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ASSESSMENT OF ANTIPSYCHOTIC MEDICATION EFFECTS ON DYNAMIC 
FUNCTIONAL NETWORK CONNECTIVITY IN PATIENTS WITH 

SCHIZOPHRENIA 
 

KRISTIN K. LOTTMAN 
 

BIOMEDICAL ENGINEERING 
 

ABSTRACT 
 

Schizophrenia, a psychiatric disorder affecting approximately 1% of the 

population, is often characterized as a disorder of dysconnectivity. Evaluation of the 

dysconnectivity hypothesis of schizophrenia has been extensively examined via 

functional neuroimaging studies in order to enhance insight into the disorder’s pathology. 

In particular, resting-state functional connectivity analyses have reported widespread 

aberrant network connectivity between brain regions in patients; however, consistencies 

in the directionality of abnormalities are often variable across studies. Recent 

investigations have begun to analyze functional connectivity dynamically as it is likely 

these inconsistencies may be a result of the static nature of traditional connectivity 

measures. In this study, we assess dynamic functional network connectivity in patients 

with schizophrenia and matched healthy controls through implementation of group 

independent component and sliding window analyses. Patients completed a resting-state 

functional magnetic resonance imaging scan while unmedicated and after six weeks of 

treatment. Data were preprocessed and decomposed into independent components via 

group independent component analysis and identified as resting-state networks. Sliding 

window analysis was subsequently performed on post-processed time courses with 
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variable tapered window sizes (30s, 40s, 44s, 50s, and 60s) and resultant windowed 

correlation matrices were clustered into discrete connectivity states. Results demonstrated 

widespread aberrant (increased and decreased) connectivity differences in unmedicated 

patients across window sizes; however, the vast majority of connectivity differences were 

most prominent within a single state at small window sizes. Exploratory analyses of 

connectivity state statistics indicate that unmedicated patients tend to spend less time in 

states typified by sparse connectivity. Additionally, results found patients tended to dwell 

longer in smaller windowed states typified by patient hypo-connectivity. Ultimately, our 

results demonstrate the importance of implementing dynamic analyses to gain 

connectivity details not obtainable with traditional connectivity analyses. In addition, 

implementation of these analyses not only improves insight into the role of network 

dysconnectivity in schizophrenia, but also provides a promising indication of progress 

towards biomarker identification.  

 

Keywords: schizophrenia, functional connectivity, dynamics, sliding window, fMRI, 

risperidone 
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INTRODUCTION 

 
Schizophrenia 

Schizophrenia is a psychiatric disorder that affects approximately 1% of the 

population (Freedman, 2003; Tandon et al., 2008b). Symptoms of the illness often begin 

to emerge in individuals between late adolescence and early adulthood. Characteristic 

symptoms consist of positive symptoms distinguished by hallucinations, delusions, or 

thought disorders; negative symptoms typified by social withdrawal, flat affect, or 

anhedonia; and cognitive symptoms such as poor executive functioning, memory deficits, 

and attention deficits (American Psychiatric Association, 2013; Tandon et al., 2009).  

Furthermore, schizophrenia is often described as a heterogeneous disorder since 

manifestation of characteristic symptoms not only varies across individuals but also in 

severity. While identification of various risk factors and risk levels for the disorder such 

as family history (Gottesman et al., 1987; Kendler et al., 1993; Sullivan et al., 2003; 

Tandon et al., 2008a), urbanicity (Pedersen and Mortensen, 2001; Tandon et al., 2008a), 

migration (Cantor-Graae and Selten, 2005; Tandon et al., 2008a), and cannabis use 

(Semple et al., 2005; Tandon et al., 2008a) have increased understanding of the disorder’s 

causation, the exact etiology of schizophrenia still remains unknown (Tandon et al., 

2008a). It is believed that these characteristic symptoms of the disorder are an expression 

of aberrant communication between brain regions rather than discrete brain region 

abnormalities (Fornito et al., 2012; Friston and Frith, 1995; Stephan et al., 2009).  
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Currently, schizophrenia is treated with antipsychotic medications that act as 

antagonists on the D2 dopamine receptors. However, only positive symptoms are 

mitigated with little effect on negative and cognitive symptoms. Additionally, response to 

antipsychotic medications is variable among patients, as approximately one-third of 

patients will not improve with medication (Lieberman et al., 2005) and many will 

respond poorly to medications (Harrow et al., 1997). Consequently, there is a need for 

advancement towards a more targeted and effective drug treatment in order to improve 

long-term prognosis. It is believed that progress towards identification of imaging 

biomarkers that characterize connectivity abnormalities is necessary for development of 

more targeted drug treatment and could potentially be facilitated through utilization of the 

neuroimaging techniques that are the focus of this thesis.  

Functional Magnetic Resonance Imaging 

 Functional magnetic resonance imaging (fMRI) using blood oxygenation level 

dependent (BOLD) contrast is a non-invasive neuroimaging technique commonly used to 

examine brain function. BOLD contrast fMRI examines brain function through an 

indirect measure of neuronal activity that is based on blood flow and its magnetic 

properties (Huettel et al., 2008; Logothetis et al., 2001; Ogawa et al., 1990).   

The magnetic properties of blood vary based on whether or not the hemoglobin 

protein molecule is oxygenated or deoxygenated (Huettel et al., 2008). Oxygenated 

hemoglobin is diamagnetic and has little effect on the surrounding magnetic field due to 

its lack of unpaired electrons and magnetic moment (Huettel et al., 2008; Ogawa et al., 

1990; Pauling and Coryell, 1936). In comparison, deoxygenated hemoglobin is 

paramagnetic and has greater magnetic susceptibility effects than oxygenated hemoglobin 
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due to the presence of unpaired electrons and a magnetic moment (Huettel et al., 2008; 

Ogawa et al., 1990; Pauling and Coryell, 1936). When neurons generate action potentials, 

blood flow to that brain region increases resulting in a supply of oxygenated hemoglobin 

greater than can be consumed (Fox et al., 1988; Huettel et al., 2008). Therefore, a change 

in oxygenated blood concentration induces a change in the magnetic resonance signal 

detected, also known as BOLD contrast (Huettel et al., 2008; Ogawa et al., 1990). It is 

important to note that the magnetic susceptibility effects of deoxygenated hemoglobin are 

also dependent on field strength. Hence, an increase in field strength results in the 

detection of greater changes in BOLD signal (Gur and Gur, 2010).   

Traditionally, fMRI images are acquired while specific task stimuli are presented 

to and carried out by an individual in the scanner also known as task-based fMRI. 

However, resting-state fMRI (rsfMRI) measures the spontaneous low-frequency BOLD 

fluctuations in the brain when no specific task stimuli are presented (Biswal et al., 1995; 

Cordes et al., 2001; Cordes et al., 2000; Fox and Raichle, 2007). It has been shown that 

these spontaneous fluctuations can be attributed to the intrinsic or baseline neuronal 

activity of the brain that corresponds to temporally coherent functional brain networks 

(Biswal et al., 1995; Damoiseaux et al., 2006; Fox and Raichle, 2007). Although the 

absence of a task is beneficial when working with a patient population that may have 

difficulty learning and/or performing a task in the scanner (Fox and Raichle, 2007; Zhou 

et al., 2010), the presence of non-neuronal noise such as cardiac and respiratory 

fluctuations (Birn et al., 2006; Fox and Raichle, 2007; Glover et al., 2000; Lund et al., 

2006; Wise et al., 2004) in the BOLD signal is a major concern in rsfMRI analysis and 

must be mitigated prior to implementation of connectivity analyses.  
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Functional Connectivity 

Schizophrenia is described as a disorder of brain connectivity exemplified by 

uncharacteristic interactions between brain regions, which are likely influenced by 

abnormal neuronal and physiological processes (Bassett et al., 2012; Friston and Frith, 

1995; Stephan et al., 2009; Valli et al., 2011). These uncharacteristic brain interactions 

are commonly examined via functional connectivity measures.   

Functional connectivity is defined as the measure of temporal correlations 

between spatially separate regions of the brain (Biswal et al., 1995; Fox and Raichle, 

2007). More specifically, functional connectivity analyses of rsfMRI examine 

interactions between intrinsic connectivity networks (ICNs) or resting-state networks 

(RSNs) as these networks are a representation of the intrinsic or baseline activity of the 

brain while at rest (Beckmann et al., 2005; Damoiseaux et al., 2006; Fox and Raichle, 

2007; Hutchison et al., 2013a; Power et al., 2011; Yeo et al., 2011). Two of the most 

common methods of examining functional connectivity of RSNs from BOLD data are (1) 

seed-based analysis and (2) independent component analysis (ICA). 

Seed-based analysis is a hypothesis-driven technique in which the BOLD time 

course from a seed region or region of interest is extracted and temporal correlations or 

functional connections to all other voxels within the brain are determined (Biswal et al., 

1995; Fox and Greicius, 2010; Fox and Raichle, 2007; Joel et al., 2011). However, one 

major limitation of seed-based analysis is the fact that seed regions must be predefined 

based on a priori hypotheses. In comparison, the data-driven ICA is a blind source signal 

separation technique in which a mathematical algorithm is utilized to decompose the 

entire BOLD signal into maximally independent components (Beckmann et al., 2005; 
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Fox and Greicius, 2010; Fox and Raichle, 2007; Joel et al., 2011; McKeown et al., 1998). 

These extracted independent component time courses are subsequently utilized to 

determine within and between network connectivity (Joel et al., 2011). Therefore, the 

data-driven nature of ICA analysis makes it advantageous to a hypothesis-driven seed-

based analysis.  

Functional Connectivity in Schizophrenia   

Previous studies have shown that rsfMRI functional connectivity is altered in 

patients with schizophrenia [see (Yu et al., 2012) for review]. These altered functional 

connectivity patterns in patients with schizophrenia have been shown to be affected by 

antipsychotic medication treatment (Davis et al., 2005; Hadley et al., 2014; Honey et al., 

2003; Lui et al., 2010; Lynall et al., 2010). However, the directionality of these altered 

functional connections has varied across studies, which ultimately raises questions about 

how the “static” assumptions made in functional connectivity analysis are directly 

affecting the reliability of results (Allen et al., 2014; Damaraju et al., 2014; Fox and 

Greicius, 2010).  

Dynamics of Functional Connectivity 

While most rsfMRI analyses include at least four to five minutes of data based on 

previous studies demonstrating that RSN functional connectivity correlation values 

stabilize with this amount of time (Hutchison et al., 2013a; Van Dijk et al., 2010), recent 

studies suggest at least nine to thirteen minutes of data greatly enhance the reliability of 

functional connectivity values (Birn et al., 2013). Ultimately, this illustrates that regional 

interactions within the brain do not remain constant over time unless examined in long 

time-scales (Allen et al., 2014; Handwerker et al., 2012; Hutchison et al., 2013a; Jones et 
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al., 2012; Kiviniemi et al., 2011; Sakoglu et al., 2010). Rather, the dynamic nature of 

brain activity is not accounted for in traditional functional connectivity measures, as 

functional connectivity is estimated as the average temporal correlations between RSNs 

over the length of a scan (Biswal et al., 1995; Fox and Raichle, 2007; Friston, 1994; 

Lynall et al., 2010). Therefore, traditional functional connectivity measures are based on 

the major assumption that connections within the brain remain stable over time (i.e., 

length of rsfMRI scan). The problem in making this assumption may be manifested in the 

inconsistent functional connectivity pattern differences reported across studies (Calhoun 

et al., 2009; Damaraju et al., 2014; Fornito et al., 2012; Fox and Greicius, 2010), and 

ultimately the inability to clinically translate the results.  

In comparison, potential fluctuations in functional connectivity interactions over 

time can be taken into account via time course sampling and subsequent functional 

connectivity estimation, also known as dynamic functional network connectivity 

measures. The most common approach to estimating dynamic functional network 

connectivity is with a sliding window technique (Allen et al., 2014; Handwerker et al., 

2012; Hutchison et al., 2013a; Hutchison et al., 2013b; Jones et al., 2012; Kiviniemi et 

al., 2011; Sakoglu et al., 2010), in which windows of the BOLD time courses are sampled 

in order to estimate reproducible, transient patterns of functional connectivity 

(“connectivity states”) (Allen et al., 2014; Hutchison et al., 2013a). These connectivity 

states are believed to be representative of discrete mental states of connectivity that 

subjects pass through during the scan (Calhoun et al., 2014; Hudson et al., 2014; 

Hutchison et al., 2013a), an observation not obtainable from traditional functional 

connectivity measures. Therefore, the nature of dynamic functional network connectivity 
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analysis avoids the issue of oversimplification of the functional connections of 

spontaneous fluctuations encountered in traditional functional connectivity measures. The 

recent emergence and utilization of dynamic functional network connectivity analyses 

provides promise in progress toward identification of imaging biomarkers characteristic 

of pathophysiological states such as schizophrenia. In addition, these analyses not only 

provide greater insight into the role of networks in the healthy human brain, but also into 

network abnormalities characteristic of mental disorders.  

Thesis Format 

In this prospective study, a longitudinal rsfMRI experimental design was 

implemented in order to examine dynamic functional network connectivity in 

unmedicated patients, as well as to study the effects of the second-generation 

antipsychotic medication, risperidone. Connectivity states, a representation of transient 

patterns of functional connectivity, were computed between RSNs identified via group 

independent component analyses and compared between a group of healthy controls and 

patients with schizophrenia. The effects of antipsychotic medication were examined with 

a comparison of connectivity state functional connections in patients with schizophrenia 

while acutely psychotic, before beginning antipsychotic medication, and after six weeks 

of treatment. Furthermore, differences in connectivity state dwell times and transition 

patterns were examined with various statistical analyses.  

This thesis is composed of an introduction, a manuscript submitted to 

NeuroImage: Clinical that explores dynamic functional network connectivity in patients 

with schizophrenia, and a conclusion.  
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Abstract 

 The dysconnectivity hypothesis of schizophrenia has been extensively examined 

via functional neuroimaging studies in order to enhance insight into the neuropathology 

of the disorder. Resting-state functional connectivity analyses have reported widespread 

aberrant network integration; however, these abnormalities are variable across studies. 

Recent investigations have begun to analyze functional connectivity dynamically as it is 

thought that inconsistencies across studies may be a result of the static nature of 

traditional functional connectivity measures. In this study, we assess dynamic functional 

network connectivity in patients with schizophrenia (n=34) and matched (age, gender, 

smoking status, socio-economic status) healthy controls (n=35) through the 

implementation of group independent component analysis and sliding window analysis. 

Patients with schizophrenia completed a 5-minute (150-volume) resting-state functional 

magnetic resonance imaging scan while unmedicated and after six weeks of antipsychotic 

medication (risperidone) treatment. Data were preprocessed and decomposed into 100 

independent components via group independent component analysis and 42 were 

identified as resting-state networks – as opposed to artifact. Sliding window analysis was 

subsequently performed on post-processed time courses with different window sizes (30s, 

40s, 44s, 50s, and 60s) and resultant windowed correlation matrices were then clustered 

into 4 discrete connectivity states. Results demonstrate widespread aberrant connectivity 

differences in patients with schizophrenia across window sizes; however, the vast 

majority of connectivity differences were most prominent within a single state at small 

window sizes. More specifically, vast subcortical, visual, and cerebellar connectivity 

abnormalities were manifested at window sizes of 30s, 40s, and 44s in a state typified by 
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strong within visual network connectivity. Exploratory analyses of connectivity state 

statistics indicate that unmedicated patients tend to spend significantly less time in states 

typified by sparse connectivity; however, antipsychotic medication treatment appears to 

reduce differences between controls and patients. Additionally, a positive correlation was 

found between baseline patient dynamic connectivity and subsequent treatment response 

in subcortical and cognitive control networks. Ultimately, our results demonstrate the 

importance of implementing dynamic analyses in order to further comprehend the 

dysconnectivity hypothesis of schizophrenia, as well as provide a promising indication of 

progress towards biomarker identification in patients with schizophrenia.   

 

Keywords: functional connectivity, dynamics, resting state, schizophrenia, risperidone, 

independent component analysis  

 



 

11 

1. Introduction  

 Schizophrenia is often described as a disorder of brain connectivity characterized 

by abnormal network integration between cortical areas, and likely related to clinical 

symptoms (Bassett et al., 2012; Friston and Frith, 1995; Stephan et al., 2009; Valli et al., 

2011). Structural and functional dysconnectivity in schizophrenia has been extensively 

proposed in neuroimaging studies. A common approach to characterizing functional 

dysconnectivity is through evaluation of functional connectivity – the measure of 

temporal coherence of low frequency blood oxygenation level dependent (BOLD) signal 

fluctuations between spatially separate regions of the brain (Biswal et al., 1995; Fox and 

Raichle, 2007; Friston and Frith, 1995). More specifically, analyses of resting-state 

functional magnetic resonance imaging (fMRI) data has allowed for characterization of 

intrinsic network connectivity aberrations (Beckmann et al., 2005; Damoiseaux et al., 

2006; Fox and Raichle, 2007; Hutchison et al., 2013a; Jafri et al., 2008; Power et al., 

2011; Sorg et al., 2007; Yeo et al., 2011).  

Traditionally, functional connectivity is evaluated over long time scales, or the 

length of the scan. However, this “static” approach to connectivity analysis disregards the 

dynamic nature of brain activity by assuming constant connectivity patterns over time 

(Calhoun et al., 2014; Hutchison et al., 2013a). Recent reports attribute functional 

connectivity inconsistencies across studies to the oversimplification of data in 

traditionally static functional connectivity analyses (Calhoun et al., 2009; Damaraju et al., 

2014; Fornito et al., 2012; Fox and Greicius, 2010; Hutchison et al., 2013a; Rashid et al., 

2014). The recent emergence of dynamic functional connectivity analysis aims to address 

this data averaging issue by calculating transient patterns of functional connectivity 
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through windowed time course sampling (Allen et al., 2014; Damaraju et al., 2014; 

Handwerker et al., 2012; Hutchison et al., 2013a; Hutchison et al., 2013b; Jones et al., 

2012; Kiviniemi et al., 2011; Sakoglu et al., 2010). However, the obstacle of determining 

the correct window size for sliding window analysis still remains. While some studies 

have indicated a window size between 30 and 60 seconds robustly estimates functional 

connectivity (Allen et al., 2014; Shirer et al., 2012), others have explored window sizes 

ranging from 30 seconds to 240 seconds (Allen et al., 2014; Damaraju et al., 2014; 

Handwerker et al., 2012; Hutchison et al., 2013a; Hutchison et al., 2013b; Leonardi and 

Van De Ville, 2015; Sakoglu et al., 2010). In this work, we aim to address this issue 

through utilization of five window sizes between 30 and 60 seconds to evaluate dynamic 

functional connectivity.  

Furthermore, clustering of the transient patterns of connectivity results in 

connectivity states that are believed to be representative of discrete mental states of 

connectivity that subjects pass through during the scan (Allen et al., 2012; Calhoun et al., 

2014; Hudson et al., 2014; Hutchison et al., 2013a). In capturing the fluctuations in 

network interactions over time, and ultimately more descriptively characterizing network 

integration, the progress towards identifying imaging biomarkers is enhanced.  

 The purpose of this study was to evaluate the dynamic nature of functional 

network connectivity in unmedicated patients with schizophrenia and the effects of 

antipsychotic medication. To our knowledge, the effects of antipsychotic medication on 

dynamic functional network connectivity have not been observed in patients with 

schizophrenia. Resting-state fMRI scans were obtained for patients while unmedicated, as 

well as after six weeks of risperidone treatment. We hypothesize that unmedicated 
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patients with schizophrenia will exhibit significant connectivity abnormalities compared 

to healthy controls. We predict these connectivity abnormalities will be variable across 

networks but will be state-specific rather than manifesting in all connectivity states.  

2. Methods 

2.1 Participants 

Thirty-four unmedicated patients with schizophrenia were recruited from the 

emergency room, inpatient units, and various outpatient clinics at the University of 

Alabama at Birmingham (UAB). Additionally, 35 matched healthy controls based on age, 

gender, smoking status, and socio-economic status were recruited using flyers and 

advertisements in the university newspaper. This study was approved by the UAB 

Institutional Review Board, and written informed consent for participation was obtained 

after participants were found competent to provide informed consent (Carpenter et al., 

2000).  

Diagnoses were established with review of patient medical records and evaluation 

by two board certified psychiatrists, and confirmed using the Diagnostic Interview for 

Genetic Studies (Nurnberger et al., 1994). Patients included in the study had been off 

antipsychotic medication for at least 10 days; we did not stop medication to meet this 

criterion. Exclusion criteria were major medical conditions, neurological disorders, 

history of head trauma with loss of consciousness, substance abuse within 6 months of 

imaging (with the exception of nicotine), use of medication affecting brain function, 

pregnancy, and MRI contraindications. Healthy control exclusion criteria also included a 

history of Axis I disorders personally or in first-degree relatives.  
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Subjects who were either medication naïve or had been off antipsychotic 

medications were enrolled in a six-week trial with risperidone using a flexible dosing 

regimen. Medication was managed by two psychiatrists (ACL and NVK), and dose 

determinations were based on therapeutic and side effects. Starting doses were 1-3 

milligrams; titration was done in 1-2 milligram increments. Compliance was monitored 

by pill counts at each visit. Concomitant antidepressant or mood stabilizing medication 

was allowed to be used as indicated. 

2.2 Study Design 

Participants completed a resting-state fMRI scan of at least 5 minutes (150 

volumes) in length. For data length consistency across participants, additional volumes 

over 5 minutes were discarded (Allen et al., 2014). All participants were scanned at 

baseline. Patients were then scanned after six weeks of treatment to allow adequate time 

for clinical response (Hadley et al., 2014; Marder et al., 2002). Of the 34 patients with 

schizophrenia enrolled, six subjects dropped out of the study prior to the second scan. 

One subject was excluded from baseline analysis due to an insufficient number of scan 

volumes. In addition, no resting state scans were obtained for four subjects at week 6, 

leaving data for 33 patients at baseline and 24 patients at week 6 in the final analysis. 

Additionally, 19 of the 35 recruited healthy controls were scanned for a second time six 

weeks after the baseline scan. The Brief Psychiatric Rating Scale (BPRS) (Overall and 

Gorham, 1962) was used to assess symptom severity weekly. Cognitive function was 

assessed for both groups at baseline using the Repeatable Battery for the Assessment of 

Neuropsychological Status (RBANS) (Randolph et al., 1998).  

2.3 Scanning Parameters 
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All scans were performed with a 3 Tesla head-only scanner (Magnetom Allegra, 

Siemens Medical Solutions, Erlangen, Germany), with a circularly polarized 

transmit/receive head coil. High-resolution structural scans were acquired for anatomical 

reference using the 3-dimensional T1-weighted magnetization-prepared rapid acquisition 

gradient-echo sequence (repetition time/echo time/inversion time [TR/TE/TI]= 

2300/3.93/1100ms, flip angle= 12°, 256 × 256 matrix, 1-mm isotropic voxels). Resting-

state fMRI scans were acquired using a gradient recalled echo-planar imaging sequence 

(TR/TE= 2000/30ms, flip angle= 70°, field of view= 192 × 192mm2, 64 × 64 matrix, 

6mm slice thickness, 1mm gap, 30 axial slices). Participants were instructed to keep eyes 

open and stare passively ahead during the scan.  

2.4 Preprocessing 

Data preprocessing was performed with SPM8 (Wellcome Trust Centre for 

Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm/). Resting-state fMRI data 

were slice-timing corrected, realigned, normalized to Montreal Neurological Institute 

(MNI) space with the diffeomorphic anatomical registration using exponentiated lie 

algebra algorithm (DARTEL) (Ashburner, 2007), resampled to 1.5 mm3, and smoothed 

with a Gaussian kernel to 6 mm full width at half maximum. Prior to group independent 

component analysis, data were variance normalized to facilitate decomposition of 

subcortical and cortical networks (Damaraju et al., 2014).  

2.5 Group Independent Component Analysis 

Group-level spatial independent component analysis was performed via the Group 

ICA of fMRI Toolbox (GIFT, http://mialab.mrn.org/software/gift). Subject specific 

principal component analysis (PCA) was implemented in the GIFT toolbox by reducing 
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the data to 120 principal components, which were subsequently decomposed into 100 

components via group data reduction (Allen et al., 2014). The expectation maximization 

algorithm was used to carry out PCA in a memory efficient manner (Allen et al., 2014; 

Roweis, 1998). The Infomax algorithm (Allen et al., 2014; Bell and Sejnowski, 1995) 

was then applied to the PCA reduced data to generate 100 spatially independent 

components. Component stability/quality was measured by repeating the Infomax 

algorithm 20 times in ICASSO (http://www.cis.hut.fi/projects/ica/icasso) (Allen et al., 

2014; Damaraju et al., 2014). Subject-specific spatial maps and time courses were 

generated via GICA back-reconstruction (Erhardt et al., 2011). Following back-

reconstruction, subject spatial maps and time courses were scaled to z-scores.   

2.6 Postprocessing 

Three reviewers (KKL, NVK, DMW) classified independent components as 

resting state networks (RSNs) – as opposed to artifact – based on visual inspection of 

group-level component spatial maps and evaluation of power spectra data. Group-level 

component spatial maps were inspected and classified as RSNs with expectations that 

peak activation clusters occur primarily in gray matter, correspond anatomically to brain 

networks, and meet the RSN expectations presented in previous studies (Allen et al., 

2014; Allen et al., 2011; Damaraju et al., 2014). To facilitate component classification as 

RSNs, component power spectra data were evaluated using the fractional amplitude of 

low frequency fluctuations (fALFF) (Allen et al., 2011; Zou et al., 2008) in order to 

validate component time courses were characterized by predominantly low-frequency 

fluctuations (Allen et al., 2014; Cordes et al., 2001; Cordes et al., 2000). The three 

reviewers identified 42 RSNs from the 100 extracted components, as illustrated in Figure 
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1A. RSNs were labeled based on results from brain atlas toolboxes utilized in SPM8 – 

xjView (http://www.alivelearn.net/xjview8/) and WFU_PickAtlas 

(http://www.nitrc.org/projects/wfu_pickatlas/). Additionally, RSN labels were 

determined based on correspondence to the 50 components presented in (Allen et al., 

2014), as well as label consensus among all three reviewers (See Table S1 for RSN peak 

activations). Labeled RSNs were then organized into seven different networks including 

subcortical, auditory, somatomotor, visual, cognitive control, default mode, and 

cerebellar (Allen et al., 2014). Three components were classified as unknown networks 

after reviewer inspection of RSNs resulted in no clear distinct label.  

Following RSN identification, framewise displacement was regressed from the 

subject specific RSN time courses. Framewise displacement was computed as the 

absolute frame-to-frame displacement of the brain from the six realignment parameters 

using a radius of 50mm to convert angle rotations to displacements (Hadley et al., 2014; 

Power et al., 2012). Subsequently, subject specific RSN time courses were detrended, 

despiked, and low-pass filtered (0.15 Hz cutoff) in accordance with previous studies 

(Allen et al., 2014; Damaraju et al., 2014).  

2.7 Static Functional Network Connectivity Analysis 

Traditional or static functional network connectivity was estimated for each 

subject as the pairwise correlation between whole RSN component time courses, 

resulting in a 42-by-42-component correlation matrix (Figure 1B). After Fisher-Z 

transformation, variance associated with the covariates of age and gender was removed 

from correlation values. Corrected correlation matrices for subjects in a group were then 

averaged together resulting in a group-level connectivity matrix. Subsequently, within 
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and between group differences in static functional network connectivity matrices were 

evaluated via univariate t-tests with a significance value of p<0.05. Bootstrap resampling 

(i.e., resampling with replacement) was conducted with a resampling rate of 1000 to 

determine reliability of significant group differences in connectivity. Group differences 

(p<0.05) that occurred in at least 95% of the 1000 bootstrap resamples were considered 

significant.  

2.8 Dynamic Functional Network Connectivity Analysis 

A sliding window technique was used to estimate dynamic functional network 

connectivity where windowed segments of the component time courses were used to 

compute transient functional network connectivity patterns (Figure 1C). Sliding window 

analysis was iteratively performed with window sizes of 30s, 40s, 44s, 50s, and 60s. A 

Gaussian (σ=3 TRs) window of the respective size was slid through the time course in 

steps of 1 TR in order to obtain windowed correlation matrices for each subject. Due to 

potential effects on covariance estimation from sampling short time windows, windowed 

correlation matrices were generated by estimating the covariance of the L1 regularized 

inverse covariance matrix, which was carried out utilizing a graphical LASSO framework 

in the GIFT Toolbox (Allen et al., 2014; Damaraju et al., 2014; Friedman et al., 2008; 

Smith et al., 2011; Varoquaux et al., 2010).  

2.9 Clustering 

In order to characterize reoccurring patterns of connectivity across groups and 

time, k-means clustering was performed on the windowed correlation matrices. 

Clustering of a sub-sampled number of windows (i.e., windows with relative maxima of 

variance) for all groups and time points was carried out in order to estimate initial cluster 
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centroids (cluster medians) (Allen et al., 2014; Damaraju et al., 2014). The sum of 

absolute differences or L1 distance method was used with a maximum of 150 iterations 

for k-means cluster computation. The optimal number of cluster states was determined to 

be four based on evaluation of the elbow criterion of the ratio of within cluster sum of 

squares distance to between cluster sum of squares distance (Damaraju et al., 2014; Zhao 

et al., 2009). Resultant centroid states from the clustering of sub-sampled data were 

subsequently used as initial clustering positions for clustering of all subject and group 

data. Figure S1 depicts resultant cluster centroids for all subjects and groups at each 

respective window size.  

2.10 Group Differences in Dynamic Functional Network Connectivity 

Following k-means clustering of data from all subjects, mean group-level 

connectivity centroid states were calculated from the group’s subject medians of 

windows assigned to each respective state (Damaraju et al., 2014). Subsequently, 

univariate t-tests were performed on the age and gender variance-corrected connectivity 

states to evaluate group differences. Reliability and stability of group differences in 

connectivity for each state were determined with bootstrap resampling implemented in 

the same manner as in static functional network connectivity analysis. Group differences 

(p<0.05) that occurred in at least 95% of the 1000 bootstrap resamples were considered 

significant. Exploratory post-hoc analyses examining group differences in state statistics 

such as dwell times (i.e., average amount of time spent occupying a state before 

switching to another) and overall amount of time spent in a state were implemented using 

univariate t-tests. Transition matrix differences for each group were also evaluated via 

chi-square methods (Anderson and Goodman, 1957; Billingsley, 1961; Goodman, 1958).  
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2.11 Treatment Response 

 Due to the aforementioned dropout of six subjects, as well as the insufficient 

number of scan volumes for one subject at baseline, only 27 subjects possessed sufficient 

data for treatment response analyses. Treatment response was evaluated as the percent 

change in positive BPRS scores from baseline to week 6. The relationship between 

baseline functional connectivity (age and gender variance-corrected) and subsequent 

patient treatment response was examined via univariate tests utilized in the 

MANCOVAN toolbox (http://mialab.mrn.org/software/mancovan). Univariate tests were 

carried out for static and dynamic functional connectivity values. Significant effects 

(p<0.05) that occurred in at least 95% of 10,000 bootstrap resamples were considered 

significant. 

3. Results 

3.1 Demographics 

Average dose of risperidone was 2.65+/- 1.11mg at the second scan and 4.36+/- 

1.45mg at the third scan. Twelve subjects were concomitantly treated with benztropine, 

two with trazodone, one each was prescribed mirtazapine, amitriptyline, and valproic 

acid. No significant differences in age, gender, parental socioeconomic status, smoking 

status, or daily cigarette use were observed between healthy controls and patients. 

Patients exhibited a decrease in total BPRS scores from 48.29±9.38 at baseline to 

36.81±10.84 and 30.57±8.47 after one and six weeks of medication, respectively. In 

comparison to healthy controls, patients scored significantly lower on RBANS (Table 1).  

3.2 Resting State Network Identification 
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 The 42 independent components identified as RSNs are depicted in Figure 1A. 

Labeled RSNs were then organized into seven different networks including subcortical (3 

RSNs), auditory (2 RSNs), visual (9 RSNs), somatomotor (8 RSNs), cognitive control (9 

RSNs), default mode (5 RSNs), and cerebellar (3 RSNs; Table S1).  

3.3 Group Differences in Static Functional Network Connectivity 

Mean static functional network connectivity matrices for healthy controls, 

unmedicated patients, and week 6 patients are illustrated in Figure 2A-C. In comparison 

to healthy controls, unmedicated patients demonstrated significantly stronger connections 

within the visual and cognitive control networks (Figure 2D). Additionally, unmedicated 

patients exhibited hyper-connectivity between connections in the cognitive control 

networks and the subcortical and visual networks, as well as between connections in the 

visual networks and the cerebellar and unknown networks. However, unmedicated 

patients showed a weaker connection between a cognitive control and subcortical 

network connection (i.e., middle frontal gyrus (IC 15) to caudate/putamen (IC 34)) in 

comparison to controls. Moreover, unmedicated patients exhibited hyper-connectivity 

between a default mode and unknown network connection. In comparison to unmedicated 

patients, week 6 patients exhibited decreased connectivity in connections within the 

somatomotor network and between the visual and unknown networks (Figure 2E).  

3.4 Group Differences in Dynamic Functional Network Connectivity 

Cluster centroids for all subjects and time points at each window size are shown 

in Figure S1. All centroids illustrate some hyper-connectivity within the visual and 

somatomotor networks. In particular, state 4 represents a relatively hyper-connected state 

among all networks. In comparison, state 2 represents the relatively least connected state 
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among all states with the lowest average correlation value from all connections. Healthy 

control and unmedicated patient group differences in connectivity state patterns for each 

window size are illustrated in Figure 3B. A summary of the group differences depicted in 

Figure 3B is presented in Figure 4. Results indicate that the total number of differences in 

connectivity decreases as window size increases in state 1 (with the exception of the 60s 

window). In comparison to controls, unmedicated patients regularly demonstrate hyper-

connected group differences among all states in the majority of window sizes, in which 

states 2, 3, and 4 are predominantly characterized by hyper-connectivity differences. 

Additionally, aberrant connectivity across the subcortical, visual, and cerebellar networks 

in patients represents most of the connectivity differences present at the 30s, 40s and 44s 

windows in state 1. More specifically, patients consistently demonstrate hypo-

connectivity between subcortical–visual, subcortical–cerebellar, and cerebellar–visual 

networks at these window sizes. However, at the 50s and 60s windows, this subcortical 

and cerebellar network hypo-connectivity is no longer present. Rather, these state 1 

windows are characterized by patient hyper-connectivity in visual–visual and visual–

cerebellar network components that are also present in the 44s window. Additionally, 

patient hyper-connectivity in state 1 is consistently exhibited in default mode–unknown 

network components in the first three windows. Patient hyper-connectivity between a 

somatomotor and subcortical network connection is exhibited only at small window sizes 

accompanied by subcortical–visual, subcortical–default mode, and subcortical–cerebellar 

hypo-connectivity. Examination of state 2 connectivity differences does not result in 

stable connectivity differences across window sizes with the exception of a subcortical–

somatomotor hyper-connection at 40s and 44s in patients. Patient hyper-connectivity in a 
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visual–visual network component is reliably exhibited in state 3 in window sizes greater 

than 30s. In state 4, patient hyper-connectivity is exhibited in subcortical–cognitive 

control, cognitive control–cognitive control, and default mode–unknown network 

components across 40s, 44s, 50s, and 60s windows.  

In addition, evaluation of state connectivity differences across time in patients 

with schizophrenia indicates widespread connectivity modulations with risperidone 

treatment. In accordance with significant baseline results and known effects of 

antipsychotic medication in subcortical regions, longitudinal results will focus primarily 

on subcortical network abnormalities (longitudinal results are illustrated in their entirety 

in Figure S2). Specifically, in comparison to unmedicated patients, week 6 patients 

demonstrated decreased connectivity between only one subcortical network connection 

(i.e., subcortical–somatomotor) in state 1 at the 40s window. However, subcortical 

network connectivity alterations were demonstrated primarily in state 2 with week 6 

patients – in comparison to unmedicated patients – exhibiting decreased connectivity 

between subcortical and somatomotor networks at the 40s and 44s windows. 

Additionally, in contrast to baseline, decreased connectivity in medicated patients was 

exhibited between subcortical and cognitive control networks at 44s and 50s windows. 

Moreover, week 6 patients demonstrated increased subcortical connectivity with the 

default mode network in state 2 and the cerebellar network in state 3 at the 40s window. 

Examination of differences between healthy control time points indicated only one 

subcortical network connectivity abnormality present in state 1 between the cognitive 

control network at the 60s window.   
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Exploratory post-hoc analyses of group dwell times, overall fraction of time spent 

in a state, as well as transition probabilities aimed to examine potential driving factors for 

dynamic functional network connectivity differences between groups. No significant 

group differences in transition probabilities between states across groups and window 

sizes were observed. Differences in dwell times and the fraction of time groups occupy 

individual states are shown in Figure 5. Comparison of the fraction of time groups 

occupy individual states indicate that unmedicated patients occupy state 2 significantly 

less and state 3 significantly more than healthy controls (p<0.05). In accordance with 

these results, patient (unmedicated) group mean dwell time in state 2 is significantly less 

than healthy controls across all windows. Additionally, in comparison to healthy controls, 

patient fraction of time and mean dwell time in state 2 tends to normalize towards healthy 

control values with medication treatment at all window sizes. In the 30s, 40s, and 44s 

windows, patients at baseline and after 6 weeks of medication tend to dwell in state 1 

significantly longer than controls. This increased state 1 dwell time at small window sizes 

corresponds to state 1 window sizes exhibiting greater connectivity differences in 

baseline patients.  

3.5 Effects of Treatment Response 

 Static functional network connectivity results indicate no correlation between 

baseline connectivity values and treatment response. However, correlation between 

baseline connectivity and treatment response is demonstrated in dynamic functional 

network connectivity (Figure 6). Using a 30s window, treatment response was positively 

correlated to a subcortical–visual network connection in state 4. No correlations (with the 

exception of unknown networks) were exhibited at the 40s and 44s windows. At 50s, 
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state 3 subcortical–cognitive control and cognitive control–cognitive control network 

connections, as well as state 2 cognitive control–default mode network connections, were 

positively correlated to treatment response. Additionally, the positive correlation between 

treatment response and state 3 cognitive control–cognitive control network was also 

present at the 60s window. However, due to the small number of subjects exhibiting state 

4, as well as minimum observation requirements for the regression algorithm, state 4 

effects of treatment response at 40s, 44s, 50s, and 60s windows were not obtainable. 

4. Discussion  

To our knowledge, this is the first dynamic functional network connectivity study 

examining unmedicated patients with schizophrenia, as well as the effects of 

antipsychotic medication. We describe connectivity differences, both hyper- and hypo-

connectivity, between controls and unmedicated patients in most of the states across the 

five different window sizes. Exploratory analyses of state statistics indicate that 

unmedicated patients differ in the time spent in states 2 and 3 in comparison to controls, 

but this appears to normalize with risperidone. In addition, a positive correlation was 

found between unmedicated patient dynamic connectivity and subsequent treatment 

response in subcortical and cognitive control networks in larger window sizes.  

In unmedicated patients, our static and dynamic functional network connectivity 

results reveal altered patterns of functional connectivity within higher order (cognitive 

control) and sensory (visual) networks as well as between networks (sensory-sensory, 

sensory-subcortical, sensory-cerebellar, cognitive control-sensory and cognitive control-

subcortical). These results are in line with recent studies in medicated patients 

demonstrating altered systems-level brain network dysfunction that suggest impaired 
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integration within and between bottom-up and top-down networks (Kaufmann et al., 

2015; Liang et al., 2006).  In a group of medicated patients, Damaraju and colleagues 

report extensive connectivity abnormalities between subcortical and sensory networks in 

connectivity states characterized by sensory network (i.e., auditory, visual, and 

somatomotor) hyper-connectivity (Damaraju et al., 2014). Like studies that use a seed-

based (Anticevic et al., 2014; Woodward et al., 2012) or static and dynamic (Damaraju et 

al., 2014) functional connectivity approaches in medicated patients, we observe increased 

subcortical-somatomotor connectivity in unmedicated patients. In addition, these 

subcortical networks displayed decreased functional connectivity with visual, default 

mode, and cerebellar networks, which is also in line with prior results in medicated 

patients (Anticevic et al., 2014; Woodward et al., 2012). Our observations - both static 

and dynamic - of within and between visual networks functional alterations are consistent 

with a growing number of studies implicating abnormal visual processing in 

schizophrenia [see (Javitt and Freedman, 2015) for review].  However, contrary to 

numerous resting-state studies reporting aberrant default mode network connectivity in 

patients with schizophrenia [see (Williamson and Allman, 2012) for review], our results – 

both static and dynamic – indicate no within default mode network connectivity 

abnormalities. While this incongruity with previous literature may be a result of our 

enrollment of unmedicated rather than medicated patients, recent reports have 

demonstrated no significant differences in default mode connectivity in medicated 

patients (Baker et al., 2014; Wolf et al., 2011). 

While our static and dynamic results show, in general, good agreement, the 

dynamic analysis provided a more fine-grained comparison; state 1 at shorter windows 
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and state 4 at longer windows were especially informative. While shorter windows 

captured more frequent patterns of decreased functional connectivity, the longer 

windows, in line with the static results, showed mostly increased connectivity. These 

findings are consistent with previous dynamic functional network connectivity analyses 

in medicated patients illustrating that connectivity pattern characteristics occur in some 

but not all connectivity states (Calhoun et al., 2014; Damaraju et al., 2014).  

While the exact etiology of the connectivity states presented in this work is 

unknown, recent studies have reported that connectivity states may correspond to stages 

of consciousness (Calhoun et al., 2014; Hudson et al., 2014). Therefore, these 

characteristic state-dependent connectivity patterns exhibited in dynamic analysis are 

promising for future identification of potential imaging biomarkers representative of the 

disorder of schizophrenia (Calhoun et al., 2014).  

Consistent with our prior work (Hadley et al., 2014), we found that some patterns 

of dynamic functional connectivity at baseline while patients were unmedicated, were 

predictive of subsequent response to medication. Functional connectivity patterns 

between subcortical [caudate/putamen (IC50)] and cognitive control networks and within 

nodes of the cognitive control network were identified as predictive of treatment 

response. In addition, these patterns were significantly different between unmedicated 

patients and healthy controls, and demonstrated changes over time with medication. Our 

findings lend support to the idea that the brain is functionally wired in a way that does or 

does not favor response to antipsychotic medications. A similar modulation of 

connectivity between the caudate and the prefrontal cortex as a function of clinical 
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response, albeit without evidence of baseline dysconnectivity, has been reported by 

Sarpal et al. using striatal seeds (Sarpal et al., 2015).  

In accordance with significant baseline results and known effects of antipsychotic 

medication in subcortical regions [see (Abi-Dargham and Laruelle, 2005) for review], we 

limited our investigation of functional changes over time to subcortical networks. In 

unmedicated patients, subcortical to somatomotor connectivity was increased and this 

connectivity decreased with treatment. The opposite was observed for the subcortical-

default mode and subcortical-cerebellar networks. On the other hand, the subcortical to 

visual connectivity that showed important differences with healthy controls in 

unmedicated patients, was not affected by treatment. A short-term evaluation of a group 

of medication-naïve, first episode schizophrenia patients by Lui and colleagues illustrates 

the effect of second-generation antipsychotics on normalizing abnormal functional 

connections in patients with schizophrenia; however, Lui et al. also found that non-

aberrant functional connections were also impacted by risperidone treatment 

demonstrating the non-specific impact of antipsychotic medications on functional 

connectivity (Lui et al., 2010).  

The differences in connectivity, dwell time, and fraction of time patients reside in 

connectivity states reiterate the advantage of the dynamic approach to examining 

functional connectivity. Our reported results indicate that examination of functional 

connectivity differences in a static manner may be an oversimplification.  

The work presented in this paper is subject to several limitations. A sliding 

window analysis was implemented with a window size ranging from 15 to 30 TRs (30-

60s) in order to estimate connectivity dynamics. Previous studies have indicated a 
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window size between 30 and 60 seconds robustly estimates functional connectivity 

(Allen et al., 2014; Shirer et al., 2012); however, a standard window size has yet to be 

established. Based on the variability in connectivity differences among small incremental 

window sizes, future work should focus on developing a data-driven method for 

optimally determining window size that best fits the data of interest. Similarly, time-

frequency approaches may also be useful as such approaches do not require windowing 

(Yaesoubi et al., 2015a). Additionally, due to the lack of a placebo group in this study, 

changes in functional connectivity cannot definitively be characterized as medication 

effects. Although the sample size used in this study is sufficient for robustly estimating 

static functional connectivity, state connectivity patterns and group differences may be 

impacted from an inadequate number of subjects exhibiting certain states. Additionally, 

due to the complex nature of dynamic connectivity patterns (e.g., differences not present 

in window sizes similar in length), development of multifaceted statistics to capture these 

complexities would be advantageous. For example, current analyses restrict subjects to 

exhibiting a single connectivity state at a specific time when there may in fact be an 

overlap in connectivity state manifestation. The ability to capture potentially overlapping 

connectivity states (Calhoun et al., 2014; Leonardi et al., 2014; Miller et al., 2014; 

Yaesoubi et al., 2015b) may provide critical information to ultimately understanding the 

intricacies of brain function.  

Overall, correspondence in static and dynamic results is demonstrated; however, 

dynamic analysis provides a more comprehensive description of disorder-related 

abnormalities. Ultimately, this additional information provided by dynamic analyses may 

be used in the advancement towards identification of imaging biomarkers.  
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Table 1: Demographics and clinical assessmentsa 

 HC (n=35) SZ (n=34) t/χ2 p-value 
Age (years) 
Gender (male/female) 
Parental SESb 

Smoking status (Y/N) 
Smoking (packs per day) 

 
Diagnosis 

Schizophrenia 
Schizoaffective disorder 
 

Illness characteristics 
Illness duration (years) 
First episode  
 

Prior antipsychotic treatment 
Antipsychotic naïve 
Antipsychotic free interval (months) 
 

Baseline BPRSc (n=34) 
Total score 
Positive symptom subscale 
Negative symptom subscale 
 

Week 1 BPRS (n=31) 
Total score 
Positive symptom subscale 
Negative symptom subscale 
 

Week 6 BPRS (n=29) 
Total score 
Positive symptom subscale 
Negative symptom subscale 
 

RBANS 

Total index 
Immediate memory 
Visuospatial 
Language 
Attention 
Delayed memory 

32.00±8.90 
25/10 

5.80±4.21 
22/13 

0.61±0.61 
 
 
- 
- 
 
 
- 
- 
 
 
- 
- 
 
 
- 
- 
- 
 
 
- 
- 
- 
 
 
- 
- 
- 
 
 

93.74±14.33 
95.74±12.73 
87.26±19.35 
100.2±14.04 

100.34±19.33 
93.06±11.83 

32.38±10.43 
23/11 

7.26±6.39 
26/8 

0.59±0.53 
 
 

31 
3 
 
 

9.59±9.94 
12 

 
 

17 
23.08±44.42 

 
 

48.29±9.38 
9.53±3.04 
6.79±2.51 

 
 

36.81±10.84 
7.00±3.24 
5.06±2.06 

 
 

30.57±8.47 
4.86±2.38 
5.39±2.42 

 
 

70.21±13.76 
74.68±16.86 
71.41±15.48 
84.71±12.85 
79.03±20.32 
72.53±19.10 

-0.164 
0.116 
23.17 
1.510 
0.168 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
6.96 
5.87 
3.75 
4.78 
4.47 
5.35 

0.87 
0.733 
0.058 
0.219 
0.867 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 

Abbreviations: HC, healthy control; SZ, schizophrenia; SES, socioeconomic status; Y, yes; N, 
no; BPRS, Brief Psychiatric Rating Scale; RBANS, Repeated Battery for the Assessment of 
Neuropsychological Status. 
aMean±SD unless otherwise indicated. 
bSES ranks reported from Diagnostic Interview for Genetic Studies scale (1-18); high rank 
(lower numerical value) corresponds to high socioeconomic status. Data unavailable for 7 
participants (1 HC, 6 SZ).  
cBPRS reported on 1-7 scale; positive (conceptual disorganization, hallucinatory behavior, and unusual 
thought content); negative (emotional withdrawal, motor retardation, and blunted affect). 
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Figure 1: Schematic of functional network connectivity analyses. Analyses involved 
three major steps: Group independent component analysis (ICA; A), static functional 
network connectivity (sFNC) analysis (B), and dynamic functional network connectivity 
(dFNC) analysis (C). (A) RSN composite maps of the 42 RSNs extracted from the data 
via group ICA and categorized into subcortical (SC), auditory (AUD), visual (VIS), 
somatomotor (SM), cognitive control (CC), default mode (DM), cerebellar (CB), and 
unknown (U) networks. Each color in the composite map represents a different 
component and the number of components grouped in each category is indicated next to 
the category name. Peak activations of individual components can be seen in Table S1. 
(B) The entire length of the RSN time courses are used in order to determine the sFNC 
for each subject and subsequently for each group of subjects. Differences in connectivity 
are determined between groups – following age and gender correction – via univariate t-
tests on bootstrap resampled data. Group differences (p<0.05) that occur in 95% of the 
1000 bootstrap resamples are considered significant. (C) In contrast to sFNC analysis, 
dFNC analysis computes functional network connectivity on windows of the RSN time 
courses and hence windowed correlation matrices are generated for each subject. 
Concatenation of dFNC windows for all subjects and subsequent k-means clustering of 
the windows results in cluster centroids or connectivity states. Significant group 
differences are determined in the same manner as in sFNC analysis. FD, framewise 
displacement; HC, healthy control; SZ, schizophrenia. 



 

39 

 
Figure 2: Static functional network connectivity. Group-level mean static functional 
network connectivity for (A) 35 healthy controls at baseline (HCb), (B) 33 unmedicated 
patients with schizophrenia (SZb), and (C) 24 patients after 6 weeks of medication (SZ6). 
Group differences are shown between (D) healthy controls and unmedicated patients 
(HCb-SZb) and (E) unmedicated patients and week 6 patients (SZb-SZ6). Significant 
group differences outlined with a small black box are indicated if occurrence is 
significant (p<0.05) in 95% of 1000 bootstrap resamples.  
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Figure 3: Dynamic functional network connectivity group differences between healthy 
controls and unmedicated patients. (A) Dynamic functional network connectivity cluster 
centroids from 30s window. See Figure S1 for cluster centroids for all window sizes. (B) 
Significant group differences [Healthy controls (HCb) - Unmedicated patients (SZb)] for 
each window size are outlined with a black box. Group differences (p<0.05) that occur in 
95% of the 1000 bootstrap resamples are considered significant.  
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Figure 4: Summary of group differences between healthy controls and unmedicated 
patients at all window sizes. Blue indicates increased connectivity in unmedicated 
patients compared to controls. Red indicates decreased connectivity in unmedicated 
patients compared to controls. Numbers indicate how many significant connections were 
found. Group differences (p<0.05) that occur in 95% of the 1000 bootstrap resamples are 
considered significant. Increasing intensity of color represents increasing number of 
significant connections.  
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Figure 5: Connectivity state statistics. Exploratory post-hoc analysis of fraction of time 
(A) and mean dwell time (B) subjects spend in each state at each window size. Mean 
fraction of time groups spend in a state (A) and mean group dwell times (B) are depicted 
with error bars representing the standard error of the mean. Significant group differences 
(p<0.05) obtained via two-sample and paired t-tests are indicated with asterisks. HCb, 
healthy control; SZb, unmedicated patients; SZ1, week 1 medication treatment; SZ6, 
week 6 medication treatment. 
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Figure 6: Relationship between treatment response and baseline dynamic functional 
connectivity. (A) dFNC cluster centroids from 30s window. See Figure S1 for cluster 
centroids for all window sizes. (B) Significant effects of treatment response on baseline 
dynamic connectivity. Group differences (p<0.05) that occur in 95% of the 10,000 
bootstrap resamples are considered significant and outlined with a black box. Data was 
not available for state 4 at 40s, 44s, 50s, and 60s due to the small amount of subjects 
exhibiting state 4 and a minimum observation requirement of the regression algorithm.  
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Table S1: RSN Peak Activations 
RSN regions Tmax Peak Coordinatesa 
  x y z 
Subcortical networks 
IC 34 (0.977)b 

R putamen 
L putamen 
IC 45 (0.973) 
Thalamus 
IC 50 (0.974) 
R putamen 
L putamen 

Auditory networks 
IC 43 (0.975) 
R superior temporal gyrus 
L superior temporal gyrus 
IC 86 (0.958) 
L middle temporal gyrus 

Somatomotor networks 
IC 6 (0.983) 
R supplementary motor area 
IC 10 (0.983) 
R postcentral gyrus 
L postcentral gyrus 
IC 31 (0.977) 
R postcentral gyrus 
IC 36 (0.975) 
L postcentral gyrus 
R precentral gyrus 
IC 55 (0.971) 
R supplementary motor area 
IC 62 (0.971) 
R postcentral gyrus 
IC 75 (0.949) 
L inferior parietal lobule 
R inferior parietal lobule 
IC 90 (0.914) 
L supplementary motor area 

Visual networks 
IC 8 (0.982) 
L middle occipital gyrus 
IC 18 (0.979) 
Middle occipital gyrus 
IC 25 (0.978) 
R calcarine gyrus 
IC 30 (0.978) 
L fusiform gyrus 
R fusiform gyrus 
IC 32 (0.977) 
Middle occipital gyrus 
IC 33 (0.976) 
R cuneus 
IC 57 (0.969) 
R middle temporal gyrus 
L middle temporal gyrus 
IC 58 (0.967) 
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27 
33 

 
46.5 

 
51 
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49.5 
 

58.5 
 

37.5 
51 

 
52.5 

 
 

4.5 
 

7.5 
 

3 
 

-9 
-7.5 

 
1.5 

 
21 

 
6 

13.5 
 



 

45 

L calcarine gyrus 
IC 79 (0.908) 
L cuneus 
R fusiform gyrus 

Cognitive control networks 
IC 15 (0.981) 
L superior frontal gyrus 
IC 42 (0.975) 
L angular gyrus 
L inferior frontal gyrus 
L superior medial frontal gyrus 
IC 44 (0.976) 
R inferior parietal lobule 
R middle frontal gyrus 
R middle cingulate cortex 
IC 46 (0.972) 
R angular gyrus 
L middle occipital gyrus 
IC 48 (0.979) 
R middle frontal gyrus 
L middle frontal gyrus 
IC 67 (0.960) 
R inferior frontal gyrus 
L inferior frontal gyrus 
IC 70 (0.948) 
L inferior parietal lobule 
R supramarginal gyrus 
IC 81 (0.943) 
R insula 
L insula 
IC 94 (0.771) 
L hippocampus 
Superior temporal gyrus 

Default mode networks 
IC 24 (0.980) 
R precuneus 
IC 29 (0.976) 
L precuneus 
IC 54 (0.969) 
L anterior cingulate cortex 
IC 66 (0.960) 
R precuneus 
L angular gyrus 
R angular gyrus 
IC 99 (0.581) 
L precuneus 

Cerebellar networks 
IC 14 (0.979) 
L cerebellum 
IC 16 (0.983) 
R cerebellum crus1 
IC 49 (0.979) 
L cerebellum crus1 

Unknown networksc 

IC 61 (0.968) 
R middle temporal gyrus 
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10.5 

 
24 
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24 
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-9 
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48 
 

33 
 

13.5 
 

25.5 
30 

28.5 
 

9 
 
 

-45 
 

-27 
 

-36 
 
 

3 



 

46 

IC 82 (0.931) 
L superior medial frontal gyrus 
IC 92 (0.913) 
Middle temporal gyrus 

 
17.83 

 
17.67 

 
-1.5 

 
-43.5 

 
42 

 
-42 

 
48 

 
-3 

Abbreviations: RSN, resting-state network; Tmax, 
maximum cluster t-statistic; L, left; R, right.  
aCoordinate (mm) of cluster peak activation in MNI space. 
bComponent number (Quality index - Iq) indicated 
cA consensus on a network among the three reviewers could not be met with unknown network 
components. Input from additional neuroimagers necessary for a clear identification.   
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Figure S1: Cluster centroids for 30, 40, 44, 50 and 60s window sizes.  
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Figure S2: Dynamic functional network connectivity group differences between 
unmedicated and medicated patients. (A) Dynamic functional network connectivity 
cluster centroids from 30s window. See Figure S1 for cluster centroids for all window 
sizes. (B) Significant group differences [Unmedicated patients (SZb) – week 6 patients 
(SZ6)] for each window size are outlined with a black box. Group differences (p<0.05) 
that occur in 95% of the 1000 bootstrap resamples are considered significant. 
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CONCLUSIONS 
 
 The recent emergence of dynamic functional network connectivity has provided a 

new outlook for analyzing and interpreting network connectivity in patients with 

schizophrenia, as well as other mental disorders. The current literature has extensively 

evaluated network dysconnectivity via functional connectivity analyses in order to 

elucidate the pathology of the disorder. However, due to the inconsistencies in results 

from these static methods, clinical translation is deficient. In this work, we have extended 

the dysconnectivity concept of schizophrenia through demonstration of widespread state-

dependent aberrant connectivity abnormalities in unmedicated patients. Unmedicated 

patients tended to spend a significantly shorter amount of time in a sparsely connected 

state than controls; however, risperidone treatment appears to reduce differences between 

controls and patients.   

These results illustrate the importance of dynamically analyzing network 

connectivity, as static analyses blur the transient nature of network coherence and cannot 

provide critical information pertaining to state dwell times, transition probabilities, and 

state-dependent connectivity patterns. Ultimately, the utilization of dynamic functional 

network connectivity analyses provides not only greater insight into the role of network 

dysconnectivity in mental disorders such as schizophrenia, but also progress toward 

identification of imaging biomarkers characteristic of pathophysiological states.  
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