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A LOW-POWER MULTICHANNEL TELEMETRY SYSTEM FOR HIGH-SPEED

WIRELESS NEURAL RECORDINGS

YANG-GUO LI

COMPUTER ENGINEERING

ABSTRACT

The advances in microelectronics and wireless communication are going to change our

lifestyles and benefit our healthcare system in the foreseeable future. New conception

named “Ubiquitous Healthcare” has been proposed. It envisions a continuous, real-time,

remote monitoring on the health conditions of people through the wireless communication

network. Traditional biosignal monitoring devices need wire-connections for the record-

ing, which may cause skin rupture and body infection. The physical connections also

limited the number of the integrated recording channels. A low-power implantable mul-

tichannel telemetry system which can be implanted in the body and transmit recordings

wirelessly can solve the problem of the traditional method. However, the design of such a

low-power multichannel telemetry system is challenging. In this study, we have designed

a telemetry system which possesses several merits in terms of power dissipation, system

sensitivity, and data transmission rate. Research efforts have been made to address the crit-

ical design challenges of low-power consumption, high data rate communication, low cost

and miniaturization, by employing subthreshold MOSFET based design, noise optimiza-

tion, neuromorphic architecture and judicious use of positive and negative feedbacks. As

a sensor signal acquisition unit, a low-power low-noise self-biased CMOS amplifier has

been demonstrated. Modified spike detection algorithm, frequency-enhanced nonlinear en-

ergy operator (fNEO) and energy-of-derivative (ED), have been formulated and validated

through CMOS all-inverter based circuit architecture. For spectrum efficient high data rate

communication, a modified Hermite polynomial based ultra-wideband pulse generation

schemes have been proposed and demonstrated with neuromorphic circuits.

Keywords: Analog Circuits, RF Circuits, Telemetry System, Wireless Communication.
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1. INTRODUCTION

Background

Along with the advances in microelectronics and wireless communications, a novel concept

named ’ubiquitous healthcare’ has been proposed nowadays. As shown in Fig. 1(a), a

ubiquitous healthcare system offers doctors and nurses a more efficient way to monitor the

health conditions of patients through communication network and Internet. Its telemetry

attribute allows a continuous monitoring on the progression of chronic diseases, the body

reaction to therapeutic drugs, and the post-operative recovery of patients. This continuous

monitoring ensures a rapid response from healthcare providers when a disease outbreak

occurs. In addition, the remote body inspection provided by the ubiquitous healthcare

system benefits patients by saving their time and money. With the help of a ubiquitous

healthcare system, the patients do not need to go to hospitals and spend about one entire

day there. Instead, they only need to contact their doctors from their homes and get the

inspection results rapidly, which saves the cost of transportation and the outpatient services.

A low-power multichannel telemetry system which can achieve multichannel neural

recordings wirelessly is the most critical component in the healthcare system. The detec-

tion sensitivity and the transmission speed of a telemetry system determine the integrity and

the fidelity of the recorded neural signals which influence the performance of the health-

care system directly. In addition, a miniaturized telemetry system can be implanted into the

brain and be used to develop a brain-machine interface (BMI) for paralyzed patients. As

shown in Fig. 1(b), an implantable multichannel telemetry system can control a robotic arm

to move objects for disabled people. A block diagram of a typical multichannel telemetry

system is drawn in Fig. 2. The system can be divided into three stages: an amplification

stage, a data compression stage and a wireless transmission stages. The amplification stage

usually has multiple recording channels which provide the necessitated high spatial reso-

lution for neural signals. Among them, each channel has a biopotential amplifier which

1



is used to amplify the target signal without introducing detectable circuit noise. The data

compression stage is typically realized with a spike detector. The spike detector can iden-

tify the neural spikes from background signals and therefore removes the redundant data

in the recording. By incorporating a spike detector, a telemetry system can effectively re-

duce the data volume and relaxes the bandwidth requirement on wireless data transmission.

The last stage of a telemetry system is a wireless transmitter. This is the most important

stage of a telemetry system and is also the bottleneck of high-speed neural recordings. The

contradiction between power dissipation and data rate creates the principal challenge in the

design of a telemetry system.

Motivation

Wireless multichannel neural recordings are very useful in today’s neuroscience research,

clinical diagnosis and for the development of healthcare devices. Owing to its wireless

feature, a multichannel telemetry system eliminates the risks of skin rupture and body

infection on subjects. By excluding the use of a large bundle of transcutaneous wires,

wireless recordings offer neuroscience researchers the opportunity to investigate neuronal

activities of freely behavioring animals. In addition, without the space limit caused by the

physical sizes of wires, it is possible for a multichannel telemetry system to integrate more

channels in a small area. As biological nerves typically have a high neuronal density, this

multichannel high-density recordings provide valuable high spatial resolution information

concerning the propagation of neuronal signals. For neuroscience research, this high-speed

multichannel neural recordings allow neurologists to study the functionality of each neu-

ron in a neural network. For clinical applications, high spatiotemporal resolution neuronal

signals have multiple applications, such as disease prediction, medical diagnosis and drug

evaluation. For advanced medical device developments, high-speed multichannel neural

recordings help engineers improve the control and movement accuracy of neuroprosthetic

devices. Despite having all these merits, high-speed multichannel neural recordings are

2
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Figure 1: (a) A ubiquitous healthcare system. (b) An implantable multichannel telemetry
system used for BMI robotic arm control. (Picture is from Nathan C. Rowland, etc. 2013
[1])

difficult to be obtained due to the challenges in the design of a low-power multichannel

telemetry system.

The development of a low-power multichannel telemetry system for high-speed wire-

less neural recordings are challenging in multiple technical aspects. The most important

one is the power dissipation of the system. Since a heat flux of 80 mW/cm2 can cause the

3
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Figure 2: The block diagram of a multichannel telemetry system. MUX: multiplexer.

necrosis of surrounding tissues [2][3], a low-power design which means low tissue heating

is mandatory for the purpose of safety. As the increase of recording channels, the power

budget assigned to each recording channel is further reduced. In addition, low power dis-

sipation guarantee a chronic use of devices without frequent battery recharging or energy

harvesting. A lower power dissipation allows the use of a smaller battery that makes small-

size and light-weight system possible. In account of these challenges, minimizing power

dissipation of the system should be the priority in the design. The second challenge is the

detection sensitivity of the system. Since neural signals [4] are typically in the range of 10

∼ 500 µV with a noise level of 5 ∼ 10 µVrms, a low-noise high-gain amplification stage

[2] is required for high sensitivity detection. A study on low-power low-noise amplifiers is

important for the development of the system. The third challenge is the transmission data

rate. The increase on the number of channels causes a growth on data volume resulting in a

significant problem for wireless data transmissions. For instance, if a system has 128 chan-

nels and each channel has 8-bit resolution at the Nyquist sampling rate requires 20 Mb/s

data rate, the target signal is 10 kHz [5]. As the number of channels increases, the data rate

will reach 100 Mb/s and even higher [6]. To achieve this data rate, a data compression stage

and a high-speed wireless transmission stage are needed in the system. However, both of

them must be designed under a constraint power budget. Last but not least, a system-on-

chip (SoC) architecture is preferred in most of the design, which prevents the use of large

capacitors and inductors.
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2. LITERATURE REVIEW

In order to achieve all the functions with the minimum power dissipation, pioneering

researchers have made great efforts on the design of biopotential amplifiers, spike detectors,

and wireless transmitters.

A biopotential amplifier [2]-[7] which acts as the first amplification stage is one of the

most important components in an implantable neural recording microsystem. The perfor-

mance of a biopotential amplifier determines the complexity of the post signal process-

ing. A well-designed low-power low-noise amplifier can improve the system sensitivity,

dynamic range and power-efficiency. In the recent years, multiple high performance biopo-

tential amplifiers [4]-[13] have been reported by pioneering researchers. Some of the re-

search groups [4],[13] have designed the biopotential amplifier with input-referred noise

values in the range of 2 ∼ 4 µVrms, but the power dissipation is usually larger than 10

µW. On the other side, some of the studies have developed amplifiers [9] with microwatt or

sub-microwatt power dissipation, but the input-referred noise values are generally above 10

µVrms. However, as the advances of neurobiology, high-sensitivity high-precision record-

ings have become a mandatory. It requires the design of amplifiers with ∼2 µVrms input-

referred noise while dissipating only a few microwatt power. To strike a balance on the

noise performance and power dissipation, a numeric value called noise efficiency factor

(NEF) [2] has been widely used by the researchers to evaluate the power-noise efficiency

of their designs. A smaller NEF value indicates a higher power-noise efficiency which is

preferred for a design.

A carefully designed spike detector can effectively reduce the power dissipation of a

microsystem by minimizing the transmission data. Given the low occurrence rate of neural

action potentials (APs), about 10 to 120 occurrences per second, it is promising to achieve a

great data compression by removing the redundant data at the intervals of spikes. Although
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a spike detector itself may dissipate some extra power, but comparing with the power re-

duction brought by the data compression, up to 5 times as reported [14], introducing a

low-power spike detector is till an energy-efficiency policy. A spike detection algorithm is

the core of a spike detector. A variety of mathematical tools have been employed for the

studies of the spike detection algorithms, such as thresholding [15], spike derivatives [16],

and energy operators [17]. Because of its low computation complexity, robust and unsuper-

vised features, the nonlinear energy operator (NEO) [17]-[20] has become the mostly used

spike detection method. The low power implementations of NEO spike detectors have been

extensively reported in the past years. Based on the sub-threshold design, a NEO spike de-

tector [18] achieves a power dissipation of 2.7 µW . Another study [19] combining the NEO

spike detector and the spike feature extractor together dissipates only 1 µW power. A NEO

spike detector [20] which improves the detected waveform integrity has achieved a power

dissipation as low as 780 nW. However, these studies only target on the noise degraded

spike signals and fails to address the impact of large-amplitude baseline disturbance on the

spike detections. This disturbance that is a mixture of local field potential (LFPs) and APs

from neighbouring neurons may have an amplitude as high as 1 mV with frequency con-

tent up to 200 Hz [21]. Since LFPs contain valuable information for the clinic applications,

such as epileptic seizure [22], it is highly desirable to investigate a robust method for the

spike detection at the presence of the LFP.

In wireless data acquisitions, the advances in micro-electromechanical systems (MEMS)

have made it possible to integrate more recording channels in a small area. However, this

increase on the number of channels causes a growth on data volume resulting in a challenge

for wireless data transmissions. For example, a 128-channel recording system with 8-bit

resolution at the Nyquist sampling rate requires 20 Mb/s data rate when the target signal

is 10 kHz [5]. As the number of channels increases, the data rate reaches 100 Mb/s and

higher [6]. Impulse radio based ultra-wideband (IR-UWB) communication can be a ex-

cellent strategy for high-speed neural recordings [5][6]. Sub-GHz UWB communications

occupy a lower band (0 - 960 MHz) [23] than the standard UWB communications (3.1 -
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10.6 GHz). The relatively lower frequency spectrum relaxes the system requirements on

the circuit design and the communication synchronization, which ultimately reduces total

power dissipation of the system. In addition, the sub-GHz UWB pulses have been proven

to hold low attenuation in air, good penetration and little group delay [23][24].

2.0.1. Research Approaches

In this study, we have employed the approach of application-specific integrated circuits

(ASIC) design which customizes the circuit based on the requirements of the system. A

carefully designed ASIC system uses the minimum power to achieve all functionalities.

For amplification stage, we have utilized CMOS weak inversion design to achieve an ultra

low-power low-noise signal amplification. For data compression stage, NEO based spike

detection method has been studied to implement an ultra low-power spike detection. For

data transmission stage, we have investigated the sub-GHz UWB transmitter. Through an

in-depth study on the mathematical model of pulse generations, a low-power pulse genera-

tor has been investigated for sub-GHz UWB communications.

2.1. Specific Aims

The objective of this dissertation is to develop a low-power multichannel telemetry system

for high-speed wireless neural recordings. In order to achieve this goal, we have demon-

strated three subsystems with a 0.13-µm CMOS process: a low-power low-noise biopoten-

tial amplifier, an ultra-low-power high sensitivity spike detector and a power-efficient pulse

generator. The three specific aims are described as follows:

2.1.1. Aim 1: Development of a low-power low-noise biopotential amplifier for signal

amplification

For identical overall power dissipation, the increase of channel numbers shrinks the power

budget assigned to each biopotential amplifier, because each channel requires one amplifier.
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On the other hand, as neural signals are typically in the range of 10 ∼ 500 µV with a noise

level of 5 ∼ 10 µVrms [2], a low-noise amplification is desired in practical applications.

The aim of this work is to customize an amplifier which holds an optimized performance

on power dissipation, device noise, and voltage gain for neural signal amplifications. To

achieve this aim, we have employed the subthreshold CMOS circuit design to achieve a

maximized power efficiency (gm/ID). Two specific amplifiers have been studied. The first

one is targeted to the application requiring very-large-scale neural recordings which gener-

ally demands the number of recording channels up to 1000. For this application, a biopoten-

tial amplifier needs to achieve an extremely low power dissipation (∼100 nW). The second

amplifier is target on low-noise performance which is critical for high-sensitivity neural

recordings. A gain-tunable feature have been investigated in this amplifier to fully explore

the resolution of analog-to-digital (ADC) block.

2.1.2. Aim 2: Development of a low-power high-sensitivity spike detector for data

compression

Data compression stage is required due to the large data volume caused by the increase of

recording channels. Neural spike detectors can effectively reduce the total power dissipa-

tion of the system by minimizing the transmission data. The aim of this work is to develop

a spike detector to achieve a continuous high-sensitivity spike detection. To achieve this

goal, two specific tasks must be completed. The first one is the investigation of spike detec-

tion algorithms. An efficient spike detection algorithm can enhance the detection sensitivity

and lowers the power dissipation of a spike detector. The second task is to implement the

proposed algorithm into a low-power high-sensitivity spike detector.
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2.1.3. Aim 3: Development of a power-efficient pulse generator for data transmission

A pulse generator is the most important component for a UWB transmitter. The aim of this

work is to develop a power-efficient pulse generator for high-speed wireless neural record-

ings. The strategy is to develop an orthogonal pulse based sub-GHz UWB transmitter that

can achieve a high data rate (up to 100 MHz) with pure pulse shape modulation. However,

the design of an orthogonal pulse generator is complicated in both mathematical modelling

and circuit implementation, which may result in a very high power dissipation and cannot

be used for a neural recording system. In this study, we have made a balance on the power

dissipation and data rate, and proposed a power-efficient orthogonal pulse set generator.
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3. BIOSIGNAL AMPLIFIERS

An Ultra-Low-Power Bioamplifier

Power dissipation of bioamplifiers has become one of the most critical factors for up-to-date

implantable neural recording microsystems as the increasing of recording channels. This

study presents an ultra-low-power bioamplifier [25] which is designed for the very-large-

scale integration of neural recordings. To reduce the power, the proposed bioamplifier is

designed to work with a 0.5 V power supply and all MOSFETs operate at weak inversion

region. Both folded-cascode and wide-swing structures are employed to fully exploit the

output swing. By producing a 18:1 bias current ratio between input transistors and load

current mirror, the noise performance of the proposed bioamplifier is optimized for the

given power dissipation. Designed in a 0.13-µm CMOS process, the proposed bioamplifier

consumes only 61.7 nW power to obtain a gain of 23.8 dB and a bandwidth of 3.6 kHz.

The input-referred noise over the entire bandwidth is 12.7 µVrms, corresponding to a noise-

efficiency factor of 3.1.

Introduction of Ultra-Low-Power Bioamplifier

Access to simultaneously recorded bioelectrical activities from a large number of record-

ing sites facilitates a more accurate diagnosis of the malfunctions in human body. Mul-

tielectrode biopotential recordings using an array of microelectrodes have become a stan-

dard practice in neuroscience research [2]. Implantable neural recording systems enable in

situ recording of simultaneous neural activities [26]. A fully implantable neural recording

system must be small enough for the convenience of implantation, while its power con-

sumption must be low enough for the length of device lifetime and also for the safety of

surrounding tissues.
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Figure 3: Biopotential recording system.

A bioamplifier is the most important component for a multielectrode biopotential record-

ing system in terms of functionality. It is also a critical factor dictating the size and power

dissipation of the system. A typical biological signal monitoring system is shown in Fig.

3. The bioamplifier needs to amplify biosignals in the range 10 µV - 500 µV with noise

level of 5 µVrms - 10 µVrms. The characteristics of typical biosignals are shown in Fig. 4.

Therefore, a high gain amplifier with a high signal-to-noise ratio (SNR) is desirable. Be-

sides, since a heat flux of 80 mW/cm2 can cause necrosis in muscle tissue [2], for an array

of 512-electrodes, power dissipation must be less than 1 µW per channel for a small chip

area [9]. All these constraints must be considered while designing a bioamplifier.

The design of bioamplifiers has attracted the interest of multiple research groups in

the past decades. Harrison et al. have reported a bioamplifier designed in 1.5-µm CMOS

process with a power dissipation of 80 µW and a noise-efficiency factor (NEF) of 4 [2]. A

sub-microwatt low-noise amplifier [7] is designed for neural recording consuming only 805

nW. Kim et al. have proposed a 220 nW neural amplifier [9] with an NEF of 2.47. Most

of the reported studies consume µW level power with a few exceptions. However, the high

power consumption hinders the accommodation of larger number of recording channels in

an implantable system. For an energy-harvested system, the power budget become even

more stringent to meet the noise efficiency while supporting higher number of channels. In

an effort to reduce the power consumption of an implantable bioamplifier while maintaining

desirable noise efficiency factor, our group is focusing on the design of an ultra-low-power

bioamplifier which can eventually support large array neural signal recording.
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Figure 4: Characteristics of typical biosignals.

In this work, we propose a power and noise efficient bioamplifier for large array biopo-

tential recording systems. The proposed bioamplifier utilizes a differential folded-cascode

gain stage and a common-gate gain stage to amplify the biological signal. The wide-swing-

cascode structure is employed to achieve high gain under low-voltage low-power operation.

Subthreshold region operation of MOSFETs are utilized and the corresponding device di-

mensions are optimized by extensive computer simulations. The optimum trade-off of

power, noise and device dimensions results in an ultra-low-power biosignal amplifier. The

proposed bioamplifier is designed using 0.13-µm standard CMOS process. Monte Carlo

simulation is performed to validate the system performance with respect to device dimen-

sion mismatch. Finally, a pre-recorded human electroencephalography (EEG) signal is

used to confirm the performance of the proposed bioamplifier.

Proposed Ultra-low-power Bioamplifier

A high-pass filter shown in Fig. 5(a) is applied before the proposed bioamplifier to block

the DC-offset which is produced by the skin-electrode interface. The core circuit of the

proposed bioamplifier is shown in Fig. 5(b). The folded-cascode structures consisting
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of MOSFETs operating in weak-inversion-saturation and deep-weak-inversion regions is

utilized in the proposed architecture to achieve high gain with low-power consumption.

The NMOS differential pair (M5,M6) working in the weak-inversion-saturation acts as

the first gain stage of the proposed bioamplifier. The gate terminals of M5 and M6, Vin+ and

Vin-, are the differential inputs. NFETs are selected here instead of PFETs to ensure a high

transconductance which is important for the noise suppression. The primary challenge

of designing a bioamplifier is the use of constraint power budget to achieve a low-noise

performance and decent signal gain. A bias current ratio of 18:1 is achieved on the drain

current of transistor M5 and the drain current of transistor M10. The large bias current on

the input NMOS pair produces large transconductances of M5 and M6 which yield a high

gain on the first stage and reduce the input-referred noise of the bioamplifier.

The gain function of the input NMOS differential block can be given by

G1 =−gm5 ·
[

ro8||
1

gm10

(
1+

gm12ro12ro14

ro10

)
||ro5

]
(3.1)

where G1, gm and ro represent the gain of the NMOS input differential block, the transcon-

ductance and the output resistance of the MOSFET, respectively. The output signals then

pass through the common-gate gain stages (M9,M10) and the gain of these stages can be

represented as

G2 = gm10 · (ro10||gm12ro12ro14) (3.2)

where gm10 represents the transconductance of M10. Finally, the total gain of the entire

bioamplifier is

G = G1G2 (3.3)

where G1 and G2 are given by (3.1) and (3.2), respectively.

Noise analysis on the proposed bioamplifier

As the design is aimed to amplify neural signals, the proposed amplifier must holds a noise

performance that is good enough to process micro-volts level signals. The amplitude of
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Figure 5: (a) Bioamplifier with a high-pass filter for DC suppression. (b) Schematic of the
proposed bioamplifier.

biological neural signal is in the range of 50µV ∼ 500µV and frequency ranges in 10 ∼ 3

kHz [2] [10]. Thus flicker noise is the dominant noise and the input stage that contributes

the most flicker noise is the most noisy part in the circuit.
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To design a low-noise amplifier, we can lower the total noise by reducing the noise

contribution of the first stage, i.e. the noise contributed by M5 ∼ M8. The thermal noise of

the first stage can be expressed as

e2
ni,al =

8kT γ
gm5

+
8kT γgm7,8

g2
m5

(3.4)

where k is the Boltzman constant and T is the absolute temperature. γ represents the drain

noise coefficient. The flicker noise can be expressed as

e2
ni, f licker =

2KN

Cox(WL)5 f
(3.5)

where KN represents the flicker noise coefficients, and Cox is the gate oxide capacitance per

unit area. Finally, the total input-referred noise can be represented as

vni,rms =

√∫
BW

(
e2

ni,thermal + e2
ni, f licker

)
d f (3.6)

By inserting (3.4) and (3.5) into (3.11), the equation (3.11) indicates that the total input-

referred noise of the circuit can be reduced by enhancing the transconductances of M5 and

M6. Large dimensions 348 µm
360 nm are used here to achieve high transconductance. Although

the equation (3.4) also shows that by reducing the transconductance of M7,8 pair can also

reduce the noise, it can not be easily achieved because M7,8 pair need to sustain a high

current in the circuit which is the summation of current from input pair and output load.

We applied a small aspect ratio, 14 µm
22 µm , on M7,8 pair for the purpose of a high gain in the

first stage.

To evaluate the noise performance of a low-power bioamplifier, a commonly used per-

formance metric is the NEF [2] that is expressed as

NEF = vni,rms

√
2 · Itotal

4πkT ·UT ·BW
(3.7)
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where vni,rms is the root mean square of input-referred noise, Itotal is the total current, k

is the Boltzman constant, T is the absolute temperature, UT is the thermal voltage (26

mV@300K) and BW is the bandwidth.

Simulation Results

This design uses a standard 0.13-µm CMOS process and a 0.5 V supply. The proposed

bioamplifier is designed and simulated with Cadence Virtuoso Spectre circuit simulator.

The total power consumption including the high-pass filter is only 61.7 nW. In order to

reduce flicker noise at the input stage, large dimensions 348 µm
360 nm are used on the input dif-

ferential pair M5 and M6. The PMOS pair M7 and M8 sustain the largest drain current that

prompts in a large drain noise. Therefore, to reduce the noise contribution, two PFETs have

been used with a relatively small aspect ratio, 14 µm
22 µm . Transistors M9 ∼ M14 form the load

current mirror which are biased by small drain current to achieve low transconductance.

By driving a load capacitor of 2 pF, the proposed bioamplifier produces a frequency

response as shown in Fig. 6 As is seen from the plot, the bioamplifier achieves a gain of

23.8 dB and a -3 dB bandwidth of 3.6 kHz. The lower cutoff frequency, 2.8 Hz, is decided

by the value of CP and MOS-bipolar transistors, while the higher cutoff frequency, 3.6 kHz,
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Figure 7: Monte Carlo Simulation. (a) Monte Carlo Simulation results of input-referred
noise. (b) Monte Carlo Simulation results of THD when input Vpp=500 µV.

is determined by the output load capacitor and output resistance. In this design, CP is 100

pf and are implemented with two Dual-MIMCAP capacitors.

The proposed bioamplifier achieves a 12.7 µVrms input-referred noise in the noise simu-

lation, that leads to a NEF of 3.1 under 61.7 nW power dissipation. Considering the process

variation and mismatch of fabrication, Monte Carlo simulation is conducted to make a more

practical assessment. Fig. 7(a) is the Monte Carlo simulation of input-referred noise with

200 samples. It produces a mean input-referred noise of 12.9 µVrms with only 0.5 µVrms
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Figure 8: Input EEG signal and amplified output.

Figure 9: The layout of the proposed bioamplifier.

standard deviation. The relatively smaller standard deviation value indicates a robust noise

performance of the proposed bioamplifier.

Linearity is another important parameter for an amplifier because it directly affects the

dynamic range of amplifier and the fidelity of output signal. The transient simulation of
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the proposed bioamplifier shows a 1% total harmonic distortion (THD) at the presence of

500 µVpp input signal. Given a typical neural action potential has the amplitude in the

range of 50 ∼ 500µV [27], the linearity of the proposed bioamplifer is qualified for neural

signal recordings. To verify the design for fabrication, another Monte Carlo simulation is

done and the results are shown in Fig. 7(b). For a 500 µVpp input signal, Monte Carlo

simulation indicates a mean value of 1.2% THD and a standard deviation of ∼ 0.33. The

error between the transient simulation and the Monte Carlo simulation is due to the ultra-

low-power design and the open-loop topology of the proposed bioamplifier.

A human EEG signal from MIT-BIH Database is applied to the proposed bioamplifier

and the simulation results are shown in Fig. 8. The output indicates an identical dynamics

but with a 23.8 dB amplification. The design has been submitted for fabrication and the

layout is shown in Fig. 9. A comparison of the proposed bioamplifier with several existing

works is shown in Table 1. The proposed circuit has a comparable noise and linearity

performance with the previously published works, but consumes much less power, only

61.7 nW.

Table 1: Comparison of the Proposed Bioamplifier with the Previously Reported Works

[9] [12] [13] This work
Supply (V) ±0.9 1.5 1 0.5
Gain (dB) 28.9 37 40 23.8
fL (Hz) 0.1-100 5 0.05 2.8
fH (kHz) 11.2 7 10.5 3.6
vni,rms(µVrms) 14.5 5.5 2.2 12.7
NEF 1.95 2.58 2.9 3.1
1% THD (mVp−p) - 0.40 1 0.5
Power (µW) 0.22 1.5 12 0.061
Technology (µm) 0.35 0.13 0.13 0.13
Year 2009 2011 2012 2012

Summary of Ultra-Low-Power Bioamplifier

In this study, we present the design of an ultra-low-power bioamplifier for biological signal

recordings. Folded-cascode structure and subthreshold MOSFETs are used for low-power
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low-noise amplification. The proposed amplifier has been designed and simulated in a

standard 0.13-µm CMOS process. This amplifier has a gain of 23.8 dB with 3.6 kHz

bandwidth and consumes only 61.7 nW from a 0.5 V power supply. The proposed amplifier

has an input-referred noise of 12.7 µVrms and a low NEF of 3.1.

A Low-Noise Gain-Tunable Amplifier

This study [28] presents a low-noise gain-tunable biopotential amplifier that is designed

based on a folded-cascode structure. Sub-threshold and self-biasing techniques are em-

ployed to achieve a low-noise and low-power amplification. With a bias-current tuning

block, the gain of the proposed biopotential amplifier can be precisely adjusted. Designed

in a standard 0.13 µm CMOS process, the proposed amplifier provides a 5.9 kHz bandwidth

and 30.1 dB gain with 732 nW power. The input-referred noise over the entire bandwidth

is 4.3 µVrms, equivalent to a noise-efficiency factor of 2.48.

Introduction of Low-Noise Gain-Tunable Amplifier

A biopotential amplifier [2][7] that amplifies neural signals at the front-end is one of the

most important components of an implantable neural recording microsystem. Since neural

signals typically range from 10 µV to 500 µV with a noise floor of 5 - 10 µVrms, biopo-

tential amplifiers must achieve both high gain and low-noise performance. Low-noise am-

plification is extremely important since it determines the sensitivity of the entire system

as well as impacts the capacity of post-processing. Furthermore, due to the diversity of

neural signals, different bandwidth ranges are expected to record different biosignals [29].

Finally, for all implantable circuit designs, power dissipation must be considered carefully

since excessive power consumption will not only shorten the longevity of batteries but also

cause the necrosis of tissues [30].

State-of-the-art biosignal amplifiers have achieved microvolt input-referred noise and

sub-microwatt power dissipation. A neural amplifier [9] is reported to consume only 220
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nW power with 14.5 µVrms input-referred noise. The work presented in [11], reduces the

input-referred noise to 3.5 µVrms while consumes 7.92 µW power. Recently, a biopotential

amplifier [13] which has a power dissipation of 12 µW achieves an input-referred noise of

2.2 µVrms. With an improved power consumption of 800 nW, a neural recording amplifier

[31] maintains the input-referred noise at 5.71 µVrms.

In this work, we present a gain-tunable biopotential amplifier that achieves an input-

referred noise of 4.3 µVrms with 732 nW power consumption. The self-biasing arrange-

ment consisted of weak inversion MOSFETs is demonstrated to achieve the low-noise

and low-power amplification. The precisely tunable gain of the proposed amplifier can

maximally utilize the resolution of an analog-to-digital converter (ADC) by adjusting the

amplitude of the amplified signal to the suited range.

Figure 10: Schematic of the proposed biopotential amplifier.

Design of Proposed Biopotential Amplifier

Gain analysis.

Gain of stages: As shown in Fig. 10, the proposed amplifier consists of two stages - a

folded-cascode stage (M1-M11) and an output stage (M12-M15). Transistors M16 and M17

are used to control the gain. Transistors M15, M3, and M10 creates the self-bias structure
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for the DC bias of folded-cascode stage. If we represent the bias current of output stage as

Iout , the drain current of M3 and M6 can be denoted as αIout and β Iout , respectively where

α and β are constants. Then, the drain current of M4, Itot , can be represented as:

Itot =
αIout

2
+β Iout (3.8)

By using EKV model [32] and ignoring the gain control block (M16 and M17), we can

obtain the gain of the folded-cascode stage:

A1 =

(
nUT + 1

λ8λ10nUT

)(
1

λ8λ10(nUT )2+1

)
2(β

α )
[
λ4(nUT )2 +nUT + 1

λ8λ10

]
+(λ1 +λ4)

[
(nUT )2 + 1

λ8λ10

] (3.9)

where λ and UT represent the channel length modulation parameter and thermal voltage,

respectively. The numeric in the subscript denotes the number of MOSFETs in Fig. 10.

Similarly, the gain of output stage can be represented as:

A2 =
1

λ15(nUT + 1
λ12

)
(3.10)

The total gain, AOTA, of the proposed amplifier is the multiplication of equations (3.9) and

(3.10).

Gain control and bandwidth expansion: From equation (3.9), we may notice that α is

proportional to AOTA, while β is inversely proportional to AOTA. In other words, the self-

biasing arrangement of M3 and M16 in Fig. 10 constitutes a positive feedback, while M10

and M16 create a negative feedback. Consequently, we can adjust the gain of the proposed

amplifier by changing the value of β . A gain control block is added in the dashed line

area of Fig. 10. When V ctr rises, the drain current of M18 is increased. The current flow

through M6,7 and M8,9 increases accordingly, which results in a bigger β value. As a result,

the gain of the amplifier is decreased. In contrast, by lowering V ctr, we can increase the

gain accordingly. However, the change of V ctr must keep all MOSFETs saturated in the

weak inversion region. Both Miller feedback and external negative feedback are used on

the proposed amplifier. Depicted in Fig. 10, Cm and Rm construct a miller feedback which
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improves the stability by raising the phase margin. External negative feedback, C f and R f ,

expands the -3 dB bandwidth effectively, but at the expense of a few gain drop. C1 and C2

are added to improve the phase margin.

Noise Analysis. Since the input stage dominates the total noise contribution, we can

estimate the noise performance of the entire amplifier by analyzing the input-referred noise

of the input stage. To simplify the math, we represent the thermal noise and flicker noise

from the pairs of M1,2, M4,5, M6,7 as:

V 2
n,in = 8kT γ

(
1

gm1,2
+

gm4,5

g2
m1,2

+
gm6,7

g2
m1,2

)
+

2KN

Cox(WL)1,2 f

+
2KP

Cox(WL)4,5 f

(
g2

m4,5

g2
m1,2

)
+

2KP

Cox(WL)6,7 f

(
g2

m6,7

g2
m1,2

)
(3.11)

where KN and KP are process-dependent constants; γ is MOSFET noise coefficient. The

equation indicates that we can reduce both thermal noise and flicker noise by increasing

the dimension of M1,2. Although smaller gm4,5 and gm6,7 can also decrease the noise, lower

transconductance will reduce the bandwidth of the amplifier. To strike a balance between

noise and bandwidth, appropriate values of gm4,5 and gm6,7 are selected through simulation.

Noise-efficiency factor (NEF) [2], which assesses noise performance along with power con-

sumption and bandwidth, is also employed to make a complete evaluation on the proposed

amplifier.

Simulation Results

The proposed biopotential amplifier is designed in a standard 0.13 µm CMOS process. As

shown in Fig. 11(a), the frequency response of the proposed amplifier indicates a 30.1

dB gain and 5.9 kHz bandwidth, and 30◦ phase margin. Fig. 11(b) shows the variation

of the gain corresponding to the change of V ctr. By adjusting V ctr from 30 mV to 105

mV, the gain of the amplifier can be tuned from 30.1 dB to 17.5 dB (∼ -0.26 dB/mV).

Fig. 12(a). presents the squared input noise over the -3 dB bandwidth of 3.4 Hz - 5.9
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Table 2: Performance of the proposed amplifier and other state-of-art designs

[9]a [34]b [12]a [11]a [13]a [31]a This workb

Vni,rms (µVrms) 14.5 14.3 5.5 3.5 2.2 5.71 4.3
NEF 1.95 1.32 2.58 3.35 2.9 2.59 2.48
fL (Hz) 0.1 0.024 5 10 0.05 0.2 3.4
fH (kHz) 11.2 7.47 7 7.2 10.5 5.8 5.9
Gain (dB) 28.9 28.3 37 39.4 40 40 30.1
Supply (V) ±0.9 1.8 1.5 1.8 1 1 0.55
Power (µW) 0.22 0.077 1.5 7.9 12 0.8 0.732
1% THD (mVp−p) - - 0.4 5.7 1 - 3.6
Process (µm) 0.35 0.18 0.13 0.18 0.13 0.18 0.13

a: represents measurement results; b: represents simulation results.

kHz, which is equivalent to an input-referred noise of 4.3 µVrms. A NEF of 2.48 can be

calculated accordingly with a power consumption of 732 nW. The linearity of the proposed

amplifier is examined with total harmonic distortion (THD). Fig. 12(b) shows the THD

of amplified signals corresponding to different input peak-to-peak amplitudes. For a 1%

THD, the peak-to-peak input signal is 3.6 mV. In order to verify the performance of the

proposed amplifier in amplifying the real biopotential signals, a 47 years old female human

electroencephalography (EEG) signal [33] is applied to the amplifier. As is seen in Fig. 13,

the spike of input EEG signal has a magnitude of 129.8 µV, while the corresponding output

spike achieves a magnitude of 4.4 mV. These values indicates an amplification of 33.9×

or 30.6 dB, which is close to our ac simulation result of 30.1 dB gain. Table 2 summarizes

the performance of this work and other state-of-art designs.

Summary of Low-Noise Gain-Tunable Amplifier

In this study, we have proposed an improved biopotential amplifier which achieves an input-

referred noise of 4.3 µVrms, corresponding to a NEF of 2.48. Owing to the subthreshold de-

vice and self-biasing scheme, the amplifier provides a 30.1 dB gain and 5.9 kHz bandwidth

at the cost of only 732 nW power. The low-noise, low-power performance and tunable
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gain make the proposed amplifier promising in the applications of large array neural signal

recordings.
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Figure 11: (a) Frequency response of the proposed amplifier. (b) The variation of gain
controlled by different V ctr.
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Figure 12: (a) Monte Carlo simulation of input-referred noise. (b) The THD of output
signals at different input peak-to-peak amplitudes.

Amplifier With Optimized Noise Efficient Factor

Implantable wireless neural recording microsystems have demonstrated their efficacies in

neuroscience studies in the past decades. However, with the advances of neurobiology,

higher sensitivity and higher precision neural recording microsystems are becoming the
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Figure 13: Performance verification of the proposed amplifier with EEG signals.

critical need. A biopotential amplifier is the first stage of a neural recording microsystem,

the performance of which decides the signal-to-noise ratio and the power dissipation of

each recording-channel. In this study, we present a low-noise biopotential amplifier with

a noise efficiency factor (NEF) optimized closer to the theoretical limit of a folded cas-

code structure. A high transconductance input nMOSFET pair is designed to guarantee a

low input-referred noise. A self-biased scheme comprising a weak positive feedback and

a strong negative feedback is employed to further enhance the transconductance. By op-

timizing the noise performance while maintaining the NEF value close to the theoretical

limit, a very low input-referred noise and a higher power-noise efficiency are achieved in

our design. Using a standard 0.13-µm CMOS process, the proposed amplifier achieves an

input-referred noise of 1.98 µVrms at the expense of 7.5 µW power, corresponding to a

NEF of 2.31. The gain of the proposed amplifier is 40.84 dB at a -3 dB bandwidth from

6.65 Hz to 9.38 kHz.
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Introduction of Amplifier With Optimized Noise Efficient Factor

High-density neural recordings have the potential to help neuroscientists and clinicians re-

vealing neural network mechanisms. New emerging implantable wireless neural recording

microsystems[35] which can monitor a large amount of neural activities wirelessly have

made the research of freely behaving animals possible. However, the design of an im-

plantable wireless neural recording microsystem is challenging due to the properties of

neural signals and the power constraint of implantable devices. A neural signal[4] is typi-

cally in the range of 10 ∼ 500 µV with a noise level of 5 ∼ 10 µVrms, which demands a

high-gain and low-noise amplification. In addition, as a heat flux of 80 mW/cm2 can cause

the necrosis of tissues[2], a low-power design is not only extending the lifetime of battery

but also ensuring the safety of tissues.

A biopotential amplifier[2]-[7] which acts as the first amplification stage is one of the

most important components in an implantable neural recording microsystem. The perfor-

mance of a biopotential amplifier determines the complexity of the post signal process-

ing. A well-designed low-power low-noise amplifier can improve the system sensitivity,

dynamic range and power-efficiency. In the recent years, multiple high performance biopo-

tential amplifiers[4]-[13] have been reported by pioneering researchers. Some of the re-

search groups[4],[13] have designed the biopotential amplifier with input-referred noise

values in the range of 2 ∼ 4 µVrms, but the power dissipation is usually larger than 10 µW.

On the other side, some of the studies have developed amplifiers[9],[34] with microwatt or

sub-microwatt power dissipation, but the input-referred noise values are generally above 10

µVrms. However, as the advances of neurobiology, high-sensitivity high-precision record-

ings have become a mandatory. It requires the design of amplifiers with ∼2 µVrms input-

referred noise while dissipating only a few microwatt power. To strike a balance on the

noise performance and power dissipation, a numeric value called noise efficiency factor

(NEF)[2] has been widely used by the researchers to evaluate the power-noise efficiency

of their designs. A smaller NEF value indicates a higher power-noise efficiency which is

preferred for a design.
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In this work, we propose a low-noise biopotential amplifier with an NEF value close

to the theoretical limit of the proposed circuit structure. The NEF theoretical limit of the

proposed circuit topology is derived out first to guide the circuit design process. Based on

this NEF value, we calculate the total current needed to achieve the highest power-noise ef-

ficiency. The very low input-referred noise is achieved by increasing the transconductance

of the input nMOSFET pair. Three approaches are adopted here. Firstly, the nMOSFET

pair are biased to operate at weak inversion saturation region for the high transconductance

efficiency (gm/ID). Secondly, 1/3 of the total current is assigned to the nMOSFET pair.

Thirdly, a self-biased structure comprising a weak positive feedback and a strong negative

feedback is applied on the circuit to further enhance the transconductance.

The Proposed Low-noise Biopotential Amplifier

The overall schematic of the proposed biopotential amplifier is shown in the Fig. 14(a).

It consists of a high-pass filter stage and an operational transconductance amplifier (OTA)

based gain stage. The high-pass filter is created by the capacitors Ca, Cb and the equivalent

resistors formed by the Miller effect of pseudoresistors Ma ∼ Md . The transistors Ma ∼ Md

are MOS-Bipolar pseudoresistors[2] which have the resistance in the range of 10∼100 GΩ.

Due to their large resistance values, the negative AC feedbacks created by the pseudoresis-

tors have very small currents, which allows the gain of the proposed biopotential amplifier

close to the open-loop gain of the OTA. In addition, the pseudoresistor connections also

provide the DC biases for the gates of the transistors M1 and M2. By increasing the capaci-

tances of Ca and Cb, a relatively small lower cut-off frequency can be obtained.

Fig. 14(b) shows the schematic of the proposed OTA circuit. The structure of the OTA

circuit is based on the folded cascode structure. A 0.3 V bias voltage is applied on the

gates of transistors M7 and M8. Unlike conventional folded cascode amplifiers, self-biased

connections are applied on transistors M3 ∼ M6 and M9 ∼ M10. The reason to use the

self-biased scheme is to form a positive feedback which can enhance the transconductance

of the input nMOSFET pair. The positive feedback consists of transistors M2, M5, M6,

29



Vout
Vin-

Vin+

Vsig-

Ma Mb

Mc Md

CL

Ca

Cb
Vsig+

OTA
Vout-

Vout+

(a)

Vin- Vin+
Vout+

VDD

GND

M11

M7

M9

M4M3

M2M1

M5 M6

M10

M8
Vout-nbias

(b)

Figure 14: (a) The overall schematic of the proposed biopotential amplifier, (b) The
schematic of the operational transconductance amplifier (OTA).

and M11. The positive feedback mechanism can be explained as follows. When a neural

signal is applied at the gate of transistor M2, an amplified signal with 180◦ phase shift is

generated at the drain of M2. As transistor M5 does not provide any phase shift, the same

signal appears at the gate of M6. By introducing another 180◦ phase shift due to gate-drain

signal transition created by the transistor M6, the signal appears at the gate of M11 has the

same phase as the input signal. As a result, when a high voltage signal presents at the gate

of transistor M2, a high voltage also appears at the gate of transistor M11, which increases

the drain current of transistor M11 and eventually increases the bias current of the input

nMOSFET pair. Since the drain current is proportional to the transconductance when a

MOSFET operates at weak inversion saturation region, the increased bias current raises the

transconductance of the input nMOSFET pair. Subsequently, an even larger high voltage

is generated at the gate of transistor M11 and further boosts up the transconductance of

the input nMOSFET pair. This positive feedback can increase the transconductance of the

input nMOSFET pair to a certain degree, but it also lowers the signal linearity and circuit

stability. Therefore, considering the linearity and stability requirements, a weak positive

feedback is employed in the design to leverage the high gain performance. To guarantee

the stability and linearity of the proposed biopotential amplifier, a strong negative feedback

comprising transistors M8 and M10 is created in the circuit. The operating principle of the
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negative feedback can explained as follows. When the voltage at the gate of the transistor

M11 rises, the drain current of the transistor M10 also increases resulting in a lower voltage

at the drain of M8. This reduces the voltage at the gate of transistor M10 and M11 and finally

reaches a balanced output value.

We can obtain the gain of the proposed amplifier by deriving the gain of the OTA.

Considering the perfect circuit symmetry, the transistor dimensions are identical for each

pair, such as M1 −M2, M3 −M4, M5 −M6, etc. Thus, the gain of the proposed biopotential

amplifier can be represented as

G =−gm1 · [gm6ro6 (ro4||ro1) ||gm8ro8ro10] (3.12)

where gm and ro represent the transconductance and the output resistance of MOSFETs,

respectively. From equation (3.12), we can notice that, in order to increase the gain, a

large transconductance gm1 is desired. Thus, the transistors M1 and M2 are biased to oper-

ate at weak inversion saturation region for a high transconductance efficiency (gm/ID). As

the transconductance of a MOSFET working in weak-inversion saturation region is propor-

tional to its drain current, a large portion of the current from M3 and M4 is assigned to M1

and M2 to ensure the high transconductance.

Noise Performance Optimization

Since the biopotential amplifier is needed by each recording channel, its power dissipation

must be kept at a very low level, typically a few micro-watt. For this reason, it is crucial

to strike a balance on the power dissipation and the noise performance. Generally, the

NEF is used to evaluate the power-noise efficiency of a design. In this work, we derive the

NEF theoretical limit of a folded cascode amplifier first, and then we optimize the noise

performance of the proposed biopotential amplifier following the NEF limit.
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3.0.4. NEF theoretical limit of a folded cascode amplifier

The NEF value has been widely used by the low-noise biopotential amplifier designers in

the previous works[2] - [13].

For the first step, we can model the total current of the circuit with some variables. As

shown in Fig. 14(b), the total current dissipation, Itotal , is the summation of currents flowing

though transistors M3 and M4. Due to the symmetry, it is two times the drain current of

transistor M4. From Kirchhoff’s current law, the drain current of transistor M4 is equal to

the summation of currents flowing through transistors M1 and M6. Here, we assume the

drain current of transistor M1 to be ID and the drain current of transistor M6 to be αID,

where α represents the current ratio of transistor M6 and M1. Therefore, the Itotal can be

denoted as

Itotal = 2ID(1+α) (3.13)

For our second step, we will model the input-referred noise of the proposed amplifier,

which consists of 1/f noise and thermal noise. The 1/f noise can be reduced by using large

dimensions on the devices. Here we will only focus on the minimization of thermal noise.

The major thermal noise of the circuit is from transistors M1 ∼ M4, as they carry the largest

currents in the circuit. However, as the noise of M3 and M4 will be divided by the amplifier

gain, it can also be negligible. Therefore, for lower absolute theoretical limit, only the noise

contribution from the thermal noise of the input nMOSFET pair is considered here and the

corresponding input-referred noise can be depicted as

vni,rms =

√
2 · 4kT γ

gm1
·BWnoise (3.14)

where k is the Boltzmann constant, T is the absolute temperature, γ is the drain noise

coefficient, and BWnoise is the noise bandwidth. For devices operating in weak inversion

saturation region, the transconductances of transistors can be represented as

gm1 =
ID

nUT
(3.15)
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where n is the subthreshold slop factor and UT is the thermal voltage (26 mV @ 300 K). If

we consider the proposed biopotential amplifier as a one-pole system which has a dominant

pole at the output, the noise bandwidth and -3 dB bandwidth have the relationship of

BWnoise =
π
2
·BW (3.16)

By taking equation (3.13) ∼ (3.16) into (??), we can arrive at

NEF =
√

2nγ(1+α) (3.17)

The value of noise coefficient γ is determined by the length of MOSFETs: 2/3 for long-

channel devices and 2.5 for short-channel devices. The value of n is 1.4 in general. If we

scale down the value of α close to zero, then the NEF theoretical limit of a folded cascode

amplifier is in the range of 1.37 ∼ 2.65. Considering the flicker noise and the non-zero

value of α , the practical value of NEF should be slightly larger than this approximation.

3.0.5. Noise performance optimization under the NEF theoretical limit

The input-referred noise is a standard benchmark used to characterize the noise perfor-

mance of an amplifier. As the transistors M1 ∼ M4 sustain the largest current in the circuit,

the input-referred noise of the proposed amplifier can be represented by the noise from

transistors M1 ∼ M4 without the loss of generality. We will analyze the thermal noise and

1/f noise in the following paragraphs.

The input-referred thermal noise of the proposed biopotential amplifier can be repre-

sented as

v2
ni,th = 2 · 4kT γ

gm1

(
1+

gm4

gm1

)
(3.18)

where k is the Boltzmann constant, T is the absolute temperature, and γ is the drain noise

coefficient. From equation (3.18), we can notice that, by increasing the transconductance

gm1, the thermal noise can be reduced. It is also possible to decrease the thermal noise by
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lowering the transconductance gm4. However, the latter is not possible in practice, since the

transistor M4 provides the current to maintain the operation bandwidth of the circuit.

The input-referred 1/ f noise of the proposed biopotential amplifier can be expressed

as

v2
ni,1/ f =

2KN

Cox(WL)1 f
+

2KP

Cox(WL)4 f
·
(

gm4

gm1

)2

(3.19)

where KN and KP represent the 1/f noise coefficients of nMOSFET and pMOSFET, respec-

tively. Cox is the gate oxide capacitance per unit area. Again, a large transconductance gm1

can reduce the 1/f noise. In addition, equation (3.19) also indicates that, by applying large

dimensions on the transistors M1 - M4, a lower 1/f noise can be achieved.

Based on the analysis mentioned above, a high transconductance on the input nMOS-

FET pair, transistors M1 and M2, is required to achieve the high-gain and low-noise per-

formance. From equation (3.15), it is straightforward to increase the drain current as a

method to achieve a high transconductance. However, the increasing of current may also

raise the NEF value of the amplifier, which means a decreasing of the power-noise effi-

ciency. Therefore, in order to achieve the low-noise performance while maintaining the

NEF value close to the theoretical limit, we need to tune the circuits and compare the NEF

value interactively.

Our strategy here is to decide the total current dissipation firstly. Based on the NEF

theoretical limit obtained from previous section, the targeted input-referred noise (e.g. 2

µVrms), and the required bandwidth (e.g. 9 kHz), we can calculate the smallest total current

required to achieve the required performance. Secondly, we can select a relatively small

value for the current ratio, α , and then scale the transistors to achieve the required ratio.

Noise simulation is performed to find out the transistors contributing the most to the total

noise. Then, the dimensions and aspect ratios of those transistors can be adjusted accord-

ingly. A large amount of simulation tests are required here to strike a balance on the gain,

bandwidth, and input-referred noise. The value of α may need to be reset if the targeted

performance cannot be achieved. In the proposed biopotential amplifier, the value of α
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Table 3: Transistor Aspect Ratios Used In the Proposed Amplifier.

Transistors M1,M2 M3,M4 M5,M6 M7,M8 M9,M10 M11

Aspect Ratios 2 mm
0.64 µm

24 µm
16 µm

44 µm
0.8 µm

12 µm
18 µm

8 µm
20 µm

12 µm
10 µm

selected is equal to 1/3, which means that 3/4 of the total current is assigned to the tran-

sistors M1 and M2. This setting creates a transconductance value, gm1, up to 124.3 µs. In

addition, the positive feedback formed by the self-biased connection of transistor M11 also

enhances the transconductance gm1 by increasing the drain current of M11. The other 1/4

of the total current is assigned to the transistors M5 ∼ M10 to maintain the bandwidth and

the load driving capability of the circuit. The transistor dimensions used in the proposed

amplifier are presented in table 1.

Simulation Results

The proposed biopotential amplifier is designed using a standard 0.13-µm CMOS process

and works with a 0.8 V supply voltage. The gain and phase responses of the proposed OTA

are shown in Fig. 15(a). It shows that the proposed OTA achieves a gain of 41.22 dB and a

higher cut-off frequency of 9.2 kHz by loading a capacitor of 1 pF. A phase angle of -91◦ is

achieved at the 0 dB. Therefore, the phase margin of the OTA is 89◦, which guarantees the

stability of the proposed biopotential amplifier. Fig. 15(b) shows the frequency response

of the proposed biopotential amplifier. It achieves a mid-band gain of 40.84 dB and a

bandwidth of approximate 9 kHz by driving the same 1 pF load. The lower and higher

cut-off frequency values are 6.65 Hz and 9.38 kHz, respectively. The small gain reduction

comparing with the gain of the OTA is due to the bias connections formed by the transistors

Ma ∼ Md .

The noise simulation of the circuits shows an input-referred noise of 1.98 µVrms at the

dissipation of 7.5 µW. As our design uses a 0.8 V supply voltage, a NEF value of 2.31

can be calculated with equation (??). To validate the stability of the circuits, 200 samples
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Figure 15: (a) The frequency response of the proposed OTA, (b) The frequency response
of the proposed biopotential amplifier.
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Figure 16: Monte Carlo simulation results of the input-referred noise .

Monte Carlo simulations have been done. As shown in Fig. 16, the Monte Carlo simulation

exhibits a mean input-referred noise of 2 µVrms with a standard deviation of 94.84 nVrms.

Linearity is an important performance index for an amplifier since it decides the dy-

namic range of the circuits and the fidelity of the output signal. The maximum input peak-

to-peak voltage to produce 1% total harmonic distortion (THD) is the value typically used

to indicate the linearity of a amplifier. The transient simulation of the proposed amplifier

exhibits a THD value of 0.3 mVpp. The relatively smaller THD value is mainly due to the

high gain and low supply voltage. However, given the amplitude of typical neural signals
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Figure 17: Input EEG signal and amplified output.

is in the range of 50 ∼ 500µV , the linearity of the proposed biopotential amplifier is still

applicable for the biosignal amplification.

Finally, to estimate the performance of the proposed biopotential amplifier in ampli-

fying real neural signals, a human electroencephalography (EEG) signal from MIT-BIH

Database is applied to the amplifier. The transient simulation results are shown in Fig. 17.

The amplified output indicates a gain of 110, or 40.84 dB. A comparison of the proposed

amplifier with several other previously reported works is shown in Table 2. The proposed

biopotential amplifier achieves the lowest input-referred noise (1.98 µVrms) and NEF value

(2.31), while maintains comparable performance in terms of power dissipation, gain, band-

width, and THD values.

Summary of Amplifier With Optimized Noise Efficient Factor

This study presents a low-noise biopotential amplifier with an NEF value close to the theo-

retical limit of the folded cascode structure. In order to achieve the low-noise amplification

at the highest power-noise efficiency, the total current dissipation required to maintain the

NEF close to the theoretical limit is calculated firstly. Then, 3/4 of the total current is as-

signed to the input nMOSFET pair for a high transconductance. To further enhance the

transconductance, a self-biased structure comprising a weak positive feedback and a strong
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Table 4: A comparison of reported biopotential amplifiers.

12a 13a 20a 21a 22b This workb

Vni,rms (µVrms) 3.5 5.5 5.71 2.2 4.3 1.98
NEF 3.35 2.58 2.59 2.9 2.48 2.31

fL (Hz) 10 5 0.2 0.05 3.4 6.65
fH (kHz) 7.2 7 5.8 10.5 5.9 9.38

Gain (dB) 39.4 37 40 40 30.1 40.84
Supply (V) 1.8 1.5 1 1 0.55 0.8

Power (µW) 7.9 1.5 0.8 12 0.732 7.5
1% THD (mVpp) 5.7 0.4 - 1 3.6 0.3
Technology (µm) 0.18 0.13 0.18 0.13 0.13 0.13

Year 2011 2011 2012 2012 2013 2013

negative feedback is employed. With a standard 0.13-µm CMOS process, the proposed

amplifier achieves an input-referred noise of 1.98 µVrms at the expense of 7.5 µW power,

corresponding to a NEF of 2.31. The mid-band gain of the proposed biopotential amplifier

is 40.84 dB with a -3 dB bandwidth of ∼9 kHz.
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4. NEURAL SPIKE DETECTOR

Low-Power High-Sensitivity Spike Detectors

A spike detector has become a necessity of a contemporary multichannel neural recording

microsystem for data-compression. This work [44] [45] proposes two spike detection al-

gorithms, frequency-enhanced nonlinear energy operator (fNEO) and energy-of-derivative

(ED), to solve the sensitivity degradation suffered by the conventional nonlinear energy op-

erator (NEO) at the presence of large-amplitude baseline interferences. The efficiency of

NEO, fNEO and ED algorithms are evaluated with Simulink programs firstly and then im-

plemented into three low-power spike detectors with a standard 0.13-µm CMOS process.

To achieve a low-power design, subthreshold CMOS analog multipliers, derivatives and

adders are developed to work with a low supply voltage, 0.5 V. The power dissipation of

the proposed fNEO spike detector and ED spike detector are only 258.7 nW and 129.4 nW,

respectively. The quantitative investigation shown in the study indicates that both fNEO

and ED spike detectors achieves superior performance than the conventional NEO spike

detector. Considering its lowest power dissipation, the ED spike detector is selected for

our application. Further statistical evaluations based on the true positive and false positive

detection rate proves that the ED spike detectors achieves higher detection rate than that of

the conventional NEO spike detector but dissipates 48% less power.

Introduction of Spike Detectors

Implantable wireless neural recording microsystems have been extensively used in the stud-

ies of neurobiology and brain-machine interface. State-of-the-art implantable wireless neu-

ral recording microsystems [46]-[48] have already achieved the capability of real-time mon-

itoring of neural signals over 100 channels. However, the increasing of recording channels

gives rise to a larger data volume which demands higher data rate and higher bandwidth for
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data transmission. For example, a 100-channel microsystem, with a sampling frequency of

24 kHz per channel and 10 bits per sample, requires a transmission bandwidth of 24 Mbps

[49]. Since the existing telemetry link for biomedical applications is typically 1-2 Mbps, it

is a big challenge for the transmitter design considering the low-power requirement of the

implantable microsystems.

A carefully designed spike detector can effectively reduce the power dissipation of a

microsystem by minimizing the transmission data. Given the low occurrence rate of neural

action potentials (APs), about 10 to 120 occurrences per second, it is promising to achieve a

large data compression by removing the redundant data at the intervals of spikes. Although

a spike detector itself may dissipate some power, comparing with the large power reduction

(up to 5 times) brought by the data compression [49], the introduction of a low-power spike

detector is still an effective power reduction strategy.

A spike detection algorithm is the core of a spike detector. A variety of mathematical

tools have been employed for the design of spike detection methods, such as thresholding

[50]-[51], spike derivatives [52][53], and energy operators [54][55]. Because of its low

computation complexity, robust and unsupervised features, the nonlinear energy operator

(NEO) [55]-[59] has become the mostly used approach. The low-power NEO spike detec-

tors have been extensively reported in the past years. Based on the sub-threshold design,

a NEO spike detector [56] achieves a power dissipation of 2.7 µW . Another study [57]

combining the NEO spike detector and the spike feature extractor together dissipates only

1 µW power. A NEO spike detector [58] which improves the detected waveform integrity

has achieved a power dissipation as low as 780 nW. However, these studies only target on

the neural spike signals with a constant signal baseline and fail to address the impact of

large-amplitude baseline interferences. These interferences which consist of the local field

potentials (LFPs) and the APs from neighbouring neurons are inevitably superimposed on

the neural spike signals during the recording. Since LFPs contain important information

for the clinical applications, such as epileptic seizure [60], it is desired to keep them in the

recorded signals and should not be filtered out. However, the LFPs have the amplitude as
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high as 1 mV and frequency up to 200 Hz [21] which may create a challenge for the spike

detection considering that the amplitude of neural spike signals is typically in the range of

50-500 µV.

Our previous study [44] has shown the sensitivity degradation of conventional NEO

spike detectors at the presence of LFPs. In this work, we extended our previous work by

incorporating a comprehensive evaluation on the detection accuracy of the proposed spike

detectors. In second part, the characteristics of three mostly used spike detection algo-

rithms are introduced briefly. The third part elaborates the principles of the proposed spike

detection algorithms, namely frequency-enhanced NEO (fNEO) and energy-of-derivative

(ED), and compares them with NEO method. In the fourth part, the NEO, fNEO, and ED

algorithms are implemented into three low-power full-analog spike detectors and the per-

formance of the proposed algorithms are verified with the implemented spike detectors. A

large amount of statistical evaluations have been made in the fifth part to demonstrate the

detection robustness of the proposed ED spike detector at different signal-to-noise ratio

(SNR). Finally, we conclude this work in the last.

Background on Detection Algorithms

Direct thresholding, time-derivative and NEO are the three major approaches used in CMOS

integrated spike detectors. In this section, these schemes are explained briefly.

Direct thresholding method [50]-[51] discriminates APs from background signal by di-

rectly comparing input signal with a pre-setting or system self-acquired threshold. It has

the least computation and lowest power consumption. However, the accuracy of threshold-

ing method relies highly on the selection of threshold and decreases rapidly with the drop

of SNR. New methods such as absolute thresholding and adaptive thresholding [15] have

improved the detection rate, but the accuracy still decreases for low SNR input signal.

Time-derivative method [52][53] computes the derivative of input with respect to time

and then use thresholding to discriminate spikes from derivative result. This method en-

hances the sensitivity of detectors by emphasizing the high-frequency spectrum which
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manifests the waveform difference contributed by neurons and background noise. How-

ever, in many applications, the derivative results are still very small comparing with large

background noise, and therefore, the detection rate of time-derivative method still needs to

improve.

NEO is proved by previous studies [55] as an optimal choice for spike detections when

input signal has low SNR. The mathematical model of NEO can be represented as

ψNEO ( f (t)) =
(

d f (t)
dt

)2

− f (t)
(

d2 f (t)
dt2

)
(4.1)

If the input has only one frequency, i.e. f (t) = Asin(ωt), where A and ω denote the ampli-

tude and frequency, respectively, the output of NEO is a constant value, A2ω2. The spike

signals which hold relatively high frequency and large amplitude have the strongest output.

However, in practical neural signal recordings, the amplitude of spikes can be much smaller

than that of low-frequency interference, which trades off its weight on frequency.

Proposed Spike Detection Algorithms

To overcome the performance degradation of NEO method, we propose two approaches,

fNEO and ED, by enhancing the weight of frequency in the algorithm.

The mathematical model of fNEO can be represented as

ψ f NEO( f (t)) =
(

d2 f (t)
dt2

)2

− d f (t)
dt

(
d3 f (t)

dt3

)
(4.2)

For the same single-frequency signal, f (t) = Asin(ωt), the output of fNEO is A2ω4 which

indicates an enhanced weight on the frequency of input signal. Equation 4.2 also indicates

that fNEO is actually an approach that applies NEO method on the derivative of the input

signal.

As the interference is a relatively low-frequency signal, it degrades the performance of

NEO through the second term of Equation 4.1. Therefore, we can remove the second term
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Figure 18: Simulink models of NEO, fNEO and ED.

and arrive at the ED method which can be represented as

ψED( f (t)) =
(

d f (t)
dt

)2

(4.3)

The output of the single-frequency signal, f (t) = Asin(ωt), is A2ω2/2+A2ω2cos(2ωt)/2,

where the second term can be removed as 2ω is out of the circuit operation band.

Three algorithms, NEO, fNEO and ED, are investigated in MATLAB Simulink as

shown in Fig. 18 with synthesized neural spike signals. The synthesized spikes have 1

ms width and 100 Hz firing rate (FR) which is aimed to imitate the real neural APs gen-

erated by the voltage-gated sodium-channel [21]. Gaussian white noise is added on the

signal. An extra interference varying from 0.1 ∼ 300 Hz is added to imitate the baseline in-

terference. Simulation results of NEO, fNEO and ED algorithms are shown in Fig. 19. The

detected spikes with conventional NEO method have a large variation on their amplitudes.

A few spikes, such as the spike at 0.02 s, are even smaller than the noise signal, which may

result in spike missing during the detection. In contrast, the proposed fNEO and ED hold a

higher consistency on the amplitude of detected spikes. Besides, the results also show that

the fNEO and the ED have higher noise suppression features than conventional NEO. To

make a quantitative and objective evaluation, standard deviation (STD) and peak-to-clutter

ratio (PCR) are employed to analyse the detected signal. For a fair comparison of STD

analysis, all of the output signals are normalized first with respect to the corresponding
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Figure 19: Simulink algorithm simulation results of three methods. Input signal: a combi-
nation of neural spike signals, Gaussian white noise, and baseline interferences

absolute maximum values. Then, the STD value, σ , of the normalized output is calculated

as

σ =

√
1
N

N

∑
i=1

(xi −µ)2,where µ =
1
N

N

∑
i=1

xi (4.4)

The value of σ reflects the consistency of detected peak values. On the other hand, PCR is

an effective number which decides the detection accuracy of thresholding stage. The PCR

is defined as

PCR =
|Vspike |min

|Vnoise |max
(4.5)
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(a)

(b) (c)

Figure 20: The major building blocks of NEO spike detectors: (a) Multiplier, (b) Derivative,
and (c) Adder.

where |Vspike|min and |Vnoise|max are the amplitudes of the minimum detected spike and the

maximum noise level, respectively. Larger PCR value means larger difference between the

signal and the noise which can reduce the false alarm of the detection. Table 1 presents the

STD and PCR values of algorithm simulation. It shows that conventional NEO has a 1.7

times higher STD than those of fNEO and ED, while its PCR is about 2.7 times smaller

than those of fNEO and ED.
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Table 5: Sensitivity comparison of three spike detectors.

Parameters NEO fNEO ED
Algorithm σ 0.307 0.176 0.182

PCR 0.792 2.173 2.046
Circuit σ 0.0965 0.0592 0.0669

PCR 0.963 1.134 1.128

The Low-power Analog Implementations

Previous spike detectors are typically implemented with operational transconductance am-

plifier (op-amp) [58] or translinear circuits [61][56]. Here, we implement the proposed

algorithms with inverter based circuits for the purpose of power reduction. The designs use

a 0.5 V power supply and all the transistors work in weak-inversion. The primary building

blocks of the proposed spike detectors are multipliers, derivatives, and adders.

A weak-inversion analog four-quadrant multiplier is designed based on the body-drain-

connected structure [62], shown in Fig. 20(a). Vin1 P, Vin1 N , Vin2 P and Vin2 N are the

four ports of two differential pairs. An amplification block shown in the dashed line of

Fig. 20(a), is added to compensate the loss of signal strength and also to improve the SNR.

Transistors M17 ∼M26 create the bias circuits for the multiplier, while M15 and M16 serve as

the current source for the amplification block. The output of the multiplier can be expressed

as

Vout =

(
4IbiasVin1Vin2

(nUT )
2 gm27,28

)
·gm13,14(ro14||gm12ro12ro10) (4.6)

The power dissipation of the multiplier block is 89.6 nW.

Low-power derivative circuits can be achieved by replacing op-amps of classic deriv-

ative circuits with a high-gain inverter [63]. However, the bias circuits must be carefully

designed to guarantee system reliability. Fig. 20(b) is a digital inverter based derivative

circuit where M3 and M4 form the digital inverter structure. M7 and M8 serve as a current

source which is biased by Bias1 and Bias2. By carefully tuning the dimensions of the

transistors M1 ∼ M6, the sinking and sourcing currents of the inverter can be controlled

at a smaller value and hence restrict the power dissipation of the circuit. M9 ∼ M14 are
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Figure 21: (a) Power budget of a conventional NEO spike detector, (b) Power dissipation
of NEO, fNEO, and ED spike detectors.

Tobi-elements [63] which have very high impedances. The input and output of the digi-

tal inverter are biased at VDD/2 by the high impedance path formed by M9 ∼ M12. High

impedances of M13 and M14 allow the use of smaller capacitor to achieve a relatively high

output voltage. The total power dissipation of the proposed derivative circuit is 9.9 nW. By

replacing the capacitor with two polysilicon resistors, R1 and R2, a two-input adder circuit

can be built as shown in Fig. 20(c). The power dissipation of the proposed adder is 9.9 nW.

To implement a conventional NEO spike detector, two derivative circuits, two multi-

pliers and one adder are needed. The power budget of NEO spike detector is shown in

Fig. 21(a). We can see that multipliers are the most power hungry parts, while derivative

circuits cost only a small portion of power. Therefore, a fNEO spike detector that has one

additional derivative block than a NEO spike detector can achieve higher sensitivity at the

expense of only ∼ 4% higher power. By reducing one multiplier block, the ED spike de-

tector offers 48% less power than NEO with comparable sensitivity. Fig. 21(b) shows a

comparison on the power dissipations of the three spike detectors.
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Figure 22: Cadence circuit simulation results of three spike detectors. (a) Input signal: a
combination of neural spike signals, Gaussian white noise, and baseline interferences, (b)
NEO spike detector output, (c) fNEO spike detector output, (c) ED spike detector output.

Simulation Results and Statistical Analysis

The identical synthesized input signal as used in Fig. 19 is applied to the implemented

spike detectors and the corresponding outputs are shown in Fig. 22. Comparable with the

results shown in Fig. 19, the circuit simulation results of fNEO and ED spike detectors

also exhibit superior performances than that of NEO spike detector in terms of output spike

consistency and noise floor. Table 1 summarizes the σ and PCR values calculated from

the algorithm and circuit simulation results. The circuit simulation results indicate that

fNEO and ED spike detectors achieve 38.65% and 30.67% smaller σ , respectively, than
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that of NEO spike detector, while the PCR values of fNEO and ED spike detector outputs

are 17.76% and 17.13% larger, respectively, than that of NEO spike detector. It has been

demonstrated that fNEO and ED spike detectors hold higher consistency on the output spike

signals and produce larger signal differences between the neural spikes and the background

noise, which benefits the discrimination of neural spike signals from background. The

relatively small improvement on PCR values is a trade-off of the low-power design. Since

we use a low supply voltage (0.5 V) to achieve the low-power performance, the dynamic

range of the circuits is limited, which affects the improvements of PCR values. Besides, the

thermal noise and flicker noise from the spike detector circuits can also be a factor to affect

the PCR values. In general, since the ED spike detector holds comparable performance as

fNEO but dissipates about 50% less power, we select ED spike detector for our application.

To further evaluate the detection robustness of the proposed ED spike detector, the syn-

thesized neural spike signals with SNR values varying from -5 dB to 10 dB are applied to

the spike detectors. Each group of the synthesized spike signals contains 100 pulses where

each pulse has 1 ms duration and fires at 100 Hz. These values are selected to imitate the

APs from brain cells. The sampling frequency of the synthesized signal is 50 kHz. Gauss-

ian white noise is added on the signal to produce the noise degraded spike signals with SNR

values ranging from -5 dB to 10 dB. An interference signal with 1 mV amplitude and up to

300 Hz frequency is superimposed on the noise degraded spike signals to mimic the impact

of LFPs. In order to obtain a large number of test trials demanded by the statistical eval-

uation, a Cadence OCEAN Script is used to control the co-simulation between MATLAB

and Cadence Virtuoso Spectre circuit simulator. While MATLAB codes are responsible

for the signal generation, spike counting, statistical calculation, data plotting and saving,

the Cadence OCEAN Script controls the circuit simulation environment and the output of

results. Based on the results from the co-simulation, the receiver operating characteristic

(ROC) curves are drawn for both the ED spike detector and the NEO spike detector, as

shown in Fig. 23. The ROC curve of a spike detector depicts the true positive rate (TPR)
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Figure 23: (a) The receiver operating characteristic (ROC) curves of the proposed ED spike
detector and NEO spike detector at SNR = 0 dB, (b) The ROC curves of the proposed ED
spike detector and NEO spike detector at SNR = 4 dB.

against the false positive rate (FPR) at different threshold values. Here, the TPR is defined

as
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T PR =
the number o f spikes correctly detected

the number o f spikes inserted
(4.7)

The FPR is defined as

FPR =
the number o f f alse detections
the total number o f detections

(4.8)

In terms of spike detections, TPR is equivalent to the detection rate, while FPR is equivalent

to the false alarm rate. Thus, for a ROC curve, the closer to the top-left of the ROC plot the

better is the performance the spike detector. From Fig. 23, we can see that the ED spike

detector achieves higher detection rate than that of NEO spike detector at both SNR=0 dB

and SNR=4 dB. This improvement becomes larger when SNR is 4 dB. It is supported by

other simulation results that the improvement of detection rate brought by the ED spike

detector becomes larger when the SNR value increases and vice versa. In order to make a

comparison with the previously reported spike detectors, the noise degraded spike signals

without the baseline interference is applied to the ED spike detector. The TPR and FPR

values of the proposed ED spike detector at different SNR values are drawn in Fig. 24.

In Fig. 24, the studies [15][55] are computational simulation results which are similar to

our algorithm based simulation results shown in the third part, while the study [48] is chip

measurement result. From Fig. 24(a), we can see that the proposed ED spike detector has

a slow increase on the value of TPR when the SNR value is smaller than -2.3 dB. However,

after that, it increases rapidly and finally outperforms other spike detectors when the SNR

value is larger than 1 dB. It indicates that, for a recorded neural spike signals with SNR >1

dB, the ED spike detector can achieve the highest detection rate. Since not many previous

studies include a complete statistical study, Fig. 24(b) only compares this work with the

other two studies. Among them, the study [55] is computational simulation result, while

the study [48] is chip measurement result. The proposed ED spike detector achieves a

comparable FPR values as that of [48], but, in terms of power dissipation, it consumes only

∼1/10 of the power dissipated by the spike detector reported in [48].
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Figure 24: (a) The comparison of TPR values at different SNR values, (b) The comparison
of the FPR values at different SNR values.

Summary of Spike Detectors

This study presents two spike detectors, the fNEO spike detector and the ED spike detector,

based on the modified NEO algorithms. The simulation results shown in the study have
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demonstrated that both detectors can solve the sensitivity degradation suffered by the con-

ventional NEO spike detectors at the presence of large-amplitude baseline interferences.

Among them, we select the ED spike detector for our application due to its extremely low-

power performance which is only 129.4 nW. A large amount of statistical investigations

have been performed to validate the robustness of the proposed ED spike detector. Con-

sidering the low-power and high sensitivity features, the proposed ED spike detector is

expected to be a promising data-compression component for an implantable VLSI neural

recording microsystem with more than 100 channels.
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5. POWER-EFFICIENT TRANSMITTERS

Low-Power Neuromorphic Circuits

Amperometric sensor circuit equipped with floating-gate field-effect transistors (FG-FETs)

have been extensively used in environmental and biomedical fields for biomolecular detec-

tions. Considering the stringent power and dimension requirements of this type of sensors,

here we present a low-power biomolecular sensor circuit designed in the concept of neu-

romorphic circuits. A silicon neuron based sensor circuit [64] is developed to generate

a modulated frequency output in response to different current values. The silicon neuron

is reconfigured based on a bio-physically inspired neuron model and the proposed circuit

achieves nanoampere-level current sensitivity and kilohertz output frequency range. The

circuit is designed with a standard 0.13-µm CMOS process. The entire circuit uses only 8

transistors and 4 capacitors and consumes only 2.2 µW power with a 1.1 V supply. The

low power dissipation and high area-efficient features of the proposed amperometric sensor

circuit make it very suitable for the implanted biomolecular detections.

Introduction of Neuromorphic Circuits

Biomolecular detections are important for both clinical applications and biological studies.

The high sensitivity biomolecular detection provides high resolution measurements on the

biochemical changes. The new-emerging implanted biomolecular detections have allowed

the study of biochemical changes in the tissues of animals when they are behavioring freely,

which is significant for the biological studies.

Semiconductor based biosensors have attracted strong interests from researchers in the

past decade [65]-[69]. Owing to its low-cost, high integration, and label-free features, a

floating-gate field-effect transistor (FG-FET) based biosensor have been intensively studied

for biomolecular detections, such as the detection of electrolytes [65], DNA hybridizations
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[66][67], glucose determinations [68][69], etc. The working principle of this type of sen-

sors can be explained as below: the floating-gate of the FG-FET is capacitively coupled to

the sensing area (where biochemical species are adsorbed) and the control-gate [70]. As

a result, the drain current of the FG-FET is a function of the applied control-gate volt-

age and the charge on the sensing area. The fluctuations in the amount of biomolecular

charges modulate the threshold voltage of the FG-FET and cause a drain current variations

at the output. Although this type of sensors can sense the biomolecular charges with high

precision, the very small drain current variation, typically in nanoampere level, requires a

carefully designed amperometric sensor circuit at its following stage.

Traditional amperometric sensor circuits [71][72] amplify the very small sensor current

to the microampere level and then send it to the analog-to-digital converter (ADC). This

strategy increases the system complexity and power dissipation. The other type of ampero-

metric sensor circuits senses the very small current and converts it to the frequency signals.

It avoids the use of the current amplifier, sample-and-hold block and ADC blocks, which

dramatically reduces the power dissipation of the sensor system.

Biomimetic signal processing circuits have been intensively studied by the researchers

to achieve the high energy-efficient signal processing. Multiple neuromorphic silicon neu-

ron circuits [73][74] have been proposed to build the low-power signal processing systems.

Since a silicon neuron circuit can respond to an external current stimulation with differ-

ent neural spike sequences, here we propose a neuromorphic sensor circuit based on a

bio-physical silicon neuron model[74]. However, unlike the original model which works

at a relatively low frequency range, the silicon neuron circuit developed in this study can

generate frequency output up to 11.7 kHz and has nanoampere-level current sensitivity.

Neuromorphic sensor circuit

The overall circuit is shown in Fig. 25. It comprises a FG-FET sensing area, a membrane

capacitor Cm, a sodium channel and a potassium channel. The working mechanism of the

entire sensor circuit can be illustrated as follows: when the charged molecules appear on
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Figure 25: Circuit schematic of the proposed neuromorphic CMOS sensor circuit. (CG:
control gate; FG: floating-gate.).

the sensing area, the threshold of the FG-FET is changed. Accordingly, a drain current

variation will be produced at the drain terminal of the FG-FET. The silicon neuron based

current sensor circuit detects this current changes and then initiates a sequence of spikes on

its membrane.

Sodium channel circuit. A sodium channel is responsible for the charging of a cell

potential. The step response of a sodium channel is demonstrated to be similar with the

output of a bandpass filter [73][74]. Thus, a sodium channel can be designed with one

transistor, the gate of which is controlled by a bandpass filter. As shown in Fig. 25, the

proposed silicon neuron based sensor circuit uses one transistor M1 to imitate the function-

ality of a sodium channel. Transistors M3-M5 and capacitors C1-C2 form the bandpass

filter to control the gate of transistor M1. To derive the time constants of the bandpass filter,

two working states need to be considered: the low-frequency working state and the high-

frequency working state. We can decide the lower cutoff frequency and the higher cutoff

frequency of the circuit by analysing the circuit working principle in these two states.

As shown in Fig. 25, when the circuit operates in the low-frequency working state,

most of the AC current flowing from node S to node NA is through the transistor M5. The
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drain current of transistor M5 can be represented as

I5 = I0p
W5

L5
e

κ(VW −VH)
UT

(
e
−(VW −vS)

UT − e
−(VW −vNA)

UT

)
(5.1)

where I0p is a process-dependant constant in the range of 10−19 ∼ 10−14 A; κ is the gate

coupling coefficient ranging between 0.6 and 0.8; VW is the well potential; W
L is the device

aspect ratio; UT is the thermal voltage and the typical value is 26 mV @ 300 K. If transistor

M5 can sustain a large enough current to maintain the voltage at node S, vS, constant, vS

can be written as VS. Since VS is equal to VNA at the steady state, the equation (5.1) can be

rewritten as

I5 = I5DC

(
1− e

vna
UT

)
where I5DC = I0p

W5

L5
e

κ(VW −VH)−(VW −VNA)
UT

(5.2)

Here, I5DC is decided by the DC bias of transistor M5. vna is the AC signal at node NA.

Now, based on KCL, we can write the current function at node S as

C2
d(vMEM − vS)

dt
=C1

d(vS − vNA)

dt
+ I5DC

(
1− e

vna
UT

)
(5.3)

As vS = VS = VNA = constant, vMEM = vmem +VMEM, and vNA = vna +VNA, the equation

(5.3) can be simplified to

C1
dvna

dt
=−C2

dvmem

dt
− I5DC(e

vna
UT −1) (5.4)

By solving the equation (5.4), the time constant for the lower cutoff frequency can be

obtained as

τL =
C1UT

I5DC
(5.5)

When the circuit operates in the very-high-frequency working state, capacitive feed-

through occurs. The gate-to-source leakage capacitor, Cgs, of transistor M1 needs to be

considered. By doing the AC analysis on the capacitor loop created by C2, C1 and Cgs, the
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relationship of vna, vs and vmem can be denoted as

vna =
C1C2vmem

C1C2 +C1Cgs +C2Cgs
(5.6)

vs =
(C1C2 +C2Cgs)vmem

C1C2 +C1Cgs +C2Cgs
(5.7)

As the transistor M3 and transistor M4 operate in the weak inversion saturation region, the

drain currents can be represented as

I3 = I0p
W3

L3
e

κ(VW −(VS+vs))−(VW −VDD)
UT = I3DCe

−κvs
UT

where I3DC = I0p
W3

L3
e

κ(VW −VS)−(VW −VDD)
UT

(5.8)

I4 = I0n
W4

L4
e

κVM−VGS
UT = I4DC (5.9)

where I0n is a process-dependant constant in the range of 10−15 ∼ 10−12 A. Now, we can

write the current function at node NA with KCL

Cgs
dvNA

dt
+ I4DC = I3DCe

−κvs
UT +C1

d(vS − vNA)

dt
(5.10)

As I3DC=I4DC in the steady state, vS = vs +VS and vNA = vna +VNA, the equation (5.10) can

be simplified to

(C1 +Cgs)
dvna

dt
+ I4DC

(
1− e

−κvs
UT

)
=C1

dvs

dt
(5.11)

The higher cutoff frequency can be calculated as based on the derivation reported in [74]

τH =
(C1C2 +C1Cgs +C2Cgs)UT

κC1I4DC
(5.12)

From equations (5.5) and (5.12), it can be seen that the lower cutoff frequency and the

higher cutoff frequency of the bandpass filter can be tuned by the DC bias currents of the

transistors M5 and M4, respectively. In the circuit, the DC voltages VH and VM are used to

tune the bias currents of transistors M5 and M4, respectively.

Potassium channel circuit. A potassium channel is responsible for the discharging of

a cell potential, but has a slower response than a sodium channel. The step response of
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Figure 26: The changes of the output frequency corresponding to the variation of input
current.

a potassium channel is similar to the output of a low-pass filter [73][74]. Therefore, a

potassium channel can be designed with one transistor, the gate of which is controlled by

a low-pass filter. As shown in Fig. 25, the proposed silicon neuron based sensor circuit

uses one transistor M2 to imitate the functionality of a potassium channel. Transistors M6,

M7 and capacitor C3 form the low-pass filter to control the gate of transistor M2. Different

from the silicon neuron model reported in [74], here an additional transistor, M7, is added

in the low-pass filter to reduce the time constant.

The time constant of the low-pass filter shown in Fig. 25 is determined by the product of

resistance and capacitance seen at node K. By varying the resistance of transistors M6 and

M7, the time constant of the low-pass filter can be modified. For a silicon neuron circuit, it

is expected that the time constant should be larger for smaller input and smaller for larger

ones. The working principle of the low-pass filter circuit shown in Fig. 25 can be described

below. When the circuit is in steady state, the potential vK is equal to bias potential VGK .

When a current stimulus is imposed on the membrane capacitor Cm, the membrane potential
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increases, which causes the potential at vK also rising up. For weak inversion pMOSFETs,

when the source-to-drain voltage is smaller than 4UT , the drain current can be represented

as

I = I0p
W
L

e
κ(VW −VN)

UT

(
e
−(VW −vK)

UT − e
−(VW −VGK)

UT

)
(5.13)

The conductance of transistors M6 and M7 can be calculated by taking the partial derivative

on the equation (5.13) with respect to vK . The conductance obtained is

GK =
1

RK
= I0p

W
L

(
1

UT

)
e

κ(VW −VN)
UT e

−(VW −vK)
UT (5.14)

The time constant can be represented as

τK = RKCK =
CK

GK
(5.15)

From equations (5.14) and (5.15), we can notice that a larger vK causes a larger GK ,

which results in a smaller time constant τ , and vice versa. This property is actually what

we needed for the current sensing. For larger current, the time constant becomes smaller

which leads to the higher frequency output. For smaller current, the time constant becomes

larger which corresponds to a lower frequency. In addition, by tuning the DC bias voltage

VN to different values, different initial time constant can be achieved.

Simulation Results

The proposed current sensor circuit is designed using a standard 0.13-µm CMOS process.

With a 1.1 V supply, the total power dissipation of the circuit is 2.2 µW. As shown in

Fig. 26, when the detected current varies from 150 nA to 510 nA, the frequency of the

output neural spikes changes from 4.2 kHz to 11.7 kHz. The coefficient of determination,

or R2, in this range is 0.995. The result indicates a good linearity of the proposed current

sensor circuit in response to the variation of the detected current. The root-mean-square
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Figure 28: The spectra of the output neural spikes for the 8.5 kHz frequency output.

input-referred noise of the circuit determines the dynamic range and the detection resolu-

tion. To show the noise performance of the proposed sensor circuit, the plot of current

noise at different frequency is shown in Fig. 27. The plot is drawn when 370 nA current
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Figure 29: The changes of the output frequency corresponding to the variation of the input
current amplitude.

is detected by the circuit, which produces a output neural spike sequence at 8.5 kHz. Fig.

28 exhibits the spectra of the output neural spikes. A noise bandwidth from 3.5 kHz to

27.8 kHz is selected as shown in Fig. 28. Therefore, the calculated input-referred cur-

rent noise is 0.4 nArms. The dynamic range of the proposed neuromorphic sensor circuit

is 20log10(Irange/Imin)=51 dB. In order to demonstrate the transient response of the pro-

posed circuit, a synthesized current signal (Fig. 29(a)) with steps at 150 nA, 330 nA, and

500 nA is delivered to the circuit. The slop between two steps is ±36 nA/ms. Fig. 29(b)

illustrates the output neural spikes of the proposed current sensor circuit in response to the

synthesized current signal. To depict the frequency of the output neural spikes, Fig. 29(c)

shows the numeric frequency changes calculated from the data shown in Fig. 29(b). By

comparing the waveforms of Fig. 29(a) and Fig. 29(c), it is easy to see the close relation-

ship between the input current amplitude and the output frequency.

Summary of Neuromorphic Circuits

Inspired from the biological phenomena that a single neural cell can respond to a current

stimulation with different neural spike signals, this study proposes a neuromorphic sensor
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circuit which can respond to the current variations with different frequency spike signals.

Based on CMOS weak inversion circuit design, a low-power neuromorphic sensor circuit

is developed to sense the very small current variations at the output of the FG-FET based

biomolecular sensor. The sensor circuit uses a bio-physically inspired silicon neuron model

which imitates the membrane potential dynamics caused by a sodium channel and a potas-

sium channel. The frequency output, instead of traditional amplitude output, lowers the

complexity of the succeeding signal processing blocks by eliminating multiple signal pro-

cessing stages, such as current amplification stage, sample and holding stage, etc. Owing to

its simple structure (8 MOSFETs and 4 capacitors) and low power dissipation (2.2 µW), the

proposed sensor circuit can be easily integrated with different biosensors for the implanted

biomolecular detections.

An Inductorless Low-Power Tunable Sinusoidal Oscillator

A sinusoidal oscillator is the stimulation source of a micro-impedance spectroscopy. The

accuracy of its output frequency and waveform dictates the accuracy of the measured com-

plex tissue impedance. In this study, an area-efficient low-power sinusoidal oscillator [75]

is developed for applications requiring low-power high-density bio-impedance measure-

ments. Instead of using traditional LC tank based topology, the proposed sinusoidal oscil-

lator implements a series of hyperbolic tangent functions to approximate the sine function.

To achieve the continuous sinusoidal oscillation, a sine waveform shaper, a ramp signal

generator, and a fully differential driver are developed for the proposed sinusoidal oscil-

lator. To minimize the power dissipation, a low power supply voltage, 0.5 V, is used in

the circuit. Designed in a standard 0.13-µm CMOS process, the proposed sinusoidal oscil-

lator can generate continuous sinusoidal signal with a tuning range of 10 Hz - 4 kHz. It

dissipates power of < 3 µW and occupies a die area of 0.07 mm2.
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Introduction of Sinusoidal Oscillator

Bio-impedances of various biological tissues hold significant values in biological studies

and clinical evaluations. It helps biologists to understand tissue well-beings. For example,

the electrical impedance of a breast tissue has been studied to identify the malignant breast

tumors [76]. In the past years, many efforts have been made on precise measurements of

biological tissues, such as cardiac muscle tissues, lung tissues, mesenteric vessels, and so

on.

State of the art impedance spectroscopies usually use four-electrode configuration [77]

[78]. Although both DC and AC (single frequency) sources [79] are still widely used, many

studies in which the electrical properties of tissues are presumed to be stable have started to

use AC source with multiple frequencies [77] [80]. Micro-impedance spectroscopy using

multi-frequency sinusoidal source can measure complex tissue impedances by delivering

sinusoidal current signal with multiple different frequencies to the tissue and sensing the

voltage variations. With the help of impedance calculation algorithms, the magnitude and

phase of the impedance can be calculated. Recently, sinusoidal approximation has been

demonstrated to resolve complex impedance spectra from heart preparations [80].

Sinusoidal oscillator, or sinusoidal current generator, is one of the most important com-

ponents in a micro-impedance spectroscopy. The design of this sourcing device needs to

meet several main requirements. Firstly, the sinusoidal oscillator must be able to generate

a sinusoidal signal with a frequency tuning range of 10 Hz ∼ 4 kHz. Secondly, the sinu-

soidal oscillator needs to supply a current in the range of 10 nA to 50 nA [80]. In addition,

it is highly desired that the circuit has small dimensions which allows an easy integration

with micro-electrodes. However, the design of a small size fully on-chip low-frequency

sinusoidal oscillator is challenging in technique level. While traditional ring oscillators or

relaxation oscillators can achieve low-frequency oscillation in a small dimensions, neither

of them can produce accurate sinusoidal signal. On the other side, although LC oscilla-

tors can generate accurate sinusoidal signal, it requires large external inductors in their

circuits. Direct Digital Synthesis (DDS) technique can be used to generate a low-distortion
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sinusoidal signal with a relatively small circuit size, but the system complexity and power

dissipation are increased in this approach. The implementation of a filter based sinusoidal

signal generator is limited by the relative low Q value. Numerical analysis on sine function

has demonstrated that a set of hyperbolic tangent functions with different phase offsets can

be used to approximate a sine function [81]. In previous studies, BJT and subthreshold

CMOS based differential pairs have been used to implement the sine waveform shapers

[81][82][83]. However, these studies have only demonstrated a short piece of sine wave-

form, instead of a continuous low-distortion sinusoidal signal [84][85].

In this study, we employed the technique of sine waveform shaper and combined it with

a ramp signal generator to build a sinusoidal oscillator. By changing the frequency of the

ramp signal, the frequency of the sinusoidal signal can be tuned.

Four-electrode Micro-impedance Spectroscopy

Most of the micro-impedance spectroscopies use four-electrode configuration which pro-

vides superior common-mode noise rejection and setup flexibility. As shown in Fig. 30, the

four-electrode configuration arranges four electrode E1, E2, E3, and E4 in a line. The two

outer-electrodes E1 and E4 are used for current sourcing, while the two inner-electrodes

E2 and E3 are used for voltage sensing. When the current flows between the electrodes E1

and E4, different voltages are formed between the electrodes E2 and E3 due to different

bio-impedances of the tissues. The electrodes E2 and E3, are set close for a relatively even

current flow in the tissues, which can help to reduce the measurement error.

The bio-impedances of tissues are quite different. The resistivity of a tissue decides the

values of its bio-impedance. The pioneering research [86] has made a detailed study on

the resistivities of various tissues. Table 1 summarizes the resistivities of various tissues in

terms of the mean values and 95% confidence intervals. From the table, we can see blood

has the smallest resistivity, while bone has the largest resistivity. In this study, we target to

measure the tissue with resistivity in the range of 100∼500 Ω·cm.
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Figure 30: The four-electrode configuration. E1 and E4 are current sourcing electrodes; E2
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Figure 31: The schematic of the proposed sinusoidal oscillator circuit.

Proposed Sinusoidal Oscillator

The proposed sinusoidal oscillator comprises a sine waveform shaper, a tunable ramp signal

generator, and a fully differential driver.

Sine Waveform Shaper. Numerical analysis on sine function has proved that a group of

hyperbolic tangent functions with different phase offsets can be used to approximate a sine

function [81]. Thus, a sine function can be expressed as
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β sin(
πx
α
)≈

M

∑
m=−M

(−1)mtanh(x+mα), if M is large. (5.16)

Here, β is an amplitude-scaling constant, while α is a phase offset constant. As the value of

M increases, the accuracy of the approximation is improved and finally the approximation

fits the sine waveform very closely.

In subthreshold circuit design, the difference of two drain currents in a differential pair

is a hyperbolic tangent function of the gate voltages. The relationship can be represented

as

I1 − I2 = Ibias · tanh(
V1 −V2

2nUT
) (5.17)

where I1 and I2 represent the drain currents in the differential pair, Ibias is the tail current, n

denotes the slope factor, and UT is the thermal voltage (26 mV @ 300K).

Based on (5.16) and (5.17), we can design a sine waveform voltage output with a group

of subthreshold differential pairs. The mathematical model of the circuit can be expressed

as

sin(
πVin

VREF
)≈

M

∑
m=−M

(−1)m · tanh(
Vin +mVREF

2nUT
) (5.18)

where mVREF are a set of gate bias voltages connected to one of the input gates of each pair.

The other gate terminals of the differential pairs are tied together and used as the input

terminal. In this design, we select a value of 2 for the variable m. Then, if we take (5.17)

into (5.18), we can have the expression as below

sin(
πVin

VREF
)≈ 1

Ibias
[(Iin − I(−2VREF ))− (Iin − I(−VREF ))

+(Iin − I(0))− (Iin − I(VREF ))+(Iin − I(2VREF ))].

(5.19)
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Table 6: The resistivities of various tissues presented in terms of the mean values and 95%
confidence intervals

Tissue Water (%) Mean (Ω·cm) 95% confidence (Ω·cm)
Blood 151 120-191
Bone 124×106 91×106-169×106

Breast 339 249-463
Fat 12.5 3850 3046-4868

Heart 175 133-231
Kidney 78.5 211 160-278
Liver 75 342 296-396
Lung 81.5 157 122-202

Muscle 75.5 171 135-216
Skin 68 329 255-424

From equation (5.19), we can see that five differential pairs are needed to implement

the sine waveform shaper. The differential output current of each differential pair needs

to have opposite polarity with its neighbors. The implemented circuit of sine waveform

shaper is shown in the right of Fig. 31. One of the input gates of each pair is tied together

and is connected to the output of the ramp signal generator. The other gate terminals of

the differential pairs are connected to five pre-defined bias voltages: −2VREF , −VREF , 0,

VREF , 2VREF . By changing the frequency of the ramp signal, the frequency of the sinusoidal

signal can be tuned.

Capacitors C1, C2 and resistors R3, R4 form a passive low-pass filter at the output of

sine waveform shaper circuit. The function of this low-pass filer is to remove the waveform

distortion produced by the abrupt change in the ramp signal.

Ramp Signal Generator. In order to generate a continuous ramp signal, a Schmitt trig-

ger based ramp signal generator is developed. As shown in the left of Fig. 31, a DC current

source, IDC, is used to charge a capacitor C0, which creates the slope of the ramp signal. A

large transistor MS is used to create the discharging path of the capacitor C0. An operational

transconductance amplifier (OTA) based non-inverting Schmitt trigger circuit is employed

to provide the control signal at the gate of the transistor MS. The OTA and two resistors

(Rf1,Rf2) form a voltage summer circuit adding a part of the output voltage to the input

voltage. This positive feedback creates a rapid ON/OFF switching at the output of the OTA.
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Figure 32: The schematic of the fully differential driver.

If the voltage of the capacitor C0 is greater than the threshold voltage (Vth), the discharging

path is turned on and quickly draws the voltage of the capacitor C0 to zero.

Fully Differential Driver. Since the micro-impedance spectroscopies generally use cur-

rent signal as the sourcing signal, the sinusoidal voltage signal needs to be converted to

current signal. To achieve this conversion, a fully differential amplifier with AC coupling

is used to build the driver circuit. It multiplies the differential sinusoidal voltage signal with

the transconductance gm11,12 and AC couples to the electrodes (E1 and E4). Fig. 32 shows

the schematic of the driver circuit. Since the load impedance (bio-impedance) is much

smaller than the output impedance of the driver, most of the AC current flows through the

capacitors C1 and C2 to the load. The output impedance of the driver circuit is 1.25 MΩ. If

higher output impedance is demanded, the cascode structure can be applied. However, the

cascode stage may require higher power supply voltage which may result in higher power

dissipation.

Simulation Results

The proposed circuit has been designed in a standard 0.13-µm CMOS process. With a 0.5 V

power supply, the power dissipation of the ramp signal generator, the sinusoidal waveform
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shaper, and the fully differential driver are 1.8 µW, 250 nW, and 100 nW, respectively. The

driver circuit can provide a stimulation current up to 50 nA which meets the requirement of

the study [80]. Since no inductor is used in the circuit, the component that mainly impacts

the size of the circuit is the capacitor. In this design, three capacitors with decent sizes are

used. The capacitor C0 is 80 pF, while the capacitors C1 and C2 are 30 pF. Two resistors (R1

and R2) are 1 MΩ, which can also be realized with active elements and achieve a smaller

circuit size. However, the active elements may result in higher noise at the output. The

total die area of the proposed sinusoidal oscillator is 0.07 mm2.

Fig. 33 shows a 2.6 kHz ramp signal generated by the proposed ramp signal generator.

By varying the threshold voltage Vth in Fig. 31, the amplitude of the output ramp signal can

be tuned. However, this variation also changes the frequency of the output ramp signal. In

order to tuning the frequency of the output signal without changing its amplitude, we can

alter the DC current source IDC. The greater the DC current, the higher the output frequency,

and vice versa. By applying the 2.6 kHz ramp signal to the sine waveform shaper, a 2.6

kHz sinusoidal signal can be achieved. The generated 2.6 kHz sinusoidal signal are shown

in Fig. 34. Fig. 35 depicts the spectrum profile of the sinusoidal signal shown in Fig. 34.

Three peaks in Fig. 35 are the harmonics of the output signal. The first peak is at 2.6 kHz,

while the second and third peaks are 5.2 kHz and 7.8 kHz. Fig. 36 shows the phase noise

of the output signal at different frequency offset. Phase noise of -79.3 dBc/Hz and -101.4

dBc/Hz can be seen at the frequency offset of 1 Hz and 1 kHz, respectively.

Summary of Sinusoidal Oscillator

In this work, an inductorless low-power tunable sinusoidal oscillator has been developed

for micro-impedance spectroscopies. The proposed sinusoidal oscillator comprises a sine
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Figure 33: The 2.6 kHz continuous ramp signal generated by the proposed ramp signal
generator.
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Figure 34: The 2.6 kHz continuous sinusoidal signal generated by the proposed sinusoidal
oscillator.

waveform shaper, a ramp signal generator, and a fully differential driver. The sine wave-

form shaper is built with five subthreshold differential pairs creating five hyperbolic func-

tions to approximate the sine function. The low power dissipation and small dimensions fea-

tures of the proposed sinusoidal oscillator make it suitable for high-density micro-impedance

measurements. 71
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Figure 36: The phase noise of the 2.6 kHz sinusoidal signal shown in Fig. 34.

An Efficient Orthogonal Pulse Set Generator

Due to their orthogonality and the nearly constant pulse width, Modified Hermite Pulses

(MHPs) have shown a great potential to enhance the data rate of UWB communications
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by creating M-ary or multiple access parallel systems. However, the potential high power

dissipation required by the pulse set generation and the frequency shifting has limited their

utilization in practice. In this study, we propose a novel computation-efficient model for

MHP set generators [87]. Compared with existing models, the proposed model has made it

feasible to design a power-efficient MHP set generator.

Introduction of Pulse Set Generator

In the field of wireless data acquisition, integration of a large number of recording channels

in a small area has become possible owing to the advancement in the fabrication of micro-

electromechanical systems (MEMS). However, this increase in the number of recording

channels causes a substantial growth in data volume resulting in a big challenge for wireless

data transmission [88]. For example, a 128-channel recording system with 8-bit resolution

working at the Nyquist sampling rate requires a data rate of 20 Mb/s when the target signal

is 10 kHz [5]. As the number of channels increases, the data rate can rise to 100 Mb/s

or higher [6]. In order to achieve this data rate, ultra-wideband (UWB) transmission has

been widely studied for high-density wireless recordings [5][6]. However, for applications

requiring higher number of channels (e.g. >1000) or higher data resolution, an even higher

data rate is demanded.

Since orthogonal pulses can be transmitted simultaneously without mutual interfer-

ence, orthogonal pulses based ultra wideband (UWB) systems have the potential to achieve

higher data rate than conventional UWB systems. Several mathematical functions can be

used to design UWB orthogonal pulses, such as Haar Function [89], Modified Hermite

Polynomial Function (MHPF) [90][91][92], Prolate Spheroidal Wave Function (PSWF)

[93], etc. Each of them has advantages and disadvantages [94].

Considering the complicated math model for the generation of orthogonal pulse set,

the conventional implementation scheme will be power hungry at the hardware level. As

the power dissipation has increasingly attracted attention in modern communication sys-

tems, a power-efficient scheme for the generation of orthogonal pulse set is highly desired.
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Modified Hermite Pulses (MHPs), which have lower computational complexity than PSWF

based pulses, possess the properties of orthogonality and nearly constant pulse widths ir-

respective of the pulse orders. Since the even order derivatives of MHPs have DC compo-

nents, additional power is needed for frequency shifting circuits. However, by reducing the

range of frequency shifting, lower power dissipation is achievable.

Sub-GHz UWB communications occupy a lower band (0 - 960 MHz) [23] than the

standard UWB communications (3.1 - 10.6 GHz). The relatively lower frequency spec-

trum relaxes the system requirements on circuit design, frequency shifting, and commu-

nication synchronization, which ultimately reduces the total power dissipation of the sys-

tem [95, 96, 97]. In addition, the sub-GHz UWB pulses have been proven to possess good

penetration, low attenuation in air, and little group delay [23][24]. Although the data rate of

a common sub-GHz UWB system is lower than that of a standard UWB system, an orthogo-

nal pulse based sub-GHz UWB system can enhance the data rate by M-ary communications

or parallel communications.

In this work, we propose a computation-efficient mathematical model for MHP set

generators. A neuromorphic MHP set generator is developed for sub-GHz UWB commu-

nications.

Background on Modified Hermite Pulses

The traditional Hermite polynomials can be defined as [92]

hen(t) = (−τ)n et2/2τ2 dn

dtn

(
e−t2/2τ2

)
(5.20)

where hen(t) is the nth order derivative of the Hermite polynomial, n is the order of deriva-

tive, τ is the time-scale factor, and t ∈ (−∞,∞). The relationship between the nth and the

(n−1)th order derivatives of Hermite polynomials can be represented as

hen+1(t) =
t
τ

hen(t)− τ ḣen(t) (5.21)
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ḣen(t) =
n
τ

hen−1(t) (5.22)

where “·” stands for the derivative operation with respect to time. The equations (5.21)

and (5.22) can be modified to have only the nth order Hermite polynomials, which can be

written as

τ2ḧen(t)− tḣen(t)+nhen(t) = 0. (5.23)

In order to generate orthogonal pulses for UWB communications, MHPs have been

proposed and studied by pioneering researchers [90][91]. The expression of MHPs can be

defined as

hn(t) = kne−t2/4τ2
hen(t) (5.24)

where hen(t) is the nth order derivative of the Hermite polynomial and kn is a constant

related to the energy of the pulse. If we use En to denote the energy, the relationship

between kn and En can be represented as

kn =

√
En

τn!
√

2π
. (5.25)

By disregarding kn and taking the equation (5.24) into the equations (5.23), (5.22) and

(5.21), the works [90][91] obtain the general expressions for the nth and the (n−1)th order

derivatives of MHPs

τ2ḧn(t)+
(

n+
1
2
− 1

4
t2

τ2

)
hn(t) = 0 (5.26)

τ ḣn(t)+
t

2τ
hn(t) = nhn−1(t) (5.27)

hn+1(t) =
t

2τ
hn(t)− τ ḣn(t). (5.28)

In these equations, equation (5.26) contains only the nth order derivative of the MHP. Equa-

tions (5.27) and (5.28) reflect the relationships between different order derivatives of MHPs.

Based on (5.26) and (5.27), the study [91] develops a multiple pulse generator using MAT-

LAB Simulink. In their system, equation (5.26) is firstly implemented to generate the nth

order derivative of the MHP. Then, the (n− 1)th order derivative of the MHP is produced
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Figure 37: The Simulink block diagram of the proposed computation-efficient MHP set
generator.

with equation (5.27). By changing the value of n, different order derivatives of MHPs can

be produced.

Proposed Efficient MHP Set Generator

The benefit of using equation (5.26) for MHP generation is that it allows one indepen-

dent dynamic system to generate one MHP. However, the second order derivative and the

squared time function, t2, make the pulse generator complicated in computation. As shown

in the study [91], 5 integrators, 8 multipliers and 5 adders are used to generate two different

order derivatives of MHPs, implying high power dissipation.

If we replace the n in equation (5.28) with (n− 1) and move the derivative terms of

equations (5.27) and (5.28) to the left side, the modified equations can be written as

τ ḣn(t) =− t
2τ

hn(t)+nhn−1(t) (5.29)

τ ḣn−1(t) =
t

2τ
hn−1(t)−hn(t). (5.30)

76



Essentially, equation (5.26) can also be obtained from equations (5.29) and (5.30). How-

ever, due to its complicated mathematical operations, equation (5.26) cannot be imple-

mented with an efficient structure. Different from previous studies [90][91], here we imple-

ment equations (5.29) and (5.30) with two interdependent dynamic systems to generate two

different order derivatives of MHPs simultaneously. For computational complexity, equa-

tion (5.29) has equivalent computational capacity as the equation (5.27), while the equation

(5.30) has much lower computational requirements than that of equation (5.26).

The Simulink implementation of equations (5.29) and (5.30) is shown in Fig. 37. Due

to our simplified model, there are only 2 integrators, 5 multipliers, 3 adders and a ramp

signal generator in the system. Since our goal is to design MHPs for sub-GHz UWB

communications, a time-scale factor τ = 1×10−9 is selected to produce MHPs with widths

of ∼10 ns. Such a width is small enough to guarantee that the pulse spectrum meets the

FCC definition of UWB pulses (fractional bandwidth larger than 0.2). Considering the

small pulse expansions caused by the higher order derivatives, we have assigned a time-

window of 20 ns to ensure the system can generate MHPs up to the 11th order. A ramp

signal VR(t) is employed to substitute the time function t
2 . For a 20 ns time-window, a

ramp signal from 0 nV to 10 nV can be used to represent the time function t
2 . If the voltage

offset is considered, a ramp signal from -5 nV to 5 nV is needed. By varying n to different

integers, the impulse responses of two interdependent dynamic systems are the nth and the

(n−1)th order derivatives of MHPs. The delivering time-point of the input pulse in the 20

ns time-window can modulate the amplitude of the output MHPs, but the generated pulses

are fixed at the middle of the time-window. This feature which is brought by the use of the

ramp signal can be explored for pulse amplitude modulation (PAM). Fig. 38 shows four

different order derivatives of MHPs generated with the system shown in Fig. 37.

Proposed Neuromorphic MHP Set Generator

In order to achieve a real low-power implementation of the proposed model in practice, an

application-specific integrated circuit (ASIC) architecture is needed. Since the left sides of
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Figure 38: The time responses of the normalized MHPs with n=0, 1, 2, 3. The pulses are
normalized for the purpose of display.

equations (5.29) and (5.30) have similar forms as the ion-channel based neuron model, we

can utilize silicon neuron circuits to develop the system.

To begin with, two MHP functions, hn(t) and hn−1(t), can be viewed as the membrane

potentials of the silicon neuron n (SiN(n)) and the silicon neuron (n− 1) (SiN(n-1)), re-

spectively. As shown in Fig. 39, hn(t) is represented as the membrane potential of SiN(n),

Vm(n), while hn−1(t) is represented as the membrane potential of SiN(n-1), Vm(n−1). The

time-scale factor, τ , is replaced by the membrane capacitor, Cm. As shown in equations

(5.29) and (5.30), the left side of each equation becomes the net ion channel current created

by the change of membrane potential. The right side of each equation consists of two ion

channel currents. The first term is the ion current controlled by the membrane potential

of the neuron itself, while the second term is the ion current controlled by the membrane

potential of the neighboring neuron. We utilize a self-potential related transconductance,

gs, for the first term and a mutual interactive transconductance, gm, for the second term.

As depicted in Fig. 39, the integer variable n is the number of mutual interactive channels
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Figure 39: The proposed neuromorphic MHP set generator. SW1-SWn represent the
switches used to control the on/off of mutual interactive channels. LO represents a local
oscillator with a frequency of 500 MHz. All the biasing circuits are omitted in the figure.

which are controlled by switches. Similar to the Simulink system (Fig. 38), the time func-

tion, t
2 , can be replaced with a ramp signal, VR(t). Thus, equations (5.29) and (5.30) can be

modified into

CmV̇m(n)(t) =−gsVR(t)Vm(n)(t)+ngmVm(n−1)(t) (5.31)

CmV̇m(n−1)(t) = gsVR(t)Vm(n−1)(t)−gmVm(n)(t) (5.32)

where Cm is the membrane capacitor of each silicon neuron. Vm(n) and Vm(n−1) are the

membrane potentials of SiN(n) and SiN(n-1), respectively. The symbol gs is the transcon-

ductance related to the membrane potential of the silicon neuron itself, while the symbol

gm is the transconductance related to the mutual interactivity of two neurons. The integer

n in the second term of equation (5.31) is the weight of neural interactivity determining the

order of derivative of the MHP.

From Fig. 39, we notice that the membrane potential of each silicon neuron is deter-

mined by a negative feedback and a positive feedback. For SiN(n), the negative feedback

is formed by its membrane potential Vm(n), the multiplier M1, the gain block GV , and
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the transconductance amplifier gs. The positive feedback is formed by its membrane po-

tential Vm(n), the transconductance amplifier gm, the membrane potential Vm(n−1), and the

other transconductance amplifier gm. Similar feedback loops can also be found in SiN(n-1).

Since each silicon neuron generates one MHP, the system shown in Fig. 39 can produce

two different order derivatives of MHPs simultaneously. By turning the switches on or off

(SW1 ∼ SWn), the value of n can be changed, which controls the order of derivative of the

MHP. If the application requires multiple different order derivatives of MHPs, a multiplex-

ing strategy can be employed to produce one pair of MHPs at one time slot, or multiple

silicon neuron pairs can be implemented in the circuit level for a simultaneous multiple

MHPs generation. As shown in the bottom block of Fig. 39, a frequency shifting unit

comprising two high-linearity mixers and one 500 MHz oscillator is added to remove the

DC components.

To determine the component parameters for the system shown in Fig. 39, we can start

with selecting the value for τ . As in the third part, a τ equals to 1× 10−9 is needed to

produce MHPs with the widths around 10 ns, hence a membrane capacitor of 1 nF is needed.

Also, since t
2 has been replaced by the ramp signal, VR, which ranges from -5 nV to 5 nV, t

2τ

is in the range of -5 V to 5 V. However, this value is too big for a low-power on-chip design.

To solve this problem, we multiply equations (5.31) and (5.32) with a constant, 2× 10−4.

Consequently, the membrane capacitor, Cm, is scaled down to 200 fF, and the ramp signal

is adjusted to the range -1 mV to 1 mV. Considering the values for the self-potential related

transconductances in equations (5.31) and (5.32), we finally applied a ramp signal, VR,

ranging from -50 mV to 50 mV, a self-potential related transconductance of 500 µA/V and

a voltage amplification gain GV = 40. Lastly, the system can be modeled as

CmV̇m(n)(t) =−gsGVVR(t)Vm(n)(t)+ngmVm(n)(t) (5.33)

CmV̇m(n−1)(t) = gsGVVR(t)Vm(n−1)(t)−gmVm(n−1)(t) (5.34)
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Figure 40: The simulation results of the proposed MHP set generator. (a) The zero order
derivative of the MHP, (b) The zero order derivative of the MHP after 500 MHz frequency
shifting, (c) The third order derivative of the MHP, (d) The third order derivative of the
MHP after 500 MHz frequency shifting.

where

Cm = 200 f F

gs = 500 µA/V, gm = 200 µA/V

GV = 40, VR = Ramp[−50 mV,50 mV ].

With the aid of Verilog-AMS, the proposed neuromorphic MHP set generator has been

implemented in Cadence. By changing the number of turning-on switches in Fig. 39 from

1 to 4, four different order derivatives of MHPs can be generated. In these four pulses, the

81



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
-120

-110

-100

-90

-80

-70

-60

-50

-40

3.1
1.99

1.610.96

FCC EIRP Mask

MHP with n=3

MHP with n=0

P
o
w
er
S
p
ec
tr
al
D
en
si
ty
(d
B
m
/M
H
z)

Frequency (GHz)

Figure 41: The power spectral density of the generated the zero order and the third order
derivatives of MHPs after 500 MHz frequency shifting.

zero order derivative of the MHP has the highest peak, while the third order derivative of

the MHP has the largest pulse width. These two waveforms are shown in Fig. 40(a) and

Fig. 40(c), respectively. The results exhibit a 10.1 ns width for the zero order derivative of

the MHP and a 13.2 ns width for the third order derivative of the MHP. With a 500 MHz

frequency shifting, the corresponding modulated MHPs are shown in Fig. 40(b) and Fig.

40(d), respectively. Without considering the antenna gain, the power spectral density of

the modulated MHPs is plotted in Fig. 41. Both of them are below the FCC Equivalent

Isotropically Radiated Power (EIRP) mask for indoor UWB communications.

Summary of Pulse Set Generator

In this study, we propose an efficient mathematical model for MHP set generators. Com-

pared with existing models, the proposed model has lower computational complexity. For

circuit level implementations, a neuromorphic circuit architecture has been developed to
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generate MHPs for sub-GHz UWB communications. While the sub-GHz UWB communi-

cation allows lower power dissipation than the standard UWB communications, the neuro-

morphic structure further reduces the numbers of adders, integrators and multipliers needed

in the system. Results from both mathematical analysis and design layout simulations

validate the effectiveness of the proposed scheme for the design of an efficient MHP set

generator.
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6. CONCLUSIONS

In this dissertation research, the author has made a complete study on the low-power

multichannel telemetry system for high-speed wireless neural recordings. This study covers

research works in three main aspects: (1) the investigation of low-power low-noise biosig-

nal amplifiers, (2) the algorithm study and circuit development of neural spike detector, and

(3) the transmitter architecture study and neuromorphic circuit research.

In the study of biosignal amplifier, three amplifiers are designed. One is the Ultra-low-

power bioamplifier. In this study, the author propose a power and noise efficient bioam-

plifier for large array biopotential recording systems. The proposed bioamplifier utilizes

a differential folded-cascode gain stage and a common-gate gain stage to amplify the bio-

logical signal. The wide-swing-cascode structure is employed to achieve high gain under

low-voltage low-power operation. Subthreshold region operation of MOSFETs are utilized

and the corresponding device dimensions are optimized by extensive computer simulations.

The optimum trade-off of power, noise and device dimensions results in an ultra-low-power

biosignal amplifier. The proposed bioamplifier is designed using 0.13 µm standard CMOS

process. Monte Carlo simulation is performed to validate the system performance with re-

spect to device dimension mismatch. The second amplifier is Low-noise gain-tunable am-

plifier. In this work, the author presents a gain-tunable biopotential amplifier that achieves

an input-referred noise of 4.3 µVrms with 732 nW power consumption. The self-biasing

arrangement consisted of weak inversion MOSFETs is demonstrated to achieve the low-

noise and low-power amplification. The precisely tunable gain of the proposed amplifier

can maximally utilize the resolution of an analog-to-digital converter (ADC) by adjusting

the amplitude of the amplified signal to the suited range. The third amplifier is the low-

power amplifier with optimized noise efficient factor. The author proposes a low-noise

biopotential amplifier with an NEF value close to the theoretical limit of the proposed cir-

cuit structure. The NEF theoretical limit of the proposed circuit topology is derived out
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first to guide the circuit design process. Based on this NEF value, we calculate the total

current needed to achieve the highest power-noise efficiency. The very low input-referred

noise is achieved by increasing the transconductance of the input nMOSFET pair. Three

approaches are adopted here. Firstly, the nMOSFET pair are biased to operate at weak

inversion saturation region for the high transconductance efficiency (gm/ID). Secondly, 1/3

of the total current is assigned to the nMOSFET pair. Thirdly, a self-biased structure com-

prising a weak positive feedback and a strong negative feedback is applied on the circuit to

further enhance the transconductance.

In the study of neural spike detectors, the author has shown the sensitivity degradation

of conventional NEO spike detectors at the presence of LFPs. We extended our previ-

ous work by incorporating a comprehensive evaluation on the detection accuracy of the

proposed spike detectors. In second part, the characteristics of three mostly used spike

detection algorithms are introduced briefly. The third part elaborates the principles of

the proposed spike detection algorithms, namely frequency-enhanced NEO (fNEO) and

energy-of-derivative (ED), and compares them with NEO method. In the fourth part, the

NEO, fNEO, and ED algorithms are implemented into three low-power full-analog spike

detectors and the performance of the proposed algorithms are verified with the implemented

spike detectors. A large amount of statistical evaluations have been made in the fifth part to

demonstrate the detection robustness of the proposed ED spike detector at different signal-

to-noise ratio (SNR). Finally, we conclude this work in the last.

In the study of power-efficient transmitter, we propose an efficient mathematical model

for MHP set generators. Compared with existing models, the proposed model has lower

computational complexity. For circuit level implementations, a neuromorphic circuit archi-

tecture has been developed to generate MHPs for sub-GHz UWB communications. While

the sub-GHz UWB communication allows lower power dissipation than the standard UWB

communications, the neuromorphic structure further reduces the numbers of adders, inte-

grators and multipliers needed in the system. Results from both mathematical analysis and
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design layout simulations validate the effectiveness of the proposed scheme for the design

of an efficient MHP set generator.
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