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GENETIC INFLUENCES ON RHEUMATOID ARTHRITIS IN  

GLOBAL POPULATIONS 

 

VINCENT A. LAUFER 

CELL, MOLECULAR AND DEVELOPMENTAL BIOLOGY 

ABSTRACT 

Rheumatoid arthritis (RA) is a complex disease having numerous genetic and 

environmental risk factors the interplay of which produces RA pathobiology. While the 

sheer number of genetic and environmental risk factors complicates understanding of 

disease biology, understanding has progressed far enough for insight into the most likely 

mechanisms for the development of the disease. Modern studies of the genetics of RA are 

massively parallel, enabling researchers to systematically interrogate variants throughout 

the human genome for associations in genome-wide association studies or GWAS. 

Such studies have been carried out in European and Asian cohorts many times, 

and the most recent RA meta-analyses includes tens of thousands of genotypes from 

these populations. By contrast, there is a paucity of genotyping data available in 

individuals of African ancestry with RA. In the studies that follow, we attempt to address 

this disparity by presenting the largest genetic studies in African-Americans to date.  

Following these association studies, we employ fine-mapping methods, which 

operate on association results and output a (short) list of candidate pathogenic. Recent 

studies have become increasingly sophisticated in their approaches to this. One such 

approach is trans-ethnic fine-mapping, which uses differences in the association pattern 

and LD between variants in the same risk locus across multiple global populations. By 

examining these together, fine-mapping algorithms can estimate which variants are the 

most likely to be the pathogenic variants. In the present studies, we carry out fine-mapping 
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studies using aggregated data that draws on >100,000 RA patients and controls from 3 

global ancestries.  

Thus, our studies had 3 chief aims. First, we aimed to discover novel associations 

with RA that have not been found before in other ethnicities. Second, we endeavored to 

validate in African-Americans known associations identified in genetic studies of RA in 

Asians and Europeans with RA. Last, we employed trans-ethnic fine-mapping algorithms 

to isolate candidate causal variants in the loci we identified. Pursuant to the first aim, we 

find 3 novel associations with RA in the CSMD3, GPC5, and RBFOX1 loci that appear to 

be unique to individuals of African ancestry. Second, we replicate 28 genetic risk loci 

discovered in other populations, and present evidence that 4 such loci are unlikely to 

replicate. Last, we identify several new candidate pathogenic variants, including several 

that may have relevance for precision medicine.  

The findings in these studies have far-ranging implications for the design of future 

genetic studies, in particular for those that hope to cost-effectively identify functional 

variants that produce RA, which is necessary before mechanistic studies of how genetic 

variants can produce disease risk can begin. Therefore, the present study can serve as a 

basis for future studies into the genetics of RA in global populations. 

 

Keywords: Rheumatoid Arthritis, Genetics, GWAS, meta-analysis, trans-ethnic, fine-

mapping, complex disease, post-GWAS, African-American 
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INTRODUCTION 

Background 

Overview 

The studies presented in this dissertation are an endeavor to bring understanding of 

the genetic basis of RA in African-American populations to the same standard as that of 

European and Asian populations. Along the way, we make several observations about the 

genetics of RA in all populations that draw on prior studies as well as on the field of 

population genetics. To do this, we had three specific goals. First, we aimed to discover 

novel associations with RA that have not been found before in other ethnicities. Second, 

we endeavored to validate in African-Americans known associations identified in genetic 

studies of RA in Asians and Europeans with RA. Last, we employed trans-ethnic fine-

mapping algorithms to isolate candidate causal variants in the loci we identified. Pursuant 

to the first aim, we find 3 novel associations with RA in the CSMD3, GPC5, and RBFOX1 

loci that appear to be unique to individuals of African ancestry. Second, we replicate 28 

genetic risk loci discovered in other populations, and present evidence that 4 such loci are 

unlikely to replicate. Last, we identify several new candidate pathogenic variants, including 

several that may have relevance for precision medicine.  

 

Incidence and Prevalence of Rheumatoid Arthritis 

Rheumatoid Arthritis (RA) is a complex autoimmune condition affecting about 

1.3 million U.S. adults and 0.5-1% of the population worldwide [1]. Like many 
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autoimmune conditions, the incidence of RA appears to be rising in developed nations 

such as the United States [2]. RA is extremely variable in its clinical course, both in terms 

of its clinical features and the severity of its presentation. Indeed, its hallmark clinical 

feature, a symmetrical polyarthritis, can range from a mild, indolent swelling to fulminant 

disease quickly leading to joint destruction, deformity, and impairment with activities of 

daily living [3]. Because these articular manifestations as well as extra-articular 

manifestations such as cardiovascular disease can be both prolonged and severe, there is 

significant morbidity, mortality, and economic cost resulting from RA [4]. 

 

Diagnostic Algorithms for Rheumatoid Arthritis 

As a result of its myriad manifestations, clinicians have created systems and 

diagnostic algorithms not only for presence and absence of RA [5], but for severity of 

joint damage [6], disease activity [7], and for other features of the disease. In the current 

study, the ACR/EULAR 2010 criteria were used for diagnosis with RA, but the modified 

Total Sharp Score (mTSS) was used to assign patients a score from 0-448 indicating the 

severity of their joint disease, and the Disease Activity Score (DAS) 28 was used to 

measure the clinical activity of disease (see also Methods in Section II). However, 

numerous other classification algorithms exist and their application to create research 

cohorts for use in genetic studies has not been uniform. Thus, although these criteria were 

applied consistently in the current study, the meta-analyses performed may include 

subjects recruited under different inclusion and exclusion criteria. For discussion how this 

influences the current study, please see Limitations of the current studies in Section V.  

 



 

 3

Environmental risk factors for RA 

 Numerous environmental and genetic risk factors have been established for RA, 

and distinct combinations of these risk factors appear to interact not merely to increase 

risk of RA, but to modulate risk of specific RA subtypes (e.g. seronegative and 

seropositive RA, see below) and subphenotypes (i.e. disease subtraits [8]). Smoking, 

which is the best-established and strongest environmental risk factor for RA, provides an 

instructive example. A study of 370,000 women from the Women’s Health Cohort Study 

found that women who smoked at least 25 cigarettes a day for more than 20 years found a 

modest relative risk (RR) of 1.4 compared to never smokers [9]. A Danish study of 515 

patients separated study subjects into anti-citrullinated peptide antibody (ACPA) positive 

and ACPA-negative groups, and found that heavy smoking (>25 pack years) did not 

elevate risk of ACPA-negative RA, while the odds ratio for ACPA-positive RA was 17.8. 

Additionally, they observed an odds ratio of 53 for individuals homozygous for the 

shared-epitope and who had ACPA antibodies. These observations strongly suggest that a 

gene-by-environment interaction effect is present. However, it has remained difficult to 

ascribe a mechanism for this association. Cigarette smoke is thought to contain >4,000 

toxic substances, which in aggregate affect dozens of immune phenotypes, including (but 

not limited to) IL-6 signaling, TNF-α signaling, production and processing of reactive 

oxygen species, and T-cell response to dendritic cells [10]. We highlight this example 

because it is indicative of several over-arching trends in RA research. First, the 

knowledge of specific associations and interaction effects has not translated into 

mechanistic knowledge in part due to the complexity of the phenomena involved. 

Second, etiologic risk factors that may look weak when studied in isolation may in fact 
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confer substantial risk in the right context. Third, interaction effects can predispose 

patients to specific disease subtypes and indeed to particular manifestations of RA, but 

not others.  

Sex-specific factors also exert a strong effect on RA risk. Women are 2-3 times 

more likely to develop RA than men [11]. Nulliparity is positively correlated with RA 

susceptibility, while third trimester pregnancy and breastfeeding are associated with 

remission of the disease. Though the reasons for this are not entirely clear, there is 

evidence both from animal models and human studies that estrogen and testosterone may 

underlie this differential susceptibility [12]. That these sex hormones affect B and T cell 

populations has long been known, but more recent studies of C57BL/6, C3H/lpr, and 

B/W mice have shown that they affect the most suspect adaptive immune cell subsets 

during active disease [13].  

Occupational exposure to a variety of substances including silica and asbestos 

also appear to increase the likelihood of developing RA. In addition, alcohol intake, 

obesity, stress and physical disorders, birthweight, lower socioeconomic status (SES) 

positively correlate with RA [14]. As with the example of smoking highlighted above, 

these risk factors also exert effects through complicated pathways and probably through 

multiple immune intermediaries. While a complete description of how each of these 

contributes is beyond the scope of this dissertation, understanding that these 

environmental risk factors interact with heritable risk factors within the context of a 

person’s genetic background is crucial to both the design of genetic studies of RA and 

also to their interpretation.  
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Selected Etiological Features of RA 

Cellular interactions between immune and non-immune cells 

 RA etiology is a vast network of complex interactions between numerous innate 

and adaptive immune cell types as well as non-immune cells. Here, we focus on three 

processes relevant to the current studies.  

1. We illustrate intercellular interactions that produce the articular manifestations of 

RA in order to provide a basis for understanding studies of radiographic severity 

of RA.  

2. We describe the development of pathogenic autoantibodies within the RA 

synovium (but not osteoarthritic or healthy synovial tissue), which provides 

crucial biological understanding that underpins the distinction between 

seropositive and seronegative RA.  

3. We summarize alterations to T-cell activation, including both T cell stimulation 

and co-stimulation as organizes about two dozen of the strongest genetic risk 

factors for RA into a well-defined biological event.  

While other biological events and processes are important to RA, these will provide 

important context for the studies described herein. 

 

Cellular interactions leading to joint disease in RA 

In RA, the homeostasis of both bone and cartilage extracellular matrix (ECM) is 

tipped towards net catabolism. Clinical and animal studies indicate that this occurs via 

reduced anabolism, e.g. through nitric oxide-dependent inhibition of proteoglycan  
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 synthesis, as well as through increased catabolism, e.g. through TNF-dependent 

upregulation of matrix metalloproteinases (MMPs). IL-17A appears to potentiate ECM 

degradation quite potently, perhaps through additional pro-inflammatory mediators such 

as IL-6, IL-8, and G-CSF. Over time, these catabolic changes lead to joint erosion, 

subluxation, and ultimately destruction that are measured on clinical indices of RA 

radiographic severity.  

Many pro-inflammatory cytokines such as IL-17 help induce angiogenesis. In the 

rheumatoid joint, these same processes result in angiogenesis within the rheumatoid 
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synovium itself. This phenomenon is termed synovial hyperplasia and is measured by 

indices of disease activity and severity like those mentioned above. Stimulated by pro-

inflammatory cytokines such as IL-17, fibroblast like synoviocytes (FLS) produce VEGF. 

Division of endothelial cells and infiltrating T and B cells arriving through this 

neovascularization contribute to the joint space narrowing observed on RA radiographs. 

These processes are represented visually in Figure 1. For the purposes of understanding 

the current studies, it is as important to catalog the individual cytokines mediating signal 

transduction as it is to observe the recurring tropes that arise repeatedly in RA pathology: 

feedforward loops, synergistic (non-additive) effects, and cellular cross-talk.  

In our studies, one key result centers on the molecule glypican-5, which is 

encoded by the gene GPC5. Glypicans are components of heparin sulfate proteoglycans, 

which bind to the outer surface of the plasma membrane of cells, anchored by GPI. There 

are 6 glypican molecules in mammals, and several of these are clinically important. The 

main function of these proteins appears to be positive and negative regulation of key 

signaling cascades: Wnt, Hedgehog pathways, FGF and BMP pathways, etc. The best 

characterized of these is GPC3, an important oncogene the knockout of which leads to 

Simpson-Golabi-Behmel syndrome (OMIM #312870); an overgrowth syndrome resulting 

from loss of inhibition of the hedgehog signaling pathway. Both GPC3 and GPC5 bind 

important molecules highly expressed in T cells, which is discussed further below. 

 

Pathogenic autoantibody production 

The complexity of intercellular interactions leading to RA pathogenesis is also 

evident when considering pathogenic autoantibody production. There is a battery of RA 
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risk genes important in follicular helper T cells (Tfh) that do not appear to replicate in 

either East Asian or African populations including the IL2-IL21 locus as well as CXCR5. 

We identified CXCR5 as nominally associated with RA severity in our studies (see 

Section III). However, CXCR5 did not replicate as a risk locus for RA susceptibility in 

either East Asian or African-American populations (see section IV). Briefly, CD4+ T 

cells express the chemokine receptor CXCR5, which enables migration from the T cell 

areas of secondary lymphoid organs into the B cell follicles following a CXCL13 

gradient. There, these follicular helper T cells (Tfh) interact with B cells, providing them 

with activation and survival signals, such as CD40L and Interleukin 21 (IL-21), which 

are critical for the formation and maintenance of the germinal center (GC). B cells 

interacting with Tfh cells in the highly selective environment of the GC undergo 

extensive cycles of clonal expansion and somatic hypermutation, and ultimately 

differentiate into memory B and long-lived plasma cells. Human studies and preclinical 

data demonstrate that self-reactive Tfh cells expand and contribute to the pathogenesis of 

not only RA but several antibody antibody-mediated autoimmune diseases, most likely 

by favoring the development of auto-reactive plasma cells. T and B cell infiltration, T cell 

receptor (TCR) oligoclonality, and B-cell somatic hypermutation in the joints of RA 

patients indicate that antigen-driven events occur in the normally thin, delicate RA 

synovium. Supporting this, pathogenic autoantibodies in RA undergo affinity maturation 

as well, and these effects largely depend on help from Tfh cells. Recent studies have 

localized Tfh cells to RA synovial tissue, while such cells are absent from osteoarthritic 

and healthy tissues [15-19].  
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 We detect strong, trans-ethnic support for the association of PAD2 and PAD4 in 

RA in all global populations. These proteins encode protein arginine deiminases that have 

distinct specificities for cellular substrates, which likely influences autoantigen selection 

and ultimately pathogenic autoantibody production in the context of RA. Both genetic 

and experimental data suggest the association of PADI2 with RA is independent of that of 

PADI4 [20, 21], a known risk allele for RA and a key enzyme in RA due to its role in 

citrullination and the generation of the ACPA response [22]. The contribution of PAD 

enzymes to the pathogenesis of RA is covered in detail in the discussion in Section IV.  

 

Alteration to dynamics of T-cell activation 

Engagement of the T cell receptor (TCR) by an MHC molecule bound to antigen 

kicks off a cascade of events that will determine the fate of a naïve T cell and its role in 

the body. Briefly, if this “primary” signal is followed by a co-stimulatory “secondary” 

signal, then the cell is said to become ‘activated’ and differentiate into an effector T cell 

of one type or another depending on the cytokine milieu. If the primary signal is not 

accompanied by a secondary signal, however, the T cell may become anergic – that is, 

enter a long-lasting hyporesponsive state. In reality, the situation is not black and white 

but is rather influenced by numerous factors that influence signal strength and type. For 

instance, number of MHC molecules engaged and the strength of the interactions affect 

the primary signal, just as outcome of co-stimulation depends on the number and type co-

stimulatory or co-inhibitory molecules are activated and to what degree. 

 Once physiologic T-cell activation is understood as an output dependent on the 

ranges of several variables such as ligand concentration, spatial and temporal constraints, 
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cell surface receptor affinity and expression, etc., it becomes easy to see how minor 

variation in the structure or expression of these molecules could confer risk of either of 

immunodeficiency, autoimmune disease, or both. Indeed, risk factors for RA and other 

autoimmune conditions cluster tightly in pathways relating to T-cell activation [23]. For 

example, ~13% of the 101 genes convincingly associated with RA [24] belong to the GO 

TCR Pathway (TEC, CD2, LY9, PTPN22, PRPRC, CTLA4, RASGRP1, PTPN11, CD28, 

FCRL3, CD5, PRKCQ, and SH2B3; p = 1.37 x 10-9) and another ~10% belong to the GO 

TCR Downstream Signaling Pathway (PRKCQ, RL, IRF4, PTPN11, TNFRSF9, SH2B3, 

CD83, GATA3, CD28, and TRAF6; p = 3.07 x 10-8). The GO BCR Signalling and Co-

stimulatory signal during T-cell activation pathways are similarly enriched 

(http://cpdb.molgen.mpg.de/; date of access 4/19/2018). The importance of modulation of 

signal levels also suggests that one or more of these molecules might be a fruitful 

therapeutic target, and indeed the drug Abatacept (CTLA-Ig) is a mainstay of RA 

therapy. 

 

RA as a genetic disease 

Historical understanding of RA Heredity 

Heritability is defined as the proportion of phenotypic variation accounted for by 

genotypic variation. The first observation that RA is in some degree heritable dates back 

at least 200 years to William Heberden, who asked if the disease “is [RA] not in some 

degree hereditary” as early as 1806 [25]. Thus, evidence that RA is at least partially 

genetically motivated predates the work of Johann Mendel. Since the observation of the 

familial clustering of RA evidently predated knowledge of even simple, autosomal 
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dominant traits, it is understandable that a disease that clusters into families but defies 

specific rules that seem to govern simpler traits would generate substantial interest and 

confusion. Early attempts focused on studies of familial clustering, for instance that of 

Kroner, who published a study on a family having 4 generations of women with RA in 

1928 [26].  

Following this, in the mid and late 20th century, a variety of techniques were 

employed. However, because an account of such methods, including those based on 

kinship coefficients and identity by descent (IBD) as well as sibling recurrence risk 

ratios, twin studies, and parent-child trio studies can be found below (in Section II) we 

will defer discussion of these techniques. Also deferred are discussions of missing 

heritability, which are found in the same section. Here, it is most important to mention 

that estimates of the heritability of RA are usually around 50-60%. Estimates as low as 

12% have been positied, with the difference attributed to shared environmental effects 

rather than genetics. Estimates of heritability of radiographic severity of RA are of a 

similar magnitude; for instance, a recent study of the inhabitants of Iceland arrived at an 

estimates of the heritability of joint destruction rate at 45% (using kinship coefficients), 

and 58% (based on IBD data) [27].  

The first genetic association with RA was discovered in the 1970s [28]. This 

association was disambiguated in 1987 by Gregersen et al., who clarified the allelic 

associations found in class II MHC loci that had remained opaque to understanding [29]. 

The key conceptual step was to grasp that gene conversion events could result in 

serologically distinct class II (specifically HLA-DR) alleles that nevertheless share short 

stretches of sequence – or epitopes. As such it became clear that conventional serological 
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analysis would only incompletely correlate with disease, which opened the way for more 

accurate classifications based on DNA sequence and epitope conformation. These results 

led researchers ultimately to the recognition that the amino acid sequences QRRAA, 

RRRAA, and QKRAA in HLA-DRB1 positions 70-74 define these so-called ‘shared-

epitope’ alleles, but these results did not completely explain the association of the MHC 

region to RA. Further progress in pinpointing the genetic association of the HLA region 

to RA came in 2012, when Raychaudhuri et al. used conditional analysis and haplotype 

analysis coordinately to identify 5 amino acids in 3 HLA proteins that explain the vast 

majority of the association of that region to susceptibility to seropositive RA [30]. The 

striking finding was that all of these amino acids lay within the binding grooves of these 

proteins (HLA-DRB1, HLA-B, and HLA-DPB1), and indeed all of them mapped to 

positions between amino acid 9 and 13 within the groove. This finding suggests a clear 

biological rationale despite relying heavily on statistical and bioinformatics techniques. 

Taken together, the variants in these 3 HLA proteins account for roughly one-third of the 

heritable basis of seropositive RA, but a comparatively negligible portion of seronegative 

RA see also the Results of Section III, as well as prior studies [30]. 

 

Non-HLA genetic risk factors for RA 

After identification of risk alleles in the HLA region, candidate-gene approaches 

led to successful identification of a handful of non-HLA risk genes, specifically, 

PTPN22, PADI4, FCRL3, CD244, and CTLA4 [31]. These initial successes and the 

advent of cheapening genome-wide assays led to the advent of systematic exploration of 

the heritable basis of RA beginning around 2005. These technologies required some key 
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analytical changes and innovations compared to family-based methods. Specifically, 

GWAS and GWA meta-analysis (GWAMA) either suppose individuals to be unrelated, 

or account for relatedness using mixed modelling approaches that account for the 

genotypic correlation structure between groups (approaches have been devised to account 

for relatedness at both an individual and a population level [32]). Typically, the former 

approach makes use of principal components analysis to control for population 

stratification, while the latter handles population structure by estimating the phenotypic 

covariance that is due to genetic similarity. This has been accomplished in a variety of 

ways e.g. through kernel regression frameworks [32]. 

Initial studies led to the identification of a growing number of RA risk loci. 

Following this, these studies began to be organized into meta-analyses, then trans-ethnic 

meta-analyses over approximately the next decade, culminating in a study of ~100,000 

Europeans and Asians with RA in 2014 [18]. Because this latter study subsumes many of 

the prior results, we may summarize the literature by stating the key findings of Okada et 

al. 2014. Briefly, ~100 non-MHC risk loci combined explain only ~5.5% of the heritable 

basis of RA in Europeans and ~4.7% in Asians. Okada et al. constructed a trans-ethnic 

risk model based on the data from both ethnicities. This model explained roughly 80% of 

the known heritability in either population it was applied to, leading the investigators to 

conclude the heritable basis of RA is largely shared. We will return to this observation 

throughout Section IV and Section V. Nevertheless, it remains that the majority of the 

heritable basis of RA (and many other complex conditions) remains unexplained, and 

what little is explained is mostly attributable to a handful of variants in the HLA.  
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Current understanding of the heritable basis of RA 

 Genome-wide scans of susceptibility to RA and other diseases revealed a 

substantial amount about autoimmune risk architecture beyond the list of loci generated. 

Multiple studies leveraging several lines of evidence have suggested that autoimmune 

disease is an amalgam of a small number of coding variants (~10%) alongside a larger 

number of non-coding variants (~90%). In fact, several studies have suggested that 60% 

of autoimmune risk variants map to enhancer regions alone [33]. 

 

Statistical methods used to study the genetics of complex disease 

This study makes use of several statistical methodologies. First, like many GWA 

studies of dichotomous traits, this study employs logistic regression, considering 

principal components and other key risk factors as covariates. However, unlike most 

other studies, we also employed zero-inflated negative binomial regression to model 

counts of swollen, tender and damaged joints in our study of the radiographic severity of 

RA. 

 Second we employ both a fixed effects meta-analysis (using METASOFT) of our 

African American datasets, and a random effects meta-analysis of all three global 

populations [34, 35]. Analyzing the data jointly increased our statistical power to detect 

both population-specific and trans-ethnic associations. Moreover, this analysis enabled us 

to generate M-values, which are akin to posterior probabilities that a variant of interest 

has a true association in a given study. Thus, these M-values gave us a consistent, 

quantitative way to adjudicate which of the variants are truly associated and which are 
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not, and they are easily interpretable since, like other probabilities, they range between 0 

and 1. 

Using association summary statistics from our trans-ethnic meta-analysis, we 

conducted trans-ethnic fine-mapping. We selected CAVIARBF [36] and PAINTOR [37, 

38] to complete this as these leverage the strength of our diverse data sets.  

 

Contemporary goals in RA genetic research and the “post-GWAS” era 

  Efforts to organize even larger datasets into meta-analyses are ongoing. These 

strategies will no doubt be successful in identifying novel risk loci for RA, just as recent 

large meta-analyses for other traits have [39]. However, in our view the creation of ever 

larger datasets is primarily valuable insofar as it enables other thoughtful and creative 

applications beyond the use of single variant association testing to discover additional 

disease associations. 

Broadly speaking, the post-GWAS era revolves around the use accumulated 

GWA data to empower the goals of precision medicine. Association summary statistics 

from a finalized, quality-controlled, well-powered GWAS are commonly the input in 

such an approach; a typical example might be a bioinformatic algorithm that integrates 

DNA microarray data (at the level of either genotypes or the association summary 

statistics) with other –omic datasets to predict disease genes or “causal” genetic variants. 

The trans-ethnic fine-mapping approaches employed in studies conducted Section III and 

Section IV are examples of this kind. Insofar as the goal of precision medicine is to 

enable individual-level, data-driven clinical decision-making, the goal of post-GWA 
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research into complex disease can be understood as using aggregated –omic datasets to 

develop mechanistic understanding of genetic variants that influence disease.  

Although many post-GWAS approaches use functional annotations, or ATAC-seq 

data, or single cell RNA-seq data, others use differences between ethnic populations to 

triangulate risk variants from non-risk. Most DNA microarray chips were designed by 

drawing on genetic variants found in European populations, and most GWAS have been 

conducted in European and Asian populations. But since differences between populations 

are a valuable source of information, addressing health disparities in genotyping of ethnic 

minorities in the United States and in Europe offers advantages not only in terms of 

distributive justice, but in its value to the scientific community and its clinical utility. In 

section IV we add ~2,500 RA patients of African American descent to ~100,000 

Europeans and Asians with RA. While this addition results in the identification of only 

one new locus using standard frequentist association testing in a RA GWAS, we nearly 

double the number of candidate risk variants identified with high posterior probability. 

There are many other fascinating examples of ongoing post-GWAS projects that are 

relevant to RA genetics. I discuss several of these more fully in Section II, and I revisit 

this in Section V when discussing future applications of the current studies. 

 

Motivation for the present studies 

 With the foregoing as context we mention several related motivations for the 

present research over and above the aims described in the Abstract and Overview 

sections of the dissertation, above. The first is to understand similarities and differences 

between RA risk in African populations in order that they can reap the rewards of 
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precision medicine. Failure to do so constitutes a modern-day health disparity. Second, 

we integrate our findings with those from Europeans and Asians in order to improve 

results of post-GWAS algorithms for people of all populations. To accomplish this, we 

first integrate genotyping data from African Americans using both meta and mega-

analysis. We then organize this into a joint trans-ethnic meta-analysis (TEMA). Finally, 

we use the results of this TEMA to prioritize candidate risk variants using trans-ethnic 

fine-mapping (TEFM). 
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Abstract 

The use of high-throughput omics may help to understand the contribution of 

genetic variants to the pathogenesis of rheumatic diseases. We discuss the concept of 

missing heritability: that known genetic variants do not explain the heritability of 

rheumatoid arthritis and related rheumatologic conditions. In addition to an overview of 

how integrative data analysis can lead to novel insights into mechanisms of rheumatic 

diseases, we describe statistical approaches to prioritizing genetic variants for future 

functional analyses. We illustrate how analyses of large datasets provide hope for 

improved approaches to the diagnosis, treatment, and prevention of rheumatic diseases. 

 

Key points 

- Large genetic studies of rheumatic diseases have implicated many risk loci. 

- Within risk loci, the identity and function of the pathogenic variants that underlie 

rheumatic diseases remain largely unknown, but methods in development will address 

these gaps in knowledge. 

- Integrative analysis of omics datasets will yield new insights into the molecules, cells, 

tissues, and pathways that initiate and perpetuate rheumatic diseases. 

- Functional characterization of prioritized genetic variants will pave the way for better 

diagnosis, treatment, and prevention of rheumatic diseases. 

 

Introduction 

The study of rheumatic diseases draws on many genome-scale technologies. Box 

1 defines relevant terms that will be used in this discussion. Genome-wide association 
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studies (GWAS) and other genetic studies have identified and replicated numerous loci 

associated with rheumatic diseases. Although these findings have led to increased 

awareness of particular pathogenetic pathways, there are multiple impediments to the 

translation of these results to the clinic. First, and as expected, the variants identified thus 

far do not account for the entirety of the heritable basis of any given rheumatic disease. 

Second, genetic variants in close physical proximity tend to be inherited together (linkage 

disequilibrium, or LD, see Box 1). As a result, a rheumatic disease risk locus usually 

contains multiple associated variants, from which the actual pathogenic variants are 

difficult to separate. This is most pronounced in the major histocompatibility complex 

region, where there are hundreds of associated variants, many of which are in strong LD. 

However, new techniques that leverage trans-ethnic and annotation data will help narrow 

the search for single-nucleotide polymorphisms (SNPs) that are directly pathogenic. 

Finally, determining the mechanisms of action of pathogenic variants is challenging, due 

to interaction effects, cell type–specific gene expression, the local tissue milieu, the 

temporal course of gene expression, and complicating environmental factors.  

There is hope, however. Although rheumatic diseases are complex and have 

considerable differences in etiology, clinical presentation, and treatment, there is overlap 

in the pathogenic mechanisms involved. For example, pathobiology involving the 

adaptive immune system (e.g., autoantibodies) is similar among rheumatoid arthritis 

(RA), systemic lupus erythematosus (SLE), inflammatory myositis, and Sjögren 

syndrome. In these conditions, failure of adaptive immune cells (B and T lymphocytes) to 

maintain self-tolerance opens the way to several aspects of autoimmune pathogenesis, 

such as autoantibody production. These commonalities stem in part from genetic variants 
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that affect multiple rheumatic diseases and similar conditions; for instance, dysregulation 

of autoantibody production characterizes patients with a risk variant in PTPN22, and this 

variant is associated with many rheumatic conditions, including RA, SLE, type 1 

diabetes, and others [1]. Identifying such shared risk factors may provide insights into 

causes of rheumatic diseases. Furthermore, ongoing technological and bioinformatic 

advancements have enabled increasingly accurate and sensitive characterization of cells, 

tissues, organisms, and diseases through analyses of the genome, transcriptome, 

epigenome, proteome, and metabolome (see Box 1 for definitions). This review discusses 

how integration of data can help characterize and prioritize genetic variants for 

laboratory-based studies of their functional and biological consequences that will lead to 

better understanding of the mechanisms of human rheumatic diseases. 

 

Table 1: Glossary of Key Terms 

Term Definition 

5’ untranslated 

region (5’-UTR) 

The region directly upstream of the initiation codon and 

translation start site. In mRNA the sequence of this region 

strongly influences translation, and likewise the corresponding 

regions of template DNA contain many elements that can 

produce a marked effect on transcription. 

ATAC-Seq (Assay for Transposase-Accessible Chromatin with high 

throughput sequencing).  This technique is used to study 

chromatin accessibility (accessible or protected), which is 

related to transcription factor binding and gene expression. 

Copy number 

variation (CNV) 

A form of genetic variation resulting in a change in the number 

of copies of a gene or genomic element. Deletion and insertion 

of DNA by a variety of mechanisms can produce genetic 

variants affecting as little as a few kilobases (kb) or as much as 

an entire chromosomes. CNVs have been difficult to assay using 

common technologies, affect a substantial portion of the 

genome, and influence a variety of diseases including rheumatic 

diseases.  
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CpG site A DNA sequence consisting of a 5’ guanine nucleotide joined to 

a cytosine residue by a phosphate group. Cytosines in CpG sites 

can be methylated to form 5-methylcytosine, which can change 

its expression.   

DNA methylation Modification of DNA by attachment of a methyl group to DNA 

nucleotides. One common site of methylation is CpG sites (see 

definition above).   

 

Epigenetics The study of genetic effects produced by mechanisms that do not 

alter the primary sequence of DNA. For instance, methylation of 

DNA (above) or of histones producing differences in gene 

regulation are examples of epigenetic effects.  Epigenetic 

modifications may result in changes to gene expression and 

regulation. 

Extrinsic filtering Data filtering based on information outside of the dataset, such 

as the inclusion of genomic annotations from the NIH Roadmap 

Epigenomics Mapping Consortium (ROADMAP) or the 

Encyclopedia of DNA elements (ENCODE).  

Genome-wide 

association study 

(GWAS) 

Examination of a genome-wide set of genetic variants (typically 

SNPs) to uncover associations between genotypic variation and 

a phenotype or trait. Similarly, epigenetic variation such as DNA 

methylation can be investigated in epigenome wide association 

studies.  

Haplotype A set of SNPs on the same DNA strand that are inherited 

together due to linkage to one another (below).   

Heritability The proportion of phenotypic variation that can be accounted for 

based on genotypic variation.  

 

Imputation Statistical inference of unobserved data, such as predicting the 

most likely allele of a particular SNP due to known 

LD/haplotype structure. Imputation methods are most well-

established for genotyping data.   

Intrinsic filtering Filtering of data based on information calculated from the 

dataset itself, such as filtering genetic variants based on linkage 

to another variant strongly associated in that dataset. 
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Linkage 

disequilibrium 

(LD) 

The non-random association of two or more genetic variants. 

Genetic recombination during meiosis allows for independent 

assortment of alleles and genetic variants.  Genomic proximity, 

as well as forces like selection, population structure, and genetic 

drift, can maintain the association of two variants over a 

considerable period of time.  

Long non-coding 

RNAs (lncRNA) 

lncRNA are molecules of RNA greater than 200 nucleotides in 

length that do not code for protein products. These RNAs 

interact with several levels of gene specific transcription, 

splicing, translation, post-translational modification, and gene 

regulation. RNA-Seq studies have mostly targeted a genomic 

locus and having high depth can identify associated these 

lncRNAs for further analysis. 

Mendelian 

randomization 

An epidemiologic method in which genetic variation in genes of 

known function is used to examine whether a modifiable 

exposure has a causal effect relationship to disease in non-

experimental studies. This method can be used to test for causal 

effects among two phenotypes (often an intermediate phenotype 

and a disease outcome) without conducting a randomized 

controlled trial.  

Metaorganism A community of organisms including the host and others that is 

indicated by the metagenome. The metagenome comprises the 

all genetic material associated with a human being including 

host DNA, microbial DNA, the virome, etc.  

Multiple enhancer 

variant hypothesis 

The hypothesis based on the observation that multiple variants in 

linkage may act cooperatively to regulate the expression of a 

target gene, and in diseases such as RA, SLE, and MS. 

Non-additive 

genetic effects 

Effects for which the contribution of alleles influencing a trait 

are not independent of one another, or not independent of the 

environment. 

 

Metabolomics The study of metabolites (small molecules left behind as part of 

specific cellular processes) within cells, fluids, or tissues or 

organisms.  Collectively, these small molecules are referred to as 

the metabolome. 

Pathogenic 

variant 

A variant that contributes to the pathogenesis of a specified 

disease state. Such variants may also contribute to or protect 

against other phenotypes. Pathogenic variants need be neither 

necessary nor sufficient to produce a disease state due to 

incomplete penetrance.  
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Phased haplotype With short read sequencing, it is uncertain whether variants are 

inherited from the maternal or paternal copy of a given 

chromosome. Algorithms have been devised to deduce phased 

haplotypes, or the most likely assignment of variants in a region 

to one or the other parental copy of a chromosome, enabling 

inference of haplotypes. 

Phenome The phenome refers to the set of all phenotypic states for a given 

biological unit of interest, such as an organism or population. 

Polygenic traits Traits influenced by genetic variation in several or many genes 

or genetic loci. Recent studies of rheumatic diseases suggest that 

thousands of genetic variants of small effect may modify disease 

risk. 

 

Proteomics Analysis of the full complement of proteins produced by a given 

biological entity of interest, such as a cell, tissue, or organism, 

including those modified through splicing or post-translational 

modification.  

Quantitative trait 

locus 

A genetic variant that is associated with a quantitative difference 

in the measurement of a phenotype or trait.  For instance, an 

expression quantitative trait locus is a genetic variant correlated 

with expression level of either local genes (<5Mb; a cis-eQTL) 

or faraway genes (>5Mb; a trans-eQTL). The presence of a SNP 

that correlates with the methylation state of one or more 

genomic elements, such as nearby CpG sites is referred to as a 

methylQTL or meQTL. 

RNA-Seq A next generation sequencing technology that allows 

quantitative profiling of the transcriptome (identifying the 

presence and amount of messenger RNA in a sample of cells, 

tissues, etc.).  

Single nucleotide 

polymorphism 

(SNP) 

A DNA sequence variation affecting only one nucleotide, 

typically present in at least 1% of a given population. For 

instance, in the hypothetical sequence AGT(C)TA, the 

substitution of cytosine by thymine resulting in a sequence of 

AGT(T)TA would define a SNP. 

Structural 

variation (SV) 

Large-scale DNA sequence variants. Copy number variants 

(above) producing deletion or duplication of a genomic segment 

are structural variants, as are genomic rearrangements not 

resulting in a gain or loss of genetic material such as an 

inversion or translocation.  
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Transcriptomics Study the set of all RNA transcripts produced by the genome, 

usually studied in particular tissues or organs (e.g. blood), or cell 

types (e.g. CD4+ T lymphocytes). 

 

Heritability of rheumatic diseases 

Historical evidence for the heritability of rheumatic diseases comes from studies 

of familial clustering, sibling recurrence risk ratios, twin studies, and parent-child trio 

studies [2]. More recently, a large number of advanced methodologies based on genome-

wide assays for estimating heritability have been devised [3, 4, 5]. Heritability estimates 

for rheumatic diseases are often approximately 0.5, [2] but this is highly variable. GWAS 

(see Box 1) conducted to date have identified hundreds of risk loci for autoimmune 

diseases and thousands of associations with disease and traits [1, 2]. 

Although in aggregate these studies explain a meaningful proportion of disease 

risk, much of the heritable basis of rheumatic disease remains unexplained. There are 

many possible explanations for this problem, which is referred to as “missing 

heritability” [6] (Box 2). In some cases, it is possible that the estimate of heritability is 

inflated. Recent studies of the heritability of RA reported only 12% of phenotypic 

variance in the susceptibility to RA due to additive genetic effects, [7] whereas typical 

estimates from previous studies ranged between 50% and 60% [8]. This study instead 

found a 50% contribution from shared environmental effects and 38% from nonshared 

environmental effects [7]. 

 

  Possible reasons for missing heritability in large-scale genomic studies 

Alternatively, methodological factors may be implicated. For example, a recent GWAS 

of RA identified thousands of variants, which individually do not meet the threshold of 
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association, but collectively constitute a substantial fraction (∼20%) of disease risk. [9] 

Cohort design, study design, and disease definition also may contribute to this problem. 

For instance, trans-ethnic meta-analyses of a disease performed by many groups in 

collaboration often include different disease subtypes or include patients using different 

diagnostic criteria, leading to failure to capture available heritability through inclusion of 

heterogeneous subtypes of patients. 

Other studies indicate that some missing heritability may reside in genetic 

variants not readily identifiable with current technologies. For instance, the genetic 

association of FCGR3B with SLE may be caused by structural variation (SV) (see Box 

1), [10] although to our knowledge there are no conclusive data that a pathogenic SV 

produces a specific rheumatic disease association indexed in the National Human 

Genome Research Institute GWAS Catalog. [1] Advances in technology, such as the 

ability to infer “phased haplotypes” (see Box 1) from genomic DNA using long-read 

next-generation sequencing (NGS) [11, 12] technology platforms, could enable better 

identification of contributions of SVs and haplotypes to missing heritability than current 

NGS platforms. 

Many recent functional studies have shown that rare variants (genetic variants 

having an allele frequency of <5%) contribute to a spectrum of phenotypes, including 

rheumatic diseases. [13, 14] Several studies have sought to quantify the contribution of 

rare variants to missing heritability of complex diseases. For instance, 1 large exome-

sequencing study examined risk loci from 6 autoimmune diseases and found that rare 

variants contributed less than 3% of the heritability explained by common variants at 

known risk loci. [15] However, more recent studies have found that most autoimmune 
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risk variants lie in noncoding elements (∼90%), greatly limiting the value of an exome-

based approach for autoimmune applications. Indeed, until very large, high-depth, whole-

genome sequencing studies are widely available, quantifying the contribution of rare 

variants in rheumatic disease will remain problematic. Further description of likely 

sources of missing heritability is provided in Box 2. 

 

Table 2: Factors accounting for Missing Heritability in Rheumatic diseases 

Factor 

contributing to 

Missing 

Heritability 

Explanation 

Polygenicity and 

non-additive 

genetic effects 

Non-additive genetic effects (see Box 1 for definition) are 

not well measured by traditional methods of estimating 

heritability, and therefore might represent sources of 

missing heritability. For instance, haplotypes of common 

SNPs could explain a fraction of the missing heritability, 

which could be related to epistasis (the interaction of 

genes which changes their effect) or better tagging of 

pathogenetic variants. Recent studies of complex diseases 

suggest that thousands of variants may each contribute a 

small fraction of disease risk. However, the contributions 

of marginally associated variants are often not included in 

the heritability accounted for in a given study. Thus, 

estimates of heritability based only on highly significant 

SNPs would not include such effects, resulting in inability 

to account for disease heritability.  This appears to be a 

major source of missing heritability.  
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Rare variants 

and structural 

variants 

Many kinds of genetic variants (e.g. short insertions and 

deletions), structural variants (e.g. copy number variants), 

and rare variants are not well-assayed by current 

genotyping arrays. There are several reports of structural 

variant association with rheumatic diseases, but these 

associations have generally been difficult to reproduce. 

Current NGS technology can capture information on these 

variants, but with much lower accuracy than on common 

variants, making their contribution difficult to assess. 

Despite this limited accuracy, several large sequencing 

studies have been performed with the goal of identifying 

rare variants implicated in autoimmune disease, and often 

conclude they do not account for a substantial fraction of 

missing heritability. It will be necessary to obtain very 

large studies of long-read sequencing data in order to 

accurately assess the contribution of rare and structural 

variants. 

Inflated 

heritability 

estimates 

If heritability is overestimated, then the amount of 

missing heritability will also be high. It is possible that 

many estimates in the literature misattribute 

environmental effects on disease risk as genetic liability. 

Though debate continues, many experts do not expect 

inflated heritability estimates to be a major contributor to 

the problem of missing heritability. 

Epigenetic 

effects 

Because some forms of epigenetic variation are inherited, 

phenotypic variance incorrectly attributed to genetic 

rather than epigenetic mechanisms could produce 

artificially high heritability estimates. Such effects may 

account for a moderate or large portion of missing 

heritability. 

Biotechnology 

effects 

The use of different platforms and technologies, 

superimposed on other effects, may lead to errors in 

heritability estimates. With sound analytical practices, 

such effects on estimation of missing heritability should 

be minor. 

 

High-throughput omics approaches that can be integrated with genetic data  

to understand rheumatic diseases 

 

RNA-seq 

Advances in biotechnology have led to high-throughput studies of gene 

expression (the transcriptome) that can lend insight into the pathogenesis of rheumatic 
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diseases. RNA-Seq (see Box 1) is a method of interrogating the transcriptome that uses 

NGS to identify and quantify RNA transcripts, and offers several advantages over array-

based technologies [16]. Notably, this includes the ability to identify allelic imbalance, to 

quantify gene expression in a transcript-specific manner, and to capture unexpected 

alternative splicing, truncation, and post-transcriptional modification events [17]. RNA-

Seq has been used to perform biomarker discovery in peripheral blood monocytes in RA, 

and to study differential expression in synovial fibroblasts [18] in RA and monocytes in 

SLE [19]. Focused analyses of a single locus using RNA-Seq can provide a detailed 

picture of mRNA and noncoding RNA [20]. A recent study of the TRAF1-C5 locus 

revealed a long noncoding RNA (lncRNA) (see Box 1) that influences C5 levels in RA 

[21]. In SLE, single-gene profiling of IRF5 was performed to assess the well-known 

population-specific diversity and genetic associations in the locus. Notably, this study 

identified 14 new differentially spliced IRF5 transcript variants and found that one of the 

risk haplotypes for SLE is among the most abundant transcripts produced in the disease 

[22]. RNA-Seq has also been used to study microRNA in the salivary glands of patients 

with SS [23] and to investigate gene regulation in RA as a part of an integrative 

bioinformatics approach [24]. 

Typically, RNA-Seq measures a bulk sample of cells of a given type. However, 

individual cells isolated from samples of whole blood are frequently in different states 

producing different amounts of transcript [25]. Single-cell RNA-Seq may detect 

differences in transcript splicing or transcript isoform expression between cells that are 

lost on aggregation even among seemingly phenotypically similar cells isolated from the 

same tissue [25, 26]. This rapidly maturing technology has been used to analyze 
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expanded CD4+ T cells in the peripheral blood and synovium of patients with RA [27]. 

This study revealed that skewing of phenotypes of expanded CD4+ T-cell clones is likely 

due to nonspecific expansion of naïve and memory T-cell subsets. RNA-Seq is also well-

suited to studying regulatory variants found in rheumatic diseases [28]. 

 

Expression quantitative trait loci 

Integration of genetic/genomic data with expression data has provided important 

insights. SNPs (see Box 1) that influence gene expression are called expression 

quantitative trait loci (eQTL); these may affect the expression of nearby genes (cis-

eQTLs) or distant genes (trans-eQTLs) (see QTL in Box 1). eQTLs are enriched among 

suspected pathogenic variants in autoimmune risk loci. A recent study used eQTLs to 

quantify the contribution of gene expression to heritability and found that, on average, 

21% of disease heritability was attributable to the cis-genetic component of gene 

expression levels for many complex phenotypes, including rheumatic diseases [29]. In 

general, cis-eQTLs are more commonly associated with complex disease and tend to 

have a greater impact on gene expression compared with trans-eQTLs [30]. 

Although there is much evidence that eQTLs are important in rheumatic diseases, 

relatively few variants have well-characterized pathogenic effects. rs140490, a cis-eQTL 

associated with SLE, is one such example [2, 31]. rs140490 is just upstream of the 5′ 

untranslated region (see Box 1) of UBE2L3, and is associated with increased expression 

and translation of UBE2L3, probably through diminished degradation of the nuclear 

factor (NF)-κB inhibitor-α (IκBα) [32]. The resulting activation of NF-κB leads to 

increased B-cell survival in both healthy controls and patients with SLE. Patients with 
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SLE with the risk genotype have elevated UBE2L3 within proliferating and activated B 

cells, as well as increased counts of antibody-producing plasmablasts. This example 

demonstrates the complexity of characterizing pathogenic variants in SLE: the variant is 

located in a regulatory region affecting only some disease-relevant cell types (B cells and 

monocytes) and functions in a temporally variable and an activation-state–dependent 

manner. 

Recent studies have integrated genetic and eQTL data on a massive scale. An 

approach called summary data–based Mendelian randomization (see Box 1) used 

genome-wide genetic data from more than 338,000 people and eQTL data from more 

than 5,000 people to link genes in 126 risk loci to 5 different phenotypes, including RA. 

[33] This finding highlights the ability of this technique to identify novel disease 

associations. Methods of imputation (see Box 1) of gene expression based on reference 

panels are being devised. Such advancement will allow identification of expression-trait 

associations of small effect [34] while avoiding the high cost of obtaining eQTL data. 

 

Epigenetics/Epigenomics 

Several major classes of epigenetic regulation are relevant to human disease, [35] 

and are assayed using a growing number of technologies. [36] Analogous to eQTLs, [37] 

methylQTLs (meQTLs; see Quantitative trait locus in Box 1) are CpG sites the 

methylation state of which correlates with a genetic variant. Such methylated DNA 

impedes transcriptional proteins and increases affinity for proteins that alter DNA 

accessibility. Thus, cellular outcomes, such as transcription and cell fate, are altered in 

ways that can impact rheumatic disease. For example, in a study of SLE among twins, 
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DNA methylation differences are associated with twin discordance, [38] and a study of 

24 patients with SLE and controls showed evidence of differential DNA methylation in 

CD4 + T cells. [39] Many meQTLs are found in tight LD with risk variants for rheumatic 

diseases, [40] although the possibility that both independently affect transcription cannot 

be excluded. Other epigenetic assays, such as ATAC-Seq (see Box 1), have been used to 

investigate the correlation of nucleosome modifications with functional elements 

genome-wide, for instance in naïve B cells in SLE, [41] whereas DNAse-seq pairs 

DNAse hypersensitivity methodology with deep sequencing to identify portions of the 

genome accessible to transcriptional machinery and transcription factors. One 

methodology integrating epigenomic and other assays, RASQUAL (Robust Allele 

Specific QUAntification and quality controL), has been applied to autoimmune risk loci 

and is described in further detail later in this article. 

Epigenetic factors likely contribute to the heritability of rheumatic diseases, [42] 

and may alter heritability estimates derived from genetic data. Because epigenetic 

modifications can be inherited across generations, but are not assayed by genotyping 

chips or by whole genome sequencing [43], it is difficult to exclude the possibility that 

epigenetic alterations could account for a proportion of disease risk normally attributed to 

genetics. This assertion gains further support from studies suggesting that such alterations 

affect human disease phenotypes [44]. In SLE, there is an association between DNA 

methylation patterns and twin discordance [38]. Several mechanisms, including 

imprinting, incomplete erasure of DNA methylation, and persistence of histone markings 

[42, 43, 45] could produce such an effect. Nevertheless, at this time, estimates of 

epigenetic missing heredity are not widespread for complex diseases. 
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Proteomics and Metabolomics 

Proteomic studies typically profile a tissue or fluid important to the disease 

process, such as synovial fluid in RA, often with the goal of finding biomarkers to enable 

early diagnosis or identification of common pathways. [46] Other common applications 

in RA include monitoring disease activity, disease severity, and treatment efficacy. [47] 

Importantly, levels of a particular protein (for example in serum, plasma, or synovial 

fluid) cannot be inferred from gene expression data [48], due in part to the presence of 

uncoupled posttranslational protein regulatory mechanisms [49], and in part to the 

aggregation of proteins from various nearby tissues and bodily fluids. Advances in mass 

spectrometry [3] have enabled proteomic assays to evolve beyond simple catalogs of 

protein abundance by capturing the rates of protein synthesis, degradation, and turnover. 

Incorporation of subcellular localization and tissue abundance of the proteins being 

studied [34] adds a further dimensionality to these increasingly rich datasets. Therefore, 

proteomic technology is becoming more useful in determining biological effects (e.g., 

increased protein levels) of upstream events (e.g., gene expression levels influenced by 

genetic variants and epigenetic factors) in rheumatic diseases. 

Informatics-based approaches to characterizing protein interaction networks have 

also been useful to understand rheumatic diseases. Current evidence suggests genetic risk 

variants for rheumatic diseases are organized in pathways, physically interact with one 

another, [50] and are enriched for protein-protein interaction network modules. [51] 

Recognition of this pattern in complex diseases has already led to identification of drug 

targets, [52] and has been used to prioritize gene relevancy within risk loci. [53, 54] Such 
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interaction network modeling techniques have been used to perform functional 

characterization of pathogenic variants among genomic, transcriptomic, and proteomic 

data. [55] 

Techniques used in large-scale metabolomics studies include proton nuclear 

magnetic resonance and mass spectrometry. These have been used to profile small 

molecules in rheumatic diseases and have been reviewed in detail recently. [56] 

Integration of the metabolome with GWAS data has enabled detection of genetic 

variation that affects metabolite levels (referred to as metabolome QTLs) in several 

organisms [57, 58, 59, 60], but continued improvements to modeling and methodology 

are needed before application to human rheumatic diseases becomes widespread. 

 

Cell-Specific and Tissue-Specific Gene Expression: Influence on Integrated Multi-Omic 

Analysis of Rheumatic Diseases 

 

One crucial consideration in the interpretation of transcriptomic, epigenomic, and 

proteomic analyses is the cell-based or tissue-based specificity of expression of variants 

that may exert pathogenic effects. Consortia such as Encyclopedia of DNA elements 

(ENCODE) provide a catalog of functional elements across the human genome.[61] More 

recently, the National Institutes of Health Roadmap Epigenomics Mapping Consortium 

provided a publically available catalog of methylation, histone modification, chromatin 

accessibility, and other data. [62] Drawing heavily on such datasets, a recent study fine 

mapped pathogenic autoimmune disease variants. There was markedly different 

enrichment in acetylation of cis-regulatory elements of 33 different cell types across 39 

autoimmune diseases and related traits. [30] The investigators of another variant 

prioritization methodology provide more than 8000 genome-wide annotations to aid 
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investigators in study of risk loci. [63] Thus, although it can be daunting to isolate the 

effect of a genetic variant to the appropriate tissue, the increasingly comprehensive 

annotation of the human genome can aid investigators in selecting the appropriate tissues 

and focusing hypotheses. 

One recent study combined an impressive array of publically available data and 

tools for analysis of microRNA, transcription factor binding sites, epigenetic data, data 

from ENCODE, and chromatin immunoprecipitation data. By analyzing these aggregated 

data, the investigators were able to frame and test the hypothesis that a variant in the 

autoimmune risk locus ETS1 increases pSTAT1 binding and decreases ETS1 expression 

in Asian individuals, but not other populations, with SLE. [64] Thus, tissue-specific 

effects are often also subject to additional complicating factors, such as activation state 

dependency, trans-ethnic differences, and temporal variability, necessitating careful 

design of follow-up functional studies. The emergence of large datasets to provide 

reference points that can be used to interpret data from cells and tissues from diseases 

will be critical to these future studies. 

 

Approaches to data integration 

Integration of high-throughput data for analysis of rheumatic diseases is a 

complicated topic reviewed in detail elsewhere. [65] We include a brief summary of 2 

types of techniques (multistage analysis and metadimensional analysis) and 2 forms of 

data filtering (intrinsic and extrinsic) to provide helpful context. Intrinsic data filtering 

uses information from the dataset itself, such as filtering genetic variants based on 

linkage to other variants of interest in that dataset. Extrinsic data filtering is based on 
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information outside of the dataset, such as the inclusion of genomic annotations from 

separate studies such as ENCODE. Currently, both intrinsic and extrinsic data filtering 

are essential for efficient characterization of complex disease genetics. 

 

Multistage Analysis 

Multistage analysis sequentially examines relationships between each dataset and 

the other datasets, and also between each dataset and the trait. For instance, the 

correlation of a genetic variant with gene expression level is performed in 1 analytical 

step, then correlation of such a variant or gene expression level with a disease state like 

RA is performed in a subsequent step. Such designs are common in rheumatic disease 

genetic research, such as the analysis of eQTLs, which includes analysis of genetic 

variants (e.g., SNPs) and gene expression levels. 

Multistage analyses have much greater power to detect the effect of a single SNP 

on gene expression than several weak independent effects that together lead to important 

changes in gene expression [65, 66, 67]. Although multistage analyses are useful, they 

also have limitations. In rheumatic disease research, the combined effects of multiple 

variants on gene regulation may be critical (the multiple enhancer variant hypothesis), 

therefore making them difficult to discover in multistage analysis. [68] 

 

Metadimensional Analysis 

For complex multivariate data sets from different platforms, metadimensional 

analysis may perform well [57]. This technique takes advantage of simultaneous 

combination of multiple data types into a single search space to construct a final model. 
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Metadimensional analysis can use 3 types of integration strategies; that is, to combine 

raw or processed data sets by directly “concatenation” of them before modeling and 

analysis, to perform data mapping or “transformation” first before modeling and analysis, 

and to model the data independently before merging all models toward the final analysis. 

Metadimensional analysis approaches can draw on a variety of techniques, such as 

regression trees [69], Bayesian networks [70], and evolutionary computation [71]. These 

algorithms may be tuned to search for known conventional relationships, or could be 

relaxed to search for new or unexpected complex relationships, but are often 

computationally intensive. 

 

Selected Insights Gleaned from Integrative Analyses 

In the following section, we describe several examples in which integrative 

analyses of large datasets have been used to provide novel insights into the pathogenesis 

of rheumatic diseases. For example, a recent study noted genetic and epigenetic 

interactions affect the expression of the gene LBH and potentially risk for diseases such 

as RA, SLE, and celiac disease [72]. Making use of intrinsic and extrinsic data filtering, 

this study integrated GWAS, gene expression, and DNA methylation data in RA with 

publically available data from the ENCODE project. Using reporter constructs 

methylated in vitro and transfected into synovial fibroblasts, the investigators showed that 

the RA-associated SNP in LBH decreased LBH transcription. This study illustrates how 

confluence of data from multiple genomic assays, specifically a GWAS risk variant for 

RA, a differentially methylated locus, and open DNA regulatory elements, can aid in 

characterization of RA pathobiology by showing how a functional SNP and a 



 

 38

differentially methylated enhancer regulate aggressiveness of RA fibroblast-like 

synoviocyte(s). 

Another recent study presented a method to integrate transcriptomic data and 

epigenetic data in a highly novel way. The RASQUAL method [73] was used to combine 

expression and chromatin conformation data (from ATAC-Seq) and led to significant 

findings within RA risk loci. Strikingly, an SNP identified by previous GWAS of RA, 

rs909685 in SYNGR1, may act to alter gene expression by altering chromatin structure 

and accessibility. The finding that a genetic variant affects the 3-dimensional 

conformation of DNA and histone folding illustrates the utility of integrative analysis by 

offering an example of how these methods naturally provide a springboard for future 

studies compared with association analysis alone. 

Integrated proteomics approaches are becoming more common as well. The 

COMBINE (Controlling chronic inflammatory diseases with combined efforts) study 

integrated DNA, RNA, flow cytometry, and proteomic data to predict clinical response to 

tumor necrosis factor (TNF) inhibitors (TNFi) in RA [74]. Specifically, results from 

commercial protein biomarker panels, DNA microarrays, and RNA-Seq were filtered 

based on publically available datasets on TNFi responsiveness. Measurements of these 

biomarkers, genetic variants, and expression levels were then fit into a linear regression 

model with treatment response 3 months after initiation of TNFi as the primary outcome. 

This approach replicated 11 biomarkers for anti-TNF treatment in RA and successfully 

combined multiple levels of omics data into a predictive model with a sensitivity of 73% 

and a specificity of 78%. Studies such as these are early indicators of the potential of 

integrative approaches in precision medicine. 
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Prioritization of genomic variants/pathways for functional analysis 

One of the problems arising from the analyses of large numbers of patients with 

rheumatic diseases using high-throughput methodologies is the generation of a very large 

number of candidate risk loci to be examined. The expense and logistics of analyzing a 

large number of loci is daunting, and there is a need for systematic, rational, and biology-

based approaches to identify variants with the highest likelihood of clinically relevant 

effects. Numerous methodologically distinct approaches to variant prioritization have 

been developed and several have been applied to rheumatic diseases. Prioritization 

approaches using intrinsic or extrinsic data filtering, or both (see Box 1) are routinely 

used, and leverage enrichment of variants bearing certain functional annotations [63, 75, 

76], trans-ethnic differences in genetic variation [63, 77], and association strength of 

genetic variants [30, 63, 76, 77, 78]. Other tools, such as OMIM Explorer, integrate high-

dimensional clinical phenotyping data with genotype information, and offer powerful 

frameworks for variant prioritization as well [79]. Due to the number, complexity, and 

size of the datasets used to filter variants, we anticipate these increasingly sophisticated 

methods will be critical to guiding optimal variant prioritization based on empirical 

classifiers. Here, we discuss a few variant prioritization tools that have been calibrated 

on, or applied to, rheumatic diseases. Many other variant prioritization tools are available 

and under development but are not discussed in this review [75, 79, 80, 81]. 

 

The Probabilistically Identified Causal Single-Nucleotide Polymorphism Algorithm 

A study of dense genotyping of a large number of patients with different 

autoimmune diseases and controls was used to develop an algorithm called 
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Probabilistically Identified Causal SNPs (PICS) [30]. This algorithm estimates the 

likelihood that each variant is pathogenic, using the strength of association and LD values 

of variants in a locus. Application of this algorithm to genetic data from 21 autoimmune 

diseases, including Sjögren syndrome, RA, SLE, and seronegative spondyloarthritis 

(SNSA), resulted in identification of approximately 9000 candidate causal variants called 

PICS. Nearly 90% of these “autoimmune” PICS mapped outside of coding regions, and 

60% to immune-cell enhancers. Strikingly, these PICS tended to be near to, but outside 

of, canonical binding sites of regulators of immune differentiation, in less well-

characterized regions of the enhancer. Therefore, in addition to providing a prioritization 

tool, and identifying a large list of candidate SNPs, this study is significant for its 

suggestion that current gene regulatory models may be incomplete. 

 

The Probabilistic Annotation INTegratOR Algorithm 

The Probabilistic Annotation INTegratOR (PAINTOR) algorithm is an open-

source fine-mapping program that integrates association summary statistics (Z-scores) 

from GWAS, LD scores, and functional annotation information. It was developed to 

model the likelihood of causality of 1 or more SNPs in a risk locus. One of the strengths 

of this algorithm is that it can leverage trans-ethnic studies to better prioritize variants. 

PAINTOR2 was recently used to perform a meta-analysis of a large genetic dataset from 

RA [53]. The algorithm assigned a very high posterior probability of causality to 

rs2476601, a missense variant in PTPN22. Given that the effects of rs2476601 are 

relatively well studied and that it underlies risk of many autoimmune and rheumatic 

conditions, this finding might be regarded as a positive control. Intriguingly, it also 
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assigned a very high posterior probability to variants in 4 other RA risk loci, ANKRD55, 

TNFRSF14, UBASH3A, and TYK2, the functional roles of which are not well-established. 

Identification of variants such as these increases cost efficacy by reducing the number of 

likely candidates (the credible set), thereby increasing the likelihood of studying a 

pathogenic variant. PAINTOR 3.0, the most recently released version of the software, 

extends the PAINTOR framework to multiple traits across transethnic studies, and is 

capable of modeling 1 or more causal variants per locus 

(http://bogdan.bioinformatics.ucla.edu/2016/11/03/paintor-3-0/, accessed December 26, 

2016). PAINTOR uses functional annotation as input to enable better prioritization of 

candidate variants, or output enrichment of candidate causal variants within functional 

classes [63]. 

A distinct Bayesian approach to accomplish the latter goal was recently described 

[82]. It uses association statistics computed across the genome to identify classes of 

genomic elements that are enriched with (or depleted of) loci influencing a trait. Thus, 

this approach incorporates internal filtering to make inferences about the relative 

importance of annotation data. Reweighting each GWAS by using information from 

functional genomics increased the number of loci with high-confidence associations by 

approximately 5%. 

 

The Molecular Interaction Network-Based Ranking Algorithm 

There is a need for developing systems biology approaches to integrate 

comprehensive genetic information and provide new insight on complex disease biology. 

We took such an approach [54] to study type 2 diabetes (T2D); however, the method is 
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readily applicable to the study of other rheumatic diseases, such as RA. The method 

works by bringing in protein-protein interaction data to construct a disease-specific 

molecular interaction network, which consists of disease-specific genetic risk genes and 

all their direct interacting gene partners. Then, network centrality measures using 

“network topological features,” such as hubs and clustering coefficients are used to rank 

genes from the network or network modules. These genes can be further ranked based on 

additional GWAS association hazard ratio data and related pathway enrichment and gene 

set enrichments results. We found that PI3KR1, ESR1, and ENPP1 were the 

interconnected T2D disease network “hub” genes most strongly associated to T2D 

genetic risks [54]. Contrary to expectations, the well-characterized gene TCF7L2 was not 

among the highest-ranked genes in the T2D gene list. However, many highly relevant 

pathways were reaffirmed from the integrated data sets, including pathways involved in 

insulin signaling, T2D, mature-onset diabetes, adipocytokine signaling pathways, and 

cancer-related pathways. Similar pathway and network analysis approaches based on this 

framework [83] are critical for improving interpretations of genetic variations and genetic 

risk factors. These approaches may facilitate attribution of complex disease genetic risk 

to the summative genetic effects of many genes involved in a broad range of signaling 

pathways and functional networks. 

 

Methods for exploration of relationships between clinical phenotypes 

Given the overlap between autoimmune diseases, techniques that can be used to 

study relationships between phenotypes are of intense interest. The principles of 

Mendelian randomization (see Box 1) can be applied in a variety of ways to make 
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inferences about environmental determinants of disease, among other applications [84]. 

An innovative algorithm was used to examine 43 GWAS on 42 human traits to identify 

pairs of traits sharing association of multiple (common; minor allele frequency >5%) 

genetic variants [85]. This analysis found that variants that increase risk of coronary 

artery disease (CAD) tend to decrease risk of RA, whereas variants affecting RA appear 

to have little effect on CAD risk. This can be interpreted as evidence of a causal link 

between CAD and RA, but this result could not be confirmed in a larger study despite 

other successes of the algorithm [85]. The results obtained in this detailed study generally 

agree with data from randomized controlled trials and Mendelian randomization studies 

[85]. Importantly, inferred causal relationships obtained from Mendelian randomization 

frameworks such as these may be used even if the studies paired share no common 

subjects. Therefore, given the paucity of high-quality comprehensive phenomic datasets 

[85, 86, 87], these methodologies are exceedingly valuable because they can provide 

information that would otherwise be available only through costly trials. Equally 

important are the implications to the paradigm of personalized medicine: if pleiotropic 

effects are widespread in the phenome, then even a targeted intervention aimed at a single 

pathogenic variant is likely to affect other phenotypes. Alternatively, if legal and 

organizational obstacles can be overcome, high-dimensional phenomic data may 

ultimately become available through the electronic medical record, curated by clinical 

centers, enabling exploration of the extent of pleiotropy and genome-phenome 

interactions. Early steps toward this goal have been made in the form of phenome-wide 

association studies [88]. 
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Functional validation of pathogenic regulatory variation in complex disease 

We have argued that the integration of multiple omics technologies can be used to 

frame specific hypotheses and design experiments to test them. However, even when 

such analysis is done well, functional validation of findings from -omic assays remains a 

crucial limiting step to advancement of our understanding. This may be particularly 

difficult if the distribution and concentration of multiple genetic variants in noncoding 

elements, such as enhancers, is critical to autoimmune disease risk, as is currently 

expected [68]. Nevertheless, there are several promising technologies that are currently 

used for functional validation of regulatory variants, and that are potentially scalable. The 

creation of multiple distinct Cas9 mutant enzymes facilitates different functions, such as 

gene silencing, gene activation, or site-specific DNA recognition and cleavage and 

enables study of complex disease variants [89]. Certain Cas9 mutants can introduce 

precise mutations or knock-ins such as those found in immune enhancer regions. A recent 

review covers developments in CRISPR/Cas9 relevant for rheumatologists [90]. 

Combining reporter assays with DNA synthesis [91], DNAse-seq [92], and barcoding 

[93] has substantially increased throughput of these assays, even allowing massively 

parallel interrogation of regulatory variants in human cells [94, 95]. RNAi-based screens, 

which could recapitulate loss-of-function analyses produced by pathogenic risk variants 

in regulatory regions in vivo [96], also could be used to study rheumatic diseases. 

Continued refinement of these technologies and others may eventually prove 

commensurate to the challenge presented by integrated omics data; namely, 

understanding the context and biologic roles of thousands of pathogenic risk variants 

acting in concert to produce rheumatic disease. 
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Summary 

In summary, we begin by providing an overview of heritability of rheumatic 

diseases and describing potential explanations for why much of genetic risk remains 

unknown. We then highlight how the use of high-throughput omics approaches, such as 

RNA-Seq, expression (and other forms) of QTLs, epigenetics, and proteomics can help 

understand the genetic basis for the pathogenesis of rheumatic diseases. Having outlined 

several genomic technologies, we then describe approaches to integrating multiple forms 

of data, including multistage and metadimensional analytical designs (using extrinsic and 

intrinsic data filtering) and provide specific examples of novel insights into the 

mechanisms of rheumatic diseases that these analyses provide. We also describe 

statistical approaches to prioritizing genomic variants for functional analysis. We provide 

examples showing that these integrative analytical approaches are valuable because they 

are better at providing context necessary for researchers to frame targeted hypotheses. 

Overall, we believe coordinated study of human biology alongside programs to analyze 

large datasets in detail raise hope for better approaches to the diagnosis, treatment, and 

prevention of complex conditions such as the rheumatic diseases. 
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Abstract 

More than 100 risk loci for rheumatoid arthritis (RA) have been identified in 

individuals of European and Asian descent, but the genetic basis for RA in African 

Americans is less well understood. We genotyped 610 African Americans with 

autoantibody-positive RA and 933 African American controls on the Immunochip (iChip) 

array. Using multivariable regression, we evaluated the association between iChip 

markers and the risk of RA and radiographic severity. The single nucleotide 

polymorphism (SNP) rs1964995 (odds ratio = 1.97, p = 1.28 × 10–15) near HLA-DRB1 

was the most strongly associated risk SNP for RA susceptibility; SNPs in AFF3, 

TNFSF11 and TNFSF18 loci were suggestively associated (10–4< p < 3.1 × 10–6). Trans-

ethnic fine mapping of AFF3 identified a 90% credible set containing previously studied 

variants, including rs9653442, rs7608424 and rs6712515, as well as the novel candidate 

variant rs11681966; several of these likely influence AFF3 gene expression level. 

Variants in TNFRSF9, CTLA4, IL2RA, C5/TRAF1 and ETS1 – but no variants within the 

major histocompatibility complex – were associated with RA radiographic severity. 

Conditional regression and pairwise linkage disequilibrium (LD) analyses suggest that 

additional pathogenic variants may be found in ETS1 and IL2RA beyond those found in 

other ethnicities. In summary, we used the dense genotyping of the iChip array and the 

unique LD structure of African Americans to validate known risk loci for RA 

susceptibility and radiographic severity, and to better characterize the associations of 

AFF3, ETS1 and IL2RA. 

 

 



 

 56

Introduction 

Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by 

synovial joint inflammation, with disease phenotype ranging from mild joint involvement 

to severe joint destruction and permanent disability (1). The factors responsible for RA 

heterogeneity are poorly understood, but both genetic and environmental factors 

contribute to its pathogenesis and clinical expression. Most RA patients have serum 

autoantibodies, such as rheumatoid factor (RF) or anticyclic citrullinated peptide 

antibody (ACPA), which can be present before the onset of clinically relevant disease (2) 

and are associated with radiographic severity (3). 

To replicate and fine map risk loci identified in genome-wide association studies 

(GWAS) of autoimmune and inflammatory disorders such as RA, the Immunochip 

Consortium designed the Immunochip (iChip), a custom Illumina Infinium high-density 

array that has been used to study RA in patients of several racial and ethnic backgrounds 

(4–8). Using the iChip and many other arrays, 100 RA risk loci of genome-wide 

significance (p < 5 × 10–8) have been identified in individuals of European and Asian 

ancestry, including HLA-DRB1, PADI4, PTPN22 and CTLA4 (9,10). However, there is a 

paucity of genetic association data on RA in African Americans. Many of the genetic 

influences on RA are similar among those of European ancestry and African Americans 

(11). However, there are important differences; for instance, polymorphisms in CCR6, 

TAGAP and TNFAIP3 have discordant odds ratios (ORs) compared with those reported in 

European RA patients (11). Furthermore, the PTPN22 risk allele containing rs2476601, 

which has the highest effect size on RA susceptibility of any locus outside the major 

histocompatibility complex (MHC) in European populations, is essentially absent from 
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the Yoruban population and is present in Asian and African American populations in low 

frequency (12). 

HLA-DRB1 alleles encoding the shared epitope (SE) (13) have the strongest 

association with RA in Europeans and Asians. In addition to their role in susceptibility of 

RA, HLA-DRB1 SE alleles are associated with erosive disease (14) and mortality in 

Europeans (15,16). Our group has shown that 43% of African Americans with RA have 

at least one HLA-DRB1 SE allele compared with ~60–70% of Europeans with RA (17). 

At the level of HLA-DRB1 amino acid residues and their association with RA 

susceptibility, there are both similarities and major differences between Europeans and 

African Americans. The valine residue at position 11, as found in Europeans, is most 

strongly associated with RA in African Americans (18). However, an aspartic acid 

residue at position 11, indicative of the classical allele *09:01, confers a two-fold 

increased risk of RA in African Americans and is also associated with RA in Koreans 

(19), but not in individuals of European ancestry. After conditioning on residue 

substitutions at position 11, amino acid positions 71 and 74 are not significantly 

associated with RA in African Americans, as they are in Europeans (18). 

Subphenotypes (ie, disease subtraits) (20) are frequently more heritable than the complex 

disease traits of which they are a part (21). In addition, genetic association studies on 

specific subphenotypes tend to focus on less heterogeneous patients than studies on 

overall disease susceptibility. Radiographic severity is a characteristic RA subphenotype, 

with an estimated heritability between 45% and 58% (22). Genetic influences on 

radiographic severity have been examined in several ethnic groups (23–31), and ~30 risk 

loci have been identified in European and Asian populations, including CXCR5, AFF3, 
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C5-TRAF1, IL2RA, IL6, IL10 and FCRL3. Typically, these studies have included smaller 

numbers of participants than studies on susceptibility of RA, and the definition of 

radiographic severity has not been uniform, which may limit statistical power and 

complicate replication. Finally, few studies have addressed radiographic severity of RA 

in African Americans. 

The objective of our study is to investigate the associations of known autoimmune 

disease risk loci with RA and its radiographic severity in African Americans. In view of 

the heterogeneity of disease associations among ethnic groups, shorter haplotype blocks 

and differences in allele frequency in African Americans, we hypothesize that fine 

mapping will identify differences in the genetic architecture of RA in African Americans 

compared with other ethnicities. Strengths of this study include analysis of the largest 

group of African Americans with RA currently available in the world, with 

accompanying high-quality radiographic outcomes data (34). A major goal of research 

into the genetics of complex diseases is to identify pathogenic variants that produce 

disease associations. In view of this, we draw on available data from association testing 

of >100,000 Asians and Europeans and use cutting-edge algorithms to prioritize genetic 

risk variants in African Americans with RA in the AFF3 locus. This study represents an 

important addition to the literature on the genetics of RA, which has primarily involved 

participants of Asian and European descent. 
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Materials and Methods 

Study Population 

The CLEAR (Consortium for the Longitudinal Evaluation of African Americans 

with Early Rheumatoid Arthritis) study enrolled African Americans with RA of <2 years’ 

disease duration (CLEAR I), African Americans with RA irrespective of disease duration 

(CLEAR II) and African American healthy controls, as previously described (17). 

Participants were enrolled at five academic sites: University of Alabama at Birmingham 

(coordinating center); Grady Hospital/Emory University, Atlanta, Georgia; University of 

North Carolina, Chapel Hill; Washington University, St. Louis, Missouri; and Medical 

University of South Carolina, Charleston. CLEAR controls were African Americans 

without rheumatic diseases who were matched (as a group) by age, sex and geographic 

location to CLEAR RA patients. The Institutional Review Boards of the participating 

institutions approved human subject research protocols. Biologic specimens and patient 

information, including sociodemographic characteristics, medical history, medications 

and disease activity measures, were collected (17). The majority of CLEAR participants 

were ACPA-positive, as previously reported (32). Of the 837 African American healthy 

controls included for analysis in the current study, 404 were from CLEAR and 433 were 

from the Birmingham, Alabama, area (33). 

Radiographs of hands/wrists and feet were obtained at the CLEAR enrollment 

visit for participants with RA and assigned a modified total Sharp score (mTSS) (range 

0–448) using the modified Sharp/van der Heijde method (34). Scoring was performed 

using state-of-the-art methods under the auspices of Désirée van der Heijde, a world 

expert in quantitative assessment of radiographs in rheumatic diseases (34). Furthermore, 
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mTSS scores for participants from CLEAR I and CLEAR II have been validated 

extensively (35,36). 

 

Sample Genotyping 

Genotyping was carried out using the iChip array at the Feinstein Institute for 

Medical Research in Manhasset, New York. Genotype clustering was performed using 

the GenTrain2 clustering algorithm. Genotype calling was performed with the genotyping 

module of the GenomeStudio data analysis software package. 

Quality Control 

Rigorous quality control procedures were employed, including checks for gender 

inconsistency, relatedness (duplicates and first- or second-degree relatives) and ethnic 

outliers. The sample call rate threshold was 95%. The marker call rate was >98.5% across 

all SNPs, after removing low-quality SNPs and rare SNPs, those with minor allele 

frequency (MAF) <5% and SNPs out of Hardy-Weinberg equilibrium (using control 

samples only, using p value >1 × 10–5). 

 

Association Testing of iChip Markers with RA Susceptibility 

Of 610 RA cases, 593 (97%) were autoantibody-positive (defined as positive for 

either RF or anti-CCP antibody tests) and were included in the analysis of RA 

susceptibility. Multivariable logistic regression was used to evaluate the association 

between iChip markers and autoantibody-positive RA. Sex and European admixture 

proportion (calculated using Eigenstrat v6.0) (17) were included as covariates. Two-sided 

p values are reported, except as noted for trans-ethnic fine mapping of the AFF3 locus 
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(see Trans-ethnic fine mapping of the AFF3 locus section). To adjust for variability due 

to HLA-DRB1 in the extended MHC locus (Chr6:26,000,000–34,000,000), we fit a model 

accounting for the variability of all four-digit HLA-DRB1 SE alleles. LocusZoom plots 

were used to display the fine mapping results graphically (37). 

 

Association Testing of iChip Markers with RA Severity 

The modified total radiographic scores (mTSS) were over-dispersed in the 

CLEAR cohort, with a high proportion of individuals having no erosions or joint space 

narrowing (mTSS = 0): 156 of 230 CLEAR I participants (67.8%) and 150 of 365 

CLEAR II participants (41.1%) (see Supplementary Figure S1). We assessed several 

count regression models and found that the zero-inflated negative binomial model had the 

best fit for the data, likely due to the high proportion of participants without damage 

(mTSS = 0). Thus, we used this method to evaluate the association of genetic markers 

with radiographic severity (under an additive genetic model). Association testing was 

carried out using the PSCL package in R (38) after adjusting for body mass index, sex, 

smoking status, percent European admixture (see [17] for details) and disease duration (in 

months) as covariates. Due to the inclusion criteria, disease duration was much shorter in 

CLEAR I (early RA) (median 1.01 years; interquartile range 0.57–1.52 years) than in 

CLEAR II (any disease duration) (median 9.25 years; interquartile range 3.42–17.75 

years). Using a square root transformation for disease duration improved the model fit 

and reduced genomic inflation (λGC = 1.10) compared with a model using untransformed 

disease duration. After removal of the SNPs in the extended MHC and other associated 
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loci, the λGC value was further reduced to 1.04 (See quantile-quantile plot in 

Supplementary Figure S2). 

 

Trans-Ethnic Fine-Mapping of the AFF3 Locus 

We conducted trans-ethnic fine mapping of the AFF3 locus, combining our RA 

susceptibility data with those from a previously published large trans-ethnic meta-

analysis (10). To accomplish this, we: (1) aligned reference and alternate alleles from all 

Asian, European and CLEAR populations to match those from the 1000 Genomes project 

(39); (2) generated LD matrices either from our genotyping data (African Americans) or 

from the 1000 Genomes project (Asian and European populations; data from Okada et 

al.) (10); (3) annotated SNPs from all three ethnicities using 8,138 genomic annotations 

(for example, DNAse hypersensitivity, enhancer markings and so on) provided with the 

PAINTOR3 algorithm; and (4) trimmed these to the top five uncorrelated annotations 

(correlation coefficient <0.10), excluding the annotations with lower Bayes factors. 

We then confirmed the algorithm was working properly by examining the results 

it produced in RA loci in which the causal variant was known. For instance, we generated 

a posterior probability of 1.0 for rs2476601 in PTPN22 in Europeans with RA. Following 

this, we calculated the posterior probability that each variant in the AFF3 locus was 

pathogenic using PAINTOR3 (39), which assigns a probability ranging from 0 (very 

unlikely) to 1 (highly likely). We ran the algorithm using genetic data from all three 

populations, and defined a “90% credible set” for candidate pathogenic variants as 

previously reported (40) (see Table 3). Although PAINTOR3 is capable of modeling 
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more than one causal variant per locus, in this study we conducted trans-ethnic fine 

mapping under the assumption of one causal variant. 

 

Calculation of Number of Effective Markers for the iChip Array 

Because the iChip contains many variants concentrated in specific loci and in LD 

with one another, the number of independent tests is much smaller than the actual number 

of variants genotyped. Estimates of the number of effective markers for custom 

genotyping arrays such as the iChip vary widely, between 2,800 and 60,000 LD-

independent markers (41–43). To find independent SNPs, we used Plink (44), as 

previously utilized for iChip data (45), and found 16,154 LD-independent SNPs. We thus 

defined an iChip-wide statistical significance threshold as 0.05 divided by 16,154 LD-

independent SNPs, or p = 3.1 × 10–6, similar to previous reports. We report any variants 

having p < 1 × 10–4 as showing suggestive statistical associations (for both susceptibility 

and severity). 

 

Results 

Following quality control procedures, 100,268 SNPs with MAF >0.05 were 

available for analysis in 610 RA cases and 837 healthy controls (as stated in Materials 

and Methods, 593 [97%] were autoantibody-positive and were included in subsequent 

analyses). The demographic characteristics of African Americans from the CLEAR 

registry included in this study are presented in Table 1. Characteristics of Birmingham 

controls did not differ significantly from the CLEAR registry with respect to sex, 

European admixture proportion or other variables (17). 
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Table 1 - Demographic, clinical, genetic and radiographic characteristics of African 

American participants with RA and healthy controls from the CLEAR registry. 

Demographic 

Characteristic 
Cases Controls Cases Controls 

Baseline 

characteristics 

CLEAR I N = 

233 

CLEAR II N 

= 360 

CLEAR I N = 

139 

CLEAR II N = 

265 

Age in years, mean 

(SE) 
50.0 (13.0) 56.0 (11.8) 48.1 (12.4) 57.3 (8.7) 

Sex (female), % 82.7 85 75.5 72 

Disease duration in 

months, mean (SE) 
12.9 (7.1) 114.0 (119.2) – – 

Body mass index, 

mean (SE) 
31.4 (7.8) – 31.7 (7.6) – 

Global European 

admixture estimate, 

mean (SE) 

0.17 (0.09) 0.16 (0.10) 0.16 (0.09) 0.17 (0.10) 

Number of tender 

joints, median (IQR 

25–75) 

4.0 (1.0–12.0) 4.0 (1.0–9.5) – – 

Number of swollen 

joints, median (IQR 

25–75) 

3.0 (1.0–7.0) 4.0 (1.0–10.0) – – 

Medications       

Biologics ever used 

(%) 
4.4 – 19.5 – 

Other DMARDs (%) 81.4 – 87.1 – 

Methotrexate, current 

use (%) 
63.9 60.3 – – 

Radiographic score, 

mean (SE) 
      

Joint-erosion score 1.6 (4.3) 10.7 (18.5)    

Joint-narrowing score 2.1 (5.7) 18.1 (27.7)    

Total score 3.7 (9.4) 28.8 (44.1)     

SE: standard error; IQR: interquartile range; DMARD: disease-modifying anti-rheumatic  

drug. 
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We evaluated the association between iChip markers and RA using logistic 

regression and adjusting for the proportion of overall European admixture. We observed 

seven non-HLA loci suggestively associated with RA (defined as p < 10–4); the lead SNP 

(ie, the most strongly associated) at each locus is shown in Table 2. As expected, the 

markers with the strongest association with RA were found in the MHC region (Figure 

1A). We identified rs1964995 in HLA-DRB1 as the variant with strongest association 

with RA (OR = 1.97, p = 1.28 × 10–15). 

 

Figure 1. (A) Manhattan plot of the association of iChip variants with autoantibody- 

positive RA in African Americans. The x-axis indicates chromosome and position, the y-

axis indicates association strength –log(p). The blue line illustrates suggestive statistical 

association (p = 1x10-4). The red line illustrates iChip-wide level of statistical 

significance (p = 3.1x10-6 ). (B) Conditional analysis in the extended MHC region 

(chr6:26,000,000- 34,000,000). Axes have the same meanings as in (A). Red, green and 

blue dots are SNPs in the regions immediately surrounding HLA-DRB1, HLA-DPB1 and 

HLA-B, respectively. The left panel shows the association summary statistics before 

conditioning on HLA-DRB1 alleles. The strongest association maps to HLA-DRB1. The 

right panel shows the locus after conditioning on HLA-DRB1 4-digit alleles.  
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We performed a conditional analysis of the variation contained within the 

extended MHC region as previously described by Raychaudhuri et al. (46). As shown in 

Figure 1B, conditioning on the HLA-DRB1 alleles substantially attenuated the strength of 

association of other variants within the extended MHC region. rs3134792 near HLA-B 

displayed an OR of 2.01 (95% confidence interval [CI] = 1.42–2.88; p = 9.92 × 10–5) for 

the association with RA susceptibility after conditioning. This effect size and direction of 

effect are consistent with those reported for amino acid position 9 of HLA-B in Europeans 

(OR = 2.12, CI = 1.89–2.38). No variants in HLA-DPB1 were associated with RA after 

controlling for the HLA-DRB1 alleles. However, the direction of effect and ORs 

measured in this locus were similar to those found in studies of European populations. 

Specifically, although above the threshold for statistical significance, rs9277357 had an 

OR of 1.34 (95% CI = 1.14–1.59; p = 5.39 × 10–4), which is consistent with that 

previously reported for amino acid position 9 in HLA-DPB1 (OR = 1.40, CI = 1.31–1.50). 

 

Table 2 - Variants outside the HLA region associated with autoantibody-positive RA 

rsID Chr Position A1a OR 
95% 

CI 
P value Nearest genes 

rs61828386 1 172863647 G 0.69 
0.58–

0.82 

1.79 × 

10–5 
TNFSF18, FASLG 

rs67164098 2 68556131 A 1.67 
1.31–

2.13 

4.65 × 

10–5 
CNRIP1 

rs11681966 2 100759457 C 1.5 
1.23–

1.78 

4.04 × 

10–5 
AFF3b 

rs10758368 9 36310778 A 0.7 
0.58–

0.83 

5.48 × 

10–5 
RNF38 

rs9533119 13 43049426 A 1.36 
1.17–

1.59 

6.32 × 

10–5 
TNFSF11 

rs2934178 15 48218221 C 0.7 
0.59–

0.82 

2.96 × 

10–5 
SEMA6D 

Variants having p < 10–4 in African-Americans with RA.  Chr: chromosome. aIndicates 

the test allele and minor allele for this the study. bIndicates a validated risk locus for RA. 
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We performed more detailed analysis on AFF3 (see Materials and Methods and 

Figure 2), a validated RA risk locus among Europeans and Asians (10,47,48). We found 

that rs11681966 was suggestively associated with RA in African Americans (OR = 1.5, 

95% CI 1.23–1.78, p = 4.04 × 10–5). The lead AFF3 SNP (rs9653442) associated with 

RA in European ancestry (p = 3.6 × 10–12) (10) was not strongly associated with RA 

susceptibility (p = 0.015) in African Americans. Similarly, rs10209110, the index variant 

in AFF3in another study of RA in Europeans (4), was not associated in our dataset (p = 

0.84). Therefore, due to differing association strengths and LD patterns in the locus, we 

conducted trans-ethnic fine mapping of this locus using data from African Americans, 

Asians and European RA patients and controls using PAINTOR3 (39) (see Methods). 

Most association studies on AFF3 have examined roughly the region from 

chr2:100,800,000 to 100,850,000, which contains index variants identified by multiple 

prior GWAS. However, our index variant (rs11681966, at chr2:100,759,457) is outside 

this region, located near the 5’ end of AFF3 (>1 kb). Thus, we defined the risk locus as a 

broader region (from chr2:100,709,000 to 100,875,000). We then conducted trans-ethnic 

fine mapping using PAINTOR 3. Figure 2 shows the 90% credible set for variants in the 
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Figure 2 - Results from trans-ethnic fine mapping of the AFF3 locus. (A) The 90% 

credible set for candidate pathogenic variants (top) and selected annotations used to 

prioritize variants, with blue coloration indicating variants having a given annotation 

(bottom). (B–D) Zoom plot of association summary statistics versus genomic position for 

Asians, African Americans, and Europeans with RA. Each includes a heatmap for 

variants in the locus, colored according to a linkage disequilibrium LD heatmap 

generated from that population. The color bar (bottom middle) indicates the degree of 

linkage disequilibrium for variants in each LD heatmap. 
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AFF3 locus, enriched genomic annotations used to help construct the credible set and 

zoom plots in European, Asian and African American populations with LD heatmaps for 

each (Figures 2B–D, respectively). Doing so revealed that rs11681966 and a linked 

variant, rs13003982, were also in the 90% credible set defined by PAINTOR3 (see 

Figure 2A and Table 3). Consistent with previous reports of autoimmune disease in other 

ethnicities, our trans-ethnic fine mapping analysis of the AFF3 locus in combined African 

American, European and Asian RA identified rs9653442, rs6712515 and rs7608424 as 

likely candidates to be pathogenic variants (see Figure 2 and Table 3). Several of these 

SNPs are listed as index variants in the National Human Genome Research Institute 

(NHGRI) GWAS catalog (49) and have been noted in prior studies (50). 

 

Table 3 -90 % Credible Set of candidate causal variants in the AFF3 locus. 

rsID Chr Position 
Effect 

allele 

Alt. 

allele 
Z AAa 

Z 

EASb 

Z 

EURc 

Posterior 

probability 

rs13003982 chr2 100759078 T C –3.80 –4.09 –5.65 0.021 

rs11681966d chr2 100759457 A C –4.22 –4.09 –5.65 0.105 

rs12712067 chr2 100763900 T G –3.82 –4.08 –5.69 0.029 

rs4851257 chr2 100775297 T C –3.86 –4.14 –5.59 0.025 

rs4851258 chr2 100780830 T C –3.68 –4.17 –5.60 0.053 

rs4851261 chr2 100786717 A G –3.69 –4.17 –5.60 0.024 

rs10185059 chr2 100790172 T C –3.70 –4.16 –5.63 0.027 

rs10185510 chr2 100790581 T C –3.69 –4.16 –5.63 0.027 

rs12712071 chr2 100793876 A G –3.61 –4.17 –5.69 0.028 

rs7608424d chr2 100796543 T G –2.89 –4.15 –6.48 0.293 

rs6712515d chr2 100806514 T C –2.31 –3.66 –6.91 0.119 

rs9653442d chr2 100825367 T C –2.43 –3.50 –6.95 0.188 

Chr: chromosome. a - Z-score from our study of African Americans. b - Z-score for East 

Asians from the trans-ethnic meta-analysis of Okada et al.  c - Z-score for Europeans 

from Okada et al. d - Denotes that the variant was the index variant reported in this study, 

or in another genome-wide association study. 
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Table 4 - Association between iChip Markers and Radiography Severity of RA 

rsID Chr Position A1a Stat 
Effect 

size 

95% 

CI 
P value 

Gene 

locus 

rs228702 1 7945520 G IRR 0.58 
0.44–

0.76 
6.33 × 10–5 TNFRSF9b 

rs13014054 2 33678924 A IRR 0.53 
0.39–

0.71 
2.92 × 10–5 RASGRP3 

rs73055463 2 204712807 C OR 1.99 
1.38–

2.86 
4.72 × 10–5 CTLA4b 

rs7034499 9 123687231 C OR 2.27 
1.49–

3.46 
9.60 × 10–5 

TRAF1-

C5b 

rs7077067 10 6132692 A IRR 1.48 
1.22–

1.78 
5.16 × 10–5 IL2RAb 

rs7101785 11 696437 G IRR 1.52 
1.24–

1.86 
5.17 × 10–5 TMEM80 

rs7127742 11 118521637 G IRR 0.4 
0.25–

0.62 
5.66 × 10–5 

PHLDB1/ 

CXCR5 

rs4362159 11 128305571 A IRR 0.48 
0.34–

0.69 
6.26 × 10–5 ETS1b 

rs506746 13 101981771 A IRR 0.53 
0.41–

0.68 
4.19 × 10–7 

NALC/ 

ITGBL1 

rs7193451 16 11050356 G IRR 1.65 
1.30–

2.09 
7.09 × 10–5 CLEC16A 

Variants genotyped on the iChip associated with RA radiographic severity in African 

Americans. Zero and count refer to the model coefficients for the portions of the zero 

inflated negative binomial model. Chr: chromosome; IRR: incident rate ratio. a - The 

allele tested in this study. b - Indicates a validated risk locus for RA. 

 

 

After quality control procedures, 100,169 SNPs with MAF >0.05 were available 

for analysis in 548 autoantibody-positive RA patients who had radiographic scores. A 

Manhattan plot illustrating the genetic variants associated with severity is shown in 

Figure 3. In contrast to studies in individuals of European ancestry, we did not find a 

statistically significant association between SNPs tagging the HLA region and 

radiographic severity (Table 4). We detected several suggestive associations, including 

variants in or near AFF3 (Supplementary Figure S3A), TNFRSF9 (Supplementary Figure 

S3B), CTLA4 (Supplementary Figure S3C), IL2RA (Supplementary Figure S3D),  
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Figure 3 - Manhattan plot of the association of iChip variants with radiographic severity 

in African Americans with autoantibody-positive RA. The x-axis indicates chromosome 

and position, the y-axis indicates association strength –log(p). The blue line illustrates 

suggestive statistical association (p = 1*10–4). The red line illustrates the iChip-wide 

level of statistical significance (p = 3.1*10-6). 

 

 

C5/TRAF1 (Supplementary Figure S3E) and NALCN/ITGBL1(Supplementary Figure 

S3F). rs506746 (near NALCN/ITGBL1) was the most strongly associated variant with 

radiographic severity (p = 4.33 × 10–7), but we could not evaluate support from LD for 

this association due to low marker density for this region on the iChip array, so no further 

analysis was performed. 

We chose to examine two loci (IL2RA and ETS1) in more detail. Multiple IL2RA 

variants have been associated with autoimmune conditions (juvenile idiopathic arthritis, 

type 1 diabetes, systemic lupus erythematosus [SLE], multiple sclerosis, Graves’ disease 

and so on) (49). Similar to previous reports, we observed a suggestive association in the 

IL2RA locus (rs7077067) with radiographic severity (p = 5.16 × 10–5) (51). rs7077067 

was the lead SNP in this study, which differs from that in Europeans, rs2104286 (51). In 

our study, rs2104286 had MAF = 0.05 and was only weakly associated with RA 

radiographic severity (p = 0.024). There is a paucity of trans-ethnic association summary 

statistics for RA radiographic severity. Thus, we relied on conditional analysis, pairwise 
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LD estimates and prior studies (not trans-ethnic fine mapping) to further understand these 

loci. Adjusting for the effect of rs2104286 did not eliminate the association of rs7077067 

with severity (p = 8.15 × 10–5). Previous studies in other ancestries have noted substantial 

LD between variants in IL2RA and the surrounding region, including RBM17 (51,52). In 

this locus, we found shorter haplotype blocks and lower LD between genetic variants, so 

we sought to localize an association signal in this locus. We found that the most strongly 

associated SNPs in our dataset are in the first intron of RBM17, specifically in a ~5kb 

section of the genome displaying the H3K27Ac histone marks and DNAse 

hypersensitivity (Figure 4). 

 

Figure 4 - (Top) Zoom plot indicating 

the strength of association in the region 

of chromosome 10 surrounding the 

IL2RA locus. Circles represent single 

nucleotide polymorphisms (SNPs); the y-

axis measures negative log association p 

value and the x-axis represents genomic 

position. (Middle) Diagram indicating 

histone markings and gene diagrams 

corresponding to the genomic region in 

the zoom plot. (Bottom) LD heatmap for 

the region. 

 

 

 

 

With regard to ETS1, we found that rs4362159 was associated with radiographic 

severity (p = 6.26 × 10–5). We also identified a variant linked to rs4362159, rs7108537, 

which was more weakly associated with RA radiographic severity (p = 2.8 × 10–4), but 
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exists in the transcription factor binding site–rich region. Similarly, a previous study of 

SLE identified rs6590330 as an SLE risk variant that alters binding of pSTAT1 and 

affects ETS1 expression in persons of Asian ancestry only. As expected, this SNP was not 

associated with RA radiographic severity (p = 0.11) in our dataset, nor was the lead SNP 

in our study in LD with rs6590330 (r2 = 0.03), or with other previously described variants 

reported in the NHGRI GWAS catalog (49), for example, rs1128334 (p = 0.27; r2 = 0.01) 

(53). 

 

Discussion 

Our analyses led to several important findings regarding RA in African 

Americans. First, SNPs tagging HLA-DRB1 were significantly associated with RA 

susceptibility, but not radiographic severity. Second, AFF3, TNFSF11 and TNFSF18 (all 

previously validated loci for RA susceptibility) were associated suggestively with RA 

susceptibility (1.0 × 10–4 < p < 3.1 × 10–6).  

Third, TNFRSF9, CTLA4, IL2RA, C5/TRAF1 and CXCR5 were associated 

suggestively with radiographic severity. Finally, leveraging the differential LD pattern 

between Europeans and African Americans, we defined suggestive novel lead SNPs for 

the associations of AFF3 with susceptibility and IL2RA with severity. 

As expected from previous studies and our prior work (18), we found that the 

strongest association with RA susceptibility lies in the MHC region near HLA-DRB1. 

When the SNPs in the extended MHC were conditioned on the classical HLA-DRB1 

alleles, the association signal elsewhere in the MHC region is lost. This finding illustrates 

that the genome-wide significant SNPs in our study are tagging HLA-DRB1 classical 
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alleles. This was first noted in Europeans (46), but in that study residual significant 

association signal remained near HLA-B and HLA-DPB1 after the conditioning analysis. 

We observed residual signals near HLA-B and HLA-DPB1 having the same effect size 

and direction of effect, but they were not significantly associated with RA. Considering 

the consistency of effect size, this likely reflects statistical power, but could reflect 

biological differences as well. 

Despite our study being well powered to detect an effect of similar magnitude, we 

found no association between MHC region SNPs and radiographic severity comparable 

to other reports. Viatte et al. reported an association between haplotypes defined by 

amino acid residues at positions 11, 71 and 74 of HLA-DRB1 and radiographic damage 

(15). There are several possible explanations for this discrepancy. First, the differences 

could result from cohort inclusion criteria. Viatte et al. included autoantibody-positive 

RA, autoantibody-negative RA and inflammatory polyarthritis (not meeting ACR criteria 

for classification of RA), while our study focused exclusively on autoantibody-positive 

RA. Second, because they did not stratify based on autoantibody positivity, it is possible 

that their findings reflect the known association between radiographic severity and 

autoantibody positivity. Finally, biological differences between ethnicities cannot be 

ruled out. 

AFF3 encodes LAF4, a transcriptional activator with suspected roles in lymphoid 

tissue development and oncogenesis (54). The locus has been associated with RA 

susceptibility in Europeans (4,10) as well as SLE and juvenile idiopathic arthritis 

(10,55,56). rs9653442 in particular has been the subject of several investigations as an 

autoimmune risk variant, and it was the index variant for RA risk in a trans-ethnic meta-
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analysis (10). In this study, it was found in the 90% credible set for pathogenic variants. 

However, the AFF3 locus has been identified as containing multiple independent effects 

for common complex diseases (50). Consistent with this, our results further suggest 

several promising candidate pathogenic variants in addition to rs9653442. rs6712515 is 

an index variant reported in the NHGRI GWAS catalog (49), but has previously been 

associated with cognitive phenotypes rather than autoimmunity. These two variants as 

well as rs7608424 are known to be expression quantitative trait loci for AFF3 expression 

(57). The index variant in our study, rs11681966, is found only ~400 bases from the 

transcription start site of AFF3 in a conserved region capable of binding numerous 

transcription factors. Another variant in tight linkage with rs11681966, rs13003982, is 

located only ~40 bp from the transcription start site of AFF3. Thus, our data not only 

suggest candidate pathogenic variants, but an initial finding for functional studies of the 

contribution of RA genetic variants to AFF3 to test. 

We also detected several suggestive associations with RA radiographic severity. 

CTLA4 is associated with RA in several populations (10,58), and the importance of 

CD28/CTLA4 co-stimulation in RA is highlighted by the efficacy of CTLA4Ig 

(abatacept) (59). We detected a suggestive association of TNFRSF9 with RA 

radiographic severity. TNFRSF9 (CD137) is a member of the TNF receptor family 

known for its role in T cell co-stimulation. In RA, a soluble form of CD137 is released by 

activated lymphocytes and is present in the serum (60). In collagen-induced arthritic 

mice, treatment with an anti-CD137 antibody protects against disease progression, 

possibly by amplifying antigen-specific CD11c + /CD8 + T lymphocytes and suppressing 

the pathogenic CD4 + T lymphocyte subset (61). While rs506746 (chr13:101981771, 
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near NALCN and ITGBL1) showed the strongest association with radiographic severity, 

this finding should be interpreted cautiously because of the low coverage of this region 

on the iChip array. 

We subjected two loci to additional analyses based on context provided by prior 

studies. We observed a suggestive association between RA severity and rs7077067, a 

variant near IL2RA. This locus has previously been linked to RA susceptibility (10), 

radiographic severity (31,51) and decreased likelihood of disease remission (62). 

Interleukin 2 receptor α (IL2RA or CD25) gene, together with IL2RB and IL2RG, encodes 

the high-affinity IL2 receptor. In the absence of IL2RA, there is abnormal proliferation 

and migration of T cells, resulting in widespread inflammation. This may be due to 

reduced T cell apoptosis in the thymus, resulting in autoreactive T cell survival (63). In 

addition, rs2104286 in the IL2RA locus has been shown to reduce T cell activation in 

healthy individuals (64) and is associated with radiographic severity of RA in Europeans 

(49,52). Specifically, the minor allele of rs2104286 was associated with decreased 

progression of joint destruction and lower levels of soluble IL-2Rα. rs7077067 was not in 

LD (r2≤ 0.02) with any of the 10 index variants previously reported, including 

rs2104286. The relatively weak association of rs2104286 in our study and the low LD 

suggest that additional pathogenic variants may be found upstream of IL2RA. It is 

possible that different risk haplotypes predominate in African Americans with RA. 

Alternatively, low LD between variants in the IL2RA locus may preclude tagging the 

same pathogenic variant. 

We also found an association of radiographic severity of RA with ETS1, a highly 

conserved transcription factor whose expression in B cells, T cells and natural killer cells 
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strongly affects immune cell function. Ets1 knockout mice display aberrant T cell 

differentiation, altered cytokine expression and increased differentiation into memory and 

effector T cells (65). Downregulation of Ets1 increases formation of plasma cells in part 

by upregulating Pax-5 and inhibiting Blimp1 activity (66). In humans, lupus risk alleles 

are associated with lower ETS1 mRNA expression, and the genetic basis of these findings 

differs in an ethnic-specific fashion (67). Specifically, increased binding of pSTAT1 to 

oligonucleotides containing the rs6590330 risk allele correlates with decreased ETS1 

expression in Asian SLE patients, but not in other populations, including African 

Americans (67). Consistent with this finding, we found that rs7108537, but not 

rs6590330, was associated with radiographic severity. There are transcription factor 

binding sites in the immediate vicinity of rs7108537, and the genotype of this SNP 

appears to affect ETS1 expression in persons of Yoruban ancestry, but not in other 

populations (68). Therefore, our study of radiographic severity provides additional 

evidence that population- specific variants may contribute to risk of autoimmunity by 

decreasing ETS1 expression. 

Our association testing results should be interpreted cautiously, as the sample size 

may result in inflated effect size estimates. In addition, our study was not well powered to 

detect association of common SNPs (MAF 0.15-0.50) with effect sizes <1.3. 

Nevertheless, we used the largest registry of African Americans with RA for whom 

clinical, radiographic and genetic data are available. We were unable to attempt to 

replicate our findings, because no other cohorts of African Americans with RA are 

available. 
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Finally, it should be noted that the markers selected during the design of the 

custom iChip array were derived from the 1000 Genomes project from European 

individuals, which might be suboptimal for analysis of disease-associated variants in 

African Americans, and thus additional novel risk variants RA may yet exist in this 

ethnic group. Limitations of the fine mapping study include exclusion of some genotyped 

variants due to absence from the reference dataset used for LD and inability to confirm 

uniform alignment of some variants to reference genomes based on LD and Z-score 

information. This may lead to the exclusion of potentially interesting variants. For 

instance, rs11676922, an RA index SNP previously studied in a meta-analysis of RA in 

Han Chinese and Europeans (69), was not examined in this study. This SNP is in near-

perfect LD with rs9653442 as well as rs6712515. As such, investigators who wish to 

carry out functional studies on variants in AFF3 should note that including this variant 

might alter the posterior probabilities attributed to other variants. 

 

Conclusion 

In contrast to other reports, we find that SNPs in the MHC region do not appear to 

be associated with radiographic severity of RA in African Americans. Our study also 

demonstrates the utility of ethnic-specific analysis of genetic data. We confirm the 

association of AFF3 with RA susceptibility and IL2RA and ETS1 with radiographic 

severity, and our analysis of these loci suggests several candidate variants for functional 

validation. Our analysis of the AFF3 locus suggests that rs11681966, rs9653442, 

rs7608424 and rs6712515 are high-priority targets for functional studies, but may exert 

effects in population-specific contexts. Our data add to evidence that ETS1 autoimmune 
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risk is mediated by ethnic-specific variants decreasing expression. In the IL2RA locus, 

our data suggest that trans-ethnic fine mapping studies could be valuable for RA 

susceptibility and radiographic severity due to different LD patterns. Overall, our study 

suggests that trans-ethnic genetic analysis is likely to be an important step in bringing 

precision medicine to complex autoimmune diseases, including RA. 
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Supplementary Figure S1. Distribution of modified total radiographic scores for our study 

population using kernel density estimates. Estimates were calculated according to the 

density R package. Vertical marks are individual subject’s overall total modified total 

Sharp scores on which the density estimates are based. 

 

 

 

Supplementary Figure S2. Quantile-quantile plots of p values for the iChip study. P 

values are from logistic regression (A and B), and from azero-inflated negative binomial 

model for radiographic severity of RA (C). (A) is with the HLA region excluded 

(chr6:26,000,000-34,000,000), (B) is with all markers. (C) includes markers from the 

zero and count portions of the model zero-inflated negative binomial model. 
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Supplementary Figure S3. Locus zoom plots of suggestively associated genomic loci. For 

each zoom plot, the x-axis indicates genomic position and the y-axis indicates association 

strength –log(p). The color bar indicates the strength of LD with the index SNP in purple 

and is based on LD patterns from persons of African ancestry from the March 2012 

release of the 1000 Genomes project. (A) Locus zoom plot showing the association of 

AFF3 to RA radiographic severity, according to the count portion of the zero-inflated 

negative binomial model. (B) Locus zoom plot showing the association of TNFRSF9 to 

RA radiographic severity, according to the count portion of the zero-inflated negative 

binomial model. (C) The association of CTLA4 to RA radiographic severity according to 

the zero portion of the zero-inflated negative binomial model. (D) Locus zoom plot 

showing the association of IL2RA to RA radiographic severity according to the count 

portion of the zero-inflated negative binomial model. (E) Locus zoom plot showing the 

association of TRAF1-C5 found to be associated with RA radiographic severity 

according to the zero portion of the zero-inflated negative binomial model. (F) Locus 

zoom plot showing the association of NALCN/ITGBL1 to RA radiographic severity. The 

marker density in this region is low, making it difficult to assess how much support this 

SNP has from surrounding SNPs in LD.
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Abstract 

Large meta-analyses of RA susceptibility in European and Asian populations have been 

used to identify >100 RA risk loci and inform drug discovery. Despite this, systematic 

genetic studies of RA in African populations are lacking. We address this disparity with 

the largest study of RA genetics in African-Americans to date, a two-phase joint analysis 

of 916 RA patients and 1392 controls, then aggregate our data with >100,000 European 

and Asian RA patients and controls. We provide evidence of shared effect in 28 risk loci 

reported in Europeans and Asians. Nevertheless, each population harbors a small number 

of risk loci specific to it. In African-Americans we identify GPC5, RBFOX1 and CSMD3 

(pAA<5 x 10-9; MEAS and MEUR<0.2). Among loci that do not replicate, we observe an 

enrichment of uncommon and rare variants with large effect sizes – findings that shed 

light on conflicting reports from the past. Specifically, only 2 of the 16 largest effect 

index variants in Europeans appear to confer similar risk in both Asian and African 

populations. Finally, we use CAVIARBF and PAINTOR3 to fine-map >90 shared and 

population-specific RA risk loci. Addition of African-American genotypes enabled 

identification of 8 candidate pathogenic variants (pPOST>0.8), not identified in a previous 

study, bringing the total above 20. Of these, we highlight rs2233434 in NFKBIE and 

rs3087243 in CTLA4, two variants that may influence RA susceptibility as well as RA 

therapeutic response. Thus, our results illustrate the use of multi-ethnic cohorts to provide 

information relevant to precision medicine. 
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Introduction 

 Rheumatoid arthritis (RA) affects 0.5-1% of populations worldwide [1] and has 

both environmental and genetic influences [2]. The genetic basis of RA has been 

explored extensively among persons of European (EUR) and of East Asian (EAS) 

ancestry [3, 4], but is much less well studied in populations of African ancestry (AFR).  

Our group [5] and others [3] have previously shown significant overlap between risk loci 

for RA in African-Americans, but genome-wide association studies (GWAS) of 

differences in the genetic influences on RA in African-Americans are lacking. 

There is growing evidence of important differences in RA heritability among global 

populations. HLA-DRB1 is the strongest genetic risk factor for RA in all racial/ethnic 

groups analyzed [6, 7], in particular among patients with RA-associated serum 

autoantibodies (rheumatoid factor [RF] and anti-citrullinated peptide/protein antibodies 

[ACPA]) [8]. Nevertheless, both the effect sizes and the HLA alleles [9] and amino acid 

residues [10] implicated differ between ethnicities [11]. For instance, in European 

ancestry RA, a valine residue at amino acid position 11 of HLA-DRB1 confers risk [10]. 

In African-Americans, an aspartic acid at position 11 is strongly associated with RA, 

which is not observed in European ancestry RA [12]. Furthermore, residues at positions 

71 and 74 appear to account for more RA risk in Europeans than in African-Americans. 

Thus, genetic variants in a common RA risk locus may differ among ethnicities, and 

support the need for more in-depth analysis of RA in African-Americans.  

Recent meta- and mega-analyses suggest multiple differences in risk loci outside the 

HLA region as well [13-15]. Okada et al. conducted a large trans-ethnic mega-analysis of 

RA in populations of European and Asian ancestry and identified many new RA risk loci 
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not found in either population [3].  Of note, in this analysis only 2 of the 11 largest effect 

non-HLA RA risk loci found in Europeans, (TNFAIP3 and NFKBIE) were demonstrated 

to have a concordant effect in Asians; the others either were tested but did not replicate or 

were not tested due to low minor allele frequency (MAF) [3]. Since both the effect size 

and the allele frequency of a variant directly impact the heritable proportion of a disease 

it accounts for, in either event these lead to differences in genetic architecture across 

populations. One well-known example is PTPN22, which harbors the strongest non-HLA 

risk variant in Europeans (OREUR = 1.81 MAF = 0.10) but the risk allele is very rare in 

African and Asian populations, limiting its impact [5, 16]. Other studies provide 

additional examples of non-MHC risk loci identified in European or Asian RA 

populations that differ in African-Americans or black Africans [5, 17, 18]. Thus, a major 

goal of the present study is to quantify similarities and differences among RA 

susceptibility loci in African-Americans compared to other global populations. 

Another major gap in the study of RA genetic risk is to identify variants driving the 

biology of the risk locus (so-called causal or pathogenic variants) from those merely 

associated with the disease but not linked to disease biology. Addressing this issue will 

help expedite mechanistic studies of likely causal variants in RA, which could lead to 

more precise diagnosis and patient stratification for prognosis and optimal targeted 

therapies for individual patients [19]. Many approaches to identify pathogenic variants 

are used, such as the CAVIARBF [20] and PAINTOR algorithms [21, 22], which use 

differential linkage disequilibrium (LD) and association patterns across multiple 

populations to assign each disease-associated SNP a posterior probability of being 

pathogenic. It has been shown that inclusion of African genotypes improves studies to 
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fine-map loci and to identify pathogenic variants [14, 15, 23-25]. Owing to the paucity of 

available data in African-Americans, fine-mapping approaches have largely been limited 

to European and Asian ancestry individuals [21]. Thus, a second major goal of our study 

is to to address this critical “post-GWAS” dilemma by integrating genetic studies of RA 

susceptibility from three global ancestries to narrow the lists of associated variants 

(credible sets) to those most likely to be pathogenic. 

 Our study represents the most comprehensive assessment of genetic risk for RA in 

African-Americans yet reported. Our analyses were performed in three stages (Figure 1). 

In Phase I, we conducted an RA GWAS on African-Americans using Omni 1M and 1S 

arrays and jointly analyzed these results with genotyping data from the Omni 5M array 

on an additional set of African-American RA and controls. In Phase 2, we merged data 

our African-American RA data with European and Asian data from Okada et al. [3] to 

conduct a large trans-ethnic meta-analysis (TEMA). In Phase 3, we used the results from 

the TEMA to conduct trans-ethnic fine-mapping (TEFM) of RA risk loci and identify 

candidate pathogenic variants.  

Our analyses provide several new insights into the genetic basis of RA. We 

identify a small number of associations in African-Americans that appear to be 

population-specific. Second, through analysis of the effect sizes of all index variants 

identified to date, we were able to distinguish true lack of effect from lack of statistical 

power to detect an effect. We report the number of concordant, discordant, and 

ambiguous variants in each population. Next, we found several likely pathogenic variants 

with a posterior probability (pPOST > 0.8) not previously thought to be pathogenic. These  
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Figure 1. Consort diagram showing the components and flow of the study. Phase I is a 

two-part GWAS of RA in African-Americans, which was jointly analyzed in a fixed-

effects meta-analysis. Phase II is a trans-ethnic meta-analysis, in which we combine our 

data with association summary statistics graciously provided by Okada et al. [3].  We 

then conduct a random effects meta-analysis using METASOFT. In addition to 

association p-values (RE2 p-values), we generate M-values, which represent posterior 

probabilities that an effect exists in a target population [27, 28]. Phase III takes the results 

of our trans-ethnic meta-analysis (TEMA) and enters them as input to two different trans-

ethnic fine-mapping (TEFM) algorithms, CAVIARBF and PAINTOR3. We then 

construct credible sets for RA risk loci and report variants having posterior probability > 

0.8 of being the pathogenic variant in the locus. 

 

 

findings have improved our understanding of the biology of RA-associated genetic 

variants and may ultimately lead to better ways to diagnose and treat patients with RA.   
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Results 

Genome-Wide Association Study in African-Americans (Phase I) 

Our study took part in several distinct phases that are visualized in a consort 

diagram in Figure 1. We initially genotyped 683 subjects on Omni 1M and 1S arrays.  

This included 476 African-American RA patients (421 from CLEAR and 55 VARA; see 

Table S1A); and 207 African-American controls (38 from CLEAR and 169 from the 

local Birmingham area; see Table S1B).  For descriptions of cohorts, see Methods section 

and Table S1. We also used previously existing Omni 1M and 1S genotyping data from 

991 additional out-of-study African-American controls from SLEGEN [23].  We also 

performed genotyping of an independent set of 634 African-American subjects on the 

Omni 5M array (440 RA patients and 194 controls; Table S1). Summary statistics (beta 

and standard error) from all three sets of arrays (1M, 1S, 5M) were calculated jointly[26] 

in a fixed-effects meta-analysis of RA in African-Americans (916 RA and 1,392 controls) 

using METASOFT [27, 28].  Consistent with results of genetic studies of RA in other 

populations [2-4], we found a strong association of the HLA-DRB1 region with RA in 

African-Americans (Figure S1). No other associations reached our genome-wide 

significance threshold of 5 x 10-9, but several variants were suggestively associated 

(Figure S1) in phase I. 

 

Trans-ethnic meta-analysis of RA (Phase 2) 

The summary statistics from this fixed-effect meta-analysis were then combined 

with summary statistics from European ancestry and Asian ancestry RA from Okada et 

al. [3]. Data from Okada included 19,234 European RA and 61,654 Eur controls and  
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Figure 2A is a manhattan plot of p-values from association testing of our phase II data 

(African-American GWAS) regression under an additive genetic model. The x-axis 

indicates chromosome and position, the y-axis indicates –log10(p). The horizontal red line 

is drawn at 5x10-9 and is the threshold for genomewide significance, the blue line is for 

suggestive evidence of association and is drawn at 1*10-6. Zoom plots for each of the 

associations detected only in African-Americans are presented in Figures 2B-D. Figure 

2B-D are Locus Zoom plots of novel associations with RA in African-American 

populations. Figure 2B shows chr8:114,980,000-115,150,000 (nearest gene: CSMD3). 

Figure 2C plots chr13:92,900,000–93,050,000, in an intronic region of GPC5. In this 

figure, red coloration indicates the variants are more strongly linked to rs9516053, while 

blue coloration indicates variants more strongly linked to rs9589512. Figure 2D plots 

chr16: 5,538,689-5,638,689, in an intronic region of RBFOX1. In Figure 2E, the 

independence of the associations of the PADI2 and PADI4 loci is shown. On the y-axis is 

–log10(combined p-value) from the trans-ethnic meta-analysis of all three global 

populations. The x-axis is genomic position. Red coloration indicates the variants are 

more strongly linked to rs761426 (the index variant in PADI2) than rs2301888 (the index 

variant in PADI4). The blue line indicates genomic recombination rate, which is why 

independent signals are found so close together. 
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4,873 East Asian RA and 17,641 East Asian controls. This dataset was then used to 

perform a genome-wide trans-ethnic meta-analysis (TEMA) using METASOFT [27] 

[28]. Based on this TEMA, we calculated p-values for all three populations together 

(pTE), but also for each population individually (pAA, pEUR, and pEAS). 

In Phase II, the genome-wide trans-ethnic meta-analysis (TEMA) identified three 

novel genetic associations with RA in African-American patients and controls (pAA < 

5x10-9) (Figure 2A).  Figure 2A shows a Manhattan plot of genome-wide associations 

with African-American RA patients and controls (pAA) from this TEMA. These index 

variants in these novel risk loci are: rs2203098 in CSMD3, rs9516053 in GPC5, and 

rs4602043 in RBFOX1 (see Figures 2B-D; Table 2; Table S3). These associations appear 

to be specific to African-Americans (MAA=1.0) as they were not found in previous 

studies of RA in Europeans or Asians (MEUR<0.2; MEAS<0.2). Briefly, Mi is the posterior 

probability that the effect exists in a study i (see Methods or [28]). 

In addition to these findings in African-Americans, we discovered a fourth 

association in our appears to be present in all three populations (pTE < 5x10-9; MAA, 

MEUR, and MEAS > 0.8). The PADI2 locus was not reported in the prior meta-analysis we 

used as a reference [3], but it was subsequently reported as such [29]. This association 

maps to a group of variants in intron 14 of PADI2, for which rs761426 was the most 

strongly associated SNP (OR=0.90; 95% CI: 0.88 - 0.914; pTE=2.48 x 10-10; see Figure 

2E). Okada et al. performed a conditional analysis of the PADI4 locus and identified an 

independent significant association signal at PADI2 (rs761426, adjusted P = 2.3 × 10−9) 

[29]. The RA risk T allele of rs761426 has a cis-eQTL effect that increases PADI2 

mRNA expression in whole blood (P = 4.6 × 10−12) [29]. Our data are consistent with 
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rs761426 being both the index variant and the functional variant producing the disease 

biology in African-American populations as well as others. As PAD2 encodes a peptidyl 

arginine deiminase, this variant likely exerts its effect by increasing PAD2 expression 

which increases citrullinated neoantigen production (see Discussion). We performed a 

conditional analysis of African-Americans with RA to confirm the independence of the 

association signals in PADI2 and PADI4. We calculated linkage between all strongly 

associated variants in PADI2 and PADI4, but found 0 pairs of variants across the two loci 

that had r2 > 0.10. The most strongly linked pair was rs11203290 in PADI2 and 

rs12131500 in PADI4, which have r2 = 0.089 in European populations. Thus, the 

association of PADI2 with RA appears to be independent of the association of PADI4 in 

European, Asian, and African-American ancestries.   

 

Assessment of Validated Risk Loci in African-Americans with RA 

To assess the effect of established risk loci from other populations, we performed detailed 

analyses using METASOFT [27, 28]. Given our smaller sample size, the lack of an 

association of a known risk locus in African-Americans could be due either to 

insufficient statistical power to detect an effect that exists (type II error); or the true 

absence of an effect (Beta = 0). To address this concern, we first calculated M-values for 

the 101 index variants identified by Okada et al. [3]. The M-value assigned to a genetic 

variant is similar to a posterior probability that a variant is pathogenic and produces the 

association signal found in the risk locus (see Methods). Then, to visualize the 

relationship between M-values and association p-values of these variants, we provide P-  
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Figure 3A-E. P-M plots in Europeans (3A), Asians (3B) and African-Americans (3C). M-

values are plotted on the x-axis. Here, larger values indicate increased likelihood the 

variant has an effect in the population plotted. Variants with M > 0.8 are colored blue and 

are considered to have evidence supporting effect replication in that population for the 

purposes of this study. Variants with M < 0.2 are colored red and are considered to have 

evidence against replication.  Negative log10 association p-value (y-axis) is plotted on 

the y-axis for the same population. indicate that the index variant plotted like exerts an 

effect in that population. Further details can be found in the original description of the m-

value [28]. Figure 3D-E. Scatter plots of effect size in Europeans with RA versus M-

value in East Asians and African-Americans with RA. Here, Europeans are taken as 

population 1 because studies on this population have been larger than others to date. In 

these plots, the saturation (alpha) is proportional to MAF in Europeans, while the size of 

the dot is proportional to the minor allele frequency in African-Americans (Figure 3D) or 

East Asians (Figure 3E). Here, odds ratios have been coerced to be greater than 1 by first 

taking the absolute value of beta, then exponentiating. Increasing odds ratio in Europeans 

(OREUR) on the y-axis versus MAA or MEAS on the x-axis.  
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M plots [30] for all three populations in Figure 3A-C.  Of the initial 101 RA risk variants 

studied, 18 could not be assigned an M-value in African-Americans due to low allele 

frequency. Of the remaining 83 RA variants, 51 variants had intermediate M values (0.2 

– 0.8), signifying that there was insufficient evidence to interpret the effect size as either 

lack of effect or lack of statistical power (see Table S3 for detailed data). Importantly, 

however, 28 variants had MAA ≥ 0.8 (Table 3), suggesting that the effect size for 

African-Americans is similar to that in Europeans and East Asians [28]. In comparison, 

the number of variants showing an effect in East Asians similar to that in Europeans is 

59, but this difference likely reflects better statistical power.   

There was evidence of effect discordance (MAA < 0.2) in 4 loci (Table 3) in 

African-Americans, and for an additional 18 variants, no M-value was calculated due to 

differences in allele frequency. In East Asians, the results are similar: there are 5 variants 

with MEAS < 0.2 (in CD2, IFNGR2, CXCR5, IL2RA, and GATA3; see Table S3) and no 

M-value was calculated for 18 variants due to low MAF.  

Upon examining the 22 discordant variants (here we refer both to the 4 variants 

that had MAA < 0.2; and 18 that had a MAF too low to test) we noted specific phenotypes 

compared to other RA risk variants. These discordant alleles were more likely to have 

large effect size in Europeans (OREUR > 1.25 or OREUR < 0.8) and to be coding variants.  

In fact, when the index variants were sorted by effect size in the European population, 

only 2 (HLA-DRB1 and NFKBIE) of the 16 variants with the largest effect size had both 

MAF > 0.05 and M-value > 0.2 in at least one of the other populations (Table S3).  

Overall, we find the risk variants of strongest effect in Europeans are much more 

likely not to replicate (M-value or MAF < 0.05) in both Asian and African-American 
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populations (here, both Asians and African-Americans are plotted against effect size in 

Europeans due to the larger study size of the latter population). This is shown in Figure 

3D, which plots the effect size for all 101 risk variants in European populations against 

the M-value for African-Americans with RA (the 83 M-values index variants for which 

MAA were calculated as well as the 18 index variants not plotted in Fig. 3A-C due to low 

MAF). Specifically, among African-Americans, the following large-effect loci (in 

Europeans) are found at low risk allele frequency: PTPN22, TYK2, IL20RB, ATM, 10p14, 

DNASE1L4, and TNFAIP3 (see Figure 3D). In addition, there is evidence that several 

variants lack an effect in African-Americans (MAA < 0.2): TNFAIP3, CXCR5, 

LOC145837 and c4orf52. An analogous plot is presented for East Asian populations in 

Figure 3E. In East Asians, the following large-effect risk loci (again in Europeans) are 

found at low risk allele frequency: PTPN22, ILF3, TYK2, IL20RB, ANKRD55, ATM, 

10p14, DNASE1L4, and TNFAIP3 (see Figure 3E). One variant appears to lack a true 

effect in East Asians (CXCR5), and may contribute to RA susceptibility only in 

Europeans.  

 

Association Enrichment Analysis using MAGENTA 

It is thought that the index variant is the disease-producing variant in the locus in 

only a small minority of cases [31]. Thus, an analysis based only on index variants could 

suffer from type II error. To account for this, we constructed an association enrichment 

analysis using MAGENTA [32]. Specifically, we scanned loci not shown to be 

concordant at the index variants for enrichment of genetic associations across the entire 

gene. In one case – IL3/CSF2 – the index variant had low allele frequency and was not 
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associated with RA in African Americans, but both IL3 and CSF2 were enriched for 

genetic associations in a scan conducted using MAGENTA [32] (pAA = 6.21 x 10-3 and 

pAA = 7.16 x 10-3; see Methods). This indicates that IL3/CSF2 locus may in fact 

contribute to risk of RA in African Americans, but perhaps through different variants. 

This conclusion is generally supported by the results of our trans-ethnic fine-mapping 

experiments, but an in-depth analysis of this locus is needed to decide this with certainty. 

For all other loci, neither analysis of the index variant (using M-values) nor analysis of 

the remainder of the locus (using MAGENTA) provided evidence of an association.   

 

Trans-ethnic fine-mapping and prioritizing candidate pathogenic variants 

In Phase 3, we used the association summary statistics from Phase 2 to conduct a 

trans-ethnic fine-mapping (TEFM) analyses using CAVIARBF and PAINTOR3 [21, 22].  

This analysis aimed to identify the variants most likely to be pathogenic within each RA 

risk locus (see Methods). In general, we found the results produced by the PAINTOR3 

algorithm to be more reliable than those computed using CAVIARBF. This is likely 

because CAVIARBF does not yet integrate data from multiple populations into a single 

fine-mapping experiment, which is a key point given the strengths of our study. As a 

result, though we generated estimates using CAVIARBF, we relied on those from 

PAINTOR3, and those are the values reported elsewhere in the manuscript (e.g. Table 4 

and Figure 4). We analyzed 98 non-HLA RA risk loci (those in the HLA region have 

been extensively studied).  Consistent with the report of Kichaev et al., we validated that 

the following are likely to be pathogenic variants (posterior probability > 0.8): rs2476601 

in PTPN22, rs7731626 in ANKRD55, rs147622113 in ILF3, rs909685 in SYNGR1, 
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rs1893592 and rs12715125 in EOMES, rs968567 in FADS2, rs657075 in IL3/CSF2, and 

rs71508953 in ARID5B (see Table 4). This overlap between our findings is not surprising 

granted the large overlap of our datasets, which both used the European and Asian RA 

samples from Okada et al. [3]. 

Importantly, however, despite being a relatively small proportion of the total 

dataset, addition of the African-American data enabled identification of 9 additional 

variants highly likely to be pathogenic (posterior probability > 0.8).  These include: 

rs3087243 in CTLA4 (see Figure 4), rs72634030 in C1QBP, rs34536443 in TYK2, 

rs706778 in IL2RA, rs10774624 in SH2B3/PTPN11, rs7902146 in ARID5B, rs2812378 in 

CCL19-CCL21, rs2233434 in NFKBIE, and rs13330176 in IRF8 (see Table 4). Several of 

the variants identified are either known to be the pathogenic variant in the locus or are the 

subject of recent and ongoing studies (see Discussion).  

In most risk loci, no single variant with pPOST > 0.8 was identified. Nevertheless, 

in some of these cases, the variants in the credible set nevertheless suggest concrete 

directions. For example, the 80% credible set in the IFNGR2 locus was comprised only of 

rs9974603 (pPOST = 0.59) and rs9975155 (pPOST = 0.24). Both of these variants lay >25 bp 

from a conserved transcription factor binding site (TFBS): rs9974603 is ~25 bp from the 

TFBS of the transcription factor E2F6, and rs9975155 is >10bp from that of ZBTB7A, 

directly within the 5’UTR of IFNGR2. A recent study demonstrated that a large 

proportion of RA pathogenic variants lay within loci occupied by the Epstein Barr viral 

proteins EBNA2 and EBNA3C [33]. This study suggested that autoimmune risk variants 

exert their effects by allele-dependent binding events in loci known to interact with  
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Figure 4.  The association and putative biological rationale for the association of    

rs3087243 in the CTLA locus. A. (Top) – Scatter plots of the association (-log10 p-value) 

of genetic variants in the CTLA4 locus (chr2:204,689,000-204,789,000) in African (left), 

East Asian (middle) and European (right) to RA susceptibility. Bottom Panels are 

heatmaps of linkage disequilibrium between variants measured with r2.  B. (Middle, left) 

- Scatter plot of the posterior probability of pathogenicity for each variant found within 

chr2:204,689,000-204,789,000. Variants in red belong to the 90% credible set, other 

variants are colored in blue. C. (Middle, right) - Gene diagram of the region containing 

the most likely candidate pathogenic variants. The region in C is highlighted in light 

yellow in panel B. The top track is a gene diagram of the final intron and exon, the 

3’UTR and intergenic region downstream of CTLA4. There is a dinucleotide repeat in the 

3’UTR of CTLA4 in linkage marked (AT)28 with rs3087243-G. The (AT)28 variant of this 

short tandem repeat decreases CTLA4 mRNA levels in autoreactive T cell lines. The 

second track shows transcription factor binding sites (TFBS). Variants in red are the same 

as the credible set found in B. The bottom track shows raw DNAse hypersensitivity 

signal in Tregs (yellow), Th17 cells (green), Th1 cells (green), and naïve T cells. D. 

(Bottom) – Model of effects of (AT)28 and CTLA4 CT60G genotype. Normal T cells 

(bottom, left) having (AT)7 and CTLA4 CT60A genotype express more CTLA4 than 

autoreactive cells (compare red dotted box to green dotted box), tipping the balance 

toward co-repression. This difference in CTLA4 level results in a normal state in which 

CD28 is more likely to remain unbound by CD80/86 (green dashed box) than compared 

to autoreactive T cells (red dashed box). However, the RA therapeutic CTLA4-Ig 

competes with CD28 to bind CD80/86 (blue dashed box), restoring a balance between co-

repression and co-stimulation. This may serve to counteract decreased CTLA4 expression 

and levels resulting from a risk genotype or other cause (compare blue dotted and dashed 

boxes to red and green). 
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EBNA proteins. How this hypothesis may relate to these variants in IFNGR2 is treated in 

the Discussion.  

Therefore, although this locus contains 2 variants in the credible set instead of 1, 

both the position of the implicated variant (in the TFBS marking but outside the 

consensus binding site) and the biological effect are extremely closely related. 

Anecdotally, we observed many other loci that contain very interesting results but had 

several variants in the credible set. We report all the credible sets containing 5 variants or 

fewer in extended data.  

 

Discussion 

Novel associations with RA susceptibility in African-Americans 

 Our detailed analyses of African-Americans has identified several new RA risk 

loci (p value below our threshold of 5 x 10-9):  CSMD3, GPC5, RBFOX1, and PADI2.  

CSMD3 is a 73 exon gene stretching ~1.2Mb across 8p23. Interestingly, variants near its 

homolog CSMD2 were also suggestively associated with RA (rs55798295, p = 2.84 x 10-

7). This family of molecules (CSMD1, CSMD2, and CSMD3) appear to be involved in 

complement-mediated synapse pruning in the CNS. CSMD3 is associated with immune 

phenotypes such as influenza infection and asthma [34, 35]. CSMD3 might contribute to 

RA by decrease inhibition of complement activation, but the remarkable pleiotropy of 

these genes suggests multiple other explanations. RBFOX1 is a regulator of alternative 

splicing of mRNA that has been extensively implicated in neural phenotypes [34]. 

However, there is also evidence that it influences many immune processes, including 

TCR and BCR receptor signaling, leukocyte migration and differentiation [36]. 
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We also found association of RA with a variant near glypican-5 (GPC5), a pleotropic 

gene associated with several immune phenotypes, including multiple sclerosis in African-

Americans [34]. Glypicans are components of proteoglycans that appear to influence the 

behavior of the extracellular matrix during development and cellular proliferation. 

Another glypican molecule, GPC3, is a well-studied oncogene that serves as a ligand to 

CTLA4 (CD152) on the surface of CD4+CD25- T-cells, thereby influencing cellular 

proliferation and TNF production [37].  

GPC5 is also a tumor suppressor gene, but appears to inhibit tumor growth by 

suppressing WNT/B-catenin signaling [38]. Polymorphisms in GPC5 have been 

associated with multiple sclerosis in Norwegian [39], Spanish [40], and African-

American populations [41], as well as with IFN-B response in MS [42]. A trans-eQTL in 

the GPC5 locus appears to downregulate Proliferating Cell Nuclear Antigen (PCNA) 

associated factor, which may result in increased proliferation of CD4+ T-cells in the RA 

synovium, or in synovial fibroblasts [43]. Glypican-5 is also known to modulate blood 

protein levels through interaction with PRKCQ [44], another RA risk gene that is highly 

expressed on T-lymphocytes. In light of these observations, we speculate that variants in 

the GPC5 locus may alter CD4+ T-cell behavior, contributing to dysregulated ECM 

growth in the RA synovium. Overall, while replication of this locus is needed, prior 

findings indicate both a known role for this gene in autoimmunity. African-American 

population with MS and RA appear to share the IFN-B response genes IRF5, IRF8, and 

now GPC5. While IFN-B never emerged as an effective treatment for RA, findings from 

MS indicate  and that this risk gene may be druggable.  
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 Our trans-ethnic meta-analysis identified an association with PADI2 in European, 

Asian, and African-American populations (M-value for each population > 0.95). Ours is 

the first report implicating PADI2 as an independent genetic risk factor for RA in 

African-Americans (Figure 2E). PADI2, PADI3, and PADI4 have distinct specificities 

against cellular substrates, which has important implications regarding autoantigen 

selection in RA [45]. Both genetic and experimental data suggest the association of 

PADI2 with RA is independent of that of PADI4 [29, 46], a known risk allele for RA and 

a key enzyme in RA due to its role in citrullination and the generation of the ACPA 

response [47]. Recent clinical evidence shows that not only PAD4 but PAD2 protein 

level and activity are increased in synovial fluid of RA compared to those with 

osteoarthritis [48]. Likewise, a recent study of TNF-induced arthritis in mice showed that 

PADI2 deficiency led to decreased numbers of plasma cells, decreased serum IgG levels, 

and decreased clinical and pathological findings [49]. In addition, citrullination was 

nearly absent from the ankles of PADI2-deficient, but not PADI4-deficient, mice [49].  

By contrast, in humans with RA, PAD2 level in the joint is elevated, very likely owing to 

two distinct mechanisms. First, the T allele of rs761426 (which was the index variant in 

our study) appears to increase expression of PADI2 mRNA in the whole blood [29]. 

Second, suppression of PADI2 expression mediated by microRNA miR-4728-5p (a 

suppressor of PADI2 expression) appears to be reduced in RA. Of note, not only PADI2 

but the locus containing miR-4728-5p itself is also has a genetic association in European, 

East Asian [3], and African populations (rs59716545; pTE = 2.60 x 10-13; MEUR = 1, MEAS 

= 1, MAA = 0.95). Thus, RA risk variants appear to affect expression of PADI2 in RA 

targets appear to act co elevated levels of PADI2 in RA. 
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With regard to PADI4, the index variant is rs2301888, is in near total linkage with 

rs2240335. rs2240335 codes a synonymous mutation of the second amino acid of an 

alternative transcript for PAD4. This variant is an eQTL for PAD4 expression the A 

allele of rs2240335. This change was recently shown to increase PADI4 expression in 

neutrophils. Of note, the authors of this study also describe a statistically significant, 3-

fold enrichment of neutrophil eQTLs among other RA risk variants. Once expressed, 

PADI4 citrullinates histones and other proteins that initiate NETosis (a central process in 

RA pathobiology), particularly when in the presence of RF in an oxidative environment. 

As a result, increased expression of PADI4 based on rs2240335 genotype fits well with 

current understanding of the relationship between PAD enzymes and autoantibody-

mediated pathogenicity. Overall, the results of our association testing as well as our trans-

ethnic fine-mapping of PADI2 and PADI4 loci support the conclusion that genetic 

variation in these loci and their regulators contributes to RA pathogenesis by increasing 

expression of these enzymes in all three global populations. Once produced, PAD2 and 

PAD4 catalyze citrullination, resulting in a greater number of citrullinated neoantigens 

and thereby driving autoantibody-mediated RA pathobiology. 

 

Insights gained from analysis of previously validated RA risk loci 

Examples of effect discordance of RA risk loci in African-Americans compared to other 

ethnicities has been observed previously (e.g. lack of influence of rs2476601 in 

PTPN22). our study suggests these variants tend to be easier to isolate using trans-ethnic 

fine-mapping. Indeed our in-silico approach successfully isolated large effect coding 

variants with pPOST > 0.99 in loci such as PTPN22, ILF3, and TYK2 (Table 4 and 
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discussed further below). The presence of this discordance may have a future impact on 

precision medicine. Treatments that target the pathways containing these risk genes might 

vary in efficacy among persons of various ethnic backgrounds. As Okada et al. note, 

ILF3 and TYK2 (the third and fourth strongest genetic risk variants for RA in European 

and Asian populations) both have protein-protein interactions with the IL-6 receptor 

(soluble and membrane bound IL-6Rα) which are targeted by RA drugs toclizumab and 

sarilumab. The RA-associated ILF3 and TYK2 variants are uncommon in European 

populations, but very rare or totally absent in East Asians and Africans. Therefore while 

our results agree with prior findings that the genetic basis of RA is mostly shared, 

differences do exist, which may have important clinical consequences.   

 

Candidate pathogenic variants 

We used the results from our meta-analysis (Phase 2) to guide our fine-mapping 

studies (Phase 3).  We compared our results to those of Kichaev et al. [21], who also used 

the European and Asian set analyzed by Okada et al. [3]. Kichaev et al. reported a 

posterior probability of pathogenicity > 0.8 for 12 of the 101 loci associated with RA. 

Adding our African-American RA dataset to the same dataset of Europeans and Asians 

from Okada et al. [3] yielded important similarities and differences. We generated 

posterior probability estimates for the same 12 variants, which were largely concordant 

with prior results (Table 4). However, the addition of our data, though only 4% of the 

total data by number of study participants, enabled identification of eight additional novel 

candidate pathogenic variants.  
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While some of these variants are not well-studied, several of these variants are 

known functional polymorphisms. For instance, we obtained a posterior probability 

estimate of 1 for rs2476601, a well-known autoimmune risk variant, and a posterior 

probability of 0.99 for rs34536443, which is a loss-of-function variant that alters catalytic 

ability of TYK2. We also identified the recently characterized variant rs909685 in 

SYNGR1. This SNP was recently shown to disrupt the binding site of PITX3, which 

imparts allele specific expression (ASE) of SYNGR1 at baseline. Of note, the variant we 

identified in the 5’UTR of REL also acts by disrupting a conserved residue in the CTCF 

canonical binding motif other examples can be seen in Table 3B. 

Inclusion of data from African-American populations allowed specific insight in 

two risk loci. These are rs2233434-rs2233424 in NFKBIE pPOST = 0.99), and rs3087243 

in CTLA4 (pPOST = 0.80). First, NFKBIE is the second largest effect non-HLA risk 

locus that has strong evidence of trans-ethnic support, with an OR near 1.25 in each 

population. A recent study identified two functional nonsynonymous variants in 

NFKBIE: the G allele of rs2233434 (Val194Ala) G allele and the C allele of rs2233433 

(Pro175Leu). This study showed that both of these variants increase NF-κB activity upon 

stimulation of HEK293A cells with TNF-α, with rs2233433 having a stronger effect, and 

demonstrated an expression imbalance in individuals heterozygous for rs2233434 [50]. 

The same study showed dose-dependent inhibition of NFKBIE expression during 

exposure to vectors carrying the non-risk allele of rs2233434. Thus, functional data 

suggest that either of these variants could contribute to RA risk in European and Asian 

populations. However, according to our analysis rs2233434 (pPOST = 0.482) is >400 times 

more likely to be the pathogenic variant than rs2233433 (pPOST = 0.001). We investigated 
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why one variant was so much more strongly prioritized granted that these two variants 

are strongly linked in European and Asian populations (r2 = 1) and both have been shown 

to produce functional effects. We found that the T allele of rs2233433 is completely 

absent from West African populations. 

By contrast, rs2233434 appears to be present and account for the association 

signal in African-Americans. Because rs2233433 is absent but rs2233434 is present in 

Yoruban populations, but the effect on RA risk is still detected in Yoruban populations, 

we suggest that rs2233434 exerts the effect on RA risk through allele-specific expression, 

ultimately resulting in decreased inhibition of NF-κB and increased RA risk in all ethnic 

groups. However, there is a second key point. Imamura et al. provide further support for 

the role of rs2233424 in RA. They both knockdown and overexpress NFKBIE in human 

RA synovial cells with and without the Val194Ala genetic variant (rs2233434). 

Following this, they show that methotrexate derivatives accumulate within the cells 

overexpressing the Val194Ala mutant allele compared to wild-type NFKBIE due to a 

decrease in SLC19A1 mRNA [51]. Thus, this variant may affect both NF-kB signaling in 

the RA and methotrexate treatment response in the rheumatoid synovium. Granted the 

heterogeneity found among large effect loci in this study, this may be but one of many 

tantalizing illustrations of ways in which inclusion of African samples can aid precision 

medicine for individuals of African ancestry as well as for all populations.  

Our trans-ethnic meta-analysis confirmed the well-known association of CTLA4 to RA 

susceptibility (Figure 4A) and our trans-ethnic fine-mapping provided improved insight 

into this association of CTLA4 to RA susceptibility (Figure 4B). Specifically, our 90% 

credible set included rs3087243 (pPOST = 0.80) 3’UTR of CTLA-4 as well as rs11571302 
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- an eQTL for CTLA4. rs3087243 itself lies within the binding site for several 

transcription factors (see Fig 4C), is associated with lower mRNA levels of soluble 

CTLA-4 [52], and lies within a region of transcription factor binding (including for 

STAT3 - Figure 4C). As a result, it may be a “pathogenic” variant that exerts effects on 

RA susceptibility directly.  However, to the best of our knowledge, there is not yet 

experimental demonstration of a mechanism through which rs3087243 relates to RA. One 

recent report indicates that the CT60G allele does not alter binding affinity [53]. It is thus 

possible that a different variant underlies RA risk. Because of the way trans-ethnic fine-

mapping algorithms work, if this is true, such a variant is highly likely to be 1) linked to 

rs3087243, 2) not directly genotyped and 3) not easily imputed. In fact, there is a 

dinucleotide repeat lying within the 3’UTR of CTLA4 (see Figure 4C) [54] that normally 

has 7 repeats -  (AT)7 – and a variant allele with 28 dinucleotide repeats - (AT)28. It was 

recently shown that the (AT)28 variant is in strong linkage with the G allele of rs3087243, 

and transfection of (AT)28 allele decreases CTLA4 mRNA and protein levels in Jurkat T 

cells [54]. Because CTLA4 serves a co-repressor for T-cell activation, decreased RNA 

and protein levels would be expected to increase risk of autoimmune disease processes 

whose pathophysiology has T cell component. Thus, we present a model in which either 

rs3087243, or (AT)28, or a haplotype containing both variants, mediates RA risk by 

decreasing CTLA4 expression and protein levels (Figure 4D). In addition to identifying 

elongated (AT)n elements, we identified 5 other genetic variants in strong LD (r2 > 0.8) 

with rs3087243 in one or more ethnic population. Because CTLA-4 can compete with 

CD28 for CD80/86 binding, reduction of its expression could lead to increased immune 

response in T cells (Figure 4D). CTLA4-Ig is a therapeutic for RA that acts presumably 
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by binding to CD80 and CD86, thereby preventing their interaction with CD28 (Figure 

4D). Therefore, results are consistent with the hypothesis that rs3087243 is a functional 

variant that produces RA risk, but they are also consistent with the possibility that 

rs3087243 tags a functional (AT)n repeat element that decreases transcription of CTLA-

4. Thus, it is tempting to speculate that the presence of such a variant could predispose an 

individual to RA.  

We recently reported trans-ethnic fine-mapping results on the AFF3 locus 

recently based on Immunochip genotyping [55].  The results from the current analysis 

and the Immunochip analysis agree closely. Our approach once again nominated variants 

near the 5’UTR of AFF3, many of which are eQTLs for AFF3. In particular, rs9653442 

(pPOST = 0.33) and rs6712515 (pPOST = 0.25) were again found in the credible set [55].   

Finally, TEFM of the IFNGR2 locus identified 2 candidate variants in the IFNGR2 

promoter. EBNA3C is known complex with, and drive overexpression of, both E2F6 and 

ZBTB7A. Both E2F6 and ZBTB7A are transcriptional repressors, and both act on E2F 

transcription factors including E2F1. In other words, EBNA3C promotes ZBTB7A and 

E2F6-mediated inhibition of E2F1, which promotes cell proliferation through several 

prominent RA risk genes involved in the cell cycle, including ATM, CDKN2, CDKN4  

[56]. The recent manuscript shows that autoimmune risk variants in loci bound by EBNA 

proteins tend to exert their effects by altering binding of either viral or human proteins. 

Because EBNA3C accentuates the effects of E2F6 and ZBTB7A, it seems most likely 

that the C allele of rs9974603 and the T allele of rs9975155 serve to increase binding of 

these transcription factors to the IFNGR2 promoter, thereby increasing IFNGR2 

expression in RA in the manner our lab has reported previously [57]. Prior evidence 
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suggests that increased expression of IFNGR2 in RA is most likely to occur in T cells 

[58], B cells, or macrophages [59]. As such, we recommend assays (e.g. EMSA) to 

demonstrate if these TFs do in fact display allele specific binding and to begin by looking 

in these cells for differences in IFNGR2 expression differences in RA versus healthy 

controls. It may also be important to include EBV infection as a group and covariate in 

these analyses. 

Three fine-mapping studies of RA have obtained very different posterior 

probability estimates for variants in CD28 and ANKRD55. Kichaev et al. report 

rs7731626 and rs72767222 in ANKRD55 [21], while Westra et al. report rs11377254 in 

ANKRD55 and rs117701653 in CD28 [53]. We found rs7736126 was a candidate variant 

(pPOST = 1.0), but did not confirm any of the others. The differences in could stem from: 

1) different study designs (e.g. use of related traits in Europeans only versus use of RA-

only data in a trans-ethnic study) 2) differences in imputation quality, imputation method, 

and additional QC steps (see Supplementary Methods), 3) differences inclusion of rare 

variants, indels, etc., 4) differences in preparing samples for modeling more than one 

causal variant per locus. Granted these discrepancies, we advise caution in interpretation 

of our fine-mapping results in the CD28 and ANKRD55 loci. 

Our study has several limitations. First, although the present study represents the 

largest association study of RA conducted in African-Americans, the sample size limits 

our statistical power to detect associations of variants with low MAF and small effect size 

in our association study as well as our meta-analysis. Second, we relied on reference data 

sets to generate LD matrices for the European and Asian samples since genotypes data 

were not available. However, in several cases we detected a large difference between 
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reported subpopulation-specific allele frequencies from Okada et al. and the 1000 

genomes data. In such cases we had to risk miscalibration of LD matrices or accept data 

loss. Variants with a difference in minor allele frequency > 0.1 were excluded from the 

analysis. We used a combination of MAF, strand checks, and comparisons of LD and Z-

statistics to unambiguously align most SNPs to the 1,000 Genomes reference. 

Nevertheless, a fraction of SNPs (in particular A/T and G/C SNPs with AF near 0.5) had 

to be dropped from the study. In addition, indels, short tandem repeats, and other variants 

that are difficult to impute are missing from the data as well. In the event that such a 

variant is in fact the pathogenic variant, the posterior probability of that variant can be 

misattributed to other variants (typically strongly linked variants) so caution is advised. 

We refer the reader to the analysis of CTLA4 CT60G and the linked (AT)28 repeat for an 

example. 

 This study accomplishes several related goals. We begin with the largest genome-

wide association study in African-Americans with RA to date. We then conduct a trans-

ethnic meta-analysis to find concordant and discordant risk loci. We use these results to 

fuel a trans-ethnic fine-mapping study using published data from three global 

populations. The results of these studies contain several valuable suggestions. First, our 

meta-analysis demonstrates widespread differences in RA disease architecture based on 

differing allele frequency. Second, the inclusion of African Americna genotypes – even 

though they comprised only ~4% of the total data – nearly doubled the number of 

candidate pathogenic variants we identified. The importance of this is well-illustrated by 

rs2233433 and rs2233434 in NFKBIE – 2 variants that are in perfect linkage in Asian and 

European populations but are absent from African-Americans. Our results may help 
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identify biomarkers both for RA disease risk and for methotrexate responsivity, to key 

goals in RA precision medicine. Because of this untapped potential, we suggest that the 

use of trans-ethnic cohorts in the future is likely to greatly aid the goals of precision 

medicine, both for the underserved and for other populations. 

In summary, we present the most complete picture of RA in global populations 

assembled to date. We present evidence that the PADI2 locus is independently associated 

with RA Europeans, Asians, and African-Americans. In addition, we present evidence 

that 28 RA risk loci identified in European and Asian populations likely predispose to RA 

in African-Americans (m > 0.8) while 4 likely do not (m < 0.2). Finally, we use a trans-

ethnic fine-mapping approach to identify an additional 8 high-confidence (pPOST > 0.8) 

candidate pathogenic variants in RA risk loci. Overall, our study provides a strong 

rationale to democratize genetic analysis across global populations, both to understand 

differences in risk architecture and to aid the goals of precision medicine for RA. 

 

Materials and Methods 

A.  Study patients and controls.   

  We genotyped a total of 916 cases of autoantibody-positive (ACPA-positive) 

African-American patients with RA (from the CLEAR Registry and the VARA Registry) 

and 1370 African-Americans controls without rheumatic disease.  Genotyped controls 

were from the CLEAR Registry and the local Birmingham area.  Out-of-study, previously 

genotyped controls were from SLEGEN – The International Consrtium on the Genetics 

of Systemic Lupus Erythematosus) (see:https://slegen.phs.wakehealth.edu/public/index. 

cfm).  All RA cases satisfied the 1987 ACR classification criteria [60].  All subjects were 
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self-declared African-Americans and >19 years of age.  Genomic DNA from the CLEAR 

patients with RA and controls was isolated from peripheral blood using standard 

techniques as previously reported [7].   

 

1.  The CLEAR Registry 

 The CLEAR registry enrolled African-Americans with RA.  CLEAR 1 enrolled 

African-Americans of ≤ 2 years disease duration (from 2000-2006), and CLEAR 2 

enrolled African-Americans with RA (not previously enrolled in CLEAR 1) of any 

disease duration (2006-2011).  Participants were enrolled at academic sites: University of 

Alabama at Birmingham (Coordinating Center); Grady Hospital/Emory University, 

Atlanta, GA; University of North Carolina, Chapel Hill, NC; Washington University, St. 

Louis, MO; and Medical University of South Carolina, Charleston, SC. CLEAR controls 

were African-Americans without rheumatic disease who were age-, sex-, and geographic 

location-matched (as a group) to the CLEAR RA patients.  Controls were screened to 

exclude rheumatic disease using the validated Connective Tissue Disease Screening 

Questionnaire (CSQ) [61, 62]. Human subject protocols were approved by the 

Institutional Review Boards of the each of the participating institutions.  Patient 

sociodemographics, medical history, medications, co-morbid conditions, disease activity 

measures, and other variables were collected along with blood for extraction of DNA, 

serum, etc., and radiographs of the hands and feet for scoring of erosions and joint space 

narrowing (see below), making the CLEAR registry a valuable resource for the study of 

RA [7, 63, 64][65, 66].  ACPA status was confirmed on all CLEAR participants as 

previously reported [67].  Characteristics of the CLEAR RA patients and controls are 
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shown in Table 1.  The genotyping arrays on which the all participants were assayed in 

this study is shown in Table S1.   

  

2.  The Veterans Affairs Rheumatoid Arthritis (VARA) Registry 

 VARA is a prospective, observational, multicenter study that includes 12 VA 

medical centers [68].  55 African-Americans with ACPA-positive RA from VARA were 

included.  ACPA status was confirmed using a second generation anti-cyclic citrullinated 

protein ELISA.  Demographic and disease characteristics for African-Americans 

participating in VARA have previously been reported [69].   

 

3.  Birmingham Controls 

 In addition to CLEAR controls, we genotyped healthy African-Americans from 

the Birmingham, Alabama area, as previously described [70].  Genotype data from 

previously reported African-American controls from the SLE Genetics consortium 

(SLEGEN) study were also included in the analysis [70] (see Table S1A).  

 

B.  Genotyping methods 

1.  Genotyping Arrays 

Illumina genotyping for all samples was conducted with standard Illumina Infinium 

protocols and 500 ng of genomic DNA and clustering was performed with Illumina 

GenomeStudio software. CLEAR and VARA RA cases, CLEAR controls, and 

Birmingham controls were genotyped on the Illumina Omni 1M array, the Omni 1S 

array, or both (Table S1A). These samples were hybridized to Omni 1M (Omni 1M Quad 
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v1.0_B) and Omni 1S (Omni 1S_8 v1_H) arrays. We also genotyped CLEAR RA 

patients and controls on the Illumina Omni 5M Array.  

 

2.  Quality Control and Principal Components Analysis 

 We performed rigorous quality control on each array separately using the same 

criteria for all arrays. Samples were excluded for any of the following reasons: (i) a call 

rate >98.5% of the total number of SNPs on the chip (ii) observed heterozygosity rate ± 3 

s.d. from the mean (iii) outliers based on PCA were removed based on visual inspection 

of PCA plots (iv) mismatches in sex designation as determined by genotype versus 

reported gender (v) IBD > 0.1875 between samples, in which case the sample with the 

lower call rate was excluded. Markers were excluded for any of the following reasons: (i) 

call rate >98.5% on each chip separately (ii) Hardy-Weinberg equilibrium (HWE) p-

value > 1x10-5 in control samples (iii) minor allele frequency (MAF) ≥ 0.05. We used 

EIGENSTRAT [71] to estimate principal components. We ensured the selection of SNPs 

used to generate prinicipal component loadings did not introduce correlations between 

principal components and cohort membership, plate membership, and other variables of 

interest. For the Omni 1M and 1S chips, principal components 1, 2, 4, and 6 were 

included as covariates due to mild correlation with phenotype status; for the Omni 5M 

chip, principal components 1, 2, 4, and 8 were included. We used data from HapMap3 

Utah Residents with Northern and Western European Ancestry (CEU), Yoruba in Ibadan, 

Nigeria (YRI), and Han Chinese and Japanese from Tokyo (CHB+JPT) to investigate the 

clustering of our study data.  As expected, African-American samples were admixed 
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between the CEU and YRI samples (Figure S2).  To control for batch effect, we included 

batch ID as a covariate in association testing.  

 

3. Imputation 

Imputation was carried out using IMPUTE2 [72] with 1000 Genomes 

Cosmopolitan Samples. SNPs with high missingness across all studies were preferred, 

and care was taken to ensure there were no large differences between case-control status 

and data missingness among SNPs used for imputation. The total number of SNPs after 

imputation was ~22,000,000. After QC based on imputation quality (Info > 0.5) and 

expected allele frequency (EAF > 0.05), 8,380,626 SNPs remained for analysis. About 

0.6% of SNPs with EAF > 0.05 were excluded due to imputation quality. Exclusion of 

the MHC yielded a lambda value of 1.031 (Figure S3A), indicating little genomic 

inflation. Exclusion of the MHC yielded a lambda value of 1.03 for both the 1M and 1S 

arrays, and for the 5M array as well (Figure S3B). 

 

D.  Analysis of Genotyping Data 

1.  Joint Analysis of Omni 1M, 1S and 5M data 

 We jointly analyzed all of our GWA data from the Illumina Omni 1M and 1S 

(phase I) and 5M (phase II) arrays. Logistic regression analysis was performed on both 

genotyped and imputed SNPs using SNPtest v2.5.1 [73] after including sex, cohort ID, 

and principal components as covariates under additive and dominant genetic models.  

Setting an appropriate threshold of genome-wide significance has been the subject of 

substantial inquiry due to the difficulty of establishing an accurate family-wise error rate 
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in the context of widespread LD. Most studies, particularly studies of Europeans subjects, 

set this threshold at 5*10-8 when testing markers under an additive genetic model.   

 However, we felt that a more conservative alpha level was appropriate for our 

study for two reasons. First, compared to European populations, African/African-

American populations have smaller average linkage blocks and weaker average LD.  This 

has resulted in a recommendation of ~1-2*10-8 for the alpha threshold for genome wide 

significance in African/African-American populations [74, 75].  Second, we tested many 

of our variants under both additive and dominant genetic models so we applied an 

additional Bonferonni correction as a further conservative measure we applied an 

additional Bonferonni correction, which yielded alpha = 5 x 10-9. We considered SNPs 

with joint p-value < 1*10-6 suggestively associated, which is conservative compared to 

many recent reports [76]. QQ plots are given for the Omni 1M and 1S arrays (phase I; 

Figure S2A) and the Omni 5M arrray (Phase II; Figure S2B) after exclusion of the MHC 

region. Because we expected that true positive associations would share the same 

direction of effect (granted the similar disease state and ethnic background) we used a 

fixed effects meta-analysis for this portion of the study. 

 

2.  Meta-analysis of RA GWA studies in Europeans, 

Asians, and African-Americans 

 

Because there is evidence of heterogeneity of effect in many risk loci previously 

reported in Asians and Europeans (see Discussion) we tested variants using random 

effects meta-analysis implemented by Han and Eskin [27, 28]. In addition, we sought to 

employ a formal test of effect size in order to decide which RA risk loci from studies of 

other ethnic groups replicated in our study of African-Americans.  To do this, we 
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conducted a trans-ethnic meta-analysis using GWA summary statistics from African-

Americans (our analysis), and summary statistics from persons of European ancestry and 

from Asian ancestry kindly provided by Okada and colleagues as used in their RA meta-

analysis [3].  All data were combined into one dataset and analyzed using METASOFT, 

an open-source meta-analysis tool (http://genetics.cs.ucla.edu/meta/) [27, 28].  For each 

variant in this multi-ethnic dataset, METASOFT calculated:  a) association p-values for 

RA in Europeans, East Asians and in African-Americans (pEUR, pEAS, and pAFR, 

respectively) and b) m-values (posterior probabilities that a genetic variant has an effect 

in a given population). p and m values for all the index variants reported by Okada et al. 

are shown in Table 2. m-values were not calculated for 18 of the index variants in 

African-Americans because of either low minor allele frequency or exclusion based on 

QC metrics as described above.  We categorized results into three strata as used by Han 

and Eskin [27, 28].  These include:  a) SNPs that are predicted to have an effect (m-value 

> 0.8); b).  SNPs that are predicted to not have an effect (m-value < 0.2); and c).  

ambiguous SNPs (m-value between 0.2 and 0.8) in which it is unknown whether there is 

an effect.  Figure 3 shows a P-M plot to aid with visualization of these results. For loci in 

which the index variant had an m-value between 0.2 and 0.8 or had very low allele 

frequency, we conducted an association enrichment analysis using MAGENTA [32]. 

Specifically, we scanned whether the gene was enriched for associated variants. This was 

done in order to further assess whether the association was truly absent or merely 

discordant at the index variant alone. 
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4. Trans-ethnic fine-mapping to identify candidate pathogenic variants  

Because our study has the advantage of inclusion of genetic data from several 

populations, we sought to leverage this to identify candidate pathogenic variants from 

among the many RA-associated variants in the previously reported risk loci.  To 

accomplish this, we conducted trans-ethnic fine-mapping in 91 RA risk loci using the 

PAINTOR algorithm, which calculates a posterior probability that each variant in a risk 

locus is pathogenic.  Results range from 0 indicating very unlikely to 1, indicating highly 

likely.  This analysis included the following steps:  Step 1.  Alignment of reference and 

alternate alleles for all populations (Asian, European, and African-American) to match 

the designations found in the 1000 Genomes Project [22].  Step 2.  Generation of LD 

matrices for each population based on linkage in the 1000 Genomes Project.  Step 3.  

Quantifying the importance of each genomic annotation to RA risk for each of 8,138 

genomic annotations in effect size estimates (gamma estimates) RA risk.  The initial 

analysis was performed by running each of the 8,138 genomic annotations in the 91 RA 

risk loci individually. A list of these annotations may be found here: (https://github. 

com/gkichaev/ PAINTOR_V3.0/wiki/2b.-Overlapping-annotations) [22].  Step 4.  These 

effect size estimates were sorted in descending order, selecting those that were most 

informative (most likely to improve the model fit).  Step 5. We sequentially compared 

informative annotations, and if they were correlated, we removed the annotation with the 

smaller effect size estimate until only weakly correlated annotations remained (r2 < 

0.10);  Step 6. Trans-ethnic fine-mapping was performed using the 5 most informative 

uncorrelated annotations.   
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 Within each locus, we summed sorted variants in descending order of posterior 

probability, until 90% of the probability mass was accounted for. This is known as a 90% 

credible set [77] of candidate pathogenic variants for each RA risk locus (Table S4).  We 

compared our results to functionally validated SNPs to assess the degree of external 

validation. In most cases, the precise variant that gives rise to a GWAS association is 

unknown, however some variants are fairly well-studied.  For example, in the PTPN22 

locus we obtained a posterior probability of 1.0 (almost certainly pathogenic) for 

rs2476601, which is generally accepted as the pathogenic variant in Europeans with RA.  

We next established internal consistency by benchmarking our results on those reported 

by Kichaev et al. [21], who previously analyzed data on Europeans and Asians with RA. 

Initially our findings differed from those previously reported. We also ran the analysis in 

CAVIARBF in order to further assess the stability of probability estimates. Finally, We 

applied rigorous quality control measures to 1) increase the number of variants we were 

able to include and 2) improve the accuracy of our LD matrices. These are described in 

Supplementary Methods. After QC, our data generally agreed strongly with the prior 

results (see Table 4A).  

  

Supplementary Material – Supplementary Material is available at HMG online. 
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Figure S1 – Manhattan plot of the association summary statistics computed for African-

Americans marginally as a part of Phase I. p-values from association testing of our phase 

II data (African-American GWAS) regression under an additive genetic model. The x-

axis indicates chromosome and position, the y-axis indicates –log10(p). The horizontal red 

line is drawn at 5*10-9 and is the threshold for genome wide significance, the blue line is 

for suggestive evidence of association and is drawn at 1*10-6. The only association 

detected was that of the HLA region, but several suggestive associations were detected. 

 

 

Figure S2 – Quantile-Quantile plot of our association results after removal of the MHC. 

Scatter plots of principal component loadings. Most of the variation in the study data (red 

and orange) to lie between ancestral European (green dots) and Yoruban (blue dots) 

populations. The purple dots signify Asian samples. A – Principal component loadings 

for the discovery cohort (Illumina Omni 1M and 1S chips). B – Principal component 

loadings for the replication cohort genotyped on the Illumina Omni 5M chip. C – 

Principal component loadings for the replication cohort genotyped on the MEGA chip. 
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Figure S3 – Zoomplots of the associations of the GPC5, RBFOX1, and CSMD3 with RA 

in African-Americans. QQ plots after removal of the extended HLA region 

(chr6:26,000,000-34,000,000). The genomic inflation for each of the three chips in A-C 

is given by lambda. A – QQ plot for the discovery cohort (Illumina Omni 1M and 1S 

chips). In figure A, the variant at the top right did not have support from linkage 

disequilibrium and was not included in the analysis. B – QQ plot for the replication 

cohort genotyped on the Illumina Omni 5M chip. No excessive genomic inflation of 

association summary statistics was found (λGC < 1.05). 
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Table 1.  Baseline Characteristics of CLEAR Registry 

 CLEAR I 

RA (n=265) 

CLEAR I 

Controls 

(n=80) 

CLEAR II 

RA (n=597) 

CLEAR II 

Controls 

(n=194) 

Age at enrollment, years, mean 

(SD) 
51.0 (12.7) 54.5 (13.1) 56.0 (11.2)  57.7 (7.61) 

Age at RA onset, mean (SD) 49.2 (12.6) - 45.4 (11.7) - 

Gender (female), % 83.0 72.5 87.2 71.2 

Disease duration at enrollment, 

months, median (IQ 25-75)  
12.1 (6.3 - 18.2) - 

101 (36.5-

196.0) 
- 

Family history of RA§ % 30.9 - 38.7 - 

Smoking (ever %) 53.3 43.4 51.3 54.4 

HAQ Score, median (IQ 25-75) 1.38 (0.70-1.95) - 1.3 (0.75-1.82) - 

JAM Score, median (IQ 25-75) 
4.00 (0.00-

12.75) 
- 

2.30 (0.00-

12.3) 
- 

Number of tender joints* (of the 

28 in the DAS28), (IQ 25-75) 
6.0 (1.0-15.0) - 3.8 (1.0-9.0) - 

Number of swollen joints* (of the 

28 in the DAS28), (IQ 25-75) 
3.0 (1.0-7.0) - 3.4 (1.0-9.0) - 

Rheumatoid factor, % positive 94.8 15.2 82.7 19.8 

Anti-CCP antibody, % positive 97.9 3.8 74.3 2.8 

Medications     

   DMARDs, ever used % 85.6 - 94.8 - 

   Methotrexate, ever used % 78.2 - 93.9 - 

   Biologics, ever used % 4.9 - 7.2 - 

African-American Patients with ACPA-positive Rheumatoid Arthritis and Controls 

Analyzed from the CLEAR registry. HAQ – Health Assessment Questionnaire.  IQ 25-75 

– interquartile range.  JAM – Joint Alignment and Motion Score.  *Based on the 28 joints 

used in the calculation of the DAS28.  The CLEAR Registry was started prior to the 

common use of DAS28 to quantify disease activity. 

  

Table 2.  Novel associations with RA reaching genome-wide significance in one or more global 

population. 
SNP ID Chr Position Candidate 

Gene 

A1 A2 PEUR PEAS PAA PTE MEUR MEAS MAA 

rs761426 1 17413899 PADI2 A T 1.23E-04 1.26E-06 2.56E-02 2.48E-10* 0.999 1 0.96 

rs2203098 8 115012597 CSMD3 G C 6.87E-02 2.85E-01 6.54E-10* 5.47E-08 0 0 1 

rs9516053 13 92945884 GPC5 C T 3.24E-01 8.06E-01 3.09E-09* 3.28E-06 0 0 1 

rs4602043 16 5588689 RBFOX1 C T 3.31E-01 9.12E-02 4.07E-09* 5.03E-07 0 0.009 1 

Abbreviations: Chr – chromosome.  Pos – base pair location. PEUR, PEAS, PAA the p-value 

for the variant calculated using only data from Europeans, East Asians, and African-

Americans, respectively. These p-values are the association p-value for the variant in the 

overall trans-ethnic meta-analysis as calculated by METASOFT using Han and Eskins’s 

Random Effects model, which is optimized to detect potentially heterogenous 

associations statistic. MEUR, MEAS, and MAA - the m-value for the variant calculated using 

only data from Europeans, East-Asians, and African-Americans, respectively. 
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Table 3.  Replication of genetic variants previously associated with RA in persons of 

European / Asian ethnicity. 

SNP ID Chr Position 
Candidate 

Gene 
A1 A2 PEUR PEAS PAA PTE MEUR MEAS MAA 

rs9268839 6 32428772 HLA-DRB1 A G 
<1E-

250 

3.7E-

134 

2.7E-

07 

<1E-

250 
1.00 1.00 1.00 

rs3087243 2 204738919 CTLA4 A G 
9.0E-

20 

2.2E-

04 

2.1E-

03 

9.9E-

24 
1.00 1.00 0.99 

rs11889341 2 191943742 STAT4 T C 
6.4E-

12 

6.3E-

09 

4.8E-

03 

5.3E-

20 
1.00 1.00 0.98 

rs2736337 8 11341880 BLK T C 
1.6E-

07 

2.0E-

06 

2.6E-

03 

4.2E-

13 
1.00 1.00 0.98 

rs9653442 2 100825367 AFF3 T C 
3.5E-

12 

4.6E-

04 

1.4E-

02 

1.7E-

15 
1.00 1.00 0.96 

rs9378815 6 426155 IRF4 G C 
1.6E-

07 

6.0E-

05 

1.6E-

02 

1.0E-

11 
1.00 1.00 0.96 

rs909685 22 39747671 SYNGR1 A T 
3.1E-

10 

3.8E-

06 

3.3E-

02 

3.7E-

14 
1.00 1.00 0.95 

rs59716545 17 38031857 IKZF3-CSF3 T G 
2.0E-

09 

9.5E-

05 

1.4E-

02 

2.6E-

13 
1.00 1.00 0.95 

rs2233424 6 44233921 NFKBIE T C 
3.3E-

08 

9.3E-

13 

4.9E-

02 

1.6E-

19 
1.00 1.00 0.93 

rs2105325 1 173349725 LOC100506023 A C 
1.0E-

08 

7.6E-

03 

3.6E-

02 

9.9E-

11 
1.00 0.99 0.93 

rs2451258 6 159506600 TAGAP T C 
6.4E-

10 

1.1E-

01 

2.3E-

02 

6.2E-

11 
1.00 0.90 0.92 

rs73013527 11 128496952 ETS1 T C 
2.0E-

06 

1.2E-

06 

6.5E-

02 

3.1E-

11 
1.00 1.00 0.91 

rs1980422 2 204610396 CD28 T C 
6.1E-

11 

3.4E-

02 

1.1E-

01 

3.0E-

12 
1.00 0.96 0.90 

rs9603616 13 40368069 COG6 T C 
8.3E-

11 

1.0E-

02 

1.1E-

01 

2.3E-

12 
1.00 0.98 0.90 

rs2561477 5 102608924 C5orf30 A G 
5.3E-

10 

2.1E-

01 

8.9E-

03 

5.5E-

10 
1.00 0.34 0.89 

rs2317230 1 157674997 FCRL3 T G 
1.0E-

05 

3.1E-

04 

1.5E-

01 

1.1E-

08 
1.00 1.00 0.86 

rs10774624 12 111833788 SH2B3-PTPN11 A G 
2.4E-

07 
- 

2.1E-

02 

8.2E-

08 
1.00 - 0.86 

rs8032939 15 38834033 RASGRP1 T C 
2.4E-

12 

3.1E-

05 

2.2E-

01 

3.5E-

16 
1.00 1.00 0.86 

rs1877030 17 37740161 MED1 T C 
1.5E-

05 

3.0E-

04 

2.2E-

01 

1.5E-

08 
1.00 1.00 0.86 

rs10175798 2 30449594 LBH A G 
1.4E-

07 

9.8E-

03 

2.1E-

01 

3.4E-

09 
1.00 0.98 0.86 

rs2664035 4 48220839 TEC A G 
2.5E-

06 

6.0E-

01 

3.7E-

02 

4.1E-

06 
1.00 0.28 0.86 

rs2236668 21 45650009 ICOSLG-AIRE T C 
1.2E-

05 

2.6E-

03 

2.7E-

01 

8.0E-

08 
1.00 0.99 0.85 

rs6732565 2 111607832 ACOXL A G 
8.8E-

05 

8.7E-

03 

2.6E-

01 

1.8E-

06 
1.00 0.98 0.84 

rs9372120 6 106667535 ATG5 T G 
1.2E-

05 

1.2E-

03 

2.3E-

01 

1.4E-

07 
1.00 0.99 0.84 

rs8133843 21 36738242 
RUNX1-

LOC100506403 
A G 

6.0E-

09 

3.3E-

02 

1.8E-

01 

9.7E-

10 
1.00 0.90 0.84 

rs706778 10 6098949 IL2RA T C 
7.1E-

12 

2.9E-

01 

7.5E-

02 

2.1E-

11 
1.00 0.09 0.83 

rs11605042 11 72411664 ARAP1 A G 
1.4E-

02 

9.7E-

04 

2.8E-

01 

5.3E-

05 
0.94 0.99 0.82 

rs6479800 10 64036881 RTKN2 G C 
2.2E-

03 

6.9E-

07 

2.5E-

01 

8.1E-

08 
0.78 1.00 0.82 

rs17264332 6 138005515 TNFAIP3 A G 
6.9E-

19 
- 

3.5E-

01 

1.3E-

17 
1.00 - 0.19 

rs11933540 4 26120001 C4orf52 T C 
9.5E-

17 
- 

6.4E-

01 

2.2E-

15 
1.00 - 0.15 
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rs10790268 11 118729391 CXCR5 A G 
3.3E-

15 

3.2E-

01 

4.6E-

01 

1.2E-

13 
1.00 0.06 0.07 

rs8026898 15 69991417 LOC145837 A G 
2.4E-

17 

6.8E-

03 

4.5E-

02 

2.5E-

17 
1.00 0.97 0.01 

Chr – chromosome.  Pos – base pair location. PEUR – the p-value for the variant calculated 

using only data from Europeans. PEAS - the p-value for the variant calculated using only 

data from Asians. PAA the p-value for the variant calculated using only data from African-

Americans. These p-values are the association p-value for the variant in the overall trans-

ethnic meta-analysis as calculated by METASOFT using Han and Eskins’s Random 

Effects model, which is optimized to detect potentially heterogenous associations 

statistic. MEAS - the m-value for the variant calculated using only data from Europeans. 

MEUR - the p-value for the variant calculated using only data from East Asians. MAA - the 

p-value for the variant calculated using only data from African-Americans.   

 

SNP Information 

Z-statistics from GWAS of RA 

susceptibility in 3 global 

populations 

Unannotated and 

(Annotated) Posterior 
Probabilities from Trans-

ethnic Fine Mapping 

Annotations 

and citations 
regarding 

variant 

rsID Gene 
Effect / 

Alternate 

Allele 

EUR [3] EAS [3] AA 

European, 

Asian RA 

African- 

American, 
Asian & 

European 

RA 

Description;  
Reference 

Numbers (ref 3; 26) 

rs2476601 PTPN22 G / A -26.04 - - 1.00 (1.00) 1.00 (1.00) R620W [78] 

rs7731626 ANKRD55 A / G -9.83 - -0.3 1.00 (1.00) 1.00 (1.00) 
ANKRD55 

eQTL [79] 

rs147622113 ILF3 T / C -6.13 - -0.47 1.00 (1.00) 1.00 (1.00)   

rs34536443 & 

rs74956615 
TYK2 C / G -8.12 - - - 0.99 (0.99) 

P1104A variant 

– Loss of 

kinase activity 
[80] 

  
 

A / T -8.16 - - 
  

  

rs909685 SYNGR1 A / T 6.29 4.62 2.13 0.65 (0.84) 0.94 (1.00) 
Disrupts PITX3 
TFBS [81] 

rs1893592 UBASH3A C / A -5.73 -4.01 -0.44 1.00 (1.00) 1.00 (1.00) 
UBASH3A 

eQTL; [82] 

rs72634030 C1QBP A / C 3.5 4.14 0.29 - 0.99 (0.99)   

rs67574266 REL A / G 7.48 -0.32 1.85 - 0.21 (0.96) 

Canonical 

CTCF binding 
site in REL 

5’UTR 

rs706778 IL2RA T / C 6.86 1.06 2.4 - 0.94 (0.94) 

Linked to ASE 
of IL2RA; 

PFKFB3 

expression [83] 

rs10774624 
SH2B3/ 

A / G -5.17 - -1.38 - 0.96 (0.94) 
  

PTPN11 

rs2233424 & 

rs2233434 
NFKBIE 

A / G 5.52 7.14 1.97 

- 

0.51 (0.51) 
Val194Ala 
[50]. Alters 

MTX uptake 

[51]. 
G / A 5.52 7.13 1.97 0.48 (0.48) 

rs12715125 EOMES G / C -5.58 - -0.27 0.95 (0.99) 0.79 (0.83)   

rs3087243 CTLA4 A / G -9.1 -3.7 -2.96 - 0.76 (0.80) 
CTLA4 CT60G 
[54] 

rs13330176 IRF8 A / T 5.75 3.61 2.06 - 0.79 (0.80)   

rs968567 FADS2 T / C -4.95 - - 0.29 (0.85) 0.25 (0.65) 

AS-ELK1 
binding to 

FADS2 

promoter [84] 
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rs657075 
IL3 / 

CSF2 
A / G 2.64 4.45 - 0.73 (0.82) 0.52 (0.52) 

ASCL6 eQTL 

[85] 

rs71508903 ARID5B T / C 7.26 5.88 - 0.76 (0.93) 0.51 (0.51)   

rs187339910 MMEL A / G −5.22 −4.18 - 1.00 (1.00) 0.01 (0.01)   

rs72767222 ANK55RD A / C 5.11 - - 0.99 (0.99) 
0.00* 

(0.00*) 
  

rs12693993 CD28 G / A −2.74 −1.76 -0.96 0.68 (0.88) 
0.00* 

(0.00*) 
  

Posterior probability estimates are given in the column “AA, EAS & EUR RA,” those 

generated by Kichaev et al. are in the “EUR and EAS RA” column. Estimates are largely 

concordant with those of Kichaev et al., with the exception of rs12693993 and 

rs72767222. Abbreviations – Chr: Chromsome. Pos – Position. A1 – The Effect Allele. 

A2 – The alternate allele. ZEUR, ZEAS, and ZAA – Z-statistics from the analysis of 

European, Asian, and African-American populations. PPOST – Posterior probability.  * 

indicates it is likely the number of causal variants being modelled differed between 

studies.  
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Abbreviations 

A1  – Allele 1. In fine-mapping studies, this is the effect allele. 

A2  – Allele 2. In fine-mapping studies, this is the alternate allele. 

AA  – African-American 

ACPA  – Anti-citrullinated peptide/protein antibodies 

AFR  – 1000 Genomes super population code for African 

BP  – Base pair location. All coordinates given according to hg39. 

CI  – Confidence Interval 

CHB  – 1000 Genomes population code for Han Chinese in Beijing, China 

JPT  – 1000 Genomes population code for Japanese in Tokyo, Japan 

CLEAR – Consortium for Longitudinal Evaluation of Early Arthritis Registry 

EAF – Expected allele frequency 

EAS – 1000 genomes population code for East Asian  

EUR  – 1000 genomes super population code for European  

HLA  – Human leukocyte antigen  

LD  – Linkage disequilibrium 

MAA – M-Value in the African-American population from phase II of the study 

MAF – Minor allele frequency 

MEAS – M-Value in the East Asian population from phase II of the study 

MEUR – M-Value in the European population from phase II of the study 

MHC  – Major histocompatibility complex  

MTX  – Methotrexate  

OR  – Odds ratio 
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ORL  – The lower bound of the confidence interval on an odds ratio 

ORU  – The upper bound of the confidence interval on an odds ratio 

PAA – P-Value in the African-American population from phase II of the study 

MAF – Minor allele frequency 

PEAS – P-Value in the East Asian population from phase II of the study 

PEUR – P-Value in the European population from phase II of the study 

PTE – Trans-ethnic P-Value from phase II of the study 

RA  – Rheumatoid arthritis 

RAF  – Risk Allele Frequency 

RF  – Rheumatoid Factor 

SE  – Standard Error 

SNP  – Single nucleotide polymorphism 

T1D  – Type 1 diabetes 

T2D  – Type 2 diabetes 

TEMA – Trans-ethnic meta-analysis  

VARA – Veterans Affairs Rheumatoid Arthritis registry 

YRI  – 1000 Genomes population code for Yoruban  
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DISCUSSION 

Summary of Key Results 

Overview of goals of the present research 

Our studies had 3 chief aims. First, we aimed to discover novel associations with 

RA that have not been found before in other ethnicities. Second, we endeavored to 

validate in African-Americans known associations identified in genetic studies of RA in 

Asians and Europeans with RA. Last, we employed trans-ethnic fine-mapping algorithms 

to isolate candidate causal variants in the loci we identified. 

  

Novel Associations in Rheumatoid Arthritis in African Americans 

 We found 3 loci (CSMD3, GPC5, and RBFOX1) that have not been previously 

associated with RA susceptibility in other ethnicities and that appear to be specific to 

African-American populations.  CSMD3, or CUB and Sushi Multiple Domains 3 is a 

large, 73-exon gene stretching ~1.2Mb across 8p23, was associated with RA (rs2203098 

G allele; p=6.54 x 10-10). Interestingly, variants near its homolog CSMD2 were also 

suggestively associated with RA (rs55798295, p = 2.84 x 10-7). This family of molecules 

(CSMD1, CSMD2, and CSMD3) appear to be involved in complement-mediated synapse 

pruning in the CNS, and CSMD3 encodes an oligomeric type I transmembrane protein 

that influences dendrite development [40]. Though the contributions of CSMD genes to 

neural phenotypes (schizophrenia and autism) is best characterized [40], these proteins 

are so large and complex that it is scarcely surprising they have been identified in GWAS 
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of numerous different conditions, including immune phenotypes. For example, CSMD3 is 

associated with infection and asthma, but this is by no means exhaustive, and CSMD1 

and CSMD2 have similar profiles [41]. CSMD3 might contribute to RA by decreasing 

inhibition of complement activation, but the remarkable pleiotropy of these genes 

suggests multiple other explanations. Experimental characterization of the protein-protein 

interactions of CSMD2 and CSMD3 might help narrow the range of hypotheses, and 

genetic fine-mapping studies might also help to pinpoint the right hypotheses to test. 

The second novel association we identified is that of GPC5, which encodes 

glypican-5. As described in the introduction, glypicans are components of proteoglycans 

that are involved in cell signaling, including in the rheumatoid joint. However, the nature 

of these influences in consistent with a role in RA. Several glypicans are known to 

influence the behavior of the extracellular matrix during development and cellular 

proliferation, and as a result some of them (e.g. glypican-3) are well-studied oncogenes 

[42]. We studied the literature relating to GPC3 in order to determine if it might help us 

to understand the association of GPC5, this is summarized in the discussion in section IV. 

Despite the wealth of information on GPC3, GPC5, and other glypicans, it is unclear how 

genetic variation in GPC5 might affect RA risk. However, we offer two tentative 

rationales: 1) A trans-eQTL in the GPC5 locus appears to downregulate Proliferating Cell 

Nuclear Antigen (PCNA) associated factor, which may result in increased proliferation of 

CD4+ T-cells in the RA synovium, or in synovial fibroblasts [43]. 2) PRKCQ was 

nominally associated with RA in African-Americans, and has been associated with RA 

susceptibility in other populations. We note that Glypican-5 is known to modulate blood 

protein levels through interaction with PRKCQ [44], another RA risk gene that is also 
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highly expressed on T-lymphocytes. In either case, generally we speculate that variants in 

the GPC5 locus may alter CD4+ T-cell behavior, contributing to dysregulated ECM 

growth in the RA synovium.  

 It was comparatively difficult to locate evidence regarding the involvement for 

the last locus we identified, RBFOX1, in RA susceptibility. RBFOX1 is a regulator of 

alternative splicing of mRNA, and as above with the CSMD proteins, it has been 

extensively implicated in neural phenotypes [41], but there is also evidence that it 

influences many immune processes. In particular RBFOX1 appears to influence TCR and 

BCR receptor signaling, leukocyte migration and differentiation [45], but this evidence 

comes from databases constructed from large datasets, and specific experiments defining 

the scope of RBFOX1’s contribution to immune regulation are lacking.  

 

Contributions to understanding the genetics of RA in global populations 

 Although our data was on African-Americans with RA, these studies offer a 

number of insights into the genetics of RA in all global populations. These fall into 

several types. First, we asked whether the addition of African-American data would 

enable identification of any additional risk loci not previously named by Okada et al. in 

their meta-analysis of European and Asian data [24]. We found that PADI2 is a genetic 

risk factor for RA independent of any risk conferred by variants in PADI4. Our approach 

showed that both PADI2 and PADI4 are risk factors in African-Americans with RA, and 

corroborated this finding in Europeans and Asians. Also, we found essentially no linkage 

between associated variants in PADI2 and PADI4 in Europeans, Asians, or African-

Americans (maximum pairwise r < 0.15). Genetic variation in PADI2 and PADI4 is of 
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substantial interest to the RA community for both diagnostic and therapeutic reasons. 

This interest stems mostly from the relationship of PAD enzymes to pathogenic 

autoantibody production. However, this is addressed in the Results and Discussion 

sections of Section IV, so further discussion is omitted here.  

 We also studied the question of whether risk loci in African Americans coincide 

with those already found in European and Asian populations systematically. Because so 

many genetic risk factors for RA are weak effect (OR < 1.15), we chose an approach that 

quantifies the likelihood that a known risk variant is causal in African-Americans. Doing 

this is crucial in this type of context, otherwise the observer is unable to distinguish a 

genuine lack of association from a type II error. To do this, as described in the 

Introduction and in Methods in Section IV, we chose the meta-analytic framework of Han 

and Eskin, who describe an M-value, which is similar to a posterior probability that a 

given variant has a true association in a new study [34, 35] . We calculated M-values for 

the 101 index variants previously identified by Okada et al. Using this framework, for 28 

variants there was evidence of effect in African-Americans (M > 0.8), for 4 variants there 

was evidence that an effect does not exist (M < 0.2), and for 51 variants evidence was not 

strong enough to claim either. For an additional 18 loci we were unable to assign an M-

value due to low allele frequency. Thus, overall there were many more risk loci that had 

evidence of common effect across populations than the opposite, which is consistent with 

prior reports in RA and other autoimmune diseases. However, we noticed several trends 

among the variants that do not replicate and those for which no M-value could be 

calculated due to allele frequency. These trends and their implications are briefly treated 

in the Discussion of Section IV, and they are discussed in detail below.   
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Trans-Ethnic Fine-Mapping of the IFNGR2 Promoter 

 Interestingly, one of the loci that did not replicate in either Asians or African-

Americans with RA is a locus we have previously studied, IFNGR2 (MEUR = 1.00; MEAS 

= 0.023; MAFR not calculated because MAF of rs73194058 < 0.05 in African-Americans). 

Interestingly, the variant is common in East Asians, but apparently does not confer risk of 

RA susceptibility (MAF = 0.48; p = 0.39) despite being present. To try to better 

understand risk in this locus, we conducted trans-ethnic fine-mapping of the IFNGR2 

locus using all available data (from Europeans, Asians, and African-Americans). We 

identified 2 candidate pathogenic variants rs9974603 (pPOST = 0.59) and rs8126756 (pPOST 

= 0.03) that together comprise a majority of the total posterior probability mass in the 

locus. rs9974603 lies about 25 base pairs from the conserved TFBS of E2F6, and 

rs8126756 lies fewer than 10bp from the conserved TFBS of ZBTB7A, directly within the 

5’UTR of IFNGR2.  

Consideration of the particular transcription factors implicated strongly suggests a 

rationale for the involvement of these candidate pathogenic variants. A recent study 

demonstrated that many candidate variants for RA pathobiology lay within loci that can 

be occupied by the Epstein-Barr EBNA2 and EBNA3C proteins, in regions that tend to 

cluster with certain human TFs [46]. This study showed that a large number of candidate 

“pathogenic” variants may alter gene expression either through or due to EBNA2 and 

EBNA3C, for example through allele-dependent binding events of these proteins [47]. It 

is possible that our findings in the IFNGR2 promoter may represent a finding of this kind. 

EBNA3C blocks the transcriptional activity of E2F1, thereby preventing E2F1 mediated 

apoptosis [47]. By contrast, E2F6 serves as a dominant negative repressor of such E2F-
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targeted pathways, often by competing with other E2F family proteins [47]. EBNA3C 

appears to enhance E2F6 expression, and also to complex with it, stabilizing E2F6 at its 

carboxy terminal domain. In doing this, EBNA3C shunts latently infected B cells away 

from apoptosis and towards cellular proliferation. Thus, E2F6 plays a crucial role in 

EBNA3C-mediated cell proliferation generally and malignancy specifically. Likewise, 

EBNA3C can drive overexpression of ZBTB7A, which not only leads to aggressive 

lymphomas but plays a key role in the instruction of early lymphoid progenitors to 

develop into B lineage by repressing T-cell instructive Notch signaling [47].  

Specifically, ZBTB7A abrogates E2F1-dependent CDKN2A repression. CDKN2A 

encodes another RA risk gene (CDK2).  

It is striking that the only 2 variants accounting for most of the posterior 

probability mass in our fine-mapping experiment - rs9974603 and rs8126756 – both lie 

fewer than 25 base pairs from the consensus TFBS of targets of EBNA3C. rs8126756 is 

also a cis-eQTL for IFNGR2 in whole blood. In this context, our recent finding that 

IFNGR2 expression positively correlates with RA radiographic progression could have 

several explanations and occur in several different cell types [48]. For instance, because 

most IFNGR2 mRNA in whole blood is thought to be NK-cell derived, these findings 

could possibly indicate that in the context of the active, inflamed RA synovium the 

increase in IFNGR2 expression reflects B-cell derived IFNGR2 overexpression.  

As we noted in the Discussion of Section IV, because EBNA3C accentuates the 

effects of E2F6 and ZBTB7A, one possible explanation for these findings is that the C 

allele of rs9974603 and the T allele of rs8126756 serve to increase binding of these 
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transcription factors to the IFNGR2 promoter, thereby increasing IFNGR2 expression in 

RA in the manner our lab has reported previously [48]. 

While it is by no means certain that EBNA proteins relate to the findings in the 

IFNGR2 promoter, our fine-mapping of this locus strongly suggest that autoimmune risk 

variants in this locus localize to the 5’UTR of IFNGR2 and the surrounding region and 

predispose to RA by increasing expression of IFNGR2. Prior studies of RA indicate this 

expression increase is most likely to occur in T cells, B cells, or macrophages [48]. We 

suggest that assays capable of demonstrating these variants do in fact result in allele-

specific binding could be a helpful place to start. However, we caution that IFNGR2 

expression differences in RA versus healthy controls might not show differences unless 

EBV infection status can also be ascertained in European patients. 

 

RA Susceptibility versus RA radiographic severity: HLA-DRB1 and CXCR5 

 While IFNGR1 expression is associated with RA susceptibility, IFNGR2 

expression is associated with radiographic severity of RA [48]. In Section III we 

presented at similar findings for several other RA risk loci, including HLA-DRB1 and 

CXCR5. We return to these findings for two reasons. First, as stated in the introduction, 

we note that risk factors for closely related conditions may differ substantially. Second, 

we wish to address the conflicting reports as to whether variants in the HLA region 

confer risk of radiographic severity of RA or if this association only reflects differences 

in seropositivity among groups. We note that Viatte et al. found that amino acid positions 

11, 71, and 74 of HLA-DRB1 are associated with radiographic damage. However, their 

study included autoantibody positive, autoantibody negative, and inflammatory 
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polyarthritis [49]. As such, it is difficult to be completely certain the signal they are 

detecting corresponds to radiographic severity as a phenotype or rather to a confounded 

phenotype such as seropositivity. To address this issue more completely, our study of RA 

radiographic severity included only RA patients that were seropositive, and stratified 

them by count and severity of involvement of affected joints (see the Introduction and 

Methods in Section III). Using this approach, although we detected a strong association 

of the HLA region to RA susceptibility in African-Americans having a similar magnitude 

and direction of effect as reported in other ethnicities, there was no association of 

radiographic damage with any variant in the HLA region. Turning our attention to non-

HLA loci, we also report that the locus containing CXCR5 is unlikely to be associated 

with RA susceptibility in either East Asians or African-Americans (MEAS = 0.059; MAFR 

= 0.072; see Section IV). Nevertheless, we find a nominal association of CXCR5 in our 

study of the radiographic severity of RA (section III). Thus, while we caution that it is 

difficult to completely stratify these related RA phenotypes, study of loci associated with 

susceptibility to, but not severity of, RA may be very informative to researchers 

attempting to tease apart factors leading to the instantiation of RA in contrast to its 

perpetuation and progression, which could contribute to tailored treatment regimens.  

 

Principles of Population Genetics and Trans-ethnic Concordance of RA genetic liability 

 Above we indicated that we found evidence that 28 of the RA risk loci are similar 

in African Americans (i.e., we found 28 index variants having MAFR > 0.8), but found 

evidence that risk differs for only 4 (MAFR < 0.2). However, we also noted that an 

additional 18 variants were not assigned an MAFR value due to low allele frequency. In 
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examining these variants, we discovered several trends among them, including several 

that may have implications for precision medicine in RA.  

 It is a well-known principle in population genetics that deleterious genetic 

variants tend to remain at lower allele frequencies [50]. In addition, genetic variants that 

confer a selective advantage in some circumstances but that decrease fitness in other 

conditions tend to become fixed at a level that balances these competing forces. Perhaps 

the best-known and archetypal example of this is the well-known heterozygote advantage 

for individuals possessing one copy of the sickle cell trait. In regions where falciparum 

malaria is endemic, this allele is found at a certain frequency, but this allele is essentially 

absent from populations that do not reside in areas where this pathogen is found. 

However, examples of this are definitely not limited to Mendelian disease. End-stage 

renal disease systemic lupus erythematosus (SLE ESRD) is a less famous, but not less 

compelling, example; certain genotypes bearing coding variants conger protection against 

T. b. gambiense but also predispose to ESRD, and are strongly associated with SLE 

ESRD [51]. However, the genetic variants that give rise to these APOL1 haplotypes do 

not exist outside of regions where T. gambiense is exerting a selective pressure. 

 When we examined the loci that were found in only one or two populations, but 

not a third, we discovered that such variants were far more likely to have a moderate or 

large effect size (here, defined as OR > 1.25 or OR < 0.8). They are also much likely to 

have a lower minor allele frequency: “large-effect” loci had a mean MAF of 0.15, while 

the remaining loci had mean MAF around 0.30. In addition, the “large-effect” risk loci 

the former are much more likely to be exonic, while the latter are much more likely to 

display the autoimmune enhancer phenotype described by Corradin et al. (2014) in the 
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multiple enhancer variant hypothesis. For instance, PTPN22, ILF3, and TYK2 are the 3 

strongest effect non-HLA risk loci, and all are coding variants found in European 

populations that are very rare or essentially absent from East Asian and African 

populations.  

Granted prior descriptions of the relationship between variant frequency, variant 

pathogenicity, coding variation, and disease risk known from the field of population 

genetics, it seems likely that these variant profiles reflect different selective pressures and 

ultimately different evolutionary forces. Thus, while these observations are not new, there 

are a number of practical reasons to reflect on these differences in the context of the 

present studies. First, the presence of large effect loci that are enriched for population 

specificity (see Figure 3 of Section IV) represents a strong rationale to create multi-ethnic 

genotyping cohorts to study autoimmune diseases in the future, as it seems that there are 

frequently large effect loci that are specific to only one or a few populations. For effect 

sizes in the neighborhood of 1.25 at allele frequency around 0.15 (the values for RA we 

found empirically) this corresponds to low thousands of samples. This is far, far smaller 

than the largest GWAS in Europeans in many autoimmune diseases [24]. This means that 

if we can expect a few loci of large effect per population, then from a cost-efficacy 

perspective it is far more efficient to design several smaller studies to capture loci of 

moderate to large effect than it is to attempt to detect loci of weak effect in a well-studied 

population. 

More importantly, a key implication of the claim that allele frequency differs 

greatly among the largest effect loci in RA is that the risk attributable to those variants 

also varies across populations [52] (unless the effect size also differs between populations 
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as well, which is usually not observed). As a simple example, consider the difference in 

population attributable risk that owes to the difference of a single causal variant between 

two populations. Following Moonesinghe et al., we note that as the difference in risk 

allele frequency increases between two populations, the difference in incidence of that 

disease phenotype will also tend to increase [53]. In our study, we noted that only 4 loci 

displayed positive evidence of effect size differences, while 18 were not tested due to 

very low allele frequency in the untested population. Whatever the above logic may 

indicate about the biology of a given locus, it is important to note that at the level of 

population attributable risk, there may in practice be little distinction between loci that do 

not replicate despite similar allele frequency and those that do not replicate and have 

differing allele frequency of the “causal” variants. Thus, although 28 variants displayed 

positive evidence of effect replication and only 4 displayed positive evidence against the 

same, another way to regard the evidence is that we were able to provide evidence that 28 

index variants replicate but 22 differ. However, it is important to be clear that our 

assessment of that data in a general sense agrees with previous reports that the genetic 

basis of RA is largely shared across populations (see Section IV, Results).  

 

RA risk variants that differ between populations likely to impact precision medicine in RA 

Because the genetic variants with the larger effect sizes for RA tend to be less 

likely to replicate in other populations, these differences – though a minority of the total 

number of risk loci, may exert a strong effect on how to deliver precision medicine to 

patients in the future. The rationale for this claim is drawn from several sources. First, it 

has been estimated that drug targets that are supported by genetic data from GWAS 
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studies are about twice as likely to gain approval as drugs that do not have direct genetic 

support for their proposed mechanism of action [54]. This same study observed that 

genes implicated in complex disease that also produce Mendelian-inherited pathological 

conditions have the strongest enrichment for successful drug mechanisms (OR = 7.2). We 

add to these observations that these variants share the characteristics identified among 

moderate and strong RA risk loci more closely than do weak-effect RA loci (low 

frequency, discordant among populations, more likely to be coding, higher OR, etc.). Put 

another way, the greater the contribution genetics plays to disease risk (i.e. the higher the 

heritability), the more likely successful drugs that target that disease are to be found, and 

at a locus level, the larger the percentage heritability explained by a given risk variant or 

risk locus, the more likely that gene is to have been targeted successfully by a therapeutic 

agent [54]. Because large-effect coding variants are currently better understood than 

variants within autoimmune gene enhancer and regulatory regions, we would expect this 

to lead to a disparity in the number of successfully targeted RA risk genes between the 

moderate to large vs low-risk categories. As an anecdotal example, we note that the 

candidate variant in the TYK2 locus is a large-effect coding variant that leads to a loss of 

function of the TYK2 kinase. Most would agree this is comparatively easier to identify 

and conceptualize than the coordinate effect of multiple enhancer variants coordinately 

altering gene regulation.   

 In summary, while we agree that the genetic basis of RA is mostly shared 

between persons of differing global ancestries, we emphasize that there are several 

reasons to expect that the differences that do exist might be particularly influential to 

precision medicine in RA. 
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Trans-Ethnic Fine-Mapping of Candidate Pathogenic Variants in AFF3, CTLA4, 

NFKBIE, and other RA risk loci 

 

The trans-ethnic fine-mapping (TEFM) of these loci is treated at length elsewhere 

(see Discussion, Section IV). Here, we only summarize the findings and implications 

thereof. Because inclusion of African Samples has been shown to greatly increase the 

power to fine-map pathogenic variants [55], we felt that we were well-positioned to 

conduct these studies. In total, we fine-mapped >90 RA risk loci.  

Prior studies have indicated a role for rs2233434 and rs2233424, two SNVs in 

NFKBIE, but distinguishing between them has been difficult owing to perfect LD in 

European and Asian populations (r2 = 1). However, our TEFM of this locus indicated that 

rs2233434 was >400 times more likely than rs2233433 to be the pathogenic variant. 

Granted the tight linkage described in other populations, we were curious as to why 

rs2233434 was so much more highly prioritized. We were surprised to learn that 

rs2233433 is entirely absent from West African populations. Previous studies have 

suggested that rs2233434 and rs2233433 exert distinct functional effects [56]. The fact 

that the NFKBIE locus is missing rs2233433 but is still associated with RA in African-

Americans helps us narrow down not only the variant but potentially also the mechanism 

by which the pathogenic variant produces risk of RA (see Discussion, Section IV). To 

this specific example we add the observation that the data from African-Americans with 

RA enabled identification of 9 additional candidate pathogenic variants with posterior 

probability > 0.8, which is a very large relative gain granted the small amount of data in 

African-Americans that we included compared to the large number of Europeans and 

Asians already genotyped (roughly 2,500 : 100,000 or 2.4% of the total dataset). 
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Therefore, we find that the addition of global samples to existing GWAS is desirable 

from the perspective of not only distributive justice, but cost efficacy as well.  

To date, the greatest emphasis in fine-mapping experiments has been on trimming 

the size of the credible set down to a small number of variants. However, we noted 

several different patterns within fine-mapped loci. While many of the loci are dominated 

by the signal from just one variant (e.g. rs2476601 in PTPN22), several others do not 

display this pattern. In AFF3 we identified ~5 candidate causal variants, and 4 of them 

were annotated as AFF3 eQTLs [57]. We argue that although this story is not as 

conceptually simple as the case in which there is 1 causal variant, this does not imply the 

evidence is less compelling. Likewise, in IFNGR2, we identified 2 variants just upstream 

of the conserved TFBS for ZBTB7A and E2F6, both of which are targeted by EBNA3C in 

the same fashion.  

Alternatively, in CTLA4, though just one variant (rs3087243) does account for a 

majority of the posterior probability, we were unable to determine conclusively whether 

rs3087243 is the causal variant, or if a (AT)28 dinucleotide short tandem repeat (STR) in 

linkage with rs3087243 is the causal variant (see Figure 4 in Section 4), or potentially 

both. This ambiguity is difficult to address because the STR is neither genotyped on 

commercial DNA microarrays nor imputed with high quality. This latter case points to a 

limitation of not only this study but many contemporary studies of RA. 

 

Limitations of the Current Studies 

 Limitations of each study are discussed in the Discussion section of each 

manuscript. In addition, the review article of Section II indicates additional obstacles to 
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progress in the study of RA genetics in general. Additional considerations of a more 

general nature are presented here. 

 

Statistical Power 

 In total, the CLEAR dataset included genotyping data for ~2500 RA cases and 

controls across the Omni 1M, Omni 1S, Omni 5M, and Immunochip study. At this study 

size, and we expected to be well-powered to detect associations with OR > 1.20 and 0.1 ≤ 

RAF ≤ 0.9. However, this means we had only moderate power to detect variants with OR 

around 1.15, which is typical for RA.  

 We took a multi-faceted approach to address this issue comprehensively. First, 

after association testing on our African-American samples alone, we ran a joint analysis 

of European, Asian, and African-American RA. The purpose of this is to increase 

statistical power to detect associations, as is described in the Section I of this document. 

While analysis of the African-American data alone identified several variants near our 

alpha threshold of 5 x 10-9, we did not detect any loci at a genome wide level of 

significance until the joint treatment of all three datasets. Second, we anticipated 

difficulty in distinguishing between variants that have a true association with RA, but do 

not appear to display one due to statistical noise, from variants lacking a true association 

altogether. To address this, we employed a formal test of effect concordance to adjudicate 

whether RA risk variants replicate or not. Despite this, we were unable to make a call for 

approximately half of the RA risk loci (51 of 102). Both experience with study of Asian 

populations and theoretical considerations [52] suggest that small effect loci will continue 

to be discovered even with very large sample sizes. However, initially we believe a 
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treatment of >5,000 RA patients and controls would be sufficient to increase the number 

of variants that can be assigned as concordant or discordant (M > 0.8 or M < 0.2) to 

levels similar to found in East Asians currently (see Section 4 Supplemental Table 3). We 

also believe that a study of this size in African Americans would further increase fine-

mapping accuracy in RA (potentially dramatically), in particular if whole genome 

sequencing or high-quality imputation is carried out. 

 

DNA Microarray Technology and Array Design 

This latter consideration brings us to a discussion of the technologies used. First, 

nearly all genotyping chips created before 2012 were designed using European genomes 

and assay many positions not found in persons of African ancestry. Moreover, many sites 

of common variation in Africans are not assayed by standard genotyping chips. Indeed 

the first chip that we obtained for CLEAR that was designed with African populations 

was the MEGA array in 2015. This tends to decrease information capture across the 

genome for African samples, in particular for the smaller arrays. For the 5M array we 

achieved on average very high imputation accuracy (>99% of masked genotypes were 

called accurately) through a combination of conservative settings and deeper imputation 

of loci we planned to study in depth, as has been recommended in the literature 

(IMPUTE2 paper). 

  Nevertheless, we had difficulty in imputing certain variants in which we were 

interested, such as the (AT)n dinucleotide repeat described above in the 3’UTR of 

CTLA4. If this occurred only sporadically, it would still be of concern since poorly 

imputed variants can result in inaccurate estimation of posterior probabilities. However, 
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the real issue is that poor imputation currently occurs systematically, and affects certain 

classes of genetic variation more frequently than others. For instance, because STR and 

indels are 1) not frequently genotyped on microarrays and 2) more difficult to call 

accurately using short-read next generation sequencing (NGS), we caution that any 

candidate causal variant that is in linkage with such a variant should be scrutinized 

carefully. Multiple fine-mapping algorithms such as CAVIARBF [36], PAINTOR [37, 

38], MANTRA [58], BIMBAM [59], and others [60] handle this issue differently. 

Regardless of the treatment used, it should be assumed that the credible sets generated are 

at least partially inaccurate if the true pathogenic variant is not included in the study. 

 

Supporting expression, epigenomic, and experimental data 

 Finally, several of our results would have benefited from experimental 

characterization. We took care to generate TEFM results that suggest not only variants to 

be studied but where possible a biological rationale for how this may occur. For example, 

in CTLA4, one logical follow-up study would be to examine whether rs3087243, the 

(AT)n dinucleotide repeat, or both increase CTLA4 expression in T regulatory cells of RA 

patients and controls. In addition, a genome editing technology such as CRISPR/CAS9 

could be used to abrogate the tight linkage between such variants. Depending on findings, 

assessment of whether abatacept response correlates with either genotype could be useful 

granted the clinical interest in that question. RNA-Seq and ATAC-Seq on this same 

cohort would also greatly increase available options for analytical plans. 
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Relevance of the current studies in the context of current RA genetic research 

 At the present time, research into RA genetics is undergoing several important 

transitions. First, there are very few studies that focus on association testing alone; rather 

many studies have begun to address the related problems of association testing and fine-

mapping together. MANTRA is a good example of a framework that addresses both of 

these challenges simultaneously [58]. In our study, we draw heavily on METASOFT and 

PAINTOR, as these enabled us to 1) address concern relating to statistical power that we 

had and 2) coordinately analyze data from all 3 ethnicities in one fine-mapping 

experiment. Although in theory the fully Bayesian approach in implemented in 

CAVIARBF and BIMBAM [36, 59] is capable of integrating multiple datasets from more 

than one global population, at this time the software would have to run three separate 

analyses, which of course foregoes the main advantage of being able to triangulate risk 

by leveraging differences in LD patterns. At any rate, regardless of the specific 

approaches used, our studies presents a well-defined workflow from GWAS to trans-

ethnic meta-analysis of GWA data to trans-ethnic fine-mapping of meta-analysis results. 

In so doing we position the work as a “post-GWAS” workflow. 

 We also believe that it is important to address health disparities in genetic 

research of RA. Since the goal of precision medicine is ultimately to provide tailored an 

optimized treatment to people based on their unique genetic profile, we believe that if the 

genetics of RA is insufficiently studied in a given population, this will preclude that 

population from receiving the benefits of precision medicine. While we therefore believe 

that these studies are valuable in their own right, we also note that the analysis of this 

data alongside existing datasets is valuable to the entire community. For example, our 
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study enabled us to greatly improve fine-mapping accuracy, including in loci where the 

association signal in African-Americans was marginal on its own. To summarize, we 

believe this study is crucially relevant as an example of how even a small amount of data 

from a poorly understood population is marginally more valuable than additional samples 

genotyped in a well-studied population. In this way, the significance of our study extends 

well beyond the RA literature.  

 

Suggestions relating to optimal design of future genetic research cohorts 

 We believe future of genetic research into RA and other complex conditions will 

have less and less to do with association testing, and will come to address the question of 

“which variants are the functional ones in this disease state and why?” While for the 

former question it might be defensible to study one or two populations only, for the latter 

question, a growing body of evidence suggests that trans-ethnic research cohorts will out-

perform ethnically homogenous ones [60] . Thus, we believe that in the future, genetic 

association studies should ideally include individuals from 4 or more global ancestries. 

For example, in the United States a study admitting Native Americans, African 

Americans, Indian Americans, Asian Americans and European Americans will be more 

well-suited to address the goals of the coming age of precision medicine both in terms of 

information gain and in terms of cost-efficacy. 
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The Future of Genomic Research into RA and Complex Disease 

 Three related goals in contemporary complex disease genetic research 

I have come to view the present and future of genetic research into complex 

disease as a progression along a pathway that connects three related goals. The first is the 

identification of associations and has begun to be addressed by GWAS. Ongoing studies 

that increase both the size and the completeness of these datasets will be necessary, as 

current studies do not assay all genetic variants equally well, nor do they 

comprehensively assess risk in all global populations. The second is the identification of 

the variants that are pathogenic (or rather, functional in the context of a given disease 

biology) from among what can be many hundreds of strong associated variants. While 

fine-mapping experiments of this kind have been ongoing for decades, recent years have 

increasingly begun to favor the advent of methods that address this question in-silico, in a 

data-driven, high-throughput fashion [61, 62]. Finally, I am persuaded that the advent of 

large research cohorts of NGS data will lead us to a point when very plausible genetic 

variants have been identified in thousands of complex disease loci. The third goal will be 

to design functional experiments to validate the effect of each candidate pathogenic 

variant experimentally. Because of the scope of this problem, I believe it is highly likely 

that ultimately high throughput assays will enable the identification of many such 

variants simultaneously.  

 

Factors complicating autoimmune disease variant identification 

 The challenge in characterizing the function of complex disease variants is two-

fold. First, subsets of these variants are known to display time-dependent effects, cell-
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type specific effects, activation state dependency, interaction effects and other 

complicating factors. This means it is frequently exceedingly easy to generate a null 

result even if one has an essentially accurate working hypothesis; for example, one could 

look in the right cell-type and stimulate with the right cocktail of activating factors, but 

miss the effect by looking at the wrong time-point. The second challenge is the sheer 

number of variants. Currently there are ~15,000 variants in the NHGRI GWAS catalog, 

but studies based on polygenic analysis [63], Bayesian inference [52], mixed linear 

modeling [64], not to mention coalescence theory and population genetics, have 

suggested that the true number of pathogenic variants for conditions like RA may 

ultimately number in the thousands per disease.  

 

A role for high-throughput assays in overcoming time-dependency, activation-state 

dependency, cell-type specificity, and other complicating factors 

 

If it is indeed true that such a large number of variants will ultimately be found, 

then it is likely that the experimental validation of a large majority of GWAS variants 

will not be carried out in traditional scientific experiments as we have known them. 

Rather, I suspect they will ultimately be carried out in a high-throughput fashion. This 

claim would seem to be at odds with the first challenge I mentioned; namely the 

dependency of the pathogenic effect on one or multiple complicating factors. However, 

note that techniques have already been developed that can circumvent one or more of 

these problems. As examples consider the following. STARR-Seq [61] is essentially a 

massively parallel reporter assay capable of detective enhancer activity quantitatively 

genome-wide . CRISPRa, or tiled CRISPR activation, can identify stimulus-responsive 

elements independently of the cell type in which they act [62] across genomic segments in 
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excess of 100kb in length. I have also seen data presented recently regarding the 

construction of databases that catalog temporal course of activity of a large number of 

signaling molecules and transcription factors. Finally, unifying hypotheses that address 

specific environmental exposures that may be relevant, will also likely help in functional 

characterization of categories of these genetic variants once the precise biological 

rationale can be identified. As an example, consider the recent suggestion that ½ of SLE 

risk variants map to regions in which the Epstein Barr viral protein EBNA2 sits [46].  

 

Integrating genetic, environmental, and experimental evidence 

 Thus, while I think there is reason to believe that in the long term it will likely be 

possible to validate GWAS variants in a high-throughput fashion, in the near-term there 

are critical unsolved problems. One of the most central of these is to integrate knowledge 

of diseases like RA that are gained from experimental biology, genetic studies, and 

epidemiologic studies. While in reality genetics, environment, and biology give rise to 

one another seamlessly, scholarship on these subjects often belongs to separate literatures 

and is not well-integrated. While selecting the right concepts to integrate and integrating 

them in the right way is an art, there are definite steps that can be taken. Systematically 

coding knowledge gained about a disease state that has accumulated over years based on 

a particular tool, animal model, or technology into a database (and then publicizing the 

database) enables researchers of all stripes to rapidly sift through the results of a large 

literature. In the current study, I leveraged thousands of genome-wide annotations, but 

considered only a handful of epidemiologic risk factors, for instance. A catalog of the 
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genomic loci affected by, say, smoking or viral infection of a given type could enable 

enrichment analysis of the same kind based on results from other literatures. 

 

Closing Summary and Future directions 

 To close, the present studies addressed the genetics of RA in persons of African-

American descent. The studies found three novel RA risk loci not previously identified in 

Europeans or Asians with RA GPC5, RBFOX1 and CSMD3. In addition, we validated 

and disconfirmed >30 RA risk loci in this population. Our trans-ethnic fine-mapping 

experiments identified 8 additional loci with high confidence.  

Two major suggestions of this body of research are: 

1) That although the genetic basis of RA is mostly shared in African-Americans with 

RA, the differences that do exist between populations occur disproportionately 

among the strongest effect risk loci. For several reasons, these differences are 

particularly likely to impact precision medicine.  

2) Use of trans-ethnic genetic data is not crucial for single variant association 

testing, except to identify population-specific associations. However, the present 

studies add to the body of evidence suggesting that trans-ethnic studies of 

complex diseases easily outperform larger studies in a single ethnically 

homogenous cohort with respect to fine-mapping candidate variants, a crucial 

upcoming goal of complex disease genetics. This has clear implications for 

precision medicine and study design of future GWA studies. 

Finally, this work identifies a number of candidate pathogenic variants with plausible 

mechanisms of action (see the trans-ethnic fine-mapping experiments from Section 
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IV). Several of these variants are either already known to (i.e. the candidate variant 

identified in NFKBIE) or may possibly (i.e. the candidate variants in CTLA4) 

modulate DMARD activity. The putative effects of several of these candidate variants 

could be verified using relatively simple functional assays. We therefore suggest 

these studies indicate clear future directions for further research. 
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 Project Revision/Amendment Form 
Form version: June 26, 2012 

 
In MS Word, click in the white boxes and type your text; double-click checkboxes to check/uncheck. 
• Federal regulations require IRB approval before implementing proposed changes. See Section 14 of the IRB 

Guidebook for Investigators for additional information.  
• Change means any change, in content or form, to the protocol, consent form, or any supportive materials 

(such as the Investigator’s Brochure, questionnaires, surveys, advertisements, etc.). See Item 4 for more 
examples.  

 

1. Today’s 
Date 

12/5/2013 

 

2. Principal Investigator (PI) 
 Name 
(with degree) 

S. Louis Bridges, 

Jr.MD,PhD 

Blazer ID lbridges 

 
 Departmen

t 

Rheumatology Division (if 
applicable) 

Clinical Immunology 

and Rheumatology 

 Office 
Address 

178 Shelby Office Phone  4-4616 

 E-mail Lbridges@uab.edu Fax Number 4-1564 

Contact person who should receive copies of IRB correspondence (Optional) 
 Name Stephanie Ledbetter E-Mail sledbetter@uab.edu 

 Phone 4-7423 Fax Number 4-4616 

 Office Address (if different from PI) 177 F Shelby 

 

3. UAB IRB Protocol Identification  
 3.a. Protocol 
Number 

X061215004 

 3.b. Protocol Title  Continuation of the Consortium for the Longitudinal 

Evaluation of African-Americans with Rheumatoid Arthritis, 

Coordinating Center 

 3.c. Current Status of Protocol—Check ONE box at left; provide numbers and 
dates where applicable 

  Study has not yet begun No participants, data, or specimens have been 
entered. 

  In progress, open to 
accrual 

Number of participants, data, or 
specimens entered: 

 

  Enrollment temporarily suspended by sponsor 

  Closed to accrual, but procedures continue as defined in the protocol (therapy, 
intervention, follow-up visits, etc.) 

Date closed:        

Number of participants receiving 
interventions:  

      

Number of participants in long-term 
follow-up only: 

      

  Closed to accrual, and only data analysis continues 
Date closed:        

Total number of participants entered: 

1063 RA, 

550 

controls 
 

4. Types of Change 
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Check all types of change that apply, and describe the changes in Item 5.c. or 5.d. 
as applicable. To help avoid delay in IRB review, please ensure that you provide the 
required materials and/or information for each type of change checked. 

  Protocol revision (change in the IRB-approved protocol)  
In Item 5.c., if applicable, provide sponsor’s protocol version number, amendment 
number, update number, etc. 

  Protocol amendment (addition to the IRB-approved protocol) 
In Item 5.c., if applicable, provide funding application document from sponsor, as well as 
sponsor’s protocol version number, amendment number, update number, etc. 

  Add or remove personnel  
In Item 5.c., include name, title/degree, department/division, institutional affiliation, and 
role(s) in research, and address whether new personnel have any conflict of interest. 
See “Change in Principal Investigator” in the IRB Guidebook if the principal investigator 
is being changed. 

   Add graduate student(s) or postdoctoral fellow(s) working toward thesis, 
dissertation, or publication 
In Item 5.c., (a) identify these individuals by name; (b) provide the working title of 
the thesis, dissertation, or publication; and (c) indicate whether or not the student’s 
analysis differs in any way from the purpose of the research described in the IRB-
approved HSP (e.g., a secondary analysis of data obtained under this HSP). 

  Change in source of funding; change or add funding 
In Item 5.c., describe the change or addition in detail, include the applicable OSP 
proposal number(s), and provide a copy of the application as funded (or as submitted to 
the sponsor if pending). Note that some changes in funding may require a new IRB 
application. 

  Add or remove performance sites  
In Item 5.c., identify the site and location, and describe the research-related procedures 
performed there. If adding site(s), attach notification of permission or IRB approval to 
perform research there.  Also include copy of subcontract, if applicable. If this protocol 
includes acting as the Coordinating Center for a study, attach IRB approval from any 
non-UAB site added. 

  Add or change a genetic component or storage of samples and/or data 
component—this could include data submissions for Genome-Wide 
Association Studies (GWAS) 

To assist you in revising or preparing your submission, please see the IRB Guidebook for 
Investigators or call the IRB office at 934-3789. 

  Suspend, re-open, or permanently close protocol to accrual of individuals, data, or 
samples (IRB approval to remain active) 

In Item 5.c., indicate the action, provide applicable dates and reasons for action; attach 
supporting documentation. 

  Report being forwarded to IRB (e.g., DSMB, sponsor or other monitor) 
In Item 5.c., include date and source of report, summarize findings, and indicate any 
recommendations. 

  Revise or amend consent, assent form(s) 
Complete Item 5.d. 

  Addendum (new) consent form 
Complete Item 5.d. 

  Add or revise recruitment materials 
Complete Item 5.d.  

  Other (e.g., investigator brochure) 
Indicate the type of change in the space below, and provide details in Item 5.c. or 5.d. as 
applicable. 
Include a copy of all affected documents, with revisions highlighted as applicable. 
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5. Description and Rationale 
In Item 5.a. and 5.b, check Yes or No and see instructions for Yes responses.  
In Item 5.c. and 5.d, describe—and explain the reason for—the change(s) noted in 
Item 4. 

Yes 
No  

5.a. Are any of the participants enrolled as normal, healthy controls?  
 If yes, describe in detail in Item 5.c. how this change will affect those 
participants. 

Yes 

No  

5.b. Does the change affect subject participation, such as procedures, 
risks, costs, location of services, etc.? 

 If yes, FAP-designated units complete a FAP submission and send to 
fap@uab.edu. Identify the    FAP-designated unit in Item 
5.c.  
 For more details on the UAB FAP, see www.uab.edu/cto.  

5.c. Protocol Changes: In the space below, briefly describe—and explain the reason 
for—all change(s) to the protocol.  

 Vincent A. Laufer, B.A., is a current PhD student and participant in the NIH 

Medical Scientist Training Program (MD/PhD Program.   As part of this program, 

Vincent is studying statistical genetics, complex disease, and rheumatology to gain 

additional research training and experience.  He will be undertaking analysis of both 

CLEAR Whole Genome and CLEAR GWAS data in order to elucidate genetic factors 

associated with Rheumatoid Arthritis as part of the proposed research described in 

the IRB-approved HSP for this protocol. 

 

5.d. Consent and Recruitment Changes: In the space below,  
 (a) describe all changes to IRB-approved forms or recruitment materials and the 

reasons for them;  
 (b) describe the reasons for the addition of any materials (e.g., addendum consent, 

recruitment); and  
 (c) indicate either how and when you will reconsent enrolled participants or why 

reconsenting is not necessary (not applicable for recruitment materials).  
 
Also, indicate the number of forms changed or added. For new forms, provide 1 
copy. For revised documents, provide 3 copies:  

 • a copy of the currently approved document (showing the IRB approval stamp, if 
applicable) 
• a revised copy highlighting all proposed changes with “tracked” changes 
• a revised copy for the IRB approval stamp. 

       

 
Signature of Principal Investigator       

      Date     
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FOR IRB USE ONLY 

□ Received & Noted □ Approved Expedited* □ To Convened IRB 

 
________________________________________        ________________ 
Signature (Chair, Vice-Chair, Designee)       Date 
 
DOLA ___________________ 
 
Change to Expedited Category      Y   /     N    /    NA 
 

*No change to IRB’s previous determination of approval criteria at 45 CFR 46.111 or 21 CFR 56.111  
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 Investigator’s Progress Report 
Form version June 26, 2012 

 

In MS Word, click in the white boxes and type your text; double-click checkboxes to check/uncheck. 
 

 Continuing Review (Complete Items 1-11) 
—OR— 

 Final Report—all protocol-related activities 
are complete, including data analysis 
(Complete Items 1-10, and Item 12) 

 
—FOR— 

 Expedited Review 
—OR— 

 Convened (Full) 
Review 

 

1. Dates 

Today’s Date  12/09/2014 
To help avoid delay, respond to all required 

items in the format provided, and include 
requested materials. 

Starting Date of 
Project 

06/01/2012 
If previous approval expires before approval 

is officially re-issued by the Office of the 
IRB, all work on the protocol must cease. 

Date of Last IRB 
Approval 

03/04/2014 
The IRB recommends applying for continuing 

review 4-6 weeks before expiration of 
current approval. (See schedule.) 

 

2. Principal Investigator (PI) 
 Name 
(with degree) 

Maria I. Danila, MD, MSc 
Blazer ID 

mdanila 

 
 Departmen

t 
Medicine 

Division Clin. 

Immunol./Rheumatol. 

 Office 
Address 

FOT 858A 
Office 
Phone  

5-1961 

 E-mail mdanila@uab.edu 
Fax 

Number 
4-4198 

PI Contact who should receive copies of IRB correspondence (Optional) 

 Name Stephanie Ledbetter E-mail sledbetter@uab.edu 

 Phone 4-7423 
Fax 

Number 
4-1564 

 Office Address (if different from PI) 177 F SHEL 

 

3. UAB IRB Protocol Identification  Protocol 
Number 

X120308011 

 Protocol Title  
Genetic Architecture of Rheumatoid Arthritis in 

African Americans 

 Study Sponsor(s) NIH 
 OSP Proposal Number (9 

digits) 
000407797 

Note. If the source or amount of funding for this project has 
changed, include the new or revised funding application and 

provide the new OSP Proposal Number: 
      

 

4. Purpose 
In two or three sentences, briefly summarize the purpose of this protocol, and related 
studies if applicable. Please use non-technical language, and write more for adults with 
general knowledge than for specialists. 
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 This protocol is funded by an NIH sponsored career development award.  

Specifically, this research project proposes to identify genetic associations with the 

risk and severity of RA in African Americans, by analyzing  clinical and genotyping data 

available from previous protocols, such as CLEAR (Consortium for the Longitudinal 

Evaluation of African Americans with Rheumatoid Arthritis), and  building predictive 

models for RA risk and outcomes.   Only existing data records will be used for this 

study; no participants will be enrolled under this protocol.  
 

5. Screened, entered, or otherwise accessed by the UAB Investigator(s). 
Include numbers for individuals, specimens, data records, charts, etc., 
as applicable to the protocol. 

5.a. Number screened for study entry since the start of the project? (See 
5.d.i.) 

2700 

5.b. Number entered in study since the start of the project? (See 5.d.ii.) 
  

2700 

5.c. Number entered in study since the last IRB review? 0 
5.d. Complete the grids below to show how many have been screened and entered, 

along with their age or age range, gender, and race/ethnicity. Copy/paste the grids 
to repeat them for additional groups (e.g., controls, sub-studies) if needed. 

Note. If the research involves minors (<19 years of age), the PI must provide a separate, 
signed memorandum that either (a) confirms the previously assigned Children’s 
Risk Level (CRL) number or (b) reassigns it and gives the reasons it has changed. 

5.d.i. Number Screened (Totals = 5.a.)  5.d.ii. Number Entered (Totals = 5.b.) 

Race / 
Ethnicit

y 

Male Female Race / 
Ethnicit

y 

Male Female 

Age 
Range 

Number 
Screene

d 

Age 
Range 

Number 
Screene

d 

Age 
Range 

Numbe
r 

Entere
d 

Age 
Range 

Numbe
r 

Entere
d 

Caucasia
n 

    

  
      

    

  
      

Caucasia
n 

    

  
      

    

  
      

African 
American 

    

  
      

    

  
      

African 
American 

    

  
      

    

  
      

Native 
American 

    

  
      

    

  
      

Native 
American 

    

  
      

    

  
      

Asian     

  
      

    

  
      

Asian     

  
      

    

  
      

Hispanic     

  
      

    

  
      

Hispanic     

  
      

    

  
      

Other     

  
      

    

  
      

Other     

  
      

    

  
      

 
Check the box at the left if the demographic information was not available (e.g., not 
collected for screening; collecting only specimens or data records and did not have 
access to the information) 

 

6. Protocol Staff Listing 
For each individual currently involved in the design, conduct, and reporting of the 

research, list the person’s name, role in research, and CIRB status in the table 
below. Copy/paste the table for each individual. 
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Financial Interests Related to the Research—Conflict of Interest (COI) 
Human subjects research involving a disclosed financial interest on the part of any UAB 

employee or their immediate family is subject to IRB review following review by the UAB 
Conflict of Interest Review Board (CIRB). The following definitions apply: Immediate family 
means spouse or a dependent of the employee.  Dependent is any person, regardless of 
his or her legal residence or domicile, who receives 50% or more of his or her support from 
the public official or public employee or his or her spouse or who resided with the public 
official or public employee for more than 180 days during the reporting period. Financial 
Interest Related to the Research means financial interest in the sponsor, product or service 
being tested, or competitor of the sponsor.   

If one of the four items listed below is marked for an individual, a financial interest disclosure 
must be submitted to or currently on file with the CIRB. The IRB must receive a completed 
CIRB Evaluation before it will conduct its review. 

COI 1 An ownership interest, stock options, or other equity interest related to the research of 
any value. 

COI 2 Compensation related to the research unless it meets two tests: 
  • Less than $10,000 in the past year when aggregated for the 

immediate family. 
  • Amount will not be affected by the outcome of the research.  
COI 3 Proprietary interest related to the research including, but not limited to, a patent, 

trademark, copyright, or licensing agreement.  
COI 4 Board of executive relationship related to the research, regardless of compensation. 

 

FULL NAME CONFLICT OF INTEREST (COI) 

Maria Ioana Danila None, or 1  2 3 4 If any, is MOU in place? 

Yes No  

S. Louis Bridges None, or 1  2 3 4 If any, is MOU in place? 

Yes No 

Donna K. Arnett None, or 1  2 3 4 If any, is MOU in place? 

Yes No 

David B. Allison None, or 1  2 3 4 If any, is MOU in place? 

Yes No 

Hemant Tiwari None, or 1  2 3 4 If any, is MOU in place? 

Yes No 

Krish Ramen None, or 1  2 3 4 If any, is MOU in place? 

Yes No 

Peter Gregersen None, or 1  2 3 4 If any, is MOU in place? 

Yes No 

Degui Zhi None, or 1  2 3 4 If any, is MOU in place? 

Yes No 

Andy Westfall None, or 1  2 3 4 If any, is MOU in place? 

Yes No 

Vincent Laufer (being added) None, or 1  2 3 4 If any, is MOU in place? 

Yes No 

7. Information Since the Date of Last IRB Review 
• Mark at least one checkbox to indicate the type(s) of information received since 

the Date of Last IRB Review. 

• Please summarize each type of information, and provide details and copies as 
requested. 

7.a. You received multi-center trial reports that you have not 
previously forwarded to the IRB.  
Attach a copy and, in the space below, provide the date 

 Yes  No 

Multi-Center Trial Report 
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and source of report, and summarize the findings and 
any recommendations:  

       

7.b. You received data and safety or other monitoring 
reports (e.g., DSMB, sponsor site visit).  
Even if you have already forwarded a copy to the IRB, 
attach a copy and, in the space below, provide the date 
and source of report, and summarize the findings and 
any recommendations:  

 Yes  No 

Data Safety or  

Other Monitoring Report 

       

7.c. You learned of literature published about this research.  
Attach the publication or provide its web address, and 
summarize the published findings here:  

 Yes  No 

Published Literature 

       

7.d. You learned of other relevant information regarding this 
research, especially about risks associated with the 
research.  
Attach a copy of the source and/or summarize below, 
and check “Other Information” at right. Check “Affects 
Willingness” also if this information might affect a 
participant’s willingness to continue in the research, 
and describe the effects on participants here:  

 Yes  No 

Other Information 

 Yes  No 

Affects Willingness 

       

7.e. You have received another type of information. 
Summarize the information here, including details 
relevant to participants: 

 Yes  No 

Other Type of Information  

       
 

8.  Events Since the Date of Last IRB Review 
Mark at least one checkbox to show event(s) that have occurred since the Date of Last 

IRB Review. Please summarize all events, and provide specific details and/or copies 
as requested. 

8.a. One or more “reportable events” have occurred, which 
may constitute unanticipated problems involving risks 
to participants or others.  
Attach UAB Problem Report even if already reported to 
the IRB; attach UAB Problem Summary Sheet; provide 
brief narrative summary (2-3 sentences) of any trends or 
increases in frequency or severity noted, or enter “None 
noted” here: 

 Yes  No 

Reportable Events (Table 

A) 

       

8.b. Participants have experienced harms (expected or 
unexpected, serious or not serious) that do not meet the 
UAB IRB criteria for “reportable events.” 
Attach UAB Problem Summary Sheet; provide brief 
narrative summary (2-3 sentences) of any trends or 
increases in frequency or severity noted, or enter “None 
noted” here:  

 Yes  No 

Other Events (Table B) 



 

 176

       

8.c. You have had one or more problems obtaining informed 
consent.  
Briefly describe the problems here: 

 Yes  No 

Consent Problems 

       

8.d. You have received complaints about the research.  
Briefly describe the number and nature of the 
complaints: 

 Yes  No 

Complaints 

       

8.e. One or more participants withdrew, or were withdrawn 
from, the research.  
Indicate here the number of withdrawals and the reason 
for each: 

 Yes  No 

Withdrawals 

       

8.f. Participants have experienced research-related benefits. 
For example, “60% of participants in the treatment group 
appear to have reduced symptoms or reduced severity 
of symptoms, compared with 10% in the placebo group.” 
Briefly describe the benefits here: 

 Yes  No 

Benefits 

       

8.g. The risks, potential benefits, or both of this research 
have changed.  
Briefly describe the changes here: 

 Yes  No 

Change in Risk or Benefit 

       

8.h. Events have occurred that relate to participant safety but 
do not fit into the categories listed above.  
Briefly describe the events here: 

 Yes  No 

Other Events 

       
 

9. Protocol and/or Informed Consent Modifications 
Check the applicable boxes to indicate modifications made since Date of Last IRB 

Review (Yes to 9.a.) or requested with this renewal (Yes to 9.b.). Please provide the 
details and materials requested. 

9.a. Previous Modifications 
 Since the last IRB review, have you made modifications to the 

protocol, consent process, or consent document? 
Yes No 

If Yes, have the modifications been approved by the IRB?  

Yes—Provide a copy of each amendment form stamped “Approved” by the IRB during 

this approval period. 

No—In the space below, justify making the modification without prior IRB approval: 

       

9.b. Modifications Requested With This Renewal 

 Are you requesting IRB review of changes to the 
protocol (e.g., procedures, personnel, recruitment)? If 

 Yes  No 

Protocol Changes 
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so, check “Yes” and describe them in the space below. If 
adding personnel, indicate role in research, provide full 
name and UAB department/division, and address 
conflict of interest. 

 Vincent A. Laufer, B.A., is a current MD/PhD student and participant in the NIH 

Medical Scientist Training Program.   As part of this program, Vincent is studying 

statistical genetics, complex disease, and rheumatology to gain additional research 

training and experience.  He will be undertaking analysis of both of data in order to 

elucidate genetic factors associated with Rheumatoid Arthritis as part of the proposed 

research described in the IRB-approved HSP for this protocol. Robert Plenge is being 

removed from this protocol, as he is no longer an investigator on this project, due to 

change in his employment.   

 Are you requesting IRB review of changes to the 
consent process and/or form(s)? If so, check the 
applicable “Yes” box and, in the space below, describe 
the changes.  

 Yes  No 

Consent Process Changes 

 Yes  No 

Consent Document 

Changes  

 If the changes affect the consent form(s), indicate the number of consent-assent 
forms used for this protocol, and describe the changes to each form:  

(a) describe all changes to IRB-approved forms and the reasons for them;  
(b) describe the reasons for the addition of any materials (e.g., addendum consent); and  
(c) indicate either how and when you will reconsent enrolled participants or why 

reconsenting is not necessary.  
 
Also, indicate the number of forms changed or added. For new forms, provide 1 copy. 

For revised documents, provide 3 copies:  
• a copy of the currently approved document (showing the IRB approval stamp, if 

applicable) 
• a revised copy highlighting all proposed changes with “tracked” change 
• a revised copy for the IRB approval stamp. 

       
 

10. Gene Therapy, Gene Transfer, Recombinant DNA 

If this study 
involves 

 Gene 

therapy 

 Gene 

transfer 

 Recombinant 

DNA 

 None of 

these 

Complete this item, and include memorandum with 
original signatures of Gene Therapy Review Panel 
addressing the risk-benefit ratio, any 
recommendations, and the CRL if applicable.  

Go to Item 11. 

10.a. Has the Panel's assessment of the risk-benefit ratio of this 
project changed? If yes, please explain below. 

 Yes  No 

Risk-Benefit Change 

       

10.b. Does the Panel have any recommendations regarding the 
protocol or the consent form? If yes, please explain below. 

 Yes  No 

Panel 

Recommendations 



 

 178

       

Note. If the research involves minors (<19 years old), the panel’s memo must either 
confirm the previously assigned CRL number or reassign it and give the reasons 
it has changed.  

 

11. Continuing Review—Complete only if you want to renew IRB approval 
so that protocol-related activities can continue.  

11.a. Accrual Status—Indicate whether the study is “NOT YET OPEN,” “OPEN,” or 
“CLOSED”  (described below)  
 and provide the details requested for that accrual status. 

NOT YET OPEN: No individuals have been screened 
or entered. 

 Not Yet Open 

OPEN: The study could still enroll more individuals, 
add more specimens, review more records, etc.  

• Attach a copy of the most recently approved 
consent form(s) OR note in the space below 
that the IRB has waived informed consent 
and/or use of a consent form.  

• Describe plans for future accrual and/or 
enrollment here: 

 Open 

       

CLOSED: No more individuals will be enrolled, no more specimens 
or records will be added. 

 Closed 

If the study is closed, is a consent form being 
submitted for review? If “Yes,” explain why in the 
space below.  

 Yes  No 

Closed & Consent Form 

• Indicate the date closed to accrual: 12/31/2011 Date Closed 

• Choose one status to describe accrued 
participants, specimens, records:   

Check ONE Status Below: 

One or more is still receiving procedures as 
defined in the protocol (therapy, 
intervention, follow-up visits, etc.)  

On protocol procedure 

All are off protocol-driven procedures, in long-
term follow-up only  

In long-term follow-up 

All are off protocol-driven procedures, in data 
analysis only  

In data analysis  

 This study uses existing clinical and genotyping data from CLEAR for data 

analysis.  

 All data collection from the contributing study (CLEAR) was closed on 

12/31/2011, and is in data analysis.  

11.b. Describe any interim findings from this research. Please note that the IRB expects 
to receive findings on any protocol approved for 5 years.  

 No interim or significant findings to be reported at this time.  
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12. Final Report—Complete only if you want to end IRB approval after all 
protocol-related data analyses are complete and no further work on 
the protocol will be done. 

12.a. On what date were the final data analyses completed?       Final Date 

12.b. Summarize the final findings from this protocol: 

  

12.c. Who will be responsible for managing and storing the data records, including any 
and all research-related electronic files and paper documents?  

Name       

UAB Dept/Div, or 
Employer 

      

Work Address       

Daytime Telephone       

12.d. Describe the storage plan. How will data records be stored—on paper, computers, 
or both? How will they be protected from damage, unauthorized release, loss, and 
theft? How long will the data be stored? 

       

12.e. At the end of the storage period, will the data records be 
destroyed, archived, or transferred? Describe the plan in 
detail.  

Destroy  

Archive  

Transfer 

       

Note.  Specimens may be stored only if/as described in the IRB-approved protocol. Data 
records must be stored as described in the sponsor’s protocol or contract if 
applicable, and/or in the UAB Health System Record Retention Policy. Anyone 
wishing to use these data or specimens for secondary research purposes or for 
purposes preparatory to secondary research must obtain prior IRB review and 
approval. 

 
Signature of Principal Investigator:           
        Date:     
  
 

FOR IRB USE ONLY – Expedited Review 
Change to Expedited Category      Y   /     N     
No change to IRB’s previous determination of approval criteria at 45 CFR 46.111 or 21 CFR 

56.111  
 

           
           
     
Signature (Chair, Vice-Chair, Designee)        
 Date 

 

  



 

 180

  
 


	Genetic Influences On Rheumatoid Arthritis In Global Populations
	Recommended Citation

	Microsoft Word - 621392_pdfconv_710895_41E274FA-FF9B-11E8-9DD6-391295EF0FC5.docx

