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A WAVELET REPRESENTATION FOR A FRACTIONAL BROWNIAN
MOTION

ROBERT ALFORD MANN

MATHEMATICS

Abstract

Fractional Brownian Motion is a Gaussian Random Process with a co-

variance function that depends on a Hurst Parameter H ∈ (0, 1). In this

thesis a construction of a Standard Fractional Brownian Motion motivated

by the reproducing kernel Hilbert space corresponding to the covariance

function of a Standard Fractional Brownian Motion will be presented. This

construction will make use of the Haar Wavelet Basis in a similar way to a

classical construction of a Standard Brownian Motion. Certain facts about

this construction will be proven for H ≥ 1

2
.
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Abbreviations and Symbols

m and dx will stand for Lebesgue measure

R, N, and Q will stand for the real numbers, the natural numbers, and the rational

numbers respectively

B(X) will be the Borel sigma algebra on X ⊂ R

d
= will mean equal in distribution

:= will be used when an object is being defined

L2(Ω) := {f : Ω→ R :

∫
Ω

|f |2dP <∞}

H will be used to denote a Hilbert Space

{·} will be used to denote a set of objects

v



1 Gaussian Processes

Random variables with Gaussian distributions, or Gaussian Random Variables,

are very important in probability theory. Normal random variables and Gaussian

random variables are the same mathematical object, so the terminology may be

used interchangeably in this paper. Many of the aspects of Gaussian Random

Variables are well documented and include, but are not limited to, surprising

results such as The Central Limit Theorem. The definition of this important

category of random variables is as follows:

Definition 1. An n-dimensional random vector X is called Gaussian with

expectation vector m ∈ Rn and a covariance matrix Σ ∈ Rn×n if it has a density

function of:

1

(2π)
n
2

(det Σ)−
1
2 e−

1
2

(x−m)′Σ−1(x−m)for all x ∈ Rn. (1.1)

A Gaussian random vector of dimension one is called a Gaussian Random

Variable. The characteristic function of an n-dimensional Gaussian random

vector is:

φ(t) = E(eixt) = eit
′m− 1

2
(t′Σt), t ∈ Rn. (1.2)

A characteristic function of a random vector is uniquely determined by

its distribution and vice versa, so it is often useful to use characteristic functions

to prove that a random variable is Gaussian. In the Gaussian case the

characteristic function gives us one more bit of useful information. The

characteristic function of a Gaussian random vector is determined by only two

pieces of information, namely the mean vector m and the covariance matrix Σ.

Thus it follows that a Gaussian random vector is uniquely determined by its

mean vector and covariance matrix, which is an indispensable fact. The

definition of a Gaussian Random Process follows naturally from the definition of

1



a Gaussian Random Vector.

Definition 2. A random process {Xn}n∈N is called a Gaussian Random Process

if the joint distribution of every finite collection of marginals is Gaussian.

This paper will be primarily concerned with one specific kind of

Gaussian process, called a Fractional Brownian Motion, but before we define

what a Fractional Brownian Motion is we must first cover a few more

fundamental facts about Gaussian Processes. It follows immediately from the

definition that a single member of a Gaussian Process is a Gaussian Random

Variable. In order to proceed we must define the mean and covariance functions

for a random process, since they play an important part in Gaussian Random

Processes.

Definition 3. For any random process {Xn}n∈N the mean function is a function

µ : N→ R defined as µ(n) = E(Xn) and the covariance function is a function

σ : N× N→ R defined as σ(n, i) = E((Xn − E(Xn))(Xi − E(Xi))).

This definition can be a highly convenient definition to work with. It is

obvious that if the collection of random variables are independent then

σ(n, i) = 0 when n 6= i and σ(n, n) = V ar(Xn). This domain of the mean and

covariance function in the above definition can be generalized to any countable

set of elements, which we will take advantage of below. One of the most

remarkable facts about Gaussian Random Processes is that they are uniquely

determined by their mean and covariance equations. This means that one only

needs two pieces of information to obtain a Gaussian Process, which is an

extremely useful feature of these types of random processes.

Theorem 1.1. Given a function µ : Q→ R and a positive definite function

σ : Q× Q→ R, there exists a Gaussian process {Xq}q∈Q where E(Xq) = µ(q) and

Cov(Xq1 , Xq2) = σ(q1, q2) and this Gaussian process is unique up to distribution.

Proof. We need to define a proper sample space Ω, σ-algebra on Ω, and a

probability measure on Ω. We will start by taking Ω = RQ, the function space

2



from Q to R. Let F be the σ-algebra defined by sets of the type

C = {ω~q ∈ Rn : ωq1 ∈ B1 . . . ωqn ∈ Bn, Bi ∈ B(R)}. The members of this

σ-algebra are typically called “cylinder subsets” of Ω. Define a collection of

probability measures {P~q : Ω→ R, ~q ∈ Qn} by

P~q(C) =

∫
B1,...,Bn

1

(2π)
1
2

(det Σ)−
1
2 e−

1
2

(x−m)′Σ−1(x−m)dx (1.3)

where Σ is an n× n dimensional matrix with components defined by

(Σ)i,j = σ(qi, qj) and m is an n-dimensional vector with components defined by

(m)i = µ(qi).

It can be easily shown that the collection of probability measures {P~q}

follows the consistency conditions needed to invoke the Kolmogorov extension

theorem. By Kolmogorov’s extension theorem there exists a unique infinite

dimensional extension of {P~q} on the probability space (Ω,F ) for which {P~q}

are the marginals. Now define a stochastic process {Xq}q∈Q by setting Xqi = ωqi .

The joint distribution of every finite number of these random variables is given

above by (1.3). Thus this stochastic process is, by definition, Gaussian. As

mentioned above, since multivariate Gaussian random variables are uniquely

determined by their Mean and Covariance matrix, this insures that the

distribution of every linear combination of Xqi ’s is unique, and thus the process

is unique. �

This theorem says that whenever we define a Gaussian process we only

need a mean and covariance function in order to properly do it. For the rest of

this paper we will be working with Gaussian processes, so this theorem will be

used extensively. One famous example of a Gaussian process is a Brownian

Motion.

Definition 4. Consider the campact interval [0, T ]. By Theorem 1.1 construct a

Gaussian process {Btq}tq∈Q∩[0,T ] with

1. E(Btq) = 0

3



2. E(BtqBsq) = min{tq, sq}

3. B0 = 0.

Extend this random process to [0, T ] such that {Bt}t∈[0,T ] is continuous in [0, T ]

with probability one. {Bt}t∈[0,T ] is called a Standard Brownian Motion.

It is not immediately obvious whether or not a continuous extension

exists, but this result is well known[Ste01]. Any Brownian Motion with B0 = 0

can be represented as µt+ σBt where Bt is a standard Brownian Motion, which

is also called a Brownian Motion With Drift(starting at the origin). Brownian

Motion is one of the most extensively studied Gaussian process which manifests

itself in a surprising number of applications. It is fortunate that Brownian

Motion is a useful process, because it also is the easiest Gaussian process to

perform mathematical analysis on. Apparently, every continuous Gaussian

process with stationary and independent increments must be a Brownian Motion.

The useful properties of Brownian Motion are well documented and can fill entire

textbooks, but for the remainder of this paper we will be primarily concerned

with a generalization of Brownian Motion called Fractional Brownian Motion.

2 Fractional Brownian Motion

In applied mathematics one of the most useful properties of Brownian Motion is

its independent increments. However, as is frequently the case, this convenient

property is often the most questionable when Brownian Motion is used in applied

models. Brownian Motion does have useful properties other than independent

increments and it has been used in applied fields to such great success that it

should also not be disregarded simply for this one flaw. Ideally one would desire

to create a class of random processes related to each other in such a manner that

they generalize Brownian Motion in the sense that Brownian Motion is included

in this class of random processes. One such class of random processes that fits

these requirements is the class of Fractional Brownian Motions.

4



Definition 5. Consider the compact interval [0, T ]. Given H ∈ (0, 1) construct a

Gaussian process {BH
tq }tq∈Q∩[0,T ] with

1. E(BH
tq ) = 0

2. E(BH
sqB

H
tq ) =

1

2
(t2Hq + s2H

q − |tq − sq|2H)

3. BH
0 = 0.

Extend this to a Gaussian process {BH
t }t∈[0,T ] such that BH

t is continuous in

[0, T ] with probability one. {BH
t }t∈[0,T ] is a Standard Fractional Brownian

Motion.

As with Brownian Motion, it is not immediately obvious that such a

continuous extension exists, but again this is a well known result[Bia08]. In this

case H is called the Hurst Parameter. Just as with Brownian Motion, general

Fractional Brownian Motions starting at the origin can be represented as shifted

and augmented Standard Fractional Brownian Motions. It immediately follows

from the definition that E(B
1
2
s B

1
2
t ) =

1

2
(t+ s− |t− s|) = min{s, t}. Therefore a

Fractional Brownian Motion with Hurst Parameter H =
1

2
is actually a

Brownian Motion, which is one of desired properties of this class of random

processes. The question of existence will be addressed through a specific

construction during the Main Results Section of this thesis. The next theorem

helps to establish two very important properties of Fractional Brownian Motion.

Theorem 2.1. If {BH
t }t∈[0,T ] is a Standard Fractional Brownian Motion with

Hurst Parameter H then

1. {BH
t }

d
= {a−HBH

at} (Self-Similarity)

2. {BH
t } has stationary increments.

Proof. We prove 1 first. Obviously {a−HBH
at} is a Gaussian process, so by

Theorem 1.1 we only need to prove that the first and second moments of the two

5



processes are the same. It is immediate that, for a fixed t,

E(BH
t ) = 0 = a−HE(BH

at) = E(a−HBH
at), so the only remaining thing to check is

the covariance equation. Indeed, for s 6= t

E(BH
t B

H
s ) =

1

2
(t2H + s2H − |t− s|2H)

=
a−2H

2
((at)2H + (as)2H − |at− as|2H)

= E(a−2HBH
atB

H
as)

which proves the first statement.

The second statement can be proved similarly. Consider arbitrary

finite sets {Bti+1
−Bti}ni=1 and {Bti+1+s −Bti+s}ni=1. Since Fractional Brownian

Motion is a Gaussian Process the joint distribution of these random variables are

Gaussian, so in order to prove stationarity we only need to prove their first and

second moments are the same. Both of these sets obviously have zero mean, so

we only need to prove that the covariance matrices are the same. Assuming

tn ≥ v > u ≥ t > r ≥ t1:

E((Bv −Bu)(Bt −Br)) = (v − t)2H − (u− t)2H + (u− r)2H − (r − v)2H

= (v + k − (t+ k))2H − (u+ k − (t+ k))2H + (u+ k − (r + k))2H − (r + k − (v + k))2H

= E((Bv+s −Bu+s)(Bt+s −Br+s)).

This proves that the covariance matrices of the above random variables are the same, and thus

the increments of Fractional Brownian Motion are stationary. �

This theorem shows that, despite losing independent increments,

moving from Brownian Motion to Fractional Brownian Motion maintains

stationary increments and self similarity. Thus, despite losing some mathematical

convenience, Fractional Brownian Motion still has some nice structure.

Fractional Brownian Motion’s pragmatic use and mathematical structure have

caused it to become a very exciting random process in recent years.

As established above, the important aspect that makes Fractional
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Brownian Motion more pragmatic than a Brownian Motion is that it allows for

some dependency between its increments. The probablistic interpretation of this

aspect of Fractional Brownian Motion is obvious, namely that the results of a

Fractional Brownian Motion during one increment of time will affect how it

moves in future increments of time. This intepretation seems to correspond to

many phenomena we see in many academic subjects, including economics,

finance, and a wide range of physical applications.

Depending on the Hurst Parameter being used, the intervals of

Fractional Brownian Motion can have different kinds of dependency structures.

If H >
1

2
then the Fractional Brownian Motion exhibits what is called long range

dependence, which means that the autocovariance function between increments

decays at a slower-than-exponential rate. For H <
1

2
short range dependence is

exhibited. One can actually perform statistics to figure out, within an error

term, the Hurst parameter of a time series in order to use the most predictive

model. In finance, for example, it has been demonstrated that in many financial

markets the movement across intervals of time can actually exhibit long range

dependence[EHK03].

The main concern of this thesis will be constructing a specific

representation of a Fractional Brownian Motion with H >
1

2
. This will be

achieved by using a specific kernel function(in the sense of a Reproducing Kernel

Hilbert Space) to achieve the desired covariance function for the Fractional

Brownian Motion. We will also be using the Haar Wavelet Basis in [0,1] to

construct the Fractional Brownian Motion, which will be explored in the next

section.

3 Wavelets

Very often doing functional analysis begins with finding an orthonormal basis,

which always exists in a separable Hilbert Space. In this paper we will be

concerned with orthonormal bases in L2[0, T ]. The classical basis for L2[0, T ] is

7



the Fourier basis, fn(x) = einx. The Fourier basis is in L2 and forms a complete

set in the space of finite second moment Lebesgue integrable functions with

domain [0, T ]. The Fourier basis is, for both mathematical and historical reasons,

the first orthonormal basis most students learn.

The Fourier basis is undoubtedly a useful basis, but it also poses a few

problems once one tries to apply the mathematics to real world subjects.

Orthonormal bases in a Hilbert Space are useful because they allow one to

approximate any function in the Hilbert Space with a linear combination of the

basis elements. In the case of the Fourier basis every function f ∈ L2[0, 1] can be

represented as:

f(x) =
∞∑
n=1

(∫ 1

0

f(t)e−in2πtdt

)
ein2πx.

The terms in the parentheses in the above equation are called the

Fourier coefficients and the above equation implies that all one needs in order to

completely define f ∈ L2 is to calculate its Fourier coefficients. The Fourier basis

has been extensively used for signal processing, due to the sinusoidal nature of

its coefficients, and it seems to be well suited to this task. However, the Fourier

coefficients do not exhibit what is called time-localization.

In the language of signal processing, we typically think of a function

meant to model a signal as both a function of frequency and time. The above

Fourier coefficients can be intepreted as an attempt to integrate out the time

variable from the signal function so that one can identify the function using only

the frequency space. What if we want to know how the signal acts as a function

of frequency, but only over a specific time interval? This is where the classic

Fourier coefficients lose a bit of explanatory power since they are not defined

over specific time intervals but rather over the entire time-domain.

As mentioned above, this problem is typically coined as a

time-localization problem. There are easy ways to fix this, and one can even fix

it without leaving the language of Fourier Analysis. Classically this problem has

8



been fixed by introducing what are called window functions, which are shifts of a

compactly supported function that are designed to localize the Fourier

coefficients at predetermined time intervals. However, this approach can be

clunky since the window functions often must be chosen based on the scenario

one is faced with.

One would hope that there is an orthonormal basis in L2[0, T ] that has

the time localization property built into it by design. Wavelet theory is a theory

that is designed partially to address this issue. Wavelet theory is a very broad

theory which will not be explored in this thesis, but if one wants a

comprehensive analysis then one can look in [ID92]. In this paper we will be

using a specific wavelet basis called the Haar wavelet basis.

Definition 6. Define

P (x) :=


1 if 0 ≤ x ≤ 1

2

−1 if
1

2
< x ≤ 1

0 elsewhere

as the Haar Mother Wavelet. For each n ∈ N associate j, k such that n = 2j + k.

The Haar Basis is a sequence {Pn} defined as:

P0(x) :=


1 if 0 ≤ x ≤ 1

0 elsewhere

Pn(x) := 2
j
2P (2jx− k)

=


2
j
2 if

k

2j
≤ x ≤ 1 + 2k

2j+1

−2
j
2 if

1 + 2k

2j+1
< x ≤ 1 + k

2j

0 elsewhere.

(3.4)

This definition is only defined on the domain space [0, 1], but it can be

9



easily extended to any closed bounded interval [0, T ] by simply renormalizing the

mother wavelet. If we assume, for the moment, that the Haar wavelet basis is in

fact a basis in L2[0, T ] then it can be easily seen that the wavelets are only

defined on local portions of [0, T ]. Thus if we use them in a similar manner to

the way the Fourier basis is used in the Fourier coefficients then we have the

desired time-localization property. In order to complete this analysis we must

have the following theorem, the proof of which can be found in [ID92]:

Theorem 3.1. The Haar basis forms a complete orthonormal set in L2[0, 1].

We will be using the Haar Wavelets in our next section as a complete

orthonormal basis in order to construct a version of a Fractional Brownian

Motion. Proving that the proposed random process is in fact a Fractional

Brownian Motion will require invoking Parseval’s identity, so the above theorem

is of the upmost importance to our construction.

4 Reproducing Kernel Hilbert Spaces

In this section we will introduce the basic theory of Reproducing Kernel Hilbert

Spaces. We will not present proofs for some of the preliminary theorems in this

section, they will be used to provide a solid theoretical basis for later in the

section. It turns out that Reproducing Kernel Hilbert Spaces have close

relationships to Gaussian Processes, as we will explore later in this section.

Definition 7. Given a set [0, T ] ⊂ R and a symmetric, positive definite

R : [0, T ]× [0, T ]→ R the unique Hilbert Space H (R) is called a Reproducing

Kernel Hilbert Space with Reproducing Kernel R if

1. R(·, t) ∈H (R)

2. 〈g,R(·, t)〉H (R) = g(t) for every g ∈H (R)

It turns out that every g ∈H (R) can be represented as

g(x) =
N∑
i=1

aiR(x, ti) or the limits of these functions under the norm

10



||g||2 =
N∑

i,j=1

aiR(tj, ti)aj. Note that each member of the RKHS is defined

pointwise. The RKHS for a given symmetric, positive definite function always

exists, is unique defined on [0, T ], and it also has a close relationship to a

Gaussian process with covariance function R, which is seen in the next theorem.

Theorem 4.1. If {Xt}t∈[0,T ] is a real valued Gaussian Process with covariance

function RX and mean function m ∈H (RX) then there exists a map

Φ : H (RX)→ L2(ΩX ,P) which satisfies the following properties for all t ∈ [0, T ]

and g, h ∈H (RX):

1. Φ is linear, one to one, and onto,

2. Φ(RX(·, t)) = X(t), and

3. E (Φ(g)) = 〈m, g〉H (RX), cov (Φ(g),Φ(h))= 〈h, g〉H (RX).

It follows pretty easily from this theorem that cov (X(t),Φ(g)) =

cov (Φ(RX(·, t)),Φ(g)) =〈RX(·, t), g〉 = g(t), so we can immediately characterize

every function in the RKHS by the mapping Φ. For the purpose of this paper we

will be concerned with the RKHS associated with the covariance function of a

Standard Fractional Brownian Motion H (RH) for a fixed H, but we do need

two more elementary results from RKHS theory before we sharpen our focus

back to Fractional Brownian Motion.

Theorem 4.2. If X = {X(t)} is a centered Gaussian Process with covariance

function RX and there exists functions {ft, t ∈ [0, T ]} such that

RX(s, t) =

∫
[0,T ]

fs(x)ft(x)dx then

X(t) =

∫
[0,T ]

ft(x)dBx (4.5)

where Bx is a Standard Brownian Motion on [0, T ].

These fundamental theorems about RKHS’s have more theoretical

forms but since we are concerned with H (RH) and the probability space

11



([0, T ],B([0, T ]),m) the theorems have been tailored for that purpose. By these

previous theorems we want to find a sequence of functions {ft, t ∈ [0, T ]} such

that
1

2
(t2H + s2H − |t− s|2H) =

∫
[0,T ]

fsftdx. In the next lemma we will present a

possible candidate for these ft’s and prove that they satisfy the above

requirements. Before we prove this lemma we need to recall that the Beta

Function is defined as:

β(y, z) :=

∫ 1

0

xy−1(1− x)z−1dx.

Lemma 4.3. Define the two expressions for T ≥ t > s > 0:

KH(t, s) := cHs
1
2
−H
∫ t

s

(u− s)H−
3
2uH−

1
2du (4.6)

cH :=

(
H(2H − 1)

β(2− 2H,H − 1
2
)

) 1
2

. (4.7)

Then, for H >
1

2

1

2
(t2H + s2H − (t− s)2H) =

∫ T

0

1(0,s)(v)KH(s, v)1(0,t)(v)KH(t, v)dv.

Proof.

We will start in our proof with this basic equality:

1

2
(t2H + s2H − (t− s)2H) = H(2H − 1)

∫ s

0

∫ t

0

|r − u|2H−2dudr

Now we will work with |r − u|2H−2, assume, without loss of generality, r > u:

12



(r − u)2H−2 =
(ru)H−

1
2

β(2− 2H,H − 1
2
)

(
(ru)

1
2
−Hβ(2− 2H,H − 1

2
)(r − u)2H−2

)
=

(ru)H−
1
2

β(2− 2H,H − 1
2
)

(
(ru)

1
2
−H(r − u)2H−2

∫ 1

0

(1− x)1−2HxH−
3
2dx

)
=

(ru)H−
1
2

β(2− 2H,H − 1
2
)

(
(r − u)2H−2

∫ ∞
r
u

(zu− r)1−2HzH−
3
2dz

)

=
(ru)H−

1
2

β(2− 2H,H − 1
2
)

(∫ u

0

v1−2H(r − v)H−
3
2 (u− v)H−

3
2dv

)
.

Where in line 3 we did a substitution z =
r

ux
and in line 4 we did the substition

v =
r − zu
1− z

. So, based on the above equation, we have

1

2
(t2H + s2H − (t− s)2H)

=
H(2H − 1)

β(2− 2H,H − 1
2 )

(∫ s

0

∫ t

0

(ru)H−
1
2

(∫ r∧u

0

v1−2H(r − v)H− 3
2 (u− v)H− 3

2 dv

)
drdu

)
= c2H

∫ s

0

v1−2H
∫ s

v

uH−
1
2 (u− v)H− 3

2 du

∫ t

v

rH−
1
2 (r − v)H− 3

2 drdv

=

∫ s

0

KH(s, v)KH(t, v)dv

=

∫ T

0

1(0,s)(v)KH(s, v)1(0,t)(v)KH(t, v)dv.

�

The above lemma and Theorem 4.2 establish that

BH(t) =

∫
[0,T ]

1(0,t)KH(t, x)dBx. (4.8)

Since Brownian Motion is an extensively studied process and KH is a well

defined function we now have a candidate for a new representation of a

Fractional Brownian Motion. Using the Haar Wavelets introduced in Section 3 it
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is well known that a Standard Brownian Motion has the representation

B(t) =
∞∑
n=0

Zn

∫
[0,T ]

1(0,t)Pn(x)dx

where {Zn}n∈N is a sequence of independent identically distributed standard

normal random variables. If we take an intuitive approach then we can

informally guess from this well known representation that dBx ≈
∞∑
n=0

ZnPn(x)dx

and thus plugging this into (4.8) we get the equation

BH(t) ≈
∞∑
n=0

Zn

∫
[0,T ]

1(0,t)KH(t, x)Pn(x)dx.

Thus, while plenty remains to be proven, we know have a solid candidate for a

wavelet construction of a Fractional Brownian Motion. In the next section we

will prove a few facts about this random variable.

5 A Construction of a Fractional Brownian Motion

In this section we will present a construction of Fractional Brownian Motion by

using the KH functions introduced in Section 4, wavelets, and standard normal

random variables. Before we introduce the construction we must prove a fact

about normal random variables that we will need to use later. The following

lemma and proof was inspired by a similar proof in [Ste01].

Lemma 5.1. If {Zn : n ∈ N, n ≥ 0} is a sequence of independent standard

normal random variables then there exists a random variable X(ω) such that

|Zn| ≤ X(ω)
√

log(n+ 2)

P(X(ω) <∞) = 1.

14



Proof. For x ≥ 1,

P(|Zn| ≥ x) =
2√
2π

∫ ∞
x

e
−u2
2 du

≤ 2√
2π

∫ ∞
x

ue
−u2
2 du

= e
−x
2

2√
2π.

If we choose x =
√

2α log(n+ 2) where α > 2 and n ≥ 0 then

P
(
|Zn| ≥

√
2α log(n+ 2)

)
≤ exp (−α log(n+ 2))

= (
√
n+ 2)−α.

By the Borel Cantelli Lemma this implies

P(|Zn| ≥
√

2α log(n+ 2) infinitely often) = 0.

This implies that the random variable X(ω) = sup
n≥0

|Zn|√
log(n+ 2)

is finite with

probability 1 and |Zn| ≤ X(ω)
√

log(n+ 2).

�

Recalling the definition of the Haar wavelet basis we gave in Section 3

we can state the next useful lemma:

Lemma 5.2. Let H1 = L2(Ω,F ,P) be a mean zero Gaussian space. Assume

{Zn : n ≥ 0} is an orthonormal basis of standard normal random variables.

{Zn(ω)Pk(x)}n,k∈N forms an orthonormal basis in the space L2(Ω× [0, T ]).

This is a fairly elementary result that can be found in textbooks on

Hilbert Space theory so we will not prove it in this paper. The next theorem is

the main result of the paper and presents a construction of a Fractional

Brownian Motion with H >
1

2
using the Haar Wavelets. It is proven that the

15



construction is a Gaussian Process with the correct mean and covariance

equation, but continuity is still an open question. A method for proving

continuity of the process will be presented as well. It should be noticed that the

domain space of the Haar functions introduced in Section 3 is [0, 1], so for

convenience we will only consider the parameter space [0, 1] in our construction.

If one wants to generalize this construction to all intervals of the form [0, T ] then

the only requirement is to modify the Haar functions to be be an orthonormal

basis on [0, T ].

Theorem 5.3. Take {Zn : n ≥ 0} to be an orthonormal basis in H1, then the

random process {BH(t)}t∈[0,1] defined by:

BH(t) :=
∞∑
n=0

Zn

∫ 1

0

1(0,t)(x)KH(t, x)Pn(x)dx (5.9)

is a Fractional Brownian Motion when 1 > H >
1

2
.

Sketch of Proof.

The first fact we need to prove is that this process is, in fact, Gaussian

with the proper mean and covariance matrices. If we consider a finite collection

{BH
tj
}mj=0 with 0 ≤ t1 < t2 < ... < tm ≤ 1 then we have

E(exp(i
m∑
j=0

hjB
H
tj

))

= lim
m→∞

m∏
n=0

E

(
exp(iZn

m∑
j=1

hj

∫ 1

0

1(0,tj)KH(tj, x)Pn(x)dx)

)

=
∞∏
n=0

exp

−1

2

(
m∑
j=1

hj

∫ 1

0

1(0,tj)KH(tj, x)Pn(x)dx

)2


= exp

(
−1

2

m∑
j=1

m∑
i=1

hjhi

∞∑
n=0

∫ 1

0

1(0,tj)KH(tj, x)Pn(x)dx

∫ 1

0

1(0,ti)KH(ti, x)Pn(x)dx

)
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where in the 2nd line we exploited the independence of the Zn’s and use the

dominated convergence theorem to bring the limit out of the expectation and in

line 3 we used the definition of the characteristic function for a Gaussian

Random Variable. It follows from the fact that the Haar wavelets are an

orthonormal basis in [0,1], Pareseval’s identity, and Lemma 4.3 that

∞∑
n=0

∫ 1

0

1(0,tj)KH(tj, x)Pn(x)dx

∫ 1

0

1(0,ti)KH(ti, x)Pn(x)dx

=

∫ 1

0

1(0,tj)KH(tj, x)1(0,ti)KH(ti, x)dx

=
1

2
(t2Hi + t2Hj − |ti − tj|2H)

Thus the above expression becomes:

exp

(
−1

2

m∑
j=1

m∑
i=1

hjhi
1

2
(t2Hi + t2Hj − |ti − tj|2H)

)
.

This is the characteristic function of a Gaussian random vector with zero mean

covariance function
1

2
(t2H + s2H − |t− s|2H), thus proving that {BH

tj
} is Gaussian

with the desired mean vector and covariance matrix. This implies that every

finite collection of {BH
t }t∈[0,1] is Gaussian with the desired mean vector and

covariance matrix, so BH
t is equal, up to finite dimensional distributions, to a

Fractional Brownian Motion. The only fact left to prove is that the paths of BH
t

are continuous with probability one. We were not able to rigorously prove this

fact, but we do have a technique for proving it and the way to turn this technique

into a formal proof will be addressed at the bottom of this section. For the next

few lines please note that an alternate definition for the Haar Wavelets would be

Pn(x) = 2
j
2 (1( k

2j
, 1+2k

2j+1 ) − 1( 1+2k

2j+1 ,
k+1

2j
)) (5.10)

where, as usual, n = 2j + k. From Lemma 5.1 and this alternate definition we
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can say that:

∞∑
n=0

∣∣∣∣Zn ∫ 1

0

1(0,t)(x)KH(t, x)Pn(x)

∣∣∣∣ dx
≤ X(ω)

∞∑
j=0

2j−1∑
k=0

log(2j + k + 2)

∣∣∣∣∫ 1

0

1(0,t)(x)KH(t, x)P2j+k(x)dx

∣∣∣∣
= X(ω)

∞∑
j=0

2j−1∑
k=0

log(2j + k + 2)

2
j
2

∣∣∣∣∫ t

0

(
1( k

2j
, 1+2k

2j+1 ) − 1( 1+2k

2j+1 ,
k+1

2j
)

)
KH(t, x)dx

∣∣∣∣
Since KH is continuous for all x ∈ (0, 1], it is uniformly continuous on [ρj, 1],

where 1 > ρj > 0. Choose ρj < t. Thus for a ∈ [ρj, 1] and for every ε > 0 there

exists a δ > 0 such that whenever x ∈ (a− δ, a+ δ) that implies

KH(t, x) ∈ (KH(t, a)− ε,KH(t, a) + ε). Thus if we choose ε arbitrarily and a

J ∈ N such that 2−J < δ(ε) then we have:

X(ω)

∞∑
j=J

2j−1∑
k=0

log(2j + k + 2)

∣∣∣∣2 j
2

∫ t

0

(
1
( k
2j
, 1+2k

2j+1 )
− 1

( 1+2k

2j+1 ,
k+1

2j
)

)
KH(t, x)dx

∣∣∣∣
= X(ω)

∞∑
j=J

2j−1∑
k=0

log(2j + k + 2)

∣∣∣∣∣2 j
2

∫ t

ρj

(
1
( k
2j
, 1+2k

2j+1 )
− 1

( 1+2k

2j+1 ,
k+1

2j
)

)
KH(t, x)dx+

∫ ρj

0
1(0,t)KH(t, x)P2j+kdx

∣∣∣∣∣
≤ X(ω)

∞∑
j=J

2j−1∑
k=0

log(2j + k + 2)

∣∣∣∣∣2 j
2

∫ t

ρj

1
( k
2j
, 1+2k

2j+1 )
(KH(t,

1 + 2k

2j+1
)dx+ ε)− 1

( 1+2k

2j+1 ,
k+1

2j
)
(KH(t,

1 + 2k

2j+1
)− ε)dx+

∫ ρj

0
1(0,t)KH(t, x)P2j+kdx

∣∣∣∣∣
≤ X(ω)

∞∑
j=J

2j−1∑
k=0

log(2j + k + 2)

∣∣∣∣∣KH(t,
1 + 2k

2j+1
)

∫ 1

ρj

1(0,t)P2j+kdx+ 2ε2
j
2

∫ 1

ρj

1(0,t)1( k
2j
, 1+k

2j
)
dx+

∫ ρj

0
1(0,t)KH(t, x)P2j+kdx

∣∣∣∣∣
For 2j + k ∈ [2j, 2j+1] we can say log(2j + k + 2) ≤ j + 3 so the above sum can

be bounded by

X(ω)

∞∑
j=J

(j + 3) (5.11)

2j−1∑
k=0

∣∣∣∣∣KH(t,
1 + 2k

2j+1
)

∫ 1

ρj

1(0,t)P2j+kdx+ 2ε

∫ 1

ρj

1(0,t)1( k

2j
, 1+k

2j
)dx+

∫ ρj

0

1(0,t)KH(t, x)P2j+kdx

∣∣∣∣∣
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Thanks to the canceling nature of the Haar Wavelets, the first sum

converges for any choice of ρj. We can choose ρj such that the third sum

converges. However, there is a problem in the second sum since ε is fixed for each

j, k, and thus that infinite sum actually diverges. In order to get convergence of

the third sum we need for ε to depend on j. If we go back to the choice of our ε

this means that we need to actually make the δ depend on j and derive the

appropriate ε based on this choice of δ. Since we are working on dyadic intervals

the first possible choice of δj is fairly natural, namely δj = 2−j. With this choice

of δj it also seems reasonable that the choice of εj would be

εj = max
k≤2j

max
x∈( k

2j
, k+1

2j
)
{KH(t, x)} −min

k≤2j
min

x∈( k
2j
, k+1

2j
)
{KH(t, x)}. We can find epsilon by

bounding the derivative, but since the derivative becomes infinite at zero this

means that the convergence of the middle sum will depend on the choice of ρj.

We could fix ρ so it does not depend on j and then the middle sum will behave

nicely, but then one must use the cancellation property of the Haar Wavelets to

bound the final sum and we have not discovered how to take advantage of this

yet. This completes the sketch of the proof.

With a little inspection one can notice that the above representation

can be extended to the H =
1

2
(Brownian Motion) case simply by setting

K 1
2
(t, s) = 1. If we do this and follow the steps in Lemma 4.4 in the exact same

manner we get

∫ T

0

1(0,s)(x)1(0,t)(x)dx = min{s, t}, which is the covariance

function of a Brownian Motion. Thus by using K 1
2

= 1 in (5.9) we have a natural

extension of our construction to the Brownian Motion case. Continuity has also

been established for the H =
1

2
case, so we can say that this representation truly

works for H =
1

2
.

6 Conclusion

The core of the construction presented in the previous section is the function

KH . For H ≥ 1

2
we have now shown that (5.9) is a good candidate for being a

Fractional Brownian Motion, but we would like to extend this construction to
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H <
1

2
if possible. While we do not present this extension in this thesis, the

intuition that provided the above construction might be implemented to come up

with a construction for H <
1

2
.

As mentioned in Section 4, the intuition behind using the KH for the

representation (5.9), which comes from the theory of Reproducing Kernel Hilbert

Spaces, is that KH satisfies the equation

RH =

∫
[0,T ]

1(0,s)(v)1(0,t)(v)KH(s, v)KH(t, v)dv (6.12)

for H >
1

2
. Analogously, if one could find a KH that would satisfy the above

equation for H <
1

2
then the resulting equation might help to extend (5.9) to a

well defined BH for all H ∈ (0, 1).

It turns out that

KH(t, s) = bH

[(
t

s

)H− 1
2

−
(
H − 1

2

)
s

1
2
−H
∫ t

s

(u− s)H−
1
2uH−

3
2du

]
(6.13)

with bH =

√
2H

(1− 2H)β(1− 2H,H + 1
2
)

satisfies the equation (6.12) for H <
1

2
.

For a full proof of this fact one can look at [DU99]. While much remains to be

justified, we conjecture that Theorem 5.3 might be extended to H <
1

2
by using

(6.13).
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