
University of Alabama at Birmingham University of Alabama at Birmingham

UAB Digital Commons UAB Digital Commons

All ETDs from UAB UAB Theses & Dissertations

2012

Geometric Fitting of Quadratic Curves and Surfaces Geometric Fitting of Quadratic Curves and Surfaces

Hui Ma
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

 Part of the Arts and Humanities Commons

Recommended Citation Recommended Citation
Ma, Hui, "Geometric Fitting of Quadratic Curves and Surfaces" (2012). All ETDs from UAB. 2354.
https://digitalcommons.library.uab.edu/etd-collection/2354

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/438?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/2354?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

GEOMETRIC FITTING OF QUADRATIC CURVES AND SURFACES

by

HUI MA

NIKOLAI CHERNOV, COMMITTEE CHAIR
WEI-SHEN HSIA

CHARLES KATHOLI
IAN KNOWLES
BORIS KUNIN

A DISSERTATION

Submitted to the graduate faculty of The University of Alabama,
The University of Alabama at Birmingham, and The University of Alabama in

Huntsville in partial fulfillment of the requirements for the degree
of Doctor of Philosophy

BIRMINGHAM, ALABAMA

2011

ABSTRACT

GEOMETRIC FITTING OF QUADRATIC CURVES AND SURFACES

HUI MA

APPLIED MATHEMATICS

Fitting quadratic curves and surfaces to observed images is one of the basic tasks

in pattern recognition and computer vision. The most accurate and robust fit is

obtained by minimizing geometric (orthogonal) distances, but this problem has no

closed form solution. All known algorithms are heuristic and either computationally

costly or have drawbacks in accuracy and convergence. We develop a mathematically

rigorous approach to the study of the geometric fitting problem. We begin with a

thorough investigation of relevant theoretical aspects of the problem and then move

on to its practical solution.

We focus on image processing applications, where data points come from a picture,

photograph, map, etc. Therefore we adopt standard statistical assumptions that

are appropriate for these applications. We investigate the existence of the best fit,

describe various parameterization schemes and analyze the behavior of the objective

function on the parameter space.

Our goal is to provide a robust, efficient projection method and to develop new

fitting schemes, indicating how to combine them to achieve the best performance.

Eberly discovered a remarkably fast and totally reliable projection algorithm for el-

lipses which we generalize to all the other quadratic curves and surfaces and provide

proofs of convergence. Ahn has classified various approaches to the fitting problem.

ii

iii

We develop our implicit fitting algorithm based on one of his approaches and demon-

strate that it is the most efficient one by comparison to other known algorithms. By

combining projection and minimization steps together, we give a complete, reliable

and efficient geometric fitting scheme for fitting quadratic curves and surfaces of all

kinds.

Keywords: geometric fitting, image processing, quadratic curves, surfaces, projec-

tion, minimization.

DEDICATION

TO MY BELOVED PARENTS

iv

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my advisor Nikolai Chernov.

Without his guidance and continuous support throughout the process, I will never

successfully finish my dissertation. Also I would like to express a deep gratitude

to all my committee members, W. Hsia, C. Katholi, I. Knowles, B. Kunin for their

invaluable guidance and remarks.

Many thanks to all faculty, staff and fellow students within the Math department

of UAB for their assistance and continuous encouragement, in particular, R.Weikard,

Y. Karpeshina, M. Nkashama, J. Mayor, L. Stansell, S. Abdoli and L. Cheryl.

Last but not least, my sincere thanks to my parents Shenghe and Lanfeng. Thank

you for your love and always being there to support me and to encourage me to

succeed.

v

Contents

ABSTRACT ii

DEDICATION iv

ACKNOWLEDGEMENTS v

List of Tables ix

List of Figures xi

Chapter 1. Introduction 1

1.1. Scope of the Thesis 2

1.2. Aims and Objectives 4

1.3. Organization of the Thesis 6

Part I. 8

Chapter 2. Fitting of Quadratic Curves: Theory 9

2.1. Existence of the Best Fit 9

2.2. Model Objects in 2D 13

2.3. Probabilistic Approach 18

2.4. Sufficient and Deficient Model 24

Chapter 3. Parameters for Quadratic Curves 34

3.1. Geometric Parameters of Conics 34

3.2. Algebraic Parameters of Conics 38

3.3. Geometric Parameters versus Algebraic Parameters 41

Chapter 4. Objective Function for Quadratic Curves 49

vi

vii

4.1. Open Domains in Parameter Space 49

4.2. Objective Function on the Sphere 53

4.3. Objective Function near Boundaries 58

4.4. Local Minima 60

Part II. 76

Chapter 5. Projection onto Quadratic Curves 77

5.1. Introduction 77

5.2. Eberly’s Method 78

5.3. Root Finding Method 84

5.4. Ahn’s Method 87

5.5. Comparison 90

Chapter 6. Geometric Fits: Minimization of the Objective Function 92

6.1. Introduction 92

6.2. Implicit Fitting Method 93

6.3. Geometric Fitting of Ellipse 96

6.4. Geometric Fitting of Hyperbola 98

6.5. Geometric Fitting of Parabola 98

6.6. Geometric Fitting of General Quadratic Curves 99

6.7. Benchmark Example 100

Part III. 106

Chapter 7. Geometric Fitting of Quadratic Surfaces 107

7.1. Quadratic Equation and Parameters 107

7.2. Classification of Quadratic Surfaces 108

7.3. Open Domains in Parameter Space 110

7.4. Boundaries of Open Domains 113

7.5. Projection onto Quadrics 117

viii

7.6. Geometric Surfaces Fit 121

Chapter 8. Thesis Contributions and Conclusions 123

Bibliography 125

Appendix A. Algebraic Fits 129

Appendix B. Minimization Schemes 133

B.1. Classical minimization schemes 133

B.2. Gauss-Newton method 135

B.3. Levenberg-Marquardt correction 137

B.4. Trust region 139

List of Tables

2.1 Percentages for best fitting conic: samples of n > 5 from standard normal

distribution 26

2.2 Percentages for best fitting conic: samples of n > 5 from non-standard

normal distribution 27

2.3 Percentages for best fitting conic: samples of n > 5 from rectangular

distribution 27

2.4 Percentages of samples for which best fit is ellipse or hyperbola: data points

sampled along an ellipse, n = 6 28

2.5 Percentages of samples for which best fit is ellipse or hyperbola: data points

sampled along an ellipse, n = 8 29

2.6 Comparison of different fits for a uniform distribution 30

3.1 Types of quadratic curves 41

4.1 Main types of quadratic curves grouped according to the dimensionality of

the corresponding regions in S5 49

4.2 Volumes of open domains on the unit sphere S5 50

4.3 Upper half of ellipse, n = 6, σ = 0.05 69

4.4 Upper half of ellipse, n = 6, σ = 0.1 69

4.5 Upper half of ellipse, n = 8, σ = 0.05 69

4.6 Upper half of ellipse, n = 8, σ = 0.1 70

4.7 Right half of ellipse, n = 6, σ = 0.05 70

4.8 Right half of ellipse, n = 6, σ = 0.1 70

ix

x

4.9 Right half of ellipse, n = 8, σ = 0.05 71

4.10 Right half of ellipse, n = 8, σ = 0.1 71

4.11 Quarter of ellipse, n = 6, σ = 0.05 72

4.12 Quarter of ellipse, n = 6, σ = 0.1 72

4.13 Quarter of ellipse, n = 8, σ = 0.05 72

4.14 Quarter of ellipse, n = 8, σ = 0.1 72

4.15 Local minima for data points with a uniform distribution, n = 6 73

4.16 Local minima for data points with a uniform distribution, n = 7 73

4.17 Local minima for data points with a uniform distribution, n = 8 74

4.18 Local minima for data points with a uniform distribution, n = 9 74

4.19 Local minima for data points with a uniform distribution, n = 10 74

5.1 Initial choices for projecting points onto a hyperbola 82

5.2 Comparison of three projection methods for ellipse. 90

5.3 Comparison of three projection methods for hyperbola. 91

5.4 Comparison of three projection methods for parabola. 91

6.1 A benchmark example with eight points [29]. 101

6.2 Comparison of four ellipse fitting methods. 102

6.3 Comparison of five ellipse fitting methods. 103

7.1 Types of quadratic surfaces 109

7.2 Main types of surfaces grouped according to the dimensionality of the

corresponding regions in S9 110

7.3 Volumes of open domains in S9 112

List of Figures

2.1 Example of non-existence of circle fitting problem 15

2.2 Limit objects of collection of circles 15

2.3 Limit objects of collection of ellipses 16

2.4 Limit objects of collection of hyperbolas 18

2.5 Example of four points that are not collinear for which the best fitting circle

fails to exist 20

2.6 Elliptical arcs along which the data points were placed 28

2.7 Best fit to a uniform distribution in a square 31

2.8 Best fit to a uniform distribution in a rectangle 31

4.1 Principal domains and separating hypersurfaces 53

4.2 Illustration diagram 57

4.3 Illustration of differentiability of the objective function 57

4.4 Examples of local minima when n = 6 points are placed along upper half of

an ellipse 63

4.5 Examples of local minima when n = 8 points are placed along upper half of

an ellipse 64

4.6 Examples of local minima when n = 8 points are placed along upper half of

an ellipse 65

4.7 Examples of local minima when n = 8 points are placed along upper half of

an ellipse 65

xi

xii

4.8 Examples of local minima when n = 8 points are placed along upper half of

an ellipse 66

4.9 Examples of local minima when n = 6 points are placed along quarter of an

ellipse 66

4.10 Corridor diagram 67

5.1 A typical graph of F (t) for t > −b2 and the progress of Newton’s iterations

toward the root. 80

5.2 Two possible appearances of F (t) on the interval −a2 < t < −b2. Arrows

show the progress of Newton’s iterations toward the root. 82

6.1 A sample of eight points and the best fitting ellipse. 101

6.2 Performance of four algorithms. 103

6.3 The fitted ellipses obtained by four algorithms starting at the same initial

guess after 4 iterations. 104

6.4 The fitted ellipses obtained by four algorithms starting at the same initial

guess after 8 iterations. 105

7.1 Principal domains and separating hypersurfaces in S9 116

CHAPTER 1

Introduction

The purpose of my research is a general study of an active topic in modern statis-

tics: fitting quadratic curves and surfaces to observed data, in particular, to digitized

images. A curve in the xy plane can be described by equation y = f(x; Θ), where Θ

denotes parameters of the curve. Observed data (or a digitized image) is represented

by a finite set of points (x1, y1), (x2, y2) . . . , (xn, yn). Our task is to find the best fit-

ting curve y = f(x; Θ), i.e., estimate Θ so that the curve passes as close to the given

points as possible.

In many applications both coordinates x and y of the observed points are mea-

sured imprecisely, i.e., both variables x and y are subject to random errors. The

corresponding topic in statistics is known as Errors-In-Variables (EIV) regression.

It is quite different and much more complex than the classical regression where the

independent variable is assumed to be deterministic (error-free).

My dissertation is focused on image processing applications, where data points

come from a picture, photograph, map, etc. In this case both x and y variables

are measured in the same units; their errors are independent and have the same

magnitude, on average. Thus one assumes that errors ∆x and ∆y in each point are

i.i.d normal random variables with a common variance. Under this assumption, the

Maximum Likelihood Estimation (MLE) gives the curve y = f(x; Θ) that minimizes

the sum of squares of the distances to the given points [16, 19, 18].

The most common geometric features in applications are lines, circles, ellipses, etc.

More complex curved shapes can be approximated by a sequence of arcs “stitched

together” (splines); see [11, 43, 46, 49, 50]. Fitting straight lines to observed data

1

2

when both variables are subject to random errors is an old problem dating back to

the 1870s [2, 3, 36], and all the major issues were resolved by the late 1990s.

The problem of fitting circles and circular arcs to observed data points started in

the 1950s [12, 28, 57, 58, 59]. Since about 1980s, it has become an agenda in many

application areas. For example, in industry, quality control requires estimation of the

radius and the center of the manufactured mechanical parts [37]; In medicine, doctors

design dental arches from an X-ray [13]; In archeology, people determine the size of

ancient pottery by analyzing potsherds found in the field expeditions [22, 30, 31, 60].

The problem of fitting ellipses and other quadratic curves (conic sections) was

first mentioned in the 1970’s [42, 13, 10]. It became popular and attracted attention

of computer vision community in the 1990s [29, 52, 53, 25]. As a matter of fact,

almost all problems in computer vision, image processing or pattern recognition are

related in one form or another to the problem of fitting geometric curves or surfaces

to the noisy data. Rapid development of new technologies allows us to obtain large

amount of data in short time, thus opening new challenges for us to look for good

fitting approaches and to process all the information accurately and efficiently.

The goal of my dissertation is to present the topic of fitting ellipses and general

quadratic curves to observed data points in geometrical and computational aspects.

All methods and investigations are carried over to 3D space for the problem of fitting

quadratic surfaces.

1.1. Scope of the Thesis

Geometric Fitting. What is geometric fitting? Fitting problems have been usually

solved through the least squares method. Least Squares fitting minimizes the sum of

the squared distances from the given points to the fitted geometric feature. [47, 45,

44] provide a good overview of the various distance definitions. In geometric fitting,

also known as best fitting, the distances are defined as the orthogonal or geometric

3

distances:

(1.1)
n∑

i=1

di
2 =

n∑
i=1

(xi − x′i)
2 + (yi − y′i)

2.

Here di denotes the geometric distance from the observed point (xi, yi) to the fitted

geometric feature, and (x′i, y
′
i) is the (orthogonal) projection of (xi, yi) onto the feature.

Geometric fit has many nice characteristics:

• It is invariant under translations, rotations, and scaling, i.e., the fitted geo-

metric feature does not depend on the choice of the coordinate system.

• It provides the maximum likelihood estimate of the parameters of the fitted

feature under standard statistical assumptions.

• Geometric fitting has been prescribed by a recently ratified standard for

testing the data processing software for coordinate metrology [1].

Objective Function. Geometric fitting is based on minimizing the sum of squares

of the geometric distances from the given points to the fitted feature. Given n points

P1, . . . , Pn and a model object S, the objective function is defined by

(1.2) F(S) =
n∑

i=1

[
dist(Pi, S)

]2
.

The given points are fixed (we cannot change them), so they are not listed as argu-

ments 1 of F.

The given collection of model objects will be denoted byM. We put no restrictions

on the collection M of model objects, other than all S ∈M are assumed to be closed

sets. The reason for this requirement will be explained in section 2.1.2. Our goal is

to find the best fit Sbest ∈M on which the function F takes its minimum value, i.e.,

(1.3) Sbest = arg min
S∈M

F(S).

1This is similar to classical statistics: the arguments of a likelihood function are only model

parameters, but not observed values of the random variable.

4

Redundancy Principle. There is a possible redundancy of model objects in the

collection M. If an object S ′ ∈ M is a subset of another object S ∈ M, i.e., S ′ ⊂ S,

then for any point P we have

(1.4) dist(P, S) ≤ dist(P, S ′),

Here dist(P, S) denotes the distance from the given point P to the object S. Thus S ′

cannot fit any set of data points better than S does. So for the purpose of minimizing

F, i.e., finding the best fitting object, we may ignore all model objects that are proper

subsets of other model objects. This may reduce the collection M somewhat. Such a

reduction is not necessary, it is just a matter of convenience.

Conversely, there is no harm in considering any subset S ′ ⊂ S of an object S ∈M
as a (smaller) object, too. Indeed, if S ′ provides a best fit (i.e., minimizes the objective

function F), then so does S, because F(S) ≤ F(S ′). Hence including S ′ into the

collection M will not really be an extension of M, its inclusion will not change the

best fit.

1.2. Aims and Objectives

The minimization of the squared distances is a nonlinear problem that has no

closed form solution. There is no direct algorithm for computing the minimum of F.

Various iterative algorithms have been applied to this end. The most popular ones

are the Levenberg-Marquardt method and the Trust Region method. Levenberg-

Marquardt method is a short name for the classical Gauss-Newton method with

Levenberg-Marquardt correction [38, 39]. It can effectively solve any least squares

problem provided the first derivative of di’s with respect to the parameters can be

computed. Trust Region method is a modification to Levenberg-Marquardt method

which was developed in the 1970s [40]. Both algorithms are quite stable and reliable,

and they usually converge rapidly. For their main ideas, see Appendix B.

The implementation of the geometric fitting of ellipses and other quadratic curves

is much more difficult than that of circle fitting. Not only we have more independent

5

parameters than in the case of circles, but many other geometric and algebraic aspects

of the problem lead to complications. The objective function is defined as

F(Θ) =
n∑

i=1

di(Θ)2,

where Θ is the vector of unknown parameters of the fitted quadratic curve; di’s

are the geometric distances between the given points and the fitted quadratic curve

and they depend on the parameter Θ. To minimize such objective function, the

Levenberg-Marquardt method or the Trust Region method requires the computation

of the geometric distances di’s, as well as their derivatives with respect to Θ. In the

case of circles, there is an explicit formula for the distances

di =
√

(xi − a)2 + (yi − b)2 −R

where (xi, yi) are given points, (a, b) is the center of the circle and R is its radius.

Hence one can easily compute the objective function and also the derivative of di with

respect to a, b, R. This makes the minimization of F rather straightforward.

When we consider ellipses or other quadratic curves such as hyperbolas or parabo-

las, the bad news is that there is no explicit analytic formula for computing the

orthogonal distances, which could be used in the Levenberg-Marquardt procedure.

Theoretically, the distances can be found by solving a polynomial equation of degree

four [64], but such a solution is complicated and inconvenient, and it is numerically

unstable [7]. Alternatively, one can compute the distance from a point to the curve

by an iterative procedure, such as Newton’s method [7], but this is quite expensive

and still not absolutely reliable. Hence the very first problem one has to deal with is

to find a reliable and efficient method for computing the orthogonal or the shortest

distances from the given points to the quadratic curves.

Furthermore, there seem to be no closed form expression for the partial deriva-

tives of the distance di with respect to the parameters Θ. It is not so clear how to

differentiate di. Since one cannot easily compute the objective function or its deriva-

tives, it appears that the Levenberg-Marquardt scheme is impractical (see [55] that

6

mentioned such a point of view). Thus one has to seek other ways or derive formulas

for finding those derivatives in order to apply minimization algorithms.

To overcome these difficulties, some researchers enlarge the parameter space. In

addition to the parameters defining the quadratic curve itself, they introduce n new

parameters defining the position of the projection points (the closest points on the

quadratic curve to the given points). This was done by Gander, Golub, and Strebel

[29] for the ellipse fitting problem. Their procedure avoids the calculation of di’s,

but the minimization in the (n+5)-dimensional parameter space is predictably cum-

bersome and slow. So the authors of [29] concluded that the minimization of geo-

metric distances for ellipses was a prohibitively difficult task. Some other known

algorithms are also computationally costly or have drawbacks in accuracy and con-

vergence [52, 53, 51]. Therefore we arrive at the necessity of developing a better,

complete and reliable fitting scheme for fitting quadratic curves (surfaces) of all kinds.

Lastly, before moving on to the computational and practical aspects of the prob-

lem, it is also necessary to address some fundamental issues which are essential for

understanding of advantages and disadvantages of practical algorithms. We will in-

vestigate the existence of the best fit, the right choice of parameters to work with,

basic properties of the parameter space and the general behavior of the objective

function on the parameter space.

1.3. Organization of the Thesis

The dissertation is organized as follows. It consists of three parts. Chapter 2,

3 and 4 make the first part, which deals with theoretical issues and aspects of fit-

ting quadratic curves. Chapter 2 gives some theoretical analysis and probabilistic

approach of the existence of the best fit. Chapter 3 describes various parametrization

schemes for quadratic curves and their comparisons. Chapter 3 analyzes the prop-

erties of the parameter space for quadratic curves and the behavior of the objective

function on the space. Open domains which occupy the whole parameter space and

7

their volumes will be described. Continuity, differentiability and local minima of the

objective function will be discussed and illustrated. Part II which consists of Chap-

ter 5 and 6 is devoted to practical aspects of fitting quadratic curves and surfaces.

In Chapter 5, we evaluate several projection algorithms, describe the most efficient

method for fitting ellipse and then adapt it to other quadratic curves. In each case,

we provide a theoretical proof of convergence. Chapter 6 presents practical solutions

to the problem of fitting quadratic curves including ellipse, hyperbola and parabola.

They were also compared with other known algorithms to demonstrate a superior per-

formance. Part III is devoted to the problem of fitting quadratic surfaces to observed

3D points where certain fundamental issues and practical algorithms are discussed.

Part I

CHAPTER 2

Fitting of Quadratic Curves: Theory

In this chapter, we direct our interest toward some basic theoretical issues of

fitting quadratic curves that are rarely discussed in the literature, but are essential

for understanding of practical fitting algorithms. Our main problem is finding the

best fitting object such as a circle, an ellipse or another quadratic curve for a given

set of data points. This is an optimization problem, it consists of minimization of a

certain objective function. So it raises a fundamental theoretical question: Does the

solution always exist? In other words, we would like to know whether the objective

function always has a minimum. We note that our objective function is defined so

that it never takes negative values, i.e., its absolute possible minimum is zero.

The question of existence of the best fit is not only of theoretical interest but

also practically relevant. For example, knowing under what conditions the problem

does not have a solution might help us understand why the computer algorithm keeps

diverging, or returns nonsense, or crashes altogether. While the cases where the best

fit does not theoretically exist may be exceptional, nearby cases may be practically

hard to handle, as the best fitting object may be extremely difficult to find.

Section 2.1 gives theoretical analysis needed for proving the existence of the best

fit and the main existence theorem. Section 2.2 analyzes most common fitting models

in two-dimensional practical applications. Section 2.3 investigates how frequently best

fitting circles or ellipses fail to exist. Section 2.4 introduces sufficient and deficient

models.

2.1. Existence of the Best Fit

2.1.1. Definition of Distances. Since geometric fitting problems consists of

minimization of geometric distances from the given points to a model object, we first

9

10

review the necessary definitions of distances. Given two points P1 = (x1, y1) and

P2 = (x2, y2), the standard geometric (or Euclidean) distance is computed by

(2.1) dist(P1, P2) =
√

(x1 − x2)2 + (y1 − y2)2.

Given a point P and a set S ⊂ R2, the distance from P to S is defined by

(2.2) dist(P, S) = inf
Q∈S

dist(P,Q),

When a minimum in (2.2) exists, then there is a point Q ∈ S closest to P , i.e.,

such that dist(P, S) = dist(P,Q). This is always possible when S is a closed set.

Fortunately, the model objects that are usually fitted to given points - lines, circles,

ellipses and other conics - are all closed sets. It follows that there does exist a closest

point Q ∈ S to the point P such that

(2.3) dist(P, S) = dist(P,Q) = min
Q′∈S

dist(P,Q′),

As one needs to use orthogonal projection, the distance from P to S is often called

orthogonal distance.

Given two sets S1, S2 ⊂ R2, the distance between S1 and S2 is defined by

(2.4) dist(S1, S2) = inf
P1∈S1,P2∈S2

dist(P1, P2),

This is the so called shortest distance from S1 to S2. The infimum in (2.4) may not

be replaced by a minimum even if both sets S1 and S2 are closed. However, if one

set (say, S1) is closed and the other (S2) is compact (a set S ⊂ R2 is compact if

it is closed and bounded) ,then the infimum in (2.4) can always be replaced by a

minimum. Note that circles and ellipses are closed and bounded, i.e., compact. On

the other hand, lines and hyperbolas are closed but not bounded.

We also need Hausdorff distance to measure the overall difference or closeness of

two sets. Given two sets S1, S2 ⊂ R2, the Hausdorff distance between S1 and S2 is

defined by

(2.5) distH(S1, S2) = max
{

sup
P1∈S1

dist(P1, S2), sup
P2∈S2

dist(P2, S1)
}

.

11

Basically, the Hausdorff distance is the longest distance you have to travel if you need

to move from one set to the other or vice versa.

In real applications, the set of experimental points is finite, hence bounded, so all

the data points lie in some rectangle R,

(2.6) R = {−A ≤ x ≤ A, −B ≤ y ≤ B},

which we assume to be closed and for the moment will play the role of our “window”

through which we look at the plane. Now consider two sets within such finite window

R. Let us define the Hausdorff distance between them,

(2.7) distH(S1, S2; R) = max
{

sup
P∈S1∩R

dist(P, S2), sup
Q∈S2∩R

dist(Q,S1)
}

.

This is our modification of the classical Hausdorff distance between sets, which means

it is the longest distance you have to travel if you need to move from one set to the

other or vice versa, provided you start within R. The formula (2.7) applies whenever

both sets, S1 and S2, intersect the window R. If only one set, say S1, intersects R,

we modify (2.7) as follows:

(2.8) distH(S1, S2; R) = sup
P∈S1∩R

dist(P, S2).

A similar modification is used if only S2 intersects R. If neither set intersects the

window R, we simply set distH(S1, S2; R) = 0.

2.1.2. Convergence of Sequences of Sets. Now we are ready to introduce an

important concept which serves as our basic tool for proving existence: convergence

for sequences of sets.

Let Sn ⊂ R2 be some sets and S ⊂ R2 another set. We say that the sequence Sn

converges to S if for any finite window R we have

(2.9) distH(Sn, S; R) → 0 as n →∞.

For bounded objects, like circles or ellipses, the above convergence is equivalent

to the convergence with respect to the Hausdorff distance. That is, a sequence of

12

bounded sets Sn converges to a bounded set S if distH(Sn, S) → 0 as n → ∞.

However for unbounded objects, such as lines and hyperbolas, we have to use our

window-restricted Hausdorff distance and formula (2.9).

Remark: Our definition of convergence is intuitively clear, but some complications

may arise if it is used too widely. For example, consider again the sequence of lines

Ln = {y = x/n} that, as we know, converges to the x axis L = {y = 0}. Let L′ ⊂ L

be a subset of L consisting of points whose x coordinates are rational numbers. Note

that L′ is a dense subset of L, i.e., the closure of L′ is the entire L (this means that

if we add to L′ all its limit points in R2, we get the whole line L). It is not hard

to see that Ln → L′, as n → ∞. Thus, one sequence, Ln, has two distinct limits,

one is L and the other is L′. In mathematics, a convergent sequence having multiple

limits may cause various undesirable complications. Such a situation is regarded as

a pathology. In this pathological example, the limit set L (a line) is closed, but

the other limit set L′ is not. From now on, to avoid pathological situations, we will

assume that all our sets S ⊂ R2 are closed. As we pointed out in the section 2.1.1,

all model objects of interest - lines, circles, ellipses and other conics - are closed sets.

2.1.3. Continuity of the Objective Function. Our analysis of the problem of

minimization of geometric distances from the given points to a model object is based

on the continuity of the objective function. Recall that the function to be minimized

is the sum of squares of the distances from the given points to a model object:

(2.10) F(S) =
n∑

i=1

[
dist(Pi, S)

]2
,

where P1, . . . , Pn denote the given points and S a model object from the given col-

lection M.

Theorem 2.1. For any given points P1, . . . , Pn and any collection M of model

objects, the function F defined by (2.10) is continuous on M. This means that if a

sequence of objects Sm ∈ M converges to another object S ∈ M (in the sense defined

in last section), then F(Sm) → F(S).

13

The mathematical proof will be provided in Qizhuo Huang’s dissertation, see [33].

2.1.4. Theorem of Existence. Our goal is to choose Sbest ∈ M on which the

function F takes its minimum value, i.e., such that

(2.11) F(Sbest) ≤ F(S) for all S ∈M, or Sbest = arg min
S∈M

F(S).

The model object Sbest is called the best fit or the closest object to the given points.

Our fitting problem has a solution if Sbest exists. Here we are preoccupied with the

existence of Sbest. Does it always exist? If not, what issues can this cause? And how

can we resolve them? In fact, one can prove that the best fitting object always exists

whenever M is closed. The theorem is as follows:

Theorem 2.2. Suppose the given collectionM of model objects is closed. (meaning

that if a sequence of objects Sm ∈M converges, to an object S, then S also belongs to

M). Then for any given points P1, . . . , Pn there exists the best fitting object Sbest ∈M,

i.e., the objective function F attains its global minimum on M.

The key ingredients of the proof will be the continuity of the objective function

and the compactness of a restricted domain of that function. Then use the fact

that a continuous (real-valued) function on a compact set always takes maximum

and minimum values on that set. Detailed proof will be provided in Qizhuo Huang’s

dissertation, see [33].

2.2. Model Objects in 2D

We have described the general theory for the existence of the best fit and we know

that to check the existence of the best fitting object, one has to find out if the model

collection is closed or not. So in this section, we will look at real fitting models which

are common in practical applications. Note: This section is part of Qizhuo Huang’s

dissertation, but it is necessary to briefly discuss it before moving on to my work

starting from next section 2.3.

14

2.2.1. Lines. Before looking at circle fitting and ellipse fitting model, let us start

with the simplest case, model collection of lines. Suppose one fits lines to data points,

so the model collection ML consists of all lines L ⊂ R2. Given data points P1, . . . , Pn,

the best fitting line Lbest minimizes the sum of squares of the distances from P1, . . . , Pn

to the line. It is easy to see that a sequence of lines Lm can only converge to another

line L0 ⊂ R2, hence the collection ML of lines is closed. This guarantees that the

fitting problem always has a solution.

2.2.2. Circles. It is a common task in computer vision (as well as some sciences

and industry) to fit circles to data points. Now the model collectionMC consists of all

circles C ⊂ R2. Given data points P1, . . . , Pn, the best fitting circle Cbest minimizes

the sum of squares of the distances from P1, . . . , Pn to the circle.

The question is does this circle always exist? Are there any cases where it doesn’t

exist? Let us look at this example: suppose our model objects are circles, and our

given points are P1 = (−1, 0), P2 = (0, 0) and P3 = (1, 0). Then in this collection

model, we can find a sequence of circles Sm defined by

x2 + (y −m)2 = m2

which will fit the points progressively better as m grows and make F arbitrarily close

to zero (see Figure 2.1). But since no circle can interpolate n ≥ 3 collinear points,

we will always have F > 0. For any circle, one can always find another circle that

fits the data better. None of them would be the best fit. Obviously the best fit here

is given by the straight line through the data points, which yields F = 0. Thus the

circle fitting problem has no solution in this case.

In fact, a sequence of circles Cm can converge to an object of three possible types:

(see Figure 2.2)

• a circle C0 ⊂ R2;

• a line L0 ⊂ R2;

• a single point (singleton) P0 ∈ R2.

15

Circles

y=0Limit Line P1 P2 P3

Figure 2.1: Example of non-existence of circle fitting problem

Circles Cm

 Line L0

Singleton P0

Circles Cm

Figure 2.2: Limit objects of collection of circles

Note that singletons can be regarded as degenerate circles whose radius are zero,

so they can be regarded as part of the model collection. But lines cannot be dealt

with so easily, because they are neither circles nor degenerate circles. So we can see

that the collection MC of circles is not closed (in our sense). As a result, the circle

fitting problem does not always have a solution.

In order to guarantee the existence of the best fitting object, one needs to extend

the given collection MC by adding all its “limit points”, in this case - lines. The

extended collection will include all circles and all lines, i.e.,

(2.12) M̄C = MC ∪ML.

In topology, if we add all “limit points” to a set A, we get a larger set called the

closure of A, it is denoted by Ā. So we denote it by M̄C the closure of MC.

Now the (extended) circle fitting problem always has a solution:

Theorem 2.3. For any data points P1, . . . , Pn, there is a best fitting object Sbest ∈
M̄C that minimizes the sum of squares of the distances to P1, . . . , Pn.

16

One has to keep in mind, though, that the best fitting object may be a line, rather

than a circle.

2.2.3. Ellipses. It is also a common task in computer vision to fit ellipses to

data points. Now the model collection ME consists of all ellipses E ⊂ R2. Given data

points P1, . . . , Pn, the best fitting ellipse Ebest minimizes the sum of squares of the

distances from P1, . . . , Pn to the ellipse.

A sequence of ellipses Em may converge to an object of many possible types:

• the limit object may be an ellipse E0 ⊂ R2;

• as circles are ellipses, the limit object may be a line or a singleton (see above);

• a limit object can be a parabola, or a pair of parallel lines, or a segment of

a line, or a half-line (a ray). See Figure 2.3.

Ellipses

Parabola:
Parallel lines:

Line segment: Half-line:

Figure 2.3: Limit objects of collection of ellipses

Well, singletons can be regarded as degenerate circles and line segments can be

regarded as degenerate ellipses, whose minor axis is zero. In fact, both singletons and

line segments, as well as half-lines, can be ignored based on the redundancy principle,

see discussion in Chapter 1. But lines, pairs of parallel lines, and parabolas cannot

be dealt with so easily. We see that the collection ME of ellipses is not closed. As

a result, the ellipse fitting problem does not always have a solution. Examples may

17

be sets of points that are placed on a line, on two parallel lines, or on a parabola.

Actually there are a lot more other examples as well, see 2.4.1.

In order to guarantee the existence of the best fitting object, one needs to extend

the collection ME of ellipses by adding all its “limit points”, in this case - lines, pairs

of parallel lines, and parabolas. We denote that extended collection by M̄E:

(2.13) M̄E = ME ∪ML ∪M‖ ∪M∪,

where M‖ denotes the collection of pairs of parallel lines, and M∪ the collection of

parabolas.

Now the (extended) ellipse fitting problem always has a solution:

Theorem 2.4. For any data points P1, . . . , Pn, there is a best fitting object Sbest ∈
M̄E that minimizes the sum of squares of the distances to P1, . . . , Pn.

One has to keep in mind, though, that the best fitting object may be a line, or a

pair of parallel lines, or a parabola, rather than an ellipse.

2.2.4. Quadratic Curves. Let us consider a more general task of fitting qua-

dratic curves (also known as conic sections or simply conics) to data points. Now the

model collection MQ consists of all quadratic curves, by which we mean all ellipses,

parabolas, and hyperbolas. Given data points P1, . . . , Pn, the best fitting quadratic

curve minimizes the sum of squares of the distances from P1, . . . , Pn to the curve.

A sequence of quadratic curves may converge to an object of many possible types:

• the limit object may be a quadratic curve;

• as ellipses are quadratic curves, the limit object may be a line, a pair of

parallel lines or a singleton;

• hyperbolas may converge to a pair of intersecting lines or two opposite half-

lines (rays). See Figure 2.4.

Now every half-line and two opposite half-lines are a part (subset) of a full line, so

they can be incorporated into lines. Again we treat singletons as degenerate circles.

18

Two opposite half-lines:

Hyperbolas

Intersecting
 lines:

Hyperbolas

Figure 2.4: Limit objects of collection of hyperbolas

But pairs of parallel lines and pairs of intersecting lines cannot be dealt with so easily.

We see that the collectionMQ of quadratic curves (conics) is not closed (in our sense).

As a result, the conic fitting problem does not always have a solution.

In order to guarantee the existence of the best fitting object, one needs to extend

the collection MQ of quadratic curves by adding all its “limit points” - lines, pairs of

parallel lines, and pairs of intersecting lines. We denote that extended collection by

M̄Q:

(2.14) M̄Q = MQ ∪ML ∪M‖ ∪M×,

where M‖ was introduced in (2.13) and M× denotes the collection of pairs of inter-

secting lines.

Now the (extended) conic fitting problem always has a solution:

Theorem 2.5. For any data points P1, . . . , Pn, there is a best fitting object Sbest ∈
M̄Q that minimizes the sum of squares of the distances to P1, . . . , Pn.

One has to keep in mind, though, that the best fitting object may be a line, or a

pair of parallel lines, or a pair of intersecting lines, rather than a conic.

2.3. Probabilistic Approach

We showed in Section 2.1 that the collection M of model objects {S} used to fit

observed points P1, . . . , Pn has to be closed if we want the fitting problem to have

a solution. If not, then we have to close it up, i.e., add to M all objects that are

19

obtained as limits of existing objects. The new, extended collection is called the

topological closure of M and denoted by M̄. We will use the following terms:

Definition 2.1. The original objects S ∈ M are called primary objects and the

objects that have been added, i.e., S ∈ M̄ \M, are called secondary objects.

As we have seen in section 2.2, the collection of circles MC is not closed. In order

to close it up, one has to add lines to it. That is, one really has to operate with the

extended collection

(2.15) M̄C = MC ∪ML

of circles and lines. Circles are primary objects, and lines are secondary objects.

In practical applications, secondary objects may be unwanted, or not welcome.

For example, when one fit circles or ellipses, they might not want lines or parabolas

or a pair of parallel lines (which are secondary objects). Hence the question is how

frequently these unwanted secondary objects occur as the best fits?

2.3.1. How Frequently does the Best Fitting Circle Fail to Exist? In

most applications data points are observed with some random noise. Thus the noise

has a probability distribution. One usually assumes that the noise added to every

point is a 2D normally distributed vector which is added independently to every point.

Let us see how frequently the best fitting circle would fail to exist under these

standard assumptions. Let us begin with the simplest case of n = 3 points. If they

are not collinear, then they can be interpolated by a circle. If they are collinear and

distinct, there is no interpolating circle, so the best fit is achieved by a line.

Under the above assumptions of independent normally distributed noise, the

collinearity occurs with probability zero. In simple practical terms, it is “impossible”,

it “never happens”. If we generate three data points by using a computer random

number generator, we will practically never see collinear points. All our practical

experience tells us: the best fitting circle always exists. Perhaps for this reason the

20

circle fitting problem is usually studied without including lines in the collection of

model objects, but there are notable exceptions such as [63].

In the case of n > 3 data points, the best fitting circle fails to exist when the

points are collinear, but there are other instances, too. For example, let n = 4 points

be at (0, 1), (0,−1), (A, 0), and (−B, 0) for some large A,B À 1. See Figure 2.5.

Then it is not hard to check, by direct inspection, that the best fitting circle fails to

exist, and the best fit is achieved by the line y = 0.

A-B

1

-1

0

Figure 2.5: Example of four points that are not collinear for which the best fitting

circle fails to exist

It is not easy to describe all sets of points for which the best fitting circle fails to

exist. Such a description was given in [18] (see Theorem 8 on page 68 there). Here

we only state the final conclusion: for every n > 3, the best fitting circle exists with

probability one, i.e., the failure to exist occurs with probability zero.

In other words, no matter how large or small the data set is, the best fitting circle

will exist with probability one, so practically we never have to resort to secondary

objects (lines), we never have to worry about existence. The model of circles is

adequate, it does not really require an extension. This fact explains why lines are

often ignored in practice and one works with circles only.

21

2.3.2. How Frequently does the Best Fitting Ellipse Fail to Exist? Now

let us examine the model collection ME of ellipses and see how frequently the best

fitting ellipse fails to exist. It is particularly easy to deal with the simplest case of

n = 5 data points. For any set of distinct 5 points in a general linear position (which

means that no three points are collinear), there exists a unique quadratic curve (conic)

that passes through all of them (i.e., interpolates them); That conic may be an ellipse,

or a parabola, or a hyperbola. If 5 points are not in generic linear position, i.e., at

least three of them are collinear, then they can be interpolated by a degenerate conic,

a pair of lines.

If the interpolating conic is an ellipse, then obviously that ellipse is the best fit,

the objective function takes it absolute minimum value - zero. What if it is a parabola

or a pair of parallel lines? Then it is a secondary object in the extended model (2.13),

and we have an unwanted event: a secondary object provides the best fit. This,

however, occurs with probability zero, so it is not a real concern.

But what if the interpolating conic is a hyperbola or a pair of intersecting lines?

Then the situation is less clear, as such an interpolating conic does not belong to

the extended collection M̄E; see (2.13). Is it possible now that the best fitting object

Sbest ∈ M̄E, i.e., the best fitting object from the collection (2.13), is an ellipse?

The answer is No. Here are our reasons. If there was a best fitting ellipse Ebest ∈
M̄E, then no other ellipse could provide a better fit, i.e., for any other ellipse E ∈ME

we would have F(E) ≥ F(Ebest). And we have proved that this is impossible.

Theorem 2.6 ([33]). Suppose n = 5 data points are given. Then no ellipse E or

hyperbola H can provide a local minimum of the objective function F.

Basically it says that for any ellipse E that does not interpolate our 5 points

(i.e., for which F(E) > 0) there exist other ellipses E ′ arbitrary close to E such that

F(E ′) < F(E). Similarly, for any hyperbola H that does not interpolate our 5 points

(i.e., for which F(H) > 0) there exist other hyperbolas H ′ arbitrary close to H such

22

that F(H ′) < F(H). This theorem is proved by Q.Huang and proof is avaliable in

[33].

Thus the best fitting object Sbest ∈ M̄E is now a secondary one (a parabola, or a

line, or a pair of parallel line), i.e., an unwanted event occurs. As a matter of fact,

this really happens with a positive probability.

Numerical Experiment for n = 5. One can easily estimate the probability of the

above unwanted event numerically. For a given probability distribution of the data

points (xi, yi), i = 1, . . . , 5, one can generate random samples of n = 5 points (xi, yi),

1 ≤ i ≤ 5, and for each sample find the interpolating conic. The latter can be found

by solving a system of equations

Ax2
i + 2Bxiyi + Cy2

i + 2Dxi + 2Eyi + F = 0, i = 1, . . . , 5

for unknown coefficients A,B,C,D,E, F (which only need to be determined up to a

scalar multiple), and then finding the type of the respective conic by standard rules

of analytic geometry. For example, there are three basic types of them:

• ellipse, characterized by AC −B2 > 0

• hyperbola, corresponding to AC −B2 < 0

• parabola, which occurs when AC −B2 = 0

Every time that conic happens to be other than an ellipse, an unwanted event occurs,

i.e., the best fit from the collection (2.13) is provided by a secondary object.

We have run the above experiment with a 2D standard normal distribution. Pre-

cisely, each point (xi, yi) was selected independently from a 2D normal distribution

N(u,V) with mean u = (0, 0) and covariance matrix V =


 1 0

0 1


. In other words,

we selected each coordinate xi and yi from a standard normal distribution N(0, 1).

We found that the random points were interpolated by an ellipse with probability

22% and by a hyperbola with probability 78%. Other conics, including parabolas,

23

never turned up; They occur with probability zero. This is a striking result: hyper-

bolas actually dominate over ellipses! Thus the best fitting ellipse fails to exist with

a probability as high as 78%.

In another experiment we sampled points from the unit square [0, 1]× [0, 1] with

uniform distribution (i.e., we selected each coordinate xi and yi from the unit interval

[0, 1]). In this experiment ellipses turned up with probability 28% and hyperbolas

with probability 72%. Again an overwhelming domination of hyperbolas!

Remark on Different Types of Distributions. One might think that different

normal distributions might give different results. Surprisingly, the answer is No. The

percentages of ellipses (22%) and hyperbolas (78%) are the same when points are

sampled from any 2D normal distribution N(u,V), with any mean u ∈ R2 and any

2 × 2 covariance matrix V. Indeed, any 2D normal distribution can be transformed

to a standard normal distribution by a linear transformation of the plane R2. Now

under linear transformations conics are transformed to conics, and their types are

preserved (i.e., ellipses are transformed to ellipses, hyperbolas to hyperbolas, etc).

Therefore the type of the interpolating conic cannot change.

Also, the percentages of ellipses (28%) and hyperbolas (72%) are the same when

points are sampled from any rectangular domain R ⊂ R2 in the plane. Indeed,

any rectangle R can be transformed to the unit square [0, 1] × [0, 1] by a linear

transformation of the plane R2, and the same argument as above applies. We also

did experiments for randomly selected samples of n > 5 points, see Sec. 2.4.

Conclusion. The collection of ellipses is not a sufficient model for fitting purposes.

This means that there is a real chance that for a given set of data points no ellipse

could be selected as the best fit to the points, i.e., the ellipse fitting problem would

have no solution. In other words, whenever the best fitting ellipse fails to exist, the

ellipse fitting procedure attempts to move beyond the collection of ellipses, and ends

up on the border of that collection and then returns a secondary object: a parabola

or a pair of lines. Even more, the probability of such events occurring is not low.

24

2.4. Sufficient and Deficient Model

Definition 2.2. We say that a collection M of model objects is sufficient (for

fitting purposes) if the best fitting object Sbest exists with probability one, assuming

that the data points P1, . . . , Pn are independent normally distributed random variables.

In other words, with probability one the best fitting object Sbest belongs to the

original collection M, rather than its extension M̄ \M. As we have just seen, the

collection of circles is sufficient (adequate) for fitting purposes.

Definition 2.3. Model collections that are not sufficient, as defined above, will

be called deficient.

Their deficiency indicates that they should be substantially extended for the fitting

problem to have a reasonable (adequate) solution with probability one. We have seen

that the collection of ellipses is not sufficient for fitting purposes.

2.4.1. Numerical Tests for Deficient Models. Here we present similar results

for randomly selected samples of n > 5 points. The analysis of samples of n > 5 points

requires more sophisticated numerical tests than those used in section 2.3.2.

Description of Numerical Tests. First let me describe our numerical tests. Recall

that our basic task is to see what type of conic (ellipse or hyperbola) provides the

best fit for a given set of n > 5 points. The best fitting conic is the one minimizing

the sum of squares of geometric (orthogonal) distances to the given points.

For n > 5 we cannot hope for an interpolating conic, thus we have to employ

a standard minimization procedure to find the minimum of the objective function

F. The function F is the sum of squares of geometric distances from a conic to the

given points. Its global minimum gives the best fitting conic. We use the Levenberg-

Marquardt minimization algorithm (to be described in chapter 6) to find a minimum

of the objective function F.

25

The Levenberg-Marquardt algorithm, as all standard minimization procedures,

requires an initial guess. Given a set of n > 5 points, we generate 1000 randomly

chosen initial guesses (see below) and then we use each one to initialize the Levenberg-

Marquardt procedure. We run the latter until it converges to a limit conic. Thus we

get 1000 limit conics, which can be regard as local minima of the objective function.

From those 1000 conics we select the one that gives the smallest value of F and

regarded it as the global minimum, i.e., the best fitting conic.

This numerical scheme is rather computationally intense, so for each given dis-

tribution and each n > 5 we only generate 10,000 random samples of n points to

determine the percentages of samples for which the best fitting conic is an ellipse or

hyperbola.

The Choice of Initial Guesses. Initial guesses are generated as follows. Let

R = [x1, x2] × [y1, y2] ∈ R2 be a rectangle that contains all our n > 5 points (the

construction of R is described below). We generate 1000 random five-point sets

{Q1, . . . Q5} with uniform distribution in the rectangle R. (In other words, we select

five x-coordinates in the interval [x1, x2] randomly and five y-coordinates in the in-

terval [y1, y2] randomly and combine them to get five pairs of xy coordinates that we

treat as five points in R.) For each five-point set {Q1, . . . Q5} in R we find the unique

conic that interpolates those five points by solving the corresponding system of linear

equations. Then we use that conic as an initial guess.

Rational for Our Choice of Initial Guesses. Our method of generating random

initial guesses has an advantage that all the resulting conics pass through the rectangle

R, i.e., conics that are absurdly far from our n data point will never be selected. At

the same time, our five points {Q1, . . . Q5} are selected totally randomly in R and not

related to the given data points; this ensures a wide variety of initial approximations.

Construction of the Rectangle R. If the sample of n > 5 points is selected

randomly from a rectangular domain, then it is natural to use that domain as the

rectangle R. If the sample of n > 5 points is selected randomly from a normal

26

distribution, then no natural rectangle can be found. In that case we can construct

R = [x1, x2]× [y1, y2] by setting x1 and x2 to the smallest and largest x-coordinate of

our data points, and y1 and y2 to the smallest and largest y-coordinate of our data

points.

Numerical Results.

Standard Normal Distribution: n > 5. Table 2.1 shows the percentages of

samples of n > 5 points for which the best fitting conic is an ellipse or a hyperbola.

The samples here are generated randomly with a standard normal distribution (mean

zero and the identity covariance matrix).

Percentage(%) n = 5 n = 6 n = 8 n = 10 n = 20 n = 50

Best Fit is Hyperbola 78 77 77 76 73 79

Best Fit is Ellipse 22 23 23 24 27 21

Table 2.1: Percentages for best fitting conic: samples of n > 5 from standard normal

distribution

We see that the percentages fluctuate but do not change much as n grows; the

domination of hyperbolas persists.

Non-Standard Normal Distribution: n > 5. We also used a non-standard

normal distribution that had covariance matrix V =


 4 0

0 1


 (so that the scattering

along one axis is twice as large as that along the other axis). Table 2.2 shows the

corresponding percentages. Here too, the percentages fluctuate but do not change

much; the domination of hyperbolas persists.

Rectangular Distribution: n > 5. A more intriguing picture appears when sam-

ples are generated from a rectangular distribution, instead of normal distribution.

Table 2.3 below represent percentages for a uniform distribution in the unit square

[0, 1]× [0, 1].

27

Percentage(%) n = 5 n = 6 n = 8 n = 10 n = 20 n = 50

Best Fit is Hyperbola 78 78 76 74 75 67

Best Fit is Ellipse 22 22 24 26 25 33

Table 2.2: Percentages for best fitting conic: samples of n > 5 from non-standard

normal distribution

Percentage(%) n = 5 n = 6 n = 10 n = 15 n = 20 n = 30 n = 50 n = 100

Best Fit is Hyperbola 72 68 60 54 48 43 40 34

Best Fit is Ellipse 28 32 40 46 52 57 60 66

Table 2.3: Percentages for best fitting conic: samples of n > 5 from rectangular

distribution

Here the percentage of ellipses noticeably grows from 28% to 66%. It appears that

it will keep growing to 100% as n gets larger. We give a reason for this fact in next

section 2.4.2. However, when samples are generated from a rectangle [0, 2] × [0, 1],

then the percentage of ellipses does not grow that much. We give an explanation to

this fact, too.

Data Points Sampled along An Ellipse. In the above tests the data points

were taken from some general distribution , normal or rectangular. This produces

completely irregular (“chaotic”) samples without any predefined pattern, elliptic or

hyperbolic. One may argue that such simulated data are unrealistic. So we conducted

more realistic tests. Following traditions in the literature, we positioned n points

equally spaced along an elliptic arc and added some small Gaussian noise.

More precisely, we chose the ellipse

x2

4
+

y2

1
= 1,

28

which has semiaxes 2 and 1. The elliptical arc along which the data points were

placed was chosen in three different ways (see Figure 2.6):

• the upper half of the ellipse

• the right half of the ellipse

• the upper right quarter of the ellipse

Upper half Right half Upper right quarter

Figure 2.6: Elliptical arcs along which the data points were placed

The Gaussian noise was added at two levels: σ = 0.05 and σ = 0.1. Adding

Gaussian noise at level σ means that the x and y coordinates of every point are

perturbed by a normal random variable with mean zero and standard deviation σ.

The noise level σ = 0.1 is not too big for many computer vision applications, and it

is also quite small by common standards in statistical applications.

Tables 2.4 and 2.5 below show the results of our experiments for n = 6 and n = 8

points:

n = 6 Upper half of ellipse Right half of ellipse Quarter of ellipse

Percentage(%) σ = 0.05 σ = 0.1 σ = 0.05 σ = 0.1 σ = 0.05 σ = 0.1

Best Fit is Hyperbola 4 26 3 18 62 75

Best Fit is Ellipse 96 74 97 82 38 25

Table 2.4: Percentages of samples for which best fit is ellipse or hyperbola: data

points sampled along an ellipse, n = 6

29

n = 8 Upper half of ellipse Right half of ellipse Quarter of ellipse

Percentage(%) σ = 0.05 σ = 0.1 σ = 0.05 σ = 0.1 σ = 0.05 σ = 0.1

Best Fit is Hyperbola 1 17 1 13 57 75

Best Fit is Ellipse 99 83 99 87 43 25

Table 2.5: Percentages of samples for which best fit is ellipse or hyperbola: data

points sampled along an ellipse, n = 8

Conclusions. We see that even in realistic numerical tests where the data points

form a clear elliptic pattern, the best fitting conic may be a hyperbola with positive

probability (which is sometimes quite high!). Whenever this happens, the ellipse

fitting problem has no solution, i.e., the best fitting ellipse fails to exist. For longer

elliptical arcs (half ellipse or more) this happens occasionally - just a few percents of

the time - so one may simply dismiss it as a “bad luck”. But for shorter elliptical

arcs (quarter of ellipse or less) this happens most of the time. The existence of the

best fitting ellipse is rather an exception than a rule. In any case one cannot dismiss

samples for which the best fit is hyperbola.

2.4.2. Large Sample Limit. As the number of points n grows, according to

the Law of Large Numbers in Probability Theory the normalized objective function

1
n
F converges to the integral

F∞(S) =

∫∫
d2(x, y) dP (x, y), d(x, y) = dist[(x, y), S]

where P (x, y) denotes the probability distribution from which the points are sampled,

and S is our standard notation for the fitting model object (in the present case - a

conic). Then the global minimum of the function F∞(S) would give us the best fitting

object corresponding to the given probability distribution P . This way we find a conic

which is the best fit (or the best approximation) to a probability distribution, rather

than a finite set of data points.

30

2.4.2.1. Limit as n → ∞: Rectangular Distribution. For a uniform distribution

in a rectangle [0, a]× [0, 1] this integral becomes

(2.16) F∞(S) = a−1

∫ a

0

∫ 1

0

d2(x, y) dy dx, d(x, y) = dist[(x, y), S]

We have integrated it numerically in order to find the best fitting conic S. The results

are given below.

2.4.2.2. Perfect Square R = [0, 1]× [0, 1]. What conic would you expect to be the

best fit to a mass uniformly distributed in a square? Due to the perfect shape of the

square and its many symmetries, it is natural to expect a symmetric conic, i.e., either

a circle or a pair of lines, say, the diagonals of the square.

What we found was totally unexpected: the best fitting conic is an ellipse! It has

different axes: 0.9489 and 0.6445 (assuming that the square has unit side). Its axes

are aligned with the sides of the square, and its center coincides with the center of the

square. Therefore, there are exactly two such ellipses, one is oriented horizontally and

the other - vertically; see Figure 2.7. These two ellipses beat any circle and any pair

of lines; they provide the global minimum of the objective function (2.16). Table 2.6

above Figure 2.7 compares the above two ellipses to the best circle (whose radius is

0.38265) and the best pair of lines (diagonals of the square).

Fitting object Value of F

Best ellipse (either of the two) 0.02001

Best circle (of radius 0.38265) 0.02025

Two diagonals of the square 0.02083

Table 2.6: Comparison of different fits for a uniform distribution

The fact that the best fitting conic to the mass distributed in a square is an ellipse

explains why for large samples generated from the uniform distribution in a square

ellipses dominate over hyperbolas.

31

Figure 2.7: Best fit to a uniform distribution in a square

2.4.2.3. Other Rectangles R = [0, a]× [0, 1], where a > 1. As the rectangle R gets

extended horizontally, i.e., as a > 1 increases, the best fitting conic changes. We

found that for a < a1 ≈ 1.2, the best fitting conic is still an ellipse and it is unique

(though it gets elongated compared to the one found for the square, when a = 1).

But for a > a1, the best fitting conic abruptly changes from an ellipse to a pair of

parallel lines. Those two lines are running through the rectangle horizontally; their

equations are y = 0.25 and y = 0.75. See Figure 2.8.

1<a<1.2 a>1.2

Figure 2.8: Best fit to a uniform distribution in a rectangle

This fact explains that for longer rectangles, such as R = [0, 2]× [0, 1] mentioned

above, the percentage of ellipses does not grow much as n grows. It remains unclear

32

which type of conic dominates (ellipses or hyperbolas) for large samples generated

from longer rectangles [0, a]× [0, 1], where a > a1.

2.4.3. Dilemma: Fitting Ellipses versus Fitting Conics. In many applica-

tions, one specifically seeks an elliptical fit rather than hyperbolic or parabolic. In

this case, however, one should be aware of the fact that there is a positive probability

(sometimes quite high!)that the best fitting ellipse cannot be found. When the objec-

tive function F does not take a minimum on the space of ellipses (in which case, the

best fitting conic is hyperbola), the minimum of F will be attained on parabola or a

pair of parallel lines in the extended collection of ellipses. When this happens, the

final choice of a good (or best) fit will fully depend on the seekers. There are three

options:

(1) One can choose any fitted ellipse as a reasonable fit, as we discussed previ-

ously that no ellipse is optimal in this case. For any ellipse we found, we can

always find another ellipse who fits the data points better. When iteration

goes on, we can decide when we want to stop as long as the value of F is

acceptably small.

(2) If one wants to find the actual best fitting object where the objective func-

tion F attains minimum, we have to appeal to the secondary objects in the

extended collection of ellipses, which is usually a parabola. So in addition to

ellipses, one needs to consider parabolas in the fitting progress to find a best

fitting curve.

(3) On the other hand, if one can accept a parabolic fit, it would not be a bad

idea to go for a hyperbolic fit since it is the real best fitting conic in the

whole collection of all quadratic curves. In the larger framework of fitting

all quadratic curves, the best fitting object will always be found, either an

ellipse or a hyperbola.

As we can see, this is not an easy choice. If one only needs a reasonably good fit,

then the first option is the fastest because one fits ellipses only; If one has a higher

33

expectation to the accuracy, then the second option is good, though not optimal. If

one wants the best fitting object and doesn’t specify the shape of the fit, then the

third option will be the best approach. And from now on, we proceed with the third

choice. We treat the problem of fitting ellipse to data points as a part of a more

general problem of fitting conics. In fact, with this understanding, we will be able to

find more efficient practical algorithms for fitting ellipses to data, which we will show

later.

CHAPTER 3

Parameters for Quadratic Curves

In this chapter we will describe the most common parametrization schemes used

in quadratic curve (conic) fitting applications. Conics can be described by their

natural geometric parameters or by the general algebraic parameters, which both

have advantages and disadvantages. Geometric parameters are more standard and

useful for us to find the distances between points and conics. Algebraic parameters

allow us to reach all real conics and even “imaginary” conics. Later in our work,

we will see that algebraic parameters should be chosen over geometric parameters

because of some compelling reasons which will be explained here.

In section 3.1 geometric parameters and its drawbacks are described. In section

3.2 algebraic parameters are discussed and a complete classification of conics is given.

In section 3.3 we will compare these two parameter choices and explain why algebraic

parameters is a more elegant choice for us.

3.1. Geometric Parameters of Conics

3.1.1. Ellipses: Standard Geometric Parameters. Ellipses can be described

by five geometric parameters. The most popular choice is the coordinates of the center

(xc, yc), the semi-axes a and b and the angle of tilt, α, of the major axis. There are

natural restrictions on the semi-axes, a ≥ b > 0. The angle α has period π and

one often requires α ∈ [0, π). The full ellipse equation in these parameters is rather

complicated:

[
(x− xc) cos α + (y − yc) sin α

]2

a2
+

[−(x− xc) sin α + (y − yc) cos α
]2

b2
= 1.

34

35

Alternatively one can define the ellipse in parametric form:

x = xc + a cos t cos α− b sin t sin α and y = yc + a cos t sin α + b sin t cos α,

where 0 ≤ t ≤ 2π is an inner parameter on the ellipse. The inner parameter t plays

an important role in some fitting algorithms; see [29, 54, 55]. The five parameters

(xc, yc, a, b, α)T were used by many authors. In earlier publications they were used

in conjunction with the inner parameter t on the ellipse; see [29, 54]. In later

publications, they were used without the inner parameter; see [7, 5, 4].

Geometric parameters generally work well, but a problem arises when the ellipse

turns into a circle. In this case the angle α becomes a redundant parameter that

cannot be defined. Indeed, changing the angle α amounts to rotating the circle

around its center, which does not affect it at all. As a result, the Jacobian matrix

becomes singular, one of its columns is filled with zeros (see also page 2290 in [7]).

We provide a proof of this fact in section 3.3.

The singularity of the Jacobian matrix was first noted in [29], and for this reason

they avoided circles as initial guesses for their iterative ellipse fitting algorithms. On

the other hand, the singularity should not really be troublesome here - the Levenberg-

Marquardt algorithm works for singular matrices, even the Gauss-Newton step can

go through if one applies SVD (see again page 2290 in [7]). Perhaps, avoiding circles

is just an attempt to “stay on the safe side”. Some other authors also impose the

restriction a 6= b to avoid the same singularity; see [52, 53] and page 2284 in [7].

Still others note that the statistical accuracy of the corresponding parameter esti-

mates deteriorates (their variances grow) when the ellipse is close to a circle [6]. We

also noticed that the angle α tends to change erratically, which may destabilize the

performance of the fitting procedure.

3.1.2. Ellipses: Kepler’s Parameters. Ellipse can be described by another

set of geometric parameters, which involve its foci (x1, y1), (x2, y2) and the major

36

semi-axis a. Now the equation of the ellipse is

(3.1)
√

(x− x1)2 + (y − y1)2 +
√

(x− x2)2 + (y − y2)2 = 2a,

based on the fact that the sum of the distances from any point on the ellipse to its foci

is constant. There is a natural restriction on the semi-axis: 2a ≥
√

(x1 − x2)2 + (y1 − y2)2.

These parameters were used in [41] who called (6.11) Kepler’s definition of ellipse,

so (x1, y1, x2, y2, a)T can be called Kepler’s parameters.

These parameters also work well, but the peculiar singularity noted above gets

even worse now. Let the ellipse be a circle, i.e., let x1 = x2 and y1 = y2. Then the

Jacobian matrix again becomes singular, and furthermore its rank drops from 5 to

3. Indeed, consider a family of ellipses with foci (x1 + s, y1 + r) and (x2 − s, y2 − r)

for which the fifth parameter a is fixed. When s = r = 0, we have the original circle.

By elementary geometry, when s and r are small, the ellipse is at distance O(s2 + r2)

from the original circle (in the Hausdorff metric). Therefore the derivatives (with

respect to s and r) of the distances di from the data points to the ellipse turn zero

at s = r = 0, causing a double-singularity for the Jacobian matrix (the loss of two

dimensions in its rank). See a more formal argument in section 3.3.

A particularly bad situation occurs when the ellipse coincides with best fitting

circle. Then the Jacobian turns zero completely. In other words, the best fitting

circle is a stationary point for the objective function in Kepler’s parameters. We

provide a proof of this fact in section 3.3. If the iterative procedure starts at the best

fitting circle or arrives at it by chance, it will stall instantly and will not progress

anywhere.

Actually, many authors use the best fitting circle to initialize their iterative ellipse

fitting algorithms; see [29, 7]. Some claim that the best circle is the most robust

choice for the initial ellipse; see Section 1.1.3 in [4]. In Kepler’s parameters, this

choice would lead to an immediate failure as described above.

37

3.1.3. Hyperbola: Geometric Parameters. Hyperbolas can be described by

five geometric parameters, similar to ellipses, the center coordinates (xc, yc), semi-axes

a, b and the angle of tilt, α, of the major axis. The hyperbola equation is

[
(x− xc) cos α + (y − yc) sin α

]2

a2
−

[−(x− xc) sin α + (y − yc) cos α
]2

b2
= 1.

It is possible to define the hyperbola in parametric form:

x = xc +a cosh t cos α− b sinh t sin α and y = yc +a cosh t sin α+ b sinh t cos α,

where −∞ < t < ∞ is an inner parameter on the hyperbola. These parameters were

used in [7].

Alternatively, hyperbola can be described by geometric parameters involving its

foci: coordinates of both foci (x1, y1),(x2, y2) and the major semi-axis a. Now the

equation of the hyperbola is

∣∣∣
√

(x− x1)2 + (y − y1)2 −
√

(x− x2)2 + (y − y2)2

∣∣∣ = 2a,

based on the fact that the difference of the distances from any point on the hyperbola

to its foci is constant. We are not aware of any published work using these parameters.

In fact very few authors studied the problem of hyperbola fitting, so advantages and

disadvantages of the above parametrization schemes are yet to be investigated.

3.1.4. Parabola: Geometric Parameters. Parabolas can be described by four

geometric parameters: coordinates of the vertex (xc, yc), focus distance p to the di-

rectrix and the angle of tilt, α. The parabola equation is

[−(x− xc) sin α + (y − yc) cos α
]2

= 2p
[
(x− xc) cos α + (y − yc) sin α

]
.

These parameters were used in [7].

38

3.2. Algebraic Parameters of Conics

3.2.1. Quadratic Equation. A quadratic curve(or conic) is a figure in the xy

plane defined by quadratic equation

(3.2) Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0,

where A,B,C,D,E, F are real numbers (parameters of the conic). In a more formal

way: a conic is a set of points (x, y) ∈ R2 satisfying the equation (3.2), with one

exclusion which will be discussed later.

Since A,B,C,D,E, F are the coefficients of a quadratic polynomial (i.e., an alge-

braic expression), they are often called algebraic parameters of the conic.

3.2.2. Parameter Vectors. The six numbers A,B,C,D,E, F can be regarded

as components of a vector, A = (A,B,C,D,E, F)T , which will be called the vector

of parameters. As usual, we treat all vectors as column vectors, this is why we have

to put the transposition sign T .

The parameter space thus will be R6, the space of all real six-dimensional vectors,

with one exclusion (see next). We note that there are many redundancies in this

space, so it will be conveniently reduced later.

If all the parameters happen to be equal to zero, i.e., A = B = C = D = E =

F = 0, then every point (x, y) satisfies (3.2), hence the respective “conic” would

be the entire plane R2. This unwanted “conic” will be excluded, so we will always

assume that at least one parameter is different from zero, i.e., we always assume

A2 + B2 + C2 + D2 + E2 + F 2 > 0. This means that the origin (0, 0, 0, 0, 0, 0) must

be excluded from the parameter space R6.

The same conic can be represented by many different quadratic equations (3.2).

In particular, if we multiply (3.2) by a non-zero scalar α 6= 0, then we get another

quadratic equation

(3.3) αAx2 + 2αBxy + αCy2 + 2αDx + 2αEy + αF = 0

39

that obviously represents the same conic as (3.2). The new equation (3.3) has pa-

rameters αA, αB, αC, αD, αE, αF , i.e., its parameter vector is αA.

Thus, multiplying the parameter vector A by a non-zero scalar would not affect

the conic, it will remain the same. Given a conic with parameter vector A 6= 0, the

entire line in R6 spanned by A would represent the same conic. In other words, the

magnitude of the parameter vector A is irrelevant, only its direction matters.

Due to the above considerations, we can assume that every parameter vector has

length one:

(3.4) A2 + B2 + C2 + D2 + E2 + F 2 = 1.

In other words, the parameter vector is always assumed to be normalized (its norm

is set to one). Thus the reduced parameter space will be the unit sphere in R6. We

will denote it by S5. Here 5 represents the number of dimensions on it, as the unit

sphere in the n-dimensional space Rn is an (n− 1)-dimensional hypersurface.

Parameter vectors A ∈ S5 of the unit sphere represent conics almost uniquely, i.e.,

different vectors usually correspond to different conics. But there is still a duplicity

here, as for any vector A ∈ S5 the opposite vector −A ∈ S5 represents the same conic.

So one may further reduce the parameter space S5 to a half-sphere (a hemisphere),

e.g., by requiring F ≥ 0. Such a further reduction has little advantage but causes

unpleasant technical complications, so we will not do that. We will work with the

sphere S5 and simply keep in mind that diametrically opposite points always represent

the same conic.

3.2.3. Classification of Quadratic Curves. There are two special points on

the unit sphere S5: the point (0, 0, 0, 0, 0, 1) and its diametrically opposite counterpart

(0, 0, 0, 0, 0,−1). They correspond to “quadratic equations” 1 = 0 and −1 = 0, which

have no solutions, either real or complex. Some authors call these two parameter

vectors “impossible”. We call them poles (like North Pole and South Pole of the unit

sphere). They will play a special role in our considerations.

40

For every vector A ∈ S5 other than the above two poles, the quadratic equation

(3.2) has solutions, either real or complex. If it has real solutions, those make a

figure in R2 that we call a conic. If it has only complex (non-real) solutions, then

the corresponding figure in R2 does not exist (is an empty set), but it has a certain

meaning and name in complex coordinates, and we will call it accordingly: imaginary

ellipse, imaginary lines, etc.

A complete classification of quadratic equations and the respective conic types

is given below: quadratic equation (3.2) can be written in a vector-matrix form as

follows:

[
x y 1

]



A B D

B C E

D E F







x

y

1


 = 0,

and its quadratic part Ax2 + 2Bxy + Cy2 can be written in a vector-matrix form

as
[
x y

]

A B

B C





x

y


 . We denote the determinants of the above 3 × 3 and 2 × 2

matrices by ∆ and J , respectively:

∆ = det




A B D

B C E

D E F


 , J = det


A B

B C


 .

In standard textbooks, ∆ is called the “determinant” and J the “discriminant” of the

corresponding quadratic form. A few other useful quantities are

I = A + C, Q = A2 + B2 + C2

K = det


A D

D F


 + det


C E

E F




Then the types of conics are classified in terms of the above quantities in the

following table (see pages 200-201 in [15] and Internet article [62]):

Remark: circles are special type of ellipses, hence they are included into the

“Ellipse” category. Also there are two types of quadratic equations representing

41

Q ∆ J K ∆ · I Type of conic

> 0 6= 0 > 0 < 0 Ellipse

> 0 6= 0 < 0 Hyperbola

> 0 6= 0 0 Parabola

> 0 0 < 0 Intersecting lines

> 0 0 0 < 0 Parallel lines

> 0 0 0 0 Coincident lines

0 < 0 Single line

> 0 0 > 0 Single point

> 0 6= 0 > 0 > 0 Imaginary ellipse

> 0 0 0 > 0 Imaginary parallel lines

0 0 Poles

Table 3.1: Types of quadratic curves

single lines: ones are equations with a non-zero quadratic part, such as x2 = 0. We

call them pairs of coincident lines ; others are equations with zero quadratic part,

such as x = 0. We call them just single lines.

3.3. Geometric Parameters versus Algebraic Parameters

Now we have introduced two different parametrization schemes, geometric and

algebraic parameters. How do we choose between them in practice and what are

their advantages and disadvantages?

First of all, geometric parameters of a conic are standard, simple and have natural

geometric meanings. They have been used by many authors in various literatures.

Compared to geometric parameters, algebraic parameters do not have any clear geo-

metric significance. We do not know which conic they stand for, what the orientation

of the conic is or what the length of the axes are and etc. by just looking at them.

42

However, when dealing with algebraic parameters, we are not limited to only one

type of conic. In other words, we are able to easily switch between different types of

conics during the fitting process, which is a huge advantage in practice.

Secondly, geometric parameters such as axes of an ellipse a, b can potentially take

arbitrarily large values during the fitting process. If we imagine the space of geometric

parameters, we can think of it as a flattened surface of the Earth. When searching

for a minimum in such unbounded space, it may result in divergence of the fitting

algorithm. On the other hand, algebraic parameters under our normalization (3.4)

will never take arbitrary large values. So the space of algebraic parameters under

normalization is like a surface of the Earth which is spherical. In particular, when

searching for a minimum in this compact parameter space S5, it can never diverge.

Even if we move toward the wrong direction at the beginning, we can still go around

the sphere and come back to where we want it to be. So this boundedness enforces

the convergence of the iterative fitting algorithm, which makes algebraic parameters

a preferred choice for us in practice.

Another interesting characteristic of algebraic parameters is that if we move from

one point to another point in the compact algebraic parameter space, then it will

cause a very big change in geometric parameters. In other words, a very small change

in algebraic parameters will result in a totally different conic.

Lastly, geometric parameters have one unpleasant technical problem when the

ellipse turns into a circle, the rotation angle is undefined in this case. This makes

the Jacobian matrix singular which is inconvenient in some sense. Recall that if one

minimizes F(Θ) =
∑n

i=1 di
2, then the first derivatives of di with respect to Θ, i.e., the

Jacobian matrix will be needed. We mentioned this fact in section 3.1.1 and 3.1.2.

However, algebraic parameters do not have a similar problem. Proofs are provided

below.

3.3.1. Proofs of the Singularity of Jacobian Matrix.

43

Theorem 3.1. Let Θ = (xc, yc, a, b, α)T be the vector of standard geometric pa-

rameters for an ellipse P (x, y; Θ) = 0. If a = b, i.e., the ellipse is a circle, then the

Jacobian matrix becomes singular.

Proof. In [GGS1994] Gander et al. proposed a geometric ellipse fitting algorithm

in parametric form.

If Θ = (xc, yc, a, b, α)T , an ellipse in parametric form is then given by:





x = xc + a cos t cos α− b sin t sin α

y = yc + a cos t sin α + b sin t cos α

or it can be written in matrix form


 x

y


 =


 xc

yc


 + Q(α)


 a cos t

b sin t




where

Q(α) =


 cos α − sin α

sin α cos α




Given points (xi, yi), i = 1 · · ·n, one minimizes the sum of the squares of the

distances of these points to the fitted ellipse. It is equivalent to solving:

Pi =


 xi

yi


−


 xc

yc


−Q(α)


 a cos ti

b sin ti


 = 0, i = 1, · · · , n

Thus we have 2n nonlinear equations for n+5 unknowns (t1, t2, · · · , tn, xc, yc, a, b, α).

Differentiating Pi with respect to these n+5 unknowns, one obtains a (2n)×(n+5)

Jacobian matrix:

44

J =




−as1 0 . . . 0 c1 0 c s −bs1

0 −as2 . . . 0 c2 0 c s −bs2

...
...

. . .
...

...
...

...
...

...

0 0 . . . −asn cn 0 c s −bsn

bc1 0 . . . 0 0 s1 −s c ac1

0 bc2 . . . 0 0 s2 −s c ac2

...
...

. . .
...

...
...

...
...

...

0 0 . . . bcn 0 sm −s c acn




where s = sin α, c = cos α, si = sin ti, ci = cos ti, i = 1, · · · , n.

If a circle is used to be an initial guess to the iterative fitting algorithm, then the

parameters a and b are both equal to the radius of the circle r, and the angle α is

not defined. Applying this to the Jacobian matrix, when a = b, the last column in

Jacobian which denotes the partial derivatives with respect to parameter α becomes

linearly dependent on the first n columns. This means that the parameter α is

redundant for a circle. Consequently, the Jacobian matrix turns to singular. If we

use the standard minimization method such as Gauss-Newton method, then the fitting

algorithm will not be able to find a “downhill“ direction where the objective function

decreases so the iteration will fail. In that case, the standard Gauss-Newton method

has to be modified to apply Marquardt steps. ¤

Theorem 3.2. Let Θ = (x1, y1, x2, y2, a)T be the vector of Kepler parameters an

ellipse P (x, y; Θ) = 0.

(i) If x1 = x2 and y1 = y2, i.e., the ellipse is a circle, then the Jacobian matrix

turns singular.

(ii) Furthermore, if the ellipse coincides with the “best fitting circle”, then the

Jacobian matrix turns completely zero.

45

Proof. (i) Let Θ = (x1, y1, x2, y2, a)T be a Kepler parameter vector, then an

ellipse is defined by equation

(3.5) P (x, y; Θ) =
√

(x− x1)2 + (y − y1)2 +
√

(x− x2)2 + (y − y2)2 − 2a = 0

It follows that

(3.6) J(Θ) = (di)Θ = ((di)x1 , (di)y1 , (di)x2(di)y2 , (di)a), i = 1 · · ·n

is the n× 5 Jacobian matrix.

We have proved in [20] that

(d)Θ =
PΘ√

P 2
x + P 2

y

where PΘ, Px, Py denote the first order partial derivatives of P with respect to Θ, x, y,

respectively. Thus to obtain the Jacobian matrix, one needs PΘ, Px, Py.

Differentiating the identity P (x, y; Θ) = 0 gives

PΘ = (Px1 , Py1 , Px2 , Py2 , Pa)
T =




− x−x1√
(x−x1)2+(y−y1)2

− y−y1√
(x−x1)2+(y−y1)2

− x−x2√
(x−x2)2+(y−y2)2

− y−y2√
(x−x2)2+(y−y2)2

−2




(3.7)

(3.8) Px =
x− x1√

(x− x1)2 + (y − y1)2
+

x− x2√
(x− x2)2 + (y − y2)2

(3.9) Py =
y − y1√

(x− x1)2 + (y − y1)2
+

y − y2√
(x− x2)2 + (y − y2)2

If one uses a circle as the initial guess to the iterative algorithm, then two foci

become the same point. In other words, parameters x1 = x2, y1 = y2 and they are

46

both equal to the center (xc, yc) of the circle. Consequently, partial derivatives of P

with respect to x1, y1 will be equal to partial derivatives of P with respect to x2, y2,

i.e. Px1 = Px2 and Py1 = Py2 . Then in the Jacobian matrix, the first column (di)x1

and the third column (di)x2 will be the same, the second column (di)y1 and the fourth

column (di)y2 will be the same too. It follows that the Jacobian matrix is again

singular; In fact its rank is 3 instead of 5.

(ii) If one uses the best fitting circle as an initial guess, then we have x1 = x2 =

xc, y1 = y2 = yc and a = R, where(xc, yc) is the center of the circle and R is its

radius. Since it is the best fitting circle, the objective function F(xc, yc, R) =
∑n

i=1 d2
i

is minimized, where di =
√

(xi − xc)2 + (yi − yc)2 −R. It follows that

(3.10)
∂F

∂xc

= 2
n∑

i=1

di
∂di

∂xc

= 0

(3.11)
∂F

∂yc

= 2
n∑

i=1

di
∂di

∂yc

= 0

(3.12)
∂F

∂R
= 2

n∑
i=1

di
∂di

∂R
= 0

(3.13)

J(Θ) = (di)Θ = ((di)x1 , (di)y1 , (di)x2(di)y2 , (di)a) = ((di)xc , (di)yc , (di)xc , (di)yc , (di)R)

The step of standard minimization method is given by

h = −(JTJ)
−
JT d

the vector JT d is zero followed by equations (3.10) to (3.13). Thus the step h is zero,

which means the iterative algorithm gets stuck and can’t move or go anywhere.

¤

Recall that the algebraic parameters Θ = (A,B,C,D,E, F)T are determined up to

a scalar factor, this leaves the Jacobian matrix automatically singular, i.e., rank(J) =

47

5. However, unlike standard geometric and kepler parameters, there is no other

singularity occurring for algebraic parameters.

Theorem 3.3. Let Θ = (A,B,C,D,E, F)T be the vector of standard algebraic

parameters for a conic P (x, y; Θ) = 0, (xi, yi) , i = 1, . . . , n(≥ 5) be the given distinct

points. Then for any Θ, rank(J) = 5 for all (xi, yi)’s.

Proof. We have proved in [20] that

(d)Θ =
PΘ√

P 2
x + P 2

y

where PΘ, Px, Py denote the first order partial derivatives of P with respect to Θ, x, y

and all the derivatives are taken at the projection points.

Differentiating the identity P (x, y; Θ) = 0 gives

(PΘ) = (PA, PB, PC , PD, PE, PF)(3.14)

= (x2, 2xy, y2, 2x, 2y, 1)(3.15)

The denominators
√

P 2
x + P 2

y are the same for each point (each row) so that they

don’t really matter in this case.

By looking at the columns x2, 2xy, y2, 2x, 2y, 1 in our Jacobian matrix, we found

that there is a linear relationship between them. All the x, y’s here are the projection

points, so they sit on a conic with parameters A,B,C,D,E, F , which means Ax2 +

2Bxy + Cy2 + 2Dx + 2Ey + F = 0. What’s more, this is the only linear relationship

they have. For a set of n projection points and n ≥ 5, there is a unique conic that

interpolates them, meaning the projection points will not satisfy any other conics.

Hence there are no other linear dependency between these columns. Therefore the

rank of the Jacobian matrix is always five. ¤

48

3.3.2. Conversion between Algebraic and Geometric Parameters. The

conversion formulas from geometric parameters (xc, yc, a, b, α)T for ellipses and hy-

perbolas to algebraic parameter (A,B,C,D,E, F)T are straightforward.

A = (c/a)2 + (s/b)2, B = cs(1/a2 − 1/b2), C = (s/a)2 + (c/b)2,

D = −Axc −Byc, E = −Cyc −Bxc, F = Ax2
c + Cy2

c + 2Bxcyc − 1.

where s = sin(α) and c = cos(α).

Conversely, we can also transform algebraic parameters to geometric parameters

by translation of the origin and rotation of the coordinate axes. The rotation angle

is easy to find

α =
arctan 2B

A−C

2
,

After rotating the conic, the center in the new coordinate system becomes

 xc

′

yc
′


 =


 − N1

M11

− N2

M22




where

Q =


 cos α sin α

− sin α cos α


 , M = Q


 A B

B C


 QT , N = Q


 D

E




Then two axes are

a =

√∣∣∣∣
O

M11

∣∣∣∣, b =

√∣∣∣∣
O

M22

∣∣∣∣
where

O = F − x′c
2
M11 − y′c

2
M22.

Lastly, we need to rotate the center back to the original coordinate system

(xc, yc) = QT (x′c, y
′
c).

CHAPTER 4

Objective Function for Quadratic Curves

In this chapter, we discuss some basic properties of unit sphere S5, which plays the

role of the parameter space for quadratic curves and investigate the general behavior

of the objective function on the sphere.

4.1. Open Domains in Parameter Space

We begin with the description of the unit sphere S5. First let us recall the main

types of conics here, grouped according to the dimensionality of the corresponding

regions in S5.

Dimension = 5 Dimension = 4 Dimension = 3 or 2

Ellipse (E) Parabola (P) Parallel lines(PL)

Hyperbola (H) Single point(SP) Imaginary parallel lines (IPL)

Imaginary ellipse (IE) Intersecting lines (IL) Coincident lines (CL)

Single line (SL)

Table 4.1: Main types of quadratic curves grouped according to the dimensionality

of the corresponding regions in S5

4.1.1. Partition into Domains. Each parameter vector A ∈ S5 corresponds

to a conic of a certain type. Accordingly, the unit sphere S5 (the parameter space)

is divided into 10 domains corresponding to each conic types, plus two extra points,

the poles:

S5 = DE ∪ DH ∪ DIE ∪ DP ∪ DSP ∪ DIL ∪ DPL ∪ DIPL ∪ DCL ∪ DSL ∪ {P1} ∪ {P−1},

49

50

where the domains are coded by the names of the conic types, as shown in the above

table.

As we know, larger and more complex domains have higher dimensionality. The

maximal number of dimensions here is five, as the entire sphere S5 is five-dimensional.

Three five-dimensional domains DE, DH, and DIE are most important; they are “mas-

sive”, they occupy a substantial part of the sphere S5. In fact, they are open domains,

in the topological sense. Their openness follows from the classification table given in

section 3.2.3: they are all defined by inequality constraints, such as Q > 0, ∆ 6= 0,

J > 0, etc. We note that if an inequality holds at any point A ∈ S5, it will still hold

in a small vicinity of that point, as our functions Q, ∆, J , etc., change continuously

on the sphere S5. This simple observation proves the openness of the domains DE,

DH, and DIE.

4.1.2. Volumes of Open Domains. The “size” or “mass” of any domain in the

sphere S5 can be measured by its volume (more precisely, five-dimensional volume, or

Lebesgue measure). Five-dimensional domain have positive (“appreciable”) volume.

All the other domains in our partition of S5 have volume zero: they are too tiny,

“invisible”, the volume does not recognize their existence.

The volume of our domains can be estimated by an easy Monte Carlo experiment.

We just generate random points on the unit sphere S5 and estimate the volume of

each domain by the percentage of points falling into it. Below is our experimental

estimates:

Domain DE DH DIE

Volume (%) 20.7 76.8 2.5

Table 4.2: Volumes of open domains on the unit sphere S5

The volume of each domain is given as a percentage of the total volume of S5.

The volume of all the other domains is zero. We see that hyperbolas occupy more

51

than 3/4 of the parameter space. The domination of hyperbolas over ellipses is also

noted in sections 2.3 and 2.4. We also note that“imaginary ellipse” occupy just a

small fraction of the sphere S5, only 2.5.

Remark: Some authors write the quadratic equation (A.2) in a slightly different

form:

(4.1) Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

And under this parameter scheme, the estimate volume for each open domain is

the following

Domain DE DH DIE

Volume (%) 26.5 65 8.5

As we can see, we have a much higher volume (8.5%) for the open domain of

imaginary ellipse which in practice we consider as empty set or undefined. By adding

coefficient 2 in our parameter scheme, we reduce the domain of points that repre-

sents invalid solutions for our model to 2.5%. When running an iterative numerical

algorithm searching for the minimum of the objective, every time iterations run into

such domain of empty set and return a empty solution, they have to retreat and

readjust their step. Due to this, the smaller the size of DIE, the better. That’s why

the algebraic parameter scheme we adopted is better than this scheme.

4.1.3. Connected Components of Open Domains. In topological terms,

open domains may or may not be connected. If the domain is not connected, it

consists of connected components. Interestingly, our open domains DE, DH, and DIE

are not connected, each of them consists of exactly two connected components. This

is related to the choice of sign, see below.

Indeed, each parameter vector A = (A,B,C,D,E, F)T ∈ S5 not only specifies a

conic, but defines a quadratic function

Q(x, y) = Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F

52

on the xy plane. Note that Q(x, y) = 0 on the conic, but Q(x, y) > 0 or Q(x, y) < 0

elsewhere. If the conic is an ellipse, for example, we may have Q > 0 inside the ellipse

and Q < 0 outside of it, or vice versa. Thus we have two types of parameter vectors

A ∈ DE: for one Q is positive inside the ellipse and for the other Q is negative inside

the ellipse. This dichotomy causes DE to consist of two pieces, we denote them by

D+
E and D−E , depending on whether Q > 0 or Q < 0 inside the ellipse (i.e., at its

center). Similarly, we have the respective partition DH = D+
H ∪D−H for hyperbola too.

Lastly, if A ∈ DIE, then the corresponding quadratic function Q(x, y) cannot take

zero values, so it is either entirely positive or entirely negative. Again this causes a

natural partition of DIE into two pieces, D+
IE and D−IE.

Note that if A ∈ D+
E , then −A ∈ D−E and vice versa. Thus the subdomains D+

E

and D−E are diametrically opposite to each other on the sphere S5. In a sense, they are

”mirror images” of each other; they have identical shapes and equal volumes. The

same is true for the two parts of DH and the two parts of DIE.

4.1.4. Boundaries of Open Domains. We’ve discussed three principal open

domains DE, DH, and DIE. And we know that they are five dimensional and they

cover 100% of the sphere S5, in terms of volume. How about other domains? The

other domains have lower dimensionality and zero volume. They, in a sense, make

pieces of the boundaries of the principal domains DE, DH, and DIE.

Most important of those “boundary pieces” are the four-dimensional domains: DP

(parabolas), DSP (single points), and DIL (intersecting lines). They separate our open

domains or their components from each other. As a matter of fact, the hypersurface

DSP separates the open domain DE of ellipses from the open domain DIE of imaginary

ellipses, the hypersurface DIL separates the two components D+
H and D−H of the open

domain DH of hyperbolas from each other and the hypersurface DP separates the

domain DH of hyperbolas from the domain DE of ellipses. The following schematic

diagram illustrats the structure of the parameter space, with all principal subdomains

and the respective separating hypersurfaces.

53

H+ H-

E+E
-

IE
-IE+ IL PP

SP SP

Figure 4.1: Principal domains and separating hypersurfaces

Note: The labels correspond to our notation in the text: H+ means D+
H, etc.

4.2. Objective Function on the Sphere

Now we move on to the study of the objective function on the parameter space of

quadratic curves, i.e.,on the sphere S5. Recall that given some points P1, . . . , Pn ∈ R2,

the objective function is the sum of squares of the distances to a model object (in our

case, conic) S:

(4.2) F(S) =
n∑

i=1

[
dist(Pi, S)

]2
,

The objective function depends on the points P1, . . . , Pn, but in practical settings

those are fixed, so the only variable is S, which is regarded as the sole argument of

F.

If A is a vector of algebraic parameters describing the conic S, then F naturally

becomes a function of A, i.e., F becomes a function on the parameter space. More

precisely, F is defined on all parameter vectors A ∈ S5 corresponding to real conics. It

is not defined for parameters corresponding to imaginary conics or poles. We denote

the domain of the objective function by

DF = DE ∪ DH ∪ DP ∪ DSP ∪ DIL ∪ DPL ∪ DCL ∪ DSL.

54

We note that DF does not include regions DIE and DIPL corresponding to imaginary

conics or the poles P±1.

We will describe some general behaviors of the objective function F on such do-

main DF in the following.

4.2.1. Continuity of the Objective Function. One can prove that F is con-

tinuous on the entire domain DF except a tiny subregion DCL corresponding to co-

incident lines. On the latter region F is badly discontinuous, but it is lower semi-

continuous. Theorems will be presented here and detailed proofs are available in

[33].

Theorem 4.1. The objective function F is continuous everywhere on its domain

DF except on the region DCL corresponding to coincident lines.

Theorem 4.2. The objective function F is lower semi-continuous on the region

DCL corresponding to coincident lines.

Theorem 4.3. The objective function F grows to infinity near the region DIPL and

near the poles P±1. More precisely, if An → A and either A ∈ DIPL or A = P±1,

then F(An) →∞.

The above theorems easily imply the existence of a global minimum of F as follows.

The domain DF is not compact, but due to Theorem 4.3 we can cut out and ignore

a small vicinity of the region DIPL and the poles P±1 where the function is too big.

Then the remaining part of the domain DF will be compact. And now the lower semi-

continuity of F guarantees the existence of its global minimum. Indeed, any lower

semi-continuous function on a compact domain attains its minimum. The existence

of a global minimum is nothing new, however, as we have proved the existence of the

best fitting object already in section 2.1.

4.2.2. Differentiability of the Objective Function. Most popular minimiza-

tion algorithms (such as the steepest descent, Newton-Raphson, Gauss-Newton, or

55

Levenberg-Marquardt) use derivatives of the given function. Thus it is essential that

F is differentiable. As F is the sum of squares of the distances, see (2.10), it is really

enough to check if [dist(P, S)]2, i.e., the square of the distance from any given point

P = (x0, y0) ∈ R2 to a conic S, is differentiable with respect to the conic’s parameters.

Next,

[dist(P, S)]2 = [dist(P,Q)]2 = (x− x0)
2 + (y − y0)

2,

where Q = (x, y) is the projection of P onto the conic S. Thus again, it is enough to

check that the coordinates x, y of the footpoint Q of the projection are differentiable

with respect to the conic’s parameters.

We note that the point Q on the conic S closest to the given point P may not be

uniquely defined. For example, if S is a circle and P is its center, then all the points

of S are equally distant from P , hence the point Q cannot be chosen anywhere on

the circle. In such exceptional situations one can hardly expect that the coordinates

of Q would be differentiable. But other than that, one can prove the differentiability

of the objective function.

Theorem 4.4. [33] If the point Q on the conic S closest to the given point P is

unique and if P is not at the center of curvature of the conic S at the point Q, then

the coordinates x and y of the point Q are differentiable with respect to the conic’s

parameters.

The above theorem does not depend on the type of the conic, so the change of

the conic type does not affect the differentiability of F. For example, if the given

parameter vector A corresponds to a parabola, so that nearby parameter vectors

correspond to ellipses or hyperbolas, then the objective function is still differentiable

at A.

In other words, the objective function is not only continuous on the borders be-

tween our main subdomains D±E and D±H, but it changes smoothly from one subdomain

to another. If we could “walk” on the graph of F, or “feel” it with a hand, we would

56

never notice that it consisted of different parts corresponding to ellipses and hyper-

bolas with positive or negative centers (separated by tiny borders corresponding to

parabolas or intersecting lines). The entire graph would appear as one smooth piece.

4.2.3. Illustration. Let us consider a simplified family of conics defined by

(4.3) x2 + Cy2 + 2Dx + 1 = 0

where only two algebraic parameters, C and D, are variables and all the others are

fixed (A = 1, B = E = 0, and F = 1). We easily see that

∆ =

∣∣∣∣∣∣∣∣∣

1 0 D

0 C 0

D 0 1

∣∣∣∣∣∣∣∣∣
= C(1−D2), J =

∣∣∣∣∣∣
1 0

0 C

∣∣∣∣∣∣
= C, I = 1 + C, Q = 1 + C2

K =

∣∣∣∣∣∣
1 D

D 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣
C 0

0 1

∣∣∣∣∣∣
= 1−D2 + C.

According to standard rules, the conic (4.3) may be of the following types:

• Hyperbola, whenever C < 0 and |D| 6= 1.

• Ellipse, whenever C > 0 and |D| > 1.

• Imaginary ellipse, whenever C > 0 and |D| < 1.

• Single point, whenever C > 0 and D = ±1.

• Intersecting lines, whenever C < 0 and D = ±1.

• Parallel lines, whenever C = 0 and |D| > 1.

• Imaginary parallel lines, whenever C = 0 and |D| < 1.

• Coincident lines, whenever C = 0 and D = ±1.

The diagram 4.2 shows the types of the conic (4.3) on the CD plane:

Next we chose five data points P1, . . . , P5 lying on the ellipse x2+6y2−12x+1 = 0

and computed the objective function F for all −10 ≤ C, D ≤ 10. Fig. 4.3 is the graph

of F, as a function of C and D, plotted by MATLAB.

57

C

D

IEH
+

H
-

H
-

IL SP

EPL

IPL

SP

EPL

IL

Figure 4.2: Illustration diagram

Figure 4.3: Illustration of differentiability of the objective function

58

The dark red part of the graph lies above the domain of imaginary ellipses DIE

where the objective function cannot be defined. Other than that, the entire graph

appears to be one smooth and “glassy” surface. In particular, we clearly see that

the objective function is not broken or even wrinkled at places where the conic type

changes.

The lowest (darkest) point of the graph is at C = 6, D = −6, where the objective

function achieves its global minimum F = 0 (corresponding to the ellipse x2 + 6y2 −
12x + 1 = 0 that passes through all our five data points).

4.3. Objective Function near Boundaries

In the previous section we described some general properties of the objective func-

tion F on its natural domain DF ⊂ S5 focusing on its continuity and differentiability.

Now one might ask how does the objective function behave near other boundaries?

4.3.1. Objective Function near the Hypersurface of Single Points. The

objective function is not defined for imaginary conics, in particular it is not defined on

the red disks D±IE (shown as IE±). The objective function is defined on the subdomains

D±E and the bordering hypersurface DSP, but then it stops; it does not extend into

D±IE. The graph of F is smooth over D±E but then it abruptly terminates. Could this

cause trouble for our main purpose - the minimization of F?

The answer is No. First of all, the objective function F actually grows near the

hypersurface DSP. Recall that the parameter vectors A ∈ DE that are near DSP cor-

respond to very small ellipses. As A gets closer and closer to DSP, the corresponding

ellipse shrinks and collapses to a single points. Obviously, this does not help to fit

the data points any better. Making the ellipse smaller and smaller only increases

the distances from that ellipse to all the data points located outside the ellipse, thus

increasing the value of the objective function.

Secondly, because of such growth, the minimization procedure will not move in

the direction of DSP. All decent minimization algorithms (Levenberg-Marquartd,

59

Trust Region, etc.) keep moving only as long as the value of the objective function

decreases at each iteration. If the objective function does not decrease, then the

algorithm retreats, its step is recalculated, and this recalculation is repeated until

the algorithm finds a place where the objective function decreases. If the algorithm

comes close to the hypersurface DSP, then it will have to turn around and move away

from DSP just in order to find smaller values of the objective function.

4.3.2. Objective Function near the Domain of Coincident Lines. The

objective function F becomes highly irregular and badly discontinuous in the vicinity

of the domain DCL corresponding to coincident lines.

Again the same argument as above shows that the objective function tends to grow

near the domain DCL, which discourages minimization algorithms from approaching

this domain. Indeed, recall that if a parameter vector A is close to the domain DCL,

i.e., A ≈ A0 ∈ DCL, then the conic S corresponding to A is close to the line L0

corresponding to A0. More precisely, S wholly lies in a narrow strip around L0. As

A → A0, the entire conic S gets closer and closer to L0, though it may not stretch

all the way along L0.

4.3.3. Objective Function near the Domain of Single Lines. The above

argument basically shows that a single line or any object stretching along a single line

cannot provide a good fit for typical sets of data points. Many other conics achieve a

better fit, including parallel lines, intersecting lines, long ellipses that are close to two

parallel lines, or similar hyperbolas, etc. Respectively, the objective function F tends

to decrease if the parameter vector moves away from the domain DSL corresponding

to single lines. Thus the minimization algorithms are not likely to move toward this

domain, i.e., it should not bother us.

4.3.4. Objective Function near the Domain of Parallel Lines. On the

contrary, a pair of parallel lines may provide quite a good fit for some sets of data

points. It is not apparent at all that ellipses or hyperbolas would provide a better

60

fit. In fact it is possible that the best fit is achieved only by a pair of parallel lines.

Respectively, we believe the minimization algorithms are quite likely to approach the

domain DPL or wander around in its vicinity. Hence this domain is essential.

4.3.5. Summary. To summarize, we list all the domains where the minimization

algorithms are likely to maneuver searching for the best fitting conic and where the

best fit can be found: Ellipses DE, hyperbolas DH, parabolas DP, intersecting lines

DIL and parallel lines DPL. To formalize this idea we prove the following (see [33]):

Theorem 4.5. For any set of data points P1, . . . , Pn the global minimum of the

objective function F belongs to the union DE ∪ DH ∪ DP ∪ DIL ∪ DPL. If the objective

function F has multiple global minima, then at least one of them belongs to the above

union. This union cannot be shortened, i.e., for any conic S in this union of domains

there exists a data set for which S provides the unique best fit.

This theorem basically says that all the other parts of the parameter space S5 can

be ignored for the purpose of minimization of the objective function. On those parts

F is either not defined or tends to grow.

4.4. Local Minima

In the previous sections we showed that F is continuous and differentiable (more

precisely, has a continuous first derivative) everywhere except certain bad places in

S5 which we carefully identified. At all those places the function F either has “peak”

(local maxima) or somehow tends to grow. Since our main goal is minimization

of F, i.e., finding its (local) minima, those bad places should not really harm the

minimization procedure. Standard minimization algorithms, such as Gauss-Newton

and Levenberg-Marquardt, can only go where the objective function decreases, so they

are bound to move away from bad places. Since the parameter space is compact, they

cannot move off toward infinity (i.e., diverge). Therefore they are bound to converge

to a local minimum of F.

61

Ideally, the minimization procedures should converge to the global minimum of F

and not be distracted by its local minima. Here we investigate the local minima of F

and assess their potentially distractive role.

4.4.1. No Local Minima for n = 5. In the simplest case of n = 5 data points

there is always an interpolating conic, i.e., a conic passing through all the five points.

If the latter are in general linear position (which means that no three points are

collinear), the interpolating conic is unique and non-degenerate (i.e., it is an ellipse,

a parabola, or a hyperbola); see (ref).

Thus if n = 5, the objective function takes its global minimum F = 0. And, quite

surprisingly, it has “no local minima”! This is a mathematical fact that we proved in

section 2.3.2. Since there are no local minima, we proceed to n > 5.

4.4.2. Numerical Tests for Local Minima: Data Points without Noise.

For n > 5 data points, local minima are possible. They occur even if the points are

observed without noise, i.e., if all the n points lie on a conic. We have investigated

local minima for data points placed on an ellipse. And we note that local minima of

the objective function F can only be found numerically. We have run an extensive

computer experiment to locate all the local minima of F.

First let me describe our numerical tests whose results were summarized in next

section. Our task is to find all local minima of the objective function F for a given

set of n > 5 points. We employ the Levenberge-Marquard minimization algorithm to

find minima of the objective function F. Given a set of n > 5 points, we generate

1000 randomly chosen initial guesses (see below) and then we use each one to initialize

the Levenberge-Marquard procedure. We run the latter until it converges to a limit

conic. Thus we get 1000 limit conics, which can be potentially local minima of the

objective function.

For each computed limit conic we verify that it is indeed a local minimum of

F by checking that its gradient vanishes (i.e., ∇F = 0) and its Hessian is positive

62

semidefinite (i.e., H = ∇∇F ≥ 0). The limit conics that fail to satisfy these conditions

are discarded. The formulas for ∇F and ∇∇F are given in section [Appendix?].

Then we eliminated repeating limit conics. This is a delicate step as the accuracy

of the computed local minimum depends on the eigenvalues of the Hessian matrix:

small (positive) eigenvalues indicate that the local minimum is at the bottom of a

valley, where the precision of locating the local minimum is poor. We applied the

following rule. If A and A′ are the parameter vectors corresponding to two local

minima and H and H′ are the respective Hessian matrices, then those local minima

are treated as coincident (repeating) if (A−A′)TH(A−A′) < ε and the same holds

for H′ (here ε is a small threshold).

In the end we get a list of distinct local minima of F. The one with the smallest

value of F is its global minimum, all the others are proper local minima.

The Choice of Initial Guesses. Initial guesses are generated as follows. Let

R = [x1, x2] × [y1, y2] ∈ R2 be a rectangle that contains all our n > 5 points (the

construction of R is described below). We generate 1000 random five-point sets

{Q1, . . . Q5} with uniform distribution in the rectangle R. (In other words, we select

five x-coordinates in the interval [x1, x2] randomly and five y-coordinates in the in-

terval [y1, y2] randomly and combine them to get five pairs of xy coordinates that we

treat as five points in R.) For each five-point set {Q1, . . . Q5} in R we find the unique

conic that interpolates those five points by solving the corresponding system of linear

equations. Then we use that conic as an initial guess.

Rational for our choice of initial guesses and construction of the rectangle R are

the same as described in section 2.4.1.

4.4.3. Local Minima for n > 5 Points without Noise. In our tests we used

the ellipse with semiaxes a = 2 and b = 1 and placed n points (equally spaced) along

the entire ellipse or along a certain arc of the ellipse. This is done by using an internal

angular parameter ϕ ∈ [−π, π]. We choose ϕini and ϕend (representing the endpoints

63

of the arc) and set

xi = a cos ϕi, yi = b sin ϕi, ϕi = ϕini + (ϕend − ϕini)((i− 0.5)/n), 1 ≤ i ≤ n.

We observed that when the data points are placed along the entire ellipse, i.e., ϕini =

−π and ϕend = π, the objective function had no local minima. The same is true when

the data points are placed along the right half of the ellipse, i.e., ϕini = −π/2 and

ϕend = π/2. But when the data points are placed along the upper half of the ellipse,

i.e., ϕini = 0 and ϕend = π, the objective function does have local minima, see below.

Examples of Local Minima: Upper Half of Ellipse, n = 6. The figure below

shows n = 6 data points placed along the upper half of the ellipse x4/4 + y2 = 1.

The global minimum of F is achieved by the interpolating ellipse (red), and two local

minima of F correspond to two hyperbolas (blue and green). The first column of the

numerical output gives the values of F at all these three minima. The two hyperbolas

are obviously symmetric to each other with respect to the y axis, this is why F takes

the same value at each. The second column (PER) gives the percentages of random

initial guesses from which the minimization routine converged to each minimum.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

0.0000 0.9630
0.1152 0.0200

 F PER

0.1152 0.0170

Figure 4.4: Examples of local minima when n = 6 points are placed along upper

half of an ellipse

64

Note that from an overwhelming majority (96%) of randomly generated initial

conics the minimization procedure converged to the global minimum. We explain

this phenomenon below.

Examples of Local Minima: Upper Half of Ellipse, n = 8. For n = 8 points

placed along the upper half of the same ellipse the function F has one global minimum

(the interpolating ellipse) and seven (!) local minima, which include two ellipses and

five hyperbolas. They are all shown in the next set of figures. Each figure presents the

interpolating ellipse (red) with the data points on it and some conics corresponding

to local minima.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5 F PER
0.0000 0.9420
0.1278 0.0173
0.1278 0.0200

Figure 4.5: Examples of local minima when n = 8 points are placed along upper

half of an ellipse

We note again that from an overwhelming majority (94%) of randomly generated

initial conics the minimization procedure converged to the global minimum. Only 6%

of random initial conics fell into the vicinities of local minima.

Examples of Local Minima: Quarter of the Ellipse, n = 6. In the last

experiment, we placed n = 6 data points along a quarter of the same ellipse (we

65

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

0.0000 0.9420
 F PER

0.1443 0.0067

Figure 4.6: Examples of local minima when n = 8 points are placed along upper

half of an ellipse

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

 F PER
0.0000 0.9420
0.1895 0.0020
0.1895 0.0007

Figure 4.7: Examples of local minima when n = 8 points are placed along upper

half of an ellipse

chose ϕini = 0 and ϕend = π/2). In this example we have one global minimum (the

interpolating ellipse, red) and one local minimum (the blue hyperbola).

66

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

2
 F PER

0.0000 0.9420
0.1895 0.0020
0.1895 0.0007

Figure 4.8: Examples of local minima when n = 8 points are placed along upper

half of an ellipse

0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5 F PER
0.0000 0.9940
0.0127 0.0060

Figure 4.9: Examples of local minima when n = 6 points are placed along quarter

of an ellipse

Again, from an overwhelming majority (99%) of randomly generated initial conics

the minimization procedure converged to the global minimum.

67

4.4.4. Local Minima for Data with Gaussian Noise. We have also run the

above tests for data points with added Gaussian noise (at levels σ = 0.05 and σ = 0.1).

We observed quite similar picture: one global minimum and several (up to 8) local

minima. The largest number of local minima in a single data set we found was 8.

The global minimum is usually an ellipse (close to the ”true” ellipse on which the

original, unperturbed points are placed) when the noise is small. For larger noise

the global minimum is often a branch of a hyperbola that is close to the elliptic arc

containing the original points. See section 2.4.1 for percentages of samples for which

the global minimum is a hyperbola.

On the contrary, the local minima are mostly hyperbolas whose both branches

run through the corridor containing the perturbed points. Less frequently local min-

ima are long narrow ellipses whose both halves run through the corridor containing

perturbed points. See the figure labeled ”Corridor diagram” below.

Figure 4.10: Corridor diagram

Note that Grey corridor contains noisy points scattered around red elliptic arc .

Two branches of blue hyperbola and two branches of long narrow green ellipse run

through the corridor.

4.4.5. Numerical Tests for Local Minima: Data Points with Noise or

Random Data Points. In last Section, we have investigated local minima for data

points without noise. Here we continue to present more detailed numerical results for

the local minima of F when data points are generated along an ellipse with random

Gaussian noise or randomly with a uniform distribution in a unit square.

68

In typical applications, the points are usually sampled from a predefined curve

with some noises. So we investigated local minima for data points placed on an ellipse

with Gaussian noise. The general description of our computer experiment is given in

section 4.4.2. In this particular test we used the ellipse with semiaxes

a = 2 and b = 1

and placed n points (equally spaced) with a random Gaussian noise at level

σ = 0.05, σ = 0.1

along the entire ellipse or along a certain arc of the ellipse. In other words, 0.05 or 0.1

multiplied by a normally distributed random number t ∈ N[0, 1] were added to the

x and y coordinate of true data points on ellipse. Note that we want to investigate

the number of local minima and their types (ellipses vs. hyperbolas). So for each

sample, starting at 1000 different, randomly selected initial guesses, every point of

convergence was recorded as a minimum (local or global) of F. Thus we counted

the number of local minima for each sample. Then the experiment was repeated for

2000 samples of n points. Out of 2000 different samples, the percentages of samples

having 0 , 1 , 2 or more local minima were recorded. In order to see the types of local

minima, the results will be presented in tables of the following form:

Percentage(%) 0 1 ≥ 2

0 p00 p01 p02

1 p10 p11 p12

≥ 2 p20 p21 p22

Where p00 represents percentage of samples having only global minimum and no

local minimum, p01 represents percentage of samples having 0 ellipse local minimum

and 1 hyperbola local minimum, p10 represents percentage of samples having 1 ellipse

local minimum and 0 hyperbola local minimum, p02 represents percentage of samples

having 0 ellipse local minimum and 2 or more hyperbola local minima and etc.

69

Upper Half of Ellipse, n = 6:

Percentage(%) 0 1 ≥ 2

0 0 8.05 91.90

1 0.05 0 0

≥ 2 0 0 0

Table 4.3: Upper half of ellipse, n = 6, σ = 0.05

Percentage(%) 0 1 ≥ 2

0 0.55 29.35 61.00

1 4.15 4.45 0.15

≥ 2 0.25 0.10 0

Table 4.4: Upper half of ellipse, n = 6, σ = 0.1

We observed that almost all samples have one global minimum and one or two

local minima. More precisely, other than the global minimum (mostly an ellipse), the

objective function tends to have one or two more hyperbola local minima for over

90% of samples.

Upper Half of Ellipse, n = 8:

Percentage(%) 0 1 ≥ 2

0 0 0.60 20.40

1 0 1.40 52.00

≥ 2 0 1.70 23.90

Table 4.5: Upper half of ellipse, n = 8, σ = 0.05

70

Percentage(%) 0 1 ≥ 2

0 0 0.70 30.70

1 0 3.00 46.40

≥ 2 0.90 1.80 16.50

Table 4.6: Upper half of ellipse, n = 8, σ = 0.1

For n = 8 points placed along the upper half of the same ellipse with random

Gaussian noise, the function F for most data sets has one global minimum and several

local minima. The largest number of local minima in a single data set we found was

8.

Right Half of Ellipse, n = 6

Percentage(%) 0 1 ≥ 2

0 100.00 0 0

1 0 0 0

≥ 2 0 0 0

Table 4.7: Right half of ellipse, n = 6, σ = 0.05

Percentage(%) 0 1 ≥ 2

0 96.95 3.05 0

1 0 0 0

≥ 2 0 0 0

Table 4.8: Right half of ellipse, n = 6, σ = 0.1

We found that when n = 6 data points are placed along the right half of the ellipse

with random Gaussian noise, the objective function has no local minimum for almost

71

all samples. One hyperbola local minimum occurs only for 3% of samples when a bit

large noises added to the true points. It demonstrates the fact that when data points

are sampled along an elliptic arc with high curvature, the objective function tends to

have one global minimum and no local minima.

Right Half of Ellipse, n = 8:

Percentage(%) 0 1 ≥ 2

0 99.30 0.70 0

1 0 0 0

≥ 2 0 0 0

Table 4.9: Right half of ellipse, n = 8, σ = 0.05

Percentage(%) 0 1 ≥ 2

0 86.40 13.10 0.40

1 0.10 0 0

≥ 2 0 0 0

Table 4.10: Right half of ellipse, n = 8, σ = 0.1

Similarly, the function F for over 99% of the data sets when σ = 0.05, 86% of the

data sets when σ = 0.1 has one global minimum and no local minima because points

are sampled along an elliptic arc with high curvature.

Quarter of Ellipse, n = 6:

In this experiment, we chose the upper right quarter of the same ellipse and placed

n = 6 points along it with random Gaussian noise. Note the objective function of

majority of samples has one global minimum and at least one local minimum.

Quarter of Ellipse, n = 8:

72

Percentage(%) 0 1 ≥ 2

0 4.60 54.50 31.80

1 6.50 2.00 0.60

≥ 2 0 0 0

Table 4.11: Quarter of ellipse, n = 6, σ = 0.05

Percentage(%) 0 1 ≥ 2

0 14.40 47.20 19.10

1 10.10 7.60 1.20

≥ 2 0.30 0.10 0

Table 4.12: Quarter of ellipse, n = 6, σ = 0.1

Percentage(%) 0 1 ≥ 2

0 0 0.90 42.20

1 0.40 3.20 39.90

≥ 2 0.50 2.40 10.50

Table 4.13: Quarter of ellipse, n = 8, σ = 0.05

Percentage(%) 0 1 ≥ 2

0 0.90 6.60 41.40

1 2.00 6.40 30.00

≥ 2 0.20 2.80 9.70

Table 4.14: Quarter of ellipse, n = 8, σ = 0.1

73

When the number of data points increases to 8, the global minimum of F is usually

achieved by a hyperbola (see section 2.4.1) and the objective function tends to have

more local minima. Note that in this experiment, the objective function for most

data sets has one global minimum and several (up to 8) local minima.

Local Minima for Data with a Uniform Distribution. Now we move on to

the complete random samples: generating data points with a uniform distribution

in a square. In this experiment, n points were generated randomly with a uniform

distribution in the unit square [0, 1]× [0, 1]. Again, we want to investigate the number

of local minima and their types (ellipses vs. hyperbolas).

Percentage(%) 0 1 ≥ 2

0 59.60 28.25 4.15

1 4.90 2.40 0.35

≥ 2 0.20 0.10 0.05

Table 4.15: Local minima for data points with a uniform distribution, n = 6

Percentage(%) 0 1 ≥ 2

0 41.85 29.30 13.05

1 6.95 5.20 2.35

≥ 2 0.45 0.60 0.25

Table 4.16: Local minima for data points with a uniform distribution, n = 7

4.4.6. Summary. When data points are sampled along the entire ellipse, or

an elliptic arc with high curvature, the objective function tends to have one global

minimum and no local minima.

When data points are sampled along an elliptic arc with low curvature, they

appear in a corridor around the arc like the one shown in the “Corridor diagram”. In

74

Percentage(%) 0 1 ≥ 2

0 33.15 25.00 20.35

1 6.95 5.05 5.75

≥ 2 1.25 1.20 1.30

Table 4.17: Local minima for data points with a uniform distribution, n = 8

Percentage(%) 0 1 ≥ 2

0 27.65 21.65 24.40

1 6.10 7.10 6.65

≥ 2 1.65 1.85 2.95

Table 4.18: Local minima for data points with a uniform distribution, n = 9

Percentage(%) 0 1 ≥ 2

0 24.95 18.95 24.15

1 7.75 6.35 9.55

≥ 2 2.05 2.05 4.20

Table 4.19: Local minima for data points with a uniform distribution, n = 10

that case the desirable fit is given by an elliptic arc or, occasionally, by a hyperbolic

arc stretching through the corridor. At the same time there might be distractive

fits (nuisance fits) made by hyperbolas or long narrow ellipses whose both branches

run through the corridor; see again the “Corridor diagram”. While those undesirable

fits may correspond to local minima of the objective function F, those minima tend

to be small and narrow, so that the chance of falling into one of them is low. On

the contrary, the desirable fit tends to correspond to a wide minimum of F, which

75

is likely attract the minimization procedures starting even from a randomly chosen

initial conic.

Part II

CHAPTER 5

Projection onto Quadratic Curves

Geometric fitting, also known as best fitting, is based on minimizing the geometric

distances from the given points to the fitted feature. Thus it is essential for us to know

how to locate the nearest point on the conics for a given point so that we can mea-

sure the distances between them. In practice, various heuristic projection algorithms

are employed [7, 6, 5, 4, 64] that are relatively fast, but their convergence is not

guaranteed (and occasionally they do fail). On the other hand, certain theoretically

reliable methods were proposed [9, 61], but most of them are overly complicated and

too slow for practical use. In this chapter, we will discuss several projection methods

and introduce a remarkable fast and totally reliable algorithm which was first found

by D. Eberly in 2004 [26, Section 14.13.1] and then adapted and extended by us.

5.1. Introduction

It is sufficient to solve this problem when ellipses, hyperbolas and parabolas are in

the standard position, in other words, when they are centered at origin and are axis-

aligned with the major axis on the x-axis. All the other ellipses/hyperbolas/parabolas

can be rotated and translated to such system and thus the distances can be measured.

The coordinate transformation is very common and trivial in conics fitting. The

procedure is described as below: Let (Xc, Yc) be the center of ellipse and hyperbola

(or the vertex of parabola), α be the pose angle. If (X,Y) is the original given point,

(x, y) is the point after transformation, then


x

y


 = R ·


X −Xc

Y − Yc




77

78

where R is the rotation matrix, i.e.,

R =


 c s

−s c




with c = cos(α), s = sin(α).

Reversibly, 
X

Y


 = R−1 ·


x

y


 +


Xc

Yc




5.2. Eberly’s Method

A remarkable approach to projecting points onto ellipses was found by D. Eberly

in 2004 [26, Section 14.13.1]. Not only it produces the desired projection faster

than anything known previously (including heuristic schemes), but it comes with a

mathematical proof of convergence to the correct projection point in all cases, i.e., it

is completely reliable. Below we describe Eberly’s method for ellipses and then adapt

it to other quadratic curves. In each case we provide a proof of convergence. We

consider such proofs as an important asset of the proposed methods.

5.2.1. Ellipse. Let (u, v) be the given point. Let the ellipse in standard position

be

(5.1)
x2

a2
+

y2

b2
= 1.

with a ≥ b > 0.

If the closest point on the ellipse is (x, y), then (u− x, v − y) must be normal to

the ellipse. An outward pointing ellipse normal is

(5.2)
1

2
∇(

x2

a2
+

y2

b2
− 1) = (

x

a2
,

y

b2
)

Thus

(5.3) (u− x, v − y) = t(
x

a2
,

y

b2
)

79

must be satisfied for some value t. Then (5.1) and (5.3) will be used to determine the

value of t.

Due to the obvious symmetry, it is enough to work in the first quadrant u > 0, v >

0; then the projection point (x, y) will also be in the first quadrant, i.e., x > 0, y > 0.

(Other points can be reflected to the first quadrant about the axes, and then the

projection point can be reflected back.)

Solving equation (5.3) for x and y, we obtain

(5.4) x =
a2u

t + a2
and y =

b2v

t + b2

Fist let us consider the general case when u > 0, v > 0 (the degenerate cases when

u = 0 or v = 0 are fairly simple and can be handled separately). Based on the fact

that the closest point (x, y) on ellipse should also lie in the same quadrant as the

given point, we have x > 0, y > 0, thus yielding t > −a2, t > −b2. Assuming a ≥ b,

the final constraint for t is t > −b2. Substituting (5.4) into (5.1), we obtain a function

(5.5) F (t) = (
au

t + a2
)2 + (

bv

t + b2
)2 − 1 = 0

whose root we need to find (because (x, y) must lie on the ellipse). Once we solve

equation (5.5) for t, we can compute the projection point (x, y) by (5.4).

If we differentiate this rational function of t,the first derivative of F is

(5.6) F ′(t) =
−2a2u2

(t + a2)3
+
−2b2v2

(t + b2)3

and the second derivative is

(5.7) F ′′(t) =
6a2u2

(t + a2)4
+

6b2v2

(t + b2)4

For any point (u, v) with u > 0, v > 0, we can observe that F ′(t) < 0 and F ′′(t) > 0

for t > −b2, showing that F (t) is a monotonically decreasing function and concave

for t ∈ (−b2,∞). Also note that

lim
t→−b2+

F (t) = +∞ and lim
t→∞

F (t) = −1.

80

It starts with positive values and then becomes negative and goes to −1. See Fig. 5.1.

It is clear that this function has a unique root on the specified domain.

Thus standard Newton’s method starting at any point t0 where F (t0) > 0 will

converge to the unique root of F . Given an initial guess t0,

(5.8) tn+1 = tn − F (tn)

F ′(tn)
, n ≥ 0

Choosing a proper initial guess for which the method converges is important, Eberly

suggests to start with t0 = bv − b2, because F (t0) > 0 is guaranteed by (5.5). We

found that it is more beneficial to start with

(5.9) t0 = max{au− a2, bv − b2}.

Then Newton’s method converges in 4-6 iterations in all practical cases and finds

the root to within 10-12 significant digits. This is, on average, 2-3 times faster than

solving equation of degree four or using general heuristics [7, 4]. The MATLAB code

for this method is posted on our web page [32].

t

F(t)

-1

-b
2

Figure 5.1: A typical graph of F (t) for t > −b2 and the progress of Newton’s

iterations toward the root.

81

5.2.2. Hyperbola. Now let us project a point (u, v) onto a hyperbola. Again,

the latter can be defined in its canonical coordinates:

(5.10)
x2

a2
− y2

b2
= 1

The orthogonal condition is

(5.11) (u− x, v − y) = t(
x

a2
,− y

b2
)

for some value of t. Due to symmetry, we restrict our method to u > 0 and v > 0.

Then the closest point (x, y) on hyperbola must also be in the first quadrant, thus

making t ∈ (−a2, b2). Equation (5.11) implies that

(5.12) x =
a2u

t + a2
and y =

b2v

−t + b2
.

Substituting (5.12) into (5.10) we obtain a function

(5.13) F (t) = (
au

t + a2
)2 − (

bv

−t + b2
)2 − 1 = 0,

whose root we need to find. Note that

lim
t→−a2

F (t) = +∞ and lim
t→b2

F (t) = −∞

Taking the derivatives of F we see that

(5.14) F ′(t) =
−2a2u2

(t + a2)3
+

−2b2v2

(−t + b2)3

Hence F ′(t) < 0 for all t ∈ (−a2, b2). Next,

(5.15) F ′′(t) =
6a2u2

(t + a2)4
− 6b2v2

(−t + b2)4

Now F ′′ decreases from +∞ (near −a2) to −∞ (near b2), and it is monotonic

(because F ′′′ < 0, as one can easily verify). Thus F has a unique inflection point, t∗,

within the interval (−a2, b2). See Fig. 5.2, where two possible cases are shown: (a)

the inflection point lies above the x axis, i.e., F (t∗) > 0 and (b) the inflection point

lies below the x axis.

82

t

F(t)

t
*

t

F(t)

t
*

(a) (b)

Figure 5.2: Two possible appearances of F (t) on the interval −a2 < t < −b2. Arrows

show the progress of Newton’s iterations toward the root.

The inflection point is found by solving F ′′ = 0, hence

t∗ =
b2
√

au− a2
√

bv√
au +

√
bv

.

Now by computing F (t∗) we can determine which case, (a) or (b), we have at hand.

Standard Newton’s method will converge to the root of F (t) = 0, but the starting

point t0 must be selected wisely. Let

F0 =
u2

a2
− v2

b2
− 1,

then we choose our initial guesses according to the following chart 5.1:

t0 F0 > 0 F0 < 0

F (t∗) > 0 min ((a2+b2)bv
au+bv

, a2 + b2 − au) a2

F (t∗) < 0 b2 min ((a2+b2)au

au+
√

2bv
, au√

2
)

Table 5.1: Initial choices for projecting points onto a hyperbola

This algorithm is guaranteed to converge, according to our analysis. It converges

in 6-8 iterations per point, on average and finds the root to within 10-12 significant

digits. The MATLAB code for this method is posted on our web page [32].

83

5.2.3. Parabola. Let the parabola be

(5.16) y2 = 2px, (p > 0)

and (u, v) be the given point, (x, y) be the nearest point. The normal to the parabola

is

(5.17)
1

2
∇(y2 − 2px) = (−p, y)

Then the orthogonal condition follows:

(5.18) (u− x, v − y) = t(−p, y)

Solving for x and y, we get

(5.19) x = u + tp and y =
v

t + 1

For parabola, we may restrict our attention to v > 0 because it is symmetric about

x-axis. So the contacting point (x, y) should also lie in the first two quadrants, in

other words, y has to be greater than 0. Since y > 0, we have constraint t > −1.

Substituting (5.19) into (5.16), we obtain a function

(5.20) F (t) = (
v

t + 1
)2 − 2p(u + tp)− 1 = 0,

whose root we need to find. Differentiating F (t), the first derivative is

(5.21) F ′(t) =
−2v2

(t + 1)3
− 2p2

and the second derivative is

(5.22) F ′′(t) =
6v2

(t + 1)4

Note that

lim
t→−1

F (t) = +∞ and lim
t→∞

F (t) = −∞

Thus on the interval (−1,∞) we have F ′ < 0 and F ′′ > 0, i.e., the function F is

monotonically decreasing and concave. Now standard Newton’s method starting at

84

any point t0 where F (t0) > 0 will converge to the unique root of F . Initial guesses

can be chosen as follows:

• if u ≤ p, then t0 = (v√
2p

)
2
3 ;

• if u > p, then t0 = min (v

2
√

(u−p)p
, (v

2p
)

2
3);

Then Newton’s method converges in 6-8 iterations on average and finds the root to

within 10-12 significant digits. The MATLAB code for this method is posted on our

web page [32].

5.3. Root Finding Method

In this section, we briefly describe the most straightforward method for finding

the projections. It is based on finding the roots of a polynomial of degree four. This

method does not involve any iteration, however, it is quite impractical and virtually

never used since solving cubic or quartic equation is numerically unstable and time-

consuming.

5.3.1. Ellipse. An ellipse can be uniquely described by 5 parameters, the center

coordinate Xc, Yc, axis lengths a, b (a ≥ b), and pose angle α(−π/2 < α ≤ π/2).

After rotating and translating, the 3 of 5 parameters (Xc, Yc, α) disappear and the

ellipse will be described only with axis lengths a, b as below (standard position),

(5.23)
x2

a2
+

y2

b2
= 1.

Let (u, v) be a given point in the canonical system, (x, y) be the closest point on the

ellipse, then the tangent line at (x, y) and the connecting line of two points must be

perpendicular to each other:

(5.24)
dy

dx
· v − y

u− x
= −1

Rewrite (5.23) and (5.24),we have:

(5.25) f1 = a2y2 + b2x2 − a2b2 = 0

(5.26) f2 = b2x(v − y)− a2y(u− x) = 0

85

The closest point (x, y) on the ellipse must simultaneously satisfy equation (5.25) and

(5.26). From equation(5.26), we can express y in terms of x and then replace y by

that expression in equation (5.25). Thus we have combined two equations into one

quartic equation:

(5.27) Ax4 + Bx3 + Cx2 + Dx + E = 0

where

A = (a2 − b2)2

B = −2a2u(a2 − b2)

C = a2b2v2 + a4u2 − a2(a2 − b2)2

D = 2a4u(a2 − b2)

E = −a6u2

This quartic equation can be solved using a method discovered by Lodovico Ferrari in

1540’s. Then one solution (x, y) which has the shortest distance among the maximum

4 real solutions will be the desired closest point on the ellipse.

5.3.2. Hyperbola. A hyperbola in standard position can be described as below:

(5.28)
x2

a2
− y2

b2
= 1.

The only difference compared with an ellipse in standard position is the sign of b2.

Thus, we can simply modify the same method into hyperbola case. What we have to

do is change the sign of b2 in all equations from (5.23) to (5.27) and also allow a to

be smaller than b. That is,

(5.29) f3 = a2y2 − b2x2 + a2b2 = 0

(5.30) f4 = −b2x(v − y)− a2y(u− x) = 0

(5.31) Ax4 + Bx3 + Cx2 + Dx + E = 0

86

where

A = (a2 + b2)2

B = −2a2u(a2 + b2)

C = −a2b2v2 + a4u2 − a2(a2 + b2)2

D = 2a4u(a2 + b2)

E = −a6u2

Similarly, we can solve this quartic equation by using the same method and choose

the solution which makes the distance between the given point and itself the shortest.

5.3.3. Parabola. A parabola can be uniquely described with 4 parameters, the

vertex coordinates Xc, Yc, focus distance p(> 0) from directrix, and pose angle

α(−π < α ≤ π). After coordinate transformation, a parabola in canonical system

can be described with only one parameter, the focus distance p, as below:

(5.32) y2 = 2px

Based on the fact that the tangent line at the nearest point(x, y) on parabola should

be perpendicular to the connecting line between (x, y)and the given point (u, v), we

have the following equation:

(5.33)
p

y
· v − y

u− x
= −1

Then, as usual, these two equations may be written as:

(5.34) f5 = y2 − 2px = 0

(5.35) f6 = y(u− x) + p(v − y) = 0

In equation (5.35), we solve for x:

(5.36) x = u +
p(v − y)

y

87

Replacing (5.36) in equation (5.34) yields

(5.37) y3 + 2p(p− u)y − 2p2v = 0

Instead of getting a quartic equation as for ellipse and hyperbola, we obtain a cubic

equation for parabola which is even easier to find roots. Among the maximum 3 real

roots, the solution with the shortest distance from the given point will be chosen.

5.4. Ahn’s Method

Because of the impractical reason of root finding method, Sung Joon Ahn proposed

a method in his paper [7]. We include Ahn’s method here.

5.4.1. Ellipse. The first few steps are the same as root finding method. Once

(5.25) and (5.26) were obtained, they were solved simultaneously by using generalized

Newton method as following:

(5.38) f1 =
1

2
(a2y2 + b2x2 − a2b2) = 0

(5.39) f2 = b2x(v − y)− a2y(u− x) = 0

Q =




∂f1

∂x
∂f1

∂y

∂f2

∂x
∂f2

∂y




=


 b2x a2y

(a2 − b2)y + b2v (a2 − b2)x− a2u


(5.40)

(5.41) Qk∆x = −f(xk)

(5.42) xk+1 = xk + ∆x

In this iterative process, Ahn supplies the initial value x0 to start with. Since the

nearest point on the ellipse should lie in the same quadrant as the given point, x0 is

given below:

(5.43) x0 =
1

2
(xk1 + xk2)

88

where

(5.44) xk1 =


u

v


 ab√

b2u2 + a2v2

and

(5.45) xk2 =








u

sign(v) b
a

√
a2 − u2


 if|u| < a,




sign(u)a

0


 if|u| ≥ a.

In detail, the connecting line of (u, v) and (0, 0) intersects the ellipse, the intersection

point is xk1. If u < a, project the given point (u, v) onto the x-axis, the projection

line intersects the x-axis with xk2; If u ≥ a, choose (sign(u)a, 0) as xk2. Then the

initial value is found by choosing the midpoint of xk1 and xk2.

Remark: The Jacobian matrix Q is singular if the given point (u, v) lies at the ellipse

center and if the a and b are equal, which indicates that there is no unique nearest

point for the circle center on a circle.

5.4.2. Hyperbola. As we have seen before, the standard form for hyperbola is

similar to ellipse in standard position, except the sign of b2. So Ahn made a simple

modification to his method for hyperbola. First, a can be smaller than b. Then,

replace each b2 in equations (5.23) - (5.26) and (5.40) by −b2. Last, give the initial

89

values for the nearest points

(5.46) x0 =








sign(u)a

0


 if|u| ≤ a,




u

sign(v) b
a

√
u2 − a2


 if|u| > a and a ≥ b,




sign(u)a
b

√
v2 + b2

v


 if|u| > a and a < b

Here, x0 is chosen by intersecting the projection line onto x-axis with the hyperbola

when u > a. And if u ≤ a, the vertex point in the same quadrant (sign(u)a, 0) is

simply picked.

5.4.3. Parabola. In a similar way, Ahn derived the orthogonal conditions as

(5.34) and (5.35) for parabola.

(5.47) f5 =
1

2
(y2 − 2px) = 0

(5.48) f6 = y(u− x) + p(v − y) = 0

Then the nearest points are found by using generalized Newton method with Jacobian

matrix

Q =




∂f1

∂x
∂f1

∂y

∂f2

∂x
∂f2

∂y




=


−p y

−y u− x− p


(5.49)

90

and the initial starting value for the nearest point is given below:

(5.50) x0 =








0

0


 if|u| < 0,




u

sign(v)
√

2pu


 if|u| ≥ 0.

5.5. Comparison

Let i be the average number of the iterations that each method takes to converge,

per point. Then the comparison of three projection methods are as follows:

Ellipse Iters Flops Time

Eberly’s method 4-5 35 + 16i ≈ 107 fastest

Root method n/a 165 *

Ahn’s method 4.3-5.3 (39 + 49i) ≈ 274 *

Table 5.2: Comparison of three projection methods for ellipse.

From Table. 5.2, 5.3 and 5.4, we can see that our projection method (extended

from Eberly’s method to all quadratic curves) takes the least number of iterations and

runs faster than Ahn’s iterative method and the non-iterative root finding method as

well.

91

Hyperbola Iters Flops Time

Eberly’s method 6-7 51 + 16i ≈ 155 fastest

Root method n/a 165 *

Ahn’s method 16-17 30 + 49i ≈ 838 *

Table 5.3: Comparison of three projection methods for hyperbola.

Parabola Iters Flops Time

Eberly’s method 4.5 39 + 15i ≈ 106 comparable

Root method n/a 100 fastest

Ahn’s method 5.3 27 + 38i ≈ 228 *

Table 5.4: Comparison of three projection methods for parabola.

CHAPTER 6

Geometric Fits: Minimization of the Objective Function

In this Chapter we discuss practical solutions to the problem of fitting implicit

curves. Let (x1, y1), . . . , (xn, yn) denote the observed points and P (x, y; Θ) = 0 be the

equation of the fitted contour, where Θ represents the vector of unknown parameters.

For example, ellipses can be defined by

(6.1)
x̆2

a2
+

y̆2

b2
− 1 = 0

in the canonical coordinates x̆, y̆, which can be related to x, y by translation and

rotation, i.e., x̆ = (x−xc) cos α+(y−yc) sin α and y̆ = −(x−xc) sin α+(y−yc) cos α;

now Θ = (xc, yc, a, b, α), where (xc, yc) is the center, a, b are the semiaxes, and α is

the angle of tilt.

Our task is to minimize geometric distances from the observed points to the fitting

curve:

(6.2) F(Θ) =
n∑

i=1

d2
i =

n∑
i=1

(xi − x′i)
2 + (yi − y′i)

2 → min .

Here di denotes the geometric distance from the observed point (xi, yi) to the fitting

contour, and (x′i, y
′
i) the (orthogonal) projection of (xi, yi) onto the contour.

6.1. Introduction

The first thorough investigation of the ellipse fitting problem was done in the

middle 1990’s by Gander, Golub, and Strebel [29]. They developed a roundabout

way of minimizing F by using auxiliary parameters ωi, i = 1, . . . , n, describing the

location of the projected points (x′i, y
′
i) on the ellipse; the latter, in the canonical

coordinates (6.1) were expressed by x̆′i = a cos ωi and y̆′i = b sin ωi. Thus the objective

92

93

function becomes

F =
n∑

i=1

(xi − xc − a cos ωi cos α− b sin ωi sin α)2

+ (yi − yc + a cos ωi sin α− b sin ωi cos α)2.

In [29], F was minimized with respect to xc, yc, a, b, α, ω1, . . . , ωn simultaneously.

This procedure avoids the calculation of di’s, but the minimization in the (n + 5)-

dimensional parameter space is predictably cumbersome and slow. So Gander et.

al. [29] concluded that the minimization of geometric distances for ellipses was a

prohibitively difficult task.

Recently Sturm and Gargallo [55] modified the above method in several ways. In

particular, they used a projective matrix that allowed them to describe conics of all

types (ellipses, hyperbolas, parabolas) with the same set of 5 parameters. Thus their

method could freely switch between types during iterations. But they still work in

an (n + 5)-dimensional parameter space, in that sense their method is similar to that

of [29].

In the late 1990s, in computer vision applications various alternative fitting schemes

were developed, where so called algebraic distances were minimized; we review them

in Appendix A. They produce ellipses that fit less accurately than those minimiz-

ing geometric distances (6.2). Some authors say that “the performance gap between

algebraic fitting and geometric fitting is wide...” (see [4, p. 12]).

In the early 2000’s another approach to the minimization of geometric distances

(6.2) emerged, due to Ahn et. al. [7, 5, 4], that turned out to be very efficient.

6.2. Implicit Fitting Method

Least squares problems are commonly solved by the Gauss-Newton (GN) method

or its Levenberg-Marquardt (LM) correction. If one minimizes a sum of squares

F(Θ) =
∑

f 2
i , then both GN and LM would use the values of fi’s and their first

derivatives with respect to Θ, which we denote by (fi)Θ.

94

Now suppose, as before, that we fit a curve defined by implicit equation P (x, y; Θ) =

0 to observed points (xi, yi). Our goal is to minimize the sum of squares (6.2). The

GN and LM methods can be applied here in two ways: we either treat F as a sum of

n squares, F =
∑

d2
i , or a sum of 2n squares, F =

∑
g2

i +
∑

h2
i , where gi = xi − x′i

and hi = yi − y′i. In the former case we will need di’s and their derivatives (di)Θ.

In the latter we need gi’s and hi’s, as well as their derivatives (gi)Θ and (hi)Θ. The

resulting algorithm is said to be distance-based if one uses di’s, or coordinate-based if

one uses gi’s and hi’s; see Ahn et al. [5, 4].

Obviously, it is enough to know the projections (x′i, y
′
i) in order to compute di’s,

gi’s, and hi’s. But their derivatives (di)Θ, (gi)Θ, (fi)Θ present a more challenging

problem. Sometimes finite differences are used to approximate these derivatives,

which reduces the accuracy of the fit. But there are surprisingly simple formulas for

these derivatives:

Proposition. Let (x, y) be a given a point and (x′, y′) denote its projection onto the

curve P (x, y; Θ) = 0 (then x′, y′ depend on Θ). Denote g = x − x′, h = y − y′, and

d2 = g2 + h2. Then we have

(6.3) gΘ =
PΘP 2

x − gPy(PxPyΘ − PyPxΘ)

Px(P 2
x + P 2

y)
,

(6.4) hΘ =
PΘP 2

y + hPx(PxPyΘ − PyPxΘ)

Py(P 2
x + P 2

y)
,

and

(6.5) dΘ =
PΘ√

P 2
x + P 2

y

,

where PΘ, Px, Py denote the first order partial derivatives of P with respect to Θ, x, y,

respectively, and PxΘ and PyΘ the corresponding second order partial derivatives; all

the derivatives are taken at the projection point (x′, y′).

Proof. Since the vector (x− x′, y − y′) is orthogonal to the curve,

(6.6) g = x− x′ = tPx and h = y − y′ = tPy

95

for some scalar t. This immediately gives

(6.7) d2 = g2 + h2 = t2(P 2
x + P 2

y).

Next we use differentiation with respect to Θ. Differentiating the identity P (x′, y′; Θ) =

0 gives

(6.8) PΘ = −Pxx
′
Θ − Pyy

′
Θ = (ggΘ + hhΘ)/t,

and differentiating the identity d2 = g2 + h2 gives

(6.9) ddΘ = ggΘ + hhΘ = tPΘ.

Now (6.5) follows from (6.9) and (6.7). Differentiation of (6.6) gives

gΘ = tΘPx + tPxΘ, hΘ = tΘPy + tPyΘ.

Eliminating tΘ from these two equations yields

(6.10) gΘPy − hΘPx = −t(PxPyΘ − PyPxΘ).

Solving (6.9) and (6.10) for gΘ and hΘ we obtain (6.3) and (6.4). ¤

The formulas (6.3)–(6.5) were essentially obtained by Ahn et al. [5, 4]. Indepen-

dently the formula (6.5) was derived in [8] (see eq. (24) there).

Practically, the calculation of the derivatives dΘ, gΘ, hΘ by (6.3)–(6.5) is easy once

the projection point (x′, y′) is located. The differentiation of P (x, y; Θ) with respect

to Θ is usually straightforward; for example, one can easily find the derivatives of

(6.1) with respect to xc, yc, a, b, α.

Alternatively, one can try to change the parametrization scheme in order to sim-

plify differentiation. For example, instead of (6.1) one can define an ellipse by equation

(6.11)
√

(x− p1)2 + (y − p2)2 +
√

(x− q1)2 + (y − q2)2 − 2a = 0

where (p1, p2) and (q1, q2) denote its foci and 2a, as before, the major axis. These

are sometimes called Kepler’s parameters of an ellipse; they have certain advantages

96

[21]. In particular, differentiation of (6.11) with respect to p1, p2, q1, q2, and a is quite

straightforward.

We note that the coordinate-based scheme using gi’s and hi’s operates with 2n

terms and involves the second order derivatives PxΘ and PyΘ. The distance-based

scheme operates only with n terms and does not involve the second order derivatives;

cf. (6.5). As a result, the coordinate-based scheme seems to be less efficient, and we

will only use the distance-based fit in what follows.

Remark. Since the distance d given must be differentiable, we have to treat it as

a signed distance - it must be positive on one side of the curve and negative on the

other. For ellipses, one can make d > 0 for points outside the ellipse and d < 0 for

points inside.

6.3. Geometric Fitting of Ellipse

In the following four sections, we derive Jacobian matrices needed for our im-

plicit fitting method, based on geometric parameters and algebraic parameters specif-

ically. Let (x, y) be a given a point and (x′, y′) denote its projection onto the ellipse

P (x, y; Θ) = 0, where Θ represents the vector of unknown parameters.

Let Θ = (xc, yc, a, b, α) be the standard geometric parameters. Ellipse can be

defined by

(6.12)

((x− xc) cos α + (y − yc) sin α)2

a2
+

(−(x− xc) sin α + (y − yc) cos α)2

b2
− 1 = 0, a > b

In other words,

P (x, y; Θ) = ((x− xc)c + (y − yc)s)
2b2 + (−(x− xc)s + (y − yc)c)

2a2 − a2b2 = 0,

where s = sin α, c = cos α. Taking the first order derivatives of P with respect to the

Θ, x, y at the projection point (x′, y′), we have

(6.13) (PΘ) = (Pxc , Pyc , Pa, Pb, Pα)

97

with

(6.14) Pxc = −(b2c2 + a2s2)(x− xc)− cs(b2 − a2)(y − yc)

(6.15) Pyc = −(b2s2 + a2c2)(y − yc)− cs(b2 − a2)(x− xc)

(6.16) Pa = (x− xc)
2s2a + (y − yc)

2c2a− 2cs(x− xc)(y − yc)a− b2a

(6.17) Pb = (x− xc)
2c2b + (y − yc)

2s2b + 2cs(x− xc)(y − yc)b− a2b

(6.18) Pα = (x−xc)
2(a2−b2)cs+(y−yc)

2(b2−a2)cs+(x−xc)(y−yc)(b
2−a2)(c2−s2)

And

(6.19) Px = −Pxc , Py = −Pyc .

As discussed in Section 6.2,

(d)Θ =
PΘ√

P 2
x + P 2

y

for each given point (x, y)

Then Jacobian matrix can be derived as

(6.20) J(Θ) = (di)Θ = ((di)xc , (di)yc , (di)a, (di)b, (di)α)

If we have n observed points, then we obtain an n by 5 Jacobian matrix. With the

Jacobian matrix (6.20), and the signed distance (6.7), we construct n linear equations.

The linear equations look like

(6.21) J(Θ)




∆xc

∆yc

∆a

∆b

∆α




=




d1

d2

...

dn




98

Now Gauss-Newton(GN), Levenberg-Marquardt (LM) or Trust Region(TR) al-

gorithm can be applied to solve these linear equations. The initial guess may be

supplied from an algebraic fit, see Appendix A.

6.4. Geometric Fitting of Hyperbola

Let Θ = (xc, yc, a, b, α) be the standard geometric parameters. Hyperbola can be

defined by

(6.22)
((x− xc) cos α + (y − yc) sin α)2

a2
− (−(x− xc) sin α + (y − yc) cos α)2

b2
−1 = 0

The only difference compared to an ellipse is the sign of b2. Thus the Jacobian

matrix we derived for ellipses only needs some simple modifications for our hyperbola

fitting algorithm. First we allow a to be smaller than b; then in equations (6.14),

(6.15), (6.16) and (6.18), we replace b2 by −b2; also, we replace b in equation (6.17)

by −b.

6.5. Geometric Fitting of Parabola

Let Θ = (xc, yc, p, α) be the standard geometric parameters. Parabola can be

defined by

(6.23) (−(x− xc) sin α + (y − yc) cos α)2 = 2p((x− xc) cos α + (y − yc) sin α),

where p is the focus distance to the directrix. Thus,

P (x, y; Θ) = (−(x− xc)s + (y − yc)c)
2 − 2p((x− xc)c + (y − yc)s) = 0,

where s = sin α, c = cos α. Taking the first order derivatives of P with respect to

Θ, x, y at the projection point (x′, y′), we have

(6.24) (PΘ) = (Pxc , Pyc , Pp, Pα)

with

(6.25) Pxc = −2s2(x− xc) + 2cs(y − yc) + 2pc

99

(6.26) Pyc = −2c2(y − yc) + 2cs(x− xc) + 2ps

(6.27) Pp = −2c(x− xc)− 2s(y − yc)

(6.28)

Pα = 2sc(x−xc)
2−2sc(y−yc)

2−2(−s2+c2)(x−xc)(y−yc)+2ps(x−xc)−2pc(y−yc)

And

(6.29) Px = −Pxc , Py = −Pyc

Now we can write out

(d)Θ =
PΘ√

P 2
x + P 2

y

for each given point (x, y)

After obtaining an n by 4 Jacobian matrix for the n given points, the Gauss-Newton(GN),

Levenberg-Marquardt (LM) or Trust Region(TR) algorithm is applied for the itera-

tive parabola fitting.

6.6. Geometric Fitting of General Quadratic Curves

In sections 6.3, 6.4 and 6.5, we discussed our implicit fit based on geometric

parameters. When using geometric parameters, we can only fit ellipse, hyperbola

or parabola separately. In this section, we will describe our implicit fit based on

algebraic parameters. Using algebraic parameters, our algorithm is then not specific

to any conic type. It can easily switch between ellipse and hyperbola, even when the

initial guess is a different type.

Let (x, y) be a given point and (x′, y′) denote its projection onto the quadratic

curve P (x, y; Θ) = 0, where Θ = (A,B,C,D,E, F) is the vector of algebraic param-

eters. Then any quadratic curve(conic) can be uniquely defined by

P (x, y) = Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0

100

up to a scale factor, as discussed in 3.2. Differentiating the identity P (x, y; Θ) = 0

gives

(PΘ) = (PA, PB, PC , PD, PE, PF)(6.30)

= (x2, 2xy, y2, 2x, 2y, 1)(6.31)

And

Px = 2Ax + 2By + 2D, Py = 2Bx + 2Cy + 2E.

Thus the derivation of Jacobian matrix is quite straightforward. Keep in mind that

all the derivatives are taken at the projection points.

6.7. Benchmark Example

Once we have the Jacobian matrix, the minimization problem (6.2) can be solved

by the Gauss-Newton(GN), Levenberg-Marquardt (LM) or Trust Region(TR) algo-

rithm. The rate of converges of these algorithms is nearly quadratic provided one has

a good initial guess (which can be found, for example, by a non-iterative algebraic

fit, such as the Taubin fit, see Appendix A).

Ahn et al. have applied the above minimization scheme to quadratic curves (el-

lipses, hyperbolas, and parabolas) and some quadratic surfaces (spheres, ellipsoids,

cones); see [7, 5, 4]. They compared it with several other minimization algorithms

[6, 5, 4] and concluded that this one is the fastest and most robust. We have also

tested it on quadratic curves and found that it has the following two advantages over

other schemes: (i) it converges in fewer iterations, and (ii) it finds a smaller value

of the objective function F more frequently than other methods do (i.e., the other

methods tend to end up in a local minimum or diverge more often that this method

does).

A benchmark example introduced in [29] and used later in [7] and other papers

is a simple eight point set whose coordinates are shown in Table 6.1. The best fitting

101

x 1 2 5 7 9 3 6 8

y 7 6 8 7 5 7 2 4

Table 6.1: A benchmark example with eight points [29].

ellipse is known to have center (2.6996, 3.8160), axes a = 6.5187 and b = 3.0319, and

angle of tilt θ = 0.3596; see Fig. 6.1.

−4 −2 0 2 4 6 8 10
−1

1

3

5

7

9

Figure 6.1: A sample of eight points and the best fitting ellipse.

We have run four fitting algorithms – the Gander-Golub-Strebel (GGS) method,

which simultaneously optimizes n+5 parameters, as mentioned earlier; our implicit fit

based on geometric parameters using the Levenberg-Marquardt method (LMG); our

implicit fit based on algebraic parameters using the Levenberg-Marquardt method

(LMA); our implicit fit based on algebraic parameters using the trust region method

(TRA). All methods were initialized by randomly generated ellipses (to get an initial

ellipse, we just picked 5 points randomly in the square 0 ≤ x, y ≤ 10 and used the

ellipse interpolating those 5 points). After running these fitting methods from 105

random initial guesses, we found that GGS method failed in 26% of the cases, LMG

failed to converged to the best ellipse in 11% of the cases, while LMA and TRA

always converge to the best ellipse. In those cases where all algorithms converged,

102

Failure rate Avg. iter. Cost per iter. (flops)

GGS 26% 60 1710

LMG 11% 20 1640

LMA 0% 16 1880

TRA 0% 16 4480

Table 6.2: Comparison of four ellipse fitting methods.

our implicit fit method LMG took 20 iterations, LMA and TRA took 16 iterations,

while the GGS method took 60 iterations, on the average. The cost of one iteration

is comparable for the GGS method and LMG. Table 6.2 summarizes the results.

We note that a high number of iterations here is not unusual. The authors of [29]

used a modification of the best fitting circle to initialize their GGS procedure, and

it took 71 iterations (!) to converge. A coordinate-based variant of the implicit fit

used in [7] took 19 iterations to converge (it was also initialized with the best fitting

circle). Our distance-based implicit fit converged in 16 iterations.

In our experiment we used standard geometric parameters of the ellipse,i.e., Θ =

(Xc, Yc, a, b, α) and also algebraic parameter Θ = (A,B,C,D,E, F). With Kepler’s

parameters, things get a little faster - our implicit fit (LMK) converged in 14 iter-

ations. Table 6.3 gives the number of iterations taken by our fitting methods (the

implicit method was implemented in geometric parameters (G), algebraic parameters

(A) and in Kepler parameters (K)), initialized with the modified best fitting circle (*

used in Table 6.3) as in [29] and the Taubin fit (see Appendix A).

The performance of each algorithm is illustrated by the following figures: Fig. 6.2,

Fig. 6.3 and Fig. 6.4. Fig. 6.2 shows the decreasing path of the value of the objective

function for four different methods (GGS, LMG, LMA, TRA) starting at the same

initial guess (in this case, it’s the best circle). Each dot represents one iteration. As

we can see, LMA and TRA performs similarly, which are a little better than LMG.

103

Initial ellipse

Modified Best Circle (*) Taubin fit

GGS 50 54

LMG 17 17

LMA 17 15

TRA 16 15

LMK 14 16

Table 6.3: Comparison of five ellipse fitting methods.

But these three methods all head to the global minimum very quickly. In around

5-6 iterations, they almost reach the target. On the other hand, GGS made shorter

steps in the first few iterations and moved slower than the other methods. Fig. 6.3

shows the fitted ellipses obtained by four methods after 4 iterations. Fig. 6.4 shows

the fitted ellipses obtained by four methods after 8 iterations.

0 5 10 15 20 25 30 35 40 45 50

1.4

1.6

1.8

2

2.2

2.4

2.6

Iteration

R
S

S

LMG
GGS
LMA
TRA

Figure 6.2: Performance of four algorithms.

104

−2 0 2 4 6 8

0

1

2

3

4

5

6

7

8

9

4

4

44

best ellipse
given points
initial guess
LMG
GGS
LMA
TRA

Figure 6.3: The fitted ellipses obtained by four algorithms starting at the same

initial guess after 4 iterations.

105

−2 0 2 4 6 8

0

1

2

3

4

5

6

7

8

9

8

8

88

best ellipse
given points
initial guess
LMG
GGS
LMA
TRA

Figure 6.4: The fitted ellipses obtained by four algorithms starting at the same

initial guess after 8 iterations.

Part III

CHAPTER 7

Geometric Fitting of Quadratic Surfaces

This is very recent work that is still in progress. Since many steps repeat (with

little modification) what we have done in Part I and Part II for quadratic curves, this

part presents only the sketch for the problem of fitting quadratic surfaces.

Fitting surfaces to observed 3D points is desired in various fields of science and

engineering. In this Chapter, we begin with a theoretical review of quadratic surfaces

including the parametrization scheme and classification (Sections 7.1 and 7.2). We

investigat the parameter space for quadratic surfaces - the unit sphere S9 (Sections 7.3

and 7.4). Then we discuss methods for projecting a given set of 3D points onto qua-

dratic surfaces (Section 7.5) and also the implicit fitting method in three-dimensional

case (Section 7.6).

7.1. Quadratic Equation and Parameters

Quadratic Equation. A surface defined by an algebraic equation of degree two

is called a quadric. It is given by the general equation

(7.1) Ax2 + By2 + Cz2 + 2Fyz + 2Gxz + 2Hxy + 2Px + 2Qy + 2Rz + D = 0

where A,B,C, F,G, H, P,Q, R, D are real numbers (“parameters” of the surface).

Algebraic Parameters. Since A,B,C, F,G, H, P,Q, R, D are coefficients of a

quadratic polynomial (i.e., an algebraic expression), they are often called “algebraic

parameters” of the surface.

The parameter space thus will be R10, the space of all real 10-dimensional vectors

with one exclusion (0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Every parameter vector

(A,B,C, F,G, H, P,Q, R, D)

107

108

either represents a quadratic surface (degenerate or non-degenerate) in R3 or an

imaginary surface which can be considered as an empty solution for 3D model. Since

the quadratic surfaces are uniquely defined by this parameter scheme up to a scalar

multiple, we can impose some constraints. The constraint A2 + B2 + · · · + D2 = 1

eliminates the multiplicity of representations. Then the (reduced) parameter space

will be the unit sphere in R10. We will denote it by S9.

7.2. Classification of Quadratic Surfaces

Various invariants can be used in making classification of quadratic surfaces. See

pages 210-211 in [15]. Define

e =

∣∣∣∣∣∣∣∣∣

A H G

H B F

G F C

∣∣∣∣∣∣∣∣∣
, E =

∣∣∣∣∣∣∣∣∣∣∣∣∣

A H G P

H B F Q

G F C R

P Q R D

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ3 = rank(e), ρ4 = rank(E), ∆ = det(E)

Also let k1, k2, k3 be the eigenvalues of matrix e and K1, K2, K3 be the eigenvalues of

matrix E, then define k (or K) = 1 if the sign of nonzero k (or K)’s are all the same

and k (or K) = 0 otherwise.

Table 7.1 illustrates 19 types of quadratic surfaces and their properties:

Six Nondegenerate Real Quadrics. Among all these types, there are only six

non-degenerate real quadratic surfaces:

• ellipsoid (1)

• hyperboloid of one sheet (3)

• hyperboloid of two sheets (4)

• elliptic cone (5)

• elliptic paraboloid (7)

• hyperbolic paraboloid (8)

109

ρ3 ρ4 ∆ k K D Type of Surface Code

3 4 < 0 1 real ellipsoid 1

3 4 > 0 1 imaginary ellipsoid 2

3 4 > 0 0 hyperboloid of one sheet 3

3 4 < 0 0 hyperboloid of two sheets 4

3 3 0 real elliptic cone 5

3 3 1 imaginary elliptic cone 6

2 4 < 0 1 elliptic paraboloid 7

2 4 > 0 0 hyperbolic paraboloid 8

2 3 1 0 real elliptic cylinder 9

2 3 1 1 imaginary elliptic cylinder 10

2 3 0 hyperbolic cylinder 11

1 3 parabolic cylinder 12

2 2 0 real intersecting planes 13

2 2 1 imaginary intersecting planes 14

1 2 0 real parallel planes 15

1 2 1 imaginary parallel planes 16

1 1 coincident planes 17

0 2 single plane 18

0 1 6= 0 poles 19

Table 7.1: Types of quadratic surfaces

Surfaces (9), (11), (14) are cylinders, which we consider “partially” degenerate. Sur-

faces (12), (15), (17), (18) are just linear planes which are completely degenerate.

110

7.3. Open Domains in Parameter Space

Here we begin our description of the unit sphere S9, which plays the role of the

parameter space for surfaces.

7.3.1. Main Types of Surfaces. Each parameter vector A ∈ S9 corresponds

to a surface of a certain type. We recall the main types of surfaces here, grouped

according to the dimensionality of the corresponding regions in S9.

Dimension = 9 Dimension = 8

Ellipsoid (E3D) Elliptic cone (ECo)

Imaginary ellipsoid (IE3D) Imaginary elliptic cone (IECo)

Hyperboloid of one sheet (1H3D) Elliptic paraboloid (EP3D)

Hyperboloid of two sheets (2H3D) Hyperbolic paraboloid (HP3D)

Dimension = 7 Dimension = 6, 5, 4

Elliptic cylinder (ECy) Intersecting planes (IΠ)

Imaginary elliptic cylinder (IECy) Imaginary intersecting planes (IIΠ)

Hyperbolic cylinder (HCy) Parabolic cylinder (PCy)

Parallel planes (PΠ)

Imaginary parallel planes (IPΠ)

Coincident planes (CΠ)

Single plane (SΠ)

Table 7.2: Main types of surfaces grouped according to the dimensionality of the

corresponding regions in S9

In addition, there are two poles on the sphere (“North Pole” and “South Pole”)

that are not listed in the above table:

P1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) and P−1 = (0, 0, 0, 0, 0, 0, 0, 0, 0,−1).

111

7.3.2. Partition of S9 into Domains. Accordingly, the unit sphere S9 (the

parameter space) is divided into 18 domains corresponding to the above surface types,

plus two extra points, the poles:

S9 = DE3D ∪ DIE3D ∪ D1H3D ∪ D2H3D ∪ DECo ∪ DIECo ∪ DEP3D ∪ DHP3D ∪ DECy ∪ DIECy

∪DHCy ∪ DIΠ ∪ DIIΠ ∪ DPCy ∪ DPΠ ∪ DIPΠ ∪ DCΠ ∪ DSΠ ∪ {P1} ∪ {P−1},

where the domains are coded by the names of the surface types, as shown in Table

7.2.

7.3.3. Open Domains of Dimension 9. Nine-dimensional domains DE3D, DIE3D,

D1H3D and D2H3D are the most important domains which occupy a substantial part

of the sphere S9. In fact, they are “open domains”, in the topological sense. Their

openness follows from the classification table given in section 7.1: they are all defined

by inequality constraints. Rank ρ3 = 3 and ρ4 = 4 are equivalent to the conditions

that the determinants of matrix e and E are not equal to zero. Then we have ∆ > 0

or ∆ < 0 which define inequalities too. The other value k is determined by the signs

of the nonzero eigenvalues, k = 1 if signs of the nonzero eigenvalues are the same

and k = 0 otherwise. Note that DE3D, DIE3D, D1H3D and D2H3D all have full rank

for matrix e, so we have three nonzero eigenvalues λ1, λ2 and λ3. To determine k is

equivalent to determine if λ1 · λ2 and λ2 · λ3 is great than 0 or less than 0, so these

are also inequality constraints. If an inequality holds at any point A ∈ S9, it will still

hold in a small vicinity of that point, as our functions ρ3, ρ4, ∆, k, K, etc., change

continuously on the sphere S9. This simple observation proves the openness of the

domains DE3D, DIE3D, D1H3D and D2H3D.

7.3.4. Volumes of Open Domains. The “size” of any domain in the sphere S9

can be measured by its volume (more precisely, nine-dimensional volume, or Lebesgue

measure). Nine-dimensional domain have positive volume. All the other domains in

our partition of S9 have volume zero.

112

The volume of our domains can be estimated by an easy Monte Carlo experiment.

We just generate random points on the unit sphere S9 and estimate the volume of

each domain by the percentage of points falling into it. Below is our experimental

estimates:

Type of Quadric Volume (%)

Hyperboloid of one sheet 70.69

Hyperboloid of two sheets 26.86

Real ellipsoid 2.30

Imaginary ellipsoid 0.15

Others 0

Table 7.3: Volumes of open domains in S9

The volume of each open domain is given as a percentage of the total volume

of S9. The volume of all the other domains is zero. Note that hyperboloid of two

sheets and one sheet occupy more than 90% of the parameter space. Also note that

“imaginary ellipsoid” occupy just a small fraction of the sphere S9, only 0.15% of it.

This is a good feature, in terms of practical fitting methods. Those usually wander

in the parameter space searching for the minimum of the objective function. Every

time they accidentally run into a forbidden or an unwanted domain, such as DIE3D,

they have to retreat and readjust the next step. Fortunately, due to the small size of

DIE3D, this does not happen often.

7.3.5. Connected Components of Open Domains. A domain is “connected”

if it consists of one piece. If the domain is not connected, it consists of several

connected pieces (components). Similar to 2D cases, our open domains DE3D, DIE3D,

D1H3D and D2H3D are not connected, each of them consists of exactly two connected

components. This is related to the choice of sign.

113

Each parameter vector A = (A,B,C, F,G, H, P,Q, R, D)T ∈ S9 not only specifies

a quadratic surface, but defines a quadratic function

Q(x, y, z) = Ax2 + By2 + Cz2 + 2Fyz + 2Gxz + 2Hxy + 2Px + 2Qy + 2Rz + D

on the xyz space. Note that Q(x, y, z) = 0 “on the surface”, but Q(x, y, z) > 0 or

Q(x, y, z) < 0 elsewhere.

If A ∈ DE3D, then we may have Q > 0 inside the ellipsoid and Q < 0 outside of it,

or vice versa. Thus DE3D consists of two pieces, we denote them by D+
E3D and D−E3D,

depending on whether Q > 0 or Q < 0 inside the ellipsoid (i.e., at its center).

Similarly, if A ∈ D1H3D or D2H3D, then the corresponding quadratic function

Q(x, y, z) may be positive or negative at the center of the hyperboloid. So we have a

respective partition D1H3D = D+
1H3D ∪ D−1H3D and D2H3D = D+

2H3D ∪ D−2H3D.

Lastly, if A ∈ DIE3D, then the corresponding quadratic function Q(x, y, z) cannot

take zero values, so it is either entirely positive or entirely negative. Again this causes

a natural partition of DIE3D into two pieces, D+
IE3D and D−IE3D.

Note that if A ∈ D+
E3D, then −A ∈ D−E3D and vice versa. Thus the subdomains +

and − are diametrically opposite to each other on the sphere S9. They have identical

shapes and equal volumes.

7.4. Boundaries of Open Domains

Recall that the unit sphere S9 (the parameter space) is divided into 18 domains

corresponding to the main surface types, plus two extra points, the poles. As we

discussed before, the domains DE3D, DIE3D, D1H3D and D2H3D are nine-dimensional,

open, and they cover 100% of the sphere S9, in terms of volume. The other domains

have lower dimensionality and zero volume. They, in a sense, make pieces of the

boundaries of the principal domains DE3D, DIE3D, D1H3D and D2H3D.

Eight-Dimensional Domains(Hypersurfaces). Most important of those “bound-

ary pieces” are the eight-dimensional domains: DECo (elliptic cone), DIECo (imaginary

114

elliptic cone), DEP3D (elliptic paraboloid), DHP3D (hyperbolic paraboloid). They sep-

arate our open domains from each other in a nine-dimensional space, see below.

7.4.1. Elliptic Cone DECo. The hypersurface DECo separates the open domain

hyperboloid of one sheet D1H3D from the open domain hyperboloid of two sheets

D2H3D. To illustrate this fact, consider the parameter vector

Ac = (1, 1,−1, 0, 0, 0, 0, 0, 0, c),

where c is a small variable (we will not normalize Ac to keep our formulas simple).

This parameter vector corresponds to the quadratic function

Q(x, y, z) = x2 + y2 − z2 + c.

For c < 0, the equation Q(x, y, z) = 0 defines a hyperboloid of one sheet (more

precisely, the surface intersects the xy-plane at a small circle of radius
√−c), i.e.,

Ac ∈ D1H3D. For c = 0, Q(x, y, z) = x2 + y2 − z2 = 0 defines a elliptic cone, i.e.,

A0 ∈ DECo. For c < 0 it is a hyperboloid of two sheets, i.e., Ac ∈ D2H3D. As c changes

from small negative values to zero and then on to small positive values, the cross-

section in xy plane (circle with radius
√−c) shrinks and collapses to a single point

(0,0,0), and then disappears, thus making a hyperboloid of one sheet transform to a

cone and then become a hyperboloid of two sheets. In the parameter space S9, this

process corresponds to a continuous motion from the domain D1H3D to the domain

D2H3D, across the hypersurface DECo.

7.4.2. Imaginary Elliptic Cone DIECo. The hypersurface DIECo separates the

open domain hyperboloid of one sheet DE3D from the open domain hyperboloid of

two sheets DIE3D. To illustrate this fact, consider the parameter vector

Ac = (1, 1, 1, 0, 0, 0, 0, 0, 0, c),

where c is a small variable. This parameter vector corresponds to the quadratic

function

Q(x, y, z) = x2 + y2 + z2 + c.

115

For c < 0, the equation Q(x, y, z) = 0 defines a ellipsoid (more precisely, a sphere

of radius
√−c), i.e., Ac ∈ D1H3D. For c = 0, it defines an imaginary elliptic cone

x2 + y2 + z2 = 0 ,i.e., A0 ∈ DIECo. For c < 0 it defines an imaginary ellipsoid, i.e.,

Ac ∈ DIE3D. As c changes from small negative values to zero and then on to small

positive values, the ellipsoid shrinks and collapses to a single point(imaginary elliptic

cone), and then disappears altogether (transforms into an imaginary ellipsoid). In

the parameter space S9, this process corresponds to a continuous motion from the

domain DE3D to the domain DIE3D, across the hypersurface DIECo.

7.4.3. Elliptic Paraboloids DEP3D. The hypersurface DEP3D separates the do-

main hyperboloid of two sheets D2H3D from the domain ellipsoid DE3D. To illustrate

this fact, consider the parameter vector

Ac = (1, 1, c, 0, 0, 0, 0, 0, 1, 0),

where c will again play the role of a small variable. This parameter vector corresponds

to the quadratic function

Q(x, y, z) = x2 + y2 + cz2 + z = x2 + y2 + c
(
z +

1

2c

)2

− 1

4c
.

For c < 0, Q(x, y, z) = 0 defines a hyperboloid of two sheets, i.e., Ac ∈ D2H3D. For

c = 0, Q(x, y, z) = x2 + y2 + z = 0 is elliptic paraboloid(which opens along z-axis),

i.e., A0 ∈ DEP3D. For c > 0, it is an ellipsoid, i.e., Ac ∈ DE3D. As c changes from

small negative values to zero and then on to small positive values, the hyperboloid

of two sheets transforms into a elliptic paraboloid, and then into an ellipsoid. In the

parameter space, this process corresponds to a continuous motion from the domain

D2H3D to the domain DE3D, across the hypersurface DEP3D.

7.4.4. Hyperbolic Paraboloids DHP3D. The hypersurface DHP3D separates the

two components D+
1H3D and D−1H3D of the open domain hyperboloid of one sheet D1H3D

from each other. To illustrate this fact, consider the parameter vector

Ac = (1,−1, c, 0, 0, 0, 0, 0, 1, 0),

116

where c will be a small variable. This parameter vector corresponds to the quadratic

function

Q(x, y, z) = x2 − y2 + cz2 + z = x2 − y2 + c
(
z +

1

2c

)2

− 1

4c
.

The equation Q(x, y, z) = 0 defines a hyperboloid of one sheet with center (0, 0,− 1
2c

),

unless c = 0. When c = 0, Q(x, y, z) = x2 − y2 + z defines a hyperbolic paraboloid.

More precisely, for c < 0 it is a hyperboloid of one sheet with a “positive center”,

because Q(0, 0,− 1
2c

) > 0, i.e., Ac ∈ D+
1H3D, in this case, the hyperboloid opens along x-

axis. For c > 0, it is a hyperboloid with a “negative center”, because Q(0, 0,− 1
2c

) < 0,

i.e., Ac ∈ D−1H3D, in this case, the hyperboloid opens along y-axis. For c = 0, it is a

a hyperbolic paraboloid, i.e., A0 ∈ DHP3D. As c changes from small negative values

to zero and then on to small positive values, the hyperboloid of one sheet with a

positive center transforms into saddle shaped hyperbolic paraboloid and then into a

hyperboloid of one sheet with a negative center. In the parameter space, this process

corresponds to a continuous motion from the subdomain D+
1H3D to the subdomain

D−1H3D, across the hypersurface DHP3D.

7.4.5. A simplistic diagram. The above analysis can be summarized in the

following schematic diagram illustrating the structure of the parameter space, with

all principal subdomains and the respective separating hypersurfaces.

1H3D
-

E3D
-

IE3D
+

ECo

EPEP
IECo

IE3D
-

E3D
+

IECo

2H3D
+

1H3D
+ 2H3D

-

ECoHP3D

Figure 7.1: Principal domains and separating hypersurfaces in S9

117

Note: The labels correspond to our notation in the text: 1H3D+ means D+
1H3D, etc.

Remark: Continuity, singularities and differentiability of the objective function on

S9 remain open problems for the future work. Next, we will proceed to the practical

solutions to the problem of fitting quadratic surfaces.

7.5. Projection onto Quadrics

Here we describe the projection of a spacial point (u, v, w) onto quadratic surfaces

of various kinds.

Ellipsoids. An ellipsoid is defined its canonical coordinates as follows:

(7.2)
x2

a2
+

y2

b2
+

z2

c2
− 1 = 0,

where a ≥ b ≥ c > 0 are its semiaxes. (Other ellipsoids case be translated and

rotated to the canonical form (7.2), and then the projection point can be translated

and rotated back to the original ellipsoid.) Due to symmetry, we restrict the method

to u > 0, v > 0, w > 0, then we also have x > 0, y > 0, z > 0. The orthogonality

conditions now give

(7.3) u− x = tx/a2, v − y = ty/b2, w − z = tz/c2

for some scalar t, from which

(7.4) x =
a2u

t + a2
, y =

b2v

t + b2
z =

c2w

t + c2

Since x, y, z > 0, we have constraint t > max{−a2,−b2 − c2} = −c2. Substituting

(7.4) into (7.2) we obtain a function

(7.5) F (t) =
a2u2

(t + a2)2
+

b2v2

(t + b2)2
+

c2w2

(t + c2)2
− 1,

whose root we need to find. Note that

lim
t→−c2+

F (t) = +∞ and lim
t→∞

F (t) = −1.

118

Taking the derivatives of F we see that

(7.6) F ′(t) = − 2a2u2

(t + a2)3
− 2b2v2

(t + b2)3
− 2c2w2

(t + c2)3

and

(7.7) F ′′(t) =
6a2u2

(t + a2)4
+

6b2v2

(t + b2)4
+

6c2w2

(t + c2)4
.

Thus on the interval (−c2,∞) we have F ′ < 0 and F ′′ > 0, i.e., the function F is

monotonically decreasing and concave, just as in Fig. 5.1. Thus standard Newton’s

method starting at any point t0 where F (t0) > 0 will converge to the unique root of

F , and we choose (see (5.9))

t0 = max{au− a2, bv − b2, cw − c2}.

Hyperbolic Paraboloids. Now let us project a point (u, v, w) onto a hyperbolic

paraboloid (“saddle”) defined in its canonical coordinates as

(7.8)
x2

a2
− y2

b2
− z = 0.

Due to symmetry, we restrict the method to u > 0, v > 0, then we also have x >

0, y > 0. The orthogonality conditions now give

(7.9) u− x = tx/a2, v − y = −ty/b2, w − z = −t/2

for some scalar t, from which

(7.10) x =
a2u

t + a2
, y =

b2v

−t + b2
, z = w +

t

2
.

Since x, y > 0, we have constraints −a2 < t < b2. Substituting (7.10) into (7.8) we

obtain a function

(7.11) F (t) =
a2u2

(t + a2)2
− b2v2

(−t + b2)2
− w − t

2
,

whose root we need to find. Note that

lim
t→−a2+

F (t) = +∞ and lim
t→b2−

F (t) = −∞.

119

Taking the derivatives of F we see that

(7.12) F ′(t) = − 2a2u2

(t + a2)3
− 2b2v2

(−t + b2)3
− 1

2

hence F ′ < 0 for all t ∈ (−a2, b2). Next,

(7.13) F ′′(t) =
6a2u2

(t + a2)4
− 6b2v2

(−t + b2)4
.

Now F ′′ decreases from +∞ (near −a2) to −∞ (near b2), and it is monotonic (because

F ′′′ < 0, as one can easily verify). Thus F has a unique inflection point, t∗, within

the interval (−a2, b2). Our further analysis repeats that done for hyperbolas in the

previous section.

Hyperboloids. Now let us project a point (u, v, w) onto a hyperboloid (one sheet)

defined in its canonical coordinates as

(7.14)
x2

a2
+

y2

b2
− z2

c2
− 1 = 0,

where we can assume a ≥ b. Due to symmetry, we restrict the method to u > 0, v >

0, w > 0, then we also have x > 0, y > 0, z > 0. The orthogonality conditions now

give

(7.15) u− x = tx/a2, v − y = ty/b2, w − z = −tz/c2

for some scalar t, from which

(7.16) x =
a2u

t + a2
, y =

b2v

t + b2
, z =

c2w

−t + c2
.

Since x, y, z > 0, we have constraints −b2 < t < c2. Substituting (7.16) into (7.14)

we obtain a function

(7.17) F (t) =
a2u2

(t + a2)2
+

b2v2

(t + b2)2
− c2w2

(−t + c2)2
− 1,

whose root we need to find. Note that

lim
t→−b2+

F (t) = +∞ and lim
t→c2−

F (t) = −∞.

120

Taking the derivatives of F we see that

(7.18) F ′(t) = − 2a2u2

(t + a2)3
− 2b2v2

(t + b2)3
− 2c2w2

(−t + c2)3

hence F ′ < 0 for all t ∈ (−b2, c2). Next,

(7.19) F ′′(t) =
6a2u2

(t + a2)4
+

6b2v2

(t + b2)4
− 6c2w2

(−t + c2)4
.

Again, as before, F ′′ decreases from +∞ (near −b2) to −∞ (near c2), and it is

monotonic (because F ′′′ < 0, as one can easily verify). Thus F has a unique inflection

point, t∗, within the interval (−b2, c2). Its graph looks like one of those shown in

Fig. 5.2.

But now it is not easy to determine which case we have at hand – the one shown

in part (a) or in part (b) of Fig. 5.2 (because we cannot solve equation F ′′ = 0).

However, one of the two iterative procedures described in the case of hyperbolas (i.e.,

Newton’s method working from the left and another one – from the right), must work.

Thus we simply can choose one of these two procedures at random and follow it

hoping that it converges. But if it fails, i.e., if an iteration lands outside the interval

(−b2, c2), then we switch to the other procedure, and it will surely converge. We note

that even if we start on the wrong side, Newton’s iteration may land on the right side

and then converge.

As there is a 50% chance of choosing one of the two sides correctly at random,

the current projection method is perhaps about 1.5 times slower, on average, than

the previous one (a moderate price to pay for extra complications). We emphasize

that our analysis still guarantees that the method converges to the correct projection

point in all cases.

Other Quadrics. We have covered three major types of quadratic surfaces in 3D.

There are two others – elliptic paraboloid and hyperboloid of two sheets, which are

treated very similarly, with small variations in each case that we leave out.

121

7.6. Geometric Surfaces Fit

The implicit fit method we derived in Chapter 6 works for surfaces in the 3D space

too, when they are defined by the implicit equations P (x, y, z; Θ) = 0. In this case,

the formulas we derived acquire an extra term corresponding to the z variable.

Proposition. Let (x, y, z) be a given a point and (x′, y′, z′) denote its projection

onto the surface P (x, y, z; Θ) = 0 (then x′, y′, z′ depend on Θ). Denote g = x − x′,

h = y − y′, k = z − z′and d2 = g2 + h2 + k2. Then we have

(7.20) gΘ =
PΘPx − h(PxPyΘ − PyPxΘ)− k(PxPzΘ − PzPxΘ)

P 2
x + P 2

y + P 2
z

,

(7.21) hΘ =
PΘPy − g(PyPxΘ − PxPyΘ)− k(PyPzΘ − PzPyΘ)

P 2
x + P 2

y + P 2
z

,

(7.22) kΘ =
PΘPz − g(PzPxΘ − PxPzΘ)− h(PzPyΘ − PyPzΘ)

P 2
x + P 2

y + P 2
z

,

and

(7.23) dΘ =
PΘ√

P 2
x + P 2

y + P 2
z

,

where PΘ, Px, Py, Pz denote the first order partial derivatives of P with respect to

Θ, x, y, z, respectively, and PxΘ, PyΘ and PzΘ the corresponding second order partial

derivatives; all the derivatives are taken at the projection point (x′, y′, z′).

Proof. Since the vector (x− x′, y − y′, z − z′) is orthogonal to the curve,

(7.24) g = x− x′ = tPx h = y − y′ = tPy and k = z − z′ = tPz

for some scalar t. This immediately gives

(7.25) d2 = g2 + h2 + k2 = t2(P 2
x + P 2

y + P 2
z).

Next we use differentiation with respect to Θ. Differentiating the identity P (x′, y′, z′; Θ) =

0 gives

(7.26) PΘ = −Pxx
′
Θ − Pyy

′
Θ − Pzz

′
Θ = (ggΘ + hhΘ + kkΘ)/t,

122

and differentiating the identity d2 = g2 + h2 + k2 gives

(7.27) ddΘ = ggΘ + hhΘ + kkΘ = tPΘ.

Now (7.23) follows from (7.27) and (7.25). Differentiation of (7.24) gives

gΘ = tΘPx + tPxΘ, hΘ = tΘPy + tPyΘ, kΘ = tΘPz + tPzΘ.

Eliminating tΘ from these three equations yields

(7.28)
gΘ − tPxΘ

Px

=
hΘ − tPyΘ

Py

=
kΘ − tPzΘ

Pz

.

Solving (7.27) and (7.28) for gΘ, hΘ and kΘ we obtain (7.20), (7.21) and (7.22). ¤

Formula (7.23) gives the Jacobian matrix similar to (6.20). Then standard algo-

rithms such as Gauss-Newton(GN), Levenberg-Marquardt (LM) or Trust Region(TR)

can be applied for the iterative fitting process.

CHAPTER 8

Thesis Contributions and Conclusions

Fitting simple contours (primitives) such as circles, ellipses or other quadratic

curves to observed image data in the plane is a problem that arises in many application

areas. In 3D space, one often fits planes, spheres, or more complex surfaces (such

as ellipsoids) to point clouds. In the past, people consider the problem of fitting

ellipses and other quadratic curves/surfaces by minimizing geometric distances to be

a prohibitively difficult task. The rigorous analysis and investigation presented in

this thesis provide a strong argument against this customary presumption. In this

section, the thesis’s main contributions and conclusions are presented:

• The collection of ellipses is not a sufficient model for fitting purposes. This

means that there is a real chance that for a given set of data points no ellipse

can be selected as the best fit to the points, i.e., the ellipse fitting problem

would have no solution. In the larger framework of fitting all quadratic

curves, the best fitting object will always be found, either an ellipse or a

hyperbola. Therefore we treat the problem of fitting an ellipse to data points

as a part of a more general problem of fitting quadratic curves. In fact, with

this understanding, we were able to find more efficient practical algorithms

for fitting ellipses to data.

• Algebraic parametrization scheme should be chosen over geometric parametriza-

tion. Algebraic parameters allow us to reach all types of quadratic curves

which could be switched back and forth during the fitting process. In addi-

tion, the boundedness of their parameter space enforces the convergence of

the iterative fitting algorithm.

123

124

• Ellipses DE, hyperbolas DH, parabolas DP, intersecting lines DIL and parallel

lines DPL are the domains where the minimization algorithms are likely to

maneuver searching for the best fitting conic and where the best fit can be

found. All the other parts of the parameter space S5 can be ignored for

the purpose of minimization of the objective function. On those parts the

objective function F is either not defined or tends to grow.

• We investigated the local minima of the objective function F. For more than

five data points, local minima are possible. When data points are sampled

along the entire ellipse, or an elliptic arc with high curvature, the objective

function tends to have one global minimum and no local minima. When data

points are sampled along an elliptic arc with low curvature, the desirable fit

is given by an elliptic arc or, occasionally, by a hyperbolic arc. Local minima

of F which correspond to distractive fits tend to be small and narrow, so

that the chance of falling into one of them is low. On the contrary, the

desirable fit tends to correspond to a wide minimum of F, which is likely

attract the minimization procedures starting even from a randomly chosen

initial quadratic curve.

• Eberly discovered a remarkably fast and totally reliable projection algorithm

for ellipses which we generalized to all the other quadratic curves and surfaces

and provided a theoretical proof of convergence in each case. Ahn et al. have

designed a general fitting scheme for implicit curves and surfaces that is

surprisingly simple and fast. Our implicit fitting algorithms are based on

his distance-based scheme where one treats F as a sum of n squares. By

combining projection and minimization steps together, we gave a complete,

reliable and efficient geometric fitting scheme for fitting quadratic curves and

surfaces of all kinds.

Bibliography

[1] Geometric Product Specification (GPS) Acceptance and Switzerland (2001) representation test

for coordinate measuring machines (CMM) Part 6: Estimation of errors in computing Gaussian

associated features. Int’l Standard ISO 10360-6. IS, Geneva, 2001.

[2] R. J. Adcock. Note on the method of least squares. Analyst, London, 4:183–184, 1877.

[3] R. J. Adcock. A problem in least squares. Analyst, London, 5:53–54, 1878.

[4] S. J. Ahn. Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space. Springer,

2004.

[5] S. J. Ahn, W. Rauh, H. Suck Cho, and H. J. Warnecke. Orthogonal distance fitting of implicit

curves and surfaces. IEEE Trans., 24:620–638, 2002.

[6] S. J. Ahn, W. Rauh, and Hand M. Recknagel. Least squares orthogonal distances fitting of

implicit curves and surfaces. Pattern Recognition, 2191:398–405, 2001.

[7] S. J. Ahn, W. Rauh, and H. J. Warnecke. Least-squares orthogonal distances fitting of circle,

sphere, ellipse, hyperbola, and parabola. Pattern Recog., 34:2283–2303, 2001.

[8] M. Aigner and B. Jüttler. Robust computation of foot points on implicitly defined curves. In

in: Mathematical Methods for Curves and Surfaces: Troms 2004, pages 1–10. Nashboro Press,

2005.

[9] M. Aigner and B. Jüttler. Gauss-newton type techniques for robustly fitting implicitly defined

curves and surfaces to unorganized data points. In in: Shape Modeling International, pages

121–130, 2008.

[10] A. Albano. Representation of digitized contours in terms of conic arcs and straight-line segments.

Computer Graphics and Image Processing, 3:23–33, 1974.

[11] A. Atieg and G. A. Watson. Fitting circular arcs by orthogonal distance regression. Appl.

Numer. Anal. Comput. Math., 1:66–76, 2004.

[12] M. Berman. Estimating the parameters of a circle when angular differences are known. Appl.

Statist., 32:1–6, 1983.

[13] R. H. Biggerstaff. Three variations in dental arch form estimated by a quadratic equation. J.

Dental Res., 51:1509, 1972.

125

126

[14] F. L. Bookstein. Fitting conic sections to scattered data. Computer Graphics and Image Pro-

cessing, 9:56–71, 1979.

[15] W. H. Breyer. CRC Standard Mathematical Tables and Formulas. CRC Press, 1987.

[16] N. N. Chan. On circular functional relationships. J. R. Statist. Soc. B, 27:45–56, 1965.

[17] N. Chernov. On the convergence of fitting algorithms in computer vision. J. Math. Imag. Vision,

27:231–239, 2007.

[18] N. Chernov. Circular and Linear Regression: Fitting Circles and Lines by Least Squares. Chap-

man and Hall, 2010.

[19] N. Chernov and C. Lesort. Statistical efficiency of curve fitting algorithms. Comp. Stat. Data

Anal., 47:713–728, 2004.

[20] N. Chernov and H. Ma. Least squares fitting of quadratic curves and surfaces. Computer Vision,

pages 285–302, 2011.

[21] N. Chernov, G. Ososkov, and I. Silin. Robust fitting of ellipses to non-complete and contami-

nated data. Czech. J. Phys., 50:347–354, 2000.

[22] N. Chernov and P. Sapirstein. Fitting circles to data with correlated noise. Comput. Statist.

Data Anal., 52:5328–5337, 2008.

[23] W. Chojnacki, M. J. Brooks, and A. van den Hengel. Rationalising the renormalisation method

of Kanatani. J. Math. Imaging & Vision, 14:21–38, 2001.

[24] W. Chojnacki, M. J. Brooks, A. van den Hengel, and D. Gawley. FNS, CFNS and HEIV: A

unifying approach. J. Math. Imaging Vision, 23:175–183, 2005.

[25] Y. Cui, J. Weng, and H. Reynolds. Estimation of ellipse parameters using optimal minimum

variance estimator. Pattern Recognition, 17:309–316, 1996.

[26] D. Eberly. 3D Game Engine Design, 2nd ed. Morgan Kaufmann Publishers, 2007.

[27] A. W. Fitzgibbon, M. Pilu, and R. B. Fisher. Direct least squares fitting of ellipses. IEEE Trans.

Pattern Analysis and Machine Intelligence, 21:476–480, 1999.

[28] P. R. Freeman. Note: Thom’s survey of the Avebury ring. J. Hist. Astronom., 8:134–136, 1977.

[29] W. Gander, G. H. Golub, and R. Strebel. Least squares fitting of circles and ellipses. BIT,

34:558–578, 1994.

[30] R. Halǐr and J. Flusser. Numerically stable direct least squares fitting of ellipses. In Sixth Conf.

Cent. Europe Comput. Graph. Vis., WSCG’98, Conf. Proc., volume 1, pages 125–132, Plzen,

Czech Rep., 1998.

127

[31] R. Halǐr and Ch. Menard. Diameter estimation for archaeological pottery using active vision.

In Axel Pinz, editor, Proc. 20th Workshop Austrian Assoc. Pattern Recognition (ÖAGM’96),

pages 251–261, Schloss Seggau, Leibnitz, 1996.

[32] http://www.math.uab.edu/ chernov/cl.

[33] http://www.math.uab.edu/ chernov/cl/conics.

[34] K. Kanatani. Statistical bias of conic fitting and renormalization. IEEE Trans. Pattern Analysis

Machine Intelligence, 16:320–326, 1994.

[35] K. Kanatani. Statistical optimization for geometric fitting: Theoretical accuracy bound and

high order error analysis. Int. J. Computer Vision, 80:167–188, 2008.

[36] C. H. Kummell. Reduction of observation equations which contain more than one observed

quantity. Analyst, London, 6:97–105, 1879.

[37] U. M. Landau. Estimation of a circular arc center and its radius. CVGIP: Image Understanding,

38:317–326, 1987.

[38] K. Levenberg. A method for the solution of certain non-linear problems in least squares. Quart.

Appl. Math., 2:164–168, 1944.

[39] D. Marquardt. An algorithm for least squares estimation of nonlinear parameters. SIAM J.

Appl. Math., 11:431–441, 1963.

[40] J. J. Moré, B. B. Garbow, and K. E. Hillstrom. User guide for MINPACK-1. Technical Report

ANL-80-74, Argonne National Lab., IL (USA), 1980.

[41] G. Ososkov, I. Silin, and N. Chernov. Robust fitting of ellipses to non-complete and contami-

nated data. Czech. J. Physics, 50:347–354, 2000.

[42] K. Paton. Conic sections in chromosome analysis. Pattern Recogn., 2:39–51, 1970.

[43] S.-C. Pei and J.-H. Horng. Optimum approximation of digital planar curves using circular arcs.

Pattern Recogn., 29:383–388, 1996.

[44] P. L. Rosin. Assessing error of fit functions for ellipses. Graphical Models Image Process, 58:494–

502.

[45] P. L. Rosin. A note on the least squares fitting of ellipses. Pattern Recognition Letters, 14:799–

808, 1993.

[46] P. L. Rosin and G. A. W. West. Segmentation of edges into lines and arcs. Image Vision Comp.,

7:109–114, 1989.

[47] R. Safaee-Rad, I. Tchoukanov, B. Benhabib, and K. C. Smith. Accurate parameter estimation

of quadratic curves from grey-level images. CVGIP: Image Understanding, 54:259–274, 1991.

128

[48] P. D. Sampson. Fitting conic sections to very scattered data: an iterative refinement of the

Bookstein algorithm. Comp. Graphics Image Proc., 18:97–108, 1982.

[49] B. Sarkar, L. K. Singh, and D. Sarkar. Approximation of digital curves with line segments and

circular arcs using genetic algorithms. Pattern Recogn. Letters, 24:2585–2595, 2003.

[50] E. Saund. Identifying salient circular arcs on curves. CVGIP: Image Understanding, 58:327–337,

1993.

[51] H. Späth. Least-squares fitting by circles. Computing, 57:179–185, 1996.

[52] H. Späth. Least squares fitting of ellipses and hyperbolas. Comput. Stat., 12:329–341, 1997.

[53] H. Späth. Orthogonal distance fitting by cicles and ellipses with given area. Comput. Stat.,

12:343–354, 1997.

[54] H. Späth. Orthogonal least squares fitting by conic sections. In Recent Advances in Total Least

Squares techniques and Errors-in-Variables Modeling, pages 259–264. SIAM, 1997.

[55] P. Sturm and P. Gargallo. Conic fitting using the geometric distance. Proc. Asian Conf. Comp.

Vision, 2:784–795, 2007.

[56] G. Taubin. Estimation of planar curves, surfaces and nonplanar space curves defined by im-

plicit equations, with applications to edge and range image segmentation. IEEE Trans. Pattern

Analysis Machine Intelligence, 13:1115–1138, 1991.

[57] A. Thom. A statistical examination of the megalithic sites in britain. J. Royal Statist. Soc. A,

118:275–295, 1955.

[58] A. Thom and A. S. Thom. A megalithic lunar observatory in Orkney: the ring of Brogar and

its cairns. J. Hist. Astronom., 4:111–123, 1973.

[59] A. Thom, A. S. Thom, and T. R. Foord. Avebury (1): a new assessment of the geometry and

metrology of the ring. J. Hist. Astronom., 7:183–192, 1976.

[60] M. E. Whalen. Ceramic vessel size estimation from sherds: An experiment and a case study. J.

Field Archaeology, 25:219–227, 1998.

[61] Papliński A. & Esson Wijewickrema, S. Orthogonal distance fitting revisited. Tech. report,

Clayton School Inf. Technol., page 205, 2006.

[62] www.geom.uiuc.edu/docs/reference/CRC formulas/node28.html.

[63] E. Zelniker and V. Clarkson. A statistical analysis of the Delogne-K̊asa method for fitting circles.

Digital Signal Proc., 16:498–522, 2006.

[64] Z. Zhang. Parameter estimation techniques: A tutorial with application to conic fitting. Inter.

J. Image & Vision Comp., 15:59–76, 1997.

APPENDIX A

Algebraic Fits

Here we review non-geometric (algebraic) fits that are used to provide an initial

guess, i.e., a curve that initializes an iterative procedure solving the geometric fitting

problem (6.2).

Suppose again that one fits an implicit curve P (x, y; Θ) = 0 to observed points

(x1, y1), . . ., (xn, yn). Perhaps the simplest non-geometric fit is the one minimizing

(A.1) F1(Θ) =
n∑

i=1

[P (xi, yi; Θ)]2.

To justify this method one usually notes that P (xi, yi; Θ) = 0 if and only if the point

(xi, yi) lies on the curve, and [P (xi, yi; Θ)]2 is small when the point lies near the

curve. The minimization of (A.1) is called algebraic fit and |P (xi, yi; Θ)| is called the

corresponding algebraic distance.

When the curve is defined by an algebraic equation, such as

(A.2) Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

then an unconstrained minimization of (A.1) produces the unwanted degenerate so-

lution: A = B = C = D = E = F = 0. To avoid it, one can impose a constraint,

such as A2 + B2 + C2 + D2 + E2 + F 2 = 1. The resulting fit would not be invariant

under rotations or translations of the data set, i.e., the resulting curve would depend

on the choice of the coordinate system, which is hardly acceptable; see [14, 29].

Better constraints (i.e., those that are invariant under translations and rotations)

are A+C = 1 (see [29]), or A2+B2/2+C2 = 1 (see [14]), or 4AC−B2 = 1 (see [27]).

The last constraint guarantees that the resulting curve will be an ellipse (rather than

a hyperbola or parabola), see 3.1.

129

130

But practical experience shows that all algebraic fits, with or without constraints,

are statistically inaccurate and biased, in one way or another. The main reason is

that algebraic distances may be substantially different from geometric distances [64].

This defect can be compensated for by using linear approximation

|P (xi, yi; Θ)|
‖∇P (xi, yi; Θ)‖ = di + O(d2

i)

where ∇P =
(
∂P/∂x, ∂P/∂y

)
denotes the gradient vector. This leads to an ‘approx-

imate geometric fit’, which minimizes

(A.3) F2(Θ) =
n∑

i=1

[P (xi, yi; Θ)]2

‖∇P (xi, yi; Θ)‖2
.

This method is called gradient weighted algebraic fit. It was applied to quadratic

curves by Sampson [48] and popularized by Taubin [56].

If the curve is defined by an algebraic equation, such as (A.2), then both numera-

tor and denominator of each fraction in (A.3) are homogeneous quadratic polynomials

of the parameters. As a result, F2 is invariant under scalings of the parameter vector

(A,B,C,D,E, F), hence no additional constraints are needed anymore. The mini-

mization of (A.3) produces a more accurate fit than the simple algebraic fits (A.1)

do; see statistical analysis in [19].

But the problem of minimizing (A.3) is that it has no closed form solution and

must be solved by iterations. Various iterative schemes for the minimization of (A.3)

have been developed (see [23, 24, 34]); some of them have become standard in

computer vision industry. They are all too complex to be used for an initialization

of the geometric fit (6.2) (besides, each of them needs its own initialization to get

started...). In this sense, the minimization of (A.3) and that of (6.2) can be regarded

as two independent approaches to the task of fitting curves to data. While (6.2) is

called Maximum Likelihood Estimation (MLE), that of (A.3) is called Approximate

Maximum Likelihood Estimation (AMLE); see [23, 24].

One may wonder if the AMLE (A.3) can be used instead of the MLE (6.2), as

the minimization of (A.3) is technically simpler than that of (6.2). Most researchers,

131

however, agree that the answer is NO, i.e., the minimization of (6.2) would produce

a better fit than that of (A.3); see comments in [4, p. 12]. (Though a complete

statistical analysis has yet to be done.)

Taubin [56] simplified (A.3) and converted it into a non-iterative fit that minimizes

(A.4) F3(Θ) =

∑
[P (xi, yi; Θ)]2∑ ‖∇P (xi, yi; Θ)‖2

.

Note that Taubin simply summed up all the numerators and all the denominators in

(A.3) separately.

If one fits conics defined by algebraic equation (A.2), then both numerator and

denominator of (A.4) are homogeneous quadratic polynomials of the components of

the parameter vector A = (A,B,C,D,E, F)T . Thus one can rewrite (A.4) as

(A.5) F4(A) =
ATMA

ATNA
→ min,

where M and N are some 6 × 6 symmetric positive semi-definite matrices. Since

F4(A) is invariant under scalings of the vector A, one can solve (A.5) by minimizing

F5(A) = ATMA under the constraint ATNA = 1. Introducing a Lagrange multiplier

η we can minimize the function

F6(A, η) = ATMA− η(ATNA− 1).

Differentiating with respect to A gives the first order necessary condition

(A.6) MA = ηNA,

thus A must be a generalized eigenvector of the matrix pair (M,N). Moreover, pre-

multiplying (A.6) by A we see that ATMA = η, and because we are minimizing

ATMA, the desired vector A must correspond to the smallest (non-negative) eigen-

value η. (We note that N here is singular; one usually eliminates F to reduce A to

a 5-vector A′ = (A,B,C,D,E)T and the 6 × 6 problem (A.6) to a 5 × 5 problem

M′A′ = η′N′A′, where the 5× 5 matrix N′ is positive definite; see details in [35].)

132

Solving a generalized eigenvalue problem takes just one call of a standard matrix

function (such functions are included in most modern software packages, e.g., in

MATLAB). Thus Taubin’s fit is regarded as a fast non-iterative procedure. In practice

the Taubin’s fit is only marginally slower than the simple algebraic fit minimizing

(A.1).

Its advantage is that Taubin’s fit is more balanced than any algebraic fit. It has

a much smaller bias; see statistical analysis in [35]. It is important to note that it

produces a conic that may be of any kind – an ellipse, a hyperbola, or a parabola. If

one fits conics of a certain type (e.g., ellipses), then Taubin’s fit must be supplemented

with another simple fit whenever it gives the wrong curve. Experimental tests show

that Taubin’s fit provides a better initialization of iterative procedures than simple

algebraic fits do [17].

APPENDIX B

Minimization Schemes

This appendix is borrowed from N. Chernov’s book, see page 70-78 in [18].

B.1. Classical minimization schemes

We begin with a brief description of general numerical schemes used to mini-

mize smooth functions of several variables, especially those adopted to least squares

problems. First we recall two classical algorithms that are a part of any standard

numerical analysis course.

B.1.1. Steepest descent. Suppose we need to find the minimum of a smooth

function G : Rk → R, i.e.

(B.1) z = G(a), a = (a1, . . . , ak) ∈ Rk

of k variables. Iterative procedures usually compute a sequence of points a(0), a(1), . . .

that presumably converges to a point where G takes its minimum value. The starting

point a(0) (the initial guess) is assumed to be chosen somehow, and the procedure

follows a certain rule to determine a(i+1) given a(i).

That is, to define a procedure, it suffices to describe the rule of constructing the

next approximation, a′, from the current approximation, a.

We always assume that the derivatives of the function G can be evaluated; hence

one can find the gradient vector ∇G(a), and then the most logical move from a would

be in the direction opposite to ∇G(a), where the function G decreases most rapidly.

This method is called the steepest descent. It can be described by a formula

a′ = a− η∇G(a),

133

134

where η > 0 is a factor. The choice of η is based on the following general considera-

tions.

B.1.2. Choosing the step length. . If η is too large, one may ‘overstep’ the

region where G takes small values and land too far. If η is too small, the progress will

be slow, but at least the function will decrease, i.e. one gets G(a′) < G(a).

The simplest approach is to set η = 1, compute a′, and then check if it is accept-

able. If G(a′) < G(a), the value a′ is accepted, otherwise one ‘backtracks’ by trying

smaller values of η (for instance, η = 1/2, then η = 1/4, etc.) until a′ is acceptable.

Generally, the steepest descent is a reliable method, but it usually converges slowly

(at best, linearly).

Newton-Raphson method. If the second derivatives of G are available, one can

compute both the gradient vector and the Hessian matrix of the second order partial

derivatives:

(B.2) D = ∇G(a) and H = ∇2G(a)

and approximate G in a vicinity of a by the quadratic part of its Taylor polynomial:

(B.3) G(a + h) ≈ G(a) + DTh + 1
2
hTHh,

where h = a′− a denotes the step. Now one can choose h as the critical point of this

quadratic approximation, i.e. find h by solving

(B.4) D + Hh = 0.

This is the Newton-Raphson method.

It converges fast (quadratically) if the current iteration is already close enough to

the minimum of G. However, this method may run into various problems. First, just

as the steepest descent, it may ‘overstep’ the region where G takes small values and

land too far, then one has to ‘backtrack’. Second, the matrix H may not be positive-

definite, then the quadratic approximation in (B.3) will not even have a minimum:

135

the solution of (B.4) will be a saddle point or a maximum. In that case the quadratic

approximation in (B.3) seems to be quite useless.

Fortunately, the least squares problems allow an efficient way to get around the

last trouble, see the next section.

B.2. Gauss-Newton method

B.2.1. Least squares problem. Consider a problem in which we are to mini-

mize a function

(B.5) G(a) =
n∑

i=1

g2
i (a)

of k variables a = (a1, . . . , ak). We assume that n > k, and gi have derivatives.

B.2.2. Newton-Raphson approach to the least squares problem. . As in

Newton-Raphson scheme, we start by approximating G(a+h) by a quadratic part of

Taylor polynomial:

(B.6) G(a + h) ≈ G(a) + DTh + 1
2
hTHh.

where

(B.7) D = ∇G(a) = 2
n∑

i=1

gi(a)∇gi(a)

is the gradient of G and

(B.8) H = ∇2G(a) = 2
n∑

i=1

[∇gi(a)][∇gi(a)]T + 2
n∑

i=1

gi(a)∇2gi(a)

is the Hessian matrix of G. The Newton-Raphson method (B.4) uses both D and H.

B.2.3. Gauss-Newton for the least squares problem. The Gauss-Newton

method drops the last sum of (B.8), i.e. it replaces H with

(B.9) H¦ = 2
n∑

i=1

[∇gi(a)][∇gi(a)]T .

To justify this replacement, one usually notes that in typical least squares applications

gi(a) are small, hence the second sum in (B.8) is much smaller than the first, so its

136

removal will not change the Hessian matrix H much. Also one notes that modifying

H cannot alter the limit point of the procedure, it can only affect the path that the

iterations take to approach that limit1.

B.2.4. Advantages. Replacing H with H¦ has two immediate advantages:

(a) The computation of second order derivatives of gi is no longer necessary;

(b) Unlike H, the new matrix H¦ is always positive semi-definite.

Assume for a moment that H¦ is nonsingular. Then the quadratic expression

G(a) + DTh + 1
2
hTH¦h

has a minimum, it is attained at h that satisfies equation

(B.10) D + H¦h = 0.

Hence h = −(H¦)−1D, and the next approximation is a′ = a + h.

B.2.5. Applying methods of linear algebra. . Introducing matrix notation

g = (g1(a), . . . , gn(a))T and

(B.11) J =




∂g1/∂a1 . . . ∂g1/∂ak

...
. . .

...

∂gn/∂a1 . . . ∂gn/∂ak




we obtain D = 2JTg and H¦ = 2JTJ. Therefore, h is the solution of

(B.12) JTJh = −JTg.

This equation corresponds to the overdetermined linear system

(B.13) Jh ≈ −g,

1However it can (and does!) slow down the rate of convergence, especially if gi(a) are not so

small, see more on that in the end of this section.

137

which is the classical least squares problem of linear algebra. Its (minimum-norm)

solution is

(B.14) h = −J−g = −(JTJ)−JTg = −(H¦)−D,

where (·)− denotes the Moore-Penrose pseudoinverse. This formula works whether

H¦ is singular or not.

Remark B.1. One can arrive at (B.12) differently. As our goal is to minimize

G = ‖g‖2, one can replace g(a + h) with its linear approximation g(a) + Jh and

minimize ‖g(a) + Jh‖2 with respect to h; this is exactly the classical least squares

problem (B.13), and its solution is given by (B.14).

B.2.6. Speed of convergence. Many authors assert that the Gauss-Newton

method, just like its Newton-Raphson prototype, converges quadratically, but this is

not exactly true. The modification of H, however small, does affect the asymptotic

speed of convergence, and it becomes linear. Precisely, if a∗ denotes the limit point,

then one can only guarantee that

‖a′ − a∗‖ < c‖a− a∗‖

with some c < 1. However, the convergence constant c here is proportional to G(a∗),

hence it is actually close to zero when gi(a
∗)’s are small. That does not make the

convergence quadratic, but with some degree of informality it can be described as

nearly quadratic.

B.3. Levenberg-Marquardt correction

The Gauss-Newton method works well under favorable conditions, in which case

its convergence is fast, but it may still overstep the region where G takes small values,

as we noted above, and its performance may be problematic if the ‘design matrix’

N = JTJ happens to be near-singular.

138

B.3.1. Augmenting the design matrix. The Levenberg-Marquardt correction

aims at eliminating these drawbacks. The design matrix N is augmented to

(B.15) Nλ = N + λI,

where λ > 0 is an additional ‘control’ parameter and I is the k × k identity matrix.

In other words, the diagonal entries of N are increased by λ. Then, instead of (B.12),

one solves the new system

(B.16) Nλh = −JTg

to determine h. Note that the matrix Nλ, with λ > 0, is always positive definite (while

N is only guaranteed to be positive semi-definite), and in fact all the eigenvalues of

Nλ are ≥ λ.

B.3.2. Checkpoint. . After h has been computed, the algorithm passes through

a checkpoint. If the new approximation a′ = a + h reduces the value of G, i.e. if

G(a′) < G(a), it is accepted and λ is decreased by a certain factor α before the next

iteration (suppressing the corrective term λI).

Otherwise the new value a′ = a+h is rejected, λ is increased by a certain factor β

and the augmented normal equations Nλh = −JTg are solved again. These recursive

attempts continue until the increment h leads to a smaller value of G. This is bound

to happen, since for large λ the method approaches the steepest descent.

B.3.3. Advantages. . In other words, when λ increases, the recomputed vector

h not only gets smaller but also turns (rotates) and aligns somewhat better with the

negative gradient vector −∇G(a). As λ → ∞, the length of h approaches zero and

its direction converges to that of −∇G(a) (Figure B.1).

We see that the Levenberg-Marquardt correction combines two classical ideas:

(a) The quadratic approximation to the function, which works well in a vicinity

of its minimum and yields a fast (nearly quadratic) convergence.

139

1. Initialize a0 and λ0, set k = 0.

2. At the current point ak compute the vector gk and its gradient Jk.

3. Compute hk by solving equation (JT
k Jk + λkI)hk = −JT

k gk.

4. Compute the vector g′ at the point a′ = ak + hk.

5. If ‖g′‖2 ≥ ‖gk‖2, reset λk := βλk and return to Step 3.

6. Update λk+1 = αλk and ak+1 = ak + hk, increment k, return to Step 2.

Table B.1: Levenberg-Marquardt algorithm.

(b) The steepest descent scheme that ensures reliability in difficult cases.

As the algorithm is based on a reasonable balance between these two principles, it is

sometimes referred to as Marquardt compromise.

B.3.4. Practical issues. . In many implementations, the parameter λ is initial-

ized to a small value, e.g. 10−3 or 10−4. A common choice for α and β is α = 0.1 and

β = 10.

B.4. Trust region

To complete our survey of general minimization schemes, we will describe the

trust region method, which currently constitutes ‘the state of the art’.

B.4.1. Motivation. . The Levenberg-Marquardt algorithm is flexible enough to

avoid obvious pitfalls of the classical minimization schemes and virtually guarantees

convergence to a minimum of the objective function. Its drawback, though, is that

the control parameter λ is just an abstract variable whose values have no apparent

relation to the problem at hand. Therefore it is hard to properly initialize λ. Also, the

Levenberg-Marquardt simplistic rules for updating λ (by arbitrarily chosen factors α

and β) often cause erratic, suboptimal performance.

140

A variant of the Levenberg-Marquardt method was developed in the 1970s that

fixed the above drawback. It was popularized by Moré in his well written 1978 paper

[?]. Eventually this method came to be known as trust region and was adopted in

nearly all standard software packages.We describe its main ideas here, referring to [?]

for further technical details.

B.4.2. Geometric description of Levenberg-Marquardt. The Levenberg-

Marquardt method can be interpreted geometrically as follows. Recall that an itera-

tion of the Gauss-Newton method consists in minimization of the quadratic function

Q(a + h) = ‖g(a) + Jh‖2,

which approximates the given function G(a + h) in a vicinity of the current iteration

a. Figure B.1 shows the contour map (the sets of level curves) of Q(a + h) in the 2D

case; the level curves are concentric ellipses.

a

01
2

bλ

b b b

Figure B.1: The level curves of Q(a + h) are concentric ellipses (solid ovals), the

boundaries of trust regions are dashed circles around a.

The ‘pure’ Gauss-Newton step (i.e. when λ = 0) lands at the minimum of Q(a+h),

i.e. at the ellipses’ center b0. When λ > 0, the Levenberg-Marquardt step (the

solution of (B.16)) lands at some other point, bλ = a + h, closer to a. At that point

141

we have, according to (B.16),

grad Q(a + h) = −λh.

Accordingly, the vector h = bλ−a crosses the level curve of Q(a+h) passing through

bλ, orthogonally. This means that bλ provides the minimum of the function Q(a+h)

restricted to the ball B(a, ∆) whose center is a and whose radius is ∆ = ‖h‖. In other

words, the Levenberg-Marquardt step with λ > 0 minimizes the restriction of the

quadratic approximation Q(a+h) to a certain ball around the current approximation

a whose radius ∆ is determined by λ.

As λ > 0 grows, the point bλ moves closer to a, and ∆ decreases. At the same

time the vector h = bλ−a rotates and makes a larger angle with the level curves. In

the limit λ →∞, the ball B(a, ∆) shrinks to the point a, i.e. ∆ → 0, and the vector

h ultimately aligns with the direction of the steepest descent.

B.4.3. Replacing the control parameter. . Therefore, there is a one-to-one

correspondence between λ > 0 and ∆ ∈ (0, ‖b0−a‖), hence one can use ∆, instead of

λ, as a control parameter, i.e. adjust ∆ from iteration to iteration. As ∆ has a clear

meaning (further explained below), its initialization and its update at each iteration

can be done in a more sensible way than the way λ is treated in the Levenberg-

Marquardt scheme.

One benefit of dealing with ∆ is that one can directly control the region in the

parameter space where the quadratic approximation Q(a + h) is minimized. It is

called the trust region, the idea behind it is that we minimize the approximation

Q(a + h) where it can be trusted and do not go too far where the approximation is

not deemed reliable.

B.4.4. New updating rules. . This interpretation of ∆ also leads to the fol-

lowing update strategy. After a step h is computed, one finds the ratio

r =
Ared

Pred
=

G(a)− G(a + h)

G(a)− Q(a + h)

142

1. Initialize a0 and ∆0, set k = 0.

2. At the current point ak compute the vector gk and its gradient Jk.

3. For the current ak and ∆k, determine λk.

4. Compute hk by solving equation (JT
k Jk + λkI)hk = −JT

k gk.

5. Find the ratio rk = Aredk/Predk.

6. If rk < 0, reset ∆k := 1
2
∆k and return to Step 3.

7. If rk < 0.25, update ∆k+1 = 1
2
∆k; if r > 0.75, update ∆k+1 = 2∆k.

8. Update ak+1 = ak + hk, increment k, and return to Step 2.

Table B.2: Trust region algorithm.

of the Actual reduction, Ared, and the Predicted reduction, Pred, of the objective

function. One should note that G(a) = Q(a), hence the denominator is always posi-

tive, but the numerator is positive only if the actual reduction occurs, in which case

of course we should accept the step h.

However, we adjust ∆ based on the value of r. A common strategy is as follows. If

r < 0.25, then the quadratic approximation is not deemed quite reliable (despite the

actual decrease of the objective function) and we reduce the size ∆ before the next

iteration (say, by ∆ := ∆/2). Only if r > 0.75, then the approximation is regarded

as sufficiently accurate and we increase ∆ (by ∆ := 2∆). In the intermediate case

0.25 ≤ r ≤ 0.75 we leave ∆ unchanged. Note that these rules are quite different (in

a sense, more conservative) than the simplistic rules of updating λ in the previous

section!

	Geometric Fitting of Quadratic Curves and Surfaces
	Recommended Citation

	tmp.1711650295.pdf.QBm51

