
University of Alabama at Birmingham University of Alabama at Birmingham 

UAB Digital Commons UAB Digital Commons 

All ETDs from UAB UAB Theses & Dissertations 

2011 

Bayesian Hierarchical Generalized Linear Models For Detecting Bayesian Hierarchical Generalized Linear Models For Detecting 

(Rare) Haplotype-Haplotype And Haplotype-Environment (Rare) Haplotype-Haplotype And Haplotype-Environment 

Interactions In Genetic Association Analysis Interactions In Genetic Association Analysis 

Jun Li 
University of Alabama at Birmingham 

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection 

Recommended Citation Recommended Citation 
Li, Jun, "Bayesian Hierarchical Generalized Linear Models For Detecting (Rare) Haplotype-Haplotype And 
Haplotype-Environment Interactions In Genetic Association Analysis" (2011). All ETDs from UAB. 2268. 
https://digitalcommons.library.uab.edu/etd-collection/2268 

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is 
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be 
directed to the UAB Libraries Office of Scholarly Communication. 

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/2268?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc


BAYESIAN HIERARCHICAL GENERALIZED LINEAR MODELS FOR 
DETECTING (RARE) HAPLOTYPE-HAPLOTYPE AND HAPLOTYPE-

ENVIRONMENT INTERACTIONS IN GENETIC ASSOCIATION ANALYSI S 
 
 
 
 
 
 

by 
 

JUN LI 
 
 

NENGJUN YI, COMMITTEE CHAIR 
NIANJUN LIU 

UPENDER MANNE 
BORIS C. PASCHE 

KUI ZHANG 
 
 
 
 
 
 
 
 
 
 
 
 
 

A DISSERTATION 
 

Submitted to the graduate faculty of The University of Alabama at Birmingham, 
in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 
 

BIRMINGHAM, ALABAMA 
 

2011



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 
JUN LI 
2011



 iii  

BAYESIAN HIERARCHICAL GENERALIZED LINEAR MODELS FOR 
DETECTING (RARE) HAPLOTYPE-HAPLOTYPE AND HAPLOTYPE-

ENVIRONMENT INTERACTIONS IN GENETIC ASSOCIATION ANALYSI S 
 

JUN LI 
 

BIOSTATISTICS 
 

ABSTRACT 
 
This dissertation research focuses on genetic association analysis based on 

haplotypes in the context of both population-based and family-based studies. Haplotype-

based association analysis is powerful in the discovery and characterization of the genetic 

basis of complex human diseases. However, statistical models that fit haplotype-

haplotype and haplotype-environment interactions have not yet been fully developed. 

Furthermore, statistical methods for detecting the association between rare haplotypes 

and disease have not kept pace with their counterpart of common haplotypes. For both 

population-based and family-based association analyses, we herein propose two efficient 

and robust methods to separately tackle these problems based on Bayesian hierarchical 

generalized linear models. Our models simultaneously fit environmental effects, main 

effects of numerous common and rare haplotypes, and haplotype-haplotype and 

haplotype-environment interactions. The key to the approaches is the use of a continuous 

prior distribution on coefficients that favors sparsity in the fitted model and facilitates 

computation. We develop a fast expectation-maximization (EM) algorithm to fit models 

by estimating posterior modes of coefficients. We incorporate our algorithm into the 

iteratively weighted least squares for classical generalized linear models as implemented 

in the R package glm. We evaluate the proposed methods and compare their statistical 

properties to existing approaches on extensive simulated data. The results show that the 
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proposed methods perform well under all situations and are more powerful than the 

competitors.  

 

Keywords: Bayesian methods, Generalized linear models, Association studies, Haplotype, 

Interactions, Rare variants 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v

DEDICATION 
 
 

This dissertation is especially dedicated to Ying, my beloved wife, and Yunbo, 

my cherubic little son. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi

ACKNOWLEDGMENTS 
 
 

First and foremost, I would like to thank my mentor, Dr. Nengjun Yi. He 

introduced me to the field of Bayesian inference and inspired me to study Statistical 

Genetics. I have benefited from his wisdom, sharpness, preciseness, and efficiency. 

Without his guidance and support, my doctoral studies could not have been so fruitful. 

Next, I would like to thank Dr. David Allison for providing me financial support 

during my dissertation work. The Section on Statistical Genetics headed by him has 

provided me with excellent academic environment and many learning opportunities. I 

would not have been able to complete my dissertation without his support. 

I thank my committee members, Drs. Kui Zhang, Nianjun Liu, Boris Pasche, and 

Upender Manne, for all the constructive comments and suggestions on my work. 

Many thanks to the Department of Biostatistics, a place nurtured my scientific 

thought and spurred my academic growth.  

I want to express my deepest gratitude to my wife for her love, understanding, and 

support all the way, which make this dissertation possible. I also want to thank my little 

son, Yunbo, who has brought unbelievable joy to my life. They make all of my efforts 

meaningful. I am also grateful to my family in my hometown for their support. 

Finally, I thank my friends, Lang Chen, Xuehua Chen, and Mei Huang, and my 

fellow students, Jiatao Ye, Thomas Birkner, Nathan Wineinger, Guo-Bo Chen, Jihua Wu, 

and Milind Phadnis, for their invaluable assistance on academic and non-academic issues. 



 vii

TABLE OF CONTENTS   

                                                                                                                                       Page  

ABSTRACT ....................................................................................................................... iii 

DEDICATION .....................................................................................................................v  

ACKNOWLEDGMENTS ................................................................................................. vi  

LIST OF TABLES ............................................................................................................. ix  

LIST OF FIGURES ............................................................................................................ x  

CHAPTER 

1  INTRODUCTION ...........................................................................................................1                                                                        

2  POPULATION-BASED HAPLOTYPE-ASSOCIATION ANALYSIS IN  
    CASE-CONTROL STUDIES ........................................................................................13 
 
    2.1  Main Features of Population-Based Haplotype-Association Analysis ...................13  
           2.1.1  Assumption of Independence ........................................................................13 
           2.1.2  Ambiguity of Haplotype Phase .....................................................................14 
           2.1.3  Population Stratification ...............................................................................15                     
    2.2  Case-Control Studies ..............................................................................................17 
           2.2.1  Concept and Principles of Case-Control Studies ..........................................17 
           2.2.2  Advantages and Disadvantages of Case-Control Studies .............................18 
           2.2.3  Population-Based Genetic Association Analysis  
                     in Case-Control Studies ................................................................................19 
    2.3  Existing Statistical Methods for Population-Based  
           Haplotype-Association Analysis .............................................................................20 
    2.4  Bayesian Hierarchical Generalized Linear Model for Population-Based  
           Haplotype-Association Analysis .............................................................................23 
           2.4.1  Brief Description ...........................................................................................23 
           2.4.2  Methods.........................................................................................................24 
           2.4.3  Simulation Study ...........................................................................................32 
           2.4.4  Results ...........................................................................................................37 
           2.4.5  Discussion .....................................................................................................47 
 
3  FAMILY-BASED HAPLOTYPE-ASSOCIATION ANALYSIS IN



 viii  

    MATCHED CASE-CONTROL STUDIES ...................................................................51 
    3.1  Brief Description of Family-Based Haplotype-Association Analysis ....................52 
    3.2  Matched Case-Control Studies ...............................................................................54 
           3.2.1  Concept and Principles of Matching in Case-Control Studies .....................55 
           3.2.2  Benefits of Matching in Case-Control Studies .............................................56 
           3.2.3  Types of Controls in Matched Case-Controls ...............................................56 
           3.2.4  Selection of Matching Variables and Overmatching ....................................57 
           3.2.5  Number of Variables for Matching ...............................................................59 
           3.2.6  Maintenance of Matching in Statistical Analysis .........................................59 
           3.2.7  Desirable Situations for Matching ................................................................60 
           3.2.8  Family-Based Case-Control Studies .............................................................61 
           3.2.9  Population-Based Matched Case-Control Studies ........................................62 
    3.3  Existing Statistical Methods for Family-Based  
           Haplotype-Association Analysis .............................................................................63 
    3.4  Bayesian Hierarchical Generalized Linear Model for Family-Based  
           Haplotype-Association Analysis .............................................................................68 
           3.4.1  Brief Description ...........................................................................................68 
           3.4.2  Methods.........................................................................................................69 
           3.4.3  Simulation Study ...........................................................................................78 
           3.4.4  Results ...........................................................................................................84 
           3.4.5  Discussion .....................................................................................................96 
 
4  SOFTWARE ................................................................................................................101 

    4.1    Overview of R/BhGLM .......................................................................................101 
    4.2    R Functions for Haplotype-Based Association Analysis ....................................103 

LIST OF REFERENCES .................................................................................................113



 ix

LIST OF TABLES 

Table                                                                                                                              Page  

2.1  Haplotype Patterns and Their Frequencies .................................................................33 

2.2  Marginal and Interacting Terms and Their Effects in the Five Scenarios ..................35   

2.3  Proportions of Nonidentifiability of Parameters for All of  
       the Simulation Settings ...............................................................................................38  
    
3.1  Explanatory Variables and Their Effect Sizes in the Model for  
       the Three Scenarios .....................................................................................................82  
 
3.2 Average Time (Second) of Computing Standard Error for  
       Different Approaches ..................................................................................................88  
                               

       

 

 

 

 

 

 

 

 

 

 

 



 x

LIST OF FIGURES 
 

Figure                                                                                                                            Page 
 
2.1  Main Effect Model ......................................................................................................40 

2.2  Main and Interacting Effect Model .............................................................................43 

2.3  Full Model ...................................................................................................................46   

3.1  Accuracy of the Three Approaches for Computing Standard Errors ..........................87 
 
3.2  Small-Scale Model ......................................................................................................90 
 
3.3  High-Dimensional Model ...........................................................................................95   



 1

CHAPTER 1 

INTRODUCTION 
 
 

Over the past few decades complex human diseases such as cancer, diabetes, 

obesity, and cardiovascular diseases have constituted enormous health burden around the 

world and therefore become a particularly great concern to both the public and health 

professionals (e.g., King et al., 1998; Lopez et al., 2006; Boyle and Levin, 2008; 

Finkelstein et al., 2008; Ramahi, 2010).  

To gain great insight into the mechanisms by which such diseases are developed, 

a considerable effort and expense have been put forth during the same time period 

(Altmuller et al., 2001). The first step toward this particular goal is to discover which 

genes, or more precisely, which genetic polymorphisms or variants, are involved in the 

diseases. Until recently hundreds of genetic variants contributing to complex human 

diseases have been identified (Hindorff et al., 2009; Hindorff et al., 2010). Furthermore, 

the identification of such genetic variants is partly revolutionizing the field of medicine, 

providing more effective prevention, earlier diagnosis, and more-targeted, personalized 

therapies (e.g., Risch, 2000; Collins et al., 2003; Shastry, 2006; van't Veer and Bernards, 

2008). 

The most promising approach for identifying genetic variants that are related to 

complex human diseases is generally accepted to be genetic association analysis, 

provided that the frequencies of disease-susceptibility variants are not too low (Risch and 
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Merikangas, 1996; Zondervan and Cardon, 2004). The basic idea underlying genetic 

association analysis is to test whether the frequencies of alleles or genotypes at one locus 

or loci are different between comparison subpopulations, usually diseased subjects and 

healthy controls, by which researchers attempt to find out a genetic variant that either 

directly predisposes to disease or is in linkage disequilibrium (LD) with a causal variant 

(Cordell and Clayton, 2005). LD is known as a nonrandom alignment of alleles at 

different tightly linked loci in a population, and plays a fundamental role in the study of 

population genetics as a potentially powerful tool for the localization of genetic variants 

for complex human diseases (Hartl and Clark, 2006). The success of a genetic association 

analysis depends, in part, on the extent of LD of a disease-susceptibility locus with a 

genetic marker locus within a population. This means that a disease-susceptibility variant 

initially occurred close to a specific allele of a nearby genetic marker. As generations 

(and meioses) proceed over time, the disease-susceptibility variant and the marker allele 

remain statistically associated because their physical proximity remarkably reduces the 

number of recombination that occurs between them. 

Genetic association analysis has been shown to be often more statistically 

powerful than linkage analysis because a valid association may be detected in a sample in 

which linkage is not detectable, particularly when the genetic variant is playing only a 

moderate role in disease susceptibility. This is especially likely when a marker itself is a 

susceptibility variant (Risch and Merikangas, 1996; Risch, 2000; Botstein and Risch, 

2003). In addition, along with the rapid development of high-throughput genotyping 

technology and the availability of large amount of genetic markers, genetic association 

analysis has become increasingly popular in both genome-wide scan and fine mapping of 
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candidate regions (Laird and Lange, 2006; Huang et al., 2009). Many causal variants for 

disease such as type 1 and type 2 diabetes, prostate cancer, breast cancer, and 

inflammatory bowel diseases have been identified through genetic association analysis 

(McCarthy et al., 2008). This breakthrough findings offer renewed hope for the fight 

against complex human diseases. 

To detect a disease-susceptibility variant successfully, association analysis 

requires a high-density map of genetic markers because LD among variants occurs only 

over a short genetic distance. There are many kinds of genetic markers that can be used to 

construct such a map, for example, restriction fragment length polymorphism (RFLP), 

simple sequence repeat (SSR), and single nucleotide polymorphism (SNP). Among all 

the genetic markers, SNP is the most widely used one for gene mapping in complex 

human diseases due to its (nearly) complete coverage over the whole human genome with 

a high density, although all the other genetic markers are still very useful for genetic 

association analysis (Carlson et al., 2001).  

SNP could be defined as the variation of deoxyribonucleic acid (DNA) sequence 

occurring when a single nucleotide (A, T, C, or G) in the genome differs between 

members of a species or paired chromosomes in an individual. Single-SNP-based 

methods are suitable for detecting association of genetic variants with disease, provided 

that LD between the disease-susceptibility variant and the allele of a genetic marker is 

strong. When LD decreases, however, the power of single-marker-based association 

analysis might suffer. The reason is that the power of single-marker-based methods in 

association analysis depends on the LD between the disease-susceptibility variant and the 

allele of a genetic marker. LD information contained in flanking markers generally is not 
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incorporated, which can result in a reduction in power (Kaplan and Morris, 2001). When 

multiple SNPs are simply used in a study, some big challenges will present in analyzing 

hundreds of thousands of SNPs from a huge sample size, not only because of the high 

dimensionality of data, but also because of their complicated interrelated structure. To 

avoid these problems and, more important, take advantage of the linkage information 

from multiple SNPs together, SNP-based association analysis has been expanded to 

haplotype-based association analysis. 

Haplotype refers to the specific combination of alleles that are in alignment on a 

single homolog, one of the two homologous chromosomes in humans, and that tend to be 

inherited together. As the unit of analysis for statistical tests in association analysis, 

haplotypes have long been of great interest and have drawn much attention in recent 

years (Clark, 2004; Davidson, 2000; Schaid, 2004; Schaid et al., 2002). There are several 

reasons behind this phenomenon. First, haplotypes are biologically relevant. There is 

strong evidence that several mutations within a gene may interact together (cis-

interaction) to cause disease such as neural tube defects and prostate cancer (Tavtigian et 

al., 2001; Joosten et al., 2001; Fitze et al., 2002). Haplotype-based methods provide a 

natural way to capture such cis-interactions by examining a number of adjacent loci and 

accommodating the joint effects from them (Morris and Kaplan, 2002). Second, 

haplotype-based association methods are generally regarded as being more powerful than 

methods based on single markers since the former fully exploits LD information from 

multiple markers (Akey et al., 2001; Morris and Kaplan et al., 2002). Both simulation 

(Akey et al., 2001; Zaykin et al. 2002) and empirical studies also support this conclusion. 

Third, haplotype-based methods can be advantageous over SNP-based methods when 
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multiple disease-susceptibility variants occur within a single gene and each of these 

variants originates and predisposes to disease independently of the other variants (Morris 

and Kaplan, 2002). In addition, driven by the international HapMap project, considerable 

information concerning haplotype structures and haplotype frequencies has been gained 

from several populations (The International HapMap Consortium, 2005). Nowadays, 

haplotypes have been widely accepted as a major tool for identifying disease-

susceptibility variants in genetic association analysis. 

However, one difficulty in applying haplotype-based association analysis is that 

actual haplotypes for each individual can not be easily obtained directly. Although it is 

possible to determine haplotypes through molecular techniques, such techniques are often 

expensive and too laborious to be practical in large-scale studies (Michalatos-Beloin et 

al., 1996; Eitan and Kashi, 2002). In the routine laboratory work, the polymerase chain 

reaction (PCR), the current standard genotyping technique, is usually used to generate 

marker genotypes, in which, for a normally diploid organism such as humans, only the 

two alleles at a single locus can be discerned for an individual, without providing any 

information regarding the chromosome which is associated with each allele, known as 

phase information. Therefore, for an individual who is heterozygous at more than one 

locus, say n (n > 0) loci, there are total of 2n-1 possible haplotype pairs that are consistent 

with the observed single locus genotypes, and haplotype phase for this individual is said 

to be ambiguous. For example, if we consider three observed diallelic SNPs with 

genotypes (A,a), (B,b), and (c,c), the first two genotypes denoting the heterozygosity and 

the last one denoting the homozygosity, then there are two possible pairs of haplotypes 

that the individual may carry: ABc/abc or Abc/aBc, where “/” is used to separate the two 
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haplotypes within a haplotype pair, with each aligned on one of two homologous 

chromosomes. This ambiguity of haplotype phase complicates haplotype-based 

association analysis. 

To overcome this difficulty, numerous methods have been proposed for inferring 

haplotypes through the estimation of haplotype frequencies for the study population and 

the resolution of haplotype pairs within individuals (e.g., Clark, 1990; Excoffier and 

Slatkin, 1995; Fallin and Schork, 2000; Stephens et al., 2001; Niu et al., 2002; Qin et al., 

2002). Among these methods, the expectation-maximization (EM) algorithm is probably 

most frequently used (Excoffier and Slatkin, 1995; Fallin and Schork, 2000; Qin et al., 

2002). The EM algorithm is a well-established approach for estimating unobservable 

parameters in the context of missing data. Details on the original algorithm and further 

intuition behind its inception can be found in much of literature, including Dempster et al. 

(1977), Sundberg (1974), Wu (1983), and so on. Typically, the basic idea behind the EM 

algorithm is that in the E-step the posterior probability of each possible haplotype pair is 

estimated within an individual that are consistent with the observed genotypes, and in the 

M-step the haplotype frequencies are updated given the current estimated posterior 

probabilities. Then iteration between these two steps proceeds until convergence. Given 

these estimated haplotype frequencies, the posterior probability that an individual with 

the observed genotypes has a specific haplotype pair can be computed using Bayes’ rule. 

These posterior probabilities of haplotype pairs for each individual can be used to define 

haplotype variables to be included in a standard analysis such as logistic regression 

(Zaykin et al., 2002; Stram et al., 2003). 
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With respect to defining haplotype variables, a naive approach is to assign the 

most likely haplotype pair to an individual, and then the standard analysis is implemented 

as if the haplotype pair was exactly observed. The potential pitfall of this naive strategy is 

that ignoring the uncertainty in the haplotype assignment can introduce measurement 

error and further induce bias into the estimates of haplotype effects (Lin and Zeng, 2006; 

Lin and Huang, 2007; Kraft and Stram, 2007). The second way to handle the uncertainty 

in the haplotype assignment is a multiple imputation technique. Using this approach, a 

number of replicate datasets are generated by randomly assigning a haplotype pair to an 

individual that is in accordance with the individual’s haplotype posterior probabilities. 

Then haplotype effects are estimated by taking the average of the estimates across the 

imputed datasets (Kraft et al., 2005). In addition, an innovative method has been 

proposed in which haplotype frequencies and haplotype risk effects can be estimated 

simultaneously (Schaid et al., 2002; Epstein and Satten, 2003; Zhao et al., 2003; Stram et 

al., 2003). The attractive feature of this method is that it can jointly deal with uncertainty 

in haplotype assignment and uncertainty in haplotype frequency estimates (Kraft et al., 

2005). Finally, a relative simple but powerful way to handle this problem is to use the 

expectation-substitution method to compute the expected number of copies of a specific 

haplotype (estimate of haplotype dosage) for an individual using all the possible 

haplotype pairs that are compatible with his or her observed genotypes (Zaykin et al., 

2002; Stram et al., 2003; Kraft and Stram, 2007). Although the method is so-called 

“single imputation”, it can provide pretty good reliability and decent power for estimating 

haplotype risk effects (Kraft and Stram, 2007). 
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In the past two decades, large numbers of haplotype-based genome-wide and 

candidate gene association analyses have been conducted and it has been demonstrated 

that haplotype-based association analysis is a potentially cost effective and statistically 

powerful tool to unravel the genetic mechanisms that are underlying complex human 

diseases (Risch and Merikangas, 1996; Botstein and Risch, 2003). In haplotype-based 

association analysis, a lot of statistical methods have been proposed to examine the 

association between haplotypes and human complex diseases (e.g., Zaykin et al., 2002; 

Lake et al., 2003; Zhao et al., 2003; Cordell et al., 2004). Although many of these 

approaches have been widely used in the mapping of genes contributing to complex 

human diseases, the majority of them only focused on estimation of marginal effects of 

haplotypes and detection of association between common haplotypes and disease, while 

comparatively little attention has been paid so far to investigating interacting effects 

between haplotypes and environmental factors, especially those between haplotypes in 

different haplotype blocks, and exploring disease association with rare haplotypes 

(Becker et al., 2005; Guo and Lin, 2009).  

Complex human diseases are believed to be influenced by numerous different 

genetic and environmental factors, and the interplay of these two kinds of factors (e.g., 

Moore, 2005; Cordell, 2009). Consideration of interaction in analysis can potentially lead 

us to a better understanding of fundamental biological mechanisms and pathways in 

disease progression. Thus, an ideal strategy of analysis is to simultaneously consider all 

the genetic loci, environmental factors, and particularly their interactions. Such a joint 

analysis could enhance the power for detecting genetic variants that are involved in the 

etiology of disease mainly through an interacting effect with no marginal effect 



 9

(Chapman and Clayton, 2007), and/or ascertaining environmental factors that act 

primarily in genetically susceptible individuals (Thomas, 2010a). In addition, 

accommodating interaction in analysis can overcome the limited success in the detection 

of disease-predisposing genetic variants for complex human disease, or improve the 

explanation of heritability of most complex diseases that might be attributed to 

interactions or more complex pathways involving multiple genetic and environmental 

factors (Manolio et al., 2009; Eichler et al., 2010).   

However, identifying interactions that are causal in complex human diseases is 

not an easy task (Cordell, 2009; Kooperberg et al., 2009; Thomas, 2010a; Yi, 2010). 

Primarily, the detection and characterization of interactions are limited due to the lack of 

powerful statistical methods and/or large sample sizes. When numerous interactions are 

fitted explicitly in a model, the degrees of freedom for the corresponding test statistics 

would grow rapidly, and, as a result, sufficient power cannot be guaranteed to detect 

possibly significant effects in the model, especially in a relatively small sample size 

(Luan et al., 2001; Boks et al., 2007; Mukherjee et al., 2008; Cordell, 2009; Thomas, 

2010a). This issue may become more severe in haplotype-based association analysis, 

where haplotypes are usually inferred form SNPs as discussed before. With increasing 

number of SNPs, the number of possible haplotypes can become extremely large, leading 

to the related problems of high-dimensional data and sparse data for many of the 

haplotypes. The classical statistical methods such as logistic regression usually have no 

sufficient power and flexibility to handle these problems (Lake et al., 2003; Becker et al., 

2005; Kwee et al., 2007; Hein et al., 2009). Furthermore, up to now few innovative 

methods have been developed to tackle such problems in haplotype-based association 
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analysis. Therefore, a sophisticated method is desired that accommodates interactions as 

well as high dimensionality and sparsity. This poses a considerable challenge and serves 

as the motivation for our present research. 

Another potential factor that could help explain more proportion of the heritability 

of most complex human diseases is rare variants (Manolio et al., 2009; Eichler et al., 

2010). The rare variant is what has a relatively low minor allele frequency (MAF) or a 

rare homozygous genotype frequency in the population. So far there is no clear and 

consistent definition for the rare variant. Some researchers in the literature defined a 

variant with a MAF less than or equal to 0.05 or 0.01 as rare (e.g., Asimit and Zeggini, 

2010, Bansal et al., 2010). But most of authors used this term loosely, only to refer to 

variants that have less common MAF than those routinely studied. Anyway, no matter 

how the rare variant is defined, it has received very little attention for a long time in 

genetic association analysis, although it supplies valuable information on the mechanism 

by which disease is caused (e.g., Pritchard, 2001; Cohen et al., 2004; Azzopardi et al., 

2008). This is understandable, because such variants with very low frequencies and 

individually small contributions to the overall inherited disease susceptibility cannot be 

detected unless the statistical method is much powerful or the sample size is unusually 

large (Altshuler et al., 2008; Gorlov et al., 2008; Li and Leal, 2008; Bodmer and Bonilla, 

2008; Basu and Pan, 2011). This is the main reason why the common disease-common 

variant (CDCV) hypothesis prevails in the contemporary genetic studies. However, 

although hundreds of genetic variants associated with common diseases have been 

detected in the studies under the CDCV hypothesis, those variants have only a weak 

effect on disease risk, and hence only explain a small proportion of the heritable, genetic 
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component of susceptibility to those diseases (Maher, 2008; Dickson et al., 2010; Morris 

and Zeggini, 2010; Robinson, 2010). The unexplained part of heritability could be partly 

due to rare variants (Manolio et al., 2009; Eichler et al., 2010). This motivated 

researchers to consider the contribution of rare variants to susceptibility to common 

diseases, which is known as the common disease-rare variant (CDRV) hypothesis. The 

hypothesis postulates that disease is caused by some genetic variants with detectable 

strong effects, each of them being only found in a few individuals in the population 

(Bodmer and Bonilla, 2008; Morris and Zeggini, 2010; Robinson, 2010; Hoffmann et al., 

2010). The role of rare variants in complex human diseases such as hypertension, type 1 

diabetes, and obesity has been identified by recent studies under the CDRV hypothesis (Ji 

et al., 2008; Nejentsev et al., 2009; Bochukova et al., 2010).  

Rare haplotypes, just like other genetic rare variants, could be important disease-

predisposing variants and should not be ignored in investigating the genetic susceptibility 

to complex human diseases (Liu et al., 2005; Zhu et al., 2005; Yende et al., 2007; Semsei 

et al., 2008; Kitsios and Zintzaras, 2010). Rare haplotypes can be seen frequently in 

genetic association studies and even they might be produced by common SNPs in a 

population (Souverein et al., 2008; Guo and Lin, 2009). Regarding statistical modeling, 

however, rare haplotypes can result in nonidentifiability of parameters in model fit, which 

means the coefficients of predictors cannot be identified or estimated uniquely because of 

huge, even infinite standard errors (Gelman et al., 2003). There are several 

methodological and computational issues that complicate research of nonidentifiability of 

parameters. The big, even huge, estimate of parameter is the major obstacle. A common, 

but negative solution to this issue in the literature is to pool all rare haplotypes into one 
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single group (Schaid et al., 2002; Zhao et al., 2003) or pool rare haplotypes with common 

ancestral haplotypes (Seltman et al., 2003; Durrant et al., 2004; Tzeng, 2005). These 

approaches in nature ignore rare haplotypes by lumping them together, and consequently 

any rare haplotype that might contribute to the risk of disease cannot be identified 

distinctly.  

Obviously, the development of methods that can detect the rare variants and 

handle the nonidentifiability of parameters is a much needed area of research. Progress in 

this area requires introducing comprehensive, standardized, and precise approaches to 

capture all information arising from both common and rare haplotypes. This provides the 

second motivation for the research in this dissertation. 

In summary, our research focuses on the two main topics: haplotype-related 

interactions (haplotype-haplotype and haplotype-environment interactions) and rare 

haplotypes in association analysis. These two topics are thoroughly investigated in both 

population-based and family-based association analyses in CHAPTER 2 and CHAPTER 

3 of this dissertation, respectively, because population-based and family-based 

association analyses are the two major branches in the contemporary genetic studies, 

classified based on the study design and sample collection of a study. To make our 

proposed methods to be easily implemented and publicly available, we incorporate them 

into R/BhGLM software and briefly describe them in CHAPTER 4. 
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CHAPTER 2     

POPULATION-BASED HAPLOTYPE-ASSOCIATION ANALYSIS IN CASE -
CONTROL STUDIES 

 
 

In general, population-based haplotype-association analysis aims to detect the 

relationship between haplotypes and disease or quantitative phenotypes, using unrelated 

individuals as the primary sampling units. This kind of analysis has marked a great 

potential for unraveling genetic mechanisms that are underlying complex human diseases 

(Stephens et al., 2001; Schaid et al., 2002; Botstein and Risch, 2003; Clark, 2004; Schaid, 

2004).  

This chapter starts with a summary of major features of population-based 

haplotype-association analysis. Subsequently, basic concepts of case-control studies in 

the context of genetic association investigations are described. Some existing statistical 

methods for population-based haplotype-association analysis are briefly described in 

Section 2.3. The chapter finishes with deriving a new Bayesian hierarchical generalized 

linear model that can detect (rare) haplotype-haplotype and haplotype-environment 

interactions in population-based association analysis.  

 

2.1 Main Features of Population-based Haplotype-Association Analysis 

2.1.1 Assumption of Independence 

In population-based haplotype-association analysis, a fundamental assumption is 

that individuals under investigation are unrelated, which implies that most of association
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methods for uncorrelated data can be applicable directly. It is worth noting that while the 

assumption of independence often holds in population-based haplotype-association 

analysis, situations might arise where we would expect departure from independence, for 

example, when a trait on the same individual is measured repeatedly in a longitudinal 

study. In such situations, inference on haplotype effects can be biased for the methods 

with the assumption of independence. To solve this problem, some advanced statistical 

methods which accommodate correlated data are warranted and are essential for correctly 

estimating variance components (Fitzmaurice et al., 2004; Gelman and Hill, 2006; Song, 

2007).  

2.1.2 Ambiguity of Haplotype Phase 

Another remarkable aspect is that the information of allelic phase for a SNP is 

generally not available in the context of population-based association analysis and hence 

the corresponding haplotypes of an individual usually cannot be acquired directly as 

described in CHAPTER 1. This presents a considerable challenge for analyzing 

haplotype-based association with traits in population-based studies. To address this 

challenge, we must first perform haplotype inference including estimating haplotype 

frequencies and reconstructing haplotype patterns for each individual based on the 

observed genotype data collected from unrelated individuals, and then we can conduct 

haplotype-based association analysis. Consequently, these studies tend to differ in data 

structure and statistical methods from some other genetic association studies, for example, 

SNP-based association studies and family-based haplotype-association studies that will 

be discussed in the next chapter (Thomas, 2004; Schaid, 2004).  
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2.1.3 Population Stratification 

Human populations often exhibit a systematic difference in allele frequencies 

between subpopulations, which is usually referred to as population stratification or 

population structure. The main reason of population stratification is that random mating 

occurs within each of subpopulations while non-random mating, or more precisely, gene 

migration occurs between subpopulations. Note that there is another concept, population 

admixture, which often appears together with population stratification (McKeigue, 2007). 

Population admixture is used loosely in the scientific literature to indicate a population in 

which multiple subpopulations with different allelic distributions are present. In the 

population-based association studies, we usually focus on the issue arising from 

population stratification.  

Population stratification may result in spurious association in genetic studies (Li, 

1969; Devlin and Roeder, 1999; Pritchard et al., 2000a). As an example, consider the 

situation in which a population consists of two subpopulations each having different 

allele frequencies at a locus and differing prevalences of disease. We assume that the 

locus is not causally associated with the disease and, for simplicity, that the first 

subpopulation has a higher allele frequency at the locus as well as a higher prevalence of 

the disease. A random sample of cases from the population will tend to have more 

individuals of the first subpopulation than a random sample of controls drawn from a 

natural population. Then an unstratified case-control study will lead to inflated estimates 

of the effect of the locus on the disease risk. 

Several methods have been proposed to control the impact of population 

stratification in population-based association studies (e.g., Devlin and Roeder, 1999; 
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Pritchard et al., 2000a; Price et al., 2006; Epstein et al., 2007), among which the widely 

used ones broadly follow one of three concepts: genomic control, structured association, 

and principal components. The approach of genomic control uses random marker loci to 

obviate the false positive association due to population stratification (Devlin and Roeder, 

1999; Reich and Goldstein, 2001). The method of structured association directly infers 

population structure and incorporates the estimated population structure in the test of 

association (Pritchard et al., 2000a,b; Satten et al., 2001; Chen et al., 2003; Hoggart et al., 

2003; Purcell and Sham, 2004). The principal components analysis identifies principal 

components that represent the population structure based on genetic correlations among 

individuals (Yu et al., 2006; Malosetti et al., 2007; Zhao et al., 2007). However, all these 

methods have had only limited success in controlling the false association signals due to 

population stratification. It is important to recognize that these methods can only 

minimize the potential impact of population stratification or, to put it another way, they 

cannot completely remove the spurious association resulting from population 

stratification because the hidden population structure is usually unknown and cannot be 

corrected for at the time of statistical analysis (e.g., Lange et al., 2008; Zhang et al., 2008; 

Price, et al., 2010).  

Although population-based haplotype-association analysis has potential to lead 

false positive findings attributable to population stratification, they have some advantages 

over family-based haplotype-association studies that will be discussed in the next chapter. 

For example, in population-based haplotype-association analysis, it is relatively easy to 

recruit subjects, and each individual contributes one observation to the statistical test. 

Haplotype-association studies are usually more efficient in terms of time, money, and 
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logistics. Moreover, for late-onset diseases, it is impossible to collect parents of the 

affected subjects (Scott et al., 1997). Therefore, there is a great need for population-based 

haplotype-association analysis. 

 

2.2 Case-Control Studies 

In this section, basic concepts and properties of case-control studies are briefly 

described, followed by a discussion of how population-based haplotype-association 

analysis fits within case-control studies. Further discussions of case-control studies in the 

context of genetic association investigation can be found in Thomas (2004), Schaid 

(2004), Clayton (2007), and Ziegler and Koenig (2007). 

2.2.1 Concept and Principles of Case-Control Studies 

In a case-control study, two groups are sampled and compared with respect to 

their potential exposure of risk or protective factors; one group consists of affected 

subjects referred to as cases, and the other consists of unaffected subjects referred to as 

controls. The basic assumption of such studies is that the two groups of subjects may be 

employed to provide unbiased estimates of the corresponding distributions of the cases 

and controls. Based on this assumption, some statistical methods are used to determine 

whether there is a difference of past exposure to the suspected risk or protective factors 

between the cases and controls. If the exposure and the disease do not occur 

independently from each other, an association between the exposure and the disease is 

said to exist. The strength of association is usually assessed by a measure, odds ratio 

(OR), which is generally the ratio of the odds of an event occurring in one group to the 

odds of it occurring in another group. 
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2.2.2 Advantages and Disadvantages of Case-Control Studies 

Since the exposure of interest is collected after the development of the disease in 

question (the true order is that subjects have to be exposed before a disease is developed), 

case-control studies can be called a retrospective study. This is a prominent characteristic 

of case-control studies and it offers some advantages and disadvantage over another 

frequently-used class of studies, cohord studies, in which subjects with different 

exposures to the suspected risk or protective factors are recruited and followed over time 

for the occurrence of disease, and then the occurrence rates of the disease are measured 

and compared between the two groups. Case-control studies are a relatively cheap, quick, 

and reliable approach of establishing evidence of an association between exposure to risk 

or protective factors and disease.  

Case-control studies have proved particularly useful in studying rare and late-

onset diseases. However, their retrospective nature limits the strength of their conclusions 

because the mechanism of disease cannot be studied and a proof of causation cannot be 

established. In addition, several biases such as selection bias and information bias can be 

introduced into case-control studies in the process of identifying study population, 

measuring information on exposure or disease, and so on. Bias is defined as any 

systematic error in a study that results in an incorrect estimate of the association between 

exposure and disease, and it should be avoided by an appropriate design and careful data 

collection. Another problem in case-control studies is that some risk factors might act as 

confounders. A confounder is a third (extraneous) factor which is related to both 

exposure and disease but not an intermediate step between the exposure and disease, and 

it can lead to an overestimation or underestimation of the true relation between the 
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exposure and disease. Confounding is not an error in a study, but rather is a true 

phenomenon that exists in nature in a study and must be identified, understood, and 

interpreted in study design and/or analysis of data. In the design, some techniques could 

be used to restrict for potential confounders, and in the analysis, stratification and/or 

multivariable (adjusted) analysis could be used (Rothman et al. 2008a,b).  

Nonetheless, the value of case-control studies in rapid and inexpensive 

assessment of a new or serious disease has been proved beyond doubt (e.g., Breslow and 

Day, 1980; Rothman et al., 2008a,b,c). 

2.2.3 Population-Based Genetic Association Analysis in Case-Control Studies  

Case-control studies are very popular in the context of population-based genetic 

association investigations of complex human diseases. In this area, genetic risk factors 

are used as exposure to investigate association with the status of case and control which 

is commonly termed phenotype. There are kinds of genetic risk factors, but we limit our 

discussion to the observed genetic sequence information, or more precisely, the 

combination of alleles located on homologous chromosomes, which is defined as 

genotype. In case-control studies, a genetic locus that is supposed to be investigated is 

genotyped for cases and controls, and the frequency of an allele or genotype of the 

genetic locus is compared between the cases and controls. If there is a difference in the 

frequency of the allele or genotype under test between the two groups, an association is 

said to exist between the genetic locus and the disease, which means that the genetic 

locus may increase the risk of the disease (itself is causal), or be in linkage disequilibrium 

with a causal locus which does. If several genetic loci are genotyped they can either be 

tested separately or jointly for association with disease. Since the joint analysis employs 
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to the greatest possible advantage of LD information from multiple loci, it has been 

considered in the most of genetic studies. Haplotype-based studies are an excellent 

instance of jointly analyzing multiple loci. But for haplotypes-based association studies, 

since the haplotypic phase is generally unobservable in population-based association 

studies of unrelated individuals, a special consideration for analysis is required as 

described in detail in CHAPTER 1. 

In case-control studies, false positive results caused by population stratification 

may also occur when we use population-based haplotype data. The issue of population 

stratification is briefly described in the previous section. Such a spurious effect should be 

eliminated by an appropriate design and careful data collection because the population 

stratification is usually unknown and cannot be corrected for in statistical analysis. 

 

2.3 Existing Statistical Methods for Population-Based Haplotype-Association 
Analysis 
 

A variety of statistical methods have been developed to detect haplotype-disease 

association through use of population-based data from case-control studies. Early 

attempts to such methods were made over ten years ago by simply comparing the 

estimated haplotype frequencies between cases and controls (Zhao et al., 2000; Fallin et 

al., 2001). These approaches perform global tests of haplotype association with disease 

and can be implemented easily in the routine statistical analysis. However, they do not 

provide estimates for individual haplotypes due to the nature of omnibus test. Moreover, 

the estimated haplotype effects cannot be adjusted for environmental factors.  

Schaid et al. (2002), Zaykin et al. (2002), Stram et al. (2003), and Zhao et al. 

(2003) developed separate methods to deal with these problems. All these methods treat 
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haplotypes as explanatory variables in a regression model, and thus they can estimate the 

effects of individual haplotypes and adjust for environmental factors. The method of 

Schaid et al. (2002) is build upon the conditional probability distributions of subjects’ 

possible haplotype pairs given the observed genotype data and inferred haplotype 

frequencies. To take into account ambiguity of inferred haplotypes, it uses an EM 

algorithm to compute the posterior probabilities of haplotype pairs for each subject. 

Moreover, to account for uncertainty for haplotype assignment for each subject, it 

calculates expected haplotype score. Similarly, by using an EM algorithm, Zaykin et al. 

(2002) computed the expected counts based on the posterior probabilities of haplotype 

pairs given the observed genotype data, and then fitted the counts to the disease using a 

regression model. Stram et al. (2003) constructed a joint likelihood of disease and genetic 

and environmental covariates, from which they obtained the maximum likelihood 

estimates of individual haplotype effects. Zhao et al. (2003) applied a similar joint 

likelihood method as those of Stram et al. (2003) but assumed Hardy-Weinberg 

equilibrium (HWE) of haplotype frequencies within the sample of controls. 

Although each of these methods has its attractive features, particularly in 

estimating individual haplotype effects directly and accounting for non-genetic covariates, 

all of them only focus on estimation of marginal effects of haplotypes, and no attention 

was paid to investigate interacting effects between haplotypes and environmental factors, 

especially those between haplotypes in different haplotype blocks. However, increasing 

evidence suggests that gene-gene and gene-environment interactions play an important 

role in susceptibility to complex human diseases (Cheverund and Routman, 1995; Wolf 

et al., 2000; Moore, 2003; Carlborg and Haley, 2004; Moore, 2005). Investigating such 
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interactions may provide great insight into disease etiology and ultimately inform new 

strategies for treatment and prevention.  

As an earlier attempt to explore the interaction between haplotypes and 

environmental factors, Lake et al. (2003) proposed a likelihood-based method in the 

generalized linear model framework, which has been widely used in haplotype-based 

association studies because it is available free and easy to implement with its R package. 

This approach, however, is limited by ignoring interacting effects between haplotype 

blocks. Subsequently, several methods have been developed to study haplotype-related 

interactions but these methods do not consider all potential haplotypes and interactions 

simultaneously (Lin et al., 2005; Spinka et al., 2005; Lin and Zeng, 2006; Kwee et al., 

2007; Chen et al., 2008). Recently, Guo and Lin (2009) proposed a generalized linear 

model with regularization to detect interacting haplotype effects. However, their method 

applies a global test and consequently does not provide inference on the effects of 

individual haplotypes and their interactions.  

In our literature review, we also found that little attention has been paid so far to 

developing statistical methods for exploring disease association with rare haplotypes. 

However, it has been argued that rare haplotypes may account for a substantial fraction of 

the multifactorial inheritance of common diseases (Liu et al., 2005; Zhu et al., 2005; 

Yende et al., 2007; Semsei et al., 2008; Kitsios and Zintzaras, 2010). Guo and Lin (2009) 

adopted a least absolute shrinkage and selection operator (LASSO) penalty in their model 

which allows assessment of the effects of rare haplotypes by shrinking the coefficients of 

unassociated haplotypes to zeros so that the associated ones, particularly those that are 

rare, can stand out. It is a quite attractive approach for precisely estimating the effects of 
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rare haplotypes. However, since the distribution of LASSO estimators is non-standard, 

the pairwise comparisons between the tested haplotype and the reference haplotype are 

likely to suffer efficiency losses. 

Detecting interacting haplotypes and rare haplotypes associated with disease is a 

big challenge to population-based association analysis in case-control studies. How to 

address these issues is the main topic of our research as described in CHAPTER 1, which 

motivates us to develop a new method as in the following section. 

 

2.4 Bayesian Hierarchical Generalized Linear Model for Population-based 
Haplotype-association Analysis 
 
2.4.1 Brief Description 

We propose a new approach to investigate the association between haplotypes and 

human diseases based on the hierarchical generalized linear model. The proposed method 

is built upon a Bayesian framework with weakly informative priors on the coefficients. 

Although our method can be applied to continuous, binary, or ordinal traits, we herein 

describe it only for binary disease status in case-control studies. It can simultaneously fit 

a large number of effects, including main effects of numerous common and rare 

haplotypes, main effects of environmental factors, haplotype-haplotype interactions, and 

haplotype-environment interactions. We fit our Bayesian generalized linear models by 

incorporating an EM algorithm into the usual iteratively weighted least squares as 

implemented in the R package glm. This strategy leads to stable and flexible 

computational tools and allows us to apply any generalized linear model to haplotype-

based association studies. We investigate the statistical properties and performance of the 

proposed method and compare it with three existing methods, the classical generalized 
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linear model, the method of Lake et al. (2003), and the method of Guo and Lin (2009), 

through extensive simulation studies.  

2.4.2 Methods 

Generalized linear models of interacting haplotypes 

Suppose that a population-based association study consists of n unrelated 

individuals, phenotyped for a disease trait, genotyped for multiple genetic variants (e.g., 

SNPs) in multiple genomic regions or haplotype blocks, and recorded for some non-

genetic exposures, referred to as environmental factors. Although our method can deal 

with various phenotypes, we demonstrate its performance with a binary disease trait as 

measured in case-control studies. That is, let yi denote the disease status of individual i, 

with yi = 1 representing a case and yi = 0 representing a control.  

We use generalized linear models to relate disease status to haplotypes and 

environmental factors. A generalized linear model consists of three components: the 

linear predictor, the link function, and the distribution of the outcome variable 

(McCullagh and Nelder, 1989; Gelman et al., 2003). We simultaneously fit main effects 

of environmental (E) factors, main effects of haplotypes (H), haplotype-haplotype (H×H) 

and haplotype-environment (H×E) interactions. Therefore, the generalized linear model is 

expressed as 

      0(Pr( 1)) ( ) ,   1,  ...,  i E E H H HH HH HE HE i ih y i nβ= = + + + + =X β X β X β X β X β@ ,    (2.1) 

where h is a link function or transformation which relates the linear predictor Xiβ to the 

disease probability Pr(yi = 1), 0β  is the intercept, Eβ and Hβ are the vectors of 

environmental effects and all possible haplotype main effects, respectively, HHβ  is the 

vector of all possible haplotype-haplotype interactions between different haplotype 
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blocks, and HEβ  is the vector of haplotype-environment interactions, andEX , HX , HHX , 

and HEX  are the corresponding design matrices of explanatory variables. We describe the 

construction of these design matrices in the next subsection.  

Various link functions are provided in generalized linear models (McCullagh and 

Nelder, 1989), all of which can be adapted in our Bayesian models. Wray and Goddard 

(2010) recommended using logistic or probit model for multi-locus analysis of genetic 

risk of disease in case-control studies. The logit transformation defines h(p) = logit(p) = 

log(p/(1-p)), leading to a logistic regression which is commonly used in case-control 

studies and considered in our study. 

Construction of the design matrices 

 Since usually haplotypes are not directly measured, we first compute the posterior 

probabilities of haplotype pairs based on the observed genotype data for each subject to 

account for this ambiguity by using existing methods of haplotype inference (e.g., 

Excoffier and Slatkin, 1995; Niu et al., 2002; Stephens et al., 2001; Zaykin et al., 2004). 

These posterior probabilities are then used to compute the estimates of haplotype dosage 

(Stram et al., 2003).  

The estimate of haplotype dosage is the estimate of the number of copies of a 

specific haplotype for a subject. For the haplotypes that can be unambiguously resolved 

based on the observed genotype data, the values of haplotype dosage of a haplotype for a 

subject can be zero (indicating that the haplotype is not possible based on the subject's 

genotypes), one (indicating heterozygosity for the haplotype based on the subject's 

genotypes), or two (indicating homozygosity for the haplotype). But for the haplotypes 

that cannot be unambiguously resolved, the values of haplotype dosage of a haplotype for 
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a subject would be non-integer, ranging form zero to two, which reflect the possibility of 

the haplotype based on the subject’s genotypes. For each subject, the sum of haplotype 

dosage across all haplotypes within a haplotype block is equal to two. After obtaining the 

estimates of haplotype dosage, we can use them to construct the design matrix XH. We 

treat the estimate of haplotype dosage as a surrogate variable for the true haplotype. 

Suppose there are Wq possible haplotypes in the qth haplotype block in the 

population, q = 1, 2, …, Q, and let iqwd , w = 1, 2, …, Wq, denote the estimate of 

haplotype dosage of the wth haplotype in the qth haplotype block for subject i. Therefore, 

we can set (XH)i ( )111 1 1,  ..., ,  ,  ,  ..., 
Qi i W iQ iQWd d d d= L . For example, unphased genotype 

data at two SNPs was observed, and, for a subject, two haplotype pairs, ( )1 1,h h  and 

( )2 4,h h , were estimated with posterior probabilities, say, 0.9 and 0.1, respectively. Then 

the values of XH for this subject are (1.8, 0.1, 0.0, 0.1).  

Note that, at the time of statistical analysis, we exclude one haplotype from XH to 

ensure identifiability of parameters in model fit.  

For the environmental factors, the raw values are transformed to have a mean of 0 

and a standard deviation of 0.5, by subtracting the mean and dividing by 2 × SD (the 

standard deviation of the raw values) (Gelman et al., 2008; Yi and Banerjee, 2009). This 

transformation standardizes all the environmental effects to have a common scale. The 

matrices of interacting variables, XHE and XHH, are set up by simply multiplying two 

corresponding realizations of XE and XH. 
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Prior and posterior distributions  

The model above can include a large number of highly correlated explanatory 

variables, and most of which are likely to be zero or at least negligible, leading to the 

problems of high dimensionality, collinearity and sparsity that preclude the use of 

classical maximum likelihood methods. We handle these problems by using a Bayesian 

approach that places appropriate prior distributions on coefficients to capture the notion 

that most of the components of β  probably approach to zero or can be at least ignored; 

such prior distributions are known as shrinkage priors (Gelman et al., 2003; Yi and 

Banerjee, 2009). We assume independent Student-t priors 2(0,  )
j jt sν  on coefficients jβ , 

with jν  and js chosen to give each coefficient a high probability of being near zero while 

still allowing for occasionally large effects (Gelman et al., 2003; Gelman et al., 2008; Yi 

and Banerjee, 2009). We are motivated to use the t distribution because it allows for 

flexible modeling, robust inference, and easy and stable computation (Gelman et al., 

2008; Yi and Banerjee, 2009; Yi et al., 2010). There is no easy way to estimate 

coefficients directly using the t densities, but it is straightforward to deal with the two-

level formulation of t distribution (Gelman et al., 2003; Gelman et al., 2008). The 

distribution 2(0,  )
j jt sν  can be expressed as a mixture of normal distributions with mean 0 

and variance distributed as scaled inverse-2χ  

                   2 2| ~ (0,  )j j jNβ τ τ ,  2 2 2 ~ Inv- ( ,  )j j jsτ χ ν ,  0,  1,   ,  j J= L ,                     (2.2) 

where J is the total number of effects in the model, and the hyperparameters 0jν >  and 

0js >  represent the degrees of freedom and the scale of the distribution, respectively.  
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The hyperparameters jν  and js  control the global amount of shrinkage in the 

effect estimation; larger jν  and smaller 2
js  induce stronger shrinkage and force more 

effects to be near zero. We use the method of Yi et al. (2010) to choose jν  and js . For 

0β , Eβ  and Hβ , we use the weakly informative priors recommended by Gelman et al. 

(2008), i.e., 0 0( ,  ) (1,  10)sν =  for 0β , and ( ,  ) (1,  2.5)j jsν =  for Eβ  and Hβ . For 

haplotype-environment interactions HEβ , we set ( ,  ) (1,  2.5 / )j j H HEs l lν = × , where lH and 

lHE are the total numbers of main effects of haplotypes and haplotype-environment 

interactions, respectively. For haplotype-haplotype interactions HHβ , we set 

( ,  ) (1,  2.5 / )j j H HHs l lν = × , where lHH  are the total number of haplotype-haplotype 

interactions. Because there are many more interactions than main effects, these priors 

apply more stringent restrictions on interactions and allow reliable estimates of main 

effects and interactions (Yi et al., 2010).   

With the above prior distributions, we can express the log-posterior distribution of 

the parameters ( 2,β τ ) as 
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 ,  (2.3) 

where 2 2 2
0( , , )Jτ τ=τ L , and the likelihood of ( | )i ip y X β  depends on the logit link 

function and the linear predictor that is defined in (2.1). 
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EM algorithm for model fit 

Our hierarchical generalized linear model can be fitted using Markov chain Monte 

Carlo (MCMC) algorithms that fully explore the joint posterior distribution 2( , | )p β τ y  

by alternatively sampling each parameter from its conditional posterior distribution. 

However, it is desirable to have a faster computation that provides a point estimate of 

coefficients, e.g., the posterior mode, and standard errors (and thus p-values). Such an 

approximate calculation has been routinely applied in statistical analysis (Gelman et al., 

2008).   

We use the EM algorithm to fit the hierarchical haplotype models with the 

Student-t priors by estimating the marginal posterior modes of the coefficients jβ  (Yi 

and Banerjee, 2009; Yi et al., 2010). We incorporate our algorithm into the iteratively 

weighted least squares for classical generalized linear models as implemented in the R 

package glm, for example. The standard iteratively weighted least squares algorithm 

approximates a generalized linear model by a normal linear model (Gelman et al., 2003; 

Gelman et al., 2008). Specifically, at each iteration, pseudo-data iz  and pseudo-variances 

2
iσ are calculated for subject i by 

                                  2ˆ'( | ) 1
ˆ ,   

ˆ ˆ''( | ) ''( | )
i i

i i i
i i i i

L y
z

L y L y

η
η σ

η η
= − = − ,                                       (2.4)  

where ˆˆ
i iη = X β , β̂  is the latest estimate of β , '( | ) log ( | ) /i i i i iL y d p y dη η η= , and 

2 2''( | ) log ( | ) /i i i i iL y d p y dη η η= . Then the generalized linear model 

likelihood ( | )i ip y X β  is approximated by a normal likelihood 2( | , )i i iN z σX β , and 

finally the parameters jβ are updated by a weighted normal linear regression.  
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Our EM algorithm uses the two-level expression of the t prior distribution and 

treats the unknown variances 2
jτ  as missing data. From (2.3), we can see that only the 

terms 21/ jτ  are linked to βj, so we need to calculate the expectation of 21/ jτ . It can be 

easily shown that the conditional posterior distribution of 2
jτ  is 

2 2
2

ˆ
Inv- 1 ,

1
j j j

j
j

sν β
χ ν

ν

 +
+ 

 + 
, 

and thus the conditional expectation of 21/ jτ  is equal to 

1
2 2ˆ

1
j j j

j

sν β

ν

−
 +
 
 + 

 (e.g., Yi and Xu, 

2008). Therefore, the E-step of our EM algorithm is equivalent to replacing the variances 

by    

                                         
2 2

2
ˆ

ˆ
1
j j j

j

j

sν β
τ

ν

+
=

+
.                                                          (2.5)                            

Given the variances 2jτ , the priors 2 2| ~ (0, )j j jNβ τ τ  can be treated as additional 

“data points”, added to the weighted normal regression 2( | , )i i iN z σX β . Now we have an 

augmented weighted regression   

                                                   * * *~ ( ,  )N Σz X β ,                                                        (2.6) 

where *

( ) 1n J+ ×

 
=  
 

z
z

0
 is a vector of all iz  and J zeros of all prior means, *

( )J n J J+ ×

 
=  
 

X
X

I
  

is a matrix constructed by concatenating the design matrix X of the regression 

2~ ( , )i i iz N σX β  with the identity matrix IJ, and *Σ  is a diagonal matrix of all pseudo-

variances 2
iσ  and prior variances 2ˆ jτ . Then we can updateβ  by performing this 

augmented weighed regression. Obviously, with the augmented design matrix *X , this 
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regression is identifiable even if the original data are high-dimensional and have 

collinearity or separation (Gelman et al., 2008). 

Thus, in each M-step, the standard iteratively weighted least squares algorithm is 

applied to the augmented weighted normal regression to estimate the coefficientsjβ . We 

implement these computations by modifying the glm function in R for fitting 

generalized linear models, inserting the steps for calculating the augmented data and 

updating the variances into the iterative procedure.  

The EM algorithm is initialized by setting each jτ to a small value, say, jτ = 0.1,  

and jβ  to the starting value provided by the standard iteratively weighted least squares 

for the classical generalized linear model as implemented in the R function glm. We 

repeat the E-step and the M-step until convergence. At convergence of the algorithm, we 

obtain all outputs from the R function glm, including the estimates ˆ jβ , standard errors, 

and p-values (for testing 0jβ = ). The standard errors are calculated from the inverse 

second derivative matrix of the log-posterior density evaluated at ̂ jβ  (Gelman et al. 

2008). The p-values are then determined by the estimates of ˆ
jβ  and their standard errors 

as in the classical framework.   

In summary, the algorithm starts with initial values for each 2
jτ and jβ , and then 

proceeds as follows:  

1) Based on the current values of jβ , calculate pseudo-data iz  and pseudo-variances 2iσ ; 

2) E-step: replace each variance 2
jτ  by its conditional posterior expectation;  
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3) M-step: perform the weighted least square regression based on the normal likelihood 

approximation to obtain estimates jβ̂ ;  

4) Repeat steps 1-3 until convergence.   

2.4.3 Simulation Study 

We carry out an extensive simulation study to evaluate the statistical properties 

and performance of the proposed method. We utilize TGFBR1 haplotype-tagging SNP 

(htSNP) data published in the genetic association study that investigated the relationship 

between TGFBR1 haplotypes and risk of non-cell lung cancer (Lei et al., 2009). The six 

htSNPs are partitioned into two blocks, one forming 2-SNP haplotypes and the other 

forming 4-SNP haplotypes, based on the estimates of Lewontin coefficient ( 'D ) and 

squared correlation coefficient (2r ). The haplotype frequencies are estimated for the 2-

SNP and 4-SNP haplotypes, respectively, and are presented in Table 2.1. Given these 

haplotype frequencies, we generate case and control subjects, assuming HWE for the 

haplotype pair of each individual and a logistic regression model for the disease risk. The 

baseline penetrance of disease (the proportion of affected subjects with a pair of non-

disease-associated haplotypes) is set at 10%. A binary variable, smoking status with the 

proportion of 49% as in Lei et al. (2009), is included in the model as a covariate and is 

considered in haplotype-environment interactions. The results from the proposed method 

(referred to as BayesGLM) were compared with those from the classical generalized 

linear model (referred to as GLM), the method of Lake et al. (2003) (referred to as 

ScoreGLM), and the method of Guo and Lin (2009) (referred to as rGLM). The method 

of Lake et al. (2003) has been implemented in the freely available software R/haplo.stats 

(http://mayoresearch.mayo.edu/mayo/research/schaid_lab/software.cfm). Guo and Lin 
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(2009) also created an R package to carry out their method and it is available free at the 

website: http://www.stat.osu.edu/~statgen/SOFTWARE/rGLM/. 

 

Table 2.1.  Haplotype Patterns and Their Frequencies  

4-SNP Haplotype  2-SNP Haplotype 
Haplotype Pattern Frequency Haplotype Pattern Frequency 

haplo4.1 1111 3.27 × 10-1  haplo2.1 11 4.28 × 10-1 
haplo4.2 1112 2.71 × 10-2 haplo2.2 12 3.03 × 10-1 
haplo4.3 1121 7.04 × 10-3 haplo2.3 21 3.33 × 10-2 
haplo4.4 1211 6.64 × 10-2 haplo2.4 22 2.36 × 10-1 
haplo4.5 1212 9.50 × 10-9    
haplo4.6 1221 1.35 × 10-1    
haplo4.7 1222 2.06 × 10-9    
haplo4.8 2111 2.78 × 10-3    
haplo4.9 2121 4.82 × 10-3    
haplo4.10 2211 1.22 × 10-2    
haplo4.11 2212 4.14 × 10-1    
haplo4.12 2222 3.27 × 10-3    
Note: From “A Bayesian hierarchical model for detecting haplotype-haplotype and 
haplotype-environment interactions in genetic association studies” by Jun Li, Kui Zhang, 
and Nengjun Yi, 2011, Human Heredity, 71, p. 151. Copyright 2011 by S. Karger AG, 
Basel. Reprinted with permission. 
 

Simulation settings 

Five scenarios were posed to carry out our evaluation processes. To examine 

whether the proposed method can be applied to both common and rare haplotypes, we 

considered a rare haplotype, haplo4.3, two moderately rare haplotypes, haplo4.2 and 

haplo4.4, and a common haplotype, haplo4.1, in the 4-SNP haplotype block, and a 

moderately rare haplotype, haplo2.3, in the 2-SNP haplotype block to be associated with 

the disease in the five scenarios. 

In the first two scenarios, we considered only the main effects of haplotypes 

arising from the 4-SNP haplotype block. Specifically, in the first scenario, we assumed 
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that haplo4.1 and haplo4.3 increased the odds of getting disease by 2 and 3 fold, 

respectively, and haplo4.2 and haplo4.4 were not associated with the disease. In the 

second scenario, we assumed that haplo4.1, haplo4.2, haplo4.3, and haplo4.4 increased 

the odds of getting disease by 2, 3, 4, and 3 fold, respectively, and none of the other eight 

haplotypes in the 4-SNP haplotype block were associated with the disease (Table 2.2).  

In the third to fifth scenarios, we considered both the main and interacting effects 

arising between haplotypes in the two haplotype blocks, and between the haplotypes and 

smoking status. We assumed the effects in a similar way as we did in the first two 

scenarios (Table 2.2). But note that in the last scenario, we considered all the main effects 

of haplotypes and smoking status, and all possible interacting effects between the two 

haplotype blocks and between the haplotypes and smoking status. In this scenario there 

are a total of eighty-one terms, including seventeen marginal and sixty-four interacting 

terms (Table 2.2). 

Each of these five scenarios had three different sample sizes: 250, 500, and 1000, 

with equal numbers of cases and controls. A total of 1000 replicates were generated 

under each of these fifteen settings. All of the generated data were analyzed by using 

ScoreGLM, GLM, rGLM, and BayesGLM, respectively.  
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Table 2.2.  Marginal and Interacting Terms and Their Effects in the Five Scenarios            

Scenario 1 
 

Scenario 2 
 

Scenario 3 
 

Scenario 4 
 

Scenario 5 

Term OR Term OR Term OR Term OR Term OR 

haplo4.3 3 
 

haplo4.3 4 
 

haplo2.3:haplo4.1 4 
 haplo2.3:haplo4.3 

smoke:haplo4.3 
5 

 haplo2.3:haplo4.3 
smoke:haplo4.3 

5 

haplo4.1 2 
 

haplo4.2 
haplo4.4 

3 
 

haplo4.3 
smoke:haplo4.1 

3 
 haplo4.3 

haplo2.3:haplo4.1 
smoke:haplo2.3 

4 
 haplo4.3 

haplo2.3:haplo4.1 
smoke:haplo2.3 

4 

haplo4.2 
haplo4.4 

1 
 

haplo4.1 2 
 haplo2.3 

haplo4.1 
smoke 

2 
 haplo2.3, haplo4.2 

haplo4.4 
smoke:haplo4.1 

3 
 haplo2.3, haplo4.2, 

haplo4.4 
smoke:haplo4.1 

3 

   haplo4.5, haplo4.6 
haplo4.7, haplo4.8 
haplo4.9, haplo4.10 
haplo4.11, 
haplo4.12 

1 

 

haplo4.2 
haplo4.4 

1 

 

haplo4.1 
smoke 

2  
haplo4.1 
smoke 

2 

      

  

 haplo2.1, haplo2.2 
haplo2.4, haplo4.5 
haplo4.6, haplo4.7 
haplo4.8, haplo4.9 
haplo4.10, haplo4.11 
haplo4.12 

1 

 Other seventy effects 

1 

“:” stands for an interaction between two terms (before and after “:”). 
 
Note: From “A Bayesian hierarchical model for detecting haplotype-haplotype and haplotype-environment interactions in 
genetic association studies” by Jun Li, Kui Zhang, and Nengjun Yi, 2011, Human Heredity, 71, p. 152. Copyright 2011 by S. 
Karger AG, Basel. Reprinted with permission. 
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In summary, our procedure of the data generation, statistical analysis, and results 

comparison proceeded as follows: 

1) Genotype data generation: Randomly drew two haplotypes (phased haplotype pairs) 

for each subject from the observed haplotypes (Table 2.1).  

2) Covariate data generation: Smoking status for each subject was determined from a 

Bernoulli distribution with the observed proportion of smoking.  

3) Case/control data generation: Set up the “true” values of parameters as described in 

the simulation settings. Using these “true” values as well as the generated phased 

haplotypes and smoking status, assigned an individual to be a case or control according to 

the probabilities derived from a classical logistic regression model.  

4) Model fit: The generated phased haplotypes and smoking status were used as 

explanatory variables to fit four kinds of models based on ScoreGLM, GLM, rGLM, and 

BayesGLM, respectively.  

5) Replication: the step 1 through the step 4 were repeated for 1000 times. 

6) Statistics calculation: (1) Calculated 68% and 95% intervals that covered the “true” 

values for each parameter in the model: ˆ| |j j jb b z seα− < , where jb is the “true” value of 

the jth parameter, 1,  2,  ...,  j J= , ˆ
jb is an estimated coefficient of the jth parameter, zα  is 

an upper critical value of the standard normal distribution for a desired significance level 

α , se is a standard error of estimated coefficients. (2) Calculated empirical powers for 

each of parameters in the model: ( )1
1

rj

R

pr
power R I

α≤=
= ∑ , where R is the number of 

replicates required, rjp is the p-value of the jth parameter in the rth replicate, α  is the 

significance level taking three values of 0.05, 0.01, or 0.001.  
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2.4.4 Results 

Nonidentifiability of parameters in model fit 

There was one main problem, the nonidentifiability of parameters, that was 

encountered in the model fit using the classical methods. This problem is first pointed out 

here because it frequently occurred and resulted in serious problems. Specifically, we 

found that the standard errors of some predictors in the models were large and hence the 

coefficients were essentially infinite when using haplo.glm in R/haplo.stats based on 

ScoreGLM or using glm in R based on GLM, whereas there was no such problem when 

using the proposed method, BayesGLM (data not shown). We could not evaluated the 

nonidentifiability of parameters when using rGLM because, as mentioned earlier, rGLM 

can only perform an overall test based on permutation and consequently does not provide 

standard errors for each predictor in the model fit.  

The further question that might be asked is how often and how serious the 

problem is. To this end, we summarized the results regarding the nonidentifiability of 

parameters in the model fit for all of the simulation settings in Table 2.3. We can see that, 

as the sample size was increased, the proportions of nonidentifiability of parameters 

decreased in each of the first four scenarios of ScoreGLM and GLM. Under a fixed 

sample size, the proportions of nonidentifiability of parameters followed the order: 

scenario 5 > scenario 4 > scenario 2 > scenario 3 > scenario 1 for both ScoreGLM and 

GLM. In the scenarios 2, 4, and 5 of ScoreGLM and GLM, all of the proportions 

exceeded 50% except that in the scenario 2 of ScoreGLM with a sample size of 1000 

(39%). In contrast, in the scenarios 1 and 3, only the proportion in the scenario 3 of GLM 

with a sample size of 250 barely exceeded 50% (51%). For BayesGLM, there was no 
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problem observed with the nonidentifiability of parameters in all of the simulation 

settings. Obviously, the larger the proportions of nonidentifiability of parameters, the less 

stable the estimated coefficients (Albert and Anderson 1984; Lesaffre and Albert 1989). 

Therefore, our results involving comparisons of the three methods were derived only 

from the replicates without the nonidentifiability of parameters in the scenarios 1 and 3, 

unless otherwise specified. 

 

Table 2.3. Proportions of Nonidentifiability of Parameters for All of the Simulation 
Settings 
 

Sample size Scenario ScoreGLM GLM BayesGLM 
250 1 0.34 0.47 0.00 

 2 0.69 0.78 0.00 
 3 0.42 0.51 0.00 
 4 0.79 0.88 0.00 
 5 1.00 1.00 0.00 

500 1 0.22 0.33 0.00 
 2 0.58 0.67 0.00 
 3 0.30 0.38 0.00 
 4 0.68 0.73 0.00 
 5 1.00 1.00 0.00 

1000 1 0.09 0.16 0.00 
 2 0.39 0.54 0.00 
 3 0.16 0.21 0.00 
 4 0.56 0.61 0.00 
 5 1.00 1.00 0.00 

Note: From “A Bayesian hierarchical model for detecting haplotype-haplotype and 
haplotype-environment interactions in genetic association studies” by Jun Li, Kui Zhang, 
and Nengjun Yi, 2011, Human Heredity, 71, p. 153. Copyright 2011 by S. Karger AG, 
Basel. Reprinted with permission. 
 

Main effect model 

In the scenarios 1, only four haplotypes in the 4-SNP haplotype block were 

modeled as main effects for the disease (Table 2.2). The “true” values prespecified for 

these four haplotypes were first compared to their corresponding estimated coefficients 
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based on the four methods (left column of Figure 2.1). Under the sample size of 250, 

wider estimated 68% and 95% intervals that covered the “true” values calculated based 

on BayesGLM were observed for each of four haplotypes compared to those calculated 

based on the other three methods, with the only exception that rGLM had little wider 

estimated intervals than BayesGLM did for haplo4.1  (top left corner of Figure 2.1). With 

the increase of sample sizes, however, the superiority of reliability of BayesGLM was 

faded out for all of the haplotypes except haplo4.3 (middle left and bottom left corner of 

Figure 2.1), although its two coverage rates maintained a low growth rate. For all of the 

four methods, haplo4.3 had lower coverage than the other haplotypes did no matter what 

sample sizes were considered.  

In this and the following subsections, we did not consider rGLM in the evaluation 

of empirical power as well as Type I errors because, as mentioned before, its omnibus 

test does not produce p-values for individual effects. Therefore, the empirical powers 

were calculated based only on ScoreGLM, GLM, and BayesGLM for haplo4.1 and 

haplo4.3, from which we tried to evaluate the ability of these methods to detect any 

disease-predisposing haplotypes. Under the sample size of 250, BayesGLM demonstrated 

higher probabilities for detecting genetic effects compared to both ScoreGLM and GLM 

(top right corner of Figure 2.1). Although the advantage of BayesGLM in the statistical 

validity was diminishing with the increase of sample sizes, it still persisted, especially for 

the rare haplotype, haplo4.3, and for the powers under 0 001 and 0 01. .α = (middle right 

and bottom right corner of Figure 2.1). For all of the three methods, a sample size of 500 

was sufficient to detect a common haplotype with power of 90% approximately, and a 
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sample size of 1000 was sufficient to identify a rare haplotype with power of 85% 

approximately. 

 

0.0 0.2 0.4 0.6 0.8 1.0

haplo4.4(S)
haplo4.4(R)
haplo4.4(C)
haplo4.4(B)

haplo4.3(S)
haplo4.3(R)
haplo4.3(C)
haplo4.3(B)

haplo4.2(S)
haplo4.2(R)
haplo4.2(C)
haplo4.2(B)

haplo4.1(S)
haplo4.1(R)
haplo4.1(C)
haplo4.1(B)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

 

0.0 0.2 0.4 0.6 0.8 1.0

haplo4.4(S)
haplo4.4(R)
haplo4.4(C)
haplo4.4(B)

haplo4.3(S)
haplo4.3(R)
haplo4.3(C)
haplo4.3(B)

haplo4.2(S)
haplo4.2(R)
haplo4.2(C)
haplo4.2(B)

haplo4.1(S)
haplo4.1(R)
haplo4.1(C)
haplo4.1(B)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

 

Confidence interval

0.0 0.2 0.4 0.6 0.8 1.0

haplo4.4(S)
haplo4.4(R)
haplo4.4(C)
haplo4.4(B)

haplo4.3(S)
haplo4.3(R)
haplo4.3(C)
haplo4.3(B)

haplo4.2(S)
haplo4.2(R)
haplo4.2(C)
haplo4.2(B)

haplo4.1(S)
haplo4.1(R)
haplo4.1(C)
haplo4.1(B)

0.0 0.2 0.4 0.6 0.8 1.0

Empirical pow er

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

 

 

Figure 2.1.  Main Effect Model. Estimated 68% and 95% coverages of the “true” values 
(indicated by bold and thin horizontal lines in the left column, respectively) and empirical 
powers or Type I error rates (× indicated the empirical powers or Type I error rates 
for 0 001.α = , o for 0 01.α = , and + for 0 05.α = ) for each of four haplotypes based on the 
four methods under the sample sizes of 250 (top), 500 (middle), and 1000 (bottom). The 
notations, B, C, R, and S, stand for BayesGLM, GLM, rGLM, and ScoreGLM, 
respectively. 
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Note: From “A Bayesian hierarchical model for detecting haplotype-haplotype and 
haplotype-environment interactions in genetic association studies” by Jun Li, Kui Zhang, 
and Nengjun Yi, 2011, Human Heredity, 71, p. 154. Copyright 2011 by S. Karger AG, 
Basel. Reprinted with permission. 
 
 

The empirical Type I error rates were also calculated for haplo4.2 and haplo4.4 

based on ScoreGLM, GLM, and BayesGLM (right column of Figure 2.1). For the sample 

sizes of 250 and 500, BayesGLM had a little lower Type I error rates under 0 05.α =  

than both ScoreGLM and GLM did. As the sample size went up to 1000, all of Type I 

error rates shrank to zero. 

Main and interacting effect model 

In the scenario 3, both the main and interacting effects arising between the two 

haplotype blocks and between the haplotypes and the environmental factor were jointly 

considered in the model fit for the four methods (Table 2.2). However, since H×E 

interactions cannot be fitted by using the current version of rGLM, interactions between 

smoke and haplo4.1 were set only for ScoreGLM, GLM, and BayesGLM, and since H×H 

interactions cannot be fitted by using haplo.glm based on ScoreGLM, interactions 

between haplo2.3 and haplo4.1 were set only for GLM, rGLM, and BayesGLM. So there 

were total of eight terms as predictors included in the model with six of them assumed to 

be disease-associated (Figure 2.2). Under the sample size of 250, wider estimated 68% 

and 95% intervals that covered the “true” values calculated based on BayesGLM were 

found for each of eight predictors compared to those calculated based on the other three 

methods, with the only exception that rGLM had little wider estimated intervals than 

BayesGLM did for smoking status (smoke) and haplo4.1 (top left corner of Figure 2.2). 

Although the lead of BayesGLM in the statistical reliability was narrowed with the 



 42

increase of sample sizes, it continued to exist, especially for the rare haplotype, haplo4.3, 

and the interacting terms, smoke:haplo4.1 and haplo2.3:haplo4.1 (middle left and bottom 

left corner of Figure 2.2). For all of the four methods, the rare haplotype and the 

interacting terms had quite lower coverages than the other predictors in the model did no 

matter what sample sizes were considered, which was in agreement with the finding in 

the foregoing analysis of main effects.  

The empirical powers were calculated for smoke, haplo2.3, haplo4.1, haplo4.3, 

smoke:haplo4.1, and haplo2.3:haplo4.1 based on ScoreGLM, GLM, and BayesGLM. For 

smoke, the powers were comparable for ScoreGLM, GLM, and BayesGLM no matter 

what sample sizes were considered (top three lines in each of three right panels of Figure 

2.2). This is reasonable because, for a common environmental factor with a decent 

frequency, any statistical test can achieve similar power for detecting it and the possible 

difference of powers among some tests can be explained by the random variability. For 

the predictors: haplo2.3, haplo4.1, and haplo4.3, the results were almost the same as 

those in the preceding subsection of main effects. For smoke:haplo4.1, under the sample 

size of 250, BayesGLM had higher power only for 0 05.α = compared to ScoreGLM (top 

right corner of Figure 2.2). With the increase of sample sizes, however, the situation was 

soon improved and eventually turned around (middle right and bottom right corner of 

Figure 2.2). For haplo2.3:haplo4.1, BayesGLM demonstrated a higher probability for 

correctly detecting genetically interacting effects under each of three fixed Type I error 

rates and each of three sample sizes compared to both ScoreGLM and GLM (bottom two 

lines in each of three right panels of Figure 2.2).    

 



 43

0.0 0.2 0.4 0.6 0.8 1.0

haplo2.3:haplo4.1(R)
haplo2.3:haplo4.1(C)
haplo2.3:haplo4.1(B)

smoke:haplo4.1(S)
smoke:haplo4.1(C)
smoke:haplo4.1(B)

haplo4.4(S)
haplo4.4(R)
haplo4.4(C)
haplo4.4(B)

haplo4.3(S)
haplo4.3(R)
haplo4.3(C)
haplo4.3(B)

haplo4.2(S)
haplo4.2(R)
haplo4.2(C)
haplo4.2(B)

haplo4.1(S)
haplo4.1(R)
haplo4.1(C)
haplo4.1(B)

haplo2.3(R)
haplo2.3(C)
haplo2.3(B)

smoke(S)
smoke(R)
smoke(C)
smoke(B)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

 

0.0 0.2 0.4 0.6 0.8 1.0

haplo2.3:haplo4.1(R)
haplo2.3:haplo4.1(C)
haplo2.3:haplo4.1(B)

smoke:haplo4.1(S)
smoke:haplo4.1(C)
smoke:haplo4.1(B)

haplo4.4(S)
haplo4.4(R)
haplo4.4(C)
haplo4.4(B)

haplo4.3(S)
haplo4.3(R)
haplo4.3(C)
haplo4.3(B)

haplo4.2(S)
haplo4.2(R)
haplo4.2(C)
haplo4.2(B)

haplo4.1(S)
haplo4.1(R)
haplo4.1(C)
haplo4.1(B)

haplo2.3(R)
haplo2.3(C)
haplo2.3(B)

smoke(S)
smoke(R)
smoke(C)
smoke(B)

0.0 0.2 0.4 0.6 0.8 1.0  

0.0 0.2 0.4 0.6 0.8 1.0

haplo2.3:haplo4.1(R)
haplo2.3:haplo4.1(C)
haplo2.3:haplo4.1(B)

smoke:haplo4.1(S)
smoke:haplo4.1(C)
smoke:haplo4.1(B)

haplo4.4(S)
haplo4.4(R)
haplo4.4(C)
haplo4.4(B)

haplo4.3(S)
haplo4.3(R)
haplo4.3(C)
haplo4.3(B)

haplo4.2(S)
haplo4.2(R)
haplo4.2(C)
haplo4.2(B)

haplo4.1(S)
haplo4.1(R)
haplo4.1(C)
haplo4.1(B)

haplo2.3(R)
haplo2.3(C)
haplo2.3(B)

smoke(S)
smoke(R)
smoke(C)
smoke(B)

0.0 0.2 0.4 0.6 0.8 1.0  
 

         Confidence interval Empirical pow er  

 
Figure 2.2.  Main and Interacting Effect Model. Estimated 68% and 95% coverages of 
the “true” values (indicated by bold and thin horizontal lines in the left column, 
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respectively) and empirical powers or Type I error rates (× indicated the empirical 
powers or Type I error rates for 0 001.α = , o for 0 01.α = , and + for 0 05.α = ) for each of 
four haplotypes based on the four methods under the sample sizes of 250 (top), 500 
(middle), and 1000 (bottom). The notations, B, C, R, and S, stand for BayesGLM, GLM, 
rGLM, and ScoreGLM, respectively. 
 
Note: From “A Bayesian hierarchical model for detecting haplotype-haplotype and 
haplotype-environment interactions in genetic association studies” by Jun Li, Kui Zhang, 
and Nengjun Yi, 2011, Human Heredity, 71, p. 155. Copyright 2011 by S. Karger AG, 
Basel. Reprinted with permission. 
 

The empirical Type I error rates were also calculated for haplo4.2 and haplo4.4 

based on ScoreGLM, GLM, and BayesGLM as in the preceding subsection of main 

effects, and the similar results were observed (right column of Figure 2.2).  

Full model 

In the scenario 5, a total of eighty-one marginal and interacting terms arising 

between the two haplotype blocks and between the haplotypes and the environmental 

factor were simultaneously considered (Table 2.2). As we have seen from Table 2.3, 

however, all the proportions of nonidentifiability of parameters were jumped to 1 for both 

ScoreGLM and GLM in the scenario 5. Consequently, the statistical estimations under 

these situations should be much instable and any comparison to them does not make 

sense. Since the current version of rGLM cannot fit H×E interactions, rGLM cannot be 

used to fit the full mode. Therefore, a single model based on BayesGLM was fitted to 

demonstrate its performance in a case where the number of predictors in a model is huge. 

As in the analyses of main and interacting effect models in the foregone subsections, the 

“true” values prespecified for all predictors in the model were first compared to their 

corresponding estimated coefficients for each of three sample sizes respectively (first, 

third, and fifth columns of Figure 2.3). From the graph we can see that, along with the 
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increase of sample sizes, the estimated 68% and 95% intervals increased that covered the 

“true” values for each of eighty-one predictors. We also fund that the rare haplotypes 

(haplo4.3 and haplo2.3) and the interactions (smoke:haplo2.3, smoke:haplo4.1, 

smoke:haplo4.3, haplo2.3:haplo4.1, and haplo2.3:haplo4.3) had quite lower coverages 

than the other predictors in the model did no matter what sample sizes were considered. 

All these findings were consistent with those observed in the foregoing subsections.  

The empirical powers were calculated for a total of eleven disease-associated 

predictors in the model under each of three fixed Type I error rates 

( 0 001  0 01  and 0 05. , . , .α = ) (second, fourth, and sixth columns of Figure 2.3). From the 

graph we can see that although the power increased along with the increase of sample 

sizes, they started at quite low levels and maintained low growth rates. Under the sample 

size of 1000, eight predictors (smoke, haplo2.3, haplo4.1, haplo4.3, smoke:haplo4.1, 

smoke:haplo4.3, haplo2.3:haplo4.1, and haplo2.3:haplo4.3) had an 80% chance or more 

of being indentified under 0 05.α = , while three predictors (haplo4.2, haplo4.4, and 

smoke:haplo2.3) had a 60% chance or more of being indentified under 0 05.α = .     

The empirical Type I error rates were also calculated for a total of seventy non-

disease-associated predictors in the model. As the sample size went up to 500, almost all 

of the Type I error rates shrank to zero. 
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Figure 2.3.  Full Model. Estimated 68% and 95% coverages of the “true” values 
(indicated by bold and thin horizontal lines in the first, third, and fifth columns, 
respectively) and empirical powers or Type I error rates (× indicated the empirical 
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powers or Type I error rates for 0 001.α = , o for 0 01.α = , and + for 0 05.α = ) for each of 
eighty-one predictors based on BayesGLM under the sample sizes of 250 (first two 
columns), 500 (third and fourth columns), and 1000 (last two columns). The black labels 
on the vertical axis stand for the disease-associated predictors, while the gray labels stand 
for the non-disease-associated predictors.  
 
Note: From “A Bayesian hierarchical model for detecting haplotype-haplotype and 
haplotype-environment interactions in genetic association studies” by Jun Li, Kui Zhang, 
and Nengjun Yi, 2011, Human Heredity, 71, p. 157. Copyright 2011 by S. Karger AG, 
Basel. Reprinted with permission. 
 

2.4.5 Discussion 

Complex human diseases are believed to be influenced by genetic and 

environmental factors, and their interactions. However, identifying interacting effects is 

challenging. In general, the identification and characterization of interactions are limited 

due to the lack of powerful statistical methods and/or large sample sizes. When numerous 

interactions are fitted explicitly in a model, the degrees of freedom for the corresponding 

test statistics would grow rapidly, and, as a result, sufficient power cannot be guaranteed 

to detect possibly significant effects in the model, especially in a relatively small sample 

size (Luan et al., 2001; Boks et al., 2007; Mukherjee et al., 2008; Cordell, 2009; Thomas, 

2010). This issue is also confronted in haplotype-based association studies by classical 

methods, which usually has insufficient power and inflexibility to handle a large number 

of interactions (Lake et al., 2003; Becker et al., 2005; Kwee et al., 2007; Hein et al., 

2009).  

The challenges might be further aggravated when there are rare haplotypes 

present. Rare haplotypes can be seen frequently in genetic association studies and might 

be produced by common SNPs (Souverein et al., 2008; Guo and Lin, 2009). As already 

noted rare haplotypes, just like other genetic rare variants, could be important disease-
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predisposing variants and should not be ignored in exploring the genetic susceptibility 

with common diseases. Regarding statistical modeling, however, rare haplotypes can 

result in nonidentifiability of parameters, which means the coefficients of predictors 

cannot be identified or estimated uniquely because of huge, even infinite standard errors 

(Gelman et al., 2003).  A commonly used approach to this issue in the literature is to pool 

all rare haplotypes into one single group (Schaid et al., 2002; Zhao et al., 2003) or pool 

rare haplotypes with common ancestral haplotypes (Seltman et al., 2003; Durrant et al., 

2004; Tzeng, 2005). These approaches ignore rare haplotypes by lumping them together, 

and consequently any rare haplotype that might contribute to the risk of disease cannot be 

identified distinctly.  

Statistical methods that can detect the haplotype-related interactions and handle 

the nonidentifiability of parameters are much needed area of research. In the present 

study, we propose a Bayesian hierarchical generalized linear model with weakly 

informative priors to simultaneously analyze a large number of effects, including main 

effects of common and rare haplotypes, environmental effects, and their all possible 

interactions. Our model fitting algorithm takes advantage of the classical generalized 

linear model procedure, leading to a computationally stable tool. An extensive simulation 

study was conducted to evaluate the statistical properties and performance of the 

proposed method, and the results were compared with the classical generalized linear 

model, the method of Lake et al. (2003), and the method of Guo and Lin (2009). The 

main reason for considering these three methods as reference is that the classical 

generalized linear model is a flexible and basic approach to analyze case-control data, the 

method of Lake et al. (2003) is the commonly used method for haplotype-based analysis 
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in association studies, and the method of Guo and Lin (2009) takes account of both rare 

haplotypes and haplotype interactions between two haplotype blocks.  

In our simulation study, the identifiability of parameters in model fit was first 

assessed because it is a common problem in the conventional methods. The results show 

that, for ScoreGLM and GLM, the estimates of coefficients were substantially 

nonidentifiable in most of the simulation settings, while for BayesGLM, the 

nonidentifiability of parameters was not observed. This demonstrates the appealing 

features of the proposed method in terms of robustness of parameter estimation and 

efficiency of statistical computation over the existing methods, especially in the case that 

has a large number of interactions and some rare haplotypes in the model.  

With respect to the statistical properties of the proposed method, statistical power 

is our primary interest in the evaluation processes. The results indicate that the proposed 

method outperforms ScoreGLM and GLM in terms of statistical power for detecting 

associations, especially for rare haplotypes and interactions with the moderate sample 

sizes. However, with the increase of number of predictors fitted in the model, the 

proposed method had a relative loss of power, but still acceptable (Figure 2.3). This is 

reasonable because, as we already know, the high dimensionality is traded with loss of 

power in model fit.  

The reliability of the proposed method concerning parameter estimation was 

examined by comparing the “true” values prespecified for the predictors in the models to 

their corresponding estimated coefficients. The proposed method can yield better 

coverage of confidence interval, especially for the interactions and the rare haplotypes, 

than ScoreGLM and GLM (Figure 2.1 and Figure 2.2). But, at most of time, the proposed 
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method unsurprisingly has similar results to rGLM (Figure 2.1 and Figure 2.2). However, 

the proposed method provides more features than rGLM in its current implementation. 

Moreover, the proposed method has been implemented in our R package BhGLM and is 

available to practitioners (http://www.ssg.uab.edu/bhglm/). 
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CHAPTER 3 

FAMILY-BASED HAPLOTYPE-ASSOCIATION ANALYSIS IN MATCHED 
CASE-CONTROL STUDIES 

 

Of particular concern in genetic association analysis is the potential confounding 

resulting from incomparable ethnic backgrounds across subpopulations being compared; 

such confounding creates the motivation for family-based tests of association. Along with 

the advances in genomic science and the collective efforts of statistical genetics, family-

based association analysis has gained in popularity for mapping disease-susceptibility 

genes of complex human diseases (Risch and Merikangas, 1996; Khoury and Yang, 1998; 

Umbach and Weinberg, 2000; Cordell et al., 2004; Chatterjee et al., 2005; Weinberg 

Lange et al., 2008). Haplotypes, as very important genetic variants, have been 

extensively studied in family-based association analysis, and they play a crucial role in 

the gene mapping due to their functional and statistical advantages over their counterparts 

based on SNPs (e.g., Schaid, 2004; Kraft et al., 2005; Levenstien et al., 2006). 

The main purpose of this chapter is to introduce a new method that employs 

Bayesian hierarchical generalized linear model to detect haplotype-haplotype and 

haplotype-environment interactions, particularly involving rare haplotypes, using family 

data. We begin in Section 3.1 with a succinct description of family-based haplotype-

association analysis as well as its advantage and disadvantage relative to population-

based association analysis, and then in Section 3.2 we discuss the main features of 

matched case-control studies and its relationship with family-based case-control studies. 
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We also provide a short review on existing statistical methods for family-based 

haplotype-association analysis in Section 3.3. Finally, we present our new method in 

Section 3.4. 

  

3.1 Brief Description of Family-Based Haplotype-Association Analysis 

Family-based haplotype-association analysis includes a broad range of methods 

that aim to investigate the association of haplotypes with measures of disease progression 

or disease status, employing information derived from family samples.  

The distinct property of family-based association analysis is that controls are 

selected from within the same families as cases. In family-based designs, nuclear families 

are most commonly considered which are composed of two parents and a number of full 

siblings. Sometimes subsets of nuclear families such as sib pairs or single parent are used. 

Extended pedigrees including, e.g., cousins may also be employed in family-based 

association analysis. 

An advantage of choosing family members as controls is that they are ethnically 

matched and they can also share lifestyle, life experiences, or some socioeconomic 

factors. Therefore, family-based association analysis is immune to the notorious 

confounding due to population stratification that usually occurs in population-based 

association analysis (see Subsection 2.1.3 for more details). The properties of matching in 

both family-based and population-based designs are further discussed in Subsections 

3.2.8 and 3.2.9. However, it is noteworthy that although family-based designs offer the 

advantage of robustness against genetic heterogeneity, this feature comes at the price of 

reduced statistical power when compared with population-based designs because the 
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genetic similarity of cases and controls lessens power (Laird and Lange, 2009; Thomas, 

2010b). In general, the relationship of family controls to the affected cases serves to 

reduce the difference of distributions of genetic variants under study between two 

comparison groups. Furthermore, family-based designs may be less powerful than 

population-based case-control designs. However, the difference between these two 

designs is generally small, particularly when family trio data (consisting of one affected 

offspring and two parents per family) is used (Witte et al., 1999, McGinnis et al., 2002).   

Another advantage of selecting family members as controls is that family-based 

association analysis is potentially more efficient for estimating gene-environment 

interactions, particularly, when rare genetic variants are involved, relative to population-

based association analysis (Witte et al., 1999; Gauderman, 2002), and more useful for 

detecting gene-gene interactions (MacLean et al., 1993; Zhao et al., 2006). Here the 

efficiency means that family-based designs generally require fewer matched sets than 

population-based case-control designs to achieve the same power for detecting a gene-

environment interaction. 

In addition, significant findings in family-based association analysis indicate both 

linkage and association between marker loci and disease-susceptibility loci. However, 

there are some disadvantages of family-based designs arising from practical matters of 

recruitment and cost; it is usually difficult and expensive to recruit a large number of 

families because, e.g., family members may not live together and be hard to reach or may 

refuse to participate; and it is even impossible to recruit parents of the affected subjects 

for late-onset diseases in which both parents may be deceased.  
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One should note that in the most of family-based genetic studies, we also need to 

infer haplotype frequencies based on the observed genotype data because the information 

of haplotype phase is usually unavailable that is the same as in population-based genetic 

studies. But haplotype inference based on family data is more reliable than that based on 

population data because family data can provide additional constraints that help us phase 

family members based on Mendelian law (Zhang and Zhao, 2006; Li and Li, 2007). 

However, this superiority is traded with more laboratory work to genotype additional 

family members. For example, for case-parent trio design, we need to genotype at least 

three people in a family to obtain required data.  

Since family-based and population-based association analyses have different 

advantages and disadvantages, most contemporary genetic association studies take the 

view that the two designs are strongly complementary in the effort to unravel the genetic 

mechanisms that are underlying complex human diseases. 

We herein briefly discuss the strength and weakness of family-based haplotype-

association analysis with compared to population-based association analyses. For a 

comprehensive and in-depth discussion on these topics, we could see Gauderman et al., 

1999; Risch, 2000; McGinnis et al., 2002; Cardon and Palmer, 2003; Laird and Lange, 

2006; Dudbridge, 2007; Liu et al., 2008; Zhang and Zhao, 2010. 

 

3.2 Matched Case-Control Studies 

In this section, the most important aspects of matched case-control studies are 

reviewed prior to discussing how family-based haplotype-association analysis fits within 

matched case-control studies. This overview is by no means exhaustive. There is a lot of 
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literature devoted to the topics of matched case-control studies (e.g., Breslow and Day, 

1980; Schlesselman, 1982; Costanza, 1995; Rothman et al., 2008a,b,c) and their 

application in family-based genetic association analysis (e.g., Thomas, 2004; Ziegler and 

Koenig, 2007; Clayton, 2007). 

3.2.1 Concept and Principles of Matching in Case-Control Studies 

Matching is an intuitively attractive strategy in study design for ensuring balance 

on one or more potential confounding factors between two comparison groups. In a case-

control study, if controls are selected to match cases on some potential confounders, such 

a design is then called a matched case-control study. Here matching means that the 

controls have the same or similar values of the matching variables as the cases.  

In general, we match to make sure that the two groups being compared are similar 

with respect to confounding factors that might distort a relationship under investigation. 

To fix ideas, consider a study conducted to explore the possible effect of cigarette 

smoking exposure on the risk of lung cancer. It is known that older age increases the risk 

of lung cancer and that older people are more likely to be smokers than younger ones. 

Age, therefore, is a probable confounding factor in the relationship between the cigarette 

smoking and the lung cancer. In this example, we could match the cases and controls on 

the similar age, e.g., to within five years, to eliminate any age difference between the 

cases and the controls. If, after matching in this way, we then observe an association 

between the cigarette smoking and the lung cancer, we would know that we could not 

attribute the association to the age difference.  
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3.2.2 Benefits of Matching in Case-Control Studies 

Note that here we do not say that the process of matching itself can control 

confounding, but we say instead that the process of matching forces cases and controls to 

have similar distributions across confounding factors. This is because there has been a lot 

of debate within the scientific community about the purpose of matching in case-control 

studies (e.g., Breslow and Day, 1980; Kupper et al., 1981; Schlesselman, 1982; Rothman 

et al., 2008a). In the earlier publications, matching is usually described as a way to 

control confounding effects in case-control studies (e.g., Miettinen, 1970; Breslow et al., 

1978). However, in the later literature, particularly very recently, the opinion seems to 

prevail that while matching is intended to reduce confounding effects, it cannot attain that 

objective in case-control studies. Matched case-control studies can only enhance the 

efficiency of study by balancing on some potential confounders between cases and 

controls (e.g., Breslow and Day, 1980; Kupper et al., 1981; Schlesselman, 1982; 

Costanza, 1995; Rothman et al., 2008a). Furthermore, Rothman et al. (2008a,b,c) said 

that the process of matching can introduce bias in case-control studies sometimes. In their 

opinion, matching in case-control studies can not prevent confounding effects directly, 

but it can make the stratified analysis more efficient. Occasionally, stratification and/or 

multivariable analysis is still necessary to control bias and confounding left after 

matching. It must be said, however, that they also pointed out that matching is desirable 

or even necessary in some situations. This is an issue we will revisit in Subsection 3.2.7. 

3.2.3 Types of Controls in Matched Case-Controls 

Matching can be broadly divided into the two categories of individual matching 

and frequency matching in case-control design. Individual matching means that one or 
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more controls are selected for each individual case by matching variable(s). Individual 

matching can be implemented in various ways, including one case to one control (1:1 or 

pair matching), one case to two or more controls (1:m or triplets, quadruplets, ...., 

matching), or many cases to many controls (n:m matching), where n or m is a varying 

number of cases or controls in the matched sets, but usually the ratio of case to control is 

1:5 because little statistical power is gained by further increasing this ratio (Rothman et 

al., 2008a). 1:1 matching is the most common situation in both genetic and non-genetic 

such as clinical researches, particularly when cases and controls cost the same.  

Frequency matching is also called group or category matching, which means that 

controls are selected to ensure that the frequency of a matching variable is the same as 

found in cases, e.g., if 5% of cases are under age 35, 5% of controls are also. Since 

individual matching is most commonly seen in genetic association analysis, all discussion 

will henceforth focus on it, unless otherwise specified.  

3.2.4 Selection of Matching Variables and Overmatching 

Matching may be by gender, age, race, and some other established confounding 

variables. What a particular variable will be considered as a confounder in a study is 

usually determined by examining the relationship of the variable with the disease and the 

exposure under investigation. The methods of ascertaining whether a variable is a 

confounder have been well established through earlier epidemiologic studies and can be 

seen in the literature cited at the beginning of this section.  

Variables for matching should be selected carefully, and only those that are 

known to be a true confounder in advance should be taken into account. If cases and 

controls are matched on a variable that is not a confounder, such matching can impact the 
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efficiency or validity of study. For example, if a matching variable is associated with 

exposure but not associated with disease, the matching will result in a large number of 

exposure concordant case-control pairs, such pairs of subjects do not contribute any 

information to the statistical analysis (matching analysis depends only on exposure 

discordant case-control pairs of subjects). This matching reduces the statistical efficiency 

relative to an unmatched design (Kupper et al., 1981; Thomas and Greenland, 1983). In 

addition, if a matching variable is an intermediate step in the casual pathway from 

exposure to disease (the variable is affected by the exposure, and it in turn affects the 

disease), then the crude and adjusted effect estimates will be biased. In fact, a casual 

intermediate is not a confounder of exposure-disease association; it is part of exposure 

effect that we wish to study. This matching harms the validity of study (Greenland and 

Neutra, 1981). Moreover, controls may be selected from neighbors or friends of each case 

when cost and convenience are first considered. In this case, the method for recruiting 

controls automatically entails matching; we are in effect matching for socioeconomic 

status, cultural and lifestyle characteristics, or some other characteristics of a neighbor or 

a friend. As a result, these matched characteristics could no longer be investigated in the 

study. Thus this matching impacts cost efficiency (Rothman et al., 2008a).  

Essentially, these examples above show that the factor is matched which is not a 

confounder of exposure-disease association. This phenomenon is usually known as 

overmatching in epidemiology. From these examples, we can see that overmatching can 

abrogates the main virtue of matching and it is irreversible. Therefore, one must use the 

technique of matching wisely and carefully. 
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3.2.5 Number of Variables for Matching   

A practical concern with matching is that how many factors we should consider to match 

on in a study. In general, determining the number of factors for matching depends on 

practical consideration and the extent to which we care to establish close comparability. 

Basically, the more factors we choose to match on at a time the more impossible and 

expensive it is to find such a control. Additionally, as the number of matching factors 

increases, the cases and controls will become more and more similar with regards to the 

exposure being studied and the study may yield a false result or provide no information 

(Breslow and Day, 1980). The number of matching factors should therefore be reduced to 

as few as possible in a study.  

3.2.6 Maintenance of Matching in Statistical Analysis 

When matching is carried out in a case-control study, pairing as formed initially 

needs to be maintained throughout the study including the stage of statistical analysis. 

This means that we should perform relevant analysis such as stratification and/or 

multivariable analysis for matched data (Rothman et al. 2008a,b). If unmatching analysis 

is implemented on matched data, the analysis may drive the estimate of OR even closer 

towards unity (Schlesselman, 1982; Jewell, 2003; Rothman et al. 2008a,b). However, 

Breslow and Day (1980) noted that unmatching analysis could yield approximately valid 

results for matched data when the numbers of both cases and controls within a stratum 

are large and stratum-specific intercepts are included in the logistic regression model. 

When the numbers of both cases and controls within a stratum are small or the number of 

matching strata is large, the conditional analysis would be preferred. In fact, whenever 

possible, it would always be preferred for matched data to perform conditional analysis. 
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One must also keep in mind that matching usually complicates statistical analysis when 

he or she plans a matched case-control study (Rothman et al. 2008a,b). 

3.2.7 Desirable Situations for Matching 

Since matched case-control studies have some weakness such as complication of 

design and statistical analysis, cost of finding matched controls, and possible 

overmatching, one may well ask whether matching is ever justified. Unfortunately, the 

procedure of deciding whether to match in a case-control study is not always so clear. 

However, some studies demonstrated that the matched case-control design is essentially 

required in some situations. For example, when the effect of a confounder needs 

controlling but the confounder is not easily measured (e.g., Jablon et al., 1967; Costanza, 

1995). In this case the best thing that we would like to do is to ensure that the 

distributions of cases and controls are similar on the confounder, so that the occurrence of 

disease is more likely to be attributable to the exposure, not to the confounder. This 

situation is very common in genetic association studies where we need to control some 

genetic characteristics such as population stratification that is usually unknown across 

comparison groups. This is the topic we discuss in the next subsection.  

Rothman et al. (2008a) also mentioned another situation in which matching is 

extremely valuable. In the situation the information of exposure and confounding is 

expensive to obtain from the subjects, so the efficient way to get more information is 

maximizing the amount of information obtained per subject by individual matching of 

subjects, rather than spending the same money on recruiting more subjects.   
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3.2.8 Family-Based Case-Control Studies  

Matched case-control studies are frequently found in the literature which 

investigated family-based genetic association with complex human diseases. In family-

based genetic association analysis, cases are compared to their healthy relatives, typically 

their healthy siblings (e.g., Curtis, 1997; Spielman and Ewens, 1998), cousins (e.g., Witte 

et al., 1999), parents, spouses (e.g., Valle et al., 1998; Li and Boehnke, 2006), etc. Each 

of these controls establishes similarity with the cases on one or more characteristics. For 

example, sibling or parent controls share with the cases the whole or half of genetic 

materials and early life experiences; cousin controls share with the cases part of genetic 

materials and even some life experiences; spouse controls share with the cases household 

characteristics, lifestyle, nutrition, and some socioeconomic factors. Thus, what become 

clear from these similarities is that family-based genetic association analysis 

automatically entails matching. Consequently, family-based case-control studies can be 

thought of as a special case of matched case-control studies (e.g., Hsu et al., 2007; 

Chatterjee et al., 2005; Martin, 2006; Bernardinelli et al., 2007).  

The most important property of family-based case-control studies is that the 

internal matching within a family guarantees that the cases and controls originate from 

the same homogeneous, including ethnically homogeneous, source population. This 

property offers complete robustness against population stratification and truly motivates 

us to use family controls in genetic association studies (e.g., Self et al., 1991; Ewens and 

Spielman, 1995; Witte et al., 1999).  
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3.2.9 Population-Based Matched Case-Control Studies  

One should note that matched case-control studies can also be implemented in 

population-based genetic association analysis. The process of matching in population-

base case-control studies is quite straightforward, i.e., when you select controls from 

unrelated individuals in a population, you just make them matched with cases on some 

variables which we may be concerned. Several methods have been proposed for 

population-based matched case-control studies in the context of haplotype-based 

association analysis (e.g., Lee, 2004; Kraft et al., 2005; Zhang et al., 2006; Zhang et al., 

2007; Chen and Rodriguez, 2007). The main reason that these investigators selected the 

controls from unrelated individuals not from relatives in their studies is that they aimed at 

avoiding the difficulty of recruiting family controls. Some, but not all, of investigators 

explicitly described the matching scheme in their studies and argued that the possible 

confounding induced by population stratification was controlled by matching the controls 

with the cases on some variables such as ethnicity, race, nationality, and ancestry.  

Among all of the variables above, from the genetic perspective, ethnicity is the 

main source of the confounding (Risch, 2000). If controls are not comparable to cases 

with respect to ethnicity, there will be a difference of allele frequency at a locus between 

the two groups. Based on the self-reported information of ethnicity in a population-based 

study, the ethnicity may not fully specify the complex nature of fine-scale genetic 

structure within the population, in other words, these subjects are descended from 

different origins, although they asserts they have the same ethnicity (Sinha et al., 2008). 

In addition, the information of ancestry is usually unavailable, and even when available, 

it may not reflect the genetic architecture of a population because of the inexplicit 
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definition of ancestry groups (Guan et al., 2009). The information of race may be even 

less reliable. Even within sibships, the disagreement often occurs concerning the original 

countries of their parents (Hahn et al., 1996).     

Most genetic association studies take the view that population-based matched 

case-control studies cannot completely eradicate the confounding effect of population 

stratification while family-based case-control studies can offer well protection against the 

spurious results. Therefore, only for robustness against population stratification, family-

based case-control studies may be preferred to population-based matched case-control 

studies in genetic association investigation. By the way, since our primary interest lies in 

family-based haplotype-association analysis in the matched case-control studies, this 

dissertation will not address more matching in population-based genetic association 

studies. 

 

3.3 Existing Statistical Methods for Family-Based Haplotype-Association Analysis                      

In this section we briefly review the relevant literature on family-based haplotype-

association analysis, in order to demonstrate gaps in available methods, thereby creating a 

rationale for new methods.  

In family-based association analysis, the traditional but still popular method is 

transmission/disequilibrium test (TDT). Originally, TDT was developed for analysis of 

the transmission of alleles from parents to affected offspring (Spielman et al., 1993). For 

a biallelic marker, comparisons are made within parent-offspring trios to discern the 

similarities or differences between the number of heterozygous parents who transmit one 

allele and the number of heterozygous parents who transmit another allele to the affected 
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offspring. TDT is a landmark in the development of family-based association analysis, 

and has some advantages such as simplicity for implementation and robustness to 

potential spurious association results caused by population stratification (Liu et al., 2008; 

Zhang and Zhao, 2010). Nevertheless, there are many situations in which the original 

TDT cannot be applied directly, for instance, quantitative phenotypes, missing parents, 

general pedigrees, multi-allelic loci, and haplotypes with missing phase (Laird and Lange, 

2006). To increase power and generalizability, various extensions have been developed 

based on the original TDT (Laird and Lange, 2006; Liu et al., 2008; Zhang and Zhao, 

2010). 

One of the useful extensions is to employ a conditional likelihood function in 

analysis. Recalling that TDT is very close to a matching analysis that compares 

transmitted and non-transmitted alleles within parent-offspring trios, the standard 

approach to account for this ascertainment effect from epidemiology would be to carry 

out a matched case-control analysis by treating the transmission as a response variable 

and the alleles as predictors in a conditional logistic regression (Waldman et al., 1999). 

For multi-allelic loci, however, there will be numerous parameters which affect the 

efficiency of analysis. For avoidance of this problem, an extension in the same direction 

has been further developed by Schaid (1996), Cordell and Clayton (2002) and others. In 

this extension, an offspring genotype is modeled as a function of parental genotypes and 

offspring disease status in a conditional logistic regression. As already noted, this method 

is equivalent to a classical matched case-control analysis in which the method is to regard 

the analysis not in terms of transmission from parents to offspring, but rather in terms of 

comparing a case (the affected offspring’s genotype) to pseudocontrols. Pseudocontrols 
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are so-called because they are formed from the other three genotypes that could have 

been transmitted from parents except the affected offspring’s genotype (Self et al., 1991; 

Schaid, 1996).  

This conditional logistic regression extension of TDT possesses all of the 

desirable features of the traditional TDT, and many advantages associated with the 

conventional regression analysis. In particular, this kind of extension can take full 

advantage of the well-established algorithms and software developed primarily for 

classical regression analysis.   

Another approach for analyzing family-based association is to simply treat each 

family as a matched set and employ a conditional logistic regression to model the 

relationship between disease and some genetic and/or environmental factors as in the 

usual matched case-control analysis (e.g., Goldstein et al., 1989; Andrieu and Goldstein, 

1996; Witte et al., 1999; Kraft and Thomas, 2000; Siegmund et al., 2000). Through an 

intensive simulation study and the evaluation of asymptotic expectation, Witte et al. 

(1999) have shown that the estimates based on a conditional likelihood function are 

unbiased for many types of family member controls such as sibling controls.  

The conditional likelihood function for logistic regression was given in Cox (1970) 

and applied to matched case-control analysis in Breslow and Day (1980), Breslow (1982) 

and others. Conditional logistic regression has been commonly used and well-studied for 

estimating relative risks in matched case-control studies (Rothman et al., 2008a,b). In 

family-based case-control studies, since we introduce a family stratum with each case, we 

must include such stratum effects in the model. However, the number of parameters in 

the model increases just as fast as the total sample size. In this circumstance, if we use 
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usual logistic regression, the asymptotic properties of likelihood inference will break 

down, while if use conditional logistic regression, the parameters expressing the stratum 

effects are eliminated from the likelihood by use of a conditional argument rather than by 

attempting to estimate them (Breslow and Day, 1980).  

There is a significant volume of literature on various applications of conditional 

likelihood in family-based haplotype-association analysis (e.g., Clayton, 1999; Zhao et 

al., 2000; Dudbridge, 2003; Horvath et al., 2004; Cordell et al., 2004; Allen and Satten, 

2007; Vansteelandt et al., 2008). Out of these applications, Clayton (1999) utilized a full 

likelihood function conditional on offspring’s disease status to generate a TDT test and 

first tried to deal with the problem of phase uncertainty for multilocus haplotypes. 

Dudbridge (2003) applied a similar likelihood function as that of Clayton (2003) but 

introduced an EM algorithm to maximize the likelihood function under both the null 

hypothesis and the alternative hypothesis in the presence of ambiguous haplotypes. 

Horvath et al. (2004) proposed a weighted conditional approach which is an extension of 

the family-based association test (FBAT) originally developed by Rabinowitz and Laird 

(2000). This approach can examine both linkage and association between multiple loci 

and disease even when the haplotype phase may be ambiguous and the parental genotype 

data may be missing. Allen and Satten (2007) developed a method based on the 

projection conditional on parental haplotypes which is different from the general FBAT. 

The approach is robust to misspecification of the parental-genotype distribution and 

hence robust to population stratification. The authors also showed that their approach has 

improved power relative to the FBAT approach of Horvath et al. (2004). Given their 

methodological strengths and easy implementation with the help of program packages, 
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some of these methods have been successfully employed in many studies (Liu et al., 

2008). 

However, despite the rapid improvement of family-based haplotype-association 

analysis to date, there are still many limitations in methodologies such as how to test and 

estimate haplotype-haplotype and haplotype-environment interactions, and how to 

identify rare haplotypes. A few researchers in the literature have tried the investigation of 

haplotype-related interactions in the area. For instance, Allen and Satten (2007) and 

Vansteelandt et al. (2008) presented separate methods that allow for testing interactions 

between haplotypes and environmental factors. Cordell  et al. (2004) described a unified 

approach to analyze both haplotype-haplotype and haplotype-environment interactions in 

the nuclear families. Nevertheless, due to the relatively complicated structure of family 

data and the presence of haplotype phase uncertainty, extensions of many well-

established approaches to family-based haplotype-association analysis are not 

straightforward and have not yet been implemented (Purcell et al., 2005). Furthermore, 

the difficulties become much greater when attempting to take into account of rare 

haplotypes in family-based association analysis. Though some work has been done in the 

context of population-based haplotype-association analysis (see CHAPTER 2 for more 

details), to the best of our knowledge, little is known about how to identify the effects of 

rare haplotypes in family-based association analysis. 

Thus, the main subject of this dissertation research is to propose a new method 

that can accommodate both haplotype-related interactions and rare haplotypes but remain 

robust and computationally efficient to the high dimensionality and sparsity of data. 
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3.4 Bayesian Hierarchical Generalized Linear Model for Family-Based Haplotype-
Association Analysis 
 
3.4.1 Brief Description 

In our previous report (Li et al., 2011, and also see Section 2.4 for more details), 

we described a unified approach for conducting haplotype-based association analysis 

with quantitative traits (usually disease status) in the sample drawn from unrelated 

individuals. The approach is built on Bayesian hierarchical generalized linear model 

which allows for simultaneously analyzing the main effects of haplotypes and 

environmental factors as well as their interactions. An extensive simulation study shows 

that our approach outperforms the existing methods in terms of statistical power of 

indentifying disease risk factors and computational efficiency. However, it cannot be 

applied to family data directly. To take full advantage of family data such as immunity to 

population stratification (e.g., Self et al., 1991; Ewens and Spielman, 1995; Witte et al., 

1999); higher power in detecting rare variants associated with a particular disease 

(Manolio et al., 2009; Zhu et al., 2010; Feng et al., 2011) and superiority in efficient for 

estimating gene-environment and gene-gene interactions, particularly, when rare genetic 

variants are involved (MacLean et al., 1993; Witte et al., 1999; Gauderman, 2002; Zhao 

et al., 2006), relative to population-based association analysis (Witte et al., 1999; 

Gauderman, 2002);  and robustness to some other confounders depending on matching 

scheme and matched variables (see Subsection 3.2 for more details), we would like to 

extend our method to the context of family-based association studies.  

We propose a modified conditional likelihood approach for inferring haplotype-

related association with disease in family-based case-control studies, where controls are 

cases’ relatives within a family and individually matched to the cases on some factors. 
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Although our method can be readily applied to continuous, binary, or ordinal traits, we 

herein describe it only for binary disease status in family-based case-control studies. We 

only assume that the genotypes of SNPs are available in our research, and hence we need 

to estimate haplotype frequencies and assign possible haplotype pairs to subjects that they 

might carry based on their observed genotypes using some existing methods (e.g., 

Excoffier and Slatkin, 1995; Niu et al., 2002; Stephens et al., 2001; Zaykin et al., 2004). 

We utilize a logistic regression model to characterize the relationship between haplotypes 

and disease, and the model is fitted in a Bayesian framework with weakly informative 

priors on the coefficients. The model can simultaneously fit a large number of effects, 

including main effects of numerous common and rare haplotypes, main effects of 

environmental factors, haplotype-haplotype interactions, and haplotype-environment 

interactions. To facilitate the process of model fit in presence of high dimensionality and 

rare haplotypes, we create a fast and stable algorithm by incorporating an EM algorithm 

into the usual iteratively weighted least squares as implemented in the R package glm. 

We investigate the statistical properties and performance of the proposed method and 

compare it with the existing methods through an extensive simulation study.  

3.4.2 Methods 

Data structure, notation and model 

Assume that there are a total of n case-control strata (e.g., families or sibling sets), 

and ni cases and mi controls in the ith stratum, where ni > 1 and mi > 1. For the jth 

individual in the ith stratum, we observe the vector of explanatory variables Xij, including 

haplotypes, environmental factors, haplotype-haplotype and haplotype-environment 

interactions. Denote the disease status by yij for the jth individual in the ith stratum, with 
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yij being 1 or 0 for case or control, respectively. The relationship between the disease risk 

and the explanatory variables can be modeled using a logistic regression of the following 

form: 

1Pr( 1) logit ( ),   1, , ;   1, ,ij i ij i iy i n j n mα−= = + = = +L LX β ,                  (3.1) 

where the iα  is the stratum-specific effect for the ith matched set, and β  is a vector of 

haplotype main effects, environmental effects, and all possible interacting effects (see 

Subsection 2.4.2 for more details).  

Construction of the design matrices 

We use the same way to construct the design matrices for family-based haplotype-

association analysis as those for population-based haplotype-association analysis (see 

Subsection 2.4.2 for more details). 

Conditional likelihoods for matched case-control studies 

A naïve method to estimate the parameters 1,  , , nα αβ L  in (3.1) is to directly use 

the logistic regression approach.  Although simple, this method could be problematic 

because it does not take account of the ascertainment, i.e., each set includes at least one 

case and one control. The commonly used approach to this issue is the conditional 

logistic regression (Breslow and Day, 1980). Without loss of generality, for the ith 

matched set, we assume that the first ni individuals are cases. The conditional likelihood 

for relative risk parametersβ  is 
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where the summation in the denominator is over L terms, each of which involves a 

permutation of ni possible cases from any of ni + mi individuals in the ith stratum. Note 

that the stratum-specific effects iα  defined in (3.1) have been eliminated in the 

conditional likelihood and thus will not be estimated.  

 The conditional likelihood is complicated to fit for case-control studies with sets 

consisting of more than one case. Usually cases are rare but controls are readily available. 

Therefore, most case-control studies consist of a single case and one or multiple controls 

for each or most of matched sets. Hereafter we refer such matched case-control data to as 

1:m design. Statistical procedures for this kind of design can be much simplified. 

Suppose that we have n matched case-control sets, with 1 case and mi controls for the ith 

stratum. The conditional likelihood is simplified to 
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which is equivalent to the multinomial logistic model 

1 (1 ) 1 (1 )( , , ) ~ Multin(1,  0,  ...,  0;  ,  ,  ),  1,  ,  
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For data with a small to moderate number of variables, the above conditional 

likelihood can be handled directly using multinomial logistic procedure. However, it may 

be more efficient to use the Poisson equivalence, often referred to as Multinomial-

Poisson transformation (e.g., Baker, 1994; Gelman et al., 2003). As this method is useful 



 72

in performing computations, we describe it here and extend it to handle high-dimensional 

models as in the analysis of multiple interacting genes. The conditional likelihood (3.3) 

can be re-expressed as 
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with 
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=
= − ∑ X β . This relation allows us to analyze 1:m case-control data using 

the Poisson generalized linear model 

~ Poisson( ),   log ,  1,  ,  ;  1,  ,  1ij ij ij i ij ij iy i n j mµ µ λ η= + = = +X β @ L L .                (3.6) 

The simplest matched case-control data consists of a single control per case for 

each set, which is a special case of the 1:m design and thus can be analyzed as above. 

However, a simpler analysis is to use an unconditional logistic regression, since the 

conditional likelihood can be expressed as 
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which can be obtained using the unconditional logistic regression  

( )1
1 1 2Pr( 1) logit ( ) ,  1,  ,  i i iy i n−= = − =X X β L                                     (3.8) 

with all responses being 1 and no intercept term in the model. 

Prior and posterior distributions  

Association analysis is equivalent to estimating parameters β  in the above model. 

The number of parameters in the model can be large and the predictors can be highly 

correlated, which preclude the use of classical maximum likelihood methods. We solve 

this problem by placing prior distributions on β  to capture the notion that most of the 
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components of β  are likely to be zero or at least negligible; such prior distributions are 

often referred to as shrinkage priors.  

We assume independent Student-t priors 2(0,  )
k kt sν  on parameters kβ , with kν  

and ks  chosen to give each parameter a high probability of being near zero while still 

allowing for occasionally large effects. We are motivated to use the t distribution since it 

can produce robust inference, shrinkage estimation, and easy computation (Gelman et al., 

2008; Yi and Xu, 2008; Yi and Banerjee, 2009).  There is no easy way to estimate 

parameters directly using the t densities, but it is straightforward to deal with the two-

level formulation of t distribution (Gelman, et al., 2003; Gelman et al., 2008). The t 

distribution 2(0,  )
k kt sν  can be expressed as a mixture of normal distributions with mean 0 

and variance distributed as scaled inverse-2χ  

2 2| ~ (0,  )k k kNβ τ τ ,  2 2 2 ~ Inv- ( ,  )k k ksτ χ ν ,   1,  ,  k K= L ,                     (3.9) 

where K is the number of the parameters, and the hyperparameters 0kν >  and 0ks >  

represent the degree of freedom and the scale of the distribution, respectively.  

The priors (3.9) introduce parameter-specific variances, resulting in distinct 

shrinkage for different parameters. A small value of 2
kτ  will force kβ  close to zero. The 

variances 2
kτ  are not the parameters of interest, but they are useful intermediate quantities 

to make the computation easy and efficient. The hyperparameters kν  and ks  affect the 

amount of shrinkage in the parameter estimates and should be carefully chosen. Our 

algorithm highlights how these hyperparameters affect the estimates of the parameters.   

 With the above prior distributions, we can express the log-posterior distribution of 

the parameters ( 2,β τ ) as 
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where ij i ijη λ= + X β , and ( | )ij ijp y η  is the Poisson likelihood function defined in (3.6).   

Model fit algorithm 

Before describing our model fitting algorithm, we show two ways to handle the 

Poisson regression (3.6). The first way takes the relation 
1

1
log i il

m

i l
eλ

+

=
= − ∑ X β  and hence 

only includes the parameters β in the model, while the second method treats λi as 

additional parameters with uniform priors and estimates them along with β. Since the 

maximum likelihood estimate of ( )i ij

ij eλµ += X β  is yij, the conditional maximum likelihood 

estimate of iλ  equals 
1

1
log i il

m

l
e

+

=
− ∑ X β . Thus these two methods could produce identical 

estimates. Although the second method can be directly implemented with the Poisson 

procedure, it is computationally intensive when there are many matched sets and thus 

improper to be applied to models with many variables. We develop our method for 

identifying interacting genes based upon the first way. Our computational idea is to treat 

λi as constants (i.e., offset in the terminology of generalized linear models) when updating 

β. This method could be as fast as that for a Poisson regression without these nuisance 

parameters.    

Estimating the posterior mode 

We extend the Bayesian generalized linear models and the iterative model fitting 

algorithm developed by Yi and Banerjee (2009) to our Poisson model for matched case-
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control studies. The procedure of Yi and Banerjee (2009) fits generalized linear models 

with the Student-t priors by incorporating an EM algorithm into the standard iteratively 

weighted least squares (IWLS) as implemented in the R routine glm.  

The IWLS algorithm approximates a generalized linear model by a normal 

likelihood and updates parameters from the weighted normal linear regression (Gelman et 

al., 2003). At each iteration, we construct pseudo-data ijz  and pseudo-variances 2ijσ  for 

each individual based on the latest estimates of  and iλβ  as follows  

2
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where ˆ ˆ
îj i ijη λ= + X β , 
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= − ∑ X β , β̂  is the latest estimate of β , 

'( | ) log ( | ) /ij ij ij ij ijL y d p y dη η η= , 2 2''( | ) log ( | ) /ij ij ij ij ijL y d p y dη η η= , and ( | )ij ijp y η  is 

the Poisson likelihood defined in (3.6). The Poisson likelihood is approximated by the 

weighted normal likelihood 

2ˆ~ ( ,  )ij i ij ijz N λ σ+ X β                                                 (3.12) 

so that under the classical framework (i.e., with uniform priors) β can be easily updated 

from this normal linear regression. 

Under our Bayesian model, we update β from the model: 2ˆ~ ( ,  )ij i ij ijz N λ σ+ X β , 

2 2ˆ ˆ| ~ (0,  )k k kNβ τ τ , conditional on the latest estimates 2ˆkτ and îλ . By treating the K prior 

means as additional data points with residual variances 2ˆkτ , this two-level model can be 

re-expressed as an augmented weighted regression   

 * * *~ ( ,  )Nz X β Σ ,                                                    (3.13) 
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where *

ˆ −
=  
 

z λ
z

0
 is the vector of all ˆ

ij iz λ−  and K prior means 0, *
K

 
=  
 

X
X

I
  is 

constructed by the design matrix X of the regression 2ˆ ~ ( ,  )ij i ij ijz Nλ σ− X β  and the K ×K 

identity matrix IK, and *Σ  is the diagonal matrix of all pseudo-variances 2
ijσ  and K prior 

variances 2ˆkτ . Thus, we can update β by performing this augmented weighted regression. 

As in Yi and Banerjee (2009), we treat the unknown variances 2 2 2
1( ,  ,  )Kτ τ=τ L  

as missing data and average over them by replacing the terms involving both 2
τ and β in 

the posterior distribution (3.10) by their expected values conditional on the latest 

estimate β̂ . Since the conditional posterior distributions of 2kτ  is 
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Therefore, we update the variances by    
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We initialize the algorithm by setting eachkτ to a small value, say, kτ = 0.1, and 

kβ  to the starting value provided by the glm function. At each step of our EM algorithm, 

we average over the variances 2 2 2
1( ,  ,  )Kτ τ=τ L  and then update β  by maximizing the 

posterior density (3.10). In summary, our algorithm proceeds as follows 

1) Based on the current value of β , set each iλ  to be 
1

1
log i il

m

l
e

+

=
− ∑ X β ; 

2) Calculate pseudo-data ijz  and pseudo-variances 2ijσ  using (3.11);  

3) E-step: replace each variance 2
kτ  by its conditional expectation using (3.14);   
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4) M-step: determine the augmented weighted normal linear model (3.13) and run this 

regression to obtain the estimate β̂ ; 

5) Repeat steps 1 - 4 until convergence.    

We apply the criterion in the glm function to assess convergence. we obtain all of 

the outputs produced by the glm function, including the latest estimate β̂ , their standard 

errors and p-values (for testing ̂ 0kβ = ), and some additional values (e.g., for the 

variances).  

Standard error correction 

The standard errors for the parameter estimates β are underestimated because the 

fitting algorithm treats λi as known in the last iteration of the estimation of β. We consider 

three ways to correct the standard errors and we shall compare their accuracy and 

efficiency in the following simulation study so that we can find a proper one as a default 

approach for computing the standard error in routine applied work.  

We first propose a simple, yet ingenious, approach to correct the standard error. 

The basic idea is based upon the equivalence between the first and the second algorithms 

described above. As mentioned, if we treat λi as additional parameters, we can directly 

use glm or bglm to estimate the parameters λi and β and of course the standard errors 

for the estimates. Therefore, we use the second algorithm to obtain the estimates of β, and 

then using these estimates as initial values we run the first algorithm just one iteration via 

glm or bglm to obtain the correct standard errors and the p-values. For convenience, we 

refer to this method as one-more-step correction of the standard errors (OMSC). 

Second, we use the multivariate Delta Method to obtain the standard errors (Baker 

1994). Let ˆ( )π β  denote the estimates of parameters, we have 
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 Third, we apply Bootstrap technique to derive the estimates of the standard errors 

(Efron and Tibshirani, 1993). We first draw a number of resamples from the empirical 

distribution of the observed data with equal sample size to the observed data, each of 

which is obtained by randomly sampling with replacement from the original dataset. Note 

that the sample unit is family in our present study. Next, we run the second algorithm to 

obtain the estimates of β for each of Bootstrap samples. Thus we get an estimate of the 

distribution of β̂ , and we can then compute the variance of β̂  by 

                                            ( )
2

1

1ˆ ˆ ˆVar( )
1

B

b
bB =

= −
− ∑β β β ,                                            (3.16) 

where b is the number of Bootstrap samples, b = 1, …, B, and β̂  is the mean over all of 

the ˆ
bβ .  

3.4.3 Simulation Study 

To evaluate the statistical properties and performance of the proposed method, we 

considered numerical evidence in the form of simulation studies. We simulated nuclear 

families consisting of two parents and two to four offspring with one sibling affected by a 

disease. For simplicity of exposition, herein we just demonstrated the performance of our 

proposed method in the situation where only one family member has a disease, although 

it can be applied in the situation where several diseased individuals may exist in a family.  

We considered haplotypes formed from a number of biallelic polymorphisms as 

genetic factors in this simulation study. We assumed that the family members were 

accurately genotyped for all of the genetic loci and the phase information of the 
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haplotypes was obtained through some molecular techniques. We also assumed that the 

haplotype frequencies were estimated at the population level and they were distributed 

uniformly between 0.001 and 0.4. Given these assumptions, the haplotype data were 

generated as follows. As a first step, we randomly drew two haplotypes (phased 

haplotype pairs) for each pedigree founder within a family with replacement from the 

haplotype pool according to the estimated haplotype frequencies by using a multinomial 

distribution. We then assigned haplotypes to the offspring from their parental haplotypes 

according to the Mendelian transmission. In this procedure, none inter-locus 

recombination and allele mutation were assumed as the haplotypes were dropped through 

pedigrees.  

We assumed that the risk of disease was influenced by environmental factors 

apart from genetic factors. So, for the simplicity in our exposition, we also generated one 

binary environmental exposure for individuals in a family. For this purpose, we first draw 

several correlated random variables according to varying family sizes as described above 

from a multivariate normal distribution with marginal means 0, marginal variances 1 and 

a correlation parameter that was fixed at 0.4 so that it represented only a modest 

correlation between the environmental exposures for individuals in a family. We then 

converted each of these variables into a 0/1 scaled variable in order that the marginal 

probability of exposure to the suspected risk of disease for the underlying population is 

0.3, which reflected a typical exposure to common environmental factors for family 

members.    

We determined the disease status of individuals in a family using a disease risk 

model as follows 
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To make this happen, we first generated the family-specific parameter iα  to allow 

for heterogeneity in the risk of disease between families that cannot be accounted for by 

genetic and environmental factors fitted in the model. For a given family i, we assumed 

that iα  follows a uniform distribution, ( )(5 / 4),  (5 / 4)U log logθ θ− + , with a particular 

value of θ chosen to control the baseline penetrance of disease for the family. For 

example, if we set ( )310logθ −= , the baseline penetrance of disease will be in some 

neighborhood of 0.001. W is the number of haplotypes. ( )1 2,c h h  is the number of times 

that a particular haplotype, say, the wth haplotype, appears in each drawn haplotype pairs 

( )1 2,h h , and it is defined as 

( )1 2

0    if 0 th haplotype  

,     if 1 th haplotype

2    if 2 th haplotypes

w

c h h u w

w




= 



 

where u can be 0, 1, or 2, which depends on the prespecified genetic model: recessive, 

additive, or dominant, respectively. 

We then assumed an effect size (“true” value), measured as an OR, for each 

element in the vector of parameters β here including βE and βH (see Subsection 2.4.2 for 

more details). By varying the effect size in the three scenarios, we assumed that some 

explanatory variables increased the odds of getting disease and others are not associated 

with the disease so that we can assess statistical power and type I error rates of the 

proposed method. To be more specific, we described the three scenarios as follows: 
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1) In the first scenario, we considered 5 haplotypes within a haplotype block and defined 

the first and fourth haplotypes as common haplotypes (frequency ≥ 0.05), the second 

haplotype as a rare haplotype (frequency < 0.01), and the third and fifth haplotype as 

moderately rare haplotypes (0.01 ≤ frequency < 0.05). We assumed that the first three 

haplotypes were associated with the disease with ORs ranging between 2 and 4, and the 

other two haplotypes were not associated with the disease with ORs being fixed at 1 

(Table 3.1). 

 2) In the second scenario, we considered both the main and interacting effects arising 

between the two haplotype blocks, and between the haplotypes and the environmental 

factor. The first and second haplotypes within the 2nd haplotype block were defined as 

common and moderately rare haplotypes respectively, and the other 5 haplotype within 

the 1st haplotype block were defined as those in the first scenario. The effect sizes of all 

the explanatory variables in this scenario were assumed as those in Table 3.1. 

3) In the third scenario, we considered twenty haplotype blocks with 10 haplotypes 

within each block. We fitted the main effects of all the haplotypes as well as the 

environmental factor and all possible interacting effects between any two haplotype 

blocks and between the haplotypes and the environmental factor. So there were a total of 

19401 explanatory variables in the model, including 201 main-effect variables, 200 

haplotype-environment interaction terms, and 19000 haplotype-haplotype interaction 

terms. However, we only assumed that the environmental factor, the haplotype 10 within 

the 5th haplotype block (common), the haplotype 10 within the 10th haplotype block (rare), 

the haplotype 10 within the 15th haplotype block (common), the haplotype 10 within the 

20th haplotype block (moderately rare), and five interactions were associated with the 
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disease (Table 3.1). We created this kind of simulation setting because we wanted to 

prevent the labels of the explanatory variables on the vertical axis of Figure 3.3 from 

overlapping one another (seeing Figure 3.3 could help easily understand our 

consideration). In addition, in this scenario, we formed a hypothesis that some haplotypes 

affect a disease or a trait mainly through their interactions by assuming that the ninth 

haplotype within the 15th haplotype block and the ninth haplotype within the 20th 

haplotype block had no main effects but had an interacting effect. 

 

Table 3.1.  Explanatory Variables and Their Effect Sizes in the Model for the Three 
Scenarios  
          

Scenario 1 

 

Scenario 2 

 

Scenario 3 

Variable OR Variable OR Variable OR 

haplo1 2 ef 2 ef 2 

haplo2 4 haplo1.1 2 haplo5.10 2 

haplo3 3 haplo1.2 4 haplo10.10 4 

haplo4 1 haplo1.3 3 haplo15.10 2 

haplo5 1 haplo1.4 1 haplo20.10 3 

  haplo1.5 1 ef:haplo10.10 4 

  haplo2.1 2 ef:haplo15.10 3 

  haplo2.2 1 haplo5.10:haplo15.10 3 

  ef:haplo1.1 3 haplo10.10:haplo20.10 5 

  haplo1.2:haplo2.1 4 haplo15.9:haplo20.9 3 

  haplo1.3:haplo2.2 1 other 19391 variables 1 

 haplo1: the haplotype 1, haplo1.1: the haplotype 1 in the 1st haplotype block, ef: the 
environmental factor, haplo2.2: the haplotype 2 in the 2nd haplotype block, ef:haplo1.1: 
the interaction between the environmental factor and the haplotype 1 in the 1st haplotype 
block, haplo1.2:haplo2.1: the interaction between the haplotype 2 in the 1st haplotype 
block and the haplotype 1 in the 2nd haplotype block, and so on. 
 

Given iα and β, we first generated a case (proband) for the ith family, and then 

generated several controls according to varying family sizes as described above for the 
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family. In our simulation study, we considered 250, 500, and 1000 families for the first 

two scenarios and 2000, 4000, and 8000 families for the third scenario, and a total of 

1000 replicates were generated under each of these settings. 

All of the generated data were analyzed using the proposed method and the results 

were compared with those from the traditional conditional logistic regression. For the 

family data, the traditional conditional logistic regression treats the families as strata and 

we obtain the estimates of parameters in a model by maximizing the conditional 

likelihood, which can be done by implementing the clogit function in the package 

survival in R (http://cran.r-project.org/web/packages/survival/index.html). 

In our evaluation processes, we mainly assessed the statistical accuracy and 

reliability as follows: 

1) We calculated relative bias for each parameter in the model by ( )( )ˆ /k k kb E b b− , 

where kb is the “true” value of the kth parameter, 1,  2,  ...,  k K= , ˆ
kb is an estimate of the 

kth parameter. 

2) We calculated empirical power for each parameter in the model 

by ( )1
1

rk

R

pr
power R I α≤=

= ∑ , where R is the number of replicates required, rkp is the p-

value of the kth parameter in the rth replicate, α is the statistical significance criterion 

used in the test. For the first two scenarios, α is selected as being 0.05, 0.01, and 0.001, 

while for the third scenario, α takes a more stringent genome-wide significance threshold 

level of 2.6×10-6. 
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3.4.4 Results 

Prior to presenting our simulation results of comparing the statistical properties 

and performance of the proposed method versus the traditional conditional logistic 

regression, we reported the relative merits of OMSC, Delta Method, and the Bootstrap 

technique for estimating standard errors of parameter estimates as described in the 

Methods section and determined which one is an optimal solution for our new method to 

correct the standard errors, which is prerequisite for our new method to ensure valid 

statistical inference. 

Standard errors of parameter estimates 

We conducted the evaluation process in the first scenario (Table 3.1) and we first 

assessed the accuracy of the three approaches for computing standard errors of parameter 

estimates. The common way to assess the accuracy of an estimator for computing 

standard errors of parameter estimates in the literature is to first set up the “true” values 

of standard errors of parameter estimates, then simulate data via some simulation 

schemes and drive the estimated standard errors of parameter estimates based on some 

statistical models, and finally compare the estimated values with the “true” values. But 

since the primary goal of our present study was to evaluate the statistical properties and 

performance, not the accuracy of an estimator for computing standard errors of parameter 

estimates, of the proposed method by comparing it with the traditional conditional 

logistic regression, we considered an indirect way to examine the accuracy of the three 

approaches for computing standard errors of parameter estimates by investigating 

empirical power or type I error rate, or more precisely, the empirical distribution of p-

values for each parameter estimate in our simulation study because in the computation of 
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p-value for each parameter estimate, in general, the only factor that affects the magnitude 

of p-value is the standard error of the parameter estimate given the hypothesis test, the 

probability distribution of the test statistic, the parameter estimate, and even the sample 

size.  

For the first scenario, the empirical power was calculated for the first three 

haplotypes because they were assumed to be associated with the disease and the 

empirical type I error rates were calculated for the other two haplotypes because they 

were not assumed to be associated with the disease based on OMSC, Delta Method, and 

the Bootstrap technique (the right panel of Figure 3.1). For the Bootstrap technique, six 

numbers of Bootstrap samples (the number of Bootstrap replications) (10, 30, 50, 100, 

500, and 1000) were considered for each effect of interest (Figure 3.1). Note that here we 

show only the results obtained from 500 families, which is a medium-scale sample in our 

simulation setting and, of course, a realistic sample size.   

The results were fairly clear. Out of the three approaches, Delta Method had the 

highest power and type I error rates under each of three fixed statistical significance 

criteria used in the test (α = 0.001, 0.01, and 0.05) (the right panel of Figure 3.1). By 

further checking the variance (the square of standard error) of parameter estimates, we 

can see that Delta Method had the lowest variance for all of the 5 effects (the left panel of 

Figure 3.1), which is in agreement with the well-established fact that Delta Method 

generally tends to underestimate standard errors of parameter estimates (Efron, 1990). On 

the contrary, OMSC yielded the lowest power under each of three fixed statistical 

significance criteria used in the test (the right panel of Figure 3.1) and, as imagined, the 

highest variance for the corresponding effects (the left panel of Figure 3.1). While for the 
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Bootstrap technique, except the Bootstrap sample being 10, all of the other five Bootstrap 

samples provided quite good power and type I error rates under each of three fixed 

statistical significance criteria used in the test (the right panel of Figure 3.1). This result 

implied that the variances obtained from these Bootstrap samples were much better than 

those obtained from the other two approaches, which is perfectly in line with the finding 

that, in general, the Bootstrap technique is superior to Delta Method in the context of 

estimating standard errors when the sample size is moderate (Efron, 1982; Chernick, 

2007). Furthermore, by taking a close look at the graph, it can be seen that these five 

Bootstrap samples had comparable power at α = 0.05 and type I error rates under all of 

the three fixed statistical significance criteria used in the test; only when the Bootstrap 

samples went up to 500 and 1000, the powers at α = 0.01 and 0.001 were lightly higher 

than those when the Bootstrap samples were 30, 50, and 100. 
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Figure 3.1.  Accuracy of the Three Approaches for Computing Standard Errors.  
Variances and empirical powers or empirical Type I error rates (× indicates the empirical 
powers or Type I error rates for 0 001.α = , ○ for 0 01.α = , and + for 0 05.α = ) for each of 
5 main-effect predictors based on the three approaches under the sample sizes of 500. 
haplo1(DM) stands for the effect of the haplotype 1 with the variance estimated by Delta 
Method, haplo2(B10) stands for the effect of the haplotype 2 with the variance estimated 
by the Bootstrap technique with the Bootstrap sample being 10, and so on. 
 

This demonstrates that Bootstrap technique provides a fairly good measurement 

of standard errors of parameter estimates. However, to choose among these six Bootstrap 

samples we had to use further information about their performance. In this regard, one 



 88

key aspect is the efficiency of an estimator in terms of execution time, which answers: 

How fast is the estimator speed of computing estimates? To do so, we ran our model 

1000 times with each of the three approach for computing standard errors of parameter 

estimates on a desktop computer with a single 3.6GHz Intel Pentium 4 CPU and 2GB 

RAM, which is not a mainstream configuration of the desktop computer at present. We 

measured the execution time, in seconds, and summarized it in Table 3.2.  

 

Table 3.2.  Average Time (Second) of Computing Standard Error for Different 
Approaches  
 

OMSC Delta Method  
Bootstrap 

Six numbers of Bootstrap samples 
10 30 50 100 500 1000 

1.02 46.27  19.07 52.15 96.38 191.02 952.34 1908.64 
 

As can be seen in Table 3.2, the execution time taken by the Bootstrap sample 

being 30 was almost the same as that taken by Delta Method and much less than those 

taken by the Bootstrap sample being 50, 100, 500, and 1000. Hence, it is evident from 

this result together with the accuracy results above that the Bootstrap sample being 30, 

with realistic sample sizes, can provide adequate accuracy for computing standard errors 

of parameter estimates and is sufficiently efficient in terms of execution time that are 

satisfactory for most of applied researches. Therefore, we used only the Bootstrap 

technique with the Bootstrap sample being 30 to compute the standard errors of 

parameter estimates in the following analysis. 

Small-scale model  

Turning to the process of evaluating the statistical properties and performance of 

the proposed method compared with the traditional conditional logistic regression, we 
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first investigated the potential bias in the parameter estimates in the second scenario 

(Table 3.1) that is typically encountered in the candidate gene analysis in which usually 

several, not many, genes, sometimes in combination with environmental factors, and/or 

their interactions are studied for complex diseases or traits. We did not directly compare 

the bias in the parameter estimates from the two methods because the parameter estimates 

from different methods are not comparable due to difference in the scale of measurement. 

Thus, we assessed the two methods based on their relative bias (the three left panels of 

Figure 3.2), which provided a measure of the magnitude of the bias on the same scale for 

the two methods.  

The top left panel of Figure 3.2 shows the corresponding results under the sample 

size of 250, from which we can see that all of the parameter estimates obtained from the 

two methods were biased, though the relative bias was quite small, ranging between 0.03 

and 0.15. We also observed that, for both the methods, the estimates for the effects of the 

(moderately) rare haplotypes (haplo1.2, haplo1.3, haplo1.5, and haplo2.2) and the 

interacting effects were more biased than the others, which is obviously attributed to the 

fact that rare predictors and interaction terms in a model usually have larger estimated 

standard errors than the common ones in model fit. Furthermore, we noticed that the 

proposed method had less bias than the traditional conditional logistic regression for all 

of the parameter estimates, especially for those of the (moderately) rare haplotypes and 

the interactions.  

 

 

 



 90

haplo1.3:haplo2.2(T)
haplo1.3:haplo2.2(B)

haplo1.2:haplo2.1(T)
haplo1.2:haplo2.1(B)

ef:haplo1.1(T)
ef:haplo1.1(B)

haplo2.2(T)
haplo2.2(B)

haplo2.1(T)
haplo2.1(B)

haplo1.5(T)
haplo1.5(B)

haplo1.4(T)
haplo1.4(B)

haplo1.3(T)
haplo1.3(B)

haplo1.2(T)
haplo1.2(B)

haplo1.1(T)
haplo1.1(B)

ef(T)
ef(B)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 

haplo1.3:haplo2.2(T)
haplo1.3:haplo2.2(B)

haplo1.2:haplo2.1(T)
haplo1.2:haplo2.1(B)

ef:haplo1.1(T)
ef:haplo1.1(B)

haplo2.2(T)
haplo2.2(B)

haplo2.1(T)
haplo2.1(B)

haplo1.5(T)
haplo1.5(B)

haplo1.4(T)
haplo1.4(B)

haplo1.3(T)
haplo1.3(B)

haplo1.2(T)
haplo1.2(B)

haplo1.1(T)
haplo1.1(B)

ef(T)
ef(B)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 

Relative bias

0.0 0.2 0.4 0.6 0.8 1.0

haplo1.3:haplo2.2(T)
haplo1.3:haplo2.2(B)

haplo1.2:haplo2.1(T)
haplo1.2:haplo2.1(B)

ef:haplo1.1(T)
ef:haplo1.1(B)

haplo2.2(T)
haplo2.2(B)

haplo2.1(T)
haplo2.1(B)

haplo1.5(T)
haplo1.5(B)

haplo1.4(T)
haplo1.4(B)

haplo1.3(T)
haplo1.3(B)

haplo1.2(T)
haplo1.2(B)

haplo1.1(T)
haplo1.1(B)

ef(T)
ef(B)

0.0 0.2 0.4 0.6 0.8 1.0

Empirical power or type I error rate

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

 
 
Figure 3.2.  Small-Scale Model. Relative biases and empirical powers or empirical Type 
I error rates (× indicates the empirical powers or Type I error rates for 0 001.α = , ○ 
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for 0 01.α = , and + for 0 05.α = ) for each of 11 explanatory variables based on the two 
methods under the sample sizes of 250 (top), 500 (middle), and 1000 (bottom). ef (B) 
stands for the effect of the environmental factor to be estimated using the proposed 
method, haplo1.1(T) stands for the effect of the haplotype 1 within the 1st haplotype 
block to be estimated using the traditional conditional logistic regression, ef:haplo1.1(B) 
stands for the interacting effect between the environmental factor and the haplotype 1 
within the 1st haplotype block to be estimated using the proposed method, haplo1.2(B): 
haplo2.1(T) stands for the interacting effect between the haplotype 2 within the 1st 
haplotype block and the haplotype 1 within the 2nd haplotype block to be estimated using 
the traditional conditional logistic regression, and so on. 

 

To see the influence of the sample size, we also displayed the corresponding 

results under the sample size of 500 and 1000, from which it can be seen that with the 

number of families selected increased, the relative bias of both the methods declined but 

that of the proposed method went down faster and, for some effects, even shrank towards 

zero for the sample size up to 1000 (the middle and bottom left panels of Figure 3.2).  

We next assessed the two methods in terms of empirical power for the main 

effects of ef, haplo1.1, haplo1.2, haplo1.3, and haplo2.1 and the interacting effects of 

ef:haplo1.1, haplo1.2:haplo2.1, and haplo1.3:haplo2.2 because we assumed that they 

were associated with the disease (the three right panels of Figure 3.2). Here we tried to 

evaluate the ability of the methods to declare any disease-predisposing factors when some 

effects really existed. For the effect of ef, the empirical powers under each of three fixed 

statistical significance criteria used in the test were comparable for the two methods no 

matter what sample sizes were considered (the top two lines in each of the three right 

panels of Figure 3.2). This phenomenon would seem to be reasonable because, for a 

common environmental factor with a decent frequency, any valid statistical test can 

obtain a similar power for detecting it and the possible variation of powers from different 

tests can be explained by the random variability. For the other effects, the proposed 
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method provided higher probabilities for correctly identifying them under each of three 

fixed statistical significance criteria used in the test compared with the traditional 

conditional logistic regression irrespective of what sample sizes were used (the three right 

panels of Figure 3.2). Although the superiority of the proposed method in the statistical 

validity was diminishing for all of the explanatory variables with the increase in sample 

sizes, it still persisted, especially for the (moderately) rare haplotypes and the interactions 

and for the empirical powers at 0 01 and 0 001. .α = (the three right panels of Figure 3.2). 

For the proposed method at 0 05.α = , a sample size of 500 was sufficient to detect a 

common haplotype with a statistical power of 90% approximately, and a sample size of 

1000 was sufficient to identify a rare haplotype or an interaction with a statistical power 

of 80% approximately.  

Meanwhile, we assessed the two methods regarding empirical type I error rates 

for the main effects of haplo1.4, haplo1.5, and haplo2.2 and the interacting effect of 

haplo1.3:haplo2.2 because we assumed that they were not associated with the disease 

(the right panel of Figure 3.2). Here we tried to evaluate the probability of observing a 

disease-associated factor when in truth there was none. Under the sample sizes of 250 

and 500, the traditional conditional logistic regression yielded a little higher empirical 

Type I error rates that the proposed method but they are acceptable based on the practical 

consideration (the top and middle right panels of Figure 3.2). As the sample size went up 

to 1000, all empirical Type I error rates shrank towards almost zero (the bottom right 

panel of Figure 3.2). 
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High-dimensional model 

In order to obtain a more comprehensive picture about the performance of the 

proposed method in the case where a very large number of haplotypes and/or 

environmental factors are investigated, e.g., in genome-wide association studies that 

involve testing numerous genes across the complete sets of DNA of many people to find 

genetic variations associated with a particular disease, we conducted a sophisticated 

simulation study in the third scenario (Table 3.1), in which there were a total of 19401 

explanatory variables jointly considered, including 201 main-effect variables, 200 gene-

environment interaction terms, and 19000 gene-gene interaction terms. For this huge data, 

as one would expect, the implementation of analysis must require a large amount of 

memory and high-performance computing resources. Therefore, we ran our simulation on 

a computer cluster, named Cheaha, at the University of Alabama at Birmingham (UAB) 

(http://docs.uabgrid.uab.edu/wiki/Cheaha), which includes 192 3.0GHz Intel-based 

compute cores with 386GB of RAM interconnected via a DDR Infiniband network. A 

high-performance, 60TB Lustre parallel file system built on a Direct Data Network 

(DDN) hardware platform is also connected to these cores via the Infiniband fabric. An 

additional 40TB of traditional shared storage and an auxiliary 120 1.6GHz AMD-based 

compute cores are available via a 1GigE network fabric.  

In addition, since clogit, which is an R function created to carry out the 

traditional conditional logistic regression as mentioned earlier, did not work for the data, 

specifically, the program appeared to freeze, we show only the results from the proposed 

method (Figure 3.3).  
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As in the preceding small-scale model subsection, the relative biases in the 

parameter estimates of all the explanatory variables in the model were first computed for 

each of three sample sizes respectively (the first, third, and fifth panels of Figure 3.3). 

From the graphs we can see that, under the sample size of 2000, the maximum relative 

bias was not more than 0.07. Along with the increase in sample sizes, there existed an 

overall tendency towards the decrease in the relative bias. This finding was consistent 

with that observed in the preceding subsection.  

The empirical power was next computed for a total of ten disease-associated 

explanatory variables in the model at a genome-wide significance threshold level of 

2.6×10-6 (the second, fourth, and sixth panels of Figure 3.3). As can be seen from the 

graphs, with the sample size increased, there could be some significant gains in the 

empirical power, with the large gain happening for the environmental factor and the 

common haplotypes (haplo5.10 and haplo15.10) and the small gain happening for the 

(moderately) rare haplotypes (haplo10.10 and haplo20.10) and interactions. This verified 

the statement we made in the foregoing power analysis in the small-scale model. 

Furthermore, this result also proved our hypothesis that some haplotypes may affect a 

disease or a trait mainly through their interactions, and the interacting effects play a more 

significant role than does the main effects in regulating the genetic variation of the 

disease or the trait. However, we noticed that the empirical power started at a relatively 

low level and maintained a quite small growth rate over the three sample sizes compared 

with those in the foregone small-scale model subsection. 
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Figure 3.3. High-Dimensional Model. Relative biases and empirical powers at 

62 6 10.α −= × (*) or empirical Type I error rates at 0 001.α = (×), 0 01.α = (○), and 
0 05.α =  (+) for each of 19401 explanatory variables based on the proposed method 

under the sample sizes of 2000 (the first two panels), 4000 (the third and fourth panels), 
and 8000 (the last two panels). The three categories of the explanatory variables (main-
effect, gene-environment, and gene-gene) were distinguished from one another through 
different colors (gray, dark gray, and gray, respectively). Only the disease-associated 
explanatory variables were labeled on the vertical axis. ef stands for the environmental 
factor, haplo5.10 stands for the haplotype 10 within the 5th haplotype block, 
ef:haplo10.10 stands for the interaction between the environmental factor and the 
haplotype 10 within the 10th haplotype block, haplo5.10: haplo15.10 stands for the 
interaction between the haplotype 10 within the 5th haplotype block and the haplotype 10 
within the 15th haplotype block, and so on. 
 

The empirical Type I error rates were also calculated for a total of 19391 non-

disease-associated explanatory variables in the model (the second, fourth, and sixth 

panels of Figure 3.3). The result shows that there was a substantial decline in the 

empirical Type I error rates over the three sample sizes. Under the sample size of 2000, 

the magnitudes of the empirical Type I error rates were not more than 8%. As the sample 

size went up to 8000, all of the Type I error rates shrank to almost zero. 

3.4.5 Discussion 

We have developed a Bayesian framework for detecting gene-gene and gene-

environment interactions, particularly involving rare variants, using family-based case-

control data. Since susceptibility to the majority of human diseases is complex and 

multifactorial, involving both genetic and environmental factors, jointly considering all 

these factors and their possible interactions in analysis just like we do could enhance the 

statistical power for identifying genetic variants that are involved in the etiology of 

disease mainly through an interacting effect, and ascertaining rare variants that act 

primarily in genetically susceptible individuals. However, analyzing both gene-related 
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interactions and rare variants remains a big challenge because we must simultaneously 

handle high-dimensional data arising from numerous marginal and interacting effects 

fitted in a model, sparse data arising from both a large number of interactions and rare 

variants, and the computational burden of analysis. This motivates sophisticated 

approaches, nevertheless until recently few studies have had success. We have been 

making a great effort trying to fill the gap in available methods in the context of both 

population-based (Li et al., 2011) and family-based association studies.  

Our method is created on the basis of the generalized linear model and thus can 

take advantage of the well-established theory, algorithm, and software developed for the 

generalized linear model, and include various models as special cases. To fit a large 

number of terms, including common and rare variants, environmental factors, and their 

possible interactions, in a model, we assume weakly informative priors on the parameter 

estimates because the priors can induce strong shrinkage for near-zero effects but weak 

shrinkage for large effects (Gelman et al., 2003; Gelman et al., 2008; Yi and Banerjee, 

2009). To enhance the efficiency of computing maximum likelihood estimates, we 

employ the Multinomial-Poisson transformation technique by substituting a Poisson 

likelihood with an additional parameter (e.g., Baker, 1994; Gelman et al., 2003). We 

consider three ways to correct the bias in the estimation of standard errors of parameter 

estimates happened after introducing the Multinomial-Poisson transformation technique 

and treating the additional parameter as offset in model fit. The result yielded evidence 

that the Bootstrap technique can provide a better estimate of standard errors than Delta 

Method and OMSC (Figure 3.1), which is in agreement with the previous observations 

(Efron, 1982; Efron, 1990; Chernick, 2007). Furthermore, we used the Bootstrap sample 
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of 30 to calculate the estimate of standard errors in the present study because the results 

suggest that the Bootstrap sample of 30 is adequate and efficient for estimating standard 

errors of parameter estimates in terms of accuracy and execution time based on the 

practical consideration (Figure 3.1 and Table 3.2).  

As noted, there has been a long-standing debate within the scientific community 

about the Bootstrap sample size. How many Bootstrap samples we need to take in a study? 

Unfortunately, there are no any general guidelines that have been proposed for how large 

the Bootstrapped sample should be relative to the total number of observations in the 

dataset from which it is drawn? Efron (1987) pointed out that there is little improvement 

for the accuracy of estimates when the Bootstrap sample size is more than 100. In fact, 

The Bootstrap sample size as small as 25 gives reasonable results. Certainly, the 

Bootstrap sample size can be large. But, in general, determining the Bootstrap sample 

size depends on the extent to which we care to establish the accuracy of estimates, 

available computing resources, and other practical consideration. If the results really 

matter, as many samples as is reasonable given available computing resources and time 

should be used. However, it is noteworthy that increasing the Bootstrap sample size 

cannot increase the amount of information in the original data. It can only reduce the 

effects of random sampling errors arising possibly from the Bootstrap procedure itself. 

In our simulation study, we compared the results from our method with those from the 

traditional conditional logistic regression. The traditional conditional logistic regression 

is a classical method for analyzing matched case-control data in epidemiology (Breslow 

and Day, 1980; Breslow, 1982; Rothman et al., 2008a,b), and it is also appropriate for 
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testing genetic association using family data (e.g., Goldstein et al., 1989; Andrieu and 

Goldstein, 1996; Witte et al., 1999; Kraft and Thomas, 2000; Siegmund et al., 2000).  

However, we have not compared our method to the other existing methods because, 

primarily, the other existing methods are built upon different philosophies and thus it 

would be difficult to compare directly; in addition, for some existing methods, their 

implementations have not yet been publicly available or not easily implemented though.  

To ensure the statistical reliability of parameter estimates, we evaluated the 

proposed method and the traditional conditional logistic regression based on their relative 

bias in the parameter estimates of all the explanatory variables in the model. The 

simulation results clearly demonstrate that the reliability advantage of the proposed 

method is consistently over the traditional conditional logistic egression in both the 

small-scale and high-dimensional models, especially for the interactions and (moderately) 

rare haplotypes, no matter what sample sizes were considered (Figure 3.2 and Figure 3.3). 

This indicates that the proposed method can produce statistically reliable and robust 

models and can be used in both the candidate gene and genome-wide association studies. 

Further, we empirically assessed the two competing methods regarding their 

statistical power and Type I error rates. The simulation study shows that the proposed 

method is more powered than the traditional conditional logistic regression, especially for 

the interactions and (moderately) rare haplotypes (Figure 3.2). When much more 

explanatory variables are fitted in the model, however, the proposed method suffers from 

loss of power (Figure 3.3). But the power is still acceptable in practice. This should not 

be surprising because accommodating the high-dimensionality in a model comes at the 

price of reduced statistical power. We also see that the proposed method produced little 
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higher Type I error rates than the traditional conditional logistic regression under the 

sample sizes of 250 and 500 (Figure 3.2). In addition, we observed that the proposed 

method incorporating analysis of interactions can identify causal haplotypes, which might 

have a weak marginal effect but a strong interacting effect with other haplotypes (Figure 

3.3). Therefore, we can say that the proposed method has reasonable power to detect true 

effects, while controlling the rate of false positives. 
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CHAPTER 4 

SOFTWARE 

 

4.1 Overview of R/BhGLM 

The proposed methods have been and are being incorporated into R/BhGLM by 

creating some new functions to conduct haplotype-based association analysis. R/BhGLM 

is a publicly available and distributable package (http://www.ssg.uab.edu/bhglm), and is 

implemented as an add-on package for the software R, which is a free development 

environment for statistical computing and graphics (Ihaka and Gentleman, 1996). 

R/BhGLM provides an extensible, interactive programming environment for haplotype-

based association analysis except several previously built-in functions for some other 

statistical genetic analyses, e.g., SNP-based association analysis and quantitative trait loci 

(QTL) mapping, in the Bayesian framework. 

There are many packages available for haplotype-based association analysis, e.g., 

hapassoc, haplo.stats, and gap. Among them, haplo.stats is a popular tool 

for haplotype-based association analysis because it is available free and easy to 

implement (http://mayoresearch.mayo.edu/mayo/research/schaid_lab/software.cfm). 

haplo.stats performs likelihood inference of trait associations with haplotypes in the 

generalized linear model framework (Lake et al., 2003), but, as almost all of the existing 

software implementing haplotype-based association analysis, it can only fit the main 

effects of haplotypes and haplotype-environment interactions with a relatively small 
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number of effects needed fitting in the model. In addition, if there are numerous effects 

needed fitting in a model and/or some rare haplotypes present, haplo.stats as well as 

the other software might encounter some serious problems such as nonidentifiability of 

parameters. 

Our package performing haplotype-based association analysis is based on 

Bayesian hierarchical generalized linear models with a continuous prior distribution on 

the coefficients that favors sparsity in the fitted model and facilitates intensive 

computation (Gelman et al., 2008; Yi and Banerjee, 2009). A fast EM algorithm is built 

into the iteratively weighted least squares for classical generalized linear models to fit our 

models by estimating posterior modes of coefficients (Gelman et al., 2008; Yi and 

Banerjee, 2009), which allows us to simultaneously fit environmental effects, main 

effects of numerous common and rare haplotypes, and haplotype-haplotype and 

haplotype-environment interactions.  

Currently, R/BhGLM can perform population-bases and family-based association 

analyses with haplotypes, and provide a unified approach to explore haplotype 

associations with continuous, binary, or ordinal traits. R/BhGLM incorporates several 

functions for data simulation, data manipulation, and result summaries including graphics. 

R/BhGLM is programmed to accept original data in a variety of input formats and is 

accessible for most platforms including Windows, MacOS, and UNIX/Linux. The 

computationally intensive algorithms were written in C, while data manipulation and 

graphics were written in R language.  

R/BhGLM is under continual development. 

 



 103

4.2 R Functions for Haplotype-Based Association Analysis 

Here we briefly describe the use of some functions incorporated in R/BhGLM for 

haplotype-based association analysis. A more extensive tutorial and a help file on their 

use are distributed with the software and are also available at the website cited in the 

preceding section. To this end, we consider an example dataset named haplo, which 

includes a total of 100 subjects from a cases-control study, with four htSNPs, some 

covariate variables including age, race, weight, and so on, and the disease status of breast 

cancer. We hope that the demonstrations presented here will be helpful to understand 

how to use the functions with little prior knowledge of R, especially because we neglect 

to explain the syntax and some basic functions of R. There are lots of free resources 

available on the R project website (http://www.r-project.org/) or some other relevant 

websites that can assist the user in learning and using R.  

4.2.1 Getting Started 

The procedure for using the functions for haplotype-based association analysis is 

the same as any other one in R. So, in order to use the R/BhGLM package, one must 

download it from the website cited in the preceding section and install it properly, which 

can be easily done just following the instruction of package installation on the same 

website where you download the R/BhGLM package. After installing the R/BhGLM 

package, the routines are available by starting an R session and loading the package as 

done below. Here we assume that the user is running either Windows or Mac OS X. 

> library(BhGLM) (type library(BhGLM)within R following the prompt “>”) 

Then we can use the function data() to load the data. data() is a basic 

function for inputting data in R. 



 104

> data(haplo) 

Now the dataset or sub-dataset can be accessed by using some functions within R. 

4.2.2 Creating a Genotype Matrix 

The datasets of genetic markers, e.g., SNPs, are often arranged in a one column 

format that looks like: 

 

       rs9939609 rs1477196 rs7206790 rs8047395 

 [1,]         2         1         0         1 

 [2,]         1         1         1         1 

 [3,]         2         1        NA         2 

 [4,]         1         2         1         0 

 [5,]        NA        NA         0         2 

 [6,]         1         2         2         0 

 [7,]        NA         1         1         1 

 [8,]         1        NA         2         0 

 [9,]         1         2         1         1 

[10,]         1         1         1        NA 

 

These are the first ten records of SNP alleles of our example dataset displayed by 

executing the function geno(). The numbers in each cell of the table above are the 

count of the minor allele of a SNP, and the symbol NA (not available) represents missing 

values. Rows represent the measurement of genotypes at four loci for each subject. 

However, lots of software for genetic analysis requires a special matrix of genotypes, 

which is arranged such that each locus has a pair of adjacent columns of alleles, and the 
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order of columns corresponds to the order of loci on a chromosome. If there are m loci, 

the total number of columns of genotypes is 2m. To convert the format of one column to 

the format of two columns, a function, geno.2cols(), has been added to the package.  

> geno.2cols(genodata, v1 = 0, label = NULL) 

The first argument of the function is the name of the original dataset that is 

needed converting, the second specifies the smallest value that genetic markers take in 

the original dataset with a default value of zero (it can be a character such as “M” or 

anything else defined by the investigator), and the third is loci label which is optional. 

See its help file for more details. 

After converting, the layout of the dataset looks like this (only the first ten records 

were shown corresponding the exhibition in the preceding subsection): 

 

    m1.1 m1.2 m2.1 m2.2 m3.1 m3.2 m4.1 m4.2 

1      2    2    1    2    1    1    1    2 

2      1    2    1    2    1    2    1    2 

3      2    2    1    2   NA   NA    2    2 

4      1    2    2    2    1    2    1    1 

5     NA   NA   NA   NA    1    1    2    2 

6      1    2    2    2    2    2    1    1 

7     NA   NA    1    2    1    2    1    2 

8      1    2   NA   NA    2    2    1    1 

9      1    2    2    2    1    2    1    2 

10     1    2    1    2    1    2   NA   NA                          
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4.2.3 Estimating Haplotype Frequencies 

As discussed before, if the genetic data are collected from unrelated individuals, 

the phase information of haplotypes can not be easily obtained, and hence we usually 

need to estimate haplotype frequencies by using some statistical methods. There are 

many statistical algorithms have been developed and implemented in a number of 

software packages to estimate haplotype frequencies (Schaid et al., 2002), among which 

haplo.em is a well-known R function and it is nested in haplo.stats described in 

the preceding section. haplo.em has some strengths such as computational efficiency 

(http://mayoresearch.mayo.edu/mayo/research/schaid_lab/software.cfm). However, it 

also has some weakness. For instance, it does not provide haplotype frequencies for each 

level of a grouping (categorical) variable, e.g., sex, disease status, or medical treatment 

groups, and its output is not ready to use as an intermediate result by other functions 

within the same session. So, we only consider haplo.em as a basic module in our 

function to estimate haplotype frequencies.  

For the converted data (two column format), we use our function haplo.freq 

to construct haplotype pattern and estimate haplotype frequencies by typing the following 

script: 

> haplo.freq(geno2col, group = FALSE, group.var = list(y)) 

Here the first argument of the function is the name of the converted dataset. The 

second one determines whether haplotype frequencies are estimated separately or not by 

a grouping variable. To do this, the whole dataset must be sorted by the grouping variable 

first. The third argument is a list of grouping variable(s) by which the haplotype 

frequencies are estimated separately.  
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After executing the function haplo.freq, we have 

 

   haplo.code loc-1 loc-2 loc-3 loc-4   haplo.prob 

1           1     1     1     1     1      0.00283 

2           2     1     1     1     2      0.00089 

3           3     1     1     2     2      0.00000 

4           4     1     2     1     1      0.03084 

5           5     1     2     1     2      0.00074 

6           6     1     2     2     1      0.32629 

7           7     1     2     2     2      0.01179 

8           8     2     1     1     1      0.00234 

9           9     2     1     1     2      0.32626 

10         10     2     1     2     1      0.00909 

11         11     2     1     2     2      0.01533 

12         12     2     2     1     1      0.07893 

13         13     2     2     1     2      0.11370 

14         14     2     2     2     1      0.07053 

15         15     2     2     2     2      0.01043 

 

The first column of the table above is the index of the inferred haplotypes. There 

are a total of 15 haplotypes inferred from the observed genotype data. In general, for 4 

SNPs, a total of 16 possible haplotypes might be obtained. But since some subjects had 

even half of genotypes missed, and so there is no enough information available for them 

to estimate their haplotype frequencies. The second through the fifth columns represent 
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the inferred haplotype patterns based on the observed genotype data. For example, for the 

first haplotype, the haplotype pattern is “1111”, which means there are 4 minor alleles 

on the chromosome, and by analogy to others. The last column is the estimated haplotype 

frequencies. 

4.2.4 Computing Haplotype Posterior Probabilities 

Since the ambiguity of haplotype phase exists, there may be more than one pair of 

haplotypes that are consistent with the observed genotype data. To account for this 

ambiguity, we compute posterior probabilities of haplotype pairs for each subject using 

the function haplo.post.  

> haplo.post(geno2col, group = FALSE, group.var = list(y)) 

For our example data, by executing the script above, we have more than 300 

haplotype pairs for a total of 100 subjects (here only ten rows are shown as below). For 

each subject, there is at least one pair of haplotypes, e.g., for the first subject in the 

following table, there are two pairs of haplotypes, i.e., haplotype 8/haplotype 13, and 

haplotype 9/haplotype 12 (see the preceding subsection for more details of haplotype 

patterns). The last column of the following table is the posterior probabilities for each 

haplotype pairs.  

 

     subj.id hap1code hap2code posterior 

1          1        8       13   0.01024 

2          1        9       12   0.98976 

3          2        1       15   0.00028 

4          2       11        4   0.00441 

5          2        6        9   0.99440 
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6          2       14        2   0.00059 

7          2        5       10   0.00006 

8          2        8        7   0.00026 

9          3        9       13   0.87486 

10         3        9       15   0.08027 

 

4.2.5 Constructing a Design Matrix of Haplotypes 

To apply some regression models including ours in haplotype-based association 

analysis, we need to create a proper design matrix based on estimated haplotype dosage 

for each subject to facilitate our model fit (see Subsections 2.4.2 and 3.4.2 for more 

details). We created a function, haplo.matrix, to do this work, in which another R 

function named reshape is required. reshape can be downloaded from the R project 

website via the link: http://cran.r-project.org/web/packages/reshape/index.html. 

Using the function haplo.matrix as in the following script:   

> haplo.matrix(poterioal),  

we have (only the first two subjects are shown) 

id        haplo1        haplo2        haplo3        haplo4 

 1  0.0000000000  0.0000000000  0.000000e+00  0.0000000000 

 2  0.0002762031  0.0005881906  0.000000e+00  0.0044149300 

 

          haplo5        haplo6        haplo7        haplo8     

 1  0.000000e+00  0.0000000000  0.0000000000  0.0102387934 

 2  6.265698e-05  0.9943999000  0.0002580755  0.0002580755 
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          haplo9       haplo10       haplo11       haplo12 

 1     0.9897612  0.000000e+00  0.0000000000  0.9897612070 

 2     0.9943999  6.265698e-05  0.0044149300  0.0000000000 

 

         haplo13       haplo14       haplo15  

 1  1.023879e-02  0.000000e+00  0.0000000000 

 2  0.000000e+00  5.881906e-04  0.0002762031 

 

4.2.6 Randomly Sampling Genotypes 

In haplotype-based association studies, we often use the inferred haplotype 

frequencies published in the scientific literature to do simulation studies. Since usually 

we can only get the inferred haplotype frequencies free, not the original genotype data, 

we need to simulate the genotype data based on the haplotype frequencies. Using our 

function geno.samp, we randomly draw 2 haplotypes (phased haplotype pairs) for each 

subject with replacement from inferred haplotypes based on estimated haplotype 

frequencies by using a multinomial distribution. Then the phased information of sampled 

haplotype pairs is eliminated to obtain SNP genotype data (see Subsections 2.4.3 and 

3.4.3 for more details).  

Executing the following script:  

> geno.samp(hapfreq = hf, group = FALSE, group.var = 

list(y), n.geno = 100), 

we have  

 

 



 111

    m1.1 m1.2 m2.1 m2.2 m3.1 m3.2 m4.1 m4.2 

1      2    2    2    2    1    2    2    2 

2      1    1    1    2    1    2    1    1 

3      1    2    2    2    2    1    1    2 

4      1    1    1    2    1    2    2    1 

5      1    1    1    1    1    1    1    1 

6      1    2    1    2    1    1    1    2 

7      1    2    2    2    2    1    1    2 

8      1    2    1    2    1    1    1    2 

9      1    2    2    2    1    1    1    2 

10     1    1    1    2    1    1    1    1 

 

Here only the first ten records are shown. These are similar as those in Subsection 

4.2.2. Note that the first argument of the function above is the name of the dataset 

consisting of inferred haplotype frequencies. The last one, n.geno, specifies the sample 

size. 

4.2.7 Testing Hardy-Weinberg Equilibrium 

We wrote a function, hwe.test, to perform HWE test for individual genetic 

locus. The function calls chisq.test to compute a p-value for HWE test and the null 

hypothesis is that HWE holds. To run our function, we need to specify genotype data and 

chromosomes as below: 

> hwe.test(cross.control, 1). 
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4.2.8 Simulating genetic data 

We created a function, geno.sim, to generate haplotype data for both family-

based and population-based association analyses using the estimated haplotype 

frequencies from real data or fake data. The function can also simulate qualitative and 

quantitative traits based on some genetic and statistical models with various genetic and 

environmental factors designated by users. 

4.2.9 Computing standard errors of parameter estimates 

To correct the standard errors of parameter estimates in the family-based 

haplotype-association analysis, three ways (OMSC, Delta Method, and the Bootstrap 

technique) are considered in the present study and implemented by running R functions: 

omsc.se, delta.se, and boot.se. 
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