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CONTRIBUTION OF HYPERACTIVE GLYCOGEN SYNTHASE KINASE-3 (GSK3) 

TO IMPAIRED NEUROGENESIS AND COGNITION IN MICE 

 

Margaret Kimbrough King 

 

PSYCHOLOGY 

ABSTRACT  

 The overall goals of this research were to examine the regulatory actions of 

glycogen synthase kinase-3 (GSK3) in adult mouse hippocampal neurogenesis and in 

mouse cognitive functions in order to gain further insight regarding the function of GSK3 

in the healthy and diseased central nervous system. Focusing on differences between 

male and female mice, we found that hippocampal neurogenesis was impaired by 

hyperactive GSK3 in both sexes, but was improved by environmental enrichment in 

male, but not female, mice. Chronic stress reduced neurogenesis in male mice, but not in 

female mice. Environmental enrichment and chronic stress inhibited, and activated, 

respectively, GSK3 in male hippocampus but did not alter GSK3 in female hippocampus. 

Thus, environmental factors and GSK3 both regulate hippocampal neurogenesis, but do 

so differently in male and female mice.  

 The accumulating reports that inhibition of GSK3 using lithium or other specific 

GSK3 inhibitors ameliorates cognitive impairments in multiple disorders were reviewed, 

which was likely due to reducing several detrimental actions of GSK3 that impair 

cognition.  We tested if GSK3 inhibitors ameliorate cognitive deficits in the mouse model 

of Fragile X syndrome (FXS), with deletion of the fragile X mental retardation 1 (Fmr1) 

gene. Chronic lithium treatment during adolescence or adulthood ameliorated several 

cognitive impairments in Fmr1 knockout mice. Withdrawal of lithium for four weeks 

reinstated the learning deficits in Fmr1 knockout mice. To determine if the effect of 
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lithium on cognition was due to its inhibition of GSK3, Fmr1 knockout mice were treated 

with two specific GSK3 inhibitors. We found that inhibition of GSK3, but not of 

metabotropic glutamate receptor-5, rescued learning in novel object detection, temporal 

ordering for objects, and coordinate and categorical spatial processing tasks. Thus, 

abnormally active GSK3 contributes to cognitive dysfunction in FXS, supporting GSK3 

as a potential therapeutic target.    

 Overall, this project provides novel insights into the function of GSK3 in two 

neurologic processes and supports GSK3 as an important regulator of adult neurogenesis 

and of cognitive processes in FXS.   
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INTRODUCTION 

Glycogen Synthase Kinase-3  

 Increasing evidence indicates that glycogen synthase kinase-3 (GSK3) is 

abnormally active in a number of diseases of the central nervous system (CNS), and this 

has raised interest in the therapeutic potential of GSK3 inhibitors (King et al., 2013). 

With this in mind, the overall goals of this project were to examine the potential roles of 

GSK3, and the effects of GSK3 inhibitors, in hippocampal neurogenesis in adult mice 

and in behavioral abnormalities displayed by mice with fragile X syndrome.  

 GSK3 is a broadly influential enzyme that regulates many cellular functions 

throughout the periphery and the CNS. Although it is expressed in all tissues, GSK3 

levels are particularly abundant in the brain (Woodgett, 1990). GSK3 is a 

serine/threonine kinase that exists in two isoforms, GSK3α and GSK3ß (Woodgett, 

1990). The two isoforms arise from independent genes and share nearly identical 

sequences in their kinase domains. GSK3ß is the predominant isoform in the CNS, as 

GSK3α is only expressed at ~25% the level of GSK3ß in mouse brain (Woodgett, 1990). 

GSK3 has more than 50 substrates, so GSK3 activity must be tightly regulated (Jope and 

Roh, 2006). The main way GSK3 is regulated is by phosphorylation on serine-21 of 

GSK3α and serine-9 of GSK3ß (Figure 1). Serine phosphorylation inhibits GSK3, 

reducing its activity. Several kinases are capable of mediating this modification, 

including Akt (also known as protein kinase B) (Cross et al., 1995), cyclic AMP-

dependent protein kinase (also known as protein kinase A) (Fang et al., 2000; Li et al., 
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2000), protein kinase C (Goode et al., 1992), and others, indicating that many signaling 

cascades converge on GSK3 to regulate its activity.  

 Impairments in the inhibition of GSK3 have been linked to several prevalent 

diseases of the CNS that may be treated with GSK3 inhibitors (King et al., 2013). These 

include schizophrenia, depression, bipolar mood disorder, and fragile X syndrome, which 

appear to exhibit alterations in signaling systems that normally regulate GSK3 (De Sarno 

et al., 2002; Li et al., 2004; Beaulieu et al., 2004; Karege et al., 2007; Min et al., 2009; 

Polter et al., 2010; Yuskaitis et al., 2010a). For example, as shown in Figure 2, the 

neurotransmitter serotonin (5-HT) and neurotrophins, such as brain-derived neurotrophic 

factor (BDNF), normally inhibit GSK3 activity (Mai et al., 2002; Li et al., 2004). There is 

evidence that deficient serotonin and deficient BDNF may occur in mood disorders. 

When serotonin and BDNF are deficient, they cannot induce signals to inhibit GSK3 

sufficiently, which may contribute to the mood disorders depression and bipolar disorder. 

The inhibitory serine phosphorylation of both GSK3α and GSK3β is thought to be 

impaired in mood disorders. In vivo administration of the mood stabilizers lithium and 

valproate (De Sarno et al., 2002) or the antidepressants fluoxetine and imipramine (Li et 

al., 2004) increases inhibitory serine phosphorylation of GSK3 in mouse brain. 

Consistent with this, studies in human postmortem brain (Karege et al., 2007) and in 

brains of mice exhibiting depression-like behavior (Polter et al., 2010) have shown 

reduced inhibitory serine-phosphorylation of GSK3, suggesting that GSK3 is hyperactive 

during depression. The neurotransmitter dopamine (DA) activates GSK3. Increased 

dopaminergic activity may be involved in schizophrenia, and there is evidence that 

increased activation of GSK3 due to increased DA may be linked to schizophrenia 
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(Beaulieu et al., 2004). Abnormally active metabotropic glutamate receptor-5 (mGluR5) 

signaling, due to the absence of fragile X mental retardation protein (FMRP), may 

contribute to fragile X syndrome (Bear et al., 2004). Active mGluR5 signaling decreases 

the inhibitory phosphorylation of GSK3 and this may contribute to some of the abnormal 

behavioral and physiological symptoms of fragile X syndrome (Yuskaitis et al., 2010a).  

Because of the potential involvement of hyperactive GSK3 in several diseases, 

there has been much research studying GSK3 inhibitors. The first identified inhibitor of 

GSK3 was lithium (Klein and Melton 1996). Lithium has been used as a primary 

treatment for bipolar mood disorder for over 60 years (Cade, 1949). The therapeutically 

relevant level of lithium is about 1 mM in human serum (Klein and Melton, 1996), and 

higher levels of lithium are toxic (Cade, 1949; Shorter, 2009). After Klein and Melton 

found that lithium inhibits GSK3 in vivo, the discovery that lithium inhibits GSK3 in 

vivo at therapeutically relevant levels (De Sarno et al., 2002) supported the possibility 

that inhibition of GSK3 might contribute to the mood-stabilizing effects of lithium (Li 

and Jope, 2010). Lithium directly inhibits GSK3 by competing for a magnesium binding 

site in the catalytic pocket of GSK3 (Ryves and Harwood, 2001), and lithium indirectly 

inhibits GSK3 by causing a large increase in the serine-phosphorylation of GSK3, further 

inhibiting GSK3 (De Sarno et al., 2002). Thus, lithium directly and indirectly inhibits 

GSK3, but the therapeutically relevant level of lithium only partially inhibits GSK3 

(Klein and Melton, 1996). Since higher levels of lithium are toxic, higher doses cannot be 

used to cause greater inhibition of GSK3. Therefore, in order to test the validity of GSK3 

as the therapeutic target of lithium in animal models of diseases, other selective, small 

molecule inhibitors of GSK3 are often used, such as TDZD-8 and VP0.7. TDZD-8 is a 
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highly selective ATP non-competitive inhibitor of GSK3 (Martinez et al., 2002), and it 

passes the blood brain barrier (Martinez, 2006; Beaulieu et al., 2008a). TDZD-8 has been 

used in vivo in mice, and its administration results in antidepressant-like behavior in mice 

(Beaulieu et al., 2008a; Beaulieu et al., 2008b; Kalinichev and Dawson, 2011; Lipina et 

al., 2011; Lipina et al., 2012). VP0.7 is an allosteric (not competitive with ATP or 

substrate) selective GSK3 inhibitor (Palomo et al., 2011) and has been used in vivo in 

mice (Beurel et al., 2013). Thus, both TDZD-8 and VP0.7 effectively inhibit GSK3 in 

rodent brain and can be used to test if they ameliorate behavioral impairments in mice 

similarly to lithium. 

Another way to study the contribution of abnormal regulation of GSK3 to 

diseases is by using a GSK3 knockin mouse model. As discussed previously, the two 

isoforms of GSK3 are predominantly regulated by inhibitory phosphorylation on serine-

21-GSK3α and serine-9-GSK3β (Figure 1). The importance of inhibitory control of 

GSK3 can be studied using homozygous GSK3
21A/21A

/
9A/9A

 knockin mice, where the 

regulatory serines of both GSK3 isoforms are mutated to alanines (McManus et al., 

2005). These mutations maintain GSK3 maximally active, but importantly within the 

physiological range since both GSK3 isoforms are expressed at normal levels. GSK3 

knockin mice develop and reproduce apparently normally and show no overt phenotype. 

Therefore, GSK3 knockin mice and selective inhibitors of GSK3 provide tools to discern 

how GSK3 contributes to cellular functions and disease processes.  
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Adult Neurogenesis 

Neurogenesis is the proliferation and differentiation of neural precursor cells 

(NPCs) to neurons. Although once thought to only occur during development, 

neurogenesis in adult mammals occurs throughout life in the hippocampus (Zhao et al., 

2008). The subgranular zone of the dentate gyrus of the hippocampus harbors NPCs and 

provides a neurogenic niche. NPC proliferation is assessed by measuring the 

incorporation of 5-bromo-2’-deoxyuridine (BrdU), a synthetic analogue of thymidine, 

into DNA. The tissue is then fixed and stained with a BrdU antibody conjugated to a 

fluorophore to detect BrdU. Using a fluorescent microscope, the nuclei of cells that are 

labeled with BrdU are quantitated (del Rio and Soriano, 1989). Over time a subset of the 

new cells migrates into the granule cell layer and differentiates into neurons 

(Kempermann, 2002), and these neurons can be assessed by co-staining BrdU and 

neuronal markers. The purpose of the proliferation and differentiation of NPCs is unclear, 

but impaired adult hippocampal neurogenesis has been linked to several diseases of the 

CNS, including mood disorders.  

Administration of lithium or antidepressants increases neurogenesis and this has 

been proposed to contribute to their therapeutic effects in mood disorders (Malberg et al., 

2000; Manev et al., 2001; Czeh et al., 2001; Santarelli et al., 2003; Warner-Schmidt and 

Duman, 2007; David et al., 2009). As discussed above, lithium is used for the treatment 

of bipolar mood disorder, and it inhibits GSK3, in part by increasing the inhibitory 

serine-phosphorylation of GSK3. Antidepressant drugs, such as fluoxetine, a selective 

serotonin reuptake inhibitor, and imipramine, a tricyclic antidepressant that inhibits the 

reuptake of both serotonin and norepinephrine, also inhibit GSK3 by increasing its 
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inhibitory serine-phosphorylation in mouse brain (Li et al., 2004). Since hyperactive 

GSK3 may contribute to susceptibility to mood disorders, and since lithium and 

antidepressants increase neurogenesis (Chen et al., 2000; Malberg et al., 2000; Manev et 

al., 2001; Czeh et al., 2001; Hashimoto et al., 2003; Santarelli et al., 2003; Warner-

Schmidt and Duman, 2007; Silva et al., 2008; Wexler et al., 2008; David et al., 2009), 

there may be relationships among susceptibility to mood disorders, hyperactive GSK3 

and impaired neurogenesis. This was indicated by the finding that neurogenesis is 

impaired in GSK3 knockin mice (Eom and Jope, 2009) in which the normal inhibitory 

control of GSK3 is blocked. GSK3 knockin mice develop and reproduce apparently 

normally and show no overt phenotype, but prior research indicates that hyperactive 

GSK3 appears to increase vulnerability to mood disorders (Jope and Roh, 2006), which 

correlates with the reported decreased neurogenesis. This project extended this study to 

test if neurogenesis plasticity is also altered by the blocked inhibitory GSK3 serine-

phosphorylation in GSK3 knockin mice, in addition to the reported reduction in basal 

neurogenesis (Eom and Jope, 2009).  

Neurogenesis plasticity, the increase or decrease in proliferation of neuronal cells 

in the hippocampus, can be studied by using various experimental paradigms. 

Hippocampal neurogenesis is increased in male rodents by environmental enrichment  

(Komitova et al., 2005; Leal-Galicia et al., 2007; Zhao et al., 2008; Li et al., 2008; Hu et 

al., 2010; Chakrabarti et al., 2011), by certain neurotrophins (Dranovsky and Hen, 2006; 

Zhao et al., 2008), by exercise (Fabel et al., 2003; Stranahan et al., 2006; Glasper et al., 

2010), by antidepressants (Malberg et al., 2000; Manev et al., 2001; Czeh et al., 2001; 

Santarelli et al., 2003; Warner-Schmidt and Duman, 2007; David et al., 2009), and by the 
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mood stabilizer lithium (Chen et al., 2000; Hashimoto et al., 2003; Silva et al., 2008). 

Environmental enrichment consists of several components that may contribute to 

stimulated hippocampal neurogenesis. The increased area (larger cage) and visual stimuli 

(toys) might increase physical activity that will result in cardiovascular stimulation, 

general arousal status (Brown et al., 2003), and increased expression of the neurotrophin 

insulin-like growth factor 1 (IGF-I), which reinforces the expression of brain-derived 

neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) (Ding et al., 

2006). Several neurotrophins, particularly IGF-1, BDNF, VEGF, and neurotrophin-3 

(NT-3), promote neurogenesis (Smith et al., 1995; Dranovsky and Hen, 2006; Zhao et al., 

2008). IGF-1, BDNF and VEGF also activate the signaling pathway that leads to 

inhibitory serine-phosphorylation of GSK3 by Akt (Farmer et al., 2004; Schmidt and 

Duman, 2007). Environmental enrichment and exercise also exert antidepressive-like 

effects in male rodents, including in the learned helplessness test (Duman et al., 2008; 

Greenwood and Fleshner, 2008; Salam et al., 2009), the novelty suppressed feeding task 

(Trejo et al., 2008; Huang et al., 2012a), the forced-swim test, the tail suspension test, and 

the sucrose preference paradigm (Brenes Sáenz et al. 2006; Duman et al., 2008; Green et 

al., 2010; Huang et al., 2012b).  

Opposite to environmental enrichment, in male rodents, neurogenesis is decreased 

by chronic stress (Gould et al., 1992; Cameron and Gould, 1994; Duman et al., 2001; 

Pham et al., 2003; Falconer and Galea, 2003; Westenbroek et al., 2004; Charney and 

Manji, 2004; Mirescu et al., 2006; Shors et al., 2007; Koo et al., 2010; Hillerer et al., 

2013). Chronic stress might decrease neurogenesis because stress activates the 

hypothalamic-pituitary-adrenal (HPA) axis, which elevates corticosterone, and 
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administration of corticosterone or dexamethasone decreases neurogenesis (Duman et al., 

2001; Dranovsky and Hen, 2006). Chronic stress also increases the levels of some 

inflammatory cytokines in the brain that may modulate neurogenesis. Neurogenesis is 

impaired by several inflammatory molecules, such as the cytokines interleukin-6 (IL-6), 

IL-1β, and tumor necrosis factor-α (TNFα) (Monje et al., 2003; Iosif et al., 2008). 

Furthermore, GSK3 promotes neuroinflammation, so this action might contribute to 

impaired neurogenesis caused by hyperactive GSK3 (Martin et al., 2005; Beurel and 

Jope, 2009; Yuskaitis and Jope, 2009). Chronic stress and dysregulated glucocorticoids 

also increase susceptibility to depression in male rodents (Kendler et al., 1999; Murray et 

al., 2008), and decrease BDNF expression in the dentate gyrus (Smith et al., 1995). 

Deficient BDNF expression is implicated in mood disorders, and some studies report that 

chronic stress increases depressive-like behaviors in male rodents, such as in the learned 

helplessness test (Shors et al., 2007; Chiba et al., 2012), the forced-swim test, the tail 

suspension test, and the sucrose preference test (Kim and Han, 2006; Haenisch et al., 

2009; Koo et al., 2010;  Seo et al., 2012).  

In sharp contrast to male mice, neither environmental enrichment nor chronic 

stress alters the proliferation of new cells in the hippocampus of female mice 

(Kempermann et al., 1997; van Praag et al., 1999; Brown et al., 2003; Falconer and 

Galea, 2003; Westenbroek et al., 2004; Mineur et al., 2007; Shors et al., 2007; Kobilo et 

al., 2011; Hillerer et al., 2013). Despite the fact that women are more likely than men to 

be diagnosed with depression, there are few reports of the effect of environmental 

enrichment or chronic stress on depressive-like behavior in female rodents. One study 

showed that female mice exposed to environmental enrichment do not exhibit 
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antidepressive-like behavior in the forced swim test or the sucrose preference test, 

although tail suspension test-induced hyperthermia, a physiological response to acute 

stress, is attenuated (Renoir et al., 2013). Another study reported that chronic stress did 

not increase learned helplessness depression-like behavior in female rodents (Shors et al., 

2007).  

In order to study the mechanisms and effects of neurogenesis plasticity, wild-type 

male and female mice were subjected to environmental enrichment or chronic stress. 

Then a potential endogenous regulator of neurogenesis, inhibitory serine-phosphorylation 

of GSK3, and proliferation, survival and differentiation of NPCs were measured. In order 

to study the effects of hyperactive GSK3 on neurogenesis plasticity, male and female 

GSK3 knockin mice were subjected to environmental enrichment or chronic stress. In 

male or female GSK3 knockin mice, a decrease, increase, or no change in neurogenesis 

due to environmental enrichment or chronic stress might be related to the expression of 

endogenous regulators of neurogenesis compared to wild-type mice. Since environmental 

enrichment and chronic stress oppositely regulate neurogenesis in male wild-type mice, 

and neurogenesis is impaired by activated GSK3, serine-phosphorylation of hippocampal 

GSK3 in wild-type mice might be increased by environmental enrichment and decreased 

by chronic stress. These studies aimed to elucidate some potential causal links between 

endogenous regulators of neurogenesis following environmental manipulation 

(enrichment or stress) in GSK3 knockin and wild-type mice. 
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Fragile X Syndrome 

Fragile X syndrome (FXS) is the most common form of inherited intellectual 

disability and the first known genetic cause of autism (Hagerman et al., 2010). The 

prevalence of FXS is 1 in 4000-5000 males and 1 in 2500-8000 females (Tassone et al., 

2012) in the United States. The primary symptom of FXS is cognitive impairment, but 

several other behaviors are common, including social anxiety, attention deficit, speech 

and language impairments, seizures, and increased sensitivity to sensory stimuli (Berry-

Kravis, 2002; Berry-Kravis and Potanos, 2004; Berry-Kravis et al., 2008b; Hessl et al., 

2008; Wang et al, 2010). FXS is caused by loss of function of the fragile X mental 

retardation 1 (FMR1) gene on the X chromosome (Pieretti et al., 1991). FMR1 carries a 

CGG trinucleotide repeat in the 5’ untranslated region, and  normal alleles contain 5-50 

CGG repeat units, premutation alleles contain 55-200 repeats, and alleles with 200 or 

more repeats are considered a full mutation. In FXS patients, the CGG repeat region is 

increased to more than 200 repeat units, which results in hypermethylation of this region 

and a lack of transcription of FMR1 (Verkerk et al., 1991). The premutation can lead to 

fragile X associated premature ovarian insufficiency (FXPOI) in female carriers 

(Sherman, 2000) and adult-onset fragile X associated tremor/ataxia syndrome (FXTAS) 

(Berry-Kravis et al., 2007). Transcriptional silencing of FMR1 causes the loss of the gene 

product, FMRP. FMRP is an mRNA binding protein that plays a regulatory role in 

activity-dependent mRNA functions, such as mRNA transport, stability and translation 

(Gross et al., 2011). The localization of FMRP is mostly cytoplasmic (Devys et al., 

1993), and in neurons it is localized in dendrites and at synapses (Antar et al., 2004). 

FMRP has been shown to repress translation of individual target mRNAs (Zalfa et al., 
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2003), but FMRP might also act as a translational activator for specific targets (Bechara 

et al., 2009). FMRP has been estimated to associate with up to 4% of all mRNAs in the 

brain (Brown et al., 2001), and these mRNA targets encode proteins important for various 

cellular mechanisms, including cytoskeletal regulation, synaptic structure and 

composition, and synaptic signal transmission (Zalfa et al., 2003). FMRP expression in 

the hippocampus is highest during the first week of postnatal development and is then 

maintained at a moderate level throughout development (Lu et al., 2004). The peak of 

FMRP expression coincides with a critical time point for synapse maturation, suggesting 

that high levels of FMRP are functionally required in translation-dependent synapse 

maturation (Lu et al., 2004).  

Individuals with FXS display characteristic physical features, cognitive 

impairments, and behavioral abnormalities (Berry-Kravis, 2002; Berry-Kravis and 

Potanos, 2004; Berry-Kravis et al., 2008b; Hessl et al., 2008; Wang et al, 2010). Physical 

features are more evident in males than females and include macroorchidism, prominent 

ears and macrocephaly (Berry-Kravis and Potanos, 2004; Wang et al., 2010). FXS 

patients typically have developmental delays, particularly in speech, and hypotonia, 

which can affect feeding and swallowing (Berry-Kravis, 2002). Males with FXS typically 

exhibit intellectual disabilities, with an average IQ of 40-50 and mental age of 5-6 years 

in adults (Berry-Kravis, 2002). Cognitively, FXS patients have strengths in some areas, 

including visual memory, simultaneous processing and experiential learning, and 

weaknesses in areas such as auditory processing, sequential processing, working 

memory, and executive function and attention (Berry-Kravis et al., 2008b). Common 

behavioral characteristics of males with FXS include hyperactivity, impulsivity, attention 
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problems, anxiety, aggression, mood lability, and autistic features such as poor eye 

contact, shyness, hypersensitivity to sensory stimuli, and perseverative language and 

behavior (Berry-Kravis and Potanos, 2004; Hessl et al., 2008; Wang et al., 2010). 

Approximately 18-36% of males with FXS meet full criteria for autism and 43-67% of 

males with FXS have an autism spectrum disorder (Wang et al., 2010). FXS differs 

somewhat from typical autism because FXS patients have strong social interest but high 

levels of social anxiety and poor understanding of social cues (Berry-Kravis et al., 2010).   

The FMR1 gene is highly conserved among species (Verkerk et al., 1991), and the 

expression pattern of FMR1 at the mRNA and protein level is very similar in humans and 

in mice in different tissues including the brain and the testes (Abitbol et al., 1993; Hinds 

et al., 1993), which makes the mouse a good model to study FXS. In order to study the 

effects of loss of transcription of the FMR1 gene and subsequent loss of FMRP, a 

transgenic mouse model of FXS was generated by interrupting the Fmr1 gene (Bakker et 

al., 1994). Many functions of Fmr1 knockout (KO) mice are normal, including gait, 

grooming, circadian activity, swimming, feeding and mating behavior, and the mice 

reproduce normally (Bakker et al., 1994). Conversely, Fmr1 KO mice display several 

FXS- and autism-related behaviors, including increased audiogenic seizure susceptibility, 

hyperactivity, abnormal social behavior, and cognitive deficits. One of the most robust 

phenotypes of Fmr1 KO mice is increased susceptibility to audiogenic seizures, which 

models the prevalence of seizures in FXS patients (Yan et al., 2004; Bernadet and Crusio, 

2006). Exposure to a high intensity sound within a specific frequency range rapidly 

induces seizures in 100% of Fmr1 KO mice, but only in 20% of wild-type mice (Min et 

al., 2009). Status epilepticus, a sustained seizure that usually leads to respiratory arrest in 
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mice, follows the primary audiogenic seizure in about 80% of Fmr1 KO mice but does 

not occur in wild-type mice (Min et al., 2009). Since increased audiogenic seizure 

susceptibility was first characterized in Fmr1 KO mice (Musumeci et al., 1999), this 

characteristic has been reported by numerous laboratories (Chen and Toth, 2001; Yan et 

al., 2004; Qin et al., 2005; Bernadet and Crusio, 2006; Min et al., 2009).  

Another robust behavioral abnormality displayed by Fmr1 KO mice is locomotor 

hyperactivity in a novel open field that has also been reported by numerous laboratories 

(Bakker et al., 1994; O’Brien et al., 2004; Spencer et al., 2005; Min et al., 2009; 

Yuskaitis et al., 2010a; Liu et al., 2011). This behavior in Fmr1 KO mice may be relevant 

because patients with FXS are also hyperactive. When placed in a novel open box in a 

lighted room, Fmr1 KO mice display hyperactivity measured by increased total 

ambulatory distance compared to wild-type mice (Yuskaitis et al., 2010a).  

Some social behavior deficits are apparent in Fmr1 KO mice, compared with 

wild-type mice, including longer latencies to approach a novel mouse (Spencer et al., 

2005; Mines et al., 2010), lower frequencies of social interactions (Mineur et al., 2006), 

and increased anxiety during social interactions (McNaughton et al., 2008; Liu and 

Smith, 2009; Mines et al., 2010), although some laboratories have not observed these 

social impairments (Spencer et al., 2005; Mineur et al., 2006).  

 Intellectual disability is a notable symptom in FXS patients, but cognitive deficits 

were initially difficult to identify in the Fmr1 KO mouse model. Fmr1 KO mice display 

modest cognitive deficits in several hippocampus-dependent tasks, such as the Morris 

water maze, radial arm maze, and operant conditioning paradigms (Bakker, 1994; Kooy 

et al., 1996; D’Hooge et al., 1997; Fisch et al., 1999; Paradee et al., 1999; Peier et al., 
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2000; Mineur et al., 2002). Fmr1 KO mice also exhibit deficits in fear motivated learning 

tasks, including passive and active avoidance behaviors, and contextual, conditioned and 

trace fear memory (Yan et al., 2004; Qin et al., 2005; Zhao et al., 2005; Brennan et al.,  

2006; Hayashi et al., 2007; Baker et al., 2010; Guo et al., 2011). Recently, severe deficits 

in non-aversive learning and memory tasks, including novel object recognition and 

context discrimination, have been identified in Fmr1 KO mice (Pacey et al., 2011; Eadie 

et al., 2012; Bhattacharya and Klann, 2012). 

 In addition to studying Fmr1 KO mice, another model of FXS is the Drosophila 

model that contains a mutant dFmr1 allele and exhibits several behavioral abnormalities. 

Using this model, treatment with lithium, an inhibitor of GSK3, was found to rescue 

some aberrant behaviors in the Drosophila model of FXS, including alterations in 

courtship behavior and defects in cognition (McBride et al., 2005). This finding led this 

laboratory and others to investigate the regulation of GSK3 in the Fmr1 KO mouse 

model. Indeed, Fmr1 KO mice display hyperactive GSK3 because the inhibitory serine-

phosphorylation of GSK3 is decreased in the Fmr1 KO mouse striatum, hippocampus, 

and cortex (Min et al., 2009). This finding suggests that pharmacological therapies to 

decrease GSK3 activity are a potential target to rescue some behavioral phenotypes of 

Fmr1 KO mice. Administration of lithium to inhibit GSK3 has been shown to increase 

inhibitory serine-phosphorylation of GSK3 in Fmr1 KO mouse brain (Min et al., 2009; 

Yuskaitis et al., 2010a) and rescue some abnormal behaviors of Fmr1 KO mice. 

Increased susceptibility to audiogenic seizures is a robust phenotype of Fmr1 KO mice 

(Chen and Toth, 2001; Yan et al., 2004; Qin et al., 2005; Bernadet and Crusio, 2006; Min 

et al., 2009) and lithium treatment reduces susceptibility of Fmr1 KO mice to audiogenic 
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seizures (Min et al., 2009). Increased susceptibility to audiogenic seizures is also 

normalized by administration of two other selective inhibitors of GSK3, AR-A0144018 

and SB216763, indicating that inhibition of GSK3 corrects this abnormal response (Min 

et al., 2009). Lithium treatment also reduced locomotor hyperactivity in the open field of 

Fmr1 KO mice, but did not change locomotor activity of wild-type mice (Min et al., 

2009, Yuskaitis et al., 2010a), improved some of the social behavior deficits exhibited by 

Fmr1 KO mice (Mines et al., 2010), and rescued the passive avoidance learning deficit in 

Fmr1 KO mice (Yuskaitis et al., 2010a; Liu et al., 2011). Since these studies show 

promising therapeutic actions of lithium, it is critical to determine if inhibition of GSK3 

is the target.  

 Lithium has been used to treat mood instability and aggression in FXS (Berry-

Kravis and Potanos, 2004; Wang et al., 2010), but the efficacy of lithium treatment in 

human patients with FXS was not evaluated until a pilot 2008 clinical trial (Berry-Kravis 

et al., 2008a; Berry-Kravis et al., 2008b). After lithium was administered to FXS patients 

for two months, significant improvement in behavior was observed on clinical scales of 

adaptive and target behaviors, attention, and verbal memory (Berry-Kravis et al., 2008a). 

It is notable that lithium is the only drug that has been used in FXS patients that improved 

any measure of cognition. There were no major side effects of lithium treatment in these 

patients, but concerns about the side effects and potential toxicity of lithium hinder 

further clinical trials (Berry-Kravis et al., 2011).  

 One of the overall goals of this project was to test if reducing GSK3 activity 

improves impaired cognition in the mouse model of FXS in order to determine if GSK3 

is a potential therapeutic target for the treatment of FXS. To do so, GSK3 was inhibited 
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in mice pharmacologically using chronic lithium treatment or two small molecule 

selective inhibitors of GSK3, TDZD-8 and VP0.7, followed by measuring behavior in 

four cognitive tasks: novel object detection, temporal order memory, and coordinate and 

categorical spatial learning. This determined if GSK3 inhibition increases learning in 

Fmr1 KO mice. Because FMRP expression may be critical in early postnatal 

development, chronic lithium treatment was administered to adolescent and adult Fmr1 

KO mice in order to determine if cognitive impairments were abrogated in the same 

cognitive tasks, and experiments also addressed the question of whether improved 

behavior in Fmr1 KO mice remains after withdrawal of lithium treatment.  

 

Based on this background, the overall goals of this study were to test the 

participation of GSK3 in the regulation of adult hippocampal neurogenesis and in 

cognitive functions using impairments in Fmr1 KO mice as a model system in order to 

provide greater insight into the role that GSK3 plays in the healthy and diseased CNS. 

My first specific aim was to test the hypothesis that GSK3 regulates the plasticity of adult 

hippocampal neurogenesis. To do this, I compared hippocampal neurogenesis in wild-

type and GSK3 knockin mice that were untreated or were subjected to environmental 

enrichment or chronic stress. My second specific aim was to test the hypothesis that 

inhibition of GSK3 ameliorates some of the impaired cognitive behaviors exhibited by 

male Fmr1 KO mice. To do this, male Fmr1 KO and wild-type mice were chronically 

treated with lithium during adolescent or adult development or treated with the selective 

inhibitors of GSK3, VP0.7 or TDZD-8, followed by evaluation of behaviors in four 

cognitive tasks.  
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Figure 1. GSK3 regulated by phosphorylation. The predominant way that GSK3 is 

regulated is by phosphorylation on serine-21 of GSK3α and serine-9 of GSK3ß.  Several 

upstream kinases have the ability to phosphorylate Serine-21 on GSK3α and Serine-9 on 

GSK3β, inhibiting GSK3, thus reducing its activity. GSK3 has more than 50 substrates, 

so GSK3 activity must be tightly regulated.  
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Figure 2. Impairments in the inhibition of GSK3 have been linked to several prevalent 

diseases of the CNS. Dysregulation of GSK3 may contribute to the cognitive and 

behavioral impairments in many diseases of the CNS, including schizophrenia, 

depression, bipolar mood disorder, and fragile X syndrome. Dopamine (DA) activates 

GSK3, and increased activation of GSK3 due to increased DA may be linked to 

schizophrenia. Serotonin (5-HT) and BDNF normally inhibit GSK3 activity, and when 

they are deficient, they cannot induce signals to inhibit GSK3 sufficiently, which may 

contribute to the mood disorders depression and bipolar disorder. Abnormally active 

metabotropic glutamate receptor-5 (mGluR5) signaling, due to the absence of fragile X 

mental retardation protein (FMRP), decreases the inhibitory phosphorylation of GSK3 

and this may contribute to some of the abnormal behavioral and physiological symptoms 

of fragile X syndrome.  
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ABSTRACT 

 

Mood disorders may be associated with impaired neurogenesis, which can be bolstered 

by drugs therapeutic for mood disorders. Abnormally active glycogen synthase kinase-3 

(GSK3) impairs survival of neural precursor cells in vitro and reduces neurogenesis in 

adult mouse hippocampus in vivo and has been linked to susceptibility to mood disorders. 

These findings suggest that dysregulated GSK3 may contribute to mood disorders in part 

by its impairment of neurogenesis plasticity. Therefore, we examined links between 

GSK3 and changes in hippocampal neurogenesis induced by environmental enrichment 

(EE) and chronic restraint stress (CRS). Housing male wild-type mice in an enriched 

environment for 25 days increased the inhibitory serine-phosphorylation of GSK3 by 

70% and increased the proliferation of hippocampal neural precursor cells by 150%. 

However, the inhibition of GSK3 was not necessary for EE-induced neurogenesis, as EE 

increased neurogenesis by 170% in GSK3 knockin mice in which the inhibitory serines 

were mutated to alanines. Two weeks of CRS decreased the inhibitory serine-

phosphorylation of hippocampal GSK3 by 40% and decreased the proliferation of 

hippocampal neural precursor cells by 30% in male wild-type mice. CRS had no effect on 

the proliferation of hippocampal neural precursor cells in GSK3 knockin mice. In 

contrast to male wild-type mice, neither EE nor CRS altered the inhibitory serine-

phosphorylation of hippocampal GSK3 or the proliferation of hippocampal neural 

precursor cells in female wild-type or GSK3 knockin mice, although the female GSK3 

knockin mice exhibited impaired proliferation compared to male and female wild-type 

mice. As in male wild-type mice, EE increased NPC survival and differentiation in 
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female wild-type mice, and this response also occurred in female GSK3 knockin mice, 

which differed from the lack of response in these parameters in male GSK3 knockin 

mice. Thus, environmental factors and GSK3 both regulate hippocampal neurogenesis, 

but do so differently in male and female mice.  
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Introduction 

The mood disorders major depressive disorder and bipolar disorder are prevalent, 

debilitating, and inadequately treated diseases, and their causes remain unknown. 

Substantial evidence indicates that hyperactive glycogen synthase kinase-3 (GSK3) 

promotes susceptibility to mood disorders, and that inhibition of GSK3 is an important 

component of the actions of therapeutic interventions, as detailed in several reviews 

(Manji et al., 2000; Phiel and Klein, 2001; Jope, 2011). The two GSK3 isoforms are 

mainly regulated by inhibitory phosphorylation on Ser21-GSK3α and Ser9-GSK3β (Jope 

and Johnson, 2004). This is normally maintained by signaling pathways, such as 

serotonergic activity (Li et al., 2004), that may be deficient in mood disorders, resulting 

in inadequately inhibited GSK3. The importance of inhibitory control of GSK3 can be 

studied using GSK3
21A/21A

/
9A/9A

 knockin mice, with the regulatory serines of both 

GSK3 isoforms mutated to alanines (McManus et al., 2005; Eom and Jope, 2009; Polter 

et al., 2010). These mutations maintain GSK3 maximally active within the physiological 

range, since both GSK3 isoforms are expressed at normal levels.  

Neurogenesis, the proliferation and differentiation of neural precursor cells 

(NPCs), may be impaired in mood disorders, although this link remains controversial (Lie 

et al., 2004; Hanson et al., 2011; Samuels and Hen, 2011). This conjecture is supported 

by findings that neurogenesis in mice is increased by antidepressants  (Malberg et al., 

2000; Manev et al., 2001; Malberg and Duman, 2003; Santarelli et al., 2003; Warner-

Schmidt and Duman, 2007; David et al., 2009) and by the mood stabilizer lithium (Chen 

et al., 2000; Hashimoto et al., 2003; Silva et al., 2008; Wexler et al., 2008). Oppositely, 

chronic stress that is associated with depression-like behaviors in rodents decreases 
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neurogenesis (Malberg and Duman, 2003; Dranovsky and Hen, 2006; McEwen, 2008). So 

neurogenesis is plastic; it can be increased or decreased by environmental manipulation.

 Several findings have linked GSK3 to the regulation of neurogenesis that may be 

involved in mood regulation. GSK3 is inhibited in vivo by both antidepressants and lithium 

that promote neurogenesis (De Sarno et al., 2002; Li et al., 2004), the stimulatory actions 

of fluoxetine and lithium on neurogenesis are blocked in GSK3 knockin mice (Eom and 

Jope, 2009), hyperactive GSK3 in GSK3 knockin mice impairs neurogenesis (Eom and 

Jope, 2009), neurogenesis is increased by GSK3 deletion (Kim et al., 2009), and GSK3 

overexpression impairs, and the GSK3 inhibitor SB216763 increases, NPC proliferation 

that is deficient in mice with DISC1 mutations (Mao et al., 2009). These findings raise 

the possibility that impaired neurogenesis contributes to the greater susceptibility of 

GSK3 knockin mice to stress-induced depression-like behaviors (Polter et al., 2010), 

which may model some aspects of susceptibility to mood disorders.  

Neurogenesis in adult mice is modulated by the environment. Neurogenesis is 

increased in male rodents exposed to environmental enrichment (EE) and exercise 

(Komitova et al., 2005; Leal-Galicia et al., 2007; Zhao et al., 2008; Li et al., 2008; Hu et 

al., 2010; Chakrabarti et al., 2011; Mustroph et al., 2012). Conversely, in male rodents, 

chronic stress impairs neurogenesis (Gould et al., 1992; Cameron and Gould, 1994; 

Duman et al., 2001; Pham et al., 2003; Falconer and Galea, 2003; Westenbroek et al., 

2004; Shors et al., 2007; Koo et al., 2010; Hillerer et al., 2013). Unlike male mice, neither 

environmental enrichment nor chronic stress alters NPC proliferation in the hippocampus 

of female mice (Kempermann et al., 1997; van Praag et al., 1999; Brown et al., 2003; 

Falconer and Galea, 2003; Westenbroek et al., 2004; Mineur et al., 2007; Shors et al., 
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2007; Kobilo et al., 2011; Hillerer et al., 2013). In the present study, we took advantage 

of these known regulators of neurogenesis to test if dysregulated GSK3 alters 

environmentally-induced changes in neurogenesis in male or female mice.  

 

Materials and Methods 

Mice and environmental manipulation 

Male and female adult (8-10 weeks old) homozygous GSK3α/β
21A/21A/9A/9A

 

knockin mice (hereafter referred to as GSK3 knockin mice) and matched wild-type mice 

were used (McManus et al., 2005). GSK3 knockin mice develop and reproduce normally 

with no overt phenotype (McManus et al., 2005).  Mice were housed in light and 

temperature controlled rooms and treated in accordance with NIH, the University of 

Miami, and the University of Alabama at Birmingham Institutional Animal Care and Use 

Committee regulations.  

 For EE, mice were housed in a large cage (55 cm x 32 cm x 22 cm) with extra 

wood chip bedding, nesting material, and a variety of sized, shaped, and colored toy 

objects for 25 days. Weekly the objects were washed and moved, and new objects were 

added. EE did not alter the rate of weight gain in male or female wild-type or GSK3 

knockin mice. 

 For CRS, mice were placed in 25 ml conical tubes with breathing holes at the 

nose for 2 hr for 14 consecutive days. After the stress, mice were returned to their home 

cage until the following day. After two weeks of CRS, the body weights of male wild-

type mice were 20% lower than non-stressed mice (22.4 ± 0.5 gm versus 28.0 ± 1.1 gm), 

and male GSK3 knockin mice body weights were 10% lower than non-stressed mice 
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(25.2 ± 0.8 gm versus 27.9 ± 0.9 gm), whereas the body weights of female mice were 

unaltered by CRS. 

 

Administration of BrdU, immunohistochemistry, and stereology 

To measure NPC proliferation in vivo, 5-bromo-2’-deoxyuridine (BrdU; 100 

mg/kg; Sigma-Aldrich, St Louis, MO) was administered i.p. three times at 2 hr intervals, 

and mice were sacrificed 24 hr later, as we previously described (Eom and Jope 2009). 

To measure cell survival and differentiation, BrdU (100 mg/kg) was administered i.p. 

once daily for 3 consecutive days and mice were sacrificed 28 days later. Mice were 

deeply anesthetized with 100 mg/kg ketamine and 10 mg/kg xylazine and transcardially 

perfused with 0.9% sodium chloride followed by 4% paraformaldehyde in 0.1 M 

phosphate buffer (pH 7.4). Brains were post-fixed overnight in 4% paraformaldehyde at 

4°C and cryoprotected in 30% sucrose/phosphate buffered saline (PBS). Each brain was 

sliced coronally (30 μm) with a sliding microtome (Leica, Nuβloch, Germany) through 

the rostrocaudal hippocampus and stored in PBS with 0.01% sodium azide. Every sixth 

section was analyzed for BrdU-specific immunohistochemistry as previously described 

(Eom and Jope 2009). Sections were washed in Tris-Hydrochloric acid (HCl) buffer 

(TBS, 0.05 M, pH 7.4) and incubated in 1 N HCl on ice for 10 min, in 2 N HCl for 10 

min at room temperature, and in 2 N HCl at 37°C for 20 min, washed with 1 M borate 

buffer, pH 8.5, on ice, and rinsed in TBS. The sections were incubated with anti-BrdU 

antibody (1:500; BU1/75; Abcam) in 15% normal goat serum and TBS blocking buffer 

(1% bovine serum albumin, 0.2% TritonX100 in TBS) for 20 hr at 4°C. Sections were 

washed with TBS and incubated with Alexa Fluor 488 goat anti-rat (1:200, Invitrogen) in 
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10% normal goat serum and TBS blocking buffer for 2 hr at room temperature in the 

dark. Cell nuclei were stained by incubating sections for 5 min in 0.2 μg/ml bisbenzimide 

(Hoechst 33258; Sigma). For double labeling, anti-neuronal nuclei (NeuN) (1:1000; 

Millipore, Billerica, MA) was added to the primary antibody solution, and Alexa Fluor 

594 goat anti-mouse (1:200, Invitrogen) was added to the secondary antibody solution.  

BrdU positive cells in the granule cell layer of the dentate gyrus and the subgranular zone 

were counted in each section and analyzed by unbiased stereology using the 

StereoInvestigator system (MicroBrightField, Williston, VT). To distinguish single cells 

within clusters, all counts were performed using a 60× oil immersion objective (Olympus 

BX-51), omitting cells in the outermost focal plane. The total number of BrdU-labeled 

cells per section was determined and multiplied by 6 to obtain the total number of cells 

per dentate gyrus.  

 

Immunoblot analysis  

The hippocampus was rapidly removed and homogenized in ice-cold lysis buffer 

containing 20 mM Tris–HCl, pH 7.4, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 

10% glycerol, 1 μg/ml leupeptin, 1 μg/ml aprotinine, 1 μg/ml pepstatin A, 1 mM 

phenylmethanesulfonyl fluoride, 2 mM sodium vanadate, 50 mM sodium fluoride, and 

100 nM okadaic acid. The lysates were centrifuged at 14,000 rpm for 10 min to remove 

insoluble debris. Protein concentrations in the lysate were determined in duplicate using 

the Bradford protein assay. Extracts were mixed with Laemmli sample buffer (2% SDS) 

and placed in a boiling water bath for 5 min. Proteins (10 μg) were resolved in SDS-

polyacrylamide gels, transferred to nitrocellulose, and incubated with primary antibodies 
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to phospho-Ser9-GSK3β (1:2000), phospho-Ser21-GSK3α (1:2000), (Cell Signaling 

Technology, Beverly, MA), total GSK3α/β (1:2000; Millipore, Bedford, MA), and β-

actin (1:10,000; Sigma, St Louis, MO). Immunoblots were developed using horseradish 

peroxidase-conjugated goat anti-mouse or goat anti-rabbit IgG (1:4000; Bio-Rad 

Laboratories, Hercules, CA), followed by detection with enhanced chemiluminescence, 

and quantitation by densitometry.  

 

Statistical analyses 

 All results were analyzed by one-way or two-way ANOVA followed by 

Bonferroni’s multiple comparison tests or by Student’s t-tests.  

 

Results 

Neurogenesis is impaired in GSK3 knockin male and female mice 

Immunohistochemical analysis of cell proliferation in the hippocampus measured 24 

hr after three injections of BrdU (100 mg/kg) given at 2 hr intervals showed that BrdU-

labeled mitotic cells were predominantly located in the subgranular zone of the dentate 

gyrus in both wild-type and GSK3 knockin mice (Figure 1A). We previously reported 

that wild-type and GSK3 knockin mouse brains displayed equivalent morphological 

features, hippocampal volumes, and staining for neuronal nuclei (NeuN) and glial 

fibrillary acidic protein (GFAP) (Eom and Jope, 2009). As reported previously (Eom and 

Jope, 2009), quantitative unbiased stereology analysis revealed that the number of BrdU-

labeled cells within the dentate gyrus in male GSK3 knockin mice was significantly 40% 

lower (t=3.42, p<0.05) than in matched wild-type mice (Figure 1B). Here, the analysis 
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was extended to female mice, which revealed a 40% deficit (t=2.28, p<0.05) in NPC 

proliferation in female GSK3 knockin mice compared with female wild-type mice. There 

were no differences between wild-type male and female mice (t=0.23, p>0.05) or 

between GSK3 knockin male and female mice (t=0.04, p>0.05). Thus, NPC proliferation 

was significantly decreased by hyperactive GSK3 (one-way ANOVA (genotype x sex), 

F(3,34)=5.50, p<0.05).  

 The survival and differentiation of NPCs in male wild-type and GSK3 knockin 

mice was not significantly different (survival: t=0.46, p>0.05; differentiation: t=0.35, 

p>0.05) (Figures 2A and 2B), as reported previously (Eom and Jope, 2009). In wild-type 

mice, the females exhibited greater survival of NPCs (t=3.81, p<0.05) and differentiation 

to neurons (t=3.69, p<0.05) compared to wild-type male mice. This difference was not 

evident in female compared to male GSK3 knockin mice (t=0.20, p>0.05), and GSK3 

knockin female mice revealed an impairment in survival (t=5.01, p<0.05) and 

differentiation (t=3.30, p<0.05) of NPCs compared to wild-type female mice. One-way 

ANOVA (genotype x sex) revealed a significant difference in survival of NPCs 

(F(3,18)=7.56, p<0.01) and differentiation to neurons (F(3,18)=5.36, p<0.01) among 

male and female wild-type and GSK3 knockin mice.  

 

Modulation of neurogenesis by housing in an enriched environment (EE) 

We tested if EE influenced the inhibitory serine-phosphorylation of GSK3 in male 

and female wild-type mice, which is abolished in GSK3 knockin mice. Immunoblots of 

hippocampal extracts from male wild-type mice revealed that EE increased the inhibitory 

serine-phosphorylation of GSK3α by 80% (t=3.246, p<0.05) and GSK3β by 60% (t=2.62, 
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p<0.05) in in the hippocampus (Figure 3A), as recently reported (Hu et al., 2013), but did 

not alter serine-phosphorylation of GSK3α (t=0.07, p>0.05) or GSK3β (t=0.80, p>0.05) 

in female hippocampi (Fig 3B). The total levels of GSK3α and GSK3β were unaltered by 

EE, indicating an effect on the regulation, rather than expression, of GSK3 in EE-exposed 

male wild-type mice. We next tested if altered GSK3 regulation in male and female mice 

was due to a basal difference in the inhibitory serine-phosphorylation of GSK3. 

Immunoblots of hippocampal extracts from male and female wild-type mice revealed that 

the inhibitory serine-phosphorylation of GSK3β is 60% (t=3.29, p<0.05) higher in female 

than male mice (Figure 3C), indicating that female mice may be less responsive to 

environmental manipulation due to increased basal inhibition of GSK3.  

We tested if EE, which is well-known to promote neurogenesis (Komitova et al., 

2005; Leal-Galicia et al., 2007; Zhao et al., 2008; Li et al., 2008; Hu et al., 2010; 

Chakrabarti et al., 2011; Mustroph et al., 2012), affected the impaired neurogenesis in 

GSK3 knockin mice. Housing mice in EE for 25 days significantly increased 

hippocampal NPC proliferation by 150% (t=4.17, p<0.01) in male wild-type mice (Figure 

4A) as previously reported (Komitova et al., 2005; Leal-Galicia et al., 2007; Zhao et al., 

2008; Hu et al., 2010; Chakrabarti et al., 2011; Mustroph et al., 2012). Hippocampal NPC 

proliferation also was increased by EE in male GSK3 knockin mice by 170% (t=2.61, 

p<0.05). This increase did not compensate for the basal deficit in GSK3 knockin mice, so 

NPC proliferation after EE remained 30% below wild-type mice. Thus, although 

constitutively active GSK3 impairs basal adult hippocampal neurogenesis, it does not 

block enhanced proliferation induced by EE in male mice, indicating that the 

enhancement by EE is independent of GSK3 inhibition by serine phosphorylation.  
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Female mice differed from male mice in that EE did not significantly increase 

hippocampal NPC proliferation in wild-type mice (t=0.67, p>0.05) (Figure 4B), as 

reported previously (Kempermann et al., 1997; van Praag et al., 1999; Li et al., 2008). EE 

also did not increase hippocampal NPC proliferation in female GSK3 knockin mice 

(t=0.91, p>0.05). 

Wild-type male mice housed in EE exhibited a significant increase in the survival 

of NPCs (t=2.54, p<0.05) and their differentiation to neurons (t=2.45, p<0.05) by 240% 

and 320% respectively (Figure 5A and B), as reported previously (Komitova et al 2011; 

Hu et al 2010; Chakrabarti et al 2011). However, EE did not increase NPC survival 

(t=0.02, p>0.05) or differentiation (t=0.20, p>0.05) in male GSK3 knockin mice. One-

way ANOVA revealed a significant effect of EE in the survival of NPCs (F(3,24)=5.12, 

p<0.01) and the differentiation to neurons (F(3,24)=4.66, p<0.05) in male mice. EE 

increased the survival (t=2.68, p<0.05) and differentiation (t=3.20, p<0.05) of NPCs in 

female wild-type mice (Figure 5C and D) as previously reported (Kempermann et al., 

1997; van Praag et al., 1999; Li et al., 2008). In GSK3 knockin female mice, EE also 

significantly increased NPC survival (t=3.06, p<0.05) and neuronal differentiation 

(t=3.66, p<0.05) by 400%.  One-way ANOVA also revealed a significant effect of EE in 

the survival of NPCs (F(3,18)=16.01, p<0.01) and the differentiation to neurons 

(F(3,18)=16.47, p<0.01) in female mice.  

Thus, EE elevated NPC proliferation in male wild-type and GSK3 knockin mice, 

but only increased survival and differentiation of NPCs in male wild-type, but not GSK3 

knockin mice. Although EE did not increase the proliferation of NPCs in female wild-
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type or GSK3 knockin mice, NPC survival and differentiation were increased in both 

female wild-type and GSK3 knockin mice.  

 

Modulation of NPC proliferation by CRS 

We tested if the inhibitory serine-phosphorylation of GSK3 was affected by CRS in 

male and female mouse hippocampus. In male wild-type mice, stress decreased the 

hippocampal inhibitory serine-phosphorylation of GSK3α by 25% (t=6.16 p<0.05) and 

GSK3β by 55% (t=4.07, p<0.05) (Figure 6A). However, CRS did not alter serine-

phosphorylation of GSKα (t=1.17, p>0.05), or GSK3β (t=1.70, p>0.05) in female 

hippocampi (Figure 6B). The total levels of GSK3α and GSK3β were not changed by 

chronic stress, indicating that stress alters the regulation, but not expression, of both 

GSK3 isoforms in male wild-type mice. 

Two weeks of CRS reduced NPC proliferation by 30% (t=2.19, p<0.05) in male 

wild-type mice (Figure 4A), similar to previous reports of impaired neurogenesis after 

chronic stress (Cameron and Gould, 1994; Jacobs et al., 2000; Duman et al., 2001; Pham 

et al., 2003). In contrast, in male GSK3 knockin mice CRS did not significantly impair 

the already low proliferation of NPCs (t=0.73, p>0.05). This may indicate shared 

mechanisms by which hyperactive GSK3 and chronic stress impair NPC proliferation. 

CRS did not alter NPC proliferation in female wild-type mice (t=1.09, p>0.05) (Figure 

4B), as has been reported previously (Westenbroek et al., 2004; Shors et al., 2007), or in 

female GSK3 knockin mice (t=0.62, p>0.05). Thus, NPC proliferation in the 

hippocampus of female mice is more resistant to environmental influences than in male 

mice, including both EE and CRS. NPC survival and differentiation were not measured 
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after CRS because of the incompatible treatment time for stress (2 weeks) and 

neurogenesis measurements after BrdU administration (4 weeks).  

 

Discussion 

Interactions between genetics and the environment can have tremendous influences 

on susceptibilities to many diseases, including mood disorders. However, much still 

remains to be learned about the targets of these two factors that mediate differences in 

disease susceptibility. Neurogenesis may be impaired in mood disorders, and GSK3 has 

been linked to the regulation of neurogenesis that may be involved in mood regulation 

(De Sarno et al.; 2002; Li et al., 2004; Eom and Jope, 2009; Kim et al., 2009; Mao et al., 

2009). Therefore, in this study, we examined how the combinatorial effects of 

environmental changes (EE, CRS) and genetics (sex, hyperactive GSK3) affect 

neurogenesis in mice (Table 1).  

 Housing male wild-type mice in EE led to increased neurogenesis, which is 

generally considered to be a healthy response. Similar effects of EE on neurogenesis have 

been reported previously in male wild-type mice (Komitova et al., 2005; Brenes Saenz et 

al., 2006; Huang et al., 2006; Leal-Galicia et al., 2007; Zhao et al., 2008; Duman et al., 

2008; Greenwood and Fleshner, 2008; Green et al., 2010; Hu et al., 2010; Chakrabarti et 

al., 2011; Mustroph et al., 2012; Jha et al., 2011 Bechara and Kelly, 2013). We examined 

whether this healthy response was influenced by sex, constitutively active GSK3, and 

both together.  

 Female wild-type mice differed from male wild-type mice in that EE failed to 

increase the proliferation of NPCs, but nonetheless increased NPC survival and 
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differentiation. Examination of the effects of EE on the inhibitory serine-phosphorylation 

of GSK3 demonstrated an increase in male hippocampus that correlated with the 

increased neurogenesis. However, inhibition of GSK3 clearly was not a requisite for 

these effects of EE because hippocampal GSK3 was not affected by EE in female wild-

type mice that demonstrated enhanced neurogenesis.  

 Constitutively active GSK3 also influenced some outcomes of EE. EE increased 

NPC proliferation in GSK3 knockin male mice by the same percentage as in wild-type 

mice, indicating that inhibitory serine-phosphorylation of GSK3 is not required for EE to 

enhance NPC proliferation. This differs from the requirement for serine-phosphorylation 

of GSK3 for treatment with lithium and fluoxetine to increase NPC proliferation (Eom 

and Jope 2009). However, EE was ineffective in enhancing NPC survival and 

differentiation in GSK3 knockin mice, indicating a requirement for inhibition of GSK3 

for these outcomes in male mice. Modulation by EE in female GSK3 knockin mice is 

different from male GSK3 knockin mice, demonstrating that there are gender specific 

differences in neurogenesis in mice with hyperactive GSK3. Female GSK3 knockin mice, 

like female wild-type mice, exhibited increased survival of NPCs and differentiation to 

neurons.  

Neurogenesis is reduced by CRS (Cameron and Gould, 1994; Jacobs et al., 2000; 

Duman et al., 2001; Pham et al., 2003), which also increases susceptibility to depression, 

which has been suggested may be associated with impaired neurogenesis. CRS impaired 

NPC proliferation in male wild-type mice but not in male GSK3 knockin mice, which 

may indicate a commonality in mechanisms by which hyperactive GSK3 and chronic 

stress impair neurogenesis. Chronic stress affects neurogenesis in wild-type male and 
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female mice in different ways (Westenbroek et al., 2004; Shors et al., 2007), therefore we 

tested if our CRS paradigm would reveal an effect in female wild-type mice, and whether 

the same pattern would be exhibited by female GSK3 knockin mice. CRS did not alter 

NPC proliferation in female wild-type mice or GSK3 knockin mice. Examination of the 

effects of CRS on the inhibitory serine-phosphorylation of GSK3 demonstrated that CRS 

reduced GSK3 serine-phosphorylation in the hippocampus of male wild-type mice, which 

correlated with decreased neurogenesis. Notably, the regulation of GSK3 was much more 

stable in female than male hippocampus as the serine-phosphorylation of GSK3 in female 

wild-type mouse hippocampus was unaltered by CRS. Consistent with previous data, this 

suggests that cells in the female wild-type hippocampus are less responsive to stress, and 

that NPC proliferation in the female GSK3 knockin hippocampus is similarly less 

responsive to stress. Furthermore, the divergent response to CRS in male and female 

wild-type mice supports the possibility that there are gender specific differences in 

response to injury and recovery following neurological stress (Walker and Mason, 2011) 

and that estrogen is neuroprotective in many types of brain injury (Lang and 

McCullough, 2008).  

 In summary, EE did not alter NPC proliferation in female wild-type mice or 

GSK3 knockin mice. In addition to the chronic stress results, this suggests that cells in 

the female mouse hippocampus are less responsive to stress-induced decreased 

neurogenesis and EE-induced increased neurogenesis. Female GSK3 knockin mice, but 

not male GSK3 knockin mice, displayed increased NPC survival and differentiation to 

neurons following EE, suggesting that female mice with hyperactive GSK3 may have 

increased neuroprotection in response to environmental manipulation. The mechanisms 
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accounting for the differences observed among wild-type and GSK3 knockin male and 

female mice remain to be further examined. These differences may be due to increased 

levels of the hormone estrogen in female mice. By eliminating estrogen production in 

female mice with ovariecotomization, future studies can determine if estrogen mediates 

the difference in neurogenesis plasticity in male and female wild-type and GSK3 knockin 

mice. The differential mechanisms involved in the regulation of neurogenesis and the 

effect of hyperactive GSK3 in male and female mice may play a role in the development 

and treatment of mood disorders. The differential mechanisms involved in the regulation 

of neurogenesis and the effect of hyperactive GSK3 in male and female mice may play a 

role in the development and treatment of mood disorders.  
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Figure 1. NPC proliferation is impaired in the hippocampus of GSK3 knockin mice.  

(A) Immunohistochemical detection of BrdU-positive cells (green) in the hippocampus of 

male wild-type and GSK3 knockin mice. Nuclei are labeled with bisbenzimide (blue). (B) 

Unbiased stereological quantitation of BrdU-positive cells in the hippocampal dentate 

gyrus of male and female wild-type (WT) and GSK3 knockin (KI) mice. NPC 

proliferation significantly differed between WT males (4685 ± 353) and GSK3 KI males 

(2906 ± 382) (t=3.42, p<0.05) and between WT females (4543 ± 519) and GSK3 KI 

females (2884 ± 337) (t=2.28, p<0.05) (one-way ANOVA (genotype x sex) followed by 

Bonferroni’s multiple comparison test, F(3,34)=5.50, p<0.05). Values are means ± 

S.E.M.; n=11 males/group, n=6-10 females/group *p<0.05 compared to WT control mice 

of the same sex. 
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Figure 2. NPC survival and differentiation to neurons is impaired in the hippocampus of 

female, but not male, GSK3 knockin mice.  

Unbiased stereological quantitation of BrdU-positive cells in the hippocampus of male 

and female wild-type (WT) and GSK3 knockin (KI) mice. (A) Survival of NPCs 

significantly differed between WT males (110 ± 28) and WT females (300 ± 40) (t=3.81, 

p<0.05) and between WT females and GSK3 KI females (62 ± 28) (t=5.01, p<0.05) (one-

way ANOVA (genotype x sex) followed by Bonferroni’s multiple comparison test, 

F(3,18)=7.56, p<0.01). (B) Differentiation to neurons significantly differed between WT 

males (69 ± 21) and WT females (236 ± 51) (t=3.69, p<0.05) and between WT females 

and GSK3 KI females (62 ± 28) (t=3.30, p<0.05) (one-way ANOVA (genotype x sex) 

followed by Bonferroni’s multiple comparison test, F(3,18)=5.36, p<0.01). Values are 

means ± S.E.M.; n=4-8 males/group, n=4-6 females/group, **p<0.05 compared to WT 

male mice, *p<0.05 compared to WT female mice. 
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Figure 3. Environmental enrichment (EE) increases serine-phosphorylation of GSK3 in 

wild-type male, but not wild-type female, hippocampus. 

(A) In the hippocampus of male wild-type (WT) mice, EE significantly increased 

phospho-GSK3α (t=3.246, p<0.05) and phospho-GSK3β (t=2.62, p<0.05). The total 

levels of GSK3α (t=0.47, p>0.05) and GSK3β (t=0.34, p>0.05) were not altered by EE.  

(B) In the hippocampus of female WT mice, EE did not alter inhibitory phosphorylation 

of GSKα (t=0.07, p>0.05), or GSK3β (t=0.80, p>0.05), or total levels of GSK3α (t=1.72, 

p>0.05) or GSK3β (t=1.76, p>0.05). (C) WT female mice displayed increased phospho-

GSK3β (t=3.29, p<0.05) compared to male WT mice, but there were no differences in 

phospho-GSK3α (t=1.26, p>0.05) or total levels of GSK3α (t=0.87, p>0.05) and GSK3β 

(t=0.98, p>0.05). Phospho-GSK3 values were calculated as the percent of ratios to total 

GSK3 levels and compared to results from control mice not housed in EE. Values are 

means ± S.E.M; n= 6-10 males/group, n=4-5 females/group; *p<0.05 compared to 

control WT mice. 
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Figure 4. Effects of environmental enrichment (EE) and chronic restraint stress (CRS) on 

NPC proliferation in the hippocampus.  

Unbiased stereological quantitation of BrdU-positive cells in the hippocampus of male 

and female wild-type (WT) and GSK3 knockin (KI) mice with and without 25 days of EE 

or two weeks of CRS. (A) NPC proliferation was significantly increased by EE in male 

WT mice (t=4.17, p<0.01) and male GSK3 KI mice (t=2.61, p<0.05), whereas CRS 

significantly decreased proliferation in male WT mice (t=2.19, p<0.05) but not in male 

GSK3 KI mice (t=0.73, p>0.05) (two-way ANOVA (genotype x treatment) followed by 

post hoc Bonferroni’s multiple comparison test; F(2,49)=24.93, p<0.05).  (B) NPC 

proliferation was unchanged by EE in female WT mice (t=0.67, p>0.05) and female 

GSK3 KI mice (t=0.91, p>0.05) or CRS in female WT mice (t=1.09, p>0.05) and female 

GSK3 KI mice (t=0.62, p>0.05)  (two-way ANOVA (genotype x treatment) followed by 

post hoc Bonferroni’s multiple comparison test; F(2,40)=0.83, p>0.05). Values are means 

± S.E.M.; n=5-11 males/group; n=4-10 females/group; **p<0.05 compared to control 

WT mice; *p<0.05 compared to same genotype without treatment.  
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Figure 5. Environmental enrichment (EE) increases survival of NPCs and differentiation 

to neurons in female, but not male, GSK3 knockin mice.  

(A) NPC survival was significantly increased by EE in male wild-type (WT) mice 

(t=2.54, p<0.05), but not in male GSK3 knockin (KI) mice (t=0.02, p>0.05) (one-way 

ANOVA (genotype x treatment) followed by post hoc Bonferroni’s multiple comparison 

test, F(3,24)=5.12, p<0.01). (B) Differentiation to neurons was also significantly 

increased by EE in male WT mice (t=2.45, p<0.05), but not in male GSK3 KI mice 

(t=0.20, p>0.05) (one-way ANOVA (genotype x treatment) followed by post hoc 

Bonferroni’s multiple comparison test, F(3,24)=4.66, p<0.05). (C) NPC survival was 

significantly increased by EE in female WT (t=2.68, p<0.05) and GSK3 KI mice (t=3.06, 

p<0.05) (one-way ANOVA (genotype x treatment) followed by post hoc Bonferroni’s 

multiple comparison test, F(3,18)=16.01, p<0.01). (D) Differentiation to neurons was 

also significantly increased by EE in female WT (t=3.20, p<0.05) and GSK3 KI mice 

(t=3.66, p<0.05) (one-way ANOVA (genotype x treatment) followed by post hoc 

Bonferroni’s multiple comparison test, F(3,18)=16.47, p<0.01).  Values are means ± 

S.E.M.; n=4-8 males/group; n=4-6 females/group; **p<0.05 compared to WT male mice, 

*p<0.05 compared to same genotype without treatment.  
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Figure 6. Serine phosphorylation of GSK3α and GSK3β is decreased in the hippocampus 

of wild-type mice following chronic restraint stress (CRS).  

(A) In the hippocampus of male wild-type (WT) mice, CRS decreased phospho-GSK3α 

(t=6.16 p<0.05) and phospho-GSK3β (t=4.07, p<0.05). There was no change in the total 

level of GSK3α (t=1.41, p>0.05) or GSK3β (t=0.51, p>0.05). (B) In the hippocampus of 

female WT mice, CRS did not affect inhibitory phosphorylation of GSKα (t=1.17, 

p>0.05), or GSK3β (t=1.70, p>0.05), or total levels of GSK3α (t=0.78, p>0.05) or 

GSK3β (t=1.42, p>0.05). Phospho-GSK3 values were calculated as ratios to total GSK3 

levels and compared to results from control mice not subjected to CRS. Values are means 

± S.E.M; n=7-8 males/group, n=4-5 females/group; *p<0.05 compared to control mice. 
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Table 1. Summary of results.  

Environmental enrichment (EE) and chronic restraint stress (CRS) affect inhibition of 

GSK3, NPC proliferation, survival and differentiation in various ways in wild-type (WT) 

and GSK3 knockin (KI) male and female mice. N/A= Not applicable. 
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Abstract 

 

Impairment of cognitive processes is a devastating outcome of many diseases, injuries, 

and drugs affecting the central nervous system (CNS). Most often, very little can be done 

by available therapeutic interventions to improve cognitive functions. Here we review 

evidence that inhibition of glycogen synthase kinase-3 (GSK3) ameliorates cognitive 

deficits in a wide variety of animal models of CNS diseases, including Alzheimer's 

disease, Fragile X syndrome, Down syndrome, Parkinson's disease, spinocerebellar ataxia 

type 1, traumatic brain injury, and others. GSK3 inhibitors also improve cognition 

following impairments caused by therapeutic interventions, such as cranial irradiation for 

brain tumors. These findings demonstrate that GSK3 inhibitors are able to ameliorate 

cognitive impairments caused by a diverse array of diseases, injury, and treatments. The 

improvements in impaired cognition instilled by administration of GSK3 inhibitors 

appear to involve a variety of different mechanisms, such as supporting long-term 

potentiation and diminishing long-term depression, promotion of neurogenesis, reduction 

of inflammation, and increasing a number of neuroprotective mechanisms. The potential 

for GSK3 inhibitors to repair cognitive deficits associated with many conditions warrants 

further investigation of their potential for therapeutic interventions, particularly 

considering the current dearth of treatments available to reduce loss of cognitive 

functions. 
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1. Introduction 

 Cognitive abilities define our species and our individual identities. Yet these 

functions are often threatened, as it seems that nearly every neurological and psychiatric 

disease includes a component of cognitive disability. This is particularly true of ageing-

associated diseases, which afflict an ever-increasing portion of the population.  With the 

recognition of the importance of disease-associated cognitive disabilities, much effort, 

although perhaps insufficient, is being directed towards finding ways to protect and 

restore cognitive functions. Here we review the rapidly accumulating evidence that 

inhibitors of glycogen synthase kinase-3 (GSK3) represent one of the strongest candidate 

classes of agents for this purpose. Although most widely studied for their potential 

therapeutic actions in Alzheimer's disease (AD), in fact more than a dozen distinct 

conditions in rodent models involving cognitive impairments have been shown to be 

ameliorated by the administration of GSK3 inhibitors (Figure 1). Thus, this substantial 

evidence suggests that GSK3 inhibitors should be more widely considered as 

interventions for protecting and restoring cognitive abilities that are jeopardized in many 

individuals with neurological and psychiatric diseases.  

 

2. GSK3 and inhibitors 

 GSK3 refers to two paralogs, GSK3 and GSK3, that are commonly referred to 

as isoforms because of their similar sequences and functions although they are derived 

from different genes and differential actions have been identified (Kaidanovich-Beilin 

and Woodgett, 2011). They are ubiquitously expressed, serine/threonine kinases that are 

involved in a large number of cellular functions (Jope and Johnson, 2004). The activity of 
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GSK3 is most commonly regulated by phosphorylation on a regulatory serine, serine-21 

in GSK3α and serine-9 in GSK3β. Phosphorylation of these regulatory serines inhibits 

the activity of GSK3. GSK3 can be phosphorylated on these serines by several kinases, 

such as Akt, protein kinase C, protein kinase A, and others. This provides a mechanism 

for many intracellular signaling pathways to control the activity of GSK3. However, it 

appears that this also provides a mechanism for disease-associated impairments in signal 

transduction pathways to result in failure to adequately inhibit GSK3. This failure can 

permit GSK3 to remain abnormally active, which appears to allow GSK3 to contribute to 

disease pathologies, including cognitive impairments, as discussed in later sections of this 

review.  

 The increasing evidence that GSK3 contributes to the pathology of several 

prevalent diseases, perhaps most notably AD and mood disorders, has generated much 

interest in applying GSK3 inhibitors therapeutically. Lithium was the first GSK3 

inhibitor to be identified (Klein and Melton, 1996; Stambolic et al., 1996), and lithium 

remains the most widely used experimentally and clinically. Lithium directly binds and 

inhibits GSK3 (Klein and Melton, 1996; Stambolic et al., 1996), and lithium 

administration also increases the inhibitory serine-phosphorylation of GSK3 (Jope, 

2003). Lithium is widely used therapeutically as a mood stabilizer in patients with mood 

disorders, and much evidence indicates that inhibition of GSK3 makes an important 

contribution to its mood stabilizing therapeutic effect (Jope, 2011). In human patients, 

therapeutic levels of lithium are in the range of 0.5-1.2 mM lithium in the serum, and this 

serum concentration of lithium is often achieved in rodents by administration of food 

pellets containing 0.2-0.4% lithium (Jope, 2011). Many actions of lithium have been 
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shown to be due to inhibition of GSK3, but lithium also has other actions, such as 

inhibition of inositol monophosphatase, that should not be discounted unless the effects 

of lithium have been verified to be due to inhibition of GSK3 using other selective 

inhibitors of GSK3 or molecular manipulations of GSK3 (Phiel and Klein, 2001). The 

utility of lithium and therapeutic promise of GSK3 inhibitors led to the development of  

many selective inhibitors of GSK3 during the last decade that are beginning to be more 

widely used (Eldar-Finkelman and Martinez, 2011). Many of these are ATP-competitive 

inhibitors of GSK3, but particularly promising are GSK3 inhibitors that are not ATP-

competitive, since ATP-competitive inhibitors tend to also inhibit other kinases and may 

prove to be more toxic. Among the frequently used ATP-competitive GSK3 inhibitors are 

indirubin derivatives (Leclerc et al., 2001), paullone derivatives (Leost et al., 2000), 

SB415286 and SB216763, although care must be taken concerning their solubilities as 

originally described (Coghlan et al., 2000), and AR-A014418 (Bhat et al., 2003), 

although the reports of behavioral effects of AR-A014418 are mitigated by other studies 

indicating that it does not significantly enter the CNS (Vasdev et al., 2005; Selenica et al., 

2007; Hicks et al., 2010). Reports of the kinase specificities of several GSK3 inhibitors 

are particularly valuable (Davies et al., 2000; Murray et al., 2004; Bain et al., 2007), 

enabling investigators to choose multiple GSK3 inhibitors with different off-target 

actions. Other GSK3 inhibitors that are not competitive with the ATP binding site in 

GSK3 are particularly promising (Eldar-Finkelman and Martinez, 2011). L803-mts is a 

cell-permeable, 11 residue peptide that is a substrate-competitive specific inhibitor of 

GSK3 (Plotkin et al., 2003; Kaidanovich-Beilin et al., 2004; Licht-Murava et al., 2011). 

TDZD-8 is a highly selective ATP non-competitive inhibitor of GSK3 (Martinez et al., 
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2002). VP0.7 is an allosteric (not competitive with ATP or substrate) selective GSK3 

inhibitor that binds to the C-terminal lobe of the enzyme (Palomo et al., 2011). Here we 

review the evidence for cognitive effects involving GSK3. Studies of potential actions of 

GSK3 in cognition have primarily utilized lithium, in part because it is the GSK3 

inhibitor that has been available the longest, so reports of lithium's effects predominate in 

this review, but newer GSK3 inhibitors and molecular modifications of GSK3 have also 

been studied.    

 

3. Effects of GSK3 inhibitors on cognition in healthy rodents and humans 

3.1. Cognition in lithium-treated rodents 

 In contrast to the many conditions where impaired cognitive behaviors in rodents 

are improved by lithium treatment, which are discussed below, lithium often has been 

reported to have little effect on cognitive tasks in healthy rodents. For example, recent 

reports concluded that chronic dietary lithium treatment for several weeks did not alter 

performance in the Morris water maze in Wistar rats (Vasconcellos et al., 2003; de 

Vasconcellos et al., 2005), or in mice ranging in initial treatment age from one week to 

12 months (Yazlovitskaya et al., 2006; Watase et al., 2007; Thotala et al., 2008; Sy et al., 

2011). Chronic dietary lithium treatment also did not alter contextual fear conditioning in 

mice (Watase et al., 2007), performance in the object location test in mice (Dai et al., 

2012), or contextual fear conditioning, spatial memory, novel object recognition, and T 

maze spontaneous alternation task in mice (Contestabile et al., 2013). Chronic dietary 

lithium treatment that began in adolescence (4 weeks old) and was continued for 8 weeks, 

or 4 weeks of dietary lithium treatment in adult mice, did not alter performance in the 
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visual object novelty detection task, temporal ordering for visual objects task, or spatial 

learning in the coordinate and categorical processing tasks (King and Jope, 2013). 

Chronic lithium treatment (2 mmol/kg; i.p.) did not alter acquisition of a non-matching to 

place rule in rats (Tsaltas et al., 2007b), nor did lithium treatment (47.5 mg/kg, i.p.) alter 

behavior in the olfactory discrimination test, the social recognition task, or short-term and 

long-term memory evaluated in the step-down inhibitory avoidance task in rats (Castro et 

al., 2012). These findings support the older literature that cognitive tasks in rodents are 

often unaffected by therapeutically relevant levels of lithium. However, enhanced 

performance following chronic lithium treatment has been found in several studies. 

Chronic lithium treatment (2 mmol/kg; i.p.) of mice for several weeks improved spatial 

working memory in a delayed alternation T-maze task and facilitated long-term retention 

of passive avoidance learning (Tsaltas et al., 2007a). Chronic dietary lithium treatment 

increased freezing behavior in a cued fear conditioning task (Watase et al., 2007), and 

enhanced learning in the passive avoidance task (Yuskaitis et al., 2010). Adult male rats 

treated with dietary lithium for 4 weeks displayed improved spatial discrimination 

learning in the hole-board task, increased working memory and long-term memory in the 

T-maze delayed alternation task and enhanced place conditioned learning in the social 

place-preference conditioning task (Nocjar et al., 2007). Thus, certain cognitive tasks 

may be improved by lithium treatment of healthy rodents, but most often lithium has 

been found to not significantly affect performance. 
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3.2. Cognition in rodents treated with other inhibitors of GSK3 

 Few studies have investigated the effects of GSK3 inhibitors other than lithium on 

cognitive behaviors in healthy rodents, and most found no effects, which is in agreement 

with most studies of the effects of lithium. Treatment with the GSK3 inhibitors 

SB216763 (0.6 mg/kg; i.p) or SB415286 (1.0 mg/kg; i.p.) for 3 days in two week old 

wild-type mice did not alter performance in the Morris water maze measured 2-3 months 

later (Thotala et al., 2008). Chronic treatment of mice with SB216763 (2 mg/kg; i.p.) 

every other day for 2 weeks had no effect on performance in the contextual and tone trace 

conditioning tests or spatial learning in the delayed non-matching-to-place radial arm 

maze (Guo et al., 2012). Inhibition of GSK3 with intracerebroventricular (icv) infusion of 

SB216763 (20 ng/µl) in rats did not affect performance in the Morris water maze (Tian et 

al., 2012). Acute treatment with the GSK3 inhibitors TDZD-8 (5 mg/kg; i.p.) or VP0.7 (5 

mg/kg; i.p.) did not alter performance of mice in the visual object novelty detection task, 

temporal ordering for visual objects task, spatial learning in the coordinate and 

categorical processing tasks (Franklin et al., 2013).These findings match well with those 

of lithium treatments, in that cognitive behaviors of healthy rodents often are unaffected 

by administration of GSK3 inhibitors. In contrast, a report that 4 weeks of icv infusion of 

SB216763 (78 pmol/day) in rats impaired performance in the Morris water maze task (Hu 

et al., 2009) may be indicative of toxic effects of long-term central administration of an 

ATP-competitive inhibitor of GSK3. On the other hand, acute treatment with the dual 

phosphodiesterase-7 and GSK3 inhibitor VP1.15 (3 mg/kg; i.p.) improved performance 

in the spatial object recognition test, the Y-maze task, and cued fear memory in mice 
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(Lipina et al., 2013), raising the possibility that GSK3 inhibitors may play a role in future 

developments of cocktails of drugs that may be tested as cognitive enhancers. 

 

3.3. Cognition in rodents after molecular modification of GSK3 

 Whereas administration of GSK3 inhibitors to healthy rodents generally has little 

effect on cognitive tasks, studies of mice expressing modified GSK3 have begun to 

provide more information about the influences of GSK3 on cognitive processes. 

Molecular reduction of GSK3 appears to be particularly detrimental for memory rather 

than learning.  Heterozygote GSK3β knockout (GSK3β+/-) mice learned to find a fixed 

but hidden platform submerged in a pool in the Morris water maze equivalently to wild-

type mice, but in later re-testing GSK3β+/- mice failed to locate the hidden platform, 

whereas it was easily located by wild-type mice (Kimura et al., 2008). In a contextual 

fear-conditioning test, GSK3β+/- mice were not impaired in the ability to form and 

consolidate memory, but subsequent testing revealed impaired reconsolidation. This was 

further confirmed by the finding that GSK3 inhibition with AR-A014418 (30 mg/kg; i.p.) 

applied before the reconsolidation step significantly impaired memory reconsolidation, 

which was interpreted as a display of retrograde amnesia in mice deficient in GSK3β 

(Kimura et al., 2008). Mice lacking GSK3α demonstrated learning in the passive 

avoidance task equivalently to wild-type mice, but had an impaired ability to form and 

consolidate memory in a fear conditioning test (Kaidanovich-Beilin et al., 2009). These 

findings suggest that molecularly reducing GSK3 may have detrimental effects on 

memory, in contrast to the administration of GSK3 inhibitors. This detrimental effect 

may be due to the reduction of GSK3 during development in transgenic mice causing 
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aberrations in the development of memory processes, or due to differences between 

molecular and pharmacological modifications of GSK3 in the extent or duration of 

reduction of each GSK3 isoform's activity. Thus, molecular reduction of GSK3 may not 

model well therapeutically applied drugs that inhibit GSK3. 

 The effects of excessive GSK3 activity also have been examined on cognition. 

Several studies investigated the effects of GSK3 overexpression, predominantly for 

modeling AD, and as discussed in section 4 these often found impaired cognition that 

was associated with AD-linked pathology and neuronal loss. Thus, this approach does not 

directly address potential regulatory actions of increased GSK3 activity that is not 

associated with neurodegeneration. Dewachter et al. (2009) took the less severe approach 

of studying GSK3β knockin mice, in which the inhibitory serine-9 of GSK3β was 

mutated to alanine to render GSK3β constitutively active and unable to be inhibited 

through the serine-9 phosphorylation mechanism. GSK3β knockin mice displayed 

impaired inhibitory avoidance learning and object recognition memory, but no deficits in 

cued and contextual fear conditioning tasks and conditioned taste aversion, and the mice 

were free of neurodegeneration (Dewachter et al., 2009). These findings suggest that loss 

of inhibitory control of GSK3 can result in impaired cognition, which may play a role in 

diseases and conditions exhibiting both activated GSK3 and cognition impairments.  

 

3.4. Cognition in lithium-treated humans  

 It is unclear whether lithium alters cognition in healthy human subjects. Early 

reports of enhanced neurocognitive test performance after lithium treatment have been 

attributed to methodological limitations, such as practice-induced improvements (Dias et 



 

60 
 

al., 2012). In contrast, several investigators reported that lithium causes transient and/or 

mild detrimental effects on several cognitive domains in healthy subjects, such as verbal 

learning and memory, without altering others, such as visual memory or attention 

(Weingartner et al., 1985; Linnoila et al., 1986; Stip et al., 2000; Wingo et al., 2009). On 

the other hand, a meta-analysis concluded that lithium seems not to impair cognition in 

healthy human subjects after administration for 2.5 weeks or longer (Wingo et al., 2009). 

Thus, therapeutic lithium levels appear not to improve cognition in healthy human 

subjects and may cause variable mild impairments in some individuals, whereas the 

effects of other GSK3 inhibitors have not been tested in healthy human subjects.  

 Altogether, the majority of studies indicate that administration of a moderate dose 

of lithium or another GSK3 inhibitor has no effect, or causes relatively minor 

impairments, on cognition in healthy rodents or humans. This stands in stark contrast to 

the significantly enhanced cognitive abilities provided by administration of GSK3 

inhibitors in conditions associated with cognitive disabilities that are discussed in the 

following sections. 

 

4. Effects of GSK3 inhibitors on cognition in Alzheimer's disease (AD) models 

 AD is a neurodegenerative disorder that culminates in neurodegeneration and 

severe impairments in cognition. AD neuropathology is characterized by extracellular 

plaques of aggregated amyloid-β peptide (Aβ) and intracellular neurofibrillary tangles 

containing hyperphosphorylated tau, a microtubule-binding protein (Hardy et al., 1998). 

The Aβ hypothesis of the pathophysiology of AD posits that Aβ induces the formation of 

tau-containing neurofibrillary tangles and neuronal death, which contribute to 
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progressively worsening cognitive abilities (Hardy and Selkoe, 2002). GSK3 is intimately 

linked to AD neuropathology, as Aβ increases GSK3β activity (Takashima et al., 1996), 

GSK3 promotes the production of Aβ (Phiel et al., 2003), and GSK3 promotes apoptotic 

signaling induced by Aβ (reviewed in Mines et al., 2011). Furthermore, GSK3 

phosphorylates tau and likely contributes to the hyperphosphorylation of tau in 

neurofibrillary tangles (Mandelkow et al., 1992; Hong et al., 1997; Muñoz-Montaño et 

al., 1997; Xie et al., 1998; Lovestone et al., 1999; Bhat et al., 2003). These findings 

suggest that GSK3 plays a central role in the pathophysiology of AD and have led many 

investigators to study the effects of GSK3 on cognition in rodent models of AD and in 

patients with AD (Martinez et al., 2011).  

 Genetically and pharmacologically increasing GSK3 activity have been used to 

model events that may occur in AD, manipulations that exacerbate cognitive impairments 

and neuropathology in rodent models of AD. Conditional overexpression of GSK3β in 

mouse cortical and hippocampal neurons resulted in impaired performance in the Morris 

water maze, hyperphosphorylation of tau, reactive astrocytosis and microgliosis, and 

neuronal death (Lucas et al., 2001; Hernández et al., 2002). Suppression of overexpressed 

GSK3β reversed the spatial memory deficit in the novel object recognition task, reduced 

tau hyperphosphorylation, and decreased reactive gliosis and neuronal death (Engel et al., 

2006). Deletion of tau expression in GSK3β-overexpressing mice significantly reduced 

impairment in the Morris water maze, indicating that GSK3-mediated tau 

phosphorylation contributed to this cognitive impairment (Gómez de Barreda et al., 

2010). The GSK3-tau interaction was further implicated by cognitive impairments in 

GSK3β x Tau-P301L mice with increased GSK3β expression and expression of 
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tauopathy-associated mutated tau. These mice displayed impaired novel object 

recognition memory and passive avoidance learning, which occurred prior to the 

deposition of tau aggregates, suggesting that early tau pathology due to increased GSK3β 

activity may cause synaptic deficits that underlie the cognitive impairments in the GSK3β 

x Tau-P301L mice (Terwel et al., 2008).  

 Activation of GSK3 also has been reported to be detrimental for cognitive tasks in 

studies of potential pathological mechanisms in AD. Intracerebroventricular infusion of 

the phosphatidylinositol 3-kinase inhibitor wortmannin and the protein kinase C inhibitor 

GF-109203X in adult rats caused spatial memory deficits in the Morris water maze and 

hyperphosphorylation of tau (Liu et al., 2003). Induction of diabetes by streptozotocin 

treatment in human amyloid precursor protein (APP) transgenic mice increased GSK3β 

activity and impaired performance in the Barnes circular maze task (Jolivalt et al., 2010). 

Increased GSK3 activity in rats following expression of the C-terminal fragment of 

protein phosphatase 2A, which can dephosphorylate the inhibitory serine in GSK3, 

impaired performance in the Morris water maze, increased Aβ levels, and caused 

hyperphosphorylation of tau (Wang et al., 2010). Although all of these interventions can 

be expected to have multiple effects, they add to the correlative evidence between 

activation of GSK3 and worsened pathology and cognitive abilities. Altogether, a variety 

of molecular and pharmacological approaches suggest that increased GSK3 activity likely 

contributes to pathology and cognitive impairments in rodent models of AD.  

 Further evidence implicating actions of GSK3 in cognitive impairments in rodent 

models of AD has come from studies showing that administration of the GSK3 inhibitor 

lithium reduces neuropathology and cognitive deficits. Lithium (2 mEq/kg; i.p.) 
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administered to rats daily for 2 weeks prior, and 2 weeks following, intrahippocampal 

infusion of Aβ fibrils blocked spatial memory deficits in the Morris water maze (De 

Ferrari et al., 2003). Treatment with lithium (200 mM; icv) in adult male rats reversed the 

spatial memory impairment in the Morris water maze and abolished 

hyperphosphorylation of tau caused by activation of GSK3 (Liu et al., 2003). Lithium 

treatment (20 mg/kg; i.p.) daily for 3 months improved impaired learning in the Morris 

water maze in human APP transgenic mice, which was associated with decreased Aβ 

levels and reduced tau phosphorylation (Rockenstein et al., 2007). Dietary chronic 

lithium treatment for 4 weeks ameliorated a working memory deficit in the Y-maze 

paradigm in aged APP-intracellular domain-overexpressing transgenic mice (Ghosal et 

al., 2009). Lithium treatment (3 mEq/kg; i.p.) daily for 12 weeks in aged transgenic mice 

expressing mutated APP and presenilin-1 ameliorated deficits in the Morris water maze 

and reduced Aβ plaques and inflammation (Toledo and Inestrosa, 2010). Chronic lithium 

treatment in the food for 5 weeks in hemizygous TgCRND8 mice that develop amyloid 

deposition at 3 months of age attenuated cognitive deficits in the step down inhibitory 

avoidance test and the Morris water maze (Fiorentini et al., 2010). Chronic dietary 

lithium treatment for 6 weeks protected aged 3xTg-AD mice from lipopolysaccharide-

induced impairment in the Morris water maze (Sy et al., 2011). These reports 

demonstrate that treatment with lithium can rescue a variety of cognitive impairments in 

rodent models of AD if treatment is initiated early in the pathological process, but not all 

studies found improvements after lithium treatment. Dietary chronic lithium treatment 

begun at 6 months of age in TgCRND8 mice (after amyloid deposition) did not improve 

cognition in the step down inhibitory avoidance test or the Morris water maze, although 
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the number and size of Aβ plaques was significantly reduced (Fiorentini et al., 2010). In 

aged 3xTg-AD mice, daily lithium treatment (300 µl of 0.6mol/L; i.p.) for 4 weeks did 

not rescue deficits in working memory in the T-maze paradigm (Caccamo et al., 2007). In 

APPwDI/NOS2-/- mice, chronic dietary lithium treatment for 8 months did not rescue 

memory in the radial-arm maze (Sudduth et al., 2012). Thus, lithium treatment appears 

most effective in improving cognitive abilities in rodent models of AD when treatment 

began before major pathologies were established. 

 In addition to lithium, newer small molecule inhibitors of GSK3 have been found 

to rescue cognitive deficits in several rodent models of AD. Treatment with the GSK3 

inhibitor NP12 (200 mg/kg; oral gavage) daily for 3 months in aged double APP-tau 

transgenic mice diminished deficits in the Morris water maze, and decreased tau 

phosphorylation and amyloid deposition (Serenó et al., 2009). Aβ-induced deficits in the 

Morris water maze were ameliorated by chronic administration of the GSK3 inhibitor 

SB216763 (78 pmol/day; icv), which also reduced tau phosphorylation and 

neurodegeneration (Hu et al., 2009). APP/Presenilin-1 double transgenic mice treated 

with the GSK3 inhibitor indirubin-3'-monoxime (20 mg/kg; i.p.) 3 times per week for 8 

weeks exhibited reduced impairments in the Morris water maze, which correlated with 

attenuation of Aβ production and tau hyperphosphorylation (Ding et al., 2010).  In 3XTg-

AD mice, treatment with the GSK3 inhibitor MMBO (1 or 3 mg/kg; orally) for 25 days 

attenuated impairments in the Y-maze task and the novel object recognition test and 

decreased tau phosphorylation (Onishi et al., 2011). Treatment with the GSK3 inhibitor 

AR-A014418 (5 mg/kg; i.p.) daily for 4 weeks alleviated deficits in the Morris water 

maze in APP23/PS45 double transgenic mice, which was accompanied by reduced Aβ 
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deposition and neuritic plaques (Ly et al., 2013). Transgenic mice that co-express AD 

mutations in APP and presenilin-1 (5XFAD mice) treated with the selective, substrate-

competitive GSK3 inhibitor L803-mts (80 µg; intranasally) every other day for 120 days 

exhibited enhanced cognition in the contextual fear conditioning test, which was 

associated with decreased Aβ (Avrahami et al., 2013). Thus, administration of GSK3 

inhibitors can ameliorate cognitive impairments in a number of mouse models of AD. 

 Inhibiting GSK3 using genetic approaches to specifically knockdown either 

GSK3α or GSK3β can also ameliorate cognitive impairments in AD mouse models. 

Genetically inactivating GSK3β by crossing human APP transgenic AD mice with 

dominant-negative GSK3β transgenic mice improved learning in the Morris water maze, 

reduced Aβ load and decreased tau phosphorylation in the double transgenic mice 

compared to human APP mice (Rockenstein et al., 2007). Reduced expression of GSK3α 

in PDAPP (+/-) transgenic mice attenuated deficits in the Barnes maze (Hurtado et al., 

2012). Thus pharmacological or genetic approaches to selectively inhibit GSK3 appear to 

rescue cognitive impairments and attenuate neuropathology occurring in AD in rodent 

models.  

 The capacity of GSK3 inhibitors to alleviate symptoms of AD in mouse models 

has led to several studies in human patients. These studies indicate that lithium treatment 

protects patients with bipolar disorder from developing AD and increases measures of 

cognition in patients with AD and dementia or mild cognitive impairment. For example, 

elderly patients with bipolar disorder (mean age 68.2 years) that had been treated 

continuously with lithium had reduced prevalence of AD compared to the general elderly 

population (Nunes et al., 2007). Additionally, bipolar patients continuously treated with 
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lithium exhibited a reduced rate of dementia compared to bipolar patients treated with 

anticonvulsants, antidepressants or antipsychotics (Kessing et al., 2010). In a randomized, 

single-blind, placebo-controlled, parallel-group multicenter 10 week study, patients with 

early AD treated with lithium had a significant decrease in Alzheimer's Disease 

Assessment Scale-Cognitive subscale scores, indicating improved cognitive function, and 

as the lithium serum concentration increased, cognitive impairment decreased in 

individuals with early AD (Leyhe et al., 2009). Patients with amnestic mild cognitive 

impairment who received lithium for 12 months also performed better on the Alzheimer's 

Disease Assessment Scale-Cognitive subscale and in attention tasks compared to 

amnestic patients that did not receive lithium (Forlenza et al., 2011). In a placebo-

controlled trial, long-term lithium treatment slowed the progression of cognitive and 

functional deficits in patients with amnestic mild cognitive impairment (Forlenza et al., 

2012). Patients with dementia that were currently taking, or had taken, lithium for 48.4 ± 

51.8 months performed better on the Mini-mental State Examination than patients who 

had never taken lithium (Terao et al., 2006). AD patients treated with lithium for 15 

months performed better than untreated AD patients on the Mini-mental State 

Examination, and significant differences between lithium-treated and untreated AD 

patients began 3 months after the start of treatment and increased progressively (Nunes et 

al., 2013). However, significant cognitive improvement on the Mini-mental State 

Examination was not found in elderly individuals with mild to moderate AD treated with 

lithium for up to one year (Macdonald et al., 2008), and lithium treatment for 6 weeks did 

not improve cognition in a pilot study of AD patients (Pomara, 2009). Promising results 

with lithium contributed to the development of a phase II pilot study of the GSK3 
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inhibitor Tideglusib in patients with mild to moderate AD. This study established the 

safety and tolerability of this GSK3 inhibitor, and although there were trends towards 

improvement, further trials will be required to determine if cognitive impairments in AD 

are significantly improved (del Ser et al., 2013). 

 Altogether, although cognitive enhancement in animal models of AD is clearly 

evident following treatment with lithium or other GSK3 inhibitors, further studies will be 

needed, particularly including treatment that begins early in the disease, to determine if 

cognitive decline in patients with AD can be slowed by GSK3 inhibitors.  

 

5. Effects of GSK3 inhibitors on cognition in Fragile X syndrome 

 Fragile X syndrome is the most common inherited cause of intellectual disability. 

Fragile X syndrome is caused by a trinucleotide repeat expansion in the X chromosome 

that silences the Fragile X Mental Retardation 1 gene, suppressing expression of Fragile 

X Mental Retardation Protein (Pieretti et al., 1991; Verkerk et al., 1991; Mines and Jope, 

2011). The Fragile X (FX) mouse model lacks expression of Fragile X Mental 

Retardation Protein and displays many characteristics of Fragile X syndrome, including 

cognitive impairments, locomotor hyperactivity, social interaction deficits, increased 

audiogenic seizure susceptibility, and autistic-like behaviors, among others (Bakker et al., 

1994; Kooy, 2003).  

 There have been several reports demonstrating that inhibition of GSK3 improves 

impaired cognition in FX mice. The first of these demonstrated that chronic dietary 

lithium treatment for three weeks reversed a learning deficit in adult male FX mice in the 

passive avoidance task (Yuskaitis et al., 2010), as did chronic dietary lithium treatment 
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that began at weaning (3 weeks old) and was continued to the ages of 8-11 weeks (Liu et 

al., 2011). Chronic dietary lithium treatment that began in adolescence (4 weeks old) and 

was continued for 8 weeks, or 4 weeks of dietary lithium treatment in adult FX mice, 

reversed deficits in FX mice in the visual object novelty detection task and temporal 

ordering for visual objects task, and improved spatial learning in the coordinate and 

categorical processing tasks (King and Jope, 2013). In a small open-label trial of lithium 

treatment in children and young adults with Fragile X syndrome, lithium treatment 

significantly improved cognition in the Repeatable Battery for the Assessment of 

Neuropsychological Status List Learning measure (Berry-Kravis et al., 2008). Thus, 

lithium administration to FX mice at a variety of ages improves cognitive abilities in 

several tasks, and preliminary evidence indicates that lithium also may be effective in 

patients. 

 Similar cognitive enhancing effects of other specific inhibitors of GSK3 indicate 

that the beneficial effects of lithium in FX mice likely result from its inhibition of GSK3. 

Chronic treatment of adult FX mice with the GSK3 inhibitor SB216763 (2 mg/kg; i.p.) 

every other day for 2 weeks improved performance in the contextual and tone trace 

conditioning tests and enhanced spatial learning in the delayed non-matching-to-place 

radial arm maze (Guo et al., 2012). Acute treatment of FX mice with the specific GSK3 

inhibitors TDZD-8 (5 mg/kg; i.p.) or VP0.7 (5 mg/kg; i.p.) reversed impairments in 

visual object novelty detection task, temporal ordering for visual objects task, and spatial 

learning in the coordinate and categorical processing tasks (Franklin et al., 2013).  

Altogether, GSK3 inhibitors have provided more cognitive benefits in FX mice, as well 

as in humans with Fragile X syndrome, than any other therapeutic intervention.  
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6. Effects of GSK3 inhibitors on cognition in other diseases and disease models 

6.1 Down syndrome  

 Down syndrome, caused by an extra copy of chromosome 21, is associated with 

intellectual disabilities that include language, verbal and spatial learning, and memory. 

The trisomic Ts65Dn mouse model re-capitulates some of the impaired cognitive abilities 

characteristic of Down syndrome (Reeves et al., 1995). Four weeks of lithium treatment 

in the food normalized impaired behavior of Ts65Dn mice in contextual fear 

conditioning, spatial memory, and novel object recognition tasks, changes that were 

associated with lithium-induced recovery of impairments in dentate gyrus LTP and 

neurogenesis (Contestabile et al., 2013).  

 

6.2. Parkinson’s disease 

 Parkinson’s disease is a neurodegenerative disorder characterized by progressive 

degeneration of nigrostriatal dopaminergic neurons that causes memory impairments, 

sleep abnormalities, anxiety, depression, bradykinesia, tremor, and muscular rigidity 

(Dawson and Dawson, 2003; Chaudhuri et al., 2006). Administration of 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MTPT) is widely used to model Parkinson's disease in 

rodents (Schober, 2004). Lithium treatment (47.5 mg/kg, i.p.) for seven days prior to a 

single bilateral intranasal administration of MPTP attenuated deficits in olfactory 

discrimination, social recognition, and short-term inhibitory avoidance memory 

impairment evaluated in the step-down inhibitory avoidance task induced by MPTP in 

Wistar rats, improvements that were associated with less striatal dopamine depletion in 

lithium-treated rats (Castro et al., 2012).  
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6.3. Spinocerebellar ataxia type 1 (SCA1) 

 SCA1 is a dominantly inherited neurodegenerative disorder caused by excess 

CAG repeats in the ataxin 1 gene, and is characterized by progressive loss of motor 

control and cognitive impairments (Watase et al., 2007).  Sca1(1544Q/2Q) mice, a 

knockin mouse model created by targeting 154 CAG repeats into the endogenous mouse 

locus, display many features of human SCA1, including cognitive deficits, loss of motor 

coordination, premature death, Purkinje cell loss, and age-related hippocampal synaptic 

dysfunction (Watase et al., 2002). Chronic dietary lithium treatment ameliorated 

cognitive deficits in adult Sca1(1544Q/2Q) mice in the Morris water maze test and in 

contextual fear conditioning, whereas lithium treatment did not improve impaired cued 

fear conditioning, indicating that lithium treatment protects hippocampus-dependent 

cognitive functions in Sca1(1544Q/2Q) mice (Watase et al., 2007).   

 

6.4. Traumatic brain injury (TBI) 

 TBI results from direct damage to the brain that causes many pathological effects 

that can continue to evolve over time, including changes in neuronal architecture and 

death, which contribute to learning and memory deficits (Dixon et al., 1991; Thompson et 

al., 2005; Blennow et al., 2012). Lithium pretreatment (1 mmol/kg; i.p.) for 2 weeks 

protected adult mice against TBI-induced impairments in the Morris water maze task, 

which was accompanied by attenuated neuronal degeneration (Zhu et al., 2010). Post-

injury treatment with lithium (1 mEq/kg; s.c.) also improved performance in the Morris 

water maze that was accompanied by reduced hippocampal CA3 neuron loss (Dash et al., 

2011). Following experimental TBI, rats treated with lithium (1 mEq/kg; s.c.) for two 
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weeks displayed improved hippocampal-dependent short term and long term spatial 

memory for platform location and quadrant preference in the Morris water maze, and 

daily treatment with the GSK3 inhibitor SB216763 (5 mg/kg; i.p.) for 5 days improved 

short term, but not long term, spatial memory (Dash et al., 2011). Post-TBI treatment 

with lithium (1.5 mEq/kg; i.p.) for up to 3 weeks also attenuated TBI-induced deficits in 

the Morris water maze and increased hippocampal-dependent learning and memory in the 

Y-maze test measured 10 days post-injury, which was associated with attenuated 

pathological markers (Yu et al., 2012).  

 

6.5. Ischemic stroke 

 Ischemic stroke survivors exhibit impairments in cognition, sensation, perception 

and movement (Carmichael, 2003), and lithium reduces ischemia-induced neuronal 

damage in rodents (Nonaka and Chuang, 1998). Treatment of adult male rats with lithium 

(1 mmol/kg; i.p.) for 2 weeks prior to, and 9 days after, transient brain ischemia 

attenuated deficits in performance in the Morris water maze, which was associated with 

decreased ischemia-induced neuronal death (Yan et al., 2007).  

 

6.6. HIV encephalitis 

 HIV patients with excessive neuroinflammation often exhibit severe cognitive 

deficits (Cherner et al., 2002). There is much interest in the potential therapeutic use of 

GSK3 inhibitors in HIV patients because of their neuroprotective and anti-inflammatory 

actions (Dewhurst et al., 2007; Crews et al., 2009). For example, 14 days of lithium 

treatment (2 mg/kg; i.p.) in 4 month old HIV-gp-120 transgenic mice provided protection 
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from gp120-mediated hippocampal toxicity and reduced dendritic damage (Everall et al., 

2002). The first pilot study in fifteen cognitively impaired HIV patients found that 10 

weeks of lithium treatment did not improve cognitive performance (The Dana 

Consortium, 1996). However, a subsequent study in eight patients with HIV-associated 

neurocognitive impairment found that lithium treatment for 12 weeks improved cognitive 

performance in all patients and cognitive impairment was eliminated in six patients 

(Letendre et al., 2006). Another study in eleven patients demonstrated that lithium 

treatment for 10 weeks did not improve cognition, but imaging indicated that lithium 

reduced CNS injury (Schifitto et al., 2009). Thus, although lithium clearly is 

neuroprotective, further studies appear warranted to clarify if GSK3 inhibitors reduce 

cognitive impairments in patients with HIV encephalitis. 

 

6.7. Cerebral malaria 

 Cerebral malaria results from infection with Plasmodium falciparum and causes 

long-term cognitive impairments even in survivors with successful eradication of the 

parasite (Falchook et al., 2003; Boivin et al., 2007). Dai et al (2012) found that 

experimental cerebral malaria induced in mice caused significant hemorrhage in brain 

regions, cognitive impairment, and activation of GSK3 after eight days. Lithium 

treatment (20 mg/kg; i.p.) for 10 days in conjunction with chloroquine administration 

normalized cognitive deficits in infected mice in the object location test, suggesting that 

lithium may ameliorate some of the long-term neurological deficits associated with 

cerebral malaria (Dai et al., 2012).  
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6.8. Diabetes  

 People with diabetes have a higher rate of impaired learning, memory, and mental 

flexibility, and are at a higher risk for developing Alzheimer’s disease than the general 

population, and learning deficits also occur in insulin-deficient mice. Insulin-deficient 

diabetes induced in rats by streptozotocin caused long-term memory deficits in the 

autoshaping learning task that were reversed by treatment with lithium given after the 

training task (Ponce-Lopez et al., 2011). Insulin-deficient diabetes induced in mice by 

treatment with streptozotocin impaired performances in the Barnes maze and the object 

recognition task that were attenuated by treatment with the GSK3 inhibitor AR-A014418 

(30 µmol/kg; i.p.) (King et al., 2013). These results suggest that GSK3 inhibition may be 

useful for attenuating diabetes-associated cognitive deficits. 

 

6.9. Postoperative cognition dysfunction 

 Postoperative cognition dysfunction, characterized by impairment of recent 

memory, concentration, language comprehension, and social integration, occurs in over 

60% of older patients following surgery and anesthesia and can persist for weeks or 

months after surgery (Hovens et al., 2012). Treatment of 18 month old male rats with 

lithium (2 mmole/kg; i.p.) for seven days prior to exploratory laparotomy attenuated 

surgery-induced impaired performance in the Morris water maze (Zhao et al., 2011). 

 

7. GSK3 inhibitors can improve treatment-induced cognitive impairments 

 GSK3 inhibition has been found to reduce cognitive impairments that were 

induced in rodents by several different treatments. Cranial irradiation therapy is a 
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common treatment for brain tumors, and although cancer cure rates are improved, 

learning disorders and memory deficits commonly occur following treatment in children 

and adults (Roman and Sperduto, 1995). Pretreatment of mouse pups with lithium (40 

mg/kg; i.p.) for one week prior to cranial irradiation improved performance in the Morris 

water maze task tested six weeks after irradiation (Yazlovitskaya et al., 2006). Similarly, 

pretreatment with the GSK3 inhibitors SB216763 (0.6 mg/kg; i.p.) or SB415286 (1 

mg/kg; i.p.) for 3 days before cranial irradiation improved Morris water maze 

performance in irradiated mice (Thotala et al., 2008). In addition, Khasraw et al (2012) 

noted that lithium treatment reduces radiation-induced gliosis that can contribute to 

decreased neurogenesis and cognitive deficits. A phase I clinical trial in which five 

cancer patients were treated with lithium one week before cranial irradiation showed no 

decline in short term memory of these patients in global and spatial memory test (Yang et 

al., 2007). 

 In addition to cranial radiation, GSK3 inhibitors also provided protection from 

cognitive impairments induced by a variety of other treatments. Chronic lithium 

treatment (5.0 to 7.5 mEq/kg; orally; 3 times/day) of 8 rhesus monkeys between the ages 

of 13 and 30 years restored working memory on the delayed response task after 

impairment induced by cirazoline treatment, an adrenergic receptor agonist (Birnbaum et 

al., 2004). Chronic stress impaired spatial memory in the Morris water maze task in rats, 

and this was prevented by four weeks of lithium treatment in the food (Vasconcellos et 

al., 2003; de Vasconcellos et al., 2005). Infusion of the protein kinase A inhibitor H-89 

into the hippocampal CA1 region of rats impaired spatial memory retention in the Morris 

water maze task, which was prevented by four weeks of pretreatment with lithium (600 
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mg/L in the drinking water)  (Sharifzadeh et al., 2007). Administration of the anesthetic 

sevoflurane to rats activated GSK3 and impaired memory consolidation, both of which 

were reversed by acute lithium treatment (100 mg/kg; i.p.) (Liu et al., 2010). Deficits in 

an autoshaping learning task induced in male rats by intracerebroventricular infusion of 

streptozotocin for 2 weeks were reversed by acute treatment with lithium (100 mg/kg; 

i.p.) (Ponce-Lopez et al., 2011).  Intracerebroventricular infusion of angiotensin II to rats 

increased GSK3β activity and induced deficits in the Morris water maze, which was 

reversed by treatment with the GSK3 inhibitor SB216763 (20 ng/µl; icv) (Tian et al., 

2012). Memory impairment in the contextual fear conditioning task induced by 

administration to mice of MK-801, an N-methyl-D-aspartate receptor antagonist, was 

reversed by treatment twice daily for 3 days with the GSK3 inhibitor AZD1080 (4 or 15 

µmol/kg; oral gavage) (Georgievska et al., 2013). Lithium treatment (1 or 4 ml/kg of 0.15 

M lithium) also attenuated ouabain-induced impairments in the Morris water maze 

(Wang et al., 2013). Adult offspring of poly(I:C)-exposed mothers, an infection-based 

mouse model of neuropsychiatric disease, displayed deficits in the spontaneous 

alternation in the Y-maze cognitive task that were alleviated by acute administration of 

the GSK3 inhibitor TDZD-8 (1 or 10 mg/kg; i.p.) (Willi et al., 2013). The diversity of 

chemicals and treatments used to induce cognitive deficits that were ameliorated by 

GSK3 inhibitors indicates that protection was unlikely due to blocking the action of the 

insult, but more likely due to protection of a fundamental component of the cognitive 

process. 
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8. Effects of lithium treatment on cognition in patients with bipolar disorder 

 Lithium was the first mood stabilizer used to successfully treat bipolar disorder, 

previously known as manic-depression, and much evidence indicates that inhibition of 

GSK3 by lithium is an important component of its therapeutic action (Jope, 2011). 

Although previously often overlooked, it is now recognized that significant cognitive 

deficits are associated with bipolar disorder, such as impairments in verbal memory, 

processing speed, and attention, and that these can persist even during clinical remission 

(Clark et al., 2002; Martinez-Aran et al., 2004). Furthermore, several studies have 

concluded that bipolar disorder patients exhibit cognitive impairments in all phases of the 

disorder and that these are a fundamental characteristic of bipolar disorder, not a 

consequence of medications (Smigan and Perris, 1983; Engelsmann et al., 1988; 

Robinson and Ferrier, 2006; Mur et al., 2008; López-Jaramillo et al., 2010).  

 Since lithium is the classical mood stabilizer, many investigators have examined 

its effects on cognition in bipolar disorder patients, but results have been contradictory 

and the issue remains unsettled (Balanzá-Martínez et al., 2010; Dias et al., 2012). Many 

studies concluded that cognitive abilities of lithium-treated bipolar disorder patients did 

not differ from those free of medication (Marusarz et al., 1981; Lund et al., 1982; Smigan 

and Perris, 1983; Engelsmann et al., 1988; Joffe et al.,1988; Sharma and Singh, 1988; 

Jauhar et al., 1993; Van Gorp et al., 1998; El-Badri et al., 2001; Clark et al., 2002; 

Altshuler et al., 2004; Mur et al., 2008; López-Jaramillo et al., 2010; Arts et al., 2011). 

On the other hand, several studies found that lithium has a mild negative effect on 

cognition in bipolar disorder patients. Cognitive domains that have been reported to be 

worsened after lithium treatment of bipolar disorder patients include verbal learning and 
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memory, attention, and short-term memory (Christodoulou et al., 1981; Elsass et al., 

1981; Loo et al., 1981; Shaw et al., 1987; Hatcher et al., 1990; Honig et al., 1999; Pachet 

and Wisniewski, 2003; Wingo et al., 2009). However, there are also reports of no lithium-

induced impairments of visuospatial skills, visual memory, delayed verbal memory, 

attention, and executive performance (Honig et al., 1999; Pachet and Wisniewski, 2003, 

Wingo et al., 2009). A review of the effects of lithium in bipolar disorder patients 

concluded that there were five consistent findings: "impairment on tasks of psychomotor 

speed, impaired functioning in the majority of studies examining verbal memory, no 

impairment on tasks of visuospatial constructional ability or attention/ concentration, and 

no negative cumulative effect" (Pachet and Wisniewski, 2003). A meta-analysis 

concluded that in bipolar disorder patients "lithium treatment appears to have only few 

and minor negative effects on cognition" (Wingo et al., 2009). These investigators also 

pointed out that in many studies there have been methodological and statistical 

limitations, non-homogeneous patient populations, diverse research designs, varied 

diagnostic methods, and a number of uncontrolled variables (Pachet and Wisniewski, 

2003; Wingo et al., 2009; Balanzá-Martínez et al., 2010; Dias et al., 2012). Altogether, 

the effect of lithium on cognitive dysfunction in bipolar disorder patients remains 

unresolved, but it is evidently not beneficial for the cognitive facet of bipolar disorder 

and may be moderately detrimental for specific functions, but a conclusive resolution will 

require further well-designed studies. Thus, despite the many conditions in which lithium 

improves cognitive performance reviewed here, it is rather ironical that lithium does not 

do so in bipolar disorder, the preeminent condition that lithium has proven therapeutic 

efficacy on the defining characteristic of the disorder. 
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9. Mechanisms underlying improved cognition following GSK3 inhibition 

 Multiple mechanisms appear to contribute to the cognition-protecting actions of 

GSK3 inhibitors, several of which include the following. 

 

9.1. Long-term potentiation (LTP) and long-term depression (LTD) 

The most direct mechanisms known by which GSK3 may regulate cognitive 

functions are by influencing the processes of LTP and LTD (Bradley et al., 2012). LTP 

and LTD are components of synaptic plasticity that are thought to be critical regulators of 

learning and memory, and GSK3 is intimately involved in both processes. LTP increases 

the inhibitory serine-phosphorylation of GSK3 and overexpression or activation of GSK3 

impairs LTP (Hooper et al., 2007; Zhu et al., 2007). These findings indicate that GSK3 

has to be inactivated for optimal establishment of LTP, raising the possibility that 

pathologically active GSK3 may impair LTP in conditions associated with impaired 

cognition. In contrast, LTD increases GSK3 activity and inhibition of GSK3 prevents the 

induction of LTD, demonstrating that active GSK3 supports the induction of LTD 

(Peineau et al., 2007). Thus, inhibition of GSK3 facilitates LTP, but GSK3 activity is 

required for LTD, indicating that lithium and other GSK3 inhibitors may prevent 

impairments in LTP and reduce the induction of LTD. Support for this relationship comes 

from studies demonstrating that the rescue of abnormal LTP and/or LTD following 

treatment with GSK3 inhibitors is accompanied by increased cognition in mouse models 

of Fragile X syndrome (Choi et al., 2011; Franklin et al., 2013), AD (Ma et al., 2010; Li 

et al., 2012), and Down syndrome (Contestabile et al., 2013). These studies indicate that 
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GSK3 inhibition may improve learning and memory impairments in some conditions by 

regulating hippocampal synaptic plasticity.   

 

9.2. Neurogenesis 

 Part of the improvement in cognition provided by administration of GSK3 

inhibitors in rodent models of diseases with impaired cognition may be due to increased 

neurogenesis. The discovery that new neurons are generated in the adult hippocampus led 

to an explosion of studies to identify the functional consequences of neurogenesis, and to 

determine if impaired neurogenesis contributes to CNS diseases and is bolstered by 

therapeutic drugs (Lie et al., 2004). Neurogenesis appears to support certain forms of 

learning and memory and may be defective in some conditions associated with 

impairments in cognition (van Praag et al., 2005; Leuner et al., 2006; Deng et al., 2010; 

Massa et al., 2011). Evidence indicates that dysregulated GSK3 may contribute to deficient 

neurogenesis in some conditions because neurogenesis is impaired by constitutively active 

GSK3 in mice (Eom and Jope, 2009), and molecular deletion of GSK3 in mouse neural 

progenitors increased neurogenesis (Kim et al., 2009). Thus, in diseases such as 

depression, Fragile X syndrome, and Alzheimer's disease in which GSK3 in the CNS is 

abnormally active, an outcome may be diminished neurogenesis and consequently 

cognitive impairments. Conversely, neurogenesis is increased by treatment with lithium 

or other drugs that inhibit GSK3 (Chen et al., 2000: Hashimoto et al., 2003; Silva et al., 

2008; Wexler et al., 2008; Kim et al., 2009; Morales-Garcia et al., 2012), and treatment 

with the GSK3 inhibitor SB216763 (2 mg/kg; i.p.) every other day for 2 weeks increased 

neurogenesis that is impaired in mice expressing DISC1 mutations (Mao et al., 2009). 
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Thus, administration of GSK3 inhibitors may improve cognition in part by restoring 

impairments in neurogenesis. This relationship has been supported by studies reporting 

increased neurogenesis following administration of GSK3 inhibitors that was correlated 

with improved cognition in mouse models of Fragile X syndrome (Guo et al., 2012), 

Down syndrome (Contestabile et al., 2013), and AD (Serenó et al., 2009; Fiorentini et al., 

2010; Jo et al., 2011). 

 

9.3. Inflammation 

 GSK3 inhibitors may improve deficient cognitive functions in part by their anti-

inflammatory effects. Many CNS diseases are accompanied by neuroinflammation, 

which often exacerbates impaired neuronal function and survival. One critical outcome of 

neuroinflammation is the impairment of a broad range of cognitive functions (Streck et 

al., 2008). Since GSK3 was first identified as an important promoter of inflammatory 

responses in peripheral cells (Martin et al., 2005), an equivalent role for GSK3 has been 

established in the CNS (Beurel, 2011). Thus, GSK3 inhibitors diminish many 

inflammatory responses by both astrocytes and microglia in the CNS, as well as by 

peripheral immune cells, reducing inflammation in the CNS (Beurel and Jope, 2009; 

Cheng et al., 2009; Yuskaitis and Jope, 2009). Transcription factors represent a key group 

of targets by which GSK3 inhibitors reduce inflammation, including suppressing 

promoters of inflammation such as transcription factors in the STAT (signal transducer 

and activator of transcription) family and NF-κB, and amplifying anti-inflammatory 

actions of the transcription factor CREB (cyclic AMP response element binding protein) 

(Martin et al., 2005; Beurel and Jope, 2008). Anti-inflammatory actions of GSK3 
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inhibitors are sufficient to profoundly diminish diseases in which inflammation has a 

major impact, such as sepsis and the mouse model of multiple sclerosis (Martin et al., 

2005; De Sarno et al., 2008; Beurel et al., 2011; Beurel et al., 2013). Inflammation is 

well-known to accompany and exacerbate neurodegenerative diseases, such as AD, and 

neuroinflammation is also now recognized as an important component of the disease 

process in psychiatric diseases, such as depression (Raison and Miller, 2013) and 

schizophrenia (Mansur et al., 2012). Thus, by reducing inflammation, GSK3 inhibitors 

may improve cognitive functions otherwise damaged by inflammatory molecules in many 

neurological and psychiatric diseases involving neuroinflammation, such as ischemia, 

traumatic brain injury and AD. 

 

9.4. Neuroprotection 

 One of the most notorious actions of dysregulated GSK3 is its promotion of 

apoptosis, an outcome thought to frequently contribute to neurological diseases (Beurel 

and Jope, 2006). It appears that GSK3 promotes the intrinsic apoptotic signaling pathway 

following exposure to apparently any insult capable of inducing this response. 

Reciprocally, the ability of GSK3 inhibitors to reduce apoptosis is an important part of 

their well-recognized characteristic as neuroprotective agents. This neuroprotective 

capacity may underlie several of the reported cognition-protective effects of GSK3 

inhibitors discussed above, particularly in neurodegenerative diseases. For example, 

GSK3 can promote apoptosis in conditions modeling AD (Mines et al., 2011) and 

Parkinson's disease (King et al., 2001; Chen et al., 2004). Thus, administration of GSK3 
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inhibitors may diminish cognition impairments in some conditions by reducing apoptotic 

loss of neurons rather than by a direct effect on cognitive mechanisms. 

 In addition to apoptosis, GSK3 inhibitors also provide neuroprotective resilience 

by a number of mechanisms, such as reducing neuronal dysfunction resulting from 

endoplasmic reticulum stress (Song et al., 2002; Meares et al., 2011) and oxidative stress 

(Schäfer et al., 2004; King and Jope, 2005), and by promoting the production of 

intracellular chaperone proteins (Chu et al., 1996; Bijur and Jope, 2000). Besides being 

implicated in neurodegenerative diseases, these conditions associated with impaired 

neuronal function have been linked to many psychiatric and neurological diseases (Bown 

et al., 2000; Lin and Beal, 2006; Andreazza et al., 2010; Roussel et al., 2013). Thus, 

bolstering neuronal resilience, as well as reducing apoptosis, may contribute to the 

capacity of GSK3 inhibitors to reduce disease-associated impairments in cognition.  

 

10. Conclusions 

 Impairment of cognition is a devastating outcome of many conditions affecting 

the CNS. In a remarkable number and broad spectrum of conditions that cause cognitive 

impairments in rodents, inhibition of GSK3 protects cognitive processes or promotes 

their repair (Figure 1). One limitation of the reported pharmacological intervention 

studies is that the majority  have relied on lithium, and have not compared its effects with 

other GSK3 inhibitors. Thus there is a great need for cognition studies using other GSK3 

inhibitors, as well as for further studies of rodents with molecular modifications of 

GSK3, to verify that GSK3 is the therapeutic target protecting cognitive processes, and to 

provide alternatives to lithium for therapeutic interventions. The current state of research 
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is also limited by the relatively small number of different GSK3 inhibitors that have been 

tested in cognition studies, which is surprising because many GSK3 inhibitors have been 

developed during the last decade (Eldar-Finkelman and Martinez, 2011). Additionally, 

little information is available from comparative studies using several GSK3 inhibitors in 

cognition studies, or in studies of the duration of their effectiveness. Thus, the reviewed 

studies have provided strong initial evidence that GSK3 inhibitors have the potential to 

ameliorate cognitive impairments, but further studies are needed to identify the most 

efficacious drugs and those that are effective during prolonged administration. 

Furthermore, we should emphasize that there is likely significant overlap in behaviors 

that are commonly labeled as being related to cognition, depression, mania, anxiety, and 

others, so that drug effects on one may certainly affect others. Additionally, clarification 

of the mechanisms underlying the cognitive enhancing actions of GSK3 inhibitors in each 

condition would provide a better understanding of the causes of cognitive decline and of 

the mechanisms that may be exploited in the development of improved interventions. It is 

unlikely that a single mechanism accounts for all of the reported cognition-protecting 

effects of GSK3 inhibitors. We have discussed four mechanisms that are likely to play a 

role in different conditions, but this short list does not exclude additional mechanisms of 

action. Most importantly, considering the prevalence and devastating consequences of 

loss of cognitive functions, and the dearth of efficacious interventions, the findings 

summarized here emphasize the importance of greater development and utilization of 

GSK3 inhibitors to treat conditions causing cognitive impairments.  
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Figure 1. GSK3 inhibitors improve impaired cognition in multiple conditions.  

Schematic representation of conditions in which inhibition of GSK3 improves 

impairments in cognitive processes. The improvements in impaired cognition following 

administration of GSK3 inhibitors likely involve a variety of different mechanisms, such 

as supporting long-term potentiation and diminishing long-term depression, promotion of 

neurogenesis, reduction of inflammation, and increasing a number of neuroprotective 

mechanisms. 
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Abstract 

Fragile X Syndrome (FXS) is caused by suppressed expression of fragile X mental 

retardation protein (FMRP), which results in intellectual disability accompanied by many 

variably manifested characteristics, such as hyperactivity, seizures, and autistic-like 

behaviors. Treatment of mice that lack FMRP, Fmr1 knockout (KO) mice, with lithium 

has been reported to ameliorate locomotor hyperactivity, prevent hypersensitivity to 

audiogenic seizures, improve passive avoidance behavior, and attenuate sociability 

deficits. To focus on the defining characteristic of FXS, which is cognitive impairment, 

we tested if lithium treatment ameliorated impairments in four cognitive tasks in Fmr1 

KO mice, tested if the response to lithium differed in adolescent and adult mice, and 

tested if therapeutic effects persisted after discontinuation of lithium administration. 

Fmr1 KO mice displayed impaired cognition in the novel object detection task, temporal 

ordering for objects task, and coordinate and categorical spatial processing tasks. Chronic 

lithium treatment of adolescent (from 4-8 weeks of age) and adult (from 8-12 weeks of 

age) mice abolished cognitive impairments in all four cognitive tasks. Cognitive deficits 

returned after lithium treatment was discontinued for 4 weeks. These results demonstrate 

that Fmr1 KO mice exhibit severe impairments in these cognitive tasks, that lithium is 

equally effective in normalizing cognition in these tasks whether it is administered to 

young or adult mice, and that lithium administration must be continued for the cognitive 

improvements to be sustained. These findings provide further evidence that lithium 

administration may be beneficial for individuals with FXS.  
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Introduction 

 Fragile X syndrome (FXS) is the most common cause of inherited intellectual 

disability and is the most prevalent monogenetic cause of autism spectrum disorders. 

FXS is caused by a trinucleotide CGG repeat expansion on the X chromosome that 

suppresses expression of Fragile X Mental Retardation Protein (FMRP) (Verkerk et al. 

1991; Pierreti et al. 1991), which is thought to cause the intellectual, behavioral, and 

physical abnormalities characteristic of FXS. In mouse hippocampus, FMRP expression 

is highest at postnatal day 7 (Lu et al. 2004), and FMRP is important for establishing 

functional neuronal networks (Gatto & Broadie 2009). Since individuals with FXS lack 

FMRP during postnatal development, crucial questions are whether cognitive deficits can 

be ameliorated pharmacologically, and if improvements depend on early intervention. 

 FXS is modeled in Fmr1 knockout (KO) mice (Bakker et al. 1994) that display 

several characteristics of FXS, including impaired social interactions, locomotor 

hyperactivity, and decreased passive avoidance learning (Kooy et al. 1996; Mineur et al. 

2002; Yan et al. 2004). Remarkably, all of these behavioral phenotypes are normalized in 

Fmr1 KO mice by lithium treatment (Min et al. 2009; Mines et al. 2010; Yuskaitis et al. 

2010a; Liu et al. 2011). Furthermore, lithium is the only agent that has improved 

performance on a cognitive task in FXS patients in a formal trial setting (Berry-Kravis et 

al. 2008). Since lithium is safely used in patients with bipolar disorder, including children 

and adolescents (Alessi et al. 1994; Ryan et al. 1999; Findling et al. 2011), these findings 

suggest that lithium is a promising therapeutic agent for FXS. 

 Here we tested if lithium treatment can reverse several cognitive deficits in Fmr1 

KO mice. We also tested if the beneficial effects of lithium treatment on cognitive tasks 
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in Fmr1 KO mice differ between young and adult mice, since the lack of FMRP during 

development may have established irreversible morphological and neuronal abnormalities 

that preclude effective intervention in adults. Administration of lithium to lactating 

mothers or to pups immediately upon weaning at 3 weeks of age results in retarded 

growth of the pups (Min et al., 2009), therefore lithium administration was initiated when 

mice reached 4 weeks of age to compare its effects on performance in cognitive tasks in 

young (from 4-8 weeks of age) mice with adult-treated (from 8-12 weeks of age) mice. 

Additionally, the effects of lithium withdrawal from mice treated during adolescence 

were examined to test if lithium-induced improvements in cognitive task performance by 

Fmr1 KO mice required continual lithium treatment or if they remained stable once 

repaired, which may occur if lithium treatment resulted in long-lasting repairs of deficits 

in neural circuitry or neurogenesis in Fmr1 KO mice. Significant deficits in Fmr1 KO 

mice were found in object novelty detection, temporal order memory, and spatial learning 

tests, and each of these was improved by chronic lithium treatment of adolescent and 

adult mice, whereas the cognitive deficits were reinstated after four weeks of lithium 

withdrawal. These results further support the potential benefits of lithium treatment in 

FXS. 

 

Materials and methods 

 

Mice   

This study used male C57Bl/6J littermates, with or without a disruption of the Fmr1 

gene (originally kindly provided by Dr. W. Greenough, University of Illinois). Mice were 

weaned 3 weeks after birth, group housed, tested between 1000 and 1400, and 7-20 mice 
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were used in each experiment as described in the figure legends. The Fmr1 KO mice 

were generated by breeding male C57BL/6J hemizygous Fmr1 KO mice and female 

C57Bl/6J heterozygous Fmr1 KO mice to generate male homozygous Fmr1 KO mice and 

wild-type (WT) littermates. Genotypes were determined by PCR using the Jackson 

Laboratory protocol for genotyping Fmr1 mice. To test chronic lithium treatment, Fmr1 

KO mice and WT mice were given water ad libitum, and were fed either normal 18% 

protein rodent diet or the same diet with 0.2% lithium carbonate (both from Teklad, 

Madison, WI) with provision of an additional bottle containing saline to prevent 

hyponatremia. This is a therapeutically relevant treatment regimen that produces serum 

lithium concentrations of 0.6-0.8 mM (Chen et al. 2000; O'Brien et al. 2004; Shaltiel et 

al. 2008; Jope 2011; Contestabile et al. 2013), within the 0.5-1.2 mM range that is 

therapeutic in human patients. Adult mice were treated with lithium for 4 weeks and 

throughout the behavioral tests. For lithium treatment during adolescence, mice were 

treated with lithium from 4 until 8 weeks of age and throughout the behavioral tests, then 

lithium was discontinued for 4 weeks, and the mice were retested. Mice were housed in 

light and temperature controlled rooms and treated in accordance with NIH and 

University of Miami Institutional Animal Care and Use Committee regulations. 

 

 Object novelty detection task 

Recognition memory for a novel object compared to a familiar object was assessed 

by the object novelty detection task (Hoge & Kesner 2007; Hunsaker & Kesner 2008; 

Hunsaker et al. 2012). For this task, a Plexiglas box (26 cm long x 20 cm wide x 16 cm 

tall) and four objects in duplicate (4-6 cm diameter x 2-6 cm height) were used. During 
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the first session, two copies of Object 1 were placed at each end of the box, and the 

mouse was allowed to explore the objects for 5 min. The mouse was then removed to an 

opaque holding container for 5 min, and the objects were replaced with two copies of 

Object 2 for the next session. After 5 min exploring during session 2, the mouse was 

placed in the holding container and the copies of Object 2 were replaced with duplicates 

of Object 3. Following exploration during session 3, the mouse was removed and the 

objects were replaced by an unused copy of Object 1 and a novel Object 4 for the mouse 

to explore during the 5 min test session. More time exploring the novel Object 4 

compared to the familiar Object 1 indicates that the mouse remembered previously 

exploring Object 1, but equal exploration time between the two objects indicates that the 

mouse has impaired recognition memory. Object exploration was defined as the mouse 

sniffing or touching the object with its nose, vibrissa, mouth, or forepaws, and time spent 

near or standing on top of the objects without interacting with the object was not counted 

as exploration. Exploration time of the novel and familiar object is presented, and 

changes in object exploration ratio were calculated as: (exploration time of Object 4 – 

exploration time of Object 1)/ (exploration time of Object 1 + exploration time of Object 

4). This calculation constrains the ratios to be between -1 and 1, and a ratio approaching 1 

indicates an intact memory of Object 1.  

For this and all other behavioral assessments, the sessions were filmed, a white noise 

generator (55 dB) was used, and each apparatus and object was cleaned with 70% ethanol 

between each test session.  
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Temporal ordering for objects task  

Temporal order memory was assessed using the temporal ordering for objects task 

(Mitchell & Laiacono, 1998; Hannesson et al.; 2004; Hoge & Kesner 2007; Hunsaker et 

al. 2012). Similar to the object novelty detection task, the same box was used and a 

mouse received three sessions to explore two copies of a new set of objects (Objects 5, 6, 

7). For the 5 min test session, an unused copy of Object 5 and an unused copy of Object 7 

were placed in the box and the mouse was allowed to explore. A mouse with normal 

temporal order memory spends more time exploring the first object (Object 5) presented 

compared to the most recent object (Object 7). Time exploring Object 5 and Object 7 are 

presented, and changes in object exploration ratio were calculated as: (exploration time of 

Object 5 – exploration time of Object 7)/ (exploration time of Object 5 + exploration time 

of Object 7).  

 

Coordinate spatial processing task 

Spatial memory was assessed in mice using the coordinate and categorical spatial 

processing tasks (Goodrich-Hunsaker et al. 2005; Goodrich-Hunsaker et al. 2008; 

Hunsaker et al. 2009; Hunsaker et al. 2012). The coordinate spatial processing task 

consisted of a 15 min habituation session, a 5 min holding time, and a 5 min test session. 

For the habituation session a mouse was placed at the edge of the table facing 2 different 

objects spaced 45 cm apart, and the mouse was allowed to explore the table and the 

objects for 15 min. Then the mouse was placed in an opaque holding container for 5 min. 

For the test session, the objects were moved closer together so that they were 30 cm 
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apart, and the mouse was allowed to explore the objects for 5 min. Mice that have intact 

spatial memory display increased exploration of the objects during the test session 

compared with the last 5 min of the habituation session. For the coordinate spatial 

processing task, the exploration ratio was calculated as: (exploration time during the 5 

min test session)/ (exploration time during the 5 min test session + exploration time 

during the last 5 min of the habituation session). Increased exploration during the 5 min 

test session compared to the last 5 min of the habituation session is indicated by a ratio 

>0.5. 

 

Categorical spatial processing task 

Like the coordinate spatial processing task, the categorical spatial processing task 

(Goodrich-Hunsaker et al. 2005; Goodrich-Hunsaker et al. 2008; Hunsaker et al. 2009; 

Hunsaker et al. 2012), is used to assess spatial memory with 2 novel objects, which are 

different from the objects used in the coordinate spatial processing task. For the 

habituation session, a mouse was placed on the edge of the table facing 2 different objects 

that were spaced 45 cm apart and allowed to explore the table and objects for 15 min. 

Then the mouse was placed in an opaque container for 5 min, and the position of the 

objects was interchanged, while the distance was maintained. For the test session, the 

mouse was allowed to explore the objects for 5 min. Increased exploration of the objects 

during the test session compared with the last 5 min of the habituation phase indicates 

that the mice remember the object positions. The same exploration ratio was calculated 

for the categorical spatial processing task as in the coordinate spatial processing task.  
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Statistical analysis 

Statistical significance was assessed by two factor ANOVA with genotype and 

treatment as factors followed by Bonferroni’s multiple comparison tests (for lithium 

treatment in WT and Fmr1 KO adult and adolescent mice), or by one factor ANOVA (for 

discontinued lithium treatment in WT and Fmr1 KO mice), or Student’s t-test (for time 

spent with each object in the object novelty detection task and the temporal ordering for 

objects task).  

 

Results 

Chronic lithium treatment significantly improves object novelty detection in Fmr1 KO 

mice  

We tested if cognition was impaired in Fmr1 KO mice in four hippocampus-

dependent learning tasks, if chronic lithium treatment repaired cognitive deficits in Fmr1 

KO mice and if there were different outcomes after lithium was administered to 

adolescent mice (from 4-8 weeks of age) or adult mice (from 8-12 weeks of age). The 

object novelty detection task is a dentate gyrus-dependent task that assesses the ability to 

discriminate between familiar and novel objects, indicated by more time spent exploring 

a novel object than a familiar object (Otto & Eichenbaum 1992; Knight 1996; Dolan & 

Fletcher 1997; Lisman 1999; Hunsaker & Kesner 2008). Previous reports show that novel 

object recognition is impaired in Fmr1 KO mice (Ventura et al. 2004; Pacey et al. 2011; 

Bhattacharya & Klann 2012). WT mice spent significantly more time exploring the novel 

object than the familiar object, whereas Fmr1 KO mice spent equivalent amounts of time 
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exploring each object (Figure 1A). Thus, there was a significant interaction between 

genotype and treatment and the object exploration ratio differed between Fmr1 KO and 

WT mice (Figure 1B). The impairment in object novelty detection in Fmr1 KO  mice was 

corrected by lithium treatment, and lithium was equally effective after administration to 

adult or adolescent mice (Figure 1A). Lithium treatment of adolescent or adult WT mice 

did not alter performance in the object novelty detection task. In either adolescent or 

adult Fmr1 KO mice that were treated with lithium, the exploration ratio was 

significantly increased to a level equivalent to that of WT mice (Figure 1B). These results 

demonstrate that object novelty detection is impaired in Fmr1 KO mice, and that lithium 

treatment of adolescent or adult Fmr1 KO mice corrects this impairment.  

 

Lithium treatment normalizes temporal order memory in Fmr1 KO mice 

The temporal ordering for objects is a hippocampal CA1-dependent task that is 

exhibited by mice spending less time with an object most recently presented in the 

previous habituation session (Honey et al. 1998; Wallenstein et al. 1998; Lisman 1999; 

Rolls & Kesner 2006; Hoge & Kesner 2007; Hunsaker et al. 2008; Hunsaker et al. 2012). 

WT mice, but not Fmr1 KO mice, spent more time exploring the first object presented 

than the most recent object presented (Figure 2A). There was a significant interaction 

between genotype and treatment in the temporal ordering task, and the object exploration 

ratio differed significantly between Fmr1 KO and WT mice (Figure 2B). The impairment 

in temporal order memory in Fmr1 KO mice was corrected by lithium treatment, and 

lithium was similarly effective after administration to adult mice or adolescent mice 

(Figure 2A). Lithium treatment of adolescents or adults significantly increased the 
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exploration ratio in Fmr1 KO mice, whereas lithium treatment did not affect the 

performance of WT mice in this task (Figure 2B). Thus, temporal order memory is 

impaired in Fmr1 KO mice, and is repaired by lithium treatment of adolescent or adult 

Fmr1 KO mice.  

 

Treatment with lithium repairs spatial memory impairment in Fmr1 KO mice 

The coordinate and categorical spatial learning tasks assess metrical and topological 

spatial pattern separation, respectively, in similar spaces (Save et al. 1992; Tsien et al. 

1996; Long & Kesner 1996; Lisman 1999; Goodrich-Hunsaker et al. 2005; Hunsaker et 

al. 2009; Goodrich-Hunsaker et al. 2008; Hunsaker et al. 2009; Hunsaker et al. 2012). 

The coordinate spatial learning task involves measuring the time spent exploring two 

objects after the objects have been moved closer together compared to the last 5 min of 

the habituation period. There was a significant interaction between genotype and 

treatment in the coordinate spatial learning task indicating that Fmr1 KO mice exhibited 

an impaired object exploration ratio compared to WT mice, demonstrating a deficit in 

coordinate spatial memory in Fmr1 KO mice (Figure 3A). Lithium treatment of adult or 

adolescent Fmr1 KO mice normalized coordinate spatial memory to that of WT mice, but 

did not affect the performance of WT mice. 

The categorical spatial learning task assesses the time spent exploring two objects 

after the position of the objects is transposed, with the distance unchanged, following the 

habituation phase. Fmr1 KO mice spent significantly less time than WT mice exploring 

the objects after the objects had been transposed, and there was a significant interaction 

between genotype and treatment (Figure 3B), revealing impaired categorical spatial 
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memory in Fmr1 KO mice. Administration of lithium did not alter the amount of time 

that WT mice spent exploring the objects that were transposed, but lithium treatment of 

adult or adolescent Fmr1 KO mice significantly increased the exploration ratio. Thus, the 

results of the coordinate and categorical spatial learning tests reveal impaired spatial 

pattern learning in Fmr1 KO mice, and that this is significantly improved by lithium 

treatment of either adolescents or adults.  

 

Learning deficits in Fmr1 KO mice are reinstated following lithium withdrawal 

 To determine if lithium’s enhancing effects on cognition in Fmr1 KO mice are 

sustained following lithium withdrawal, chronic lithium treatment was discontinued after 

the behavior tests in mice treated from 4 weeks until 8 weeks of age. Four weeks later the 

Fmr1 KO and WT mice were retested in all cognitive tasks. Prior testing in the same 

paradigms had no effect on re-test performance in the WT mice or Fmr1 KO mice that 

were not treated with lithium (Figures 4 and 5). Following lithium withdrawal, WT mice 

exhibited normal object novelty detection, indicating that there was no effect of lithium 

withdrawal in WT mice (Figure 4A). However, Fmr1 KO mice that were withdrawn from 

lithium treatment spent significantly less time exploring the novel object, revealing that 

impaired object novelty detection returned following lithium withdrawal in Fmr1 KO 

mice. Fmr1 KO mice that had been withdrawn from lithium demonstrated a significantly 

reduced object exploration ratio compared to WT mice that had been withdrawn from 

lithium (Figure 4B). The results show that the impairment in object novelty detection in 

Fmr1 KO mice returned following lithium withdrawal.  
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 Discontinuation of lithium treatment also reinstated the temporal order memory 

deficit in Fmr1 KO mice without affecting WT mice. Fmr1 KO mice that were 

discontinued from lithium treatment demonstrated deficient temporal order memory, 

whereas temporal order memory was unaltered by lithium withdrawal in WT mice 

(Figure 4C). The object exploration ratio was significantly reduced in Fmr1 KO, 

compared with WT, mice withdrawn from lithium (Figure 4D). Thus the effect of lithium 

in the temporal order task was not sustained in Fmr1 KO mice following four weeks of 

lithium withdrawal. 

 Coordinate and categorical spatial memory impairments also returned in Fmr1 

KO mice after lithium was withdrawn. Although WT mice maintained intact spatial 

memory, untreated and previously treated Fmr1 KO mice displayed significantly reduced 

object exploration ratios compared to WT mice in the coordinate spatial task (Figure 5A) 

and in the categorical spatial task (Figure 5B). Thus, the improvements in coordinate and 

categorical spatial processing in Fmr1 KO mice induced by lithium treatment were 

reversed when lithium treatment was discontinued. 

 

Discussion 

 Here we report impaired cognition in adult Fmr1 KO mice in four hippocampus-

dependent learning and memory tasks, and that each of these was significantly improved 

by chronic lithium treatment. Furthermore, lithium treatment was equally effective in 

ameliorating cognitive deficits when administered to adult or adolescent Fmr1 KO mice. 

Importantly, lithium administration did not affect the performance of adult or adolescent 

WT mice in these cognitive tasks, demonstrating an Fmr1 KO-specific improvement in 
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learning and memory. Discontinuation of lithium treatment caused cognitive impairments 

to return in Fmr1 KO mice, but lithium withdrawal did not alter the performance of WT 

mice.  

 Although the predominant characteristic of FXS is intellectual disability, severe 

cognitive deficits were initially difficult to identify in the Fmr1 KO mouse model. Fmr1 

KO mice display modest cognitive deficits in several hippocampus-dependent tasks, such 

as the Morris water maze, radial arm maze, and operant conditioning paradigms (Bakker 

1994; Kooy et al. 1996; D’Hooge et al. 1997; Fisch et al. 1999; Paradee et al. 1999; Peier 

et al. 2000; Mineur et al. 2002). Fmr1 KO mice also exhibit deficits in fear motivated 

learning tasks, including passive and active avoidance behaviors, and contextual, 

conditioned and trace fear memory (Yan et al. 2004; Qin et al. 2005; Zhao et al. 2005; 

Brennan et al. 2006; Hayashi et al. 2007; Baker et al. 2010; Guo et al. 2011). Recently, 

severe deficits in non-aversive learning and memory tasks, including novel object 

recognition and context discrimination, have been identified in Fmr1 KO mice (Pacey et 

al. 2011; Eadie et al. 2012; Bhattacharya & Klann 2012). In the present study, Fmr1 KO 

mice exhibited significant impairments in recognition memory, working memory, and 

short-term memory that are assessed in the object novelty detection task and the temporal 

ordering for objects task, and spatial memory measured in the coordinate and categorical 

spatial processing tasks (Goodrich-Hunsaker et al. 2005; Hoge & Kesner 2007; Hunsaker 

& Kesner 2008; Goodrich-Hunsaker et al. 2008; Hunsaker et al. 2009; Hunsaker et al. 

2012). As previously discussed (Mineur et al. 2002; Ventura et al. 2004; Spencer et al. 

2008; Hagerman et al. 2009; Baker et al. 2010; Bhogal & Jongens 2010; Guo et al. 2011; 

Bagni et al. 2012), similar deficits have been identified in patients with FXS, such as 
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impaired recognition memory, working memory, short-term memory, and spatial memory 

(Kemper et al. 1988; Cornish et al. 1999; Orstein et al. 2008; Gatto & Broadie 2009). 

Thus, the cognitive deficits displayed by Fmr1 KO mice may model some of the 

impairments in nonverbal measures of cognitive functions in FXS patients. 

 Chronic lithium treatment proved to be remarkably effective in essentially 

normalizing severe deficits in Fmr1 KO mice in novel object detection, temporal 

ordering for objects, and coordinate and categorical spatial processing tasks. The lithium 

treatments were designed to test the hypothesis that treatment of younger Fmr1 KO mice 

would be more effective than treatment of adult Fmr1 KO mice. This was based on the 

finding that FMRP is more highly expressed in young than adult mouse brain (Lu et al. 

2004), raising the possibility that its absence may produce irreversible deficits in adult 

Fmr1 KO mice. However, lithium treatment was equally effective in adolescent and adult 

Fmr1 KO mice in reversing cognitive deficits. This is an encouraging finding that 

suggests some cognitive impairments may be pharmacologically reversible even with 

post-adolescent administration in FXS, although caution must be exercised in translating 

results from Fmr1 KO mice. However, it is encouraging that lithium administration 

improved performance on a cognitive task in a small trial in FXS patients (Berry-Kravis 

et al. 2008). 

 The improvements in cognitive tasks reported here add to an extensive number of 

abnormal phenotypes that are improved by lithium treatment of Fmr1 KO mice. 

Phenotypes in Fmr1 KO mice that have been reported to be improved by lithium 

treatment include locomotor hyperactivity, audiogenic seizure hypersensitivity, increased 

spine density, macroorchidism, excess protein synthesis, social behavior deficits, 
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deficient passive avoidance learning, and synaptic plasticity (Min et al. 2009; Yuskaitis et 

al. 2010a, Yuskaitis et al. 2010b; Mines et al. 2010; Liu et al. 2011; Choi et al. 2011; Liu 

et al. 2012). Improvement of cognition by lithium treatment correlates well with previous 

findings in Fmr1 KO mice of altered synaptic plasticity, measured as long-term 

potentiation (LTP) and long-term depression (LTD). Fmr1 KO mice display enhanced 

metabotropic glutamate receptor (mGluR)-dependent LTD at hippocampal CA1 synapses 

(Huber et al. 2002; Hou et al. 2006; Nosyreva & Huber 2006) and deficient LTP at 

medial perforant path synapses in the dentate gyrus (Eadie et al. 2012). Lithium treatment 

in adolescent Fmr1 KO mice (from 5-6 weeks of age until 9-11 months of age) or adult 

Fmr1 KO mice (from 8 weeks of age to 4-5 months of age) normalized mGluR-

dependent LTD in the hippocampus, without affecting WT mice (Choi et al. 2011). 

Lithium inhibits glycogen synthase kinase-3 (GSK3) (Klein & Melton 1996), lithium 

treatment reduces abnormally hyperactive GSK3 in Fmr1 KO mice (Min et al. 2009; 

Yuskaitis et al. 2010a), and hyperactive GSK3 impairs LTP and promotes LTD (Hooper 

et al. 2007; Zhu et al. 2007). Taken together, these findings suggest that inhibition of 

GSK3 by lithium contributes to the normalization of synaptic plasticity and cognition in 

Fmr1 KO mice, although this conjecture will require further examination. The cognitive-

enhancing actions of lithium in Fmr1 KO mice are clearly dependent on the continued 

presence of lithium, since cognitive deficits were equivalent in Fmr1 KO mice withdrawn 

from lithium and Fmr1 KO mice that had never been given lithium. Thus, lithium 

treatment must be sustained in Fmr1 KO mice for cognitive benefits to persist.  

 In summary, lithium treatment of adolescent or adult Fmr1 KO mice is safe, and 

effectively remediates performance in several cognitive tasks, as well as providing many 
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previously reported beneficial effects in Fmr1 KO mice. These results extend previous 

findings that lithium ameliorates synaptic plasticity and/or cognitive deficits in Fmr1 KO 

flies (McBride et al. 2005), mice (Yuskaitis et al. 2010a; Liu et al. 2011; Choi et al. 

2011) and FXS patients (Berry-Kravis et al. 2008). Thus, there is increasing evidence that 

lithium may provide therapeutic benefits in FXS.  
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Figure 1. Chronic lithium treatment of adult or adolescent Fmr1 KO mice reverses 

impaired discrimination in the object novelty detection task.  

Lithium was administered for four weeks to adult (from 8 to 12 weeks of age) and 

adolescent (from 4 to 8 weeks of age) male Fmr1 knockout (KO) and wild-type (WT) 

mice prior to testing. (A) Times spent exploring the novel (N) and familiar (F) object. 

(Student’s t-test; *p<0.05 compared to time spent with familiar object; WT no treatment: 

n=20, t(46)=6.51, p<0.05; WT adult lithium treatment: n=10, t(18)=4.29, p<0.05; WT 

adolescent lithium treatment: n=9, t(10)=3.47, p<0.05; Fmr1 KO no treatment: n=20, 

t(48)=1.42, p>0.05; Fmr1 KO adult lithium treatment: n=10, t(18)=6.20, p<0.05; Fmr1 

KO adolescent lithium treatment: n=9, t(16)=4.19, p<0.05). (B) Exploration ratio. (two-

way ANOVA (genotype x treatment) followed by post hoc Bonferroni’s multiple 

comparison test; F(2,72)=33.02, p<0.05; **p<0.05 compared to untreated WT mice; 

*p<0.05 compared to same genotype without treatment).  
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Figure 2. Chronic lithium treatment of adult or adolescent Fmr1 KO mice ameliorates 

temporal order memory deficits.  

Adult and adolescent male Fmr1 KO and WT mice were treated with lithium for 4 weeks 

prior to testing. (A) Times spent exploring the first object presented (Object 5) and the 

object most recently explored (Object 7). (Student’s t-test; *p<0.05 compared to time 

spent with Object 7; WT no treatment: n=20, t(38)=4.82, p<0.05; WT adult lithium 

treatment: n=10, t(18)=2.74, p<0.05; WT adolescent lithium treatment: n=9, t(12)=4.56, 

p<0.05; Fmr1 KO no treatment: n=20, t(38)=3.16, p<0.05; Fmr1 KO adult lithium 

treatment: n=9, t(16)=6.21, p<0.05; Fmr1 KO adolescent lithium treatment: n=9, 

t(16)=2.38, p<0.05). (B) Exploration ratio. (two-way ANOVA (genotype x treatment) 

followed by post hoc Bonferroni’s multiple comparison test; F(2,75)=27.48, p<0.05; 

**p<0.05 compared to untreated WT mice; *p<0.05 compared to same genotype without 

treatment).  
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Figure 3. Chronic lithium treatment of adult or adolescent Fmr1 KO mice alleviates 

spatial processing impairments in Fmr1 KO mice.  

Adult and adolescent male Fmr1 KO and WT mice were treated with lithium for 4 weeks 

prior to testing. (A) Exploration ratio in the coordinate spatial processing task (two-way 

ANOVA (genotype x treatment) followed by post hoc Bonferroni’s multiple comparison 

test; F(2,68)=10.68, p<0.05). (B) Exploration ratio in the categorical spatial processing 

task (two-way ANOVA (genotype x treatment) followed by post hoc Bonferroni’s 

multiple comparison test; F(2,69)=24.93, p<0.05). **p<0.05 compared to untreated WT 

mice; *p<0.05 compared to same genotype without treatment; n=20 WT no treatment; 

n=10 WT adult treatment; n=9 WT adolescent treatment; n=20 Fmr1 KO no treatment; 

n=10 Fmr1 KO adult treatment; n=9 Fmr1 KO adolescent treatment.  
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Figure 4. Impaired cognitive deficits are reinstated in Fmr1 KO mice following 

discontinuation of lithium in the object novelty task and temporal ordering for objects 

task.  

Adolescent male Fmr1 KO and WT mice were treated with lithium for 4 weeks. After 

testing, lithium treatment was discontinued for 4 weeks and the mice were retested. Prior 

testing in the same paradigms had no effect on re-test performance in untreated WT mice 

or Fmr1 KO mice (Student’s t-test, p>0.05 compared to retest; object novelty detection 

task: WT no treatment: n=7, t(12)=0.78, p>0.05; FX no treatment: n=9, t(16)=0.29, 

p>0.05; temporal ordering for objects task: WT no treatment: n=7, t(12)=0.68, p>0.05; 

FX no treatment: n=9, t(16)=1.42, p>0.05). (A,B) Performance in the object novelty 

detection task. (A) Times spent exploring the novel (N) and familiar (F) object. (Student’s 

t-test; *p<0.05 compared to time spent with familiar object; WT no treatment: n=7, 

t(12)=3.78, p<0.05; WT discontinued lithium treatment: n=7, t(12)=3.57, p<0.05; Fmr1 

KO no treatment: n=9, t(16)=1.87, p>0.05; Fmr1 KO discontinued lithium treatment: 

n=9, t(16)=2.28, p<0.05)  (B) Exploration ratio. (one-way ANOVA followed by post hoc 

Bonferroni’s multiple comparison test; F(3,28)=47.41). *p<0.05 compared to matched 

WT mice. (C,D) Performance in the temporal ordering for objects task. (C) Times spent 

exploring the first object presented (Object 5) and the object most recently explored 

(Object 7). (Student’s t-test; *p<0.05 compared to time spent with Object 7; WT no 

treatment: n=7, t(12)=3.87, p<0.05; WT discontinued lithium treatment: n=9, t(12)=3.48, 

p<0.05; Fmr1 KO no treatment: n=9, t(16)=3.75, p<0.05; Fmr1 KO discontinued lithium 

treatment: n=9, t(16)=1.75, p>0.05). (D) Exploration ratio. (one-way ANOVA followed 

by post hoc Bonferroni’s multiple comparison test; F(3,28)=28.80, p<0.05). *p<0.05 

compared to matched WT mice.  
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Figure 5. Spatial processing impairments return in Fmr1 KO mice following 

discontinuation of lithium.  

Adolescent male Fmr1 KO and WT mice were treated with lithium for 4 weeks and then 

following testing, lithium treatment was discontinued for 4 weeks and the mice were 

retested. Prior cognitive testing in the same paradigms had no effect on re-test 

performance in untreated WT mice or Fmr1 KO mice (Student’s t-test, p>0.05 compared 

to retest; coordinate spatial processing task: WT no treatment: n=7, t(12)=0.32, p>0.05; 

FX no treatment: n=9, t(16)=0.27, p>0.05; categorical spatial processing task: WT no 

treatment: n=7, t(12)=0.24, p>0.05; FX no treatment: n=9, t(16)=0.28, p>0.05). (A) 

Exploration ratio in the coordinate spatial processing task. (one-way ANOVA followed by 

post hoc Bonferroni’s multiple comparison test; F(3,29)=11.34, p<0.05). (B) Exploration 

ratio in the categorical spatial processing task. (one-way ANOVA followed by post hoc 

Bonferroni’s multiple comparison test; F(3,27)=17.29, p<0.05). *p<0.05 compared to 

matched WT mice. n=7 WT no treatment; n=7 discontinued lithium treatment; n=9 Fmr1 

KO no treatment; n=9 Fmr1 KO discontinued lithium treatment. 
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Abstract 

 

Impairments in the inhibition of glycogen synthase kinase-3 (GSK3) have been linked to 

cognitive deficits in several disorders of the central nervous system, including the most 

common form of inherited intellectual disability, Fragile X Syndrome (FXS). Not only 

does FXS cause intellectual disability, but it is the leading monogenetic cause of autism, 

therefore it is crucial to identify therapeutic interventions to alleviate the cognitive 

deficits and other afflictions of FXS. FXS is caused by loss of function of the fragile X 

mental retardation 1 (FMR1) gene on the X chromosome, and mice that lack Fmr1 

(Fmr1 KO mice) exhibit hyperactive GSK3 in the hippocampus. Inhibition of GSK3 

significantly reduces locomotor hyperactivity and audiogenic seizure susceptibility in 

Fmr1 KO mice, raising the possibility that specific GSK3 inhibitors may also improve 

cognitive processes. The potential therapeutic utility of GSK3 inhibitors was tested on 

hippocampus-dependent cognitive behaviors. Administration of either of two specific 

GSK3 inhibitors, TDZD-8 or VP0.7, completely reversed impairments in four cognitive 

tasks, including novel object detection, coordinate and categorical spatial processing, and 

temporal order memory in Fmr1 KO mice. These results establish that cognitive deficits 

in Fmr1 KO mice can be ameliorated by treatment with inhibitors of GSK3, which may 

prove therapeutically beneficial in FXS. 
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Introduction 

Glycogen synthase kinase-3 (GSK3) is a ubiquitous enzyme that regulates many 

functions in the central nervous system (CNS). GSK3 is a serine/threonine kinase that 

exists in two isoforms, GSK3α and GSK3ß (Woodgett, 1990). The main way GSK3 is 

regulated is by inhibitory phosphorylation on serine-21 of GSK3α and serine-9 of 

GSK3ß, thus reducing its activity (Jope and Johnson 2004). Hyperactive GSK3 due to 

impairments in the inhibition of GSK3 has been linked to several common diseases of the 

CNS that include impaired cognition, and this has led many laboratories to evaluate the 

therapeutic role of GSK3 inhibitors (King et al., 2013). The first identified inhibitor of 

GSK3 is lithium (Klein and Melton 1996). Lithium has been used as a primary treatment 

for bipolar mood disorder, but the therapeutically relevant level of lithium is only about 1 

mM in human serum, which only inhibits GSK3 by ~35% (Klein and Melton, 1996). 

Higher levels of lithium are toxic, so higher doses cannot be used to cause greater 

inhibition of GSK3. Therefore, in order to test the validity of GSK3 as the therapeutic 

target of lithium in animal models of diseases, other selective, small molecule inhibitors 

of GSK3 need to be used.  

 One disease that exhibits impairments in the inhibition of GSK3 is fragile X 

syndrome (FXS) (Min et al. 2009; Yuskaitis et al. 2010a; Mines and Jope 2011), the most 

common form of inherited intellectual disability and the leading monogenetic cause of 

autism (Garber et al., 2006; Bhakar et al., 2012). FXS is caused by loss of function of the 

fragile X mental retardation 1 (FMR1) gene on the X chromosome (Pieretti et al., 1991), 

causing loss of its gene product, Fragile X Mental Retardation Protein (FMRP). FMRP 

acts as a brake upon translation of individual target mRNAs (Zalfa et al., 2003). The 
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absence of FMRP is believed to cause the abnormal behavioral and physiological 

symptoms of FXS, primarily including intellectual disability, but also social anxiety, 

attention deficit, speech and language impairments, seizures, and increased sensitivity to 

sensory stimuli (Errijgers et al., 2004; Ornstein et al., 2008; Dissanayake et al., 2009; 

Hernandez et al., 2009; Bagni et al., 2012).  

 In order to study the physiological and behavioral manifestations that result 

from loss of FMRP, a transgenic mouse model of FXS was generated by interrupting the 

Fmr1 gene (Bakker et al., 1994). Fmr1 knockout (KO) mice display several FXS- and 

autism-related behaviors, including increased audiogenic seizure susceptibility, 

hyperactivity, abnormal social behavior, and cognitive deficits. Using the Drosophila 

model of FXS, treatment with lithium was found to rescue some aberrant behaviors, 

including alterations in courtship behavior and defects in cognition (McBride et al., 

2005), but this effect may have been due to inhibition of inositol monophosphatase. This 

seminal finding led to investigations of the role that GSK3 activity and inhibition of 

GSK3 by lithium plays in the Fmr1 KO mouse. Inhibitory serine-phosphorylation of 

GSK3 is decreased in the Fmr1 KO mouse striatum, hippocampus, and cortex (Min et al., 

2009; Yuskaitis et al., 2010a), suggesting that pharmacological therapies to decrease 

GSK3 activity are a potential target to rescue some behavioral phenotypes of Fmr1 KO 

mice. Treatment with lithium to inhibit GSK3 has been reported to increase inhibitory 

serine-phosphorylation of GSK3 in Fmr1 KO mouse brain (Min et al., 2009; Yuskaitis et 

al., 2010a). Lithium treatment reduced susceptibility of Fmr1 KO mice to audiogenic 

seizures, decreased locomotor hyperactivity in the open field, improved some of the 

social behavior deficits (Mines et al., 2010), and ameliorated the passive avoidance 
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learning deficit in Fmr1 KO mice (Min et al., 2009; Yuskaitis et al., 2010a; Mines et al., 

2010; Liu et al., 2011). In order to test the validity of GSK3 as the therapeutic target of 

lithium and to address the predominant impairment in FXS, intellectual disability, we 

tested if acute pharmacological inhibition of GSK3 using two selective, small molecule 

inhibitors of GSK3, TDZD-8 and VP0.7, reversed cognitive impairments in Fmr1 KO 

mice. Using four hippocampus-dependent tasks we report that GSK3 inhibitors, but not 

mGluR inhibition, ameliorate learning deficits in Fmr1 KO mice. 

 

Methods and Materials 

Animals and in vivo treatments  

 Experiments used adult, male C57Bl/6 mice, with or without a disruption of the 

Fmr1 gene, aged 2-3 months. The Fmr1 knockout mice were generated by breeding male 

and female C57Bl/6 Fmr1 heterozygous mice to generate Fmr1 knockout (KO) and wild-

type (WT) littermates. To inhibit GSK3, mice were given an intraperitoneal (ip) injection 

of 5 mg/kg thiadiazolidindione-8 (TDZD-8), a highly selective ATP non-competitive 

inhibitor of GSK3 (Martinez et al., 2002), or 5 mg/kg N′-dodecanoyl-1-ethyl-4-hydroxy-

2-oxo-1,2-dihydroquinoline-3-carbohydrazide (VP0.7), an allosteric (not competitive 

with ATP or substrate) selective GSK3 inhibitor that binds to the C-terminal lobe of the 

enzyme (Palomo et al., 2011), and results were compared with mice given vehicle (5% 

Tween-80, 5% DMSO in saline). TDZD-8 and VP0.7 were prepared in the Martinez 

laboratory (Martinez et al., 2002; Palomo et al., 2011), and these doses have previously 

been reported to be effective in mice (Ramirez et al., 2010; Kalinichev and Dawson, 

2011; Lipina et al., 2011; Lipina et al., 2012; Jones et al., 2012; Beurel et al., 2013).  To 
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inhibit mGluR5, mice were given an ip injection of 30 mg/kg 2-methyl-6-

(phenylethynyl)pyridine (MPEP) (Tocris Bioscience, Ellisville, MO), and results were 

compared to mice given vehicle (0.9% sodium chloride). Mice were housed in light and 

temperature controlled rooms and treated in accordance with National Institutes of Health 

and the University of Miami. 

 

Novel object detection task 

 Novelty detection assesses hippocampal-dependent recognition memory (Otto and 

Eichenbaum 1992; Knight 1996; Dolan and Fletcher 1997; Lisman 1999), and the novel 

object detection task is used to assess this general memory function (Hoge and Kesner 

2007; Hunsaker and Kesner 2008; Hunsaker and Kesner 2009; Hunsaker et al., 2012). 

For this and the following task, a Plexiglas box (26 cm long x 20 cm wide x 16 cm tall) 

and seven objects in duplicate (4-6 cm diameter x 2-6 cm height) were used. For all 

cognitive assessments, time spent exploring an object was defined as the mouse sniffing 

or touching an object with its nose, vibrissa, mouth, or forepaws. Time spent near or 

standing on top of an object without interacting with it was not counted as exploration. 

As previously described (Hoge and Kesner 2007; Hunsaker et al., 2012) a mouse was 

allowed to explore two identical copies of Object 1 for 5 min. Subsequently, after 5 min 

in an opaque holding container, the mouse was allowed to explore two copies of Object 2 

for 5 min. After 5 min in the holding container, the mouse was allowed to explore two 

copies of Object 3 for 5 min. After 5 min in the holding container, the mouse was 

allowed to explore an unused copy of Object 1 and a novel Object 4 for 5 min. More time 

spent exploring the novel Object 4 than the familiar Object 1 indicates normal memory 
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processing. Time spent exploring each object was obtained from videos, and the 

exploration ratio was calculated as time of: (exploration of Object 4 – exploration of 

Object 1)/(exploration of Object 1 + exploration of Object 4).  

 For this and all other behavioral assessments, mice were acclimated to the room 

containing the behavioral instruments for 30 min before testing, the sessions were filmed, 

a white noise generator (55 dB) was used, and each apparatus and object was cleaned 

with 70% ethanol between each test session.   

 

Temporal order for object task 

 The temporal order for objects task is a hippocampal CA1-dependent task that 

assesses temporal order memory in rodents (Honey et al., 1998; Wallenstein et al., 1998; 

Lisman 1999; Hoge and Kesner 2007; Hunsaker and Kesner 2008). As previously 

described (Hoge and Kesner 2007; Hunsaker et al., 2007; Hunsaker et al., 2012), and 

equivalent to the novel object detection task, a mouse underwent three sessions to explore 

three new sets of objects (Objects 5, 6, 7). During the test session, the mouse was allowed 

to explore an unused copy of Object 5 and an unused copy of Object 7 for 5 min. Normal 

temporal order memory is exhibited by mice spending more time exploring the first 

object presented (Object 5) than the most recent object presented (Object 7). The 

exploration ratio was calculated as time of: (exploration of Object 5 – exploration of 

Object 7)/(exploration of Object 5 + exploration of Object 7). 
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Coordinate and categorical spatial processing tasks 

 The coordinate and categorical spatial processing tasks in mice assess 

hippocampal-dependent spatial information processing, a cognitive function required to 

form fine spatial memory (Save et al., 1992; Tsien et al., 1996; Long and Kesner 1996; 

Lisman 1999; Goodrich-Hunsaker et al., 2005; Goodrich-Hunsaker et al., 2008; Hunsaker 

and Kesner 2009; Hunsaker et al., 2012). The coordinate spatial processing test was 

performed according to the method reported by (Hunsaker et al., 2012). The test was 

conducted in two phases: habituation and test. During the habituation phase each mouse 

was placed on the edge of the table facing 2 objects that were 45 cm apart. The mouse 

was allowed to explore the table and objects during a 15 min habituation session. The 

mouse was then placed in an opaque holding container for 5 min, and the mouse was 

returned to the table with the objects moved closer together (30 cm) and allowed to 

explore for a 5 min test session. Mice that remember the distance between objects display 

increased exploration of the objects during the test session compared with the last 5 min 

of the habituation phase. 

 For the categorical spatial processing task 2 novel objects, different from those 

used for the coordinate spatial processing task, were used. A mouse was placed on the 

edge of the table facing the 2 objects that were 45 cm apart and allowed to explore the 

table and objects during a 15 min habituation session. The mouse was then placed in an 

opaque holding container for 5 min, and the mouse was returned to the table with the 

positions of the objects transposed and allowed to explore for a 5 min test session. Mice 

that remember the object positions display increased exploration of the objects during the 

test session compared with the last 5 min of the habituation phase. The exploration ratio 
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was calculated as: [(exploration time during the 5 min test session)/(exploration time 

during the 5 min test session + exploration time during the last 5 min of the habituation 

session)]. Increased exploration during the 5 min test session compared to the last 5 min 

of the habituation session reflected a ratio >0.5, and decreased exploration reflected a 

ratio <0.5. 

 Data are expressed as mean ± SEM. Student’s t test, one-way ANOVA followed 

by Bonferroni's post-hoc multiple comparison, and Kruskall-Wallis with Dunn's multiple 

comparison test were used as noted. Significance was taken as p<0.05. 

 

Results 

Cognitive deficits in Fmr1 KO mice are rescued by in vivo GSK3 inhibition.  

 The novel object detection task, which requires the dentate gyrus (Hunsaker and 

Kesner 2008; Goodrich-Hunsaker et al., 2008; Hunsaker et al., 2007)  and assesses the 

ability to discriminate between a familiar and novel object, was used to evaluate the 

potential benefits of GSK3 inhibition on learning deficits in Fmr1 KO mice. WT mice 

spent significantly more time exploring the novel versus familiar object (20±3 sec vs 4±1 

sec, p<0.01), demonstrating learning (Fig. 1A). In contrast, Fmr1 KO mice spent 

equivalent amounts of time exploring the novel versus familiar object (8±2 sec vs 7±1 

sec), indicating that Fmr1 KO mice are unable to learn the task. The exploration ratio 

(calculated by dividing the difference between the time spent with the novel object versus 

the familiar object divided by total time exploring) was significantly different between 

WT and Fmr1 KO mice (exploration ratio WT: 0.64±0.09; Fmr1 KO: -0.07±0.06, 

p<0.05) (Fig. 1B). 
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 GSK3 inhibition in vivo was achieved using two selective GSK3 inhibitors with 

CNS bioavailability, TDZD-8 (5 mg/kg; ip), a highly selective ATP non-competitive 

inhibitor (Martinez et al., 2002), and VP0.7 (5 mg/kg; ip), an allosteric (not competitive 

with ATP or substrate) selective GSK3 inhibitor (Palomo et al., 2011). The GSK3 

inhibitors did not alter the performance of WT mice, which spent more time investigating 

the novel versus familiar object (TDZD-8: 16±3 sec vs 3±1 sec, p<0.01; VPO.7: 21±2 sec 

vs 6±1 sec, p<0.01) (Fig. 1A). However, Fmr1 KO mice treated with TDZD-8 or VPO.7 

spent significantly more time exploring the novel versus familiar object (TDZD-8: 20±2 

sec vs 2±1 sec, p<0.01; VPO.7: 19±2 sec vs 3±1 sec, p<0.01), indicating that under 

conditions of GSK3 inhibition Fmr1 KO mice are capable of learning the task. 

Furthermore, the exploration ratio was significantly increased in Fmr1 KO mice treated 

with TDZD-8 or VP0.7, but had no effect in WT mice (Fmr1 KO exploration ratio: 

TDZD-8: 0.79±0.03; p<0.05; VP0.7: 0.72±0.04; p<0.05) (WT exploration ratio: TDZD-

8: 0.69±0.05; VP0.7: 0.56±0.03) (Fig. 1B), indicating that GSK3 inhibition completely 

reverses the learning deficit in Fmr1 KO mice.   

 Next, we assessed whether Fmr1 KO mice displayed deficits in pattern separation 

using coordinate and categorical tasks, which require the dentate gyrus (Goodrich-

Hunsaker et al., 2005; Goodrich-Hunsaker et al., 2008; Hunsaker et al., 2012). In the 

coordinate spatial learning task, the distance between two identical objects is altered 

between the habituation and testing periods. Pattern separation is indicated when 

significantly more time is spent exploring objects during the 5 min testing period after 

repositioning the objects compared to the last 5 min of the habituation phase. WT mice 

displayed increased object exploration time during testing compared to the last 5 min of 
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the habituation phase (WT exploration ratio: 0.61±0.05) (Fig. 1C), indicating successful 

pattern separation. In contrast, Fmr1 KO mice spent significantly less time than WT 

exploring the objects during the test period, indicating impaired behavior in this task 

(Fmr1 KO exploration ratio: 0.31±0.05, p<0.05). While neither TDZD-8 nor VP0.7 

altered behavior of WT mice (WT exploration ratio TDZD-8: 0.60±0.05; VP0.7: 

0.65±0.07), both drugs reversed the deficit in Fmr1 KO mice, as they spent significantly 

more time exploring the objects during testing compared to habituation (Fmr1 KO 

exploration ratio TDZD-8: 0.62±0.06, p<0.05; VP0.7: 0.66±0.08, p<0.05). The 

categorical spatial learning task involves interchanging the positions of two identical 

objects following the habituation phase, while maintaining the same distance between 

them. Fmr1 KO mice spent significantly less time than WT mice exploring the objects 

after they had been transposed (Fmr1 KO exploration ratio: 0.36±0.03; WT exploration 

ratio: 0.66±0.05, p<0.05) (Fig 1D), again revealing impaired spatial pattern separation in 

Fmr1 KO mice. Administration of GSK3 inhibitors did not alter the amount of time WT 

mice spent exploring the objects after they were transposed (WT exploration ratio: 

TDZD-8: 0.70±0.05; VP0.7: 0.80±0.03), but significantly increased the exploration times 

of Fmr1 KO mice (Fmr1 KO exploration ratio: TDZD-8: 0.63±0.06, p<0.05; VP0.7: 0.75 

± 0.04, p<0.05), demonstrating a reversal of the deficit. Thus, the results of the coordinate 

and categorical spatial learning tests demonstrate impaired function of the dentate gyrus 

in Fmr1 KO mice that is normalized by the administration of GSK3 inhibitors. 

 Finally, we assessed whether Fmr1 KO mice have deficits in temporal ordering of 

objects, a dorsal and ventral hippocampal CA1-dependent task in which rodents spend 

less time exploring the object most recently presented during a previous habituation 
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period (Honey et al., 1998; Wallenstein et al., 1998; Rolls and Kesner 2006; Hoge and 

Kesner 2007; Hunsaker et al., 2012; Hunsaker and Kesner 2013). In this task, we exposed 

mice to a series of 3 pairs of objects and then measured the time spent with the initial 

object when it was reintroduced along with the most recent object. Successful temporal 

ordering is evident when more time is spent exploring the initial object. WT mice 

displayed successful temporal ordering because more time was spent exploring the initial 

object (13±1 sec vs 7±2 sec, p<0.05), whereas Fmr1 KO mice spent significantly less 

time exploring the initial object presented (7±1 sec vs 16±2 sec, p<0.01) (Fig. 1E). Thus, 

the object exploration ratio (calculated by dividing the difference between the time spent 

with the initial object (object 5) versus the more recent object (object 7) by total time 

exploring), differed significantly between Fmr1 KO and WT mice, revealing a temporal 

order deficit (WT exploration ratio: 0.32±0.10; Fmr1 KO exploration ratio: -0.41±0.05, 

p<0.05) (Fig. 1F). Fmr1 KO mice treated with either GSK3 inhibitor, TDZD-8 or VP0.7, 

spent significantly more time exploring the first object compared to the most recent 

object presented (TDZD-8: 12±2 sec vs 4±2 sec, p<0.01; VP0.7: 9±3 sec vs 3±1 sec, 

p<0.01) (Fig. 1E). Similarly, WT mice treated with TDZD-8 or VP0.7 spent significantly 

more time exploring the first versus the recent object (TDZD-8: 10±1 sec vs 5±1 sec, 

p<0.01; VP0.7: 11±1 sec vs 3±1 sec, p<0.01). Thus, administration of TDZD-8 or VP0.7 

significantly increased the exploration ratio in Fmr1 KO mice (Fmr1 KO exploration 

ratio: TDZD-8: 0.47±0.07, p<0.05; VP0.7: 0.56±0.07; p<0.05), (Figure 1F), eliminating 

the impairment in temporal ordering. TDZD-8 or VP0.7 treatment also tended to improve 

the behavior of wild-type mice in this task (WT exploration ratio: TDZD-8: 0.37±0.08; 

VP0.7: 0.60±0.06) (Figure 1F). These results demonstrate that temporal ordering of 
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visual objects is impaired in Fmr1 KO mice and that this deficit is corrected by inhibition 

of GSK3. 

 

Cognitive deficits in Fmr1 KO mice are not rescued by mGluR5 inhibition.   

 Because inhibition of mGluR reverses many of the synaptic and behavioral 

phenotypes in Fmr1 KO mice (Dolen et al., 2007; Michalon et al., 2012), we investigated 

whether MPEP, an mGluR5 antagonist, would also reverse the dentate gyrus associated 

deficits in learning and memory. Treatment of Fmr1 KO mice with MPEP did not affect 

the impairments in novel object detection (Fmr1 KO: 6±3 sec vs 8±3 sec vs Fmr1 KO + 

MPEP: 13±3 sec vs 15±2 sec) (Fig. 2A) (Fmr1 KO exploration ratio: -0.48±0.23; Fmr1 

KO + MPEP: -0.06±0.13) (Fig. 2B), coordinate spatial processing (Fmr1 KO exploration 

ratio: 0.31±0.09; Fmr1 KO + MPEP: 0.18±0.03) (Fig. 2C), categorical spatial processing 

(Fmr1 KO exploration ratio: 0.35±0.04; Fmr1 KO + MPEP: 0.43±0.07) (Fig. 2D), or 

temporal order memory (Fmr1 KO: 8±2 sec vs 9±1 sec vs Fmr1 KO + MPEP: 11±2 sec 

vs 10±1 sec) (Fig 2E) (Fmr1 KO exploration ratio: -0.15±0.11; Fmr1 KO + MPEP: 

0.02±0.08) (Fig 2F) . Administration of MPEP did not alter the performance of WT mice 

in any of these tasks. Thus, cognitive deficits in Fmr1 KO mice are not rescued by acute 

inhibition of mGluR5. 

 

Discussion 

Impairments in the inhibition of GSK3 have been reported in the Fmr1 KO mouse 

hippocampus (Min et al., 2009; Yuskaitis et al., 2010a), and here we report severe 

impairments in four hippocampus-dependent cognitive tasks. No current treatments are 
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known that improve impairment in these cognitive tasks in Fmr1 KO mice, even though 

intellectual disability is the most prevalent symptom of FXS. Here we found that 

pharmacological inhibition of GSK3, but not an inhibitor of mGluR5, reversed cognitive 

deficits, strongly suggesting that GSK3 is a potential therapeutic target of cognitive and 

behavioral impairments in FXS.  

 Cognitive deficits were originally difficult to identify in the Fmr1 KO mouse 

model. Fmr1 KO mice behave normally or display only modest cognitive deficits in 

several hippocampus-dependent tasks, including the Morris water maze, radial arm maze, 

and operant conditioning paradigms (Bakker, 1994; Kooy et al., 1996; D’Hooge et al., 

1997; Fisch et al., 1999; Paradee et al., 1999; Peier et al., 2000; Mineur et al., 2002). 

However, Fmr1 KO mice exhibit deficits in fear motivated learning tasks, including 

passive and active avoidance behaviors, and contextual, conditioned and trace fear 

memory (Yan et al., 2004; Qin et al., 2005; Zhao et al., 2005; Brennan et al., 2006; 

Hayashi et al., 2007; Baker et al., 2010; Guo et al., 2011). Recently, severe deficits in 

non-aversive learning and memory tasks that are dependent upon the dentate gyrus, 

including novel object recognition and context discrimination, have been identified in 

Fmr1 KO mice (Pacey et al., 2011; Eadie et al., 2012; Bhattacharya and Klann, 2012). 

We extended these findings by demonstrating significant deficits, not only in novel object 

recognition, but also in coordinate and categorical spatial processing tasks and temporal 

order memory. 

 We tested if reducing GSK3 activity improves impaired cognition in Fmr1 KO 

mice. This idea was based on the multiple beneficial effects following administration of 

the GSK3 inhibitor lithium to Fmr1 KO mice (Mines and Jope 2011). Chronic lithium 
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treatment of Fmr1 KO mice ameliorates locomotor hyperactivity, audiogenic seizure 

hypersensitivity, increased spine density, enhanced mGluR-mediated LTD, reactive 

astrocytes, macroorchidism, excess protein synthesis, and social behavior deficits (Min et 

al., 2009; Yuskaitis et al., 2010a; Yuskaitis et al., 2010b; Mines et al., 2010; Choi et al., 

2011; Liu et al., 2011; Liu et al. 2012). Additionally, lithium treatment improved passive 

avoidance learning deficits in Fmr1 KO mice, the only reported behavioral test of the 

effect of lithium treatment on cognitive impairments in Fmr1 KO mice (Liu et al., 2011). 

Other GSK3 inhibitors besides lithium have been reported to significantly reduce 

locomotor hyperactivity, susceptibility to audiogenic seizures, trace conditioning, delayed 

non-matching-to-place radial arm maze and neurogenesis in Fmr1 KO mice (Min et al., 

2009; Guo et al., 2012). These results suggest that the therapeutic actions of lithium are 

due to inhibition of GSK3 in Fmr1 KO mice leading us to test if cognitive impairments in 

Fmr1 KO mice may be alleviated by administration of specific inhibitors of GSK3. 

GSK3 was inhibited pharmacologically using two small molecule selective inhibitors of 

GSK3, TDZD-8 and VP0.7, followed by measuring behavior in novel object detection, 

coordinate and categorical spatial learning, and temporal ordering for objects. This 

determined if GSK3 inhibition increases learning in Fmr1 KO mice. Impaired novel 

object detection, coordinate and categorical spatial processing, and temporal order 

memory in Fmr1 KO mice were repaired by administration of GSK3 inhibitors, 

suggesting that GSK3 inhibition reversed these cognitive deficits.  

Several phenotypes of Fmr1 KO mice are known to be regulated by aberrant mGluR5 

function, and acute administration of the mGluR5 antagonist MPEP to Fmr1 KO mice 

reverses deficits in several behaviors (Yan et al., 2004; de Vrij et al., 2008; Min et al., 
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2009; Suvrathan et al., 2010; Gross et al., 2012; Thomas et al., 2012), therefore we tested 

if acute treatment with MPEP also reversed impairments in cognition. Acute 

administration of MPEP was completely ineffective in repairing cognitive deficits in 

Fmr1 KO mice. These results indicate that although mGluR5 is a promising therapeutic 

target (Dolen et al., 2007; Michalon et al., 2012), GSK3 inhibitors must also be 

considered for treatment of FXS.  

 Currently there are no adequate therapies for the treatment of FXS (Garber et al., 

2006; Bhakar et al., 2012), although some symptoms can be alleviated by 

anticonvulsants, antidepressants, stimulants and antipsychotics (Hagerman et al., 2012).  

No current treatments improve cognitive impairment in Fmr1 KO mice, even though 

intellectual disability is the most prevalent symptom of FXS. It is notable that lithium is 

the only drug that has been used in FXS patients that improved any measure of cognition 

(Berry-Kravis et al., 2008). The cognitive assessments we studied in Fmr1 KO mice may 

model the nonverbal measures of intelligence used in FXS patients. Patients with FXS 

display impaired recognition memory, spatial memory, working memory and short-term 

memory (Kemper et al., 1988; Cornish et al., 1999; Ornstein et al., 2008; Gatto and 

Broadie 2009). FXS patients also have difficulty with inhibition and attentional control 

that is consistent with the memory deficits (Cornish et al., 2001). The novel object 

detection task and the temporal order memory task were used to assess recognition 

memory, working memory, and short-term memory in Fmr1 KO mice. The coordinate 

and categorical spatial learning tasks were used to assess spatial memory in Fmr1 KO 

mice. All of these cognitive abilities were impaired in Fmr1 KO mice and were corrected 

by administration of GSK3 inhibitors. Thus, abnormally active GSK3 in the hippocampus 
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of Fmr1 KO mice (Min et al., 2009; Yuskaitis et al., 2010a; Liu et al., 2011; Guo et al., 

2011) appears to play an important role in these cognitive deficits, further supporting the 

possibility that GSK3 inhibitors may be beneficial for multiple aspects of FXS, including 

intellectual disability. It will be of great interest in future studies to elucidate the precise 

mechanisms by which hyperactive GSK3 decreases learning and memory, as these 

mechanisms represent novel targets for therapeutic development for the treatment of 

intellectual disability in FXS. 
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Figure 1. Inhibition of GSK3 ameliorates cognitive impairments in Fmr1 KO mice. Fmr1 

KO and WT mice were treated with 5 mg/kg of TDZD-8 (TD) or VP0.7 (VP) 1 hr prior 

to cognitive assessments. (A,B) Performance in the novel object detection task. (A) 

Times spent exploring the novel (N) and familiar (F) object. **p<0.01 compared to time 

spent with familiar object (Student’s t test). (B) Exploration ratio. (C) Exploration ratio in 

the coordinate spatial processing task. (D) Exploration ratio in the categorical spatial 

processing task. (E,F) Performance in the temporal order for objects task. (E) Times spent 

exploring Object 5 and Object 7 (most recently explored). **p<0.01, *p<0.05 compared 

to time spent with Object 7 (Student’s t test). (F) Exploration ratio. B, C, D and F: 

**p<0.05 compared to untreated wild-type mice; *p<0.05 compared to same genotype 

without treatment (Kruskall-Wallis [genotype x treatment] with Dunn's multiple 

comparison test). n=10-20 mice per group.  
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Figure 2. Cognitive deficits in Fmr1 KO mice are not altered by mGluR inhibition. Fmr1 

KO and WT mice were treated with 30 mg/kg of MPEP 1 hr prior to cognitive 

assessments. (A,B) Performance in the novel object detection task. (A) Times spent 

exploring the novel (N) and familiar (F) object. *p<0.05 compared to time spent with 

familiar object (Student’s t test) (B) Exploration ratio. (C) Exploration ratio in the 

coordinate spatial processing task. (D) Exploration ratio in the categorical spatial 

processing task. (E,F) Performance in the temporal order for objects task. (E) Times spent 

exploring Object 5 and Object 7 (most recently explored). **p<0.01, *p<0.05 compared 

to time spent with Object 7 (Student’s t test). (F) Exploration ratio. B, C, D and F: 

**p<0.05 compared to untreated wild-type mice. (one-way ANOVA [genotype x 

treatment] followed by post hoc Bonferroni’s multiple comparison test). n=6 mice per 

group. 
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CONCLUSIONS 

 

 From depressive behaviors and impaired cognition to adult neurogenesis and 

neurodevelopmental disorders, GSK3 plays an immense role in functions of the CNS. 

Impaired inhibitory control of GSK3 has been linked to numerous disorders of the CNS 

including FXS, Alzheimer’s disease, multiple sclerosis, depression, and bipolar disorder, 

among many others. Lithium, the seminal inhibitor of GSK3, protects cognitive processes 

or promotes their repair in a robust number of conditions that cause cognitive 

impairments in rodents. Furthermore, lithium is the only drug that has been found to 

improve cognition in an open label treatment trial with FXS patients (Berry-Kravis et al., 

2008a). In addition, hippocampal neurogenesis may be impaired in mood disorders, and 

GSK3 has been linked to the regulation of neurogenesis that may be involved in mood 

regulation. Given these previous findings, the present study examined the regulatory role 

of GSK3 in adult mouse hippocampal neurogenesis and impaired cognition in the mouse 

model of FXS. 

 Hyperactive GSK3 appears to contribute to impaired adult hippocampal 

neurogenesis (Eom and Jope 2009), so we tested how hyperactive GSK3 might contribute 

to the regulation of neurogenesis, specifically changes in neurogenesis elicited by 

alterations in the environment: EE and CRS. Because the regulation of GSK3 contributes 

to multiple aspects of many neurological processes, we first tested if these environmental 

manipulations affected GSK3 in mouse hippocampus. EE and CRS increased and 

decreased, respectively, inhibition of GSK3 in wild-type male hippocampus, but neither 

EE nor CRS altered GSK3 activity in female mice. This led us to test if the basal levels of 
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GSK3 inhibition were different in wild-type male and female hippocampus, and we 

found that basal inhibition of GSK3 is higher in female than male mice, raising the 

possibility that inhibition of GSK3 may protect female mice from fluctuations caused by 

environmental manipulations.  

 To evaluate this hypothesis and how it affects adult hippocampal neurogenesis, 

we examined how the combinatorial effects of environmental changes (EE, CRS) and 

genetics (sex, hyperactive GSK3) affect neurogenesis in mice. To do this, we used male 

and female GSK3 knockin mice that have constitutively active GSK3, because the 

inhibitory serines have been mutated to alanines, and their wild-type littermates.  In wild-

type male mice, EE increased GSK3 inhibition and NPC proliferation, survival and 

differentiation. GSK3 knockin mice exhibited decreased neurogenesis compared to wild-

type mice, but unlike common antidepressants (Eom and Jope, 2009), EE was able to 

reverse the deficit in NPC proliferation in GSK3 knockin male mice. EE did not alter 

survival or differentiation in GSK3 knockin mice, suggesting the EE-induced increased 

phosphorylation of GSK3 may be necessary for EE-induced NPC survival and 

differentiation but not proliferation in male mice. Due to the divergent response to EE-

induced changes in neurogenesis in male mice and because GSK3 knockin male mice are 

susceptible to stress-induced depression (Polter et al., 2010), it would be interesting to 

compare the effects of EE to depression-like behaviors after the NPC proliferation 

experimental paradigm and following the NPC survival and differentiation paradigm. For 

example, does EE-induced increased NPC proliferation in male GSK3 knockin mice 

correlate with reduced depression-like behaviors? Or is NPC survival and differentiation 

responsible for changes in depression-like behaviors following EE? 
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 CRS decreased the inhibitory serine-phosphorylation of GSK3 and NPC 

proliferation in wild-type male mice, but CRS did not alter NPC proliferation in GSK3 

knockin mice. Thus, CRS and GSK3 activity may share common mechanisms to decrease 

NPC proliferation in male wild-type mice. We found that male GSK3 knockin mice did 

not exhibit decreased NPC proliferation which may be due to a floor effect of 

neurogenesis in these mice. One weakness in this study is that we were unable to evaluate 

NPC survival and differentiation in mice following CRS, but the significant deficit in 

hippocampal NPC proliferation suggests that survival and differentiation of NPCs 

following CRS would also be decreased in wild-type mice and unaltered in GSK3 

knockin mice.  

 EE and CRS did not alter inhibitory serine phosphorylation of GSK3 in female 

wild-type mice or NPC proliferation in female wild-type or GSK3 knockin mice. EE did 

increase NPC survival and differentiation in female wild-type mice, thus increased 

inhibitory phosphorylation of GSK3 is not required for the long term effects of EE-

induced increased neurogenesis in female mice. Female GSK3 knockin exhibited 

impaired NPC survival and differentiation, and unlike male GSK3 knockin mice, EE 

rescued impaired NPC survival and differentiation in the female mice. These results 

support gender-specific differences in response to environmental manipulation (Walker 

and Mason, 2011). It has been shown that estrogen increases neurogenesis (Gould et al., 

2000; Banasr et al., 2001; Perez-Martin et al., 2003),  and that estrogen is 

neuroprotective in many types of brain injury (Lang and McCullough, 2008). Future 

studies should determine if estrogen mediates the difference in neurogenesis plasticity in 

male and female wild-type and GSK3 knockin mice, and how this might relate to 
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depressive like behavior. To do so, wild-type and GSK3 knockin female mice can be 

ovariectomized and subjected to EE or CRS and compared to each other and to male 

wild-type and GSK3 knockin mice. Advances in our knowledge of how estrogen exerts 

its effect on the brain may lead to targeted therapies for neuronal dysfunction (Barha and 

Galea, 2010). 

 Although it has been shown that the regulation of hippocampal neurogenesis is 

important for brain function in rodents, only recently was it demonstrated that 

hippocampal neurogenesis occurs throughout the lifetime in human subjects (Spalding et 

al., 2013). By measuring the concentration of nuclear bomb test-derived 
14

C in genomic 

DNA, that study concluded that neurons are generated throughout adulthood and the rates 

are comparable in middle-aged humans and mice. The results suggest that hippocampal 

neurogenesis may contribute to human brain function. Because GSK3 knockin mice have 

decreased neurogenesis which correlates with stress-induced depression (Polter et al., 

2009), it would be interesting if, using the same 
14

C technique, adult neurogenesis was 

measured in human subjects with different psychiatric illnesses and compared to controls. 

Additionally, it would be beneficial to identify the specific neurochemicals that NPCs 

express following environmental manipulation in order to evaluate the positive and 

negative influences on neurogenesis plasticity. This could lead to potential targeted 

therapies in humans with cognitive deterioration related to increasing age, learning, and 

memory disorders, such as Alzheimer’s disease (Lazorov and Marr, 2013), and 

psychiatric disorders, such as depression and schizophrenia (Benarroch, 2013; Déry et al., 

2013). In any event, confirmation of hippocampal neurogenesis in adult humans 
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(Spalding et al., 2013) is an exciting finding because it implies that neurogenesis research 

is not in vain because the mouse does model humans. 

 In addition to the regulation of adult neurogenesis, hyperactive GSK3 

contributes to cognitive impairments in animal models of numerous diseases of the CNS, 

as we reviewed in this project.  To specifically evaluate impaired cognition in one disease 

model with impaired GSK3 regulation, we assessed the FXS mouse model. FXS is the 

most common inherited cause of intellectual disability, affecting 1 in 4000-5000 males 

and 1 in 2500-8000 females (Tassone et al., 2012). Currently there are no adequate 

therapies for the treatment of FXS (Garber et al., 2006; Bhakar et al., 2012), although 

some symptoms can be alleviated by anticonvulsants, antidepressants, stimulants and 

antipsychotics (Hagerman et al., 2012).  FXS is the result of a single FMR1 gene 

mutation, and so it was one of the first neurodevelopmental disorders to be studied in a 

transgenic mouse model (Bakker et al., 1994). In the Fmr1 knockout mouse brain, 

impairments in the inhibition of GSK3 have been reported (Min et al., 2009; Yuskaitis et 

al., 2010a; Liu et al., 2011; Guo et al., 2011). Inhibition of GSK3 with chronic lithium 

treatment and other GSK3 inhibitors ameliorate physiological and behavioral 

impairments in Fmr1 knockout mice, including locomotor hyperactivity, audiogenic 

seizure hypersensitivity, macroorchidism, social behavior deficits, and impairments in 

trace conditioning and delayed non-matching-to-place radial arm maze (Min et al., 2009; 

Yuskaitis et al., 2010a; Mines et al., 2010; Mines and Jope, 2011; Liu et al. 2011). 

Furthermore, CNS abnormalities in Fmr1 knockout mice including increased spine 

density, enhanced mGlu-R mediated LTD, reactive astrocytes, excess protein synthesis 

and impaired neurogenesis are all repaired by treatment with lithium and other GSK3 
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inhibitors (Min et al., 2009; Yuskaitis et al., 2010b; Choi et al., 2011;  Liu et al., 2012; 

Guo et al., 2012). Thus, these results suggest that the therapeutic actions of lithium are 

due to inhibition of GSK3 in Fmr1 knockout mice.  

 Prior to our study, no treatments were identified that improve non-aversive 

learning impairments in Fmr1 knockout mice, even though intellectual disability is the 

most prevalent symptom of FXS. Severe cognitive deficits were initially difficult to 

identify in the Fmr1 knockout mouse. Modest deficits have been reported in several 

hippocampus-dependent tasks, such as the Morris water maze, radial arm maze, and 

operant conditioning paradigms (Bakker, 1994; Kooy et al., 1996; D’Hooge et al., 1997; 

Fisch et al., 1999; Paradee et al., 1999; Peier et al., 2000; Mineur et al., 2002). Fmr1 

knockout mice exhibit deficits in fear motivated learning tasks, including passive and 

active avoidance behaviors, and contextual, conditioned and trace fear memory (Yan et 

al., 2004; Qin et al., 2005; Zhao et al., 2005; Brennan et al., 2006; Hayashi et al., 2007; 

Baker et al., 2010; Guo et al., 2011), and recently, severe deficits in non-aversive learning 

and memory tasks, including novel object recognition and context discrimination, have 

been identified in Fmr1 knockout mice (Pacey et al., 2011; Eadie et al., 2012; 

Bhattacharya and Klann 2012). Therefore, the goal of this study was to investigate other 

cognitive tests in Fmr1 knockout mice that might better model the FXS patient, and then 

to determine if we could improve cognition with chronic GSK3 inhibition using lithium. 

To determine if a therapeutic benefit of lithium was due to GSK3 inhibition, we assessed 

cognitive performance following acute inhibition of GSK3 using two specific GSK3 

inhibitors, TDZD-8 and VP0.7.    
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 We found that Fmr1 knockout mice exhibited significant impairments in 

recognition memory, working memory, and short-term memory that were assessed in the 

novel object detection task and the temporal ordering for objects task, and spatial 

memory measured in the coordinate and categorical spatial processing tasks (Goodrich-

Hunsaker et al., 2005; Hoge and Kesner, 2007; Hunsaker and Kesner, 2008; Goodrich-

Hunsaker et al., 2008; Hunsaker et al., 2009; Hunsaker et al., 2012). Chronic lithium 

treatment proved to be remarkably effective in essentially normalizing severe deficits in 

Fmr1 knockout mice in all four cognitive tasks. We hypothesized that treatment of 

younger Fmr1 knockout mice would be more effective than treatment of adult Fmr1 

knockout mice because FMRP is more highly expressed in young than adult mouse brain 

(Lu et al., 2004). The absence of FMRP might cause irreversible deficits in adult Fmr1 

knockout mice. However, lithium treatment was equally effective in adolescent and adult 

Fmr1 knockout mice in reversing cognitive deficits.  

 Next we tested if reducing GSK3 activity using two small molecule selective 

inhibitors of GSK3, TDZD-8 and VP0.7, improves impaired cognition in Fmr1 knockout 

mice. We found that acute pharmacological inhibition of GSK3 reversed impaired novel 

object detection, temporal order memory, and coordinate and categorical spatial 

processing in Fmr1 knockout mice, strongly suggesting that GSK3 is a potential 

therapeutic target of the cognitive impairments in FXS.  

 Improvement of cognition by GSK3 inhibition treatment correlates well with 

previous findings in Fmr1 knockout mice of altered synaptic plasticity, measured as LTP 

and LTD. Fmr1 knockout mice display enhanced mGluR-dependent LTD at hippocampal 

CA1 synapses (Huber et al., 2002; Hou et al., 2006; Nosyreva and Huber, 2006) and 
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deficient LTP at medial perforant path synapses in the dentate gyrus (Eadie et al., 2012). 

Hyperactive GSK3 impairs LTP and promotes LTD (Hooper et al., 2007; Zhu et al., 

2007). Lithium treatment in adolescent or adult Fmr1 knockout mice normalized mGluR-

dependent LTD in the hippocampus (Choi et al., 2011). mGluR5 is inhibited by its 

antagonist MPEP, and acute administration of MPEP to Fmr1 knockout mice reverses 

deficits in several behaviors (Yan et al., 2004; de Vrij et al., 2008; Min et al., 2009; 

Suvrathan et al., 2010; Gross et al., 2012; Thomas et al., 2012), therefore we compared 

the beneficial effects of GSK3 inhibition on cognition in Fmr1 knockout mice to acute 

treatment with MPEP. Acute administration of MPEP was completely ineffective in 

repairing cognitive deficits in Fmr1 knockout mice. These results indicate that although 

mGluR5 is a promising therapeutic target (Dolen et al., 2007; Michalon et al., 2012), 

inhibition of GSK3 contributes to both the normalization of synaptic plasticity and 

cognition in Fmr1 knockout mice.  

 The novel object detection task and the coordinate and categorical spatial 

processing tasks are dependent upon normal function of the dentate gyrus (Honey et al., 

1998; Wallenstein et al., 1998; Goodrich-Hunsaker et al., 2005; Rolls and Kesner 2006; 

Goodrich-Hunsaker et al., 2008; Hunsaker et al., 2008; Hunsaker and Kesner, 2013) and 

the temporal order memory task is dependent upon area Cornu Ammonis 1 (CA1) (Hoge 

and Kesner, 2007; Hunsaker and Kesner, 2008). Our collaborators found that GSK3 is 

hyperactive in the dentate gyrus but not area CA1 in the Fmr1 knockout hippocampus 

(Franklin et al., 2013). Additionally, they found LTP deficits at medial perforant path 

synapses onto dentate granule cells (MPP-DGC) in Fmr1 knockout mice, which were 

rescued by treatment with lithium or another GSK3 inhibitor, but not by inhibition of 
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mGluR5. They found no difference in LTP magnitude at CA3-CA1 synapses between 

Fmr1 knockout mice and wild-type mice, but despite these findings, we observed a 

deficit in temporal order memory, which was reversed by GSK3 inhibition (Godfraind et 

al., 1996; Huber et al., 2002). This may be because behavioral tasks require normal 

function of the hippocampal trisynaptic circuit. The hippocampal trisynaptic circuit 

consists of three connected pathways: the entorhinal cortex projects to the dentate granule 

cells via the MPP; the MPP-DGC then project to the pyramidal cells of area CA3; then 

the CA3 pyramidal cells project to the pyramidal cells of are CA1 (Amaral, 1978; Amaral 

and Witter, 1989). Deficits at MPP-DGC synapses are likely propagated to downstream 

CA3-CA1 synapses, impacting CA1 dependent behavior, even though LTP at CA3-CA1 

synapses is normal in slices from Fmr1 knockout mice. In support of this concept, GSK3 

inhibition, which reverses LTP deficits at MPP-DGC synapses, also normalizes temporal 

ordering deficits indicating that systemic GSK3 inhibition improves the overall function 

of the hippocampal trisynaptic circuit. Another possibility is that there are deficits in 

plasticity present at the temporoammonic pathway, the monosynaptic projection from 

entorhinal cortex directly onto distal dendrites of CA1, that contribute to deficits in 

temporal order memory. The results indicate that if such deficits exist and underlie 

termporal order learning, inhibition of GSK3 will also rescue deficits at temporoammonic 

synapses although this has not yet been explored.   

 To fully understand how hyperactive GSK3 leads to synaptic and cognitive 

impairments in FXS, identification of downstream targets of GSK3 is needed. Both LTP 

and pattern separation require proper N-methyl-D-aspartate receptor (NMDAR) function. 

Hyperactive GSK3 may diminish NMDAR transmission which can be reversed by GSK3 
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inhibition, an idea consistent with GSK3-dependent NMDAR internalization in cortical 

neurons (Chen et al., 2007). Alternatively, inhibition of GSK3 may rescue LTP and 

cognition through effector targets downstream of NMDAR activation. GSK3 regulates 

AMPAR trafficking (Wei et al., 2010), however this mechanism is unlikely since there 

are no deficits in baseline AMPAR transmission in Fmr1 knockout mice.  

 In future studies clarification of the mechanisms underlying the cognitive 

enhancing actions of GSK3 inhibitors in FXS and other diseases with a cognitive 

impairment component would provide a better understanding of the causes of cognitive 

decline and of the mechanisms that may be exploited in the development of improved 

interventions. 

 The cognitive assessments we studied in Fmr1 knockout mice may model the 

nonverbal measures of intelligence used in FXS patients. Patients with FXS display 

impaired recognition memory, spatial memory, working memory and short-term memory 

(Kemper et al., 1988; Cornish et al., 1999; Ornstein et al., 2008; Gatto and Broadie 2009). 

FXS patients also have difficulty with inhibition and attentional control that is consistent 

with the memory deficits (Cornish et al., 2001). The novel object detection task and the 

temporal order memory task were used to assess recognition memory, working memory, 

and short-term memory in Fmr1 knockout mice. The coordinate and categorical spatial 

learning tasks were used to assess spatial memory in Fmr1 knockout mice. All of these 

cognitive abilities were impaired in Fmr1 knockout mice and were corrected by 

administration of GSK3 inhibitors. These findings are encouraging because we found that 

some cognitive impairments may be pharmacologically reversible even with post-

adolescent administration in FXS. Thus, abnormally active GSK3 in the hippocampus of 
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Fmr1 knockout mice (Min et al., 2009; Yuskaitis et al., 2010a; Liu et al., 2011; Guo et 

al., 2011) appears to play an important role in these cognitive deficits, further supporting 

the possibility that GSK3 inhibitors may be beneficial for multiple aspects of FXS, 

including intellectual disability.  

 In summary, this study provides novel insights regarding the function of GSK3 in 

two neurological processes, neurogenesis and cognition. First, neurogenesis plasticity 

may be regulated by GSK3 activity in male mice, but female mice exhibit differences in 

the contribution of GSK3 to neurogenesis. These results open the possibility to examine 

the role of GSK3 and male and female differences in the regulation of neurogenesis and 

its potential relationship to depression-like behavior and treatment for mood disorders. 

Furthermore, neurogenesis appears to support certain forms of learning and memory and 

may be defective in some conditions associated with impairments in cognition (van Praag 

et al., 2005; Leuner et al., 2006; Deng et al., 2010; Massa et al., 2011).  Thus, in diseases 

such as depression, Alzheimer's disease, and FXS, in which GSK3 in the CNS is 

abnormally active, an outcome may be diminished neurogenesis and consequently 

cognitive impairments. Conversely, neurogenesis is increased by treatment with lithium 

or other drugs that inhibit GSK3 (Chen et al., 2000: Hashimoto et al., 2003; Silva et al., 

2008; Wexler et al., 2008; Kim et al., 2009; Morales-Garcia et al., 2012), and treatment 

with the GSK3 inhibitor SB216763 increased neurogenesis that is impaired in mice 

expressing DISC1 mutations (Mao et al., 2009). Thus, administration of GSK3 inhibitors 

may improve cognition in part by restoring impairments in neurogenesis.  

 Second, the FXS studies provide strong initial evidence that GSK3 inhibitors have 

the potential to ameliorate cognitive impairments in the Fmr1 knockout mouse. Our 
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results support the finding that in a small open-label trial of lithium treatment in children 

and young adults with FXS, lithium treatment significantly improved cognition in the 

Repeatable Battery for the Assessment of Neuropsychological Status List Learning 

measure (Berry-Kravis et al., 2008a). Thus, lithium administration to Fmr1 KO mice at a 

variety of ages improves cognitive abilities in several tasks, and preliminary evidence 

indicates that lithium also may be effective in patients. These results provide important 

progress in the discovery of potential therapies, specifically GSK3 inhibitors, for patients 

with FXS and will hopefully stimulate experiments to characterize more fully the 

function of GSK3 in FXS. Most importantly, considering the prevalence and devastating 

consequences of loss of cognitive functions, and the dearth of efficacious interventions, 

our research emphasizes the importance of greater development and utilization of GSK3 

inhibitors to treat conditions causing cognitive impairments. The current study provides 

further evidence that GSK3 plays a substantial role in important neurological processes.   
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