
University of Alabama at Birmingham University of Alabama at Birmingham

UAB Digital Commons UAB Digital Commons

All ETDs from UAB UAB Theses & Dissertations

2011

Hole Patching In Unstructured Mesh And Parallelization Using Hole Patching In Unstructured Mesh And Parallelization Using

Graphics Processing Units Graphics Processing Units

Amitesh Kumar
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

Recommended Citation Recommended Citation
Kumar, Amitesh, "Hole Patching In Unstructured Mesh And Parallelization Using Graphics Processing
Units" (2011). All ETDs from UAB. 2190.
https://digitalcommons.library.uab.edu/etd-collection/2190

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/2190?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

HOLE PATCHING IN UNSTRUCTURED MESH AND PARALLELIZATION USING

GRAPHICS PROCESSING UNITS

by

AMITESH KUMAR

ALAN M. SHIH, COMMITTEE CHAIR

ROY KOOMULLIL

YASUSHI ITO

PURUSHOTHAM BANGALORE

DAVID THOMPSON

A DISSERTATION

Submitted to the graduate faculty of The University of Alabama at Birmingham,

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

BIRMINGHAM, ALABAMA

2011

Copyright by

Amitesh Kumar

2011

iii

HOLE PATCHING IN UNSTRUCTURED MESH AND PARALLELIZATION USING

GRAPHICS PROCESSING UNITS

AMITESH KUMAR

DOCTOR OF PHILOSOPHY IN INTERDISCIPLINARY ENGINEERING

ABSTRACT

Engineering analysis of a three-dimensional geometric model using mesh-based

computational technologies requires the model to be topologically watertight. However,

achieving watertight geometry is considered to be a challenging task in the field of

computational engineering due to the potential presence of geometric deficiencies, such

as gaps and holes on the surfaces. This dissertation aims to repair the defective geometric

model with the presence of holes irrespective of their complexities. Presented in this

dissertation are novel research and implementation of a hybrid surface and volume-based

technique for geometry repair. It utilizes a NURBS-based surface-patching algorithm for

topologically simple holes and incorporates a volumetric hole-patching algorithm for

complex holes. The volume-based hole-patching algorithm solves the diffusion equation

using an explicit forward difference scheme in time and a centered difference scheme in

space. A robust and efficient algorithm has been developed to both identify and extract a

localized hole region. An automated mesh generation process has been implemented to

iv

construct individual “column grids” for each isolated hole region. The diffusion equation

is solved using finite-difference techniques to generate a scalar solution field from which

isosurfaces are extracted with an isovalue that represents the repaired surfaces for the

local regions. Finally, a Poisson surface reconstruction is used to create a reconstructed

watertight surface.

The graphics processing unit (GPU) has emerged as the most powerful chip in a

computer in the last decade but has only in the past few years received extensive attention

from the research community for its use in high performance computing. This research

explores a GPU-based implementation of a diffusion equation solution to better harness

its computation potential and to facilitate the computational needs of geometry repair.

Comparisons of the speedup gains for diffusion solutions using GPGPU with that of

conventional single and multi-threaded implementations are presented, and their

performance characteristics are discussed in this dissertation.

v

Dedicated to my parents

vi

ACKNOWLEDGEMENTS

It would be almost impossible to acknowledge everyone who directly or indirectly

contributed to the completion of my dissertation work. I would like to apologize to those

whose names I might miss in this acknowledgement, but your contributions are never the

less really appreciated.

First and foremost, I would like to express my deepest gratitude to my adviser and

chair of my dissertation committee, Dr. Alan Shih, for his constant support and for

always being very patient with me. I would like to express my sincere thanks to Dr. Roy

Koomullil, Dr. Yasushi Ito, Dr. Purushotham Bangalore and Dr. David Thompson for

serving on my committee and for giving me invaluable suggestions during the course of

my research. I am also thankful to the current and former programmer staff members of

the Enabling Technology Laboratory (ETLab) and the UAB Department of Mechanical

Engineering, especially Mark Dillavou, Doug Ross, Corey Shum and Fredric Dorothy,

for their assistance and great suggestions.

I am also very thankful to my dearest friends Abby Becker, Ankit Srivastava,

Ashutosh Ranjan, Eli Johnson, James Lambert, Jessica Ford, Jon Becker, Keith

Gugliotto, Michelle Michael and Ravi Bharadwaj for always being there for me and for

keeping my morale high during the course of my studies and my stay in Birmingham.

NVIDIA supported my research through generous hardware donations, and I wish to

thank Mr. Stan Posey of NVIDIA for facilitating that critical donation. I would also like

vii

to express my gratitude for the financial support of NASA‟s Constellation University

Institutes Project (CUIP) program for the early part of my graduate study that established

the foundation of my knowledge in numerical geometry. My participation in the National

Science Foundation Innovative Technology Experiences for Students and Teachers

(ITEST) program provided me with valuable K-12 technology education and outreach

experience, and the financial support for the last 2 years of my Ph.D. study, for which I

am equally grateful.

I would like to express my appreciation towards the Stanford 3D Scanning Repository

and AIM@SHAPE Shape Repository for providing public domain validation models for

me to use in this study, such as “Stanford Bunny,” “Chinese Lion,” and “Laurent Hand.”

I would also like to express my sincere gratitude s towards Laurent Saboret et al. for

making the “Laurent Hand” and “Chinese Lion” models publicly available for research.

Finally, this acknowledgement would not be complete without remembering the

contribution of my family members, especially my parents, Mr. U.S. Agrawal and Mrs.

Champa Agrawal, and my uncle, Dr. Vinay Kumar. Without their support and

encouragements, I could never have been where I am today.

Amitesh Kumar

9/05/2011

viii

TABLE OF CONTENTS

Page

ABSTRACT .. III

ACKNOWLEDGEMENTS .. VI

TABLE OF CONTENT ... VIII

LIST OF FIGURES ... X

LIST OF TABLES ... XIII

ABBREVIATIONS ... XIV

CHAPTER

1 INTRODUCTION ... 1

2 GEOMETRY REPAIR .. 6

Surface-based Repair Methods ..7
Volume-based Repair Methods..12
Surface Reconstruction ..17
Isosurface and Contouring Methods ..19

3 GPU COMPUTING ... 22

The Graphics Pipeline ... 24
GPU Architecture...26
GPU Programming Model ...29

Programming a GPU for General-Purpose Programs 30
NVIDIA and Compute Unified Device Architecture (CUDA)31

4 VOLUME APPROACH TO GEOMETRIC HOLE PATCHING................................. 38

Stanford Bunny ... 41
Extraction of Solution Columns and Voxelization of Discrete Geometry41
Numerical Solution of the Diffusion Equations...46
Extraction of Consistently Oriented Surfaces and Point Set52

ix

Surface Reconstruction and Results...56

5 HYBRID APPROACH TO GEOMETRIC HOLE PATCHING 62

Laurent Hand: ... 66
INRIA Chinese Lion ... 73

6 DIFFUSION SOLVER PARALLELIZATION .. 74

Multi-threaded Parallelization of Diffusion Equations on CPU Using OpenMP ..79
Parallelization of Diffusion Equation on GPU using CUDA81

7 SUMMARY ... 96

Scope for Future Work...100

LIST OF REFERENCES .. 101

APPENDIX

A DIFFUSION EQUATION .. 107

Stability Analysis ...110
Measurement of Change During Solution Process ..114

B COMPUTATIONAL CURVES AND SURFACES ... 115

C DELAUNAY CRITERIA ... 118

x

LIST OF FIGURES

Figure Page

1 Artifact Chart ... 8

2 NVIDIA GPU and Intel CPU Evolution Curves ... 23

3 NVIDIA Quadro FX 5800 Graphics Card ... 33

4 NVIDIA‟s CUDA Software run time architecture stack ... 33

5 Flowchart of volume-based and hybrid approach toward mesh repair. 39

6 Stanford Bunny model with 10 holes... 40

7 A Cartesian Grid composed of multiple blocks in 3D ... 43

8 Ghost cells at the interface of two tiles shown in gray color in a 2D Cartesian grid. 43

9 Solution columns for Stanford Bunny ... 45

10 Convergence Plot for Column 2 of Stanford Bunny .. 48

11 Convergence Plot for Column 3 of Stanford Bunny .. 48

12 log10 Convergence Plot for Column 2 of Stanford Bunny ... 49

13 log10 Convergence Plot for Column 3 of Stanford Bunny ... 49

14 Rendering of a slice of the Stanford Bunny in false color ... 50

15 Contouring and smoothing result on a column at the base of the Stanford Bunny 53

16 Extracted patch from the contouring result superimposed with the original model. ... 53

17 Reconstructed surface: (a) with bump; (b) without bump ... 54

18 Extracted point set with consistently oriented normals ... 54

19 Reconstructed watertight model of Stanford Bunny .. 57

file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913273
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913274
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913276
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913277
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913279
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913280
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913281
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913282
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913283
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913284
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913285

xi

20 Flowchart of hybrid approach towards mesh repair. ... 64

21 Laurent Hand model with a number of discontinuities .. 67

22 Discontinuities in Laurent Hand model around three middle fingers 67

23 Extracted surfaces after contouring super imposed on the original Laurent Hand model

showing (a) front (b) back... 68

24 Laurent hand after repair: (a) surface-based; (b) volume-based with reconstruction; (c)

with only Poisson reconstruction; (d) with hybrid approach .. 69

25 Middle three fingers in Laurent hand after repair: (a) surface-based; (b) volume-based

with reconstruction; (c) with only Poisson reconstruction; (d) with hybrid approach 70

26 INRIA Chinese Lion model: (a) original, front; (b) original, back; (c) surface-based

repair, front; (d) surface-based repair, back; (e) hybrid approach, front; (f) hybrid

approach, back .. 72

27 Amdahl‟s law showing relationship between maximum speedup and parallel portion

with increasing number of processors for a fixed sized problem 76

28 Gustafson‟s law showing scaled speedup plots ... 77

29 OpenMP-based multi-threaded implementation for 120 iterations on Stanford Bunny

showing plot of number of voxels in millions vs. run time in seconds 87

30 OpenMP-based multi-threaded implementation for 120 iterations on Stanford Bunny

showing plot of number of threads vs. run time in seconds... 88

31 Speedup plot of OpenMP-based multi-threaded diffusion solver for 120 iterations on

Stanford Bunny ... 90

32 Plot of grid size in million voxels vs. run time for Diffusion solver for 120 iterations

on GPU and CPU. ... 92

file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913292
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913301
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913301
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913302
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913302
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913303
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913303
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913304
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913304

xii

33 Plot of grid size along the biggest dimension vs. run time for Diffusion solver for 120

iterations on GPU and CPU. ... 93

34 Plot of number of solution tiles on GPU with each tile mapped on a single stream

processor vs. run time for Diffusion solver for 120 iterations. ... 94

35 Plot of normalized speedup comparison for CPU and GPU for 120 iterations per

million voxels on the solution grid vs. grid size along the maximum dimension. 95

36 A Cartesian grid in two dimensions ... 109

37 An Octree grid in two dimensions ... 113

file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913305
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913305
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913306
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913306
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913307
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913307
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913308
file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation09262011.docx%23_Toc304913309

xiii

LIST OF TABLES

Table Page

1 Result of surface-based mesh repair technique on analytical models............................ 61

2 Result of volume-based mesh repair technique on analytical models 61

3 Data obtained from OpenMP-based multi-threaded parallelization for diffusion

equation on Stanford Bunny ... 86

4 Speedup of OpenMP-based multi-threaded diffusion solver for 120 iterations on

Stanford Bunny ... 89

5 Execution time for diffusion solver on CPU and GPU for Stanford Bunny 91

file:///C:/Documents%20and%20Settings/amitesh/Desktop/Dissertation10072011.docx%23_Toc306386815

xiv

ABBREVIATIONS

3D Three Dimensional

AMD
®

 Advanced Micro Devices

API Application Process Interface

CAD Computer Aided Design

CFD Computational Fluid Dynamics

CPU Central Processing Unit

CSM Computational Solid Mechanics

CUDA Compute Unified Device Architecture

GGTK Geometry and Grid Toolkit

GPGPU General Purpose Computation using GPUs

GPU Graphics Processing Unit

NURBS Non-Uniform Rational B-Spline

VTK Visualization Toolkit

1

CHAPTER 1

INTRODUCTION

The preprocessing steps in simulations using mesh-based computational technologies,

such as Computational Fluid Dynamics (CFD) and Computational Structural Mechanics

(CSM), involve geometry preparation and mesh generation. However, it has been a

challenging task to turn geometry into a high-quality mesh when the geometry is

complex. Moreover, the potential presence of geometrical deficiencies such as gaps or

holes, protrusions or intersections, and overlaps further complicates the process, as a

topologically watertight geometric model is required in the meshing process. Geometry

repair can be a laborious and complicated process, and the configuration of the geometry

can make the process of satisfactory geometry repair difficult. Therefore, how to obtain a

watertight geometry ready for the mesh generation process is an important issue in

computational engineering.

An interactive geometry creation using mesh generation tools directly is a preferred

approach, as this can reduce the conversion errors that introduce some of the geometry

defects between the Computer-Aided Design (CAD) systems and the mesh generation

tools. However, most of the mesh generation tools do not have sophisticated solid

modeling capabilities when compared to those of CAD systems. As a result, geometries

for most sophisticated real-world applications are first produced on CAD systems in

parametric form and then imported into mesh generation tools tailored for the needs of

2

downstream applications. Geometries can also be sourced in discrete forms. For

example, scanned data generated from range-finding devices such as laser scanners can

produce a fairly accurate geometric model defined by a point clouds, which can be turned

into discrete elements that represent the surface model of the object. Geometry can also

be reconstructed from segmented contours of image slices from image-based, patient-

specific biomedical data. Regardless of the source of the geometry data, or the form in

which they are represented (parametrically or discretely), the geometries obtained can

have many defects due to the problems at the source, data conversion errors or

ambiguities in the process. A surface mesh of a geometric model is considered to be non-

watertight (or non-manifold) in the following two cases:

 It has edges that are shared by only one polygon, i.e., when the edges lie on the

boundary. The occurrences of such a set of connected boundary edges create a

hole on the surface.

 It has edges which are shared by more than two polygons. This kind of non-

manifold mostly occurs in CAD applications due to the improper stitching of a

surface patched to generate a desired geometric model.

How to repair defective geometric surface models automatically and robustly while

maintaining the high fidelity of the geometric information remains a critical area of

research in the field of computational geometry. This research addresses surface defects

of the first kind, i.e., holes in discrete geometry, by providing a method for mesh repair

by the numerical solution of the diffusion equation for volumetric domain. This

dissertation presents an automatic and robust hole patching (or hole filling) algorithm for

3

geometrically and topologically complex holes. The outcome of this research impacts the

field of computational engineering, which is widely utilized in the aerospace, automotive,

mechanical and biomedical engineering communities.

This work presents a volume-based mesh repair algorithm in chapter 4. The volume-

based algorithm could be used to repair surface meshes with holes. The chapter describes

the process of identifying and isolating surface defects such as holes and isles from the

original surface, which are later used to create individual volume-mesh solution columns.

These solution columns are created by embedding regions of interests in Cartesian grids

and switching on the voxels, which intersect with triangles on the input surface mesh. It

is assumed that one side of the embedded geometry in the voxelized solution column is

heated and the other side is cold. A finite volume-based diffusion equation solver is

iterated on the voxelized Cartesian mesh until the solution achieves convergence. The

solution so obtained represents a scalar field in space which would have closed the gaps

existing in the initial input mesh in the voxelized Cartesian grid. The voxelized scalar

fields are contoured using a Marching Cubes algorithm to obtain surfaces in each of the

solution columns. Once the resultant surfaces are obtained from various solution columns

surrounding the hole regions of the geometry, they are used to create consistently

oriented point sets using contouring technique on the converged solution. The point sets,

in turn, are used to generate a reconstructed watertight geometry using Poisson Surface

Reconstruction [36], [38]. The results of this mesh repair process are presented with a

number of examples and plots in chapter 4.

Furthermore, a hybrid mesh repair technique is described in chapter 5 that uses both

surface-based and volume-based mesh repair techniques. The surface-based mesh repair

4

technique, used in the hybrid method, builds on the work described in Kumar et al. [12],

Kumar and Shih [13], and Kumar et al. [14] with improvements. Surface-based mesh

repair technique is followed by the use of volume-based mesh repair technique and

finally Poisson reconstruction to obtain a watertight reconstructed model. The

reconstructed model so obtained may be substantially different from the original input

model. It was found that the hybrid method provides superior quality results when

compared with either only surface-based or volume-based mesh repair methods for

complicated geometries. This was demonstrated with examples.

The diffusion equation solution process presented in this research is tied to the

resolution of the input mesh. If the input mesh is of higher resolution, then this would

cause the solution column for the same hole on the surface of the mesh to be a larger size

when compared with that of an input mesh of lower resolution. This would imply that the

diffusion solver would spend a far longer time in trying to find a convergent solution for

the diffusion equation. As a result, an effort to improve the computational efficiency of

the diffusion solver through parallelization was also made in this research. The diffusion

equation solution process has been parallelized both on the CPU and GPU architectures.

The parallelization of the diffusion solver on CPU has been done by multi-threading

using the OpenMP library [68]. The parallelization on GPU was done for the NVIDIA

GPU using CUDA [51] to study the speedup of the solution process when compared with

that on the CPU architecture. The results from this study are presented in chapter 6 with a

number of tables and plots.

Most of the work being presented in this research was performed on a desktop with a

64-bit quad-core AMD
®
 Athlon™ II 620 processor and 4GB of RAM. The GPU is a

5

single NVIDIA
®
 Quadro™ FX 5800 graphics card, with 240 stream processor cores and

4GB of onboard GDDR5 graphics memory, and was generously donated by NVIDIA for

this research. This dissertation only presents the GPU-related studies and conclusions for

NVIDIA GPU and any discussion about GPGPU-related development work in here

should be considered synonymous with the work done on the NVIDIA GPU.

6

CHAPTER 2

GEOMETRY REPAIR

Computer-Aided Engineering (CAE) plays an important role in design, analyses, and

performance predictions, given the rapid advances made in computer hardware

performance and software algorithms. High Performance Computing (HPC) software

tools are nowadays widely deployed in government laboratories, academic institutes and

industries. Mesh-based CAE disciplines, such as Computational Fluid Dynamics (CFD)

and Computational Structure Mechanics (CSM), facilitate the design and analysis

processes as well as significantly reduce costs associated with design and development.

These technologies are heavily relied upon to produce performance data of complex

configurations involving complicated multi-physics processes. However, before any

CFD or CSM algorithms can be applied to analyze a given design, a high-quality mesh

must be generated. The mesh generation process in turn relies on the availability of a

watertight geometry. Unfortunately, such watertight geometry may not always be

available due to deficiencies, such as gaps and holes. This is sometimes true even for

engineering geometries designed with a sophisticated Computer-Aided Design (CAD)

system. Discrete geometry acquired through a reverse engineering process or geometry

7

reconstruction is even more likely to have such deficiencies. “Repairing” such defective

geometry is often a tedious and labor-intensive process. It involves removing defects or

artifacts from a geometric model to produce an output model that is suitable for further

processing by downstream applications with certain input quality requirements.

The most common type of mesh defects or artifacts encountered are holes or isles,

singular vertex, handle, gaps and small overlaps, large overlaps, inconsistent orientation,

complex edges and intersections. Some of these artifacts, such as complex edges, have a

precise meaning, while other artifacts are described intuitively rather than definitively,

such as the distinction between small scale and large. Figure 1 shows the major artifacts

that occur in meshing as presented in Botsch et al. [1].

A significant amount of research has been done and published in an attempt to

address this issue in a more automated and intelligent manner. These approaches broadly

fall in two main categories: surface-based repair methods and volume-based repair

methods.

Surface-based Repair Methods

This class of repair methods operates directly on the input data and tries to explicitly

identify and resolve artifacts on the surface. For example, gaps could be removed by

snapping boundary elements (vertices and edges) onto each other or by stitching triangle

strips between the gap. Holes can be closed by a triangulation that minimizes a certain

error term. Intersections could be located and resolved by explicitly splitting edges and

triangles.

8

Figure 1: Artifact Chart

Note: From “Geometric Modeling Based on Triangle Meshes” by Botsch M, Pauly M,

Rössl C, Bischoff S and Kobbelt L (2006) ACM SIGGRAPH 2006 Courses, article 1: pp

34. Adapted with the permission of the author.

9

Surface-oriented repair algorithms only minimally perturb the input model and are

able to preserve the model structure in areas that are not near artifacts. In particular,

structure encoded in the connectivity of the input (e.g., curvature lines) or material

properties associated with triangles or vertices are usually well preserved. Furthermore,

these algorithms introduce only a limited number of additional triangles.

Surface-oriented repair algorithms usually require that the input model already satisfy

certain quality requirements such as error tolerances to be able to guarantee a valid

output. Since these requirements cannot be guaranteed or even be checked automatically,

as a result these algorithms are rarely fully automatic and require manual post-processing.

Furthermore, due to numerical inaccuracies, certain types of artifacts, e.g., intersections

or large overlaps, cannot be resolved robustly. Other artifacts, e.g., gaps between two

closely connected components of the input model that are geometrically close to each

other, are difficult to identify, as described by Botsch et al. [1].

A number of algorithms have been suggested for filling holes in a triangular mesh

using a surface-based repair approach. Turk et al.‟s mesh-zippering algorithm [2] is one

of the first algorithms which tried to fuse range images using a surface-based approach

and in this process eliminated a number of the overlaps and mesh defects. This algorithm,

however, thus specializes for range-scan data.

Barequet and Sharir [3] use a dynamic programming method to find the minimum

area of triangulation for a three-dimensional (3D) polygon in order to fill holes. Barequet

and Kumar [4] describe an interactive system that closes small cracks by stitching

corresponding edges and fills big holes by triangulating the hole boundary, similar in

approach to Barequet and Sharir [3]. Their methods, in general, are optimized for the

10

defects generated by the CAD programs while joining the surfaces to create models,

which sometime leaves narrow cracks. Although these methods may work well in

patching narrow holes, they may fail where simple stitching may not provide an elegant

solution. These algorithms also do not guarantee the quality of the output.

Gueziec et al. [5] propose a method to remove complex edges and singular vertices

from non-manifold input models. Their work claimed to generate an output which is

guaranteed to be a manifold triangle mesh, possibly with boundaries. Their algorithm

operates solely on the connectivity of the input model and as such does not suffer from

numerical robustness issues. In a pre-processing phase, all complex edges and singular

vertices are identified. The input is then cut along these complex edges into manifold

patches. Finally, pairs of matching edges, i.e., edges which have the same endpoint, are

identified and, if possible, merged.

Gueziec et al. [5] introduce two different strategies for stitching edges left unstitched

by pinching and snapping. The pinching strategy only stitches along edges that belong to

the same connected component. The small, erroneous connected components are

separated from the main part of the model and could be detected and removed in a post-

processing step. In contrast to pinching, the snapping strategy reduces the number of

connected components of the model. Their basic idea is to locate candidate pairs of

boundary edges and to stitch them if, after stitching, the model does not contain new

complex edges or singular vertices. The scope of their algorithm is limited to the removal

of complex edges and singular vertices.

Guskov and Wood [6] propose an algorithm that detects and resolves all handles up to

a given size in a manifold triangle mesh. Handles are removed by cutting the input mesh

11

along a non-separating closed path and sealing the two resulting holes by triangle

patches. Their algorithm reliably detects small handles up to a user-prescribed size and

removes them. However, the algorithm is slow, does not detect long, thin handles and

cannot guarantee that no self-intersections are created when a handle is removed.

Borodin et al. [7] propose a progressive gap-closing algorithm which works by vertex

edge contraction accompanied with insertion of vertices on the boundary edges and

progressively contracting the edge. This is implemented by identification of

corresponding vertex-vertex pairs and vertex-edge pairs. This method, although simple in

implementation, is only suitable for narrow gaps in 3D space where such contraction does

not end up dramatically altering the surface smoothness and triangle size gradation.

Leipa [8] describes a method for filling holes by a weight-based hole triangulation,

mesh refinement based on the Delaunay criterion and mesh fairing based on energy

minimization as used in Kobbelt et al. [25]. It builds on the works of Klincsek [26] and

Barequet and Sharir [3]. The algorithm could only be used for filling holes in an oriented,

connected mesh. The algorithm reliably closes holes in models with smooth patches, with

the density of the vertices in the filled area matching that of the surrounding surface. The

complexity of building the initial triangulation is O(n
3
), which is sufficient for most holes

that occur in practice. However, the algorithm does not check for or avoid self-

intersections and does not detect or incorporate isles into the hole-filling process.

Jun [9] describes an algorithm based on a stitching planar projection of a complex

hole and projecting back the stitched patch. This method presents significant complexity

of implementation if the holes are twisted and if their intermediate projections onto a

12

surface are self-intersecting. The resultant patch produced in this manner also may not

look very elegant or smooth.

Branch et al. [10] suggest a method for filling holes in triangular meshes using a local

radial basis function. The method works quite well with small and narrow holes but is not

as successful when the holes are large compared to the size of the nearby features and are

rounder in shape. The usability of most of these algorithms, with the notable exception of

Leipa [8], is constrained by their assumptions related to the shape, size or source of the

holes.

Kumar et al. [12] describe a surface-based hole-patching algorithm which produces

smooth patches using an innovative concentric ring-based approach around the holes or

gaps in triangulated meshes. They use NURBS curves and NURBS surfaces to create

smooth patches, and the reliability of their method is dependent on the reliability of the

initial triangulation algorithm used in 3D space. The density of the vertices in the

generated patch matches that of the average density of the surrounding vertices in the

neighborhood of the holes. This algorithm only repairs the meshes with topologically

simple holes and does not detect or incorporate isles into the filling. Their method is

further improved in Kumar and Shih [13] and Kumar et al. [14] by introducing a

smoothing technique at the interface of the patches and boundaries of the holes.

Volume-based Repair Methods

 The key to all volume-based methods lies in converting a surface model into an

intermediate volumetric representation from which the output model is then extracted.

13

Examples of volumetric representation that have been used in model repair include

regular Cartesian Grids, adaptive octrees, kd-trees, BSP-trees and Delaunay

triangulations. A flag at each voxel of the volumetric representation is generated

specifying whether the particular voxel lies inside, outside, or on the surface of the

geometry. The interface between inside and outside cells defines the topology and

geometry of the reconstructed model. Due to their very nature, volumetric representations

do not allow for artifacts such as intersections, holes, gaps or overlaps or inconsistent

normal orientation. Volumetric algorithms are typically fully automatic and produce

watertight models and, depending on the type of volume, they can often be implemented

very robustly as described by Botsch et al. [1].

Volume-based approaches to mesh repair also pose some potential problems. The

conversion to and from a volume leads to a resampling of the model. It often introduces

aliasing artifacts, loss of model features and destroys any structure that might have been

present in the connectivity of the input model. The number of triangles in the output of a

volumetric algorithm is usually much higher than that of the input model and thus has to

be decimated in a post-processing step. Also, the quality of the output triangles often is

degraded and has to be improved afterwards. Finally, volumetric representations are quite

memory intensive so it is hard to run them at high resolutions. If the fidelity of the data is

of utmost importance, then one might want to consider a surface-based approach, which

respects the triangulation on the original mesh and hence preserves the original data in

this process.

Voxelization of a surface mesh requires a method to accurately define box-triangle

intersections for every triangle on the surface mesh with voxels in the volume. Akenine-

14

Möller [15] presents a fast 3D Triangle-Box overlap testing method based on the

separating axis-theorem. The theorem states that two convex polyhedra, A and B, are

disjoint if they can be separated along either an axis parallel to a normal of a face of

either A or B, or along an axis formed from the cross product of an edge from A with an

edge from B. The paper focused on an axis-aligned box (AABB) to find the intersection

of a triangle and the box. The source code for AABB intersection is in public domain and

is freely available [16].

Curless and Levoy [18] and Davis et al. [19] propose one of the most well-known

methods to repair a mesh using a volumetric approach. In their methods, the inside-

outside flags are generated with the help of a distance map of each point on the geometry

using line-of-sight information, which is usually obtained from range-finding devices.

This crucial piece of information may not be available for a purely computational

geometric model. The uncertain voxels are assigned flags based on volumetric diffusion.

Once all the voxels are assigned flags, the volume-based methods simply extract the

contour to find a closed surface. Curless and Levoy‟s method [18] was optimized for data

obtained from range-finding devices. These devices generally create very high resolution

computational models which may contain holes with complex topologies due to

occlusion as well as surface reflections and refractions.

Nooruddin and Turk [20] propose one of the first volumetric techniques to repair

arbitrary models containing gaps, overlaps and intersections. In this method, the model is

first converted into a Cartesian voxel grid using parity-count and ray-stabbing methods.

Most of the volumetric mesh-repair methods propose the use of an inside-outside flag to

classify whether a voxel lies inside or outside of the intermediate volume representation

15

of the original surface model. In this method, a set of projection directions {di} is

produced by subdividing an octahedron or icosahedron. Then the model is projected

along these directions onto an orthogonal planar grid. For each grid point x, the algorithm

records the first and last intersection point of the ray x + di and the input model. A voxel

is classified by such a ray to be inside if it lies between these two extreme depth samples;

otherwise, it is classified as outside. The final classification of each voxel is derived from

the majority vote of all the rays passing through that voxel. A Marching Cubes algorithm

[40] is then used to extract the surface between the inside and outside voxels.

Nooruddin and Turk [20] further take advantage of the common morphological

operators, dilation and erosion, used in 3D digital image-processing techniques as low

pass filters to fill small gaps and tubes on the intermediate volume representation. Rafael

et al. [17] provide a good description of different morphological techniques currently

being used in image processing.

Ju [21] presents a method for generating the signs of voxels for repairing a polygonal

mesh using an adaptive Octree approach. Ju mentions that the method, although simple in

conception and design, may not be able to produce satisfactory results for those cases that

have complex holes with multiple boundaries or highly curved shapes. His algorithm

produces guaranteed manifold output by virtue of using a volumetric method; however,

the algorithm seemed to have a problem handling thin structures. Due to the volumetric

representation, the whole input model is resampled, and the output may also become

arbitrarily large for fine resolutions in this process.

Bischoff et al. [22] propose an improved volumetric technique to repair arbitrary

triangle soups using a user-provided error tolerance value ε and a maximum diameter

16

value ρ up to which gaps should be closed. Their algorithm first creates an adaptive

octree representation of the input model in which each cell stores the triangles

intersecting with it. From these triangles, a feature-sensitive sample point can be

computed for each cell. Then a sequence of morphological operations [17] is applied to

the octree to determine the topology of the model. The connectivity and geometry of the

reconstruction are derived from the octree structure and samples, respectively. Finally, a

Dual Contouring algorithm then reconstructs the interface between the outside and the

inside cells by connecting sample points. These sample points minimize the squared

distances to their supporting triangle planes. As a result, it is claimed that features like

edges and corners are well preserved. If no such planes are available, the corresponding

sample point is smoothed in a post-processing step.

Podolak et al. [23] propose an algorithm for 3D hole filling based on a decomposition

of space into atomic volumes, which are each determined to be either completely inside

or outside of the model. It is done by computing a minimum-cost cut of a graph

representation of the atomic volume structure that is guaranteed to produce non-

intersecting patches.

Murali and Funkhouser [27] present a unique method for converting triangle soups to

manifold surfaces. In their method, the polygon soup is first converted in a Binary Space

Partition (BSP) tree while the supporting planes of the input polygon serve as the

splitting plane for partitioning space into a set of polyhedral regions. This helps to

determine which regions are solid, based on region adjacency relationships. They claim

that, unlike other approaches, their solid-based approach is effective even when the input

polygons intersect, overlap, are wrongly-oriented, have T-junctions, or are unconnected.

17

Although their method doesn‟t need any user parameter to automatically produce

watertight models, the output may also contain complex edges and singular vertices

which may require further post-processing.

Surface Reconstruction

Surface reconstruction is a widely studied topic in the area of computer geometry and

computer graphics. There are several approaches to surface reconstruction based on

global and local approaches. Many of these reconstruction methods are based on

combinatorial structures, such as Delaunay triangulation, alpha shapes, and Voronoi

diagrams, which try to interpolate the surface on all or most of the input points. Other

schemes try to directly represent that surface in implicit forms. Global methods which use

surface fitting in implicit forms often need to solve extremely large, dense and ill-

conditioned matrices. Local fitting methods, on the other hand, try to consider only a

subset of input data at a time and try to create local radial basis functions (RBF) to define

tangent planes. These methods face a number of difficulties due to non-uniformity in the

sampling of data, presence of noise as well as missing input data.

Amenta and Bern [28] present an algorithm for reconstructing an interpolating

surface from sample points in 3D space using Voronoi filtering and the β-skeleton. Their

reconstruction is based on the definition of a planar graph on sample points called the

“crust” and proves to be highly sensitive to the local geometry, point sampling, and any

noise which might be present in the input point set.

18

Amenta et al. [29] present a surface reconstruction algorithm called “The Power

Crust,” which constructs a piecewise-linear approximation to object surface and their

medial axis transform for the input points. Their method uses a set of Voronoi diagrams

which divides space into polyhedral cells. The union of the outer faces of these

polyhedral cells provides the reconstructed surface.

Carr et al. [30] present a method using polyharmonic radial basis functions to

reconstruct a manifold surface from point-cloud data and sometimes repair undersampled

surfaces with voids. Their method consists of three different steps which includes :

construction of a signed-distance function, fitting an RBF to the resulting distance

functions and, finally, iso-surfacing the fitted RBF.

Bruno [31] attempts to fill a hole and blend surface-based on global parameterization

for complete geometry approximation and then energy minimization for surface blending

based on the assumption that global parameterization of the complete model is available

or possible.

Dey and Goswami [32] present a method called “Tight Cocone,” which guarantees a

watertight output surface without introducing any extra points based on the peeling of

tetrahedras. The tetrahedras are created based on Delaunay reconstruction from 3D

simplexes in 3D space using input points.

Shen et al. [34] propose a volumetric repair algorithm that operates on arbitrary

triangle soups. Their algorithm makes use of a scattered-data interpolation method known

as moving least-squares (MLS) with a number of constraints that forces the function to

give a value of the surface region for each polygon. The degree of approximation, in their

method, is controlled by adjusting the least-squares weighting function. The tightness of

19

the surface, or in other words, the requirement of input vertices falling inside the implicit

surfaces, depends on an iterative procedure for adjusting the constraint values over each

polygon.

Kazdan et al. [36] present a surface reconstruction method using oriented points

based on the solution of spatial Poisson equations. Their reconstruction method

calculates a 3D indicator function from the input points. The indicator function is then

used to extract an isosurface. Poisson reconstruction is claimed to be more tolerant to

noisy, non-uniform input data compared to other reconstruction algorithms, and the

results in support of their conclusion were included in their paper. A number of open

source implementations of their methods are available. This research uses an

implementation of Poisson surface reconstruction developed by Doria and Gelas [38] for

the VTK library.

Isosurface and Contouring Methods

An isosurface is a three-dimensional (3D) surface that represents points of a constant

value of a scalar field variable, such as pressure, temperature, velocity, density and

intensity within a volume of space. In other words, it is a level set of a continuous

function whose domain is 3D-space. Isosurfaces are used in computer graphics, data

visualization, and medical imaging, among a number of other areas. A watertight

isosurface is sometimes also used to generate a 3D grid by growing 3D tetrahedras from

the 2D triangles present on the isosurface. There are a number of contouring methods

available, such as Marching Cubes, Dual Marching Cubes, Extended Marching Cubes

20

and Adaptive Marching Cubes, among others. Marching Cubes is a highly successful

contouring algorithms which can create triangulated models with constant density

isosurfaces from volumetric data. However, the Marching Cubes algorithm is not without

its shortcomings, such as a lack of feature sensitivity, aliasing artifacts, high triangle

density, etc. Regardless, the Marching Cubes algorithm [40] is used in this research for

contouring purposes due to the availability of its implementations. As a result, it becomes

necessary to discuss the theory behind this contouring method.

The Marching Cubes algorithm was first presented by Lorenson et al. [40]. The

algorithm uses a two-step approach to isosurface construction problems. The first step

involves locating the surface corresponding to the user-defined value. The second step

deals with calculating a normal to the surface at each vertex of the cube. Marching Cubes

uses a divide-and-conquer approach to locate the surface in a logical cube created from

eight pixels, four each from two adjacent slices.

The algorithm determines how the surface intersects this cube and then marches to

the next cube. To find the surface intersection in a cube, a value of one is assigned to a

cube‟s vertex if the data value at that vertex equals or is greater than the value of the

surface that is being constructed. These vertices are either on the inside or on the surface.

Cube vertices with values below the surface receive a zero and are outside the surface.

The surface intersects only those cube edges which have one vertex outside (zero) and

another inside the surface (one). With this assumption, the topology of the surface within

the cube is determined, with the locations of the intersections found later. Since there are

eight vertices in a cube and two states inside or outside, it provides 2
8

= 256 ways a

surface can intersect a cube. However, looking at all the combinations, one realizes that

21

by using a permutation of complementary and rotation symmetry of the cube, the number

of choices reduces from 256 patterns to a total of 14 topologically unique cases and one

case where none of the edges intersect the surface. A unique index is created for each of

the cases based on the state of the vertices. The index is n 8-bit number with the lowest

significant bit representing the state of vertex 1 while the highest significant bit

represents the state of vertex 8. The index so formed is used to lookup from a list of pre-

calculated tables. The surface intersection along the edge is found using linear

interpolation. In the final step, a unit normal over each cube vertex is found by a central

difference method, and the normal is interpolated to find the normal value at each of the

triangle‟s vertices. This provides a triangulated contoured surface for a 3D voxelized

data.

22

CHAPTER 3

GPU COMPUTING

Modern graphics processing units (GPUs) have emerged as the most powerful chip in

high performance workstations with increasing parallelism rather than increasing clock

rate as the primary engine of processor performance growth. The modern GPU is not

only a powerful graphics engine but also a highly parallel programmable processor

featuring peak arithmetic and memory bandwidth that substantially outpaces its CPU

counterpart. Unlike multi-core CPU architectures, which currently ship with up to eight

cores, GPU architectures are multi-core, with hundreds of cores capable of running

thousands of threads in parallel. This degree of hardware parallelism reflects the fact that

GPU architectures evolved to fit the needs of real-time computer graphics, a problem

domain with tremendous inherent parallelism. Figure 2 shows the evolution of NVIDIA

GPU vis-à-vis that of INTEL CPUs in terms of theoretical peak performance in gigaflops

per second or GFLOP/s. The fast-paced development of the GPU, in the recent past, has

been spearheaded by the rapid development of a massive computer gaming industry with

its onerous demands of more realistic, high-resolution rendering at a very high frame rate.

23

The GPU‟s rapid increase in both programmability and capability has spawned a

research community that has successfully mapped a broad range of computationally

demanding, complex problems to the GPU. Around 1999-2000, GPU peak performance

was catching up with that of the CPU, and the research community started taking notice

of it. As a result, some basic experimentation started to test the suitability of GPU for

general purpose scientific computing. It was found that the excellent floating point

performance in GPUs could lead to a huge performance boost for a range of scientific

applications [51]. This effort in general purpose computing on the GPU, also known as

GPGPU, has positioned the GPU as a compelling alternative to traditional

microprocessors in high-performance computer systems of the future. A typical GPU has

NV30 NV38 NV40 NV45
7800GS

7900GS

8800GTS

9600 GT

GTX 280

GTX 285

GTX 480

GTX 580

Presler E6420 Q9550 i7-950 i7-2600K

0

200

400

600

800

1000

1200

1400

1600

1800

Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10

P
e

ak
 G

FL
O

P
\s

NVIDIA GPU and Intel CPU Evolution Curves

Nvidia GPUs

Intel CPUs

Figure 2: NVIDIA GPU and Intel CPU Evolution Curves

24

evolved for applications having following characteristics, as described in Owens et al.

[43]:

 Large computational requirement: Real-time rendering on billions of pixels per

second, with each pixel requiring a hundred or more operations at a high frame

rate.

 Substantial parallelism: Programmable compute units in GPUs are inherently

parallel in nature and are, in general, very suitable for operations on vertices and

fragments.

 Emphasis on greater throughput than latency: Emphasis in any modern processor

is placed on maximum performance through higher throughput rather than latency

due to the orders of magnitude difference between the human visual system and

an operation within a modern processor.

The Graphics Pipeline

The input to the GPU is a list of geometric primitives, typically triangles, in a 3D

world-coordinate system. Through many steps, those primitives are shaded and mapped

onto the screen, where they are assembled to create a final picture. These steps are as

follows:

 Modeling transformations: The graphics primitives are transformed from the

object-coordinate system to the world-coordinate system, which would later be

mapped onto the display screen. This is done by the coordinate transformation of

individual vertices with a single transformation matrix, which is the product of

25

many modeling transformation matrices representing various geometry

operations.

 Per vertex lighting and vertex operations: The input primitives are formed from

individual vertices. Each vertex is transformed into screen space and shaded by

computing its interaction with the lights in the scene.

 Assembly: The vertices are assembled into triangles, which are the fundamental

hardware-supported primitives in today‟s GPUs.

 Rasterization: This process determines the correlation between screen pixel

locations and the triangles covering them. Each triangle generates a primitive

called a fragment at each screen-space pixel location that it covers. Because of the

possibility of multiple overlaps of fragments at any pixel location, each pixel‟s

color value may be computed from several fragments.

 Fragment Operations: Each fragment is shaded with the fetched color and texture

information from global memory to determine its final color. This stage is

typically the most computationally demanding stage of the graphics pipeline and

is designed to run in parallel.

 Composition: This stage is the final assembly of screen pixels into a screen image

with one color per pixel location and is done by keeping the closest pixel to the

camera for each pixel.

A typical scene has tens to hundreds of thousands of vertices, triangles and fragments

and each of the operations in the graphics pipeline can be computed independently.

Hence, these operations are well suited for parallel hardware and are performed

efficiently due to the massively parallel architecture of the modern GPU.

26

GPU Architecture

A few years ago, GPU was a fixed-function processor, built around a graphics

pipeline, especially designed to do only a few things related with primitive graphics

operations but do those efficiently. In legacy GPU architecture, a GPGPU computing task

needed to be masked as a graphics program with the real computation masked as a series

of vertex operations and pixel shading calculations. No matter how efficient legacy GPUs

may have been, their fixed function pipeline architecture made it difficult to use the GPU

chip for any purpose other than rendering images. The real path toward General Purpose

GPU computing began, not with GPUs, but with onboard programmable 3D graphics

accelerators. Multi-chip 3D rendering engines were developed by several companies

starting in the 1980s. But by the mid 1990s, it became possible to integrate all the

essential elements onto a single chip with the rapid advances in chip design and

breakthroughs in chip fabrication technologies. From 1994 to 2001, these chips

progressed from the simplest pixel-drawing functions to a full implementation of the 3D

pipeline including geometry transforms, vertex operations like lighting, rasterization,

fragment operations such as coloring and texturing and finally composition into frame

buffer with depth testing and display.

In 2001, NVIDIA‟s GeForce 3 introduced programmable pixel shading to the

consumer market for the first time. The programmability of this chip was very limited,

but later GeForce products became more flexible and faster, adding separate

programmable engines for vertex and geometry shading. This evolution culminated in the

NVIDIA‟s GeForce 7800 series of graphics cards, which was based on their G70 chip

and was first released commercially in early 2006. It had higher bandwidth and higher

27

peak performance when compared with its predecessors and cutting- edge CPUs of the

time as presented in Figure 2. It had several improvements over its predecessors with its

3D pipeline and additional stages of configurable and fixed function logic, which could

be programmed in the context of graphics applications.

GPGPU programming evolved as a way to perform non-graphics processing on these

graphics-optimized architectures, typically by running carefully crafted shader code

against data presented as vertex or texture information and retrieving the results from a

later stage in the pipeline. GPGPU programming showed great promise. However,

managing multiple programmable engines in a single 3D pipeline present on the GPU led

to bottlenecks, as too much effort went into balancing the throughput of each stage [44].

In November 2006, NVIDIA introduced the G80 chip-based GeForce 8800 series of

GPU products and later the GT200 extended the performance of G80-based architecture.

This design featured a unified shader architecture with 128 processing elements

distributed among eight shader cores. Each shader core could be assigned to any shader

task, eliminating the need for stage-by-stage balancing and greatly improving overall

performance. The main features of the G80 architecture in support of GPU computing

were as as follows:

 It was the first GPU to support the C programming language.

 It was the first GPU to replace separate vertex and pixel pipelines with a single

unified processor that executed vertex, geometry, pixel and computing programs.

 It introduced a single-instruction, multiple-thread execution model where multiple

independent threads execute concurrently using a single instruction.

28

 It introduced shared memory and barrier synchronization making thread

synchronization issues trivial for GPU-based general purpose computing.

In April 2010, NVIDIA introduced a GPU based on the Fermi Architecture. It was a

significant improvement over previous generations of G80 and GT200-based GPU

designs. The main improvement in GPUs based on Fermi architecture when compared

with those based on the G80 and GT200 design are support for C++ programming

language constructs on the GPU, 32 CUDA cores per streaming processor, true double

precision, ECC support on its high end Fermi based graphics card, true cache hierarchy,

more shared memory, faster context switching between different threads, and faster

atomic operations.

The fixed-function pipeline on the older GeForce 7800 series of GPUs lacked the

generality to express efficiently more complicated shading and lighting operations that

are essential for complex effects. The GeForce 8800 series of GPUs replaced the fixed-

function per-vertex and per-fragment operations with capability to run user-specified

programs on each vertex and fragment. Over the last couple of years, these vertex

programs and fragment programs have become increasingly more capable, with larger

limits on their size and resource consumption, more fully featured instruction sets, and

more flexible control-flow operations. Current GPUs support the Unified Shader Model

4.0 standard on both vertex and fragment shaders as mentioned in Owens et al [44].

In the legacy GPUs at the hardware level, the operations available at the vertex and

fragment stages could be configured but could not be programmed. In the fixed-function

pipeline, the programmer could control the position and color of the vertex and the lights,

but not the lighting model that determined their interaction. As the shader model has

29

evolved and become more powerful and GPU applications of all types have increased

vertex and fragment program complexity, GPU architectures have increasingly focused

on the programmable parts of the graphics pipeline. Thus, over the past few years, the

GPU has evolved from a fixed-function, special-purpose processor into a full-fledged

parallel programmable processor with some additional fixed-function special-purpose

functionality.

As both the vertex and fragment programs became more fully featured with demand

for more realistic rendering and as the instruction sets converged, GPU architects decided

in favor of a unified shader architecture against the previous strict task-parallel pipeline

based architecture. The benefit for the newer GPU unified shader architecture is better

load-balancing at the cost of more complex hardware. Due to the unified shader

architecture, GPGPU computing has become even more rewarding with all the

programmable power in a single hardware unit. GPGPU programmers can now target that

programmable unit directly and optimize their tasks on them, rather than the previous

approach of dividing work across multiple hardware units which created performance

bottlenecks.

GPU Programming Model

The programmable units of the GPU follow a single program multiple-data (SPMD)

programming model. For efficiency, the GPU processes many elements (vertices or

fragments) in parallel using the same program. Each element is independent from the

other elements, and in the base programming model, elements cannot communicate with

30

each other. All GPU programs must be structured in this way: many parallel elements

each processed in parallel by a single program. Each element can operate on 32-bit

integer, floating point or even double precision data in the latest generation GPUs with a

reasonably complete general-purpose instruction set. Elements can read data from a

shared global memory (a gather operation) and, with the newest GPUs, also write back to

arbitrary locations in shared global memory (scatter).

One of the benefits of the GPU is its large fraction of resources devoted to

computation when compared with that of CPU. Today‟s CPU spends a significant portion

of its silicon real estate to allow a different execution path for each element. Instead,

today‟s GPUs support arbitrary control flow per thread but impose a penalty for

incoherent branching. In a GPU, elements are grouped together into blocks and blocks

are processed in parallel. If elements branch in different directions within a block, the

hardware computes both sides of the branch for all elements in the block [44]. In writing

GPU programs branches are permitted but are somewhat cost prohibitive.

Programming a GPU for General-Purpose Programs

Programming GPGPU applications has been historically difficult, since despite their

general-purpose tasks having nothing to do with graphics, the applications still had to be

programmed using APIs hidden in the graphics. The general purpose programs had to be

structured in terms of the graphics pipeline as vertex and texture operations, with the

programmable units only accessible as an intermediate step in that pipeline. Today, GPU

computing applications are structured in such a way that the programmer directly defines

31

the computation domain of interest as a structured grid of threads, and an SPMD general-

purpose program computes the value of each thread.

The value for each thread is computed by a combination of mathematical operations

and both gather (read) accesses from and scatter (write) accesses to global memory.

Direct access of the programmable units to the global memory eliminates much of the

complexity faced by previous GPGPU programmers in co-opting the graphics interface

for general-purpose programming. As a result, GPGPU programs today are more often

expressed in a familiar programming language, such as NVIDIA‟s C-like syntax in their

Compute Unified Device Architecture (CUDA) programming environment or in OpenCL

so that ports are simpler and easier to write, execute and debug. This results in a

programming model that allows its users to not only take full advantage of the GPU‟s

powerful hardware, but permits an increasingly high-level programming model that

enables productive authoring of complex applications.

NVIDIA and Compute Unified Device Architecture (CUDA)

NVIDIA has been designing and positioning its GPUs as versatile devices suitable for

much more than electronic games and 3D graphics. NVIDIA‟s Tesla brand GPUs are

specifically marketed for high-performance computing. Its Quadro brand is marketed for

professional graphics workstations while the GeForce brand is intended for the low- end

traditional consumer graphics market. Current generation GPUs of any of the segments

from NVIDIA can, however, be used for general purpose computing using its CUDA

software platform. NVIDIA‟s CUDA is a software platform that enables NVIDIA GPUs

32

to execute programs written with C, C++, Fortran, OpenCL, Direct Compute and other

languages. It was formally introduced in 2006. CUDA requires programmers to write

special code for parallel processing. It does not require them to explicitly manage threads

in the conventional sense, which greatly simplifies the programming model. It should be

noted that although CUDA was first released in the 2006 for programmers and the

developer community, all the capabilities which CUDA offers today are only available

for a select few new generation GPU devices offered by NVIDIA. As an example, CUDA

when used for G80- and GT200-based GPUs, such as the one used in this study, do not

provide C++ language support. That feature is only available for the late model GPUs

based on Fermi Architecture. The GPU used in this research is a dedicated NVIDIA

Quadro FX5800 with 240 onboard stream processors and 4GB GDDR3 memory, as

shown in Figure 3. The graphics card is based on GT200 architecture and connects to the

CPU bus through a PCI Express 2.0 x16 slot interface.

CUDA includes C/C++ software development tools, function libraries, and a

hardware abstraction mechanism that hides the GPU hardware from developer. Although

CUDA requires programmers to write special code for parallel processing, it doesn‟t

require them to explicitly manage threads in the conventional sense, which greatly

simplifies the programming model. CUDA development tools work alongside a

conventional C/C++ compiler, so programmers can mix GPU code with general-purpose

code for the host CPU. Figure 4 shows a CUDA software architecture stack. It has

common C/C++ source code with different compiler forks for CPUs and GPUs with

function libraries that simplify programming and a hardware abstraction mechanism that

hides the details of GPU architecture from programmers.

33

Figure 3: NVIDIA Quadro FX 5800 Graphics Card

CUDA Optimized Libraries:
FFT, BLAS, ...

Integrated CPU+GPU C
Source Code

NVIDIA C Compiler (nvcc)

NVIDIA Assembly for Computing

CUDA Driver
Debugger

Profiler

CPU Host Code

Standard C Compiler

GPU CPU

Figure 4: NVIDIA‟s CUDA Software runtime architecture stack

34

A hardware abstraction model like the one offered by CUDA has two major benefits.

First, it simplifies the high-level programming model, insulating programmers from the

complex details of the GPU hardware while at the same time letting them take advantage

of the benefits offered by GPU hardware architecture for GPGPU programming. The

second benefit is that hardware abstraction allows NVIDIA to change the GPU

architecture as often as it wants. NVIDIA is free to design processors with any number of

cores, any number of threads, any number of registers, and any instruction set. As a result

of this abstraction, theoretically a C/C++ source code written today for an NVIDIA GPU

using CUDA can run without modification on future NVIDIA GPUs with additional

thread processors, or on a future NVIDIA GPUs with a completely different architecture.

In a single-threaded model, the CPU fetches a single instruction stream that operates

serially on the data. Single-instruction multiple data (SIMD) extensions permit many

CPUs to extract some data parallelism from the code, but the practical limit is usually

three or four operations per cycle even for the most efficient CPU per core. Although

CUDA‟s programming approach is highly parallel, it requires the division of the dataset

into smaller chunks stored in on-chip memory allowing multiple thread processors to

share each chunk for high performance. Storing the data locally reduces the need to

access off-chip memory, thereby improving performance. In the CUDA model, off-chip

memory accesses usually don‟t stall a thread processor. Instead, the stalled thread enters

an inactive queue and is replaced by another thread that‟s ready to execute. When the

stalled thread‟s data becomes available, the thread enters another queue that signals that it

is ready to go. Groups of threads, also known as warps, take turns, ensuring that each

thread gets execution time without delaying other threads. The efficient and effortless

35

switching of threads in warps, where threads do not have to wait on other threads fetching

data, is one of the main reasons for the huge performance gain while running programs

on a GPU.

A CUDA program is organized into a host program, consisting of one or more

sequential threads running on the host CPU, and one or more parallel kernels that are

suitable for execution on a parallel processing device like the GPU. A kernel executes a

scalar sequential program on a set of parallel threads. The programmer organizes these

threads into a grid of thread blocks. The threads of a single thread block are allowed to

synchronize with each other via barriers and have access to a high-speed, per block

shared on-chip memory for inter-thread communication. Threads from different blocks in

the same grid can coordinate only via operations in a shared global memory space visible

to all threads. CUDA requires that thread blocks be independent, meaning that a kernel

must execute correctly regardless of the order in which blocks are run. This restriction on

the dependencies between blocks of a kernel, although cumbersome, provides scalability.

Developers write kernels in CUDA that execute on the GPU and define a single

thread of execution‟s behavior. Thousands of such threads execute a kernel concurrently,

and the GPU‟s thread manager maps them all to physical thread processors. The kernel is

invoked on the host side, at which time the host CPU determines how many threads to

execute. The host CPU also controls memory management and data transfer. A special

NVIDIA compiler called nvcc translates kernels and host programs into code that

executes on both the CPU and GPU. CUDA architecture treats threads independently of

each other but actually executes them on a single instruction, multiple data- (SIMD) type

architecture.

36

An important feature of CUDA is that application programmers do not write

explicitly threaded code. A hardware thread manager handles threading automatically.

Automatic thread management is vital when multithreading scales to hundreds of

thousands of threads. Although these are lightweight threads in the sense that each one

operates on a small piece of data, they are fully fledged threads in the conventional sense.

Each thread has its own stack, register file, program counter, and local memory, as

described by Halfhill [41]. The GPU preserves the state of inactive threads and restores

their state when they become active again. By removing the burden of explicitly

managing threads, NVIDIA simplifies the programming model and eliminates a whole

category of potential bugs. Even though CUDA automates thread management, it does

not entirely relieve developers from thinking about threads and thread management.

Developers must analyze their problem to determine how best to divide the data into

smaller chunks for distribution among the thread processors based on their GPU

architecture. For GPU-based programming, they also need to be aware of the optimal

numbers of threads and blocks that will keep the GPU fully utilized and provide

maximum throughput for their intended application. Factors affecting performance of

their GPU code may include the size of the global data set, the maximum amount of local

data that blocks of threads can share, the number of thread processors in the GPU, and the

sizes of the on-chip local memories.

A geometric model can have a significant number of holes, either as clusters or far

away from each other, that require patching individually. The volume-based hole

patching algorithm, presented later in this study, uses the diffusion equations as presented

in Appendix A, followed by contouring to generate a smooth continuous surface in the

37

areas near discontinuity. The solution domain is Cartesian and the solution process is

repetitive in nature performed independently on a large number of voxels. The size of the

solution domain for the diffusion equation is tied to the size of elements in the input mesh

surrounding holes in the implementation presented as part of this study. As a result, when

the input mesh becomes finer, the solution domain becomes bigger. As a result the

diffusion equation solver spends even more time in finding a convergent solution to the

diffusion equations. The repetitive nature of the solution process and a large number of

computations for finding a convergent solution of diffusion equation in a Cartesian

domain makes it an ideal problem for GPU based parallelization. The research work

presented in this study parallelizes the diffusion solver for both GPUs and multi-core

CPUs and would compare and contrast their performance gain with respect to the single-

core CPU run time in Chapter 6 using CUDA toolkit and library. The solution process

would use a single NVIDIA Quadro FX 5800 GPU on CentOS linux operating system.

38

CHAPTER 4

VOLUME APPROACH TO GEOMETRIC HOLE PATCHING

Surface-based hole-patching algorithms provide good quality mesh repair. In general,

they minimally alter the surrounding geometry. However, surface-based algorithms

usually require that the input model already satisfy certain quality requirements such as

clean geometry, no intersections or overlaps, etc., to be able to guarantee a valid output.

Many of these requirements cannot be met or even be checked automatically.

Furthermore, due to numerical inaccuracies, certain types of artifacts, such as

intersections or large overlaps, cannot be resolved robustly. Other artifacts, like gaps

between two closed connected components of the input model that are geometrically

close to each other, cannot even be identified as described in Botsch et al. [1].

Volumetric representations, on the other hand, do not allow for artifacts like

intersections, holes, gaps or overlaps or inconsistent normal orientation. Volumetric

algorithms are typically fully automatic and can produce watertight geometries. They can

often be implemented very robustly. As a result, for some cases, it is necessary to use a

volume-based approach to repair models. Figure 5 presents a flow chart of the mesh

repair process using a volume-based algorithm, which will be discussed in this chapter in

detail.

39

Figure 5: Flowchart of volume-based and hybrid approach towards mesh repair.

Input Surface Geometry (in VTK

format) with complex topology

Extraction of non-

intersecting solution columns

Diffusion equation solution in

each of the solution column

Point cloud with normals generation from

the original model and generated patches

Poisson‟s Surface

Reconstruction

Final Reconstructed Surface

Voxelization of surface geometry

in the solution column region

Contouring, smoothing

and patch extraction

40

Figure 6: Stanford Bunny model with 10 holes

This volume-based approach being presented is loosely based on previous work done

by Davis et al. [19], with some improvements. A fully automatic volume-based repair

method is presented in this chapter. It can handle a dirty geometry with holes, isles and

small intersections. The Stanford Bunny [57] model is used to illustrate the results of the

study in this chapter.

41

Stanford Bunny

The Stanford Bunny [57] is one of the most commonly used validation models in

computer geometry and computer graphics. It is freely available to the community for

research purposes. The Stanford Bunny was a product of the Digital Michelangelo

Project [67] executed in Stanford‟s Computer Graphics Laboratory. It was obtained by

assembling a number of scanned range images of a clay bunny roughly 7.5 inches tall

using a Cyberware 3030 MS scanner. The model so obtained is a collection of 69,451

triangles and 35,947 points. Due to occlusion, the Stanford Bunny has five holes left after

assembling the scanned range images. Five additional holes of various sizes were cut in

this model for algorithm validation in this research, making a total of 10 holes, as shown

in Figure 6.

Extraction of Solution Columns and Voxelization of Discrete Geometry

The first step in volume-based repair method is to convert the surface mesh into a

volumetric mesh. In this research, Cartesian grids have been used for their simplicity of

implementation. Cartesian grids are generated for the regions of interest of the input

geometry to represent the data. However, regions of interest need to be first identified to

be able create representative Cartesian grids.

In the previous studies [12], [13] and [14], the input surfaces were considered to have

simple topologies, and holes on the input surface were found by finding a set of

connected edges which were non-manifold in the sense that the edges belonged to only

one polygon. The input surface geometry could, however, be of complex topology and

42

might contain numerous surface fragments along with a largest surface among them. In

this study, the largest surface is identified and is separated from the rest of the surface

fragments. To identify regions of interest, holes on the largest surface of the mesh are

found. The regions of interest are non-intersecting regions which may enclose one or

more of the nearby holes and are bigger than the bounding box of the enclosed holes.

Each of these regions of interest is termed a “solution column” in this dissertation. Each

of the solution columns is represented as a uniform Cartesian grid. The voxelization is

only performed in non-intersecting regions of interest near the surface defects. The

fragments and surfaces enclosed within the region of interest are later on embedded in the

solution columns.

 The density of the voxels is a function of the triangle size in terms of average edge

lengths and average area of the neighborhood triangles in the region of interest of the

input geometry. The density of voxels will not only determine the rate of convergence of

the solution but also the distribution of points and the quality of output at the

reconstructed surface in the later stages of the mesh repair process. The Cartesian grid

can be arranged in the form of a block of 3D tiles, as shown in Figure 7. The user can

specify the tiles‟ size along the maximum length, which determines the number of tiles

used to represent the Cartesian grid.

Each tile is of identical size and is composed of a certain number of voxels (floating

precision) based on the bounding box size. The tiles are padded with an extra layer of

ghost cells along the boundary, as shown in Figure 8. The memory allocation is

completely dynamic, and the information exchange between the contiguous tiles is

hidden from the user using an abstraction layer.

43

Figure 8: Ghost cells at the interface of two tiles shown in gray color in a 2D

Cartesian grid.

Figure 7: A Cartesian Grid composed of multiple blocks in 3D

44

Although this representation is more complex than the scenario when the whole data

is represented as one single block, this kind of memory allocation for representation of a

Cartesian grid has two major benefits:

 Depending on the memory footprint of a tile and the size of the cache on the CPU

chip, one may be able to employ cache effects by taking advantage of the cache

hierarchy to speed up the code execution. This is possible because the small

memory size of each tile may fit inside the cache of the CPU.

 The solver requires an exact temporary copy of the tile in the intermediate step to

compute and transfer data. If a small tile size is being used, then only a small

intermediate amount of memory would be needed to compute and transfer data for

each tile.

As the information exchange between ghost cells is completely hidden from the user,

the user would not notice any difference while using the APIs compared to the situation

when a whole block is composed of a single tile. A mask is also created for the embedded

data using an identical Cartesian grid of lower precision (char) to store information from

the original model and to store the boundary conditions for the solver. The lower

precision of the mask is used to conserve the memory footprint of the solution process.

The mask is also used after contour extraction to determine whether a triangle in question

is a new triangle in the void region or if it overlaps or intersects with the original triangles

of the input region of interest. An input discrete geometry is composed of individual

triangles. The intersection of each triangle with the voxels of the Cartesian grid lying

within its bounding box is checked using the AABB Triangle-Box intersection algorithm

[15]. All voxels that intersect with triangles are masked as “model voxels” with a static

45

value of „0‟. All the voxels along the positive normal of the triangle plane which are not

“model voxels” are masked as “heated” and given a static positive value of „+1‟. All the

voxels along the negative normal of the triangle plane which are not “model voxels” and

are touching “model voxels” are masked as “cold” and given a negative value of „-1‟.

This process creates a signed Cartesian grid with voxelized representation of the discrete

geometry having a neutral value of „0‟ sandwiched between the hot and the cold sides.

The rest of the uncertain voxels are dynamic and can change values during the solution

Figure 9: Solution columns for Stanford Bunny

46

phase. Davis et al. [19] use line-of-sight information obtained from the ranging devices to

create a signed data for the solution process.

The algorithm presented in this dissertation is not tailored for input data from ranging

devices; hence the availability of line-of-sight information is not assumed in this work,

which could be used to sign the voxels of the Cartesian grids. Instead, an assumption is

made that the input discrete geometry has consistent normal orientation for the purpose of

defining the boundary conditions. The input geometry may not have normal information

already present. As a result, normals are generated for every triangle and vertices of the

input geometry in order to sign those unsigned voxels of the Cartesian grid column that

are touching the embedded geometry. Figure 9 shows the position of solution columns for

the Stanford Bunny [57]. As illustrated in the figure, these solution columns do not

intersect and surround the holes on the surface of the geometry.

Numerical Solution of the Diffusion Equations

Diffusion is a well-known and well-understood time-dependent process, constituted

by random motion of given entities and causing the statistical distribution of these entities

to spread in space. The diffusion equation solution space can be defined as a set of

Cartesian grids embedding curved thin plates in 3D space where one side is heated while

the other side is cold, diffusing energy through 3D space. The curved plates embedded in

the Cartesian grids represent segments of the input model embedded in solution columns.

The equations derived in Appendix A are used to find a steady-state solution for the

diffusion equation. A finite-volume formulation for the diffusion equation is employed

47

to arrive at a solution for the diffusion equation as described in equation (15). Equation

(17) provides the discretization of the finite-volume formulation. It is an explicit scheme

with a forward difference in time and central difference in space. Equation (18) provides

the solution of the diffusion equation.

The diffusion equation is being solved as a time dependent problem, and the error

introduced at any time step is going to grow or decay based on the stability condition.

Von-Neumann‟s analysis predicts that the conditions for the numerical scheme to be

stable. The stability analysis provides a range of values of αΔt for which the numerical

scheme used is stable. The acceptable values of αΔt depend upon the grid refinement, as

given in equation (32) for Cartesian Grids. Equations (34), (35) and (36), as defined

earlier, provide three measures of change to determine whether or not the solution has

reached convergence.
 , as defined in equation (36), is the average

percentage change for a Cartesian grid compared to the previous iterations and is used in

most of this study to determine the convergence of the solution of the diffusion equations.

Two parameters,
 and the number of iterations, are used to determine

whether or not convergence has been reached. The cutoff values of these parameters,

0.5% or 1000 iterations, respectively, are based on empirical evidence from experimental

results. Figure 10 and Figure 11 show the convergence plots of L2NormMax and

L2NormAvg for Columns 2 and 3, respectively, for the Stanford Bunny. In both the cases,

the plots are asymptotic and seem to converge within a few iterations. However, looking

closely at the log plots in Figure 12 and Figure 13, it can be inferred that convergence is

actually reached much later.

48

Figure 10: Convergence Plot for Column 2 of the Stanford Bunny

Figure 11: Convergence Plot for Column 3 of the Stanford Bunny

49

Figure 12: log10 Convergence Plot for Column 2 of the Stanford Bunny

Figure 13: log10 Convergence Plot for Column 3 of the Stanford Bunny

50

Figure 14: Rendering of a slice of the Stanford Bunny in false color

Column 2 is a small Cartesian Grid, and the diffusion equation solver reaches

convergence much faster than when the same diffusion equation solver is run on Column

3, as shown by Figure 10 and Figure 11.

Explicit schemes are known to be notoriously slow for convergence. The

convergence becomes even slower as one refines the grid to a finer resolution. To

circumvent this problem, APIs, which can be used for a primitive algebraic interpolation

approach using a coarse grid to initialize the flow field for the finer Cartesian grid, have

been implemented. This allows the overall solution field to be initialized using the

preliminary solution from the coarser grid, which can reduce the time needed for

convergence. First the solver is run on a coarse grid for a fixed number of iterations. The

51

solution from the coarse grid is interpolated onto the finer Cartesian grid as initial values

on which the diffusion solution process is started for better convergence.

The diffusion equation provides a smooth and continuous variation of the solution at

the time of convergence. It is a Laplace equation that satisfies Min-Max property, which

states that the computed values inside the solution domain would lie between the

minimum and maximum values specified at the boundary when the solution has

converged. This ensures that the computed values in the domain will lie between „-1‟ and

„+1‟ in the simulation of the equation. These two properties make heat equation a good

choice for the problem being solved in this research, where one wants a smooth and

continuous variation of the solution at the time of convergence, resulting in a smooth and

continuous surface as output after contouring.

Figure 14 shows the rendering for a slice of Stanford Bunny in false color after

convergence on GPU when the whole model is embedded in one Cartesian grid column

for illustration purpose. The rendering is done using Paraview [64] for a slice of a fine

Cartesian grid with 420 voxels along the maximum dimension, which was initialized with

the solution from a coarse Cartesian grid with 100 voxels along the maximum dimension.

One can clearly see a diffusion of colors in the lower right corner of the rendering,

signifying a discontinuity in the model and a gradient in the temperature values in that

area due to diffusion. The diffusion solution in this case was achieved using CUDA on a

Quadro FX 5800 GPU donated by NVIDIA for this study.

52

Extraction of Consistently Oriented Surfaces and Point Set

The zero-set of the numerical solution for the diffusion equation, as described in the

previous section, provides a closed surface. This zero-set surface is otherwise only open

at the places where it intersects with the extremities of the Cartesian grid. Extraction of

the surface using a suitable contouring method should provide us with the desired result.

There are a number of contouring methods available, the most common of which is

Marching Cubes [40]. The Marching Cubes algorithm is feature insensitive and

introduces aliasing artifacts in the form of a staircasing pattern on the surface while

greatly increasing the number of triangles on the surface, depending on the resolution of

the Cartesian grid, often giving poor results. A number of open-source implementations

of the Marching Cubes algorithm are widely available in the public domain. In this

implementation, a VTK library implementation of the Marching Cubes algorithm

specialized for 3D image data, known as vtkImageMarchingCubes [61], is used. It

was chosen due to its open source availability and ease of use. The extracted surface can

contain aliasing artifacts and can also contain topologically complex artifacts in the form

of small bubbles attached to the extracted surface. These artifacts can be easily removed

by first checking the connectivity of the output surfaces and by extracting the largest

surface. Next the extracted surface mesh is relaxed using a smoothing filter, such as the

one described by Taubin et al. [54]. vtkWindowedSincPolyDataFilter [62] is an

open-source implementation of this smoothing filter and is available as part of the VTK

library. Figure 15 shows the extracted surface on a solution column after smoothing.

53

Figure 15: Contouring and smoothing result on a column at the base of the Stanford

Bunny

Figure 16: Extracted patch from the contouring result superimposed with the original

model.

54

Figure 17: Reconstructed Surface (a) with bump; (b) without bump

Figure 18: Extracted point set with consistently oriented normals

(a) (b)

55

Once the contoured and smoothed surface is extracted, all triangles that intersect with

the voxels embedding the original surface are removed from the extracted surface. This

process provides us with an extracted patch in the hole region. Figure 16 shows extracted

patches superimposed with the original input mesh with holes. By careful study, it was

observed that the conversion of a surface mesh to an intermediate volume mesh and

subsequent contouring causes a shift of about half a voxel in the position of the extracted

surface when compared with the original surface. It is believed that this happens because

the original surface is embedded in voxels, while contouring is done by evaluating values

on the voxel corner. If left uncorrected, this would cause a noticeable shift in the

reconstructed surface, as evidenced in Figure 17 (a). It is corrected by shifting the

extracted surface by 0.5 voxels along inward normal. This correction resolves the bump

to get a smoother surface after reconstruction in the region where the patch and holes lie,

as shown by Figure 17 (b). The normal information in the original and reconstructed

surface may not be present a priori and, as a result, the normal at every vertex of the

input surface and extracted patch has to be calculated.

All vertices on the input surface mesh along with isles and patches are extracted and

normals are generated to create a well-sampled point set, as shown in Figure 18. The

point set shown in Figure 18 has been rendered based on the normals generated on those

points. This well-sampled point set would be used for surface reconstruction using the

Poisson Surface Reconstruction technique [38] as described in the next section.

56

Surface Reconstruction and Results

Surface reconstruction and surface fitting from point samples is a well-studied

problem in computer graphics and has applications in a number of disciplines, including

surface reconstruction from input points and reverse engineering. Reconstruction itself is

a very challenging area due to uneven sampling of points, noisy data and scan mis-

registration, among other problems. There are a number of schemes for surface

reconstruction based on implicit forms among other techniques. The implicit surface

fitting methods are either global or local in nature. Global fitting methods commonly

define the implicit function as the sum of radial basis functions (RBFs) centered at the

points. Local fitting methods consider subsets of nearby points. These methods are well

studied and have been compared in a number of papers including, but not limited to,

Amenta and Bern [28], Amenta et al. [29], Carr et al. [30], Bruno [31], Dey and Goswami

[32], Dey and Goswami [33], Shen et al. [34], Casciola et al. [35], Kazhdan et al. [36]

and Mullen et al. [37], among others.

In this research, an existing and well-established surface reconstruction method was

used, which is Poisson Surface Reconstruction as described in Kazhdan et al. [36]. It is an

open-source algorithms and is widely available [38]. Although Poisson surface

reconstruction provides a watertight surface, its accuracy depends on the sampling of

input points. Therefore, in this study, efforts are made to provide a well-sampled point set

with correctly oriented normals as input to the Poisson surface reconstruction in order to

get an output surface that is not only smooth but also well behaved. The point set

generated for the input surfaces, as well as the extracted patches and surface

reconstruction creates a completely new reconstructed watertight surface for the whole

57

model, which may be quite different from the input surface. The VTK implementation of

Poisson surface reconstruction as presented by Doria and Gelas [38] is used at Octree

refinement level 10 in this study wherever Poisson surface reconstruction is used to

reconstruct a repaired model. Figure 19 shows the reconstructed watertight model of the

Stanford Bunny, which was generated using the Poisson surface reconstruction as the

final step of a volume-based mesh repair. The point set shown in Figure 18 was used as

an input during surface reconstruction. The surface generated after using the Poisson

surface reconstruction is the final result obtained from the volume-based mesh repair

algorithm presented in this chapter, as shown by Figure 19.

Figure 19: Reconstructed watertight model of Stanford Bunny

58

In this chapter, a volume-based approach is presented that can repair a discrete input

geometry by solving the diffusion equation followed by a Poisson surface reconstruction.

Even though the volume-based method is applied on isolated solution columns, the

repaired and reconstructed watertight model after Poisson reconstruction is altered from

the original input model during the reconstruction process. Volume-based approaches

like the one described in this chapter can be used to repair the models with artifacts that

surface-based models otherwise cannot robustly handle. However, they also pose some

potential problems. The conversion to and from an intermediate volume representation

leads to the resampling of the model. It may significantly alter the input geometry, which

could result in the loss of model features and could destroy any structure that might have

been present in the connectivity of the input model. Despite all their shortcomings,

volume-based algorithms can solve some problems in mesh repair robustly that cannot be

handled by surface-based approaches alone.

Mesh Repair Results on Analytical Models

In order to evaluate the accuracy of this volume-based hole-patching algorithm,

ellipsoids are chosen as benchmark cases to calculate the average errors in terms of radius

and the standard deviation of errors of the location of each point. This was done due to

the fact that the location of each point on an ellipsoid can be analytically defined. For

comparison purpose, results from surface-based technique is also presented in Table 1.

59

 An ellipsoid with semi-axes a, b, and c and centered at coordinate (0, 0, 0) is defined

as:

1
2

2

2

2

2

2


c

z

b

y

a

x

(1)

Error in the location of points on the ellipsoids can be quantified as:

1
2

2

2

2

2

2


c

z

b

y

a

x
E iii

i
(2)

The average error can be measured as:

N

E

E

N

i

i


(3)

The standard deviation is the measure of the spread in a set of values. The standard

deviation in the error of coordinate positions on the patches can be obtained as follows:

 

1

2








N

EE
N

i

i



(4)

If the minimum distance by which the position of a point (xi, yi, zi) on the ellipsoidal

surface could be moved to a new location (λxi, λyi, λzi) such that the point at the new

location would lie exactly on the surface of the analytical ellipsoid, then the value of λ

can be defined as:

2

2

2

2

2

2

c

z

b

y

a

x iii 

(5)

60

As a result, the displacement error % in the position of the point (xi, yi, zi) can be given as

Displacement error % in position =

 (6)

Tables 1 and 2 present the errors in the position of the points of the reconstructed

model using surface-based and volume-based repair techniques, respectively. The tables

show the number of points, average error, standard deviation of error, minimum absolute

displacement error % and maximum absolute displacement error % due to the the

position of points on the reconstructed surface of three ellipsoids. The three ellipsoids

were constructed by varying semi-axis b along y-direction. A sphere is a special case of

an ellipsoid when a = b = c. It can be observed from tables 1 and 2 that geometry

generated using surface-based mesh repair technique provide better results when

compared with that of the volume-based mesh repair technique presented in this chapter.

 This is an expected outcome. It has been empirically observed that the errors due to the

location of the points on the output geometry using volume-based repair tend to become

smaller as the resolution of the input model is increased.

61

Model Name Number

of Points

on

Surface

Average

Error

Standard

Deviation

of Error

Minimum

Absolute

Displacement

Error %

Maximum

Absolute

Displacement

Error %

Sphere (a = 1.0, b

= 1.0, c = 1.0)
30413 -5.415e-04 1.748e-03 0.0 0.688

Ellipsoid (a = 1.0,

b = 0.5, c = 1.0)
30514 -4.942e-04 1.778e-03 0.0 0.850

Ellipsoid (a = 1.0,

b = 0.2, c = 1.0)
30403 -5.452e-04 2.673e-03 0.0 2.188

Table 1: Result of surface-based mesh repair technique on analytical models

Model Name Number of

Points on

Surface

Average

Error

Standard

Deviation

of Error

Minimum

Absolute

Displacement

Error %

Maximum

Absolute

Displacement

Error %

Sphere (a = 1.0, b

= 1.0, c = 1.0)
32680 1.347e-02 0.02908 2.282 -06 7.381

Ellipsoid (a = 1.0,

b = 0.5, c = 1.0)
36099 2.364e-02 0.05957 3.080e-06 16.442

Ellipsoid (a = 1.0,

b = 0.2, c = 1.0)
34298 7.708e-02 0.21952 1.559e-05 50.729

Table 2: Result of volume-based mesh repair technique on analytical models

62

CHAPTER 5

HYBRID APPROACH TO GEOMETRIC HOLE PATCHING

Surface-based methods explicitly try to identify surface artifacts prior to repairing

them and require that input geometry meets some mesh quality conditions. This is

sometimes not feasible, causing the mesh repair techniques to fail. However, the surface-

based methods have some compelling advantages over the volume-based methods, which

emphasize that surface-based techniques should be employed wherever possible to get

better quality results compared to using only volume-based methods for geometry repair.

The volume-based approach presented in chapter 4 works well for relatively simple

input surfaces but will not provide well-behaved and feature-sensitive results for inputs

having high curvature and complicated geometries. In those cases, a hybrid approach can

be used. A hybrid approach leverages the benefits of both surface-based and volume-

based approaches to obtain a reconstructed watertight surface, which is not only smooth

and well-behaved, but also feature-sensitive.

A hybrid approach would be used when the surface-based algorithm has failed to

repair the input geometry completely. All the generated patches from the surface-based

approach, along with the input geometry, are used as inputs to the volume-based

approach described in chapter 4. Figure 20 presents the flow chart for the hybrid

63

approach to mesh repair presented in this chapter. In the hybrid approach to geometry

repair, parts of the original input geometry, along with all the surface fragments as well

as the output surface patches from the surface-based approach, are embedded in the

voxelized, non-intersecting Cartesian grid solution columns prior to generating a

diffusion equation-based solution in those columns, as described in chapter 4.

As part of a previous effort, an automatic surface-based method has been presented

and published for patching topologically simple holes on a triangulated surface model to

achieve a watertight surface, as described by Kumar et al. [12], Kumar and Shih [13] and

Kumar et al. [14]. The existing surface points around the holes were used to obtain a set

of NURBS surfaces approximating the missing surface patches. A Delaunay triangulation

method and repeated point insertions at the centroid of the triangles were used to generate

internal points that were then projected onto a set of NURBS surfaces to obtain the

desired patch. The patches generated by this method were achieved with minimal

alteration of the geometric information of the surrounding geometry. This algorithm for

surface-based mesh repair is applicable to topologically simple but geometrically

complex holes in the discrete geometry. Such holes are common in the geometries

obtained from 3D scanners or extracted from medical image datasets using the Marching

Cubes algorithm. This hybrid approach uses an incremental improvement to the surface-

based approach for mesh repair. This insures that the input to the volume-based

algorithm in the hybrid approach is a surface that shows better feature sensitivity than

what would have been available without using any surface-based approach.

64

Mesh Fragments

(Islands)

Figure 20: Flowchart of hybrid approach towards mesh repair.

Input Surface Geometry (VTK)

Connectivity

Single Surface (No Islands)

Patches

Repaired Surface

Surface-based

Approach

Volume-based

Approach

Final Repaired

Surface

65

The main features of this surface-based mesh repair algorithm, along with a number

of improvements which have been implemented and used in the hybrid approach

presented in this chapter, are as follows:

 No assumption about the orientation, shape, size or origin of the holes on the

surface.

 Analogy of non-intersecting rings on unstructured mesh surrounding gaps or holes

on the surface mesh.

 Fully automatic method with the size and density of the triangulation in the hole

patching process using incremental refinement controlled by the size of

neighborhood triangles (edge length and area).

 Point insertion at the centroid and edge swapping based on Delaunay criteria, as

described in Appendix C.

 Smooth patches even in the regions with high curvature.

 Explicit identification of holes and their sorting based on their sizes in terms of

number of edges.

 Octree-based search for locating points and a hybrid octree search for location of

edges and triangles on the mesh.

 Hole patching using localized NURBS-based surface definition.

 Hole patching only supported with discrete geometries with simple topologies.

The presence of isles in the hole region is detected but not supported.

The algorithm for this hybrid approach, as described in the flowchart shown in Figure

20, will be validated and presented with examples using the Laurent Hand [58] and

Chinese Lion [59] models. Similar to the Stanford Bunny model, both of these models

66

are freely available online in high resolution and are used widely for research purposes

for validation of algorithms. These models are highly complex and lack water-tightness.

Some of the holes present on the surfaces of these models are in areas with high

geometric curvature in narrow areas and pose a significant challenge for geometry repair

using traditional methods. The surface-based algorithm that would be used on these

models failed to completely repair the mesh, while the volume-based algorithm presented

in chapter 4 failed to produce a satisfactory result on these models due to the close

geometric proximity of finger surfaces. The hybrid approach presented in this chapter is

not only able to repair the models but to produce results that conform to what are

expected based on the surrounding features. These cases are discussed and illustrated

below.

Laurent Hand:

The Laurent Hand model [58] was scanned at INRIA by Laurent et al. and is

available at aim@shape shape repository [63]. It is a non-manifold model and lacks

water-tightness, with a number of gaps in geometrically complex areas due to occlusion

as shown in Figure 21. The next few figures show the results of different techniques on

this model. The region surrounding three middle fingers is illustrated in Figure 22. The

surface between the thumb and index fingers has high curvature and are in close

proximity. Applying the volume-based technique in this area without any extra data, such

as line of sight information, would end up fusing the fingers together, as demonstrated in

Figure 25 (b) and (c).

67

Figure 21: Laurent Hand model with a number of discontinuities

Figure 22: Discontinuities in Laurent Hand model around three middle fingers

68

(a)

(b)

Figure 23: Extracted surfaces after contouring super imposed on the original Laurent

Hand model showing (a) front (b) back

69

(a) (b)

(c) (d)

Figure 24: Laurent hand after repair: (a) surface-based; (b) volume-based with

reconstruction; (c) with only Poisson reconstruction; (d) with hybrid approach

70

(a)

(b)

(c) (d)

Figure 25: Middle three fingers in Laurent hand after repair: (a) surface-based; (b)

volume-based with reconstruction; (c) with only Poisson reconstruction; (d) with hybrid

approach

 Figure 23 (a) and (b) show non-intersecting surfaces extracted from solution

columns after contouring and their placement on the original model. Figure 24 (a) shows

mesh repair on the Laurent Hand using the surface-based approach. It can be observed

from Figure 24 (a) and (b) that although the surface-based approach is successful in

repairing the mesh between the fingers, it is not able to close all the voids. Figure 24 (b)

shows a model repaired using the volume-based approach, as described in this chapter

which uses Poisson surface reconstruction as the final step. It can be observed that,

71

although the output geometry is watertight, the output has fused fingers, as shown in

Figure 25 (b), which is not desirable. Figure 24 (c) and Figure 25 (c) show the output for

only Poisson-based surface reconstruction, and it can be observed that, although the

output geometry is watertight, it has all three middle fingers fused together, which is

again undesirable.

Figure 24 (d) and Figure 25 (d) represent output from the hybrid approach, which

uses both surface-based and volume-based techniques followed by Poisson surface

reconstruction. It can be observed that not only is the output surface mesh watertight, but

the middle fingers in the narrow area are not fused, as desired, compared to the cases

when only a surface- or a volume-based technique was used to repair the geometry. This

example demonstrates the usefulness of hybrid technique for repairing a surface

geometry.

(a) (b)

72

(c)

(d)

(e) (f)

Figure 26: INRIA Chinese Lion model: (a) original, front; (b) original, back; (c) surface-

based repair, front; (d) surface-based repair, back; (e) hybrid approach, front; (f) hybrid

approach, back

73

INRIA Chinese Lion

The INRIA Chinese Lion [59] model was scanned by the Geometrica Group at

INRIA using the Minolta Vivid 910 Laser Scanner. The model is available on the

Aim@Shape Project Shape Repository [63]. The Chinese Lion model so obtained is a

dirty model with non-manifold complex edges and numerous small surface fragments and

defects. Not all holes could be filled using the surface-based approach [12], [13], [14] due

to the complexities of the model, as well as inherent inadequacies of the initial surface

triangulation algorithm in 3D space. Figure 26 (a) – (f) demonstrate the result of

geometry repair on the model using the hybrid approach and its visual comparison with

the original model as well as the model generated after failed surface-based mesh repair

on the model. Figure 26 (a) and (b) show the front and back rendering of the original

model along with numerous holes on the surface. It can be observed that a number of

those holes are geometrically very complex. Figure 26 (c) and (d) show the front and

back rendering of the Chinese Lion model after surface-based mesh repair. One can

notice that a number of the holes and discontinuities presented in Figure 26 (a) and (b)

have been either completely filled or have contracted in size. However, surface-based

mesh repair is not able to fill all the holes. Figure 26 (e) and (f) show the final result of

the mesh repair process using the hybrid approach that uses output from the surface-

based approach, as shown in Figure 26 (c) and (d) along with isles and surface fragments

present in the original model as input to the volume-based repair process. The resultant

output mesh is completely watertight.

74

CHAPTER 6

DIFFUSION SOLVER PARALLELIZATION

With the development of increasingly complex technologies, there is a continuous

demand for greater computational power (speed, memory, and bandwidth) than what is

presently possible. In particular, realistic numerical simulations in scientific and

engineering problems needs ever-increasing computation resources, since such

simulations often require a large number of repetitive calculations on a relatively large

amount of data in a limited time in order to generate valid, useful results. Traditionally,

such problems were solved in a parallelized fashion on specialized machines known as

supercomputers. These supercomputing machines were housed in large buildings with

restricted access and needed large investments in terms of dedicated staff, special cooling

machines, specialized proprietary interconnect hardware and memory switches. These

days, with advancement of computer technologies, necessary computing resources such

as computing power, memory and bandwidth is becoming increasingly more cost

effective and smaller in hardware size. As a result, it has become possible to obtain the

kind of computing power through commodity multiprocessors, multi-core desktop

computer systems and off-the-shelf graphics cards that would have required access to

specialized supercomputers only a few years ago.

75

A multiprocessor system is a parallel computation machine that contains more than

one processor. Multiprocessor computation includes multi-threaded computations, which

could run concurrently on a single machine with multiple processors or processor cores.

The speedup factor or speedup, which is a measure of relative performance of such

a multiprocessor system, can be defined as

 (7)

The maximum possible theoretical speedup is usually p with p processors when

the problem can be equally divided among the p processor with no additional overhead

costs, as shown in equation (8) below.

 (8)

Most of the computations have additional fixed overhead of job and thread scheduling

along with communication cost between processes, which scales with the size of the

problem. The maximum possible speedup for such problems of fixed size is defined by

Amdahl‟s Law [65] .

Amdahl‟s law assumes that every parallel computation has a serial part that can only

be executed on one processor. If the fraction of computation that cannot be divided into

concurrent tasks is f, then the speedup according to Amdahl‟s law can be given as

 (9)

Amdahl‟s law puts a maximum upper limit for speedup on a problem of fixed size with

an increasing number of processors, as shown below.

 (10)

76

Figure 27: Amdahl‟s law showing relationship between maximum speedup and parallel

portion with increasing number of processors for a fixed sized problem

Note: Image sourced from Wikimedia http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg

and licensed for free and unrestricted use under Creative Commons license.

This behavior is presented in Figure 27, which shows a plot of the number of

processors vs. speedup for a specific problem with fixed problem sizes and fixed parallel

fractions. It shows that for a problem of fixed size, when the serial fraction is 50%, then

the maximum speedup can only be 2, regardless of the number of processors used.

Similarly for a problem of fixed sized with serial fraction as 5%, then the maximum

speedup can only be 20, irrespective of the number of processors being used.

77

Figure 28: Gustafson‟s law showing scaled speedup plots

Note: Image sourced from Wikimedia http://en.wikipedia.org/wiki/File:Gustafson.png

and licensed for free and unrestricted use under Creative Commons license.

The speedup of scalable problems, where the size of the problem can be scaled up, is

governed by Gustafson‟s law [66]. The scaled speedup is given as

 (11)

There are two assumptions in the Gustafson‟s law: the parallel execution time is constant,

and , which is the fixed serial fraction, is also constant and is not a function of number

of processors p. Figure 28 shows a scaled speedup plot for a scalable problem with

different fixed serial fractions.

In the volume-based mesh repair method presented in this research, a major portion of

the solution process time is spent in obtaining a converged solution for the diffusion

78

equations on a number of Cartesian grid columns which embed parts and pieces of input

geometry. This problem becomes even more acute when holes are closely clustered

together or when input geometry is of high resolution. This is due to the fact that the

solution domain resolution is closely tied to the resolution of input geometry in the

formulation of the diffusion equation presented in this work. One of the major objectives

of this research is to study the behavior of solution processes using multi-threaded

parallelization on CPUs and GPUs. The parallelization in this research has been done on

an inexpensive (< $1000) PC which has a 64-bit quad-core AMD
®
 Athlon™ II 620

processor and 4GB of RAM. The machine also has a dedicated NVIDIA
®
 Quadro™ FX

5800 graphics card with 240 stream processor cores and 4GB of onboard GDDR3

graphics memory for GPGPU-based computations. The machine is configured with the

CentOS operating systems (OS), which is a Linux-based OS, and all the data presented in

this chapter was generated on the described machine. This data was generated by running

the diffusion solver-based solution process on the Stanford Bunny with 10 holes in its

surface [57]. The data presented in this chapter was generated on a fine grid, which uses

the results of the coarser Cartesian grid for initialization of data after running the

diffusion solution on the coarse Cartesian grid for a large number of iterations. It should

also be noted that the diffusion solvers written for the CPU and the GPU are slightly

different, as they are optimized considering very different architectures of the CPU and

the GPU. In addition, it should be noted that the results are generated by embedding the

whole model into one Cartesian grid, which is arranged as a number of tiles to study the

performance of the diffusion solver as the problem size is scaled.

79

Multi-threaded Parallelization of Diffusion Equations on CPU Using OpenMP

The OpenMP Application Program Interface (API) supports multi-platform shared-

memory parallel programming in C/C++ and Fortran on a number of architectures,

including Unix platforms and Windows NT platforms. Jointly defined by a group of

major computer hardware and software vendors, OpenMP is a portable, scalable model

that gives shared-memory parallel programmers a simple and flexible interface for

developing parallel applications for platforms ranging from the desktop to the

supercomputer and is supported on a number of compilers. OpenMP is natively

integrated with the GNU GCC family of compilers, which is used in this research, and

can be enabled using the –fopenmp switch at the compile time.

In this study, the entire Stanford Bunny was embedded in a single Cartesian grid of a

particular size. The Cartesian grid is composed of a number of tiles in the x, y and z

directions. Each tile is of equal size and contains an equal number of voxels. The tile size

varies, as the Cartesian grid size is varied in this research. The total number of voxels in

the Cartesian grid scales up as the Cartesian grid size increases. However, the number of

tiles in the Cartesian grid has been kept fixed at 20x20x16 in the x, y and z directions.

Furthermore, the data being presented is from a fine Cartesian grid, which interpolates

data from the solution of a corresponding coarse Cartesian grid as an input to the fine

Cartesian grid in a multi-grid solution-based approach. Both the tile size and the coarse

Cartesian grid size was kept constant in this study. The solution run times being

presented in this study are for the fine Cartesian grid only. The coarse Cartesian grid size

was kept constant at 100x100x80 voxels, with 10x10x8 tiles for each Cartesian grid,

irrespective of the size of the corresponding fine Cartesian grid.

80

Outlined in Table 3 are the data obtained from the multi-threaded parallelization of

the diffusion solver on the Stanford Bunny. Column 1 in the table shows the suggested

maximum Cartesian size along the maximum dimension. However, the actual size could

be slightly different, as it is dependent on the ratio of maximum and minimum

dimensions of a particular input model based on the bounding box sizes, chosen scaling

factor, number of tiles and number of voxels per tile. Column 2 in the table shows the

actual number of voxels in the Cartesian grid in which the diffusion solver is run.

Columns 3 to 10 show the diffusion solver run time for 120 iterations on the fine

Cartesian grid with varying numbers of threads.

Illustrated in Figure 29 is the plot of OpenMP runtime based on the data presented in

Table 3. The figure shows a plot of the total number of voxels in the fine Cartesian grid

vs. total run time for the diffusion solver for 120 iterations. It can be observed that the run

time is linear with increasing problem size for up to 4 threads on the quad-core CPU and

follows closely along with the Gustafson‟s law which governs maximum scaled speedup.

However, as the number of threads is increased from 4, the serial fractions of the solution

are no longer fixed due to thread and scheduling conflicts, and this starts affecting the run

time. It can also be observed that the best run time (minimum) is achieved for 4 threads

on a quad-core CPU. This happens because when the number of threads is greater than

the number of available cores on the machine, the CPU has to spend a considerable

amount of time in scheduling cores for competing threads solving the diffusion equation,

increasing the total solution time.

Presented in Figure 30 is the plot of the OpenMP run time variation with increasing

number of threads for each Cartesian grid. It can be observed from the plot that the run

81

time for each Cartesian grid steadily declines as the number of threads is increased from

1 to 4, indicating improving speedup. However, as the number of threads increases from

4 to 5 for every Cartesian grid, the run time sharply increases, due to the change in the

fixed costs for running the job. Most of the jump in the time is due to the increase in the

system time spent on managing threads.

Outlined in Table 4 is the OpenMP based multi-threaded speedup for the diffusion

solver for different fine Cartesian grid sizes. Shown in Figure 31 is the plot of speedup

changes for variations based on changing number of threads. The best speedup, which

was observed to be 2.77, was observed to be for 4 threads on Cartesian grid, with

suggested size in maximum dimension as 550.

Parallelization of Diffusion Equation on GPU using CUDA

GPGPU is an exciting new area in parallel computing. It promises to provide

performance similar to supercomputers from a single desktop using GPU. Computer

programs customized for GPU execution emphasize high throughput and derive most of

the gain in performance due to clever scheduling of many thousands of threads over

hundreds of GPU processor cores. Harnessing the power of a GPU efficiently for general

purpose computing requires a good understanding its architecture and requires writing

special, optimized code. This also necessitates a clever partitioning of data in such a way

that programming instructions on GPU can be run on any chunk of data in a random

order without affecting the overall output of the computation.

82

One of the objectives of this work is the parallelization and optimization of the

diffusion solver on a GPU, along with the evaluation and analysis of the resulting

performance gain through this effort. The graphics hardware for this research has been

generously donated by NVIDIA in the form of a single NVIDIA Quadro FX 5800

graphics card with 240 stream processors and 4GB of onboard GDDR3 memory. The

CUDA drivers and libraries used for the GPGPU implementation are provided to

developers for free by NVIDIA. Although CUDA provides a number of useful tools to

write a program in standard C programming language, its use is severely restricted by a

few restrictions imposed by CUDA for Quadro FX5800 generation of devices. Those

restrictions are as follows:

 Limited number of ANSI C features supported by CUDA.

 Lack of support for C++ standard code.

 Restrictions on the support of higher level memory constructs, such as structures

and classes.

 Absence of a true GPU-based debugger for code debugging. The current

generation nvcc CUDA debugger can only be used in the device emulation

mode.

 Lack of support for std::cout based APIs from the GPU to the user.

 Lack of support of dynamic memory allocation on the GPU from instructions

executing on the GPU at runtime. This restriction severely limits what could be

done on the GPU as the memory being used on the GPU has to be pre-allocated

in the kernel before the code is run on the GPU.

83

However, despite all these restrictions, CUDA proves to be a valuable tool due to its

extremely high theoretical peak performance for GPUs compared to that of even the most

high-end CPUs commercially available. In this research, the diffusion solver for GPU has

been optimized for GPU architecture and hence behaves slightly differently than the

CPU-based diffusion solver. The diffusion solver for both the coarse and fine Cartesian

grids are run on the GPU using CUDA; however, the data being presented are only for

the fine Cartesian grid for a fixed number of iterations. The Cartesian grid is mapped onto

a number of GPU tiles. Each of the GPU tiles is of fixed size, 16x16xk, number of

voxels, where „k‟ is the number of voxels in the Cartesian grid along the z direction. Each

of the tiles is mapped onto one stream processor on the GPU, and the number of voxels

on a GPU tile corresponds to the maximum number of threads that one stream processer

can spawn and handle. The thread handling on the GPU is managed by CUDA without

the user having to explicitly manage them. However, CUDA requires the user to have a

fine-grained knowledge of the GPU architecture to effectively use the GPU for general

purpose computing to achieve the maximum throughput and highest efficiency through

GPGPU implementation.

Table 5 presents the data obtained after running the GPU-optimized diffusion solver

for the Stanford Bunny on fine Cartesian grid for 120 iterations. The table also presents

runtime data from the diffusion solver when run on a CPU using a single thread for

comparison purposes. It should, however, be noted that the diffusion solver code written

for the both CPU and GPU are optimized for the architecture of their respective platforms

and, as a result, there may not be exact one-to-one comparisons for each case. As a result,

the run time for both the GPU and CPU was normalized for per million voxels for each

84

suggested tile size due to the variations in the total number of voxels and, as a result, the

variation in the Cartesian grid sizes, so that a comparison of run-time performances of the

CPU and the GPU could be possible.

Figure 32 presents the plot of the Cartesian grid sizes for CPU and GPU vs. execution

run time in seconds. It can be observed that the CPU execution time follows closely with

that predicted by Gustafson‟s law. However, the GPU time plot is not linear and varies

when the problem size is scaled up. Possible explanations for this result include the

following: 1) the hardware architecture caused maximum throughput for the GPU to

correspond to the dip in the GPU time curve; 2) the internal thread scheduling and data

fetching is optimized for that grid size; or 3) the mapping of the file for that particular

grid size is optimal for the GPU based on its architecture.

Presented in Figure 33 is the plot of the suggested grid size along the largest

dimension of the Cartesian grid vs. the solution time for the CPU and GPU. Once again, a

dip in the curve could be noticed when the suggested grid size is 650 along the maximum

dimension.

Shown in Figure 34 is a plot of the number of GPU tiles vs. the run time for 120

iterations for the diffusion solver on the GPU. At run time, each of the GPU tiles is

mapped onto one stream processors. The GPU has 240 stream processors. When the

number of tiles exceeds the number of streams processors on board the GPU, the threads

mapped on to the GPU tiles wait for their turns to fetch data and perform calculations.

Presented in Figure 35 is a composite bar and line plot showing the relationship

between grid size and speedup. The y-axis for the bar plot shows the run time per million

voxels for the CPU and the GPU. The data presented has been normalized per million to

85

obtain one-to-one correspondence between CPU and GPU for a suggested number of

voxels along the largest dimension for the input model. The maximum achieved speedup

was observed to be 8.86325 between CPU and GPU, while the minimum speedup was

found to be 6.10873.

The results from the parallelization of the diffusion solver for CPU and GPU are

presented and compared using a number of tables and plots. The CPU-based diffusion-

solver code parallelization was done using the OpenMP library. The GPU-based code

parallelization was done using the CUDA library and was run on a NVIDIA Quadro FX

5800 GPU. The CPU- and GPU-based diffusion solver codes were optimized for their

respective architectures. As a result, the optimization required the tile size and tile

arrangements on CPU and GPU to be different. The results presented in this chapter

conclusively show that the GPU implementation provides superior solver performance

compared to the CPU, even when compared with multi-threaded parallelization for a

quad-core CPU. The maximum speedup for GPU was observed to be 8.863, while the

maximum speedup after multithreading was found to be 2.771 for 4 threads on a quad

core CPU.

86

Table 3: Data obtained from OpenMP based multi-threaded parallelization for diffusion equation on Stanford Bunny

Suggested
Grid Size
in Max

Dimension

Total Number
of voxels in

millions
OpenMP diffusion solver run time for 120 iterations (in seconds)

1 thread 2 threads 3 threads 4 threads 5 threads 6 threads 7 threads 8 threads

150 3.28 60.96 46.78 42.52 37.50 84.99 87.39 99.03 96.40

200 6.40 109.42 76.22 70.05 62.01 106.55 108.37 115.31 132.39

250 14.06 223.14 151.18 126.60 115.23 163.92 173.21 157.17 164.39

300 21.60 326.05 212.43 165.56 147.63 208.93 217.03 224.50 194.70

350 35.25 511.18 313.12 244.73 220.58 290.48 279.54 284.18 294.35

400 51.20 718.11 428.31 338.39 287.68 391.56 398.44 353.30 411.93

450 74.48 1030.58 623.36 474.95 407.59 536.20 506.48 512.17 455.08

500 100.00 1365.36 835.74 631.30 538.84 704.42 712.20 626.83 637.19

550 135.48 1823.95 1050.35 827.91 658.15 850.65 857.34 754.50 760.45

600 172.80 2282.76 1293.11 966.46 832.86 1118.14 993.97 998.11 873.10

87

60.96
109.42

223.14

326.05

511.18

718.11

1030.58

115.23
147.63

220.58

287.68

407.59

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

R
u

n
 t

im
e

 in
 S

e
co

n
d

s

Number of Voxels in Millions

OpenMP Run Time for 120 Iterations

1 thread

2 threads

3 threads

4 threads

5 threads

6 threads

7 threads

8 threads

Figure 29: OpenMP-based multi-threaded implementation for 120 iterations on Stanford Bunny showing plot of number

of voxels in millions vs. run time in seconds

88

1030.58

623.36

474.95

407.59

536.20
506.476 512.172

455.081

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9

R
u

n
ti

m
e

 in
 S

e
co

n
d

s

Number of Threads

OpenMP Run Time for 120 Iterations

150

200

250

300

350

400

450

Figure 30: OpenMP-based multi-threaded implementation for 120 iterations on Stanford Bunny showing plot of

number of threads vs. run time in seconds

89

Suggested Tile
Size in Max
Dimension

OpenMP Multi-Threading Speedup

1 thread 2 threads 3 threads 4 threads 5 threads 6 threads 7 threads 8 threads

150 1.0 1.303 1.434 1.626 0.717 0.698 0.616 0.632

200 1.0 1.436 1.562 1.764 1.027 1.010 0.949 0.826

250 1.0 1.476 1.763 1.936 1.361 1.288 1.420 1.357

300 1.0 1.535 1.969 2.209 1.561 1.502 1.452 1.675

350 1.0 1.633 2.089 2.317 1.760 1.829 1.799 1.737

400 1.0 1.677 2.122 2.496 1.834 1.802 2.033 1.743

450 1.0 1.653 2.170 2.529 1.922 2.035 2.012 2.265

500 1.0 1.634 2.163 2.534 1.938 1.917 2.178 2.143

550 1.0 1.737 2.203 2.771 2.144 2.127 2.417 2.399

600 1.0 1.765 2.362 2.741 2.042 2.297 2.287 2.615

Table 4: Speedup of OpenMP-based multi-threaded diffusion solver for 120 iterations on Stanford Bunny

90

1.30

1.77

1.43

1.63

1.76

1.94

2.21
2.32

2.50 2.53 2.53

2.77 2.74

0.62

2.61

0.50

1.00

1.50

2.00

2.50

3.00

100 200 300 400 500 600

Sp
e

e
d

u
p

Suggested number of voxels along maximum dimension

OpenMP Multi-Threaded Speedup for Diffusion Solver

2 threads

3 threads

4 threads

5 threads

6 threads

7 threads

8 threads

Figure 31: Speedup plot of OpenMP-based multi-threaded diffusion solver for 120 iterations on Stanford Bunny

91

Suggested

Tile Size in

Max

Dimension

Number of

Tiles

mapped on

GPU

Stream

Processors

Number

of GPU

Voxels in

Millions

Run Time in Seconds for 120 iterations
Number

of CPU

Voxels in

Millions

Run Time in Seconds for

120 iterations

GPU

Speedup

GPU

unoptimized

time

GPU

optimized

time

GPU

optimized

time

normalized

CPU

Execution

time in

Seconds

CPU

Normalized

time per

million voxel

150 100 3.278 6.353 5.23263 1.5962874 3.28 44.640 13.622955 8.53415

200 169 6.922 13.534 11.1449 1.6100135 6.40 80.912 12.642484 7.85241

240 225 11.059 22.006 18.0063 1.6281738 -- -- -- --

250 256 13.632 27.340 22.4419 1.6463265 14.06 165.575 11.775646 7.15268

300 361 22.180 45.082 37.0587 1.6708311 21.60 249.180 11.536111 6.90441

336 441 30.708 62.576 51.439 1.6751173 -- -- -- --

350 484 33.702 68.677 56.5292 1.6773298 35.25 394.922 11.20308 6.67912

400 625 51.200 106.441 87.2626 1.7043477 51.20 557.800 10.894531 6.39220

416 676 58.147 120.891 99.1733 1.7055676 -- -- -- --

450 812 73.171 150.713 123.765 1.6914511 74.48 808.777 10.858516 6.41965

480 900 88.474 184.000 151.517 1.7125674 -- -- -- --

500 992 101.581 212.366 173.637 1.7093453 100.00 1073.430 10.7343 6.27977

544 1156 127.844 265.682 217.986 1.7050937 -- -- -- --

550 1225 135.475 280.674 230.182 1.6990736 135.48 1406.120 10.379184 6.10873

592 1369 162.615 307.822 254.154 1.5629185 -- -- -- --

600 1444 177.439 304.680 252.188 1.4212659 172.80 1765.240 10.215509 7.18761

640 1600 203.162 307.350 257.141 1.2656944 -- -- -- --

650 1681 220.332 298.888 253.05 1.1484941 223.03 2270.280 10.179395 8.86325

700 1936 269.615 464.038 385.116 1.4283923 266.56 2702.080 10.136855 7.09669

Table 5: Execution time for diffusion solver on CPU and GPU for Stanford Bunny

92

44.64
165.58

394.92

557.80

808.78

1073.43

1406.12

1765.24

2270.28

266.56, 2702.08

203.162, 257.141

220.332, 253.05

269.615, 385.116

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300

R
u

n
 T

im
e

 in
 S

e
co

n
d

s

Number of Voxels in Millions

Grid Size vs. Run Time of Diffusion Solver for 120 Iterations

CPU execution
time

GPU Execution
time

Figure 32: Plot of grid size in million voxels vs. run time for Diffusion solver for 120 iterations on GPU and CPU.

93

640, 257.141

650, 253.05

385.116

44.640 80.912
165.575

249.180
394.922

557.800

808.777

1073.430

1406.120

1765.240

2270.280

2702.080

0

500

1000

1500

2000

2500

3000

100 200 300 400 500 600 700

R
u

n
 T

im
e

 in
 s

e
co

n
d

s

Suggested number of voxels along the biggest dimension

Suggested Grid Size vs. Run Time of Diffusion solver for 120 Iterations

GPU execution
time

CPU execution
time

Figure 33: Plot of grid size along the biggest dimension vs. run time for Diffusion solver for 120 iterations on GPU and

CPU.

94

1600, 257.141

1681, 253.05

1936, 385.116

0

50

100

150

200

250

300

350

400

450

0 240 480 720 960 1200 1440 1680 1920 2160

Ti
m

e
 in

 S
e

co
n

d
s

Number of GPU Tiles mapped on to stream processors

Plot of number of GPU Tiles vs. run time for 120 iterations

Figure 34: Plot of number of solution tiles on GPU with each tile mapped on a single stream processor vs. run time for

Diffusion solver for 120 iterations.

95

8.534
7.852

7.153 6.904 6.679 6.392 6.420 6.280 6.109

7.188

8.863

7.097

120 220 320 420 520 620 720

0

2

4

6

8

10

12

14

16

150 200 250 300 350 400 450 500 550 600 650 700

Suggested Number of voxels along max dimension

Normalized speedup comparison for GPU over CPU for 120 iterations per
million voxels

Execution time
in seconds on
GPU per million
voxels

Execution time
in seconds on
CPU per million
voxels

Normalized
Speedup

Figure 35: Plot of normalized speedup comparison for CPU and GPU for 120 iterations per million voxels on the

solution grid vs. grid size along the maximum dimension.

96

CHAPTER 7

SUMMARY

Geometry deficiencies are major roadblocks in today‟s computational engineering

simulation cycles. They can require tedious and laborious efforts to repair the

deficiencies. This study presents completely automatic volume-based and hybrid

algorithms for geometric hole patching, which could be used to repair meshes with

topologically complex holes. These algorithms are able to repair holes on geometrically

and topologically complex models which otherwise cannot be completely and

satisfactorily repaired by either surface-based or volume-based methods in isolation. The

solution of the diffusion equation is an important part of both the volume-based as well as

hybrid approach to hole filling and consumes a large amount of computer time. The

solution process is repetitive and, as such, is ideal for parallelization. The diffusion solver

was parallelized, and its performance was analyzed on both the CPU and the GPU and

presented here. The dissertation is organized as follows:

Chapter 1 presents a brief introduction along with the motives for this research.

Chapter 2 starts with a discussion of the available hole-patching and mesh-repair-related

research published in a number of research papers and journals. Some of the available

surface reconstruction algorithms are also discussed in Chapter 2. Chapter 3 presents the

97

research and conclusions as described in a number of papers describing the evolution and

advancements in the area of general purpose computing applications. The chapter also

describes the requirements for using GPU hardware for general purpose computing. A

brief description of the CUDA (Compute Unified Device Architecture) library was

presented, which was later used for parallelization of diffusion solver on GPU as

presented in Chapter 6. In Chapter 4, a new volume-based method was presented that

uses a solution of finite volume formulation of diffusion equation, as described in

Appendix A, followed by contouring to generate surfaces in the region surrounding the

holes. Patches and point sets are extracted from the generated surface and are used as an

input for a Poisson surface reconstruction algorithm to generate watertight, reconstructed

discrete surface mesh. Chapter 5 discusses a hybrid approach to geometric hole filling

that uses a surface-based approach, which is an improvement over the previous published

work [12], [13] and [14] and the volume-based approach described in chapter 4. The

hybrid approach combines the best features of both surface- and volume-based

algorithms for mesh repair. The usefulness of the volume-based algorithm as described in

chapter 4 and hybrid approach as described in chapter 5 was demonstrated using the

Stanford Bunny, Laurent Hand and Chinese Lion models. Results presented in the

chapters 4 and 5 have been accepted for publication in the proceedings of the 20
th

International Meshing Roundtable [24]. Chapter 6 discusses multi-core, multi-threaded

parallelization of the diffusion equation solver on the CPU and the GPU. The results for

the parallelization were generated on a single computational geometry, Stanford Bunny

[57]. The results were studied and compared between the GPU and CPU, and their

performance and relative speedups are presented in chapter 6. The results show that the

98

GPU offers a superior performance advantage over the CPU in iterative and repetitive

SPMD-type calculations.

With the completion of the research and the achievements needed to meet the

objectives set in the dissertation proposal, the unique contributions of this research can be

identified as the development of a volume-based hole-patching algorithm using the

diffusion equation, as well its inclusion in a hybrid approach to mesh repair that

combines the best features of both surface- and volume-based algorithms. The approach

demonstrated here is similar in approach to that described by Curless and Levoy [18] and

Davis et al. [19]. Those similar volume-based approaches require extra information in the

form of line-of-sight information from ranging devices for setting boundary conditions

and geometry repair, which is not required in the research presented here.

The unique contributions of this research are due to the following:

 Hole Patching for Geometry: Geometry deficiencies are major roadblocks in

today‟s computational engineering simulation cycles. They can require tedious

and laborious efforts to repair the deficiencies. This research effort contributes to

the state of the art by facilitating the repair process specific to the hole-patching

issue using a volumetric approach without requiring any extraneous information,

such as ranging data as used in Curless and Levoy [18] for carving in space and

time in mesh repair. In addition, this research presents a hybrid approach that

uses both surface-based and volume-based approaches to repair complex

geometries with topologically complex holes. The usefulness of the volume-based

method and hybrid approach is demonstrated with a number of examples.

99

 Hole Identification and Isolation Algorithms: It is challenging to identify and

isolate a hole region on a geometric model, especially when the hole is

topologically and geometrically complex. This research develops and presents a

Cartesian grid-based algorithm to identify and extract the geometrical information

for the region. It builds on the method for identification of holes as presented in

Kumar et al. [12] and extends it to include topologically complex holes by

bringing in the notion of the connectivity of input fragments, thereby identifying

simple holes and isolating fragments from the identified simple holes.

 Localized “Column Grid” Approach: The approach developed here isolates each

hole region and builds a column grid around it. The hole-patching algorithm is

applied to this column grid independently from others, making the problem

suitable for parallel computation.

 Parallelization of diffusion solvers on CPU and GPU: Since the diffusion equation

could be solved on each voxel repeatedly until the solution domain has reached a

desired level of convergence, this type of process can be easily parallelized on

both the CPU and the GPU. CPU-based parallelization and performance study has

been done by multi-threading using the OpenMP library. GPU-based

parallelization was done using NVIDIA‟s CUDA library. GPU-based parallel

computation for this type of application has not been done before to the best of

our knowledge. Therefore, the research and implementation of the algorithms on

the GPUs is another unique contribution of this research.

100

Scope for Future Work

This work presented here is useful for repairing meshes with holes and small

intersections on dirty geometries with the presence of isles. However, this method will

not be able to completely repair the input mesh and may provide unexpected results when

mesh overlaps are significant and of large scale. As a result, there is a need for further

development of the solution process to resolve large-scale overlaps prior to mesh repair.

This dissertation presents the parallelization of the diffusion solver for both the CPU

and the GPU. However, the parallelized solvers are used as stand-alone modules for

performance comparisons. These parallelized solvers could be integrated with the main

code to leverage higher performance from the solution process.

The diffusion solver has been optimized and parallelized for a single NVIDIA GPU

device. The performance study of the solvers shows superior performance of the GPU-

based solver. However, a much larger performance gain could possibly have been

achieved by better load balancing and leveraging the cache hierarchy on the GPU device.

The scope for the parallelization effort in this research work has been limited, and there is

potential to increase the performance envelope of the GPU-based solver to achieve higher

performance gain. Additional work may be done to parallelize the GPU solver code on

multiple GPU devices.

101

LIST OF REFERENCES

[1] Botsch M, Pauly M, Kobbelt L, Alliez P, Lévy B, Bischoff S and Rössl C (2007)

Geometric Modeling Based on Polygonal Meshes. ACM SIGGRAPH 2007 Courses -

International Conference on Computer Graphics and Interactive Techniques

[2] Turk G and Levoy M (1994) Zippered Polygon Meshes from Range Images. In

Proceedings of ACM SIGGRAPH 94, 311-318

[3] Barequet G and Sharir M (1995) Filling Gaps in the Boundary of a Polyhedron.

Computer Aided Geometric Design, 12: 207-229

[4] Barequet G and Kumar S (1997) Repairing CAD Models,. Proceedings of IEEE

Visualization 97, 363-370

[5] Guéziec A, Taubin G, Lazarus F and Horn B (2001) Cutting and Stitching:

Converting Computer sets of Polygons to Manifold Surfaces. IEEE Transactions on

Visualization and Graphics, 7(2):136–151

[6] Guskov I and Wood JZ (2001) Topological Noise Removal. In Proceedings of

Graphics Interface 2001, 19-26

[7] Borodin P, Novotni M and Klein R (2002) Progressive Gap Closing for mesh

repairing. In J. Vince and R. Earnshaw, editors, Advances in Modelling, Animation and

Rendering, Springer Verlag, 201-213

[8] Liepa P (2003) Filling Holes in Meshes. Proceedings of the 2003 Eurographics/ACM

SIGGRAPH Symposium on Geometry processing, Eurographics Association, 200-205

[9] Jun Y (2005) A Piecewise Hole Filling Algorithm in Reverse Engineering. Computer

Aided Design, 37:263-270

[10] Branch J, Prieto F and Boulanger P (2006) A Hole-Filling Algorithm for Triangular

Meshes using Local Radial Basis Function. Proceedings of the 15
th

 International Meshing

Roundtable, Springer, 411-431

102

[11] Pernot JP, Moraru G and Vernon P (2006) Filling holes in meshes using a

mechanical model to simulate the curvature variation minimization. Computer and

Graphics, 30(6):892-902

[12] Kumar A, Shih AM, Ito Y, Ross DH and Soni BK (2007) A Hole-Filling Algorithm

Using Non-Uniform Rational B-Splines. Proceedings of 16th International Meshing

Roundtable, Springer Berlin Heidelberg, ISBN: 978-3-540-75102-1, 169-182

[13] Kumar A and Shih AM (2009) Patching Topologically Simple Holes in

Unstructured Mesh Using Non-Uniform Rational B-Splines. ASME Early Career

Technical Journal, 8(1): 21.1-21.8

[14] Kumar A, Ito Y, Yu T, Ross D and Shih AM (2011) A Novel Hole Patching

Algorithm for Discrete Geometry using Non-Uniform Rational B-Spline. International

Journal for Numerical Methods in Engineering. Published Online

[15] Akenine-Möller, T (2005) Fast 3D Triangle-Box Overlap Testing. In ACM

SIGGRAPH 2005 Courses (Los Angeles, California, July 31 - August 04, 2005). J. Fujii,

Ed. SIGGRAPH '05. ACM, New York, NY

[16] Akenine-Möller (2011) AABB-triangle overlap test code. Source code is located at
http://jgt.akpeters.com/papers/AkenineMoller01/tribox.html

[17] Gonzalez CR Woods ER Digital Image Processing. Prentice Hall; 3rd edition,

ISBN-13: 978-0131687288

[18] Curless B and Levoy M (1996) A Volumetric Method for Building Complex Models

from Range Images. Computer Graphics, 30:303-312

[19] Davis J, Marschner SR, Garr M and Levoy M (2002) Filling Holes in Complex

Surfaces using Volumetric Diffusion. Proceedings of First International Symposium on

3D Data Processing, Visualization, Transmission, 2002, 428-861

[20] Nooruddin FS and Turk G (2003) Simplification and repair of polygonal models

using volumetric techniques. IEEE Transactions on Visualization and Computer

Graphics, 9(2):191-205

[21] Ju T (2004) Robust Repair of Polygonal Models. Proceedings of ACM SIGGRAPH,

2004, ACM Transactions on Graphics, 23:888-895

103

[22] Bischoff S, Pavic D and Kobbelt L (2005) Automatic restoration of polygon models.

Transactions on Graphics, 24(4):1332-1352

[23] Podolak J and Rusinkiewicz S (2005) Atomic volumes for mesh completion. In

Symposiuon on Geometry Processing

[24] Kumar A and Shih AM (2011) Hybrid Approach for Repair of Geometry With

Complex Topology. Accepted for the proceedings of 20
th

 International Meshing Round

Table, October 2011

[25] Kobbelt LP, Vorsatz J, Ulf L and Seidel HP (1999) A Shrink Wrapping Approach to

Remeshing Polygonal Surfaces. Computer Graphics Forum (Eurographics „99), 18:119-

130.

[26] Klincsek G (1980) Minimal Triangulation of Polygonal Domain. Annals of Discrete

Mathematics, 9:121-123

[27] Murali MT and Funkhouser AT (1997) Consistent solid and boundary

representations from arbitrary polygonal data. In Proc. Symposium on Interactive 3D

Graphics, 155-162

[28] Amenta N and Bern M (1999) Surface Reconstruction by Vornoi Filtering. Discrete

& Computational Geometry, 22(4):481-504

[29] Amenta N, Choi SC and Kolluri R (2001) The powercrust, unions of balls, and the

medial axis transform. Computational Geometry: Theory and Applications, 19:127-153

[30] Carr CJ, Beatson KR, Cherrie BJ, Mitchell JT, Evans RT, Fright RW and McCallum

CB (2001) Reconstruction and representation of 3D objects with Radial Basis functions,

In Proceedings of ACM SIGGRAPH '01, 67-76

[31] Bruno L (2003) Dual Domain Extrapolation. ACM Transactions on Graphics

(SIGGRAPH), 22:364-369

[32] Dey KT and Goswami S (2003) Tight Cocone: A Water-tight Surface Reconstructor.

Journal of Computing and Information Science in Engineering, 3(4):302-307

[33] Dey KT and Goswami S (2004) Provable surface reconstruction from noisy samples.

Computational Geometry, 35(12):124-141

104

[34] Shen C, O'Brien FJ and Shewchuk RJ (2004) Interpolating and approximating

implicit surfaces from polygon soup. In Proceedings of ACM SIGGRAPH'04, 896-904

[35] Casciola G, Lazzaro D, Montefusco BL and Morigi S (2005) Fast surface

reconstruction and hole filling using positive definite radial basis functions. Journal of

Numerical Algorithms, 39:289-305

[36] Kazhdan M, Bolitho M and Hoppe H (2006) Poisson Surface Reconstruction. In

Proceedings of the fourth Eurographics symposium on Geometry processing (SGP '06),

Switzerland, 61-70

[37] Mullen P, Goes DF, Desbrun M, Cohen-Steiner D and Alliez P (2010) Signing the

Unsigned: Robust Surface Reconstruction from Raw Point Sets. Eurographics

Symposium on Geometry Processing 2010, 29(5):1733-1741

[38] Doria D and Gelas A (2010) Poisson Surface Reconstruction for VTK. The

VTKJournal. http://www.insight-journal.org/download/viewpdf

/718/2/download

[39] Kobbelt L, Botsch M, Schwanecke U and Seidel HP (2001) Feature sensitive surface

extraction from volume data. In Proc. of ACM SIGGRAPH 01, 57-66

[40] Lorenson EW and Cline EH (1987) Marching Cubes: A High Resolution 3D Surface

Construction Algorithm. ACM Computer Graphics, 21(3): 163-169

[41] Halfhill RT (2008) Parallel processing with CUDA: NVIDIA‟s high-performance

computing platform uses massive multithreading. Microprocessor Report, January 28

2008, http://www.NVIDIA.com/docs/IO/55972/220401_Reprint.pdf

[42] Luebke D (2008) CUDA: Scalable parallel programming for high-performance

scientific computing. 5th IEEE International Symposium on Biomedical Imaging: From

Nano to Macro, 2008, ISBN 978-1-4244-2002-5, 836-838

[43] Owens DJ, Leubke D, Govindraju N, Harris M, Kruger J, Lefohn EA and Purcell

JT (2007) A survey of general-purpose computation on graphics hardware. Computer

Graphics Forum, 26(1): 80-113

[44] Owens DJ, Houston M, Luebke D, Green S, Stone EJ and Phillips CJ (2008) GPU

Computing. Proceedings of the IEEE In Proceedings of the IEEE, 96(5): 879-899

[45] Ryoo S, Rodrigues IC, Stone SS, Stratton AJ, Ueng S, Baghsorkhi SS and Hwu WW

(2008) Program optimization carving for GPU computing. Journal of Parallel and

Distributed Computing, 68(10): 1389-1401

105

[46] Wang L, Huang Y, Chen X and Zhang C (2008) Task Scheduling of Parallel

Processing in CPU-GPU Collaborative Environment. In Proceedings of the 2008

international Conference on Computer Science and information Technology, ICCSIT,

IEEE Computer Society, Washington, DC

[47] Garland M, L2 GS, Nickolls J, Anderson J, Hardwick J, Morton S, Phillips E, Zhang

Y and Volkov V (2008) Parallel Computing Experiences with CUDA. IEEE

Micro, 28(4):13-27

[48] Messmer P, Mullowney PJ and Granger BE (2008) GPULib: GPU Computing in

High-Level Languages. Computing in Science & Engineering, 10(5):70-73

[49] Pharr M and Fernando R (2005) GPU Gems 2: Programming Techniques for High-

Performance Graphics and General-Purpose Computation. Addison-Wesley Professional,

ISBN-10: 0321335597, ISBN-13: 978-0321335593

[50] Dongarra J, Peterson G, Tomov S, Allerd J, Natoli V and Richie D (2008) Exploring

New Architectures in Accelerating CFD for Air Force Applications. DoD HPCMP User

Group Conference 2008

[51] (2010) NVIDIA CUDA Compute unified Device Architecture Programming guide

Version 2.0. http://developer.download.NVIDIA.com/ compute/cuda/
2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf

[52] (2011) NVIDIA® CUDA™ parallel computing architecture.
http://www.NVIDIA.co m/object/GPU_Computing.html

[53] Glaskowsky NP (2011) NVIDIA‟s Fermi: The First Complete GPU Computing

Architecture. http://www.NVIDIA.com/content/PDF/fermi_white_

papers/P.Glaskowsky_NVIDIA%27s_Fermi-The_First_Complete_GPU

_Architecture.pdf

[54] Taubin G, Zhang T and Golub G (1996) Optimal Surface Smoothing As Filter

Design, In proceedings, Fifth International Conference on Computer Vision, 283-292

[55] M Botsch (2011) Extended Marching Cubes implementation.
http://www.graphics.rwth-aachen.de/index.php?id=17

[56] (2011) Diffusion Equation on Wikipedia. http://en.wikipedia.org/wi
ki/Diffusion_equation

[57] (2011) Stanford Bunny at The Stanford 3D Scanning Repository. http://grap
hics.stanford.edu/data/3Dscanrep/

http://www.graphics.rwth-aachen.de/index.php?id=17

106

[58] Saboret L, Attene M and Alliez P (2011) Laurent Hand at AIM@SHAPE Shape

Repository. http://shapes.aim-at-shape.net/viewgroup.php?id=785

[59] Saboret L, Attene M and Alliez P (2011) Chinese Lion at AIM@SHAPE Shape

Repository. http://shapes.aim-at-shape.net/viewgroup.php?id=783

[60] (2011) What is VTK? http://vtk.org/what-is-vtk.php

[61] (2011) vtkImageMarchingCubes Filter http://www.vtk.org/doc/nightly

/html/classvtkImageMarchingCubes.html

[62] (2011) vtkWindowedSincPolyDataFilter http://www.vtk.org/doc/night
ly/html/classvtkWindowedSincPolyDataFilter.html

[63] (2011) Aim@Shape repository. http://shapes.aim-at-shape.net

[64] (2011) Paraview, An open-source, multi-platform data analysis and visualization

application. http://www.paraview.org/

[65] (2011) Amdahl‟s Law. http://en.wikipedia.org/wiki/Amdahl's_law

[66] (2011) Gustafsons‟s Law. http://en.wikipedia.org/wiki/Gustafso
n's_law

[67] (2011) The Digital Michelangelo Project http://graphics.stanford.edu/

projects/mich/

[68] (2011) The OpenMP Library http://openmp.org/wp/

[69] Thompson FJ, Soni KB and Weatherill PN (1998) Handbook of Grid Generation.

ISBN 0-8493-2687-7, CRC Press.

107

APPENDIX A

DIFFUSION EQUATION

Diffusion is a time-dependent process, constituted by random motion of given entities

and causing the statistical distribution of these entities to spread in space. The concept of

diffusion is tied to the notion of mass transfer, driven by a concentration gradient. The

diffusion equation can be obtained easily from this when combined with Fick's first law,

which assumes that the flux of the diffusing material in any part of the system is

proportional to the local density gradient. The diffusion equation is a partial differential

equation that describes density fluctuations in a material undergoing diffusion. The

diffusion equation is given as

 (12)

Where α is a constant and S is a source term. In this formulation, it is assumed that there

are no source terms, Hence the equation becomes

 (13)

The finite volume formulation of the diffusion equation over a volume Ω could be written

as

108

 (14)

Applying Green‟s theorem the equation changes over a closed area A in the form of,

 (15)

The above equation can be approximated as following using forward difference in time,

to obtain an explicit formulation in the form of

 (16)

where i is the number of direction and m is the index of area along i direction.

For a 3D problem, the equation after discretization will approximate to.

(17)

For a given Cartesian Grid as shown in Figure 36 such that,

109

and,

The diffusion equation simplifies to,

 (18)

Equation (18) provides the explicit numerical solution for the diffusion equation in the

time domain for equation (13).

Figure 36: A Cartesian grid in two dimensions

110

Stability Analysis

Von Neumann‟s analysis in 3D provides that,

 (19)

Substituting equation (19) into equation (18), one gets

 =

(20)

Or,

(21)

Using Euler‟s identities,

A simplified equation can be rewritten as

(22)

111

As,

Hence the equation (22) further simplifies to,

 (23)

Courant–Friedrichs–Lewy (CFL) condition for the stability of the numerical scheme

stipulates that,

 (24)

Substituting equation (24) in equations (23) produces,

 (25)

Or,

 (26)

Since,

 (27)

Hence,

 (28)

Hence the inequality should satisfy the conditions imposed in above equation as well,

 (29)

Now for,

112

 (30)

Hence the equation (30) will satisfy the Courant–Friedrichs–Lewy (CFL) condition for

the stability of the numerical scheme as given below.

 (31)

This further imposes the condition on the constant α that,

 (32)

This also implies that the scheme is numerically stable for a value of α satisfying the

above given CFL condition.

 In an Octree Grid as shown in Figure 37, if the difference of refinement levels

between neighboring cells is enforced to be a maximum of order 1, the possible scenarios

could be of the type

For the scenario a, the diffusion equation for the Octree mesh along the x-axis is the

same as that of the Cartesian mesh. Hence the CFL number will also come out to be the

same.

113

For scenarios b to d for an Octree mesh, the numerical scheme for the diffusion

equation will be stable if one finds the global minima of and uses it in the CFL

condition for the Cartesian mesh as derived previously. This means that equation (32) for

Octree grid could be rewritten as

 (33)

(b)

(c)

(d)

(e)

(a)

Figure 37: An Octree grid in two dimensions

114

Measurement of Change During Solution Process

Sometimes it becomes important to be able to measure the change occurring in each

iteration to determine if the numerical solution has reached a desired convergence level.

This is achieved by defining a variable
 at each voxel of the Cartesian grid,

where n denotes the iteration number, while indices i, j and k represent the location of a

voxel within a Cartesian grid.

(34)

(35)

(36)

Equations (34), (35) and (36) define and quantify three measures of change for

successive iterations for the solution of the diffusion equation.

115

APPENDIX B

COMPUTATIONAL CURVES AND SURFACES

B-Spline Curve: A p-th degree B-spline curve is defined by

    i

n

i

pi PuNuC 



0

, where bua  (37)

where {Pi} are control points forming a control polygon, and {Ni,p(u)} are the p-th degree

B-spline basis function defined on the nonperiodic knot vector (m+1 knots)























1

11

1

,......,,,.....,,,.......

p

pmp

p

bbuuaaU

(38)

Unless stated otherwise, a=0 and b=1. The ith B-spline basis function of p-degree

(order p+1), denoted by Ni,p(u), is defined as

 





0

1
0, uNi

otherwise

if

1 ii uuu

(39)

     uN
uu

uu
uN

uu

uu
uN pi

ipi

pi

pi

ipi

i
pi 1,1

11

1

1,, 







 









(40)

116

where ui are called knots. The steps required to compute a point on a B-Spline curve at a

fixed u value are as follows:

 Find the knot span in which u lies.

 Compute the nonzero basis functions.

 Multiply the values of the nonzero basis functions with the corresponding control

points.

NURBS Curve: A pth-degree NURBS curve is defined by

 
 

  i

n

i

pi

ii

n

i

pi

wuN

PwuN

uC









0

,

0

,

 bua 
(41)

where {Pi} are control points forming a control polygon, the {wi} are the weights, and

{Ni,p(u)} are the p-th degree B-Spline basis function defined on the nonperiodic and non-

uniform knot vector























1

11

1

,......,,,.....,,,.......

p

pmp

p

bbuuaaU

(42)

 Unless stated otherwise, a = 0 and b = 1, and wi > 0 for all i.

NURBS Surface: A NURBS surface of degree p in u direction and degree q in v direction

is a bivariate, vector-valued, piecewise rational function of the form

117

 
   

    ji

n

i

m

j

qjpi

jijiqj

n

i

m

j

pi

wvNuN

PwvNuN

uC

,

0 0

,,

,,,

0 0

,





 

 


 1,0  vu
(43)

where {Pi,j} forms a bidirectional control net, the {wi,j}are the weights, and {Ni,p(u)}

and {Nj,q(v)} are the non rational B-Spline basis function defined on the knot vector























1

11

1

1,......,1,,.....,,0,.......0

p

pmp

p

uuU

(44)























1

11

1

1,......,1,,.....,,0,.......0

q

qmp

q

vvV

(45)

 Where r = n + p + 1 and s = m + q + 1.

118

APPENDIX C

DELAUNAY CRITERIA

Let Z be a point of mesh domain Ω. Considering the Euclidean space defined by (Ω,

M(Z)), with   









cb

ba
ZM , denoted by l

z
 the distance between two points of Ω in this

space. The circumdisc associated with a triangle K, whose center is denoted O
z
, is defined

in this space by

     22
, kOXZMOXXOl

t
zz 

(46)

where 2RX  and k is a real value, such that the disc is circumscribed to triangle K.

Hence, the centre O
z
 is the solution to linear system

   
   








31

21

,,

,,

POlPOl

POlPOl
zzzz

zzzz

(47)

and k is precisely  1, POl zz . The circumdisc of triangle K encloses the point P, if and

only if

   1,, POlPOl zzzz  (48)

119

In this case, the Delaunay criterion associated with pair (P, K) is said to be violated

according to the metric at point Z. By normalizing to one of the above inequalities, a

dimensionless measure is defined by

 
 
 1,

,
,

POl

POl
KP

zz

zz

z 

(49)

The violation of Delaunay criterion associated with pair (P, K) in the metric Z means

that   1, KPz .

	Hole Patching In Unstructured Mesh And Parallelization Using Graphics Processing Units
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGEMENTs
	Table of Contents
	List of figures
	List of Tables
	Abbreviations
	CHAPTER 1
	INTRODUCTION
	CHAPTER 2
	GEOMETRY REPAIR
	Surface-based Repair Methods
	Volume-based Repair Methods
	Surface Reconstruction
	Isosurface and Contouring Methods

	CHAPTER 3
	GPU COMPUTING
	The Graphics Pipeline
	GPU Architecture
	GPU Programming Model
	Programming a GPU for General-Purpose Programs

	NVIDIA and Compute Unified Device Architecture (CUDA)

	CHAPTER 4
	Volume Approach TO geometric Hole patching
	Stanford Bunny
	Extraction of Solution Columns and Voxelization of Discrete Geometry
	Numerical Solution of the Diffusion Equations
	Extraction of Consistently Oriented Surfaces and Point Set
	Surface Reconstruction and Results
	Mesh Repair Results on Analytical Models

	CHAPTER 5
	HYBRID approach to Geometric hole patching
	Laurent Hand:
	INRIA Chinese Lion

	Chapter 6
	Diffusion Solver Parallelization
	Multi-threaded Parallelization of Diffusion Equations on CPU Using OpenMP
	Parallelization of Diffusion Equation on GPU using CUDA

	CHAPTER 7
	SUMMARY
	Scope for Future Work

	LIST OF REFERENCES
	Appendix A
	DIFFUSION EQUATION
	Stability Analysis
	Measurement of Change During Solution Process

	APPENDIX B
	Computational Curves and Surfaces
	APPENDIX C
	Delaunay Criteria

