t1 + τ , ..., ti + τ , ti+1 + τ, ...} are
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the extrema of x(t− τ). The two signals have the same extrema sequence, but the extrema

of x(t− τ) are shifted by τ to the right.

Let us suppose at the beginning of j-th iteration, the extrema of the second signal are

shifted by τ to the right, that is two consecutive extrema have values Ei and Ei+1 at ti + τ

and ti+1 + τ , respectively. For any arbitrary sample k∗ in between ti + τ and ti+1 + τ ,

v∗j(k
∗) =


|Ei+1−Ei|, if Imin ≤ t ≤ Imax

0, otherwise
(3.25)

Here, t = ti+1 + τ− (ti + τ) = ti+1− ti and ti + τ ≤ k∗ < ti+1 + τ .

From comparing (3.11), (3.25) and the range of k and k∗ of the equations, it can be

deduced that v∗j has same value as v j when time shifted to the right by τ .

v∗j(t
∗) = v j(t− τ) (3.26)

The update of i-th extrema pair, according to (2.3) is,

t∗i =
ti + τ + ti+1 + τ

2

=
ti + ti+1

2
+ τ

x∗j(t
∗
i ) =

Ei +Ei+1

2

(3.27)

Comparing (3.12) with (3.27) we see the updated time shifted signal would also be equal

to updated original signal, after time shifting by τ . So, at the beginning of j+1 iteration, the

second signal would maintain its τ time shift and values and the number of points of both

first and second updated signal would be the same. Following same steps in j+1 iteration

we would get

v∗j+1(t
∗) = v j+1(t− τ) (3.28)
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It would take the same n number of iterations for both signals before stopping. For

x(t− τ) the transform is

T [x(t− t0)] =
n

∑
j=1

v∗j(t
∗)

=
n

∑
j=1

v∗j(t− τ)

= X(t− τ)

(3.29)
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4. RESULTS

4.1. Noisy Chirp Signal

We have tested our extrema-based transform algorithm on various synthetic signals with

artificially added white Gaussian noise. The first example is the corrupted by noise (SNR =

−9db) linear chirp signal ranging from 0Hz to 30Hz. The sampling frequency is Fs =

10KHz. The original signal and corresponding noisy version with chirp superimposed on

are shown in Fig. 3 (a), (b).

Figure 3: (a) Linear chirp signal. (b) Noise corrupted signal with original signal superim-
posed on it.

We are interested in capturing the time duration where original signal dominant frequency

is in the 0.5− 4 Hz range. We have selected this frequency range because it happens to

coincide with the delta brain wave frequency range, which is particularly difficult to identify

with other transforms. We apply our proposed algorithm on the signal with fmin = 0.5,

fmax = 4. After n = 13 iterations (Algorithm steps 6, 7) the number of samples left becomes

3. So the chirp signal transform is,
18



T [xchirp(t)] =
13

∑
j=1

v j (4.1)

In Fig. 4(a), (b) the graphical representation of chirp signal transform is displayed.

Darker image colors demonstrate larger vertical distances between the successive extrema

points; each row corresponds to a single level of transform; the sizes of a single color

intervals show the time distance between the successive extrema. The region when original

signal frequency is 0.5−4 Hz is marked by two red vertical lines. It can be observed that

the transform produces large value inside the bounded area as compared to other regions.

Figure 4: (a) Image representation of matrix created by vertical concatenation of v1, v2,
..., vn. (b) Extrema transform applied the the noise corrupted chirp signal. (c) HHT of the
signal.

We apply HHT method on the noisy chirp to compare the results between HHT and

Extrema Transform. In HHT sifting process, the signal is decomposed into 15 IMFs,

namely c1,c2, ...,c15 and residue r15. Instantaneous amplitude a1(t),a2(t), ...,a15(t) and

corresponding instantaneous frequencies ω1(t),ω2(t), ...,ω15(t) are calculated using (1.4)

and (1.5). As we are interested in 0.5− 4 Hz frequency, so we kept only the amplitude

values when instantaneous frequency is in between the range.
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a∗j(k) =


a j(k), if 0.5≤ ω j(k)≤ 4

0, otherwise
(4.2)

Here, j = 1,2, ...,15 and k is k-th sample of a j and ω j. We add the modified amplitudes

to calculate total amplitude value of the decomposed signal in the range.

HHT (xchirp(t)) =
15

∑
j=1

a∗j (4.3)

In Fig. 4(c), we plot the HHT transform. It shows a comparable result to Extrema

Transform, i.e. large values inside the marked region and smaller values outside. But

in HHT, large value can also be observed around the surrounding area near of selected

frequency range. Also significant spikes in different places can be noticed. We present a

quantitative comparison between two methods in Table 1.

Table 1: Comparison of results between Extrema Transform and HHT

Measure Extrema transform HHT
0.5-4Hz Other Ratio 0.5-4Hz Other Ratio

Mean 5.0636 0.6305 8.0307 1.2463 0.2486 5.0136
Median 4.8412 0.5157 9.3875 1.1989 0.1627 7.3683

Std. Deviation 0.9256 0.4965 1.8644 0.2724 0.2790 0.9760
Area 3.5447 3.3422 1.0606 0.8724 1.3176 0.6621

From Table 1 it can be observed that Extrema transform produces relatively larger value

in terms of mean, median, standard deviation and area for the time duration of the considered

frequency range as compared to HHT.

4.2. Performance Analysis under Noisy Conditions

In this example, we study the effect of noise on the signal x(t). The sampling frequency, time

duration and amplitude of the signal are 10kHz, 60sec and 1, respectively. The frequency of

the signal changes over time and we are interested in capturing the time duration when the

frequency of the signal is 0.5−4Hz.
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In Fig. 5(a), the original signal is displayed. Fig. 5(b) and Fig. 5(c) demonstrate Extrema

transform and STFT of the signal. It is evident from Fig. 5(a) and 5(b) that the mentioned

frequency range is present in the signal during 5−10sec and 30−40sec.

Figure 5: (a) Original signal. (b) Extrema transform of the signal. (c) STFT of the signal.

To analyze the performance of the Extrema Transform under noisy conditions, we add

zero mean Gaussian noise of standard deviation σ .

xnoisy(t) = x(t)+η ; η ∼ N(0,σ2) (4.4)

In Fig. 6(a), 7(a), 8(a), 9(a), signal corrupted by Gaussian noise of standard deviation

σ of 1, 2, 5 and 7, respectively are displayed. SNR for σ of 1, 2, 5 and 7 are −3db, −9db,

−17db and −20db, respectively for the signal. It can be noticed from the transforms in Fig.

6(b), 7(b), 8(b), 9(b) that though the noise amount is increasing as σ increases, the transform

produces larger value during 0.5−4Hz duration even when noise is orders of magnitude

greater than the signal. In each case, the 0.5−4 Hz region are bounded by vertical lines

and can be easily distinguished from other region by transform value. Also compared to the

corresponding STFT, the transform produces better result and time of concerned frequency

range can be pinpointed easily.
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Figure 6: (a) Gaussian noise corrupted signal, σ = 1. (b) Extrema transform of the signal.
(c) STFT of the signal.

Figure 7: (a) Gaussian noise corrupted signal, σ = 2. (b) Extrema transform of the signal.
(c) STFT of the signal.

In Fig. 10, we plot the ratio of mean transform values between considered frequency

region and other region vs noise standard deviation.
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Figure 8: (a) Gaussian noise corrupted signal, σ = 5. (b) Extrema transform of the signal.
(c) STFT of the signal.

Figure 9: (a) Gaussian noise corrupted signal, σ = 7. (b) Extrema transform of the signal.
(c) STFT of the signal.

mean1 = mean(T [xnoisy(t)]), i f 0.5≤ f req(x(t))≤ 4

mean2 = mean(T [xnoisy(t)]), i f f req(x(t))≤ 0.5 or f req(x(t))≥ 4

ratio =
mean1

mean2

(4.5)
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Here, x(t) is the original signal, xnoisy(t) is the noise corrupted signal, f req(x(t)) is the

frequency of original signal at time t, and T [xnoisy(t)]) is the Extrema Transform of noisy

signal.

Figure 10: Mean transform amplitude ratio. vs noise standard deviation, σ

From Fig. 10, we observe that for standard deviation of noise between 0.2− 2, the

Extrema transform produces on average 4 times larger value in the interested frequency

region compared to other regions. With the increase of noise standard deviation, the ratio

deceases slowly. Under very strong noise (σ = 10, SNR = −23db), the ratio becomes 2.

It implies under extremely noisy condition the transform would produce on average twice

as large value in the frequency range region in consideration. So, the transform would be

useful in detecting the interested frequency range under extremely noisy condition.

4.3. Application to EEG signal to Detect Delta Wave

In this experiment, we explore the application of Extrema Transform to detect delta wave

(0.5-4Hz) in EEG signal. Fig. 11(a) displays the EEG signal and 11(b) shows the STFT of

the signal.
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Figure 11: (a) EEG signal. (b) STFT of the signal.

In Fig. 12, the transform reveals delta activity in the whole duration of EEG signal apart

from small regions around 2.5sec and 4sec.

Figure 12: (a) Image representation of the Extrema transform of EEG signal. (b) Extrema
transform of EEG signal.
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We design a lowpass filter of 4Hz cutoff frequency, 0.01dB pick-to-pick ripple and 80dB

stopband attenuation. The magnitude response is displayed in Fig. 13.

Figure 13: Magnitude response of the designed low-pass filter

Fig. 14 shows the output of filtered signal. It can be observed that filtering smooths the

signal preserving the extrema.

Figure 14: (a) Filtered EEG signal. (b) STFT of the filtered signal.
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Fig. 15 displays the output of the Extrema Transform applied on the filtered signal.

Comparing Fig. 13 and Fig. 15 we observe that the Extrema Transform on unfiltered and

filtered signal produce almost identical result.

Figure 15: (a) Image representation of the Extrema transform of filtered signal. (b) Extrema
transform of the filtered EEG signal.
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5. CONCLUSIONS AND FUTURE RESEARCH

5.1. Summary

This dissertation focused on the development and application of a new signal analysis tool

based on extrema points. We explained the motivation behind this work, discussed existing

transform methods in the field, described the developed algorithm, presented and proved

some mathematical properties of the transform, applied the transform on synthetic and real

EEG signal and analyze the performance of the method.

First, we applied the transform in a chirp signal corrupted by strong white Gaussian

noise where we knew the frequency of any given time of the signal. We were interested in

finding the time and duration of occurrence of a particular frequency range. We analyzed the

performance of the Extrema Transform with HHT and the results showed that the Extrema

Transform produces better result than HHT in detecting interested frequency range.

Next, we tested the performance of the transform under varying noisy conditions. We

demonstrated that the transform is robust to noise and separates concerned frequency

range regions even when noise is orders of magnitude stronger than the signal itself. The

performance of the transform degrades very slowly with the increase of noise power.

Finally, we applied the transform on a real EEG signal which is non-stationary in nature.

It effectively found delta wave regions present in the signal. The example demonstrated that

it can be applied to real world signals as a faster and efficient alternative to traditional signal

analysis methods.

5.2. Limitations of Extrema Transform

Though Extrema Transform has great potential for analyzing non-stationary signals and

produces excellent performance in the presence of strong noise, some certain issues should

be addressed to broaden its applicability. A few limitations of the transform are presented:
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• The transform performs poorly at the presence of multiple dominant frequencies of

comparable energy at the same time.

• The transform is not sensitive to signal shape, it considers only the extrema points

in each iteration to calculate signal samples for the next iteration. Because of that,

signals of different shape but same extrema points would yield same transform

output. For example, sinusoid and triangular waves of same signal, phase and

amplitude would produce same result in the output.

• Extrema transform does not have an inverse, the original signal can not be re-

constructed from the transformation. As our purpose is to analyze non-stationary

signals, it is not necessary to have an inverse of the transform for analysis.

• All vector v js are given same weight in the algorithm, whereas it is evident that

the first few vectors are most important. On the other hand, the first few vectors

contain only noise components in the presence of noise. Assigning weight to v j

vectors may increase performance of the transform.

• In the Extrema transform algorithm, based on the distance between two consecutive

extrema, a value of either the difference of the extrema points or zero is placed

in v j in between the the extrema points sample location (2.2). This may lead to

misidentification of frequency regions when frequencies are very close to fmin and

fmax under noisy conditions.

5.3. Possible Improvement and Future Work

In this section we would discuss the possible improvements of the Extrema Transform to

address the issues presented in the previous section.

• Apply Extrema Transform on IMFs of HHT to produce good result when more

than one dominant frequency of comparable energy are present. Sifting process in

HHT decomposes signal into IMFs of different frequency band, applying Extrema

Transform on IMFs separately should enable us to analyze signals where multiple

dominant frequencies of comparable energy are present simultaneously.
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• Consider both the extrema points and the curvature of the signal between them in

the transformation algorithm. This would make the transform shape variant.

• Explore the importance of an inverse of the transform and develop an approximate

inverse.

• Given the amount of noise present in the signal is known, assign weight to different

v js to produce best result.

• Rather than assigning either the difference between two extrema values or zero in

(2.2), we would assign a value considering how close the distance of the extrema is

to Imin and Imax. In case the distance is in between Imin and Imax, the value would

be larger in the middle and linearly decreasing but nonzero in both directions

towards Imin and Imax. When the distance is either greater than Imax or less than

Imin, the value would be larger around Imax and Imin and monotonically decreasing

as distance increases or decreases, respectively.
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APPENDIX

MATLAB CODE

Functions to determine extrema points of input signal:

function maxima = findmaxima(x)

%FINDMAXIMA Find location of local maxima

% From David Sampson

% Identify whether signal is rising or falling

upordown = sign(diff(x));

% Find points where signal is rising before, falling after

maxflags = [upordown(1)<0; diff(upordown)<0; upordown(end)>0];

maxima = find(maxflags);

function [x,t] = findextrema(x,t)

%FINDEXTREMA Find location of local extrema (both maxima and minima)

% From David Sampson

% Identify whether signal is rising or falling

upordown_ind = sign(diff(x));

% Find points where signal is rising before, falling after

extremaflags = [1; diff(upordown_ind)~=0; 1];

ind = find(extremaflags);

t = t(ind);

x = x(ind);
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function [x,t] = scaledown(x,t)

% SCALEDOWN places the average of two signal samples in the middle

t = (t(1:end-1)+t(2:end))/2;

x = (x(1:end-1)+x(2:end))/2;

Code for generating Fig. 1

clear all;

clc;

close all;

fontsize = 18;

amplitude = 1;

stopTime = 10; % signal duration

frequency = 10;

phase = 0;

Fmin = 9;

Fmax = 11;

T = 1000; % Samples per second

Imin = floor(T/Fmax/2); % minimal interval between two successive

% extrema

Imax = ceil(T/Fmin/2); % maximum interval between two successive

% extrema

signal = sineSignal(amplitude, T, stopTime, frequency, phase);

N = numel(signal);

figure(1)

subplot(311)
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plot(linspace(0, stopTime, N), signal)

set(gca,’FontSize’,fontsize)

pos1 = get(gca, ’position’);

title(’(a)’)

xlabel(’time (sec)’)

ylabel(’sinusoid’)

level = 10;

%%%%%%%%%%%%%%%%

mat = zeros(10,N);

t1 = 0:N-1;

for z=1:level

if numel(signal)>3

[x,t] = findextrema(signal,t1); % extrema points and indices

dx = diff(x);

for m=1:numel(dx)

dist = abs(dx(m));

if (t(m+1)-t(m))>= Imin && (t(m+1)-t(m))<=Imax

mat(z,1+(round(t(m)):round(t(m+1))))= dist;

else

mat(z,1+(round(t(m)):round(t(m+1))))= 0;

end

end

[signal,t1] = scaledown(x,t);

end

end

transform = sum(mat);

subplot(312)
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set(gca,’FontSize’,fontsize)

imagesc(0:1/T:stopTime-1/T, 1:level, mat);

title(’(b)’)

colormap(flipud(gray))

caxis([0, 2])

colorbar

set(colorbar, ’fontsize’, fontsize)

axis on;

%tickMarks = {’XTick’,[]};

%set(gca, ’XTicksVisible’, false);

xlabel(’time (sec)’)

ylabel(’v_{j}, j = {1, 2,...,10}’)

pos2 = get(gca, ’position’);

set(gca, ’position’, [pos2(1) pos2(2) (pos1(3)-0.025) pos2(4)])

subplot(313)

set(gca,’FontSize’,fontsize)

plot(linspace(0, stopTime, N), transform)

axis([0 stopTime 0 2*amplitude+0.1])

title(’(c)’)

xlabel(’time (sec)’)

ylabel(’transform’)

axis([0 10 0 max(transform)+0.1])

function signal = sineSignal(amplitude, samplePerSecond, stopTime,...

frequency, phase)

phase = (pi/180) * phase; % degree to radian

% samples per second
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dt = 1/samplePerSecond; % seconds per sample

t = (0:dt:stopTime - dt)’; % seconds

signal = amplitude * sin(2*pi*frequency*t + phase);

end

Code for performance comparison with Hilbert-Huang transform:

clear all;

clc;

close all;

fontsize = 18;

load chirp_noisy

seconds = 6;

Fmin = 0.5; % min of delta wave

Fmax = 4; % max of delta wave

Imin = round(Fs/Fmax/2); %minimal interval in samples

Imax = round(Fs/Fmin/2); %maximal interval in samples

tt = linspace(0, seconds, Fs*seconds);

x1 = chirp(tt, start_frequency, seconds, end_frequency);

subplot(211)

plot(tt, x1)

set(gca,’FontSize’,fontsize)

title(’(a)’)

xlabel(’time (sec)’)

ylabel(’chirp (0 - 30 Hz)’)

hold on;

line(0.1*ones(1,3), -1:1, ’color’,’r’, ’linewidth’, 2)
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hold on;

line((4/5)*ones(1,3), -1:1, ’color’,’r’, ’linewidth’, 2)

hold off;

subplot(212)

plot(tt, signal)

set(gca,’FontSize’,fontsize)

title(’(b)’)

xlabel(’time (sec)’)

ylabel(’noise corrupted signal’)

hold on;

plot(tt, x1, ’g’, ’linewidth’, 1.5)

hold on;

legend(’noise corrupted chirp’, ’chirp’)

%legend(’boxoff’)

line(0.1*ones(1,3), -10:10:10, ’color’,’r’, ’linewidth’, 2)

hold on;

line((4/5)*ones(1,3), -10:10:10, ’color’,’r’, ’linewidth’, 2)

hold off;

pos1 = get(gca, ’position’);

% subplot(313)

% spectrogram(x1, 128, 32, 128, Fs, ’yaxis’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

N = size(signal, 1);

mat = zeros(15,N);

t1 = 0:N-1;

x1 = signal;

label = 15;
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%ind = 1:numel(t1); %[1:2500]

for z=1:label

if numel(x1)>3

[x,t] = findextrema(x1,t1); % extrema points and indices

dx = diff(x);

for m=1:numel(dx)

dist = abs(dx(m));

if (t(m+1)-t(m))>Imin && (t(m+1)-t(m))<Imax

mat(z,1+(round(t(m)):round(t(m+1))))=(1)*dist;

else

mat(z,1+(round(t(m)):round(t(m+1))))=0*dist;

end

end

[x1,t1] = scaledown(x,t);

% x1 = x1*2;

end

end

figure;

subplot(311)

set(gca,’FontSize’,fontsize)

imagesc(tt, 1:label, mat)

colormap(flipud(gray))

axis on;

colorbar

xlabel(’time (sec)’)

ylabel(’v_{j}, j = {1, 2,...,15}’)
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title(’(a)’)

pos2 = get(gca, ’position’);

set(gca, ’position’, [pos2(1) pos2(2) (pos1(3)-0.025) pos2(4)])

set(colorbar, ’fontsize’, fontsize)

subplot(312)

plot((0:N-1)/Fs, sum(mat))

set(gca,’FontSize’,fontsize)

title(’(b)’)

xlabel(’time (sec)’)

ylabel(’Extrema transform’)

axis([0 seconds 0 7])

hold on;

line(0.1*ones(1,8), 0:7, ’color’,’r’, ’linewidth’, 2)

hold on;

line((4/5)*ones(1,8), 0:7, ’color’,’r’, ’linewidth’, 2)

hold off;

interpolation = ’spline’; % other options: linear, cubic, spline

imf = emd(signal, ’interp’, interpolation);

[A,f,tt] = hhspectrum(imf(1:end-1,:)); % calculating imf signal

% amplitude, instantaneous frequency and time instances

f = f*Fs;

% %max(f)

mask1 = (f <=Fmax);

mask2 = (f >=Fmin);

mask = mask1.*mask2;
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maskNotRange = ~mask;

%mask = (f <=4);

f1 = f.*mask; % retaining only the delta wave frequencies

A1 = A.*mask; % retaining only the delta amplitude

subplot(313)

plot(tt/Fs, sum(A1))

set(gca,’FontSize’,fontsize)

title(’(c)’)

xlabel(’time (sec)’)

ylabel(’Hilbert-Huang transform’)

axis([0 seconds 0 3])

hold on;

line(0.1*ones(1,4), 0:3, ’color’,’r’, ’linewidth’, 2)

hold on;

line((4/5)*ones(1,4), 0:3, ’color’,’r’, ’linewidth’, 2)

hold off;

%comparing the values inside and outside of range

mattt = (1:N)/Fs;

startTime = 0.1; % when freq = 0.5

stopTime = 0.8; % when freq = 4

matStartIndex = find(mattt >= startTime, 1, ’first’);

matStopIndex = find(mattt >= stopTime, 1, ’first’);
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matSum = sum(mat);

insiderSum = matSum(matStartIndex:matStopIndex);

outsiderSum = horzcat(matSum(1: matStartIndex - 1), ...

matSum(matStopIndex + 1:end));

meanInsiderSum = mean(insiderSum);

medianInsiderSum = median(insiderSum);

stdInsiderSum = std(insiderSum);

meanOutsiderSum = mean(outsiderSum);

medianOutsiderSum = median(outsiderSum);

stdOutsiderSum = std(outsiderSum);

ratioMeanSum = meanInsiderSum/meanOutsiderSum;

ratioMedianSum = medianInsiderSum/medianOutsiderSum;

ratioStdSum = stdInsiderSum/stdOutsiderSum;

%%%%% are calculaltion

totalAreaSum = trapz(mattt, matSum);

insiderAreaSum = trapz(mattt(matStartIndex:matStopIndex), insiderSum);

outsiderAreaSum = totalAreaSum - insiderAreaSum;

ratioAreaSum = insiderAreaSum / outsiderAreaSum;

% Updated imfs

tt = tt/Fs;

startIndex = find(tt >= startTime, 1, ’first’);

stopIndex = find(tt >= stopTime, 1, ’first’);
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sumA1 = sum(A1);

insiderImf = sumA1(startIndex:stopIndex);

outsiderImf = horzcat(sumA1(1: startIndex - 1),...

sumA1(stopIndex + 1:end));

meanInsiderImf = mean(insiderImf);

medianInsiderImf = median(insiderImf);

stdInsiderImf = std(insiderImf);

meanOutsiderImf = mean(outsiderImf);

medianOutsiderImf = median(outsiderImf);

stdOutsiderImf = std(outsiderImf);

ratioMeanInf = meanInsiderImf/meanOutsiderImf;

ratioMedianImf = medianInsiderImf/medianOutsiderImf;

ratioStdImf = stdInsiderImf/stdOutsiderImf;

%%%%% are calculaltion

totalAreaImf = trapz(tt, sumA1);

insiderAreaImf = trapz(tt(startIndex:stopIndex), insiderImf);

outsiderAreaImf = totalAreaImf - insiderAreaImf;

ratioAreaImf = insiderAreaImf / outsiderAreaImf;

Code for generating Fig. 10: Performance of Extrema Transform under varying noise

clear all;

clc;

close all;

Fs = 10000; % sampling frequency
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time = 5;

dt = 1/Fs;

tt = 0:dt:time-dt;

lnth = length(tt);

% frequency of different segments

deltaf = 2;

betaf = 25;

alphaf = 10;

thetaf = 6;

gammaf = 50;

delta = sin(2*pi*deltaf*tt);

beta = sin(2*pi*betaf*tt);

alpha = sin(2*pi*alphaf*tt);

theta = sin(2*pi*thetaf*tt);

gamma = sin(2*pi*gammaf*tt);

s = [alpha delta beta theta gamma alpha delta delta gamma theta ...

beta beta]; % signal

N = length(s);

deltaIndex1 = 2;

deltaIndex2 = 7;

deltaIndex3 = 8;

Fmin = 0.5; % min of delta wave

Fmax = 4; % max of delta wave

Imin = round(Fs/Fmax/2); %minimal interval in samples

Imax = round(Fs/Fmin/2); %maximal interval in samples
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totalNumber = 50; % do the iteration for this number of times

ratioArray = zeros(1,totalNumber); % array to hold ratio result

ratioIndex = 1;

factor = 0.2; % each time increase standard deviation (SD) by 0.2

for indx = 1:totalNumber

signal = s + indx*factor*randn(1, N); % adding gaussian noise of ...

% zero mean and standard deviation indx*factor

mat = zeros(15,N);

t1 = 0:N-1;

x1 = signal’;

%ind = 1:numel(t1); %[1:2500]

for z=1:15

if numel(x1)>3

[x,t] = findextrema(x1,t1); % extrema points and indices

dx = diff(x);

for m=1:numel(dx)

dist = abs(dx(m));

if (t(m+1)-t(m))>Imin && (t(m+1)-t(m))<Imax

mat(z,1+(round(t(m)):round(t(m+1))))=(1)*dist;

else

mat(z,1+(round(t(m)):round(t(m+1))))=0*dist;

end

end

end

[x1,t1] = scaledown(x,t);
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end

transform = sum(mat);

% getting the regions when frequency is in delta range

deltaPortion1 = transform(((deltaIndex1 - 1)*lnth)+1 :...

deltaIndex1*lnth);

deltaPortion2 = transform(((deltaIndex2 - 1)*lnth)+1 :...

deltaIndex2*lnth);

deltaPortion3 = transform(((deltaIndex3 - 1)*lnth)+1 :...

deltaIndex3*lnth);

deltaPortions = [deltaPortion1 deltaPortion2 deltaPortion3];

meanDelta = mean(deltaPortions);

% regions frequency not in delta range

otherPortions = [transform(1:lnth) transform(2*lnth+1:6*lnth)...

transform(8*lnth+1:end)];

meanOther = mean(otherPortions);

ratioArray(indx) = meanDelta / meanOther;

end

plot((1:totalNumber)*factor, ratioArray)

set(gca,’FontSize’,20)

xlabel(’\sigma’)
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ylabel(’ratio’)

axis([1*factor (totalNumber*factor) 0 6])

Code of Extrema transform Applied on EEG signal:

clear all;

clc;

close all;

load EEG_cropped_frontal

fontsize = 18;

Fmax = 4; % max of delta wave

Fmin = 0.5; % min of delta wave

Imin = round(Fs/Fmax/2); %minimal interval between successive

% extrema points

Imax = round(Fs/Fmin/2); %maximal interval between successive

% extrema points

N = numel(signal);

figure;

subplot(211)

plot((0:N-1)/Fs, signal)

set(gca,’FontSize’,fontsize)

pos1 = get(gca, ’position’);

title(’(a)’)

xlabel(’time (sec)’)

ylabel(’EEG signal’)

axis([0 6 (min(signal)-0.2) (max(signal)+0.2)])
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subplot(212)

spectrogram(signal, 128, 32, 128, Fs, ’yaxis’)

colorbar

ylabel(colorbar, ’Power/frequency’, ’fontsize’, fontsize)

pos2 = get(gca, ’position’);

set(gca, ’position’, [pos2(1) pos2(2) (pos1(3)-0.03) pos2(4)])

set(gca,’FontSize’,fontsize)

title(’(b)’)

xlabel(’time (sec)’)

ylabel(’frequency (Hz)’)

% transfrom without filtering

mat = zeros(10,N);

t1 = 0:N-1;

x1 = signal;

level = 10;

for z=1:level

if numel(x1)>3

[x,t] = findextrema(x1,t1); % extrema points and indices

dx = diff(x);

for m=1:numel(dx)

dist = abs(dx(m));

if (t(m+1)-t(m))>Imin && (t(m+1)-t(m))<Imax

mat(z,1+(round(t(m)):round(t(m+1))))=1*dist;

else

mat(z,1+(round(t(m)):round(t(m+1))))=0*dist;

end

end
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[x1,t1] = scaledown(x,t);

% x1 = x1*2;

end

end

transform = sum(mat);

figure;

subplot(211)

imagesc((0:N-1)/Fs,1:level, mat)

colormap(flipud(gray))

colorbar

pos2 = get(gca, ’position’);

set(gca, ’position’, [pos2(1) pos2(2) (pos1(3)-0.025) pos2(4)])

set(gca,’FontSize’,fontsize)

axis on;

set(gca,’FontSize’,fontsize)

title(’(a)’)

xlabel(’time (sec)’)

ylabel(’v_{j}, j = 1,2,...,10’)

subplot(212)

plot((0:N-1)/Fs, transform)

set(gca,’FontSize’, fontsize)

title(’(b)’)

xlabel(’time(sec)’)

ylabel(’transform’)

axis([0 6 0 max(transform)+0.2])

% filtering

order = 100; % FIR filter order
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Fp = Fmax; % 4Hz passband-edge frequency

%Fs = 96e3; % 96 kHz sampling frequency

Rp = 0.00057565; % Corresponds to 0.01 dB peak-to-peak ripple

Rst = 1e-4; % Corresponds to 80 dB stopband attenuation

NUM = firceqrip(order,Fp/(Fs/2),[Rp Rst],’passedge’);

% NUM = vector of coeffs

fvtool(NUM,’Fs’,Fs,’Color’,’White’) % Visualize filter

set(gca,’FontSize’, fontsize)

xlabel(’frequency (Hz)’)

ylabel(’magnitude (dB)’)

title(’magnitude response (dB)’)

signal_filtered = filter(NUM,1,signal);

figure;

subplot(211)

plot((0:N-1)/Fs, signal_filtered)

set(gca,’FontSize’,fontsize)

title(’(a)’)

xlabel(’time (sec)’)

ylabel(’lowpass filtered EEG’)

axis([0 6 min(signal_filtered)-0.2 max(signal_filtered)+0.2])

subplot(212)

spectrogram(signal, 128, 32, 128, Fs, ’yaxis’)

colorbar

ylabel(colorbar, ’Power/frequency’, ’fontsize’, fontsize)

pos2 = get(gca, ’position’);

set(gca, ’position’, [pos2(1) pos2(2) (pos1(3)-0.03) pos2(4)])
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set(gca,’FontSize’, fontsize)

title(’(b)’)

xlabel(’time (sec)’)

ylabel(’frequency (Hz)’)

% transfrom after filtering

mat = zeros(10,N);

t1 = 0:N-1;

x1 = signal_filtered;

%ind = 1:numel(t1); %[1:2500]

for z=1:10

if numel(x1)>3

[x,t] = findextrema(x1,t1); % extrema points and indices

dx = diff(x);

for m=1:numel(dx)

dist = abs(dx(m));

if (t(m+1)-t(m))>Imin && (t(m+1)-t(m))<Imax

mat(z,1+(round(t(m)):round(t(m+1))))=1*dist;

else

mat(z,1+(round(t(m)):round(t(m+1))))=0*dist;

end

end

[x1,t1] = scaledown(x,t);

% x1 = x1*2;

end

end

transform = sum(mat);
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figure;

subplot(211)

imagesc(mat)

%%%%%

imagesc((0:N-1)/Fs,1:level, mat)

colormap(flipud(gray))

colorbar

pos2 = get(gca, ’position’);

set(gca, ’position’, [pos2(1) pos2(2) (pos1(3)-0.025) pos2(4)])

set(gca,’FontSize’,fontsize)

axis on;

set(gca,’FontSize’,fontsize)

title(’(a)’)

xlabel(’time (sec)’)

ylabel(’v_{j}, j = 1,2,...,10’)

%%%%%%

subplot(212)

plot((0:N-1)/Fs, transform)

set(gca,’FontSize’,fontsize)

title(’(b)’)

xlabel(’time(sec)’)

ylabel(’transform on filtered EEG’)

axis([0 6 0 max(transform)+0.2])
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