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ENVIRONMENT INTERACTIONS IN GENETIC ASSOCIATION ANALYSI S
JUN LI
BIOSTATISTICS
ABSTRACT

This dissertation research focuses on genetic association anbhsesl on
haplotypes in the context of both population-based and family-basedssthidiplotype-
based association analysis is powerful in the discovery and avazatton of the genetic
basis of complex human diseases. However, statistical moddisfitthlaaplotype-
haplotype and haplotype-environment interactions have not yet beendéwvgtoped.
Furthermore, statistical methods for detecting the associatiovede rare haplotypes
and disease have not kept pace with their counterpart of common paploBor both
population-based and family-based association analyses, we hereiseptapcefficient
and robust methods to separately tackle these problems based oramBajesrchical
generalized linear models. Our models simultaneously fit envirotaneffects, main
effects of numerous common and rare haplotypes, and haplotype-haplotype and
haplotype-environment interactions. The key to the approaches is tbéaisentinuous
prior distribution on coefficients that favors sparsity in theedittnodel and facilitates
computation. We develop a fast expectation-maximization (EM) iligorto fit models
by estimating posterior modes of coefficients. We incorporateatgorithm into the
iteratively weighted least squares for classical genexhlimear models as implemented
in the R packaggl m We evaluate the proposed methods and compare their statistical

properties to existing approaches on extensive simulated dataeduies show that the



proposed methods perform well under all situations and are more pbweah the

competitors.

Keywords: Bayesian methods, Generalized linear models, Assocsatidies, Haplotype,

Interactions, Rare variants
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CHAPTER 1

INTRODUCTION

Over the past few decades complex human diseases such as daimes,
obesity, and cardiovascular diseases have constituted enormous healthaboutel the
world and therefore become a particularly great concern to botputblec and health
professionals (e.g., Kingt al., 1998; Lopezet al., 2006; Boyle and Levin, 2008;
Finkelsteinet al., 2008; Ramahi, 2010).

To gain great insight into the mechanisms by which such diseesekeveloped,
a considerable effort and expense have been put forth duringathe sme period
(Altmuller et al., 2001). The first step toward this particular goal is to discesech
genes, or more precisely, which genetic polymorphisms or variaeténadved in the
diseases. Until recently hundreds of genetic variants contribuingpiplex human
diseases have been identified (Hindetfel., 2009; Hindorffet al., 2010). Furthermore,
the identification of such genetic variants is partly revolutiogjzhe field of medicine,
providing more effective prevention, earlier diagnosis, and more-¢algpersonalized
therapies (e.g., Risch, 2000; Collietsal., 2003; Shastry, 2006; van't Veer and Bernards,
2008).

The most promising approach for identifying genetic variantsatetelated to
complex human diseases is generally accepted to be genebiciaiea analysis,

provided that the frequencies of disease-susceptibility vadaatsot too low (Risch and



Merikangas, 1996; Zondervan and Cardon, 2004). The basic idea underlyirigz gene
association analysis is to test whether the frequencies t#salle genotypes at one locus
or loci are different between comparison subpopulations, usually diseabgcts and
healthy controls, by which researchers attempt to find out atigersgiant that either
directly predisposes to disease or is in linkage disequilibriux) (lith a causal variant
(Cordell and Clayton, 2005). LD is known as a nonrandom alignmentlelésalat
different tightly linked loci in a population, and plays a fundamental irolthe study of
population genetics as a potentially powerful tool for the locatizaif genetic variants
for complex human diseases (Hartl and Clark, 2006¢. success of a genetic association
analysisdepends, in part, on the extent of LD of a disease-susceptibilitg vcth a
genetic marker locus within a population. This means that a diseaseptibility variant
initially occurred close to a specific allele of a nearbypaje marker. As generations
(and meioses) proceed over time, the disease-susceptibilignvand the marker allele
remain statistically associated because their physicalimpity remarkably reduces the
number of recombination that occurs between them.

Genetic association analysis has been shown to be often mosicsiati
powerful than linkage analysis because a valid association n@gtéeted in a sample in
which linkage is not detectable, particularly when the genetiamars playing only a
moderate role in disease susceptibility. This is especi&yylwhen a marker itself is a
susceptibility variant (Risch and Merikangas, 1996; Risch, 2000stéotand Risch,
2003). In addition, along with the rapid development of high-throughput gengtypi
technology and the availability of large amount of genetic maslganetic association

analysis has become increasingly popular in both genome-wide regdim& mapping of



candidate regions (Laird and Lange, 2006; Huetred., 2009). Many causal variants for
disease such as type 1 and type 2 diabetes, prostate canest dmacer, and
inflammatory bowel diseases have been identified through gensticiatson analysis
(McCarthy et al., 2008). This breakthrough findings offer renewed hope for the fight
against complex human diseases.

To detect a disease-susceptibility variant successfullypced®on analysis
requires a high-density map of genetic markers because LDgavaoiants occurs only
over a short genetic distance. There are many kinds of geneticretirkiecan be used to
construct such a map, for example, restriction fragment lengyfmpgbhism (RFLP),
simple sequence repeat (SSR), and single nucleotide polymorphisn. ¢(&Néng all
the genetic markers, SNP is the most widely used one for gappimg in complex
human diseases due to its (nearly) complete coverage over the whole human genome with
a high density, although all the other genetic markers drevesty useful for genetic
association analysis (Carlsenal., 2001).

SNP could be defined as the variation of deoxyribonucleic acid (B¥&4)ence
occurring when a single nucleotide (A, T, C, or G) in the genoifiersd between
members of a species or paired chromosomes in an individual. SinBkb&dd
methods are suitable for detecting association of genetimt&amath disease, provided
that LD between the disease-susceptibility variant and the aifeh genetic marker is
strong. When LD decreases, however, the power of single-miaaked association
analysis might suffer. The reason is that the power of singl&anbased methods in
association analysis depends on the LD between the disease-suggemiimant and the

allele of a genetic marker. LD information contained in flankingkers generally is not



incorporated, which can result in a reduction in power (Kaplan and M26@d). When
multiple SNPs are simply used in a study, some big challendjgsr@sent in analyzing
hundreds of thousands of SNPs from a huge sample size, not only bet#uséigh
dimensionality of data, but also because of their complicatedetatyd structure. To
avoid these problems and, more important, take advantage of the linkageatndor
from multiple SNPs together, SNP-based association andigsisbeen expanded to
haplotype-based association analysis.

Haplotype refers to the specific combination of alleles thatraalignment on a
single homolog, one of the two homologous chromosomes in humans, and thatkdend
inherited together. As the unit of analysis for statistiesks in association analysis,
haplotypes have long been of great interest and have drawn mucloatiantecent
years (Clark, 2004; Davidson, 2000; Schaid, 2004; Sc#aid, 2002). There are several
reasons behind this phenomenon. First, haplotypes are biologicaManel&@here is
strong evidence that several mutations within a gene may dhtéogether ¢is
interaction) to cause disease such as neural tube defeqtsostate cancer (Tavtigias
al., 2001; Joostemt al., 2001; Fitzeet al., 2002). Haplotype-based methods provide a
natural way to capture sucks-interactions by examining a number of adjacent loci and
accommodating the joint effects from them (Morris and KaplabQ22 Second,
haplotype-based association methods are generally regardedgsbee powerful than
methods based on single markers since the former fully explbit;formation from
multiple markers (Akeyet al., 2001; Morris and Kaplaset al., 2002). Both simulation
(Akey et al., 2001; Zaykiret al. 2002) and empirical studies also support this conclusion.

Third, haplotype-based methods can be advantageous over SNP-based mét#mds w



multiple disease-susceptibility variants occur within a sirggee and each of these
variants originates and predisposes to disease independently digheaiants (Morris
and Kaplan, 2002). In addition, driven by the international HapMap projectdeoaisie
information concerning haplotype structures and haplotype frequdmselseen gained
from several populations (The International HapMap Consortium, 2005)adéys,
haplotypes have been widely accepted as a major tool for idegtifgisease-
susceptibility variants in genetic association analysis.

However, one difficulty in applying haplotype-based associationysisails that
actual haplotypes for each individual can not be easily obtained diradthough it is
possible to determine haplotypes through molecular techniques, suclyteshare often
expensive and too laborious to be practical in large-scale st{Mielsalatos-Beloinet
al., 1996; Eitan and Kashi, 2002). In the routine laboratory work, the polymehnase
reaction (PCR), the current standard genotyping technique, isysigalll to generate
marker genotypes, in which, for a normally diploid organism such astsnonly the
two alleles at a single locus can be discerned for an individagdout providing any
information regarding the chromosome which is associated with &ée, known as
phase information. Therefore, for an individual who is heterozygousoed¢ than one
locus, sayn (n > 0) loci, there are total of'2 possible haplotype pairs that are consistent
with the observed single locus genotypes, and haplotype phase for thiduabis said
to be ambiguous. For example, if we consider three observed digBBIPs with
genotypesA,a), (B,b), and €,c), the first two genotypes denoting the heterozygosity and
the last one denoting the homozygosity, then there are two posaildeop haplotypes

that the individual may carryABc/abc or Abc/aBc, where “/” is used to separate the two



haplotypes within a haplotype pair, with each aligned on one of hemologous
chromosomes. This ambiguity of haplotype phase complicates haplmgpd-
association analysis.

To overcome this difficulty, numerous methods have been proposed fomigfe
haplotypes through the estimation of haplotype frequencies forutg gopulation and
the resolution of haplotype pairs within individuals (e.g., Clark, 199@ofter and
Slatkin, 1995; Fallin and Schork, 2000; Stephetred., 2001; Niuet al., 2002; Qinet al.,
2002). Among these methods, the expectation-maximization (EM) &lgorst probably
most frequently used (Excoffier and Slatkin, 1995; Fallin and Schork, ZD0Get al.,
2002). The EM algorithm is a well-established approach for astig;m unobservable
parameters in the context of missing data. Details on thenakiglgorithm and further
intuition behind its inception can be found in much of literature, inotu@iempsteet al.
(1977), Sundberg (1974), Wu (1983), and so on. Typically, the basic idea behiid the
algorithm is that in the E-step the posterior probability ohgaxssible haplotype pair is
estimated within an individual that are consistent with the obs@®edtypes, and in the
M-step the haplotype frequencies are updated given the curremiatesi posterior
probabilities. Then iteration between these two steps proceedsamigrgence. Given
these estimated haplotype frequencies, the posterior probabdityamhindividual with
the observed genotypes has a specific haplotype pair can be compuateBayss’ rule.
These posterior probabilities of haplotype pairs for each indivicarabe used to define
haplotype variables to be included in a standard analysis such asclaggression

(Zaykinet al., 2002; Stranet al., 2003).



With respect to defining haplotype variables, a naive approach issignathe
most likely haplotype pair to an individual, and then the standard @& ysplemented
as if the haplotype pair was exactly observed. The potential pitfall aidhie strategy is
that ignoring the uncertainty in the haplotype assignment can intradeesurement
error and further induce bias into the estimates of haplotypasf{tan and Zeng, 2006;
Lin and Huang, 2007; Kraft and Stram, 2007). The second way to handle greauntyg
in the haplotype assignment is a multiple imputation techniquegUhis approach, a
number of replicate datasets are generated by randomlyiagsa haplotype pair to an
individual that is in accordance with the individual's haplotype pastgmiobabilities.
Then haplotype effects are estimated by taking the averatiee adstimates across the
imputed datasetgKraft et al., 2005). In addition, an innovative method has been
proposed in which haplotype frequencies and haplotype risk effects castibvated
simultaneously (Schaiet al., 2002; Epstein and Satten, 2003; Zktal., 2003; Strangt
al., 2003). The attractive feature of this method is that it canyadetl with uncertainty
in haplotype assignment and uncertainty in haplotype frequency estiifkatftet al.,
2005). Finally, a relative simple but powerful way to handle thablem is to use the
expectation-substitution method to compute the expected number of cbpiepecific
haplotype (estimate of haplotype dosage) for an individual using allptissible
haplotype pairs that are compatible with his or her observed gesoi¥pgkinet al.,
2002; Stramet al., 2003; Kraft and Stram, 2007). Although the method is so-called
“single imputation”, it can provide pretty good reliability and decent power fonathg

haplotype risk effects (Kraft and Stram, 2007).



In the past two decades, large numbers of haplotype-based gendeneuvad
candidate gene association analyses have been conducted and it hdsnheestrated
that haplotype-based association analysis is a potentially destivf and statistically
powerful tool to unravel the genetic mechanisms that are undertgimgplex human
diseases (Risch and Merikangas, 1996; Botstein and Risch, 2003). d&typegdased
association analysis, a lot of statistical methods have been profmsedmine the
association between haplotypes and human complex diseases (e.g.,eLaykiR002;
Lake et al., 2003; Zhaoet al., 2003; Cordellet al., 2004). Although many of these
approaches have been widely used in the mapping of genesbobtingrito complex
human diseases, the majority of them only focused on estimation ginadegffects of
haplotypes and detection of association between common haplotypeseaaskediwhile
comparatively little attention has been paid so far to investganteracting effects
between haplotypes and environmental factors, especially thoseebehaplotypes in
different haplotype blocks, and exploring disease association & maplotypes
(Beckeret al., 2005; Guo and Lin, 2009).

Complex human diseases are believed to be influenced by numeraremndiff
genetic and environmental factors, and the interplay of theseitwds of factors (e.qg.,
Moore, 2005; Cordell, 2009). Consideration of interaction in analysis cantipdiielead
us to a better understanding of fundamental biological mechanismpatimdays in
disease progression. Thus, an ideal strategy of analysisiadtaneously consider all
the genetic loci, environmental factors, and particularly timt@ractions. Such a joint
analysis could enhance the power for detecting genetic variantaréhatvolved in the

etiology of disease mainly through an interacting effect with nmarginal effect



(Chapman and Clayton, 2007), and/or ascertaining environmental factdrsadha
primarily in genetically susceptible individuals (Thomas, 2010a). addition,
accommodating interaction in analysis can overcome the limitezess in the detection
of disease-predisposing genetic variants for complex human @liseasmprove the
explanation of heritability of most complex diseases that might attributed to
interactions or more complex pathways involving multiple genetic eandronmental
factors (Manolicet al., 2009; Eichleet al., 2010).

However, identifying interactions that are causal in complex huisgases is
not an easy task (Cordell, 2009; Kooperber@l., 2009; Thomas, 2010a; Yi, 2010).
Primarily, the detection and characterization of interactioadimited due to the lack of
powerful statistical methods and/or large sample sizes. Whenrousnmteractions are
fitted explicitly in a model, the degrees of freedom for theesponding test statistics
would grow rapidly, and, as a result, sufficient power cannot be guadatdedetect
possibly significant effects in the model, especially in atikedly small sample size
(Luanet al., 2001; Bokset al., 2007; Mukherjeest al., 2008; Cordell, 2009; Thomas,
2010a). This issue may become more severe in haplotype-based mssauiatysis,
where haplotypes are usually inferred form SNPs as discuséae.bé/ith increasing
number of SNPs, the number of possible haplotypes can become extisngelyeading
to the related problems of high-dimensional data and sparse dataafoy of the
haplotypes. The classical statistical methods such as logsfiession usually have no
sufficient power and flexibility to handle these problems (Letka., 2003; Beckeet al.,
2005; Kweeet al., 2007; Heinet al., 2009). Furthermore, up to now few innovative

methods have been developed to tackle such problems in haplotypealsasettion



analysis. Therefore, a sophisticated method is desired that mootates interactions as
well as high dimensionality and sparsity. This poses a conbiderhallenge and serves
as the motivation for our present research.

Another potential factor that could help explain more proportion of the heriabilit
of most complex human diseases is rare variants (Magbkb, 2009; Eichleret al.,
2010). The rare variant is what has a relatively low minor aftelguency (MAF) or a
rare homozygous genotype frequency in the population. So far there dkearoand
consistent definition for the rare variant. Some researchetkei literature defined a
variant with a MAF less than or equal to 0.05 or 0.01 as rare fesimjt and Zeggini,
2010, Bansaétt al., 2010). But most of authors used this term loosely, only to tefer
variants that have less common MAF than those routinely studiirgdvay, no matter
how the rare variant is defined, it has received very littlentitin for a long time in
genetic association analysis, although it supplies valuable infiorman the mechanism
by which disease is caused (e.g., Pritchard, 2001; Cethaln 2004; Azzopardet al.,
2008). This is understandable, because such variants with very low ricezgie@and
individually small contributions to the overall inherited diseaseepigulity cannot be
detected unless the statistical method is much powerful or thelesaime is unusually
large (Altshuleret al., 2008; Gorlowet al., 2008; Li and Leal, 2008; Bodmer and Bonilla,
2008; Basu and Pan, 2011). This is the main reason why the commaosediseanon
variant (CDCV) hypothesis prevails in the contemporary gerstidies. However,
although hundreds of genetic variants associated with common diseasebeeave
detected in the studies under the CDCV hypothesis, those variantoiigva weak

effect on disease risk, and hence only explain a small proportitwe dietitable, genetic

10



component of susceptibility to those diseases (Maher, 2008; Diekabn2010; Morris
and Zeggini, 2010; Robinson, 2010). The unexplained part of heritability coyldrthe
due to rare variants (Manoliet al., 2009; Eichleret al., 2010). This motivated
researchers to consider the contribution of rare variants to suslttgpto common
diseases, which is known as the common disease-rare variant ([dR&hesis. The
hypothesis postulates that disease is caused by some genitidsvanth detectable
strong effects, each of them being only found in a few individualfienpbpulation
(Bodmer and Bonilla, 2008; Morris and Zeggini, 2010; Robinson, 2010; Hoffetahn
2010). The role of rare variants in complex human diseases sugpasehsion, type 1
diabetes, and obesity has been identified by recent studies under thelyp&tiesis (Ji
et al., 2008; Nejentsewt al., 2009; Bochukovat al., 2010).

Rare haplotypes, just like other genetic rare variants, could betanpdisease-
predisposing variants and should not be ignored in investigating the gansteptibility
to complex human diseases (lawal., 2005; Zhwet al., 2005; Yendet al., 2007; Semsei
et al., 2008; Kitsios and Zintzaras, 2010). Rare haplotypes can be seen freguentl
genetic association studies and even they might be producednioman SNPs in a
population (Souvereiet al., 2008; Guo and Lin, 2009). Regarding statistical modeling,
however, rare haplotypes can result in nonidentifiability of parameters in nitoaélith
means the coefficients of predictors cannot be identified onatd uniquely because of
huge, even infinite standard errors (Gelmah al., 2003). There are several
methodological and computational issues that complicate reseamohidéntifiability of
parameters. The big, even huge, estimate of parameterngjbe obstacle. A common,

but negative solution to this issue in the literature is to poobedl haplotypes into one

11



single group (Schaiet al., 2002; Zhact al., 2003) or pool rare haplotypes with common
ancestral haplotypes (Seltmanal., 2003; Durrantet al., 2004; Tzeng, 2005). These
approaches in nature ignore rare haplotypes by lumping thesthewgand consequently
any rare haplotype that might contribute to the risk of diseasmot be identified
distinctly.

Obviously, the development of methods that can detect the rare vaaiaohts
handle the nonidentifiability of parameters is a much needed areaezfrch. Progress in
this area requires introducing comprehensive, standardized, andepappiaches to
capture all information arising from both common and rare haplotys pfovides the
second motivation for the research in this dissertation.

In summary, our research focuses on the two main topics: hppiotiated
interactions (haplotype-haplotype and haplotype-environment interactaong) rare
haplotypes in association analysis. These two topics are thoranghbtigated in both
population-based and family-based association analyses in CHAPHRBER CHAPTER
3 of this dissertation, respectively, because population-based anilly-based
association analyses are the two major branches in the conteyngeraatic studies,
classified based on the study design and sample collection of ya Jtodmake our
proposed methods to be easily implemented and publicly available, wpareter them

into R BhG_Msoftware and briefly describe them in CHAPTER 4.
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CHAPTER 2
POPULATION-BASED HAPLOTYPE-ASSOCIATION ANALYSIS IN CASE -
CONTROL STUDIES

In general, population-based haplotype-association analysis aimstdot dhe
relationship between haplotypes and disease or quantitative phenotypgsjnuslated
individuals as the primary sampling units. This kind of analysis haked a great
potential for unraveling genetic mechanisms that are undgrtgmplex human diseases
(Stephengt al., 2001; Schaiet al., 2002; Botstein and Risch, 2003; Clark, 2004; Schaid,
2004).

This chapter starts with a summary of major features of popuHaased
haplotype-association analysis. Subsequently, basic concepts afocds#-studies in
the context of genetic association investigations are describec &«sting statistical
methods for population-based haplotype-association analysis afly lolescribed in
Section 2.3. The chapter finishes with deriving a new Bayesemarbhical generalized
linear model that can detect (rare) haplotype-haplotype and Waglenhvironment

interactions in population-based association analysis.

2.1 Main Features of Population-based Haplotype-Association Analysis
2.1.1 Assumption of Independence
In population-based haplotype-association analysis, a fundamental assuispti

that individuals under investigation are unrelated, which impliesntioat of association
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methods for uncorrelated data can be applicable directlywbigh noting that while the
assumption of independence often holds in population-based haplotypedassoci
analysis, situations might arise where we would expect depértumeindependence, for
example, when a trait on the same individual is measured eelheat a longitudinal
study. In such situations, inference on haplotype effects can bedbiar the methods
with the assumption of independence. To solve this problem, some adveaatcstat
methods which accommodate correlated data are warranted sesbangéial for correctly
estimating variance components (Fitzmausgcal., 2004; Gelman and Hill, 2006; Song,
2007).
2.1.2 Ambiguity of Haplotype Phase

Another remarkable aspect is that the information of allelic plasa SNP is
generally not available in the context of population-based assocatalysis and hence
the corresponding haplotypes of an individual usually cannot be acquiredydae
described in CHAPTER 1. This presents a considerable challemgeanialyzing
haplotype-based association with traits in population-based studieaddress this
challenge, we must first perform haplotype inference includisgmating haplotype
frequencies and reconstructing haplotype patterns for each individuadl foas the
observed genotype data collected from unrelated individuals, and theanwedrduct
haplotype-based association analySiensequently, these studies tend to differ in data
structure and statistical methods from some other genetic dssosiadies, for example,
SNP-based association studies and family-based haplotype-assosiatieas that will

be discussed in the next chapter (Thomas, 2004; Schaid, 2004).
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2.1.3 Population Stratification

Human populations often exhibit a systematic difference in aftelguencies
between subpopulations, which is usually referred to as population icatadii or
population structure. The main reason of population stratification isgahdom mating
occurs within each of subpopulations while non-random mating, or morsglyegene
migration occurs between subpopulations. Note that there is anothept;gugilation
admixture, which often appears together with population stratdicéicKeigue, 2007).
Population admixture is used loosely in the scientific literatuiadicate a population in
which multiple subpopulations with different allelic distribution® gresent. In the
population-based association studies, we usually focus on the issugy grom
population stratification.

Population stratification may result in spurious association metge studies (Li,
1969; Devlin and Roeder, 1999; Pritchatdal., 2000a). As an example, consider the
situation in which a population consists of two subpopulations each havirgediff
allele frequencies at a locus and differing prevalences oashsaVe assume that the
locus is not causally associated with the disease and, for diyplicat the first
subpopulation has a higher allele frequency at the locus as weehigber prevalence of
the disease. A random sample of cases from the population willttehdve more
individuals of the first subpopulation than a random sample of controlsndram a
natural population. Then an unstratified case-control study will tieaaflated estimates
of the effect of the locus on the disease risk.

Several methods have been proposed to control the impact of population

stratification in population-based association studies (e.g.,irDevid Roeder, 1999;
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Pritchardet al., 2000a; Pricet al., 2006; Epsteirt al., 2007), among which the widely
used ones broadly follow one of three concepts: genomic control, stadi@ssociation,
and principal components. The approach of genomic control uses random ioairker
obviate the false positive association due to population stratificéidievlin and Roeder,
1999; Reich and Goldstein, 2001). The method of structured associatioty dirkats
population structure and incorporates the estimated population structtine test of
association (Pritcharet al., 2000a,b; Satteet al., 2001; Cheret al., 2003; Hoggarét al.,
2003; Purcell and Sham, 2004). The principal components analysis ideptifiegal
components that represent the population structure based on genetidicosr@aong
individuals (Yuet al., 2006; Malosettet al., 2007; Zhaaet al., 2007). However, all these
methods have had only limited success in controlling the falseia$sncignals due to
population stratification. It is important to recognize that thessthods can only
minimize the potential impact of population stratification or, toipanother way, they
cannot completely remove the spurious association resulting from populati
stratification because the hidden population structure is usually unknovoaanot be
corrected for at the time of statistical analysis (e.g.gka&hal., 2008; Zhangt al., 2008;
Price,et al., 2010).

Although population-based haplotype-association analysis has potentedto
false positive findings attributable to population stratificationy theve some advantages
over family-based haplotype-association studies that will be discussediexthehapter.
For example, in population-based haplotype-association analysigelaizely easy to
recruit subjects, and each individual contributes one observation to tis¢icslatest.

Haplotype-association studies are usually more efficienerimg of time, money, and
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logistics. Moreover, for late-onset diseases, it is impossibleotlect parents of the
affected subjects (Scatt al., 1997). Therefore, there is a great need for population-based

haplotype-association analysis.

2.2 Case-Control Studies

In this section, basic concepts and properties of case-control saudidsiefly
described, followed by a discussion of how population-based haplotgpetatson
analysis fits within case-control studies. Further discussionasef-control studies in the
context of genetic association investigation can be found in Thomas (28€4aid
(2004), Clayton (2007), and Ziegler and Koenig (2007).
2.2.1 Concept and Principles of Case-Control Studies

In a case-control study, two groups are sampled and compared sp#cirdo
their potential exposure of risk or protective factors; one group ¢snsisaffected
subjects referred to as cases, and the other consists of urthfabjects referred to as
controls. The basic assumption of such studies is that the two groapbjefts may be
employed to provide unbiased estimates of the corresponding distmbwtf the cases
and controls. Based on this assumption, some statistical methodsedréo determine
whether there is a difference of past exposure to the suspettent protective factors
between the cases and controls. If the exposure and the diseaset dmcur
independently from each other, an association between the exposute atidease is
said to exist. The strength of association is usually asségsedmeasure, odds ratio
(OR), which is generally the ratio of the odds of an event occuimioge group to the

odds of it occurring in another group.
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2.2.2 Advantages and Disadvantages of Case-Control Studies

Since the exposure of interest is collected after the develapof the disease in
guestion (the true order is that subjects have to be exposed befseaseds developed),
case-control studies can be called a retrospective study.sTdigrominent characteristic
of case-control studies and it offers some advantages and disadvamexganother
frequently-used class of studies, cohord studies, in which subjects difiénent
exposures to the suspected risk or protective factors are rdcuaiefollowed over time
for the occurrence of disease, and then the occurrence rates diféase are measured
and compared between the two groups. Case-control studies atvalsetheap, quick,
and reliable approach of establishing evidence of an associatioadneéxposure to risk
or protective factors and disease.

Case-control studies have proved particularly useful in studyireg asad late-
onset diseases. However, their retrospective nature limittrénggth of their conclusions
because the mechanism of disease cannot be studied and a proof wbrca@asaot be
established. In addition, several biases such as selection biag@nuhtion bias can be
introduced into case-control studies in the process of identifyindy spopulation,
measuring information on exposure or disease, and so on. Bias meddefs any
systematic error in a study that results in an incorrechatd of the association between
exposure and disease, and it should be avoided by an appropriate desigreandiata
collection. Another problem in case-control studies is that sskdactors might act as
confounders. A confounder is a third (extraneous) factor which isedelep both
exposure and disease but not an intermediate step between the eapdsdisease, and

it can lead to an overestimation or underestimation of the trugorelbetween the
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exposure and disease. Confounding is not an error in a study, but sathetrue

phenomenon that exists in nature in a study and must be identified, aoderahd

interpreted in study design and/or analysis of data. In the desigre techniques could
be used to restrict for potential confounders, and in the anadsagification and/or

multivariable (adjusted) analysis could be used (Rothehah 2008a,b).

Nonetheless, the value of case-control studies in rapid and inexpensive
assessment of a new or serious disease has been proved beyond do@restogy and
Day, 1980; Rothmast al., 2008a,b,c).

2.2.3 Population-Based Genetic Association Analysis in Case-Control Stuslie

Case-control studies are very popular in the context of population-gasetic
association investigations of complex human diseases. In thisgamstjc risk factors
are used as exposure to investigate association with the statase and control which
is commonly termed phenotype. There are kinds of genetic riskdatiut we limit our
discussion to the observed genetic sequence information, or maresefye the
combination of alleles located on homologous chromosomes, which is defned a
genotype. In case-control studies, a genetic locus that is suppobedirtvestigated is
genotyped for cases and controls, and the frequency of an atlejenotype of the
genetic locus is compared between the cases and contrdisrdfis a difference in the
frequency of the allele or genotype under test between th@oups, an association is
said to exist between the genetic locus and the disease, mieighs that the genetic
locus may increase the risk of the disease (itself is causal), or be in |ohkageailibrium
with a causal locus which does. If several genetic loci are gesbthey can either be

tested separately or jointly for association with dise@see the joint analysis employs
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to the greatest possible advantage of LD information from mullgue it has been

considered in the most of genetic studies. Haplotype-based stadiean excellent
instance of jointly analyzing multiple loci. But for haplotypesdshassociation studies,
since the haplotypic phase is generally unobservable in population-bes@daton

studies of unrelated individuals, a special consideration for amalysrequired as
described in detail in CHAPTER 1.

In case-control studies, false positive results caused by papukttatification
may also occur when we use population-based haplotype data.stlieeoispopulation
stratification is briefly described in the previous section. Suspurious effect should be
eliminated by an appropriate design and careful data collectiaausedthe population

stratification is usually unknown and cannot be corrected for in statistiakisss.

2.3 Existing Statistical Methods for Population-Based Haplotype-Asgiation
Analysis

A variety of statistical methods have been developed to dedgbdtype-disease
association through use of population-based data from case-cetidies. Early
attempts to such methods were made over ten years ago ply siomparing the
estimated haplotype frequencies between cases and controlse{Ztha®000; Fallinet
al., 2001). These approaches perform global tests of haplotype assouidkicdisease
and can be implemented easily in the routine statistical sisaljowever, they do not
provide estimates for individual haplotypes due to the nature of omi@blusMoreover,
the estimated haplotype effects cannot be adjusted for environmental factors.

Schaidet al. (2002), Zaykinet al. (2002), Stranet al. (2003), and Zhaet al.

(2003) developed separate methods to deal with these problems. Alintleésods treat
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haplotypes as explanatory variables in a regression model, and thesuthestimate the
effects of individual haplotypes and adjust for environmental faclidre. method of
Schaidet al. (2002) is build upon the conditional probability distributions of subjects’
possible haplotype pairs given the observed genotype data and infepietygea
frequencies. To take into account ambiguity of inferred haplotypesses an EM
algorithm to compute the posterior probabilities of haplotype pairedéch subject.
Moreover, to account for uncertainty for haplotype assignment for esgject it
calculates expected haplotype score. Similarly, by usingMiralgorithm, Zaykinet al.
(2002) computed the expected counts based on the posterior probabilitiggobydea
pairs given the observed genotype data, and then fitted the couhésdsease using a
regression model. Straahal. (2003) constructed a joint likelihood of disease and genetic
and environmental covariates, from which they obtained the maximkeihbod
estimates of individual haplotype effects. Zhetoal. (2003) applied a similar joint
likelihood method as those of Straet al. (2003) but assumed Hardy-Weinberg
equilibrium (HWE) of haplotype frequencies within the sample of controls.

Although each of these methods has its attractive featurescupaty in
estimating individual haplotype effects directly and accountingndn-genetic covariates,
all of them only focus on estimation of marginal effects gflbigpes, and no attention
was paid to investigate interacting effects between haplogmeégnvironmental factors,
especially those between haplotypes in different haplotype blockge\t¢o, increasing
evidence suggests that gene-gene and gene-environment interactions piggyortant
role in susceptibility to complex human diseases (Cheverund anthRoul995; Wolf

et al., 2000; Moore, 2003; Carlborg and Haley, 2004; Moore, 2005). Investigating such
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interactions may provide great insight into disease etiology amdatgly inform new
strategies for treatment and prevention.

As an earlier attempt to explore the interaction between hag®tyand
environmental factors, Laket al. (2003) proposed a likelihood-based method in the
generalized linear model framework, which has been widely usddplotype-based
association studies because it is available free and easplEment with its R package.
This approach, however, is limited by ignoring interacting ¢sfdtween haplotype
blocks. Subsequently, several methods have been developed to study haplatgge-r
interactions but these methods do not consider all potential haplotygastaractions
simultaneously (Liret al., 2005; Spinkeaet al., 2005; Lin and Zeng, 2006; Kwet al.,
2007; Chenet al., 2008). Recently, Guo and Lin (2009) proposed a generalized linear
model with regularization to detect interacting haplotypecesfeHowever, their method
applies a global test and consequently does not provide inference affebts of
individual haplotypes and their interactions.

In our literature review, we also found that little attention lbesn paid so far to
developing statistical methods for exploring disease associatiibnrane haplotypes.
However, it has been argued that rare haplotypes may account for a subséatitoal 6f
the multifactorial inheritance of common diseases @@iwl., 2005; Zhuet al., 2005;
Yendeet al., 2007; Semsatt al., 2008; Kitsios and Zintzaras, 2010). Guo and Lin (2009)
adopted a least absolute shrinkage and selection operator (LASS@y petieeir model
which allows assessment of the effects of rare haplotypehrinking the coefficients of
unassociated haplotypes to zeros so that the associated ones, dgrtivode that are

rare, can stand out. It is a quite attractive approach farsgtg estimating the effects of
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rare haplotypes. However, since the distribution of LASSO estim@éonon-standard,
the pairwise comparisons between the tested haplotype andféhence haplotype are
likely to suffer efficiency losses.

Detecting interacting haplotypes and rare haplotypes asstaiath disease is a
big challenge to population-based association analysis in oas®icstudies. How to
address these issues is the main topic of our research abetkgtiCHAPTER 1, which

motivates us to develop a new method as in the following section.

2.4 Bayesian Hierarchical Generalized Linear Model for Populatiorbased
Haplotype-association Analysis

2.4.1 Brief Description

We propose a new approach to investigate the association between haplotypes and
human diseases based on the hierarchical generalized linear friealeroposed method
is built upon a Bayesian framework with weakly informative priomsthe coefficients.
Although our method can be applied to continuous, binary, or ordinal tratsevein
describe it only for binary disease status in case-control st simultaneously fit
a large number of effects, including main effects of numerous conmendnrare
haplotypes, main effects of environmental factors, haplotype-haglatyeractions, and
haplotype-environment interactions. We fit our Bayesian generdiizedr models by
incorporating an EM algorithm into the usual iteratively weighkealst squares as
implemented in the R packaggl m This strategy leads to stable and flexible
computational tools and allows us to apply any generalized Imedel to haplotype-
based association studies. We investigate the statisticalrfiespend performance of the

proposed method and compare it with three existing methods, thealagmneralized
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linear model, the method of Lalet al. (2003), and the method of Guo and Lin (2009),
through extensive simulation studies.

2.4.2 Methods

Generalized linear models of interacting haplotypes

Suppose that a population-based association study consists uifrelated
individuals, phenotyped for a disease trait, genotyped for multipletigerariants (e.g.,
SNPs) in multiple genomic regions or haplotype blocks, and recdoiesbme non-
genetic exposures, referred to as environmental factors. Althougmethod can deal
with various phenotypes, we demonstrate its performance with a lirsagse trait as
measured in case-control studies. That isy;leéienote the disease status of individial
with y; = 1 representing a case ane 0 representing a control.

We use generalized linear models to relate disease statbaptotypes and
environmental factors. A generalized linear model consists of twegonents: the
linear predictor, the link function, and the distribution of the outcomealviari
(McCullagh and Nelder, 1989; Gelmanal., 2003). We simultaneously fit main effects
of environmental ) factors, main effects of haplotypds)( haplotype-haplotypeHxH)
and haplotype-environmeri&E) interactions. Therefore, the generalized linear model is

expressed as

h(Pr(y, =1))= (B + XeBe + Xy B + X B + XpeBue): @X B, 1=1, ..,n, (2.1)
whereh is a link function or transformation which relates the lineadjtor X to the

disease probability RBi(= 1), g, is the intercept,f. and g, are the vectors of
environmental effects and all possible haplotype main effectsecegely, g,,, is the

vector of all possiblehaplotype-haplotype interactions between different haplotype
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blocks, andg, . is the vector of haplotype-environment interactions, apd X, , X, ,
and X, . are the corresponding design matrices of explanatory variables. Wféoddhe

construction of these design matrices in the next subsection.

Various link functions are provided in generalized linear models (Ma@luland
Nelder, 1989), all of which can be adapted in our Bayesian modely. AddaGoddard
(2010) recommended using logistic or probit model for multi-locusyaisabf genetic
risk of disease in case-control studies. Taget transformation definel(p) = logit(p) =
log(p/(1-p)), leading to a logistic regression which is commonly usedase-control
studies and considered in our study.

Construction of the design matrices

Since usually haplotypes are not directly measured, wec@irspute the posterior
probabilities of haplotype pairs based on the observed genotype datchosubject to
account for this ambiguity by using existing methods of haplotypeemée (e.g.,
Excoffier and Slatkin, 1995; Niet al., 2002; Stephent al., 2001; Zaykiret al., 2004).
These posterior probabilities are then used to compute the estwhaimslotype dosage
(Stramet al., 2003).

The estimate of haplotype dosage is the estimate of the numbepiet ©f a
specific haplotype for a subject. For the haplotypes that can be qaruably resolved
based on the observed genotype data, the values of haplotype dosage olypehfaplat
subject can be zero (indicating that the haplotype is not possildd basthe subject's
genotypes), one (indicating heterozygosity for the haplotype based osultfect's
genotypes), or two (indicating homozygosity for the haplotype). Buthi® haplotypes

that cannot be unambiguously resolved, the values of haplotype dosalgepbdtgpe for
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a subject would be non-integer, ranging form zero to two, whiclatetthe possibility of
the haplotype based on the subject’'s genotypes. For each subject, tbé lsytotype
dosage across all haplotypes within a haplotype block is equal té\figo obtaining the
estimates of haplotype dosage, we can use them to construct tipe hesrix Xy. We
treat the estimate of haplotype dosage as a surrogate variable for thaplatgpe.
Suppose there ar@/, possible haplotypes in thgth haplotype block in the

population,q = 1, 2, ...,Q, and letd,, , w = 1, 2, ..., denote the estimate of
haplotype dosage of thveth haplotype in theth haplotype block for subject Therefore,

we can set)(H)i:(dill, el Ly, ...diqu). For example, unphased genotype

data at two SNPs was observed, and, for a subject, two haplotype(blahg and

(hz,h4), were estimated with posterior probabilities, say, 0.9 and 0.1, teghgecThen

the values oKy for this subject are (1.8, 0.1, 0.0, 0.1).

Note that, at the time of statistical analysis,exelude one haplotype froXy to
ensure identifiability of parameters in model fit.

For the environmental factors, the raw values r@nesformed to hava mean of O
and a standard deviation of 0.5, by subtractingntean and dividing by 2 x SD (the
standard deviation of the raw values) (Gelreal., 2008; Yi and Banerjee, 2009). This
transformation standardizes all the environmenftgices to have a common scale. The
matrices of interacting variableX.e and Xuy, are set up by simply multiplying two

corresponding realizations ¥ andX4.
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Prior and posterior distributions

The model above can include a large number of higbkrelated explanatory
variables, and most of which are likely to be zeraat least negligible, leading to the
problems of high dimensionality, collinearity angassity that preclude the use of
classical maximum likelihood methods. We handles¢hproblems by using a Bayesian
approach that places appropriate prior distribition coefficients to capture the notion
that most of the components @f probably approach to zero or can be at least eghor

such prior distributions are known as shrinkagerpri(Gelmanet al., 2003; Yi and

Banerjee, 2009). We assume independent Studenbrs t, (0, ?) on coefficientss; ,

with v, and s, chosen to give each coefficient a high probabdityeing near zero while

still allowing for occasionally large effects (Gamet al., 2003; Gelmamt al., 2008; Yi
and Banerjee, 2009). We are motivated to uset tthistribution because it allows for
flexible modeling, robust inference, and easy atadble computation (Gelmae al.,
2008; Yi and Banerjee, 2009; ¥t al., 2010). There is no easy way to estimate
coefficients directly using thedensities, but it is straightforward to deal wikie two-

level formulation oft distribution (Gelmanet al., 2003; Gelmaret al., 2008). The

distributiontvi (0, s?) can be expressed as a mixture of normal distdhativith mean 0
and variance distributed as scaled inveyse-
Bzl ~N(O, z}), 7} ~Invy’(;,s), j=0,1L ,J, 2.2)

whereJ is the total number of effects in the model, amel hyperparametens >0 and

s, >0 represent the degrees of freedom and the scéhe alistribution, respectively.
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The hyperparametens, ands; control the global amount of shrinkage in the
effect estimation; larger; and smallersj2 induce stronger shrinkage and force more
effects to be near zero. We use the method at él. (2010) to choose; ands; . For
By, Pe and B, , we use the weakly informative priors recommentgdselmanet al.
(2008), i.e., (vy, )=( 10) for g, , and (v;, s;)=(, 2.5) for g and g, . For
haplotype-environment interaction,. , we set(v,, s;)= (1, 2.5l A, ), wherel, and
Ihe are the total numbers of main effects of haplotypes haplotype-environment
interactions, respectively. For haplotype-haplotypeteractions g, , we set
(v, §)=(@ 251, A, }, wherelyy are the total number of haplotype-haplotype

interactions. Because there are many more interectinan main effects, these priors
apply more stringent restrictions on interactiomsl @allow reliable estimates of main
effects and interactions (¥t al., 2010).

With the above prior distributions, we can expribgslog-posterior distribution of
the parametersf{,z*) as
n J J
log p(B.7% |y)oc Y logp (y, [X;8 D logp @B, k7 ¥, lowp £/ ¥, 57 )
i=1 j=0 j=0

. (23
ocZIog p(y, |Xﬁ')——2(logr + ;]JrZ( L logs’ - E+ 1)logr - V;z]

i=0 J

wherez? = (¢Z,L ,z2), and the likelihood ofp(y, | X, f) depends on the logit link

function and the linear predictor that is defined2.1).
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EM algorithm for model fit

Our hierarchical generalized linear model can ttediusing Markov chain Monte
Carlo (MCMC) algorithms that fully explore the joiposterior distributionp(f,z°|y)
by alternatively sampling each parameter from sditional posterior distribution.
However, it is desirable to have a faster compomathat provides a point estimate of
coefficients, e.g., the posterior mode, and stah@arors (and thup-values). Such an
approximate calculation has been routinely applnestatistical analysis (Gelmaat al.,
2008).

We use the EM algorithm to fit the hierarchical lo&ype models with the
Studentt priors by estimating the marginal posterior modéshe coefficientsp; (Vi
and Banerjee, 2009; Y&t al., 2010). We incorporate our algorithm into thedtevely
weighted least squares for classical generalizezhti models as implemented in the R
packagegl m for example. The standard iteratively weightedstesquares algorithm
approximates a generalized linear model by a nolimadr model (Gelmast al., 2003;

Gelmanet al., 2008). Specifically, at each iteration, pseudtad; and pseudo-variances
o’ are calculated for subjecby

— N _L(y,—lﬁ,) 2 :_; 2.4
SRS NN ETATS) &h

where 7, =Xi/}, ﬁ is the latest estimate @f, L'(y,|7)=dlogp(y. |7 )/dn, , and
L"(y; |7 )=d*logp(y; | )/dn? . Then the generalized linear  model
likelihood p(y; | X,#) is approximated by a normal likelihooN(z | X,f,c7), and

finally the parameterg, are updated by a weighted normal linear regression.
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Our EM algorithm uses the two-level expressiontd tt prior distribution and

treats the unknown variance% as missing data. From (2.3), we can see that thay

terms1/z} are linked tofj, so we need to calculate the expectatiod/ef. It can be

easily shown that the conditional posterior disttidn of TJ-Z is Inv-y? [1+ Vi,

2, p2
VS +,BJ. J

1+VJ-

A

V.S +

-1
2
and thus the conditional expectationldt’ is equal tc{%} (e.g., Yi and Xu,
+v

j
2008). Therefore, the E-step of our EM algorithregsiivalent to replacing the variances
by

2 p2
~ VS + P
T =—.

1+vj

(2.5)

Given the variances’, the priorsg; |77 ~N (0,77 ) can be treated as additional

“data points”, added to the weighted normal redoessl(z | X, ,07). Now we have an

augmented weighted regression

z~NX.p, %), (2.6)

z : _ X
wherez =[ J is a vector of allz andJ zeros of all prior meansX. =[ j
(n+J)x1 IJ (n+J)xJ

is a matrix constructed by concatenating the degigmtrix X of the regression

z ~N(X,8,07) with the identity matrixi;, and X, is a diagonal matrix of all pseudo-
varianceso’ and prior variancesff. Then we can updaie by performing this

augmented weighed regressi@bviously, with the augmented design matKx, this
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regression is identifiable even if the original alatre high-dimensional and have
collinearity or separation (Gelmahal., 2008).
Thus, in each M-step, the standard iteratively Wed least squares algorithm is

applied to the augmented weighted normal regregsi@stimate the coefficients. We

implement these computations by modifying thém function in R for fitting
generalized linear models, inserting the stepscliculating the augmented data and

updating the variances into the iterative procedure

The EM algorithm is initialized by setting eachto a small value, say; = 0.1,
and g, to the starting value provided by the standarhiteely weighted least squares

for the classical generalized linear model as imgleted in the R functiogl m We

repeat the E-step and the M-step until convergeiiceonvergence of the algorithm, we

obtain all outputs from the R functiagi m including the estimate)sgj , Standard errors,
and p-values (for testing3, =0). The standard errors are calculated from therseve
second derivative matrix of the log-posterior dgnsvaluated a;éi (Gelmanet al.

2008). Thep-values are then determined by the estimateéj and their standard errors

as in the classical framework.

In summary, the algorithm starts with initial vaduier eachrj2 and g;, and then

proceeds as follows:

1) Based on the current values #f, calculate pseudo-data and pseudo-variances’;

2) E-step: replace each variamfe by its conditional posterior expectation;
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3) M-step: perform the weighted least square ragrasbased on the normal likelihood
approximation to obtain estimatélﬁ;

4) Repeat steps 1-3 until convergence.
2.4.3 Simulation Study

We carry out an extensive simulation study to est@uhe statistical properties
and performance of the proposed method. We utili@&BR1 haplotype-tagging SNP
(htSNP) data published in the genetic associatiodysthat investigated the relationship
between TGFBR1 haplotypes and risk of non-cell loagcer (Lekt al., 2009). The six
htSNPs are partitioned into two blocks, one form&NP haplotypes and the other
forming 4-SNP haplotypes, based on the estimatelseafontin coefficient O') and
squared correlation coefficient¥). The haplotype frequencies are estimated for2the
SNP and 4-SNP haplotypes, respectively, and argepted in Table 2.1. Given these
haplotype frequencies, we generate case and calpects, assuming HWE for the
haplotype pair of each individual and a logistigression model for the disease risk. The
baseline penetrance of disease (the proportiorffe€tad subjects with a pair of non-
disease-associated haplotypes) is set at 10%. #&\bwrariable, smoking status with the
proportion of 49% as in Ledt al. (2009), is included in the model as a covarizie ia
considered in haplotype-environment interactiorige Tesults from the proposed method
(referred to as BayesGLM) were compared with thivem the classical generalized
linear model (referred to as GLM), the method oké.a@t al. (2003) (referred to as
ScoreGLM), and the method of Guo and Lin (2009%efred to as rGLM). The method
of Lakeet al. (2003) has been implemented in the freely avialabftware R/haplo.stats

(http://mayoresearch.mayo.edu/mayo/research/sdasidoftware.cfm). Guo and Lin
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(2009) also created an R package to carry out thethod and it is available free at the

website: http://www.stat.osu.edu/~statgen/SOFTWAREM/.

Table 2.1. Haplotype Patterns and Their Frequencies

4-SNP Haplotype

2-SNP Haplotype

Haplotype  Pattern Frequency Haplotype Pattern fenrecy
haplo4.1 1111 3.27 x 10 haplo2.1 11 4.28 x 10
haplo4.2 1112 2.71 x 10 haplo2.2 12 3.03x 10
haplo4.3 1121 7.04 x 10 haplo2.3 21 3.33x 10
haplo4.4 1211 6.64 x 10 haplo2.4 22 2.36 x 10
haplo4.5 1212 9.50 x 10
haplo4.6 1221 1.35 x 10
haplo4.7 1222 2.06 x 10
haplo4.8 2111 2.78 x 10
haplo4.9 2121 4.82 x 10
haplo4.10 2211 1.22 x 0
haplo4.11 2212 4.14 x 10
haplo4.12 2222 3.27 x 0

Note: From “A Bayesian hierarchical model for détaghaplotype-haplotype and
haplotype-environment interactions in genetic asgion studies” by Jun Li, Kui Zhang,
and Nengjun Yi, 2011, Human Heredity, 71, p. 15&ap@ight 2011 by S. Karger AG,
Basel. Reprinted with permission.
Simulation settings

Five scenarios were posed to carry out our evangbrocesses. To examine
whether the proposed method can be applied to dmtimon and rare haplotypes, we
considered a rare haplotypleaplo4.3, two moderately rare haplotypedsaplo4.2 and
haplo4.4, and a common haplotypéaplo4.1, in the 4-SNP haplotype block, and a
moderately rare haplotypbaplo2.3, in the 2-SNP haplotype block to be associatet wit
the disease in the five scenarios.

In the first two scenarios, we considered only thain effects of haplotypes

arising from the 4-SNP haplotype block. Specifigaih the first scenario, we assumed
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that haplo4.1 and haplo4.3 increased the odds of getting disease by 2 andld f
respectively, ancaplo4.2 and haplo4.4 were not associated with the disease. In the
second scenario, we assumed tiegiio4.1, haplo4.2, haplo4.3, andhaplo4.4 increased
the odds of getting disease by 2, 3, 4, and 3 felshectively, and none of the other eight
haplotypes in the 4-SNP haplotype block were aasetiwith the disease (Table 2.2).

In the third to fifth scenarios, we considered bibth main and interacting effects
arising between haplotypes in the two haplotypekdpand between the haplotypes and
smoking status. We assumed the effects in a similar as we did in the first two
scenarios (Table 2.2). But note that in the lashado, we considered all the main effects
of haplotypes and smoking status, and all possiiikracting effects between the two
haplotype blocks and between the haplotypes andiamatatus. In this scenario there
are a total of eighty-one terms, including sevemtemrginal and sixty-four interacting
terms (Table 2.2).

Each of these five scenarios had three differemip$a sizes: 250, 500, and 1000,
with equal numbers of cases and controls. A total@D0 replicates were generated
under each of these fifteen settings. All of theegated data were analyzed by using

ScoreGLM, GLM, rGLM, and BayesGLM, respectively.
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Table 2.2. Marginal and Interacting Terms and Their Effects in the Five 8enarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Term OR Term OR Term OR Term OR Term OR
. haplo2.3:haplo4.3 haplo2.3:haplo4.3
haplo4.3 3 haplo4.3 4 haplo2.3:haplo4.1 4 smoke:haplod.3 5 smoke:haplo4.3 5
haplo4.3 haplo4.3
haplo4.1 2 Egp:gi'i 3 Q;F())klzg:ﬁa lo4.1 haplo2.3:haplo4.1 4 haplo2.3:haplo4.1 4
plos. -haplos. smoke:haplo2.3 smoke:haplo2.3
haolod.2 haplo2.3 haplo2.3, haplo4.2 haplo2.3, haplo4.2,
haplo4.4 1 haplo4.1 2 haplo4.1 2 haplo4.4 3 haplo4.4 3
plos. smoke smoke:haplo4.1 smoke:haplo4.1
haplo4.5, haplo4.6
haplo4.7, haplo4.8
haplo.9, haplo4.10 1 haplo4.2 1 haplo4.1 5 haplo4.1 5
haplo4.4 smoke smoke
haplo4.11,
haplo4.12
haplo2.1, haplo2.2 Other seventy effects
haplo2.4, haplo4.5
haplo4.6, haplo4.7 1 1

haplo4.8, haplo4.9
haplo4.10, haplo4.11
haplo4.12

“” stands for an interaction between two terms¢be and after “:).
Note: From “A Bayesian hierarchical model for détag haplotype-haplotype and haplotype-environmatgractions in

genetic association studies” by Jun Li, Kui Zhaaggd Nengjun Yi, 2011, Human Heredity, 71, p. 15@p@ight 2011 by S.
Karger AG, Basel. Reprinted with permission.
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In summary, our procedure of the data generati@tisscal analysis, and results
comparison proceeded as follows:
1) Genotype data generation: Randomly drew two haplotypes (phased haplotypes)ai
for each subject from the observed haplotypes €raudl).
2) Covariate data generation: Smoking status for each subject was determinet fo
Bernoulli distribution with the observed proportiohsmoking.
3) Case/control data generation: Set up the “true” values of parameters as destribbe
the simulation settings. Using these “true” valwes well as the generated phased
haplotypes and smoking status, assigned an individube a case or control according to
the probabilities derived from a classical logisggression model.
4) Modd fit: The generated phased haplotypes and smoking stedus used as
explanatory variables to fit four kinds of modelsbd on ScoreGLM, GLM, rGLM, and
BayesGLM, respectively.
5) Replication: the step 1 through the step 4 were repeated a0 fithes.

6) Satistics calculation: (1) Calculated 68% and 95% intervals that covehed“true”
values for each parameter in the modib|:— Bj k z,se, whereb, is the “true” value of
thejth parameterj =1, 2, ...,J, Bj is an estimated coefficient of tigh parameterz, is

an upper critical value of the standard normalritigtion for a desired significance level

a , seis a standard error of estimated coefficients.Ga)culated empirical powers for

each of parameters in the modadwer =]/RZLI(MQ) , whereR is the number of

replicates requiredprj is thep-value of thejth parameter in theth replicate,x is the

significance level taking three values of 0.05104r 0.001.
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2.4.4 Results
Nonidentifiability of parameters in model fit

There was one main problem, the nonidentifiabilfy parameters, that was
encountered in the model fit using the classicahods. This problem is first pointed out
here because it frequently occurred and resulteserous problems. Specifically, we
found that the standard errors of some predictothe models were large and hence the
coefficients were essentially infinite when usimgpl 0. gl m in R/haplo.stats based on
ScoreGLM or usingl m in R based on GLM, whereas there was no such probleen
using the proposed method, BayesGLM (data not showe could not evaluated the
nonidentifiability of parameters when usin@.M because, as mentioned earlreG.M
can only perform an overall test based on pernanand consequently does not provide
standard errors for each predictor in the model fit

The further question that might be asked is hoverofand how serious the
problem is. To this end, we summarized the reselmrding the nonidentifiability of
parameters in the model fit for all of the simwatsettings in Table 2.3. We can see that,
as the sample size was increased, the proportibmormdentifiability of parameters
decreased in each of the first four scenarios @re&S8LM and GLM. Under a fixed
sample size, the proportions of nonidentifiabildy parameters followed the order:
scenario 5 > scenario 4 > scenario 2 > scenarios8enario 1 for both ScoreGLM and
GLM. In the scenarios 2, 4, and 5 of ScoreGLM andVG all of the proportions
exceeded 50% except that in the scenario 2 of &tdvewith a sample size of 1000
(39%). In contrast, in the scenarios 1 and 3, tmdyproportion in the scenario 3 of GLM

with a sample size of 250 barely exceeded 50% (5Fx4i) BayesGLM, there was no
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problem observed with the nonidentifiability of pareters in all of the simulation
settings. Obviously, the larger the proportions@hidentifiability of parameters, the less
stable the estimated coefficients (Albert and Aader1984; Lesaffre and Albert 1989).
Therefore, our results involving comparisons of theee methods were derived only
from the replicates without the nonidentifiability parameters in the scenarios 1 and 3,

unless otherwise specified.

Table 2.3. Proportions of Nonidentifiability of Parameters for Al of the Simulation
Settings

Sample size Scenario ScoreGLM GLM BayesGLM
250 1 0.34 0.47 0.00
2 0.69 0.78 0.00
3 0.42 0.51 0.00
4 0.79 0.88 0.00
5 1.00 1.00 0.00
500 1 0.22 0.33 0.00
2 0.58 0.67 0.00
3 0.30 0.38 0.00
4 0.68 0.73 0.00
5 1.00 1.00 0.00
1000 1 0.09 0.16 0.00
2 0.39 0.54 0.00
3 0.16 0.21 0.00
4 0.56 0.61 0.00
5 1.00 1.00 0.00

Note: From “A Bayesian hierarchical model for détaghaplotype-haplotype and
haplotype-environment interactions in genetic asgion studies” by Jun Li, Kui Zhang,
and Nengjun Yi, 2011, Human Heredity, 71, p. 158p@ight 2011 by S. Karger AG,
Basel. Reprinted with permission.
Main effect model

In the scenarios 1, only four haplotypes in theNRShaplotype block were

modeled as main effects for the disease (Table ZI®&) “true” values prespecified for

these four haplotypes were first compared to tbeiresponding estimated coefficients
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based on the four methods (left column of Figur®.2Under the sample size of 250,
wider estimated 68% and 95% intervals that covéned‘true” values calculated based
on BayesGLM were observed for each of four hapkesypompared to those calculated
based on the other three methods, with the onlgmian that rGLM had little wider
estimated intervals than BayesGLM did faplo4.1 (top left corner of Figure 2.1). With
the increase of sample sizes, however, the supgrif reliability of BayesGLMwas
faded out for all of the haplotypes excépplo4.3 (middle left and bottom left corner of
Figure 2.1), although its two coverage rates maiatha low growth rate. For all of the
four methodshaplo4.3 had lower coverage than the other haplotypes dichatter what
sample sizes were considered.

In this and the following subsections, we did nasider rGLM in the evaluation
of empirical power as well as Type | errors becaasementioned before, its omnibus
test does not produgevalues for individual effects. Therefore, the enmail powers
were calculated based only on ScoreGLM, GLM, angeB&LM for haplo4.1 and
haplo4.3, from which we tried to evaluate the ability ofeie methods to detect any
disease-predisposing haplotypes. Under the sangdet250, BayesGLM demonstrated
higher probabilities for detecting genetic effectenpared to both ScoreGLM and GLM
(top right corner of Figure 2.1). Although the adtage of BayesGLM in the statistical
validity was diminishing with the increase of sampizes, it still persisted, especially for
the rare haplotypehaplo4.3, and for the powers under=0.001 and 0 O(middle right
and bottom right corner of Figure 2.1). For altloé three methods, a sample size of 500

was sufficient to detect a common haplotype witlvg@oof 90% approximately, and a
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sample size of 1000 was sufficient to identify aer&aplotype with power of 85%

approximately.
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Figure 2.1. Main Effect Model. Estimated 68% and 95% coverages of the “true”’aeslu
(indicated by bold and thin horizontal lines in te& column, respectively) and empirical
powers or Type | error ratesx (indicated the empirical powers or Type | erroresat
fora =0.001, o fora = 0.01, and+ fora = 0.05) for each of four haplotypes based on the
four methods under the sample sizes of 250 (tdy),(&iddle), and 1000 (bottom). The
notations, B, C, R, and S, stand for BayesGLM, GLMELM, and ScoreGLM,
respectively.
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Note: From “A Bayesian hierarchical model for déitaghaplotype-haplotype and
haplotype-environment interactions in genetic assion studies” by Jun Li, Kui Zhang,
and Nengjun Yi, 2011, Human Heredity, 71, p. 15dp@ight 2011 by S. Karger AG,
Basel. Reprinted with permission.

The empirical Type | error rates were also caladdbor haplo4.2 andhaplo4.4
based on ScoreGLM, GLM, and BayesGLM (right columhrigure 2.1). For the sample
sizes of 250 and 500, BayesGLM had a little lowgpd | error rates undet = 0.05
than both ScoreGLM and GLM did. As the sample sieait up to 1000, all of Type |
error rates shrank to zero.

Main and interacting effect model

In the scenario 3, both the main and interactirffigcés arising between the two
haplotype blocks and between the haplotypes ane@nkigonmental factor were jointly
considered in the model fit for the four methodal{lé 2.2). However, sincelxE
interactions cannot be fitted by using the curnersion ofr G_LM interactions between
smoke andhaplo4.1 were set only for ScoreGLM, GLM, and BayesGLM, aimteHxH
interactions cannot be fitted by usih@pl o. gl m based on ScoreGLM, interactions
betweerhaplo2.3 andhaplo4.1 were set only for GLM, rGLM, and BayesGLM. So ther
were total of eight terms as predictors includeth& model with six of them assumed to
be disease-associated (Figure 2.2). Under the sasmg# of 250, wider estimated 68%
and 95% intervals that covered the “true” valudsutated based on BayesGLM were
found for each of eight predictors compared to ¢hcalculated based on the other three
methods, with the only exception that rGLM hadidittvider estimated intervals than
BayesGLM did for smoking statusnfoke) andhaplo4.1 (top left corner of Figure 2.2).

Although the lead of BayesGLM in the statisticaliadaility was narrowed with the
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increase of sample sizes, it continued to exigte@slly for the rare haplotypbaplo4.3,
and the interacting termsmnoke:haplo4.1 andhaplo2.3:haplo4.1 (middle left and bottom
left corner of Figure 2.2). For all of the four retls, the rare haplotype and the
interacting terms had quite lower coverages tharother predictors in the model did no
matter what sample sizes were considered, whichinvagreement with the finding in
the foregoing analysis of main effects.

The empirical powers were calculated fonoke, haplo2.3, haplo4.1, haplo4.3,
smoke:haplo4.1, andhaplo2.3:haplo4.1 based on ScoreGLM, GLM, and BayesGLM. For
smoke, the powers were comparable for ScoreGLM, GLM, &ayesGLM no matter
what sample sizes were considered (top three limeach of three right panels of Figure
2.2). This is reasonable because, for a commonra@mental factor with a decent
frequency, any statistical test can achieve sinpitawer for detecting it and the possible
difference of powers among some tests can be eulaby the random variability. For
the predictorshaplo2.3, haplo4.1, and haplo4.3, the results were almost the same as
those in the preceding subsection of main effdeds smoke:haplo4.1, under the sample
size of 250, BayesGLM had higher power onlydoes 0.05compared to ScoreGLM (top
right corner of Figure 2.2). With the increase afgple sizes, however, the situation was
soon improved and eventually turned around (midijet and bottom right corner of
Figure 2.2). Forhaplo2.3:haplo4.1, BayesGLM demonstrated a higher probability for
correctly detecting genetically interacting effeatsder each of three fixed Type | error
rates and each of three sample sizes comparedhdiboreGLM and GLM (bottom two

lines in each of three right panels of Figure 2.2).
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Figure 2.2. Main and Interacting Effect Model.Estimated 68% and 95% coverages of
the “true” values (indicated by bold and thin honial lines in the left column,
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respectively) and empirical powers or Type | errates & indicated the empirical
powers or Type | error rates f@r=0.001, o forae =0.01, and+ fora = 0.05) for each of
four haplotypes based on the four methods underséimeple sizes of 250 (top), 500
(middle), and 1000 (bottom). The notations, B, CaRd S, stand for BayesGLM, GLM,
rGLM, and ScoreGLM, respectively.

Note: From “A Bayesian hierarchical model for déteghaplotype-haplotype and
haplotype-environment interactions in genetic asgion studies” by Jun Li, Kui Zhang,
and Nengjun Yi, 2011, Human Heredity, 71, p. 156p@ight 2011 by S. Karger AG,
Basel. Reprinted with permission.

The empirical Type | error rates were also caladdabr haplo4.2 andhaplo4.4
based on ScoreGLM, GLM, and BayesGLM as in the giigy subsection of main
effects, and the similar results were observed{rwglumn of Figure 2.2).

Full model

In the scenario 5, a total of eighty-one marginmad anteracting terms arising
between the two haplotype blocks and between tipdotypes and the environmental
factor were simultaneously considered (Table 2A%).we have seen from Table 2.3,
however, all the proportions of nonidentifiabildy parameters were jumped to 1 for both
ScoreGLM and GLM in the scenario 5. Consequentg, statistical estimations under
these situations should be much instable and ampadson to them does not make
sense. Since the current version of rGLM cannadtAE interactions, rGLM cannot be
used to fit the full mode. Therefore, a single nidokesed on BayesGLM was fitted to
demonstrate its performance in a case where thdauaif predictors in a model is huge.
As in the analyses of main and interacting effeotlats in the foregone subsections, the
“true” values prespecified for all predictors inetmodel were first compared to their

corresponding estimated coefficients for each ofdhsample sizes respectively (first,

third, and fifth columns of Figure 2.3). From theygh we can see that, along with the

44



increase of sample sizes, the estimated 68% andirf@®¥eals increased that covered the
“true” values for each of eighty-one predictors. \Also fund that the rare haplotypes
(haplo4.3 and haplo2.3) and the interactions stioke:haplo2.3, smoke:haplo4.1,
smoke:haplo4.3, haplo2.3:haplo4.1, and haplo2.3:haplo4.3) had quite lower coverages
than the other predictors in the model did no matteat sample sizes were considered.
All these findings were consistent with those obsdrin the foregoing subsections.

The empirical powers were calculated for a totaletdven disease-associated
predictors in the model under each of three fixedpel | error rates
(¢=0.003 001 and.0() (second, fourth, and sixth columns of Figure 2Bpm the
graph we can see that although the power increaleed) with the increase of sample
sizes, they started at quite low levels and maiethiow growth rates. Under the sample
size of 1000, eight predictorsnfoke, haplo2.3, haplo4.1, haplo4.3, smoke:haplo4.1,
smoke:haplo4.3, haplo2.3:haplo4.1, andhaplo2.3:haplo4.3) had an 80% chance or more
of being indentified under =0.05, while three predictorshéplo4.2, haplo4.4, and
smoke:hapl02.3) had a 60% chance or more of being indentifieceund- 0.05.

The empirical Type | error rates were also caladdor a total of seventy non-
disease-associated predictors in the model. Asdh®le size went up to 500, almost all

of the Type | error rates shrank to zero.

45



o
o

02 04 06 08 1000 04 08 00 02 04 06 08 10

00 04 08 00 02 04 06 08 1000 04 08
1 1 1 1 1 1 ) T - -

1 1 1 1 ) I I T |

|

B k. i ECU o
°
+
+

TTTTTEX ¥R
x
°
+

i piaiuiaiat b Sf B e o ok S i ah uf S o s b o e e o b e shuik et S e o b e e e ot B e ik ab e b b b B e ob o St S b b ot S e e ob el Sied b B B b bt S e ok af 0 Seieieie b ik o Sebebeiuiieiel ot

smoke

haplo2.1

haplo2.2

haplo2.3

haplo2.4

haplo4.1

haplo4.2

haplo4.3

haplo4.4

haplo4.5

haplo4.6

haplo4.7

haplo4.8

haplo4.9
haplo4.10
haplo4.11
haplo4.12
smoke:haplo2.1
smoke:haplo2.2
smoke:haplo2.3
smoke:haplo2.4
smoke:haplo4.1
smoke:haplo4.2
smoke:haplo4.3
smoke:haplo4.4
smoke:haplo4.5
smoke:haplo4.6
smoke:haplo4.7
smoke:haplo4.8
smoke:haplo4.9
smoke:haplo4.10
smoke:haplo4.11
smoke:haplo4.12
haplo2.1:haplo4.1
haplo2.1:haplo4.2
haplo2.1:haplo4.3
haplo2.1:haplo4.4
haplo2.1:haplo4.5
haplo2.1:haplo4.6
haplo2.1:haplo4.7
haplo2.1:haplo4.8
haplo2.1:haplo4.9
haplo2.1:haplo4.10
haplo2.1:haplo4.11
haplo2.1:haplo4.12
haplo2.2:haplo4.1
haplo2.2:haplo4.2
haplo2.2:haplo4.3
haplo2.2:haplo4.4
haplo2.2:haplo4.5
haplo2.2:haplo4.6
haplo2.2:haplo4.7
haplo2.2:haplo4.8
haplo2.2:haplo4.9
haplo2.2:haplo4.10
haplo2.2:haplo4.11
haplo2.2:haplo4.12
haplo2.3:haplo4.1
haplo2.3:haplo4.2
haplo2.3:haplo4.3
haplo2.3:haplo4.4
haplo2.3:haplo4.5
haplo2.3:haplo4.6
haplo2.3:haplo4.7
haplo2.3:haplo4.8
haplo2.3:haplo4.9
haplo2.3:haplo4.10
haplo2.3:haplo4.11
haplo2.3:haplo4.12
haplo2.4:haplo4.1
haplo2.4:haplo4.2
haplo2.4:haplo4.3
haplo2.4:haplo4.4
haplo2.4:haplo4.5
haplo2.4:haplo4.6
haplo2.4:haplo4.7
haplo2.4:haplo4.8
haplo2.4:haplo4.9
haplo2.4:haplo4.10
haplo2.4:haplo4.11
haplo2.4:haplo4.12

o
+

SRRSO R AT

X
°
+

SRR RS ARAR R R IRUCHGH U]

xo -+

)
+

° °
+
+

°
+

R R R R e e S PR LS s T

o
+

IR RS ATHIMH

R L B B S B

et o e O R o e S bt

111 T T T T 1 LI B |

02 04 06 08 1000 04 08

T T T T 1
02 04 06 08 10

TT T 11
00 04 08 00 02 04 06 08 1000 04 08

T T T 1

o
S]
o
=]

Confidence interv Empirical pow er Confidence interv Empirical pow er Confidence interv Empirical pow er

Figure 2.3. Full Model. Estimated 68% and 95% coverages of the “true” esalu
(indicated by bold and thin horizontal lines in tfiest, third, and fifth columns,
respectively) and empirical powers or Type | errates & indicated the empirical
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powers or Type | error rates f@r=0.001, o fora = 0.01, and+ fora = 0.05) for each of
eighty-one predictors based on BayesGLM under Hmapte sizes of 250 (first two
columns), 500 (third and fourth columns), and 1Q@6t two columns). The black labels
on the vertical axis stand for the disease-asstiatedictors, while the gray labels stand
for the non-disease-associated predictors.
Note: From “A Bayesian hierarchical model for déteghaplotype-haplotype and
haplotype-environment interactions in genetic asgion studies” by Jun Li, Kui Zhang,
and Nengjun Yi, 2011, Human Heredity, 71, p. 15@p@ight 2011 by S. Karger AG,
Basel. Reprinted with permission.
2.4.5 Discussion

Complex human diseases are believed to be inflaenog genetic and
environmental factors, and their interactions. Hesve identifying interacting effects is
challenging. In general, the identification andrelcéerization of interactions are limited
due to the lack of powerful statistical methods/anthrge sample sizes. When numerous
interactions are fitted explicitly in a model, thegrees of freedom for the corresponding
test statistics would grow rapidly, and, as a tesuifficient power cannot be guaranteed
to detect possibly significant effects in the moa@slpecially in a relatively small sample
size (Luaret al., 2001; Bok=t al., 2007; Mukherjeet al., 2008; Cordell, 2009; Thomas,
2010). This issue is also confronted in haplotypsdnl association studies by classical
methods, which usually has insufficient power amftexibility to handle a large number
of interactions (Lakest al., 2003; Beckeet al., 2005; Kweeet al., 2007; Heinet al.,
2009).

The challenges might be further aggravated whemetla@e rare haplotypes
present. Rare haplotypes can be seen frequengjgnatic association studies and might

be produced by common SNPs (Souveetial., 2008; Guo and Lin, 2009). As already

noted rare haplotypes, just like other genetic kamgants, could be important disease-
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predisposing variants and should not be ignoredxiploring the genetic susceptibility
with common diseases. Regarding statistical mogglimowever, rare haplotypes can
result in nonidentifiability of parameters, whicheams the coefficients of predictors
cannot be identified or estimated uniquely becafdsuge, even infinite standard errors
(Gelmanet al., 2003). A commonly used approach to this isaube literature is to pool
all rare haplotypes into one single group (Scletid., 2002; Zhacat al., 2003) or pool
rare haplotypes with common ancestral haplotype#ir(fanet al., 2003; Durrantt al.,
2004; Tzeng, 2005). These approaches ignore rglethipes by lumping them together,
and consequently any rare haplotype that mightrimrte to the risk of disease cannot be
identified distinctly.

Statistical methods that can detect the haplotgtsead interactions and handle
the nonidentifiability of parameters are much needeea of research. In the present
study, we propose a Bayesian hierarchical generdhlitnear model with weakly
informative priors to simultaneously analyze a éearqmumber of effects, including main
effects of common and rare haplotypes, environnhegffacts, and their all possible
interactions. Our model fitting algorithm takes adtage of the classical generalized
linear model procedure, leading to a computatigrstthble toolAn extensive simulation
study was conducted to evaluate the statisticapgoties and performance of the
proposed method, and the results were compared thatitlassical generalized linear
model, the method of Laket al. (2003), and the method of Guo and Lin (2009). The
main reason for considering these three methodsefgsence is that the classical
generalized linear model is a flexible and basjpragch to analyze case-control data, the

method of Lakeet al. (2003) is the commonly used method for haplotlypsed analysis
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in association studies, and the method of Guo anq2009) takes account of both rare
haplotypes and haplotype interactions between tpboltlype blocks.

In our simulation study, the identifiability of maneters in model fit was first
assessed because it is a common problem in thegtoral methods. The results show
that, for ScoreGLM and GLM, the estimates of caefints were substantially
nonidentifiable in most of the simulation settingahile for BayesGLM, the
nonidentifiability of parameters was not observé@tis demonstrates the appealing
features of the proposed method in terms of rolegstrof parameter estimation and
efficiency of statistical computation over the ¢xig methods, especially in the case that
has a large number of interactions and some ragletyaes in the model.

With respect to the statistical properties of theppsed method, statistical power
is our primary interest in the evaluation proces3ée results indicate that the proposed
method outperforms ScoreGLM and GLM in terms otistigal power for detecting
associations, especially for rare haplotypes amerantions with the moderate sample
sizes. However, with the increase of number of igtecs fitted in the model, the
proposed method had a relative loss of power, tilitasceptable (Figure 2.3). This is
reasonable because, as we already know, the hmgéndionality is traded with loss of
power in model fit.

The reliability of the proposed method concernirgyameter estimation was
examined by comparing the “true” values prespetifae the predictors in the models to
their corresponding estimated coefficients. Theppsed method can vyield better
coverage of confidence interval, especially for iteractions and the rare haplotypes,

than ScoreGLM and GLM (Figure 2.1 and Figure 282jt, at most of time, the proposed
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method unsurprisingly has similar results to rGLNp(re 2.1 and Figure 2.2). However,
the proposed method provides more features thamMr@Lits current implementation.
Moreover, the proposed method has been implementedr R packag8hG_Mand is

available to practitioners (http://www.ssg.uab.é&tigim/).
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CHAPTER 3
FAMILY-BASED HAPLOTYPE-ASSOCIATION ANALYSIS IN MATCHED
CASE-CONTROL STUDIES

Of particular concern in genetic association analisthe potential confounding
resulting from incomparable ethnic backgrounds ssubpopulations being compared;
such confounding creates the motivation for farbised tests of association. Along with
the advances in genomic science and the colleeffeets of statistical genetics, family-
based association analysis has gained in popultmitynapping disease-susceptibility
genes of complex human diseases (Risch and Meidlkaldi@®96; Khoury and Yang, 1998;
Umbach and Weinberg, 2000; Cordellal., 2004; Chatterjeet al., 2005; Weinberg
Lange et al., 2008). Haplotypes, as very important geneticiavas, have been
extensively studied in family-based associationyais and they play a crucial role in
the gene mapping due to their functional and siegisadvantages over their counterparts
based on SNPs (e.g., Schaid, 2004; Katadl., 2005; Levenstiest al., 2006).

The main purpose of this chapter is to introduceew method that employs
Bayesian hierarchical generalized linear model wiect haplotype-haplotype and
haplotype-environment interactions, particularlydlving rare haplotypes, using family
data. We begin in Section 3.1 with a succinct dpson of family-based haplotype-
association analysis as well as its advantage @atlvhntage relative to population-
based association analysis, and then in Sectiorm@.2liscuss the main features of

matched case-control studies and its relationslitip family-based case-control studies.
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We also provide a short review on existing stat#timethods for family-based
haplotype-association analysis in Section 3.3. I§inave present our new method in

Section 3.4.

3.1 Brief Description of Family-Based Haplotype-Association Analysis

Family-based haplotype-association analysis indualdoroad range of methods
that aim to investigate the association of haplesyywith measures of disease progression
or disease status, employing information derivedffamily samples.

The distinct property of family-based associatioralgsis is that controls are
selected from within the same families as casefanily-based designs, nuclear families
are most commonly considered which are compos#dmparents and a number of full
siblings. Sometimes subsets of nuclear familiet siscsib pairs or single parent are used.
Extended pedigrees including, e.g., cousins mag aks employed in family-based
association analysis.

An advantage of choosing family members as contsothat they are ethnically
matched and they can also share lifestyle, lifeedaepces, or some socioeconomic
factors. Therefore, family-based association amalys immune to the notorious
confounding due to population stratification thaually occurs in population-based
association analysis (see Subsection 2.1.3 for ohetals). The properties of matching in
both family-based and population-based designsfatber discussed in Subsections
3.2.8 and 3.2.9. However, it is noteworthy thahaligh family-based designs offer the
advantage of robustness against genetic heterageties feature comes at the price of

reduced statistical power when compared with pdjmiebased designs because the
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genetic similarity of cases and controls lessenggpdLaird and Lange, 2009; Thomas,
2010Db). In general, the relationship of family cofg to the affected cases serves to
reduce the difference of distributions of genetamriants under study between two
comparison groups. Furthermore, family-based dssigray be less powerful than

population-based case-control designs. However, difference between these two

designs is generally small, particularly when fantirlo data (consisting of one affected

offspring and two parents per family) is used (A#tal., 1999, McGinnist al., 2002).

Another advantage of selecting family members agrots is that family-based
association analysis is potentially more efficidot estimating gene-environment
interactions, particularly, when rare genetic vatsaare involved, relative to population-
based association analysis (Wideal., 1999; Gauderman, 2002), and more useful for
detecting gene-gene interactions (MacLetral., 1993; Zhaoet al., 2006). Here the
efficiency means that family-based designs generaduire fewer matched sets than
population-based case-control designs to achiezeséime power for detecting a gene-
environmeninteraction.

In addition, significant findings in family-basedsmciation analysis indicate both
linkage and association between marker loci andages-susceptibility loci. However,
there are some disadvantages of family-based desigsing from practical matters of
recruitment and cost; it is usually difficult anslpensive to recruit a large number of
families because, e.g., family members may nottldgether and be hard to reach or may
refuse to participate; and it is even impossibleetruit parents of the affected subjects

for late-onset diseases in which both parents neagelceased.
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One should note that in the most of family-basetete studies, we also need to
infer haplotype frequencies based on the obsereadtgpe data because the information
of haplotype phase is usually unavailable thahésgame as in population-based genetic
studies. But haplotype inference based on famitg damore reliable than that based on
population data because family data can providéiaddl constraints that help us phase
family members based on Mendelian law (Zhang andoZI2006; Li and Li, 2007).
However, this superiority is traded with more laddory work to genotype additional
family members. For example, for case-parent tesigh, we need to genotype at least
three people in a family to obtain required data.

Since family-based and population-based associatioalyses have different
advantages and disadvantages, most contemporagfigassociation studies take the
view that the two designs are strongly complemegntathe effort to unravel the genetic
mechanisms that are underlying complex human déseas

We herein briefly discuss the strength and weakoné$amily-based haplotype-
association analysis with compared to populaticsedaassociation analyses. For a
comprehensive and in-depth discussion on thesesopie could see Gaudermetral.,
1999; Risch, 2000; McGinnia al., 2002; Cardon and Palmer, 2003; Laird and Lange,

2006; Dudbridge, 2007; Liet al., 2008; Zhang and Zhao, 2010.

3.2 Matched Case-Control Studies
In this section, the most important aspects of headccase-control studies are
reviewed prior to discussing how family-based hge-association analysis fits within

matched case-control studies. This overview is myneans exhaustive. There is a lot of
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literature devoted to the topics of matched casdrobstudies (e.g., Breslow and Day,
1980; Schlesselman, 1982; Costanza, 1995; Rothetaal., 2008a,b,c) and their
application in family-based genetic associationlysis (e.g., Thomas, 2004; Ziegler and
Koenig, 2007; Clayton, 2007).

3.2.1 Concept and Principles of Matching in Case-Control Studies

Matching is an intuitively attractive strategy itudy design for ensuring balance
on one or more potential confounding factors behwge comparison groups. In a case-
control study, if controls are selected to matckesaon some potential confounders, such
a design is then called a matched case-controlystddre matching means that the
controls have the same or similar values of thechnag) variables as the cases.

In general, we match to make sure that the twoggdaeing compared are similar
with respect to confounding factors that might alise relationship under investigation.
To fix ideas, consider a study conducted to explkhe possible effect of cigarette
smoking exposure on the risk of lung cancer. knewn that older age increases the risk
of lung cancer and that older people are morelikelbe smokers than younger ones.
Age, therefore, is a probable confounding factothim relationship between the cigarette
smoking and the lung cancer. In this example, wddcmatch the cases and controls on
the similar age, e.g., to within five years, torehate any age difference between the
cases and the controls. If, after matching in thés/, we then observe an association
between the cigarette smoking and the lung cameenvould know that we could not

attribute the association to the age difference.
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3.2.2 Benefits of Matching in Case-Control Studies

Note that here we do not say that the process athmag itself can control
confounding, but we say instead that the processatthing forces cases and controls to
have similar distributions across confounding fextdhis is because there has been a lot
of debate within the scientific community about fhepose of matching in case-control
studies (e.g., Breslow and Day, 1980; Kupgieal., 1981; Schlesselman, 1982; Rothman
et al.,, 2008a). In the earlier publications, matchingugially described as a way to
control confounding effects in case-control studeg., Miettinen, 1970; Bresloet al.,
1978). However, in the later literature, particlyarery recently, the opinion seems to
prevail that while matching is intended to reducefounding effects, it cannot attain that
objective in case-control studies. Matched caserabistudies can only enhance the
efficiency of study by balancing on some potenttahfounders between cases and
controls (e.g., Breslow and Day, 1980; Kuppetral., 1981; Schlesselman, 1982;
Costanza, 1995; Rothmaah al., 2008a). Furthermore, Rothmahal. (2008a,b,c) said
that the process of matching can introduce bizage-control studies sometiméstheir
opinion, matching in case-control studies can mevent confounding effects directly,
but it can make the stratified analysis more effiti Occasionally, stratification and/or
multivariable analysis is still necessary to cohtbias and confounding left after
matching. It must be said, however, that they alsioted out that matching is desirable
or even necessary in some situations. This issareise will revisit in Subsection 3.2.7.
3.2.3 Types of Controls in Matched Case-Controls

Matching can be broadly divided into the two categoof individual matching

and frequency matching in case-control design.viddal matching means that one or
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more controls are selected for each individual dasenatching variable(s). Individual
matching can be implemented in various ways, inolydne case to one control (1:1 or
pair matching), one case to two or more controtsn(tr triplets, quadruplets, ....,
matching), or many cases to many controtsn(matching), whera or mis a varying
number of cases or controls in the matched setgjdually the ratio of case to control is
1:5 because little statistical power is gained tmygher increasing this ratio (Rothman
al., 2008a). 1:1 matching is the most common sitaaitioboth genetic and non-genetic
such as clinical researches, particularly whensasd controls cost the same.

Frequency matching is also called group or categwatching, which means that
controls are selected to ensure that the frequeh@/matching variable is the same as
found in cases, e.g., if 5% of cases are under3age% of controls are also. Since
individual matching is most commonly seen in ganasisociation analysis, all discussion
will henceforth focus on it, unless otherwise spedi
3.2.4 Selection of Matching Variables and Overmatching

Matching may be by gender, age, race, and some ethablished confounding
variables. What a particular variable will be calesed as a confounder in a study is
usually determined by examining the relationshiphef variable with the disease and the
exposure under investigation. The methods of smoamy whether a variable is a
confounder have been well established throughezagpidemiologic studies and can be
seen in the literature cited at the beginning o slection.

Variables for matching should be selected carefudiyd only those that are
known to be a true confounder in advance shouldaken into account. If cases and

controls are matched on a variable that is notrdoemder, such matching can impact the
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efficiency or validity of study. For example, if rmatching variable is associated with
exposure but not associated with disease, the mgtetill result in a large number of
exposure concordant case-control pairs, such dirsubjects do not contribute any
information to the statistical analysis (matchingalgsis depends only on exposure
discordant case-control pairs of subjects). Thitchiag reduces the statistical efficiency
relative to an unmatched design (Kuppeal., 1981; Thomas and Greenland, 1983). In
addition, if a matching variable is an intermediatep in the casual pathway from
exposure to disease (the variable is affected byettposure, and it in turn affects the
disease), then the crude and adjusted effect d@stnvaill be biased. In fact, a casual
intermediate is not a confounder of exposure-deseassociation; it is part of exposure
effect that we wish to study. This matching harhns yalidity of study (Greenland and
Neutra, 1981). Moreover, controls may be seleateth ineighbors or friends of each case
when cost and convenience are first consideredhigncase, the method for recruiting
controls automatically entails matching; we areeffect matching for socioeconomic
status, cultural and lifestyle characteristicss@me other characteristics of a neighbor or
a friend. As a result, these matched charactesisbelld no longer be investigated in the
study. Thus this matching impacts cost efficierRgthmaret al., 2008a).

Essentially, these examples above show that therfecmatched which is not a
confounder of exposure-disease association. Thenghenon is usually known as
overmatching in epidemiology. From these exampigscan see that overmatching can
abrogates the main virtue of matching and it isviersible. Therefore, one must use the

technique of matching wisely and carefully.
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3.2.5 Number of Variables for Matching
A practical concern with matching is that how méagtors we should consider to match
on in a study. In general, determining the numiefactors for matching depends on
practical consideration and the extent to whichcare to establish close comparability.
Basically, the more factors we choose to match toa &me the more impossible and
expensive it is to find such a control. Additioyalas the number of matching factors
increases, the cases and controls will become armdtemore similar with regards to the
exposure being studied and the study may yieldsa fieesult or provide no information
(Breslow and Day, 1980). The number of matchingoi@cshould therefore be reduced to
as few as possible in a study.
3.2.6 Maintenance of Matching in Statistical Analysis

When matching is carried out in a case-control\stpairing as formed initially
needs to be maintained throughout the study inetudne stage of statistical analysis.
This means that we should perform relevant analgsish as stratification and/or
multivariable analysis for matched data (Rothreiaal. 2008a,b). If unmatching analysis
is implemented on matched data, the analysis miag tiie estimate of OR even closer
towards unity (Schlesselman, 1982; Jewell, 2003hRanet al. 2008a,b). However,
Breslow and Day (1980) noted that unmatching amalysuld yield approximately valid
results for matched data when the numbers of batlescand controls within a stratum
are large and stratum-specific intercepts are deduin the logistic regression model.
When the numbers of both cases and controls watlsitnatum are small or the number of
matching strata is large, the conditional analysmild be preferred. In fact, whenever

possible, it would always be preferred for matchath to perform conditional analysis.
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One must also keep in mind that matching usualmplcates statistical analysis when
he or she plans a matched case-control study (Rwthinal. 2008a,b).
3.2.7 Desirable Situations for Matching

Since matched case-control studies have some weakoeh as complication of
design and statistical analysis, cost of findingtahed controls, and possible
overmatching, one may well ask whether matchingvier justified. Unfortunately, the
procedure of deciding whether to match in a casgrobstudy is not always so clear.
However, some studies demonstrated that the matdmsetcontrol design is essentially
required in some situations. For example, when dffect of a confounder needs
controlling but the confounder is not easily meaduie.g., Jablost al., 1967; Costanza,
1995). In this case the best thing that we wouke lto do is to ensure that the
distributions of cases and controls are similati@enconfounder, so that the occurrence of
disease is more likely to be attributable to thea=sxre, not to the confounder. This
situation is very common in genetic associatiordissl where we need to control some
genetic characteristics such as population siratibn that is usually unknown across
comparison groups. This is the topic we discughemext subsection.

Rothmanet al. (2008a) also mentioned another situation in whigdtching is
extremely valuable. In the situation the informatiof exposure and confounding is
expensive to obtain from the subjects, so the iefficway to get more information is
maximizing the amount of information obtained pabject by individual matching of

subjects, rather than spending the same moneycautieg more subjects.
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3.2.8 Family-Based Case-Control Studies

Matched case-control studies are frequently foundthe literature which
investigated family-based genetic association widmplex human diseases. In family-
based genetic association analysis, cases are oetnjoatheir healthy relatives, typically
their healthy siblings (e.qg., Curtis, 1997; Spietnaad Ewens, 1998), cousins (e.g., Witte
et al., 1999), parents, spouses (e.g., Vallal., 1998; Li and Boehnke, 2006), etc. Each
of these controls establishes similarity with tlases on one or more characteristics. For
example, sibling or parent controls share with ¢hses the whole or half of genetic
materials and early life experiences; cousin cdmtsbare with the cases part of genetic
materials and even some life experiences; spouseot® share with the cases household
characteristics, lifestyle, nutrition, and someigeconomic factors. Thus, what become
clear from these similarities is that family-basepbnetic association analysis
automatically entails matching. Consequently, fsgrhised case-control studies can be
thought of as a special case of matched case-tastirdies (e.g., Hswet al., 2007;
Chatterjeest al., 2005; Martin, 2006Bernardinelliet al., 2007).

The most important property of family-based casetrod studies is that the
internal matching within a family guarantees th@ tases and controls originate from
the same homogeneous, including ethnically homagenesource population. This
property offers complete robustness against papulatratification and truly motivates
us to use family controls in genetic associatiaigs (e.g., Sekt al., 1991; Ewens and

Spielman, 1995; Wittet al., 1999).
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3.2.9 Population-Based Matched Case-Control Studies

One should note that matched case-control studiasatso be implemented in
population-based genetic association analysis. prbeess of matching in population-
base case-control studies is quite straightforwaed, when you select controls from
unrelated individuals in a population, you just mdkem matched with cases on some
variables which we may be concerned. Several methuave been proposed for
population-based matched case-control studies & dbntext of haplotype-based
association analysis (e.g., Lee, 2004; Keaftl., 2005; Zhangt al., 2006; Zhangt al.,
2007; Chen and Rodriguez, 2007). The main reasanthlese investigators selected the
controls from unrelated individuals not from relas in their studies is that they aimed at
avoiding the difficulty of recruiting family contl® Some, but not all, of investigators
explicitly described the matching scheme in théudes and argued that the possible
confounding induced by population stratificationswantrolled by matching the controls
with the cases on some variables such as ethniaitg, nationality, and ancestry.

Among all of the variables above, from the geneticspective, ethnicity is the
main source of the confounding (Risch, 2000). Ifitools are not comparable to cases
with respect to ethnicity, there will be a diffecenof allele frequency at a locus between
the two groups. Based on the self-reported infoionatf ethnicity in a population-based
study, the ethnicity may not fully specify the cdewp nature of fine-scale genetic
structure within the population, in other wordsedd subjects are descended from
different origins, although they asserts they hidneesame ethnicity (Sinhat al., 2008).

In addition, the information of ancestry is usuallyavailable, and even when available,

it may not reflect the genetic architecture of guydation because of the inexplicit
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definition of ancestry groups (Guahal., 2009). The information of race may be even
less reliable. Even within sibships, the disagregnoéien occurs concerning the original
countries of their parents (Haknal., 1996).

Most genetic association studies take the view pugiulation-based matched
case-control studies cannot completely eradicagectinfounding effect of population
stratification while family-based case-control sasdcan offer well protection against the
spurious results. Therefore, only for robustnessresg population stratification, family-
based case-control studies may be preferred tolggpubased matched case-control
studies in genetic association investigation. Bywhay, since our primary interest lies in
family-based haplotype-association analysis in ttietched case-control studies, this
dissertation will not address more matching in pafon-based genetic association

studies.

3.3 Existing Statistical Methods for Family-Based Haplotype-Associan Analysis

In this section we briefly review the relevantdaaire on family-based haplotype-
association analysis, in order to demonstrate gaggailable methods, thereby creating a
rationale for new methods.

In family-based association analysis, the tradéloout still popular method is
transmission/disequilibrium test (TDT). OriginallyDT was developed for analysis of
the transmission of alleles from parents to afi@dfspring (Spielmart al., 1993). For
a biallelic marker, comparisons are made withinepaoffspring trios to discern the
similarities or differences between the number etelozygous parents who transmit one

allele and the number of heterozygous parents varsinit another allele to the affected
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offspring. TDT is a landmark in the developmentfarnily-based association analysis,
and has some advantages such as simplicity foremghtation and robustness to
potential spurious association results caused pulpton stratification (Liwet al., 2008;
Zhang and Zhao, 2010). Nevertheless, there are msigugtions in which the original
TDT cannot be applied directly, for instance, quative phenotypes, missing parents,
general pedigrees, multi-allelic loci, and hapl@&ypvith missing phase (Laird and Lange,
2006). To increase power and generalizability, ouggiextensions have been developed
based on the original TDT (Laird and Lange, 200 ¢t al., 2008; Zhang and Zhao,
2010).

One of the useful extensions is to employ a coowli likelihood function in
analysis. Recalling that TDT is very close to a ¢hatg analysis that compares
transmitted and non-transmitted alleles within p&adfspring trios, the standard
approach to account for this ascertainment effiexhfepidemiology would be to carry
out a matched case-control analysis by treatingirdmesmission as a response variable
and the alleles as predictors in a conditionalsigiregression (Waldmast al., 1999).
For multi-allelic loci, however, there will be nuno&is parameters which affect the
efficiency of analysis. For avoidance of this psh| an extension in the same direction
has been further developed by Schaid (1996), Cloadel Clayton (2002) and others. In
this extension, an offspring genotype is modeled amction of parental genotypes and
offspring disease status in a conditional logistigression. As already noted, this method
is equivalent to a classical matched case-contrallyais in which the method is to regard
the analysis not in terms of transmission from pir¢o offspring, but rather in terms of

comparing a case (the affected offspring’s gengtypgseudocontrols. Pseudocontrols
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are so-called because they are formed from ther dtinee genotypes that could have
been transmitted from parents except the affectisgpring’s genotype (Sekt al., 1991;
Schaid, 1996).

This conditional logistic regression extension oDTl possesses all of the
desirable features of the traditional TDT, and maayantages associated with the
conventional regression analysis. In particulais tkind of extension can take full
advantage of the well-established algorithms anfiwsoe developed primarily for
classical regression analysis.

Another approach for analyzing family-based asgimrias to simply treat each
family as a matched set and employ a conditiongistm regression to model the
relationship between disease and some genetic raadiaronmental factors as in the
usual matched case-control analysis (e.g., Golustel., 1989; Andrieu and Goldstein,
1996; Witteet al., 1999; Kraft and Thomas, 2000; Siegmuendil., 2000). Through an
intensive simulation study and the evaluation ofngstotic expectation, Wittet al.
(1999) have shown that the estimates based on ditiomal likelihood function are
unbiased for many types of family member contralshsas sibling controls.

The conditional likelihood function for logisticgeession was given in Cox (1970)
and applied to matched case-control analysis islBneand Day (1980), Breslow (1982)
and others. Conditional logistic regression hasilenmonly used and well-studied for
estimating relative risks in matched case-conttoties (Rothmaret al., 2008a,b). In
family-based case-control studies, since we inttedufamily stratum with each case, we
must include such stratum effects in the model. él@w, the number of parameters in

the model increases just as fast as the total sasipé. In this circumstance, if we use

65



usual logistic regression, the asymptotic properté likelihood inference will break
down, while if use conditional logistic regressidime parameters expressing the stratum
effects are eliminated from the likelihood by us@@onditional argument rather than by
attempting to estimate them (Breslow and Day, 1980)

There is a significant volume of literature on wais applications of conditional
likelihood in family-based haplotype-associatioralgsis (e.g., Clayton, 1999; Zhab
al., 2000; Dudbridge, 2003; Horvaéhal., 2004; Cordelkt al., 2004; Allen and Satten,
2007; Vansteelanddt al., 2008). Out of these applications, Clayton (199@)zed a full
likelihood function conditional on offspring’s dsge status to generate a TDT test and
first tried to deal with the problem of phase uta@ty for multilocus haplotypes.
Dudbridge (2003) applied a similar likelihood fulect as that of Clayton (2003) but
introduced an EM algorithm to maximize the likeldabfunction under both the null
hypothesis and the alternative hypothesis in thesgmce of ambiguous haplotypes.
Horvathet al. (2004) proposed a weighted conditional approalithwis an extension of
the family-based association test (FBAT) originalgveloped by Rabinowitz and Laird
(2000). This approach can examine both linkage assibciation between multiple loci
and disease even when the haplotype phase maylbguaas and the parental genotype
data may be missing. Allen and Satten (2007) deesloa method based on the
projection conditional on parental haplotypes whicldifferent from the general FBAT.
The approach is robust to misspecification of tlaeeptal-genotype distribution and
hence robust to population stratification. The atghalso showed that their approach has
improved power relative to the FBAT approach of Vh et al. (2004). Given their

methodological strengths and easy implementatidh Whie help of program packages,
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some of these methods have been successfully eetploymany studies (Liet al.,
2008).

However, despite the rapid improvement of familgdxh haplotype-association
analysis to date, there are still many limitationsnethodologies such as how to test and
estimate haplotype-haplotype and haplotype-enviemiminteractions, and how to
identify rare haplotypes. A few researchers inliteeature have tried the investigation of
haplotype-related interactions in the area. Fotamse, Allen and Satten (2007) and
Vansteelandgt al. (2008) presented separate methods that allowesbing interactions
between haplotypes and environmental factors. dloetlal. (2004) described a unified
approach to analyze both haplotype-haplotype aptbtyge-environment interactions in
the nuclear families. Nevertheless, due to thetivellg complicated structure of family
data and the presence of haplotype phase uncgrtamtensions of many well-
established approaches to family-based haplotypecadion analysis are not
straightforward and have not yet been implemenkadagll et al., 2005). Furthermore,
the difficulties become much greater when attengptio take into account of rare
haplotypes in family-based association analysigaugh some work has been done in the
context of population-based haplotype-associativalyais (see CHAPTER 2 for more
details), to the best of our knowledge, little rolwn about how to identify the effects of
rare haplotypes in family-based association analysi

Thus, the main subject of this dissertation rese@ado propose a new method
that can accommodate both haplotype-related irtterecand rare haplotypes but remain

robust and computationally efficient to the higmdnsionality and sparsity of data.
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3.4 Bayesian Hierarchical Generalized Linear Model for Family-Basetlaplotype-
Association Analysis

3.4.1 Brief Description

In our previous report (L&t al., 2011, and also see Section 2.4 for more details),
we described a unified approach for conducting dtggpk-based association analysis
with quantitative traits (usually disease status)thhe sample drawn from unrelated
individuals. The approach is built on Bayesian dmehical generalized linear model
which allows for simultaneously analyzing the magffects of haplotypes and
environmental factors as well as their interactichis extensive simulation study shows
that our approach outperforms the existing methodterms of statistical power of
indentifying disease risk factors and computatioefficiency. However, it cannot be
applied to family data directly. To take full advage of family data such as immunity to
population stratification (e.g., Sedf al., 1991; Ewens and Spielman, 1995; Wétel .,
1999); higher power in detecting rare variants eissed with a particular disease
(Manolio et al., 2009; Zhuet al., 2010; Fengt al., 2011) and superiority in efficient for
estimating gene-environmeahd gene-gene interactions, particularly, when raresien
variants are involved (MacLeas al., 1993; Witteet al., 1999; Gauderman, 2002; Zhao
et al., 2006), relative to population-based associatioalysis (Witte et al., 1999;
Gauderman, 2002); and robustness to some othéowuaters depending on matching
scheme and matched variables (see Subsection 13rAdie details), we would like to
extend our method to the context of family-basesbeaisition studies.

We propose a modified conditional likelihood apmtodor inferring haplotype-
related association with disease in family-basesk-@ntrol studies, where controls are

cases’ relatives within a family and individuallyatohed to the cases on some factors.
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Although our method can be readily applied to camus, binary, or ordinal traits, we
herein describe it only for binary disease statuamily-based case-control studies. We
only assume that the genotypes of SNPs are awailaldur research, and hence we need
to estimate haplotype frequencies and assign gedsdplotype pairs to subjects that they
might carry based on their observed genotypes usomge existing methods (e.g.,
Excoffier and Slatkin, 1995; Niet al., 2002; Stephenst al., 2001; Zaykinet al., 2004).
We utilize a logistic regression model to charazeethe relationship between haplotypes
and disease, and the model is fitted in a Bayes@anework with weakly informative
priors on the coefficients. The model can simultarsty fit a large number of effects,
including main effects of numerous common and raaplotypes, main effects of
environmental factors, haplotype-haplotype inteoas, and haplotype-environment
interactions. To facilitate the process of modeirfipresence of high dimensionality and
rare haplotypes, we create a fast and stable #igotby incorporating an EM algorithm
into the usual iteratively weighted least squaresngplemented in the R packagem
We investigate the statistical properties and perémce of the proposed method and
compare it with the existing methods through amesive simulation study.
3.4.2 Methods
Data structure, notation and model

Assume that there are a totalnofase-control strata (e.g., families or siblingxet
and n; cases andn controls in theith stratum, wherey, > 1 andm > 1. For thejth
individual in theith stratum, we observe the vector of explanatoriatséesX;, including
haplotypes, environmental factors, haplotype-hgpkt and haplotype-environment

interactions. Denote the disease statug;jfgr thejth individual in theith stratum, with
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yij being 1 or O for case or control, respectivelye Télationship between the disease risk
and the explanatory variables can be modeled wsingistic regression of the following

form:
Pr(y, =)= logit* @+ X;£), i=1 n;j=1 n+m, (3.1)
where thee; is the stratum-specific effect for tiin matched set, anfl is a vector of

haplotype main effects, environmental effects, alidpossible interacting effects (see
Subsection 2.4.2 for more details).
Construction of the design matrices

We use the same way to construct the design matiocdamily-based haplotype-
association analysis as those for population-bdmsgalotype-association analysis (see
Subsection 2.4.2 for more details).
Conditional likelihoods for matched case-control studies

A naive method to estimate the paramejrsy L ,«, in (3.1) is to directly use

the logistic regression approach. Although simpiés method could be problematic
because it does not take account of the ascertainme, each set includes at least one
case and one control. The commonly used approadhigoissue is the conditional
logistic regression (Breslow and Day, 1980). Withénss of generality, for théth
matched set, we assume that the firshdividuals are cases. The conditional likelihood

for relative risk parameteys is

L(ﬂ a) Hpr(y|1 = 1 y|(ni+1) M(r\+m)_ Olzrwm i' =

Hl 1Pr(y” - 1)Hrj1+r\m+lp G/ - 0) - H] =1 Prylj ]H7+nm+1 Mi = O)
Pr( ”*m i_:n) |1z|1 F)I’(yI _1) no |(yII q

H
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where the summation in the denominator is ovetlerms, each of which involves a

H

permutation ofy; possible cases from any @f+ m individuals in theith stratum. Note

that the stratum-specific effects, defined in (3.1) have been eliminated in the

conditional likelihood and thus will not be estimat

The conditional likelihood is complicated to firfcase-control studies with sets
consisting of more than one case. Usually casesasgdut controls are readily available.
Therefore, most case-control studies consist afiglescase and one or multiple controls
for each or most of matched setereafter we refer such matched case-control idada
1:m design. Statistical procedures for this kind okige can be much simplified.
Suppose that we havematched case-control sets, with 1 casemgnzbntrols for thath

stratum. The conditional likelihood is simplifieal t
L 1+
L(ﬂ)zl;[Pr(yilzl,yi2= =Yiam = 0 ¥y = 1):H 1+m R (3.3)

which is equivalent to the multinomial logistic nedd

Yi =Yl Yigm)) ~Multin@, O, ..., Oy L &g, )i= L N (3.4)
X8

Xe

For data with a small to moderate number of vaesbthe above conditional

with y, =1, ¥,=L =V¥,4n,=0, andg; = j=1L, L, &m.

likelihood can be handled directly using multinohtagistic procedure. However, it may
be more efficient to use the Poisson equivalenfienareferred to as Multinomial-

Poisson transformation (e.g., Baker, 1994; Gelstah., 2003). As this method is useful
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in performing computations, we describe it here exteénd it to handle high-dimensional
models as in the analysis of multiple interactimmpes. The conditional likelihood (3.3)

can be re-expressed as

n 1+m

L(ﬂ) o (exp@l n Xijﬂ ))Yii e—exp(/ﬂ- +X8) (35)

i=1 j=1
with 4 = —Iogzllzn ¥ . This relation allows us to analyzericase-control data using

the Poisson generalized linear model
y; ~ Poissong; ), log, =4 +X; @z i= 1L n j= 1 +in. (3.6)
The simplest matched case-control data consiséssafigle control per case for
each set, which is a special case of the design and thus can be analyzed as above.
However, a simpler analysis is to use an unconuitidogistic regression, since the

conditional likelihood can be expressed as

n exilﬂ n e(Xil_Xi 2B

E[Pr(m:l,yiz:olyilﬂ/iz: DEHW:HHG«X—W ()

which can be obtained using the unconditional kigregression
Pr(y, = 1)= logit* ( (X;,— X;,)8) ,i=1L ,n (3.8)
with all responses being 1 and no intercept tertheénmodel.

Prior and posterior distributions

Association analysis is equivalent to estimatingapeetersg in the above model.

The number of parameters in the model can be langethe predictors can be highly
correlated, which preclude the use of classicalimarn likelihood methods. We solve

this problem by placing prior distributions ghto capture the notion that most of the
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components ofp are likely to be zero or at least negligible; spcior distributions are
often referred to as shrinkage priors.

We assume independent Studemtrors t, (O, §°) on parametergs, , with v,

and s, chosen to give each parameter a high probabififyeing near zero while still

allowing for occasionally large effects. We are ivated to use thedistribution since it
can produce robust inference, shrinkage estimagiot ,easy computation (Gelmetral.,
2008; Yi and Xu, 2008; Yi and Banerjee, 2009). rEh&s no easy way to estimate
parameters directly using thedensities, but it is straightforward to deal wilie two-

level formulation oft distribution (Gelmangt al., 2003; Gelmaret al., 2008). Thet

distributiont, (O, §°) can be expressed as a mixture of normal distdhativith mean 0

and variance distributed as scaled inveyse-
Bl ~N(, z?), 77 ~Inv-y*(,,s’), k=1L ,K, (3.9)
whereK is the number of the parameters, and the hypernsessy, >0 ands, >0

represent the degree of freedom and the scaledfistribution, respectively.
The priors (3.9) introduce parameter-specific varés, resulting in distinct

shrinkage for different parameters. A small valierowill force 3, close to zero. The
variancesz? are not the parameters of interest, but they seéuliintermediate quantities

to make the computation easy and efficient. Theelmgrameters, ands, affect the

amount of shrinkage in the parameter estimatesséwodld be carefully chosen. Our
algorithm highlights how these hyperparameterscaffee estimates of the parameters.

With the above prior distributions, we can expridgslog-posterior distribution of

the parametersf,z?) as
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n 1+m

log p(B, 7% |y, X )oc D> logp (y; )FZ logp B, F; %Z logp £ ¥, s

i=1 j=1

oczn:mn 09 p(y, 17, ;Z[IO% ﬂkj_i_Z[ “ logs; - é+ 1)logr - V;kj (3.10)

i-1 -1 k=1 Tk k
wheren, =4 + X8, and p(y; |7,) is the Poisson likelihood function defined in (3.6).

Model fit algorithm

Before describing our model fitting algorithm, we show twoysveo handle the
Poisson regression (3.6). The first way takes the relanierrlogzll:“ e and hence
only includes the parametefsin the model, while the second method treatas
additional parameters with uniform priors and estimates theny alath #. Since the

maximum likelihood estimate of; (=€&""*”) isyj, the conditional maximum likelihood

estimate of4, equals—logzll:" e’ . Thus these two methods could produce identical

estimates. Although the second method can be directly imptethevith the Poisson
procedure, it is computationally intensive when there are maatghed sets and thus
improper to be applied to models with many variables. Weeldpvour method for
identifying interacting genes based upon the first way. Oonpatational idea is to treat
J; as constants (i.e., offset in the terminology of generalizedr models) when updating
p. This method could be as fast as that for a Poissorsggn without these nuisance

parameters.
Estimating the posterior mode

We extend the Bayesian generalized linear models and thgvigemodel fitting

algorithm developed by Yi and Banerjee (2009) to our Boissodel for matched case-
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control studies. The procedure of Yi and Banerjee (2689peneralized linear models
with the Student-priors by incorporating an EM algorithm into the standard titesty

weighted least squares (IWLS) as implemented in the R ragitime

The IWLS algorithm approximates a generalized linear mogel bnormal

likelihood and updates parameters from the weighted nomesalrlregression (Gelmah

al., 2003). At each iteration, we construct pseudo-datand pseudo-variancezﬁ for
each individual based on the latest estimateg ahd4 as follows

L'(y. |7,
;jzﬁ”—M, oi=—— 1 1L njj=1L ,im, (3.11)
L (yij |77ij) L (yij |77ij)

where 4, =4 +X,f , 4=-logd e’ | p is the latest estimate of
L'(y; |my)=dlogp(y; |m; )/dn;, L"(Y; |77ij):d2 logp(y; I7; )/d77i127 and p(y; |7;) is

the Poisson likelihood defined in (3.6). The Poisson likelihisodpproximated by the

weighted normal likelihood
Z; ~ N(ﬂ; + Xijﬂ’ O'ijz) 13)
so that under the classical framework (i.e., with uniforiargy # can be easily updated

from this normal linear regression.
; . 7 2
Under our Bayesian model, we updftéom the modelz; ~ N(4 + X 8, oy ),
B, |72 ~N(0, £2), conditional on the latest estimaté&and /. By treating the prior

means as additional data points with residual variadgeshis two-level model can be

re-expressed as an augmented weighted regression

z~N(X.p, %), (3.13)
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.y A X
where z :[Zol) is the vector of allz; -4 and K prior means 0,X. :[I j IS

K

constructed by the design matixof the regression, —ﬂ] ~N(X;8, o7) and theK xK

identity matrixlx, and %, is the diagonal matrix of all pseudo-variane:qzsandK prior

variancesz; . Thus, we can updageby performing this augmented weighted regression.
As in Yi and Banerjee (2009), we treat the unknown vaeamé = (z2, L , z7)

as missing data and average over them by replacing the tevolving bothz?andg in

the posterior distribution (3.10) by their expected values itondl on the latest

A

estimate f . Since the conditional posterior distributions of} s
VS + B2 v S+ B2 B
Inv-y?| 1+v,, XK |  the conditional expectations bfz; equals| *—=% | .
+v, 1+v,
Therefore, we update the variances by
2, p2
2o YSHA g k. (3.14)

1+v,

We initialize the algorithm by setting eaghio a small value, say, = 0.1, and
B, to the starting value provided by tgemfunction. At each step of our EM algorithm,
we average over the variances=(z7, L , r/) and then updatg by maximizing the
posterior density (3.10). In summary, our algorithm peats as follows
M x5 .

1) Based on the current value gf set each, to be—log p  ~"e™";

2) Calculate pseudo-datg and pseudo-variancesf using (3.11);

3) E-step: replace each variange by its conditional expectation using (3.14);
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4) M-step: determine the augmented weighted normal lineaelnf8d.3) and run this
regression to obtain the estimate
5) Repeat steps 1 - 4 until convergence.

We apply the criterion in thgl mfunction to assess convergence. we obtain all of

the outputs produced by tigé mfunction, including the latest estimafe, their standard

errors andp-values (for testingﬁk=0), and some additional values (e.g., for the

variances).
Standard error correction

The standard errors for the parameter estimage® underestimated because the
fitting algorithm treats; as known in the last iteration of the estimatiog.0fVe consider
three ways to correct the standard errors and we shalpare their accuracy and
efficiency in the following simulation study so that we can firgt@per one as a default
approach for computing the standard error in routine appl@k.

We first propose a simple, yet ingenious, approach tecbthe standard error.
The basic idea is based upon the equivalence betweensthanfir the second algorithms
described above. As mentioned, if we trgaas additional parameters, we can directly
usegl m or bgl mto estimate the parametetsaand g and of course the standard errors
for the estimates. Therefore, we use the second algdtioitain the estimates gf and
then using these estimates as initial values we run the figsithalg just one iteration via
gl m or bgl mto obtain the correct standard errors andotlialues. For convenience, we
refer to this method as one-more-step correction of tieatd errors (OMSC).

Second, we use the multivariate Delta Method to obtain the sthedars (Baker

1994). Letﬂ(/}) denote the estimates of parameters, we have
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) \ e N .
Var(z(§)) = Z;{;;TT(;’:))] var(y, ){;;TT((/?)]' (3.15)

Third, we apply Bootstrap technique to derive the estinwdtdse standard errors
(Efron and Tibshirani, 1993). We first draw a numbkresamples from the empirical
distribution of the observed data with equal sample size tolikerneed data, each of
which is obtained by randomly sampling with replacement fitweroriginal dataset. Note

that the sample unit is family in our present study. Next,umetlie second algorithm to

obtain the estimates @ffor each of Bootstrap samples. Thus we get an estimadbe of

distribution of /;’ , and we can then compute the variancgg’ dby
~ 1 &/~ =\2
Var(ﬂ):—Z(ﬁb—ﬂ) , (3.16)
B_l b=1

whereb is the number of Bootstrap samplbs; 1, ...,B, andz is the mean over all of
the ﬁb :
3.4.3 Simulation Study
To evaluate the statistical properties and performance ofdpesed method, we
considered numerical evidence in the form of simulation sfufi&e simulated nuclear
families consisting of two parents and two to four offspririttp one sibling affected by a
disease. For simplicity of exposition, herein we just demnatesl the performance of our
proposed method in the situation where only one family neernbs a disease, although
it can be applied in the situation where several diseased indigithay exist in a family.
We considered haplotypes formed from a number of bak®lymorphisms as
genetic factors in this simulation study. We assumed that thidyfamembers were

accurately genotyped for all of the genetic loci and thasp information of the
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haplotypes was obtained through some molecular technigieslso assumed that the
haplotype frequencies were estimated at the population ledethay were distributed
uniformly between 0.001 and 0.4. Given these assumpttbeshaplotype data were
generated as follows. As a first step, we randomly dtew haplotypes (phased
haplotype pairs) for each pedigree founder within a famibh replacement from the
haplotype pool according to the estimated haplotype freqggeby using a multinomial
distribution. We then assigned haplotypes to the offspring their parental haplotypes
according to the Mendelian transmission. In this procedume ninter-locus
recombination and allele mutation were assumed as the hasotgye dropped through
pedigrees.

We assumed that the risk of disease was influenced hyoemental factors
apart from genetic factors. So, for the simplicity in oysasition, we also generated one
binary environmental exposure for individuals in a family. thts purpose, we first draw
several correlated random variables according to vafgimgy sizes as described above
from a multivariate normal distribution with marginal means O,gmal variances 1 and
a correlation parameter that was fixed at 0.4 so that it epess only a modest
correlation between the environmental exposures for indilidnaa family. We then
converted each of these variables into a 0/1 scaled vaiialdeder that the marginal
probability of exposure to the suspected risk of diséasthe underlying population is
0.3, which reflected a typical exposure to common envissrail factors for family
members.

We determined the disease status of individuals in a famihg ws disease risk

model as follows

79



eXp[ai + X fe +%C(hl’ hz)ﬁij

w=1

L ) (3.17)
1+ eXp[ai +Xefe + Zc(hlhz)ﬂij

w=1
To make this happen, we first generated the faspleific parameteg, to allow
for heterogeneity in the risk of disease betweeanilfes that cannot be accounted for by
genetic and environmental factors fitted in the elo8or a given family, we assumed

that ¢ follows a uniform distributiony (6—log(5/4), 6+log (5/4), with a particular
value of # chosen to control the baseline penetrance of skséar the family. For

example, if we sel9=|og(10‘3), the baseline penetrance of disease will be inesom

neighborhood of 0.00M is the number of haplotypes(hl,hz) is the number of times

that a particular haplotype, say, thth haplotype, appears in each drawn haplotype pairs

(h.h,), and it is defined as

0 if Owth haplotype
c(h,h,)=qu if Lwth haplotype
2 if 2wth haplotype

whereu can be 0, 1, or 2, which depends on the prespdcgenetic model: recessive,
additive, or dominant, respectively.

We then assumed an effect size (“true” value), mressas an OR, for each
element in the vector of parametgriaereincluding fe andpy (see Subsection 2.4.2 for
more details). By varying the effect size in theethscenarios, we assumed that some
explanatory variables increased the odds of gettisgase and others are not associated
with the disease so that we can assess statigptovaér and type | error rates of the

proposed method. To be more specific, we desctitethree scenarios as follows:
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1) In the first scenario, we considered 5 haplatywéhin a haplotype block and defined
the first and fourth haplotypes as common haplay@eequency> 0.05), the second
haplotype as a rare haplotype (frequency < 0.04d, the third and fifth haplotype as
moderately rare haplotypes (0.€1frequency < 0.05). We assumed that the first three
haplotypes were associated with the disease with @Rging between 2 and 4, and the
other two haplotypes were not associated with tiseade with ORs being fixed at 1
(Table 3.1).

2) In the second scenario, we considered bothnthie and interacting effects arising
between the two haplotype blocks, and between #mpdotypes and the environmental
factor. The first and second haplotypes within 2i&haplotype block were defined as
common and moderately rare haplotypes respectieglg,the other 5 haplotype within
the ' haplotype block were defined as those in the ficgtario. The effect sizes of all
the explanatory variables in this scenario wererassl as those in Table 3.1.

3) In the third scenario, we considered twenty bigple blocks with 10 haplotypes
within each block. We fitted the main effects of #le haplotypes as well as the
environmental factor and all possible interactirfteats between any two haplotype
blocks and between the haplotypes and the envirotahiactor. So there were a total of
19401 explanatory variables in the model, includR@L main-effect variables, 200
haplotype-environment interaction terms, and 190@{lotype-haplotype interaction
terms. However, we only assumed that the envirotahéactor, the haplotype 10 within
the g§" haplotype block (common), the haplotype 10 witthie 14" haplotype block (rare),
the haplotype 10 within the TEhapIotype block (common), the haplotype 10 witthna

20" haplotype block (moderately rare), and five intéins were associated with the
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disease (Table 3.1). We created this kind of sitrafasetting because we wanted to
prevent the labels of the explanatory variableshenvertical axis of Figure 3.3 from
overlapping one another (seeing Figure 3.3 couldp heasily understand our
consideration). In addition, in this scenario, waried a hypothesis that some haplotypes
affect a disease or a trait mainly through thetenactions by assuming that the ninth
haplotype within the 1% haplotype block andhe ninth haplotype within the 20

haplotype block had no main effects but had armacteng effect.

Table 3.1. Explanatory Variables and Their Effect Sizes in the Model fathe Three
Scenarios

Scenario 1 Scenario 2 Scenario 3

Variable OR Variable OR Variable OR

haplol 2 ef 2 ef 2

haplo2 4 haplol.1 2 hapl 05.10 2

haplo3 3 haplol.2 4 hapl010.10 4

haplo4 1 haplol.3 3 hapl015.10 2

hapl o5 1 haplol.4 1 hapl020.10 3
haplol.5 1 ef-hapl010.10 4
haplo2.1 2 ef-hapl015.10 3
haplo2.2 1 hapl 05.10:hapl015.10 3
ef-haplol.1 3 hapl 010.10:hapl020.10 5
haplol.2:haplo2.1 4 hapl 015.9:hapl 020.9 3
hapl01.3: haplo2.2 1 other 19391 variables 1

haplol: the haplotype Jhaplol.1: the haplotype 1 in thehaplotype blockef: the
environmental factohapl02.2: the haplotype 2 in the"®haplotype blockef:haplol.1:
the interaction between the environmental factarthe haplotype 1 in the'haplotype
block, haplol.2:haplo2.1: the interaction between the haplotype 2 in thadplotype
block and the haplotype 1 in th& &aplotype block, and so on.

Given ¢, and g8, we first generated a case (proband) forithefamily, and then

generated several controls according to varyingljasizes as described above for the
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family. In our simulation study, we considered 2500, and 1000 families for the first
two scenarios and 2000, 4000, and 8000 familiegHerthird scenario, and a total of
1000 replicates were generated under each of setbegs.

All of the generated data were analyzed using tbpgsed method and the results
were compared with those from the traditional cbadal logistic regression. For the
family data, the traditional conditional logistiegression treats the families as strata and
we obtain the estimates of parameters in a modelmiaximizing the conditional
likelihood, which can be done by implementing ttleogi t function in the package
survi val in R (http://cran.r-project.org/web/packages/seal/index.html).

In our evaluation processes, we mainly assessedstttestical accuracy and

reliability as follows:

1) We calculated relative bias for each parametethe model b)(bK—E(ﬁK))/bK,

whereb, is the “true” value of théth parametek =1, 2, ...,K, BK is an estimate of the
kth parameter.

2) We calculated empirical power for each parameter the model

by power :]/Rzril'(p,km) , whereR is the number of replicates requirgg, is the p-
value of thekth parameter in theth replicate,« is the statistical significance criterion
used in the test. For the first two scenarwss selected as being 0.05, 0.01, and 0.001,

while for the third scenariaz takes a more stringent genome-wide significancestiold

level of 2.6x10-6.
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3.4.4 Results

Prior to presenting our simulation results of conmathe statistical properties
and performance of the proposed method versus rwbtional conditional logistic
regression, we reported the relative merits of OMBE€lta Method, and the Bootstrap
technique for estimating standard errors of paramestimates as described in the
Methods section and determined which one is amgbtsolution for our new method to
correct the standard errors, which is prerequigiteour new method to ensure valid
statistical inference.
Standard errors of parameter estimates

We conducted the evaluation process in the firshaigo (Table 3.1) and we first
assessed the accuracy of the three approachesnfipputing standard errors of parameter
estimates. The common way to assess the accura@n adstimator for computing
standard errors of parameter estimates in thalies is to first set up the “true” values
of standard errors of parameter estimates, thenlaien data via some simulation
schemes and drive the estimated standard errgoarafneter estimates based on some
statistical models, and finally compare the estadatalues with the “true” values. But
since the primary goal of our present study wasvauate the statistical properties and
performance, not the accuracy of an estimator donputing standard errors of parameter
estimates, of the proposed method by comparingitih we traditional conditional
logistic regression, we considered an indirect wagxamine the accuracy of the three
approaches for computing standard errors of paemestimates by investigating
empirical power or type | error rate, or more pseby, the empirical distribution qf-

values for each parameter estimate in our simulagiady because in the computation of
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p-value for each parameter estimate, in generalptihefactor that affects the magnitude
of p-value is the standard error of the parameter estirgiven the hypothesis test, the
probability distribution of the test statistic, thparameter estimate, and even the sample
size.

For the first scenario, the empirical power wascdaltted for the first three
haplotypes because they were assumed to be assbciath the disease and the
empirical type | error rates were calculated fag tither two haplotypes because they
were not assumed to be associated with the disgeessel on OMSC, Delta Method, and
the Bootstrap technique (the right panel of FigBuB. For the Bootstrap technique, six
numbers of Bootstrap samples (the number of Bagsteplications) (10, 30, 50, 100,
500, and 1000) were considered for each effeattefest (Figure 3.1). Note that here we
show only the results obtained from 500 familiebjol is a medium-scale sample in our
simulation setting and, of course, a realistic darsjze.

The results were fairly clear. Out of the threerapphes, Delta Method had the
highest power and type | error rates under eacthrefe fixed statistical significance
criteria used in the test: (= 0.001, 0.01, and 0.05) (the right panel of Feg@rl). By
further checking the variance (the square of stahéaror) of parameter estimates, we
can see that Delta Method had the lowest variamcallf of the 5 effects (the left panel of
Figure 3.1), which is in agreement with the wellabfished fact that Delta Method
generally tends to underestimate standard errgoar@imeter estimates (Efron, 1990). On
the contrary, OMSC vyielded the lowest power undacheof three fixed statistical
significance criteria used in the test (the righh@l of Figure 3.1) and, as imagined, the

highest variance for the corresponding effects Igftgpanel of Figure 3.1). While for the
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Bootstrap technique, except the Bootstrap sampigld®, all of the other five Bootstrap
samples provided quite good power and type | erates under each of three fixed
statistical significance criteria used in the t@lse right panel of Figure 3.1). This result
implied that the variances obtained from these 8oap samples were much better than
those obtained from the other two approaches, wisigerfectly in line with the finding
that, in general, the Bootstrap technique is sopéad Delta Method in the context of
estimating standard errors when the sample sizeaderate (Efron, 1982; Chernick,
2007). Furthermore, by taking a close look at thepl, it can be seen that these five
Bootstrap samples had comparable power at0.05 and type | error rates under all of
the three fixed statistical significance criteriged in the test; only when the Bootstrap
samples went up to 500 and 1000, the powers=a0.01 and 0.001 were lightly higher

than those when the Bootstrap samples were 3@ns0100.
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Figure 3.1. Accuracy of the Three Approaches for Computing &ndard Errors.
Variances and empirical powers or empirical Tygeror rates (x indicates the empirical
powers or Type | error rates for=0.001, o fora =0.01, and + forwx = 0.05) for each of

5 main-effect predictors based on the three appesacnder the sample sizes of 500.
haplo1(DM) stands for the effect of the haplotype 1 with taeance estimated by Delta
Method, haplo2(B10) stands for the effect of the haplotype 2 wfith variance estimated
by the Bootstrap technique with the Bootstrap sarbping 10, and so on.

This demonstrates that Bootstrap technique provédésirly good measurement

of standard errors of parameter estimates. Howévehoose among these six Bootstrap

samples we had to use further information about {performance. In this regard, one
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key aspect is the efficiency of an estimator inmierof execution time, which answers:
How fast is the estimator speed of computing esgsfaTo do so, we ran our model
1000 times with each of the three approach for adgmg standard errors of parameter
estimates on a desktop computer with a single 36@itel Pentium 4 CPU and 2GB
RAM, which is not a mainstream configuration of dhesktop computer at present. We

measured the execution time, in seconds, and sumedat in Table 3.2.

Table 3.2. Average Time (Second) of Computing Standard Error for Diffenet
Approaches

Bootstrap
OMSC Delta Method Six numbers of Bootstrap samples
10 30 50 100 500 1000
1.02 46.27 19.07 52.15 96.38 191.02 952.34 1908.64

As can be seen in Table 3.2, the execution timentdly the Bootstrap sample
being 30 was almost the same as that taken by Mdthod and much less than those
taken by the Bootstrap sample being 50, 100, 500,1800. Hence, it is evident from
this result together with the accuracy results abihvat the Bootstrap sample being 30,
with realistic sample sizes, can provide adequeteracy for computing standard errors
of parameter estimates and is sufficiently efficienterms of execution time that are
satisfactory for most of applied researches. Tloeeefwe used only the Bootstrap
techniqgue with the Bootstrap sample being 30 to puten the standard errors of
parameter estimates in the following analysis.

Small-scale model
Turning to the process of evaluating the statikficaperties and performance of

the proposed method compared with the traditiomalditional logistic regression, we
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first investigated the potential bias in the parsnestimates in the second scenario
(Table 3.1) that is typically encountered in thadidate gene analysis in which usually
several, not many, genes, sometimes in combinatitn environmental factors, and/or
their interactions are studied for complex diseasedsaits. We did not directly compare
the bias in the parameter estimates from the twihoagls because the parameter estimates
from different methods are not comparable due fferdince in the scale of measurement.
Thus, we assessed the two methods based on tleiveedias (the three left panels of
Figure 3.2), which provided a measure of the mageitof the bias on the same scale for
the two methods.

The top left panel of Figure 3.2 shows the correspay results under the sample
size of 250, from which we can see that all of paeameter estimates obtained from the
two methods were biased, though the relative bes quite small, ranging between 0.03
and 0.15. We also observed that, for both the nasthihe estimates for the effects of the
(moderately) rare haplotype$iaplol.2, haplol.3, haplol.5, and haplo2.2) and the
interacting effects were more biased than the sthehich is obviously attributed to the
fact that rare predictors and interaction terms imodel usually have larger estimated
standard errors than the common ones in modeFditthermore, we noticed that the
proposed method had less bias than the traditicovaditional logistic regression for all
of the parameter estimates, especially for thosth@f(moderately) rare haplotypes and

the interactions.
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Figure 3.2. Small-Scale Model Relative biases and empirical powers or empiriggdel
| error rates (x indicates the empirical powersTgpe | error rates far =0.001, o
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fora =0.01, and + forx =0.05) for each of 11 explanatory variables based ontlte
methods under the sample sizes of 250 (top), 506d{g), and 1000 (bottomgf (B)
stands for the effect of the environmental factrbe estimated using the proposed
method, haplo1.1(T) stands for the effect of the haplotype 1 within #iehaplotype
block to be estimated using the traditional coodil logistic regressiorf: haplol.1(B)
stands for the interacting effect between the emvirental factor and the haplotype 1
within the ' haplotype block to be estimated using the propasethod,haplo1.2(B):
haplo2.1(T) stands for the interacting effect between thlplbtype 2 within the 51
haplotype block and the haplotype 1 within th&taplotype block to be estimated using
the traditional conditional logistic regressiongao on.

To see the influence of the sample size, we alsplaljed the corresponding
results under the sample size of 500 and 1000, fch it can be seen that with the
number of families selected increased, the reldiias of both the methods declined but
that of the proposed method went down faster awrdsdme effects, even shrank towards
zero for the sample size up to 1000 (the middlekaoitbm left panels of Figure 3.2).

We next assessed the two methods in terms of erapipower for the main
effects ofef, haplol.1, haplol.2, haplol.3, andhaplo2.1 and the interacting effects of
ef:haplol.1, haplol.2:haplo2.1, and haplol.3:haplo2.2 because we assumed that they
were associated with the disease (the three righelp of Figure 3.2). Here we tried to
evaluate the ability of the methods to declare disgase-predisposing factors when some
effects really existed. For the effecteadf the empirical powers under each of three fixed
statistical significance criteria used in the teste comparable for the two methods no
matter what sample sizes were considered (thewoplihes in each of the three right
panels of Figure 3.2). This phenomenon would seerbet reasonable because, for a
common environmental factor with a decent frequeranyy valid statistical test can

obtain a similar power for detecting it and the gpbke variation of powers from different

tests can be explained by the random variability: the other effects, the proposed
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method provided higher probabilities for corredathgntifying them under each of three
fixed statistical significance criteria used in thest compared with the traditional
conditional logistic regression irrespective of weample sizes were used (the three right
panels of Figure 3.2). Although the superioritytloé proposed method in the statistical
validity was diminishing for all of the explanatovgariables with the increase in sample
sizes, it still persisted, especially for the (m@dely) rare haplotypes and the interactions
and for the empirical powers at=0.01 and 0 00(the three right panels of Figure 3.2).
For the proposed method at=0.05, a sample size of 500 was sufficient to detect a
common haplotype with a statistical power of 90%ragimately, and a sample size of
1000 was sufficient to identify a rare haplotypeaarinteraction with a statistical power
of 80% approximately.

Meanwhile, we assessed the two methods regardimiyieai type | error rates
for the main effects ohaplol.4, haplol.5, andhaplo2.2 and the interacting effect of
haplol.3:haplo2.2 because we assumed that they were not associdiedhe disease
(the right panel of Figure 3.2). Here we tried t@leate the probability of observing a
disease-associated factor when in truth there wag.nUnder the sample sizes of 250
and 500, the traditional conditional logistic regp@n yielded a little higher empirical
Type | error rates that the proposed method byt éine acceptable based on the practical
consideration (the top and middle right panelsigtife 3.2). As the sample size went up
to 1000, all empirical Type | error rates shranwdods almost zero (the bottom right

panel of Figure 3.2).
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High-dimensional model

In order to obtain a more comprehensive pictureutitioe performance of the
proposed method in the case where a very large eunob haplotypes and/or
environmental factors are investigated, e.g., inogee-wide association studies that
involve testing numerous genes across the compétseof DNA of many people to find
genetic variations associated with a particulaease, we conducted a sophisticated
simulation study in the third scenario (Table 3ifi)which there were a total of 19401
explanatory variables jointly considered, includ2@l main-effect variables, 200 gene-
environment interaction terms, and 19000 gene-gereaction terms. For this huge data,
as one would expect, the implementation of analysist require a large amount of
memory and high-performance computing resourcestefbre, we ran our simulation on
a computer cluster, named Cheaha, at the Unives§itabama at Birmingham (UAB)
(http://docs.uabgrid.uab.edu/wiki/Cheaha), whiclcludes 192 3.0GHz Intel-based
compute cores with 386GB of RAM interconnected &®DR Infiniband network. A
high-performance, 60TB Lustre parallel file systémilt on a Direct Data Network
(DDN) hardware platform is also connected to thases via the Infiniband fabric. An
additional 40TB of traditional shared storage andaaxiliary 120 1.6GHz AMD-based
compute cores are available via a 1GigE networkidab

In addition, sincecl ogi t, which is an R function created to carry out the
traditional conditional logistic regression as meméd earlier, did not work for the data,
specifically, the program appeared to freeze, vavsbinly the results from the proposed

method (Figure 3.3).
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As in the preceding small-scale model subsectibe, relative biases in the
parameter estimates of all the explanatory vargalslehe model were first computed for
each of three sample sizes respectively (the fingtg, and fifth panels of Figure 3.3).
From the graphs we can see that, under the sanzgle@t2000, the maximum relative
bias was not more than 0.07. Along with the inceeimssample sizes, there existed an
overall tendency towards the decrease in the veldiias. This finding was consistent
with that observed in the preceding subsection.

The empirical power was next computed for a tofatem disease-associated
explanatory variables in the model at a genome-vgigaificance threshold level of
2.6x10° (the second, fourth, and sixth panels of Figu®).3As can be seen from the
graphs, with the sample size increased, there cbaldome significant gains in the
empirical power, with the large gain happening flee environmental factor and the
common haplotypeshéplo5.10 and haplo15.10) and the small gain happening for the
(moderately) rare haplotypelsapl010.10 andhaplo20.10) and interactions. This verified
the statement we made in the foregoing power aisalys the small-scale model.
Furthermore, this result also proved our hypoth#sis some haplotypes may affect a
disease or a trait mainly through their interacticand the interacting effects play a more
significant role than does the main effects in tagog the genetic variation of the
disease or the trait. However, we noticed thatetimpirical power started at a relatively
low level and maintained a quite small growth @ter the three sample sizes compared

with those in the foregone small-scale model suixs®ec
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Figure 3.3. High-Dimensional Model. Relative biases and empirical powers at
a=2.6x10° (*) or empirical Type | error rates at=0.001(x),  =0.01(o), and

a=0.05 (+) for each of 19401 explanatory variables basedthe proposed method
under the sample sizes of 2000 (the first two EndD00 (the third and fourth panels),
and 8000 (the last two panels). The three categafiehe explanatory variables (main-
effect, gene-environment, and gene-gene) werendigBhed from one another through
different colors (gray, dark gray, and gray, respety). Only the disease-associated
explanatory variables were labeled on the verigcas. ef stands for the environmental
factor, haplo5.10 stands for the haplotype 10 within thé" Shaplotype block,
ef-haplo10.10 stands for the interaction between the environalefdctor and the
haplotype 10 within the 1D haplotype blockhaplo5.10: haplo15.10 stands for the
interaction between the haplotype 10 within tﬁ‘ehﬁplotype block and the haplotype 10
within the 18" haplotype block, and so on.

The empirical Type | error rates were also caladdor a total of 19391 non-
disease-associated explanatory variables in theeim@hde second, fourth, and sixth
panels of Figure 3.3). The result shows that thees a substantial decline in the
empirical Type | error rates over the three sansptes. Under the sample size of 2000,
the magnitudes of the empirical Type | error ratese not more than 8%. As the sample
size went up to 8000, all of the Type | error ratksank to almost zero.

3.4.5 Discussion

We have developed a Bayesian framework for detgajene-gene and gene-
environment interactions, particularly involvingreéavariants, using family-based case-
control data. Since susceptibility to the majorgly human diseases is complex and
multifactorial, involving both genetic and enviroantal factors, jointly considering all
these factors and their possible interactions adyais just like we do could enhance the
statistical power for identifying genetic variarttsat are involved in the etiology of

disease mainly through an interacting effect, asdedaining rare variants that act

primarily in genetically susceptible individualsoWever, analyzing both gene-related
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interactions and rare variants remains a big chg#ebecause we must simultaneously
handle high-dimensional data arising from numerm#ginal and interacting effects
fitted in a model, sparse data arising from bothrge number of interactions and rare
variants, and the computational burden of analy3iBis motivates sophisticated
approaches, nevertheless until recently few stubdase had success. We have been
making a great effort trying to fill the gap in dabkle methods in the context of both
population-based (Lat al., 2011) and family-based association studies.

Our method is created on the basis of the genedalinear model and thus can
take advantage of the well-established theory,rdlgn, and software developed for the
generalized linear model, and include various ne@a special cases. To fit a large
number of terms, including common and rare varjagtvironmental factors, and their
possible interactions, in a model, we assume weakbymative priors on the parameter
estimates because the priors can induce strongksige for near-zero effects but weak
shrinkage for large effects (Gelmanal., 2003; Gelmaret al., 2008; Yi and Banerjee,
2009). To enhance the efficiency of computing maximmlikelihood estimates, we
employ the Multinomial-Poisson transformation tdgle by substituting a Poisson
likelihood with an additional parameter (e.g., Bak&994; Gelmaret al., 2003). We
consider three ways to correct the bias in thenegion of standard errors of parameter
estimates happened after introducing the Multinbf@sson transformation technique
and treating the additional parameter as offsehadel fit. The result yielded evidence
that the Bootstrap technique can provide a be#Bmate of standard errors than Delta
Method and OMSC (Figure 3.1), which is in agreemetth the previous observations

(Efron, 1982; Efron, 1990; Chernick, 2007). Furthere, we used the Bootstrap sample
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of 30 to calculate the estimate of standard erirothe present study because the results
suggest that the Bootstrap sample of 30 is ade@umteefficient for estimating standard
errors of parameter estimates in terms of accuemy execution time based on the
practical consideration (Figure 3.1 and Table 3.2).

As noted, there has been a long-standing debakenvilie scientific community
about the Bootstrap sample size. How many Bootsaagples we need to take in a study?
Unfortunately, there are no any general guidelthes have been proposed for how large
the Bootstrapped sample should be relative to dked humber of observations in the
dataset from which it is drawn? Efron (1987) paihteit that there is little improvement
for the accuracy of estimates when the Bootstragpga size is more than 100. In fact,
The Bootstrap sample size as small as 25 givesomabke results. Certainly, the
Bootstrap sample size can be large. But, in gendedermining the Bootstrap sample
size depends on the extent to which we care tdledtathe accuracy of estimates,
available computing resources, and other practoalsideration. If the results really
matter, as many samples as is reasonable givelalaleacomputing resources and time
should be used. However, it is noteworthy that easing the Bootstrap sample size
cannot increase the amount of information in thigilwal data. It can only reduce the
effects of random sampling errors arising possitdyn the Bootstrap procedure itself.

In our simulation study, we compared the resulbenfrour method with those from the
traditional conditional logistic regression. Thaditional conditional logistic regression
is a classical method for analyzing matched cas#¢ralodata in epidemiology (Breslow

and Day, 1980; Breslow, 1982; Rothmetral., 2008a,b), and it is also appropriate for
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testing genetic association using family data (e=pldsteinet al., 1989; Andrieu and
Goldstein, 1996; Wittet al., 1999; Kraft and Thomas, 2000; Siegmehedl., 2000).
However, we have not compared our method to therogixisting methods because,
primarily, the other existing methods are built opdifferent philosophies and thus it
would be difficult to compare directly; in additiofor some existing methods, their
implementations have not yet been publicly avadaisl not easily implemented though.
To ensure the statistical reliability of parameestimates, we evaluated the
proposed method and the traditional conditionaisigregression based on their relative
bias in the parameter estimates of all the exptapavariables in the model. The
simulation results clearly demonstrate that thealdlty advantage of the proposed
method is consistently over the traditional comdhéil logistic egression in both the
small-scale and high-dimensional models, espedatlyhe interactions and (moderately)
rare haplotypes, no matter what sample sizes warsidered (Figure 3.2 and Figure 3.3).
This indicates that the proposed method can prodtagstically reliable and robust
models and can be used in both the candidate gehgesmmome-wide association studies.
Further, we empirically assessed the two competregghods regarding their
statistical power and Type | error rates. The sanoh study shows that the proposed
method is more powered than the traditional cooli logistic regression, especially for
the interactions and (moderately) rare haplotypegufe 3.2). When much more
explanatory variables are fitted in the model, heavethe proposed method suffers from
loss of power (Figure 3.3). But the power is sitceptable in practice. This should not
be surprising because accommodating the high-dioegigy in a model comes at the

price of reduced statistical power. We also see tti@ proposed method produced little
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higher Type | error rates than the traditional ¢badal logistic regression under the
sample sizes of 250 and 500 (Figure 3.2). In amlditive observed that the proposed
method incorporating analysis of interactions alentify causal haplotypes, which might
have a weak marginal effect but a strong intergogifiect with other haplotypes (Figure
3.3). Therefore, we can say that the proposed rddthe reasonable power to detect true

effects, while controlling the rate of false posss.
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CHAPTER 4

SOFTWARE

4.1 Overview of R/ BhGLM

The proposed methods have been and are being arated intoR/ BhG_M by
creating some new functions to conduct haplotymetiassociation analysik. BhnGLM
is a publicly available and distributable packalgep(//www.ssg.uab.edu/bhglm), and is
implemented as an add-on package for the software/Hith is a free development
environment for statistical computing and graph{tisaka and Gentleman, 1996).
R/ BhGLM provides an extensible, interactive programmingirenvnent for haplotype-
based association analysis except several preyiduslt-in functions for some other
statistical genetic analyses, e.g., SNP-based iaisocanalysis and quantitative trait loci
(QTL) mapping, in the Bayesian framework.

There are many packages available for haplotypeebassociation analysis, e.g.,
hapassoc, hapl o. st at s, andgap. Among themhapl o. st at s is a popular tool
for haplotype-based association analysis because #vailable free and easy to
implement (http://mayoresearch.mayo.edu/mayo/rebésrhaid_lab/software.cfm).
hapl o. st at s performs likelihood inference of trait associaamith haplotypes in the
generalized linear model framework (Ladteal., 2003), but, as almost all of the existing
software implementing haplotype-based associatimaiyais, it can only fit the main

effects of haplotypes and haplotype-environmeng¢ratdtions with a relatively small
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number of effects needed fitting in the model. didition, if there are numerous effects
needed fitting in a model and/or some rare hapkgygresentiapl o. st at s as well as
the other software might encounter some serioublg@mes such as nonidentifiability of
parameters.

Our package performing haplotype-based associasinalysis is based on
Bayesian hierarchical generalized linear model$ witcontinuous prior distribution on
the coefficients that favors sparsity in the fittedodel and facilitates intensive
computation (Gelmast al., 2008; Yi and Banerjee, 2009). A fast EM algantis built
into the iteratively weighted least squares fossieal generalized linear models to fit our
models by estimating posterior modes of coeffige(Gelmanet al.,, 2008; Yi and
Banerjee, 2009), which allows us to simultaneouslyenvironmental effects, main
effects of numerous common and rare haplotypes, laaplotype-haplotype and
haplotype-environment interactions.

Currently,Rf BhA_Mcan perform population-bases and family-basedceestsan
analyses with haplotypes, and provide a unified r@ggh to explore haplotype
associations with continuous, binary, or ordinalits. R/ BhGLM incorporates several
functions for data simulation, data manipulatiomg aesult summaries including graphics.
R/ BhGLM is programmed to accept original data in a var@tynput formats and is
accessible for most platformscluding Windows, MacOS, and UNIX/Linux. The
computationally intensive algorithms were written €, while data manipulation and
graphics were written in R language.

R/ BhG_.Mis under continual development.
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4.2 R Functions for Haplotype-Based Association Analysis

Here we briefly describe the use of some functionsrporated irR/ BhGLMfor
haplotype-based association analysis. A more extergtorial and a help file on their
use are distributed with the software and are alswlable at the website cited in the
preceding section. To this end, we consider an plamataset namekapl o, which
includes a total of 100 subjects from a cases-obmtiudy, with four htSNPs, some
covariate variables including age, race, weighd, smon, and the disease status of breast
cancer. We hope that the demonstrations preseraed will be helpful to understand
how to use the functions with little prior knowlexlgf R, especially because we neglect
to explain the syntax and some basic functions offlkere are lots of free resources
available on the R project website (http://www.ojprct.org/) or some other relevant
websites that can assist the user in learning aimg) (r.
4.2.1 Getting Started

The procedure for using the functions for haplotippsed association analysis is
the same as any other one in R. So, in order tathesB/ BhGLM package, one must
download it from the website cited in the precedsegtion and install it properly, which
can be easily done just following the instructidnpackage installation on the same
website where you download tH& BhGLM package After installing the R/ BhnGLM
package, the routines are available by startingr asession and loading the package as
done below. Here we assume that the user is ruraitihgr Windows or Mac OS X.
> |ibrary(BhGM (typeli brary(BhG.M within R following the prompt “>”

Then we can use the functiatat a() to load the datadat a() is a basic

function for inputting data iR
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> dat a( hapl o)

Now the dataset or sub-dataset can be accessesirgysome functions within R.
4.2.2Creating a Genotype Matrix

The datasets of genetic markers, e.g., SNPs, &&r afranged in a one column

format that looks like:

rs9939609 rs1477196 rs7206790 rs8047395

[1,] 2 1 0 1
[2,] 1 1 1 1
[3,] 2 1 NA 2
[4,] 1 2 1 0
[5,] NA NA 0 2
[6,] 1 2 2 0
[7,] NA 1 1 1
[8,] 1 NA 2 0
[9,] 1 2 1 1
[10, ] 1 1 1 NA

These are the first ten records of SNP allelesuofedample dataset displayed by
executing the functiomeno(). The numbers in each cell of the table above lage t
count of the minor allele of a SNP, and the syni¥l(not available) represents missing
values. Rows represent the measurement of genostpésur loci for each subject.
However, lots of software for genetic analysis reggia special matrix of genotypes,

which is arranged such that each locus has a paidjacent columns of alleles, and the
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order of columns corresponds to the order of lecacchromosome. If there ameloci,
the total number of columns of genotypesns Zo convert the format of one column to
the format of two columns, a functiogeno. 2col s() , has been added to the package.
> geno. 2col s(genodata, vl = 0, |abel = NULL)

The first argument of the function is the name fudé priginal dataset that is
needed converting, the second specifies the srmakidge that genetic markers take in
the original dataset with a default value of zatocén be a character such as “M” or
anything else defined by the investigator), andtthied is loci label which is optional.
See its help file for more details.

After converting, the layout of the dataset lodks this (only the first ten records

were shown corresponding the exhibition in the @déty subsection):

M.1 nl.2 n2.1 n2.2 nB.1 nB.2 mt.1 md. 2

1 2 2 1 2 1 1 1 2
2 1 2 1 2 1 2 1 2
3 2 2 1 2 NA NA 2 2
4 1 2 2 2 1 2 1 1
5 NA NA NA NA 1 1 2 2
6 1 2 2 2 2 2 1 1
7 NA NA 1 2 1 2 1 2
8 1 2 NA NA 2 2 1 1
9 1 2 2 2 1 2 1 2
10 1 2 1 2 1 2 NA NA
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4.2.3 Estimating Haplotype Frequencies

As discussed before, if the genetic data are deltefrom unrelated individuals,
the phase information of haplotypes can not belyeabtained, and hence we usually
need to estimate haplotype frequencies by usingesstatistical methods. There are
many statistical algorithms have been developed iamulemented in a number of
software packages to estimate haplotype frequeliSigzaidet al., 2002), among which
hapl o. em is a well-known R function and it is nestedhiapl o. st at s described in
the preceding sectiohapl 0. em has some strengths such as computational efficiency
(http://mayoresearch.mayo.edu/mayo/research/sdahigoftware.cfm). However, it
also has some weakness. For instance, it doegaomtlp haplotype frequencies for each
level of a grouping (categorical) variable, e.g@x,sdisease status, or medical treatment
groups, and its output is not ready to use as ternrediate result by other functions
within the same session. So, we only consit@pl 0. em as a basic module in our
function to estimate haplotype frequencies.

For the converted data (two column format), we asefunctionhapl o. fr eq
to construct haplotype pattern and estimate hapdotsequencies by typing the following
script:
> hapl o. freqg(geno2col, group = FALSE, group.var = list(y))

Here the first argument of the function is the nashéhe converted dataset. The
second one determines whether haplotype frequeaogesstimated separately or not by
a grouping variable. To do this, the whole datasest be sorted by the grouping variable
first. The third argument is a list of grouping nadnle(s) by which the haplotype

frequencies are estimated separately.
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After executing the functiohapl o. f r eq, we have

hapl 0. code loc-1 loc-2 loc-3 loc-4 hapl o. prob

1 1 1 1 1 1 0. 00283
2 2 1 1 1 2 0. 00089
3 3 1 1 2 2 0. 00000
4 4 1 2 1 1 0. 03084
5 5 1 2 1 2 0. 00074
6 6 1 2 2 1 0. 32629
7 7 1 2 2 2 0. 01179
8 8 2 1 1 1 0. 00234
9 9 2 1 1 2 0. 32626
10 10 2 1 2 1 0. 00909
11 11 2 1 2 2 0. 01533
12 12 2 2 1 1 0.07893
13 13 2 2 1 2 0. 11370
14 14 2 2 2 1 0. 07053
15 15 2 2 2 2 0.01043

The first column of the table above is the indexh# inferred haplotypes. There
are a total of 15 haplotypes inferred from the ol genotype data. In general, for 4
SNPs, a total of 16 possible haplotypes might kaioed. But since some subjects had
even half of genotypes missed, and so there isnagh information available for them

to estimate their haplotype frequencies. The se¢braligh the fifth columns represent

107



the inferred haplotype patterns based on the obdegenotype data. For example, for the
first haplotype, the haplotype pattern 111", which means there are 4 minor alleles
on the chromosome, and by analogy to others. Wietdumn is the estimated haplotype
frequencies.

4.2.4 Computing Haplotype Posterior Probabilities

Since the ambiguity of haplotype phase existsgetheaty be more than one pair of
haplotypes that are consistent with the observatbtgpe data. To account for this
ambiguity, we compute posterior probabilities oplaéype pairs for each subject using
the functionhapl o. post.
> hapl o. post (geno2col, group = FALSE, group.var = list(y))

For our example data, by executing the script apowe have more than 300
haplotype pairs for a total of 100 subjects (herly ten rows are shown as below). For
each subject, there is at least one pair of hapéstye.g., for the first subject in the
following table, there are two pairs of haplotypes,, haplotype 8/haplotype 13, and
haplotype 9/haplotype 12 (see the preceding subsefiir more details of haplotype
patterns). The last column of the following taldetle posterior probabilities for each

haplotype pairs.

subj .id haplcode hap2code posterior

1 1 8 13 0. 01024
2 1 9 12 0. 98976
3 2 1 15 0. 00028
4 2 11 4 0. 00441
5 2 6 9 0. 99440
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6 2 14 2 0. 00059
7 2 5 10 0. 00006
8 2 8 7 0. 00026
9 3 9 13 0. 87486
10 3 9 15 0. 08027

4.2.5 Constructing a Design Matrix of Haplotypes

To apply some regression models including oursapldtype-based association
analysis, we need to create a proper design miadsed on estimated haplotype dosage
for each subject to facilitate our model fit (segbSections 2.4.2 and 3.4.2 for more
details). We created a functionapl o. mat ri x, to do this work, in which another R

function namea eshape is requiredr eshape can be downloaded from the R project

website via the link: http://cran.r-project.org/viigickages/reshape/index.html.

Using the functiohapl o. mat ri x as in the following script:

> hapl o. matri x(poterioal),

we have (only the first two subjects are shown)

id

1

hapl ol
0. 0000000000

0. 0002762031

hapl 05
0. 000000e+00

6. 265698e- 05

hapl 02
0. 0000000000

0. 0005881906

hapl 06
0. 0000000000

0. 9943999000

hapl 03
0. 000000e+00

0. 000000e+00

hapl o7
0. 0000000000

0. 0002580755

hapl 04
0. 0000000000

0. 0044149300

hapl 08
0. 0102387934

0. 0002580755
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hapl 09 hapl 010 hapl 011 hapl 012

1 0.9897612 0. 000000e+00 0.0000000000 0.9897612070
2 0.9943999 6.265698e-05 0.0044149300 0.0000000000
hapl 013 hapl 014 hapl 015

1 1.023879e-02 0.000000e+00 0.0000000000

2 0.000000e+00 5.881906e-04 0.0002762031

4.2.6 Randomly Sampling Genotypes

In haplotype-based association studies, we often the inferred haplotype
frequencies published in the scientific literattwmedo simulation studies. Since usually
we can only get the inferred haplotype frequenties, not the original genotype data,
we need to simulate the genotype data based ohapletype frequencies. Using our
functiongeno. sanp, we randomly draw 2 haplotypes (phased haplotygaes)for each
subject with replacement from inferred haplotypessdad on estimated haplotype
frequencies by using a multinomial distribution.ehtthe phased information of sampled
haplotype pairs is eliminated to obtain SNP gemetgata (see Subsections 2.4.3 and
3.4.3 for more details).

Executing the following script:
> geno. sanp(hapfreq = hf, group = FALSE, group.var =
list(y), n.geno = 100),

we have
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mMm.1 nl.2 n2.1 n2.2 nB.1 nB.2 mt. 1 md. 2

1 2 2 2 2 1 2 2 2
2 1 1 1 2 1 2 1 1
3 1 2 2 2 2 1 1 2
4 1 1 1 2 1 2 2 1
5 1 1 1 1 1 1 1 1
6 1 2 1 2 1 1 1 2
7 1 2 2 2 2 1 1 2
8 1 2 1 2 1 1 1 2
9 1 2 2 2 1 1 1 2
10 1 1 1 2 1 1 1 1

Here only the first ten records are shown. Thesesemilar as those in Subsection
4.2.2. Note that the first argument of the funct@above is the name of the dataset
consisting of inferred haplotype frequencies. Tdst bnen. geno, specifies the sample
size.
4.2.7 Testing Hardy-Weinberg Equilibrium

We wrote a functionhwe. t est, to perform HWE test for individual genetic
locus. The function callshi sq. t est to compute @-value for HWE test and the null
hypothesis is that HWE holds. To run our functiame, need to specify genotype data and
chromosomes as below:

> hwe.test(cross.control, 1).
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4.2.8 Simulating genetic data

We created a functiogeno. si m to generate haplotype data for both family-
based and population-based association analysasy u$ie estimated haplotype
frequencies from real data or fake data. The fonctan also simulate qualitative and
guantitative traits based on some genetic andsstai models with various genetic and
environmental factors designated by users.
4.2.9 Computing standard errors of parameter estimates

To correct the standard errors of parameter estgnam the family-based
haplotype-association analysis, three ways (OMS€ltaDMethod, and the Bootstrap
technique) are considered in the present studyimmpkEmented by running R functions:

onsc. se,del t a. se, andboot . se.
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