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AMITESH KUMAR 

 

DOCTOR OF PHILOSOPHY IN INTERDISCIPLINARY ENGINEERING 

 

ABSTRACT 

Engineering analysis of a three-dimensional geometric model using mesh-based 

computational technologies requires the model to be topologically watertight. However, 

achieving watertight geometry is considered to be a challenging task in the field of 

computational engineering due to the potential presence of geometric deficiencies, such 

as gaps and holes on the surfaces.  This dissertation aims to repair the defective geometric 

model with the presence of holes irrespective of their complexities.  Presented in this 

dissertation are novel research and implementation of a hybrid surface and volume-based 

technique for geometry repair. It utilizes a NURBS-based surface-patching algorithm for 

topologically simple holes and incorporates a volumetric hole-patching algorithm for 

complex holes. The volume-based hole-patching algorithm solves the diffusion equation 

using an explicit forward difference scheme in time and a centered difference scheme in 

space. A robust and efficient algorithm has been developed to both identify and extract a 

localized hole region.  An automated mesh generation process has been implemented to 
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construct individual “column grids” for each isolated hole region.  The diffusion equation 

is solved using finite-difference techniques to generate a scalar solution field from which 

isosurfaces are extracted with an isovalue that represents the repaired surfaces for the 

local regions. Finally, a Poisson surface reconstruction is used to create a reconstructed 

watertight surface.  

The graphics processing unit (GPU) has emerged as the most powerful chip in a 

computer in the last decade but has only in the past few years received extensive attention 

from the research community for its use in high performance computing.  This research 

explores a GPU-based implementation of a diffusion equation solution to better harness 

its computation potential and to facilitate the computational needs of geometry repair.  

Comparisons of the speedup gains for diffusion solutions using GPGPU with that of 

conventional single and multi-threaded implementations are presented, and their 

performance characteristics are discussed in this dissertation.  
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CHAPTER 1 

INTRODUCTION 

  

The preprocessing steps in simulations using mesh-based computational technologies, 

such as Computational Fluid Dynamics (CFD) and Computational Structural Mechanics 

(CSM), involve geometry preparation and mesh generation. However, it has been a 

challenging task to turn geometry into a high-quality mesh when the geometry is 

complex.  Moreover, the potential presence of geometrical deficiencies such as gaps or 

holes, protrusions or intersections, and overlaps further complicates the process, as a 

topologically watertight geometric model is required in the meshing process.  Geometry 

repair can be a laborious and complicated process, and the configuration of the geometry 

can make the process of satisfactory geometry repair difficult. Therefore, how to obtain a 

watertight geometry ready for the mesh generation process is an important issue in 

computational engineering.  

An interactive geometry creation using mesh generation tools directly is a preferred 

approach, as this can reduce the conversion errors that introduce some of the geometry 

defects between the Computer-Aided Design (CAD) systems and the mesh generation 

tools.  However, most of the mesh generation tools do not have sophisticated solid 

modeling capabilities when compared to those of CAD systems.  As a result, geometries 

for most sophisticated real-world applications are first produced on CAD systems in 

parametric form and then imported into mesh generation tools tailored for the needs of 
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downstream applications.  Geometries can also be sourced in discrete forms.   For 

example, scanned data generated from range-finding devices such as laser scanners can 

produce a fairly accurate geometric model defined by a point clouds, which can be turned 

into discrete elements that represent the surface model of the object.  Geometry can also 

be reconstructed from segmented contours of image slices from image-based, patient-

specific biomedical data.  Regardless of the source of the geometry data, or the form in 

which they are represented (parametrically or discretely), the geometries obtained can 

have many defects due to the problems at the source, data conversion errors or 

ambiguities in the process. A surface mesh of a geometric model is considered to be non-

watertight (or non-manifold) in the following two cases:  

 It has edges that are shared by only one polygon, i.e., when the edges lie on the 

boundary. The occurrences of such a set of connected boundary edges create a 

hole on the surface.  

 It has edges which are shared by more than two polygons. This kind of non-

manifold mostly occurs in CAD applications due to the improper stitching of a 

surface patched to generate a desired geometric model.  

How to repair defective geometric surface models automatically and robustly while 

maintaining the high fidelity of the geometric information remains a critical area of 

research in the field of computational geometry. This research addresses surface defects 

of the first kind, i.e., holes in discrete geometry, by providing a method for mesh repair 

by the numerical solution of the diffusion equation for volumetric domain.  This 

dissertation presents an automatic and robust hole patching (or hole filling) algorithm for 
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geometrically and topologically complex holes. The outcome of this research impacts the 

field of computational engineering, which is widely utilized in the aerospace, automotive, 

mechanical and biomedical engineering communities. 

This work presents a volume-based mesh repair algorithm in chapter 4. The volume- 

based algorithm could be used to repair surface meshes with holes. The chapter describes 

the process of identifying and isolating surface defects such as holes and isles from the 

original surface, which are later used to create individual volume-mesh solution columns. 

These solution columns are created by embedding regions of interests in Cartesian grids 

and switching on the voxels, which intersect with triangles on the input surface mesh. It 

is assumed that one side of the embedded geometry in the voxelized solution column is 

heated and the other side is cold. A finite volume-based diffusion equation solver is 

iterated on the voxelized Cartesian mesh until the solution achieves convergence. The 

solution so obtained represents a scalar field in space which would have closed the gaps 

existing in the initial input mesh in the voxelized Cartesian grid. The voxelized scalar 

fields are contoured using a Marching Cubes algorithm to obtain surfaces in each of the 

solution columns. Once the resultant surfaces are obtained from various solution columns 

surrounding the hole regions of the geometry, they are used to create consistently 

oriented point sets using contouring technique on the converged solution.  The point sets, 

in turn, are used to generate a reconstructed watertight geometry using Poisson Surface 

Reconstruction [36], [38].   The results of this mesh repair process are presented with a 

number of examples and plots in chapter 4.   

Furthermore, a hybrid mesh repair technique is described in chapter 5 that uses both 

surface-based and volume-based mesh repair techniques. The surface-based mesh repair 
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technique, used in the hybrid method, builds on the work described in Kumar et al. [12], 

Kumar and Shih [13], and Kumar et al. [14] with improvements. Surface-based mesh 

repair technique is followed by the use of volume-based mesh repair technique and 

finally Poisson reconstruction to obtain a watertight reconstructed model. The 

reconstructed model so obtained may be substantially different from the original input 

model. It was found that the hybrid method provides superior quality results when 

compared with either only surface-based or volume-based mesh repair methods for 

complicated geometries. This was demonstrated with examples. 

The diffusion equation solution process presented in this research is tied to the 

resolution of the input mesh. If the input mesh is of higher resolution, then this would 

cause the solution column for the same hole on the surface of the mesh to be a larger size 

when compared with that of an input mesh of lower resolution. This would imply that the 

diffusion solver would spend a far longer time in trying to find a convergent solution for 

the diffusion equation. As a result, an effort to improve the computational efficiency of 

the diffusion solver through parallelization was also made in this research.  The diffusion 

equation solution process has been parallelized both on the CPU and GPU architectures. 

The parallelization of the diffusion solver on CPU has been done by multi-threading 

using the OpenMP library [68].  The parallelization on GPU was done for the NVIDIA 

GPU using CUDA [51] to study the speedup of the solution process when compared with 

that on the CPU architecture. The results from this study are presented in chapter 6 with a 

number of tables and plots.  

Most of the work being presented in this research was performed on a desktop with a 

64-bit quad-core AMD
®
 Athlon™ II 620 processor and 4GB of RAM.  The GPU is a 
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single NVIDIA
®
 Quadro™ FX 5800 graphics card, with 240 stream processor cores and 

4GB of onboard GDDR5 graphics memory, and was generously donated by NVIDIA for 

this research. This dissertation only presents the GPU-related studies and conclusions for 

NVIDIA GPU and any discussion about GPGPU-related development work in here 

should be considered synonymous with the work done on the NVIDIA GPU.  
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CHAPTER 2 

 

GEOMETRY REPAIR 

 

Computer-Aided Engineering (CAE) plays an important role in design, analyses, and 

performance predictions, given the rapid advances made in computer hardware 

performance and software algorithms. High Performance Computing (HPC) software 

tools are nowadays widely deployed in government laboratories, academic institutes and 

industries. Mesh-based CAE disciplines, such as Computational Fluid Dynamics (CFD) 

and Computational Structure Mechanics (CSM), facilitate the design and analysis 

processes as well as significantly reduce costs associated with design and development.  

These technologies are heavily relied upon to produce performance data of complex 

configurations involving complicated multi-physics processes.  However, before any 

CFD or CSM algorithms can be applied to analyze a given design, a high-quality mesh 

must be generated.  The mesh generation process in turn relies on the availability of a 

watertight geometry.  Unfortunately, such watertight geometry may not always be 

available due to deficiencies, such as gaps and holes.  This is sometimes true even for 

engineering geometries designed with a sophisticated Computer-Aided Design (CAD) 

system.  Discrete geometry acquired through a reverse engineering process or geometry 
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reconstruction is even more likely to have such deficiencies.  “Repairing” such defective 

geometry is often a tedious and labor-intensive process. It involves removing defects or 

artifacts from a geometric model to produce an output model that is suitable for further 

processing by downstream applications with certain input quality requirements.  

The most common type of mesh defects or artifacts encountered are holes or isles, 

singular vertex, handle, gaps and small overlaps, large overlaps, inconsistent orientation, 

complex edges and intersections. Some of these artifacts, such as complex edges, have a 

precise meaning, while other artifacts are described intuitively rather than definitively, 

such as the distinction between small scale and large. Figure 1 shows the major artifacts 

that occur in meshing as presented in Botsch et al. [1].  

A significant amount of research has been done and published in an attempt to 

address this issue in a more automated and intelligent manner. These approaches broadly 

fall in two main categories: surface-based repair methods and volume-based repair 

methods.   

 

 

Surface-based Repair Methods 

This class of repair methods operates directly on the input data and tries to explicitly 

identify and resolve artifacts on the surface. For example, gaps could be removed by 

snapping boundary elements (vertices and edges) onto each other or by stitching triangle 

strips between the gap. Holes can be closed by a triangulation that minimizes a certain 

error term. Intersections could be located and resolved by explicitly splitting edges and 

triangles.  
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Figure 1: Artifact Chart 

Note: From “Geometric Modeling Based on Triangle Meshes” by Botsch M, Pauly M, 

Rössl C, Bischoff S and Kobbelt L (2006) ACM SIGGRAPH 2006 Courses, article 1:  pp 

34. Adapted with the permission of the author. 
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Surface-oriented repair algorithms only minimally perturb the input model and are 

able to preserve the model structure in areas that are not near artifacts. In particular, 

structure encoded in the connectivity of the input (e.g., curvature lines) or material 

properties associated with triangles or vertices are usually well preserved. Furthermore, 

these algorithms introduce only a limited number of additional triangles. 

Surface-oriented repair algorithms usually require that the input model already satisfy 

certain quality requirements such as error tolerances to be able to guarantee a valid 

output. Since these requirements cannot be guaranteed or even be checked automatically, 

as a result these algorithms are rarely fully automatic and require manual post-processing. 

Furthermore, due to numerical inaccuracies, certain types of artifacts, e.g., intersections 

or large overlaps, cannot be resolved robustly. Other artifacts, e.g., gaps between two 

closely connected components of the input model that are geometrically close to each 

other, are difficult to identify, as described by Botsch et al. [1]. 

A number of algorithms have been suggested for filling holes in a triangular mesh 

using a surface-based repair approach. Turk et al.‟s mesh-zippering algorithm [2] is one 

of the first algorithms which tried to fuse range images using a surface-based approach 

and in this process eliminated a number of the overlaps and mesh defects. This algorithm, 

however, thus specializes for range-scan data.  

Barequet and Sharir [3] use a dynamic programming method to find the minimum 

area of triangulation for a three-dimensional (3D) polygon in order to fill holes. Barequet 

and Kumar [4] describe an interactive system that closes small cracks by stitching 

corresponding edges and fills big holes by triangulating the hole boundary, similar in 

approach to Barequet and Sharir [3]. Their methods, in general, are optimized for the 
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defects generated by the CAD programs while joining the surfaces to create models, 

which sometime leaves narrow cracks. Although these methods may work well in 

patching narrow holes, they may fail where simple stitching may not provide an elegant 

solution. These algorithms also do not guarantee the quality of the output. 

Gueziec et al. [5] propose a method to remove complex edges and singular vertices 

from non-manifold input models. Their work claimed to generate an output which is 

guaranteed to be a manifold triangle mesh, possibly with boundaries. Their algorithm 

operates solely on the connectivity of the input model and as such does not suffer from 

numerical robustness issues. In a pre-processing phase, all complex edges and singular 

vertices are identified. The input is then cut along these complex edges into manifold 

patches. Finally, pairs of matching edges, i.e., edges which have the same endpoint, are 

identified and, if possible, merged.  

Gueziec et al. [5] introduce two different strategies for stitching edges left unstitched 

by pinching and snapping. The pinching strategy only stitches along edges that belong to 

the same connected component. The small, erroneous connected components are 

separated from the main part of the model and could be detected and removed in a post-

processing step. In contrast to pinching, the snapping strategy reduces the number of 

connected components of the model. Their basic idea is to locate candidate pairs of 

boundary edges and to stitch them if, after stitching, the model does not contain new 

complex edges or singular vertices. The scope of their algorithm is limited to the removal 

of complex edges and singular vertices. 

Guskov and Wood [6] propose an algorithm that detects and resolves all handles up to 

a given size in a manifold triangle mesh. Handles are removed by cutting the input mesh 
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along a non-separating closed path and sealing the two resulting holes by triangle 

patches. Their algorithm reliably detects small handles up to a user-prescribed size and 

removes them. However, the algorithm is slow, does not detect long, thin handles and 

cannot guarantee that no self-intersections are created when a handle is removed. 

Borodin et al. [7] propose a progressive gap-closing algorithm which works by vertex 

edge contraction accompanied with insertion of vertices on the boundary edges and 

progressively contracting the edge. This is implemented by identification of 

corresponding vertex-vertex pairs and vertex-edge pairs. This method, although simple in 

implementation, is only suitable for narrow gaps in 3D space where such contraction does 

not end up dramatically altering the surface smoothness and triangle size gradation.   

Leipa [8] describes a method for filling holes by a weight-based hole triangulation, 

mesh refinement based on the Delaunay criterion and mesh fairing based on energy 

minimization as used in Kobbelt et al. [25].  It builds on the works of Klincsek [26] and 

Barequet and Sharir [3]. The algorithm could only be used for filling holes in an oriented, 

connected mesh. The algorithm reliably closes holes in models with smooth patches, with 

the density of the vertices in the filled area matching that of the surrounding surface. The 

complexity of building the initial triangulation is O(n
3
), which is sufficient for most holes 

that occur in practice. However, the algorithm does not check for or avoid self-

intersections and does not detect or incorporate isles into the hole-filling process. 

Jun [9] describes an algorithm based on a stitching planar projection of a complex 

hole and projecting back the stitched patch. This method presents significant complexity 

of implementation if the holes are twisted and if their intermediate projections onto a 
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surface are self-intersecting. The resultant patch produced in this manner also may not 

look very elegant or smooth.   

Branch et al. [10] suggest a method for filling holes in triangular meshes using a local 

radial basis function. The method works quite well with small and narrow holes but is not 

as successful when the holes are large compared to the size of the nearby features and are 

rounder in shape. The usability of most of these algorithms, with the notable exception of 

Leipa [8], is constrained by their assumptions related to the shape, size or source of the 

holes.   

Kumar et al. [12] describe a surface-based hole-patching algorithm which produces 

smooth patches using an innovative concentric ring-based approach around the holes or 

gaps in triangulated meshes. They use NURBS curves and NURBS surfaces to create 

smooth patches, and the reliability of their method is dependent on the reliability of the 

initial triangulation algorithm used in 3D space.  The density of the vertices in the 

generated patch matches that of the average density of the surrounding vertices in the 

neighborhood of the holes. This algorithm only repairs the meshes with topologically 

simple holes and does not detect or incorporate isles into the filling. Their method is 

further improved in Kumar and Shih [13] and Kumar et al. [14] by introducing a 

smoothing technique at the interface of the patches and boundaries of the holes. 

 

 

Volume-based Repair Methods 

 The key to all volume-based methods lies in converting a surface model into an 

intermediate volumetric representation from which the output model is then extracted. 
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Examples of volumetric representation that have been used in model repair include 

regular Cartesian Grids, adaptive octrees, kd-trees, BSP-trees and Delaunay 

triangulations. A flag at each voxel of the volumetric representation is generated 

specifying whether the particular voxel lies inside, outside, or on the surface of the 

geometry.  The interface between inside and outside cells defines the topology and 

geometry of the reconstructed model. Due to their very nature, volumetric representations 

do not allow for artifacts such as intersections, holes, gaps or overlaps or inconsistent 

normal orientation. Volumetric algorithms are typically fully automatic and produce 

watertight models and, depending on the type of volume, they can often be implemented 

very robustly as described by Botsch et al. [1].  

Volume-based approaches to mesh repair also pose some potential problems. The 

conversion to and from a volume leads to a resampling of the model. It often introduces 

aliasing artifacts, loss of model features and destroys any structure that might have been 

present in the connectivity of the input model. The number of triangles in the output of a 

volumetric algorithm is usually much higher than that of the input model and thus has to 

be decimated in a post-processing step. Also, the quality of the output triangles often is 

degraded and has to be improved afterwards. Finally, volumetric representations are quite 

memory intensive so it is hard to run them at high resolutions. If the fidelity of the data is 

of utmost importance, then one might want to consider a surface-based approach, which 

respects the triangulation on the original mesh and hence preserves the original data in 

this process. 

Voxelization of a surface mesh requires a method to accurately define box-triangle 

intersections for every triangle on the surface mesh with voxels in the volume. Akenine-
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Möller [15] presents a fast 3D Triangle-Box overlap testing method based on the 

separating axis-theorem. The theorem states that two convex polyhedra, A and B, are 

disjoint if they can be separated along either an axis parallel to a normal of a face of 

either A or B, or along an axis formed from the cross product of an edge from A with an 

edge from B.  The paper focused on an axis-aligned box (AABB) to find the intersection 

of a triangle and the box. The source code for AABB intersection is in public domain and 

is freely available [16]. 

Curless and Levoy [18] and Davis et al. [19] propose one of the most well-known 

methods to repair a mesh using a volumetric approach.  In their methods, the inside-

outside flags are generated with the help of a distance map of each point on the geometry 

using line-of-sight information, which is usually obtained from range-finding devices. 

This crucial piece of information may not be available for a purely computational 

geometric model. The uncertain voxels are assigned flags based on volumetric diffusion. 

Once all the voxels are assigned flags, the volume-based methods simply extract the 

contour to find a closed surface. Curless and Levoy‟s method [18] was optimized for data 

obtained from range-finding devices. These devices generally create very high resolution 

computational models which may contain holes with complex topologies due to 

occlusion as well as surface reflections and refractions.  

Nooruddin and Turk [20] propose one of the first volumetric techniques to repair 

arbitrary models containing gaps, overlaps and intersections. In this method, the model is 

first converted into a Cartesian voxel grid using parity-count and ray-stabbing methods. 

Most of the volumetric mesh-repair methods propose the use of an inside-outside flag to 

classify whether a voxel lies inside or outside of the intermediate volume representation 
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of the original surface model. In this method, a set of projection directions {di} is 

produced by subdividing an octahedron or icosahedron. Then the model is projected 

along these directions onto an orthogonal planar grid. For each grid point x, the algorithm 

records the first and last intersection point of the ray x + di and the input model. A voxel 

is classified by such a ray to be inside if it lies between these two extreme depth samples; 

otherwise, it is classified as outside. The final classification of each voxel is derived from 

the majority vote of all the rays passing through that voxel. A Marching Cubes algorithm 

[40] is then used to extract the surface between the inside and outside voxels. 

Nooruddin and Turk [20] further take advantage of the common morphological 

operators, dilation and erosion, used in 3D digital image-processing techniques as low 

pass filters to fill small gaps and tubes on the intermediate volume representation. Rafael 

et al. [17] provide a good description of different morphological techniques currently 

being used in image processing. 

Ju [21] presents a method for generating the signs of voxels for repairing a polygonal 

mesh using an adaptive Octree approach. Ju mentions that the method, although simple in 

conception and design, may not be able to produce satisfactory results for those cases that 

have complex holes with multiple boundaries or highly curved shapes. His algorithm 

produces guaranteed manifold output by virtue of using a volumetric method; however, 

the algorithm seemed to have a problem handling thin structures. Due to the volumetric 

representation, the whole input model is resampled, and the output may also become 

arbitrarily large for fine resolutions in this process. 

Bischoff et al. [22] propose an improved volumetric technique to repair arbitrary 

triangle soups using a user-provided error tolerance value ε and a maximum diameter 
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value ρ up to which gaps should be closed. Their algorithm first creates an adaptive 

octree representation of the input model in which each cell stores the triangles 

intersecting with it. From these triangles, a feature-sensitive sample point can be 

computed for each cell. Then a sequence of morphological operations [17] is applied to 

the octree to determine the topology of the model. The connectivity and geometry of the 

reconstruction are derived from the octree structure and samples, respectively. Finally, a 

Dual Contouring algorithm then reconstructs the interface between the outside and the 

inside cells by connecting sample points. These sample points minimize the squared 

distances to their supporting triangle planes. As a result, it is claimed that features like 

edges and corners are well preserved. If no such planes are available, the corresponding 

sample point is smoothed in a post-processing step.  

Podolak et al. [23] propose an algorithm for 3D hole filling based on a decomposition 

of space into atomic volumes, which are each determined to be either completely inside 

or outside of the model. It is done by computing a minimum-cost cut of a graph 

representation of the atomic volume structure that is guaranteed to produce non-

intersecting patches.  

Murali and Funkhouser [27] present a unique method for converting triangle soups to 

manifold surfaces. In their method, the polygon soup is first converted in a Binary Space 

Partition (BSP) tree while the supporting planes of the input polygon serve as the 

splitting plane for partitioning space into a set of polyhedral regions.  This helps to 

determine which regions are solid, based on region adjacency relationships. They claim 

that, unlike other approaches, their solid-based approach is effective even when the input 

polygons intersect, overlap, are wrongly-oriented, have T-junctions, or are unconnected. 
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Although their method doesn‟t need any user parameter to automatically produce 

watertight models, the output may also contain complex edges and singular vertices 

which may require further post-processing.  

 

 

Surface Reconstruction 

Surface reconstruction is a widely studied topic in the area of computer geometry and 

computer graphics. There are several approaches to surface reconstruction based on 

global and local approaches. Many of these reconstruction methods are based on 

combinatorial structures, such as Delaunay triangulation, alpha shapes, and Voronoi 

diagrams, which try to interpolate the surface on all or most of the input points. Other 

schemes try to directly represent that surface in implicit forms. Global methods which use 

surface fitting in implicit forms often need to solve extremely large, dense and ill-

conditioned matrices. Local fitting methods, on the other hand, try to consider only a 

subset of input data at a time and try to create local radial basis functions (RBF) to define 

tangent planes. These methods face a number of difficulties due to non-uniformity in the 

sampling of data, presence of noise as well as missing input data. 

Amenta and Bern [28] present an algorithm for reconstructing an interpolating 

surface from sample points in 3D space using Voronoi filtering and the β-skeleton. Their 

reconstruction is based on the definition of a planar graph on sample points called the 

“crust” and proves to be highly sensitive to the local geometry, point sampling, and any 

noise which might be present in the input point set. 
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Amenta et al. [29] present a surface reconstruction algorithm called “The Power 

Crust,” which constructs a piecewise-linear approximation to object surface and their 

medial axis transform for the input points. Their method uses a set of Voronoi diagrams 

which divides space into polyhedral cells. The union of the outer faces of these 

polyhedral cells provides the reconstructed surface. 

Carr et al. [30] present a method using polyharmonic radial basis functions to 

reconstruct a manifold surface from point-cloud data and sometimes repair undersampled 

surfaces with voids. Their method consists of three different steps which includes : 

construction of a signed-distance function, fitting an RBF to the resulting distance 

functions and, finally, iso-surfacing the fitted RBF. 

Bruno [31] attempts to fill a hole and blend surface-based on global parameterization 

for complete geometry approximation and then energy minimization for surface blending 

based on the assumption that global parameterization of the complete model is available 

or possible. 

Dey and Goswami [32] present a method called “Tight Cocone,” which guarantees a 

watertight output surface without introducing any extra points based on the peeling of 

tetrahedras. The tetrahedras are created based on Delaunay reconstruction from 3D 

simplexes in 3D space using input points. 

Shen et al. [34] propose a volumetric repair algorithm that operates on arbitrary 

triangle soups. Their algorithm makes use of a scattered-data interpolation method known 

as moving least-squares (MLS) with a number of constraints that forces the function to 

give a value of the surface region for each polygon. The degree of approximation, in their 

method, is controlled by adjusting the least-squares weighting function. The tightness of 
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the surface, or in other words, the requirement of input vertices falling inside the implicit 

surfaces, depends on an iterative procedure for adjusting the constraint values over each 

polygon. 

Kazdan et al. [36] present a surface reconstruction method using oriented points 

based on the solution of spatial Poisson equations.  Their reconstruction method 

calculates a 3D indicator function from the input points. The indicator function is then 

used to extract an isosurface. Poisson reconstruction is claimed to be more tolerant to 

noisy, non-uniform input data compared to other reconstruction algorithms, and the 

results in support of their conclusion were included in their paper. A number of open 

source implementations of their methods are available. This research uses an 

implementation of Poisson surface reconstruction developed by Doria and Gelas [38] for 

the VTK library.  

  

 

Isosurface and Contouring Methods 

An isosurface is a three-dimensional (3D) surface that represents points of a constant 

value of a scalar field variable, such as pressure, temperature, velocity, density and 

intensity within a volume of space. In other words, it is a level set of a continuous 

function whose domain is 3D-space. Isosurfaces are used in computer graphics, data 

visualization, and medical imaging, among a number of other areas. A watertight 

isosurface is sometimes also used to generate a 3D grid by growing 3D tetrahedras from 

the 2D triangles present on the isosurface. There are a number of contouring methods 

available, such as Marching Cubes, Dual Marching Cubes, Extended Marching Cubes 
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and Adaptive Marching Cubes, among others. Marching Cubes is a highly successful 

contouring algorithms which can create triangulated models with constant density 

isosurfaces from volumetric data. However, the Marching Cubes algorithm is not without 

its shortcomings, such as a lack of feature sensitivity, aliasing artifacts, high triangle 

density, etc. Regardless, the Marching Cubes algorithm [40] is used in this research for 

contouring purposes due to the availability of its implementations. As a result, it becomes 

necessary to discuss the theory behind this contouring method. 

The Marching Cubes algorithm was first presented by Lorenson et al. [40].  The 

algorithm uses a two-step approach to isosurface construction problems. The first step 

involves locating the surface corresponding to the user-defined value. The second step 

deals with calculating a normal to the surface at each vertex of the cube. Marching Cubes 

uses a divide-and-conquer approach to locate the surface in a logical cube created from 

eight pixels, four each from two adjacent slices.  

The algorithm determines how the surface intersects this cube and then marches to 

the next cube. To find the surface intersection in a cube, a value of one is assigned to a 

cube‟s vertex if the data value at that vertex equals or is greater than the value of the 

surface that is being constructed. These vertices are either on the inside or on the surface. 

Cube vertices with values below the surface receive a zero and are outside the surface. 

The surface intersects only those cube edges which have one vertex outside (zero) and 

another inside the surface (one).  With this assumption, the topology of the surface within 

the cube is determined, with the locations of the intersections found later. Since there are 

eight vertices in a cube and two states inside or outside, it provides 2
8 

= 256 ways a 

surface can intersect a cube. However, looking at all the combinations, one realizes that 
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by using a permutation of complementary and rotation symmetry of the cube, the number 

of choices reduces from 256 patterns to a total of 14 topologically unique cases and one 

case where none of the edges intersect the surface. A unique index is created for each of 

the cases based on the state of the vertices. The index is n 8-bit number with the lowest 

significant bit representing the state of vertex 1 while the highest significant bit 

represents the state of vertex 8. The index so formed is used to lookup from a list of pre-

calculated tables. The surface intersection along the edge is found using linear 

interpolation. In the final step, a unit normal over each cube vertex is found by a central 

difference method, and the normal is interpolated to find the normal value at each of the 

triangle‟s vertices.  This provides a triangulated contoured surface for a 3D voxelized 

data. 
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CHAPTER 3 

 

GPU COMPUTING 

 

Modern graphics processing units (GPUs) have emerged as the most powerful chip in 

high performance workstations with increasing parallelism rather than increasing clock 

rate as the primary engine of processor performance growth. The modern GPU is not 

only a powerful graphics engine but also a highly parallel programmable processor 

featuring peak arithmetic and memory bandwidth that substantially outpaces its CPU 

counterpart. Unlike multi-core CPU architectures, which currently ship with up to eight 

cores, GPU architectures are multi-core, with hundreds of cores capable of running 

thousands of threads in parallel.  This degree of hardware parallelism reflects the fact that 

GPU architectures evolved to fit the needs of real-time computer graphics, a problem 

domain with tremendous inherent parallelism. Figure 2 shows the evolution of NVIDIA 

GPU vis-à-vis that of INTEL CPUs in terms of theoretical peak performance in gigaflops 

per second or GFLOP/s. The fast-paced development of the GPU, in the recent past, has 

been spearheaded by the rapid development of a massive computer gaming industry with 

its onerous demands of more realistic, high-resolution rendering at a very high frame rate.  
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The GPU‟s rapid increase in both programmability and capability has spawned a 

research community that has successfully mapped a broad range of computationally 

demanding, complex problems to the GPU. Around 1999-2000, GPU peak performance 

was catching up with that of the CPU, and the research community started taking notice 

of it. As a result, some basic experimentation started to test the suitability of GPU for 

general purpose scientific computing. It was found that the excellent floating point 

performance in GPUs could lead to a huge performance boost for a range of scientific 

applications [51]. This effort in general purpose computing on the GPU, also known as 

GPGPU, has positioned the GPU as a compelling alternative to traditional 

microprocessors in high-performance computer systems of the future. A typical GPU has 
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evolved for applications having following characteristics, as described in Owens et al. 

[43]: 

 Large computational requirement: Real-time rendering on billions of pixels per 

second, with each pixel requiring a hundred or more operations at a high frame 

rate. 

 Substantial parallelism: Programmable compute units in GPUs are inherently 

parallel in nature and are, in general, very suitable for operations on vertices and 

fragments.  

 Emphasis on greater throughput than latency: Emphasis in any modern processor 

is placed on maximum performance through higher throughput rather than latency 

due to the orders of magnitude difference between the human visual system and 

an operation within a modern processor.  

 

 

The Graphics Pipeline 

The input to the GPU is a list of geometric primitives, typically triangles, in a 3D 

world-coordinate system. Through many steps, those primitives are shaded and mapped 

onto the screen, where they are assembled to create a final picture. These steps are as 

follows: 

 Modeling transformations: The graphics primitives are transformed from the 

object-coordinate system to the world-coordinate system, which would later be 

mapped onto the display screen. This is done by the coordinate transformation of 

individual vertices with a single transformation matrix, which is the product of 
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many modeling transformation matrices representing various geometry 

operations.  

 Per vertex lighting and vertex operations: The input primitives are formed from 

individual vertices. Each vertex is transformed into screen space and shaded by 

computing its interaction with the lights in the scene.  

 Assembly: The vertices are assembled into triangles, which are the fundamental 

hardware-supported primitives in today‟s GPUs. 

 Rasterization: This process determines the correlation between screen pixel 

locations and the triangles covering them. Each triangle generates a primitive 

called a fragment at each screen-space pixel location that it covers. Because of the 

possibility of multiple overlaps of fragments at any pixel location, each pixel‟s 

color value may be computed from several fragments.  

 Fragment Operations:  Each fragment is shaded with the fetched color and texture 

information from global memory to determine its final color. This stage is 

typically the most computationally demanding stage of the graphics pipeline and 

is designed to run in parallel.  

 Composition: This stage is the final assembly of screen pixels into a screen image 

with one color per pixel location and is done by keeping the closest pixel to the 

camera for each pixel. 

A typical scene has tens to hundreds of thousands of vertices, triangles and fragments 

and each of the operations in the graphics pipeline can be computed independently. 

Hence, these operations are well suited for parallel hardware and are performed 

efficiently due to the massively parallel architecture of the modern GPU.   
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GPU Architecture 

A few years ago, GPU was a fixed-function processor, built around a graphics 

pipeline, especially designed to do only a few things related with primitive graphics 

operations but do those efficiently. In legacy GPU architecture, a GPGPU computing task 

needed to be masked as a graphics program with the real computation masked as a series 

of vertex operations and pixel shading calculations. No matter how efficient legacy GPUs 

may have been, their fixed function pipeline architecture made it difficult to use the GPU 

chip for any purpose other than rendering images. The real path toward General Purpose 

GPU computing began, not with GPUs, but with onboard programmable 3D graphics 

accelerators. Multi-chip 3D rendering engines were developed by several companies 

starting in the 1980s. But by the mid 1990s, it became possible to integrate all the 

essential elements onto a single chip with the rapid advances in chip design and 

breakthroughs in chip fabrication technologies. From 1994 to 2001, these chips 

progressed from the simplest pixel-drawing functions to a full implementation of the 3D 

pipeline including geometry transforms, vertex operations like lighting, rasterization, 

fragment operations such as coloring and texturing and finally composition into frame 

buffer with depth testing and display.  

In 2001, NVIDIA‟s GeForce 3 introduced programmable pixel shading to the 

consumer market for the first time. The programmability of this chip was very limited, 

but later GeForce products became more flexible and faster, adding separate 

programmable engines for vertex and geometry shading. This evolution culminated in the 

NVIDIA‟s GeForce 7800 series of graphics cards, which was based on their G70 chip 

and was first released commercially in early 2006. It had higher bandwidth and higher 
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peak performance when compared with its predecessors and cutting- edge CPUs of the 

time as presented in Figure 2. It had several improvements over its predecessors with its 

3D pipeline and additional stages of configurable and fixed function logic, which could 

be programmed in the context of graphics applications.  

GPGPU programming evolved as a way to perform non-graphics processing on these 

graphics-optimized architectures, typically by running carefully crafted shader code 

against data presented as vertex or texture information and retrieving the results from a 

later stage in the pipeline. GPGPU programming showed great promise. However, 

managing multiple programmable engines in a single 3D pipeline present on the GPU led 

to bottlenecks, as too much effort went into balancing the throughput of each stage [44].  

In November 2006, NVIDIA introduced the G80 chip-based GeForce 8800 series of 

GPU products and later the GT200 extended the performance of G80-based architecture. 

This design featured a unified shader architecture with 128 processing elements 

distributed among eight shader cores. Each shader core could be assigned to any shader 

task, eliminating the need for stage-by-stage balancing and greatly improving overall 

performance. The main features of the G80 architecture in support of GPU computing 

were as as follows: 

 It was the first GPU to support the C programming language. 

 It was the first GPU to replace separate vertex and pixel pipelines with a single 

unified processor that executed vertex, geometry, pixel and computing programs.  

 It introduced a single-instruction, multiple-thread execution model where multiple 

independent threads execute concurrently using a single instruction.  
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 It introduced shared memory and barrier synchronization making thread 

synchronization issues trivial for GPU-based general purpose computing.  

In April 2010, NVIDIA introduced a GPU based on the Fermi Architecture.  It was a 

significant improvement over previous generations of G80 and GT200-based GPU 

designs. The main improvement in GPUs based on Fermi architecture when compared 

with those based on the G80 and GT200 design are support for C++ programming 

language constructs on the GPU, 32 CUDA cores per streaming processor, true double 

precision, ECC support on its high end Fermi based graphics card, true cache hierarchy, 

more shared memory, faster context switching between different threads, and faster 

atomic operations.    

The fixed-function pipeline on the older GeForce 7800 series of GPUs lacked the 

generality to express efficiently more complicated shading and lighting operations that 

are essential for complex effects. The GeForce 8800 series of GPUs replaced the fixed-

function per-vertex and per-fragment operations with capability to run user-specified 

programs on each vertex and fragment. Over the last couple of years, these vertex 

programs and fragment programs have become increasingly more capable, with larger 

limits on their size and resource consumption, more fully featured instruction sets, and 

more flexible control-flow operations. Current GPUs support the Unified Shader Model 

4.0 standard on both vertex and fragment shaders as mentioned in Owens et al [44].  

In the legacy GPUs at the hardware level, the operations available at the vertex and 

fragment stages could be configured but could not be programmed. In the fixed-function 

pipeline, the programmer could control the position and color of the vertex and the lights, 

but not the lighting model that determined their interaction. As the shader model has 



29 

   

evolved and become more powerful and GPU applications of all types have increased 

vertex and fragment program complexity, GPU architectures have increasingly focused 

on the programmable parts of the graphics pipeline. Thus, over the past few years, the 

GPU has evolved from a fixed-function, special-purpose processor into a full-fledged 

parallel programmable processor with some additional fixed-function special-purpose 

functionality.  

As both the vertex and fragment programs became more fully featured with demand 

for more realistic rendering and as the instruction sets converged, GPU architects decided 

in favor of a unified shader architecture against the previous strict task-parallel pipeline 

based architecture. The benefit for the newer GPU unified shader architecture is better 

load-balancing at the cost of more complex hardware. Due to the unified shader 

architecture, GPGPU computing has become even more rewarding with all the 

programmable power in a single hardware unit. GPGPU programmers can now target that 

programmable unit directly and optimize their tasks on them, rather than the previous 

approach of dividing work across multiple hardware units which created performance 

bottlenecks. 

 

 

GPU Programming Model 

The programmable units of the GPU follow a single program multiple-data (SPMD) 

programming model. For efficiency, the GPU processes many elements (vertices or 

fragments) in parallel using the same program. Each element is independent from the 

other elements, and in the base programming model, elements cannot communicate with 
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each other. All GPU programs must be structured in this way: many parallel elements 

each processed in parallel by a single program. Each element can operate on 32-bit 

integer, floating point or even double precision data in the latest generation GPUs with a 

reasonably complete general-purpose instruction set. Elements can read data from a 

shared global memory (a gather operation) and, with the newest GPUs, also write back to 

arbitrary locations in shared global memory (scatter).  

One of the benefits of the GPU is its large fraction of resources devoted to 

computation when compared with that of CPU. Today‟s CPU spends a significant portion 

of its silicon real estate to allow a different execution path for each element. Instead, 

today‟s GPUs support arbitrary control flow per thread but impose a penalty for 

incoherent branching. In a GPU, elements are grouped together into blocks and blocks 

are processed in parallel. If elements branch in different directions within a block, the 

hardware computes both sides of the branch for all elements in the block [44]. In writing 

GPU programs branches are permitted but are somewhat cost prohibitive. 

 

 

Programming a GPU for General-Purpose Programs 

Programming GPGPU applications has been historically difficult, since despite their 

general-purpose tasks having nothing to do with graphics, the applications still had to be 

programmed using APIs hidden in the graphics. The general purpose programs had to be 

structured in terms of the graphics pipeline as vertex and texture operations, with the 

programmable units only accessible as an intermediate step in that pipeline. Today, GPU 

computing applications are structured in such a way that the programmer directly defines 
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the computation domain of interest as a structured grid of threads, and an SPMD general-

purpose program computes the value of each thread. 

The value for each thread is computed by a combination of mathematical operations 

and both gather (read) accesses from and scatter (write) accesses to global memory. 

Direct access of the programmable units to the global memory eliminates much of the 

complexity faced by previous GPGPU programmers in co-opting the graphics interface 

for general-purpose programming. As a result, GPGPU programs today are more often 

expressed in a familiar programming language, such as NVIDIA‟s C-like syntax in their 

Compute Unified Device Architecture (CUDA) programming environment or in OpenCL 

so that ports are simpler and easier to write, execute and debug. This results in a 

programming model that allows its users to not only take full advantage of the GPU‟s 

powerful hardware, but permits an increasingly high-level programming model that 

enables productive authoring of complex applications.  

 

 

NVIDIA and Compute Unified Device Architecture (CUDA) 

NVIDIA has been designing and positioning its GPUs as versatile devices suitable for 

much more than electronic games and 3D graphics. NVIDIA‟s Tesla brand GPUs are 

specifically marketed for high-performance computing.  Its Quadro brand is marketed for 

professional graphics workstations while the GeForce brand is intended for the low- end 

traditional consumer graphics market. Current generation GPUs of any of the segments 

from NVIDIA can, however, be used for general purpose computing using its CUDA 

software platform. NVIDIA‟s CUDA is a software platform that enables NVIDIA GPUs 
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to execute programs written with C, C++, Fortran, OpenCL, Direct Compute and other 

languages. It was formally introduced in 2006. CUDA requires programmers to write 

special code for parallel processing. It does not require them to explicitly manage threads 

in the conventional sense, which greatly simplifies the programming model. It should be 

noted that although CUDA was first released in the 2006 for programmers and the 

developer community, all the capabilities which CUDA offers today are only available 

for a select few new generation GPU devices offered by NVIDIA. As an example, CUDA 

when used for G80- and GT200-based GPUs, such as the one used in this study, do not 

provide C++ language support. That feature is only available for the late model GPUs 

based on Fermi Architecture. The GPU used in this research is a dedicated NVIDIA 

Quadro FX5800 with 240 onboard stream processors and 4GB GDDR3 memory, as 

shown in Figure 3. The graphics card is based on GT200 architecture and connects to the 

CPU bus through a PCI Express 2.0 x16 slot interface. 

CUDA includes C/C++ software development tools, function libraries, and a 

hardware abstraction mechanism that hides the GPU hardware from developer. Although 

CUDA requires programmers to write special code for parallel processing, it doesn‟t 

require them to explicitly manage threads in the conventional sense, which greatly 

simplifies the programming model. CUDA development tools work alongside a 

conventional C/C++ compiler, so programmers can mix GPU code with general-purpose 

code for the host CPU. Figure 4 shows a CUDA software architecture stack. It has 

common C/C++ source code with different compiler forks for CPUs and GPUs with 

function libraries that simplify programming and a hardware abstraction mechanism that 

hides the details of GPU architecture from programmers. 
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Figure 3: NVIDIA Quadro FX 5800 Graphics Card 
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Figure 4: NVIDIA‟s CUDA Software runtime architecture stack 
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A hardware abstraction model like the one offered by CUDA has two major benefits. 

First, it simplifies the high-level programming model, insulating programmers from the 

complex details of the GPU hardware while at the same time letting them take advantage 

of the benefits offered by GPU hardware architecture for GPGPU programming. The 

second benefit is that hardware abstraction allows NVIDIA to change the GPU 

architecture as often as it wants. NVIDIA is free to design processors with any number of 

cores, any number of threads, any number of registers, and any instruction set. As a result 

of this abstraction, theoretically a C/C++ source code written today for an NVIDIA GPU 

using CUDA can run without modification on future NVIDIA GPUs with additional 

thread processors, or on a future NVIDIA GPUs with a completely different architecture. 

In a single-threaded model, the CPU fetches a single instruction stream that operates 

serially on the data. Single-instruction multiple data (SIMD) extensions permit many 

CPUs to extract some data parallelism from the code, but the practical limit is usually 

three or four operations per cycle even for the most efficient CPU per core. Although 

CUDA‟s programming approach is highly parallel, it requires the division of the dataset 

into smaller chunks stored in on-chip memory allowing multiple thread processors to 

share each chunk for high performance. Storing the data locally reduces the need to 

access off-chip memory, thereby improving performance. In the CUDA model, off-chip 

memory accesses usually don‟t stall a thread processor. Instead, the stalled thread enters 

an inactive queue and is replaced by another thread that‟s ready to execute. When the 

stalled thread‟s data becomes available, the thread enters another queue that signals that it 

is ready to go. Groups of threads, also known as warps, take turns, ensuring that each 

thread gets execution time without delaying other threads. The efficient and effortless 
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switching of threads in warps, where threads do not have to wait on other threads fetching 

data, is one of the main reasons for the huge performance gain while running programs 

on a GPU.  

A CUDA program is organized into a host program, consisting of one or more 

sequential threads running on the host CPU, and one or more parallel kernels that are 

suitable for execution on a parallel processing device like the GPU. A kernel executes a 

scalar sequential program on a set of parallel threads. The programmer organizes these 

threads into a grid of thread blocks. The threads of a single thread block are allowed to 

synchronize with each other via barriers and have access to a high-speed, per block 

shared on-chip memory for inter-thread communication. Threads from different blocks in 

the same grid can coordinate only via operations in a shared global memory space visible 

to all threads. CUDA requires that thread blocks be independent, meaning that a kernel 

must execute correctly regardless of the order in which blocks are run. This restriction on 

the dependencies between blocks of a kernel, although cumbersome, provides scalability. 

Developers write kernels in CUDA that execute on the GPU and define a single 

thread of execution‟s behavior.  Thousands of such threads execute a kernel concurrently, 

and the GPU‟s thread manager maps them all to physical thread processors. The kernel is 

invoked on the host side, at which time the host CPU determines how many threads to 

execute. The host CPU also controls memory management and data transfer. A special 

NVIDIA compiler called nvcc translates kernels and host programs into code that 

executes on both the CPU and GPU.  CUDA architecture treats threads independently of 

each other but actually executes them on a single instruction, multiple data- (SIMD) type 

architecture.  
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An important feature of CUDA is that application programmers do not write 

explicitly threaded code. A hardware thread manager handles threading automatically. 

Automatic thread management is vital when multithreading scales to hundreds of 

thousands of threads. Although these are lightweight threads in the sense that each one 

operates on a small piece of data, they are fully fledged threads in the conventional sense. 

Each thread has its own stack, register file, program counter, and local memory, as 

described by Halfhill [41]. The GPU preserves the state of inactive threads and restores 

their state when they become active again. By removing the burden of explicitly 

managing threads, NVIDIA simplifies the programming model and eliminates a whole 

category of potential bugs. Even though CUDA automates thread management, it does 

not entirely relieve developers from thinking about threads and thread management. 

Developers must analyze their problem to determine how best to divide the data into 

smaller chunks for distribution among the thread processors based on their GPU 

architecture. For GPU-based programming, they also need to be aware of the optimal 

numbers of threads and blocks that will keep the GPU fully utilized and provide 

maximum throughput for their intended application. Factors affecting performance of 

their GPU code may include the size of the global data set, the maximum amount of local 

data that blocks of threads can share, the number of thread processors in the GPU, and the 

sizes of the on-chip local memories. 

A geometric model can have a significant number of holes, either as clusters or far 

away from each other, that require patching individually.  The volume-based hole 

patching algorithm, presented later in this study, uses the diffusion equations as presented 

in Appendix A, followed by contouring to generate a smooth continuous surface in the 
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areas near discontinuity. The solution domain is Cartesian and the solution process is 

repetitive in nature performed independently on a large number of voxels. The size of the 

solution domain for the diffusion equation is tied to the size of elements in the input mesh 

surrounding holes in the implementation presented as part of this study. As a result, when 

the input mesh becomes finer, the solution domain becomes bigger. As a result the 

diffusion equation solver spends even more time in finding a convergent solution to the 

diffusion equations. The repetitive nature of the solution process and a large number of 

computations for finding a convergent solution of diffusion equation in a Cartesian 

domain makes it an ideal problem for GPU based parallelization. The research work 

presented in this study parallelizes the diffusion solver for both GPUs and multi-core 

CPUs and would compare and contrast their performance gain with respect to the single-

core CPU run time in Chapter 6 using CUDA toolkit and library. The solution process 

would use a single NVIDIA Quadro FX 5800 GPU on CentOS linux operating system.
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CHAPTER 4 

 

VOLUME APPROACH TO GEOMETRIC HOLE PATCHING 

Surface-based hole-patching algorithms provide good quality mesh repair. In general, 

they minimally alter the surrounding geometry. However, surface-based algorithms 

usually require that the input model already satisfy certain quality requirements such as 

clean geometry, no intersections or overlaps, etc., to be able to guarantee a valid output. 

Many of these requirements cannot be met or even be checked automatically. 

Furthermore, due to numerical inaccuracies, certain types of artifacts, such as 

intersections or large overlaps, cannot be resolved robustly. Other artifacts, like gaps 

between two closed connected components of the input model that are geometrically 

close to each other, cannot even be identified as described in Botsch et al. [1].  

Volumetric representations, on the other hand, do not allow for artifacts like 

intersections, holes, gaps or overlaps or inconsistent normal orientation. Volumetric 

algorithms are typically fully automatic and can produce watertight geometries. They can 

often be implemented very robustly. As a result, for some cases, it is necessary to use a 

volume-based approach to repair models. Figure 5 presents a flow chart of the mesh 

repair process using a volume-based algorithm, which will be discussed in this chapter in 

detail. 



39 

   

  

Figure 5: Flowchart of volume-based and hybrid approach towards mesh repair. 
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Figure 6: Stanford Bunny model with 10 holes 

 

This volume-based approach being presented is loosely based on previous work done 

by Davis et al. [19], with some improvements. A fully automatic volume-based repair 

method is presented in this chapter. It can handle a dirty geometry with holes, isles and 

small intersections. The Stanford Bunny [57] model is used to illustrate the results of the 

study in this chapter.  
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Stanford Bunny 

The Stanford Bunny [57] is one of the most commonly used validation models in 

computer geometry and computer graphics. It is freely available to the community for 

research purposes. The Stanford Bunny was a product of the Digital Michelangelo 

Project [67] executed in Stanford‟s Computer Graphics Laboratory. It was obtained by 

assembling a number of scanned range images of a clay bunny roughly 7.5 inches tall 

using a Cyberware 3030 MS scanner. The model so obtained is a collection of 69,451 

triangles and 35,947 points. Due to occlusion, the Stanford Bunny has five holes left after 

assembling the scanned range images. Five additional holes of various sizes were cut in 

this model for algorithm validation in this research, making a total of 10 holes, as shown 

in Figure 6.   

 

 

Extraction of Solution Columns and Voxelization of Discrete Geometry 

The first step in volume-based repair method is to convert the surface mesh into a 

volumetric mesh. In this research, Cartesian grids have been used for their simplicity of 

implementation. Cartesian grids are generated for the regions of interest of the input 

geometry to represent the data. However, regions of interest need to be first identified to 

be able create representative Cartesian grids.  

In the previous studies [12], [13] and [14], the input surfaces were considered to have 

simple topologies, and holes on the input surface were found by finding a set of 

connected edges which were non-manifold in the sense that the edges belonged to only 

one polygon. The input surface geometry could, however, be of complex topology and 
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might contain numerous surface fragments along with a largest surface among them. In 

this study, the largest surface is identified and is separated from the rest of the surface 

fragments. To identify regions of interest, holes on the largest surface of the mesh are 

found. The regions of interest are non-intersecting regions which may enclose one or 

more of the nearby holes and are bigger than the bounding box of the enclosed holes. 

Each of these regions of interest is termed a “solution column” in this dissertation. Each 

of the solution columns is represented as a uniform Cartesian grid. The voxelization is 

only performed in non-intersecting regions of interest near the surface defects. The 

fragments and surfaces enclosed within the region of interest are later on embedded in the 

solution columns.  

 The density of the voxels is a function of the triangle size in terms of average edge 

lengths and average area of the neighborhood triangles in the region of interest of the 

input geometry. The density of voxels will not only determine the rate of convergence of 

the solution but also the distribution of points and the quality of output at the 

reconstructed surface in the later stages of the mesh repair process. The Cartesian grid 

can be arranged in the form of a block of 3D tiles, as shown in Figure 7. The user can 

specify the tiles‟ size along the maximum length, which determines the number of tiles 

used to represent the Cartesian grid. 

Each tile is of identical size and is composed of a certain number of voxels (floating 

precision) based on the bounding box size. The tiles are padded with an extra layer of 

ghost cells along the boundary, as shown in Figure 8. The memory allocation is 

completely dynamic, and the information exchange between the contiguous tiles is 

hidden from the user using an abstraction layer.  



43 

   

 

 

 

 

 

 

Figure 8: Ghost cells at the interface of two tiles shown in gray color in a 2D 

Cartesian grid. 

Figure 7: A Cartesian Grid composed of multiple blocks in 3D  
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Although this representation is more complex than the scenario when the whole data 

is represented as one single block, this kind of memory allocation for representation of a 

Cartesian grid has two major benefits: 

 Depending on the memory footprint of a tile and the size of the cache on the CPU 

chip, one may be able to employ cache effects by taking advantage of the cache 

hierarchy to speed up the code execution. This is possible because the small 

memory size of each tile may fit inside the cache of the CPU. 

 The solver requires an exact temporary copy of the tile in the intermediate step to 

compute and transfer data. If a small tile size is being used, then only a small 

intermediate amount of memory would be needed to compute and transfer data for 

each tile.  

As the information exchange between ghost cells is completely hidden from the user, 

the user would not notice any difference while using the APIs compared to the situation 

when a whole block is composed of a single tile. A mask is also created for the embedded 

data using an identical Cartesian grid of lower precision (char) to store information from 

the original model and to store the boundary conditions for the solver. The lower 

precision of the mask is used to conserve the memory footprint of the solution process. 

The mask is also used after contour extraction to determine whether a triangle in question 

is a new triangle in the void region or if it overlaps or intersects with the original triangles 

of the input region of interest.  An input discrete geometry is composed of individual 

triangles. The intersection of each triangle with the voxels of the Cartesian grid lying 

within its bounding box is checked using the AABB Triangle-Box intersection algorithm 

[15]. All voxels that intersect with triangles are masked as “model voxels” with a static  
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value of „0‟. All the voxels along the positive normal of the triangle plane which are not 

“model voxels” are masked as “heated” and given a static positive value of  „+1‟. All the 

voxels along the negative normal of the triangle plane which are not “model voxels” and 

are touching “model voxels” are masked as “cold” and given a negative value of „-1‟. 

This process creates a signed Cartesian grid with voxelized representation of the discrete 

geometry having a neutral value of „0‟ sandwiched between the hot and the cold sides. 

The rest of the uncertain voxels are dynamic and can change values during the solution 

Figure 9: Solution columns for Stanford Bunny 
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phase. Davis et al. [19] use line-of-sight information obtained from the ranging devices to 

create a signed data for the solution process.  

The algorithm presented in this dissertation is not tailored for input data from ranging 

devices; hence the availability of line-of-sight information is not assumed in this work, 

which could be used to sign the voxels of the Cartesian grids. Instead, an assumption is 

made that the input discrete geometry has consistent normal orientation for the purpose of 

defining the boundary conditions.  The input geometry may not have normal information 

already present. As a result, normals are generated for every triangle and vertices of the 

input geometry in order to sign those unsigned voxels of the Cartesian grid column that 

are touching the embedded geometry. Figure 9 shows the position of solution columns for 

the Stanford Bunny [57]. As illustrated in the figure, these solution columns do not 

intersect and surround the holes on the surface of the geometry. 

 

 

Numerical Solution of the Diffusion Equations 

Diffusion is a well-known and well-understood time-dependent process, constituted 

by random motion of given entities and causing the statistical distribution of these entities 

to spread in space. The diffusion equation solution space can be defined as a set of 

Cartesian grids embedding curved thin plates in 3D space where one side is heated while 

the other side is cold, diffusing energy through 3D space. The curved plates embedded in 

the Cartesian grids represent segments of the input model embedded in solution columns. 

The equations derived in Appendix A are used to find a steady-state solution for the 

diffusion equation.  A finite-volume formulation for the diffusion equation is employed 
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to arrive at a solution for the diffusion equation as described in equation (15). Equation 

(17) provides the discretization of the finite-volume formulation. It is an explicit scheme 

with a forward difference in time and central difference in space. Equation (18) provides 

the solution of the diffusion equation.  

The diffusion equation is being solved as a time dependent problem, and the error 

introduced at any time step is going to grow or decay based on the stability condition. 

Von-Neumann‟s analysis predicts that the conditions for the numerical scheme to be 

stable. The stability analysis provides a range of values of αΔt for which the numerical 

scheme used is stable. The acceptable values of αΔt depend upon the grid refinement, as 

given in equation (32) for Cartesian Grids. Equations (34), (35) and (36), as defined 

earlier, provide three measures of change to determine whether or not the solution has 

reached convergence.                 
   , as defined in equation (36), is the average 

percentage change for a Cartesian grid compared to the previous iterations and is used in 

most of this study to determine the convergence of the solution of the diffusion equations. 

Two parameters,               
    and the number of iterations, are used to determine 

whether or not convergence has been reached.  The cutoff values of these parameters, 

0.5% or 1000 iterations, respectively, are based on empirical evidence from experimental 

results. Figure 10 and Figure 11 show the convergence plots of L2NormMax and 

L2NormAvg for Columns 2 and 3, respectively, for the Stanford Bunny.  In both the cases, 

the plots are asymptotic and seem to converge within a few iterations. However, looking 

closely at the log plots in Figure 12 and Figure 13, it can be inferred that convergence is 

actually reached much later.  
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Figure 10: Convergence Plot for Column 2 of the Stanford Bunny 

Figure 11: Convergence Plot for Column 3 of the Stanford Bunny 
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Figure 12: log10 Convergence Plot for Column 2 of the Stanford Bunny 

Figure 13: log10 Convergence Plot for Column 3 of the Stanford Bunny 



50 

   

 

Figure 14: Rendering of a slice of the Stanford Bunny in false color  

 

Column 2 is a small Cartesian Grid, and the diffusion equation solver reaches 

convergence much faster than when the same diffusion equation solver is run on Column 

3, as shown by Figure 10 and Figure 11. 

Explicit schemes are known to be notoriously slow for convergence.  The 

convergence becomes even slower as one refines the grid to a finer resolution. To 

circumvent this problem, APIs, which can be used for a primitive algebraic interpolation 

approach using a coarse grid to initialize the flow field for the finer Cartesian grid, have 

been implemented.  This allows the overall solution field to be initialized using the 

preliminary solution from the coarser grid, which can reduce the time needed for 

convergence. First the solver is run on a coarse grid for a fixed number of iterations. The 
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solution from the coarse grid is interpolated onto the finer Cartesian grid as initial values 

on which the diffusion solution process is started for better convergence.   

The diffusion equation provides a smooth and continuous variation of the solution at 

the time of convergence. It is a Laplace equation that satisfies Min-Max property, which 

states that the computed values inside the solution domain would lie between the 

minimum and maximum values specified at the boundary when the solution has 

converged. This ensures that the computed values in the domain will lie between  „-1‟ and 

„+1‟ in the simulation of the equation. These two properties make heat equation a good 

choice for the problem being solved in this research, where one wants a smooth and 

continuous variation of the solution at the time of convergence, resulting in a smooth and 

continuous surface as output after contouring. 

Figure 14 shows the rendering for a slice of Stanford Bunny in false color after 

convergence on GPU when the whole model is embedded in one Cartesian grid column 

for illustration purpose. The rendering is done using Paraview [64] for a slice of a fine 

Cartesian grid with 420 voxels along the maximum dimension, which was initialized with 

the solution from a coarse Cartesian grid with 100 voxels along the maximum dimension. 

One can clearly see a diffusion of colors in the lower right corner of the rendering, 

signifying a discontinuity in the model and a gradient in the temperature values in that 

area due to diffusion. The diffusion solution in this case was achieved using CUDA on a 

Quadro FX 5800 GPU donated by NVIDIA for this study.  
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Extraction of Consistently Oriented Surfaces and Point Set 

The zero-set of the numerical solution for the diffusion equation, as described in the 

previous section, provides a closed surface.  This zero-set surface is otherwise only open 

at the places where it intersects with the extremities of the Cartesian grid. Extraction of 

the surface using a suitable contouring method should provide us with the desired result. 

There are a number of contouring methods available, the most common of which is 

Marching Cubes [40].  The Marching Cubes algorithm is feature insensitive and 

introduces aliasing artifacts in the form of a staircasing pattern on the surface while 

greatly increasing the number of triangles on the surface, depending on the resolution of 

the Cartesian grid, often giving poor results. A number of open-source implementations 

of the Marching Cubes algorithm are widely available in the public domain. In this 

implementation, a VTK library implementation of the Marching Cubes algorithm 

specialized for 3D image data, known as vtkImageMarchingCubes [61], is used. It 

was chosen due to its open source availability and ease of use. The extracted surface can 

contain aliasing artifacts and can also contain topologically complex artifacts in the form 

of small bubbles attached to the extracted surface. These artifacts can be easily removed 

by first checking the connectivity of the output surfaces and by extracting the largest 

surface. Next the extracted surface mesh is relaxed using a smoothing filter, such as the 

one described by Taubin et al. [54]. vtkWindowedSincPolyDataFilter [62] is an 

open-source implementation of this smoothing filter and is available as part of the VTK 

library. Figure 15 shows the extracted surface on a solution column after smoothing.  
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Figure 15: Contouring and smoothing result on a column at the base of the Stanford 

Bunny 

 

 

Figure 16: Extracted patch from the contouring result superimposed with the original 

model. 
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Figure 17: Reconstructed Surface (a) with bump; (b) without bump 

 

 

 

Figure 18: Extracted point set with consistently oriented normals 

(a) (b) 
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Once the contoured and smoothed surface is extracted, all triangles that intersect with 

the voxels embedding the original surface are removed from the extracted surface. This 

process provides us with an extracted patch in the hole region. Figure 16 shows extracted 

patches superimposed with the original input mesh with holes. By careful study, it was 

observed that the conversion of a surface mesh to an intermediate volume mesh and 

subsequent contouring causes a shift of about half a voxel in the position of the extracted 

surface when compared with the original surface. It is believed that this happens because 

the original surface is embedded in voxels, while contouring is done by evaluating values 

on the voxel corner. If left uncorrected, this would cause a noticeable shift in the 

reconstructed surface, as evidenced in Figure 17 (a). It is corrected by shifting the 

extracted surface by 0.5 voxels along inward normal. This correction resolves the bump 

to get a smoother surface after reconstruction in the region where the patch and holes lie, 

as shown by Figure 17 (b). The normal information in the original and reconstructed 

surface may not be present a priori and, as a result, the normal at every vertex of the 

input surface and extracted patch has to be calculated.  

All vertices on the input surface mesh along with isles and patches are extracted and 

normals are generated to create a well-sampled point set, as shown in Figure 18. The 

point set shown in Figure 18 has been rendered based on the normals generated on those 

points. This well-sampled point set would be used for surface reconstruction using the 

Poisson Surface Reconstruction technique [38] as described in the next section.  
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Surface Reconstruction and Results 

Surface reconstruction and surface fitting from point samples is a well-studied 

problem in computer graphics and has applications in a number of disciplines, including 

surface reconstruction from input points and reverse engineering. Reconstruction itself is 

a very challenging area due to uneven sampling of points, noisy data and scan mis-

registration, among other problems. There are a number of schemes for surface 

reconstruction based on implicit forms among other techniques. The implicit surface 

fitting methods are either global or local in nature. Global fitting methods commonly 

define the implicit function as the sum of radial basis functions (RBFs) centered at the 

points. Local fitting methods consider subsets of nearby points. These methods are well 

studied and have been compared in a number of papers including, but not limited to, 

Amenta and Bern [28], Amenta et al. [29], Carr et al. [30], Bruno [31], Dey and Goswami 

[32], Dey and Goswami [33], Shen et al. [34], Casciola et al. [35], Kazhdan et al. [36] 

and Mullen et al. [37], among  others. 

In this research, an existing and well-established surface reconstruction method was 

used, which is Poisson Surface Reconstruction as described in Kazhdan et al. [36]. It is an 

open-source algorithms and is widely available [38]. Although Poisson surface 

reconstruction provides a watertight surface, its accuracy depends on the sampling of 

input points. Therefore, in this study, efforts are made to provide a well-sampled point set 

with correctly oriented normals as input to the Poisson surface reconstruction in order to 

get an output surface that is not only smooth but also well behaved. The point set 

generated for the input surfaces, as well as the extracted patches and surface 

reconstruction creates a completely new reconstructed watertight surface for the whole 
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model, which may be quite different from the input surface. The VTK implementation of 

Poisson surface reconstruction as presented by Doria and Gelas [38] is used at Octree 

refinement level 10 in this study wherever Poisson surface reconstruction is used to 

reconstruct a repaired model. Figure 19 shows the reconstructed watertight model of the 

Stanford Bunny, which was generated using the Poisson surface reconstruction as the 

final step of a volume-based mesh repair. The point set shown in Figure 18 was used as 

an input during surface reconstruction. The surface generated after using the Poisson 

surface reconstruction is the final result obtained from the volume-based mesh repair 

algorithm presented in this chapter, as shown by Figure 19. 

 

Figure 19: Reconstructed watertight model of Stanford Bunny 
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In this chapter, a volume-based approach is presented that can repair a discrete input 

geometry by solving the diffusion equation followed by a Poisson surface reconstruction. 

Even though the volume-based method is applied on isolated solution columns, the 

repaired and reconstructed watertight model after Poisson reconstruction is altered from 

the original input model during the reconstruction process. Volume-based approaches 

like the one described in this chapter can be used to repair the models with artifacts that 

surface-based models otherwise cannot robustly handle. However, they also pose some 

potential problems. The conversion to and from an intermediate volume representation 

leads to the resampling of the model. It may significantly alter the input geometry, which 

could result in the loss of model features and could destroy any structure that might have 

been present in the connectivity of the input model. Despite all their shortcomings, 

volume-based algorithms can solve some problems in mesh repair robustly that cannot be 

handled by surface-based approaches alone.  

 

 

Mesh Repair Results on Analytical Models 

In order to evaluate the accuracy of this volume-based hole-patching algorithm, 

ellipsoids are chosen as benchmark cases to calculate the average errors in terms of radius 

and the standard deviation of errors of the location of each point. This was done due to 

the fact that the location of each point on an ellipsoid can be analytically defined. For 

comparison purpose, results from surface-based technique is also presented in Table 1. 
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 An ellipsoid with semi-axes a, b, and c and centered at coordinate (0, 0, 0) is defined 

as: 
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Error in the location of points on the ellipsoids can be quantified as: 
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The average error can be measured as: 
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The standard deviation is the measure of the spread in a set of values. The standard 

deviation in the error of coordinate positions on the patches can be obtained as follows: 
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If the minimum distance by which the position of a point (xi, yi, zi) on the ellipsoidal 

surface could be moved to a new location (λxi, λyi, λzi) such that the point at the new 

location would lie exactly on the surface of the analytical ellipsoid, then the value of λ 

can be defined as: 

    
 

 

 
2

2

2

2

2

2

c

z

b

y

a

x iii   
 

 

(5) 

 

 



60 

   

As a result, the displacement error % in the position of the point (xi, yi, zi) can be given as  

Displacement error % in position =  
 

 
         (6) 

Tables 1 and 2 present the errors in the position of the points of the reconstructed 

model using surface-based and volume-based repair techniques, respectively. The tables 

show the number of points, average error, standard deviation of error, minimum absolute 

displacement error % and maximum absolute displacement error % due to the the 

position of points on the reconstructed surface of three ellipsoids. The three ellipsoids 

were constructed by varying semi-axis b along y-direction. A sphere is a special case of 

an ellipsoid when a = b = c.  It can be observed from tables 1 and 2 that geometry 

generated using surface-based mesh repair technique provide better results when 

compared with that of the volume-based mesh repair technique presented in this chapter. 

 This is an expected outcome.  It has been empirically observed that the errors due to the 

location of the points on the output geometry using volume-based repair tend to become 

smaller as the resolution of the input model is increased.  
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Model Name Number 

of Points 

on 

Surface 

Average 

Error 

Standard 

Deviation 

of Error 

Minimum 

Absolute 

Displacement 

Error % 

Maximum 

Absolute 

Displacement 

Error % 

Sphere (a = 1.0, b 

= 1.0, c = 1.0) 
30413 -5.415e-04 1.748e-03 0.0 0.688 

Ellipsoid (a = 1.0, 

b = 0.5, c = 1.0) 
30514 -4.942e-04 1.778e-03 0.0 0.850 

Ellipsoid (a = 1.0, 

b = 0.2, c = 1.0) 
30403 -5.452e-04 2.673e-03 0.0 2.188 

 

Table 1: Result of surface-based mesh repair technique on analytical models 

 

 

Model Name Number of 

Points on 

Surface 

Average 

Error 

Standard 

Deviation 

of Error 

Minimum 

Absolute 

Displacement 

Error % 

Maximum 

Absolute 

Displacement 

Error % 

Sphere (a = 1.0, b 

= 1.0, c = 1.0) 
32680 1.347e-02 0.02908 2.282 -06 7.381 

Ellipsoid (a = 1.0, 

b = 0.5, c = 1.0) 
36099 2.364e-02 0.05957 3.080e-06 16.442 

Ellipsoid (a = 1.0, 

b = 0.2, c = 1.0) 
34298 7.708e-02 0.21952 1.559e-05 50.729 

 

Table 2: Result of volume-based mesh repair technique on analytical models
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CHAPTER 5 

 

HYBRID APPROACH TO GEOMETRIC HOLE PATCHING 

Surface-based methods explicitly try to identify surface artifacts prior to repairing 

them and require that input geometry meets some mesh quality conditions. This is 

sometimes not feasible, causing the mesh repair techniques to fail. However, the surface-

based methods have some compelling advantages over the volume-based methods, which 

emphasize that surface-based techniques should be employed wherever possible to get 

better quality results compared to using only volume-based methods for geometry repair. 

The volume-based approach presented in chapter 4 works well for relatively simple 

input surfaces but will not provide well-behaved and feature-sensitive results for inputs 

having high curvature and complicated geometries. In those cases, a hybrid approach can 

be used. A hybrid approach leverages the benefits of both surface-based and volume-

based approaches to obtain a reconstructed watertight surface, which is not only smooth 

and well-behaved, but also feature-sensitive.  

A hybrid approach would be used when the surface-based algorithm has failed to 

repair the input geometry completely. All the generated patches from the surface-based 

approach, along with the input geometry, are used as inputs to the volume-based 

approach described in chapter 4.  Figure 20 presents the flow chart for the hybrid 
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approach to mesh repair presented in this chapter. In the hybrid approach to geometry 

repair, parts of the original input geometry, along with all the surface fragments as well 

as the output surface patches from the surface-based approach, are embedded in the 

voxelized, non-intersecting Cartesian grid solution columns prior to generating a 

diffusion equation-based solution in those columns, as described in chapter 4. 

As part of a previous effort, an automatic surface-based method has been presented 

and published for patching topologically simple holes on a triangulated surface model to 

achieve a watertight surface, as described by Kumar et al. [12], Kumar and Shih [13] and 

Kumar et al. [14]. The existing surface points around the holes were used to obtain a set 

of NURBS surfaces approximating the missing surface patches. A Delaunay triangulation 

method and repeated point insertions at the centroid of the triangles were used to generate 

internal points that were then projected onto a set of NURBS surfaces to obtain the 

desired patch. The patches generated by this method were achieved with minimal 

alteration of the geometric information of the surrounding geometry. This algorithm for 

surface-based mesh repair is applicable to topologically simple but geometrically 

complex holes in the discrete geometry. Such holes are common in the geometries 

obtained from 3D scanners or extracted from medical image datasets using the Marching 

Cubes algorithm. This hybrid approach uses an incremental improvement to the surface-

based approach for mesh repair.  This insures that the input to the volume-based 

algorithm in the hybrid approach is a surface that shows better feature sensitivity than 

what would have been available without using any surface-based approach. 
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Figure 20: Flowchart of hybrid approach towards mesh repair. 
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The main features of this surface-based mesh repair algorithm, along with a number 

of improvements which have been implemented and used in the hybrid approach 

presented in this chapter, are as follows: 

 No assumption about the orientation, shape, size or origin of the holes on the 

surface. 

 Analogy of non-intersecting rings on unstructured mesh surrounding gaps or holes 

on the surface mesh. 

 Fully automatic method with the size and density of the triangulation in the hole 

patching process using incremental refinement controlled by the size of 

neighborhood triangles (edge length and area). 

 Point insertion at the centroid and edge swapping based on Delaunay criteria, as 

described in Appendix C.   

 Smooth patches even in the regions with high curvature. 

 Explicit identification of holes and their sorting based on their sizes in terms of 

number of edges.  

 Octree-based search for locating points and a hybrid octree search for location of 

edges and triangles on the mesh. 

 Hole patching using localized NURBS-based surface definition. 

 Hole patching only supported with discrete geometries with simple topologies. 

The presence of isles in the hole region is detected but not supported.  

The algorithm for this hybrid approach, as described in the flowchart shown in Figure 

20, will be validated and presented with examples using the Laurent Hand [58] and 

Chinese Lion [59] models.  Similar to the Stanford Bunny model, both of these models 
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are freely available online in high resolution and are used widely for research purposes 

for validation of algorithms. These models are highly complex and lack water-tightness. 

Some of the holes present on the surfaces of these models are in areas with high 

geometric curvature in narrow areas and pose a significant challenge for geometry repair 

using traditional methods. The surface-based algorithm that would be used on these 

models failed to completely repair the mesh, while the volume-based algorithm presented 

in chapter 4 failed to produce a satisfactory result on these models due to the close 

geometric proximity of finger surfaces. The hybrid approach presented in this chapter is 

not only able to repair the models but to produce results that conform to what are 

expected based on the surrounding features. These cases are discussed and illustrated 

below. 

   

 

Laurent Hand:  

The Laurent Hand model [58] was scanned at INRIA by Laurent et al. and is 

available at aim@shape shape repository [63]. It is a non-manifold model and lacks 

water-tightness, with a number of gaps in geometrically complex areas due to occlusion 

as shown in Figure 21. The next few figures show the results of different techniques on 

this model. The region surrounding three middle fingers is illustrated in Figure 22. The 

surface between the thumb and index fingers has high curvature and are in close 

proximity. Applying the volume-based technique in this area without any extra data, such 

as line of sight information, would end up fusing the fingers together, as demonstrated in 

Figure 25 (b) and (c). 
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Figure 21: Laurent Hand model with a number of discontinuities  

  

 

Figure 22: Discontinuities in Laurent Hand model around three middle fingers  
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(a) 

 

 
(b) 

Figure 23: Extracted surfaces after contouring super imposed on the original Laurent 

Hand model showing (a) front (b) back 
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(a) (b) 

 
 

 
 

(c) (d) 

 

 

Figure 24: Laurent hand after repair: (a) surface-based; (b) volume-based with 

reconstruction; (c) with only Poisson reconstruction; (d) with hybrid approach 
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(a) 

 

(b) 

  
(c) (d) 

 

Figure 25: Middle three fingers in Laurent hand after repair: (a) surface-based; (b) 

volume-based with reconstruction; (c) with only Poisson reconstruction; (d) with hybrid 

approach 

 

   Figure 23 (a) and (b) show non-intersecting surfaces extracted from solution 

columns after contouring and their placement on the original model. Figure 24 (a) shows 

mesh repair on the Laurent Hand using the surface-based approach. It can be observed 

from Figure 24 (a) and (b) that although the surface-based approach is successful in 

repairing the mesh between the fingers, it is not able to close all the voids. Figure 24 (b) 

shows a model repaired using the volume-based approach, as described in this chapter 

which uses Poisson surface reconstruction as the final step. It can be observed that, 
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although the output geometry is watertight, the output has fused fingers, as shown in 

Figure 25 (b), which is not desirable. Figure 24 (c) and Figure 25 (c) show the output for 

only Poisson-based surface reconstruction, and it can be observed that, although the 

output geometry is watertight, it has all three middle fingers fused together, which is 

again undesirable. 

Figure 24 (d) and Figure 25 (d) represent output from the hybrid approach, which 

uses both surface-based and volume-based techniques followed by Poisson surface 

reconstruction. It can be observed that not only is the output surface mesh watertight, but 

the middle fingers in the narrow area are not fused, as desired, compared to the cases 

when only a surface- or a volume-based technique was used to repair the geometry. This 

example demonstrates the usefulness of hybrid technique for repairing a surface 

geometry. 

 
 

(a) (b) 
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(c) 

 

(d) 

  
(e) (f) 

 

Figure 26: INRIA Chinese Lion model: (a) original, front; (b) original, back; (c) surface-

based repair, front; (d) surface-based repair, back; (e) hybrid approach, front; (f) hybrid 

approach, back  



73 

   

INRIA Chinese Lion 

The INRIA Chinese Lion [59] model was scanned by the Geometrica Group at 

INRIA using the Minolta Vivid 910 Laser Scanner. The model is available on the 

Aim@Shape Project Shape Repository [63]. The Chinese Lion model so obtained is a 

dirty model with non-manifold complex edges and numerous small surface fragments and 

defects. Not all holes could be filled using the surface-based approach [12], [13], [14] due 

to the complexities of the model, as well as inherent inadequacies of the initial surface 

triangulation algorithm in 3D space. Figure 26 (a) – (f) demonstrate the result of 

geometry repair on the model using the hybrid approach and its visual comparison with 

the original model as well as the model generated after failed surface-based mesh repair 

on the model. Figure 26 (a) and (b) show the front and back rendering of the original 

model along with numerous holes on the surface. It can be observed that a number of 

those holes are geometrically very complex. Figure 26 (c) and (d) show the front and 

back rendering of the Chinese Lion model after surface-based mesh repair. One can 

notice that a number of the holes and discontinuities presented in Figure 26 (a) and (b) 

have been either completely filled or have contracted in size. However, surface-based 

mesh repair is not able to fill all the holes. Figure 26 (e) and (f) show the final result of 

the mesh repair process using the hybrid approach that uses output from the surface-

based approach, as shown in Figure 26 (c) and (d) along with isles and surface fragments 

present in the original model as input to the volume-based repair process. The resultant 

output mesh is completely watertight.    
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CHAPTER 6 

 

DIFFUSION SOLVER PARALLELIZATION  

With the development of increasingly complex technologies, there is a continuous 

demand for greater computational power (speed, memory, and bandwidth) than what is 

presently possible. In particular, realistic numerical simulations in scientific and 

engineering problems needs ever-increasing computation resources, since such 

simulations often require a large number of repetitive calculations on a relatively large 

amount of data in a limited time in order to generate valid, useful results.  Traditionally, 

such problems were solved in a parallelized fashion on specialized machines known as 

supercomputers. These supercomputing machines were housed in large buildings with 

restricted access and needed large investments in terms of dedicated staff, special cooling 

machines, specialized proprietary interconnect hardware and memory switches.  These 

days, with advancement of computer technologies, necessary computing resources such 

as computing power, memory and bandwidth is becoming increasingly more cost 

effective and smaller in hardware size. As a result, it has become possible to obtain the 

kind of computing power through commodity multiprocessors, multi-core desktop 

computer systems and off-the-shelf graphics cards that would have required access to 

specialized supercomputers only a few years ago. 
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A multiprocessor system is a parallel computation machine that contains more than 

one processor. Multiprocessor computation includes multi-threaded computations, which 

could run concurrently on a single machine with multiple processors or processor cores. 

The speedup factor       or speedup, which is a measure of relative performance of such 

a multiprocessor system, can be defined as  

     
                                  

                                                      
 (7) 

The maximum possible theoretical speedup is usually p with p processors when 

the problem can be equally divided among the p processor with no additional overhead 

costs, as shown in equation (8) below. 

 
     

  
  

  
  
    

   (8) 

Most of the computations have additional fixed overhead of job and thread scheduling 

along with communication cost between processes, which scales with the size of the 

problem. The maximum possible speedup for such problems of fixed size is defined by 

Amdahl‟s Law [65] . 

Amdahl‟s law assumes that every parallel computation has a serial part that can only 

be executed on one processor. If the fraction of computation that cannot be divided into 

concurrent tasks is f, then the speedup according to Amdahl‟s law can be given as 

      
  

             
  

 

        
 (9) 

Amdahl‟s law puts a maximum upper limit for speedup on a problem of fixed size with 

an increasing number of processors, as shown below. 

    
   

  
 

 
 (10) 
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Figure 27: Amdahl‟s law showing relationship between maximum speedup and parallel 

portion with increasing number of processors for a fixed sized problem 

 

Note: Image sourced from Wikimedia http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg 

and licensed for free and unrestricted use under Creative Commons license.   

 

 

This behavior is presented in Figure 27, which shows a plot of the number of 

processors vs. speedup for a specific problem with fixed problem sizes and fixed parallel 

fractions. It shows that for a problem of fixed size, when the serial fraction is 50%, then 

the maximum speedup can only be 2, regardless of the number of processors used. 

Similarly for a problem of fixed sized with serial fraction as 5%, then the maximum 

speedup can only be 20, irrespective of the number of processors being used.  
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Figure 28: Gustafson‟s law showing scaled speedup plots 

Note: Image sourced from Wikimedia http://en.wikipedia.org/wiki/File:Gustafson.png 

and licensed for free and unrestricted use under Creative Commons license.   

 

The speedup of scalable problems, where the size of the problem can be scaled up, is 

governed by Gustafson‟s law [66]. The scaled speedup       is given as 

                 (11) 

There are two assumptions in the Gustafson‟s law: the parallel execution time is constant, 

and    , which is the fixed serial fraction, is also constant and is not a function of number 

of processors p. Figure 28 shows a scaled speedup plot for a scalable problem with 

different fixed serial fractions. 

In the volume-based mesh repair method presented in this research, a major portion of 

the solution process time is spent in obtaining a converged solution for the diffusion 
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equations on a number of Cartesian grid columns which embed parts and pieces of input 

geometry. This problem becomes even more acute when holes are closely clustered 

together or when input geometry is of high resolution. This is due to the fact that the 

solution domain resolution is closely tied to the resolution of input geometry in the 

formulation of the diffusion equation presented in this work. One of the major objectives 

of this research is to study the behavior of solution processes using multi-threaded 

parallelization on CPUs and GPUs. The parallelization in this research has been done on 

an inexpensive (< $1000) PC which has a 64-bit quad-core AMD
®
 Athlon™ II 620 

processor and 4GB of RAM.  The machine also has a dedicated NVIDIA
®
 Quadro™ FX 

5800 graphics card with 240 stream processor cores and 4GB of onboard GDDR3 

graphics memory for GPGPU-based computations. The machine is configured with the 

CentOS operating systems (OS), which is a Linux-based OS, and all the data presented in 

this chapter was generated on the described machine. This data was generated by running 

the diffusion solver-based solution process on the Stanford Bunny with 10 holes in its 

surface [57].  The data presented in this chapter was generated on a fine grid, which uses 

the results of the coarser Cartesian grid for initialization of data after running the 

diffusion solution on the coarse Cartesian grid for a large number of iterations. It should 

also be noted that the diffusion solvers written for the CPU and the GPU are slightly 

different, as they are optimized considering very different architectures of the CPU and 

the GPU. In addition, it should be noted that the results are generated by embedding the 

whole model into one Cartesian grid, which is arranged as a number of tiles to study the 

performance of the diffusion solver as the problem size is scaled. 

 



79 

   

Multi-threaded Parallelization of Diffusion Equations on CPU Using OpenMP 

The OpenMP Application Program Interface (API) supports multi-platform shared-

memory parallel programming in C/C++ and Fortran on a number of architectures, 

including Unix platforms and Windows NT platforms. Jointly defined by a group of 

major computer hardware and software vendors, OpenMP is a portable, scalable model 

that gives shared-memory parallel programmers a simple and flexible interface for 

developing parallel applications for platforms ranging from the desktop to the 

supercomputer and is supported on a number of compilers. OpenMP is natively 

integrated with the GNU GCC family of compilers, which is used in this research, and 

can be enabled using the –fopenmp switch at the compile time.  

In this study, the entire Stanford Bunny was embedded in a single Cartesian grid of a 

particular size.  The Cartesian grid is composed of a number of tiles in the x, y and z 

directions. Each tile is of equal size and contains an equal number of voxels.  The tile size 

varies, as the Cartesian grid size is varied in this research. The total number of voxels in 

the Cartesian grid scales up as the Cartesian grid size increases. However, the number of 

tiles in the Cartesian grid has been kept fixed at 20x20x16 in the x, y and z directions. 

Furthermore, the data being presented is from a fine Cartesian grid, which interpolates 

data from the solution of a corresponding coarse Cartesian grid as an input to the fine 

Cartesian grid in a multi-grid solution-based approach.  Both the tile size and the coarse 

Cartesian grid size was kept constant in this study.  The solution run times being 

presented in this study are for the fine Cartesian grid only. The coarse Cartesian grid size 

was kept constant at 100x100x80 voxels, with 10x10x8 tiles for each Cartesian grid, 

irrespective of the size of the corresponding fine Cartesian grid. 
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Outlined in Table 3 are the data obtained from the multi-threaded parallelization of 

the diffusion solver on the Stanford Bunny. Column 1 in the table shows the suggested 

maximum Cartesian size along the maximum dimension.  However, the actual size could 

be slightly different, as it is dependent on the ratio of maximum and minimum 

dimensions of a particular input model based on the bounding box sizes, chosen scaling 

factor, number of tiles and number of voxels per tile. Column 2 in the table shows the 

actual number of voxels in the Cartesian grid in which the diffusion solver is run. 

Columns 3 to 10 show the diffusion solver run time for 120 iterations on the fine 

Cartesian grid with varying numbers of threads.  

Illustrated in Figure 29 is the plot of OpenMP runtime based on the data presented in 

Table 3. The figure shows a plot of the total number of voxels in the fine Cartesian grid 

vs. total run time for the diffusion solver for 120 iterations. It can be observed that the run 

time is linear with increasing problem size for up to 4 threads on the quad-core CPU and 

follows closely along with the Gustafson‟s law which governs maximum scaled speedup. 

However, as the number of threads is increased from 4, the serial fractions of the solution 

are no longer fixed due to thread and scheduling conflicts, and this starts affecting the run 

time. It can also be observed that the best run time (minimum) is achieved for 4 threads 

on a quad-core CPU. This happens because when the number of threads is greater than 

the number of available cores on the machine, the CPU has to spend a considerable 

amount of time in scheduling cores for competing threads solving the diffusion equation, 

increasing the total solution time.  

Presented in Figure 30 is the plot of the OpenMP run time variation with increasing 

number of threads for each Cartesian grid. It can be observed from the plot that the run 
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time for each Cartesian grid steadily declines as the number of threads is increased from 

1 to 4, indicating improving speedup. However, as the number of threads increases from 

4 to 5 for every Cartesian grid, the run time sharply increases, due to the change in the 

fixed costs for running the job. Most of the jump in the time is due to the increase in the 

system time spent on managing threads.  

Outlined in Table 4 is the OpenMP based multi-threaded speedup for the diffusion 

solver for different fine Cartesian grid sizes. Shown in Figure 31 is the plot of speedup 

changes for variations based on changing number of threads. The best speedup, which 

was observed to be 2.77, was observed to be for 4 threads on Cartesian grid, with 

suggested size in maximum dimension as 550.  

 

 

 

Parallelization of Diffusion Equation on GPU using CUDA 

GPGPU is an exciting new area in parallel computing. It promises to provide 

performance similar to supercomputers from a single desktop using GPU. Computer 

programs customized for GPU execution emphasize high throughput and derive most of 

the gain in performance due to clever scheduling of many thousands of threads over 

hundreds of GPU processor cores. Harnessing the power of a GPU efficiently for general 

purpose computing requires a good understanding its architecture and requires writing 

special, optimized code. This also necessitates a clever partitioning of data in such a way 

that programming instructions on GPU can be run on any chunk of data in a random 

order without affecting the overall output of the computation. 
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One of the objectives of this work is the parallelization and optimization of the 

diffusion solver on a GPU, along with the evaluation and analysis of the resulting 

performance gain through this effort. The graphics hardware for this research has been 

generously donated by NVIDIA in the form of a single NVIDIA Quadro FX 5800 

graphics card with 240 stream processors and 4GB of onboard GDDR3 memory. The 

CUDA drivers and libraries used for the GPGPU implementation are provided to 

developers for free by NVIDIA. Although CUDA provides a number of useful tools to 

write a program in standard C programming language, its use is severely restricted by a 

few restrictions imposed by CUDA for Quadro FX5800 generation of devices. Those 

restrictions are as follows: 

 Limited number of ANSI C features supported by CUDA. 

 Lack of support for C++ standard code. 

 Restrictions on the support of higher level memory constructs, such as structures 

and classes. 

 Absence of a true GPU-based debugger for code debugging. The current 

generation nvcc CUDA debugger can only be used in the device emulation 

mode. 

 Lack of support for std::cout based APIs from the GPU to the user. 

 Lack of support of dynamic memory allocation on the GPU from instructions 

executing on the GPU at runtime. This restriction severely limits what could be 

done on the GPU as the memory being used on the GPU has to be pre-allocated 

in the kernel before the code is run on the GPU. 
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However, despite all these restrictions, CUDA proves to be a valuable tool due to its 

extremely high theoretical peak performance for GPUs compared to that of even the most 

high-end CPUs commercially available. In this research, the diffusion solver for GPU has 

been optimized for GPU architecture and hence behaves slightly differently than the 

CPU-based diffusion solver. The diffusion solver for both the coarse and fine Cartesian 

grids are run on the GPU using CUDA; however, the data being presented are only for 

the fine Cartesian grid for a fixed number of iterations. The Cartesian grid is mapped onto 

a number of GPU tiles. Each of the GPU tiles is of fixed size, 16x16xk, number of 

voxels, where „k‟ is the number of voxels in the Cartesian grid along the z direction. Each 

of the tiles is mapped onto one stream processor on the GPU, and the number of voxels 

on a GPU tile corresponds to the maximum number of threads that one stream processer 

can spawn and handle. The thread handling on the GPU is managed by CUDA without 

the user having to explicitly manage them. However, CUDA requires the user to have a 

fine-grained knowledge of the GPU architecture to effectively use the GPU for general 

purpose computing to achieve the maximum throughput and highest efficiency through 

GPGPU implementation.  

Table 5 presents the data obtained after running the GPU-optimized diffusion solver 

for the Stanford Bunny on fine Cartesian grid for 120 iterations. The table also presents 

runtime data from the diffusion solver when run on a CPU using a single thread for 

comparison purposes.  It should, however, be noted that the diffusion solver code written 

for the both CPU and GPU are optimized for the architecture of their respective platforms 

and, as a result, there may not be exact one-to-one comparisons for each case. As a result, 

the run time for both the GPU and CPU was normalized for per million voxels for each 



84 

   

suggested tile size due to the variations in the total number of voxels and, as a result, the 

variation in the Cartesian grid sizes, so that a comparison of run-time performances of the 

CPU and the GPU could be possible.   

Figure 32 presents the plot of the Cartesian grid sizes for CPU and GPU vs. execution 

run time in seconds. It can be observed that the CPU execution time follows closely with 

that predicted by Gustafson‟s law. However, the GPU time plot is not linear and varies 

when the problem size is scaled up. Possible explanations for this result include the 

following: 1) the hardware architecture caused maximum throughput for the GPU to 

correspond to the dip in the GPU time curve; 2) the internal thread scheduling and data 

fetching is optimized for that grid size; or 3) the mapping of the file for that particular 

grid size is optimal for the GPU based on its architecture.  

Presented in Figure 33 is the plot of the suggested grid size along the largest 

dimension of the Cartesian grid vs. the solution time for the CPU and GPU. Once again, a 

dip in the curve could be noticed when the suggested grid size is 650 along the maximum 

dimension.  

Shown in Figure 34 is a plot of the number of GPU tiles vs. the run time for 120 

iterations for the diffusion solver on the GPU. At run time, each of the GPU tiles is 

mapped onto one stream processors. The GPU has 240 stream processors. When the 

number of tiles exceeds the number of streams processors on board the GPU, the threads 

mapped on to the GPU tiles wait for their turns to fetch data and perform calculations.  

Presented in Figure 35 is a composite bar and line plot showing the relationship 

between grid size and speedup. The y-axis for the bar plot shows the run time per million 

voxels for the CPU and the GPU. The data presented has been normalized per million to 
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obtain one-to-one correspondence between CPU and GPU for a suggested number of 

voxels along the largest dimension for the input model. The maximum achieved speedup 

was observed to be 8.86325 between CPU and GPU, while the minimum speedup was 

found to be 6.10873. 

The results from the parallelization of the diffusion solver for CPU and GPU are 

presented and compared using a number of tables and plots. The CPU-based diffusion-

solver code parallelization was done using the OpenMP library. The GPU-based code 

parallelization was done using the CUDA library and was run on a NVIDIA Quadro FX 

5800 GPU. The CPU- and GPU-based diffusion solver codes were optimized for their 

respective architectures. As a result, the optimization required the tile size and tile 

arrangements on CPU and GPU to be different. The results presented in this chapter 

conclusively show that the GPU implementation provides superior solver performance 

compared to the CPU, even when compared with multi-threaded parallelization for a 

quad-core CPU. The maximum speedup for GPU was observed to be 8.863, while the 

maximum speedup after multithreading was found to be 2.771 for 4 threads on a quad 

core CPU.
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Table 3: Data obtained from OpenMP based multi-threaded parallelization for diffusion equation on Stanford Bunny

Suggested 
Grid Size 
in Max 

Dimension 

Total Number 
of voxels in 

millions 
OpenMP diffusion solver run time for 120 iterations (in seconds) 

1 thread 2 threads 3 threads 4 threads 5 threads 6 threads 7 threads 8 threads 

150 3.28 60.96 46.78 42.52 37.50 84.99 87.39 99.03 96.40 

200 6.40 109.42 76.22 70.05 62.01 106.55 108.37 115.31 132.39 

250 14.06 223.14 151.18 126.60 115.23 163.92 173.21 157.17 164.39 

300 21.60 326.05 212.43 165.56 147.63 208.93 217.03 224.50 194.70 

350 35.25 511.18 313.12 244.73 220.58 290.48 279.54 284.18 294.35 

400 51.20 718.11 428.31 338.39 287.68 391.56 398.44 353.30 411.93 

450 74.48 1030.58 623.36 474.95 407.59 536.20 506.48 512.17 455.08 

500 100.00 1365.36 835.74 631.30 538.84 704.42 712.20 626.83 637.19 

550 135.48 1823.95 1050.35 827.91 658.15 850.65 857.34 754.50 760.45 

600 172.80 2282.76 1293.11 966.46 832.86 1118.14 993.97 998.11 873.10 
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Figure 29: OpenMP-based multi-threaded implementation for 120 iterations on Stanford Bunny showing plot of number 
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Suggested Tile 
Size in Max 
Dimension 

OpenMP Multi-Threading Speedup 

1 thread 2 threads 3 threads 4 threads 5 threads 6 threads 7 threads 8 threads 

150 1.0 1.303 1.434 1.626 0.717 0.698 0.616 0.632 

200 1.0 1.436 1.562 1.764 1.027 1.010 0.949 0.826 

250 1.0 1.476 1.763 1.936 1.361 1.288 1.420 1.357 

300 1.0 1.535 1.969 2.209 1.561 1.502 1.452 1.675 

350 1.0 1.633 2.089 2.317 1.760 1.829 1.799 1.737 

400 1.0 1.677 2.122 2.496 1.834 1.802 2.033 1.743 

450 1.0 1.653 2.170 2.529 1.922 2.035 2.012 2.265 

500 1.0 1.634 2.163 2.534 1.938 1.917 2.178 2.143 

550 1.0 1.737 2.203 2.771 2.144 2.127 2.417 2.399 

600 1.0 1.765 2.362 2.741 2.042 2.297 2.287 2.615 

 

Table 4: Speedup of OpenMP-based multi-threaded diffusion solver for 120 iterations on Stanford Bunny   
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Suggested 

Tile Size in 

Max 

Dimension 

Number of 

Tiles 

mapped on  

GPU 

Stream 

Processors 

Number 

of GPU 

Voxels in 

Millions 

Run Time in Seconds for 120 iterations 
Number 

of CPU 

Voxels in 

Millions 

Run Time in Seconds for 

120 iterations 

GPU 

Speedup 

GPU 

unoptimized 

time 

GPU  

optimized 

time 

GPU  

optimized 

time 

normalized 

CPU 

Execution 

time in 

Seconds  

CPU 

Normalized 

time per 

million voxel 

150 100 3.278 6.353 5.23263 1.5962874 3.28 44.640 13.622955 8.53415 

200 169 6.922 13.534 11.1449 1.6100135 6.40 80.912 12.642484 7.85241 

240 225 11.059 22.006 18.0063 1.6281738 -- -- -- -- 

250 256 13.632 27.340 22.4419 1.6463265 14.06 165.575 11.775646 7.15268 

300 361 22.180 45.082 37.0587 1.6708311 21.60 249.180 11.536111 6.90441 

336 441 30.708 62.576 51.439 1.6751173 -- -- -- -- 

350 484 33.702 68.677 56.5292 1.6773298 35.25 394.922 11.20308 6.67912 

400 625 51.200 106.441 87.2626 1.7043477 51.20 557.800 10.894531 6.39220 

416 676 58.147 120.891 99.1733 1.7055676 -- -- -- -- 

450 812 73.171 150.713 123.765 1.6914511 74.48 808.777 10.858516 6.41965 

480 900 88.474 184.000 151.517 1.7125674 -- -- -- -- 

500 992 101.581 212.366 173.637 1.7093453 100.00 1073.430 10.7343 6.27977 

544 1156 127.844 265.682 217.986 1.7050937 -- -- -- -- 

550 1225 135.475 280.674 230.182 1.6990736 135.48 1406.120 10.379184 6.10873 

592 1369 162.615 307.822 254.154 1.5629185 -- -- -- -- 

600 1444 177.439 304.680 252.188 1.4212659 172.80 1765.240 10.215509 7.18761 

640 1600 203.162 307.350 257.141 1.2656944 -- -- -- -- 

650 1681 220.332 298.888 253.05 1.1484941 223.03 2270.280 10.179395 8.86325 

700 1936 269.615 464.038 385.116 1.4283923 266.56 2702.080 10.136855 7.09669 

Table 5:  Execution time for diffusion solver on CPU and GPU for Stanford Bunny 
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CHAPTER 7 

 

SUMMARY 

Geometry deficiencies are major roadblocks in today‟s computational engineering 

simulation cycles.  They can require tedious and laborious efforts to repair the 

deficiencies. This study presents completely automatic volume-based and hybrid 

algorithms for geometric hole patching, which could be used to repair meshes with 

topologically complex holes.  These algorithms are able to repair holes on geometrically 

and topologically complex models which otherwise cannot be completely and 

satisfactorily repaired by either surface-based or volume-based methods in isolation. The 

solution of the diffusion equation is an important part of both the volume-based as well as 

hybrid approach to hole filling and consumes a large amount of computer time. The 

solution process is repetitive and, as such, is ideal for parallelization. The diffusion solver 

was parallelized, and its performance was analyzed on both the CPU and the GPU and 

presented here. The dissertation is organized as follows: 

Chapter 1 presents a brief introduction along with the motives for this research. 

Chapter 2 starts with a discussion of the available hole-patching and mesh-repair-related 

research published in a number of research papers and journals. Some of the available 

surface reconstruction algorithms are also discussed in Chapter 2.  Chapter 3 presents the 
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research and conclusions as described in a number of papers describing the evolution and 

advancements in the area of general purpose computing applications. The chapter also 

describes the requirements for using GPU hardware for general purpose computing. A 

brief description of the CUDA (Compute Unified Device Architecture) library was 

presented, which was later used for parallelization of diffusion solver on GPU as 

presented in Chapter 6. In Chapter 4, a new volume-based method was presented that 

uses a solution of finite volume formulation of diffusion equation, as described in 

Appendix A, followed by contouring to generate surfaces in the region surrounding the 

holes. Patches and point sets are extracted from the generated surface and are used as an 

input for a Poisson surface reconstruction algorithm to generate watertight, reconstructed 

discrete surface mesh.  Chapter 5 discusses a hybrid approach to geometric hole filling 

that uses a surface-based approach, which is an improvement over the previous published 

work [12], [13] and [14] and the volume-based approach described in chapter 4. The 

hybrid approach combines the best features of both surface- and volume-based 

algorithms for mesh repair. The usefulness of the volume-based algorithm as described in 

chapter 4 and hybrid approach as described in chapter 5 was demonstrated using the 

Stanford Bunny, Laurent Hand and Chinese Lion models. Results presented in the 

chapters 4 and 5 have been accepted for publication in the proceedings of the 20
th

 

International Meshing Roundtable [24]. Chapter 6 discusses multi-core, multi-threaded 

parallelization of the diffusion equation solver on the CPU and the GPU.  The results for 

the parallelization were generated on a single computational geometry, Stanford Bunny 

[57]. The results were studied and compared between the GPU and CPU, and their 

performance and relative speedups are presented in chapter 6. The results show that the 
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GPU offers a superior performance advantage over the CPU in iterative and repetitive 

SPMD-type calculations. 

With the completion of the research and the achievements needed to meet the 

objectives set in the dissertation proposal, the unique contributions of this research can be 

identified as the development of a volume-based hole-patching algorithm using the 

diffusion equation, as well its inclusion in a hybrid approach to mesh repair that 

combines the best features of both surface- and volume-based algorithms. The approach 

demonstrated here is similar in approach to that described by Curless and Levoy [18] and 

Davis et al. [19]. Those similar volume-based approaches require extra information in the 

form of line-of-sight information from ranging devices for setting boundary conditions 

and geometry repair, which is not required in the research presented here.  

The unique contributions of this research are due to the following: 

 Hole Patching for Geometry: Geometry deficiencies are major roadblocks in 

today‟s computational engineering simulation cycles.  They can require tedious 

and laborious efforts to repair the deficiencies.  This research effort contributes to 

the state of the art by facilitating the repair process specific to the hole-patching 

issue using a volumetric approach without requiring any extraneous information, 

such as ranging data as used in Curless and Levoy [18] for carving in space and 

time in mesh repair. In addition, this research presents a hybrid approach that  

uses both surface-based and volume-based approaches to repair complex 

geometries with topologically complex holes. The usefulness of the volume-based 

method and hybrid approach is demonstrated with a number of examples. 
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 Hole Identification and Isolation Algorithms: It is challenging to identify and 

isolate a hole region on a geometric model, especially when the hole is 

topologically and geometrically complex.  This research develops and presents a 

Cartesian grid-based algorithm to identify and extract the geometrical information 

for the region. It builds on the method for identification of holes as presented in 

Kumar et al. [12] and extends it to include topologically complex holes by 

bringing in the notion of the connectivity of input fragments, thereby identifying 

simple holes and isolating fragments from the identified simple holes. 

 Localized “Column Grid” Approach: The approach developed here isolates each 

hole region and builds a column grid around it. The hole-patching algorithm is 

applied to this column grid independently from others, making the problem 

suitable for parallel computation. 

 Parallelization of diffusion solvers on CPU and GPU: Since the diffusion equation 

could be solved on each voxel repeatedly until the solution domain has reached a 

desired level of convergence, this type of process can be easily parallelized on 

both the CPU and the GPU. CPU-based parallelization and performance study has 

been done by multi-threading using the OpenMP library. GPU-based 

parallelization was done using NVIDIA‟s CUDA library. GPU-based parallel 

computation for this type of application has not been done before to the best of 

our knowledge. Therefore, the research and implementation of the algorithms on 

the GPUs is another unique contribution of this research. 
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Scope for Future Work 

This work presented here is useful for repairing meshes with holes and small 

intersections on dirty geometries with the presence of isles. However, this method will 

not be able to completely repair the input mesh and may provide unexpected results when 

mesh overlaps are significant and of large scale. As a result, there is a need for further 

development of the solution process to resolve large-scale overlaps prior to mesh repair.  

This dissertation presents the parallelization of the diffusion solver for both the CPU 

and the GPU. However, the parallelized solvers are used as stand-alone modules for 

performance comparisons. These parallelized solvers could be integrated with the main 

code to leverage higher performance from the solution process. 

The diffusion solver has been optimized and parallelized for a single NVIDIA GPU 

device. The performance study of the solvers shows superior performance of the GPU- 

based solver. However, a much larger performance gain could possibly have been 

achieved by better load balancing and leveraging the cache hierarchy on the GPU device. 

The scope for the parallelization effort in this research work has been limited, and there is 

potential to increase the performance envelope of the GPU-based solver to achieve higher 

performance gain. Additional work may be done to parallelize the GPU solver code on 

multiple GPU devices.  
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APPENDIX A 

 

DIFFUSION EQUATION 

Diffusion is a time-dependent process, constituted by random motion of given entities 

and causing the statistical distribution of these entities to spread in space. The concept of 

diffusion is tied to the notion of mass transfer, driven by a concentration gradient. The 

diffusion equation can be obtained easily from this when combined with Fick's first law, 

which assumes that the flux of the diffusing material in any part of the system is 

proportional to the local density gradient. The diffusion equation is a partial differential 

equation that describes density fluctuations in a material undergoing diffusion. The 

diffusion equation is given as  

  

  
         (12) 

Where α is a constant and S is a source term. In this formulation, it is assumed that there 

are no source terms, Hence the equation becomes 

  

  
       (13) 

 

 

The finite volume formulation of the diffusion equation over a volume Ω could be written 

as  
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           (14) 

Applying Green‟s theorem the equation changes over a closed area A in the form of, 

 
  

  
                 (15) 

The above equation can be approximated as following using forward difference in time, 

to obtain an explicit formulation in the form of 

   
      
          

 

  
                   

 

     

 

   

 (16) 

where i is the number of direction and m is the index of area along i direction.  

For a 3D problem, the equation after discretization will approximate to. 

   
      
          

 

  
        

   
        
        

 

  
                

      
          

 

  
              

     
        
        

 

  
                

      
          

 

  
              

    
        
        

 

  
                

      
          

 

  
              

(17) 

 

For a given Cartesian Grid as shown in Figure 36 such that, 
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and,   

      

  
     

      

  
    

      

  
     

The diffusion equation simplifies to, 

      
           

     

 

 
 
 
 
 

 
        
        

 

    
   

      
          

 

    
 

  
        
        

 

    
   

      
          

 

    
 

  
        
        

 

    
   

      
          

 

    
  
 

 
 
 
 
 

 (18) 

Equation (18) provides the explicit numerical solution for the diffusion equation in the 

time domain for equation (13). 

 

 

 

 
Figure 36: A Cartesian grid in two dimensions 
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Stability Analysis 

Von Neumann‟s analysis in 3D provides that,  

      
                 (19) 

 

Substituting equation (19) into equation (18), one gets 

                        =                      

                       

 

 
 
 
 
 

 
        

    
       

     

    
 

  
        

    
       

     

    
 

  
        

    
       

     

    
  
 

 
 
 
 
 

 

(20) 

Or,  

              
        

    
       

     

    
   

        

    
       

     

    
 

  
        

    
       

     

    
   

(21) 

 

Using Euler‟s identities, 

               

                

A simplified equation can be rewritten as 

             
  

    
           

  

    
          

 
  

    
            

(22) 
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As,  

               

Hence the equation (22) further simplifies to, 

              
  

    
    

   

 
 

  

    
    

   

 
  

  

    
    

   

 
  (23) 

Courant–Friedrichs–Lewy (CFL) condition for the stability of the numerical scheme 

stipulates that, 

         (24) 

Substituting equation (24)  in equations (23) produces,  

            
  

    
    

   

 
 

  

    
    

   

 
 

  

    
    

   

 
    (25) 

Or, 

     
  

    
    

   

 
 

  

    
    

   

 
 

  

    
    

   

 
  

 

 
 (26) 

Since, 

          (27) 

Hence,  

  
  

    
    

   

 
 

  

    
    

   

 
 

  

    
    

   

 
  

  

    
 

  

    
 

  

    
 (28) 

Hence the inequality should satisfy the conditions imposed in above equation as well,  

        
  

    
 

  

    
 

  

    
  

 

 
 (29) 

Now for,  
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 (30) 

Hence the equation (30) will satisfy the Courant–Friedrichs–Lewy (CFL) condition for 

the stability of the numerical scheme as given below. 

  
   

      
 
 
 

 
 (31) 

This further imposes the condition on the constant α that, 

      
     

 

 
 (32) 

This also implies that the scheme is numerically stable for a value of α satisfying the 

above given CFL condition. 

 In an Octree Grid as shown in Figure 37, if the difference of refinement levels 

between neighboring cells is enforced to be a maximum of order 1, the possible scenarios 

could be of the type 

                

                     

    
 

 
                

   
 

 
                

                     

For the scenario a, the diffusion equation for the Octree mesh along the x-axis is the 

same as that of the Cartesian mesh. Hence the CFL number will also come out to be the 

same. 
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For scenarios b to d for an Octree mesh, the numerical scheme for the diffusion 

equation will be stable if one finds the global minima of       and uses it in the CFL 

condition for the Cartesian mesh as derived previously. This means that equation (32) for 

Octree grid could be rewritten as  

      
            

 

 
 (33) 

 

 

(b) 

(c) 

(d) 

(e) 

(a) 

Figure 37: An Octree grid in two dimensions 
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Measurement of Change During Solution Process 

Sometimes it becomes important to be able to measure the change occurring in each 

iteration to determine if the numerical solution has reached a desired convergence level. 

This is achieved by defining a variable             
     at each voxel of the Cartesian grid, 

where n denotes the iteration number, while indices i, j and k represent the location of a 

voxel within a Cartesian grid.  

         
                

          
  

 
  

(34) 

 

         
    

 

     
         

          
  

 

     

     

 

(35) 

 

              
    

             
             

  

         
          

(36) 

Equations (34), (35) and (36)  define and quantify three measures of change for 

successive iterations for the solution of the diffusion equation.  
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APPENDIX B 

 

COMPUTATIONAL CURVES AND SURFACES 

B-Spline Curve: A p-th degree B-spline curve is defined by  

    i

n

i

pi PuNuC 



0

,        where bua    (37) 

where {Pi} are control points forming a control polygon, and {Ni,p(u)} are the p-th degree 

B-spline basis function defined on the nonperiodic knot vector (m+1 knots)  























1

11

1

,......,,,.....,,,.......

p

pmp

p

bbuuaaU

 

(38) 

Unless stated otherwise, a=0 and b=1. The ith B-spline basis function of p-degree 

(order p+1), denoted by Ni,p(u), is defined as  
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where ui are called knots. The steps required to compute a point on a B-Spline curve at a 

fixed u value are as follows: 

 Find the knot span in which u lies. 

 Compute the nonzero basis functions. 

 Multiply the values of the nonzero basis functions with the corresponding control 

points. 

 

NURBS Curve: A pth-degree NURBS curve is defined by 
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        bua   
(41) 

where {Pi} are control points forming a control polygon, the {wi} are the weights, and 

{Ni,p(u)} are the p-th degree B-Spline basis function defined on the nonperiodic and non-

uniform knot vector  
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(42) 

 Unless stated otherwise, a = 0 and b = 1, and wi > 0 for all i. 

 

NURBS Surface: A NURBS surface of degree p in u direction and degree q in v direction 

is a bivariate, vector-valued, piecewise rational function of the form  
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(43) 

where {Pi,j} forms a bidirectional control net, the {wi,j}are the weights, and {Ni,p(u)} 

and {Nj,q(v)} are the non rational B-Spline basis function defined on the knot vector  
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 Where r = n + p + 1 and s = m + q + 1.
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APPENDIX C 

 

DELAUNAY CRITERIA 

Let Z be a point of mesh domain Ω. Considering the Euclidean space defined by (Ω, 

M(Z)), with   









cb

ba
ZM , denoted by l

z
 the distance between two points of Ω in this 

space. The circumdisc associated with a triangle K, whose center is denoted O
z
, is defined 

in this space by 

     22
, kOXZMOXXOl

t
zz   

(46) 

where 2RX  and k is a real value, such that the disc is circumscribed to triangle K. 

Hence, the centre O
z
 is the solution to linear system 
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(47) 

and k is precisely  1, POl zz . The circumdisc of triangle K encloses the point P, if and 

only if 

   1,, POlPOl zzzz   (48) 
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In this case, the Delaunay criterion associated with pair (P, K) is said to be violated 

according to the metric at point Z. By normalizing to one of the above inequalities, a 

dimensionless measure is defined by 

 
 
 1,
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POl
KP

zz

zz

z 

 

(49) 

The violation of Delaunay criterion associated with pair (P, K) in the metric Z means 

that   1, KPz .  
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