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FASTNUMERICS: COMPILING MATLAB TO C++

SUJAN KHADKA

COMPUTER AND INFORMATION SCIENCES

ABSTRACT

Matlab is a popular language among researchers and scientists. It allows mathematical

and scientific calculations to be formulated in a way that is close to mathematical

notation which makes developing prototypes easier and faster. Our preliminary results

show that computation intensive programs written in Matlab tend to be slower than

equivalent programs written in C++. C++ being a compiled language exposes advanced

optimization opportunities that will help speed up sequential code as compared to

Matlab. Hence, there is a need to translate Matlab code to languages like C/C++ for

maximum performance. C++ also provides libraries to run a program in heterogeneous

architectures like co-processors, GPUs and in distributed environments. Although

Matlab makes it possible to run Matlab codes in parallel and in GPUs using its parallel

toolbox, we would like to utilize C++ to squeeze out maximum performance and gain

more portability. With C++ we gain more flexibility and portability to run in any

architectures and environments due to the ubiquity of C++ compilers.

Manual translation to C++ is one option but it is tedious, cost inefficient and can

introduce errors. In this thesis we introduce a tool to automatically compile/translate

Matlab programs to C++. The code generated will rely on existing numerical libraries.

We would like researchers to continue writing codes in Matlab but also have the

added benefit of being able to run their translated code much faster and possibly on

heterogeneous architectures.
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CHAPTER 1

DESCRIPTION

1.1 Introduction

Matlab[1][2] is easy to use and provides a high level of abstraction to solve scientific

problems. People who code in Matlab would find it harder and time consuming to use

general purpose languages like C++ [3] and Java[4] to solve the same problem. Matlab

offers a platform to easily express mathematical and scientific ideas with high level of

abstraction.

Our results obtained by manual translation of Matlab code to C++ show that

solutions written in Matlab that are computation intensive tend to take a long time

to run as compared to equivalent programs written in C++. This can be attributed

to Matlab being an interpreted and dynamically typed language. There are ways in

Matlab to leverage some parallelizations to make code faster but we would like to

generate C++ code so that we could use the generated code for further researches like

scheduling the computation on heterogeneous processors.

Matlab can be seen as a prototyping language which allows people to quickly test

their ideas without investing too much time looking for libraries and writing code.

After the prototype is created, it would be better to port the solution to a language

like C++ which has aggressive optimization options and can be configured to produce

native machine code. The other benefit of writing a program in a language like C++ is

that it is more portable and there are many libraries in C++ that allows computation
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to be performed on parallel architectures. This will allow programmers to leverage

existing power of the machines to write programs that execute much faster. It will also

provide an opportunity to explore porting C++ codes to utilize different processors,

architectures and GPUs so as to squeeze the maximum available performance; all of

these relying on ubiquity of C++ compilers. Manual translation to C++ could be done

but it has some additional costs. It is time consuming; there could be errors during

translation; and skilled programmers are needed who have a good understanding of

both Matlab and C++.

To address this problem, we propose a tool to automatically translate Matlab

code to C++. The translated C++ code will be such that it can utilize any numerical

libraries. The tool will provide a framework to perform analysis on Matlab code.

The rest of the thesis is organized as follows: Section §1.2 explains the motivation

behind our work and the Section §1.3 briefly states the gist of our thesis. Section

§1.4 will discuss about the approach we use to compile Matlab to C++. Chapter §2

introduces some terminologies used in the thesis. Chapter §3 describes the different

components of FastNumerics. Chapter §4 discusses FastNumerics Support which

provides implementation of Matrix data structure and Matlab built-ins. The section

§4.1 describes the matrix wrapper used by the generated code. Chapter §5 discusses

our approaches to type inference in more detail as well as the challenges involved.

Transformations are discussed in more details in chapter §6. Then we will present

our experiments and results in chapter §7. Chapter §8 will discuss related works on

Matlab transformation. In chapter §9, we discuss how FastNumerics can be used as a

framework for future researches. Finally we end the thesis with a conclusion.

1.2 Background and Motivation

A team in UAB’s Bio-medical Engineering department is studying electrical

activation waves and mechanical deformation over the entire surface of the heart [5][6].
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The Matlab program written by the team will track images of heart from multiple

high-speed cameras, align them and generate a model of heart motion. The whole

simulation takes around 30 minutes - 1 hour to execute. The component that is

computation intensive is the calculation that computes the centroid of markers on a

heart in multiple video frames and tracks them.

The issue with this program is that the work must be redone if the markers cannot

be properly aligned during the simulation resulting in delays to produce the model.

Thus there is a need to reduce the computation time to get early feedback and make

changes to the setup. The researchers are comfortable writing programs in Matlab

and it is difficult for them to re-write the program again in C++ to speed it up. Our

framework will automatically translate the code to C++ which could then be run in a

way to increase the performance.

This thesis is also motivated by a work that manually translates Matlab to C++

which is also going on at the Department of Computer and Information Sciences in

UAB to check how efficient the code produced can be. As a parallel work, this thesis

is looking into automatic translation of Matlab to C++.

1.3 Thesis Statement

This thesis will study various phases and challenges associated with the transla-

tion of a dynamically typed programming language(Matlab) into a statically typed

language(C++). Here are the contributions of this thesis:

1. This work will develop a light-weight framework that translates general Matlab

code to type inferred C++ code with adequate level of abstraction.

2. We will also add Matlab to the list of languages supported by ROSE which is

an open source compiler infrastructure.

3. The framework will generate code which depends on numerical libraries that

3



can be swapped without changing the translated code.

4. A comparison between flow dependent and flow independent type inference

algorithms will also be done in this work.

1.4 Approach

Compiling a programming language to another language involves generating an

Abstract Syntax Tree(AST) [7] by parsing the input language source code, performing

analyses and transformations on the AST to convert it to the AST of the target

language, and then unparsing the AST to produce the target source code [8]. We

follow a similar principle in FastNumerics which has been inspired by previous works

on translating Matlab to other languages[9] [10]. Figure 1.1 illustrates our approach

to transform Matlab to C++.

Figure 1.1: Approach for programming language translation
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CHAPTER 2

TERMINOLOGIES

Here are a few terminologies we will use throughout this thesis:

2.1 ROSE Compiler Infrastructure

ROSE [11] is an open source compiler infrastructure developed at Lawrence Liver-

more National Laboratory(LLNL) to build source-to-source program transformation

and analysis tools [12][13] for large-scale C(C89 and C98) [14], C++(C++98 and C++11)

[15], UPC [16], Fortran (77/95/2003) [17] [18], OpenMP [19], Java [20], Python [21]

and PHP [22] applications. ROSE defines a rich API to build the AST, perform

transformations on the AST and perform data flow and control flow analysis [23].

ROSE has a good set of APIs for traversing the AST. ROSE can be used to write source

to source transformation [24], code analysis and optimization tools. FastNumerics

uses ROSE Compiler Infrastructure to represent the AST, to perform analyses and

transformation and to unparse the AST. All the analyses written in FastNumerics

heavily use ROSE API for AST traversal and manipulations.

ROSE is a good choice for writing source to source translators because many AST

nodes are common between different languages and therefore an AST built for one

language can be un-parsed using the unparser for another language. For example a

Matlab function can be represented in ROSE AST as a SgFunctionDeclaration which

can be directly unparsed to C++ without doing any transformations. Hence we can

re-use most of the existing AST nodes. ROSE did not have support for Matlab based
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nodes like matrix, ranges, etc. FastNumerics contributes to ROSE by adding those

nodes. These nodes have already been added to the ROSE compiler Github repository

1.

2.2 Lexer and Parser

A lexer scans the source code text, tokenizes it, and passes it to the parser. The

parser will then execute actions according to the rules specified in the grammar to

create an Abstract Syntax Tree. We modified GNU Octave’s lexer and parser to use in

FastNumerics. We chose GNU Octave’s [25] grammar because its grammar is similar

to Matlab grammar[26].

2.3 Abstract Syntax Tree(AST)

Abstract Syntax Tree is the representation of source code as a tree of nodes[27].

Each node represents different language constructs like expression, statement, function,

scopes, etc.

An AST is the typical output from the parser of a compiler. It represents the

lexical/syntactical structure of the program text. We use ROSE compiler’s SageBuilder

API to create an AST from Matlab code. AST nodes are hierarchical in nature. In

ROSE, every AST node is a SgNode. Each AST node derives from SgNode to represent

different constructs like operators, statements, values, etc. Figure 2.1 shows a general

hierarchy of ROSE compiler’s AST nodes. All expressions like Matrix expressions

(SgMatrixExp), binary expressions, Range expressions, etc. inherit from SgExpression,

all statements like for loops (SgMatlabForStatement), if statements, etc. inherit from

SgStatement and so on.

1https://github.com/rose-compiler/rose-develop
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Figure 2.1: A sample of ROSE compiler’s AST hierarchy

2.4 AST Transformation

AST Transformation is the process of modifying the AST by inserting, removing

or replacing nodes. The purpose of transformation is to produce a different code that

produces the same result. For example, an AST node to represent a function call

could be modified to add an extra argument at the end of the call or a Matlab for

loop node could be replaced by an equivalent C++ for loop.

2.5 AST Traversal

In order to query an AST, or to make changes to the AST, the nodes of an AST

need to be visited. This process is called AST Traversal. The two main ways of

traversing the AST in ROSE are:

1. Bottom-up traversal: where the children nodes are visited first and they can

pass information up to the parent node.

2. Top-down traversal: where the parent node is visited first and the parent node

can send information to its children.

ROSE compiler infrastructure provides APIs to easily traverse the AST.
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CHAPTER 3

FASTNUMERICS COMPONENTS

A block diagram of FastNumerics can be seen in Figure 3.1. FastNumerics can

be divided into three components- the frontend, the midend and the backend. The

frontend deals with parsing the Matlab source file and producing an AST. The midend

deals with all the semantic analysis and structural transformations done to convert

Matlab based AST to C++ based AST. Midend is also responsible for performing

type inference in the AST. The backend is responsible for generating C++ code from

the transformed AST. Backend also provides an option to unparse the AST back to

Matlab.

Figure 3.1: Overview of FastNumerics
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3.1 Frontend

FastNumerics frontend takes a Matlab .m file as an input and produces an AST.

The root of the AST is a SgProject node. Some nodes specific to Matlab were also

added to ROSE for a better representation of the AST. The following sub-sections

describe the frontend.

3.1.1 Lexer and Parser

We modified GNU Octave’s[28] grammar and built the AST using ROSE. GNU

Octave uses GNU Bison [29] which creates a LR grammar [7]. GNU Octave is a free

and open source alternative to MATLAB, so its grammar resembles Matlab’s grammar

[26].

Grammar in GNU Bison is represented by rules and actions associated with each

rule. We replaced the actions in each rules to use ROSE’s SageBuilder [30] API to

build the AST.

3.1.2 Matlab Constructs Supported

Matlab has many constructs and supporting all of them is a tedious job. For

our thesis, we have chosen to support a subset of the Matlab constructs. We chose

constructs in such a way that it is sufficient to write a Matlab program in a flexible

way. We did not support constructs like lambda functions, structs, classes, switch

cases, global and specific commands like nargin, tic, etc. Currently it supports all

assignment expressions, matrix representation, range expressions, operators, if-else,

function declarations, function calls and for loop which can be used to write fairly

decent Matlab programs.
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3.1.3 Nodes Added to ROSE

Many nodes existing in ROSE were utilized to create Matlab AST but some new

nodes had to be introduced to ROSE to properly represent a Matlab program. In

particular, matrix operations and nodes are missing in standard C++. For example

it is cumbersome to represent a Matlab matrix using an Array node, or to represent

a range expression in Matlab by mixing some primitive nodes. Here are the nodes

added to ROSE to support the parsing of Matlab:

1. Types: The nodes added to ROSE to represent types are TypeMatrix which

represents Matrix type and TypeTuple which represents a list of types. A normal

matrix expression is of type TypeMatrix. Also a range expression (eg. 1:2:100)

is of type TypeMatrix. Matlab can return multiple values of different types

from a function and TypeTuple can be used to represent the return type of such

functions.

2. ElementWiseOperators: The languages that ROSE supported did not have

element-wise operators. Element-wise operators are the operators which operate

on each element in a Matrix. For example in Matlab, A .* B will create a

new Matrix C (where Cij = Aij * Bij) by multiplying each element in A to

corresponding element in B instead of doing a matrix multiplication. To represent

such operators like A .* B, A .+ B, etc. element-wise operators for addition,

subtraction, division, multiplication were added.

3. Other operators: ROSE did not have operator nodes that represent left division

(eg. A\x), transpose and power operator. Left division operator is used to

solve a system of linear equations; transpose operator is a unary operator that

represents transpose operation on a Matrix; and power operator as the name

implies is used to raise a matrix or a number to a certain power. FastNumerics

extends ROSE by adding these operators.
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4. Expressions: A Matlab AST would not be complete without expressions that

represent Matrix, Range and MagicColon. These nodes are new to ROSE as

the existing languages like C++, Java do not have a direct representation. These

AST nodes were also added to ROSE compiler infrastructure.

5. For loop: None of the languages that ROSE supports have a for loop that has

the semantics of Matlab. A MatlabForStatement node was added to ROSE to

represent a Matlab for loop.

A MATLAB for loop is of the form:

1 for i = 1:5:100

2 [operations]

3 end

Now any one can create a Matlab AST using ROSE’s SageBuilder using these

nodes which is one of the contributions of this thesis.

3.2 Midend

Midend takes the AST from the frontend as input and performs various analysis

and transformations on it. The output from midend will be a C++ AST that is ready

to be unparsed to C++ source code.

3.2.1 Analyses Performed

Type inference. Since C++ is a statically typed language and Matlab is a dynamically

typed language, type information needs to be added in the AST to generate a well

typed C++ code. This process of finding out types from an untyped representation

is called type inference. There are many approaches to perform type inference. In

our work we tried two different approaches, one is a flow based type inference and
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the other is a flow insensitive inference. The type information generated from type

inference is used to construct type declarations of variables which is needed in a static

language like C++. More details can be found in Chapter 5.

Transformations. Transformation is the heart of source to source translators. Matlab

based AST generated from the frontend has the semantics of Matlab and contains

many nodes that are only present in Matlab. For example, a SgMatrixExp node that

represents a matrix in Matlab has to be transformed into something equivalent which

C++ can recognize and compile without any syntax errors. For example, a matrix X

in Matlab is represented as:

1 X = [ 1 2; 3 4]

Figure 3.2 shows the AST that represents this Matrix in Matlab:

Figure 3.2: Small section of Matlab AST to represent a matrix

The generated code shown in the listing below contains a Matrix data structure

whose details can be found in Section 4.5. It can also be noticed that there is an

enumerated constant endr to represent the end of a row.
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Figure 3.3: Transformed C++ AST that represents the matrix

1 Matrix <int > X;

2 X << 1 << 2 << endr

3 << 3 << 4;

Figure 3.3 shows the transformed C++ AST. Each transformation component in

FastNumerics does one unit of transformation. We have implemented a transformation

framework where each module represents a specific set of transformations to be

performed on the AST. For example, a ForLoopTransformer transforms a for loop

from Matlab to C++ and a RangeExpressionTransformer transforms a Matlab range

to a matrix representation in C++. More transformations can be easily plugged to the

system using the framework.

AST transformation depends upon the interface of the Matrix wrapper in C++.

For example, FastNumerics’ Matrix wrapper expects a matrix to be initialized using

left shift operators, so the Matlab matrix node ( SgMatrixExp node) is converted to

C++ AST by appending left shift operators on each elements of the Matrix.

Similarly, a range expression in Matlab can be specified as follows:
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1 x = 1:5:100

In order to transform this to valid C++, we generate a code something like this:

1 Range <int > range0;

2 range0.setBounds (1 ,5 ,100);

3 x = range0.getMatrix ();

Each transformation has certain rules specified to modify the AST. It works by

traversing the AST and then performs structural transformation on the nodes that

match the rules. Transformations make extensive use of ROSE SageInterface[31] and

SageBuilder APIs to remove, lookup, create and insert AST nodes.

3.3 Backend

Backend is responsible for generating source code from the AST. Generating code

from the AST is also referred to as unparsing. FastNumerics has two backends which

are as follows:

3.3.1 C++ Backend

C++ backend is the existing backend in ROSE compiler framework that takes an

AST which is valid C++ and produces C++ source code. It takes the output from

the midend which is a valid C++ AST and then produces C++ code. The generated

C++ code depends on a Matrix library wrapper. The Matrix library wrapper can be

implemented using any linear algebra library. The Matrix wrapper can be used to

implement an interface to highly optimized libraries like Eigen, Armadillo, etc.
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3.3.2 Matlab Backend

Matlab backend accepts a Matlab AST (that has not been transformed to C++

AST) and it produces back the same Matlab code from which it was generated. This

backend is used to verify if the AST has been constructed properly or not by comparing

the input Matlab code and the unparsed Matlab code. If the files match, the AST

has been constructed properly.

The Matlab backend is implemented by doing a bottom-up traversal on the AST.

Each node visited will pass its string representation up to its parent node. The parent

node assembles the strings from its child to form a valid Matlab code and then passes

it up to its parent. This process continues until the root node is reached which writes

all the strings collected from the traversal to a file in an ordered way so that the

output is a valid Matlab program.
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CHAPTER 4

FASTNUMERICS SUPPORT

The translated C++ code is not self contained. It needs implementation of the

Matrix data type, the implementation of built-in functions and implementation of

different symbols. FastNumerics Support is the component responsible for providing

these implementations. This chapter will describe the design of FastNumerics Support

and its components.

4.1 Matrix Wrapper

FastNumerics generates C++ code which is independent of the library that imple-

ments a Matrix or linear algebra functions. That is FastNumerics targets a Matrix

wrapper. The design of how the translated C++ code interacts with the wrapper and

its supporting components are shown in figure 4.1.

4.2 Advantages of Generating Code for Wrapper

We want to preserve the information in Matlab code as much as possible and also

want to make the translated C++ code look similar to the input Matlab code. It would

be much better if a matrix multiplication operation represented in Matlab as A * B

would also be translated to A * B in C++. This is where the role of Matrix wrapper

comes in place. The Matrix wrapper would overload operators so as to make the

translated code similar to Matlab.
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Figure 4.1: How translated code interacts with the Matrix Wrapper

In general we can say that the translated C++ code will encapsulate Matlab specific

constructs in a class. For example, a Matlab range is represented by a Range class,

any Matlab symbols like end of row, colon, etc. will be represented by an enumeration

MatlabSymbol.

4.3 Translated C++ Code

The translated C++ code component in 4.1 represents the C++ code generated by

FastNumerics. Listing 4.1 shows a range expression 1:2:100 transformed to a C++

code. The generated C++ code depends upon the class Range<T>. When compiling

the generated code, the compiler needs a definition of Range<T>. Similarly, the

generated code may produce code that uses MatlabSymbol and MatlabSpan.

1 Range <int > range0;

2 range0.setBounds (1 ,2 ,100);

3 x = range0.getMatrix ();

Listing 4.1: Generated C++ code to represent a range

17



4.4 Armadillo

Armadillo[32] is a high quality C++ linear algebra library. Its API resembles Matlab

function calls and is easy to use. Armadillo encapsulates complex function calls to

underlying numerical libraries by providing an elegant API that looks like Matlab

function calls. It is possible to dynamically link Armadillo with different libraries

like LAPACK [33], Intel MKL [34], OpenBLAS [35], CudaBLAS [36], etc. Another

feature of Armadillo is that it supports C++11 constructs and allows Matrices to be

initialized using initializer lists. This feature has been used in our transformations

(discussed in 6) to make writing transformation easier.

FastNumerics transforms the matrix representation and operations into C++ code

that targets an abstract Matrix wrapper. The Matrix<T> class has a number of

overloaded operations to represent operations like element access, multiplication,

division, sub-matrix access, etc. Concrete wrappers can be written which can be

implemented using linear algebra libraries like Eigen [37], BLAS, Intel MKL, etc. For

our testing purposes, we have a concrete implementation of the wrapper based upon

Armadillo.

When FastNumerics transforms the Matlab code,

1 A = [1 2 3]

2 B = [2; 3; 4]

3 C = A * B

it gets transformed into identical looking C++ code as follows:
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1 Matrix <int > A, B, C;

2 A = 1 << 2 << 3;

3 B = 2 << MatlabSymbol ::endr <<

4 3 << MatlabSymbol ::endr << 4;

5 C = A * B

Here the matrices A, B and C are of type Matrix<T>. The matrix declarations are

inserted at the top of the function in which the initialization is done. The underlying

implementation of Matrix<T> can be any numerical library that allows a programmer

to represent a matrix and follows the interface that FastNumerics expects it to follow.

4.5 MatrixImplementation

The generated C++ code represents a matrix as an object of Matrix<T> interface.

However it does not generate the definition of Matrix. The MatrixImplementation

component serves to define the Matrix interface. Currently for our experimental pur-

pose, we have implemented Matrix which uses Armadillo library. The implementation

of Matrix provides the following:

• All the operators on matrices like *, /, .*, .+ etc

• Element access functions

• Iterator for elements of a matrix

MatrixImplementation does not provide support for all the functions in Matlab. It

does provide support for operators that can be overloaded in Matrix, but functions like

sin, rand, etc. will be implemented in a different component called Matlab built-ins.
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4.6 MatlabSymbol

The Matlab language uses some symbols which may not have an equivalent

representation in C++. For example, one of the uses of colon symbol in Matlab is to

access elements in a Matrix. When accessing elements in a Matrix (as shown in Listing

4.2), the presence of : in either row or column index is to instruct Matlab to select all

the rows or all the columns. To represent this in C++, we use an enum COLON of

enum class MatlabSymbol. So the Matlab code in Listing 4.2 gets converted to the

equivalent C++ code in Listing 4.3.

1 A = [1 2 3; 4 5 6]

2 A(:, 2) % Access the second column of A

3 A(2, :) % Access the second row of A

Listing 4.2: Matlab matrix element access

1 Matrix <int > A;

2 //A << initialize A

3 A(MatlabSymbol ::COLON , 2) % Access the second column of A

4 A(2, MatlabSymbol ::COLON) % Access the second row of A

Listing 4.3: Equivalent C++ matrix element access

We also use another enum endr to represent the end of the row while initializing a

matrix.

4.7 Range

In Matlab, range expressions are used in a lots of places like loops, matrix ac-

cesses, creating vectors, etc. It is represented as a two or three element expression

start:stride:end where stride is optional. They do not have an equivalent representation
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in C++. So FastNumerics creates a Range object whenever it sees a range expression

(except in For loops). Section 6.4 discusses how transformations are done on Range

expressions in detail.

4.8 Matlab Builtins

Matlab builtins contains the implementation of Matlab built-in functions. The

built-in functions may be implemented using any API. In FastNumerics, we rely

heavily on Armadillo to implement linear algebra operations and on C++ standard

libraries like math and iostream for other implementations.

Currently, we only provide limited support for these built-ins. It is easy to extend

or modify this component to support more Matlab built-in functions. All the built-ins

are defined in a namespace called fastnumbultins.
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CHAPTER 5

TYPE INFERENCE

Matlab programs do not need types to be specified whereas C++ programs need to

have types annotated for every variables. So the translation process should include

a type inference phase that computes the types of variables. Type inference is an

interesting problem to solve and there are many literature on type inference [38]

[39]. Two different methods for type inference were studied in this thesis to compare

their applicability in a dynamic language like Matlab. The first method is a self

developed flow-based [40] inference algorithm and the second method is a modified

version of Hindley-Milner [41] type inference. In our framework, we used type inference

by propagation (flow-based approach) due to the reasons discussed in section 5.4.

FALCON Matlab compiler [9] uses an advanced type inference algorithm.

5.1 Source of Type Information

Type inference needs to have some source of information from which it has to

start determining the types. Those source of information are constants, operators and

built-in functions in the program. Constants like integers and matrices by default

have a type. Operations on two terms (in a binary expression) that have known types

will yield a typed result value. Similarly, built-in functions will have a known return

type depending upon the type of input. For example, transpose function (also can be

represented in Matlab by ’ operator) is a built-in function that acts like an identity

function when looked from a type perspective. It means if it accepts a term with type
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T, it will always return a term with type T. Whereas, det is a function (that calculates

determinant of a matrix) which always returns a term of type double. Constants and

operators are the information which we can find by querying the structure of the AST.

For built-in functions, we need to have some database that specifies the types returned

by those functions.

5.2 Type Inference by Propagation

Type inference by propagation method works by getting the type of a terminal

value(eg. integer, matrix) from the bottom of the AST and propagates it up the

AST. Whenever the algorithm encounters an assignment node, it checks if the LHS

expression already has already been assigned a type. If the new type is larger than the

existing type, the new type is assigned to the LHS. The LHS node then propagates

the type down to its child nodes till the leaf nodes are reached. Whenever a variable

gets assigned a type, the symbol table for the current scope is updated.

Algorithm 1 Type Inference by Propagation

1: procedure inferTypes(function). A function whose types should be inferred
2: Collect all the subtrees that represent Assignment expressions
3: for all subtrees do
4: expressionType← BottomUpTraversal(RHS)
5: lhsType← get dominant type(typeof(lhsType), expressionType)

6: functionReturnType← typeOf(returnV ariable)
7: return functionReturnType

Algorithm 5.2 shows an algorithm for type inference by propagation and Figure

5.1 shows x being assigned a type integer. In this figure, 5 passes its type i.e. integer

to its parent node =. The equals node then transfers this type to its children on the

left branch. x then gets type integer. The equals node then sends integer type up

to its parent. This can also be addressed as a data-flow problem [42] where at each

assignment node we compute the types of a variable and determine which types flow

in and which types flow out after the assignment operation [43].
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Algorithm 2 Bottom Up traversal on RHS node

1: procedure BottomUpTraversal(subtree)
2: nodeType← typeof(subtree) . subtree is the RHS of the assignment

expression
3: if nodeType is ValueExpression then
4: return ValueExpresion− >innerType

5: if nodeTypeisFunctionCall then
6: Get argument types of function call
7: Update the called function’s symbol table with the argument types
8: return inferTypes(calledFunction)

9: if nodeTypeisExpressionList then
10: Get the dominantType from the expression list
11: return dominantType

Figure 5.1: Type inference by propagation of terminal types

5.2.1 Dominating Types

Whenever a node in the AST has n children (n >= 2), then it will get types

T1, T2, ...Tn from all of its children. It has to decide which type Ti to choose to

propagate up/down the tree. In Matlab, a matrix row is a list of numbers which

could be of multiple types. Also a Matrix is a list of rows which could be of multiple

types. So these nodes should pick a dominating type from the types propagated

upwards by its children. In our thesis, dominating type represents a type DT ∈ Ti

such that DT >= Ti. For example, DominatingType(Matrix, Scalar)→ Matrix

because Matrix dominates the binary operation and will be known as the dominating

24



type. Also DominatingType(double + int) → double where double will be known

as the dominating type. Figure 5.2 describes the process. In order to calculate the

dominating type from a list of types, we rank each type. Matrix has the highest rank

whereas Integer has the lowest. So dominating type is the type in the list that has the

maximum rank.

This approach can also be described using a lattice where the Matrix<double>

type is at the top of the lattice [44] followed by other Matrix types, then the double

type and integer type. In the work of Joisha and Banarjee, the algorithm starts with

all the variables having the type at the top of the lattice and the types get more

constrained at each assignment nodes. Whereas in our approach we start from the

bottom of the lattice and the types get more general as we go through each assignment

nodes.

Figure 5.2: Propagating the dominating type
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5.2.2 Variable Assigned Values of Multiple Types

In Matlab, a variable can be assigned values of multiple types. Our type inference

algorithm takes in account the assignments whose values are compatible with each

other. In the code below, x is being assigned an integer first, this will update the type

of x to be an integer. After that, it gets assigned a double type. Since double can

represent an integer as well, so in the given scope, x will be of type double. However,

if at first x was a double and then it was assigned an integer, the type of x would still

be a double as an integer cannot dominate a double type. Currently FastNumerics

does not handle cases where the values assigned are non-numeric types.

1 x = 1; // x is an int

2 x = 2.5; // x is a double

1 x = 2.5; // x is a double

2 x = 1; // x still a double

5.2.3 Types from Function Calls

Whenever the algorithm sees a function call, it recursively performs type inference

on that function. The algorithm then propagates the type returned by the function

for that function call.

For example:
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1 function foo()

2 x = 5

3 y = 6

4 sum = add(x, y)

5

6 s2= add(1.5, 2.4)

7 s3 = add ([1 2 3], [4 5 6])

8 end

9

10 function s = add(n1, n2)

11 s = n1 + n2

12 end

Listing 5.1: Function Call to add

When the algorithm reaches a function-call node add, it figures out that the types

of input variables x and y should already have been calculated. Then it updates

the symbol table of function add by making x an integer and y an integer. Now

it symbolically executes the function add and calculates all the types that can be

inferred due to x and y being integers. After it finds out the type of the return variable,

it returns that type. In this case, the algorithm sets n1 = typeof(x) = int, n2 =

typeof(y) = int. Then we can find out that s = dominatingtype(n1, n2) = int. Since s

is also the return variable, int is returned and sum gets the type int.

Similarly, when the algorithm sees another function call to add with matrix as

arguments, it again symbolically executes the function add with n1 and n2 set to

Matrix type. Then it gets Matrix as the return type which is assigned to s3.

5.2.4 Built-in Functions versus User Defined Functions

When the type inference algorithm sees a function call, it should decide whether

the function call is a user defined function or a built-in Matlab function. First, the
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algorithm checks if the function resides in a table that contains all the function

declarations of the user file. If the function is not found there, then it should be a

built-in function. If the function is not found in the built-in list, it is an error.

5.2.5 Type Inference From Built-in Functions

It is difficult if not impossible to symbolically execute a built-in Matlab function

found in Matlab installation. To make it easy, we built a database of the built-in

functions. The database can be used to find the return type of a Matlab built-in

function. The way we did it is quite interesting. Instead of having a map from the

name of function and its input type to the return type, we created a separate Matlab

file that contains a very small implementation of each built-in function. This is an

extendable file, so for now we have just added a few built-in functions to it.

In Listing 5.2, we have added a dummy implementation of the built-in function

rand which takes two integer dimensions and returns a random matrix of doubles

(Matrix<double>) having dimension m x n. Now when our type inference algorithm

symbolically executes this function, it finds out that this function returns a Matrix of

doubles. Similarly, the type returned by transpose function is the type of the input

Matrix. Hence in our implementation of transpose, we just return the input matrix m.

This way our type inference algorithm when called with t = transpose([1 2 3]) will

return the type of [1 2 3] which is Matrix<int>. Hence t gets its type assigned as

Matrix<int>.
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1 function z = rand(x, y)

2 z = [1.2 3.4];

3 end

4

5 function t = transpose(m)

6 t = m

7 end

Listing 5.2: Builtin function file

The limitation with this approach is that a built-in function can only return one

type for one input. For example, a sin function can take a double or an int and

return a double. The sin function can also take a Matrix < double > and return a

Matrix<double>. For double and Matrix, the sin function could just return the type

of input argument. But in case of integer, it cannot be instructed to return a double.

So for now we have built the sin function to always return a Matrix<double> as it is

the safe approximation for the type returned by sin.

This limitation could have been solved by defining those dummy built-in functions

in C++ instead of defining them as a Matlab file. In C++ we could take advantage of

the facilities provided by templates. We could have a template function definition for

sin and also a specialized sin function that accepts int and returns a double. But for

our experimental purposes, this is a fairly good approach. Also it is difficult in ROSE

compiler to instantiate a template function declaration with a specific type, so we

chose the simple approach instead.

We could also extend our type inference algorithm based on the fact that some built-

in methods only accept specific argument types. For example, a transpose function

always accepts a Matrix type, so any variable passed to the function transpose will

have a type Matrix. However, this feature has not been implemented for now, as we

assume that all the variables should be initialized before they are used.
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5.2.6 Creating Overloaded Functions

Matlab can have one definition of a function that can accept input arguments of

any types. For example in Listing 5.1, we can call sum with arguments x and y of

types integer, double, matrix. We could even have called sum as sum(1.2, [ 1 2 3]).

This is possible because Matlab checks the types of variables dynamically when an

operation is applied on them. However in C++, we need to specify types for the input

parameters in a function declaration/definition. Having multiple function calls to

sum with different input types implies calling overloaded version of the function sum.

Therefore, FastNumerics creates an overloaded copy of a function definition when it

sees a function call.

For example, in Listing 5.1, we will create three overloaded versions of add. The

first one will accept (int, int), the second one will accept (double, double) and the

third one will accept (Matrix<int>, Matrix<int>).

Instead of creating overloaded versions by copying functions, we could have created

a template version of the original function. Although this is not difficult to implement,

it is difficult in ROSE compiler to instantiate a template function declaration with a

type T = concreteType (whenever we see a function call with some concrete type).

Therefore, we chose to create overloaded functions instead of having a single template.

5.2.7 Type Attributes

Attributes are objects that can be attached to an AST node in ROSE. Whenever a

variable gets assigned to a type or a constant returns a type, FastNumerics attaches a

custom attribute to the node called TypeAttribute which stores the type information

that the node represents. Although this information is also stored in the symbol table

of the scope in which the variable resides, some implementation issues (especially for

some new Matlab nodes added) have prevented the algorithm to store exact type

information in some specific cases. Therefore as a workaround, we attach this attribute
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to each variable which can later be retrieved by other components of FastNumerics.

TypeAttributes also came out to be helpful while implementing the algorithm. It

could be used to graphically display the type assigned to a node. Figure 5.3 displays

the type attribute information associated with each node.

Figure 5.3: Type Attributes in the AST

5.2.8 Type Soundness

The algorithm we use produces sound types. This is because if it finds some

node(eg. a matrix access) to return a type that it cannot guess perfectly, then it can

fallback to a type Matrix<double> which is valid for any numeric type. For our work,

we are only considering values to have numeric types. Hence the program cannot

produce types which will cause run-time errors.

The algorithm we developed still has some limitations, especially in cases when

a variable is defined inside a control-flow based on a condition. These issues can be

resolved in the future by applying a proper data-flow analysis.

5.2.9 Integer Usage

By default, Matlab assumes that every variable has a base type double. A

declaration x = 5 will set x to be a floating point number internally. In Matlab, a
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programmer should explicitly state x = int16(5) to make x an integer. FastNumerics

automatically checks if a number is an integer and creates an Integer AST node to

store its value. The type inference algorithm then declares those variables to have

an int type which will be computationally efficient as compared to using doubles

everywhere.

5.2.10 Inserting Variable Declarations

For all the variables in a scope, we insert variable declarations with their inferred

types. This is done after the end of type inference analysis. FastNumerics goes through

all the function declarations and extracts the set of variables in the scope. Since

each variable will have a TypeAttribute attached to it, this attribute is queried to

get the type of the variable. A variable declaration is created using ROSE’s api and

prepended to the scope.

5.3 Type Inference By Solving Constraints

We use Hindley-Milner system to infer types by solving constraints and the

algorithm has been described in a very clear way in [45]. Type Inference by solving

constraints involves three phases which are as follows:

5.3.1 Generating Constraints

This phase traverses the Abstract Syntax Tree and from each relational operator

or a function definition generates a constraint. For example, from an assignment

1 x = [1 2 3 4; 4 5 6 7]

, the generated constraint is

1 x = Matrix
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Similarly, the constraints generated from the following function definition

1 function s = add(n1, n2)

2 s = n1 + n2

3 end

will be

1 add = (n1 , n2) -> s

2 s = Operation(n1, n2)

5.3.2 Solving Constraints

We can then solve these constraints by using Unification algorithm.

Here is how a basic unification algorithm works. Suppose we have the following

constraints:

1 x = int

2 y = x

3 z = x + y

Then we can infer that

1 x = int

2 y = int and

3 x = int + int = int

5.4 Comparing Flow-based vs Flow Insensitive Approach

Matlab language has many overloaded operators and functions that make type

inference difficult. A function may have different types based on the type of the
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input and the control flow. Flow-based and flow-independent solutions have their

own advantages and disadvantages. For a dynamic language like Matlab, flow-based

approach to type inference seems to be the most appropriate. For example, the

operator A * B may return different types depending upon the type and shape of A

and B. If both A and B are Matrices, the type returned is a Matrix. If A is a row

vector and B is a column vector, the type returned will be either an integer or a double.

if A is a column vector and B is a row vector, the type returned will be a Matrix.

With flow insensitive approach, we may not immediately know the types of A and

B when applying the operator *. Since the constraints generated are solved at once, it

is not guaranteed that A and B have been assigned a value when the algorithm is at

C = A * B. So the flow insensitive approach cannot make decisions when it is solving

a set of constraints within a scope. Only after the constraints are solved, we can know

the types of the variables in the scope. This will particularly hinder type inference in

Matlab when we need to know the types of A and B at some node. In a flow-based

approach, when the algorithm reaches C = A * B, it can query the type of A and the

type of B and make decisions accordingly. Also implementing a flow-based algorithm

will provide more control over the way types can be returned by each expressions.

In Matlab, accessing elements of a Matrix look exactly like function calls. A(1, 2)

could mean call a function A or access the value of matrix A at the specified position.

In a flow insensitive approach, the algorithm is not guaranteed to know that A is

matrix when it reaches A(1,2). But in a flow-based approach, it is already known that

A will be a matrix because elements are always initialized before they are used.

But it does not mean that a flow-based approach does not have its limitations. A

flow insensitive algorithm can properly infer the type of a variable x at statement, x

= y, defined at the top of the loop whereas y has been initialized at the bottom of

the loop as shown in Listing 5.3. Since the flow insensitive approach does not depend

where the variable was initialized; it will set x to be the type of y which is integer.
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But the flow-based approach will not have seen y = 5 when it reaches x = y, so cannot

assign a valid type to x. This problem can be solved by repeatedly analyzing the

function until all the types have been found. Flow insensitive approach really make it

easy to determine the function type of a recursive function as well.

1 for loop

2 if (condition) x = y

3 y = 5

4 end

Listing 5.3: Limitation of flow-based approach

5.5 Challenges With Type Inference in Matlab

5.5.1 Same Variable assigned to Values of Incompatible Types

FastNumerics for now assumes that a single variable can be assigned values whose

types are compatible with each other. For example (as shown in the listing below), a

variable x can be assigned to an integer as well as a Matrix. However, FastNumerics

does not deal with a variable x that is assigned to a string and a number.

1 x = 1; %OK

2 x = [1 2]; %OK

3 x = "Hello"; %Not OK. Incompatible assignment

Different return types from a function. In Matlab, a function can have different return

types depending upon a condition. Right now FastNumerics will always generate a

function that has a return type which dominates all the types in a return statement.

For example (as shown in the listing below), if a function has two return statements

where the first returns a Matrix and the second returns an integer; the function will

have a signature whose return type is a Matrix. We cannot have a function which will
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have two different return types based on a condition. So foo’s signature will always

state that it will return a Matrix.

1 function y = foo(x)

2 if ..

3 y = [1 2 3];

4 else

5 y = 12;

6 end

A solution in which a variable y can be either a string or an integer can be

represented using a type called Boost.Variant [46] provided by the Boost[47] library.

However we could not implement this feature due to time constraints.
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CHAPTER 6

TRANSFORMATIONS

FastNumerics transformations are a set of rules applied to modify the Matlab

AST so that we get a valid C++ AST. ROSE provides a very good API to query

and modify the AST using SageBuilder and SageInterface. A short introduction to

transformations has already been provided at Section 3.2.1.0.2. In this section we will

discuss the approaches we applied to some important transformations which will also

point out some peculiarities of Matlab language.

6.1 Generating C++11 Code

FastNumerics’ transformation rewrites the AST so that we can get a C++11 code.

The reason we do this is to utilize some of the new features provided by C++11. These

features help simplify writing transformations. For example it would have been difficult

to convert a Matlab function that returns multiple variables to C++98 code. However,

C++11 provides constructs std::tuple and std::tie to allow a function to return a list of

variables easily. Here are a few C++11 constructs that we use in our transformed C++

code:

6.1.1 Auto

C++11 introduces auto so that we can declare a variable to be of auto type if it

is initialized during declaration instead of explicitly stating its type. FastNumerics

declares the type of the for loop iterator to be of auto type.
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6.1.2 std::type, std::tuple And std::make tuple

FastNumerics generates these C++11 constructs when dealing with functions that

return multiple variables. If these constructs were not available then we may need to

generate code to return a vector and then explicitly copy the values from the vector to

the assigned variables. Therefore generating C++11 code makes transformation easier.

6.1.3 Initializer Lists

C++11 allows a function to accept initializer lists. We use this feature while passing

vectors to a function by representing the vector as an initializer list.

6.2 Inserting Include Statement

The generated C++ code depends upon a lots of external components like the

Matrix implementation, the built-ins implementation etc. Instead of adding many

include statements, to include those dependencies, FastNumerics adds an include

statement to include a file called fastnumerics.h which includes all the dependencies

needed by the translated code.

6.3 Transformation: Matrix Assigned To a Variable

Whenever FastNumerics sees a variable being initialized with a Matrix, as shown

in the left side on Figure 6.1, it transforms the matrix to a form as shown in right on

the same figure. This is because the Matrix interface has an overloaded operator <<

that helps initialize the matrix. The overloaded operator can be implemented in any

way as long as it initializes the matrix object with the supplied values.

The transformation works by going through all the assignment operators and

checking if the RHS of the assignment is a Matrix or not. The matrix expression

(represented in ROSE by the class SgMatrixExp) is then replaced by a new expression
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Figure 6.1: Matrix initialization transformation

composed of left-shift operators and the elements of matrix.

6.4 Transformation: Range Expression

Ranges in Matlab have the form start:stride:end where stride is optional and defaults

to 1. Range expressions produce a vector of elements from start:end. FastNumerics

transforms these range expressions into a range.getMatrix() function call where range

is an object of class Range< T >. The range object is initialized with a call to its

setBounds function that has a signature setBounds(start, stride, end).

The listing 6.2 shows the transformed range expression shown in Listing 6.1. Here

the range variable x will have a type Matrix<T> where T is the type of the elements

in the range. If there are multiple ranges in a scope, each range variable will have a

unique name. The call getMatrix() will return a Matrix. In our implementation of

Range class, we return an Armadillo matrix when getMatrix() is called.

1 x = 1:2:100;

Listing 6.1: Matlab Range
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1 Range <int > range0;

2 range0.setBounds (1 ,2 ,100);

3

4 Matrix <int > x;

5 x = range0.getMatrix ();

Listing 6.2: Range transformation

Range expressions that represent the loop range of a for loop are skipped when

doing this transformation. This is because a for loop will use the Range information to

create a loop whose index in each iteration represents one of the values of the range.

6.5 Transformation: For Loop

A Matlab for loop can be represented in two different ways and they are show in List-

ing 6.3. Although the two representations can be unified as one since start:stride:end

is also an expression, but start:stride:end can be treated in a different way to generate

better code. We know that start:stride:end is looping from start to end with each

loop jumping by stride. In case stride in not provided, the default stride is 1. So this

expression can be converted to a normal for loop.

In the case where the RHS of the index in a for loop is an expression which is not

a Range, it should be iterated using iterators. FastNumerics expects that expression

has begin() and end() implemented and they return iterators. expression could be a

variable that has been assigned to a range expression, or a function call that returns a

range expression or a matrix.
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1 for i = start:stride:end

2 %statements

3 end

4

5 for j = expression

6 %statements

7 end

Listing 6.3: For loops in Matlab

For the first for loop where RHS of index has an explicit range expression, we

generate an equivalent C++ for loop as shown in Listing 6.4. The index i has been

assigned an ”auto” type.

1 for (auto i = start; i <= end; i += stride) {

2 // statements

3 }

Listing 6.4: Normal C++ for loop

The second loop with an expression on RHS (which is not a Range expression) of

the loop index gets transformed to a for loop that uses iterators as shown in Listing

6.5.

1 for(auto j = expression.begin (); j != expression.end(); ++j)

2 {

3 // statements

4 }

Listing 6.5: For loop that uses iterators in C++
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6.6 Matrix Argument In Function-Call

In Matlab we can pass a matrix constant as function argument. Listing 6.6 shows

an example of how a matrix constant can be passed to a function. In the listing, a

vector [1, 2, 3] is passed to the function foo. Similarly, we can see that [1 2;] is passed

to the matrix A. Passing a matrix to access the elements of A is done to access a

sub-matrix of A. In the listing, c will be assigned a sub-matrix of A (Rows 1, 2 and

2nd column).

Since C++ does not support passing terms in the form [ 1 2; ], FastNumerics

transforms those expressions to an initializer list expression. Initializer list is a list

of terms enclosed in { } braces separated by commas. C++11 supports functions

that accept initializer lists, so the function foo can accept initializer lists. Also a

Matrix should have an access function that takes an initializer list. Initializer lists are

represented in ROSE by SgAggregateInitializer.

1 y = foo([1 2 3]);

2

3 A = [7 8 9; 4 5 6;]

4 c = A([1 2;], 2);

Listing 6.6: Passing matrix as argument in a function call

Listing 6.7 shows how Listing 6.6 is transformed to C++.

1 y = foo ({1 ,2 ,3});

2

3 A = ....

4 c = A({1,2}, 2);

Listing 6.7: Matrix argument transformed to C++
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The transformation works by going through each arguments of all the function

call expressions. If it finds that the argument is a Matrix, it replaces that Matrix by

an equivalent initializer list.

Here is how FastNumerics’ Matrix implementation accepts initializer lists to access

elements:

1 // element access A([1 2 3])

2 Matrix <T> operator ()( initializer_list <uword > indicesList)

3 {

4 ............

5 }

6.7 Functions That Return Multiple Values

Matlab functions can return multiple values. It is a very nice feature in Matlab so

that we do not have to pass references or return a vector if we want to return multiple

values. Here is a very simple Matlab code that calls a function which returns two

values a and b:

1 function main()

2 [x , y] = foo();

3 end

4

5 function [a, b] = foo()

6 x = 5;

7 y = 6;

8 a = x + y;

9 b = x - y;

10 end

Function foo() can return two values which can be assigned to x and y respectively.
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In C++11 we could use std::tuple to return a tuple of values and std::tie to bind those

return values to the variables. FastNumerics transforms the above Matlab code to the

following C++ code by utilizing tie and tuple constructs:

1 std::tuple <int ,int > foo()

2 {

3 //var declarations

4 x = 5;

5 y = 6;

6 a = x + y;

7 b = x - y;

8 return std:: make_tuple(a,b);

9 }

10

11 void main()

12 {

13 int y;

14 int x;

15 std::tie(x,y) = foo();

16 }

The function foo returns an object of type std::tuple and the function main ties

the returned object to individual variables. FastNumerics is able to do this on the

assumption that the generated code will be compiled as a C++11 code.

6.7.1 Representing Multiple Return Values

FastNumerics stores a list of return variables in a function declaration object

associated with the function. Whenever it finds out that there are more than one

return variables in the list, it creates a std::make tuple function call as an expression

in the return statement as shown in the listing above. For a single return variable in
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the function, a normal return var; statement is generated.

6.7.2 TypeTuple

FastNumerics stores the type returned by a function returning multiple variables

type as a TypeTuple (in ROSE this is represented as SgTypeTuple). This is a new

Type that FastNumerics added to ROSE compiler. A TypeTuple can store a list of

types. In FastNumerics, foo has a return type of SgTypeTuple<int, int> which gets

unparsed to a std::tuple representation as seen in the listing above.

6.8 Colon Operator in Matrix Access Operations

In Matlab we can use a colon operator (:) to select either all the rows or all the

columns when accessing the elements of a matrix. For example, if A is a matrix

then we can call A(:, 5) to access all the rows of the 5th column. Similarly, the colon

operator can be used to select all the columns for a specified row. Since C++ does not

allow passing such symbol/operator to a function, FastNumerics replaces occurrences

of the colon operator by an enumerator MatlabSymbol::COLON in a function call.

1 A = [1 2 3; 4 5 6;]

2 y = A(:, 2);

The Matlab code in the above listing gets transformed to

1 A = ....

2 y = A(MatlabSymbol ::COLON , 2);

This transformation expects the Matrix wrapper to have an implementation of the

overloaded operator () that accepts a MatlabSymbol enumerator. Our implementation

is shown in the listing below:
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1 //A(:, 2)

2 Matrix <T> operator () (MatlabSymbol symbol , int col)

3 {

4 assert(symbol == MatlabSymbol :: COLON);

5

6 Matrix <T> column(matrix.col(col - 1));

7

8 return column;

9 }

10

11 //A(2, :)

12 Matrix <T> operator () (int row , MatlabSymbol symbol)

13 {

14 assert(symbol == MatlabSymbol :: COLON);

15

16 Matrix <T> rowMatrix(matrix.row(row - 1));

17

18 return rowMatrix;

19 }

6.9 Calls to Matlab Built-in Functions

Matlab has a rich set of built-in functions which is one of the reasons for its

popularity. Some of the built-in functions in Matlab are sin, randn, disp, etc. Whenever

FastNumerics transformation sees a call to a function, it does not transform it. So

all the calls to built-ins will remain untranslated. The translated code requires those

built-in functions to be implemented for it to compile.

For example the Matlab code below contains a function call to sin which gets

translated to C++ exactly as is. In FastNumerics sin is implemented in namespace

fastnumbuiltins using standard C++ math library.
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1 x = sin(y);

The above code gets translated to

1 double x;

2 x = sin(y);

6.10 Transformation: Binary Expressions to Built-in Functions

Some binary expressions in Matlab can be implemented using an operator over-

loaded function in Matrix implementation. For example a + operation between two

matrices A and B does not need to be transformed at all because there is an overloaded

operator + in the Matrix implementation. However not all operators in Matlab have

an equivalent operator in C++.

Operator \which is a binary operator known as left divide operator solves the

system of linear equations Ax = b when executed as x = A \b. C++ does not have a

\operator, hence we need to transform those operators to some function calls with the

operands as the arguments.

Similarly operator ˆrepresents a power operator in Matlab and C++ does not have

a power operator. Hence this also needs to be translated to some function call like

power.

All of these functions have their implementation in Matlab built-ins component.

Since all of these transformations are similar, FastNumerics has an implementation of

an abstract module that transforms a binary operator to a function call. This is an

easily extendable module.

6.10.1 \ Operator to solveLinear Call

All the occurrences of A \ b are transformed to a function call solveLinear(A, b).
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6.10.2 ˆ Operator to Power Call

All the occurrences of x ˆ y are transformed to a function call power(x, y).

6.11 Matrix Operations to Matrix Method Calls

There are some operations on a Matrix that could be more natural to translate to

a member function call on the matrix instead of a standalone function. For example,

A’ in Matlab represents the transpose operator ’ applied to a matrix A. Again since

C++ does not have such operator, so FastNumerics translates that function call to

A.t() member function call.
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CHAPTER 7

EXPERIMENTS

We compared the running times of Matlab code, its corresponding hand translated

C++ code and automatically translated C++ code. We took six Matlab benchmarks to

perform our experiments.

7.1 Benchmarks

The benchmarks that we took are as follows:

7.1.1 Belief Propagation

The main operations involved in this benchmark are matrix vector multiplication

and sum of vector inside a loop. For our experiment we have a 500 x 500 dense matrix,

a 500 x 1 vector and number of loop 100000. The time is averaged over 50 runs.

7.1.2 Determinant

In this benchmark, the costly operation involved is just the calculation of a

determinant that is repeated 1000 times for a 1500 x 1500 dense matrix.

7.1.3 Linear Regression

This benchmark solves a system of linear equations Ax = b. A is a 3000 x 3000

dense matrix and b is a 3000 element row vector. The operations that are timed are

the calculation of x and transpose of b. The times are averaged over 100 runs.
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7.1.4 Numerical Quadrature

This benchmarks has a loop that performs some trigonometric calculations and a

division and addition. The number of loops is set to 107. The time is averaged for a

run of 10 rounds.

7.1.5 Matrix Access

This benchmarks tests how well Matlab code can work when accessing elements

of a Matrix. A square matrix of size 214 is constructed and all the elements of the

matrix are accumulated. The time is averaged over 5 runs.

7.2 Experimental Settings

We performed all of our experiments on an Intel(R) Xeon machine with 20 x86 64

cores each having a speed of 2.6GHz. The machine also has a Phi-co-processor with

60 cores however these cores were not utilized by the benchmarks. The RAM in the

machine is 16 GB. The translated C++ codes were compiled using using GCC 4.8.3

with -O3 optimization and with the option -march=native. We used Armadillo for

linear algebra operations which was compiled with Intel MKL [34] as the underlying

high performance library. For Matlab benchmarks, Matlab R2015b was used to execute

Matlab programs.

7.3 Results

We compared the execution times of Matlab versus hand translated C++ code and

automatically translated C++ codes. We also compared the number of lines of code in

Matlab, hand translated C++ and automatically translated C++.
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7.3.1 Comparison of Execution Times

Figure 7.1 shows the execution times of the six benchmarks we discussed in the

section above. All the times are normalized with Matlab = 1. Any benchmark having

time less than 1 is faster than Matlab and benchmark having time greater than 1 is

slower.

Figure 7.1: Benchmarks to show the execution time of translated C++ codes relative
to the corresponding MATLAB code

Discussion of results. As we can see in Figure 7.1, automatically translated code runs

as fast as the hand translated code except in one benchmark called belief propagation.

It even runs slower than Matlab. The reason is that the automatically translated code

does not use vectors to represent vectors but uses matrix. FastNumerics represents

vectors as a Range which internally is a Matrix. The reason why belief propagation

turned out to be slow is because of a division operation x / sum(x) where x is a

vector. In FastNumerics, sum has been implemented to return a Matrix (actually sum

should return a scalar if a vector is passed); so the overloaded division operator has to

extract a scalar (first element) from the Matrix before performing the division. This

means that the supporting components for the translated code should be written in

an efficient way to gain a proper speedup.
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Other five translated benchmarks perform as well as the hand translated C++ code.

Benchmarks mcmc and mat access have almost 10 times speedup. The reason is that

these benchmarks have control flow and matrix accesses involved. Indexed accesses

are one of the places where Matlab spends time performing run-time checks [48]. Thus

C++ code obtained by translating Matlab code that has lots of control flow and matrix

access turns out to perform very well. Type inference also has an impact on the

performance [48].

To summarize, we can say that hand translated code (if translated optimally) will

usually be faster than automatically translated code. This shows that there are lots

of places to improve upon when writing a translator like FastNumerics. We could

have improved the results for the benchmarks belief and lin reg by doing a shape

analysis and representing the vectors as vectors instead of a matrix. We could also

have improved the sum function to return a scalar if it is operated on a vector.

7.3.2 A Sample Translation

Figure 7.2 shows how the translated version of benchmark belief propagation looks

like. The generated code is readable and is similar to a hand-written code. It has a

structure similar to the Matlab code.

7.3.3 Comparison of Lines of Code

Figure 7.1 shows the comparison of number of lines of code in the original Matlab

benchmark, the number of lines of code in the hand translated C++ code and in

automatically translated C++ code. We did not make any changes to the source code

when generating the number of lines of code and we did not ignore blank lines and

some comments when counting the lines of code. Therefore, the number of lines of

code in the figure is just an approximation of the actual total lines of code without

blank lines.
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Figure 7.2: Translation of belief benchmark

Discussion. We can see that the number of lines of code in hand translated C++ and

automatically translated C++ are almost equal. The number of lines of code in C++ is

always larger than the number of lines of code in Matlab. Matlab program is usually

concise than equivalent C++ programs and that could be the reason why people choose

to implement programs using Matlab. One place where the generated C++ could have

much more number of lines of code than Matlab is when there are overloaded calls

to functions. In that case FastNumerics generates overloaded versions of the original

function. Normally the difference between the number of lines in the automatically

translated C++ code and Matlab is not very high.
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Figure 7.3: Benchmarks to show the number of lines of code in Matlab and its
translated C++ code
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CHAPTER 8

RELATED WORKS

There are many projects implemented previously that deal with converting Matlab

to other general purpose languages. These compilers usually translate Matlab to some

static language like C/C++/Fortran or target a specific numerical library. FALCON[9]

is a very popular Matlab to FORTRAN translator developed in the nineties and has

inspired other translators to utilize its translation principles and analysis. MEGHA

[49] is a Matlab to C++ compiler that automatically maps the control flow dominated

regions to the CPU and the data parallel regions to the GPU. The limitation of

MEGHA is its very limited support of Matlab language. It can only operate on single

dimensional arrays which limits its general usability. Also it does not support any

calls to user defined functions. Our implementation supports multi-dimensional arrays

and also supports user defined functions which are present in almost any Matlab

program. MEGHA also requires extensive type annotation from the user whereas our

implementation performs complete type inference. There is also a work on generating

C and OpenCL code from MATLAB [50] which relies on programmer directives and

targets embedded systems.

Instead of compiling Matlab to other languages, a work on optimizing Matlab

expressions by following some guidelines (like pre-allocation of matrices) and also using

vectorization also exists [48]. Our compiler is also able to work on Matlab code and

re-generate transformed Matlab code, but this thesis only focuses on Matlab to C++

and more work has to be done to fully utilize this feature. Another approach taken is
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to compile Matlab in order to target high performance libraries like ScaLAPACK [51].

The notable part of our work is that by using a wrapper we can target the Matlab

code to use any libraries, so the translation does not need to be tailored to focus a

specific library.

MiX10[52] [53] is a source-to-source compiler that automatically translates Matlab

programs to X10 aiming for better use of high performance computing systems and

also deals with handling concurrent Matlab code. The generated X10 code can further

be compiled to either C++ or Java. MAGICA [54] is a Mathematica application that

performs extensive type inference on Matlab code but just annotates existing Matlab

code with inferred types. It does not perform any translation. There are translators

based upon MAGICA.

There are tools like MATLAB Coder from MathWorks [55], which produce C/C++

code for a subset of Matlab. Matlab coder also supports generation of OpenMP

pragmas from Matlab parfor loops. Our work can also be easily extended to support

these kind of pragma insertion. The code generated is based on arrays and also

requires a separate purchase. There is also an implementation [56] that produces

parallel Matlab code from sequential Matlab to run on heterogeneous processors. It

automates mapping, scheduling, and parallel code generation.

Also The Hiphop Compiler for PHP [57] discusses the general ideas to convert

PHP to C++. PHP being a dynamic language (somewhat similar to MATLAB), this

paper is relevant to us. Our implementation has been inspired by different approaches

in the works listed above.
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CHAPTER 9

FASTNUMERICS: FRAMEWORK FOR FURTHER RESEARCH

FastNumerics opens an area to write transformations that help enhance the

performance of Matlab code. One of the areas where FastNumerics could be used is

to schedule Matlab computations on heterogeneous processors. FastNumerics could

be extended to insert compiler directives or some statements in the generated C++

code to send a computation to different processors.

9.1 Preliminary Experiments

Currently a framework has been created that could be instructed to send a

computation to either GPU or an Intel Xeon Phi co-processor. This framework is

very primitive and is just created as a proof of concept. The framework intercepts

BLAS routine calls generated from the Armadillo matrix library and based upon a

flag set by the user, calls an equivalent function to execute the computation in either

GPU or Phi. To execute the computation on GPU, it calls the routine in a NVIDIA

library called nvblas. To execute the computation on the Phi, it calls the routine in

Intel MKL’s BLAS library.

Figure 9.1 shows a basic flow of how our framework intercepts BLAS calls. Com-

putations in Phi and GPU can be run in parallel as long as they do not have any data

dependency.

In the Matlab code given below, the computations do not have any dependency on

each other and hence can be run in parallel. The matrix multiplication A * B could
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Figure 9.1: A framework to intercept BLAS calls and send them to different processors

be executed on the GPU and lu factorization lu(A) could be executed on the Intel

Xeon Phi.

1 C = A * B

2 [L, U] = lu(A)

9.2 Initial Results

We tried running a matrix multiplication on the GPU and LU factorization on the

Phi in parallel and in series. The machine we used has 60 Intel Xeon Phi co-processors

and an Nvidia GPU, Tesla K40m. For LU, we factorized a dense square matrix of

dimension 30000 and for matrix multiplication we multiplied two square matrices of

dimension 30000. Figure 9.2 shows the times when running the computations in series

and in parallel.

As we can see, running two independent operations in GPU and Phi in parallel

will have a good improvement on speed.
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Figure 9.2: Comparison of execution time when computations are run in parallel and
in series on GPU and Phi

59



CHAPTER 10

CONCLUSION AND FUTURE WORK

The work in this thesis focused on different aspects of transforming general Matlab

code to equivalent C++ code. This thesis may also help someone to learn how general

language translation can be done. The main components in this thesis are the way

Matlab code is represented in an AST, how it is analyzed to find out types and how

nodes are transformed to represent a C++ AST. We were able to develop a framework

(FastNumerics) to perform the transformation which is extendable to add new Matlab

constructs in the future. We were also able to contribute to open source software by

adding a minimal Matlab support to ROSE compiler infrastructure.

From this thesis we can say that Matlab code can be transformed to C++ to achieve

good performance, but it is not simply guaranteed that the C++ code produced will

be faster than Matlab. The supporting libraries that is needed by the translated

code need to be implemented in an efficient way. Type inference on Matlab code is

best done using a flow based analysis but we should still work on improving the type

inference algorithm to handle all the different ways Matlab deals with types.

FastNumerics also helps to serve as a framework to conduct different researches

on transforming Matlab code. For now FastNumerics can transform Matlab codes

written by following some restrictive guidelines (like assigning a variable to compatible

types only, using limited constructs, etc.). Therefore, FastNumerics is still not a

complete solution to handle all popular Matlab constructs. However, future additions

to FastNumerics by adding new Matlab nodes, writing more transformations, adding
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more built-in functions will certainly make it general purpose tool.
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