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AUTOMATED PROCESSING OF CONTINUOUS GLUCOSE MONITOR 

(CGM) DATA TO STUDY ONSET OF DIABETES 

 

AMAN KHATRI 

 

ELECTRICAL ENGINEERING 

ABSTRACT 

 

Diabetes is a long term condition that causes high levels of blood glucose, 

and it is necessary to get a complete picture of glucose levels which can lead to 

better treatment decision and better glucose control. The advent of Continuous 

Glucose Monitoring (CGM) is helping researches to track the blood glucose 

levels continuously and to understand the effects of impaired glucose levels on 

human body which in turn can lead to better treatment of diabetes. Current CGM 

systems process enormous amounts of data and have limitations in regards to data 

accuracy, precision, and reliability of raw glucose data. The inaccuracy in data 

also produces larger relative error in the estimates of glycemic variability than in 

the estimates of mean glucose and other related multiple measure of variability 

and multiple clinical end points. One of the objectives of the study is to automate 

the cleaning process of raw CGM data so as to replace the manual approach 

which very methodical but time consuming. Additionally, this study presents an 



iv 
 

automated procedure that predicts meal consumption and provides the intake time 

and glycemic load. The proposed study is performed on data generated from three 

categories of participants, normal weight, over weight and obese. The success of 

the automated model to inspect and clean data is based on comparison of the 

datasets resulting from automated processing to those resulting from manual 

inspection and cleaning. These results obtained from automated protocol are 

found to be in agreement with the results obtained from manual inspection. 

Additionally, the average percent of correctly detected meals for normal weight 

participants is 82.777, the average percent of correctly detected meals for 

overweight participants is 85.933, and the average percent of correctly detected 

meals for obese participants is 80.589. The overall success rate for determining 

the meal times is 83.099. We have also shown some success in determining more 

specific information about the nutrition values of meal like glycemic load. The 

ability of the proposed model to predict meal intake is essential to understand the 

onset of diabetes. This proposed study results in a flexible platform which can 

facilitate important clinical studies on diabetes and possibly on other biological 

issues related to blood glucose.  

 

Keywords: Data Processing, Continuous Glucose Monitoring System, Diabetes, 

Meal Detection  
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CHAPTER 1: 

INTRODUCTION 

 

1.1 BACKGROUND 

 

Glucose is a major source of energy and therefore is an essential component of 

blood. In the fasting state, such as in morning, to maintain blood glucose levels, 

body releases glucose which is stored in liver in form of glycogen. This breakdown 

and release of glucose into the bloodstream is stimulated by the glucagon 

hormone. However, when body is not fasting, that is while consuming food, the 

enzymes in the mouth and the small intestines breakdown the nutrients of the 

consumed food. These nutrients are then absorbed across the small intestine and 

transferred into blood stream. Carbohydrates are one such type of nutrients which 

gets absorbed by the small intestine and gets converted into glucose. The change in 

blood glucose due to carbohydrates is determined by the rate of digestion and 

absorption into the bloodstream and the ability of body to release insulin to clear 

the glucose from the circulation. In a non-diabetic person the rise in glucose causes 

the body to release insulin to remove glucose in order to maintain normal levels of 

blood glucose; whereas, in a diabetic person, the body does not produce adequate 
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amount of insulin, produces no insulin, or has cells that do not respond properly to 

the insulin produced by pancreas. This metabolic impairment is referred to as 

diabetes. Diabetes is usually classified in three types: 

1) Type 1 Diabetes:  In this type of Diabetes, the body does not produce 

insulin.  

2) Type 2 Diabetes: In this type of Diabetes, the body does not produce 

enough insulin for proper function, or makes the body cells unresponsive of 

insulin.    

3) Gestational Diabetes: This type of Diabetes effects pregnant women, and 

impairs their ability to produce adequate amount of insulin to transport all 

of the glucose into different cells. 

 Type 2 Diabetes (T2D) is a public health crisis. Approximately 8.3% of adults 

in the United States are estimated to have diagnosed or undiagnosed T2D, and 

another 35% are pre-diabetic [1]. Alarmingly, if these trends continue, by the year 

2050 an estimated 25-33% of the US population will have T2D
 
[2]. Although 

improvements in diet and lifestyle have been shown to delay the onset of, or 

possibly even prevent, T2D [3], research is still needed to identify those at risk for 

T2D prior to any deterioration in metabolic health. Consequently, it would be 

advantageous to identify patterns of free-living glycaemia among diabetic and 

non-diabetic individuals that will predict response to standardized clinical 

measures of glucose tolerance, with the long-term goal of developing models for 

the prediction of time to β-cell failure and thereby T2D onset, given specific diet 

and lifestyle conditions. 
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The overall assessment of glycemic pattern has typically been performed using 

hemoglobin A1c (HbA1c) in combination with fasting blood glucose and self-

monitored capillary blood glucose profiles [4]. HbA1c is “gold standard” measure 

of glycemic exposure as it provides a biologically integrated indication of average 

glucose control during the 6-8 weeks prior to sampling [5]. However, this process 

does not provide a more specific understanding of lifestyle events that contribute 

to glucose excursions and introduces the problem of irregular and infrequent 

glucose sampling. The advent of Continuous Glucose Monitoring (CGM) has 

eliminated the problem of irregular sampling and is helping researches to track the 

blood glucose levels continuously and to understand the factors that contribute to 

high glucose under free living conditions.  

Continuous Glucose Monitor (CGM) is a tool to help people manage their 

blood glucose levels [Fig.1.1]. CGM consists of a multilayered electro-enzymatic 

sensor which transmits the glucose levels of the interstitial fluid to a receiver via 

radio waves. The sensor is inserted into the fatty tissue below the skin where it can 

access the interstitial fluid which resides between the cells as shown in Fig.1.2. 

The sensor then transmits the glucose reading to the receiver in every one to five 

minutes. CGM is capable to detect sudden change in the glucose levels occurring 

in individuals with diabetes. Increased availability of CGM system enables the 

researchers to investigate glycemic patterns throughout a given period of time. 

Developed specifically for the clinical purposes of detecting hyper and hypo 

glycaemia excursions among individuals with Type 1 Diabetes, CGM can also be 

used in conjunction with an insulin pump as a type of artificial pancreas.   
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Fig.1.1 Continuous Glucose Monitor 

 
Fig.1.2 [6] a) Skin Layers with probe inserted into subcutaneous tissue b) 

Diffusion of glucose from blood to interstitial fluid in subcutaneous tissue. 
 

 

1.2 MOTIVATION 

 

 The CGM monitoring has benefited the care of individuals with diabetes for 

over a decade.  In clinical research, CGM technology can be used to understand 

dynamic and unpredictable phenomena like glycemic fluctuations in pregnant 

women and to characterize the role of free living glucose on fetal growth for 

analysis of early childhood onset of obesity. However, the lack of an automated 
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standardized approach to perform the labor intensive evaluation of glucose 

measures associated with maternal outcomes limits the use of CGM data for 

pregnancy related studies. Also current CGM system has limitations in regards to 

data accuracy, and precision of raw glucose data. The inaccuracy in enormous data 

produced by CGM also introduces larger relative error in the estimates of glycemic 

variability than in the estimates of mean glucose and other related multiple 

measure of variability and multiple clinical end points [7]. This lack of accuracy 

and absence of replicable standardized automated approach to detect incorrect 

readings from the raw data limits the development of useful autonomous systems 

like artificial pancreas. Additionally, the current algorithms and software which 

accompany CGM do not reveal all aspects of free-living glucose profile. In our 

study we propose a platform to characterize all aspects of free living glucose, 

including indices of glycemic control, variability, and the rate and acceleration of 

glucose.   

 

1.3 CONTRIBUTIONS 

 

 This is the first and only automated methodical approach adapted from 

the manual method described in Hernandez & Barbour [8] for reliably 

inspecting and cleaning inaccurate raw CGM data.  

 Our platform offers an automated method to define and analyze time-

series glucose measurements to predict meal times and glycemic loads 

of meals based on the technique of pattern recognition.  
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 The developed platform can also identify and extract important glucose 

characteristics like glycemic variability, the rate and acceleration of 

glucose changes, along with pre meal glucose, post meal glucose peak, 

and the area under the curve associated with meal intake.  

The proposed platform can facilitate diverse applications of CGM to support 

multiple research studies conducted by clinical investigators to diagnose glucose 

impairments as well as gives researchers the ability to understand the onset of 

diabetes in non-diabetic individuals. Our platform offers a standardized automated 

method to define and analyze time-series glucose measurements and to predict 

meal times and glycemic loads of meals to increase the understanding of glycemic 

profiles contributing to onset of diabetes. Using the versatility of the platform we 

can produce multiple diagnostic studies like estimating the characteristics of hyper 

and hypo glycemic excursions occurring due to lifestyle related factors.  

 

1.4 ORGANIZATION 

 

This work is divided into 5 chapters. We discuss relevant issues and research 

work in Chapter 2. This chapter revisits the previous approaches to process CGM 

data using mathematical models and signal processing techniques. Chapter 3 is 

divided into seven parts which gives us the background information about the 

participants, the process of data collection, and the methods adapted for 

processing of glucose data in order to achieve reliable outcomes. Chapter 3 also 

deals with the explanation of automated protocol to clean glucose data, and the 
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techniques used to detect meal times for a given dataset. Chapter 4 discusses the 

results associate with cleaning of glucose data and detection of meal times.  In 

chapter 4 we also present the methodology and results related to prediction of the 

Glycemic Load based on characteristics of glucose profile like Area Under Curve 

(AUC) during meal consumption, the duration of time to reach the peak value 

based on the duration of the excursions produced due to meal, and the peak value 

of the glucose after the meal consumption. In chapter 5 we conclude the study.  
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CHAPTER 2 

PRIOR WORK 

 

Diabetes accounts for significant morbidity, mortality and can result in 

diminishing quality of life in individuals [10], [11]. Being a serious condition, 

diabetes over time may cause significant organ damage to heart, blood vessels, 

kidneys, eyes, and nerves. According to National diabetes statistics report, 

diabetes is one of the leading causes of heart disease and stroke by damage of 

blood vessels, kidney failures, limb amputations by diabetic foot syndrome and 

early onset of blindness [12].  To address the problems associated with diabetes, 

researchers throughout the world and the United States are working to understand 

and treat this disease [13].  The researchers and the medical organizations 

involved in diabetes research have established aggressive targets for controlling 

glucose levels in diabetic individuals [14], [15]. The traditional tools like finger-

stick to measure blood glucose can only be used three to four times a day because 

of their invasive nature. These tools fail to provide continuous information 

regarding the hyper and hypo glycemic excursions of the blood glucose and 

thereby missing all the important details [16]. However, now with the advent of 

CGM, we have an opportunity to understand the full story about the hyper and 
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hypo glycemic excursions. CGM enables us to access updated glucose values 

every few minutes and can be used for understanding glucose trends in an 

individual. According to Klonoff [17], [18], CGM is likely to become a routine 

part of diabetes management.  To derive full potential benefit from CGM it is 

important to understand the information about slope, magnitude and duration of 

fluctuations occurring in interstitial glucose.  

 Although CGM sensors are useful in detection of increasing or decreasing 

trends of the blood glucose, there are ongoing concerns about the accuracy and 

the sources of error in the CGM data [19]. Despite the fact that sensor accuracy 

improves with each new system generation, CGM-generated glucose values still 

vary from simultaneous fingersticks by an average of 10-20% [20].  These 

accuracy issues are due to lag time caused in measuring the glucose from 

interstitial fluid, or due to lack of accurate and timely calibration by patients or 

because of wrong choice of insertion site with inadequate subcutaneous fat. The 

clinical researchers involved in these studies come across enormous amounts of 

inaccurate data and have tried to address the issue by conducting several 

controlled experiments. These challenges related to cleaning of CGM data have 

been handled before using various mathematical models. Kalman filter and 

Moving Average filer based smoothing technique was used to handle inter-

individual and intra individual signal to noise ratio in CGM data [21].
 
The validity 

of the resultant data set as an output of Kalman filter was based on Monte Carlo 

simulations and the performance of the Kalman filter was compared to Moving 

Average filter in terms of glucose measurement delay.  A similar filtering 
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technique that can limit higher rate of change in CGM data was proposed to aid 

smoothing and calibration [22]. In another study, an integral based fitting and 

filtering method was used to reduce the effect of large errors in CGM sensors 

[23]. Several studies with use of autoregressive moving average to handle 

consecutive CGM sensor errors in order to improve CGM accuracy have also 

been proposed [24]. Powerful statistical techniques like Support Vector Machines 

(SVMs) have also been used to detect therapeutically incorrect measurements 

made by CGMs [24], [25]. However the studies so far do not offer a methodical 

approach to identify and extract relevant data from the cleaned CGM data for 

clinicians that can yield several other characteristics like Area Under Curve, 

duration, slope, pre and post meal excursion values. These time series glucose 

characteristics derived from CGM data can facilitate comparison among different 

glucose studies based on CGM to increase our understanding of individual 

glycemic profiles.  

In this work we are presenting a flexible platform which can be used to 

clean the raw CGM data and derive the above described characteristics. 

Additionally, the platform can be used to evaluate the glycemic response of food 

by combining meal diaries and glucose data from CGM. This is the only platform 

which offers a capability to combine the glycemic response from CGM to the 

meal diaries, and an ability to detect glycemic load. According to Freeman and 

Lynee evaluating the glycemic response to a meal is difficult not only because of 

the composition of the meal, but also because of the dependence of glucose values 

on meal intake and the insulin resistance of an individual [26], [27].  However, 
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our platform provides researchers with an ability to understand the excursion in 

the glucose values which are dependent on the characteristics like glycemic 

variability, the rate and acceleration of glucose changes, pre meal glucose, post 

meal glucose peak, and the area under associated with meal intake.  
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CHAPTER 3 

METHODS 

 

 

3.1 PARTICIPANTS 

 

 This study involved secondary analysis of CGM data obtained as part of a 

study on healthy African American women above the age of 16 years during their 

third trimester of pregnancy. The recruits had a varying risk for developing 

impaired glucose tolerance and were stratified by Body Mass Index (BMI) during 

pregnancy. The normal weight women had BMI less than 25.0 Kg/m
2
, the over-

weight women had a BMI in the range of 25.0 to 29.9 Kg/m
2 

and the obese 

women had a BMI more than 30.0 Kg/m
2
.  The women were recruited from 

among those planning to deliver at a large urban University Hospital and had 

initiated prenatal care prior to 19 weeks’ gestation, and were experiencing a 

healthy singleton pregnancy.  Whereas, women with pre-existing Diabetes Type 1 

and Diabetes Type 2, who had developed gestational diabetes in current 

pregnancy or had previously delivered prematurely, that is the birth of a baby of 

less than 37 weeks, were excluded. The women with growth restricted infants 

and/or with infants weighing less than 2.5 Kgs were also excluded from the study. 
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The approval from Institutional Review Board (IRB) and the University of 

Alabama at Birmingham (UAB) was obtained for this study and the women 

recruited for the study were provided informed consent before the data collection. 

 

3.2 DATA COLLECTION PROCEDURE 

         

    In the study, the raw CGM data files, along with the concordant food diaries 

were made available by Dr. Paula C Chandler-Laney to automate the cleaning and 

processing of CGM data based on the adapted protocol from Hernandez & 

Barbour
8
. The women were enrolled in the study at 32.0 to 34.6 weeks of their 

gestation. Maternal weight for each individual was obtained from medical 

records, and height (cm) and weight (Kg) were measured during the placement of 

the CGM.  These participants wore a CGM device manufactured by Medtronic for 

four consecutive days, starting from day 0 to day 3, and were provided with a 

glucometer for calibrating the CGM within every 12 hour period. An 

accelerometer to record the physical activity was also provided as a part of this 

study. These participants were also instructed to record their food intake with the 

portion size of their meal during the free-living period for day 1 and day 2 where 

each meal was defined as the duration between the start and end of a distinct 

intake. During the study, the participants were neither restricted to a specific diet 

nor were they asked to perform any physical activity. In fact, participants were 

encouraged to carry on their usual every day activities during the period of study 

with an exception of an overnight fast prior to returning to the clinic on day 3 on 
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which an Oral Glucose Tolerance Test (OGTT) was conducted.  The data 

obtained from food diary was entered into web tool called automated self-

administered 24-hour recalls (ASA24) [28] and dietary outcomes of interest over 

24 hours and per meal, intake were extracted, along with the kilo-calories from 

proteins, carbohydrates and fat. We received 33 datasets of raw CGM data, as 

shown in Fig. 3.2.1, along with the concordant food diaries, as shown in Fig 3.2.2, 

to automate the cleaning of CGM data and to predict the time for meal 

consumption along with the detection of glycemic load from glucose variables 

extracted for day 2. Each raw CGM file contains several columns however for our 

study we will use the Sample#, Day, Date, Sensor Glucose and the ratio of ISIG 

(interstitial glucose) and Meter BG, which is the glucose value from finger stick 

used for calibrating CGM. 

 

Fig. 3.2.1 Raw CGM Data File 
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Fig. 3.2.2 Meal Diary Data File 

 

3.3 ADAPTED PROTOCOL FOR CLEANING RAW CGM DATA 

 

According to manufacturer’s instruction, an indwelling glucose sensor, 

iPro and a Medtronic CGM was placed on the abdomen of each qualified 

participant on the side reported to be less likely to be slept on. Participants of the 

study were also provided with an OneTouch glucometer for measuring their blood 

glucose, three times a day, to calibrate the Continuous Glucose Monitoring 

System. Since the number one reason for inaccuracy in CGM is the time of 

calibration, the participants were instructed to calibrate the sensor in the morning, 

while fasting, and before a meal intake, when the blood glucose is very stable. 

After day 3, Dr. Chandler-Laney’s team retrieved the CGM from the 

participants and data were uploaded from CGM recorder using Solutions Software 



16 
 

version 2.2 which was provided by the manufacturer. The meal diaries from the 

participants were also retrieved by Dr. Chandler-Laney’s team. Data from the 

CGM was exported in the tabulated form, in excel sheets and was manually 

cleaned using a modified version of a published protocol by Hernandez & 

Barbour
8
. Data from days during which less than two calibrations were conducted 

was discarded. Also as a part of initial inspection, any glucose series of 40s and 

50s with at least one 40 was discarded along the reading for which the ratio of 

metered blood glucose, from glucometer, and Interstitial Fluid Glucose (ISIG) 

reading was outside the range of 0.5 to 15. After initial inspection, the mean and 

the standard deviation of two preceding and two following glucose values for 

each five minute glucose value was calculated in Microsoft excel. If the glucose 

value in consideration was higher than two standard deviation from the mean of 

the surrounding glucose value, it was marked as an outlier and was replaced by 

the average of the two prior glucose values and two following glucose values of 

the glucose value in consideration with an exception of last two glucose values. 

As a part of the study to verify the correct manual inspection using the same 

protocol, a random selection of 20% of the files was given to a second 

investigator. If these files inspected by second investigator were found to be in 

agreement with the files inspected by first investigator they were considered to be 

as valid entries. This process of manual inspection and cleaning of the raw CGM 

data consumed about two hours for each file, which motivated the development of 

automated protocol. 
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3.4 AUTMOATED PROTOCOL FOR CLEANING RAW CGM DATA 

  

This section covers the standardized automated protocol, Fig. 3.4.1, for 

reliably inspecting and cleaning raw CGM data. The raw CGM data files used in 

this section were made available to us along with the modified version of adapted 

protocol.  The provided protocol was automated using MATLAB
®
 which is a high 

level language and an interactive environment that enabled us to clean the data at 

a very fast pace. With the help of MATLAB
®
, not only were we able to develop a 

model to automate the cleaning and processing of raw CGM data, which was the 

goal for initial phase of study, but also we were able to efficiently detect meal 

consumptions and other parameters which characterize free living glucose. 

 In the automation of the protocol, the excel file from the CGM was 

imported into MATLAB
®

 workspace. The data was imported using inbuilt 

method to read excel sheets which returned the unprocessed data, numbers and 

text from the raw CGM file. The dates and times of the glucose measurements 

were also imported from excel files in MATLAB
®
 format which was later 

converted to the readable dates and times. Data imported in workspace was then 

inspected to find the day during which at least two calibrations were conducted. 

This day was marked as the first day for starting the analysis and the first glucose 

value occurring on this day was marked as the first reading for counting the 

number of glucose values occurring on each day. Furthermore, the validity of the 

data for each day was checked by counting the number of calibration on each day 

following the first day and the ratio of metered blood glucose (BG), from 

glucometer, and Interstitial Fluid Glucose (ISIG). If a day had less than two 
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calibrations and/or if the ratio of BG and ISIG was outside the range of 0.5-1.5 

then the day was discarded.  

 The next part of the program for automation dealt with calculating the 

mean and the standard deviation of two preceding and two following glucose 

values for each five minute glucose value in raw CGM file. This was achieved by 

implementing equation 3.4.1 and equation 3.4.2 in the MATLAB
®

 script.  In the 

following equations X
r
 denotes the mean and i denote the glucose value about 

which the mean is to be calculated, n is a constant with the value of 4, and Y
r
 

denotes the standard deviation to analyze how widely values of the glucose are 

dispersed from the mean.  

𝑋𝑖
𝑟 =  

𝑋𝑖−2
𝑟 +𝑋𝑖−1

𝑟 +𝑋𝑖+1
𝑟 +𝑋𝑖+2

𝑟

𝑛
                        (3.4.1) 

𝑌𝑖
𝑟 =  

(𝑋𝑖
𝑟−𝑋𝑖−2

𝑟 )2+(𝑋𝑖
𝑟−𝑋𝑖−2

𝑟 )2+(𝑋𝑖
𝑟−𝑋𝑖−2

𝑟 )2+(𝑋𝑖
𝑟−𝑋𝑖−2

𝑟 )2

𝑛
  (3.4.2) 

 Furthermore, to find if the glucose value in consideration was higher than two 

standard deviations from the surrounding glucose values, two separate functions 

were coded to implement equations 3.4.3 and 3.4.4. The output parameters of 

these functions were then used to flag and replace the outliers, Oi+ and Oi-, with 

the average of two prior and two following glucose values given by X
c
 in 

equation 3.4.5. The decision of implementing separate functions for equations 

3.4.1, 3.4.2, 3.4.3 and 3.4.4 was made to give user the ability to readjust the 
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readings as many times as they would like in order to produce all the 

physiologically feasible values. 

𝑂𝑖+ =  𝑋𝑖 + 2𝑌𝑖                                     (3.4.3) 

𝑂𝑖− =  𝑋𝑖 − 2𝑌𝑖                         (3.4.4) 

𝑋𝑖
𝑐 =  

𝑋𝑖−2
𝑟 +𝑋𝑖−1

𝑟 +𝑋𝑖+1
𝑟 +𝑋𝑖+2

𝑟

𝑛
= 𝑋𝑖

𝑟
                        (3.4.5) 

 The resultant of implementation was then exported into a new excel file. 

This was achieved using MATLAB
®

 to handle windows object in its object 

oriented environment.  

 

Fig 3.4.1 Automated Process for Cleaning and Processing Raw CGM Data 
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3.5 DETECTION OF MEAL INTAKE 

 

This section covers the automated protocol [8] for efficiently processing 

the time series cleaned CGM data, to detect meal consumptions with the 

associated meal times which is important to depict hyper glycemic excursions in 

glucose. For the automated inspection of the glucose data for characterizing meal 

consumption, glucose values derived from CGM were used after they have been 

automatically cleaned and processed. As per the protocol, to detect meal 

consumption, the difference between each glucose concentration and the one 

preceding was calculated using MATLAB cleaned CGM data file. If the 

calculated slope of the glucose curve sustained an increase of at least 4mg/dl or 

greater over a period of time, it was considered to be suggestive of calorie intake. 

The times of suspected caloric intake were then flagged. The process of 

automation for meal detection is shown in Fig 3.5.1. 

 

Fig 3.5.1 Automated Process for Meal Detection  

The time of suspected caloric intake were then noted and compared with 

reported meal times from the meal diary. If the time of glucose increase reported 

by CGM was within an hour of either side of suspected caloric intake time, or if 

there was no other increase which was close in time to the participants reported 
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meal time, then the start time of the glucose increase was noted down as the meal 

initiation. Each meal for all reporting purposes was defined as the duration 

between the start and end of a distinct intake. However, if any snacks were 

reported on a given day during which fewer than three meals were reported in the 

diary, they were considered as a meal. In case where there were no meals reported 

in diary and the glucose values reported by CGM were consistently increasing 

with a slope of at least 4mg/dl, then those increases were noted down as missed 

meal from the participant’s side. This process of manual inspection, detection of 

meal intake and the times associated with the meal intake required about 30 

minutes for processing each file, and motivated the development of automated 

protocol which reduces the time for processing raw data and combining meal 

diaries to a few seconds. 

 

3.6 GLYCEMIC LOAD DETECTION 

  

 To understand the hyper and the hypo glycemic excursions, it is 

important to relate the meal intake times with the nutrition facts of the meals. The 

most important nutrition value which determines the ability of meal to affect the 

glucose is glycemic load [26]. One unit of glycemic load approximates the effect 

of consuming one gram of glucose. Since the glucose response of every individual 

is unique, it is important to individualize the process of detecting the glycemic 

load using pattern recognition techniques. The proposed technique recognizes 

glycemic patterns in terms of glucose variables like Area Under Curve (AUC) 

during meal consumption, the duration of Time to reach the peak value, the 
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average of pre meal glucose, and the peak value of the excursion while evaluating 

the glycemic of a meal. These variables are then used to predict glycemic load of 

meals. A visual perspective of these glucose variables is given in Fig 3.6.1 where 

AUC is obtained by multiplying the duration, and height of the green line which 

represents a meal intake. 

As the next step in processing the data and detecting glycemic load, the 

meal diaries, in excel format, were imported into MATLAB
®
 workspace. The data 

for day 1 from the meal diary was imported using inbuilt method to read excel 

sheets which returned the unprocessed data, numbers and text from the meal 

diaries. The dates and times of the glucose measurements were also imported 

from excel files in MATLAB
®
 format which were later converted to the readable 

dates and times.  The meal diary imports were combined with the cleaned CGM 

glucose times and dates with the corresponding meal times and nutrition facts for 

day 1, this was done within a precision of 5 minutes of reported meals. The slopes 

of the flagged meal for day 1 were then associated with the imported nutrition 

facts of day 1 as shown in Fig. 3.6.2. This was done only if the time of glucose 

increase reported by CGM was within an hour of either side of reported meal 

intake time. These combined values for day 1 were used to derive glucose 

variables like Area Under Curve (AUC) during meal consumption, the duration of 

Time to reach the peak value based on the duration of the excursions produced 

due to meal, the average of pre meal glucose commonly referred to as Pre-

prandial Blood Glucose, and the peak value of the excursion due to meal intake. 

The pattern for these glucose variables for day 1 were used to predict glycemic 
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load of the predicted meals on day 2.  This was achieved by matching the glucose 

variable patterns occurring on day 1 to predict glycemic load for day 2. The 

process to obtain the above listed derived parameters was implemented in 

separate functions of the program. Each of these parameters was individually used 

to predict the glycemic load for the flagged meal on day 2 based on day 1. These 

parameters along with the predicted meals were at last exported to an excel sheet 

using the object oriented MATLAB code. At the completion of this aim, a 

resultant model was produced to process the cleaning of data, detection of meal 

times with the glycemic loads associated with them, and the parameters which 

define free-living glycemic profile. 

Fig. 3.6.1 Visual Perspective of Glucose Variables 

 

Fig 3.6.2 Automated Process for Glycemic Load Detection  
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CHAPTER 4 

RESULTS 

 

 This study involves analysis of raw CGM data collected as part of one 

cohort studies in healthy, predominantly African American women with varying 

risk for the development of impaired glucose tolerance. Participants in the cohort 

wore a CGM device (Medtronic; Northridge, CA) to examine free-living glucose 

profile, with concurrent assessment of diet and underwent a standardized oral 

glucose or liquid mixed meal test. In the proposed study, first goal was addressed 

by automated identification of outliers and invalid or improbable data through 

data mining concepts and adaptable algorithms, described in section 3.4. To 

validate the results, the free-living glucose datasets processed for goal were 

compared to those manually derived by two independent coders, using intra-class 

correlation analyses. The second goal for the study was addressed by developing 

the algorithm to detect meal times and glycemic loads of meals based on the 

technique of pattern recognition. As a resultant product a comprehensive platform 

was developed to process the cleaning of data, detection of meal times with the 

glycemic loads associated with them, and the parameters which define free-living 

glycemic profile.  



25 
 

 In this chapter we discuss the results of the automated protocols for 

cleaning raw CGM data in section 4.1, section 4.2 covers the results for prediction 

of meal times, and section 4.3 covers the results associated with the prediction of 

glycemic loads for day 2. Each section of the chapter is subdivided into three 

subsections for the Normal Weight (NW) women with BMI less than 25.0 Kg/m
2
, 

the Over-Weight (OW) women with BMI in the range of 25.0 to 29.9 Kg/m
2 

and 

the Obese (OB) women with a BMI more than 30.0 Kg/m
2
. 

 

4.1 RESULTS ASSOCIATED WITH CLEANING RAW CGM DATA 

 

In this section of the chapter we describe the results obtained from 

automated standardized protocol developed for cleaning raw CGM data. For the 

study, we were provided with 33 raw files from the CGM with a glucose data of 4 

days for each participant. The systems collected glucose data continuously, every 

5 minutes, for a period of 72 hours.  Of the given 33 datasets, three results for 

each category of NW, OW, and OB are described here. The blue line on the 

graphs in figures 4.1.1, 4.1.2, and 4.1.3 depict the glucose values from the raw 

CGM data file, the green line on the graphs depict the glucose values which were 

cleaned manually, and the red line on the graphs depict the glucose values which 

were cleaned by automated cleaning process. 

In the figures for following subsections of NW, OW, and OB women, x 

axis shows the times in hours, y axis, marked as glucose values, shows the range 

of glucose values in mg/dl for an individual. In the figures, the overlapping blue, 
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green and red lines shows that the raw data, the manually cleaned data and the 

automatically cleaned data are closely in agreement and therefore no manual or 

automatic cleaning was performed. Whereas, the non over lapping blue and/or 

green/red lines demonstrate the use of cleaning protocol to smoothen the curve for 

that discreet value of the glucose. In the figures some instances occur where the 

manually cleaned data, shown in green, is not in complete agreement with 

automatically cleaned data, show in red and the difference between such values is 

shown by the y axis titled as “Difference” on the figures. The orange color 

diamond ♦ on the graph shows the difference between manually and automatically 

cleaned data, and the blue x shows the difference between raw and manually 

cleaned data.  

 

4.1.1 RESULTS ASSOCIATED WITH NW WOMEN 

  

 In this section results associated with NW women, patient 103, with BMI 

less than 25.0 Kg/m
2
 are described. The figures 4.1.1 shows times in hours on x-

axis and the glucose associated at the given times on y-axis. The data on the graph 

also shows the excursions in the estimated circulating glucose in interstitial fluid 

for every five minutes. Since the orange color diamonds ♦ are aligned on x axis, 

the difference between manual and automated cleaning is zero and the manual 

cleaning and automated cleaning are in complete agreement. 
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4.1.2 RESULTS ASSOCIATED WITH OW WOMEN 

 

In this section results associated with OW women, patient 201, with BMI 

in the range of 25.0 to 29.9 Kg/m
2 

are described. The figures 4.1.2 shows times in 

hours on x-axis and the glucose associated at the given times on y-axis. The data 

on the graph also shows the magnified excursion in the estimated circulating 

glucose in interstitial fluid for every five minutes. Since not all the orange color 

diamonds ♦ are aligned on x axis, the difference between manual and automated 

cleaning is not zero and hence the automated cleaning was successful in cleaning 

the data points which were missed during manual process. Additionally, the over 

lapping orange color diamonds ♦ and blue x shows the minute disagreement 

between the manually cleaned and automatically cleaned data. This scenario 

arises because in manually cleaned data the outliers were replaced by visual 

inspection and hence they may not have been the exact value of the average of 

two prior and two following glucose values surrounding the outlier. 

 

4.1.3 RESULTS ASSOCIATED WITH OB WOMEN 

 

In this section results associated with OB women, patient 316, with a BMI 

more than 30.0 Kg/m
2 

are described. The figures 4.1.3a shows times in hours on 

x-axis and the glucose associated at the given times on y-axis. The data on the 

graph also shows the magnified excursion in the estimated circulating glucose in 

interstitial fluid for every five minutes. Since not all the orange color diamonds ♦  

are aligned on x axis, the difference between manual and automated cleaning is 
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not zero and hence the automated cleaning was successful in cleaning the data 

points which were missed during manual process. Additionally, the over lapping 

orange color diamonds ♦ and blue x shows the disagreement between the 

manually cleaned and automatically cleaned data. This scenario arises because in 

manually cleaned data the outliers were replaced by visual inspection and hence 

they may not have been the exact value of the average of two prior and two 

following glucose values surrounding the outlier. 
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Fig. 4.1.1 Glucose Value Versus Time for NW Patient 103 
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Fig. 4.1.2 Glucose Value Versus Time for OW Patient 201 
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Fig. 4.1.3 Glucose Value Versus Time for OB Patient 316 
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4.2 RESULTS ASSOCIATED WITH DECTECTING MEAL INTAKE 

 

In this section of the chapter we describe the results obtained from 

automated standardized protocol developed for detecting the meal times from 

processed CGM data files. For the study, we were provided with one Excel file 

with the meal diaries concordant to the 33 raw CGM files.  The provided meal 

diaries had data entry for day 1 and day 2 with the dates, times, and nutrition facts 

corresponding to portion size of the meals consumed.  Of the given 33 datasets, 

three results for each category of NW, OW, and OB with low, average and 

maximum accuracies are described here. Each table in this section is titled with 

the participant identification number, Patient ID, and has three rows which 

describe the Correctly Detected Meal Times from automated protocol, total 

reported meal times in meal diaries by participants, and the percent of Correctly 

Detected Meals. The percent of correctly detected meals is calculated by using 

equation 4.2.1 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑀𝑒𝑎𝑙𝑠 =

 
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑀𝑒𝑎𝑙 𝑇𝑖𝑚𝑒𝑠 𝑓𝑟𝑜𝑚 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑀𝑒𝑎𝑙 𝑇𝑖𝑚𝑒𝑠 𝑖𝑛 𝑀𝑒𝑎𝑙 𝐷𝑎𝑖𝑟𝑖𝑒𝑠
 × 100         (4.2.1) 

Even though the glucose response of each participants is unique and 

reported times for the meal consumption in the meal diary were not always 

accurate, the overall success rate for determining the meal times was 83.099.  
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4.2.1 RESULTS ASSOCIATED WITH NW WOMEN 

 

 In this section results associated with NW women with BMI less than less 

than 25.0 Kg/m
2
 are described. The tables 4.2.1, 4.2.2, and 4.2.3 shows the  

Correctly Detected Meal Times from automated protocol, total reported meal 

times in Meal Diaries by participants, and the percent of Correctly Detected 

Meals.  

Table 4.2.1 Percentage of Correctly Detected Meals for NW Women 

Patient ID: GU103 

Correctly Detected Meal from 

Automated Protocol 

4 

Total Reported Meals in Meal Diary 9 

Percent of Correctly Detected Meals 44.4 

 

Table 4.2.2 Percentage of Correctly Detected Meals for NW Women 

Patient ID: GU114 

Correctly Detected Meal from 

Automated Protocol 

4 

Total Reported Meals in Meal Diary 5 

Percent of Correctly Detected Meals 80 

 

Table 4.2.3 Percentage of Correctly Detected Meals for NW Women 

Patient ID: GU112 

Correctly Detected Meal from 

Automated Protocol 

9 

Total Reported Meals in Meal Diary 9 

Percent of Correctly Detected Meals 100 
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4.2.2 RESULTS ASSOCIATED WITH OW WOMEN 

 

 In this section results associated with OW women with BMI in the range 

of 25.0 to 29.9 Kg/m
2 

are described. The tables 4.2.4, 4.2.5, and 4.2.6 shows 

Correctly Detected Meal Times from Automated Protocol, Total Reported meal 

times in Meal Diaries by participants, and the percent of Correctly Detected 

Meals. 

Table 4.2.4 Percentage of Correctly Detected Meals for OW Women 

Patient ID: GU203 

Correctly Detected Meal from 

Automated Protocol 

4 

Total Reported Meals in Meal Diary 5 

Percent of Correctly Detected Meals 80 

 

Table 4.2.5 Percentage of Correctly Detected Meals for OW Women 

Patient ID: GU201 

Correctly Detected Meal from 

Automated Protocol 

8 

Total Reported Meals in Meal Diary 9 

Percent of Correctly Detected Meals 88.9 

 

Table 4.2.6 Percentage of Correctly Detected Meals for OW Women 

Patient ID: GU207 

Correctly Detected Meal from 

Automated Protocol 

3 

Total Reported Meals in Meal Diary 3 

Percent of Correctly Detected Meals 100 
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4.2.3 RESULTS ASSOCIATED WITH OB WOMEN 

 

 In this section results associated with OW women with a BMI more than 

30.0 Kg/m
2 

are described. The tables 4.2.7, 4.2.8, and 4.2.9 shows Correctly 

Detected Meal Times from Automated Protocol, Total Reported meal times in 

Meal Diaries by participants, and the percent of Correctly Detected Meals. 

Table 4.2.7 Percentage of Correctly Detected Meals for OB Women 

Patient ID: GU318 

Correctly Detected Meal from 

Automated Protocol 

2 

Total Reported Meals in Meal Diary 6 

Percent of Correctly Detected Meals 33.33 

 

Table 4.2.8 Percentage of Correctly Detected Meals for OB Women 

Patient ID: GU314 

Correctly Detected Meal from 

Automated Protocol 

3 

Total Reported Meals in Meal Diary 4 

Percent of Correctly Detected Meals 75 

 

Table 4.2.9 Percentage of Correctly Detected Meals for OB Women 

 

 

 

Patient ID: GU316 

Correctly Detected Meal from 

Automated Protocol 

5 

Total Reported Meals in Meal Diary 5 

Percent of Correctly Detected Meals 100 
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4.3 RESULTS ASSOCIATED WITH GLYCEMIC LOAD PREDICTION 

 

 In this section of the chapter we describe the results obtained from 

automated protocol developed to predict glycemic load based on glucose 

parameters; namely Area Under Curve (AUC) during meal consumption, the 

duration of time to reach the peak value based on the duration of the excursions 

produced due to meal, the average of pre meal glucose commonly referred to as 

Pre-prandial glucose, and the peak value of the glucose after the meal 

consumption. Of the given 33 datasets, three results corresponding to the results 

of participants shown in section 4.2 for each category of NW, OW, and OB are 

described here. Tables with suffix “a” in the subsections of 4.3 for NW, OW, and 

OB shows the reported diary value of the glycemic load for day 2, and the 

predicted glycemic loads for day 2 based on glucose variable. These values were 

predicted based on the closest match of glucose variables occurring on day 1 in 

the meal diry of the given individual. Additional, each table in the subsections has 

two other tables with suffix “b” and “c” associated with it, which show the 

percent error in the predicted values of glycemic loads for each meal, and the 

average percent error associate with predicted glycemic loads based on each 

glucose variable for day 2 respectively. The results generated for detection of 

glycemic load have a very high percentage error. This is due to the limited 

knowledge available for building the training set for individuals for recognizing 

the patter of glycemic loads.  
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4.3.1 RESULTS ASSOCIATED WITH NW WOMEN 

 

 In this section results associated with NW women are described. Tables 

4.3.1a, 4.3.2a, and 4.3.3a shows the predicted glycemic load, tables 4.3.1b, 4.3.2b, 

and 4.3.3b shows the errors associated with glycemic load for each meal and 

tables 4.3.1c, 4.3.2c, and 4.3.3c shows the errors associated with glycemic load in 

each parameters for entire day 2. 

Table 4.3.1a Predicted Glycemic Load  

Patient ID: GU103 

Diary 

Value 

Detected 

Value 

Based on 

Area 

Detected 

Value 

Based on 

Duration 

Detected 

Based on 

Peak 

Detected 

Based on 

Pre Meal 

Glucose 

Detected 

Based on 

Difference 

between Pre 

Meal and 

Peak 

87.686 67.893 67.893 67.893 25.776 67.893 

10.834 67.893 67.893 67.893 25.776 67.893 

50.599 67.893 67.893 67.893 47.999 67.893 

119.057 67.893 67.893 67.893 47.999 67.893 
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Table 4.3.1b Percent Error Associated with Glycemic Load for Each Predicted 

Meal 

Patient ID: GU103 

Percent 

Error in 

GL 

Predicted 

using area 

Percent 

Error in 

GL 

Predicted 

Using 

Duration 

Percent 

Error in 

GL 

Predicted 

Using 

Peak 

Percent 

Error in 

GL 

Predicted 

Using Pre 

Meal 

Glucose 

Percent 

Error in GL 

Predicted 

using 

Difference 

Between Pre 

Meal and 

Peak 

Glucose 

Average 

Error 

for Meal 

22.573 22.573 22.573 70.604 22.573 32.179 

526.666 526.666 526.666 137.918 526.666 448.916 

34.179 34.179 34.179 5.138 34.179 26.316 

42.974 42.974 42.974 59.684 42.974 46.316 

 

Table 4.3.1c Percent Error Associated with Glycemic Load for Day 2 

Patient ID: GU103 

Average 

Error 

Based on 

Area 

Average 

Error  

Based on 

Duration 

Average 

Error 

Based on 

Peak 

Average 

Error 

Based on 

Pre Meal 

Glucose 

Average 

Error Based 

on Difference 

between Pre 

Meal and 

Peak 

Total 

Over All 

Average 

156.598 156.598 156.598 68.336 156.598 138.431 
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Table 4.3.2a Predicted Glycemic Load  

Patient ID: GU114 

Diary 

Value 

Detected 

Value 

Based on 

Area 

Detected 

Value 

Based on 

Duration 

Detected 

Based on 

Peak 

Detected 

Based on 

Pre Meal 

Glucose 

Detected 

Based on 

Difference 

between Pre 

Meal and 

Peak 

11.453 43.245 43.245 43.245 74.635 43.245 

54.149 43.245 43.245 43.245 74.635 43.245 

91.169 74.635 74.635 43.245 34.907 34.907 

134.015 43.245 43.245 43.245 43.245 43.245 

 

Table 4.3.2b Percent Error Associated with Glycemic Load for Each Predicted 

Meal 

Patient ID: GU114 

Percent 

Error in 

GL 

Predicted 

using area 

Percent 

Error in 

GL 

Predicted 

Using 

Duration 

Percent 

Error in 

GL 

Predicted 

Using 

Peak 

Percent 

Error in 

GL 

Predicted 

Using Pre 

Meal 

Glucose 

Percent 

Error in GL 

Predicted 

using 

Difference 

Between Pre 

Meal and 

Peak 

Glucose 

Average 

Error 

for Meal 

277.587 277.587 277.587 551.663 277.587 332.402 

20.137 20.137 20.137 37.833 20.137 8.543 

18.136 18.136 52.566 61.712 61.712 42.452 

67.731 67.731 67.731 67.731 67.731 67.731 
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Table 4.3.2c Percent Error Associated with Glycemic Load for Day 2 

Patient ID: GU114 

Average 

Error 

Based on 

Area 

Average 

Error  

Based on 

Duration 

Average 

Error 

Based on 

Peak 

Average 

Error 

Based on 

Pre Meal 

Glucose 

Average 

Error Based 

on Difference 

between Pre 

Meal and 

Peak 

Total 

Over All 

Average 

95.897 95.897 104.505 179.734 106.791 112.782 

 

Table 4.3.3a Predicted Glycemic Load  

Patient ID: GU112 

Diary 

Value 

Detected 

Value 

Based on 

Area 

Detected 

Value 

Based on 

Duration 

Detected 

Based on 

Peak 

Detected 

Based on 

Pre Meal 

Glucose 

Detected 

Based on 

Difference 

between Pre 

Meal and Peak 

32.388 32.388 65.709 65.709 11.053 65.709 

33.073 32.388 32.388 65.709 90.842 65.709 

15.14 32.388 32.388 65.709 90.842 65.709 

63.119 34.274 90.842 90.842 34.274 65.709 

114.19 90.842 90.842 90.842 27.905 11.053 

1.888 34.274 90.842 90.842 90.842 65.709 

13.883 34.274 90.842 90.842 90.842 65.709 

62.005 64.709 64.709 65.709 65.709 65.709 

33.073 64.709 64.709 65.709 65.709 65.709 

 

  



41 
 

Table 4.3.3b Percent Error Associated with Glycemic Load for Each Predicted 

Meal 

Patient ID: GU112 

Percent 

Error in 

GL 

Predicted 

using area 

Percent 

Error in 

GL 

Predicted 

Using 

Duration 

Percent 

Error in 

GL 

Predicted 

Using 

Peak 

Percent 

Error in 

GL 

Predicted 

Using Pre 

Meal 

Glucose 

Percent 

Error in GL 

Predicted 

using 

Difference 

Between Pre 

Meal and 

Peak 

Glucose 

Average 

Error 

for Meal 

0.000 102.881 102.881 65.873 102.881 48.554 

2.071 2.071 98.679 174.671 98.679 73.577 

113.923 113.923 334.009 500.013 334.009 279.175 

45.699 43.922 43.922 45.699 4.103 0.110 

20.447 20.447 20.447 75.563 90.321 45.445 

1715.360 4711.547 4711.547 4711.547 3380.350 3846.070 

146.877 554.340 554.340 554.340 373.305 436.640 

 

Table 4.3.3c Percent Error Associated with Glycemic Load for Day 2 

Patient ID: GU112 

Average 

Error 

Based on 

Area 

Average 

Error  

Based on 

Duration 

Average 

Error 

Based on 

Peak 

Average 

Error 

Based on 

Pre Meal 

Glucose 

Average 

Error Based 

on Difference 

between Pre 

Meal and 

Peak 

Total 

Over All 

Average 

292.054 792.733 837.975 875.387 626.235 675.653 

 

 

4.3.2 RESULTS ASSOCIATED WITH OW WOMEN 

 

In this section results associated with OW women are described. Tables 

4.3.4a, 4.3.5a, and 4.3.6a shows the predicted glycemic load, tables 4.3.4b, 4.3.5b, 
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and 4.3.6b shows the errors associated with glycemic load for each meal and 

tables 4.3.4c, 4.3.5c, and 4.3.6c shows the errors associated with glycemic load in 

each parameters for entire day 2. 

Table 4.3.4a Predicted Glycemic Load  

Patient ID: GU203 

Diary 

Value 

Detected 

Value 

Based on 

Area 

Detected 

Value 

Based on 

Duration 

Detected 

Based on 

Peak 

Detected 

Based on 

Pre Meal 

Glucose 

Detected 

Based on 

Difference 

between Pre 

Meal and Peak 

54.386 59.152 59.152 59.152 59.152 59.152 

20.091 185.557 185.557 185.557 59.152 59.152 

32.801 59.152 59.152 59.152 185.557 59.152 

17.714 185.557 185.557 59.152 185.557 59.152 

 

Table 4.3.4b Percent Error Associated with Glycemic Load for Each Predicted 

Meal 

Patient ID: GU203 

Percent 

Error in 

GL 

Predicted 

using area 

Percent 

Error in 

GL 

Predicted 

Using 

Duration 

Percent 

Error in 

GL 

Predicted 

Using 

Peak 

Percent 

Error in 

GL 

Predicted 

Using Pre 

Meal 

Glucose 

Percent 

Error in GL 

Predicted 

using 

Difference 

Between Pre 

Meal and 

Peak 

Glucose 

Average 

Error 

for Meal 

8.763 8.763 8.763 8.763 8.763 8.763 

823.583 823.583 823.583 194.420 194.420 571.918 

80.336 80.336 80.336 465.705 80.336 157.410 

947.516 947.516 233.928 947.516 233.928 662.081 
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Table 4.3.4c Percent Error Associated with Glycemic Load for Day 2 

Patient ID: GU203 

Average 

Error 

Based on 

Area 

Average 

Error  

Based on 

Duration 

Average 

Error 

Based on 

Peak 

Average 

Error 

Based on 

Pre Meal 

Glucose 

Average 

Error Based 

on Difference 

between Pre 

Meal and 

Peak 

Total 

Over All 

Average 

465.050 465.050 286.652 404.101 129.362 350.043 

 

Table 4.3.5a Predicted Glycemic Load  

Patient ID: GU201 

Diary 

Value 

Detected 

Value 

Based on 

Area 

Detected 

Value 

Based on 

Duration 

Detected 

Based on 

Peak 

Detected 

Based on 

Pre Meal 

Glucose 

Detected 

Based on 

Difference 

between Pre 

Meal and 

Peak 

21.215 0 71.623 33.09 142.22 0 

34.201 71.623 71.623 56.591 142.22 33.09 

11.627 29.316 71.623 0 0 33.09 

14.146 29.316 71.623 0 0 33.09 

0.871 29.316 71.623 0 0 33.09 

61.665 142.22 33.09 29.316 33.09 29.316 

28.562 142.22 33.09 0 142.22 56.591 

187.573 142.22 33.09 33.09 56.591 29.316 
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Table 4.3.5b Percent Error Associated with Glycemic Load for Each Predicted 

Meals 

Patient ID: GU201 

Percent 

Error in 

GL 

Predicted 

using area 

Percent 

Error in 

GL 

Predicted 

Using 

Duration 

Percent 

Error in 

GL 

Predicted 

Using 

Peak 

Percent 

Error in 

GL 

Predicted 

Using Pre 

Meal 

Glucose 

Percent 

Error in GL 

Predicted 

using 

Difference 

Between Pre 

Meal and 

Peak 

Glucose 

Average 

Error 

for Meal 

100.000 237.605 55.975 570.375 100.000 190.989 

109.418 109.418 65.466 315.836 3.248 119.378 

152.137 516.006 100.000 100.000 184.596 130.548 

107.239 406.313 100.000 100.000 133.918 89.494 

3265.786 8123.077 100.000 100.000 3699.082 2977.589 

130.633 46.339 52.459 46.339 52.459 13.393 

397.934 15.853 100.000 397.934 98.134 161.971 

24.179 82.359 82.359 69.830 84.371 68.620 

 

Table 4.3.5c Percent Error Associated with Glycemic Load for Day 2 

Patient ID: GU201 

Average 

Error 

Based on 

Area 

Average 

Error  

Based on 

Duration 

Average 

Error 

Based on 

Peak 

Average 

Error 

Based on 

Pre Meal 

Glucose 

Average 

Error Based 

on Difference 

between Pre 

Meal and 

Peak 

Total 

Over All 

Average 

535.916 1192.121 82.032 212.539 544.476 468.998 
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Table 4.3.6a Predicted Glycemic Load  

Patient ID: GU207 

Percent 

Error in 

GL 

Predicted 

using area 

Percent 

Error in 

GL 

Predicted 

Using 

Duration 

Percent 

Error in 

GL 

Predicted 

Using 

Peak 

Percent 

Error in 

GL 

Predicted 

Using Pre 

Meal 

Glucose 

Percent 

Error in GL 

Predicted 

using 

Difference 

Between Pre 

Meal and 

Peak 

Glucose 

Average 

Error 

for Meal 

55.439 55.439 11.964 42.577 55.439 39.386 

46.376 69.629 69.629 3.467 3.467 35.740 

100.000 38.312 36.836 38.312 36.836 50.059 

 

Table 4.3.6b Percent Error Associated with Glycemic Load for Each Predicted 

Meal 

Patient ID: GU207 

Percent 

Error in 

GL 

Predicted 

using area 

Percent 

Error in 

GL 

Predicted 

Using 

Duration 

Percent 

Error in 

GL 

Predicted 

Using 

Peak 

Percent 

Error in 

GL 

Predicted 

Using Pre 

Meal 

Glucose 

Percent 

Error in GL 

Predicted 

using 

Difference 

Between Pre 

Meal and 

Peak 

Glucose 

Average 

Error 

for Meal 

55.439 55.439 11.964 42.577 55.439 39.386 

46.376 69.629 69.629 3.467 3.467 35.740 

100.000 38.312 36.836 38.312 36.836 50.059 

 

  



46 
 

Table 4.3.6c Percent Error Associated with Glycemic Load for Day 2 

Patient ID: GU207 

Average 

Error 

Based on 

Area 

 

 

Average 

Error  

Based on 

Duration 

Average 

Error 

Based on 

Peak 

Average 

Error 

Based on 

Pre Meal 

Glucose 

Average 

Error Based 

on Difference 

between Pre 

Meal and 

Peak 

Total 

Over All 

Average 

67.272 54.460 39.476 28.119 31.914 41.728 

 

 

4.3.3 RESULTS ASSOCIATED WITH OB WOMEN 

  

In this section results associated with OB women are described. Tables 

4.3.7a, 4.3.8a, and 4.3.9a shows the predicted glycemic load, tables 4.3.7b, 4.3.8b, 

and 4.3.9b shows the errors associated with glycemic load for each meal and 

tables 4.3.7c, 4.3.8c, and 4.3.9c shows the errors associated with glycemic load in 

each parameters for entire day 2. 

Table 4.3.7a Predicted Glycemic Load  

Patient ID: GU318  

Diary 

Value 

Detected 

Value 

Based on 

Area 

Detected 

Value 

Based on 

Duration 

Detected 

Based on 

Peak 

Detected 

Based on 

Pre Meal 

Glucose 

Detected 

Based on 

Difference 

between Pre 

Meal and Peak 

100.94 24.688 24.688 24.688 46.797 46.797 

24.817 46.797 213.025 213.025 46.797 46.797 
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Table 4.3.7b Percent Error Associated with Glycemic Load for Each Predicted 

Meal 

Patient ID: GU318 

Percent 

Error in 

GL 

Predicted 

using area 

Percent 

Error in 

GL 

Predicted 

Using 

Duration 

Percent 

Error in 

GL 

Predicted 

Using 

Peak 

Percent 

Error in 

GL 

Predicted 

Using Pre 

Meal 

Glucose 

Percent 

Error in GL 

Predicted 

using 

Difference 

Between Pre 

Meal and 

Peak 

Glucose 

Average 

Error 

for Meal 

75.542 75.542 75.542 53.639 53.639 66.781 

88.568 758.383 758.383 88.568 88.568 356.494 

 

Table 4.3.7c Percent Error Associated with Glycemic Load for Day 2 

Patient ID: GU318 

Average 

Error 

Based on 

Area 

Average 

Error  

Based on 

Duration 

Average 

Error 

Based on 

Peak 

Average 

Error 

Based on 

Pre Meal 

Glucose 

Average 

Error Based 

on Difference 

between Pre 

Meal and 

Peak 

Total 

Over All 

Average 

82.055 416.963 416.963 71.104 71.104 211.638 
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Table 4.3.8a Predicted Glycemic Load  

Patient ID: GU314 

Diary 

Value 

Detected 

Value 

Based on 

Area 

Detected 

Value 

Based on 

Duration 

Detected 

Based on 

Peak 

Detected 

Based on 

Pre Meal 

Glucose 

Detected 

Based on 

Difference 

between Pre 

Meal and Peak 

118.73 34.141 0.463 7.044 34.141 91.82 

98.95 34.141 0 36.747 36.747 91.82 

26.457 34.141 0 36.747 36.747 91.82 

 

Table 4.3.8b Percent Error Associated with Glycemic Load for Each Predicted 

Meal 

Patient ID: GU314 

Percent 

Error in 

GL 

Predicted 

using area 

Percent 

Error in 

GL 

Predicted 

Using 

Duration 

Percent 

Error in 

GL 

Predicted 

Using 

Peak 

Percent 

Error in 

GL 

Predicted 

Using Pre 

Meal 

Glucose 

Percent 

Error in GL 

Predicted 

using 

Difference 

Between Pre 

Meal and 

Peak 

Glucose 

Average 

Error 

for Meal 

71.247 99.610 94.068 71.247 22.671 71.769 

65.497 100.000 62.863 62.863 7.206 59.686 

29.043 100.000 38.893 38.893 247.054 50.777 

 

Table 4.3.8c Percent Error Associated with Glycemic Load for Day 2 

Patient ID: GU314 

Average 

Error 

Based on 

Area 

Average 

Error  

Based on 

Duration 

Average 

Error 

Based on 

Peak 

Average 

Error 

Based on 

Pre Meal 

Glucose 

Average 

Error Based 

on Difference 

between Pre 

Meal and 

Peak 

Total 

Over All 

Average 

55.262 99.870 65.275 57.668 92.310 60.744 
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Table 4.3.9a Predicted Glycemic Load  

Patient ID: GU316  

Diary 

Value 

Detected 

Value 

Based on 

Area 

Detected 

Value 

Based on 

Duration 

Detected 

Based on 

Peak 

Detected 

Based on 

Pre Meal 

Glucose 

Detected 

Based on 

Difference 

between Pre 

Meal and Peak 

13.403 179.175 179.175 179.175 1.888 179.175 

60.972 1.888 1.888 179.175 1.888 179.175 

86.212 1.888 1.888 179.175 1.888 1.888 

54.56 179.175 65.138 65.138 1.888 179.175 

14.701 179.175 65.138 65.138 1.888 179.175 

 

Table 4.3.9b Percent Error Associated with Glycemic Load for Each Predicted 

Meal 

Patient ID: GU316 

Percent 

Error in 

GL 

Predicted 

using area 

Percent 

Error in 

GL 

Predicted 

Using 

Duration 

Percent 

Error in 

GL 

Predicted 

Using 

Peak 

Percent 

Error in 

GL 

Predicted 

Using Pre 

Meal 

Glucose 

Percent 

Error in GL 

Predicted 

using 

Difference 

Between Pre 

Meal and 

Peak 

Glucose 

Average 

Error 

for Meal 

1236.828 1236.828 1236.828 85.914 1236.828 972.280 

96.903 96.903 193.864 96.903 193.864 19.404 

97.810 97.810 107.831 97.810 97.810 56.682 

228.400 19.388 19.388 96.540 228.400 79.807 

1118.79 343.086 343.086 87.157 1118.795 567.320 
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Table 4.3.9c Percent Error Associated with Glycemic Load for Day 2 

Patient ID: GU316 

Average 

Error 

Based on 

Area 

Average 

Error  

Based on 

Duration 

Average 

Error 

Based on 

Peak 

Average 

Error 

Based on 

Pre Meal 

Glucose 

Average 

Error Based 

on Difference 

between Pre 

Meal and 

Peak 

Total 

Over All 

Average 

555.746 358.803 380.199 92.865 575.139 339.099 
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CHAPTER 5 

CONCLUSION 

 

From the results presented in chapter 4, it can be concluded that the 

platform developed as a part of this study is successful in cleaning the data and 

predicting meal times. The average percent of correctly detected meals for NW 

participants was 82.777, the average percent of correctly detected meals for OW 

participants was 85.933, and the average percent of correctly detected meals for 

OB participants was 80.589. However, the automated platform has a high error 

percentage in detecting glycemic load due to the lack of information which can be 

eliminated by obtaining more data and conducting controlled experiments to 

understand the relationship of glycemic load with other glucose parameters. Our 

platform gives clinicians a basic playground to easily evaluate the glycemic 

response of the patients and the ability to see the effect of excursions due to meals 

on the glucose values. The proposed platform can facilitate diverse applications of 

CGM to support multiple research studies conducted by clinical investigators 

globally and at University of Alabama at Birmingham (UAB). For example, Dr. 

Chandler-Laney plans to investigate whether free-living glucose profile in early 

pregnancy can be used to predict the time-course for β-cell failure and the 

development of gestational diabetes in the absence of any intervention. This 
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investigation will also help in understanding childhood obesity. As technology 

underlying CGM improves, its use will expand in both research and clinical 

fields. The real strength of CGM, however, lies in the potential to characterize all 

aspects of free-living glucose profile, including indices of glycemic control, 

variability, and the rate and acceleration of glucose changes, along with 

examining associations with lifestyle factors and diurnal meal pattern. Our 

propose platform is a step forward in this direction. 
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