
University of Alabama at Birmingham University of Alabama at Birmingham

UAB Digital Commons UAB Digital Commons

All ETDs from UAB UAB Theses & Dissertations

2016

Human-Machine and Human-Human Authentication Through Human-Machine and Human-Human Authentication Through

Active User Interaction Active User Interaction

Manar Mohamed
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

 Part of the Arts and Humanities Commons

Recommended Citation Recommended Citation
Mohamed, Manar, "Human-Machine and Human-Human Authentication Through Active User Interaction"
(2016). All ETDs from UAB. 2490.
https://digitalcommons.library.uab.edu/etd-collection/2490

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/438?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/2490?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

HUMAN-MACHINE AND HUMAN-HUMAN AUTHENTICATION THROUGH ACTIVE

USER INTERACTION

by

MANAR MOHAMED

NITESH SAXENA, COMMITTEE CHAIR

NICOLAS CHRISTIN

SOPHIE JOERG

ALAN P SPRAGUE

CHENGCUI ZHANG

A DISSERTATION

Submitted to the graduate faculty of The University of Alabama at Birmingham,
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

BIRMINGHAM, ALABAMA

2016

c© Copyright by

Manar Mohamed

2016

HUMAN-MACHINE AND HUMAN-HUMAN AUTHENTICATION THROUGH ACTIVE
USER INTERACTION

MANAR MOHAMED

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

ABSTRACT

Authentication is a fundamental security component of various critical applications. It is

essential to differentiate a human user from a bot (human-machine authentication) to prevent

against automated mechanisms that attack and abuse the resources of an online entity. Authenti-

cation is also essential to differentiate one human user from another (human-human authentica-

tion) to securely control the access of online accounts and computer terminals. Unfortunately,

the security and usability requirements of authentication have not been adequately addressed.

The current and almost universally deployed techniques, CAPTCHAs for human-machine au-

thentication, and passwords or biometrics for human-human authentication, all suffer from nu-

merous well-documented usability and security drawbacks.

In this research, we aim to address the security and usability problems of authentication

through the use of active user interaction in the authentication process. Active user interaction

boasts to provide two key advantages. First, it can enhance the security of the authentication

process by adopting multiple rounds of active interactions which serves as a mechanism to

prevent against several types of attacks, including replay, spoofing and relay attacks. Second,

it can enhance the usability of the authentication process by actively engaging the user and

eliminating the need for highly distorted characters/images commonly used in most currently-

deployed CAPTCHAs, which users may find frustrating.

The contribution of this dissertation lies in the realization of interaction-enhanced security

approaches that may help in addressing the aforementioned shortcomings with current authenti-

cation technologies. In the context of human-machine authentication, we investigate interactive

CAPTCHAs. These represent interactive games that are easy for the humans, but may be hard

for a computer, to play successfully. Unlike existing solutions, interactive CAPTCHAs may be

easy, fun, suitable for mobile devices, and resilient to both automated and human-solver relay

attacks (due to their dynamic & interactive nature). First, we explore a simplistic form of interac-

tive CAPTCHAs (simple moving-object drag and drop games) and conduct human factor studies

iii

to evaluate their usability and security against automated and relay attacks. The results show that

the developed CAPTCHAs are highly usable and can offer some resilience against relay attacks

and facilitate relay attack detection. However, these CAPTCHAs were also found to be vulner-

able to different forms of automated attacks based on image processing techniques. Second, we

study multiple methods to enhance the security of the proposed interactive CAPTCHAs with-

out undermining their usability and resistance to relay attacks. These include incorporating the

notions of emergence, image semantics and image orientation, and combinations thereof.

In the realm of human-human authentication, we introduce interactive biometrics based

on game playing patterns and multi-modal behavioral features. As opposed to most existing

biometric systems, game biometrics are software-only, non-invasive and potentially very diffi-

cult to impersonate. We design and implement an interactive biometrics system based on simple

drag and drop games to capture the unique user interactions. Our system is built using machine

learning techniques and extracts a number features from each game challenge solving instance

that capture the multiple unique cognitive abilities and the mouse dynamics of the users. We

collect data sets in online and lab settings, and show that our system can identify the legitimate

users and the zero-effort attackers (“different users”) with a high accuracy. We evaluate the

security of the proposed game biometrics system against external attacks (e.g., device theft) as

well as against a new powerful internal attack framework (malicious code) that can sniff and

manipulate touchscreen events. Our analysis suggests that the proposed system can be resistant

to these attacks unlike other existing behavioral biometrics schemes.

Keywords: Authentication; CAPTCHAs; Biometrics; Usability; Interaction

iv

DEDICATION

I dedicate this work to my late father, who passed away while I am far away from him busy with

this work, may God bless him.

v

ACKNOWLEDGMENT

I am grateful to my supervisor, Professor Nitesh Saxena, for his invaluable guidance, encour-

agement and support throughout my studies. I owe him great debt for everything I learned in

the past few years.

I have also had a great pleasure to work with Professor Chengcui Zhang. A significant

portion of the work is from joint publication with her. I am also thankful for my other committee

members: Professor Nicolas Christin, Professor Sophie Joerg, and Professor Alan Sprague.

Moreover, I am glad to work with Professor Ponnurangam Kumaraguru, Professor Paul C.

Van Oorschot, Anders Borg, Wei-Bang Chen, Song Gao, Michael Georgescu, Eric M Lienert,

Niharika Sachdeva, Babins Shrestha, Prakash Shrestha and Sandeep Tamrakar.

I am also grateful for many friends and colleagues for their support and comradeship; es-

pecially Abhishek Anand, Nardeen Farag, Md Mahmoud Hossain, Mohammad Kamrul Islam,

Rasib Khan, Suraj Maharjan, Fadel Megahed, Reed M Milewicz, Dibya Mukhopadhyay, Ajaya

Neupane, Shaahid Noor, Maliheh Shirvanian, Prasha Shrestha, Vinaya Shrestha, Shams Zawoad

and all current and former members in the Department of Computer and Information Sciences

at University of Alabama at Birmingham

I acknowledge the financial support by Comcast, Google and National Science Foundation

(NSF).

Finally, I would like to express my deepest gratitude for constant support and encourage-

ment from my parents, sister and brothers during the past years.

vi

TABLE OF CONTENTS

ABSTRACT . iii

DEDICATION . v

ACKNOWLEDGMENT . vi

LIST OF TABLES . xi

LIST OF FIGURES . xiii

1. INTRODUCTION . 1
1.1 Limitations of Current Authentication Systems 1
1.2 How Interactivity Can Help? . 2
1.3 Thesis Statement & Main Contributions . 4

1.3.1 Human-Machine Authentication . 4
1.3.2 Human-Human Authentication . 6

1.4 List of Publications . 7

2. BACKGROUND . 10
2.1 Human-Machine Authentication . 10
2.2 Human-Human Authentication . 12
2.3 Threat Model and Design Choices . 15

3. SIMPLE-DYNAMIC COGNITIVE GAME CAPTCHA (S-DCG) 18
3.1 S-DCG Design & Implementation . 19

3.1.1 S-DCG Design Choices . 19
3.1.2 S-DCG CAPTCHA Instances and Prototypes 20

3.2 Usability . 22
3.2.1 Study Design, Goals, and Process . 22
3.2.2 Study Results . 24

3.2.2.1 Lab-based Usability Study 24
3.2.2.2 MTurk Usability Study . 26
3.2.2.3 Mobile-based Usability Study 27
3.2.2.4 User Experience of the Three Studies 27

3.2.3 Summary of Usability Analysis: . 27
3.3 Automated Attacks . 28

3.3.1 Random Guessing Attack . 28
3.3.2 Our Automated Attack and Results 29
3.3.3 Discussion and Summary . 36

3.4 Relay Attacks . 38
3.4.1 Difficulty of Relaying S-DCG CAPTCHAs 38
3.4.2 Reaction Time Static Relay Experiment 40

3.4.2.1 Static Relay Attack User Study 42
3.4.2.2 Study Design, Goals and Process 42

vii

3.4.2.3 Study Results . 43
3.4.3 Stream Relay Attack . 45
3.4.4 Virtual Network Computing (VNC) Overview 46

3.4.4.1 Study Design, Goal and Process 47
3.4.4.2 Study Results . 48
3.4.4.3 Stream Relay Attack Detection 50

3.5 Hybrid Attack . 57
3.5.1 Auto-attack with offline learning . 57
3.5.2 Auto-attack with online learning . 59
3.5.3 Hybrid Attack Usability Study . 60

3.5.3.1 Study Design, Goal and Process 60
3.5.3.2 Study Results . 60

3.6 Conclusions . 62

4. SECURITY ENHANCED DCG CAPTCHAs . 63
4.1 Preliminary Work . 63
4.2 Emerging Image based DCG CAPTCHA (EI-DCG) 65
4.3 DESIGN & IMPLEMENTATION . 66

4.3.1 Design Overview . 66
4.3.2 EI-DCG Configuration Levels . 68

4.4 Automated Attack Resistance . 68
4.5 Usability . 71

4.5.1 Study Design . 72
4.5.2 Study Results . 72

4.5.2.1 Solving time . 72
4.5.2.2 Error Rate . 74
4.5.2.3 User Experience (SUS Scores) 74

4.5.3 Summary of Results . 75
4.6 Security Against Relay Attack . 75

4.6.1 Study Design . 76
4.6.2 Study Results . 76
4.6.3 Relay Attack Detection . 77
4.6.4 Summary of Results . 79

4.7 Conclusions . 80

5. CAPTCHA FUSION TO DEFEAT AUTOMATED AND HUMAN ATTACKS . . 82
5.1 Background . 83

5.1.1 Utilized CAPTCHA Designs . 83
5.1.2 Vulnerabilities of the Three Designs 84
5.1.3 Why Mix DCG? . 86

5.2 Design and Implementation . 86
5.2.1 Mix DCG Design . 86
5.2.2 Mix DCG Implementation . 87

5.3 Security Against Automated Attacks . 89
5.4 Usability . 90

5.4.1 Study Design . 91
5.4.2 Study Results . 92

viii

5.4.2.1 Error Rate . 93
5.4.2.2 User Experience . 94
5.4.2.3 Solving Time . 94
5.4.2.4 Learnability . 95

5.4.3 Summary of Results . 96
5.5 Security Against Relay Attacks . 96

5.5.1 Study Design . 97
5.5.2 Study Results . 98

5.5.2.1 Error Rate . 98
5.5.2.2 Solving Time . 99

5.5.3 Relay Attack Detection . 99
5.5.4 Summary of Results . 100

5.6 Discussion . 100
5.7 Conclusion . 104

6. SMASHED: SNIFFING AND MANIPULATING ANDROID SENSOR DATA . 105
6.1 Background: Android Sensor Security Model 105
6.2 Smashed Design, Implementation and Threat Model 107

6.2.1 Design Overview . 107
6.2.2 SMASheD Server . 109
6.2.3 Scripts . 111
6.2.4 SMASheD App . 112
6.2.5 Threat Model . 112
6.2.6 SMASheD Advantages . 113

6.3 Key Logger . 114
6.4 Attacks Using Smashed . 116

6.4.1 Overview of Attacks and Attack Presentation 116
6.4.2 Sniffing Touchscreen Input (Touchlogger) 116
6.4.3 Manipulating Touchscreen Sensor . 118

6.4.3.1 Data Exfiltration . 119
6.4.3.2 Phone Unlock . 119
6.4.3.3 Accessing User Accounts 120
6.4.3.4 Attacking Biometric Authentication 120

6.4.4 Manipulating Other Sensors . 123
6.5 Smashed Mitigation . 124
6.6 Conclusion . 125

7. STRONG BEHAVIORAL AUTHENTICATION WITH SIMPLE COGNITIVE
GAMES . 126
7.1 Cognitive Task . 127

7.1.1 Cognitive Task Design . 127
7.1.2 Cognitive Task Implementation . 127

7.2 Data Collection . 129
7.3 System Design & Results . 131

7.3.1 Feature Extraction . 132
7.3.2 Classifier and Metrics . 134
7.3.3 Classification Models & Feature Selection 135

ix

7.3.4 Classification Results . 136
7.3.5 Summary of Results . 138

7.4 Impersonation Attack . 138
7.5 Mobile Study . 141
7.6 Discussion . 143
7.7 Conclusion . 144

8. CONCLUSIONS AND FUTURE WORKS . 145
8.1 Human-Machine Authentication . 145
8.2 Human-Human Authentication . 146

LIST OF REFERENCES . 148

APPENDIX: IRB APPROVAL . 158

x

LIST OF TABLES

2.1 Relay Attacks Against Various Types of CAPTCHAs 12

3.1 Demographics of Participants in the Usability, Relay Attacks and Hybrid Attack
Studies . 23

3.2 Drag Error Rates and Completion Time Lab Usability Study (Overall Error Rate=0) 24
3.3 Drag Error Rates and Completion Time per Object Speeds (Overall Error Rate=0) 25
3.4 Drag Error Rates and Completion Time per # of Objects (Overall Error Rate=0) 25
3.5 Drag Error Rates, Game Error Rate and Completion Time MTurk Usability Study 26
3.6 Drag Error Rates and Completion Time Mobile-based Usability Study (Overall

Error Rate=0) . 27
3.7 Error Rates and Completion Time Static Relay Attack 44
3.8 Reaction Times per Game Type . 45
3.9 Completion Times, and Error Rates in Stream Relay Attack Scenarios 49
3.10 Class Distribution of Non-Timeout Users . 52
3.11 Results of Using the Optimal Feature Subset for Each Game in the Classification

of Legitimate User and LSHL Relay Attacker 53
3.12 Results of Using the Common Optimal General Feature Subset for All Games

in the Classification of Legitimate User and LSHL Relay Attacker 53
3.13 Classification Results of Using the Optimal Feature Subset for Each Game in

the Classification of Small Game Relay Attackers Using the Original Model . . 54
3.14 Results of Using the Common Optimal Feature Subset for All Games in the

Classification of Small Game Relay Attackers Using the Original Model (Park-
ing Game Should be Discarded) . 54

3.15 Results of Using Feature ‘6’ for All Games in the Classification of Small Game
Relay Attackers Using the Original Model (Parking Game Should be Discarded) 55

3.16 Results of Using the Optimal Feature Subset for Each Game in the Classification
of Legitimate User and Small Game Relay Attacker 55

3.17 Results of Using the Optimal Feature Subset for Each Game in the Classification
of Legitimate User and HSLL Relay Attacker 56

3.18 Results of Using the Optimal Feature Subset for Each Game in the Classification
of HSLL Relay Attackers Using the Original Model 56

3.19 Results of Using the Optimal Feature Subset for Each Game in Classification of
Legitimate User and (LSHL, HSLL and Small Game) Relay Attacker 57

3.20 Drag Error Rates, Game Error Rate and Completion Time Hybrid Attack 61

4.1 Parameter Settings for the Density-Based Automated Attack 70
4.2 Demographics of Participants in the Usability and Relay Attack studies 73
4.3 The Solving Time, Error Rate, Number of Drags, Number of Attempts and SUS

Scores for the Usability Study . 73
4.4 The Solving Time, Error Rate, Number of Drags, and Number of Attempts for

the LSHL and HSLL Streaming-Based Relay Attack Studies on EI-DCG 76
4.5 Results of Using the Optimal Feature Subset for Each EI-DCG Game in the

Classification of Legitimate User and HSLL Streaming-Based Relay Attacker . 79

xi

5.1 Participant Demographics in Our Different User Studies 92
5.2 Web-Based Usability Study Quantitative Results 93
5.3 Mobile-Based Usability Study Quantitative Results 93
5.4 User Experience Results . 94
5.5 Comparing the user performance in solving the first and last challenges 96
5.6 Relay Attack Study Results (HSLL setting). None of the participants in the

LSHL succeeded in solving any of the challenges. 98
5.7 Security of Various Categories of CAPTCHAs, Relevant to This Chapter, against

Different Forms of CAPTCHA Attacks. 101

7.1 Summary of the Collected Data Sets . 130
7.2 Participants Demographics . 131
7.3 The Features Utilized for Classification . 132
7.4 MTurk Study Results: Performance for the classifier for three different classifi-

cation models. 134
7.5 Lab-Based Study Results: Performance for the classifier for three different clas-

sification models. 136
7.6 Shoulder-Surfing Impersonation Attack Results 138
7.7 Mobile-Based Study Results . 142

xii

LIST OF FIGURES

3.1 Static Snapshots of 4 Game Instances of a Representative S-DCG CAPTCHA. . 21
3.2 Detected Backgrounds. 31
3.3 Target Detection. 33
3.4 Eight Sub-Areas Generated According to Moving Area of Foreground Objects. 33
3.5 Comparison of the Target Area Center Detection Results between the MBR-

Based and the Edge-Based Methods. 35
3.6 User Interface Implementing the Reaction Time Relay Experiment (95 Repre-

sents the User ID. 41
3.7 Human-Solver Gameplay in a Stream Relay Attack. 46
3.8 Hybrid Attack Model I: Auto-Attack with Offline Human Learning 58
3.9 Hybrid Attack Model II: Auto-Attack with Online Human Learning 59

4.1 The Proposed New Instances of DCG CAPTCHAs 64
4.2 Generating an EI-DCG CAPTCHA Frame . 66
4.3 (a-c) Top: Single Binary Mask, Superimposition of 3 Consecutive Binary Masks,

and Binary Mask of Frequency Map with Pixels Having the Highest Possible
Frequency (i.e., 3) Shown as White. Bottom: Density Matrix with Grid Interval
as 40 Pixels. The Red and Blue Dots Indicate Local Density Peaks and Valleys,
Respectively. 69

4.4 Success Rate and Number of Drag-And-Drops in Density-Based Automated At-
tack with ≤50 Drag-And-Drops for Each Attack. 71

5.1 A Snapshot of What’s up CAPTCHA [1]. 84
5.2 A Snapshot of SEMAGE [2]. 84
5.3 Mix DCG Sample Instances. 88

6.1 The Architecture of SMASheD . 109

7.1 Gametrics Challenges Instances. 128
7.2 An Example for Illustration of Different Cognitive Characteristics among Dif-

ferent Users While Playing the Game Challenges 132
7.3 The Pattern Lock Used in Our Study . 141

xiii

CHAPTER 1

INTRODUCTION

Authentication is a fundamental security component of many critical applications. It is essential

to differentiate a human user from a bot (human-machine authentication) to prevent against

automated mechanisms that attack and abuse the resources of an online entity. Authentication

is also essential to differentiate one human user from another (human-human authentication) to

securely control access online accounts and computer terminals.

Unfortunately, the security and usability requirements of authentication have not been ad-

equately addressed. The current, almost universally deployed techniques, CAPTCHAs for

human-machine authentication, and passwords or biometrics for human-human authentication,

all suffer from numerous well-documented usability and security drawbacks. For example, most

existing CAPTCHAs are often very difficult for human users to solve, and can be broken using

automated attacks or relay attacks based on cheap human labor. Similarly, passwords are only

weak secrets prone to guessing and brute forcing attacks of different forms, and most existing

biometrics are often deemed invasive by users, have high error rates and are susceptible to replay

and spoofing attacks.

This work aims to address the problem of authentication through the use of active user

interaction in the authentication process. Active user interaction boasts to provide two key ad-

vantages. First, it can enhance the security of the authenticating process as multiple rounds of

active interaction would serve as a mechanism to prevent against several types of attacks, includ-

ing replay, spoofing and relay attacks. Second, it can enhance the usability of the authentication

process by actively engaging the user in the process, and eliminating the need for highly dis-

torted characters/images commonly used in most currently-deployed CAPTCHAs, which users

may find frustrating.

1.1 Limitations of Current Authentication Systems

The abuse of the resources of an online (web) service using automated means, such as in the form

of spam [3], denial-of-service (DoS) [4] or password dictionary attacks [5], is a common security

1

problem plaguing today’s Internet. To prevent such abuse, one primary defense is a CAPTCHA

[6], commonly deployed on most websites these days. A CAPTCHA is a tool for human-

machine authentication, to distinguish between a human user and a computer by presenting

requesters with a task that is relatively easy for a human but much harder for a computer. This

most often takes the form of a word or phrase that has been obscured or distorted. Such textual

CAPTCHAs, however, exhibit poor usability and often cause user frustration [7, 8] (more so

in the context of mobile devices [9] due to their small form factor). Alternate CAPTCHAs

aimed at improving the usability, in contrast, have been subject to several automated attacks.

Furthermore, most, if not all, traditional CAPTCHAs are completely vulnerable to low-cost

human-solver relay attacks [10], whereby the attacker simply recruits a remote human to solve

the CAPTCHA challenge in real-time. These limitations with existing CAPTCHAs are reviewed

in Section 2.1.

User authentication (i.e., human-human authentication) is a classical and one of the most

important problems in security. The problem occurs whenever a user, wanting access to a com-

puting device (remote or otherwise), has to prove to the device her possession or ownership

of certain credentials, that she has pre-established with that device. The primary goal of user

authentication is to ascertain that only a legitimate user, possessing appropriate credentials, is

granted access. The increasing popularity of personal devices and Internet websites, and the

sensitivity of information they often store, prompts the need for usable authentication mecha-

nisms. However, user authentication still remains to be a challenging problem in practice, with

none of the existing authentication primitives providing a good balance between the conflicting

requirements of usability and security. In particular, passwords are the most dominant authenti-

cation approach deployed today, but suffer from many well-documented security and usability

problems. Traditional biometric systems often have high error rates, susceptible to imperson-

ation or spoofing attacks, may require additional hardware, and are deemed invasive by many

users. We review the limitations of prior user authentication technologies in Section 2.2.

1.2 How Interactivity Can Help?

Active interaction boasts to provide significant advantages in terms of security and usability of

the authentication process. First, it can significantly help improve the security of authentication

2

in comparison to existing solutions. In case of human-machine authentication, the requirement

for multiple interactions between the CAPTCHA and the user may help in preventing and/or

detecting relay attacks. Moreover, the interactive mechanisms do not need to be based solely

on the complexity of image segmentation and recognition of distorted objects as in conventional

text CAPTCHAs, but on object recognition over wide variety of objects and on finding semantic

relationships between the objects. This would add complexity in terms of implementing bots to

solve the CAPTCHA automatically.

In case of human-human authentication, the active user interaction may be utilized as a be-

havioral biometrics [11, 12] as this interaction could be unique per user. Adding this biometrics

to the process of password entry may further help in preventing impersonation/spoofing attacks

as it can serve as a second factor in the authentication process (the attacker should not only know

the victim’s password to bypass the authentication mechanism but also need to mimic the user

interactions with the authentication object). Moreover, by using authentication methods that

contain moving objects or objects that are placed at random locations (i.e., the characters are

placed randomly on the screen), this randomization may serve as a defense against side-channel

attacks, (i.e., attacks that try to deduce the entered password based on the locations the user has

pressed on the screen), replay attacks and spoofing attacks.

Second, engaging the user in the authentication process via interactivity may enhance the

system usability and user experience. Giving instant feedback to the users and eliminating

objects distortion may help in reducing the error rate of CAPTCHA solving. The engagement

may also improve the user perception of the CAPTCHA and makes CAPTCHA solving a fun

activity rather than a frustrating task. Moreover, interactive solutions will be more suitable for

small touchscreen devices, where reading/entering text might be challenging.

3

1.3 Thesis Statement & Main Contributions

Our thesis is that active user interaction, utilizing multiple rounds of interaction between

the user and the authentication constructs represented as simple drag and drop games, can

help to enhance the usability and security of human-machine and human-human authentica-

tion. Utilizing active user interaction for authentication enhances the usability by engaging

the user in the authentication process. Moreover, active user interaction enhances the se-

curity of human-machine authentication against relay attacks and enhances the security of

human-human authentication against replay and spoofing attacks.

The main contributions of this work lie in (1) the design of interactive authentication mech-

anisms and (2) the usability and (3) the security evaluation of the proposed interactive authenti-

cation mechanisms in contrast to traditional authentication mechanisms.

1.3.1 Human-Machine Authentication

To help meet the problems with existing CAPTCHAs, we designed interactive CAPTCHAs

based on games that would be easy for humans, but hard for computers. Unlike existing solu-

tions, game CAPTCHAs would be (1) user-friendly, (2) resilient to both automated and relay

attacks (due to their dynamic & interactive nature), and (3) suitable for mobile devices. The main

contributions of this research related to Human-Machine authentication are listed as follows.

1. We formalized, designed and implemented a simple instance of interactive CAPTCHAs,

namely, Simple Dynamic Cognitive Game (S-DCG) CAPTCHAs. An S-DCG CAPTCHA

involves objects floating around within an image, and the user’s task is to match the objects

with their respective target(s) and drag/drop them to the target location(s).

2. We conducted a usability study of these instances on PCs as well as on touchscreen de-

vices, evaluating them in terms of time-to-completion, error rates and perceived usability.

Our results indicated the overall usability to be very good.

3. We assessed the security of S-DCG CAPTCHA against relay attacks:

(a) We explored the security of S-DCG CAPTCHAs against a static relay attack, where

the attacker sends only single snapshots of the S-DCG (in line with traditional

4

CAPTCHA relay attack). This attack reduces to a reaction time task for the solver.

We conducted a user study to evaluate the performance of this attack. In general,

our results indicate that S-DCG CAPTCHAs offer some level of resistance to relay

attacks, differentiating them from other CAPTCHAs.

(b) We formalized, designed and implemented stream relay attack against S-DCG

CAPTCHAs, whereby the game is streamed between the attacker’s machine and

remote solver’s machine. We performed a user study to measure the performance

of the streamed version of S-DCG CAPTCHAs when solved by remote users (serv-

ing as human-solvers in the relay attack). Our study captured three realistic attack

settings: low-speed high-latency channel between attacker and solver, high-speed

low-latency channel between attacker and solver, and reduced game size. The re-

sults showed that the response times and error rates are generally higher when com-

pared to those exhibited by legitimate users in the usability study, highlighting the

possibility of relay attack detection.

(c) Based on the data collected from the usability and stream relay user studies, we

designed and evaluated a stream relay attack detection mechanism. Our detection

mechanism utilizes real-time game statistics, such as play duration, mouse clicks

and incorrect drags, fed to machine learning algorithms, in order to differentiate le-

gitimate user gameplay from human-solver gameplay in the relay attack. Our results

show that it is possible to detect the streaming-enabled relay attack against many in-

stances of DCG CAPTCHAs with a high overall accuracy (low false negatives and

false positives).

4. We assessed the security of S-DCG against automated attacks:

(a) We evaluated the security of the developed S-DCG instances against random attack

with various types of prior knowledge. Our results show that the S-DCG CAPTCHA

is resilient to random attack when the attacker does not have any prior knowledge

about the games. However, S-DCG CAPTCHA is vulnerable to random attack if

the attacker is able to collect enough knowledge about the games (i.e.. the random

attack success rate is up to 50% when the attacker extracts the moving and target

objects).

5

(b) We further developed a novel, fully automated framework to attack these S-DCG

CAPTCHA instances based on image processing techniques and principles of unsu-

pervised learning. The attack is computationally efficient and highly accurate, but

requires building a dictionary to be effective.

5. We designed and implemented a hybrid attack against S-DCG that combine the strengths

of automated and relay attacks and overcomes the limitations of both attacks and evaluated

the performance and the usability of the proposed attack.

6. We designed enhanced DCG CAPTCHAs with incremental difficulties against automated

attacks. Starting by adding random noises to the S-DCG CAPTCHA, moving background,

varying the colors of the moving objects and finally by implementing DCG’s based on the

notion of Emergent Images (EI-DCG). We evaluated the usability of EI-DCG as well as

assessed its security against stream relay attacks. Our study shows that EI-DCG is secure

against automated and relay attack, however it has low level of usability.

7. We designed novel ways to integrate S-DCG CAPTCHAs with other categories of

CAPTCHAs based on hard AI problems, namely, image orientation-based CAPTCHAs

[1] and semantic CAPTCHAs [2]. We evaluated the usability as well as assessed the secu-

rity of the designed CAPTCHAs against automated attacks and stream relay attacks. The

results of our study show that such integration enhance S-DCG security against random-

guessing, dictionary-based and shape matching attacks, as well as relay attacks (due to

the increased level of interaction), while providing the similar level of usability as S-DCG

CAPTCHAs.

1.3.2 Human-Human Authentication

We developed a powerful framework SMASheD (“Sniffing and Manipulating Android Sensor

Data”) that can compromise the security of all well known authentication systems. Then, we

attempt to tackle the limitations with existing user authentication mechanisms by introduc-

ing, building and studying Gametrics (“Game-based biometrics”), an authentication mechanism

based on the unique way the user solves such DCG challenges captured by multiple features

related to the user’s cognitive abilities and mouse dynamics. The main contributions of this

research in the topic of Human-Machine authentication are listed as follows.

6

8. We designed and developed the SMASheD framework to sniff and manipulate many re-

stricted Android sensors, and evaluated its effectiveness on multiple Android devices,

including phones, watches and glasses.

9. As a significant offensive implication of the SMASheD framework, we introduced a broad

array of potentially devastating attacks on various user authentication systems.

10. We designed and implemented a Gametrics system based on simple DCGs to capture

the unique user interactions. Our system is built using machine learning techniques and

extracts a total of 64 features from each game challenge solving instance that capture the

multiple unique cognitive abilities and the mouse dynamics of the users.

11. We collected a comprehensive data set from a total of 118 users, and showed that Gamet-

rics can identify the legitimate users and the zero-effort attackers (“different users”) with

a high accuracy within a short period of time.

12. We showed that Gametrics can thwart active attackers that deliberately attempt to mimic

a user’s interaction with the challenges in an observation-based attack . Furthermore, we

argue that attacking Gametrics using automated mechanisms, internal (i.e., SMASheD) or

external, is also a hard task.

1.4 List of Publications

1. A Three-Way Investigation of a Game-CAPTCHA: Automated Attacks, Relay At-

tacks and Usability. Manar Mohamed, Niharika Sachdeva, Michael Georgescu, Song

Gao, Nitesh Saxena, Chengcui Zhang, Ponnurangam Kumaraguru, Paul C. Van Oorschot

and Wei-Bang Chen. In ACM Symposium on Information, Computer and Communica-

tions Security (AsiaCCS), June 2014.

This paper covers contributions: 1, 2, 3(a) and 4.

2. Dynamic Cognitive Game CAPTCHA Usability and Detection of Streaming-Based

Farming. Manar Mohamed, Song Gao, Nitesh Saxena and Chengcui Zhang. In the

Workshop on Usable Security (USEC), co-located with NDSS, February 2014.

This paper covers contributions: 2 and 3(b).

7

3. Defeating a Game CAPTCHA with Efficient and Robust Hybrid Attacks. Song Gao,

Manar Mohamed, Nitesh Saxena and Chengcui Zhang. In Security and Forensics Track,

IEEE International Conference on Multimedia and Expo (ICME), July 2014.

This paper covers contributions: 5.

4. On the Security and Usability of Dynamic Cognitive Game CAPTCHAs. Manar Mo-

hamed, Song Gao, Niharika Sachdeva, Nitesh Saxena, Chengcui Zhang, Ponnurangam

Kumaraguru and Paul C. Van Oorschot. Under submission.

This paper covers contributions: 1, 2, 3, 4 and 5.

5. Emerging Image Game Captchas for Resisting Automated and Human-Solver Relay

Attacks. Song Gao, Manar Mohamed, Nitesh Saxena and Chengcui Zhang. In Annual

Computer Security Applications Conference (ACSAC), December 2015.

This paper covers contribution: 6.

6. Emerging-Image Motion CAPTCHAs: Vulnerabilities of Existing Designs, and

Countermeasures. Song Gao, Manar Mohamed, Nitesh Saxena and Chengcui Zhang.

Under submission.

This paper explores the security of a static Emerging Image CAPTCHA [13, 14].1

7. CAPTCHA Fusion: Mixing Games, Image Orientation and Semantics to Defeat Au-

tomated and Human Attacks. Manar Mohamed and Nitesh Saxena. Under submission.

This paper covers contribution: 7.

8. SMASheD: Sniffing and Manipulating Android Sensor Data. Manar Mohamed,

Babins Shrestha and Nitesh Saxena. In ACM Conference on Data and Application Se-

curity and Privacy (CODASPY), March 2016.

This paper covers contributions: 8 and 9.

9. SMASheD: Sniffing and Manipulating Android Sensor Data for Offensive Purposes.

Manar Mohamed, Babins Shrestha and Nitesh Saxena. Under submission.

This paper covers contributions: 8 and 9.

10. Gametrics: Strong Behavioral Authentication with Simple Cognitive Games. Manar

Mohamed and Nitesh Saxena. Under submission.

This paper covers contributions: 10, 11 and 12.

8

11. Slogger: Smashing Motion-based Touchstroke Logging with Transparent System

Noise. Prakash Shrestha, Manar Mohamed and Nitesh Saxena. ACM Conference on

Wireless Network Security (WiSec), July 2016.

This paper explores defensive uses of SMASheD. 1

12. Curbing Mobile Malware based on User-Transparent Hand Movements. Babins

Shrestha, Manar Mohamed, Anders Borg, Nitesh Saxena and Sandeep Tamrakar. In

IEEE International Conference on Pervasive Computing and Communications (PerCom),

March 2015.

This paper is relevant to interactive biometrics for extracting behavioral biometrics from

various phone’s sensors.1

Organization: The remainder of this dissertation is organized as follows. In Chapter 2, we

present the preliminary works related to our work. In Chapter 3, we present S-DCG design,

and the security as well as the usability evaluation of developed S-DCG instances. In Chapter

4, we present our work in designing various DCG variants with incremental level of difficulties

against automated attack, followed by the usability and the security analysis of the final version

we proposed. In Chapter 5, we present Mix DCG, a DCG variant that is created by integrating

DCG with other CAPTCHA categories, design, usability and security evaluation. Chapter 6

presents SMASheD, our developed framework that can subvert the security provided by current

authentication systems. Chapter 7 presents game-based biometrics design, implementation and

evaluation under benign and active attack settings. Finally Chapter 8 concludes this dissertation

and discusses the limitations and possible future extensions to this research.

1This paper is not a part of this dissertation.

9

CHAPTER 2

BACKGROUND

2.1 Human-Machine Authentication

The term CAPTCHA was first introduced in 2000 [6], describing a test that can differenti-

ate humans from malicious computer programs. CAPTCHAs are deployed by many online

services, such as account registration, ticket selling, and search engines, to limit the scale of

different types of attacks (e.g., denial-of-service or password dictionary attacks) involving auto-

mated bots. Most CAPTCHAs are largely based on visual challenges, such as involving users

to identify alphanumeric characters in distorted images, but many other variants have also been

proposed [13, 15].

A wide variety of CAPTCHAs have been proposed over the last decade or so. The most

commonly utilized CAPTCHA involves challenging the users to recognize alphanumeric char-

acters embedded within an image, such as Gimpy, Yahoo, reCapthca [16], Baffle [17], hand-

written [18] and PayPal, or within a video such as NuCaptcha and emergent CAPTCHA [13].

CAPTCHAs that challenge the users to recognize or classify objects in images, such as collage

CAPTCHA [19], implicit CAPTCHA [20], Bongo, Asirra CAPTCHA [21], PIX, ESP-PIX [22]

and What’s Up CAPTCHA [1], have also been proposed. Some video-based CAPTCHAs, such

as content-based tagging of YouTube videos [23], and audio based CAPTCHA, such as Google,

eBay, Yahoo, ReCaptcha, Slashdot and Math-function [24] audio CAPTCHAs, have also been

introduced.

Unfortunately, existing CAPTCHA technology suffers from several problems. The distor-

tions that are used to hide the underlying content of a puzzle from computers can also severely

degrade human usability [7, 8]. Challenges based on spoken words suffer from similar issues

due to sound distortion [25]. Moreover, CAPTCHAs are not foolproof, and many CAPTCHAs

used in real-world have been successfully attacked. The task of solving CAPTCHA has been

made easier by commercial solving services that attackers often utilize [26]. These services offer

10

two categories of attacks: automated attacks and relay attacks. Automated attacks (e.g., [27–

29]) normally utilize image processing algorithms to solve the CAPTCHA, while relay attacks

[26] utilize the human intelligence of third-party, remotely located human-solvers.

Relay attack involves outsourcing the CAPTCHA solving process to human labor, either

opportunistically or via sweatshops [26]. An attacker could launch a website that attracts visitors

by providing some free service, and then opportunistically engage them in solving third-party

CAPTCHAs. Alternatively, an attacker could hire people to solve CAPTCHA and pay them a

certain amount of money per successful attack. A relay attack against a text CAPTCHA, for

instance, involves the attacker to forward the image that contains the CAPTCHA to a human-

solver; the solver then solves the CAPTCHA in real-time, and provides the solution, which the

attacker relays back to the server.

Although automated attacks seem to be a natural option to bypass the security offered by

CAPTCHAs, developing programs to solve CAPTCHA with human-like accuracy is often very

complicated and costly [26]. In contrast, paid solvers are willing to solve as many as 1000

CAPTCHAs for just $1, making relay attack an overall more attractive, effective and economical

option [26]. While the traditional CAPTCHA research has focused mainly on developing, or

preventing, automated CAPTCHA attacks, attackers in the wild have gone on to break existing

CAPTCHA schemes via relay attacks [26].

Most, if not all, existing CAPTCHAs are vulnerable to relay attacks, and do not provide

a reliable mechanism to distinguish a remote human-solver from a legitimate user. Subjecting

textual CAPTCHAs to relay attacks is very simple – the attacker simply forwards the challenge

image to the solver, who provides the response which the attacker simply forwards to the service.

Effectively detecting such attacks does not seem feasible. One way to avoid them is to set a

timeout for solving the CAPTCHA. However, timing alone is not a robust method for detecting

an attack. A comprehensive study on CAPTCHA-solving services presented in [26] concludes

that 70% of the CAPTCHA submissions are correct, and are submitted within 30 seconds, which

is well within the CAPTCHA timeout set by most websites.

Attacking video CAPTCHA [13] is straightforward as well. The CAPTCHA video file can

be forwarded to a human-solver. Alternatively, a new video can be created by taking multiple

snapshots of the video CAPTCHA, and sent to the human-solver.

11

TABLE 2.1: Relay Attacks Against Various Types of CAPTCHAs

CAPTCHA

Category

Example Instances Static/

Dynamic

User

Interaction

Relaying Method Detection

Possible

(apart from

time-out)

Text Gimpy, Yahoo,

reCAPTCHA, Baffle, Handwritten,

PayPal

Static Type Transfer challenge image No

NuCaptcha Dynamic Type Transfer single snapshot No

Emergent captcha Dynamic Type Transfer video file, or create

video from snapshots and

transfer

No

Image Asirra, Bongo, collage, implicit Static Single/multiple

mouse clicks

Transfer image No

PIX Static Type Transfer image No

ESP-PIX Static Select answer Transfer image No

Google image orientation Static Move a slider Transfer image inside same

applet used to display the

original captcha

No

Video Content-based tagging of YouTube

videos

Dynamic Type Transfer video file No

Audio Google, ebay, Yahoo, Recaptcha,

Slashdot, Math-function

Dynamic Type Transfer audio file, or record

and send

No

DCG are you a human Dynamic Multiple drag-

and-drop

Stream Relay Yes

Image-based CAPTCHAs require users to perform an image recognition task, e.g., selecting

only the images of cats in a grid of images. This kind of CAPTCHA can also be easily attacked

by relaying. The image can be transferred to a solver, and solver can send back the coordinates

of the mouse clicks to the attacker. The attacker’s bot can then replicate the action performed by

the solver.

The fact that most CAPTCHAs are static and do not require multiple interactions from a

user makes attacking them by relaying to a human-solver an easy task. Table 2.1 provides a

summary of how different categories and instances of existing CAPTCHAs can be subjected to

a relay attack.

2.2 Human-Human Authentication

None of the current authentication primitives provide a good balance among the security, us-

ability and efficiency of authentication. Almost universally deployed text-based passwords and

PINs are highly efficient, but are either difficult to use (if the password is long and random), or

insecure (if the users can choose their own password) [30–32].

Graphical passwords were founded on a psychological principle that the human brain has

12

superior memory for processing visual rather than textual information (see two excellent surveys

[33, 34]). They can be based on recognition, such as those involving Random Arts images

[35], objects (PassObjects) [36] and faces (PassFaces) [37], as well as on recall or cued recall,

such as those involving drawings [38, 39] and selection of points on an image (PassPoints)

[40]. Although preliminary evaluation of graphical passwords suggests that they can be more

difficult to break compared to text passwords, using traditional methods such as brute force

search or dictionary attacks [33], they can still be riddled with efficiency, memorability and

predictability problems. For example, PassFaces [37] login process has been found to be lengthy

[41]. Moreover, user-selected PassFaces can be predictable and could be successfully guessed

[42]. Similarly, drawings-based passwords [38] may also be predictable, such as involving

symmetric drawings with few pen strokes [43]. PassPoints [40] users also have a tendency to

select passwords containing popular points (hotspots) or to follow simple patterns [44–47].

Biometrics, e.g., fingerprints [48], are a promising solution, but their universal deployment

raises considerable challenges. First, maintaining biometric information databases necessitates

users’ entrusting a third party with extremely private (physical) information, and demands care-

ful protection of the database itself, because biometric information cannot be revoked easily.

Most biometrics also require authentication terminals to be equipped with specialized hardware,

which may not be commonly available. Additionally, many biometric systems perform poorly

in practical deployments, exhibiting unacceptably high false reject or false accept rates. For

instance, voice authentication has significant error rates in noisy environments and basic fin-

gerprint readers can be defeated by fake fingerprints [49]. Another problem is that it may be

difficult to capture the biometric data for some users, resulting in a high enrollment failure rate

[50, 51].

Perhaps more seriously, many existing biometric designs fail to take the role of users into

account, causing them to suffer from severe usability issues. Many individuals consider biomet-

rics to be invasive or “scary”. Because they are hard to use and understand, most users find bio-

metrics difficult to accept psychologically [51, 52]. For instance, users often express reluctance

at using public fingerprint scanning devices. Notably, they have shown concerns that fingerprint

scanners present at border checkpoints could facilitate the spread of contagious diseases (see,

for instance, Nobel Prize winner Barry Marshall’s blog [53]). There also exists something of a

tradeoff between the usability and robustness of existing biometric technology, since the most

13

accurate forms of biometric authentication are often the most troublesome to operate [51, 54].

Authentication tokens, albeit another promising solution, are very often limited to a single-

purpose use, e.g., paying highway tolls, and require users to carry and have access to additional

devices.

The behavioral biometrics is used to identify the user based on a specific user’s behavior

while she performing a task. In most of the use cases of behavioral biometrics, the system

measures the user behavior transparently, such as while the user is entering the password to

serve as a second factor for authenticating the user based on her password as well as her typing

pattern, or while the user interacting with the device/system after the login and throughout the

session to continuously check that the legitimate user is the one interacting with the system.

The main aim of behavioral biometrics is to solve the problems associated with the tra-

ditional authentication systems, such as password leakage or sharing, requirements for extra

hardware in case of traditional biometrics (for example, fingerprint readers or iris scanners).

However, most of the proposed behavioral biometrics suffers from various problems, such as

low-level of uniqueness among the users, which yields to high acceptance rate of illegitimate

users (high False Positive Rate). Moreover, some of the behavioral biometrics require long inter-

action time to identify/recognize the users (up to 20 minutes [55]), which would allow attackers

to interact with the system and may cause harm to the system during that period of time without

getting detected.

The most studied approaches for behavioral biometrics are keystroke analysis and mouse

dynamics. Keystroke biometrics identifies the user based on her typing characteristics. The

verification is performed either based on static text (i.e., password) or random text (i.e., free text

to continuously authenticate the users [56]). The features that are mostly used are the timing

information of key down/hold/up events, time between the release of a key and the pressing on

the next key, overall typing speed, and frequency of errors [57]. Mouse dynamics [58] is another

most studied behavioral biometrics. It is mostly used for continuous authentication by recording

the user interaction with the device transparently. The user is authenticated based on the general

movement, drag and drop, stillness, point and click.

Other recent research studied user authentication based on user’s cognitive abilities [59].

In this work, the authors studied the ability of authenticating the users based on their cognitive

14

process captured by visual search, working memory and priming effect on automatic processing.

The game they utilized to capture the users’ cognitive abilities provides a challenge-response

task. In each instance of the challenge-response, the user is given a challenge, which is an

object. The user’s task is to drag the challenge object onto the matching object inside the search

set. After a valid drop, the user then receives a gold coin as a reward and deposits it in a bank.

On a correct deposit, the user is challenged with a new object and the game continues as before.

From the interaction with the challenges, the authors extracted several features that captures the

cognitive abilities of the users, however, they did not look into the mouse dynamics biometrics

of the users.

The authors in [55] proposed a method to solve account hijacking and share problems in an

online gaming environment. They propose identifying the user based on her gameplay activi-

ties. They show that the idle time distribution is a representative feature of game players. They

propose the relative entropy test RET scheme, which is based on the Kullback-Leibler diver-

gence between idle time (i.e., the idle periods between successive moves of a player controlled

character) distributions, for user identification. Their evaluations shows that the RET scheme

achieves higher than 90% accuracy with a 20-minute detection time given a 200-minute history

size.

2.3 Threat Model and Design Choices

The core objective of this dissertation is to improve the usability and the security of Human-

Machine and Human-Human authentication process.

In the context of Human-Machine authentication, our aim is to design and develop interac-

tive CAPTCHAs that possess the following properties:

1. Usability: The user should be able to solve the proposed CAPTCHA within a short time

and with high accuracy.

2. Security against Automated Attacks: A bot (automated computer program) must only

be able to solve the CAPTCHA challenges with no better than a negligible probability.

The automated attacks, we aim to defend in our study.

15

(a) Random Guessing Attacks: The simplest form of automated attack, where the bot

tries to solve the CAPTCHA randomly.

(b) Image-processing Dictionary-based Attacks: The bot utilizes image processing

techniques to learn the knowledge about solving the CAPTCHA challenges, stores

the collected knowledge in a dictionary, and later uses the dictionary to attack new

challenges.

(c) Client-Side attacks: The attacker reverses engineer the challenge code in order to

extract information about the solution of the challenge.

3. Security against Human-Solver Relay Attacks: we aim to provide security against

human-solver relay attacks, either by making it impossible to relay the CAPTCHA or

by making it possible to detect such attack with high accuracy.

In the context of Human-Human authentication, our aim is to design and develop an inter-

active behavioral biometrics system that possesses the following properties:

1. Usability: The user has to be identified within a short time and with high accuracy.

2. Security against Zero-Effort Attacks: Any biometrics scheme should be able to distin-

guish between different users. That is, one user (potentially an attacker) should not be

able to log in as another user (a victim).

3. Security against Shoulder-Surfing Attacks: An external attacker who monitors the user

while she is authenticating herself to the system, should not be able to mimic and imper-

sonate the user at a later point of time.

4. Security against Automated Attacks: We aim to provide security against sophisticated

attacks where the attacker steals a user’s authentication template (e.g., by hacking into the

device or server that stores this template) and tries to authenticate itself in an automated

manner to the system.

16

5. Security against Internal Attacks: We aim to provide security against internal attacks,

such as a malware residing on the authentication terminal itself that records the user’s

valid authentication token/template and replays it later, or tries to learn the template by

recording one or multiple valid authentication sessions and then creates an authentication

token to authenticate itself as the user. Other forms of behavioral biometrics schemes have

been shown to be vulnerable to such attacks [60].

17

CHAPTER 3

SIMPLE-DYNAMIC COGNITIVE GAME CAPTCHA (S-DCG)

As mentioned in Section 2.1, most existing CAPTCHAs suffer from usability and security prob-

lems. Given these problems, there is a need to consider alternatives that place the human user at

the center of the CAPTCHA design. Game CAPTCHAs offer a promising approach by attempt-

ing to make CAPTCHA solving a fun activity for the users. These are challenges that are built

using games that might be enjoyable and easy for humans, but hard for computers.

In this chapter, we focus on a broad form of game CAPTCHAs, called Simple Dynamic

Cognitive Game (S-DCG) CAPTCHAs. This CAPTCHA challenges the user to perform a game-

like cognitive task interacting with a series of dynamic images. Specifically, we consider a

representative S-DCG CAPTCHA category which involves objects floating around within the

images, and the user’s task is to match (i.e. drag/drop) the objects with their respective target(s).

A startup called “are you a human” [61] has recently been offering such S-DCG CAPTCHAs.

Besides promising to significantly improve user experience, S-DCG CAPTCHAs are an

appealing platform for touch screen enabled mobile devices (such as smartphones). Traditional

CAPTCHAs are known to be quite difficult on such devices due to their small displays and

key/touch pads [62], while touch screen games are much easier and already popular. Motivated

by these unique advantages of S-DCG CAPTCHAs, we set out to investigate their security and

usability. Specifically, we pursue a comprehensive study of S-DCG CAPTCHAs, analyzing

them from four broad yet intersecting dimensions: (1) usability, (2) fully automated attacks, (3)

human-solver relay attacks, and (4) hybrid attacks.

Chapter Organization: Section 3.1 elaborates on the design and implementation of our S-

DCG instantiation. Section 3.2 presents the three usability studies we conducted to evaluate the

usability of S-DCG. Two of these are PC-based studies, one “in-lab” and one “online”’ using

a crowdsourcing platform. The third one is a in-lab mobile-based study. Section 3.3 presents

the security analysis of S-DCG against multiple forms of random attack and then describes our

novel, fully automated framework to attack these S-DCG CAPTCHA instances based on image

processing techniques. Section 3.4 evaluates the security of S-DCG against two types of relay

18

attacks (static and stream relay attacks) and proposes a viable relay attack detection mechanism.

Section 3.5 elaborates on a novel and powerful hybrid attack framework that carefully combines

the strength of automated algorithms and relay attacks, and overcomes the limitations of each

and then evaluates the performance and the usability of the proposed attack. Finally, Section 3.6

concludes our findings about S-DCG.

3.1 S-DCG Design & Implementation

We use the term Simple Dynamic Cognitive Game (S-DCG) CAPTCHA to define the broad

CAPTCHA schemes that form the focus of this chapter. We characterize a S-DCG CAPTCHA

as having the following features: (1) dynamic because it involves objects moving around in

image frames; (2) either cognitive because it is a form of a puzzle that relates to the semantics of

the images or image recognition because it involves visual recognition; and (3) a game because

it aims to make CAPTCHA solving task a fun activity for the user. In this section, we discuss the

security model and design choices for S-DCG, and present the S-DCG categories and associated

instances.

3.1.1 S-DCG Design Choices

A pre-requisite for the security of a S-DCG CAPTCHA implementation (or any CAPTCHA for

that matter) is that the responses to the challenge must not be provided to the client machine

in clear text. For example, in a character recognition CAPTCHA, the characters embedded

within the images should not be leaked out to the client. To avoid such leakage in the context

of S-DCG CAPTCHAs, it is important to provide a suitable underlying game platform for run-

time support of the implemented CAPTCHA. Web-based games are commonly developed using

Flash or HTML5 in conjunction with JavaScript. However, both these platforms operate by

downloading the game code to the client machine and executing it locally. Thus, if these game

platforms were directly used to implement S-DCG CAPTCHAs, the client machine will know

the correct objects and the positions of their corresponding target(s), which can be used by the

bot to construct the responses to the server challenges relatively easily. This will undermine the

security of S-DCG CAPTCHAs.

The above problem can be addressed by employing encryption and obfuscation of the game

code which will make it difficult for the attacker (bot) on the client machine to extract the game

19

code and thus the correct responses. Commercial tools, such as SWF Encrypt [63], exist which

can be used to achieve this functionality. This approach works under a security model in which

it is assumed that the bot does not have the capability to learn the keys used to decrypt the code

and to deobfuscate the code. A similar model where the attacker has only partial control over

the client machine has also been employed in prior work [64].

In our model, we assume that the implementation provides continuous feedback to the user

as to whether the objects dragged and dropped to specific target region(s) correspond to correct

answers or not. The server also indicates when the game successfully finishes, or times out.

This feedback mechanism is essential from the usability perspective otherwise the users may

get confused during the solving process. The attacker is free to utilize all of this feedback in

attempting to solve the challenges, but within the time-out. We also assume that it is possible

for the server to preclude brute force attacks, such as when the attacker tries to drag and drop the

regions within the image exhaustively/repeatedly so as to complete the game successfully. Such

a detection is possible by simply capping the number of drag/drop attempts per moving object.1

3.1.2 S-DCG CAPTCHA Instances and Prototypes

Due to the legal restrictions on attacking commercial S-DCG CAPTCHAs, we proceeded to

develop our own animation-based S-DCG prototypes for the purpose of our study. Using Adobe

Flash, we implemented four CAPTCHA games that represented a broad class of S-DCGs. These

games are 360×130 pixels in size, and seamlessly fit into web pages if used for practical pur-

poses.

The S-DCG CAPTCHAs implemented for the purpose of this study are shown in Figure

3.1. Each S-DCG CAPTCHA can be characterized by the following distinct components.

• Answer object – a moving object that should be dragged to the corresponding target object

in order to successfully complete the game. For the parking game shown in Figure 3.1(c),

the orange boat, that can be dragged to the empty dock position to complete the game, is

the answer object.
1The “are you a human” S-DCG CAPTCHA implementation claims to adopt a sophisticated (proprietary) mech-

anism, based on mouse events, to differentiate human game playing activity from an automated activity. We did
not implement such a human-vs-bot behavioral analysis component because our goal is to examine the underlying
CAPTCHA scheme only. A behavioral component can be added to other CAPTCHAs also and represents a topic
orthogonal to our work. Besides, it is not clear if behavioral analysis would add security; it may instead degrade
usability by increasing false negatives.

20

• Target object – an object onto which the corresponding answer object should be dragged.

• Target area – the area within which the target objects reside.

• Activity area – the area within which the foreground objects move.

(a) Ships Game (b) Shapes Game

(c) Parking Game (d) Animals Game

FIGURE 3.1: Static Snapshots of 4 Game Instances of a Representative S-DCG CAPTCHA
(Targets are Static; Objects are Mobile).

S-DCG CAPTCHAs are classified according to the number of target objects. The Ships

game (Figure 3.1(a)), is a one-target S-DCG type, where the sea is the target object. So the

ships, that are the answer objects, can be dropped anywhere within the sea. The Shape game

(Figure 3.1(b)) has a circle and a pentagon placed on the left side of the game as the two target

objects. The Animal game (Figure 3.1(d)) is a three-target instance of S-DCG CAPTCHA. The

Parking game (Figure 3.1(c)) is a variant of S-DCG CAPTCHA where there is no target object

but a target area (the empty parking space) onto which the boat should be dragged.

To complete a S-DCG CAPTCHA game, a user has to drag and drop all answer objects to

their corresponding target objects. For example, in the Animal game, the user has to drag the

bone to the dog, the acorn to the squirrel, and the banana to the monkey. The game is considered

incomplete, and the user is rejected in case the game is not completed within 60s.

Each foreground object has an initial pre-specified location in the activity area. The direc-

tion of movement of objects is randomly chosen from 8 possible directions – north (N), south

(S), east (E), west (W), NE, NW, SE and SW. For horizontal and vertical movements, objects

move 1 pixel per frame. For diagonal movements, the objects move 1.414 pixels per frame. The

frame rate for the games is set at 40 frames per second. Hence, the foreground objects move at

21

an average speed of (((1 + 1.414)/2) ∗ 40), i.e., 48.28 pixels per second. An object continues

moving in its current direction until it collides with either another object or the game border. A

collision results in an object moving towards a new random direction.

For each of the 4 games, we set 5 parameterizations, choosing number of moving objects as

(4, 5, 6), and object speed as (10, 20, 40) frames per second (FPS) (These frame rates translate

into average object speeds of 12.1, 24.2 and 48.4 pixels/second, resp.). For each game, we used

5 combinations of speed and number of objects: (10 FPS, 4 objects); (20 FPS, 4 objects); (20

FPS, 5 objects); (20 FPS, 6 objects); and (40 FPS, 4 objects). This resulted in a total of 20 games

in our corpus.

3.2 Usability

In this section, we report our usability studies of our representative S-DCG CAPTCHA category.

The first study is student based which we used to measure the usability of the S-DCG CAPTCHA

with respect to different parameters as explained in Section 3.1.2. Then, to validate our study

results we preformed another study on Amazon Mechanical Turk (MTurk) is which we tested

only one variant of each game instance. Finally, we present our mobile-based study that we

conduct to evaluate the usability of S-DCG CAPTCHAs on mobile devices.

3.2.1 Study Design, Goals, and Process

Our first user study involved 40 participants who were primarily students from various back-

grounds. (For demographics, see the second column of Table 3.1). The participants were pro-

vided with 20 instances as discussed in Section 3.1.2 in succession, aimed at understanding how

different parameterizations impact users’ solving capabilities, and the game completion time,

and the number of object-drags were recorded. The order of the games presented to different

participants was derived using a standard 20×20 Latin Square to minimize the learning effect.

The participants were subjected to a consent agreement, and demographics form before the

experiment. At the end of the experiment, their experience in solving S-DCG CAPTCHAs was

recorded using a survey form. The survey contains the 10 System Usable Scale (SUS) standard

questions [65], each with 5 possible responses (5-point Likert scale, where 1 represents strongly

disagreement and 5 represents strongly agreement).

22

TABLE 3.1: Demographics of Participants in the Usability, Relay Attacks and Hybrid Attack
Studies

Usability Stream Relay Attack Hybrid Attack
Lab MTurk Mobile LSHL HSLL

Game Size 360x130 360x130 180x65 360x130 360x130
Number of participants 40 40 20 40 20 20 40

Gender (%)
Male 50 67.5 80 67.5 80 80 80

Female 50 32.5 20 32.5 20 20 20
Age (%)

<18 0 2.5 0 2.5 0 0 0
18 - 24 80 40 20 30 45 35 25
25 - 35 20 42.5 75 52.5 35 50 42
35 - 50 0 10 5 12.5 20 10 28
>50 0 5 0 2.5 0 5 5

Education (%)
High school 45 10 25 0 0 55 18

Bachelor 27.5 60 35 57.5 75 40 67
Masters 22.5 27.5 30 42.5 25 5 10
Ph.D. 5 2.5 10 0 0 0 5

For our second user study, we recruited 40 MTurk workers and paid each of them $0.5 for

their effort. Each was asked to do similar tasks as of the first study. However, they had only to

play only four games (40 FPS, 6 objects) variant of each game instance. The third column of

Table 3.1 shows the demographics of the 40 participants of our study. The second study was

performed to verify that our results are not limited only to young participants and the game

repetition did not impact the S-DCG usability.

The third usability study aims to assess the usability of S-DCG on mobile devices. For

this study, we recruited 20 participants who were primarily students in our university (For demo-

graphics, see the forth column of Table 3.1). The participants were asked to performed similar

task as the MTurk worker but using Mobile device.

Via our study, our goal was to assess the following aspects of the S-DCG CAPTCHAs:

1. Efficiency: time taken to complete each game.

2. Robustness: likelihood of not completing the game, and of incorrect drag and drop at-

tempts.

3. User Experience: participants’ SUS ratings of the games.

23

3.2.2 Study Results

In this subsection, we report the study results of the three usability studies we conducted.

3.2.2.1 Lab-based Usability Study

TABLE 3.2: Drag Error Rates and Completion Time Lab Usability Study (Overall Error
Rate=0)

Game Type Completion Time(s) Drag Error Rate
mean (std) mean

Ships 4.51 (1.00) 0.04
Animals 9.10 (0.96) 0.05
Parking 4.37 (0.90) 0.09
Shapes 5.26 (0.59) 0.03

Completion Time: Table 3.2 shows the completion time per game type. Clearly, all games

turned out to be quite fast, lasting for less than 10s on an average. Users took longest to solve

the Animals game with an average time of 9.10s, whereas the other games took almost half

of this time. This might have been due to increased semantic load on the users in the Animals

game to identify three target objects and then match them with the corresponding answer objects.

Moreover, we noticed a decrease in the solving time when the target objects were decreased to

2 (i.e., in the Shapes game), and this time was comparable to games which had 1 target object

(Ships and Parking). A Friedman’s test showed significant difference2 in the mean timings

of all 4 types of games (χ2(3, N = 200) = 268.83, p < 0.001). Analyzing further using

Wilcoxon signed ranks test with Bonferroni correction, we found significant difference between

the mean times of all the games pairs, (p < 0.001) for all the pairs except for Ships and Parking

(p = 0.01).

Error Rates: An important result is that all the tested games yielded 100% accuracy (overall

error rate of 0%). In other words, none of the participant failed to complete any of the games

within the time out. This suggests our S-DCG CAPTCHAs instances are quite robust to human

errors.

Next, we calculated the likelihood of incorrect drag and drop attempts (drag error rate).

For example, in the Animals game, an incorrect attempt would be to feed the monkey with a
2All statistical results reported are at the 95% confidence level.

24

flower instead of a banana. We define the drag error rate as the number of incorrect objects

dragged to the target area divided by the total number of objects dragged and dropped. The

results are depicted in Table 3.2. We observe that the Shape game yields the smallest average

per click error rate of 3%. This suggests that the visual matching task (as in the Shapes game)

is less error prone compared to the semantic matching task (as in the other games). The game

challenge which seemed most difficult for participants was the Parking game. Since objects in

this game are relatively small, participants may have had some difficulty to identify them.

TABLE 3.3: Drag Error Rates and Completion Time per Object Speeds (Overall Error Rate=0)

Object Speed Completion Time (s) Drag Error Rate
mean (std) mean

10 FPS 5.74 (2.11) 0.06
20 FPS 4.90 (2.22) 0.05
40 FPS 6.53 (2.87) 0.04

Effect of Object Speed and Number: Table 3.3 shows the performance of the game

CAPTCHAs in terms of drag error rates and completion time as per different object speeds. We

can see that the maximum number of per drag errors was committed at 10 FPS speed. Looking

at the average timings, we find that it took longest to complete the games when the objects move

at the fastest speed of 40 FPS, while 20 FPS yielded the fastest completion time followed by 10

FPS. A Friedman’s test revealed statistical difference among the mean completion time corre-

sponding to the three speeds (χ2(2, N = 160) = 10.36, p = 0.006). Further analyzing using

Wilcoxon signed ranks test with Bonferroni correction, we found significant difference between

the mean timing corresponding to the pair of speeds only: 10 FPS and 20 FPS (p < 0.001).

TABLE 3.4: Drag Error Rates and Completion Time per # of Objects (Overall Error Rate=0)

of Objects Completion Time (s) Drag Error Rate
mean (std) mean

6 6.58 (1.69) 0.06
5 5.30 (2.28) 0.05
4 4.90 (2.22) 0.04

Another aspect of the usability analysis included testing the effect of increase in the number

of objects (including noisy answer objects) on the overall game performance. Table 3.4 summa-

rizes the drag error rates and completion time against different number of objects. Here, we can

see a clear pattern of increase, albeit very minor, in average completion time and average error

25

rate with increase in the number of objects. This is intuitive because increasing the number of ob-

jects increases the cognitive load on the users which may slow down the gameplay and introduce

chances of errors. A Friedman’s test revealed statistical difference among the mean completion

time corresponding to the three number of objects (χ2(2, N = 160) = 37.59, p < 0.001).

Further analyzing using Wilcoxon signed ranks test with Bonferroni correction, we found sig-

nificant difference between the mean timing corresponding to the pair of number of objects: 4

and 5 objects (p < 0.001) and 4 and 6 objects (p < 0.001).

3.2.2.2 MTurk Usability Study

TABLE 3.5: Drag Error Rates, Game Error Rate and Completion Time MTurk Usability Study

Game Type Completion Time (s) Error Rate Drag Error Rate
mean (std) mean mean

Ships 10.13 (6.81) 0.03 0.32
Animal 14.97 (8.43) 0.03 0.26
Parking 8.53 (7.01) 0.00 0.54
Shapes 9.42 (6.06) 0.08 0.16

Table 3.5 summarized the results of MTurk usability study. The second column of Table 3.5

shows that the average completion time is almost doubled comparing to the lab-based usability

study, however, the completion time still less than 15 seconds on average for all the games.

A Friedman’s test showed significant difference in the mean timings of all 4 types of games

(χ2(3, N = 37) = 27.26, p < 0.001). Analyzing further using Wilcoxon signed ranks test with

Bonferroni correction, we found significant difference between the mean times of following

pairs: Animals and Parking (p < 0.001), Animals and Ships (p < 0.001), Animals and Shapes

(p = 0.002), Parking and Shapes (p < 0.01), and Parking and Ships (p = 0.02).

The third column of Table 3.5 shows that the average overall error rate increases from 0% to

3.5% and the average drag error rate increases from 5% to 32% compared to their correspondent

in the Lab-based usability study (Table 3.2). This is due to the diversity of the MTurk workers

over the students who were hired for the first study. Moreover, this variant (40 FPS, 6 objects)

is considered harder than the tested variants in the first study, our previous results shows that the

completion time increases with increasing the speed and number of the objects.

26

3.2.2.3 Mobile-based Usability Study

TABLE 3.6: Drag Error Rates and Completion Time Mobile-based Usability Study (Overall
Error Rate=0)

Game Type Completion Time(s) Drag Error Rate
mean (std) mean

Ships 9.05(3.64) 0.15
Animals 13.31(6.54) 0.12
Parking 7.24(4.99) 0.85
Shapes 6.32(2.37) 0

Table 3.6 summarized the results of the Mobile-based usability study. The overall error rate

is zero – all the participants were able to complete the games successfully. The second column

of Table 3.6 shows the time taken by the participants to complete the games. The time to solve

the challenges is in between the time taken by the participants in the lab-based study and MTurk

study. Similar to the previous two studies, the maximum time was taken to solve the Animal

game. The drag error rate was the minimum for the Shape game and the maximum for Parking

game, which is in line with the previous two studies.

3.2.2.4 User Experience of the Three Studies

Now, we analyze the data collected from the participants during the post-study phase. The

average SUS score from the first study came out to be 73.88 (standard deviation = 6.94), for the

MTurk based study came out to be 73.25 (standard deviation = 15.07), and for the Mobile based

study came out to be 80.69 (standard deviation = 16.07). Considering that the average SUS

scores for user-friendly industrial software tend to hover in the 60–70 range [66], the usability

of our S-DCG game CAPTCHA instances can be rated as high.

3.2.3 Summary of Usability Analysis:

Our results suggest that the S-DCG CAPTCHA representatives tested in this study offer very

good usability, resulting in short completion times (less than 15s) on average, very low error

rates (0 - 3.5% per game completion)3, and good user ratings. We found that increasing the

object speed and number is likely to degrade the game performance, but up to 6 objects and 40
3When contrasted with many traditional CAPTCHAs [8], these timings are comparable but the accuracies are

better.

27

FPS yield a good level of usability. S-DCG also seem to have better usability on mobile devices

compared to text-based CAPTCHAs. For example, the error rate for solving reCAPTCHA on

mobile devices has been found to be 0.09 and the solving time of 25.2 seconds on average [62].

3.3 Automated Attacks

Having validated, via our usability study, that it is quite easy for the human users to play our

S-DCG CAPTCHA instances, we next proceeded to determine how difficult these games might

be for the computer programs. In this section, we present and evaluate the performance of a fully

automated framework that can solve S-DCG CAPTCHA challenges based on image processing

techniques and principles of unsupervised learning. We start by considering random guessing

attacks and then demonstrate that our framework performs orders of magnitude better than the

random guessing attacks.

3.3.1 Random Guessing Attack

An attacker faced with a S-DCG CAPTCHA challenge can always attempt to perform a random

guessing attack based on his prior knowledge about the challenge.

Unknown probable answer objects, unknown target objects: The attacker knows the location

of the target area (e.g., the blue region containing the target circle and pentagon in the Shapes

game) and the moving object area (e.g., the white region in the Shapes game within which the

objects move). However, the attacker (bot) does not have any knowledge of: (1) the moving

objects and (2) the target objects. A randomized strategy that the attacker could adopt is to pick

a random location on the moving object area and drag/drop it to a random location on the target

area. The probability of success will equals

ao!×
(
a

ao

)
× (aoa

maa
∗ toa

taa
)ao, (3.1)

where ao is the number of answer objects, a is the number of allowed attempts, aoa the average

area of the answer objects, maa the area of the moving area, toa is that average area of the

target objects, and taa is area of the target area. The success probabilities of random attack for

the parking, ships, shape and animals are 0.008, 0.008, 0.001 and 0.00002, respectively when

the attacker is allowed 2 extra attempts. These probabilities are much lower than the target

28

probabilities for a real-world CAPTCHA system security (e.g., 0.6% as suggested by Zhu et al.

[67]). Therefore, S-DCG is secure against this form of random attack.

Unknown probable answer objects, known target objects: The attacker knows the location of

the target objects, but still does not have knowledge about the answer objects. The attacker can

pick a random point on the moving objects and drag/drop it to a randomly picked target object.

The probability of success can be calculated as

ao!×
(
a

ao

)
× (aoa

maa
∗ 1
to

)ao, (3.2)

where to is the number of targets. The success probabilities of random attack for the parking,

ships, shape and animals are 0.088, 0.008, 0.007 and 0.00008, respectively when the attacker is

allowed 2 extra attempts. Only animals game is secure against this random attack.

Known probable answer objects, known target objects: The attacker knows the target objects

and the moving objects location, however, he does not know the relationship between the objects

and the targets. The attacker picks a random object, drags it and drops it to a random target. The

probability of the success of this random attack can be calculated as

ao!×
(
a

ao

)
× (1

mo
∗ 1
to

)ao, (3.3)

where mo is the number of moving objects. The success probabilities of random attack for the

parking, ships, shape and animals are 0.5, 0.28, 0.08 and 0.01, respectively when the attacker is

allowed 2 extra attempts and the number of moving objects = 6. S-DCG is not secure against

this type of random attack.

3.3.2 Our Automated Attack and Results

Our attack framework involves the following phases:

1. Learning the background image of the challenge and identifying the foreground moving

objects.

2. Identifying the target area. For example, the area that contains all the animals in the

Animals game.

29

3. Identifying and learning the correct answer objects. For example, the ships in the Ships

game.

4. Building a dictionary of answer objects and corresponding targets, the background image,

the target area and their visual features, and later using this knowledge base to attack the

new challenges of the same game.

5. Continuously learning from new challenges containing previously unseen objects.

Next, we elaborate upon our design and matlab-based implementation per each attack phase

as well as our experimental results. We note that, on a web forum [68], the author claims to have

developed an attack against “are you a human” CAPTCHA. However, unlike our generalized

framework, this method is perfected for only one simple game that has one target object and a

fixed set of answer objects. It is not known whether or how easily this method can be adapted to

handle different games, games with multiple instances that carry different sets of answer objects,

and those with multiple target objects. Since only one game is cracked, one needs to keep re-

freshing the game page until that specific game appears. Since no technical details are provided

in [68], we can only doubt if any background learning or object extraction is implemented by

observing the short time it takes to finish the attack.

(1) Background & Foreground Object Extraction: To extract the static background of a S-

DCG challenge, the intuitive way is to superimpose some sampling frames that cross a valid

period (e.g., 40 frames captured at a fixed time interval (0.2s)), then select the most frequent

color value from each pixel as the background color for that pixel. This is based on the assump-

tion that the background image is static and the foreground objects are constantly moving, such

that the true background color almost always appears as the most frequent (or consistent) color

observed for a pixel. By subtracting the background image from a video frame, the foreground

moving objects become readily extractable. To further reduce the computational cost, a 6-bit

color code4, rather than a 3-byte representation of a color value, is used to code the video frame,

the learned background image, and the learned foreground objects.

However, one drawback of this preliminary method is that if the moving speed of the fore-

ground objects is too slow, especially when some foreground objects hover over a small area, the

dominant color values of most pixels in that area will be contributed by the foreground objects
4http://en.wikipedia.org/wiki/Color_code

30

http://en.wikipedia.org/wiki/Color_code

FIGURE 3.2: Detected Backgrounds. (a) Original Frame Image; (b) Detected Background with
Pseudo Patches by Using Preliminary Method; (c) Detected Background with Pseudo Patches
After Performing the First Step of the Proposed Method; (d) Detected Background with a Minor

Patch After Performing the Second Step of the Proposed Method.

instead of by the background. A shadow of foreground objects may appear as pseudo patches in

the background image as shown in Figure 3.2(b) for the Shapes game of Figure 3.2(a), indicated

by the dashed rectangle. Using more sampling frames for initial background learning could

alleviate this problem, but resulting in a time-consuming learning procedure. Our preliminary

experiment indicates that an average 30.9s, generated by running the above learning method 15

times per game challenge, is needed for learning a game background completely.

In our new method, we overcome the conflict between the number of sampling frames and

the pseudo patch effect by actively changing the location of one moving object per sampling

frame. In the first step, a few frames N1 (e.g., 10 frames captured in 0.3s interval) are collected

to generate the initial background that is used to extract the foreground object (through back-

ground subtraction) in the next step. Because the number of sampling frames is very limited,

pseudo patches may exist. The second step, called active learning, is to actively drag/drop each

moving object to a specified destination, which aims to speed up the object movement in order

to reduce the pseudo patch effect. Then,N2 (N2 > N1) sampling frames are collected whenever

a moving object is actively dragged. Because of the high efficiency of the moving object detec-

tion and the latter mouse operations, enough sampling frames (e.g., N2 = (30, 50)) without/with

minor hovering effect could be collected within a short period. The new background is detected

again based on the dominant color of the collected frames. Figure 3.2(c, d) show the detected

background with non-trivial pseudo patches and with a minor patch, resp. Minor patches could

affect the detection of a complete object, but since the affected area is minor, partial matching

could still be used in the identification of the answer object.

31

Each learned background image is saved in the database. After removing the extracted

background from 5-8 equally distant frames from the collected frames, the objects in each of

the selected frame are extracted. The objects below a certain size threshold were discarded as

noise. The frame with the maximum number of objects was then selected to extract various

objects. Using multiple frames for object extraction also helped us discard the frames in which

the objects overlapped each other and were hence detected as a single object instead of distinct

individual objects.

According to our experimental results, the likelihood of observing such pseudo patches is

sufficiently low (< 7%). However, pseudo patches may not pose a big issue. Even though the

existence of pseudo patches may result in over-segmented foreground objects when they overlap

each other, a partially detected object can still be used to extract visual features and later to locate

an object that matches the visual features at the time of attacking.

As the final step as part of this phase, the visual features, coded as color code histograms (a

visual feature commonly used to describe the color distribution in an image), of the foreground

objects and the background image, are stored in the database, together with some other meta-

data such as the object size and dimensions.

(2) Target Area Detection: Identifying the target area requires analysis of the background ex-

tracted in the previous phase. For this purpose, we implemented Minimum Bounding Rectangle

(MBR) [69] method and the Edge-based method, and compared and contrasted them with regard

to detection accuracy and time efficiency.

The MBR method is based on the observation that the activity/moving area of foreground

objects has no or very little overlap with the target area. Therefore, by detecting and removing

the foreground moving area from the background image, a reasonable estimate of the target area

can be obtained. As the first step of this approach, the selected 5-8 frames and their foreground

object masks from the previous phase are used to identify the foreground moving area mask.

More specifically, the foreground mask is generated by identifying those pixels that have a dif-

ferent color code value than that of the corresponding pixels in the background image. Then, an

MBR is generated that bounds the area where the foreground objects are detected in the current

frame (Figure 3.3). The final estimate of the foreground moving area, denoted as MBRfinal,

is the superimposition of all the MBRs extracted from the sample frames, also represented as a

32

minimum bounding rectangle (see Figure 3.3(c)).

FIGURE 3.3: Target Detection. (a) The Detected Background for the Parking Challenge; (b)
One Sample Frame Represented in Color Code; (c) Detected Foreground Objects from (b) and

their MBR.

After the removal of the entire area bounded by MBRfinal from the background image,

the remaining background is divided into eight sub-areas. as shown in Figure 3.4. The largest

sub-area with the largest area (e.g., sub-area #2 in Figure 3.4) is identified as the target area. It

is worth noting that the computational cost of this method is very low (O(MN), where N is

the number of pixels in a game scene, M is the number of sample frames, and M � N) since

the foreground object masks are readily available as part of the output from the previous phase.

In other words, the most time consuming part is the extraction of foreground objects O(MN2)

from sample frames, which has been covered in the previous phase 5

1 2 3

4 5

6 7 8

MBRfinal

FIGURE 3.4: Eight Sub-Areas Generated According to Moving Area of Foreground Objects.

The Edge-based method employs a different design principle than MBR-based method. It

is based on the hypothesis that there are strong edges in the target area because of the likely
5We also implemented an alternative design, called the exclusion method , which detects the target area by simply

removing foreground object pixels accumulated from all the sample frames. However, while this method is slightly
faster than the MBR-based method, it is less robust.

33

presence of objects in the target area, such as the dog and the squirrel in the Animals game. The

steps involved in the edge-based method are listed below:

1. Collect a sequence of frames and learn the background image as in the MBR-based

method.

2. Detect edge pixels on the background image. Group connected edge pixels into edge

segments.

3. Remove trivial edge segments that have too few pixels by a user-input threshold.

4. The mean of all the centroids of remaining segments is used as the target area center.

The comparison results of the MBR-based and Edge-based methods are shown in Figure

3.5. The solid square dot in each game scene in Figure 3.5(a) is the MBR-detected target area

center for that challenge. Also displayed in Figure 3.5(a) are the detected foreground object

moving areas, namelyMBRfinal, displayed as a black rectangle in each game scene. According

to our experimental results, MBR-based method was able to detect the correct target area center

in all the challenges. In contrast, for the edge-based method, it is difficult to find a global

threshold that works for all the challenges. Rather, we need to adjust the threshold for a specific

game in order to achieve “reasonably good” results, and this method is also sensitive to the

existence of texts in the background. Figure 3.5(b) shows the “optimal” edge detection result

for each challenge with a manually tuned threshold which is different for each challenge. As

shown in Figure 3.5(c), some target area centers are incorrectly detected because some edge

segments belong to the texts that are part of the background but not of the target area. This

means that the accuracy of the edge-based method could be significantly undermined by the

presence of strong edges in the background that are not part of the target area (e.g., presence

of texts) and the absence of objects in the target area (e.g., the absence of objects in the target

area of the Ships Game). As for efficiency, the MBR-based method has a time complexity of

O(MN) whereM is a constant in the range of 5-8, while the time complexity of the edge-based

method is O(NL+N2) where L is a constant in the range of 3-8 estimated based on the typical

time complexity of a non-combining edge detection method [70]. Overall, this shows that the

MBR method outperforms the Edge method on several aspects.

34

 MBR-based method Edge-based method

A
ni

m
al

s
G

am
e

Pa
rk

in
g

G
am

e

Sh
ap

e
G

am
e

Sh
ip

s
G

am
e

 (a) (b) (c)

FIGURE 3.5: Comparison of the Target Area Center Detection Results between the MBR-
Based and the Edge-Based Methods. (a) Results from MBR-Based Method (Solid Square Dot
Represents the Target Area Center and Black Rectangle Represents the Object Moving Area);
(b) Centroids of Non-Trivial Edges from the Edge-Based Method; and (v) Final Target Area

Centers from the Edge-Based Method.

(3) Answer Object & Target Location Detection: Once the target area is identified, the next

step is to identify the correct answer objects and their respective matching sub-target areas. Since

a game can not have too many sub-target areas (otherwise, usability will be compromised), we

divide the entire probable target area into 9 equal-sized blocks, each represented by its area

centroid, drag each foreground object to each of the 9 centroids, and stop and record the knowl-

edge learned whenever there is a “match.” A match occurs when an answer object is dragged

to its corresponding sub-target area (e.g., a “bone” dragged onto a “dog”). This is detected by

monitoring the change of the area summation of all the foreground objects, since once an answer

object is dragged to its correct target location, it will stay in the target area and therefore result in

a reduction of the foreground area. In our experiments, this method has proven 100% effective

when applied to all four games. As for efficiency, while the worst case upper bound is O(N),

where N is the total number of foreground objects, in practice, much less number of drags are

required. Our experimental results show that, with 5 foreground objects for each game and 15

training runs for each game, the average number of drags needed for a game is 9. In case the

server imposes a strict limit on drag/drop attempts, this process can be repeated over multiple

runs.

35

(4) Knowledge Database Building and Attacking: The background, target area, and learned

answer objects as well as their corresponding sub-target areas together constitute the knowledge

database for a game. After learning about sufficient number of games, whenever a new game

challenge is presented, the knowledge base is checked for the challenge. The target area of the

currently presented challenge is matched with the target areas present in the database to identify

the challenge. If a match is found, the extraction of objects from the foreground follows. The

visual features such as the color code histogram of the currently extracted objects are matched

with that of the answer objects in the database for that challenge. The extracted objects identified

as correct answer objects are then dragged to their corresponding sub-target areas. To measure

the performance of our approach, we ran this attacking module 100 times for each game instance,

and the average successful attacking time is 6.9s with the number of foreground objects ranging

from 4 to 6. The maximum successful attacking time is 9.3s, observed for an instance of the

Animal game with 6 foreground objects. These timings are in line with those exhibited by honest

users in our usability study, which will make it impossible for the CAPTCHA server to time-out

our attack.

(5) Continuous Learning: During attacking, if a challenge matches a game in our database but

contains previously unseen answer object(s) (e.g., a new ship object in a Ships game instance),

the attack will not terminate successfully. Whenever such a situation arises, an answer object

learning module that is similar to the aforementioned module is activated, but differs from the

latter in that it only needs to drag a potential answer object to each of the previously learned

sub-target areas that have matching answer objects in the database. The newly learned answer

objects and their corresponding sub-target area centroids are then added to the knowledge base

for that game.

3.3.3 Discussion and Summary

There are two benefits in the background learning. First, the learned background can be used

to quickly extract foreground moving objects. Second, the learned background can be used to

locate the target area where foreground answer objects need to be dragged to. The proposed

active learning is tested on all 36 game challenges (i.e., 3 (speeds), 3 (# of objects), 4 (game

prototypes)). N1 is set to be 10. The shape objects in the Shape Game have larger size than

objects in other games, which easily result in pseudo patch effect when 6 moving objects exist in

36

the game window with limited size. Therefore,N2 is set to be 50 for the Shape Game challenges

with 6 objects while 30 frames is used for all the other game challenges. In total, a complete

background can be extracted in average 9.04s that is about three times faster than the preliminary

method mentioned earlier (i.e., 30.9s).

The adoption of a large image database for each answer object could pose a challenge

to our approach since it allows for the creation of many different foreground answer object

configurations for the same game. In the worst case, a challenge may contain none of the

previously learned answer objects for that particular game. Continuous learning will be activated

in such cases and can also be used as a way for auto attacking in the run time. Such cases fall into

the category of “known foreground answer objects and known target objects,” and the success

rate can be estimated using the number of foreground objects (o), number of answer objects (t),

and number of drag/drop attempts allowed for each object (a). For example, if o = 5, t = 3 and

a = 2, the success rate is approximately 23

C(5,3)3! = 13%. Though as low as it seems, the rate

itself is not affected by the image database size.

During attacking, there is a time lapse between selecting a foreground object and verifying

whether it is an answer object. Both feature extraction and database lookup (through feature

matching) take time. In our implementation, we chose to click and hold a selected object until

a match with an answer object in the database is registered. In doing so, we guarantee that an

answer object, once verified, can be readily dragged/dropped, thus to avoid dealing with the

issue of constantly moving objects. However, this approach may fail if a constraint is added

by the CAPTCHA implementation that limits the amount of time one can hold an object from

moving. A less invasive attacking method would be to utilize parallel processing, in which one

thread is created to perform feature extraction and comparison, and another thread is used to

track and predict the movement of the object currently under verification.

Summary of Automated Attack Analysis: Our attack represents a novel approach to break-

ing a representative S-DCG CAPTCHA category. Attacking CAPTCHA challenges, for which

the knowledge already exists in the dictionary, is 100% accurate and has solving times in line

with that of human users. However, building the dictionary itself is a relatively slow process.

Although this process can be sped-up as we discussed, it may still pose a challenge as the auto-

mated attack may need to repeatedly scan the different CAPTCHA challenges from the server to

continuously build an up-to-date dictionary. The defense strategies for the S-DCG CAPTCHA

37

designers may thus include: (1) incorporating a large game database as well as large object

image databases for each game; and (2) setting a lower game time-out (such as 20-30s) within

which human users can finish the games but background learning does not fully complete. Since

our attack relies on the assumption that the background is static, another viable defense would

be to incorporate a dynamically changing background (although this may significantly hurt us-

ability). It is also important to note that, as per the findings reported in [71], the use of fully

automated solving services represent economical hurdles for CAPTCHA attackers. This applies

to traditional captchas as well as S-DCG CAPTCHA. Eventually, this may make automated at-

tacks themselves less viable in practice [71], and further motivates the attacker, similar to other

CAPTCHAs, to switch to human-solver attacks against S-DCG CAPTCHAs.

3.4 Relay Attacks

Human-solver relay attacks are a significant problem facing the CAPTCHA community, and

most, if not all, existing CAPTCHAs are completely vulnerable to these attacks routinely exe-

cuted in the wild [71]. In this section, we assess S-DCG CAPTCHAs w.r.t. to relay attacks.

3.4.1 Difficulty of Relaying S-DCG CAPTCHAs

The attacker’s sole motivation behind a CAPTCHA relay attack is to completely avoid the com-

putational overhead and complexity involved in breaking the CAPTCHA via automated attacks.

A pure form of a relay attack, as the name suggests, only requires the attacker to relay the

CAPTCHA challenge and its response back and forth between the server and a human-solver.

For example, relaying a textual CAPTCHA simply requires the bot to (asynchronously) send

the image containing the CAPTCHA challenge to a human-solver and forward the correspond-

ing response from the solver back to the server. Similarly, video-based character recognition

CAPTCHAs [13, 72] can be broken via a relay attack by taking a video of the incoming frames

and relaying this video to the human-solver.

In contrast, S-DCG CAPTCHAs offer some level of resistance to relay attacks, as we argue

in the rest of this section. In making this argument, we re-emphasize that the primary motivat-

ing factors for a human-solver relay attacker are simplicity, low economical cost and practicality.

As such, a relay attack that requires sophistication (e.g., special software, complexity and over-

head), is likely not viable in practice [71].

38

There appears to be a few mechanisms using which S-DCG captchas could potentially be

subject to a relay attack. First, if the server sends the game code to the client (bot), the bot may

simply ship the code off to the human-solver, who can complete the game as an honest user

would. However, in the S-DCG CAPTCHA security model (Section 3.1.1), the game code is

obfuscated and can be enforced to be executable only in a specific domain/host authorized by

the server using existing tools [63], which will make this attack difficult, if not impossible.

The second possibility, called Static Relay attack, is very simple and in line with a tradi-

tional CAPTCHA attack (and thus represents a viable and economical relay attack). Here, the

bot asynchronously relays a static snapshot of the game to a human-solver and uses the re-

sponses (locations of answer objects and that of the target objects) from the solver to break the

CAPTCHA (i.e., drag/drop the object locations provided by the solver to the target object loca-

tions provided by the solver). However, it is expected to have poor success rates. The intuitive

reason behind this is a natural loss of synchronization between the bot and the solver, due to

the dynamic nature of S-DCG CAPTCHAs (moving objects). In other words, by the time the

solver provides the locations of target object and the answer objects within a challenge image

(let us call this the nth frame), the objects themselves would have moved in the subsequent, kth,

frame (k > n), making the prior responses from the solver of no use for the bot corresponding

to the kth frame. Recall that the objects move in random directions and therefore it would not

be possible for the bot to predict the location of an object in the kth frame given the locations

of that object in the nth frame (n < k). Such a loss of synchronization will occur due to: (1)

communication delay between the bot and human-solver’s machine, and (2) the manual delay

introduced by the solver him/herself in responding to the received challenge.

The third possibility, called Stream Relay, is for the bot to employ a streaming approach,

in which the bot can synchronously relay the incoming game stream from the server over to

the solver, and then relay back the corresponding clicks made by the solver to the server. Al-

though the Stream Relay attack might work and its possibility can not be completely ruled out,

it presents one main obstacle for the attacker. Streaming a large number of game frames over

a (usually) slow connection between the bot (e.g., based in the US) and the solver’s machine

(e.g., based in China) may degrade the game performance (similar to video streaming over slow

connections), reducing solving accuracy and increasing response time. Such differences from

an average honest user gameplay session may further be used to detect the attack.

39

In the rest of this section, we report on an experiment and the results of an underlying user

study in order to evaluate the feasibility of Static Relay attack against our S-DCG CAPTCHA

instances. This novel experiment takes the form of a reaction time or reflex action task for the

human-solver. A reaction time task involves performing some operation as soon as a stimulus

is provided. A common example is an athlete starting a race as quickly as a pistol is shot. The

subject of reaction time has been extensively studied by psychologists (see Kosinski’s survey

[73]). Then, we report our Stream Relay attack study and show the ability of detecting such

relay attack using our proposed machine learning detection method.

3.4.2 Reaction Time Static Relay Experiment

Our hypothesis is that S-DCG CAPTCHAs will be resistant to the Static Relay attack, and so

we give the attacker a strong power in the following sense: our tests eliminate the communica-

tion delay between the bot and the human solver, by putting them on the same machine. The

focus of the experiment then shifts towards motivating human-solvers to perform at their best by

employing meaningful interfaces and by framing the underlying task in a way that is amenable

to these solvers. In particular, since attacker’s goal is to minimize the delay incurred by the

human solver in responding to the challenges, we model human-solver attack as a reaction time

[73] task described below. Our Section 3.4.2.2 study further facilitates the attacker with human

solvers having low response times and quick reflex actions, such as youths in their 20s [73].

Experimental Steps: The reaction time Static Relay attack experiment consists of the following

steps:

1. A snapshot of the game challenge is extracted by the bot (B), and the human solver (H) is

asked to identify/mark a target object for that game challenge (e.g., the dog in the Shapes

game).

2. For each target object identified above, H is asked to identify one answer object in the

snapshot specific to the game challenge (e.g., bone for the dog in the Shapes game).

However, since B wants to minimize the delay between the time the challenge snapshot is

given and the response is received from H, a stimulus will be associated with the snapshot.

We make use of a combination of (1) a visual stimulus (the border across the game window

flashes in Red) and (2) an audio stimulus (a beeping sound). The task for H is to identify

an answer object in the image as soon as the stimuli are provided.

40

3. B will emulate the dragging and dropping of the objects based on the response of H

(simply use the pixel values provided by H as the coordinates of the objects and respective

targets).

4. Steps 2-3 are repeated until all answer objects for a given target object are identified by H

and dragged/dropped by B.

5. Step 1 is repeated until all target objects have been covered.

The experiment succeeds if the CAPTCHA game completes successfully, i.e., if all answer

objects are dragged to their respective targets by B per input from H.

(a) The solver is asked to choose a target object (b) The solver is asked to choose the next an-
swer object, if any

(c) The solver is asked to select a new target ob-
ject, if any

FIGURE 3.6: User Interface Implementing the Reaction Time Relay Experiment (95 Repre-
sents the User ID; The Red Rectangle in (c) Represents Our Visual Stimulus).

41

Experimental Implementation: Our implementation of the above experiment consists of a user

interface (UI) developed in Java that interacts with the human solver and a bot. The core of this

implementation is designed using an algorithm following which the screen captures are updated

and displayed on the screen as well as an algorithm used to make the mouse drag and drop of

the objects.

The game starts by the bot capturing an image of the game challenge from the browser (i.e.,

the CAPTCHA challenge that the bot received from the server) and displays that image in the UI.

The solver is then asked to click on a target object within that image. After selecting the target,

the solver is instructed to click a “Next” button, wait for a flashing and a beep (our stimuli),

followed by clicking the object that matches with that target. Once the solver has clicked on the

object, the bot takes control of the mouse by clicking and dragging the object to the target in the

flash game. The solver must be able to identify and choose the correct object before the object

has moved too far in the flash game displayed in the browser. Whether the click is successful or

not, a new screen capture is retrieved from the game on the browser. If the solver has chosen the

object in time on the UI, then he/she can pick a new target if one exists by clicking on the “New

Target” button. If the solver has missed clicking on the object fast enough (i.e., if the click was

not successful), the solver will automatically get another attempt to choose the correct object

followed by the flashing and the beep. Figure 3.6 depicts the UI of our implementation.

3.4.2.1 Static Relay Attack User Study

We now report on a user study of the aforementioned reaction time relay attack experiment

presented in Section 3.4.2. Similar to our usability study, we present the relay attack study

design, goals, and testing process, as well as study results.

3.4.2.2 Study Design, Goals and Process

In the Static Relay attack study, users were given the task to play our 4 game instances through

the UI (described above). The study comprised of 20 participants, primarily Computer Science

university students. This sample represents a near ideal scenario for an attacker, given that

young people typically have fast reaction times [73], presumably optimizing the likelihood of the

success of the relay attack. The demographics of the participants are shown in the third column

42

of Table 3.1. The study design was similar to the one used in our usability study (Section 3.2). It

comprised of three phases. The pre-study phase involved registering and briefly explaining the

participants about the protocols of the study and collecting the participant demographics. Then,

the participants playing the games via our interface. The participants were told to perform at

their best in playing the games. The post-study phase required the participants to fill a survey

form about their experience.

Each participant was asked to play the relay versions corresponding to each of the 20 varia-

tions of the 4 DCG CAPTCHA games as in Section 3.1.2; we used ordering based on 4×4 Latin

squares, as in the usability study. The specific goal of our study was to evaluate the reaction

time experiment UI in terms of the following aspects:

1. Efficiency: time taken to complete the games.

2. Robustness: likelihood of not completing the game, and incorrect drag/drops.

3. User Experience: quantitative SUS ratings.

4. Reaction time: Time delay between the presentation of the stimuli and the response from

the participant. This is a fundamental metric for the feasibility of the attack. If reaction

time is large, the likelihood of attack success will be low.

Another important goal of our user study was to compare its performance with that of the

usability study. If the two differ significantly, the relay attack can be detected based on this

difference.

For each game, completion times and errors were automatically logged by our web-interface

software. In addition, we maintained “local logs” of the clicks made by the participants on our

game interface to measure the reaction timings.

3.4.2.3 Study Results

Completion Time and Error Rates: Table 3.7 shows the time taken and error rates to play

the games for each game type by different participants. Unlike our usability study, many game

instances timed out, i.e., the participants were not able to always complete the game instances

within the time out of 60s. We reported in Table 3.7 only the average times that correspond to

the DCGs that were completed successfully.

43

TABLE 3.7: Error Rates and Completion Time Static Relay Attack

Game Type Completion time(s) Error Rate Drag Error Rate
mean (std) mean mean

Ships 22.25 (5.04) 0.26 0.17
Animals 37.93 (4.91) 0.40 0.65
Parking 20.45 (5.04) 0.22 0.66
Shapes 22.94 (1.74) 0.09 0.56

All games turned out to be quite slow, and much slower than that of the usability study

where the games lasted for less than 15s on an average (Section 3.2). As in our usability study,

we found that users took longest to solve the Animals game (37.93s), whereas the other games

took slightly less time. This might be due to the presence of 3 target objects. We observed that

the error rates were the highest for the Animals game (40%), and the least for the Shapes games

(9%) although the corresponding drag error rates were high (56%). The Ships and Parking

games had comparable overall error rates between 20-30%. Analyzing the data using Mann-

Whitney U test with Bonferroni correction, we found statistically significant difference between

the mean time of each of the games and its correspondent in the Lab-based usability study:

p < 0.001.

To analyze errors better, we investigated drag error rates, i.e. for each drag attempt whether

the object being dragged was dropped at the correct position or not. The error rate per click was

the least for the Ships game (17%), much lower compared to all other games (50-70%), the latter

itself being much higher than observed during the usability study. This suggests that the server

could prevent the relay attack against Animals, Parking and Shapes games by simply capping

the number of drag/drop attempts.

Reaction Time: We now analyze the reaction time corresponding to different games during

the relay attack experiments. We consider two types of reaction times, one corresponding to all

clicks made by the participants, and the other corresponding to only the correct clicks (i.e., those

that resulted in a correct drag/drop). The averaged results for the two types of reaction times

for each game type are summarized in Table 3.8. We can see that the average reaction time (all

clicks) for all game categories was more than 2s and the least for the Shapes game (2.17s). The

average reaction time (correct clicks) is slightly lower than reaction time (all clicks), but still

higher than 1.5s and still lowest for the Shapes game (1.62s). Neither types of reaction times

44

change significantly across different game categories.

TABLE 3.8: Reaction Times per Game Type

Game Type Reaction Time All Clicks(s) Reaction Time Correct Clicks(s)
mean (std) mean (std)

Ships 2.27 (0.34) 2.06 (0.17)
Animals 2.58 (0.35) 1.85 (0.23)
Parking 2.50 (0.51) 2.00 (0.31)
Shapes 2.17 (0.20) 1.62 (0.11)

User Experience: The average SUS score from the study came out to be only 49.88 (standard

deviation = 5.29). This is rather low given that average scores for commercial usable systems

range from 60-70 [66], and suggests a poor usability of the system. This means that it would be

difficult for human users to perform well at the relay attack task and implies that launching relay

attacks against DCG CAPTCHAs can be quite challenging for an attacker. Comparing the SUS

score between the lab-based usability study and static relay attack, using Mann-Whitney U test

with Bonferroni correction, we found statistically significant difference (p < 0.001).

Summary of Static Relay Analysis: All of our analyses above suggest that perpetrating a

successful Static Relay attack against the DCG CAPTCHA pose significant challenges. For the

attack to succeed, the human-solver needs to perform a reaction time task (average reaction time

is more than 2 seconds). That results in increasing the completion time to more than 20 seconds

in average, and significantly increasing of the error (error rates more than 20%; per drag error

rates more than 50%). Moreover, users found it a hard task (average SUS less than 50).

In real life, where the communication delays between the bot and solver’s machine will be

non-zero (unlike our attack set-up), launching a real attack would be even more difficult. Partic-

ipant feedback indicates that the human-solver performance may be improved with training, but

this may increase the economical costs for the attacker.

3.4.3 Stream Relay Attack

Under Stream Relay, the attacker obtains the S-DCG CAPTCHA challenge from the server,

just like a legitimate user. The attacker runs a streaming server (such as a VNC server), and

the human-solver connects to the attacker machine through a streaming client (such as a VNC

client). This streaming software is responsible for delivering the S-DCG CAPTCHA frames to

the human-solver and sending the human-solver’s mouse interactions, such as drag/drop, mouse

45

FIGURE 3.7: Human-Solver Gameplay in a Stream Relay Attack.

clicks and positions, to the attacker. The attacker then simply forwards the log of this interaction

between the human-solver and the game to the server. Finally, the server would run the detection

algorithm on this log, and responds back by rejecting (or accepting) the attacker. The Stream

Relay attack flow diagram is shown in Figure 3.7. Due to network latency, our hypothesis is

that the human-solver may suffer from degradation of the game quality at his/her end. This

degradation would decrease the game performance of S-DCG CAPTCHA. More importantly, it

would make the solver interaction with the game distinguishable from the interaction between

the legitimate user and the game (as in the normal setting), and thereby make it possible for the

server to detect the relay attack.

3.4.4 Virtual Network Computing (VNC) Overview

In our Stream Relay attack experiments, we use VNC as the streaming software. VNC makes it

possible to remotely control a computer over a network connection. The VNC system consists

of a VNC client, VNC server and VNC protocol. VNC utilizes remote framebuffer protocol

(RFB). RFB is a machine independent protocol for remote access to graphical user interface

[74].

The VNC client is a simple program. After connecting to the server, it falls into an infinite

loop in which it sends requests to the server about a specific on-screen rectangle, and waits for

the update. Whenever it receives the update which consists of an encoding changes between

now and the last request, it processes the update and redraws the display [74].

46

The update sent from the server to the client has a header that contains general information

about the message, and a series of rectangles, each of them has a header that contains the di-

mension of the data following it and its encoding. This structure makes it possible for the client

to process the updates incrementally, the client does not need to wait till it receives the whole

message before starting to process it. When the client has processed as much of the update as

it has received, the client utilizes the ideal time to gather the input from the user mouse and

keyboard and sends them to the server [74].

VNC server keeps scraping the framebuffer, the area of memory which stores the color

value of each screen pixel. Whenever the framebuffer is changed, the server stores the modified

region (the representation of the modified area and the modification made to it). The server

keeps updating the modified region with the update of the framebuffer till it receives a client’s

request [74].

The client’s request contains only the dimensions of a rectangle and a bit that indicates

whether the request is incremental or not. If the request is not incremental, the server will send

the whole framebuffer. Otherwise, the server sends the overlapping area between the requested

rectangle and the modified region and clears the modification from the modified region [74].

In our study, we utilize RealVNC [75] to stream the DCG captcha from the attacker to the

human-solver. RealVNC allows clients to connect to the server from web browser, so the clients

do not need to install any additional software.

3.4.4.1 Study Design, Goal and Process

MTurk workers were hired for the Stream Relay attack study. The MTurk workers (serving

the role of human-solvers) were asked to connect to a computer residing at our university and

connected to our university wireless network through a VNC java applet (serving the role of the

attacker’s machine). The workers were then asked to fill demographics form, play four games

(40 FPS, 6 objects) variant of each game instance (ordered based on 4×4 Latin Square), and fill

a survey form about their experience. The participants were paid the same amount ($0.5) for

their efforts as the usability study participants.

We used three different experiments to test various relay attack scenarios, the demographics

of the participants are shown in the columns 5 to 7 of Table 3.1, as described below:

47

1. Low-Speed High-Latency (LSHL): The first scenario involved collecting data from partic-

ipants residing in a developing country (India), where we expect the users to have a slow

Internet connection and they reside on far proximity of the attacker (residing in the USA).

Since in a typical relay attack, the human-solvers are normally hired from sweatshops

in remote countries (e.g., India or China) by an attacker residing in the US, this setting

reflects a real-life relay attack scenario. We collected data from 40 participants as part of

this scenario.

2. Small Game Relay: The second attack scenario involved testing a case when an attacker

tries to minimize communication between the attacker and the solvers by reducing the

game size. This was achieved by presenting games with 1/4 of the normal size to the

subjects, i.e., a game with size 180× 65. To evaluate this scenario, we collected data from

20 participants residing in a developing countries (same as in the previous study).

3. High-Speed Low-Latency (HSLL): In the last scenario, we tested a setting in which the

attacker recruits participants from a developed country (USA), where the users have fast

Internet connection and they reside in near proximity of the attacker (USA). To evaluate

this scenario, we collected data from 20 participants located within US.

3.4.4.2 Study Results

In this subsection, we will report the study results and compare them to the MTurk usability

study.

Completion Time and Error Rates: The results for the first, LSHL Relay, scenario are shown

in first column of Table 3.9. The games played as part of this scenario took significantly

longer than that performed with usability study. On average, we found that completing S-DCG

CAPTCHAs with LSHL Relay took approximately 61% longer than that for usability study.

Furthermore, upon comparing the mean time taken to complete the games (Successful Time)

between the MTurk usability and LSHL using Mann-Whitney U test with Bonferroni correc-

tion, we found a statistically significant difference, with p < 0.001, for each of the four games.

The error rates were also significantly higher than those exhibited in the MTurk usability study,

on an average of 84%. The drag error rate was 40% higher for LSHL Relay attack compared to

48

TABLE 3.9: Completion Times, and Error Rates in Stream Relay Attack Scenarios

Low-Speed High-Latency (LSHL) Relay Small Game Relay High-Speed Low-Latency (HSLL) Relay
Game Successful Error Drag Error Successful Error Drag Error Successful Error Drag Error
Type Time (s) Rate Rate Time (s) Rate Rate Time (s) Rate Rate

mean (std) mean mean mean (std) mean mean mean (std) mean mean

Ships 29.98 (13.00) 0.15 0.45 22.82 (8.17) 0.40 0.27 16.28 (13.39) 0.05 0.25
Animal 34.04 (13.52) 0.33 0.43 37.11 (8.21) 0.40 0.29 17.54 (11.71) 0.20 0.35
Parking 25.61 (15.79) 0.38 0.75 20.43 (13.20) 0.25 0.57 14.13 (13.67) 0.10 0.46
Shape 21.53 (12.79) 0.23 0.43 26.86 (10.86) 0.10 0.51 15.25 (14.76) 0.05 0.21

usability study. The longer game completion time and higher error rates might be attributed to

high network latency between the attacker’s machine and the human-solvers’ machines.

To overcome the issues presented by network latency for the participants outside the US,

in the second scenario (Small Game Relay), we reduced the game size by 1/4, to 180× 65

pixels. However, the results, as shown in the second column of Table 3.9, were still comparable

to that of stream relay attack with normal game size, with longer gameplay time and higher

error rates compared to the MTurk usability study. The successful game completion time was

approximately 60% longer, while the error rate was 76% higher on average than that for usability

study. The drag error rate was 16% higher than that for usability study. Analyzing the mean

time using Mann-Whitney U test with Bonferroni correction, we found statistically significant

difference between the mean time between all pairs of games from usability and Small Game

Relay with p < 0.001. Although reduced size may have resulted faster game transmission,

smaller game size may have made it difficult for the users to play the game.

Our last stream relay experiment, HSLL Relay, tested the Stream Relay attack performance

when the attacker and the solver reside relatively nearby (both within the US) and where the

solvers have high speed internet connection. The results of this experiment are depicted in the

third column of Table 3.9. The results show huge improvement over the previous two scenarios.

The time taken to complete the game is on average about 40% lower compared to the time taken

by participates in LSHL and Small Game Relay scenario. Analyzing the data using Mann-

Whitney U test with Bonferroni correction, we found statistically significant difference between

the mean time of the Ships game and its correspondent in the usability study: p = 0.048.

However, we did not find statistically significant difference between the mean times of the rest

of the games and their correspondents in the usability study. It appears that relatively lower

latencies between the attacker’s machine and solvers’ machines in this scenario improved the

49

game performance, but it was still at a lower level compared to that exhibited in the usability

study. The error rates and drag error rate were 41% and 1% higher for HSLL Relay attack

compared to usability study.

User Experience: The mean of the SUS for the first, second and third relay attack scenarios

came to be 59 (standard deviation = 12.83), 57 (standard deviation = 14.97) and 65.11 (standard

deviation = 18.42), respectively, which is consistently lower than the mean SUS score obtained

from the usability study. Comparing SUS score between the MTurk usability study and each

of the three relay attack scenarios, using Mann-Whitney U test with Bonferroni correction, we

found statistically significant difference between usability study and LSHL Relay (p < 0.0001)

and between usability study and Small Game Relay (p = 0.004). HSLL Relay did not turn out

to be significantly different from the usability study statistically in terms of user experience.

3.4.4.3 Stream Relay Attack Detection

In the previous section, we have demonstrated that the S-DCG CAPTCHA game performance

(completion timings and error rates) in the usability study setting and the game performance in

each of the Stream Relay attack scenarios differs in the average case. In this section, we set out

to investigate whether it is possible for the CAPTCHA service, based on the different gameplay

features and behavioral data, to identify whether an individual gameplay event (CAPTCHA

solving instance) conducted by a legitimate user or to human-solver in the Stream Relay attack.

To this end, we explore the following aspects of the human behavior data collected for each

gameplay instance:

• PlayDuration: overall gameplay time (in seconds) of a game instance for an honest or

remote user.

• IsTimeout: indicating whether a game is unfinished due to exceeding the maximum time

limitation (e.g., 60s).

• TimeStamps: a k-by-1 numeric vector consisting of timestamps. Each timestamp is a

relative time reference in millisecond, contributed by both the mouse-dragging event and

the mouse-status event (i.e., left click up/down).

50

• DraggingObjs: a k-by-1 binary vector. The drag of an object at the corresponding times-

tamp is indicated as 1, otherwise 0. A successful drag-and-drop of an answer object

to the corresponding target object will have a dragging track ending up with the let-

ter ‘y’ (e.g., 0,1,1,· · · ,y,0,· · ·). Otherwise, the track ends up with the letter ‘n’ (e.g.,

0,1,1,· · · ,1,n,0,· · ·).

• MouseStatus: a k-by-1 binary vector indicating whether the left key is pressed at the

corresponding timestamp (i.e., 1 for down and 0 for up, respectively).

A continuous key-press track may not correspond to a drag track when the mouse misses

to grab a moving object. Such a key-press track is called an invalid mouse drag. When an

invalid mouse drag occurs to a legitimate user, he/she can usually realize it immediately and

take appropriate corrective actions. Consequently, an invalid mouse drag track will end relatively

quickly, resulting in relatively few timestamps on the track. In contrast, when the same situation

happens during Stream Relay attack, the remote human-solver may be slow in response due to

the network communication delay, which may be reflected as either a longer invalid mouse drag

track, or a slow-motion mouse movement that generates many timestamps, or both.

There are 7 features extracted from the users’ gameplay data, used as input to train a clas-

sifier to differentiate legitimate users from relay attackers and tested with different machine

learning methods.

1. PlayDuration: as mentioned above.

2. Successful drag rate: the ratio of the number of successful drag-and-drops to the total

number of drag-and-drops.

3. Number of attempts: the number of times the mouse status changes from ”up” to ”down”.

4. Average dragging time: the sum of time duration of drags divided by the number of drags.

5. The maximum duration among all invalid mouse drags in a gameplay instance.

6. Number of timestamps in the invalid mouse drag with the longest duration.

7. The product of Features 5 and 6.

51

TABLE 3.10: Class Distribution of Non-Timeout Users

Game Usability LSHL SmallGame HSLL
Name Relay Relay Relay

(N) (40) (40) (20) (20)
Animal 39 27 12 16
Parking 40 25 15 18
Shape 37 31 18 19
Ships 39 34 12 19

Both Support Vector Machine (SVM) [76] and K-Nearest Neighbors (KNN) [77] are tested

on 127 (27 − 1) feature subsets with 6 (2 SVM types, namely C-SVC, Support Vector Classi-

fication, and nu-SVC, with 3 different kernel functions, namely linear, polynomial, and radial

basis functions) and 2 (i.e., Euclidean distance or Minkowski metric) parameter configurations

in SVM and KNN, respectively. In total, 1016 (127× 8) different test cases were tested for each

game prototype in order to find the best subset of features and classifier that give the best results.

The timeout-user records are excluded from the dataset based on the consideration that if a

game cannot be completed within a reasonably long game time frame (e.g., 60s), it is reasonable

for the game server to reject the user no matter he/she is an honest user or a remote relay attack

user. Table 3.10.1 shows the class distribution of non-timeout users for each game.

In the classification task, the positive class corresponds to a legitimate user and the negative

class corresponds to human-solver relay attacker as denoted below:

• True Positive (TP): legitimate user correctly classified as legitimate user.

• True Negative (TN): relay attacker correctly classified as relay attacker.

• False Positive (FP): a relay attacker misclassified as legitimate user.

• False Negative (FN): a legitimate user misclassified as a relay attacker.

Three different measures are used to evaluate the classifier’s performance, namely precision,

recall, and accuracy, as defined in Equations 3.4, 3.5 and 3.6. Of these, recall is more important

than precision because low recall leads to a high rejection rate of legitimate users, causing user

frustrations and compromising usability. The desired classification result should demonstrate a

sufficiently high recall and a reasonably high precision.

52

Precision = TP/(TP + FP) (3.4)

Recall = TP/(TP + FN) (3.5)

Accuracy = (TP + TN)/(TP + FP + TN + FN) (3.6)

TABLE 3.11: Results of Using the Optimal Feature Subset for Each Game in the Classification
of Legitimate User and LSHL Relay Attacker

Game Feature Method Average Average Average
Name Subset Accuracy Precision Recall

Animal
6 C-SVC linear 0.95 0.95 0.98

6,7 nu-SVC poly 0.95 0.95 0.98

Parking
5,6 KNN Euclid 0.86 0.83 0.98

5,6,7 KNN Euclid 0.86 0.83 0.98
Shape 4,5,6,7 nu-SVC rad 0.86 0.82 0.95
Ships 4,5,6 nu-SVC rad 0.93 0.93 0.95

TABLE 3.12: Results of Using the Common Optimal General Feature Subset for All Games in
the Classification of Legitimate User and LSHL Relay Attacker

Game Feature Method Average Average Average
Name Subset Accuracy Precision Recall

Animal 6 nu-SVC radial 0.95 0.94 0.98
Parking 6 nu-SVC radial 0.85 0.83 0.95
Shape 6 nu-SVC radial 0.80 0.76 0.94
Ships 6 nu-SVC radial 0.92 0.91 0.94

In the first classification experiment, we build a classifier for each of the four game types

to distinguish a legitimate user from a LSHL relay attacker (i.e., corresponding to the first sce-

nario of the Stream Relay attack). The average measurement values, as shown in Table 3.11,

are calculated from running a 10-fold cross validation 5 times for each test case. The results

show that LSHL relay attack can be detected fairly accurately with a reasonably high precision

and a very high recall. The Animal and the Ships game provided the best performance, which

is expected as both of them require three drags and drops, which is more than the number of

required drags and drops for the Shape and Parking games. In order to find a general feature

subset that has the highest average accuracy for all game prototypes, we further ranked the av-

erage accuracy of each feature set in all games. The results as shown in Table 3.12 indicate

53

TABLE 3.13: Classification Results of Using the Optimal Feature Subset for Each Game in the
Classification of Small Game Relay Attackers Using the Original Model

Game Name Feature Subset Method Avg. Accuracy

Animal
6 nu-SVC poly 1.00

6,7 nu-SVC poly 1.00
Parking 4 nu-SVC linear 0.73

Shape
1 nu-SVC linear 1.00
2 nu-SVC linear 1.00

Ships
3 nu-SVC poly 1.00

2,3 nu-SVC poly 1.00

TABLE 3.14: Results of Using the Common Optimal Feature Subset for All Games in the
Classification of Small Game Relay Attackers Using the Original Model (Parking Game Should

be Discarded)

Game Name Feature Subset Method Avg. Accuracy
Animal 1,3,5,6 C-SVC poly 1.00
Parking 1,3,5,6 C-SVC poly 0.13
Shape 1,3,5,6 C-SVC poly 0.94
Ships 1,3,5,6 C-SVC poly 0.92

that Feature 6 with SVM gives the highest average accuracy for all games, which makes sense

because this feature exists in all optimal feature subsets of each game in Table 3.11.

In our second classification experiment, we apply all the models (i.e., total amount: 1016)

trained from the first experiment on the Small Game Relay dataset in order to test whether the

current model can also detect the relay attackers who played in a smaller game window). Be-

cause the testing dataset contains only Small Game Relay records (i.e., True Negative), calculat-

ing precision and recall is not meaningful due to the lack of True Positive data. The classification

results for the optimal feature subset of each game are shown in Table 3.13. The proposed fea-

ture subsets can achieve 100% accuracy for all games except the Parking game. The optimal

feature subset (i.e., Feature 4) for the Parking game can only achieve 73% accuracy, which in-

dicates that few number of answer objects in a game is likely not secure against Small Game

Relay attack because the possibility for the relay attackers to generate invalid mouse clicks is

low. In this light, the CAPTCHA service may choose to remove the Parking game from their

game database and use the original training model without compromising the security against

relay attacks or usability.

54

TABLE 3.15: Results of Using Feature ‘6’ for All Games in the Classification of Small Game
Relay Attackers Using the Original Model (Parking Game Should be Discarded)

Game Name Feature Subset Method Avg. Accuracy
Animal 6 nu-SVC poly 1.00
Parking 6 nu-SVC poly 0.07
Shape 6 nu-SVC poly 0.89
Ships 6 nu-SVC poly 0.92

TABLE 3.16: Results of Using the Optimal Feature Subset for Each Game in the Classification
of Legitimate User and Small Game Relay Attacker

Game Feature Method Average Average Average
Name Subset Accuracy Precision Recall

Animal 6,7 C-SVC linear 0.96 0.95 1.00
Parking 2,4,5,6,7,8 C-SVC linear 0.83 0.82 0.97
Shape 3,5,6,7 KNN Euclid 0.92 0.90 1.00
Ships 5,6,8 C-SVC linear 0.95 0.93 1.00

With the exclusion of the Parking game, the optimal general feature subset for all the other

three games includes Features ‘1, 3, 5, 6’ when SVM with certain parameter setting is used as

shown in Table 3.14. Using Feature ‘6’, the optimal feature subset for predicting relay attack

on games with full game window size, can also achieve acceptable accuracies (> 89%) on these

three games (Table 3.15) when SVM.

Then, we build a model to distinguish between legitimate user and Small Game Relay

attacker. The obtained results are shown in Table 3.16. The average recall is 100% for all of the

games expect for the Parking game. The average accuracy and precision for all the games are

91.5% and 90%, respectively.

For the last dataset, using the data collected from HSLL relay, we build a classifier for

each of the four game types, which could distinguish a legitimate user (i.e., corresponding to

the usability records) from a HSLL relay attacker. The average measurement values, as shown

in Table 3.17, are calculated from running a 10-fold cross validation 5 times for each test case.

The results show that HSLL Relay attack can be detected with a high recall for all games, of

above 96%. The Ships and Animal games seem to provide the best performance, which is

justifiable given the games’ complexity (larger number of target objects than the other games).

However, the classification accuracy is lower than it is in LSHL Relay – on average 77% for

55

TABLE 3.17: Results of Using the Optimal Feature Subset for Each Game in the Classification
of Legitimate User and HSLL Relay Attacker

Game Feature Method Average Average Average
Name Subset Accuracy Precision Recall

Animal 3,5,7 KNN min 0.79 0.77 0.99
Parking 5,6 nu-SVC rad 0.77 0.76 0.97
Shape 1,2,4,5,6,7 nu-SVC rad 0.76 0.75 0.96

Ships
5,6,7 C-SVC poly 0.77 0.75 1.00

3,5,6,7 C-SVC poly 0.77 0.75 1.00

TABLE 3.18: Results of Using the Optimal Feature Subset for Each Game in the Classification
of HSLL Relay Attackers Using the Original Model

Game Name Feature Subset Method Avg. Accuracy

Animal
2 nu-SVC poly 0.94

3,4 nu-SVC poly 0.94

Parking
2 nu-SVC poly 1.00
3 nu-SVC poly 1.00

2,3 nu-SVC poly 1.00
Shape 4 nu-SVC poly 1.00
Ships 1,3 nu-SVC poly 1.00

HSLL compared to 90% for LSHL. This indicates that latency may increase the accuracy of

attack detection.

In our third and final classification experiment, we used all the models (i.e., total amount:

1016) trained from the first experiment to predict the HSLL Game Relay dataset. Because

the testing dataset contains only True Negative records, calculating precision and recall is not

meaningful (due to the same reason as explained in the second experiment). The classification

results using the optimal feature subset of each game are shown in Table 3.18. The proposed

feature subsets can achieve accuracy of at least 94% for all games.

To measure the overall classification accuracy and recall of our model, we built a classifier

for each of the four game types using all the collected data from usability study and the three re-

lay attack scenarios. The average measurement values are shown in Table 3.19, suggesting that

the best average accuracy and average recall are achieved for the Animal and Ships games, fol-

lowed by the Shape game and then the Parking game. This suggests that increasing the number

of the required drag-and-drops improves the classification performance. A S-DCG CAPTCHA

56

TABLE 3.19: Results of Using the Optimal Feature Subset for Each Game in Classification of
Legitimate User and (LSHL, HSLL and Small Game) Relay Attacker

Game Feature Method Average Average Average
Name Subset Accuracy Precision Recall

Animal
7 C-SVC rad 0.85 0.75 0.97
7 nu-SVC rad 0.85 0.75 0.97

Parking 4,5 C-SVC rad 0.74 0.65 0.76

Shape
2,3,4,5 KNN min 0.78 0.66 0.75

2,3,4,5,7 KNN min 0.78 0.66 0.75

Ships
2,3,4,5,7 C-SVC rad 0.83 0.73 0.87

2,3,4,5,6,7 nu-SVC rad 0.83 0.73 0.87

service may employ this global model without having to remove any of the four games from the

game database.

3.5 Hybrid Attack

Relay attacks as shown in section 3.4 are easily detectable. Automated attack is effective, how-

ever, it has some weaknesses, such as:

1. The auto-attack framework cannot detect the target area that overlap the activity area.

2. Dragging and dropping a moving object always follows a straight line-path, which doesn’t

work for more complex paths.

3. The learning phase requires too many drags/drops which may be detectable by the server.

In this section, we propose two models of hybrid attacks for attacking DCG CAPTCHA that

combine the strengths of both of the automated and relay attack and overcome their weakness.

A key component of both models in our framework is robust object tracking that preserves the

synchronization between the game and the bot.

3.5.1 Auto-attack with offline learning

Model I of our proposed hybrid attack framework (Figure 3.8), Auto-attack with Offline hu-

man Learning (AOffL), attacks a known game with the help of real-time tracking and offline

knowledge. In the learning phase of AOffL, the necessary knowledge related to a game scene is

learned in advance from a remote human-solver.

57

FIGURE 3.8: Hybrid Attack Model I: Auto-Attack with Offline Human Learning

First, the bot starts the game and keeps scanning the game frame images. Second, the bot

performs initial analysis to detect the game background, moving objects and potential target

areas, and keeps tracking the moving objects. Third, similar to the relay attack against a text-

based CAPTCHA, only one frame image is sent from the bot to the human-solver. The solver

task is draw line(s) from the answer object(s) to its/their corresponding target object(s). These

lines provide several clues for attacking the game: (1) The start and the end points of each

line label the locations of the answer object and its corresponding target object, respectively;

(2) The end portion of each line (e.g., the portion connected to the target object) can also be

used as the basic entry path to the target object if straight-line paths are not workable in this

game. For example, 40% of each hand-drawn dragging path (starting from the end point) is

treated as the basic entry path. Therefore, an answer object can always be dragged to the start

point of the entry path first, and follow the entry path to the target finally. If a complex path,

is required, a curvature threshold could be defined to identify those critical turning points with

curvatures larger than the threshold, which finds the key points that must be passed in turn in

a new path. Finally, the above clues together with the initial analysis, i.e., background and

foreground detection, will be recorded in the knowledge base. Answer objects as well as the

background are represented in color code histograms. A continuous learning from the game

58

server is required to build an up-to-date dictionary.

The attacking phase consists of the following steps (as shown in Figure 3.8). The initial

analysis is performed (Step 1) followed by submitting a query to the knowledge base (Step 2).

If a match is found, the bot will drag an answer object from its current location provided by

the real-time tracking to its corresponding target object (Step 3). The drag/drop attempt iterates

until completing the game (Step 4). If a match is not found, which indicates that the game or the

answer objects are completely new, the framework will learn the game as the dictionary based

auto-attack framework mentioned in Section 3.3.2. Moreover, the attacking phase is converted

into offline learning just in case that brute-force based learning cannot work out the puzzle.

3.5.2 Auto-attack with online learning

FIGURE 3.9: Hybrid Attack Model II: Auto-Attack with Online Human Learning

Model II of our hybrid attack framework (Figure 3.9), Auto-attack with Online human

Learning (AOnL), attacks any game, seen or unseen, with the help of real-time tracking and

online knowledge. Compared with AOffL, a human-solver must be available when the game

starts, similar to what is required in relay attacks. Moreover, there is no knowledge base for

future attacking as the remote solver provides the required knowledge in real-time.

As indicated in Figure 3.9, when attacking a game challenge, the bot keeps receiving frames

from the server (Step 1), and performs initial analysis (i.e., detect background and foreground)

59

on the game without drag/drop attempts (Step 2). Meanwhile, it sends one frame image to the

solver once the game starts (Step 3). The solver performs the same operation as the learning

phase in AOffL (Step 4). Once the solver submits his/her responses, the bot can learn the

answer objects and the dragging paths for this particular challenge based on the initial analysis

and the solver’s response (Step 5), and complete the game automatically with the help of real-

time tracking (Step 6). One concern in AOnL is that the success rate for completing a game

relies heavily on correctness and efficiency of the solver’s response (the same concern underlies

the relay attack on text-based and S-DCG CAPTCHAs).

3.5.3 Hybrid Attack Usability Study

3.5.3.1 Study Design, Goal and Process

In order to evaluate the performance for the users’ drawing operation and thereby the perfor-

mance of our hybrid attack, we conducted a user study in which we recruited 40 MTurk workers.

We asked the participants to fill a demographics form, then provide them with 4 static images

that represent snapshot to the four S-DCG explained in Section 3.1.2 and asked them to draw

lines from the answer object(s) to its/their corresponding target(s), the order of representing the

images to the participants followed the standard 4x4 Latin square. The interface has two buttons

“undo”, which clears the previously drawn lines, and “done”, which the participant should press

after drawing all the lines from the answer objects to the targets. Finally, the participants were

asked to fill a survey form consists of the 10 standard System Usable Scale (SUS) questions.

The demographics of the participants is presented in the last column of Table 3.1.

3.5.3.2 Study Results

In this subsection, we will report the study results and compare them to the MTurk usability

study.

Completion Time and Error Rates: The average time taken by the participants and the error

rates are shown in Table 3.20. The shortest average completion time and the minimum error rate

were for the Shapes game. The average time taken by the participants to complete the challenges

is higher than its correspondence in the usability study, however it is still considerably short

(around 13s on average). Comparing the completion time of all the games with their respective

60

TABLE 3.20: Drag Error Rates, Game Error Rate and Completion Time Hybrid Attack

Game Type completion Time(s) Error Rate Drag Error Rate
mean (std) mean mean

Ships 11.78 (5.39) 0.28 0.00
Animals 19.65 (10.48) 0.08 0.30
Parking 12.56 (7.93) 0.20 0.31
Shapes 10.57 (4.77) 0.05 0.45

in MTurk based usability study using Mann-Whitney U test with Bonferroni correction, we

found significant difference between each of the games and its correspondence in the usability

study Animal (p = 0.0035), Parking (p < 0.001), Shape (p = 0.0163) and Ships (p = 0.0215).

Some of the participants drew extra lines, which are represented in the drag error rate in Table

3.20. The drag error rate on average is less than the drag error rate committed by the participants

in the usability study, this can be due that the participants are allowed to delete the previously

drawn lines by pressing the “undo” button in case they committed errors. However, the overall

error rate is higher than its correspondence in the usability study as there is no instant feedback

if the drawn lines are correct or incorrect and whether the game is completed successfully or

not.

User Experience: The SUS score came to be on average 68.00 (standard deviation = 16.17),

which is lower than the SUS score for the usability study but better that all the tested variants of

relay attacks.

Summary of Hybrid Attack Analysis: The two models of the hybrid attack framework have

their respective advantages. AOffL can complete a known game efficiently and effectively, but

it requires continuously updating the knowledge base for unseen games or answer objects. The

delay issue in the manual learning phase is not a problem in AOffL due to its offline nature.

Therefore, AOffL is a significant threat to S-DCGs that do not have a large database (e.g.,

manually extended database), but has a low tolerance on completion time. On the other hand,

AOnL is insensitive to the database size. That is, it is possible for AOnL to complete a game

challenge even if the game has never been seen before, largely attributed to the instant solution

provided by the solver. However, response delay from the solver may be a bit of a bottleneck

for AOnL (as shown in the hybrid attack usability study, users took more time to complete the

drawing task comparing to the playing time in the usability studies). In the current settings,

61

the bot wait till the human-solver draws all the lines and sends them to the attacker. The bot

then starts dragging/dropping the answer objects to their corresponding targets according to

the response of the human-solver. Therefore, according the collected data in the user study

explained above the bot would wait in average 13s before it starts playing the game). Therefore,

AOnL could be a significant threat to those S-DCGs that has a relatively high tolerance on

playing time. Using the gameplay features other than the play duration to detect hybrid attacks

is a challenging task as the bot is the one who is playing the games and it would be able to mimic

the human mouse interactions with the games.

3.6 Conclusions

In this chapter, we investigated the security and usability S-DCG captchas. Our overall findings

are mixed. On the positive side, our results suggest that S-DCG CAPTCHAs, unlike other

known captchas, offer some level of resistance to relay attacks. We believe this to be a primary

advantage of these CAPTCHAs, given that other CAPTCHAs offer no relay attack resistance

at all. Furthermore, the studied representative S-DCG CAPTCHA category demonstrated high

usability. On the negative side, however, we have also shown this category to be vulnerable to a

dictionary-based automated attack and hybrid attacks.

An immediate consequence from our study is that further research on S-DCG CAPTCHAs

could concentrate on making these captchas better resistant to automated attacks while main-

taining a good level of usability.

62

CHAPTER 4

SECURITY ENHANCED DCG CAPTCHAs

The results obtained in the previous chapter show that S-DCG CAPTCHAs are highly usable,

and resistant to human-solver relay attacks. However, S-DCG CAPTCHAs are rather weak

when it comes to automated attacks and known probable answer objects, known target objects

random attack. We explored various ways to enhance the security of S-DCG against automated

attacks by adding countermeasures to the S-DCG. In this chapter, we outline our novel DCG

CAPTCHA variations that aim to resist automated attacks besides relay attacks.

Chapter Organization: Section 4.1 reviews our preliminary designs of various DCG variants

with enhanced security. Section 4.2 introduces Emerging Images based DCG CAPTCHA (EI-

DCG), a secure DCG instantiation by using the notion of emerging images [78]. Section 4.3

elaborates on the design and implementation of our EI-DCG instantiation. Section 4.4 presents

the security analysis of EI-DCG. Section 4.5 evaluates the usability of EI-DCG. Section 4.6 eval-

uates the security of EI-DCG against relay attack. Finally, Section 4.7 concludes our findings

on EI-DCG.

4.1 Preliminary Work

One of the main weaknesses of the S-DCG CAPTCHA instances (Figure 3.1) is that the under-

lying game background is static, which is utilized by our attack framework (Section 3.3.2) to

extract the foreground objects from the game frames thereby undermining the CAPTCHA se-

curity. To remedy this problem, we designed DCG CAPTCHAs variations that incorporate dif-

ferent forms of dynamic background, and analyze their security. The variations design involve

random noises , objects with dynamically changing color and luminance, object occlusion, and

dynamically changing (natural video) background, and combinations thereof, as outlined below

(Figure 4.1 shows examples):

• Noise: Noise is added to the game in the form of random shapes (e.g., lines) that are

moving randomly (Figure 4.1 (a), 4.1(b) and 4.1(c))).

63

(a) Noise (b) Noise+Occlusion

(c) Animated Bg (d) Snow Effect

FIGURE 4.1: The Proposed New Instances of DCG CAPTCHAs

• Object Occlusion: Each answer object has an overlapping shape (e.g., rectangle or circle

as shown in Figure 4.1(b) and 4.1(c)), and the position of this shape is updated randomly.

• Animated Background: A gif file (containing, e.g., random fireworks) is added as the

background (Figure 4.1 (c)).

• Snow Effect: In each frame, the color of the game background’s pixels is set randomly.

The objects are represented with boundaries only. Each object has a specific color at the

start, and in each frame, the boundary color transitions into a different color (Figure 4.1

(d)).

At a higher level, it may seem that adding those countermeasures could enhance the security

of S-DCG CAPTCHAs against automated tracking that utilizes background subtraction method.

However, a careful examination suggests that a corresponding automated attack could be built

to bypass these countermeasures.

1. Artificial/Natural scene video background and occlusion randomly roaming over the mov-

ing objects: The foreground objects have a low visual correlation with the background

content, which makes them trackable by utilizing the visually distinguishable feature,

such as color, thereby being vulnerable to automated attacks.

2. Random color background and semi-transparent moving objects: Moving objects could

become visible in color and/or luminance spaces in intermittent frames. Their contour

could be recovered through cross matching of detected contour information between ex-

posed frames, whereby a drag-and-drop could be launched by the automated attacks.

64

4.2 Emerging Image based DCG CAPTCHA (EI-DCG)

In order to design a CAPTCHA scheme that resists both automated attacks and relay attacks,

we turn to two categories of CAPTCHAs from the current literature – Emerging Image (EI)

CAPTCHAs [13, 14] (known to be resistant to automated attacks) and Simple Dynamic Cogni-

tive Game (S-DCG) CAPTCHAs (known to be resistant to relay attacks). However, no current

scheme is known to be simultaneously resistant to both attacks. We aim to achieve this property

via a careful combination of the two categories of CAPTCHAs.

In the work of [78], the authors proposed emerging images of 3D objects and explained the

emergence as “the phenomenon by which we perceive objects in an image not by recognizing

the object parts, but as a whole, all at once”. The authors indicate [78]: “humans cannot in-

stantaneously detect the object in such images, and can probably recognize it only after several

iterations that take into account numerous relationships between hypothetical objects and their

context. The computational complexity of this human processing is believed to be extremely

high [79], leading us to hypothesize that emergence images are hard for automatic algorithms

to segment, identify, and recognize”. They further go on to argue that: “Taking into account the

complexity of the task, and the lack of a clear understanding of how humans solve the problem,

it is highly unlikely, if not impossible, that these types of tasks could be carried out by bots in

the near future”. A concrete instantiation of an EI CAPTCHA developed in [13, 14] inherits the

above-mentioned characteristics, and is demonstrated to be secure against automated attacks.

However, such video-based EI CAPTCHAs are completely vulnerable to relay attacks whereby

the static video challenge can be simply forwarded to the remote human-solver.

A S-DCG CAPTCHA exhibits certain interesting properties. First, it is based on a cognitive

puzzle, which is easy for humans to understand, but may be difficult for a bot without enough

clues. Second, the game-based nature enhances the usability of CAPTCHA solving. Third, due

to the dynamic and interactive nature of the underlying game, relaying the game to a remote

solver might be challenging. As shown in Chapter 3, however, DCG CAPTCHAs based on

static background are vulnerable to automated attacks. On the positive side, they were shown to

offer resistance to relay attacks.

65

FIGURE 4.2: Generating an EI-DCG CAPTCHA Frame

4.3 DESIGN & IMPLEMENTATION

4.3.1 Design Overview

Our EI-DCG CAPTCHA has following unique features that differentiate it from EI-based Nu

CAPTCHA (EI-Nu) [13] and the original EI-based videos [78].

1. Instead of using 2D objects as in EI-Nu CAPTCHA or real 3D objects with shading as in

EI videos, EI-DCG CAPTCHA uses a pseudo 3D object (i.e., projecting a 2D object into

3D space, applying necessary transformations, and projecting it back to 2D) to provide

a simulated 3D view, and more importantly to lower the possibility of recovering object

contours through accumulation of information from consecutive frames, i.e., to protect

against auto-decoding.

2. Hiding information in a single frame is more challenging in EI-DCG CAPTCHA since

there are usually more foreground objects (e.g., ≥ 5) than there are in EI-Nu or EI videos.

Most EI-based videos in [78] contain one single object, making it relatively easy for a

human viewer to focus on the object. Meanwhile, having very few moving objects also

leaves adequate room for making each object sufficiently large for easy recognition by

human eyes. However, it will be too risky for a S-DCG CAPTCHA to use less than 5

objects (keeping in mind the random guessing attacks). As explained in Section 3.3.1, if

the locations of moving objects are exposed (e.g., through multi-frame accumulation), a

random guess can achieve ∼13% success rate given 5 moving objects, 3 target objects,

66

allowing ≤2 drag-and-drop attempts per object. In an EI-DCG CAPTCHA frame, we

camouflage moving objects in both a single frame and in the accumulation of consecu-

tive frames by tiling the background with deformed and incomplete edge segments from

foreground objects in a way similar to that of the EI videos [78].

3. Both EI-Nu and EI videos play a fixed video clip repeatedly, leading to a constant-time

requirement for rendering. However, an EI-DCG CAPTCHA challenge demands real-

time user interaction with foreground objects, requiring each frame to be generated on

the fly and incurring higher computation. We apply a divide-and-conquer strategy to

prepare the information needed for generating a frame in advance, and repeatedly use it

to efficiently create more new frames.

Creating an EI-DCG frame requires creating both the foreground object mask as well as the

background mask. For an input image with both foreground objects and the target objects (Fig-

ure 4.2(a)), the edge mask and the weight mask are computed (Figure 4.2(b)), which are used to

generate the EI visual effect (Figure 4.2(c)). Large segments that may leave clue for reconstruct-

ing object contour will be further split. The pseudo 3D effect for each object is applied based

on current rotation and scaling parameters (Figure 4.2(d)). The remaining area in the frame

(i.e., the background) is tiled with segments from foreground objects (Figure 4.2(e)). Finally, an

EI-based frame (Figure 4.2(h)) is the Gaussian blur of the combination of the foreground mask,

tiled background, target object mask (Figure 4.2(f)), and random noise mask (Figure 4.2(g)).

The details will be provided in the following subsections. An EI-DCG CAPTCHA challenge is

configured as follows:

• Dimension: 340(height)×400(width).

• 3 target objects and 5 foreground objects, which are all alphanumeric characters.

• Object moving speed: 3 pixels per frame (ppf).

• Frame rate: 40 frames per second (fps).

• N=40 pairs of foreground and background that record the pixel value and location of

foreground and background objects in each frame are rendered.

The purpose of using a higher frame rate (e.g., 40 fps) than usual (e.g., 30 fps) is to increase

the robustness against the relay attack. The higher the frame rate, the less information about

67

foreground objects is revealed in one single frame, thus requiring more frames to be read at a

time in order to recognize the object. In case of a relay attack, the communication delay between

the bot and the human solver’s machine could cause loss of synchronization and thus lead to the

failure to keep up with the required frame rate, resulting in jittery motion in video play. Since

human eyes rely on continuous motion to recognize EI objects, this design choice will make it

even harder for remote human-solver to identify the object and play the game effectively.

4.3.2 EI-DCG Configuration Levels

EI-DCG CAPTCHA is configured at three levels of potential difficulty for the human user (easy,

medium, and difficult). The more “difficult” the CAPTCHA is, the less susceptible it is sup-

posed to be against computer vision-based auto attack. The pixel density decreases when the

difficulty level increases, i.e., decreasing amount of foreground information embedded in one

single frame.

4.4 Automated Attack Resistance

Emerging images [78] are known to be robust to automatic object detection using existing im-

age processing and machine learning techniques. One challenge in EI-DCG design is the local

density difference caused by the presence of hollow objects and the white dilation surrounding

the moving objects (used to make objects more visually distinguishable), which may facilitate

automated attack. On one hand, the hollow area and the white dilation area, which accompany

the moving object in consecutive frames, may remain white (and thus appear “sparser”) in the

superimposed mask, indicating possible presence of foreground objects. Also, due to the ran-

domness in the layout of background tiles, the local density of foreground objects in a single

frame may occasionally become relatively higher/lower than surrounding areas. In this case, the

automated attack could first detect subareas that exhibit such local density anomalies, randomly

pick one of them, and drag it to the target. Other automated attacks using object detection in

computer vision would be extremely hard, both theoretically and computationally, if not entirely

impossible in this case, due to a lack of presence of distinct object visual features such as color,

gradient, corner points, edge, or shape, and a lack of prior knowledge of object features. There-

fore, neither feature-based nor appearance-based object detection would work well, leaving the

best hope with an anomaly-based detection method such as the automated density-based attack

68

that is also computationally efficient.

To evaluate the robustness of EI-DCG CAPTCHA against such density-based automated

attack, we applied the automated attack to 3 different masks, i.e., single binary mask (single),

superimposition of 3 consecutive masks (3x), and the frequency map of 3 consecutive masks

(freq). Our automated attack assumes that the locations of the target objects are already known

(e.g., known via a simple image-based relay attack). First, a screen-captured frame is converted

into a binary mask with the target area removed. Second, the remaining area (i.e., activity area

of moving objects) is divided into m × m equal-sized subareas (e.g., 40×40 pixels, Figure

4.3). An m × m density matrix is created in which each element indicates the black pixel

count of the corresponding subarea. The centroids of subareas that correspond to local peak or

valley elements in the 2D density matrix are treated as the location candidates of moving objects

(Figure 4.3(a)). Third, the automated attack randomly selects a location candidate and performs

a drag-and-drop operation from the cell centroid to each of the target objects.

FIGURE 4.3: (a-c) Top: Single Binary Mask, Superimposition of 3 Consecutive Binary Masks,
and Binary Mask of Frequency Map with Pixels Having the Highest Possible Frequency (i.e.,
3) Shown as White. Bottom: Density Matrix with Grid Interval as 40 Pixels. The Red and Blue

Dots Indicate Local Density Peaks and Valleys, Respectively.

A superimposed mask (3x) is generated by superimposing the current binary mask with its

previous two consecutive masks (Figure 4.3(b)). The value of a pixel in the frequency map is

the number of times a black pixel appears at that pixel location across the 3 consecutive masks.

The frequency map is further binarized so that only those pixels whose value is 3 (the highest

possible frequency count of a black pixel) will be shown as white in the final binary mask (Figure

69

4.3(c)). The density matrix of such a binary mask records the white pixel count in each subarea

(2nd row, Figure 4.3(c)).

We randomly created 100 challenges of EI-DCG CAPTCHAs corresponding to each diffi-

culty level. There are 12 groups of attacks with various parameter settings (Table 4.1) for each

difficulty level. Each group contains 500 attacks on randomly selected challenges from the cor-

responding 100-challenge set. Each attack will perform drag-and-drop at most 50 times (“time

out” otherwise). In our first experiment, we set the maximum number of drag-and-drop attempts

allowed to be 21, i.e., each target object will receive≤7 drops on average, given 3 target objects.

This is the threshold parameter that our EI-DCG CAPTCHA implementation will use in prac-

tice (later in, Section 4.5, we will demonstrate that such a thresholdization does not have much

impact on the usability of solving EI-DCG challenges by legitimate users).

TABLE 4.1: Parameter Settings for the Density-Based Automated Attack

Parameters Values
Difficulty level Easy, Medium, Difficult

Density matrix (DM) Single mask, 3x superimposition, Freq. map
Obj. locations (OL) Local density peak, Local density valley
Grid interval (GI) 40 pixels, 60 pixels

Our result indicates that the success rate for density-based automated attack is lower than

0.8%, given ≤7 drag-and-drops per target object on average. Since this attack is based on

local density anomaly, that occurs with randomness, the difficulty level is not necessarily re-

flected in the success rate. This success rate is well-aligned with the acceptable security level

for CAPTCHAs (e.g., as specified by Zhu et al. [67]).

Next, we further experiment with ≤50 drag-and-drops in order to gain more insights. As

shown in Figure 4.4 (a)(c), localizing foreground objects by using local valleys in the density

matrix of single and 3x provides a higher success rate than that by using local peaks. In a single

binary mask (single) or the superimposition of 3 consecutive masks (3x), the white dilation area

surrounding the moving object (for highlighting the object) may form relatively sparse subareas

(valleys), thereby making the valley-based attacks more effective than peak-based attacks. On

the other hand, since there are not many pixels in the binary mask of frequency map (freq), the

local peaks more likely correspond to the moving traces left by moving objects. Therefore, the

success rate of peak-based attack by using density matrix of freq is higher than the other two.

For the same reason, a small grid interval, such as 40 pixels, may result in many meaningless

70

FIGURE 4.4: Success Rate and Number of Drag-And-Drops in Density-Based Automated At-
tack with ≤50 Drag-And-Drops for Each Attack. (a)(c)(e) Success Rates by Using Density
Matrices of Single, 3x, and Freq. (b)(d)(f) the Mean and Standard Deviation of the Number of

Drag-And-Drops to Complete an EI-DCG CAPTCHA Challenge.

valleys in the density matrix of freq (e.g., Figure 4.3(c)) and thus likely lead to a lower success

rate. This explains why in the experiment for freq, ‘valley+40’ has a lower success rate than

the other three configurations i.e., ‘valley+60’, ‘peak+40’, and ‘peak+60’ (Figure 4.4(e)).

Experiment on the number of drag-and-drops (Figure 4.4(b)(d)(f)) indicates that a suc-

cessful automated attack usually requires an average of 30∼40 drag-and-drops to complete the

CAPTCHA. which is much higher than our threshold of 21.

4.5 Usability

In our usability study of EI-DCGs, we use EI-Nu as a baseline – our goal is to compare the

usability of EI-DCGs with that of EI-Nu. Basically, we wanted to determine how much usability

degradation occurs in EI-DCG over EI-Nu, as a trade-off to enhancing the security against relay

attacks. We utilized the Amazon Mechanical Turk (MTurk) service to recruit participants for

the study. The study was approved by our University’s Institutional Review Board.

71

4.5.1 Study Design

Each EI-Nu CAPTCHA challenge is of size 285×125 and is displayed as a 6-second video

that loops continuously. We asked the participants to type the three characters of the challenge

in a textbox and press the “submit” button when they are done. Each EI-DCG challenge is

of size 360×400. The user task is to drag-drop the answer objects to their corresponding target

objects within 60 seconds (time-out). If the user cannot complete the task within the 60 seconds,

the challenge is considered unsuccessful. We generated 100 challenges for each category of

tested CAPTCHAs: EI-Nu and EI-DCG (Easy, Medium and Difficult). We employ a within-

subjects experimental design, where we ask each participant to solve 5 challenges each for all

the four categories. The order of presenting the four categories (EI-Nu, EI-DCG Easy, EI-

DCG Medium, and EI-DCG Difficult) followed the standard 4×4 Latin square to reduce the

effect of learning biases, while the challenges within each category followed a random order. We

recruited 120 MTurk workers, and the experiment took 27 minutes on an average to complete

per worker.

We subjected the MTurk workers to a consent form. Then, we asked them to fill-out a de-

mographics form, solve five challenges of one of the tested CAPTCHA categories, and fill-out

a survey form about their experience. The survey contains the 10 System Usable Scale (SUS)

[80] standard questions, each with 5 possible responses (5-point Likert scale, where strong dis-

agreement is represented by “1” and strong agreement is represented by “5”). We used a similar

design to test the rest of the categories. The demographics of the study participants are shown

in the second column of Table 4.2.

4.5.2 Study Results

We evaluated the usability of the tested CAPTCHA categories with respect to the measures of:

(1) solving time, (2) error rate, and (3) user experiences, as described below. The results are

summarized in Table 4.3.

4.5.2.1 Solving time

We calculated the solving time as the time taken by the participants to solve each challenge. In

case of EI-Nu, we start measuring the timing from the time the challenge is displayed till the

72

TABLE 4.2: Demographics of Participants in the Usability and Relay Attack studies

Usability Stream Relay Attack
Participants Study Type LSHL HSLL

Participants Size (N=195) N = 120 N = 27 N = 48
Age (%)

<18 0 0 2.1
18 - 24 26.6 16.7 8.3
25 - 34 44.2 70.8 58.3
35 - 50 19.2 8.3 27.1
>50 10 4.2 4.2

Gender (%)
Female 39.2 25 27.1
Male 60.8 75 72.9

Education (%)
High School 30.8 0 22.9

Bachelor 43.3 62.5 72.9
Master 24.2 33.3 4.2
PhD 1.7 4.2 0

submit button is pressed. Whereas, in case of EI-DCG, we record the timing till the participants

drag-drop all the answer objects to their corresponding target objects. We considered in our

calculation the time taken only corresponding to the challenges solved successfully. The average

solving time is shown in the third column of Table 4.3.

The time taken to solve EI-DCG challenges is about double the time taken to solve EI-Nu

challenges. However, it is still less than 25 seconds on average. Moreover, the time for solving

EI-DCG increases with the difficulty level of EI-DCG. A Friedman’s test showed a statistically

significant difference between the solving time of the four tested categories (χ2(3) = 500.06, p

< 0.001). Further analyzing using pairwise Wilcoxon Signed-Rank test with Bonferroni correc-

tion, we found a statistically significant difference between all of the tested pairs (p < 0.001).

TABLE 4.3: The Solving Time, Error Rate, Number of Drags, Number of Attempts and SUS
Scores for the Usability Study

Challenge SUS Time (sec) #Drags #Attempts Error
Type mean (std. dev.) Rate
EI-Nu 71.75 (18.39) 10.34 (6.21) N/A N/A 0.16
EI-DCG
Easy 55.94 (19.75) 19.82 (10.20) 3.82 (1.79) 1.17 (1.86) 0.13
Medium 57.15 (18.09) 21.55 (10.55) 3.82 (1.58) 1.51 (2.42) 0.10
Difficult 56.00 (20.08) 23.34 (11.60) 3.84 (1.85) 1.44 (2.03) 0.13

73

4.5.2.2 Error Rate

The error rate represents the percentage of the challenges that were not solved successfully

by the participants. The last column of Table 4.3 shows the error rate for solving each of the

tested CAPTCHA categories. All of the categories had low error rate with the minimum error

rate for EI-DCG medium as 0.10 and the maximum for EI-Nu as 0.16. The lower error rate

in EI-DCGs compared to EI-Nu may be attributed to to the momentary feedback that EI-DCG

provides. Whenever the participant drag-drops a correct object to its corresponding target, the

object disappears, which informs the user he performed a correct drag-drop. However, EI-Nu

does not check the users response until after he submits the whole answer of the challenge.

Further, we analyzed the number of drag-drops performed by the participants, which rep-

resents the error rate per drag. We noticed that a minimum of three drag-drops is required to

complete any challenge and on an average the users performed less than four drag-drops in all

the EI-DCG categories. Finally, we analyzed the number of attempts (clicks that do not cor-

respond to object drag) performed by the users and we found the users performed less than

2 attempts on average for all of the EI-DCG categories. Upon further analysis of the collected

logs, we found that some of the participants performed many drags and attempts (up to 37) while

solving challenges. However, the fraction of such actions is extremely low, which confirms that

we can limit the number of allowed drags and drops to 21 to limit the ability of density-based au-

tomated attack (as analyzed in Section 4.4) successfully without impacting the usability much.

The overall error rate, after limiting to 21 drags/attempts, becomes 0.14, 0.11, and 0.14 for Easy,

Medium and Difficult EI-DCG, respectively. These errors rates are still similar to that of EI-Nu.

4.5.2.3 User Experience (SUS Scores)

The first column of the Table 4.3 shows the SUS scores corresponding to the tested CAPTCHA

categories. In our SUS calculations, we ignored the responses of 17 participants as they seem to

answer the questionnaire randomly, either by giving the same rating to all the questions or at least

answer two contradicting questions with the same answer (i.e., we removed the responses from

participants who answer both of “I found the system unnecessarily complex” and “I thought the

system was easy to use” with “strongly agree”).

74

We find degradation in the user experience in EI-DCG compared to EI-Nu. However,

the SUS scores for EI-DCG are still above 50.9, which means EI-DCGs have fair usability

[81]. Comparing the SUS scores using Friedman’s test shows statistical significant difference

among the tested CAPTCHA categories (χ2(3) = 87.63, p < 0.0001). Further, we used pairwise

Wilcoxon Signed-Rank test with Bonferroni correction to assess the difference between each of

the pair of the four categories. Significant differences are found (p < 0.01) between EI-Nu and

the three categories of EI-DCG. However, no significant difference is found in the SUS score

between any pair of the EI-DCG categories.

4.5.3 Summary of Results

The results of the usability study show some degradation of the user experience represented

in lower SUS score and higher time taken to solve EI-DCG challenges compared to EI-Nu

challenges. However, the average SUS scores for EI-DCG show that they still have fair usability.

Moreover, the error rate decreased slightly compared to EI-Nu. Given that EI-DCG offers higher

security than EI-Nu, especially against relay attacks, we believe that this degradation in usability

may be acceptable.

4.6 Security Against Relay Attack

We conducted two studies to investigate the ability of EI-DCG to resist Stream Relay attack

introduced in Section 3.4.3. The studies differs in only the location of the participants. In the first

study, tagged Low-Speed High-Latency (LSHL), we recruited participants from a developing

country (India), where we expect the users to have a slow Internet connection and they reside

on far proximity of the attacker (residing in the USA). In the second study, High-Speed Low-

Latency (HSLL), we recruited participants from a developed country (USA), where we expect

the users to have a fast Internet connection and they reside in near proximity of the attacker

(USA). These two attack models emulate realistic relay attack scenarios. In both models, the

human-solvers attempt to solve EI-DCG challenges that are streamed to them in-real time from

the attacker’s machine using the VNC streaming software.

75

4.6.1 Study Design

Following the study design in the usability study, we employed a within-subjects experimental

design, where we ask each participant to solve 5 challenges for all of the three EI-DCG cate-

gories. The order of presenting the three categories followed standard 3×3 Latin square, and

the challenges within each category followed a random order. We asked the MTurk workers

to connect to a computer which resides in our university (streaming server) via the RealVNC

Java applet (streaming client). Then, we subject them to consent an agreement. Next, we ask

them to fill-out a demographics form, and solve five challenges of one of the categories. We fol-

lowed a similar design to test the other categories. The study was approved by our University’s

Institutional Review Board.

We conducted two separate streaming-based relay attack studies. The two studies differ

only in the location of the participants. In the first study (LSHL), we recruited 27 participants

in India which simulate the real scenario settings in which the attacker is in USA and hires

human-solvers in far and developing countries. In the second study (HSLL), we recruited 48

participants from USA. The second study is to assess how much the performance of the attack

will increase when the attacker recruits solvers in near proximity and from developed countries.

The demographics of our participants are shown in columns 3-4 of Table 4.2. The participant

characteristics in our relay attack studies are in line with that in our usability study, allowing us

to fairly compare the two settings in a between-subjects design.

TABLE 4.4: The Solving Time, Error Rate, Number of Drags, and Number of Attempts for the
LSHL and HSLL Streaming-Based Relay Attack Studies on EI-DCG

EI-DCG LSHL (human-solver in India) HSLL (human-solver in USA)
Challenge Type Time (sec) # Drags # Attempts Error Time (sec) # Drags # Attempts Error

mean (std. dev.) Rate mean (std. dev.) Rate
Easy 39.05 (5.47) 8.00 (4.24) 24.00 (1.41) 0.98 18.73 (10.62) 4.35 (3.05) 4.71 (15.83) 0.87
Medium 49.92 4.00 15.00 0.99 22.13 (11.69) 4.17 (2.91) 1.63 (1.88) 0.88
Difficult - - - 1.00 24.05 (11.71) 4.53 (2.37) 1.66 (2.89) 0.86

4.6.2 Study Results

We evaluated the performance of the participants in solving EI-DCG over the streaming channel

with respect to the measures of solving time and error rate. The results are summarized in Table

4.4.

In the LSHL relay attack setting, only two participants could complete one of the EI-DCG

Easy variant, and only one participant could complete one of the EI-DCG medium variant.

76

The overall error rate is therefore 0.99 on an average for the three categories of EI-DCG. The

average time taken by the participants to complete the challenges was 42.68 seconds. Moreover,

the participants performed much higher number of drag-drops and attempts compared to the

participants in the usability study. Moreover, if we limit the number of allowed drags/attempts

to 21, the overall error rate for the Easy EI-DCG becomes 1.00.

In the HSLL relay attack setting, the error rate decreased from around 0.99 to 0.87 on

average when compared to the LSHL relay attack study. However, the error rate is still consid-

erably high. The completion time and number of drags and attempts for the participants who

successfully solved the challenges are comparable to the ones in the usability study, except for

the number of attempts in the Easy variant. Limiting the number of allowed drags/attempts to

our threshold of 21 did not effect the over all error rate. Comparing the successful completion

time between each variant of EI-DCG in usability and its corresponding streaming-based relay

attack study, using Mann-Whitney test, did not reveal statistically significant differences, how-

ever. Further investigation of the collected data shows that only 9 out of the 48 participants

(18.75%) were able to complete any EI-DCG challenges. On an average each of them solved

around 10.33 out of the 15 challenges.

The above analysis suggests that EI-DCG is very hard to solve via streaming-based relaying,

especially when the human-solvers are located far away and have slow Internet connections. The

chance of solving EI-DCG challenges seem to increase, but still only marginally, when recruiting

the solvers residing in near proximity and having high-speed Internet connections. Even when

the solvers can solve the CAPTCHA challenges, we will next show how they can be detected

based on different game play patterns compared to legitimate human users.

4.6.3 Relay Attack Detection

We design and implement a machine-learning based EI-DCG Stream Relay attack detection

mechanism based on the differences between the participants’ performances in completing the

challenges in the usability study and the human-solvers’ performance in the HSLL relay attack

study. We logged all the participants’ interactions with the challenges, while they were solving

the challenges. We logged the interactions with the challenges regularly and whenever a mouse

event is performed. Specifically, at each timestamp, we log the mouse position, mouse status

(up or down), and for each object, we log its position and weather it is being dragged or not.

77

From each of the collected challenge log files, we extract a total of sixteen different features, as

described below:

• Number of Drags (ND): Total number of drags.

• Number of Attempts (NA): The number of mouse clicks outside of the moving objects.

• Distance-based Features: (1) Distance Drag (DD): The total distance of the mouse

movement while it is dragging an object; (2) Distance Attempts (DA): Distance of the

mouse movement while the mouse status is down but not dragging an object; and (3)

Distance mouse Up (DU): Distance of the mouse movement while the mouse status is up.

• Time-based Features: (1) Completion Time (T): The total time taken by the participant

to complete the challenge; (2) Time drags (TD): The total time in which an object is being

dragged; (3) Time Attempts (TA): Time in which the mouse is down and no object is being

dragged, and (4) Time mouse Up (TU): Time in which the mouse status is up.

• Speed-based Features (Distance/Time): Speed of Drags (SD), Speed of Attempts (SA)

and Speed of Mouse Up (SU).

• Acceleration-based features (Speed/Time): Acceleration of Drags (AD), Acceleration

of Attempts (AA) and Acceleration of Mouse Up (AU).

• Max Attempt (MA): The maximum time taken in a single attempt.

For each of the EI-DCG variants, we picked randomly a number of instances of the suc-

cessfully completed challenges in the usability study equal to the number of successfully com-

pleted challenges in the HSLL relay attack study. Then, we implemented a Java program to

check which subset of features along with which classifier provides the best results for each of

the challenges categories (Easy, Medium, Difficult). We experimented with different classifiers:

SVM (C-SVC and nu-SVN, linear, polynomial and radial kernels), Multilayer Perceptron, Naive

Bayes, Random Forest, Random Tree, Simple Logistic and Logistic. As performance measures

for our classification task, we used Precision, Recall and F-measure (F1 score).

The results of the best classifier along the best features subset for each of the EI-DCG

difficulty level are shown in Table 4.5. The results show that a classifier can be effectively built

such that it rejects around 11% of legitimate users and be able to detect around 65% for HSLL

relay attackers. As shown in Table 4.4, on average only 13% of HSLL relay attackers could solve

the EI-DCG challenges, utilizing our proposed detection method 65% of them could be detected.

78

TABLE 4.5: Results of Using the Optimal Feature Subset for Each EI-DCG Game in the Clas-
sification of Legitimate User and HSLL Streaming-Based Relay Attacker

Challenge
Type Classifier Features Precision Recall F-measure

Easy Multilayer ND, T, TD, TA, SD, SU 0.78 0.90 0.84
Perceptron

Medium Random Tree ND, T, DD, DA, DU, 0.72 0.87 0.79
TU, MA, AD, AU

Difficult Multilayer T, TU, AD, AA, AU 0.66 0.91 0.76
Perceptron

Therefore, the success rate for the HSLL relay attack is about 5%. The LSHL relay attack is

already prevented with at least 98% probability (Table 4.4). The results show that the user can

be authenticated within 4 EI-DCG instances with a probability of almost 1 (0.9978). However,

the HSLL relay attacker would need about 20 trials to be authenticated with a probability of

1. Given that the average time for solving an EI-DCG challenge under HSLL relay attacker is

21 seconds, that means the human-solver would need about 7 minutes to be able to break the

EI-DCG. This suggests that the streaming-based relay attack in general has a very low chance

of succeeding against EI-DCG CAPTCHAs.

4.6.4 Summary of Results

The previous subsection shows that EI-DCGs is resilient to streaming-based relay attacks. In-

herently, this ability is due to the fact that the user needs to see the challenge at about 40 fps to

be able to recognize the objects and solve the challenge successfully. That requires high data

connection speed with low latency between the attacker and the human-solver.

As the game size is 340×400 and the required frame rate is 40 fps, using 2 bit per pixel

will require the connection speed of 10.38 Mbit/s between the attacker and the solver, if no

compression is performed. However, RealVNC performs some compression on the data sent

between the client and the server to enhance the performance. First, RealVNC sends only the

modified pixels between the current frame and the previous frame rather than sending the whole

frame. Second, the RealVNC client allows the user to adjust the quality of the images, varying

from low quality (8 colors) to best quality (all available colors). In order to evaluate the mini-

mum bandwidth required between the attacker and the human-solver to transfer the game with

40 fps, we performed an experiment in which we connected two laptops over a LAN, installed

RealVNC server on one of them and RealVNC client on the other. We varied the RealVNC

79

compression levels starting from the best compression that achieves the best transmission qual-

ity. We used Wireshark to capture the packets sent between the two laptops in all of the cases,

and then analyzed the average data rate used. The average Mbit/s for the getting all colors with

maximum compression is 4.70 Mbit/s, 3.15 Mbit/s for the default settings (256 colors) and 2.22

Mbit/s for the best compression (8 colors). This shows the minimum connection speed required

between the attacker and human-solver should be 2.22 Mbit/s to be able to solve the EI-DCG at

the human-solver’s end. Any slower connection would result in a jittery rendering of the game,

and therefore the human-solver will not be able to solve the EI-DCG successfully. This justifies

the results of the user studies presented in the previous subsection.

According to [82], the average connection speed is 2.0 Mbit/s in India. Also, since the long

distance between the attacker (USA) and the human solver slows down the connection speed,

almost all the participants in India could not remain connected to our server with high speed

and they failed to successfully solve the challenges. On the other hand, the average connection

speed in USA is 11.1 Mbit/s. Also, the distance is much less between the attackers and the

human-solvers in the HSLL streaming-based relay attack study. This explains why some of the

human-solver were able to successfully solve some of the challenges.

We tested multiple screen-sharing applications, such as TeamViewer and anydesk. All of

them require almost similar data rates between the server and the client to transfer the chal-

lenges. For example, TeamViewer requires 2.73 Mbit/s for gray-scale, and anydesk requires

2.63 Mbit/sec. Therefore, we conclude that the results of our relay attack studies are not limited

to RealVNC.

Small Game Relay whereby the attacker reduces the game size before sending it to the

human-solver to lower the data rate required between the attacker and the solvers. However, this

scenario cannot be applied to EI-DCG as reducing the game size will make it almost impossible

for the human-solver to recognize the moving objects (because of the emerging effect).

4.7 Conclusions

We proposed a new class of CAPTCHAs, EI-DCG, based on the notion of emerging images and

Dynamic Cognitive Games. EI-DCG applies a series of countermeasures, such as pseudo 3D

rotation, hidden edge segments, segment split-erosion-rotation-translation and tiled background,

80

to resist automated object recognition based on both single frames and frame superimposition.

Since a human can perceive objects in EI-based frames from motion, playing an EI-based video

in a relatively slower frame rate decreases the human recognition rate. Based on this property,

a faster frame rate (i.e., 40 fps) was applied for the normal playing of an EI-DCG challenge.

The higher the network delay is, the lower the frame rate of EI-DCG becomes on the human-

solver’s side, providing less opportunity for the solver to complete the challenge successfully.

The experiments against both automated and relay attacks indicated the robustness of EI-DCG.

81

CHAPTER 5

CAPTCHA FUSION TO DEFEAT AUTOMATED AND HUMAN ATTACKS

While EI-DCG CAPTCHAs can provide a high level of security, it is clear that their usability are

much lower than that of S-DCG CAPTCHAs due to the presence of dynamic background and

emergence effect. Moreover, adding background and emergence effect do not secure S-DCG

against known probable answer objects, known target objects random attack. This motivates us

to design secure DCG CAPTCHAs that may offer a usability level comparable to that of S-DCG

CAPTCHAs.

Given the current state of CAPTCHA security, it is natural to consider the question: can a

CAPTCHA scheme be designed that simultaneously resists automated attacks, relay attacks and

client-side attacks? To answer this question, we turn to three different forms of CAPTCHAs

existing in the literature: (1) image orientation CAPTCHAs (such as “What’s up CAPTCHA”

[1]), (2) semantic image matching CAPTCHAs (such as SEmantically MAtching imaGEs [2]),

and (3) Dynamic Cognitive Game (DCG) CAPTCHAs (e.g., Simple DCG CAPTCHAs). Im-

age orientation CAPTCHAs and semantic image matching CAPTCHAs are known to be secure

against automated attacks and client-side attacks, but are vulnerable to relay attacks. Existing

DCG CAPTCHAs are known to be resistant to relay attacks, but are vulnerable to both au-

tomated and client-side attacks. However, no current scheme is known to be simultaneously

resistant to all three attacks. We aim to achieve this property via a careful fusion of the above

three categories of CAPTCHAs. Said differently, we introduce a new form of DCG CAPTCHAs

that incorporate the notions of image orientation and image semantics to defeat automate, relay

and client-side attacks. We refer to this new class of CAPTCHAs as “Mix DCG” CAPTCHAs.

Chapter Organization: Section 5.1 reviews the various categories of CAPTCHAs relevant to

our Mix DCG construction, and explains the security limitations of each of them. Section 5.2

elaborates on the design and implementation of our Mix DCG instantiation. Section 5.3 analyzes

the security of Mix DCG against automated attacks. Section 5.4 presents a usability study of the

Mix DCG construction. Section 5.5 evaluates the security of Mix DCG against relay attacks and

82

proposed a viable relay attack detection mechanism. Finally, Section 5.6 and 5.7, respectively,

discuss the various aspects relevant to our work and conclude the chapter.

5.1 Background

The design objective of our work is to develop a CAPTCHA scheme that is secure against au-

tomated attacks, relay attacks and client-side attacks, while offering a reasonably good level of

usability (better than conventional text-based CAPTCHAs). In order to achieve our objective,

we integrate three categories of CAPTCHAs: Dynamic Cognitive CAPTCHA, image orienta-

tion CAPTCHA (i.e., What’s up CAPTCHA [1]), and semantic matching CAPTCHA (i.e. Se-

mantically Matching images [2]). In this section, we review these three forms of CAPTCHAs,

highlight their security properties and the vulnerabilities associated with them, and provide an

overview as to how integrating all three of these CAPTCHAs can give rise to a secure and usable

CAPTCHA scheme.

5.1.1 Utilized CAPTCHA Designs

First, Dynamic Cognitive CAPTCHA (DCG) is a simple interactive CAPTCHA that involves

objects floating around within an image, and the user’s task is to match the objects with their

respective target(s) and drag-drop them to the target location(s). As explained in Chapter 3, the

dynamic nature of S-DCG as well as the requirement for multiple interactions between the user

and the CAPTCHA challenge make S-DCG highly resilient to relay attacks.

Second, What’s up CAPTCHA is an image orientation CAPTCHA that requires the users

to identify the upright orientation of multiple images drawn from web searches (an example of

What’s up CAPTCHA is shown in Figure 5.1. The security of What’s up CAPTCHA against

automated attacks is based on the fact that finding the upright orientation of an image is difficult

to automate over a wide variety of photographic content (a hard AI problem) [1].

Third, SEmantically MAtching imaGEs (SEMAGE) is a semantic CAPTCHA that chal-

lenges the user to select semantically related images from a set of images. In order to solve

a SEMAGE CAPTCHA, the user needs to comprehend the content of the images and find a

semantic relationship between a subset of the images. Both the underlying tasks, image recog-

nition and semantic relationship identification, are easy for humans but considered hard for a

83

FIGURE 5.1: A Snapshot of What’s up CAPTCHA [1] (The User Task is to Move the Slider to
Rotate the Image to Its Upright Orientation).

computer [2]. Several examples of semantic relationships have been discussed in [2], such as

finding the images of animals of the same species from a set of images that contains real and

cartoon animal images (see Figure 5.2.

FIGURE 5.2: A Snapshot of SEMAGE [2] (The User Task is to Select the Semantically Related
Objects, in this Snapshot the Second Image in the First Row and the Second Image in the

Second Row).

5.1.2 Vulnerabilities of the Three Designs

What’s up CAPTCHA and SEMAGE CAPTCHA are know to be resistant to automated attacks

(based on hard AI problems). They are also secure against client-side attack (since all verifi-

cation is performed at the server-side). However, both of them are vulnerable to relay attacks.

In case of the SEMAGE CAPTCHA, the bot can send a single snapshot of the challenge to a

remote human-solver who would respond with the coordinates of the semantically related ob-

jects. The bot then solves the challenge by triggering mouse clicks on the locations acquired

from the human-solver. In case of What’s up CAPTCHA, the bot may send the image of the

challenge embedded into a similar interface as provided by What’s up CAPTCHA. The human-

solver would use the interface to orient the image and respond with the final location of the

slider. The bot would adjust the slider on the same positions as it got from the human-solver.

84

The S-DCG CAPTCHA, on the other hand, has been shown to be resistant to relay attacks.

However, it is not secure against automated attacks and client-side attacks. The main security

vulnerabilities of S-DCG CAPTCHAs are summarized below:

1. Random Guessing Attacks: The S-DCG CAPTCHAs are vulnerable to random guessing

attacks (Chapter 3).

2. Dictionary-based Attacks: The S-DCG CAPTCHAs are vulnerable to dictionary-based

automated attacks (Chapter 3).

3. Client-Side attacks: The DCG CAPTCHAs are vulnerable to client-side attacks. In the

implementation of S-DCG, the game logic is implemented on the client side, i.e., the

check for the correctness of each drag-drop is performed on the client side. Only after

the DCG challenge is completed, the log of the user’s interaction with the challenge is

sent to the server. This implementation suffers from multiple vulnerabilities. First, the

attacker may reverse engineer the swf file, and extract the code and resources (i.e., the

images of the moving and target objects) of the challenge. The extracted code would let

the attacker know the positions of the target objects, the ids of the answer objects and their

corresponding targets, and the images of the answer objects. Given all this information,

the attacker may attack the game by searching for the answer objects images within the

game, and drag and drop them to their corresponding target (a simple image processing

program can achieve this functionality); Second, the attacker may generate a response

similar to the one the server expects from the game (interaction log, or pass/fail result),

and send it to the server. Third, the output of one game can be saved and used as response

to a different game instance (replay attack).

4. Shape Matching Attacks: A method for selecting the the moving and target objects need

to explored. Although some of the S-DCG are based on shape matching and semantic

matching, the security of those games was not studied. For example, any game that is

based on shape matching can be easily solved after extracting the moving and target ob-

jects by finding the similarities between the moving and target objects, and then for each

of the target objects the moving object with highest similarity could be considered to be

its corresponding answer object.

85

5.1.3 Why Mix DCG?

In this chapter, we study approaches to thwart the above-listed security weaknesses of S-DCG

CAPTCHAs. The first vulnerability motivates the need for finding a way to increase the solu-

tion space to resist random attacks. Increasing the solution space would also solve the second

vulnerability as it will slow down building the dictionary. The third vulnerability motivates us

to move the game logic to the server side. The fourth vulnerability motivates us to limit the

DCG to semantic matching games, and consider a careful selection of the objects such as the

shape/color that do not reveal the associations between the moving and target objects. All these

vulnerabilities can be addressed by integrating S-DCG with image orientation and semantic

matching CAPTCHAs (giving rise to our Mix DCG design), in addition to updating the DCG

implementation by migrating the game logic to server-side. Integrating DCG with image ori-

entation CAPTCHA would increase the solution space by a factor of the number of allowed

orientations of the objects to the power of the number of answer objects. Following the image

selection of semantic matching CAPTCHA in selecting the moving and target objects would

prevent shape matching attacks. At the same time, integrating S-DCG with image orientation

and semantic matching CAPTCHAs would also thwart the vulnerability of the latter two to relay

attacks. Such an integration would also provide a reasonably good level of usability, especially

when compared to traditional CAPTCHAs based on distorted characters.

5.2 Design and Implementation

In the section, we elaborate on the design and implementation of our Mix DCG CAPTCHA

construction.

5.2.1 Mix DCG Design

In order to provide security against random attacks, we designed our Mix DCG CAPTCHA

scheme such that each instance contains three target objects and six moving objects, three of

which are the answer objects. To solve a Mix DCG challenge, (1) the user has to understand

the content of the images, (2) find the semantic relationship between the answer objects and the

target objects, and (3) find the correct upright orientation of the answer objects (by right clicking

on the answer object image) and (4) drag the answer objects to their corresponding targets.

86

The above tasks have to be easy for human users and difficult for computer programs to

perform. Therefore, the selection of the images of the moving objects and the targets has to

be performed carefully. The answer and target objects should have different physical attributes

(i.e., color and shape) to prevent automated programs from solving the challenge based on the

similarities between the targets and the answer objects. Moreover, the moving objects should be

easy for humans to orient but difficult for computers to orient. The CAPTCHA designer should

avoid objects that can be oriented accurately by computer programs, such as faces, cars, outdoor

images (for example, images containing sky, grass, and sand), and images that contain text [1].

5.2.2 Mix DCG Implementation

We implemented the Mix DCG challenges using Adobe Flash ActionScript3 and the web server

using PHP. The game image/frame size is 500× 300 pixels, the size of each of the moving object

is 75 × 75 pixels and the size of the target objects is 90 × 90 pixels. The Mix DCG challenge

starts by placing the objects in random locations on the image and with random orientation.

Then, each object picks a random direction in which it will move. A total of 8 directions were

used, namely, N, S, E, W, NE, NW, SE and SW. If the chosen direction is one of E, W, S, or

N, the object will move (across X or Y axis) by 1 pixel per frame in that direction. Otherwise,

the object will move
√

2 = 1.414 pixels per frame along the hypotenuse, corresponding to 1

pixel across both X and Y axes. This means that on an average the object moves 1.207 [= (1 ×

4 + 1.414 × 4)/8] pixels per frame. The object keeps in moving in the current direction until

it collides with another object or with the game border, whereupon it moves in a new random

direction. The game starts when the user presses a “Start” button on the screen center. The game

ends when the user finds the upright orientation of all the correct object and drags them onto

their corresponding target(s), in which case a “Game Complete” message is provided.

To find the upright orientation of an object, the user right clicks inside the bounding box

across the object, each right click rotates the object 45 degrees clockwise. When the user thinks

that the object is in its upright orientation, the user left clicks on the object, drags the object

and drops it by releasing it inside the bounding box across the respective target. The game must

be successfully completed within a fixed time (we allow 60s); the user gets feedback on the

correctness of every drag-drop, as the object disappears if it was in its upright orientation and

dropped to its corresponding target.

87

Our Mix DCG implementation is in line with the general implementation of DCG

CAPTCHAs with some modifications:

• The game and objects sizes are bigger to allow the user to comprehend the images.

• Right clicks rotate the objects.

• The check of correctness of each drag and drop is moved to the server. Whenever the user

drops an object, the object identifier, its orientation and the drop location are sent to the

web server, which is responsible for performing the verification of the correctness of the

drop operation (i.e., the check whether the object is on its upright position and dropped

to its corresponding target). After the user drags and drops all the answer objects to their

corresponding targets, the game code sends to the server the log of the game play which

contains objects’ locations and orientations, the mouse location and status (up/down) at

each time interval to the server. The server utilizes this log to detect relay attack as we

will later demonstrate in Section 5.5.

(a) Brands (b) Animals

(c) Professions

FIGURE 5.3: Mix DCG Sample Instances. Targets, on the Left, are Static; Moving Objects, on
the Right, are Mobile. The User Task is to Orient (by Right Clicking) and Then Drag-Drop a

Subset of the Moving Objects (Answer Objects) to Their Corresponding Targets.

We implemented six instances of Mix DCG that can be categorized into three categories

(two instances of each category), described below. A sample of each of the implemented cate-

gories is shown in Figure 5.3.

88

• Brands: the targets are popular worldwide brands and the objects are commercial prod-

ucts (e.g., Mac and MacBook Pro) .

• Animals: the targets are real animals and the moving objects cartoon animals (e.g., Dog

and Scooby Doo).

• Professions: the targets are professionals and the moving objects are tools (e.g., House-

keeper and Vacuum Cleaner).

5.3 Security Against Automated Attacks

The security of our Mix DCG CAPTCHA construction is based on the security of DCG

CAPTCHA, What’s up CAPTCHA and SEMAGE CAPTCHA. To solve Mix DCG CAPTCHA,

the bot needs to perform the following tasks:

1. Extract the moving and the target objects from the CAPTCHA challenge,

2. Understand the content of the images of the extracted objects,

3. Solve the semantic relationship in the CAPTCHA challenge (for each of the target object,

the bot should find the object from the moving objects that relates to it semantically), and

4. Find the upright orientation of the answer objects.

For the first task, the bot can find the moving area and subtract it from a frame of the

CAPTCHA challenge, and then the subarea with the maximum subarea can be recognized as

the target area. Subsequently, by subtracting the moving area of any of the challenge’s frames,

the moving objects can be extracted as discussed [83]. The second and third tasks are similar

to the tasks required to be performed by the bot to solve the SEMAGE challenge and the forth

task is similar to the task needed to solve the What’s up challenge. Image recognition, solving

semantic relationships and object orientations are hard AI problems [1, 2]. Thus, performing the

second, third and fourth tasks will be challenging for the bot, which will defeat automated at-

tacks against our Mix DCG CAPTCHA. Below we discuss other relevant security considerations

against different types of automated attacks:

Security Against Random Guessing Attacks: Assuming the bot can figure out the positions

of the moving and target objects, for each of the target objects, the bot needs to pick one of

89

the moving objects (probability 1/6) and guess the upright orientation of it (probability 1/8).

Therefore, the success probability for random attack against Mix DCG challenge with 3 targets

and 6 moving objects equals (1/8)3 × (1/P (6, 3)) = 1.63e−5. This probability is extremely

low (much lower than the benchmarks established for CAPTCHA security [67]), making Mix

DCG CAPTCHAs highly secure against random guessing attacks.

Security Against Dictionary-based Attacks: To build a dictionary, the bot would require a

total of 120 drags and drops to make sure the game is successfully completed. To prevent

dictionary-based attacks, therefore, the CAPTCHA server can simply limit the number of al-

lowed drags and drops to prevent the bots from building a dictionary of the challenges. This

would not affect the legitimate users as our usability study (presented in Section 5.4) shows that

legitimate users only require at most 13 drags and drops to play the Mix DCG games success-

fully. The CAPTCHA provider can further use a large and dynamic dictionary to reduce the

attack probability.

Security Against Machine Learning Attacks: Following the strategy mentioned in [1], the

Mix DCG CAPTCHA provider should select the images that are hard for machine learning al-

gorithms to identify the underlying correct orientation. The CAPTCHA provider should test the

accuracy of the state-of-the-art machine learning algorithms in identifying the upright orienta-

tion and only use the images that these algorithms fail at to orient correctly. Building a machine

learning mechanism to identify the relationships between the moving objects and targets is a

hard problem as the CAPTCHA provider can utilize wide variety of images. The accuracy of

any classifier decreases with increase in the number of classes (in this case, different types of

images).

5.4 Usability

In this section, we provide a detailed description of the two usability studies that we conducted

to measure legitimate user’s game play performance of our developed instances of Mix DCG

CAPTCHAs. The first study aims to measure the usability of Mix DCG on the traditional

(desktop/laptop) platforms, while the second study aims to measure the usability of Mix DCG

on mobile devices. Our hypothesis is that Mix DCG will have high accuracy and good user

perceptions on both traditional and mobile computers. We utilized the Amazon Mechanical

90

Turk (MTurk) service to recruit participants for the web-based study, and we recruited students

from our University for the mobile-based study. Our University’s Institutional Review Board

approved the studies. The participation in the studies was voluntary, and standard ethical pro-

cedures were fully followed, e.g., participants being informed, given choice to discontinue, and

not deceived.

5.4.1 Study Design

Each Mix DCG challenge is of size 500 × 300 pixels. For each of the answer objects in the

game, the user has to keep clicking on the answer object till it is in its upright orientation, each

click rotate the object 45 degrees, and then drag-drop it to its corresponding target objects. The

user has to complete the task, find the upright orientation of all the answer objects and drag-

drop them to their corresponding targets, within a time limit of 60 seconds, otherwise a timeout

massage is displayed and the challenge is considered unsuccessful.

We asked each participant to play the six instances of Mix DCG challenges (explained in

Section 5.2.2). The order of presenting the instances followed a random order. 100 MTurk

workers participated in our web-based study and 20 students from our university participated in

the mobile-based study. We paid each of the MTurk workers $0.5 for their effort. The mobile

phone employed in the study was a Samsung Galaxy S1, which was chosen as a representative

of a basic smartphone–if the usability were good on this phone, it would probably be better on

more current and upcoming phone models having larger touchscreens.

We first subjected the participants to a consent form. Then, we asked them to fill-out a

demographics form, solve the six Mix DCG challenges (i.e., filling the demographics form

emulated the primary task, while solving the MIX DCG challenges emulated the secondary

task). At the end of the study, we asked the participants to rate their experience with Mix DCG

CAPTCHA on a scale of 1 to 5 (we term this metric as “personal rating”), where a higher

number of points means a better system, and fill-out a survey form about their experience. The

survey contains the 10 System Usable Scale (SUS) [80] standard questions, each with 5 possible

responses (5-point Likert scale, where strong disagreement is represented by “1” and strong

agreement is represented by “5”). SUS is a standard questionnaire to measure the usability of

software, hardware, cell phones and websites, and it has been deployed in many prior security

usability studies.

91

TABLE 5.1: Participant Demographics in Our Different User Studies

Usability Relay
Web Mobile LSHL HSLL

Participants’ Location Lab India USA
Number of Participants 100 20 20 40

Gender (%)
Male 54 70 95 62.5
Female 46 30 5 37.5

Age (%)
18-24 11 30 40 12.5
25-34 54 70 50 52.5
35-50 24 0 10 27.5
>50 11 0 0 7.5

Education (%)
High school 32 20 10 47.5
Bachelor 48 30 30 37.5
Masters 20 50 60 15
PhD 0 0 0 0

The demographics of the study participants are shown in the second and third columns

of Table 5.1. The user pool for the web-based study consisted mostly of educated individu-

als with almost equal number of female and male (54% male and 46%female), belonging to

various backgrounds. Most of the participants were between 25 and 50 years old (11% 18-24,

54% 25-34, 24% 35-50 and 11% >50)1. The user pool for the mobile-based study consisted

undergraduate and graduate students in our University. The participants were between 18 and

34 years old and the majority of the participants were male (70% male and 30%female). Such

participant samples are in line with those reported in many prior CAPTCHA usability studies

(e.g., [13, 62]).

5.4.2 Study Results

We evaluated the usability of the Mix DCG CAPTCHA with respect to: (1) error rate, (2) solving

time, (3) user experiences (SUS score and personal rating) and (4) learnability, all of which are

described below. The results are summarized in Table 5.2, 5.3 and 5.4.
1The age distribution of the participants is inline with the distribution of Internet users http://www.

statista.com/statistics/272365/age-distribution-of-internet-users-worldwide/.

92

http://www.statista.com/statistics/272365/age-distribution-of-internet-users-worldwide/
http://www.statista.com/statistics/272365/age-distribution-of-internet-users-worldwide/

TABLE 5.2: Web-Based Usability Study Quantitative Results

Overall Solving Successful Solving Error Number of
Time (sec.) Time (sec.) rate Drags
mean (std) mean (std) mean (std)

Mix DCG 27.03 (13.92) 24.55 (10.96) 0.07 4.34 (2.10)
Brands 25.42 (15.36) 21.99 (11.34) 0.09 4.33 (2.58)
Animals 27.28 (13.00) 25.38 (10.62) 0.06 4.39 (1.86)
Professions 28.40 (13.11) 26.20 (10.45) 0.07 4.30 (1.77)

TABLE 5.3: Mobile-Based Usability Study Quantitative Results

Overall Solving Successful Solving Error Number of
Time (sec.) Time (sec.) rate Drags
mean (std) mean (std) mean (std)

Mix DCG 28.03 (10.44) 27.21 (9.21) 0.03 3.44 (0.89)
Brands 24.22 (8.70) 24.22 (8.70) 0.00 3.23 (0.47)
Animals 31.49 (11.70) 29.99 (9.96) 0.05 3.68 (1.10)
Professions 28.37 (9.36) 27.56 (7.97) 0.03 3.41 (0.93)

5.4.2.1 Error Rate

The error rate represents the fraction of the challenges that were not solved successfully by the

participants. The forth column of Table 5.2 and 5.3 show the error rate for solving Mix DCG.

Mix DCGs had low average error rate (7%) for both the web-based study and (3%) for the

mobile-based study. The low error rate in Mix DCG may be attributed to the interactive feedback

that DCG provides. Whenever the participant drag-drops a correct object to its corresponding

target and if it is in its upright orientation, the object disappears, which informs the user that

he performed a correct drag-drop. Also, the low error rate may be due to the high level of

engagement and the visual feature of Mix DCG as the objects are not distorted, unlike traditional

text CAPTCHAs.

Further, we analyzed the error rates per game category for Mix DCGs. In the web-based

study, the minimum error rate was for the Animals game (6%) and the maximum was for the

Brands game (9%). The higher error rate for the Brands game may be because some of the

participants, being located outside the US, could not recognize some of the brands we used in

our instances. However, all the participants in the mobile-based study, being based in the US,

were familiar with the brands we used in our study, yielding the error rate for the brands game

to decrease to 0%.

Next, we analyzed the number of drag-drops performed by the participants in solving Mix

93

DCG challenges (fifth column of Table 5.2 and 5.3) . We noticed that on an average the users

performed around four drag-drops in the web-based study, a minimum of three drag-drops is

required to complete any challenge. Around half of the challenges were solved with exactly 3

drag-drops, however some of the challenges were solved with upto 13 drag-drops. The average

number of drag-drops performed by the users in the mobile-based study seem less than its cor-

respondent in the web-based study, this can be because the majority of the mobile-based study

participants were young.

5.4.2.2 User Experience

TABLE 5.4: User Experience Results

SUS Personal Rating
(out of 100; (out of 5;

(higher the better)) (higher the better))
mean (std) mean (std)

Web-based Study 68.05 (18.46) 4.38 (1.05)
Mobile-based Study 80.00 (22.00) 4.44 (0.58)

The second column of the Table 5.4 shows the SUS scores. In our survey design, in order

to assure that the participants read the questions and did not answer them randomly, we added a

question asking the participants to select a specific rating. We ignored the responses of 9 users

in the web-based study and 3 users in the mobile-based study who did not answer this question

correctly. We found the average SUS score for the Mix DCG to be 68.05 in the web-based study

and 80 in the mobile-based study. Considering that the average SUS score is 68 [84], our Mix

DCG is considered above average for both studies.

The third column of the Table 5.4 shows the personal rating corresponding to Mix DCG

CAPTCHA. The results show that the participants gave Mix DCG high personal rating (i.e., on

average 4.38 and 4.44 out of 5, respectively) in both the web study and the mobile-based study.

5.4.2.3 Solving Time

We calculated the solving time as the time taken by the participants to solve each challenge. We

started measuring the timing from the time the challenge is displayed till the participants find the

upright orientation and drag-drop all the answer objects to their corresponding target objects.

94

The average solving time is shown in the second column of Table 5.2 and the average time

corresponding only to the challenges solved successfully is shown in the third column of Table

5.2. The time taken to solve Mix DCG challenges is less than 30 seconds on average. Similar

and even higher solving times have been reported for many other CAPTCHA schemes, such as

[23, 85].

Furthermore, we checked the average solving time for each of the Mix DCG categories.

For the web-based study, the minimum time was for the Brands and the maximum was for the

Profession. Comparing the solving times of the three categories using Friedman test shows sta-

tistical significant (χ2(2) = 19.813), p < 0.001)2. Further analyzing the solving time with

pairwise Wilcoxon Signed-Rank with Bonferroni correction shows statistical significant differ-

ence between Brands and Animal and Brands and Profession pairs (p < 0.001).

For the mobile-based study, the minimum time was for also for Brands, but the maximum

was for Animals. Comparing the solving times of the three categories using Friedman test shows

statistical significant (χ2(2) = 7.737), p = 0.021). Further analyzing the solving time with

pairwise Wilcoxon Signed-Rank with Bonferroni correction shows also statistical significant

difference between Brands and Animal and Brands and Profession pairs (p = 0.001 and p =

0.009, respectively).

5.4.2.4 Learnability

We compared the users’ performance in solving the first and last (sixth) challenges (Table 5.5

summarizes the results). The results show improvement in the user performance for both of the

studies in terms of solving time. Comparing the solving time of the first and last attempts for

web-based study using pairwise Wilcoxon Signed-Rank, we found statistical significant differ-

ence (Z = −4914, p < 0.001).

Similarly, comparing the solving time of the first and last attempts for the mobile-based

study using pairwise Wilcoxon Signed-Rank, we found statistically significant difference (Z =

−2.797, p = 0.005).
2All statistical results reported in this thesis are at the 95% confidence level.

95

TABLE 5.5: Comparing the user performance in solving the first and last challenges

First Challenge Last Challenge
Solving Solving

Time (sec.) Time (sec.)
mean (std) mean (std)

Web-based Study 29.24 (11.35) 21.51 (8.9)
Mobile-based Study 32.36(11.26) 23.34 (5.86)

5.4.3 Summary of Results

Although the participants took slightly long time to solve Mix DCG challenges, they found it

to be appealing as reflected in their SUS score and personal ratings. Moreover, the error rate

for solving Mix DCG is considerably low, especially when compared to most of deployed text

based CAPTCHAs. The average error rate for text-based CAPTCHAs has been reported to be

over 0.13 [86]. Mix DCG also seem to have better usability on mobile devices compared to text-

based CAPTCHAs. For example, the error rate for solving reCAPTCHA on mobile devices has

been found to be 0.09 with a comparable average solving time of 25.2 seconds [62]. Moreover,

the error rate of Mix DCG is comparable to that of S-DCG, which is shown to be insecure

against automated attacks (the error rate for S-DCG is 0.05 on average. The results also show

that the user performance improves with solving multiple Mix DCG challenges, which may

result in a significant decrease in the solving time, as users become more and more familiar with

solving these CAPTCHAs. These overall positive usability results for Mix DCG CAPTCHAs

can be attributed to the level of engagement in the Mix DCG challenges, their visual features,

interactive feedback and avoidance of distortion.

5.5 Security Against Relay Attacks

In this section, we explore the security of Mix DCG against relay attacks. We first provide the

details about our relay attack study design and present the study results. Then, we explore the

ability of detecting relay attack based on the difference in the game play performance between

the legitimate users in the web-based usability study (Section 5.4) and human-solvers in the

relay attack study. Our hypothesis is that Mix DCG offers a better level of resilience against

relay attacks compared to S-DCG, as the former requires more interaction between the users

96

and the CAPTCHA challenges (the user has to orient the answer objects in addition to drag-

drop the answer objects to their corresponding targets).

5.5.1 Study Design

The static relay attack (reviewed in Section 3.4.2) against DCG CAPTCHAs in general has been

shown to be ineffective. This result generalizes to Mix DCG CAPTCHAs too. Therefore, we

only study the security of Mix DCGs against the stream relay attack. We conducted two studies

to evaluate the security of Mix DCG against the stream relay attack introduced in Section 3.4.3).

To investigate the stream relay attack against Mix DCG, we utilized the MTurk platform

to recruit the participants in two separate studies. The only difference between the studies is

the location of the participants. In the first study, termed Low-Speed High-Latency (LSHL), we

recruited participants from a developing country (India), where we expect the users to have a

slow Internet connection, and they reside in far proximity of the attacker (residing in the USA).

In the second study, termed High-Speed Low-Latency (HSLL), we recruited participants from

a developed country (USA), where we expect the users to have a fast Internet connection, and

they reside in near proximity of the attacker (USA)3. In both studies, the participants were asked

to solve Mix DCGs challenges streamed to them in real-time from a server running in Amazon

cloud (zone: us-west-2b) using VNC steaming software. We paid each of the MTurk workers

$1.5 for their effort. Our University’s Institutional Review Board approved the studies.

In the study, each participant was asked to connect to our server on Amazon cloud via VNC

viewer, and fill a demographics form and play the six instances of the Mix DCG CAPTCHA.

We recruited 20 MTurk workers from India for the first study, and 40 MTurk workers from the

US for the second study. The participants in the LSHL study were mostly male (95% male and

5%female), aged between 18-50 (40% 18-24, 50% 25-34 and 10% 35-50). The participants in

the HSLL study were majorly male (62.5% male and 37.5% female), aged between 18 and above

50 (12.5% 18-24, 52.5% 25-34, 27.5% 35-50 and 7.5% > 50). The participants in both studies

were educated and from various backgrounds, like in our usability study. Such a similarity in the

demographics of participants between the two study settings (relay attack and usability) allows

us to compare the results of the two settings fairly following a between-subjects design.
3The average Internet speed is 2.0 MBit/s in India and 11.1 MBit/s in USA [82].

97

TABLE 5.6: Relay Attack Study Results (HSLL setting). None of the participants in the LSHL
succeeded in solving any of the challenges.

Overall Solving Successful Solving Error Number of
Time (sec.) Time (sec.) rate Drags
mean (std) mean (std) mean (std)

Mix DCG 58.66 (4.59) 47.28(6.99) 0.89 3.31 (0.54)
Brands 58.28(5.53) 44.07 (9.11) 0.88 3.25 (0.46)
Animals 58.64(4.61) 46.10 (6.57) 0.90 3.25 (0.46)
professions 59.07 (3.33) 50.02 (4.54) 0.90 3.50 (0.76)

5.5.2 Study Results

We evaluated the performance of the participants with respect to: (1) solving time and (2) error

rate, and compared it with the performance of legitimate users in the web-based usability study.

All the participants in the LSHL study failed to solve any of the Mix DCG challenges, i.e., the

overall error rate equaled 1. This is attributed to the slow connection speeds and far proximity of

these participants which may have introduced jitters and prevented them from orienting and/or

dragging the objects correctly. The results for the HSLL study are summarized in Table 5.6 and

explained in the following subsections.

5.5.2.1 Error Rate

The fourth column of Table 5.6 shows the error rate committed by the participants in the HSLL

relay attack study. The participants failed to solve higher number of Mix DCG compared to the

participants in the usability study. 24 participants could not solve any of the challenges, and

the other 16 participants could solve 1.63 challenges on an average. The overall error rate was

0.89. The minimum error rate was for the Brands category and the Animals and Professions

have equal error rate. The quality degradation of the streamed Mix DCG challenges makes the

challenges much harder to solve by the remote human-solvers compared to legitimate users who

play the games rendered locally.

Next, we analyzed the number of drag-drops performed by the participants in solving Mix

DCG challenges (fifth column of Table 5.6). Using the Mann-Whitney U test, we found statisti-

cal difference between the number of drags performed in the relay attack and the usability study

(Z = −2.817, p = 0.005).

98

5.5.2.2 Solving Time

The third column of Table 5.6 shows the average time taken by the participants in the (HSLL)

relay attack study to successfully solve the Mix DCG challenges. On an average, the participants

took around 47 seconds to solve a challenge which is much longer than the time taken by the

participants in the usability study (around 25 seconds). Comparing the solving times in the relay

attack study with the solving times in the usability study, using the Mann-Whitney U test, we

found this difference to be statistically significant (Z = −3.005, p = 0.003). This suggests that

even when participants are able to solve the challenges in the relay attack setting, they will take

much longer to do so.

5.5.3 Relay Attack Detection

Next, we explored the ability of detecting relay attack on Mix DCG based on the differences

in the game play performance between the participants in the usability study and relay attack

study. As explained in Section 5.2, we logged the participants interaction with the challenges.

At each time interval, we recorded the mouse position and status. Moreover, for each object, we

recorded whether the object is being dragged or not at each given time.

For each of the log files, we extracted a total of sixteen features. The extracted main features

are: the solving time, the number of drags, the number of attempts (i.e., clicks that do not

correspond to object drag) and the longest duration of the attempts. The additional features are:

the time, the distance, the speed and the acceleration of the mouse movement for each of the

mouse status corresponding to drags, attempts and when the mouse button was not pressed.

Then, we built a data file that contains the extracted features from the successfully solved

Mix DCG challenges in the (HSLL) relay attack study and a randomly selected equal number

of successfully solved Mix DCG challenges in the usability study. We tested various machine

learning algorithms on all of the subset of features to find the best classifier along the best sub-

features that can be utilized to detect the relay attack against Mix DCG. We developed a Java

program that utilizes Weka library to test different classifiers across different features subsets

that would result in best accuracy. We tested different machine learning algorithms provided by

Weka: Trees – Logistic Model Trees, Random Forest and Random Tree; Functions – Logistics

and Simple Logistic, and Bayesian Networks – Naive Bayes, on all features subsets.

99

In our classification task, the positive class corresponds to the legitimate user and the neg-

ative class corresponds to remote human-solver. Therefore, true positive (TP) represents the

number of times the legitimate user is accepted, true negative (TN) represents the number of

times the remote human-solver is rejected, false positive (FP) represents the number of times

the human-solver is accepted and false negative (FN) represents the number of times the correct

user is rejected. As performance measures for our classifiers, we used Precision, Recall and

F-measure (F1 score).

The classification results, obtained after running a 10-cross validation, are: Recall 0.96,

Precision 1.00 and F-measure 0.98. These results suggest that our classifier can detect the HSLL

relay attack 100% of the time while rejecting only around 4% of the legitimate users (The

success rate of the legitimate user is 0.93 (1 - 4% (falsely rejected as a relay attacker) - 3%

(legitimate user error rate))), within 2 trials the success rate is 99.51% and within 3 trials the

success rate becomes 99.97%. The best sub features are the number of drags, the distance of

attempts, the time drag and the acceleration of mouse movement while the button is not clicked,

and the best classifier was Random Tree.

5.5.4 Summary of Results

Mix DCG CAPTCHA offers a high level of resilience against relay attacks. Similar to S-DCG,

the dynamic nature of Mix DCG along with its requirement for multiple interaction between

the user and the challenge make relaying Mix DCG to remote human-solver a challenging task.

Moreover, as the quality of Mix DCG challenges degrades under the streaming-based attack,

the remote human-solvers located in far proximity (LSHL) failed to solve any of the challenges

and the remote human-solvers located in near proximity (HSLL) failed to solve most of the

challenges (error rate around 90%). Furthermore, even when the remote human-solver could

successfully solve the Mix DCG challenges, our proposed detection mechanism could detect

the relay attack highly accurately as game play performance differs significantly between the

remote human-solvers and the legitimate users.

5.6 Discussion

In this chapter, we carefully studied the integration of three categories of CAPTCHAs in order to

create a usable and secure CAPTCHA. Image orientation and semantic matching CAPTCHAs

100

TABLE 5.7: Security of Various Categories of CAPTCHAs, Relevant to This Chapter, against
Different Forms of CAPTCHA Attacks. Mix DCG is the First Known CAPTCHA Scheme
That Can Resist All Three Forms of Attacks While Still Retaining a Good Level of Usability.

Automated Client-Side Relay
Image Orientation [1] 3 3 7

Semantic Matching [2] 3 3 7

Simple DCG (S-DCG) 7 7 3

Emergent Image DCG (EI-DCG) 3 7 3

Mix DCG 3 3 3

are secure against automated attacks and client-side attacks but vulnerable to relay attacks. The

simple form of DCG CAPTCHAs are resistant to relay attacks but vulnerable to automated and

client-side attacks.

Although EI-DCG is shown secure against automated and relay attacks, it suffers from low

usability and does not offer security against client-side attack4. As shown in Chapter 4, the

emergent effect added to simple DCG made EI-DCG challenges harder to solve for legitimate

users. This was reflected in a low average SUS score of around 56, which is considered much

below the benchmark average score for usable computer systems (68) [84], and high error rate

of around 12%.

In contrast, our proposed Mix DCG CAPTCHA scheme is secure against all forms of at-

tacks (the comparison among different relevant CAPTCHA categories is outlined in Table 5.7).

Its security against automated attacks is based on the security of both image orientation and

semantic matching CAPTCHAs (which are based on hard AI problems). In other words, the

attacker will have to break both notions to be able to break Mix DCG CAPTCHA. Its security

against relay attacks relates to the security of simple DCGs against relay attacks. The level of

interaction between the user and the Mix DCG challenge is actually higher compared to that

in simple DCG, i.e., the user has to orient the objects in addition to dragging and dropping

them. This resulted in improving the security against relay attacks. The error rate for the re-

mote human-solvers increased from 22% for S-DCG to 93% for Mix DCG. Also, the accuracy

(i.e., F-measure) of attack detection increases from 0.77 to 0.98. Mix-DCG also offers security

against client-side attacks since the CAPTCHA verification task is moved to the server.

Security is not the only attractive feature of Mix CAPTCHAs – they also offer high accuracy

and good overall user experience for legitimate users. Although the participants in our usability
4Incorporating image orientation and image semantics features to EI-DCG may not offer any viable usability due

to the presence of emergence effect.

101

study took relatively long time to solve Mix DCG challenges, they were able to solve most of

the challenges successfully.

Each Mix DCG challenge is of size 500 × 300 and the frame rate of the challenges is set

to 40 frames per second. Under the relay attack setting, using as less as 2 bit per pixel (black

and white) will require the connection speed of 12 Mbit/s between the attacker and the solver

if no compression is applied to the data sent between the attacker machine and the human-

solve machine. Utilizing RealVNC for transmitting the data allows us to benefit from the data

compression it applies on the transmitting packets between the VNC server and VNC viewer.

First, RealVNC sends only the modified pixels between the current frame and the previous

frame rather than sending the whole frame. Moreover, RealVNC viewer allows the user to

picks the compression level applied, varying from best compression (8 bits) to best quality (all

available colors with minimum, medium or maximum compression). To calculate the minimum

bandwidth required between the attacker and the human-solver to transfer the challenges without

any jittery effects, we performed an experiment in which we connected two PCs over a LAN,

installed RealVNC server on one of them and RealVNC viewer on the other. Then, we varied

the RealVNC compression level and used Wireshark to capture the packets sent between the two

PCs in all of the cases. We found that the average Mbit/s for the getting all colors with minimum

compression is 15.60 Mbit/s, 2.88 Mbit/s for getting all colors with maximum compression and

2.09 Mbit/s for the default settings (256 colors).

The above experiment shows that to successfully transmit all the game frames between

the attacker and the human-solver, the minimum required bandwidth is 2.09 Mbit/sec. If the

connection bandwidth is slower, some of the frames would not be sent to the human-solver

causing a jittery rendering of the game, and therefore the human-solver will have difficulty

in solving the challenges successfully. The average connection speed is 2.0 Mbit/s in India.

Moreover, the long distance between the attacker (our server machine is located in USA) and the

human-solver slows down the connection speed, all the participants in India could not connect to

our server with high speed and therefore failed to successfully solve the challenges. On the other

hand, the average connection speed in USA is 11.1 Mbit/s. Moreover, the distance is much less

between the attackers and the human-solvers in the HSLL streaming-based relay attack study

than its corresponding in the LSHL study. This explains why some of the human-solver were

able to successfully solve some of the challenges. This justifies the results of the user studies

102

presented in the Section 5.5.

We also tested TeamViewer, another screen-sharing application, and obtained similar results

as for RealVNC. TeamViewer requires a bandwidth of 4.6 Mbit/s between the attacker and the

human-solver machine to transmit all the challenge frames. Therefore, we conclude that the

results of our relay attack studies are not limited to RealVNC.

A potential attack strategy against Mix DCGs could be a hybrid approach in which the

attacker extracts the moving objects and the targets from the challenge, and sends them to the

human-solver in a framework that allows the user to interact with the objects (i.e., rotate and

drag-drop the answer objects to their corresponding targets). After the human-solver believes

that he is done with solving the challenge, he sends his answer to the attacker. The attacker then

has to find the answer objects in the current frame, click on them as many times as the human-

solver did and drag-drop them to their corresponding target as provided by the human-solver.

This attack strategy is viable but can be effectively defended by adding a simple background to

the challenges that would make the extraction of the moving objects from the challenge a time

consuming task (the extraction of the foreground objects from the game frames takes on average

30.9 seconds in the attack reported in [83]) without degrading the usability level. Therefore, to

solve the challenge, the attacker would need around 30 seconds to extract the objects and send

them to the solver, who in turn would take approximately the same time as the time taken by

legitimate user since the task is similar (on average around 24 seconds) and then search for the

objects in the current frame and solve the challenge. This attack can be detected by checking the

time the first drag-drop was performed or reduce the time out slightly, or by utilizing dynamic

background which may harden the object extraction.

Recently Google has released “No CAPTCHA reCAPTCHA” as a method to remove the

usability burden involved in solving CAPTCHAs. No CAPTCHA reCAPTCHA is based on risk

analysis that considers the user’s engagement with the CAPTCHA to determine whether the user

is a human or not. The task of the user is reduced to clicking on a checkbox that indicates that

he is a human. However, whenever the risk analysis cannot confidently predict whether the user

is a human or not, it needs to fall-back to a CAPTCHA scheme. Our Mix DCG CAPTCHAs

can very well serve the role of this fall-back and can be integrated with this Google system.

One potential practical challenge in deploying Mix DCG CAPTCHA scheme pertains to

the selection of the moving and target objects. The moving objects should be hard for machine

103

learning algorithms to orient but easy for human to do so. The objects and the semantic rela-

tionship between the targets and answer objects should be easy for human to comprehend and

identify, but hard for bots. The selection of such images would require some manual work to

build the images dictionary that is used to create the CAPTCHA challenges, which may slow

down the creation of a large number of challenges (e.g., for a web service with huge user base).

5.7 Conclusion

In this chapter, we proposed CAPTCHA fusion to defeat different forms of known CAPTCHA

vulnerabilities. We studied the fusion of three CAPTCHA schemes based on dynamic cogni-

tive games (DCG), image orientation and image semantics. Specifically, we introduced a new

class of CAPTCHAs, Mix DCG, and instantiated it with a fusion of a simple form of DCG

CAPTCHA, What’s up CAPTCHA, and SEmantically MAtching imaGEs (SEMAGE). Simple

DCGs inherently provide security against relay attacks, but by integrating them with What’s

up CAPTCHA and SEMAGE CAPTCHA also improved their security against various types of

automated attacks.

The Mix DCG CAPTCHA security with respect to automated attacks relies upon the secu-

rity of What’s up and SEMAGE CAPTCHAs, which are both built on fundamental AI problems.

We conducted two user studies to evaluate the usability and the security of Mix DCG against

relay attacks. The results of the studies show that Mix DCG is usable (significantly more usable

than a widely deployed CAPTCHA scheme) and highly resilient to relay attacks. Mix DCG is

the first CAPTCHA scheme, to the best of our knowledge, that can simultaneously resist au-

tomated attacks, relay attacks and client-side attacks, while providing a reasonably good user

experience.

104

CHAPTER 6

SMASHED: SNIFFING AND MANIPULATING ANDROID SENSOR DATA

In the previous chapters, we show that interactivity can enhance the security and the usability

of Human-Machine authentication. To show the importance of adding interactivity and ran-

domization to Human-Human authentication, we developed a framework that can compromise

the security of most well-known deployed and proposed Human-Human authentication (i.e.,

password and behavioral biometrics) on Android devices. Later in Chapter 7, we introduce a

behavioral biometrics that can resist the proposed attack.

Chapter Organization: Section 6.1 provides background on Android security Model. Section

6.2 presents our proposed attack SMASheD design, implementation and threat model. Section

6.3 and Section 6.4 present SMASheD attacks on various authentication systems. Section 6.5

suggests methods for mitigating the attack. Section 6.6 concludes the chapter.

6.1 Background: Android Sensor Security Model

Android’s core security principle is to protect user data, system resources and apps from mali-

cious apps [87]. Android utilizes the Linux approach of process isolation to enforce the isolation

of apps and operating systems components. This isolation is achieved by assigning each app a

unique User Identifier (UID) and Group Identifier (GID) at the app installation time. Therefore,

each app is enforced to run in a separate Linux process, called Application Sandbox, and the

Linux process isolation ensures that an app cannot interfere with other apps or access system

resources unless permissions are explicitly granted. In order to allow apps to communicate with

each other and access system resources, Android provides a secure Inter-Process Communica-

tion (IPC) protocol.

Discretionary Access Control (DAC) is the typical access control employed in Linux. In

DAC, the owner/creator of the data sets the access permissions of the data to three types of users:

the owner, the users in the same group and all other users. When an app is installed, Android

creates a home directory for the app (i.e., /data/data/app-name) and allows only the owner to

105

read from and write to this directory. The apps signed with the same certificate are able to share

the data among each other.

File system permissions are also used to restrict the access of system functionality. For

example, /dev/cam permission is set to allow only the owner and the users in the camera group

to read and write to the camera sensor as shown in Listing 6.1. When an app requests the

CAMERA permission, and if the permission is granted, the app is assigned the camera Linux

GID, which would allow it to access /dev/cam. The mapping between the Linux groups and

permission labels are set in platform.xml, and ueventd.rc is responsible for setting the owners

and groups for various system files.

Some Android resources do not require any permission. In particular, reading motion,

position and environmental sensors is globally permitted. Most of the other resources require

read-write permissions, and these permissions have four levels:

1. Normal: The app needs to request the access, however, the system grants the permission

automatically without notifying the user (e.g., vibrate).

2. Dangerous (protection level 1): The system grants the permission to the app only if the

user approves granting this permission (e.g., accessing camera, microphone, or GPS).

3. Signature (protection level 2): The system grants the permission to the app only if the

requesting app is signed with the same certificate as the app that declared the permission,

without notifying the user (e.g., allowing two apps signed by the same developer to access

each other components, inject event).

4. SignatureOrSystem (protection level 3): The system grants the permission only to the apps

that are in the Android system image or that are signed with the same certificate as the

app that declared the permission (e.g., system reboot).

In any Linux system, an executable runs with same permission as the process that has

started it. ADB shell is already assigned to several groups (graphics, input, log, adb, sdcard rw,

etc). Therefore, any executable that starts through the ADB shell is granted the same level of

access to the resources which belong to any of these groups. As shown in Listing 6.1, since the

directory “/dev/input/*” which contains the sensor files, belongs to “input” group, and the ADB

shell has read-write access to all the resources associated with “input” group, any executable

106

that is initiated by ADB shell can read from and write to the “/dev/input/*” resources. This is

the key idea upon which our SMASheD framework is based, allowing us to sniff and manipulate

many of the Android’s sensors.

LISTING 6.1: ueventd.rc File

. . .

/ dev / i n p u t /∗ 0660 r o o t i n p u t

/ dev / eac 0660 r o o t a u d i o

/ dev / cam 0660 r o o t camera

. . .

6.2 Smashed Design, Implementation and Threat Model

In this section, we explain the design, implementation and threat model of our proposed

SMASheD framework.

6.2.1 Design Overview

As mentioned in Section 6.1, the current Android security model considers many resources as

sensitive and thus limits the access of these resources only to the apps that are signed by the

system (protection level 3 for the permissions declared by the system and protection level 4).

These protected resources include: injecting user events into any window (INJECT EVENTS),

taking screen shots (READ FRAME BUFFER), and reading system log files (READ LOGS).

However, Android allows access to these resources through the ADB shell for development

purposes, by assigning the ADB shell to the groups that can access these resources. For example,

the ADB shell is assigned to the input group which allows any process with the ADB shell

privilege to read from and write to any of the files in the /dev/input/ directory. This directory

contains the files associated with user input, motion, position and environmental sensors.

Moreover, Android’s current directory structure has the /data/local/tmp/ directory which is

assigned to shell user and shell group, and gives read, write and execute permission to the shell

user and any user in the shell group. This folder allows the user to run executable files on their

Android devices through ADB shell.

Many developers have exploited these capabilities given to the ADB shell to grant per-

missions to their apps that are not otherwise allowed. This ADB workaround is performed by

107

developing a native service, pushing it into the /data/local/tmp/ directory and running the ser-

vice through the ADB shell. This way the native service grants all the permissions that are

granted to the shell. Finally, to allow other apps to communicate with the service, both the app

and the service open sockets and communicate through it. This approach has been utilized by

many apps that are already published in Google Play Store such as apps that allow the users to

take screenshots programmatically [88], sync and backup [89], USB tethering [90], and touch

record/replay [91].

The above design allows any app with only the INTERNET permission to communicate

with the service. Hence, the app with only the INTERNET permission will obtain access to

the resources that the service provides without the user’s knowledge. This vulnerability has

been explored in [92], focusing mainly on screenshot apps published in Google Play Store. The

authors developed an app, Screenmilker, which communicates with the native services of many

screenshots apps. They showed that Screenmilker is able to collect user’s sensitive data, such as

user’s credentials on many banking apps by sending requests to the screenshot’s native service

to take screenshots while the user is inputting her credentials.

In this chapter, we are exploring and extending this vulnerability further, and with poten-

tially much broader consequences. We focus on INJECT EVENTS permission. There are al-

ready some apps in Google Play Store, such as FRep – Finger Replayer [91], which allow users

to record their touch interactions with their devices and replay them later. FRep has already been

installed by 100,000 to 500,000 users1. These apps also utilize the ADB workaround, similar

to the screenshot apps, in order to gain access to the read and inject touchscreen data. Also,

as the communication between the touch repeater app and its native service is done through a

socket, the native service becomes accessible to any app installed on the phone with only the

INTERNET permission. Therefore, if the user installs any malicious apps with the INTER-

NET permission, these apps can also communicate with the service and read/inject touch events

maliciously.

RERAN [94] presents one of the benign use cases for the apps that record and later re-

play sensor events by injecting the events into the sensors. Such apps enable the developers to
1Although the number of users is not that huge, it can be because the free version of FRep offers a limited

functionality compared to its paid full version. However, many users seem to be interested in getting touch repeating
functionality if it is free, which is apparent based on the number of users installing other touch repeaters that require
root (e.g. [93] has 500,000 - 1,000,000) installations).

108

FIGURE 6.1: The Architecture of SMASheD

test their apps and reproduce errors. However, rather than implementing a native service for

recording and replaying the sensor events, RERAN employed a different methodology for im-

plementing their app. First, the user needs to connect her device to the PC. Then, she launches a

terminal and executes the ADB getevent command. This command reads the sensor events and

stores them in a file. Finally, the user pushes the file along with a native service to her device

and runs the service. This service reads the sensor events from the file and injects them to their

corresponding sensors. Once the phone is disconnected from USB, the service stops running.

We implement the SMASheD framework which encompasses three components: SMASheD

server: a native service that provides the sensor data reading and injection capabilities, scripts:

two simple scripts used to copy the SMASheD server to the device and to start the server, and

SMASheD app: an app that runs a status detection module in the background, and depending on

the phone’s status and the desired functionality, it sends requests to the SMASheD server to read

or inject sensor events. Figure 6.1 depicts the overall SMASheD architecture.

6.2.2 SMASheD Server

Our system works with the sensors whose events are made available to apps through low-level

event interface and have files under the directory /dev/input/, and not through system services

(e.g., camera, microphone, and GPS). This includes user input, motion, position and environ-

mental sensors. For each of these sensors, a corresponding file named eventx exists in the direc-

tory /dev/input/. Android allows reading and injecting sensor events through ADB commands

getevent and sendevent, respectively.

109

Each hardware event generates multiple input events. Each input event encompasses time,

type, code and value.

• time represents the time at which the event occurred.

• value represents the value of the event.

• code is the event code and it precisely defines the type of the event. For example, REL X,

REL Y, REL Z represent relative changes in X, Y and Z axes, respectively.

• type is the event type, which groups the event’s codes under a logical input construct.

Each event type has a set of applicable event codes. For example, EV ABS represents

the absolute axis value changes, EV REL represents the relative axis value changes. A

special event type, EV SYN, is used to separate input events into packets of input data

changes occurring at the same moment in time.

For a complete list of the applicable events’ types and codes, we refer the reader to linux/in-

put.h2.

LISTING 6.2: Sample Output from Running getevent for a Single Press Release

[6 9 9 3 4 . 4 3 5 5 0 3] EV ABS ABS MT TRACKING ID 0000038 d

[6 9 9 3 4 . 4 3 5 5 3 3] EV KEY BTN TOUCH DOWN

[6 9 9 3 4 . 4 3 5 5 6 4] EV ABS ABS MT POSITION X 000003 b2

[6 9 9 3 4 . 4 3 5 5 6 4] EV ABS ABS MT POSITION Y 00000607

[6 9 9 3 4 . 4 3 5 5 9 5] EV ABS ABS MT TOUCH MAJOR 00000012

[6 9 9 3 4 . 4 3 5 5 9 5] EV ABS ABS MT TOUCH MINOR 00000009

[6 9 9 3 4 . 4 3 5 6 2 5] EV ABS ABS MT WIDTH MAJOR 00000002

[6 9 9 3 4 . 4 3 5 6 2 5] EV ABS 003 c f f f f f f a 6

[6 9 9 3 4 . 4 3 5 7 7 8] EV SYN SYN REPORT 00000000

[6 9 9 3 4 . 4 5 2 1 0 5] EV ABS ABS MT TOUCH MAJOR 00000024

[6 9 9 3 4 . 4 5 2 1 0 5] EV ABS ABS MT TO UCH MINOR 0000001 b

[6 9 9 3 4 . 4 5 2 1 3 5] EV ABS ABS MT WIDTH MAJOR 00000008

[6 9 9 3 4 . 4 5 2 1 3 5] EV ABS 003 c f f f f f f f d

[6 9 9 3 4 . 4 5 2 1 6 6] EV SYN SYN REPORT 00000000

[6 9 9 3 4 . 4 6 2 8 4 7] EV ABS 003 c 00000000

[6 9 9 3 4 . 4 6 2 8 7 7] EV SYN SYN REPORT 00000000

[6 9 9 3 4 . 4 9 4 3 7 1] EV ABS ABS MT TRACKING ID f f f f f f f f

[6 9 9 3 4 . 4 9 4 4 0 2] EV KEY BTN TOUCH UP

[6 9 9 3 4 . 4 9 4 4 0 2] EV SYN SYN REPORT 00000000

2https://github.com/torvalds/linux/blob/master/include/uapi/linux/input.h

110

https://github.com/torvalds/linux/blob/master/include/uapi/linux/input.h

As an example, a simple touchscreen press-release event generates around 19 input

events. Listing 6.2 displays a sample output of executing getevent command, pressing on

the screen at point (946,1543), and then releasing the touch. BTN TOUCH DOWN and

BTN TOUCH UP indicate the beginning and the end of the touch, ABS MT POSITION X

and ABS MT POSITION Y represent the touch’s x and y positions, respectively.

We implemented a native service designed in C with code similar to Android’s getevent

and sendevent for reading and injecting the sensor events. First, the service scans /dev/input/

directory to find out what sensors are available in the device. Although the file names in the

directory are event0, event1, etc, we use EVIOCGVERSION ioctl function to retrieve the name

of the sensor that corresponds to each file. To read from and write to the sensors’ files, we use

read() and write() functions.

To allow other apps to communicate with the service, the service creates a socket. The

socket keeps on listening to the incoming requests. In the current implementation, the service

accepts three kinds of requests: read, stop and inject.

• read: The service reads the input events from all the sensors. We can limit the read to a

subset of sensors to improve the efficiency. The service continues reading until it receives

a stop request.

• stop: The service stops reading the sensor events. Then, it either writes the events to a

file, and sends the file name as a response to the request or sends all the read input events.

• inject: Inject needs to have a file name or a list of sensors events as an argument. The

service injects the sensors events in the incoming list or in the file to their corresponding

sensors files.

6.2.3 Scripts

We wrote two shell scripts to start the service. The first shell script is responsible for pushing

the native service and the second script to /data/local/tmp/ folder on the device, and for starting

the second script. The second script starts running the service. In this way, the service will run

with the same privileges as the shell user. The service will then keep running until the phone is

switched off or it gets killed by the user.

111

6.2.4 SMASheD App

We implemented an Android app, which only requires the INTERNET permission. The app

connects to the SMASheD server through socket and sends requests to read and inject events.

For example, it may send read touch events when a banking app is open to retrieve the password

input by the user.

In order to determine whether a specific app that the attacker might be interested in is

running, our app has a service that starts when the app is launched and keeps running in the

background. The service runs ps command periodically, every 100 ms, until the app that the

attacker is interested in is launched (status detector shown in Figure 6.1). Once the app under

attack is running and on the foreground, SMASheD app connects to the SMASheD server through

socket and sends read request with the list of sensors (e.g., touchscreen data only, all sensors,

etc). Once the user exits the app or moves out of the app, SMASheD app sends stop request

to the SMASheD server. In case the purpose of reading is to replay the sensor events later

in the same device, to reduce the communication between the SMASheD server and app, the

SMASheD server stores the read events in a file and only sends the file name to the SMASheD

app. Otherwise, the SMASheD server sends all the sensor events.

Also, the SMASheD app can send inject request along with a list of sensor events to inject

or a file name previously acquired from the service, whenever it wants to inject sensor events.

6.2.5 Threat Model

Our threat model is highly realistic, facilitated under three scenarios:

1. Already Installed Benign ADB Services: Apps that read and inject touch events (e.g.,

FRep [91]) are already available in Google Play Store and installed by many users. Given

such an already installed benign app, our attacks that read/inject touch events work under

the exact same threat model as [92] by using a malicious app that communicates with the

service associated with the already installed app.

2. Future Benign ADB Services: Benign developers can publish an app/service that read-

s/injects sensors events for providing some benign functionality (e.g., debugging or test-

ing). Once such an app is installed, attacker will launch our attacks similar to [92].

112

3. Malicious ADB Services: The attacker can create a benign-looking (malicious) screen-

shot app, adding read/inject sensor events functionality to its service. The attacker just

needs to fool users into installing this app. Note that when user installs a service using

ADB, he/she is not notified about the resources the service is accessing. Therefore, the

user will not be able to differentiate between services that only take screenshots from

services with added malicious functionality. Moreover, if the attacker can gain physi-

cal access to an unlocked Android device, the attacker can quickly install the malicious

service on the device (e.g., in a lunch-time attack) [95].

The first and second threat model scenarios exploit the vulnerability of the services that

expose their ADB functionalities to all the apps installed on the same device with INTERNET

permission (same as [92]). The last scenario exploits Android’s vulnerability of granting all the

shell privileges to any service installed via ADB without notifying the user.

SMASheD works on unrooted devices, and does not require an infected PC (unlike [96]) or

a constant connection between the device and a PC (e.g., unlike monkeyrunner 3).

6.2.6 SMASheD Advantages

The SMASheD framework has several advantages:

• Modularity and Expandability to Broad Attacks: Once the user runs the script via the

ADB shell to install the SMASheD server, the device becomes vulnerable to the attacks

described in Section 6.4. The attacker only needs to modify the SMASheD app so as to

send the read and inject requests according to the type of attack he wants to perform.

• Stealthiness: SMASheD is very stealthy and hard to get detected by anti-malware or in-

trusion detection systems. This is because SMASheD does not consume much energy

compared to other apps that need to continuously monitor the sensors (such as activity

trackers), and it can utilize other benign apps to send the collected information to a re-

mote attacker. Moreover, SMASheD can change the phone settings, e.g., decrease screen

brightness, mute sound and erase logs/traces to make the attacks “user-invisible”, as we

will explain in Section 6.4.3.
3http://developer.android.com/tools/help/monkeyrunner_concepts.html

113

http://developer.android.com/tools/help/monkeyrunner_concepts.html

• Mutli-Device Applicability: SMASheD is not limited to Android phones, but rather it

works on any Android device. We tested reading and injecting sensor events on Android

phones (Samsung S4, Samsung S5 and Motorola Droid X2), smartwatch (Samsung Gear

Live) and Google Glass.

6.3 Key Logger

We will demonstrate how SMASheD can be used as a TouchLogger in order to sniff a user’s

sensitive information. According to Android security model, an app cannot read touch events

performed by the user on other apps [97]. However, we will show how it is possible to infer the

keys that the user has pressed, and therefore extract sensitive information efficiently and with

100% accuracy. We note that SMASheD is not only able to detect user key presses but it can also

log any interaction of the user with the touchscreen, such as swiping, and zooming.

Many researchers have proposed mechanisms to infer the keys pressed by the users. These

attacks require the user to install a malicious app on her phone. These methods range from

utilizing motion sensors [98–100] and a combination of camera and microphone [101] to tak-

ing screenshot while the user is typing sensitive information, such as PINs or passwords [92].

However, these attacks usually have a relatively low accuracy and may be significantly affected

by the way the user types and/or holds the phone. Taking pictures or recording audio may also

trigger suspicion.

The SMASheD app can send read request to the SMASheD server to obtain all the events

the user performs on the touchscreen. However, getting only the raw touch events is not enough

to hamper the user privacy. Moreover, the attacker will be interested only in a small subset of

these events. For example, an attacker will be interested in learning the password of the user on

banking apps but not the input corresponding to user’s interaction with a game.

According to the information the attacker wants to learn about the user, the attacker can

modify the service in the SMASheD app so it sends read request when the app corresponding to

the data the attacker wants to collect is launched. Moreover, if the attacker wants only to learn

the keys the user presses while the app is running, he can send the read request when both the

app and the keyboard are on the foreground.

114

To evaluate the ability of SMASheD to extract the username and password from various

banking apps, we repurposed the original SMASheD app. When the SMASheD app is launched,

it gets the list of installed apps on the device using getPackageManager API. Note that no

permission is required to get the list of installed apps. Then, the SMASheD app looks for the

apps that are already installed and are of interest to the attacker. The SMASheD app also finds

the soft keyboards installed. The SMASheD app starts running its status detection service in the

background, which regularly executes ps command to find out the list of running applications.

Once any of the apps that the attacker wants to collect user data from appears in the output of

the execution ps command, the service gets that app process ID, PIDapp. The service also gets

the process ID of the keyboard, PIDkb from the execution of the ps command. The service then

executes ps − tPIDapp command, which returns the list of threads of that process; whenever

an app is on the foreground, the list of threads of that app has a thread named “GL updater”.

If the app is running the “GL updater” thread, the service also checks if the keyboard is

running “GL updater” thread. If both the app and the keyboard app have “GL updater” thread

running, SMASheD detects that both of them are in the foreground and sends read request to the

SMASheD server. When user exits the app or the keyboard (which can be detected by checking

if the app is no longer in the list returned by executing the ps command, or if “GL updater”

is not in the list of the thread running for either the app or the keyboard), the SMASheD app

sends stop request to the SMASheD server. As a response to the stop request, the SMASheD

server sends all the touch events to the SMASheD app. The SMASheD app parses the events

and extracts the events with event type ABS MT POSITION X and ABS MT POSITION Y

between BTN TOUCH DOWN and BTN TOUCH UP (Listing 6.2), if between the down and

up events, the ABS MT POSITION X or ABS MT POSITION Y is missing, the value of it

is same as its correspondent in the previous touch. Finally, it maps the x and y coordinates to

keys (keyboard layout can be detected by determining which soft keyboard the user is using, the

orientation of the device and the screen resolution) and sends the text typed (if the user is using

a soft keyboard that is unknown to SMASheD, SMASheD can send the name of the soft keyboard

app, the x, y coordinates of each touch and the screen resolution and orientation to the attacker

and the mapping can performed offline), for example, to the attacker’s web service via HTML

request, or via other methods as we will discuss in Section 6.4.3.1.

We tested the above attack on some banking applications, such as Wells Fargo and Bank of

115

America apps, and we could learn the username and password with 100% accuracy. The attack

was tested on Samsung Galaxy S5 with Android OS version 5.0 and Samsung Galaxy S1 with

Android OS version 4.4.2, and can be easily adapted to other Android phone models and even

other devices such as smartwatches. Our attack is an extremely powerful attack since all the

input provided by the user can be precisely and stealthily stolen, raising significant concerns for

users’ security and privacy.

6.4 Attacks Using Smashed

In this section, we present various attacks on various authentication systems that can be per-

formed based on the sensor data reading-writing capability provided by SMASheD. The entire

spectrum of attacks that SMASheD can enable is possibly very broad. As such, our exposition is

not exhaustive. However, we introduce some of the most interesting and potentially devastating

attacks targeting both real-world and research authentication systems.

6.4.1 Overview of Attacks and Attack Presentation

To present our attacks, we follow an empirical-analytical methodology. That is, we show the

implementation and evaluation of several of our attacks, and present the rest of the attacks in an

analytical way. The attacks that have been implemented and empirically studied (4 in number)

are:

• Touch-Logger: (1) Key-logger that can be utilized to extract banking apps usernames/-

passwords, and (2) a general logger that can record user’s touchscreen interactions.

• Touch Injection: (3) Phone unlock, and (4) Phone unlock bypassing biometrics security,

e.g., [102], by replaying user’s unlock-pattern.

The other proposed analytical attacks can be implemented similarly. We believe that it is

not necessary to implement all attacks and our empirical-analytical exposition is sufficient to

fully demonstrate the impact of the exposed vulnerability.

6.4.2 Sniffing Touchscreen Input (Touchlogger)

We will demonstrate how SMASheD can be used as a TouchLogger in order to sniff a user’s

sensitive information. According to Android security model, an app cannot read touch events

116

performed by the user on other apps [97]. However, we will show how it is possible to infer the

keys that the user has pressed, and therefore extract sensitive information efficiently and with

100% accuracy. We note that SMASheD is not only able to detect user key presses but it can also

log any interaction of the user with the touchscreen, such as swiping, and zooming.

Many researchers have proposed mechanisms to infer the keys pressed by the users. These

attacks require the user to install a malicious app on her phone. These methods range from

utilizing motion sensors [98–100] and a combination of camera and microphone [101] to tak-

ing screenshot while the user is typing sensitive information, such as PINs or passwords [92].

However, these attacks usually have a relatively low accuracy and may be significantly affected

by the way the user types and/or holds the phone. Taking pictures or recording audio may also

trigger suspicion.

The SMASheD app can send read request to the SMASheD server to obtain all the events

the user performs on the touchscreen. However, getting only the raw touch events is not enough

to hamper the user privacy. Moreover, the attacker will be interested only in a small subset of

these events. For example, an attacker will be interested in learning the password of the user on

banking apps but not the input corresponding to user’s interaction with a game.

According to the information the attacker wants to learn about the user, the attacker can

modify the service in the SMASheD app so it sends read request when the app corresponding to

the data the attacker wants to collect is launched. Moreover, if the attacker wants only to learn

the keys the user presses while the app is running, he can send the read request when both the

app and the keyboard are on the foreground.

To evaluate the ability of SMASheD to extract the username and password from various

banking apps, we repurposed the original SMASheD app. When the SMASheD app is launched,

it gets the list of installed apps on the device using getPackageManager API. Note that no

permission is required to get the list of installed apps. Then, the SMASheD app looks for the

apps that are already installed and are of interest to the attacker. The SMASheD app also finds

the soft keyboards installed. The SMASheD app starts running its status detection service in the

background, which regularly executes ps command to find out the list of running applications.

Once any of the apps that the attacker wants to collect user data from appears in the output of

the execution ps command, the service gets that app process ID, PIDapp. The service also gets

the process ID of the keyboard, PIDkb from the execution of the ps command. The service then

117

executes ps − tPIDapp command, which returns the list of threads of that process; whenever

an app is on the foreground, the list of threads of that app has a thread named “GL updater”.

If the app is running the “GL updater” thread, the service also checks if the keyboard is

running “GL updater” thread. If both the app and the keyboard app have “GL updater” thread

running, SMASheD detects that both of them are in the foreground and sends read request to the

SMASheD server. When user exits the app or the keyboard (which can be detected by checking

if the app is no longer in the list returned by executing the ps command, or if “GL updater”

is not in the list of the thread running for either the app or the keyboard), the SMASheD app

sends stop request to the SMASheD server. As a response to the stop request, the SMASheD

server sends all the touch events to the SMASheD app. The SMASheD app parses the events

and extracts the events with event type ABS MT POSITION X and ABS MT POSITION Y

between BTN TOUCH DOWN and BTN TOUCH UP (Listing 6.2), if between the down and

up events, the ABS MT POSITION X or ABS MT POSITION Y is missing, the value of it

is same as its correspondent in the previous touch. Finally, it maps the x and y coordinates to

keys (keyboard layout can be detected by determining which soft keyboard the user is using, the

orientation of the device and the screen resolution) and sends the text typed (if the user is using

a soft keyboard that is unknown to SMASheD, SMASheD can send the name of the soft keyboard

app, the x, y coordinates of each touch and the screen resolution and orientation to the attacker

and the mapping can performed offline), for example, to the attacker’s web service via HTML

request, or via other methods as we will discuss in Section 6.4.3.1.

We tested the above attack on some banking applications, such as Wells Fargo and Bank of

America apps, and we could learn the username and password with 100% accuracy. The attack

was tested on Samsung Galaxy S5 with Android OS version 5.0 and Samsung Galaxy S1 with

Android OS version 4.4.2, and can be easily adapted to other Android phone models and even

other devices such as smartwatches. Our attack is an extremely powerful attack since all the

input provided by the user can be precisely and stealthily stolen, raising significant concerns for

users’ security and privacy.

6.4.3 Manipulating Touchscreen Sensor

The ability of injecting touch events could be extremely dangerous. In essence, it will allow

the malware to do whatever the user can do with her device. The primary challenge for the

118

attacker is to be stealthy. To do so, the attacker should inject the touch events while the user

might not be attending to the phone, such as when the user is asleep or the phone is left inside

a pocket or a purse. Such contextual scenarios can be determined by monitoring various motion

and environmental sensors on the phone, as shown by prior research [103]. For example, the

attacker can monitor the proximity and light sensors to infer when the phone is inside a pocket or

placed in dark [104]. Moreover, SMASheD can change the phone settings, e.g., decrease screen

brightness, mute sound and erase logs/traces to make the attacks “user-invisible.”

Following subsections layout some of the attacks that SMASheD can perform given its ca-

pability to inject touch events.

6.4.3.1 Data Exfiltration

Whenever SMASheD needs to send any data to a remote attacker (e.g., previously sniffed pass-

words, credit card numbers or pictures), it can stealthily transmit this data utilizing other apps,

such as email or SMS. As some malware detection mechanisms detect malicious apps based

on abnormal data usage, SMASheD can remain surreptitious and undetected by such systems.

Moreover, SMASheD can delete the logs from the email and SMS apps so that users cannot trace

back. This simple strategy will prevent SMASheD from being detected by either the device user

or the anti-virus apps. Such an exfiltration will also avoid the need for doing any data processing

on the infected device itself but rather allow the attacker to outsource all processing to a remote

machine.

6.4.3.2 Phone Unlock

In order to allow SMASheD to access any of the device resources that require the device to be

unlocked, SMASheD needs to unlock the device first. To do that, SMASheD first utilizes the

TouchLogger presented in Section 6.4.2 to log the user’s PIN or pattern unlock while the user

unlocks his phone. Then, whenever SMASheD wants to unlock the phone, it will simply inject

the recorded PIN or pattern unlock onto the touchscreen. We have built and tested such an

auto unlocker. A demo is available at https://androidsmashed.wordpress.com/

demos/.

119

https://androidsmashed.wordpress.com/demos/
https://androidsmashed.wordpress.com/demos/

6.4.3.3 Accessing User Accounts

SMASheD can be used to open different apps that require authentication, and log into user’s

accounts. To do so, SMASheD will first extract the user’s credentials for the target account by

using the TouchLogger described in Section 6.4.2. SMASheD will then utilize this credential

to log into the user account from her device. Accessing the user accounts from the SMASheD

infected device is important for several reasons. Many web services and banks implement a

second factor authentication approach which may only allow the user to login from a registered

device. Similarly, many banks require the user to answer security questions when she logs in

from a different device, and others send notification to the user specifying the devices that are

used to access her account. After having logged into the user accounts, SMASheD can, for

example, access the account and perform any kind of the allowed banking transactions, read

user’s emails, send fake emails, forward the emails to a remote attacker, or read user’s private

data from or post messages on social media sites — the possibilities are endless.

6.4.3.4 Attacking Biometric Authentication

Recently, a significant amount of research has been done to authenticate a user transparently

using biometrics. The touch-based biometrics are applied either as a second factor authentication

mechanism during the device unlock or as a continuous authentication mechanism when the user

is performing some activity on the device. Among these, some systems analyze the keystrokes

of the users to capture the biometrics while others analyze touch gestures provided by the users.

We now analyze a variety of these biometrics systems proposed in the literature and provide a

systematic methodology to attack them using SMASheD.

Keystroke Biometrics: Campisi et al. [105] present an approach to authenticate users based

on their typing habits on the smartphones. Their approach relies on the analysis of keystroke

dynamics. The system acquires and processes the time stamps generated by the mobile phones

related to key press and release. Using these, the system further calculates different features

such as Manhattan distance, Euclidean distance and statistical features and generate a template

for each user. During the authentication, the system computes the normalized distance and

compares that with a threshold.

120

To authenticate against such system, SMASheD needs to learn how the user types. During

the learning phase, SMASheD can record the user’s keystroke behavior and compute the features

in a similar way to the authentication system. After learning, it can create the keystrokes such

that the time interval SMASheD presses and releases the keys closely correlates with that of the

user. Note that SMASheD can simply record and replay the user’s keystroke without computing

the features and the system may still fail to detect such malicious input. However, creating new

keystrokes after learning the features is more detrimental to the user as the attacker can recreate

any events or activities he likes.

Touch Gesture Biometrics: Frank et al. [97] present “Touchalytics”, a continuous touch-based

authentication system which utilizes the strokes performed by the user while using her phone.

Touchalytics focuses on single touch gestures such as sliding horizontally and vertically. Slid-

ing horizontally is common when navigating between the screens or images, while sliding ver-

tical is common when reading email or documents. To authenticate using touch, Touchalytics

records the touch coordinates, finger pressures, the screen areas covered by each finger, and

times. Touchalytics extracts 30 different features from these raw inputs. Touchalytics uses these

features to build a profile of the user and utilizes it later to identify the user.

Since Touchalytics is monitoring and matching the touch with the trained data for horizontal

and vertical slides only but not with other actions, SMASheD can perform tap/click and pinch

without getting detected. However, to navigate up/down or right/left where SMASheD has to

provide such horizontal/vertical slides, SMASheD needs to record the previous authentic slides

from the user, and later inject them as desired. While outsider attacks using robots [106] have

previously been reported against Touchalytics, the SMASheD attack represents the first known

insider attack to our knowledge.

Li et al. [107] present an unobservable re-authentication system for smartphones using fin-

ger movement patterns. This system uses machine learning approach to authenticate the user

based on touch input. The system monitors user’s raw touch event data and preprocesses it,

which assembles every single raw data into different gestures and then sends these to the feature

extraction component. The predictor component consists of an SVM classifier and multiple clas-

sification modules. The system uses five different types of gestures: sliding up, sliding down,

sliding left, sliding right and tap. For the sliding gesture, the system considers the properties

such as first touch position, first touch pressure, first touch area, first moving direction, moving

121

distance, duration, average moving direction, average moving curvature, average curvature dis-

tance, average pressure, average touch area, max-area portion and min-pressure portion, while

for the tap gesture, it considers average touch area, duration and average pressure.

Attacking this system with SMASheD is simple as it is only looking for five different ges-

tures as described above. SMASheD needs to learn how a user moves his finger for these gestures

recording all the finger movements. Similar to attacking Touchalytics, SMASheD then repeats

the recorded authentic slides and tap gestures from the user whenever it wants to perform certain

activity on the phone.

Shahzad et al. [108] present “GEAT” for screen unlocking based on simple gestures. Along

with the user touch input, GEAT uses other features such as finger velocity, device acceleration,

stroke time, inter-stroke time, stroke displacement magnitude, stroke displacement direction,

and velocity direction. GEAT segments each stroke into sub-strokes of different time duration

where, for each sub-stroke, the user has consistent and distinguishing behavior. GEAT utilizes

these features to train and later identify the user.

Since GEAT is only authenticating when user wants to unlock the screen, SMASheD can

record all the raw touch and device acceleration data during the legitimate authentication by the

user. It can later just replay the touch providing the recorded data such that the features would

fully match.

Luca et al. [102] present another transparent authentication approach that enhances pass-

word patterns with an additional security layer. They study the touch stroke gestures correspond-

ing to the horizontal slide and the pattern unlock. Their approach uses dynamic time warping

for the analysis of touch gestures using different features including XY-coordinates, pressure,

size, time, and speed of the touch.

SMASheD cannot only thwart the password pattern to unlock the device but also foil the

additional security layer provided by this system. As discussed in the Section 6.4.2, SMASheD

first simply sniffs the password pattern. In addition, SMASheD records the pressure, size, time

and speed of the touch when the legitimate user performs the pattern unlock gesture. Now, when

the SMASheD app needs to unlock the device, it simply injects the previously recorded touch

events to circumvent the authentication functionality. As our demo for phone unlock records

the user interactions with her device while unlocking the device, and then replays it, it would

122

also defeat this mechanism.

6.4.4 Manipulating Other Sensors

In this section, we first describe the systems which provide authenticate the user based on the

motion, position and environmental sensors. Then, we provide an attack scheme against each

system using the sensor event injection capability of SMASheD.

Attacking these systems may not be straightforward. The best scenario to manipulate the

sensor readings when the current sensor readings are not being altered by the natural events.

For example, when the phone is in a pocket, the light sensor may not change or report constant

values. Since the sensor file will not be altered by the natural environment in this case, the mal-

ware can manipulate the sensor data as it likes. Also if the system is implementing a statistical

approach (such as based on mean, standard deviation, etc., of the sensor data), the malware may

not need to manipulate the sensors for the whole duration when the system is monitoring the

sensors. SMASheD can insert some values that significantly changes these statistical features

which causes the system to misjudge the sensing context. For the other systems, which imple-

ment specialized algorithms based on continuous sensor data, SMASheD needs to inject sensor

readings at different timestamps that correlate to the sensor values during benign case.

Conti et al. [109] propose a system that transparently authenticates the user by analyzing

her hand movement gesture while she is making or answering a phone call. It uses accelerometer

and orientation sensor to detect the proposed gesture. The system uses the dynamic time warping

distance (DTW-D) algorithm to verify if the authorized user is making or answering the phone

call.

To attack this system, SMASheD can record the accelerometer and orientation sensor data

when the user is making or receiving a valid call. Later, when SMASheD wants to make a call

(e.g., to premium rate numbers or to user’s contacts), it can replay the previously recorded sensor

data, thereby fooling the system to believe that the user is making the call.

Gascon et al. [110] present an approach to continuously authenticate users on smartphones

by analyzing their typing motion behavior. Along with touch input, it also records the times-

tamps when the keys are pressed or released. The system uses different motion and position

sensors such as accelerometer, gyroscope and orientation sensors to capture behavioral biomet-

rics so as to authenticate the user. It extracts various features leading to a 2376-dimensional

123

vector representing the typing motion behavior of a user in a given time frame. The system is

trained with the linear SVM classifier.

To attack this system, SMASheD needs to learn how the user presses each character, and

reproduce it. During the learning phase, SMASheD continuously records the raw sensor data

until it gets necessary information used by the system for all the keys during the legitimate

key presses. Once the learning phase is completed, SMASheD can provide the touch injects with

proper timings and the corresponding sensor readings. Since the motion and position sensors are

continuously recording the data from the hardware, SMASheD may need to wait for a favorable

time, e.g., when the phone is static, otherwise the natural readings may interfere with the injected

sensor readings possibly leading to rejection by the system.

6.5 Smashed Mitigation

To protect against the adversarial applications of SMASheD, we suggest the following potential

mitigation strategies. Although these strategies may not fully prevent the attacks, they may help

reduce the impact of the underlying vulnerability.

First, we believe that it is important to raise people’s awareness of the possible security

risks associated with installing services through the ADB shell. Second, we suggest following

the permission models of Android for native services that are executed through the ADB shell.

In the current model, any native service that starts through the ADB shell is granted all the

permissions that the shell has without notifying the user. These permissions include accessing

logs, frame buffer, motion, position, environmental, and user input sensors. An attacker may not

reveal all the resources that the service is accessing. For example, the attacker could publish a

service as a snapshot service while injecting code that accesses sensor files as well. This may be

prevented if the service is only granted permissions after informing the user. Third, we suggest

enforcing security policies for the communication between processes running on the device

through sockets. We recommend that Android monitors the open sockets on the device and the

apps that are accessing those sockets. Whenever an unusual communication is detected, Android

should at least inform the user. Whether or not users would pay attention to such notifications is

an independent concern. However, we believe that the potential risks should be conveyed to the

users.

124

6.6 Conclusion

In this chapter, we called the Android’s sensor security model into question. We exploited

Android’s ADB workaround to develop a framework that can effectively sniff and manipulate

many sensors currently protected by Android’s access control model. Our framework can be

used to: (1) directly sniff the touchscreen sensor data, (2) directly manipulate the touchscreen,

motion, position and environmental sensor data, and (3) indirectly, using the touch inject capa-

bility, sniff the audio-visual and navigational sensors. Based on this framework, we introduced

a wide spectrum of potentially devastating attacks that can compromise user privacy and subvert

many authentication systems that rely upon different sensors. Since the scope of our attacks

is extremely broad, we provided demonstrations for a selection of schemes and presented an

analytical exposition of several other schemes.

125

CHAPTER 7

STRONG BEHAVIORAL AUTHENTICATION WITH SIMPLE COGNITIVE

GAMES

In the chapters 3, 4 and 5, we show that interactivity helps in enhancing the security and the

usability of Human-Machine authentication. Moreover, in Chapter 6 we show that all user au-

thentication mechanisms based on static input can be attacked using our developed framework

SMASheD. In this chapter, we explore interactivity in the context of Human-Human authentica-

tion.

In this chapter, to overcome the limitations of the current behavioral biometrics systems, we

propose Gametrics (Game-based Biometrics), a novel system of interactive game-based behav-

ioral biometrics. Whenever users wish to authenticate to a device or service, Gametrics would

simply request them to play a short and simple cognitive game. Once identified, permission to

access an account or device can be granted via a back end database as is done with existing

behavioral biometric solutions. Games are a good platform for the purpose of authentication

since web browsers and touch screen devices fully support them.

Chapter Outline: The rest of this chapter is organized as follows. In Section 7.1, we describe

the authentication game object (DCGs) used in our system. This is followed by Section 7.2,

where we describe our data collection methodology and procedures. Next, in Section 7.3, we

elaborate on our machine learning techniques and feature extraction methods to build the Ga-

metrics authentication model, and provide the classification results in benign setting and against

zero-effort passive attackers. In Section 7.4, we evaluate Gametrics against active adversarial

attacks that deliberately attempt to mimic a user’s game play pattern to defeat the authentication

system. In Section 7.5, we present our small scale study we conducted to evaluate the scheme on

touchscreen devices. In Section 7.6, we discuss further aspects of our work and provide future

research directions. Finally, in Section 7.7, we conclude our work highlighting the main take

away points.

126

7.1 Cognitive Task

In this section, we elaborate on the design and the implementation of the interactive DCG con-

structs we utilized in our study.

7.1.1 Cognitive Task Design

We embed the cognitive task in simple web-based games, following the design presented in

[83]. In this design, each of the game challenges has three target objects and six moving objects.

The user’s task is to drag a subset of the moving objects (answer objects) to their corresponding

target objects. Solving a challenge require the user to: (1) understand the content of the images,

(2) find the semantic relationship between the answer objects and the target objects, and (3)

drag the answer objects to their corresponding targets. We impose a time limit of 60 second to

complete each challenge.

We aim to identify the user based on her interaction with the challenge. Basically, we aim to

identify the user based on her cognitive ability (i.e., the time it takes her to recognize the objects

and perform the required task) and mouse interaction (i.e., mouse movement characteristics such

as mouse movement speed and acceleration).

7.1.2 Cognitive Task Implementation

We implemented the challenges using Adobe Flash ActionScript3 and the web server using PHP.

The challenge image/frame size is 500 × 300 pixels, the size of each of the moving object is 75

× 75 pixels and the size of the target objects is 90 × 90 pixels. The challenge starts by placing

the objects in random locations on the image. Then, each object picks a random direction in

which it will move. A total of 8 directions were used, namely, N, S, E, W, NE, NW, SE and

SW. If the chosen direction is one of E, W, S, or N, the object will move (across X or Y axis)

by 1 pixel per frame in that direction. Otherwise, the object will move
√

2 = 1.414 pixels per

frame along the hypotenuse, corresponding to 1 pixel across both X and Y axes. This means

that on an average the object moves 1.207 [= (1 × 4 + 1.414 × 4)/8] pixels per frame. We set

the number of frames per seconds to 40 FPS. The object keeps moving in its current direction

until it collides with another object or with the challenge border, whereupon it moves in a new

random direction.

127

The challenge starts when the user presses a “Start” button on the screen center. The chal-

lenge ends when the user drags all the answer objects and drops them onto their corresponding

targets, in which case a “Game Complete” message is provided or timeout is reached, in which

case a “Time Out” message is provided.

After the user performs an object drag/drop, the challenge code sends to the server the

identifier of the object and the drop location. The server checks the correctness of the drag/-

drop and gives feedback to the challenge code. If the web server confirms that the object was

dropped on its corresponding target, the object disappears giving feedback to the user that he

performed a correct action. After the user drags and drops all the answer objects to their corre-

sponding targets, the challenge code sends to the server the log of the gameplay. The gameplay

log contains the objects locations, the mouse location and status (up/down) at each time inter-

val to the server. The server utilizes this log to authenticate the user. The timestamps were

generated from multiple events listeners: MouseEvent.CLICK, MouseEvent.MOUSE UP, and

MouseEvent.MOUSE MOVE.

(a) Brands (b) Animals

(c) Professions

FIGURE 7.1: Gametrics Challenges Instances. Targets, on the Left, are Static; Moving Objects,
on the Right, are Mobile. The User Task is to Drag-Drop a Subset of the Moving Objects

(Answer Objects) to Their Corresponding Targets

For the purpose of our study, we implemented six instances of the explained challenges that

can be categorized into three categories (two instances of each category) described below. A

sample of each of the implemented categories is shown in Figure 7.1.

128

• Brands: The targets are popular worldwide brands and the objects are commercial prod-

ucts (e.g., Nike and Nike shoes).

• Animals: The targets are real animals and the moving objects are cartoon animals (e.g.,

lion and Lion King).

• Professions: The targets are professionals and the moving objects are tools (e.g., taxi

driver and taxi).

7.2 Data Collection

As a pre-requisite to building and testing our Gametrics system, we pursued data collection from

human users, in both online and lab settings. In this section, we elaborate on our data collection

methodology, and the characteristics of the collected data set. In Section 7.5, we present a small

scale study we conducted on Mobile devices.

The participation in our two studies was voluntary, and standard ethical procedures were

fully followed, e.g., participants being informed, given choice to discontinue, and not deceived.

The studies was approved by our university’s Institutional Review Board. The data collection

experiments were divided into four phases. First, we subjected the participants to a consent

form. Then, we asked the participants to go through a tutorial and fill up a demographics form.

Next, we asked the participants to solve several instances of the game challenges explained

in Section 7.1.2. At the end of the study, we asked the participants to fill-out a survey form

about their experience. The survey contained the 10 System Usable Scale (SUS) [80] standard

questions, each with 5 possible responses (5-point Likert scale, where strong disagreement is

represented by “1” and strong agreement is represented by “5”). SUS is a standard question-

naire to measure the usability of software, hardware, cell phones and websites, and it has been

deployed in many prior security usability studies. Moreover, specific to our study, we added two

questions to the survey in order to measure the easiness and playfulness of the challenges. As

the participants played the game challenges, all of their gameplay mouse events were recorded

in the background.

Table 7.1 summarizes the characteristics of the data collected during the two studies. The

total number of participants is 118 (98 in online study and 20 in lab study). The participants

129

TABLE 7.1: Summary of the Collected Data Sets

Users Solving Time(s)
Mean (std)

Completed
Challenges

Online
Study

Day 1 98 7.39 (3.55) 5839
Day 2 62 7.23 (2.77) 2209
Day 3 29 7.65 (2.98) 1028

Lab Study 20 7.66 (3.45) 1200

successfully completed a total of 10276 challenges (9076 in online study and 1200 in lab study).

The average time to complete a game challenge was around 7.5 seconds.

For our online data collection study, we utilized the Amazon Mechanical Turk (MTurk)

service to recruit the participants. The aim of our online study was to evaluate the applicability

of identifying the user based on the way she interacts with the posed game challenges. More-

over, we wanted to determine how our system would perform in a longitudinal setting, over

multiple sessions/days. Therefore, we created a total of three Human Intelligence Tasks (HITs)

distributed over three days. The first HIT was created with 100 assignments to have 100 unique

workers. We gathered 98 valid submissions until the HIT expired. The workers were directed

to the website hosting the study. They were required to solve a tutorial, fill a demographics

form and play 60 instances of our challenges. The order of presenting the challenges to the

participants was random. Finally, the participants filled out the survey. On the next two days,

we sent the participants emails asking them to participate in the follow-up study. However, we

asked them to solve 36 challenges rather than 60 challenges in this round. 62 participants per-

formed the study on the second day and 29 performed the study on the third day. We paid each

participant $1.0 for the first HIT, and $0.5 each for the second and third HIT.

The participants in our online study were from various age groups, education levels and

backgrounds. Age group: 1% < 18, 20.4% 18-24, 38.8% 25-34, 32.7% 35-50 and 7.1% >

50. Gender: 58.2% male and 41.8% female. Education: 26.5% high school graduate, 58.2%

hold bachelor degree, 14.3% hold master degree and 1% hold a PhD degree. The participants

were from various backgrounds such as Computer Science, Engineering, Medicine, Law, So-

cial Science, Finance, Business, Mathematics, Art, etc. (detailed demographics information is

populated in Table 7.2)

For our lab-based study, we collected data from some volunteers recruited from our Uni-

versity. It followed a similar protocol as the online study, but using a lab computer. We asked

130

TABLE 7.2: Participants Demographics

MTurk Lab
Participants 98 20

Age (%)
<18 1.0 0
18-24 20.4 40
25-34 38.8 45
35-50 32.7 15
>50 7.1 0

Gender (%)
Female 41.8 35
Male 58.2 65

Education (%)
High School 26.5 25
Bachelor 58.2 40
Masters 14.3 30
PhD 1.0 5

the volunteers to perform a similar task as the task performed by the MTurk workers on the first

day. A total of 20 undergraduate and graduate students as well as some employees participated

in the study. The age of the participants ranged between 19 and 50, 13 of them are male and 7

are female, 5 are high school graduate, 8 have bachelor degree and 7 have master degree. The

majority of the participants are from Computer Science background (Table 7.2). We asked the

volunteers to play 60 instances of the challenges using the same computer and same setting.

The aim of this study was to validate the results of the MTurk study. In particular, we mainly

wanted to ensure that the acquired results are not based on the platform and the setting used in

performing the experiment rather than the different characteristics of an individual’s unique way

of interacting/solving the game challenges.

7.3 System Design & Results

In order to evaluate the applicability of the Gametrics as an authentication scheme, we utilized

the machine learning approach. In this section, we present the features we extracted from the

user’s gameplay logs collected during our data collection campaign. Then, we discuss the clas-

sification models and the classifier employed. Finally, we present the classification results for

the benign setting and the zero-effort attack.

131

7.3.1 Feature Extraction

TABLE 7.3: The Features Utilized for Classification

Feature Description

C
og

ni
tiv

e Time number Time taken to complete the challenge
Time first action number The timestamp of the first mouse event after the game start
Time first drag number The timestamp of the first drag
Time between drags mean, std, min, max Times between drops and start of drags

M
ou

se
in

te
ra

ct
io

n

Speed drag mean, std, min, max Speed while dragging
Speed move mean, std, min, max Speed while moving
Acceleration drag mean, std, min, max Acceleration while dragging
Acceleration move mean, std, min, max Acceleration while moving
Difference timestamp mean, std, min, max The difference between each consecutive recorded timestamps
Move silence mean, std, min, max The times between consecutive timestamps while the mouse is moving
Drag silence mean, std, min, max The times between consecutive timestamps while dragging
Pause and drag mean, std, min, max The times between approaching the object and click on it
Pause and drop mean, std, min, max The times between approaching the target and drop
Angle mean, std, min, max The angles between each three consecutive points

M
ix

ed

Drag distance to real distance mean, std, min, max
The difference between the distance traveled while dragging and the
straight line connecting the start and end points of the drag

Move distance to distance mean, std, min, max
The difference between the distance traveled while moving and the
straight line connecting the start and end points of the move

Distance click object center mean, std, min, max Distances of the clicks and objects’ centers
Distance drop target center mean, std, min, max Distances of the drops and targets’ centers
Total distance number Total distance

From each instance of the gameplay logs we collected during the data collection phase,

we extracted a total of 64 features that captures the cognitive abilities as well as the mouse

interaction characteristics of the participants while they are interacting with the challenges. (The

extracted features are summarized in Table 7.3.)

FIGURE 7.2: An Example for Illustration of Different Cognitive Characteristics among Differ-
ent Users While Playing the Game Challenges: The Time for Completing the Games and the
Time Spent in Drag and Time Spent in Moving the Mouse Around. We Can See That User 1
Took a Long Time to Understand the Game (Long Move Segment before the Start of the First
Drag), Also Took on Average a Long Time to Locate Each of the Answer Objects and to Start
Dragging. User 2 Took Shorter Time to Complete the Challenges but Committed Many Mis-
takes (the User Performed Exactly 3 Drags and Drops to Complete Each Challenge, However,
User 2 Performed on Average More Than 5 Drags), User 3 Completed the Games in Short Time

with Shorter on Average Times to Locate the Answer Objects

132

As described in Section 7.1.1, in order to solve a challenge, the user has to match the answer

objects to their corresponding targets. In order to do that, the user has to understand the content

of the images representing the targets and the moving objects, find the relationship between the

moving objects and the target objects, and then select a subset of the moving objects (the answer

objects) and finally drag/drop them to their corresponding targets. By monitoring the users while

solving the challenges (lab study), we found different users take different approaches to solve

the challenges. For example, some users start by trying to comprehend the whole challenge and

then start the object matching, while some try to find the answer objects corresponding to the

target in certain order (i.e., always try to search for the answer object that corresponds to the

top most target, and then the second and so on), while some try to pick the object closest to the

mouse cursor and then check if it matches with any of the targets. For visualization purposes,

these differences in the cognitive characteristics of different users are illustrated in Figure 7.2.

These different mechanisms of solving the game challenges are related to the cognitive

characteristics of individuals. We capture these characteristics based on the following features:

1. The time between the user pressing on the start button and the first recorded mouse event

and the time of the first click/drag. These timing measures capture the time the participates

take to comprehend the challenge and start solving it.

2. The times between each of the drops and the start of the next drag (these capture the time

the user takes to find the next answer object).

3. The total time taken by the user to complete the challenge.

The mouse movement characteristics of the users are captured by following features:

1. The speed and acceleration while the user is searching for an answer object and while the

user is dragging the object.

2. The duration between each two consecutively generated timestamps and the “silence”

during move and during drag.

3. The time duration between reaching an object and clicking on it, and the time duration

between approaching a target object and dropping an answer object on it.

133

4. The angles between the lines that connect each 3 consecutive points in the mouse move-

ment trajectory.

Other mixed features are also extracted that relate to both cognitive and mouse movement

characteristics of the participants such as the total distance the mouse moved within a game

challenge, the difference between the straight line connecting the start and the end of a move or

a drag and the real distance traveled. The distance between a click and the object center, and a

drop and the target center.

TABLE 7.4: MTurk Study Results: Performance for the classifier for three different classi-
fication models. The first part shows the performance of the classifier using all the features.
The next part shows the results of using the features subset that provides the best average re-
sults. The last part shows the result of using the best features subset for each user. For each
of the models, we show the results of using a single challenge and merging of two challenges.

Highlighted cells emphasize the most interesting results.

FPR FNR Precision Recall F-Measure
Mean (Std)

Day 1 0.12 (0.10) 0.12 (0.16) 0.88 (0.09) 0.88 (0.16) 0.87 (0.12)
Day 2 0.11 (0.09) 0.25 (0.31) 0.81 (0.24) 0.75 (0.31) 0.76 (0.28)Single
Day 3 0.10 (0.07) 0.22 (0.27) 0.86 (0.14) 0.78 (0.27) 0.80 (0.24)
Day 1 0.10 (0.13) 0.11 (0.18) 0.91 (0.11) 0.89 (0.18) 0.88 (0.14)
Day 2 0.09 (0.11) 0.20 (0.30) 0.85 (0.23) 0.80 (0.30) 0.80 (0.27)

All features

Merge
Day 3 0.08 (0.10) 0.22 (0.30) 0.86 (0.25) 0.78 (0.30) 0.80 (0.27)
Day 1 0.11 (0.09) 0.11 (0.15) 0.89 (0.08) 0.89 (0.15) 0.89 (0.11)
Day 2 0.18 (0.13) 0.17 (0.15) 0.83 (0.15) 0.83 (0.15) 0.82 (0.12)Single
Day 3 0.10 (0.07) 0.19 (0.26) 0.85 (0.18) 0.81 (0.26) 0.82 (0.23)
Day 1 0.10 (0.13) 0.09 (0.16) 0.91 (0.11) 0.91 (0.11) 0.90 (0.13)
Day 2 0.12 (0.12) 0.19 (0.20) 0.88 (0.12) 0.81 (0.20) 0.83 (0.14)

Average overall best

Merge
Day 3 0.12 (0.18) 0.18 (0.18) 0.88 (0.10) 0.82 (0.18) 0.84 (0.13)
Day 1 0.06 (0.06) 0.02 (0.04) 0.95 (0.05) 0.98 (0.04) 0.96 (0.04)
Day 2 0.09 (0.09) 0.07 (0.10) 0.91 (0.09) 0.93 (0.10) 0.92 (0.09)Single
Day 3 0.07 (0.06) 0.07 (0.10) 0.93 (0.06) 0.93 (0.10) 0.93 (0.07)
Day 1 0.02 (0.05) 0.02 (0.05) 0.98 (0.05) 0.98 (0.05) 0.98 (0.04)
Day 2 0.05 (0.09) 0.04 (0.09) 0.96 (0.08) 0.96 (0.09) 0.96 (0.08)

User specific

Merge
Day 3 0.04 (0.06) 0.03 (0.05) 0.96 (0.05) 0.97 (0.05) 0.96 (0.04)

7.3.2 Classifier and Metrics

In our analysis, we utilized the Random Forest classifier. Random Forest is an ensemble ap-

proach based on the generation of many classification trees, where each tree is constructed

using a separate bootstrap sample of the data. In order to classify a new input, the new input is

run down all the trees and the result is determined based on majority voting. Random Forest is

efficient, can estimate the importance of the features, and is robust against noise [111]. Several

other classifiers were tested during the course of study such as SVM, Bayes Network, Neural

Networks, but Random Forest outperformed all of them.

134

In our classification task, the positive class corresponds to the gameplay of the legitimate

user and the negative class corresponds to the impersonator (other user / zero-effort attacker).

Therefore, true positive (TP) represents the number of times the legitimate user is granted access,

true negative (TN) represents the number of times the impersonator is rejected, false positive

(FP) represents the number of times the impersonator is granted access and false negative (FN)

represents the number of times the correct user is rejected.

As performance measures for our classifier, we used false positive rate (FPR), false negative

rate (FNR), precision, recall and F-measure (F1 score), as shown in Equations (7.1) to (7.5). FPR

and precision measure the security of the proposed system, i.e., the accuracy of the system in

rejecting impersonators. FNR and recall measure the usability of the proposed system as high

FNR leads to high rejection rate of the legitimate users. F-measure considers both the usability

and the security of the system. To make our system both usable and secure, ideally, we would

like to have FPR and FNR to be as close as 0, and recall, precision and F-measure to be as close

as 1.

FPR = FN

TN + FN
(7.1)

FNR = FN

TP + FN
(7.2)

precision = TP

TP + FP
(7.3)

recall = TP

TP + FN
(7.4)

F -measure = 2 ∗ precision ∗ recall
precision+ recall

(7.5)

7.3.3 Classification Models & Feature Selection

We studied various models of classifications. In the first model, we utilized all the features

explained in Table 7.3 for training and later testing the classifier. Second, in order to improve

the accuracy of the classification, we ran a program to find the subset of features that produces

the best classification results, as using many features can cause over fitting of the classifier

135

and therefore reduce the accuracy of the future prediction, thus removing some features may

improve the accuracy. Therefore, we report, in the next subsection, the results obtained by using

the subset of features that produces the best average results across all the participants (users

being authenticated) in the study. Third, we find the best subset of features that produces the

best classification results per user.

For each of the three classification models, we study the identification of the user based on a

single game challenge as well as on combining two challenges. As the average time for solving a

challenge is around 7.5 seconds, we believe that utilizing two instances of the game challenges

to identify the user is not much of an overhead. However, it may improve the accuracy by

doubling the amount of captured interactions between the user and the challenges. In a real-life

authentication application, posing the user with two consecutive game challenges captures this

scenario.

7.3.4 Classification Results

TABLE 7.5: Lab-Based Study Results: Performance for the classifier for three different clas-
sification models. The first part shows the performance of the classifier using all the features.
The next part shows the results of using the features subset that provides the best average re-
sults. The last part shows the result of using the best features subset for each user. For each
of the models, we show the results of using a single challenge and merging of two challenges.

Highlighted cells emphasize the most interesting results.

FPR FNR Precision Recall F-Measure
Mean (Std)

Single 0.20 (0.12) 0.23 (0.14) 0.80 (0.10) 0.77 (0.14) 0.78 (0.10)All features Merge 0.15 (0.18) 0.16 (0.16) 0.87 (0.15) 0.84 (0.16) 0.84 (0.13)
Single 0.18 (0.13) 0.22 (0.14) 0.82 (0.11) 0.78 (0.14) 0.80 (0.10)Average overall best Merge 0.14 (0.15) 0.16 (0.14) 0.88 (0.12) 0.84 (0.14) 0.85 (0.10)
Single 0.11 (0.09) 0.08 (0.09) 0.90 (0.08) 0.92 (0.09) 0.91 (0.06)User specific Merge 0.04 (0.08) 0.05 (0.08) 0.97 (0.06) 0.95 (0.08) 0.95 (0.05)

Inter-Session Analysis: As mentioned in Section 7.2, we collected data from 98 MTurk work-

ers during the first day of our data collection experiment. Each of them completed 60 challenges.

We divided the collected data into 98 sets based on the users’ identities (ids). In order to build a

classifier to authenticate a user based on her gameplay biometrics, we defined two classes. The

first class contains the gameplay data from a given user (to be identified), and the other class

contains randomly selected gameplay data from other users.

Then, we divided the data into two sets, one for training and the other for testing. The first

40 gameplay instances of each participant and 40 gameplay instances of the randomly selected

136

set were used to train the classifier, while the other 20 are used for testing. We have tested our

three classification models in two settings to evaluate our system. In the first setting, we used

a single gameplay instance to authenticate the user while in the second setting, we used two

instances of the gameplay to authenticate the user. The merging is done by averaging all the

features from the two instances.

The results are shown in the first row (“Day 1”) of each block in Table 7.4. We see that

utilizing two gameplay instances is consistently better than using a single instance. Also, we

find that the user-specific model outperforms both the other models (using all the features and

using the features that provide the best average over all results). Thereby, the best results are

acquired by using the user-specific model and merging two challenge instances in which both

the false positive rate and false negative rate = 2%.

Intra-Session Analysis: Our other main goal was to check the accuracy of the classifier over

multiple sessions. As mentioned in Section 7.2, 62 MTurk workers participated in the study in

the second day and 36 participated in the study in the third day. For each of these users, we

used the data of the gameplay of the previous day(s) to train the classifier and then we tested the

classifier with the data collected in the next day(s).

The results are shown in the second and third rows (“Day 2” and “Day 3”) in each block

in Table 7.4. We find that the performance of the classifier degrades slightly compared to the

first day, inter-session analysis. Also, we still found that merging two instances provides better

results than using a single instance. The best results are again acquired by using the user-

specific model and merging 2 instances. For the second day, False Positive Rate = 0.05 and

False Negative Rate = 0.04 and for the third day False Positive Rate = 0.04 and False Negative

Rate = 0.03.

Lab-based Study Analysis: Our lab experiment involved 20 participants who were asked to

perform the study in controlled settings. All of the participants were asked to solve 60 challenges

using the same PC and same setting with minimal distraction. The results of the lab based study

are summarized in Table 7.5. The results indicate that merging two challenges and using the

user specific model can identify the user with high accuracy (0.05 False Negative Rate) and

reject the zero effort attackers with high accuracy (0.04 False Positive Rate). The results are in

line with the results acquired from the MTurk study, which show that the performance of the

137

TABLE 7.6: Shoulder-Surfing Impersonation Attack Results

FPR

All features Single 0.15
Merge 0.07

Average overall best Single 0.20
Merge 0.10

User specific Single 0.31
Merge 0.03

classifier was related to the ability of the classifier to distinguish users’ unique way of solving

the challenges rather than the platform and the settings they used while solving the challenges.

7.3.5 Summary of Results

The results obtained from the classification models show that Gametrics is a viable form of

behavioral biometrics. The results show that the classifier can identify the users and reject a zero

effort attacker with a high overall accuracy, especially when user-specific models are employed

and two game instances are merged together.

7.4 Impersonation Attack

In Section 7.3.4, we demonstrated that Gametrics is robust against zero-effort attacks, reflected

in the low False Positive Rate. In this section, we analyze the security of Gametrics against

deliberate impersonation attacks

We first considered shoulder-surfing impersonation attacks. During the lab-based study’s

data collection, a researcher in our group served the role of an attacker, and monitored, through

video recording, the participants while they were solving the challenges. For the impersonation

attack analysis, the attacker picked one of the participants who had the most similar features,

such as the time duration and mouse movement speed, as that of the attacker, and tried to mimic

that participant by solving the challenges in a similar way as the participant did for 60 times.

Making a selection in this fashion is representative of a powerful scenario where the attacker

targets victims who are easier to attack. If we can show that our Gametrics system can be

resistant to such a powerful attacker, it may be even more resistant to other weaker, more realistic

attackers who may not have the capability to make such selections.

The performance of this attack is enumerated in Table 7.6. For the user-specific model,

138

the attack success rate came out to be 0.31 when single instance of the challenges was used by

the classifier, and decreased drastically to 0.03 when merging of two instances is used by the

classifier. There are two main reasons for the increase in security when merging two instances.

First, the features that were used for the classification in the single instance model (i.e., the

features subset that yielded the highest classification accuracy in the benign and zero-effort

case) all related to the mouse movement characteristics, namely, the features used were the drag

speed, the move and the drag acceleration and the drag silence. However, in the merged instance

model, more features were used by the classifier that relate to both of the cognitive as well as the

mouse movement characteristics of the user, which made mimicking the victim much harder.

Second, the classifier performs better as using two challenges involve more interaction between

the user and the challenges, and make the mimicking task much harder for the attacker. In all

the other classification models, we found that the security provided by merging two challenges

was also much higher than its corespondent in using a single challenge. This suggests that our

Gametrics system can defeat powerful shoulder-surfing attacks with a high probability when

two game instances are merged and when user-specific model is used.

In practice, it is possible that the attacker resorts to an automated strategy, for example,

the use of robots, rather than manual shoulder-surfing (which may be a tedious attack anyway).

A robotic attack to compromise behavioral authentication schemes, specifically touchscreen

dynamics, has been proposed in [112]. Such robots can be built to mimic the user’s way of

interacting with the authentication construct based on the leaked authentication template. These

attacks have been shown to be able to significantly decrease the performance of touch-based

authentication systems. In contrast to tradition behavioral biometrics where the authentication

construct is static (i.e., PIN or pattern unlock), Gametrics involves randomization in the object

movements as well as solving a game-based CAPTCHA (DCG) [83]. Thereby, to build a robot

that is able to mimic the user’s interaction with the games, the robot is required to not only

repeat a previously recorded interaction between the user and the authentication construct, but

also to understand the underlying challenge as fast as a human user and then try to mimic the

user’s interaction with the challenge. Although it is shown in [83] that DCG CAPTCHA can

be attacked using a dictionary-based attack, if the server incorporates a large database of the

challenges and display the challenges randomly to the user, this task would become hard for

the bot as the dictionary search and the matching between each of the moving objects and the

139

stored answer objects in the database would significantly slow down this process. Furthermore,

matching each of the answer objects with the answer objects stored in the dictionary requires

some amount of time, for instance in [83] the authors proposed to click on the object to hold

it while performing the object matching. This would make it hard to mimic the user’s “pause

and drag” feature. Based on this analysis, we therefore conclude that even automated shoulder-

surfing attacks against Gametrics will not be effective.

The authors of [60] showed that most of the currently proposed behavrioral biometrics

schemes (including keystroke and touchscreen dynamics) are vulnerable to internal, malware-

based attacks. Malware installed on the device (authentication terminal/phone) can record the

user’s valid authentication template and replay it later to authenticate itself as the user (e.g, re-

play a “pattern unlock” biometrics [102]), or learn from multiple interactions between the user

and the device, and then reproduce the new data that has similar features to the user’s valid in-

teractions with the device in order to fool the authentication system (e.g., learn the user’s typing

pattern and then enter another text mimicking the user’s typing style). In contrast to other behav-

ioral biometrics schemes, the multi-round randomization embedded in the Gametrics challenges

as well as the requirement of solving the underlying game-based CAPTCHA will make Gamet-

rics robust against such attacks. That is, even having access to the authentication template or a

prior authentication session data will not be sufficient for the attacker to impersonate the user in

the Gametrics system.

To sum up, Gametrics promises to address many of the attacks that are known to be a

significant concern for traditional password-based authentication systems as well as existing

behavioral biometrics systems, including:

• User-side attacks, where the attacker observes the victim as she logs in, through manual

or automated mechanisms, to learn the user’s input (password in password system) or

learn the way the user provides the input (biometrics data from the current session in

behavioral biometrics systems). The attacker then attempts to replay the information in

an authentication session at a later point of time.

• Server-side attacks, where the attacker hacks into the web server databases to learn the

stored authentication token (e.g., hash of passwords in password systems and biometrics

template in behavioral biometrics systems). The attacker then uses this information to

140

run an offline dictionary attack against passwords, or reproduce the biometric data that

matches with the template.

• Client-side attacks, where the attacker hacks into the authentication terminal using which

the user is logging in and learn the user’s input. The attacker then attempts to replay the

information in an authentication session at a later point of time.

7.5 Mobile Study

The aim of the study is to check (1) the accuracy of verifying the users on touch screen devices,

(2) check the enhancement in the accuracy of verifying the user by fusing the cognitive abilities

of the user, touch screen data and the motion sensors on the phone and (3) compare the proposed

biometrics with pattern unlock biometrics [102](the most widely used method for point of entry

for Android devices). For the purpose of the study, we recruited 12 users and we asked them to

solve 25 DCG challenges, and perform 25 pattern unlock. The data collection was performed

over 5 days where at each day the user has to perform 5 challenges of each of the tasks. The

DCG challenges were randomly ordered to the participants. The static pattern used in our study

is the one shown in Figure 7.3 one of the most used pattern by Android users [113].

FIGURE 7.3: The Pattern Lock Used in Our Study

141

TABLE 7.7: Mobile-Based Study Results

FPR FNR Precision Recall F-measure
Mean (Std)

Pattern 0.05 (0.04) 0.02 (0.03) 0.95 (0.03) 0.98 (0.03) 0.96 (0.03)
DCG 0.07 (0.05) 0.03 (0.05) 0.93 (0.05) 0.97 (0.05) 0.95 (0.04)

All the collection are performed on one smartphone to eliminate the confounding factors

introduced by changing software and hardware environments. The smartphone was Samsung

S3 (720 × 1280 resolution) with a 4.8-inch screen, and 1.5 GHz dual-core processor. While the

users performed each of the tasks, we recorded their interactions with the device captured by

the touch screen interaction (x, y position of the touch, and touch size) and motion and position

sensors on the device (Accelerometer, Magnetic, Gyroscope, Magnetic, Orientation, Rotation

Vector, Gravity, Linear Acceleration).

For each of the used sensor, we calculated the square root of the sum of squares for that

instance’s components of all the instances in the sample that corresponds to a single challenge

solving. From the touch data, we calculated several features. For pattern lock, we calculate

the start, average and end touch sizes, time, distance, speed and acceleration of the swipe, and

number of generated time stamps. For DCG, we calculated the time, time of first touch, average,

standard deviation, min and max of times between a drop and next drag, start, end and average

touches sizes, drag speed and acceleration and difference between the drag distance and the

distance between the start and end points of the drag.

As a classification method we used Random Forest as we did for the Web based study. As

the data we had per user is less than its correspondent in the Web based study, we use 10-fold

cross validation rather than train test model. We ran our program for finding the best subset

of features per user that gives the best classification accuracy for both of the tested tasks. The

obtained results are summarized in Table 7.7. We found both methods can identify the user with

high accuracy. We argue the two methods are equally good in identifying the user, however

utilizing DCG rather than pattern would prevent against replay attack (i.e., the attack explained

in Section 6.4.3.2), robot attacks [112] and smudge attack.

142

7.6 Discussion

Efficiency: The proposed Gametrics system can fit well for many applications noting the short

time the user took to solve the challenges (around 7.5 seconds for a single challenge and 15

seconds for two challenges). Moreover, the enrollment phase consisted of 40 challenges (around

5 minutes on average) and provided a reasonably high identification accuracy. In short, building

the classifier model, updating the model with the new data over time (e.g., as the user logs in by

playing new game instances) and testing a new instance, all take a short amount of time.

User Experience: The Gametrics system also seems to offer high usability, as the average SUS

score came to be 86.11 (standard deviation = 14.12) in the lab-study and 73.95 (standard devi-

ation = 17.14) for the web study. SUS scores above 70 are indicative of good overall usability.

The score for the playfulness of the challenges came to be 3.36 (standard deviation = 1.40) and

the easiness of the challenges was 4.58 (standard deviation = 0.77). This suggests that the par-

ticipants found the game challenges to be very easy (although not necessarily playful). These

results overall bode well for the user experience of Gametrics.

Application Scenarios: Gametrics can be utilized as a point-of-entry mechanisms, such as to

authenticate the user to a web server.

Graphical passwords were founded on a psychological principle that the human brain has

superior memory for processing visual rather than textual information (see two excellent surveys

[33, 34]). They can be based on recognition, such as those involving Random Arts images [35],

objects (PassObjects) [36] and faces (PassFaces) [37], as well as on recall or cued recall, such

as those involving drawings [38, 39] and selection of points on an image (PassPoints) [40].

Gametrics can be integrated with graphical passwords as a second factor authentication, which

would enhance the security of graphical passwords against shoulder surfing and spoofing attacks.

Further work is needed to realize such two-factor designs.

Gametrics can be also used as a fall-back authentication mechanism. In such use case,

multiple instances of the challenges can be presented to the user, since fall-back does not happen

frequently. However, in order to build an up-to-date classification model for the user, the system

may need to ask the user to solve challenges periodically. Future investigation is necessary to

study Gametrics in the context of such fall-back authentication applications.

143

Given the popularity of touchscreen games, Gametrics would fit well on touchscreen de-

vices. Here, Gametrics can utilize the various sensors, such as accelerometer and gyroscope,

available on these devices to measure the users’ implicit interactions with these devices, which

when combined with other explicit touchscreen interaction features may enhance the overall

classification accuracy and resistance to attacks. In our future work, we will study the effective-

ness of Gametrics for authenticating the users on such devices.

Recently, Google has announced a plan to eliminate passwords by introducing a Trust API

that uses a fusion of multiple biometrics indicators to verify the user’s identity, such as face

recognition and voice patterns, and other behavioral biometrics such as the gait biometrics [114].

In the future, we hope that Gametrics can be added to the Trust API by asking the user to play a

game challenge on a periodic basis.

7.7 Conclusion

In this chapter, we introduced Gametrics, an interactive biometrics system based on the game-

play pattern of the users embedded in very simple game constructs. We showed that incor-

porating the mouse dynamics with the cognitive mechanisms can identify the users with high

accuracy within a short period of time. Moreover, Gametrics provides security against multiple

forms of vulnerabilities ranging from zero-effort attacks to expert attacks who try to mimic the

user, even those who hack authentication templates and employ automated mechanisms such as

robots and malware. The time taken for enrollment and authentication are both reasonably short.

The system seems to provide good user experience as reflected in the participants’ responses to

the survey.

144

CHAPTER 8

CONCLUSIONS AND FUTURE WORKS

In this dissertation work, we have investigated the impact of using interactivity in the context of

human-machine and human-human authentication.

8.1 Human-Machine Authentication

First, we designed and developed simple interactive CAPTCHAs (S-DCG) and evaluated their

security and usability. We showed through our study that such simple interactive constructs

are highly usable, even on mobile devices where most deployed CAPTCHAs suffer from low

usability. Moreover, we showed the dynamic and interactive nature of S-DCG provides security

against relay attacks. However, we also demonstrated that S-DCG is insecure against dictionary-

based automated attacks.

Then, we explored various variants aiming to secure S-DCGs against automated attacks.

First, we utilized various countermeasures in order to prevent foreground objects extraction.

Our final DCG design was built on the emerging image notion (EI-DCG). Although EI-DCG is

shown to be secure against automated attacks based on image processing techniques, and offers

high security against human-solver relay attack, it was found that EI-DCG suffers from low

usability due to the presence of the emergence effect.

Finally, to address the usability limitation of EI-DCG, we introduced Mix DCG. Mix DCG

is designed by carefully combining DCG, image semantic CAPTCHA and image orientation

CAPTCHA. Mix DCG has been shown to be secure against automated attacks and relay attacks,

and offers a high level of usability. Mix DCG achieves the various CAPTCHA design goals and

is resistant against the attacks underlying the standard CAPTCHA threat model.

The security analysis for the studied DCGs against human-solver relay attack showed that

we were able to detect the relay attack with high accuracies. Although DCGs cannot prevent

rely attack 100% of the time, it delays such attack and makes it expressive for the attacker.

145

The future work in this line of research may look at various ways for speeding up the process

of building Mix DCG such as utilizing the line drawing of 3D objects as introduced in [115].

One of the limitations of the developed mechanisms is that they cannot be solved by blind

and impaired users. A backup mechanism, such as audio CAPTCHA, would be needed to

allow such users to access the system. However, this might become the Achilles’ heel of the

authentication system as the attacker can easily relay such CAPTCHAs to remote human solver

and thereby eliminate our ability to detect such the relay attack. Dealing with this problem is

out of scope for this thesis.

Another limitation of our work is that we did not collect the usability data from real systems,

but we conducted usability studies where we recruited MTurk workers and volunteers from our

university. Such types of usability studies can be affected by Hawthorne effect which may make

the results biased. However, we tried our best to minimize such effects by not observing closely

the participants while they are performing the tasks, notifying the participants that the collected

data are anonymized and asking them to provide honest responses to help us to improve the

system.

8.2 Human-Human Authentication

In the context of Human-Human authentication, we introduced Gametrics. Gametrics identifies

the user based on her unique way of interaction with simple DCGs captured by mouse dynamics

and cognitive abilities of the user. We showed that incorporating interactivity in the user authen-

tication helps in achieving our design goals and prevents the attacks underlying a strong threat

model of user authentication. First, Gametrics offers good usability as it can identify the user

with high accuracy and within a short period of time. Moreover, the DCG constructs utilized in

our study were well perceived by the users shown in the high SUS scores. Second, we showed

that Gametrics are hard to be attacked by zero-effort attackers and by expert attackers.

Finally and perhaps most importantly, we showed that the requirement of multiple inter-

action between the DCG and the user, and the dynamic nature of the DCGs make attacking

Gametrics by automated means, such as SMASheD, hard. As such an attack would require solv-

ing the underlying DCG CAPTCHA as well as mimicking the user’s way of interaction with the

game.

146

We introduced multiple application in which Gametrics can be utilized, ranging from point

of entry to a method of fall-back authentication.

Gametrics has some limitations, which can be explored in future work. Gametrics is similar

to any other behavioral biometrics in that, we believe, it will suffer from a degradation in the ac-

curacy of user identification when the user’s behavior is undergoing a significant variation, such

as changing emotions [116], falling sick or getting injured. The effect of behavioral changes on

the performance of Gametrics should be subject to future work.

Future work may also need to be conducted to test the accuracy of the Gametrics classifi-

cation models when switching devices or hardware (e.g., different kinds of mouse or screens).

The results obtained from our study are promising, however, we believe that further work

is needed in order to improve the overall accuracy of user identification. One avenue in this

direction is to add a little more complexity to the game challenges in order to increase the level

of interaction between the challenge and the user (e.g., similar to Mix DCG games), and thereby

improving the overall usability (False Negative Rate) and security (False Positive Rate) of the

interactive authentication.

147

LIST OF REFERENCES

[1] Rich Gossweiler, Maryam Kamvar, and Shumeet Baluja. What’s up captcha?: a captcha

based on image orientation. In Proceedings of the 18th international conference on World

wide web, pages 841–850. ACM, 2009.

[2] Shardul Vikram, Yinan Fan, and Guofei Gu. Semage: a new image-based two-factor

captcha. In Proceedings of the 27th Annual Computer Security Applications Conference,

pages 237–246. ACM, 2011.

[3] Carlos Castillo, Debora Donato, Luca Becchetti, Paolo Boldi, Stefano Leonardi, Mas-

simo Santini, and Sebastiano Vigna. A reference collection for web spam. ACM Special

Interest Group on Information Retrieval (SIGIR) Forum, 40(2):11–24, 2006.

[4] Jelena Mirkovic, Sven Dietrich, David Dittrich, and Peter Reiher. Internet Denial of

Service: Attack and Defense Mechanisms (Radia Perlman Computer Networking and

Security). Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004. ISBN 0131475738.

[5] Benny Pinkas and Tomas Sander. Securing passwords against dictionary attacks. In

CCS ’02: Proceedings of the 9th ACM conference on Computer and communications

security, pages 161–170, New York, NY, USA, 2002. ACM. ISBN 1-58113-612-9. doi:

http://doi.acm.org/10.1145/586110.586133.

[6] L von Ahn, M Blum, NJ Hopper, and J Langford. The captcha web page, 2000.

[7] Yan, Jeff and El Ahmad, Ahmad Salah. Usability of CAPTCHAs Or usability issues in

CAPTCHA design. In Symposium On Usable Privacy and Security, 2008.

[8] Elie Bursztein, Steven Bethard, Celine Fabry, John Mitchell, and Dan Jurafsky. How

Good Are Humans at Solving CAPTCHAs? A Large Scale Evaluation. SP ’10, pages

399–413, 2010.

[9] Chow, Richard and Golle, Philippe and Jakobsson, Markus and Wang, Lusha and Wang,

XiaoFeng. Making CAPTCHAs Clickable. In Workshop on Mobile Computing Systems

and Applications, 2008.

148

[10] Cory Doctorow. Solving and Creating CAPTCHAs with Free Porn. In Boing Boing,

Available at: http://www.boingboing.net/2004/01/27/solving_and_

creating.html, 2004.

[11] Fabian Monrose and Aviel Rubin. Authentication via keystroke dynamics. In Proceedings

of the 4th ACM conference on Computer and communications security, pages 48–56.

ACM, 1997.

[12] Francesco Bergadano, Daniele Gunetti, and Claudia Picardi. User authentication through

keystroke dynamics. ACM Transactions on Information and System Security (TISSEC),

5(4):367–397, 2002.

[13] Y Xu, G Reynaga, S Chiasson, JF Frahm, F Monrose, and PC Van Oorschot. Security

and usability challenges of moving-object captchas: decoding codewords in motion. In

USENIX Security, 2012.

[14] Yi Xu, Gerardo Reynaga, Sonia Chiasson, J Frahm, Fabian Monrose, and Paul

Van Oorschot. Security analysis and related usability of motion-based captchas: Decod-

ing codewords in motion. Transactions On Dependable And Secure Computing, 2013.

[15] José Marı́a Gómez Hidalgo and Gonzalo Alvarez. Captchas: An artificial intelligence

application to web security. Advances in Computers, 83, 2011.

[16] Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel Blum.

recaptcha: Human-based character recognition via web security measures. Science, 321

(5895), 2008.

[17] Monica Chew and Henry S Baird. Baffletext: A human interactive proof. In Electronic

Imaging, 2003.

[18] Amalia Rusu and Venu Govindaraju. Handwritten captcha: Using the difference in the

abilities of humans and machines in reading handwritten words. In Frontiers in Hand-

writing Recognition, 2004.

[19] Mohammad Shirali-Shahreza and Sajad Shirali-Shahreza. Collage captcha. In Signal

Processing and Its Applications, 2007.

[20] Henry S Baird and Jon L Bentley. Implicit captchas. In Electronic Imaging, 2005.

149

http://www.boingboing.net/2004/01/27/solving_and_creating.html
http://www.boingboing.net/2004/01/27/solving_and_creating.html

[21] Jeremy Elson and John R. Douceur and Jon Howell and Jared Saul. Asirra: A CAPTCHA

that Exploits Interest-Aligned Manual Image Categorization. In Conference on Computer

and Communications Security, 2007.

[22] Luis Von Ahn and Laura Dabbish. Labeling images with a computer game. In SIGCHI

conference on Human factors in computing systems, 2004.

[23] Kurt Alfred Kluever and Richard Zanibbi. Balancing usability and security in a video

captcha. In Symposium on Usable Privacy and Security, 2009.

[24] John Nicholas Gross. Captcha using challenges optimized for distinguishing between

humans and machines, 2009. US Patent App. 12/484,800.

[25] Graig Sauer and Harry Hochheiser and Jinjuan Feng and Jonathan Lazar. Towards a

Universally Usable CAPTCHA. In Symposium On Usable Privacy and Security, 2008.

[26] Marti Motoyama, Kirill Levchenko, Chris Kanich, Damon McCoy, Geoffrey M. Voelker,

and Stefan Savage. Re: Captchas-understanding captcha-solving services in an economic

context. In USENIX Security, pages 435–462, 2010.

[27] Jeff Yan and Ahmad Salah El Ahmad. A Low-cost Attack on a Microsoft CAPTCHA. In

Conference on Computer and Communications Security, 2008.

[28] K. Kluever. Breaking the PayPal.com CAPTCHA. Available at: http://www.

kloover.com/2008/05/12/breaking-the-paypalcom-captcha/, 2008.

[29] G. Keizer. Spammers’ Bot Cracks Microsoft’s CAPTCHA. In Computer World, Available

at: http://www.computerworld.com/s/article/9061558/Spammers_

bot_cracks_Microsoft_s_CAPTCHA_, 2008.

[30] Robert Morris and Ken Thompson. Password security: a case history. Commun. ACM,

22(11):594–597, 1979.

[31] Jeff Yan, Alan Blackwell, Ross Anderson, and Alasdair Grant. Password memorability

and security: Empirical results. IEEE Security and Privacy, 2(5):25–31, 2004.

[32] Anne Adams and Martina Angela Sasse. Users are not the enemy. Commun. ACM, 42

(12):40–46, 1999.

[33] Xiaoyuan Suo, Ying Zhu, and G. Scott Owen. Graphical passwords: A survey. In ACSAC,

2005.

150

http://www.kloover.com/2008/05/12/breaking-the-paypalcom-captcha/
http://www.kloover.com/2008/05/12/breaking-the-paypalcom-captcha/
http://www.computerworld.com/s/article/9061558/Spammers_bot_cracks_Microsoft_s_CAPTCHA_
http://www.computerworld.com/s/article/9061558/Spammers_bot_cracks_Microsoft_s_CAPTCHA_

[34] Robert Biddle, Sonia Chiasson, and Paul Van Oorschot. Graphical passwords: Learning

from the first generation. In Technical Report TR-09-09, School of Computer Science,

Carleton University, 2009.

[35] Adrian Perrig and Dawn Song. Hash visualization: a new technique to improve real-world

security. In CrypTEC, 1999.

[36] Susan Wiedenbeck, Jim Waters, Leonardo Sobrado, and Jean-Camille Birget. Design and

Evaluation of a Shoulder-surfing Resistant Graphical Password Scheme. In Proceedings

of the working conference on Advanced visual interfaces (AVI), 2006.

[37] The Science Behind Passfaces. http://www.realuser.com/. Last access, December 2008.

[38] Ian Jermyn, Alain Mayer, Fabian Monrose, Michael K. Reiter, and Aviel D. Rubin. The

design and analysis of graphical passwords. In SSYM’99: Proceedings of the 8th confer-

ence on USENIX Security Symposium, 1999.

[39] Paul Dunphy and Jeff Yan. Do background images improve ”draw a secret” graphical

passwords? In CCS ’07: Proceedings of the 14th ACM conference on Computer and

communications security, pages 36–47. ACM, 2007.

[40] Susan Wiedenbeck, Jim Waters, Jean-Camille Birget, Alex Brodskiy, and Nasir D.

Memon. PassPoints: Design and Longitudinal Evaluation of a Graphical Password Sys-

tem. In International Journal of Human Computer Studies, 2005.

[41] Sacha Brostoff and M. Angela Sasse. Are passfaces more usable than passwords? a field

trial investigation. In HCI 2000: Proceedings of People and Computers XIV - Usability

or Else, pages 405–424, 2000.

[42] Fred Davis. Perceived usefulness, perceived ease of use, and user acceptance of informa-

tion technology. MIS Quarterly, 13:319–340, 1989.

[43] P. C. van Oorschot and Julie Thorpe. On predictive models and user-drawn graphical

passwords. ACM Trans. Inf. Syst. Secur., 10(4):1–33, 2008.

[44] Krzysztof Golofit. Click passwords under investigation. In ESORICS ’07: Proceedings of

the 12th European symposium on Research In Computer Security, pages 343–358, 2007.

[45] Ahmet Emir Dirik, Nasir Memon, and Jean-Camille Birget. Modeling user choice in the

passpoints graphical password scheme. In SOUPS ’07: Proceedings of the 3rd symposium

on Usable privacy and security, pages 20–28, 2007.

151

[46] Julie Thorpe and P. C. van Oorschot. Human-seeded attacks and exploiting hot-spots in

graphical passwords. In SS’07: Proceedings of 16th USENIX Security Symposium on

USENIX Security Symposium, pages 1–16, 2007.

[47] Amirali Salehi-Abari, Julie Thorpe, and P. C. van Oorschot. On purely automated attacks

and click-based graphical passwords. In ACSAC ’08: Proceedings of the 2008 Annual

Computer Security Applications Conference, pages 111–120, 2008.

[48] Umut Uludag, and Anil K. Jain. Attacks on Biometric Systems: A Case Study in Fin-

gerprints. In Conference on Security, Steganography, and Watermarking of Multimedia

Contents, 2004.

[49] Tsutomu Matsumoto, Hiroyuki Matsumoto, Koji Yamada, and Satoshi Hoshino. Impact

of Artificial Gummy Fingers on Fingerprint Systems. In Conference on Optical Security

and Counterfeit Deterrence Techniques, 2002.

[50] Yunhong Wang, Tieniu Tan, and Anil K. Jain. Combining Face and Iris Biometrics for

Identity Verification. In Audio- and Video-Based Biometric Person Authentication Con-

ference, 2003.

[51] Andrew Patrick. Usability and Acceptability of Biometric Security Systems. In Financial

Cryptography, Available at: http://www.andrewpatrick.ca/biometrics/

NATO-BiometricsAbstract.pdf, 2004.

[52] E. Eugene Schultz, Robert W. Proctor, Mei-Ching Lien and Gavriel Salvendy. Usability

and Security: An Appraisal of Usability Issues in Information Security Methods. Com-

puters and Security, 20(7), 2001.

[53] Barry Marshall. Does Fingerprint ID at Entry Portals Spread Swine Flu? Avail-

able at http://barryjmarshall.blogspot.com/2009/06/does-

fingerprint-id-at-entry-portals.html.

[54] H. Proenca. Towards Non-Cooperative Biometric Iris Recognition. Available at: http:

//www.di.ubi.pt/˜hugomcp/doc/TesePhD_HugoMCP.pdf, 2007.

[55] Kuan-Ta Chen and Li-Wen Hong. User identification based on game-play activity pat-

terns. In Proceedings of the 6th ACM SIGCOMM workshop on Network and system

support for games, pages 7–12. ACM, 2007.

152

http://www.andrewpatrick.ca/biometrics/NATO-BiometricsAbstract.pdf
http://www.andrewpatrick.ca/biometrics/NATO-BiometricsAbstract.pdf
http://barryjmarshall.blogspot.com/2009/06/does-fingerprint-id-at-entry-portals.html
http://barryjmarshall.blogspot.com/2009/06/does-fingerprint-id-at-entry-portals.html
http://www.di.ubi.pt/~hugomcp/doc/TesePhD_HugoMCP.pdf
http://www.di.ubi.pt/~hugomcp/doc/TesePhD_HugoMCP.pdf

[56] Arik Messerman, Tarik Mustafic, Seyit Ahmet Camtepe, and Sahin Albayrak. Contin-

uous and non-intrusive identity verification in real-time environments based on free-text

keystroke dynamics. In Biometrics (IJCB), 2011 International Joint Conference on, pages

1–8. IEEE, 2011.

[57] Yu Zhong, Yan Deng, and Anubhav K Jain. Keystroke dynamics for user authentication.

In Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer

Society Conference on, pages 117–123. IEEE, 2012.

[58] Nan Zheng, Aaron Paloski, and Haining Wang. An efficient user verification system

via mouse movements. In Proceedings of the 18th ACM conference on Computer and

communications security, pages 139–150. ACM, 2011.

[59] Asadullah Al Galib and Reihaneh Safavi-Naini. User authentication using human cog-

nitive abilities. In Financial Cryptography and Data Security, pages 254–271. Springer,

2015.

[60] Manar Mohamed, Babins Shrestha, and Nitesh Saxena. Smashed: Sniffing and manip-

ulating android sensor data. In Proceedings of the Sixth ACM Conference on Data and

Application Security and Privacy, pages 152–159. ACM, 2016.

[61] Are You a Human. https://www.areyouahuman.com/.

[62] Gerardo Reynaga. THE USABILITY OF CAPTCHAS ON MOBILE DEVICES. PhD

thesis, CARLETON UNIVERSITY Ottawa, 2015.

[63] Amayeta. Swf encrypt: Encrypt, obfuscate & protect your flash swf action-

script & resources from decompilers. http://www.amayeta.com/software/

swfencrypt/.

[64] Deian Stefan and Danfeng Yao. Keystroke-dynamics authentication against synthetic

forgeries. In CollaborateCom, 2010.

[65] John Brooke. SUS: a “quick and dirty” usability scale. In P. W. Jordan, B. Thomas, B. A.

Weerdmeester, and A. L. McClelland, editors, Usability Evaluation in Industry. Taylor

and Francis, London, 1996.

[66] James Lewis and Jeff Sauro. The factor structure of the system usability scale. In Human

Computer Interaction International Conference (HCII), 2009.

153

https://www.areyouahuman.com/
http://www.amayeta.com/software/swfencrypt/
http://www.amayeta.com/software/swfencrypt/

[67] Bin B Zhu, Jeff Yan, Qiujie Li, Chao Yang, Jia Liu, Ning Xu, Meng Yi, and Kaiwei

Cai. Attacks and design of image recognition captchas. In Proceedings of the 17th ACM

conference on Computer and communications security, pages 187–200. ACM, 2010.

[68] Cracking the areyouahuman captcha. http://spamtech.co.uk/software/

bots/cracking-the-areyouhuman-captcha/.

[69] Shu ching Chen, Mei ling Shyu, Chengcui Zhang, and R. L. Kashyap. Identifying over-

lapped objects for video indexing and modeling in multimedia database systems. In Mul-

timedia Database Systems, International Journal on Artificial Intelligence Tools, 2001.

[70] Slawo Wesolkowski. Stochastic nested aggregation for images and random fields. In

Ph.D. Thesis, University of Waterloo, 2007.

[71] Marti Motoyama, Kirill Levchenko, Chris Kanich, Damon McCoy, Geoffrey M. Voelker,

and Stefan Savage. Re: Captchas-understanding captcha-solving services in an economic

context. In USENIX Security Symposium, 2010.

[72] Nucaptcha. http://www.nucaptcha.com.

[73] Robert Kosinski. A literature review on reaction time. Available at: http://

biology.clemson.edu/bpc/bp/Lab/110/reaction.htm, 2012.

[74] Cynthia Taylor and Joseph Pasquale. Improving video performance in vnc under high

latency conditions. In Collaborative Technologies & Systems, 2010.

[75] Realvnc. http://www.realvnc.com/.

[76] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2(3), 2011.

[77] Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for finding

best matches in logarithmic expected time. ACM Transactions on Mathematical Software

(TOMS), 3(3), 1977.

[78] Niloy J. Mitra, Hung-Kuo Chu, Tong-Yee Lee, Lior Wolf, Hezy Yeshurun, and Daniel

Cohen-Or. Emerging images. ACM Transactions on Graphics, 28(5), 2009. to appear.

[79] John K Tsotsos. On the relative complexity of active vs. passive visual search. Interna-

tional journal of computer vision, 1992.

154

http://spamtech.co.uk/software/bots/cracking-the-areyouhuman-captcha/
http://spamtech.co.uk/software/bots/cracking-the-areyouhuman-captcha/
http://www.nucaptcha.com
http://biology.clemson.edu/bpc/bp/Lab/110/reaction.htm
http://biology.clemson.edu/bpc/bp/Lab/110/reaction.htm
http://www.realvnc.com/

[80] John Brooke. Sus-a quick and dirty usability scale. Usability evaluation in industry, 189:

194, 1996.

[81] Aaron Bangor, Philip Kortum, and James Miller. Determining what individual sus scores

mean: Adding an adjective rating scale. Journal of usability studies, 2009.

[82] Akamai. Akamai’s state of the internet: Q4 2014 report. http://www.

stateoftheinternet.com/resources-connectivity-2014-q4-

state-of-the-internet-report.html.

[83] Manar Mohamed, Niharika Sachdeva, Michael Georgescu, Song Gao, Nitesh Saxena,

Chengcui Zhang, Ponnurangam Kumaraguru, Paul C van Oorschot, and Wei-Bang Chen.

A three-way investigation of a game-captcha: automated attacks, relay attacks and us-

ability. In Proceedings of the 9th ACM symposium on Information, computer and com-

munications security, pages 195–206. ACM, 2014.

[84] Jeff Sauro. Measuring usability with the system usability scale (sus). http://www.

measuringu.com/sus.php. Accessed: 2015-10-12.

[85] Mauro Conti, Claudio Guarisco, and Riccardo Spolaor. Captchastar! a novel captcha

based on interactive shape discovery. arXiv preprint arXiv:1503.00561, 2015.

[86] Elie Bursztein, Steven Bethard, Celine Fabry, John C Mitchell, and Dan Jurafsky. How

good are humans at solving captchas? a large scale evaluation. In 2010 IEEE Symposium

on Security and Privacy, pages 399–413. IEEE, 2010.

[87] Android. Android security. https://goo.gl/ihIwi3.

[88] Edward Kim. No root screenshot it. https://play.google.com/store/apps/

details?id=com.edwardkim.android.screenshotitfullnoroot,

2013.

[89] ClockworkMod. Helium. https://play.google.com/store/apps/

details?id=com.koushikdutta.backup.license, 2013.

[90] ClockworkMod. Clockworkmod tether (no root). https://goo.gl/qg2e80.

[91] strAI. Frep - finger replayer. https://play.google.com/store/apps/

details?id=com.x0.strai.frep&hl=en, 2015.

155

http://www.stateoftheinternet.com/resources-connectivity-2014-q4-state-of-the-internet-report.html
http://www.stateoftheinternet.com/resources-connectivity-2014-q4-state-of-the-internet-report.html
http://www.stateoftheinternet.com/resources-connectivity-2014-q4-state-of-the-internet-report.html
http://www.measuringu.com/sus.php
http://www.measuringu.com/sus.php
https://goo.gl/ihIwi3
https://play.google.com/store/apps/details?id=com.edwardkim.android.screenshotitfullnoroot
https://play.google.com/store/apps/details?id=com.edwardkim.android.screenshotitfullnoroot
https://play.google.com/store/apps/details?id=com.koushikdutta.backup.license
https://play.google.com/store/apps/details?id=com.koushikdutta.backup.license
https://goo.gl/qg2e80
https://play.google.com/store/apps/details?id=com.x0.strai.frep&hl=en
https://play.google.com/store/apps/details?id=com.x0.strai.frep&hl=en

[92] Chia-Chi Lin, Hongyang Li, Xiaoyong Zhou, and X Wang. Screenmilker: How to milk

your android screen for secrets. In Network and Distributed System Security Symposium,

2014.

[93] ProHiro.com. Hiromacro auto-touch macro. https://goo.gl/1T5pnx.

[94] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. Reran: Timing-and

touch-sensitive record and replay for android. In Software Engineering (ICSE), 2013.

[95] [David Rogers. Mobile Security: A Guide for Users. lulu.com, 2013. ISBN 978-1-291-

53309-5.

[96] Sungjae Hwang, Sungho Lee, Yongdae Kim, and Sukyoung Ryu. Bittersweet adb: At-

tacks and defenses. In ACM Symposium on Information, Computer and Communications

Security, 2015.

[97] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song. Touchalytics: On the applica-

bility of touchscreen input as a behavioral biometric for continuous authentication. IEEE

Transactions on Information Forensics and Security, 2013.

[98] Adam J Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M Smith. Practicality of ac-

celerometer side channels on smartphones. In Computer Security Applications Confer-

ence, 2012.

[99] Liang Cai and Hao Chen. On the practicality of motion based keystroke inference attack.

Springer, 2012.

[100] Zhi Xu, Kun Bai, and Sencun Zhu. Taplogger: Inferring user inputs on smartphone

touchscreens using on-board motion sensors. In ACM conference on Security and Privacy

in Wireless and Mobile Networks, 2012.

[101] Laurent Simon and Ross Anderson. Pin skimmer: Inferring pins through the camera

and microphone. In ACM workshop on Security and privacy in smartphones & mobile

devices, 2013.

[102] Alexander De Luca, Alina Hang, Frederik Brudy, Christian Lindner, and Heinrich Huss-

mann. Touch me once and i know it’s you!: Implicit authentication based on touch screen

patterns. In SIGCHI Conference on Human Factors in Computing Systems, CHI, 2012.

156

https://goo.gl/1T5pnx

[103] Jun-Ki Min, Afsaneh Doryab, Jason Wiese, Shahriyar Amini, John Zimmerman, and

Jason I Hong. Toss’n’turn: smartphone as sleep and sleep quality detector. In ACM

conference on Human factors in computing systems, 2014.

[104] Jun Yang, Emmanuel Munguia-Tapia, and Simon Gibbs. Efficient in-pocket detection

with mobile phones. In ACM conference on Pervasive and ubiquitous computing adjunct

publication, 2013.

[105] P Campisi, E Maiorana, M Lo Bosco, and A Neri. User authentication using keystroke

dynamics for cellular phones. IET Signal Processing, 3(4), 2009.

[106] Abdul Serwadda and Vir V. Phoha. When kids’ toys breach mobile phone security. In

Conf. on Computer & Communications Security, 2013.

[107] Lingjun Li, Xinxin Zhao, and Guoliang Xue. Unobservable re-authentication for smart-

phones. In Network and Distributed System Security Symposium (NDSS), 2013.

[108] Muhammad Shahzad, Alex X. Liu, and Arjmand Samuel. Secure unlocking of mobile

touch screen devices by simple gestures: You can see it but you can not do it. In Mobile

Computing & Networking, 2013.

[109] Mauro Conti, Irina Zachia-Zlatea, and Bruno Crispo. Mind how you answer me!: trans-

parently authenticating the user of a smartphone when answering or placing a call. In

ACM Symposium on Information, Computer and Communications Security, 2011.

[110] Hugo Gascon, Sebastian Uellenbeck, Christopher Wolf, and Konrad Rieck. Continuous

authentication on mobile devices by analysis of typing motion behavior. In Sicherheit,

2014.

[111] Roy A Maxion and Kevin S Killourhy. Keystroke biometrics with number-pad input. In

Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on,

pages 201–210. IEEE, 2010.

[112] Abdul Serwadda and Vir V Phoha. When kids’ toys breach mobile phone security. In Pro-

ceedings of the 2013 ACM SIGSAC conference on Computer & communications security,

pages 599–610. ACM, 2013.

[113] Sanket Misal. Common lock patterns of mobiles phones screen lock, 2013. "http:

//mytrickytricks.blogspot.com/2013/07/commonlockpattern.

html".

157

"http://mytrickytricks.blogspot.com/2013/07/commonlockpattern.html"
"http://mytrickytricks.blogspot.com/2013/07/commonlockpattern.html"
"http://mytrickytricks.blogspot.com/2013/07/commonlockpattern.html"

[114] Alex Hern. Google aims to kill passwords by the end of this year. https:

//www.theguardian.com/technology/2016/may/24/google-

passwords-android.

[115] Steven A Ross, J Alex Halderman, and Adam Finkelstein. Sketcha: a captcha based on

line drawings of 3d models. In Proceedings of the 19th international conference on World

wide web, pages 821–830. ACM, 2010.

[116] Clayton Epp, Michael Lippold, and Regan L Mandryk. Identifying emotional states using

keystroke dynamics. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, pages 715–724. ACM, 2011.

158

https://www.theguardian.com/technology/2016/may/24/google-passwords-android
https://www.theguardian.com/technology/2016/may/24/google-passwords-android
https://www.theguardian.com/technology/2016/may/24/google-passwords-android

APPENDIX: IRB Approval

159

 Page 1 of 4

 IRB Exemption Review Application

 To complete the form, click the underlined areas and type or paste in your text; double-click
checkboxes to check/uncheck. For more tips, see www.uab.edu/irb/forms.

 Mail or deliver all materials to AB 470, 701 20th Street South, Birmingham, AL 35294-0104.

Indicate the type of review:

 New Continuing Review Final Report

1. Project Identification

a. Title of Project: Usable Security via Extrinsic Motivation: An Investigation into Rewards, Games

and Game Elements

b. Principal Investigator (PI):Nitesh Saxena, PhD PI's BlazerID or E-Mail Address:saxena@uab.edu
If the PI is a student, fellow, or resident, provide the name, number, and email of the faculty

advisor or course instructor as contact information and obtain the person's signature.

Advisor/Instructor's Name: Telephone Number: BlazerID:
Advisor/Instructor's Signature:

c. PI's Address (on-campus or home)

On-Campus: Department: Computer and Information Sciences Building: Campbell Hall Room:115

UAB Zip:1170

Phone:205 934-2213 FAX:

-OR-

Home Address: Street: City: State: ZIP:

and Campus Affiliation:
d. List all staff who will be involved with the research, their degree(s) and job title, and any additional

qualifications. Include individuals who will be involved in the consent process. Repeat the table

below for each individual.

Note. For studies involving investigational drugs, include all investigators who will be listed on FDA

Form 1572 and attach a copy, if applicable. Send the IRB a copy of Form 1572 anytime you update

the form with the FDA.

Role: Co- -OR- Other
 Full Name: Manar Mohamed

Primary UAB Dept.:

(Employer if not UAB)
Computer and Information Sciences

Degree(s) / Job Title: Graduate Student Researcher

Role: Co- -OR- Other

 Full Name:
Primary UAB Dept.:

(Employer if not UAB)

Degree(s) / Job Title:
Additional Qualifications

pertinent to the study:

e. Is this activity funded in any way? Yes No

 If yes, attach 1 copy of completed application and complete (i)-(iv):

 i. Grant or Contract Title: Usable Security via Extrinsic Motivation: An Investigation into Rewards,

Games and Game Elements (pending)

 ii. PI of Grant or Contract: Nitesh Saxena, PhD

 iii. OGCA Tracking Number: OSP Link Number: 425911

 iv. Funding Source

Gov’t Agency or Agencies: NSF

160

 Page 2 of 4

 UAB Departmental Funds:

 Other:

2. Mark the category or categories below that describe the proposed research:

1. Research conducted in established or commonly accepted educational settings, involving normal

educational practices, such as (i) research on regular and special education instructional strategies,

or (ii) research on the effectiveness of or the comparison among instructional techniques, curricula,

or classroom management methods. The research is not FDA regulated and does not involve

prisoners as participants.

2. Research involving the use of educational tests (cognitive, diagnostic, aptitude, achievement),

survey procedures, interview procedures or observation of public behavior, unless: (i) Information

obtained is recorded in such a manner that human subjects can be identified, directly or through

identifiers linked to the subjects; and (ii) any disclosure of the human subjects' responses outside

the research could reasonably place the subjects at risk of criminal or civil liability or be damaging

to the subjects' financial standing, employability, or reputation. Attach questionnaire(s) and/or

surveys. If the research involves children as participants, the procedures are limited to educational

tests and observation of public behavior where the investigators do not participate in the activities

being observed. The research is not FDA regulated and does not involve prisoners as participants.

3. Research involving the use of educational tests (cognitive, diagnostic, aptitude, achievement),

survey procedures, interview procedures, or observation of public behavior that is not exempt

under category (2), if: (i) the human subjects are elected or appointed public officials or candidates

for public office; or (ii) federal statute(s) require(s) without exception that the confidentiality of the

personally identifiable information will be maintained throughout the research and thereafter.

Attach to this application a copy of any questionnaire or survey to be used. The research is not FDA

regulated and does not involve prisoners as participants.

4. Research involving the collection or study of existing data, documents, records, pathological

specimens, or diagnostic specimens, if these sources are publicly available or if the information is

recorded by the Investigator in such a manner that subjects cannot be identified, directly or

through identifiers linked to the subjects. Attach a specimen release form if applicable. (Specimens

must be preexisting.) The research is not FDA regulated and does not involve prisoners as

participants.

5. Research and demonstration projects which are conducted by or subject to the approval of

department or agency heads, and which are designed to study, evaluate, or otherwise examine: (i)

public benefit or service programs; (ii) procedures for obtaining benefits or services under those

programs;(iii) possible changes in or alternatives to those programs or procedures; or (iv) possible

changes in methods or levels of payment for benefits or services under those programs. The

protocol will be conducted pursuant to specific federal statutory authority; has no statutory

requirement for IRB review; does not involve significant physical invasions or intrusions upon the

privacy interests of the participant; has authorization or concurrent by the funding agency and

does not involve prisoners as participants.

6. Taste and food quality evaluation and consumer acceptance studies, (i) if wholesome foods

without additives are consumed or (ii) if a food is consumed that contains a food ingredient at or

below the level and for a use found to be safe, or agricultural chemical or environmental

contaminant at or below the level found to be safe, by the Food and Drug Administration or

approved by the Environmental Protection Agency or the Food Safety and Inspection Service of the

U.S. Department of Agriculture. The research does not involve prisoners as participants.

3. Briefly describe the proposed research: The research procedures involve subjects playing several

computerized games and filling out questionnaires about their experiences with these approaches.

Specifically, these games challenge the user to perform a cognitive task interacting with a series of dynamic

images and take the form of many objects floating around within the images, and the user's task

is to match the objects corresponding to given target(s) and drag-and-drop them to the target region(s). It is

believed that such games can be easily played by human users but will be difficult for computer programs to

161

 Page 3 of 4

solve and serve as a tool to prevent attack programs from exploiting web services. This research aims at

formally evaluating the usability of such game-based mechanisms. Here is the testing process:

Our study will be conducted at an on-campus (at our university) location, specifically in our graduate student

lab of our department. Same computer terminal will be used for the tests with all participants.

An overview of the testing process will be first given to each respondent prior to the actual tests.

First, the respondents will be asked to fill out the the Pre-Test questionnaire. Next, the respondents will be

asked to several versions of the games described above. Finally, the respondents will be required to fill out the

Post experiment questionnaire.

The PI will be himself running and scheduling the sessions with the participant based on communication with

the test participants. A walk-in session will also be conducted where the participants will just come in and

perform the tests. The sessions will take place in a graduate student lab in our department. These will be one-to-

one sessions.

4. Describe how subjects/data/specimens will be selected. If applicable, include the sex, race, and

ethnicity of the subject population: Volunteers will be solicited by e-mail and asked, if they are over the

age of 19, if they are interested in participating in a study to evaluate some aspects of modern technology.

Sex, race, and ethnicity of the subject population are not factors in the selection of subjects. We will

recruit from student populations. The student participants will be all university students, studying towards

undergraduate, Master’s and Ph.D. degrees in Computer Science or closely related fields. We will recruit by

emailing to the appropriate mailing lists (such as student lists in the CS department). In addition, we will recruit

via word of mouth and personal communications.

5. Does the research involve deception? Yes No

6. Describe why none of the research procedures would cause a subject either physical or psychological

discomfort or be perceived as harassment above and beyond what the person would experience in daily

life: Subjects who volunteer are asked to perform normal functions on computer terminals and to give

their feedback on their experiences. Subjects are told to stop the process at anytime they wish. There is

no physical harm and absolutely no discomfort involved in participating to this study.

7. Describe the provisions to maintain confidentiality of data: All information collected will be kept

strictly CONFIDENTIAL and will only be referenced with a code. This code is a random one and will be

pre-assigned to each participant (i.e., the questionnaires). In our dataset, we will reference the recorded

responses with this code.. We do not collect any data that can directly identify participants and any

information that can help to personally identify anyone will not be voluntarily released or disclosed.

8. Describe the provisions included in the research to protect the privacy interests of participants (e.g.,

others will not overhear your conversation with potential participants, individuals will not be publicly

identified or embarrassed): Participants will be playing computer games and will not engage

meaningfully with other participants. After their evaluation is complete, participants will be asked to

fill out a questionnaire and to skip any questions they do not want to answer. The questionnaires do

not contain any participant indentifying information.

9. Will the research involve interacting with the subjects? Yes No

If yes, describe the consent process and information to be presented to subjects, including:

 That the activities involve research.

 The procedures to be performed.

 That participation is voluntary.

 Name and contact information for the investigator.

The study activities and procedures are described in the handouts. The voluntary nature of the

participation is clearly stated in the Study Information Sheet. The interaction with the

162

 Page 4 of 4

participants consists of a background questionnaire and a posttest questionnaire, and possibly

some questions about user experience as the evaluation is underway. Neither the background

questionnaire, nor the posttest questionnaire/questions ask for any information that could in any

way be linked to the study participants. Volunteers are given a one-sheet handout explaining the

research and the evaluation process and their role as participants. The handout explains that

participation is strictly voluntary and that subjects may cease participation at any time they

choose. Researcher name and contact information are on the handout.

10. Additional Information
In the space below, provide any additional information that you believe may help the IRB review

the proposed research, or enter "None."

None

11. Findings? (applicable for Continuing Review or Final Report only)

State both the positive and negative results received to date:

Since the last IRB review, have any of the following occurred?

a. Have participants experienced any harms (expected or unexpected)? Yes No

If yes, attach Problem Summary Sheet, and briefly describe here the harms (serious and/or non-
serious) experienced by participants:

b. Have there been any unanticipated problems involving risks to participants or others?

 Yes No

If yes, attach Problem Report, and briefly describe here the unanticipated problems involving risks
to participants or others:

c. Have you have any problems obtaining informed consent? Yes No N/A

If yes, briefly describe the problems here:

d. Have any participants or others complained about the research? Yes No
If yes, briefly describe the number and nature of the complaints:

e. Have any participants withdrawn from the research? Yes No
If yes, indicate the number of withdrawals and include the reason for each:

f. Have any obvious, study-related benefits occurred for participants? Yes No

If yes, briefly describe the benefits here:

g. Have the risks or potential benefits of this research changed? Yes No
If yes, briefly describe the changes here:

h. Has there been any published literature? Yes No

If yes, attach a copy and summarize the published findings here:

Principal Investigator's Signature: Date:January 11, 2013

163

	Human-Machine and Human-Human Authentication Through Active User Interaction
	Recommended Citation

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENT
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Limitations of Current Authentication Systems
	1.2 How Interactivity Can Help?
	1.3 Thesis Statement & Main Contributions
	1.3.1 Human-Machine Authentication
	1.3.2 Human-Human Authentication

	1.4 List of Publications

	2 BACKGROUND
	2.1 Human-Machine Authentication
	2.2 Human-Human Authentication
	2.3 Threat Model and Design Choices

	3 SIMPLE-DYNAMIC COGNITIVE GAME CAPTCHA (S-DCG)
	3.1 S-DCG Design & Implementation
	3.1.1 S-DCG Design Choices
	3.1.2 S-DCG CAPTCHA Instances and Prototypes

	3.2 Usability
	3.2.1 Study Design, Goals, and Process
	3.2.2 Study Results
	3.2.2.1 Lab-based Usability Study
	3.2.2.2 MTurk Usability Study
	3.2.2.3 Mobile-based Usability Study
	3.2.2.4 User Experience of the Three Studies

	3.2.3 Summary of Usability Analysis:

	3.3 Automated Attacks
	3.3.1 Random Guessing Attack
	3.3.2 Our Automated Attack and Results
	3.3.3 Discussion and Summary

	3.4 Relay Attacks
	3.4.1 Difficulty of Relaying S-DCG CAPTCHAs
	3.4.2 Reaction Time Static Relay Experiment
	3.4.2.1 Static Relay Attack User Study
	3.4.2.2 Study Design, Goals and Process
	3.4.2.3 Study Results

	3.4.3 Stream Relay Attack
	3.4.4 Virtual Network Computing (VNC) Overview
	3.4.4.1 Study Design, Goal and Process
	3.4.4.2 Study Results
	3.4.4.3 Stream Relay Attack Detection

	3.5 Hybrid Attack
	3.5.1 Auto-attack with offline learning
	3.5.2 Auto-attack with online learning
	3.5.3 Hybrid Attack Usability Study
	3.5.3.1 Study Design, Goal and Process
	3.5.3.2 Study Results

	3.6 Conclusions

	4 SECURITY ENHANCED DCG CAPTCHAs
	4.1 Preliminary Work
	4.2 Emerging Image based DCG CAPTCHA (EI-DCG)
	4.3 DESIGN & IMPLEMENTATION
	4.3.1 Design Overview
	4.3.2 EI-DCG Configuration Levels

	4.4 Automated Attack Resistance
	4.5 Usability
	4.5.1 Study Design
	4.5.2 Study Results
	4.5.2.1 Solving time
	4.5.2.2 Error Rate
	4.5.2.3 User Experience (SUS Scores)

	4.5.3 Summary of Results

	4.6 Security Against Relay Attack
	4.6.1 Study Design
	4.6.2 Study Results
	4.6.3 Relay Attack Detection
	4.6.4 Summary of Results

	4.7 Conclusions

	5 CAPTCHA FUSION TO DEFEAT AUTOMATED AND HUMAN ATTACKS
	5.1 Background
	5.1.1 Utilized CAPTCHA Designs
	5.1.2 Vulnerabilities of the Three Designs
	5.1.3 Why Mix DCG?

	5.2 Design and Implementation
	5.2.1 Mix DCG Design
	5.2.2 Mix DCG Implementation

	5.3 Security Against Automated Attacks
	5.4 Usability
	5.4.1 Study Design
	5.4.2 Study Results
	5.4.2.1 Error Rate
	5.4.2.2 User Experience
	5.4.2.3 Solving Time
	5.4.2.4 Learnability

	5.4.3 Summary of Results

	5.5 Security Against Relay Attacks
	5.5.1 Study Design
	5.5.2 Study Results
	5.5.2.1 Error Rate
	5.5.2.2 Solving Time

	5.5.3 Relay Attack Detection
	5.5.4 Summary of Results

	5.6 Discussion
	5.7 Conclusion

	6 SMASHED: SNIFFING AND MANIPULATING ANDROID SENSOR DATA
	6.1 Background: Android Sensor Security Model
	6.2 Smashed Design, Implementation and Threat Model
	6.2.1 Design Overview
	6.2.2 SMASheD Server
	6.2.3 Scripts
	6.2.4 SMASheD App
	6.2.5 Threat Model
	6.2.6 SMASheD Advantages

	6.3 Key Logger
	6.4 Attacks Using Smashed
	6.4.1 Overview of Attacks and Attack Presentation
	6.4.2 Sniffing Touchscreen Input (Touchlogger)
	6.4.3 Manipulating Touchscreen Sensor
	6.4.3.1 Data Exfiltration
	6.4.3.2 Phone Unlock
	6.4.3.3 Accessing User Accounts
	6.4.3.4 Attacking Biometric Authentication

	6.4.4 Manipulating Other Sensors

	6.5 Smashed Mitigation
	6.6 Conclusion

	7 STRONG BEHAVIORAL AUTHENTICATION WITH SIMPLE COGNITIVE GAMES
	7.1 Cognitive Task
	7.1.1 Cognitive Task Design
	7.1.2 Cognitive Task Implementation

	7.2 Data Collection
	7.3 System Design & Results
	7.3.1 Feature Extraction
	7.3.2 Classifier and Metrics
	7.3.3 Classification Models & Feature Selection
	7.3.4 Classification Results
	7.3.5 Summary of Results

	7.4 Impersonation Attack
	7.5 Mobile Study
	7.6 Discussion
	7.7 Conclusion

	8 CONCLUSIONS AND FUTURE WORKS
	8.1 Human-Machine Authentication
	8.2 Human-Human Authentication

	LIST OF REFERENCES
	APPENDIX: IRB APPROVAL

