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CONSTRUCTION OF POLYNOMIALS AND LINEAR WEIGHT CALCULATION 

FOR WENO SCHEMES 

 

Jacob Nelson 

 

MECHANICAL ENGINEERING 

 

ABSTRACT  

 

 Many applications of computational fluid dynamics (CFD) require higher order 

spatial accuracy to resolve the flow field.  A few examples of these complex flows 

include heat transfer problems associated with hypersonic flows, flapping wing 

simulations, turbo-machineries, rotorcrafts, aero-acoustic problems, and transition to 

turbulence.  Methods being used within the CFD community to achieve higher order 

spatial accuracy include discontinuous Galerkin schemes, weighted essentially non-

oscillatory schemes (WENO), and spectral volume (SV) schemes.  Complex flow 

problems involving complex geometries may necessitate the use of generalized grids for 

the discretization of the domain.  Generalized grids contain elements of multiple types 

and allow for a structured boundary layer near surfaces of interest and an unstructured 

mesh in the flow domain.  This paper details the development of a third order accurate 

WENO scheme.  In addition to providing higher order accurate spatial resolution, the 

scheme can utilize three-dimensional generalized meshes consisting of four to six sided 

elements.  The WENO scheme has been developed for use with an existing HYB3D flow 

solver.  With the higher order spatial accuracy of the numerical scheme along with the 

use of generalized meshes, this paper details the groundwork  for providing a means for 

the creation of accurate simulations of complex flow fields involving complex 

geometries. 

Keywords: WENO,  Higher Order,  CFD,  HYB3D, Generalized Grid 
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CHAPTER 1 

INTRODUCTION 

 The CFD process of simulating fluid flow involves modeling the flow domain, 

discretizing the domain into a computational mesh, providing boundary and initial 

conditions, and iterating a numerical solution based on the governing equations which are 

provided by the physics of fluid flow.  As the use of the CFD and the abilities of high 

performance computing have increased, so has the complexity of flow problems being 

studied.  These problems involve increasingly complex flow fields as well as geometries.  

This necessitates the use of spatially accurate flow solvers as well as grid generation 

techniques that allow for the creation of computational meshes around complex 

geometries. 

 Numerous grid generation techniques have been studied for the use of discretizing 

the domain around complex geometries.  Structured grids composed of hexahedral 

elements show good accuracy in the boundary layer region of a flow domain and are 

generated with built in connectivity information between neighboring cells [15].  

However, they can be hard to adapt to complex geometries and require substantial 

computational time during the grid generation process.  Unstructured grids composed of 

tetrahedrons are well suited for complex geometries but require an excessive amount of 

cells to be located near the surface in order for proper resolution of the boundary layer to 

be obtained [15].  Generalized or hybrid grids combine the advantages of both 

unstructured and structured meshes by utilizing structured elements around bodies while 
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using unstructured elements in the flow domain and in transitioning between two 

structured regions.  This allows for accurate boundary layer resolution while maintaining 

the ability of the mesh to be applied to complex geometries. 

 A complex flow field can involve large changes in the flow variables over small 

distances.  Resolution of such complex flows requires that the grid generation create a 

mesh of adequate resolution, as well as for the flow solver to be spatially accurate enough 

to account for the changes in the flow variables within each cell.  A flow solver's spatial 

order of accuracy is governed by its ability to approximate the numerical flux through 

each cell-face.  A cell-centered finite volume scheme stores the cell average values of the 

flow variables at the centroid of the cell.  The spatial order of accuracy is defined by the 

way in which these flow variables are extrapolated to the cell-faces for flux calculations.  

For a first order spatially accurate scheme, the cell average values stored at the centroids 

of the cells on either side of a face are used to evaluate the numerical flux through that 

face.  A second order spatially accurate scheme uses a linear reconstruction of the flow 

variables for extrapolation to the cell-face centroids.  Similarly, third order spatial 

accuracy can be achieved by using a quadratic polynomial to reconstruct the flow 

variables for extrapolation to the cell-face.  The degree of the polynomial used to 

reconstruct the flow variables determines the spatial accuracy of the scheme.  However, 

the process of reconstructing a higher degree polynomial can cause a great increase in 

computational cost. 

 A few methods being employed by the CFD community to achieve higher order 

accuracy include Spectral Volume (SV), Discontinuous Galerkin (DG), Essentially Non-

Oscillatory (ENO), and Weighted Essentially Non-Oscillatory (WENO).  This paper 
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details the development of a third order accurate WENO scheme.  Harten, et al. [1,17] 

introduced the higher order essentially non-oscillating (ENO) scheme for structured 

meshes.  Their finite volume method uses a local stencil based on the reference cell and 

the neighbors of the reference cell.  The ENO schemes construct stencils over which a 

polynomial of the desired order of accuracy is reconstructed.  The ENO scheme then 

selects the stencil with the smoothest flow variable distribution for the final 

reconstruction [3].  Through this method, discontinuities can be avoided.  WENO 

schemes use a weighted combination of the ENO stencils to create a reconstruction that is 

of higher order accuracy than the original polynomials in the stencils.  The WENO 

schemes maintain the non-oscillatory nature of ENO by giving more weight to the 

stencils with smoother flow variable distributions.  WENO schemes have shown the 

capability for higher order discretization of spatial derivatives in the governing equations 

for simulations using structured meshes [3].  A research group led by Shu [4-6] has 

developed WENO schemes for triangular and tetrahedral meshes, which have been 

shown to provide up to fourth order accurate solutions.  However, these schemes have 

restrictions on the types of meshes that can be utilized.  Initial results have been reported 

by Ollivier-Gooch et al. [7] using a k-exact reconstruction of flow variables for higher 

order spatial accuracy using an unstructured mesh.  The WENO schemes in [2] 

introduced a mapped weighting system in order to increase the accuracy of the numerical 

scheme.  This weighting system has been shown to cause smoother numerical fluxes, 

better steady state convergence, and greater accuracy over the same stencils. 

 The work presented in this paper is to extend the third order WENO scheme of 

Shu et al. [4-6] for use with generalized grids containing 3-dimensional elements of 4 to 6 
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sides.  This WENO scheme uses a weighted average of linear polynomials to achieve the 

accuracy of a quadratic polynomial.  This allows for third order accuracy without the 

computational cost associated with quadratic reconstruction of the flow variables.  The 

WENO stencil selection procedures and polynomial reconstructions have been 

completed.  However, there is additional work that needs to be completed in order to use 

the WENO scheme during the flux calculations in the existing HYB3D flow solver.  

Chapter 2 covers the details of the WENO formulation.  Chapter 3 presents validations 

for various pieces of the implementation needed for the WENO scheme.  Chapter 4 goes 

over results while Chapter 5 provides conclusions and future work. 
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CHAPTER 2 

WENO SCHEME 

Governing Equations 

 The integral forms of the Navier-Stokes equations are taken as the equations that 

govern the fluid flow. This is written for any control volume Ω as,  

 (1) 

 

where     is the unit normal vector pointing outward from the control surface enclosing 

the control volume, dA is the elemental control surface area, dV is the elemental volume, 

Q is the conserved variable vector, and F(Q) and F
v
(Q) are the convective and viscous 

fluxes, respectively.  For brevity, the details of the conservative variables and the fluxes 

vectors are skipped here and it can be found in [15]. 

  

Spatial Discretization 

This WENO scheme is developed for utilization of generalized grids for which 

finite-volume schemes are well suited [15].  A cell-centered finite-volume discretization 

of the governing equation is written as equation (2). 

 (2) 
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where  is the volume of the cell i, j represents the neighbor of the cell i, Q is the 

conserved variable vector, and    and    
  are the numerical values of the inviscid and 

viscous numerical fluxes, respectively.  The overall accuracy of a CFD simulation is 

dictated by the approach used in the estimation of the numerical fluxes passing through a 

control surface.  For a traditional algorithm, the numerical fluxes are evaluated at the 

surface centroid and are multiplied by the control surface area for the estimation of the 

total flux.  However, for a WENO scheme, the numerical fluxes are calculated at 

different quadrature points on the surface and a weighted average of the fluxes at those 

points is used to estimate the total flux passing through the control surface.  The inviscid 

numerical flux passing through a cell-face can be evaluated using equation (3). 

 (3) 

 

where the index p represents the Gaussian point of a q-point scheme, wp is the Gaussian 

weight for quadrature point p, and  and  are the extrapolated values of 

the conserved variables on either side of the cell-face.  The numerical values of the flux 

can be calculated using any Riemann solver.  For a traditional, spatially first order 

scheme, cell average values from the cells on either side of the cell-face are used for the 

numerical flux evaluation.  In order for a simulation to achieve second order spatial 

accuracy, a linear reconstruction of the flow variables within the cell is used to 

extrapolate the flow variables to the cell-face centroids for flux evaluation.  The degree of 

the polynomial used for reconstructing the flow variables can be increased to get a higher 

spatial accuracy.  However, the increase in the degree of the reconstruction polynomials 

will increase computational time, stencil size, and data storage.  The work being 
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presented in this paper utilizes a weighted average of linear polynomials to achieve the 

accuracy of a quadratic polynomial. 

 

WENO Formulation 

 An overall flow diagram of the WENO scheme is given in Figure 1.  The first step 

in the formulation is the reconstruction of flow variables within a cell using a quadratic 

polynomial and a set of linear polynomials.  For a 3-dimensional computational domain, 

the quadratic polynomial contains 10 coefficients; a minimum of 10 cells are required to 

estimate these coefficients. Similarly, the linear polynomial contains four coefficients and 

four cells are required for this reconstruction.  The stencil containing the cells used for 

the quadratic reconstruction is called a big stencil, while the stencils used for linear 

reconstructions are called small stencils and are subsets of the big stencil.  In order to 

avoid the reconstruction of quadratic polynomials during every time step, each quadratic 

polynomial is represented as a linear combination of the linear polynomials.  This, along 

with constraints on the exact reconstruction of quadratic distributions of local variables 

by the linear combination of linear polynomials at the quadrature points and summation 

of the weights for the linear combination as one, results in an over-determined system of 

equations for these weights.  This over-determined system is solved in a least-square 

sense to get the linear weights shown in Figure 1.   The above procedure is a function of 

the geometry only, and is carried out as a pre-processing step. The quadratic polynomial 

is discarded after the calculation of linear weights and third order accuracy is achieved 

without adding the computational cost associated with a quadratic reconstruction of the 

flow variables throughout the simulation.  A special treatment is given for the presence of 
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negative linear weights found in the least-square solution. During the time iteration 

process, a smoothness indicator for the distribution of flow variables is calculated for 

every linear polynomial.  Using the smoothness indicator, the linear weights are modified 

to avoid any spurious oscillations during the reconstruction, and to improve the stability 

of the numerical simulation [6].  The modified linear weights are denoted as non-linear 

weights and are used to combine the linear polynomials for the extrapolation of the flow 

variables to the quadrature points for flux estimation. 

 

Figure 1. Overview of WENO Scheme 

 

Quadratic Polynomial Reconstruction 

 A quadratic polynomial representing the flow variable distribution is constructed 

over a collection of cells called a big stencil.  This section details how the quadratic 

polynomial is manipulated so that it can be expressed in terms of geometry dependent 

constants, called big stencil constants, and cell average values.  This manipulation is done 

so that the big stencil constants can be used in the linear weight calculation to make the 
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linear combination of the linear polynomials achieve the same accuracy as the quadratic 

polynomial.  The quadratic polynomial is given as equation (4). 

 (4) 

 

The local variables appearing in equation (4) are defined by equation (5) [6]. 

 

 

 

(5) 

 

where (xo, yo, zo) are the coordinates of the centroid of the reference cell Vo, and h = 

(Vo)
1/3

 [6].  There are 10 coefficients in equation (4), giving the requirement of a big 

stencil population of 10 or more cells.  The quadratic polynomial is determined by 

requiring that for a given variable, u, the polynomial has the same cell average as the 

reference cell while matching the cell averages of the other big stencil cells in a least-

squares sense [6].  For cell i, the cell average of variable u is defined by equation (6). 

 

(6) 

 

where Vi is the volume of cell i.  Each reconstruction is done at a fixed time level, so the 

time variable can be left out of equation (6) [6].  The cell average values obtained from 

this integration for the local variables are converted into surface integrals using the Gauss 

theorem.  The surface integrals are then approximated using a Gaussian quadrature 

scheme.  For more information on the Gaussian quadrature schemes employed, see 

Appendix A.  Taking the integral of equation (4) over cell i results in equation (7). 
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(7) 

 

Applying the definition of cell average values, equation (6), to the local variables, 

equation (5), produces equation (8). 

 

 

 

 

 

 

 

 

 

(8) 

Substitution of the expressions given by equation (8) into equation (7) produces equation 

(9). 

 

(9) 
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Applying equation (9) to the reference cell (i.e. i = 0) and solving for the coefficient ao, 

equation (9) can written in the form of equation (10). 

 (10) 

 

Equation (11) provides a definition of Δ for any arbitrary variable, given as f. 

 (11) 

 

where     is the reference cell's cell average value of the variable f.  Some examples of 

how equation (11) will be used to simplify the notation are provided by            

and               .  Substituting equation (10) into equation (9) and applying equation 

(11) for all of the local variables produces equation (12). 

 

         

(12) 

 

By taking the integral of equation (12) over cell i, equation (13) is generated. 
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by equation (14) on the following page. 
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 The big stencil cell number indicates the order in which the big stencil cells are 

placed within the big stencil.  Each row of the left hand side matrix in equation (14) 

stores the cell average local variables for one big stencil cell.  The row corresponding to a 

particular big stencil cell will be equal to the big stencil cell number of that cell.   For 

example the first, first level neighbor to the reference cell, as provided by the existing 

HYB3D data structure, will be big stencil cell number 1 (i = 1), and the cell average local 

variables for this cell will be located on the first row of the matrix on the left hand side of 

equation (14).  The second, first level neighbor to the reference cell will be big stencil 

cell number 2 (i = 2), and the cell average local variables for this cell will be located on 

the second row of the matrix on the left hand side of equation (14).  The numbering 

continues using the HYB3D data structure until the first level of neighbors is exhausted. 

Then, the numbering of big stencil cells continues according to the ascending order of the 

second and third level neighbors with respect to their cell number within the grid.  These 

cells are placed in ascending order within the data structure in which they are stored.  

Equation (14) can be written as equation (15). 

 (15) 

 

where A R
(m-1)x9

, x R
9
, and b R

m-1
.  The vector x contains the coefficients to the 

quadratic polynomial, and must be isolated in order to express these coefficients in terms 

of geometric constants and cell average values.  The matrix A will only be square if there 

are exactly 10 big stencil cells, so the inverse cannot always be taken directly.  The vector 

x must be isolated, so equation (15) is multiplied by the transpose of A, denoted as A
T
, 

which is shown by equation (16). 

 (16) 

bAx 

bAAxA TT 
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Defining a matrix B as B = A
T
A, equation (16) takes the form of equation (17). 

 (17) 

 

where B is a square matrix, B R
9x9

.  The inverse of the matrix B is calculated, denoted as 

B
-1

, and both sides of equation (17) are multiplied by this inverse, resulting in equation 

(18). 

 (18) 

 

Defining a matrix D as, D = B
-1

A
T
 = (A

T
A)

-1
A

T
 and is of the order D R

9x(m-1)
.  The 

substitution of matrix D into equation (18) results in equation (19). 

 (19) 

 

By solving this system of equations for the elements in x, the coefficients to the quadratic 

polynomial can be expressed by equation (20). 

 (20) 

 

The values of aj are now only in terms of cell averaged local variables and general cell 

average values.  These aj variables are the original coefficients to the quadratic 

polynomial, and substituting equation (20) into equation (12) produces equation (21). 
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Rearranging equation (21) by collecting all of the     terms for every big stencil cell, 

allows equation (22) to be found. 

 

                          

                                     

                

                         

    

                   

           
 

(22) 

 

At each quadrature point, (xG, yG, zG), the big stencil's quadratic polynomial is written in 

terms of a series of constants multiplied by cell average values.  This takes the form of 

equation (23) [6]. 

 (23) 

 

The big stencil constants in equation (23) are only dependent on the geometry of the cells 

making up the big stencil and the coordinates of the quadrature point.  The big stencil 

constants for every big stencil cell in equation (23) are equal to the terms in equation (22) 

located in front of that cell's average value.  The big stencil constant for the reference 

cell, Co, can be calculated by equation (24), while the big stencil constants for the rest of 

the big stencil cells (i = 1, 2, ... m-1) can be calculated with equation (25). 
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C0  =     (24) 

Ci  =       (25) 

 

The subscript G indicates that the local variables are evaluated using the quadrature 

point's coordinates (xG, yG, zG).  The elements of the matrix D are solely dependent on 

geometry and can be calculated through the use of a geometric moment function and the 

matrix operations discussed above (equations (15)-(19)).  For more information on the 

geometric moment function and the validation of the cell average local variable 

calculation, see Appendix B.  Since the big stencil constants are solely dependent on 

geometry, they are calculated as a pre-processing step. 

 

Linear Polynomial Reconstruction 

 Linear polynomials representing the flow variable distributions are constructed in 

subsets of the big stencil.  This section details how these linear polynomials are 

manipulated so that they can be expressed as a series of geometrically dependent 

constants, called small stencil constants, and cell average values.  This manipulation is 

performed so that each linear polynomial is able to reconstruct a flow variable 

distribution when given the flow variable's average values for the cells contained in the 

small stencil.  Also, linear combinations of the small stencil constants are equated to the 
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the linear weights to the combinations of linear polynomials to mimic the accuracy of the 

quadratic polynomial.  The linear polynomial is given by equation (26). 

 (26) 

 

where the index s = 1, 2, ....., q represents the small stencil number for a total of q small 

stencils.  There are 4 coefficients in the linear polynomial given by equation (26); 

therefore, each small stencil must be made of 4 cells to create 4 conditions.  Each small 

stencil must include the reference cell.  Similar to the quadratic polynomial, the linear 

polynomial is created in agreement with the cell averages of the local variables of the 4 

cells that make up the small stencil [6].  Equation (27) is produced by taking the integral 

of equation (26) with respect to cell i, and using the definition of cell average values from 

equation (6). 

 (27) 

 

Using the definitions given by equation (8), equation (27) can be written as equation (28). 

 (28) 

 

Denoting the reference cell as small stencil member i = 0, and the other 3 members as i = 

1,2, and 3, equation (28) can be expressed for all 4 small stencil members by equations 

(29)-(32). 
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 (32) 

 

Equation (29) can be used to solve for the linear polynomial coefficient   
  in terms of the 

reference cell's average local variables.  The resulting expression is written as equation 

(33). 

 (33) 

 

Substituting equation (33) into the original linear polynomial, equation (26), and using 

the notation provided by equation (11), equation (34) is obtained. 

 (34) 

 

Substituting equation (33) into equations (30)-(32), equations (35)-(37) are produced. 

 (35) 

 (36) 

 (37) 

 

Equations (35)-(37) can be written in a general form of equation (38) for i = 1,2,3. 

 (38) 

 

The system of equations given by equation (38) can be expressed in matrix form as 

equation (39). 
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Equation (39) takes the form of equation (15), Ax=b, with A R
3x3

, x R
3
, and b R

3
.  The 

vector x contains the coefficients to the linear polynomial, and it must be isolated.  The 

matrix A will always be a square matrix.  Denoting matrix D as the inverse of A, D=A
-1

, 

and multiplying both sides of equation (39) by D leads to an isolation of the coefficients 

of the linear polynomial and can be expressed as equation (40). 

 (40) 

 

Expressions for each coefficient are written as equations (41)-(43). 

 (41) 

 (42) 

 (43) 

 

The expressions in equations (41)-(43) are evaluated during every iteration using the cell 

average values of the flow variables at the given time level.  This is done in order to 

calculate the linear polynomial reconstruction and the smoothness indicator, to be 

discussed in following sections.  The geometry dependent matrix D is stored for every 

small stencil as a pre-processing step.  The linear weights calculation needs the linear 

polynomial to be expressed as a series of geometry dependent small stencil constants and 

cell average values.  By substituting the expressions for the linear polynomial coefficients 

from equation (40) into equation (34), equation (44) is produced. 
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Rearranging equation (44) by collecting all of the     terms for every small stencil cell, 

allows equation (44) to be written as equation (45). 

 

         

         

     
  

(45) 

 

At each quadrature point, (xG, yG, zG), the linear polynomial in equation (45) is expressed 

as a summation of the small stencil constants multiplied by the cell average values.  This 

expression is written as equation (46). 
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The subscript G indicates that the local variables are evaluated using the quadrature 

point's coordinates (xG, yG, zG).  The elements of the matrix D are solely dependent on 

geometry and can be calculated through the use of a geometric moment function and the 

matrix operations discussed above (equations (39)-(40)).  For more information on the 

geometric moment function and the validation of the cell average local variable 

calculation, see Appendix B.  The small stencil constant corresponding to the reference 

cell must be found using equation (47).  However, a general equation can be produced for 

the other small stencil constants from equations (48)-(50) for i = 1, 2, 3, and can be 

written as equation (51). 

 (51) 

 

 The linear reconstructions are made using equation (46).  These reconstructions 

use the small stencil constant corresponding to the reference cell from equation (47), and 

the other 3 small stencil constants from equation (51).  Linear reconstructions using 

equation (46) are performed during the linear weights calculations for the quadratic local 

variable terms.  Reconstructions can be done for any variable of u, provided that the cell 

average values of u are available for all small stencil members. 

 

Big Stencil Selection 

 The quadratic polynomial reconstruction for the big stencil contains 10 

unknowns.  This necessitates 10 conditions, so there must be at least 10 cells populating 

the big stencil.  The first level neighbors are the cells that share a face with the reference 

cell.  The HYB3D flow solver already creates a data structure containing the first level of 

neighbors for each cell.  These are the first cells to populate the big stencil.  While only 
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considering 4 to 6 sided elements, these first level neighbors will not be enough to reach 

the population requirement of at least 10 big stencil members.  The second level of 

neighbors consists of the cells that share a face with the reference cell's first level of 

neighbors.  Initially, 2 second level neighbors are added to the big stencil for each of the 

first level neighbors.  These second neighbors are the first level of neighbors to the first 

level neighbors already added.  These cells can easily be found by using the existing data 

structures while checking to ensure that the added cells are not the reference cell or a first 

level neighbor to the reference cell.  These checks reveal the true second level neighbors 

to the reference cell; however, another requirement is set upon the second level neighbors 

added to the big stencil because of singularity in the linear local variable matrix during 

the small stencil constant calculation.  The linear local variable matrix is the left hand 

side matrix of equation (39).  In order for the small stencil constants to be calculated, the 

inverse of this matrix must be found.  It is a requirement that all 4 members within a 

small stencil share at least one face with another member.  For this reason, every small 

stencil that includes a second level neighbor must include the corresponding first level 

neighbor.  Therefore, it is important that the second level neighbors are added to the big 

stencil in a way that does not allow the values of the local variables produced by their 

geometry and their corresponding first level neighbor's geometry to cause singularity in 

the linear local variable matrix.  If any of the first level neighbor's centroid coordinates 

(xi, yi, or zi) equal the corresponding reference cell's coordinates (xc, yc, or zc) then the first 

level neighbor’s cell average local variable of that coordinate will be equal to zero.  

Problems with singularity arise if a first level neighbor and the second level neighbor 

have centroids that share the same 2 coordinates with the reference cell (i.e. both 
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centroids are in the same plane as the reference cell's centroid).  This is a particular 

problem in the cell geometry produced by a structured boundary layer.  Equation (52) 

shows the linear local variable matrix that is produced when both the first and second 

level neighbors share the same y and z centroid coordinates with the reference cell. 

Linear local variable matrix  =   (52) 

 

The determinant of this matrix is always zero, regardless of the cell average values 

produced by the third member of the small stencil.  Figure 2 presents an illustration of a 

situation in which this can happen. 

 

Figure 2: Boundary Layer Illustration 

Assuming x-direction is horizontal, y-direction is vertical, and z-direction is into the 

page, the situation discussed in which both the first and second level neighbors share the 

same y and z coordinates with the reference cell can be seen in reference cell 0, cells 1 
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and 12, or cells 3 and 31.  To control this situation, a check is made to reveal whether the 

first level neighbor shares 2 of its centroid coordinates with the reference cell.  If this 

condition is true, then only second level neighbors that do not share those same 2 centroid 

coordinates will be added for this first level neighbor.  In the example shown in Figure 2, 

this would result in the cell 12 not being added as a second level neighbor to cell 1, cell 

21 not being added as a second level neighbor to cell 2, cell 31 not being added as a 

second level neighbor to cell 3, and cell 41 not being added as a second level neighbor to 

cell 4.  This is the only condition that has been found in which a second level neighbor 

cannot be added into any possible small stencil candidate without causing a singularity.  

 The previous procedure can result in duplicate second level neighbors being 

added for different first level neighbors.  After 2 second level neighbors are added for 

every first level neighbor, a check is made determine whether there are at least 10 unique 

members making up the big stencil (including the reference cell), while accounting for 

any duplicate cells that could be in the second level of neighbors.  If the number of 

unique big stencil cells is less than 10, an additional second level neighbor is added for 

each first level neighbor.  If there are still less than 10 unique big stencil cells, then this 

process is repeated until there are at least 10 unique big stencil cells, or the entire second 

level of neighbors has been added.  It is desirable for the big stencil to be evenly 

distributed about the reference cell so that the flow variable reconstructions are not 

pulling information too heavily from one side or the other.  This is why the number of 

unique big stencil cells is only checked after an attempt has been made to add 1 second 

level neighbor for every member of the first level. 
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 In the event that the reference cell, the first level of neighbors, and entire second 

level of neighbors do not fully populate the big stencil, then third level neighbors must be 

added.  This situation can occur when the reference cell is located on a boundary and has 

a reduced amount of first level neighbors.  Similar to the process of adding an additional 

second level neighbor for every first level, a single third level neighbor is added for every 

second level neighbor.  This process is repeated for every second level neighbor until the 

number of unique big stencil cells is greater than 10.  The issue of singularity in the linear 

coefficient matrix is again addressed in the addition of third level neighbors.  If the first 

level neighbor or the corresponding second level neighbor for a given third level 

neighbor shares 2 centroid coordinates with the reference cell, then the third level 

neighbor must not share those 2 centroid coordinates.  This would produce a linear local 

variable matrix with a determinant of zero, similar to the matrix shown by equation (52). 

Singularity in the linear local variable matrix can also be caused if the first, second, and 

third level neighbors all share 2 centroid coordinates.  The cells’ centroids are not in the 

same plane as the reference cell's centroid (producing values of zero for cell average of 

the linear local variables), but their centroids are all in the same plane with respect to 

each other.  This makes 2 of the columns of the linear coefficient matrix contain the same 

values within those columns, producing a very small determinant (order of 1.0E-16).  If 

the first and second level neighbors share 2 centroid coordinates, then a corresponding 

third level neighbor is only added if its centroid does not also share these coordinates.  

An illustration of a situation in which this can happen can be seen in Figure 3. 
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Figure 3: Boundary Illustration 

The first level neighbor 2, second level neighbor 11, and third level neighbor 112 are all 

in the same plane and produce singularity.  For this reason, cell 112 is not added to the 

big stencil for these first and second level neighbors, but cell 111 will be added instead.  

Similarly, for first level neighbor 1 and second level neighbor 11, third level neighbor 

cell 111 will produce singularity.  Cell 111 is not be selected as a third level neighbor, 

instead, 112 will be added as the third level neighbor corresponding to first level 

neighbor 1 and second level neighbor 11. 

 When the small stencils are formed, all 4 members must share at least one face 

with another member.  This means that for a stencil to include a third level neighbor, it 

must also include the corresponding second and first level neighbors.  This gives only 

one possible small stencil candidate that includes this third level neighbor.  Even with the 

previous exclusions of third level neighbor additions, it is possible for geometric factors 

to produce singularity in the linear local variable matrix.  For this reason, a determinant 

check of the linear local variable matrix is performed when adding third level neighbors.  
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This does not add very large computational cost because third level neighbors are not 

needed for most cells, and the determinant check for this small stencil is omitted during 

the small stencil formation process. 

 

Small Stencil Selection 

 The small stencils are subsets of the big stencil that are used to reconstruct a 

linear polynomial representing the flow variable distribution. There are 4 unknowns to 

the linear equation, so each small stencil is made up of 4 cells including the reference cell 

itself.  Additionally, there must be a total of 7 or more small stencils [6].  Every cell in 

the big stencil must be included in at least one small stencil.  This is necessary in order 

for the small and big stencil constants to be correctly equated by the system of equations 

when solving for the linear weights.  Each of the 4 members of a small stencil must share 

a face with at least one of the other cells in that small stencil.  These requirements are the 

reason for considering the small stencil formations when forming the big stencil cells.  If 

a given second level neighbor has geometric issues (causing singularities within the linear 

local variable matrix whose inverse must be found) with the corresponding first level 

neighbor, it would be impossible to form a small stencil that contained both of those cells 

with any other applicable candidate cell.  The requirements that were put into place in the 

big stencil selection do not ensure the removal of all singularities found in all possible 

linear local variable matrices.   They do, however, ensure that no cells will be added to 

the big stencil that cannot be placed in a small stencil.  A check has been created that 

calculates the determinant of the linear local variable matrix before a small stencil is 
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formed.  If the determinant is below a certain threshold, then that small stencil candidate 

is skipped and other candidates are examined. 

 The small stencil candidates that can be added are dependent on the cells that 

were added to the big stencil.  For a reference cell with 3 first level neighbors, the first 

small stencil to be added contains all 3 first level neighbors.  If there are 4 first level 

neighbors, then all 4 possible combinations of the first level neighbors are added.  If there 

are 5 first level neighbors, there are a total of ten possible combinations.  Only 5 of these 

possible combinations are added, and these 5 are selected in such a way that every first 

level neighbor is in 3 of the small stencils.  If there are 6 first level neighbors, then there 

are a total of twenty possible combinations.  Only 6 of these are added and each of the 

first level neighbors is included in 3 of these small stencils.  Adding all possible 

combinations for these cases causes computational cost problems and can lead the linear 

weights system of equations to be underdetermined.  The determinants are checked when 

adding these stencil candidates.  However, the varying geometric locations of the first 

level neighbors with respect to the reference cell generally provides manageable values 

within the linear local variable matrix. 

 Small stencils involving the second level of neighbors must be added.  The 

procedure of adding these stencils is dictated by how many second level neighbors are 

present in the big stencil for a given first level neighbor.  In the ideal case, the big stencil 

selection will add 2 second level neighbors for each of the first level neighbors.  In this 

ideal case, the reference cell, the first level neighbor, and both of the corresponding 

second level neighbors to that first level neighbor are considered as a small stencil 

candidate.  If the determinant check denies this candidate, then alternative small stencil 
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candidates must be examined that include the 2 second level neighbors.  These alternative 

candidates are made up of 2 of the first level neighbors (1 of which is corresponding to 

the 2 second level neighbors in question) and 1 of the second level neighbors.  The 

additional first level neighbor used in the previous process can be varied until suitable 

candidates for both of the second level neighbors are found.  If more than 2 second level 

neighbors have been added for a given first level neighbor, then combinations of those 

second level neighbors are used to form stencils in a manner that ensures all of the second 

level neighbors are included in a stencil, without creating excessive stencils.  The 

determinants are checked in each case with varying combinations ready to be added in 

the event of singularity.  If there is only 1 second level neighbor added for a first level 

neighbor, then a small stencil is created containing the reference cell, the first level 

neighbor, the corresponding second level neighbor, and an additional first level neighbor.  

Again, the additional first level neighbor can be varied until a suitable small stencil 

candidate is found.  If there are zero second level neighbors for a first level neighbor then 

the only additional stencils that can exist for this cell are stencils containing the reference 

cell, the first level neighbor in question, an additional first level neighbor, and a second 

level neighbor that corresponds to the additional first level neighbor.  However, if there 

are 3 or more first level neighbors for the reference cell, then the first level neighbor with 

zero second level neighbors has already been included in at least one small stencil. It is 

improbable, but not impossible, that a first level neighbor will have zero second level 

neighbors.  If there are third level neighbors present in the big stencil, then small stencils 

that include the reference cell, the third level neighbor, the corresponding second level 

neighbor, and the corresponding first level neighbor are created.  The determinant check 



30 

 

was already performed on these candidate stencils during the big stencil selection, and 

can be omitted here. 

 Initially, this entire procedure was performed in such a way that no duplicate 

stencils were possible.  However, with the singularity issues experienced in the linear 

weight calculations, changes had to be made that resulted in the possible creation of 

duplicate small stencils.  For this reason, a procedure has been implemented that removes 

duplicate small stencils after they are generated.  Once the duplicates are removed, the 

total number of small stencils is tallied, and if that total is greater than or equal to 7, then 

the small stencil selection is complete.  If this condition is not met, then additional small 

stencil candidates are added in such a way that small stencils on any side of the reference 

cell are not overloaded.  It is not desirable for the cell to be weighing information from 

one side or the other too heavily when reconstructing the flow variable distributions. This 

procedure shows that the first level of neighbors will be present in more small stencils 

than the second or third level.  They are the closest cells to the reference cell, and their 

presence in numerous small stencils will give these neighbors more weight when 

performing the flow variable reconstruction for the reference cell. 

 When the small stencil selection has been completed, the big stencil cell 

information for every cell in the grid can be consolidated into one array.  Previously, the 

second level neighbor information was stored in such a way that the corresponding first 

level neighbor could be identified.  Also, if third level neighbors were added, their cell 

information was stored along with the corresponding first and second level neighbors.  

This connectivity information is required for proper small stencil selection.  Now that the 

small stencils have been formed, this information can be discarded and any duplicate 
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cells from the big stencil can be removed.  There are possible duplicates in the second 

and third level of neighbors, but these were accounted for when tallying up the total 

unique big stencil cells.  However, the duplicates were not removed from the data 

structures.  This maintained the connectivity information for proper small stencil 

formation.  The second and third level neighbors are now arranged in ascending order 

with duplicates removed and added to an array.  These cells combined with the first level 

neighbors in the HYB3D data structure make up the entire big stencil. 

 

Linear Weight Calculation 

 The purpose of the linear weights is to make a linear combination of the linear 

polynomials that mimics the accuracy of the quadratic polynomial.  If two methods 

produce the same values at the quadrature points, then equivalent numerical fluxes are 

calculated.  This makes the methods equal in terms of spatial accuracy.  The WENO 

linear weights essentially create third order spatial accuracy by combining linear 

polynomial reconstructions, which involves less computational cost than a quadratic 

polynomial reconstruction. 

 The Linear weights are calculated by simultaneously solving two systems of 

equations, along with the requirement that the summation of linear weights is equal to 

one [6].  This requirement is written as equation (53). 

 (53) 

 

where γs is the linear weight for small stencil s.  The first system of equations is written 

as equation (54). 
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 (54) 

 

where ps is the linear reconstruction of small stencil s for the variable u, which is 

evaluated at the coordinates of the quadrature point, (xG, yG, zG).  The linear 

reconstruction is performed at the quadrature point and is found using equation (46).  

This system will be for the local variables of u = ξ
2
, η

2
, ζ

2
, ξη, ξζ, ηζ forming a total of 6 

equations.  The linear polynomial has 6 degrees of freedom less than the quadratic 

polynomial, namely for the variables of non-linear terms of u previously mentioned [6].  

This system of equations allows for the linear weights, when applied to the linear 

polynomials, to accurately approximate these quadratic variables of u.   

 The second system of equations is produced by equating the quadratic polynomial 

with a linear combination of the linear polynomials at the Gaussian quadrature points.  

This system of equations is written as equation (55). 

 (55) 

 

Substituting the form of the quadratic polynomial given by equation (23) and the form of 

the linear polynomials given by equation (46) allows for equation (55) to be written as 

equation (56). 

 (56) 

 

where    
  is the cell average value of the i-th member of small stencil s.  Equation (56) 

can be expanded in terms of the cell average value of every big stencil cell.  Then, terms 

on either side of the equation being multiplied by the corresponding cell average value 
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can be equated.  This forms a system of equations in terms of the big stencil constants, 

the small stencil constants, and the linear weights and takes the form of equation (57). 

 (57) 

 

where c R
mxq

 contains the small stencil constants, γ R
qx1

 contains the linear weights, 

C R
mx1

 contains the big stencil constants, m is equal to the number of big stencil cells, 

and q is equal to the number of small stencils. 

 For the linear local variables (u = 1, ξ, η, ζ), both the quadratic polynomial and the 

linear polynomials should reproduce the exact values [6].  The summation requirement 

by equation (53) ensures that the linear combination of the linear polynomials will 

maintain the ability to reproduce these variables exactly.  Combining equations (53), 

(54), and (57), results in the system of equations given in equation (58). 
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Let the left hand side matrix and right hand side vector of equation (58) be 

denoted as LHS and RHS, respectively.  Each column of LHS will correspond to a small 

stencil s for s=1,2,...,q.  The summation requirement from equation (53) is written across 

the first row of LHS and RHS.  Rows 2 through 7 provide the system of equations from 

equation (54), with each row corresponding to a different quadratic local variable term.  

In the RHS vector, these local variables are directly evaluated using the quadrature point 

coordinates.  The LHS matrix contains the linear polynomial extrapolations to the 

quadrature point of the local variable corresponding to the row number by the linear 

polynomial from the small stencil corresponding to the column number.  The system of 

equations from (57) is provided by rows 8 to m+7 of LHS and RHS.  Each row from 8 to 

m+7 corresponds to one big stencil cell.  A given big stencil cell will correspond to the 

row of 8 + its big stencil cell number.  The assigning of big stencil cell numbers to each 

big stencil cell is discussed in the Quadratic Polynomial Reconstruction section.  The 

RHS contains the big stencil constants.  This begins with the reference cell's constant in 

row 8 and continues for all of the other big stencil cells' corresponding constants.  Each 

column of LHS contains the small stencil constants for the small stencil corresponding to 

that column.  Row 8 of LHS side is fully populated by the reference cell's small stencil 

constants from every small stencil.  The notation used in equation (58) changed from that 

of equation (56) in order to generate a general expression for equation (58).  Rows 9 

through m+7 of LHS contain only 3 non-zero elements in each column.  These non-zero 

elements are the small stencil constants corresponding to the 3 small stencil members 

other than the reference cell.  The placement of these constants within each column will 

be dependent on the big stencil numbers of the members making up the small stencil.  For 
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example, small stencil number 3 could contain members with big stencil cell numbers of 

0, 2, 4, and 8.  For this case, column 3 of LHS contains non-zero elements in rows 8, 10, 

12, and 16.  However, for a different reference cell, small stencil number 3 could contain 

members with big stencil cell numbers of 0, 1, 6, and 7.  This would result in non-zero 

elements in rows 8, 9, 14, and 15.  This is the reason for the different notation need to 

make equation (58) a general expression for any reference cell.  The solution vector, γ, 

contains the linear weights.  There is one linear weight corresponding to every small 

stencil.  This system of equations can be solved in a least-square sense.  A LAPACK 

routine called DGELSS is used to solve equation (58) for the linear weights. 

 

Smoothness Indicators 

 During each time iteration, the smoothness of the linear polynomial's flow 

variable distribution can be calculated by differentiation.  It is desirable to give more 

weight to the linear polynomials with less variation in the flow variable distribution when 

combining the linear polynomials.  This provides more stability to the scheme and avoids 

spurious oscillations during flow variable reconstruction.  The equation for the 

smoothness indicator calculation is given by equation (59) [6]. 

 (59) 

 

where βs is the smoothness indicator for polynomial s, α is a multi-index, D
α
 is the 

derivative operator, and k is the degree of the polynomial.  The derivative operator, D
α
, is 

defined by equation (60). 
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 (60) 

 

where           .  The degree of the polynomial in equation (59) is 1, so, 

     .  Therefore, for 3-dimensions, the order of derivatives in x, y, and z directions 

           are defined as (1,0,0), (0,1,0), and (0,0,1).  With    , equation (59) can be 

written as equation (61). 

 (61) 

 

where h was earlier defined as, h = (Vo)
1/3

, and remains constant throughout the 

integration and the summation over the multi-index.  This allows for equation (61) to take 

the form of equation (62). 

 (62) 

 

The linear polynomial in (62) is provided by equation (26).  Equation (63) is found by 

substituting the definitions for the local variables into equation (26). 

 (63) 

 

The three differentiations done by the derivative operator are provided by equations (64)-

(66).  

 (64) 

 (65) 
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 (66) 

 

The coefficients in equations (64)-(66) are given by equations (41)-(43).  These 

coefficients are dependent solely on the geometry of the small stencil cells and the cell 

average values of the flow variables for those cells.  The smoothness indicator is 

calculated at a given time level.  Therefore, the cell average values of the flow variables 

will be constant.  When the volume integral in equation (62) is applied to the summation 

of these constants, the result is simply the sum of the constants multiplied by the volume 

of the reference cell.  Equation (62) can now be written as equation (67) 

 (67) 

 

The terms of h can be collected to form equation (68). 

 (68) 

 

Knowing that 
 

     , equation (68) simplifies to the form of equation (69). 

 (69) 

 

The linear polynomial coefficients are calculated using equations (41)-(43).  The 

smoothness indicator can then be found using equation (69).  Smaller values for the 

smoothness indicator are produced when the flow variable distribution has less variation 

over the small stencil than if the flow variable distribution shows large fluctuations.  

Ultimately, this will give larger weight to the small stencils with smoother variable 

distributions during the flow variable reconstructions. 

h

a

z

P s

s 3




0

2

3

2

2

2

11
V

h

a

h

a

h

a

h

sss

s











































       0

2

3

2

2

2

13

1
Vaaa

h

sss

s 

     23

2

2

2

1

sss

s aaa 



39 

 

Non-Linear Weight Calculation 

 The non-linear weights are modifications of the linear weights.  These 

modifications can be used during the flow variable reconstructions in place of the linear 

weights in order to increase the stability of the scheme.  The non-linear weights are 

calculated by equations (70) and (71). 

 (70) 

 
(71) 

 

where ε is simply a small positive number that is used to avoid dividing by zero.  The 

flow variables can now be extrapolated to the quadrature points using the non-linear 

weights and linear reconstructions in the small stencils.  The values for the smoothness 

indicators are larger for linear polynomials with large slopes in the flow variable 

distribution than for a linear polynomial with a smaller slope.  When these values are 

used in equation (70), the resulting non-linear weights are larger for the smoother 

polynomials and smaller for the polynomials with large fluctuations in the flow variable 

distribution. 

 

Treatment for Negative Linear Weights 

 The linear weights are dependent on local geometry and may become negative.  

Negative weights cause instability during the application of the scheme.  Previous work 

attempts to combat this issue by regrouping the stencils or reducing the order of accuracy.  

However, Shi et al. [8] have developed a technique to deal with the presence of negative 
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linear weights without having to modify the stencils or reduce accuracy.  This technique 

involves splitting the linear weights into 2 groups using equations (72) and (73). 

 (72) 

 (73) 

 

This is done for every linear weight, s=1,2,.....,q.  The 2 groups are then separately scaled 

by equations (74) and (75). 

 (74) 

 (75) 

 

Next, 2 groupings of non-linear weights are calculated using the positive and negative 

groups of the linear weights, γ
+
 and γ

-
.  Equations (70) and (71) now take the form of 

equations (76) and (77). 

 (76) 

 
(77) 

 

The smoothness indicator, βs, remains unchanged because it is calculated using the linear 

polynomial reconstructions before any weights are applied. 
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Flow Variable Extrapolation 

 After the non-linear weight calculation, any flow variable u can be extrapolated to 

each Gaussian quadrature point on a cell-face using equation (78). 

 (78) 

 

When a given flow variable has been extrapolated to a quadrature point from both sides 

of the cell-face, the numerical flux can be calculated using a Riemann solver. If the linear 

weights, γs, are used in place of the non-linear weights, ωs, then the flow variables are 

extrapolated using equation (79). 

 (79) 

 

If the splitting technique of Shi et. al. [8] is employed to treat the presence of negative 

linear weights, then the flow variable extrapolation has to be performed for both groups 

of the non-linear weights, ω
+
 and ω

-
.  Equation (78) now takes the form given by 

equation (80). 

 (80) 

 

Similarly, equation (79) now takes the form of equation (81). 

 (81) 

 

If the splitting technique has been employed, then the final WENO extrapolation to the 

quadrature points is written as equation (82). 
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 (82) 

 

The above equation represents extrapolation of any variable u to the quadrature points on 

the cell-face.  The same approach is applied to the extrapolation of the conserved 

variables to the quadrature points from either side of the cell-face.  The flux through each 

quadrature point is then calculated.  The total flux through the face is found using a 

weighted average of the fluxes at the quadrature points on that face by applying equation 

(3).   

The procedures detailed in this chapter describe the process of combining linear 

polynomials to extrapolate the flow variables to the quadrature points.  These 

extrapolations are used for the numerical flux calculation, producing third order spatial 

accuracy without a quadratic polynomial reconstruction.  The numerical flux at each of 

the quadrature points can be calculated using the extrapolated flow variables with any 

Riemann solvers.  The implementation described by this paper utilizes an existing 

application of Roe’s approximate Riemann solver [12] for the flux estimations. 
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CHAPTER 3 

VALIDATION 

Local Variable Calculation 

 The local variables in the WENO formulation are defined by equation (5).  The 

cell average values of these local variables are defined by equation (8).  The polynomial 

reconstructions are dependent on these cell average local variables and the volume 

integrals seen in equation (8) must be evaluated for every big stencil cell.  In order for 

numerical evaluation to be accomplished,  the volume integrals must first be converted to 

surface integrals through the use of the Gauss Theorem [14].  The surface integrals can 

then be approximated using a Gaussian quadrature scheme [13].  The details of the 

Gaussian quadrature schemes are given in Appendix A.  The procedures of converting the 

volume integrals to surface integrals and applying the quadrature schemes are given in 

Appendix B.  The specific application of the quadrature schemes for the  numerical 

calculation of the cell average values is provided in Appendix B.  A tetrahedron and a 

cube were used to test the error of the calculated cell average values when compared to 

the exact analytical values.  Table 1 contains the analytical values and numerical 

approximations for the cube's average local variables when the cube itself is given as the 

reference cell. 
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Table 1. Local Variables for a Cube Reference Cell 

Function 
Analytical 

Value 
Numerical Result Error 

0  0.0 -6.9389E-017 6.9389E-17 

0  0.0 -6.9389E-017 6.9389E-17 

0  0.0 -6.9389E-017 6.9389E-17 

2

0  0.08333 8.3333E-002 0.0000E+00 

2

0  0.08333 8.3333E-002 0.0000E+00 

2

0  0.08333 8.3333E-002 0.0000E+00 

0)(  0.0 -6.9389E-018 6.9389E-18 

0)(  0.0 -5.2041E-018 5.2042E-18 

0)(  0.0 -6.9389E-018 6.9389E-18 

  

As seen in Table 1, all numerical approximations are within an acceptable range of 

accuracy.  Table 2 presents the numerical approximations for the cell average values 

when the cube is defined as cell i and a reference cell, other than the cube itself, is 

prescribed. 

Table 2. Local Variables for Cube Cell i 

Function 
Analytical 

Value 
Numerical Result Error 

i  -44.5 -44.5000 0.000 

i  -35.8 -35.8000 9.9476E-14 

i  -24.2 -24.2000 0.0000 

2

i  1980.3333 1980.3333 0.0000 

2

i  1281.7233 1281.7233 0.0000 

2

i  585.7233 585.7233 0.0000 

i)(  1593.1 1593.1000 1.0004E-11 

i)(  1076.9 1076.9000 0.0000 

i)(  866.36 866.3600 3.9790E-12 
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Table 3 and Table 4 show numerical approximations for the cell average values when the 

cube is given as the reference cell.  Because the cube undergoes rotation, these tables 

differ from the results presented in Table 1. 

Table 3.  Local Variables for Cube Rotated 45° About x-axis 

Function 
Analytical 

Value 
Numerical Result Error 

0  0.0 -1.8041E-016 1.8041E-16 

0  0.0 -7.6328E-017 7.6328E-17 

0  0.0 4.8572E-017 4.8572E-17 

2

0  0.08333 8.3333E-002 2.000E-17 

2

0  0.08333 8.3333E-002 0.000 

2

0  0.08333 8.3333E-002 3.000E-17 

0)(  0.0 2.3111E-033 2.3111E-33 

0)(  0.0 -1.0408E-017 1.0408E-17 

0)(  0.0 6.9389E-018 6.9389E-18 

 

Table 4. Local Variables for Cube Rotated 86° About y-axis 

Function 
Analytical 

Value 
Numerical Result Error 

i  0.0 1.3878E-016 1.3878E-16 

i  0.0 -1.8041E-016 1.8041E-16 

i  0.0 -7.1991E-017 7.1991E-17 

2

i  0.08333 8.3333E-002 0.0000 

2

i  0.08333 8.3333E-002 0.0000 

2

i  0.08333 8.3333E-002 0.0000 

i)(  0.0 -3.4005E-018 3.4005E-18 

i)(  0.0 1.6697E-017 1.6697E-17 

i)(  0.0 -3.4694E-018 3.4694E-18 
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Further validation was done for varying locations of the reference cell (i.e. varying the xo, 

yo, and zo coordinates in equation (8)), various rotations and translations of the cells, and 

varying lengths of the cell's sides. 

 

Linear Polynomial Extrapolation 

 The linear polynomials from each small stencil can be used to extrapolate any 

linear function to a quadrature point if given the linear function's cell average values of 

the 4 cells in the small stencil.  The cell average value of a linear function is equivalent to 

the function value at the centroid of the cell.  By substituting the cell average values into 

equations (41)-(43), the coefficients to the linear polynomial can be obtained.  Further 

substitution of the values of each coefficient into equation (34) allows for the 

extrapolation to be calculated by evaluating the resulting expression at the quadrature 

point.  A tetrahedral grid of 114 cells is used to test the linear polynomials' extrapolation 

accuracy for linear functions.  An image of this grid is seen in Figure 4. 

 

Figure 4.  Tetrahedral Mesh Used for Validation 
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Extrapolations were performed for every cell's quadrature points using every small stencil 

created for that cell.  The exact value used to calculate the error of the extrapolation is the 

function value at the quadrature point.  Table 5 shows the maximum error seen out of 

every reconstruction in the grid for various linear functions. 

Table 5.  Linear Polynomial Extrapolation Error for Linear Functions 

Function Maximum Error RMS Error 

  7.1342E-12 1.8464E-13 

  1.1604E-11 3.3140E-13 

ζ
 

1.6721E-11 4.2796E-13 

0.5x +  9.7y - 2.5z + 0.9 3.1331E-11 7.5262E-13 

10.2x -  2.9y + 5.1z + 3.6 1.8956E-11 5.6494E-13 

-16.5x +  0.2y - 0.5z + 15.6 2.0889E-11 6.0053E-13 

 

The root mean square (RMS) error is defined by equation (83).  

N

E

RMS

N

i
i

 1

2

 (83) 

 

where Ei is the error for extrapolation i, and N is the total number of extrapolations.  

From Table 5 it can be seen that all linear polynomials within the tetrahedral grid can 

extrapolate linear functions to the quadrature points with an acceptable degree of 

accuracy. 

 

Quadratic Polynomial Extrapolation 

 The quadratic polynomials from each cell's big stencil can be used to extrapolate 

any quadratic function to a quadrature point when given the cell average values of the m 

cells in the big stencil for that function.  The coefficients of the quadratic polynomial are 
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obtained by substituting the cell average values into equation (20).  The extrapolation is 

calculated by substituting the values of each coefficient into equation (12) and evaluating 

the resulting expression at the quadrature point.  Obtaining the cell average values for the 

quadratic functions is more difficult than for the linear functions.  Simply evaluating the 

quadratic expression at the cell centroid will not result in the cell average value.  

However, a modified form of the function used for the calculation of the cell average 

local variables can be used to approximate the cell average value of any analytical 

quadratic function.  The cell average value is defined by equation (6).  The modified 

function approximates the volume integral of the quadratic expression and divides the 

result by the volume of the cell.  This results in the approximate cell average value.  This 

function allows the cell average values of a quadratic function to be found for each cell in 

the big stencil.  Using the 114 cell tetrahedral grid, the quadratic polynomial from every 

big stencil was used to extrapolate various functions to every quadrature point of the cell 

corresponding to the particular big stencil.  Table 6 shows the maximum deviance from 

the exact function value at the quadrature point for every extrapolation performed on the 

grid as well as the RMS error. 
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Table 6. Quadratic Polynomial Extrapolation Error 

Function Maximum Error RMS Error 

  1.2490E-14 2.0067E-15 

  1.4655E-14 2.3126E-15 

  1.6098E-14 2.3358E-15 
2  2.7534E-14 3.0965E-15 

2  1.3156E-14 3.0743E-15 

2  2.2510E-14 3.3317E-15 

  6.3838E-15 1.1399E-15 

  1.0353E-14 1.3074E-15 

  1.0159E-14 1.4932E-15 

1.2x
2 
+ 4.5y

2
 - 9.1z

2
 + 7.2x - 1.3y + 

0.9z - 1.2 
6.3061E-14 9.1829E-15 

4.1x
2 
+ 3.2y

2
 + 6.7z

2
 + 9.1x + 9.3y - 

2.9z - 0.3 
1.1013E-13 1.3020E-14 

-2.1x
2 
+ 1.7y

2
 - 6.9z

2
 + 3.2x - 6.2y - 

8.9z - 10.5 
9.2371E-14 1.1513E-14 

 

The results in Table 6 show that the quadratic polynomials can perform accurate second 

order extrapolations to the quadrature points. 

 

Extrapolation Using the Linear Weights 

 The previous sections showed that the linear polynomials and quadratic 

polynomials can be used for extrapolations of first and second order accuracy, 

respectively.  The validation in the previous sections gives assurance that the inputs into 

the linear weight calculation are correct because they depend on the linear polynomial 

extrapolations, the small stencil constants, and the big stencil constants.  The linear 

weights can now be tested in order to validate their replication of the quadratic 

polynomial's accuracy when used to combine the linear polynomials.  The linear 

polynomials are used to extrapolate quadratic functions to the quadrature points.  The 

linear weights are then applied to these extrapolations using equation (79) to get the final 



50 

 

value of the quadrature point extrapolation.  Table 7 provides the error values of the 

extrapolations obtained from the linear weight application. 

Table 7. Linear Weight Extrapolation Error 

Function Maximum Error RMS Error 

  1.2297E-12 3.2632E-14 

  1.8682E-12 4.7618E-14 

  1.2037E-12 4.4819E-14 
2  2.9554E-13 1.3115E-14 

2  2.1139E-13 1.0754E-14 

2  5.2261E-13 1.7451E-14 

  2.7192E-13 8.6011E-15 

  5.1348E-13 1.4156E-14 

  1.4921E-13 7.7182E-15 

1.2x
2 
+ 4.5y

2
 - 9.1z

2
 + 7.2x - 1.3y + 

0.9z - 1.2 
1.7024E-12 9.0109E-14 

4.1x
2 
+ 3.2y

2
 + 6.7z

2
 + 9.1.2x + 

9.3y - 2.9z - 0.3 
1.1141E-11 3.1623E-13 

-2.1x
2 
+ 1.7y

2
 - 6.9z

2
 + 3.2x - 6.2y - 

8.9z - 10.5 
7.3008E-12 2.2564E-13 

 

The results in Table 7 show the linear weights’ ability to combine linear polynomials and 

mimic the accuracy of quadratic polynomials.  This is key to the WENO scheme, 

achieving third order spatial accuracy while only having to deal with the computational 

cost of linear polynomials.  The results shown in Table 7 were obtained using 

extrapolations calculated from equation (79).  This equation uses the linear weights 

before the splitting technique, given by equations (72)-(75), has been applied.  The 

splitting technique is used to treat the presence of negative linear weights which cause 

instability during the application of the WENO scheme to CFD problems [8].  Each set of 

linear weights is checked for the presence of negative values.  If negative linear weights 

are present, then the splitting technique is applied.  The extrapolation to the quadrature 

points can then be calculated by equations (81) and (82).  Table 8 shows the error values 
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obtained in the same fashion as Table 7, however, the linear weights were split if the 

presence of negative weighting was detected. 

Table 8. Split Linear Weight Extrapolation Error 

Function Maximum Error RMS Error 

  1.2202E-12 3.4481E-14 

  1.8631E-12 4.7598E-14 

  1.2047E-12 4.9693E-14 
2  3.4583E-13 1.4364E-14 

2  2.0831E-13 1.2745E-14 

2  5.2083E-13 1.6831E-14 

  2.9324E-13 1.1091E-14 

  7.4662E-13 1.9719E-14 

  5.1700E-13 1.6454E-14 

1.2x
2 
+ 4.5y

2
 - 9.1z

2
 + 7.2x - 1.3y + 

0.9z - 1.2 
1.7039E-12 9.6437E-14 

4.1x
2 
+ 3.2y

2
 + 6.7z

2
 + 9.1.2x + 

9.3y - 2.9z - 0.3 
1.0637E-11 4.4357E-13 

-2.1x
2 
+ 1.7y

2
 - 6.9z

2
 + 3.2x - 6.2y - 

8.9z - 10.5 
9.4076E-12 4.0714E-13 

 

Table 8 shows that the splitting technique of [8] maintains the same level of 

accuracy as the non-split weights that were originally calculated.  This allows for the 

accuracy of the scheme to be maintained while also maintaining stability during 

application.  The error analysis from the quadratic function extrapolations obtained using 

the quadratic polynomials from the big stencils, the linear weights combining the linear 

polynomials, and the split linear weights combining the linear polynomials is 

consolidated in Table 9. 

. 
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Table 9.  Comparison of Extrapolation Methods 

Function 

Max Error RMS Error 

Quadratic 

Polynomial 

Linear Weight 

Combinations 

Split Linear 

Weights 

Quadratic Linear Weight 

Combinations 

Split Weight 

Linear 

   1.2490E-14 1.2297E-12 1.2202E-12 2.0067E-15 3.2632E-14 3.4481E-14 

  1.4655E-14 1.8682E-12 1.8631E-12 2.3126E-15 4.7618E-14 4.7598E-14 

  1.6098E-14 1.2037E-12 1.2047E-12 2.3358E-15 4.4819E-14 4.9693E-14 

2  2.7534E-14 2.9554E-13 3.4583E-13 3.0965E-15 1.3115E-14 1.4364E-14 

2  1.3156E-14 2.1139E-13 2.0831E-13 3.0743E-15 1.0754E-14 1.2745E-14 

2  2.2510E-14 5.2261E-13 5.2083E-13 3.3317E-15 1.7451E-14 1.6831E-14 

  6.3838E-15 2.7192E-13 2.9324E-13 1.1399E-15 8.6011E-15 1.1091E-14 

  1.0353E-14 5.1348E-13 7.4662E-13 1.3074E-15 1.4156E-14 1.9719E-14 

  1.0159E-14 1.4921E-13 5.1700E-13 1.4932E-15 7.7182E-15 1.6454E-14 

1.2x
2 
+ 4.5y

2
 - 9.1z

2
 + 7.2x - 

1.3y + 0.9z - 1.2 
6.3061E-14 1.7024E-12 1.7039E-12 9.1829E-15 9.0109E-14 9.6437E-14 

4.1x
2 
+ 3.2y

2
 + 6.7z

2
 + 9.1.2x + 

9.3y - 2.9z - 0.3 
1.1013E-13 1.1141E-11 1.0637E-11 1.3020E-14 3.1623E-13 4.4357E-13 

-2.1x
2 
+ 1.7y

2
 - 6.9z

2
 + 3.2x - 

6.2y - 8.9z - 10.5 
9.2371E-14 7.3008E-12 9.4076E-12 1.1513E-14 2.2564E-13 4.0714E-13 
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Additional Extrapolation Results 

 This section provides the quadrature point extrapolation results obtained for a 

tetrahedral unstructured mesh consisting of 553,409 cells, 138,584 nodes, and 1,198,096 

faces.  This is the same mesh that is used in the computational cost analysis and the 

vortex convection case that are presented in Chapter 4.  Figure 5 and Figure 6 show this 

tetrahedral mesh. 

 

Figure 5. Unstructured Tetrahedral Mesh 
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Figure 6. Close Up of Unstructured Tetrahedral Mesh 

 This mesh is different than the mesh shown in Figure 4 in terms of number of cells, 

nodes, and faces, as well as average cell volume.  The same local variables and analytical 

functions from the previous sections are used to analyze the extrapolation error.  The 

maximum error obtained for the extrapolated value and the RMS error, as defined by 

equation (83), are used to evaluate the accuracy.  Table 10 presents the extrapolation 

error for the linear local variables and linear analytical functions when the linear 

polynomial reconstructions from the small stencils are used. 

Table 10. Linear Extrapolation Errors for Unstructured Grid 

Function Maximum Error RMS Error 

  4.1303E-10 5.3712E-13 

  1.08E-09 2.4111E-13 

ζ
 

4.39E-09 7.9505E-13 

0.5x +  9.7y - 2.5z + 0.9 7.4177E-10 1.8099E-13 

10.2x -  2.9y + 5.1z + 3.6 1.0408E-09 4.6183E-13 

-16.5x +  0.2y - 0.5z + 15.6 3.44E-10 6.4861E-13 
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The results of the linear extrapolations presented in Table 10 are less accurate than the 

results presented in Table 5.  This could be due to the increased complexity and size of the 

unstructured grid used, shown in Figure 5, as compared to the grid shown in Figure 4.  

Table 11 provides the extrapolation results for all of the local variables as well as 

quadratic analytical functions.  The extrapolations in Table 11 are performed using the 

quadratic polynomial from the big stencil, the linear weights, and the linear weights using 

the splitting technique.  
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Table 11.  Quadratic Extrapolation Errors for Unstructured Grid 

Function 

Max Error RMS Error 

Quadratic 

Polynomial 

Linear Weight 

Combinations 

Split Linear 

Weights 

Quadratic Linear Weight 

Combinations 

Split Weight 

Linear 

   3.5980E-12 1.7733E-07 1.7689E-07 5.1141E-15 6.0110E-11 6.1130E-11 

  4.6252E-12 1.3539E-07 1.4310E-07 5.0644E-16 4.5709E-11 4.8242E-11 

  6.0056E-12 1.3611E-07 1.3551E-07 6.0412E-15 4.5790E-11 4.5548E-11 

2  1.2958E-11 8.9952E-09 1.1363E-08 1.4689E-14 4.3311E-12 5.1843E-12 

2  2.2032E-12 6.4059E-08 6.4735E-08 3.1127E-15 2.1834E-11 2.2155E-11 

2  1.4736E-11 6.0930E-09 7.3451E-09 1.5557E-14 2.8671E-12 3.2615E-12 

  1.1326E-12 2.5569E-08 2.4835E-08 1.4306E-15 8.6741E-12 8.3796E-12 

  3.3315E-12 5.3126E-08 5.4569E-08 3.9212E-15 1.7955E-11 1.8512E-11 

  1.1416E-12 2.5484E-08 2.2515E-08 1.6292E-15 8.6876E-12 7.5947E-12 

1.2x
2 
+ 4.5y

2
 - 9.1z

2
 + 7.2x - 

1.3y + 0.9z - 1.2 
2.9787E-08 7.7582E-07 3.9846E-06 2.5435E-10 4.9888E-10 1.4693E-09 

4.1x
2 
+ 3.2y

2
 + 6.7z

2
 + 9.1.2x + 

9.3y - 2.9z - 0.3 
1.0503E-07 8.1708E-06 1.0429E-05 9.1710E-10 3.0819E-09 4.0381E-09 

-2.1x
2 
+ 1.7y

2
 - 6.9z

2
 + 3.2x - 

6.2y - 8.9z - 10.5 
5.4098E-08 1.0566E-06 4.7015E-06 4.7533E-10 7.4366E-10 2.0725E-09 
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More error is seen in results of Table 11 than the corresponding results for the less 

complex grid that are given in Table 9.  The WENO scheme is geometry dependent, so 

great care must be taken when a new mesh is being used to ensure that the following 

components have been correctly formed: small stencil polynomials, big stencil 

polynomials, and linear weights.  Test routines have been written for all of these elements 

making up the WENO scheme, and they can be utilized before a CFD simulation is 

attempted on a new computational domain. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

Computational Cost Analysis 

 The additional computational expense caused by increasing the spatial order of 

accuracy through the use of the WENO scheme is examined in this section.  This analysis 

was performed using a vortex convection case on two different grids.  One grid used is 

the unstructured tetrahedral mesh seen in Figure 5 and Figure 6 while the other grid is a 

structured hexahedral mesh containing 64,000 cells, 97,443 nodes, and 224,960 faces.  

Figure 7 and Figure 8 show the hexahedral structured mesh. 

 

Figure 7.  Structured Hexahedral Mesh 
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Figure 8.  Close Up of Structured Hexahedral Mesh 

 

The computational cost analysis will include the cost associated with first and second 

order schemes.  In addition, a second order accurate scheme utilizing the Gaussian 

quadrature schemes and linear extrapolations of the flow variables will be analyzed.  The 

unstructured mesh will also contain a cost comparison for the third order accurate WENO 

scheme.  Difficulties are encountered in calculating the linear weights on the structured 

mesh and a third order scheme will not be included in the cost analysis.  Due to the 

inability to use the non-linear weights needed for the third order scheme, the solution of 

this vortex convection case diverges after 18 iterations when using the unmodified linear 

weights' extrapolations alone for the flux calculations.  Therefore, the full CFD 

simulation results cannot be obtained for an accuracy comparison of the WENO scheme, 

but the increase in computational cost can be measured.  The difference in these 4 

schemes is the way in which the flow variables are extrapolated to the face for flux 

calculation.  The first order scheme assumes a constant flow variable distribution across 
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each cell and takes the flow variable value at the centroids of the cells on either side of 

the face for the flux calculations.  The second order scheme uses linear extrapolations of 

the flow variables from the cell centroids from either side of the face to the centroid of 

the face for the flux calculation.  The second order scheme utilizing the quadrature points 

uses linear extrapolations of the flow variables from the cell centroids on either side of 

the face to each of the 4 quadrature points on that face.  The flux is calculated at each of 

these quadrature points based on the linearly extrapolated values. The total flux through 

the face is then calculated as a weighted sum of the four fluxes as seen in equation (3).  

The third order scheme is the WENO scheme described in this paper, and it obtains the 

accuracy equivalent to that obtained by a quadratic polynomial extrapolation through the 

use of a weighted sum of linear extrapolations as defined by equation (81) and equation 

(82).  The results presented in this section compare the computational time required for 

the flux calculation for each method based on the average time of the first 9 times the 

flux subroutine was called (well before the solution diverged in the third order case).  

Table 12 provides data obtained for the average flux calculation time when the simulation 

was run on the unstructured mesh. 

Table 12.  Flux Calculation Time for Unstructured Grid 

 

The increase of the computational time required with increasing order of accuracy shown 

in Table 12 reflects the increased number of operations in the extrapolation of the flow 

Spatial Order of Accuracy 
Time per Flux Calculation per 

cell (s) 

Time per Iteration 

per cell (s) 

First Order 4.96E-07 5.32E-05 

Second Order 1.02E-06 5.70E-05 

Second Order with Quadrature 

Scheme 
2.00E-06 5.71E-05 

Third Order WENO Scheme 2.67112E-05 1.26E-04 
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variables when the order of accuracy is increased.  The relatively large increase in 

computational time of the third order WENO scheme when compared to the other 

schemes can be attributed to the procedure of obtaining the flow variable extrapolations 

from numerous linear extrapolations that must be combined using the linear weights as 

governed by equation (81) and equation (82).  Table 13 provides the computational cost 

data that was obtained using the structured grid. 

Table 13.  Flux Calculation Time for Structured Grid 

 

Similar patterns of increasing computational cost with increasing order of accuracy can 

be seen in Table 13. 

 

Vortex Convection Case 

 The structured and unstructured meshes and the flux calculation schemes 

described in the computational cost study were used to form vortex convection 

simulations.  This case was intended to be used for the validation of the third order 

accurate WENO scheme by showcasing its ability to accurately propagate the vortex 

along the flow domain while exhibiting less dissipation when compared to the second and 

first order schemes.  However, the current implementation cannot produce the non-linear 

weight modifications to the linear weights that can maintain the third order accuracy 

while providing numerical stability to the simulation.  The solution diverges when the 

unmodified linear weights are used for the flow variable extrapolations during the flux 

Spatial Order of Accuracy 
Time per Flux Calculation per 

cell (s) 

Time per Iteration 

per cell (s) 

First Order 4.34E-07 3.64E-05 

Second Order 7.12E-07 3.92E-05 

Second Order with Quadrature 

Scheme 
2.07E-06 4.28E-05 
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calculation.  Therefore, the full WENO scheme cannot be currently validated with this 

vortex convection case; however, the Gaussian quadrature schemes used by the WENO 

scheme in the flux calculation can be examined.  These Gaussian quadrature schemes 

have been used to create a second order scheme by using linear extrapolations from the 

cell centroids on either side of a face to the 4 quadrature points on that face, as described 

in the previous section.  The vortex was prescribed to propagate in the positive x-

direction for both the tetrahedral unstructured mesh and the hexahedral structured mesh.  

The center of the vortex was determined to be the point at which the minimum values of 

pressure and density were located within the domain.  All of the simulations had 

extremely close results when comparing the propagation of the vortex throughout the 

flow domain with respect to location and time.  However, the dissipation of the vortex 

proved to be greater for the first order scheme when compared to the two second order 

schemes.  Figure 9 shows the value of the minimum pressure within the vortex as the 

simulation progressed, while Figure 10 shows the value of the minimum density within 

the vortex. 
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Figure 9. Minimum Pressure of Unstructured Grid 

 

Figure 10. Minimum Density of Unstructured Grid 

The results presented in the above figures show that both second order accurate schemes 

show significantly less dissipation than the first order accurate scheme for the simulations 
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obtained using the unstructured domain.  The second order scheme that utilizes the 

quadrature point flux calculation showed negligible difference from the solution obtained 

using the existing HYB3D second order scheme.  Figure 11 and Figure 12 provide the 

data for minimum pressure and density values, respectively, for the simulations obtained 

using structured mesh. 

 

Figure 11. Minimum Pressure of Structured Grid 
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Figure 12. Minimum Density of Structured Grid 

The results seen in the two figures above differ from the results of the unstructured 

mesh's simulations because of the larger dissipation exhibited by the first order scheme.  

The structured mesh contained less elements compared to the unstructured mesh.  This 

meant that the cells of the structured mesh were larger in terms of volume when 

compared to the unstructured elements.  Therefore, the assumption of a constant flow 

variable distribution over each cell used by the first order scheme is more erroneous for 

the structured grid than for the unstructured grid.  This is why more dissipation was 

obtained in the structured mesh's simulation when compared to the unstructured mesh's 

simulation when using the first order scheme.  When compared to the first order scheme, 

less dissipation was seen in the second order schemes' simulations due to their higher 

order of accuracy, which was obtained by assuming a linear flow variable distribution 

over each cell. 
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 The results presented in the following graphs were obtained by finding the cell 

containing the center of the vortex at t = 17.5.  This is the time level corresponding to half 

of the total time for which the simulation was run.  The density and pressure values were 

recorded at every time step of the simulation for the cell.  This allows for the before, 

during, and after effects of the vortex propagation through this cell to be analyzed.  

Figure 13 and Figure 14 show the results obtained for the unstructured mesh. 

 

Figure 13.  Pressure at Middle Cell of Unstructured Grid 
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Figure 14. Density at Middle Cell of Unstructured Grid 

The results from the previous figures show larger dissipation for the first order scheme 

when compared to both of the second order schemes.  The simulations obtained by the 

second order schemes are so close in the predicted values for pressure and density that no 

differences can be observed in the previous figures.  However, while the difference 

between the second order scheme and the second order scheme utilizing Gaussian 

Quadrature cannot be visually seen in the plots, a direct comparison of the numerical 

values at each time level does produce very small differences for the predicted values of 

pressure and density between the two schemes.  Figure 15 and Figure 16 present the 

results obtained for the structured grid. 
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Figure 15. Pressure at Middle Cell of Structured Grid 

 

Figure 16. Density at Middle Cell of Structured Grid 
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Similar to the results obtained for minimum pressure and density values, more dissipation 

is seen in the simulation using the first order scheme for the structured grid than 

corresponding scheme for the unstructured grid.  The structured grid simulations for the 

second order schemes are so close in predicted values for pressure and density that no 

clear deviation can be observed in the plots. 

 Visualizations of these simulations were created by plotting the distributions of 

density, pressure, and velocity magnitude at the initialization of the flow variables, t = 0, 

and at t = 35, after the vortex had propagated most of the length of the flow domain.  

These visualizations were done for all 6 of the vortex convection simulations.  Figure 17 

provides the initial density distribution of the vortex, Figure 18 provides the initial 

pressure distribution of the vortex, and Figure 19 provides the initial velocity magnitude 

of the vortex.  These initial conditions are true of all 6 vortex convection simulations 

studied in this section. 

 
Figure 17. Density Distribution of Vortex at t = 0 
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Figure 18. Pressure Distribution of Vortex at t = 0 

 
Figure 19. Velocity Magnitude Distribution of Vortex at t = 0 

 

 The vortex was allowed to propagate along the flow domain from the initial 

location of x = 5.0, at t = 0, to x = 40.0, at t = 35.  The following figures show the 

distributions of density, pressure, and velocity magnitude at the time level t = 35.  In each 

of the figures, the results for the first order scheme are presented as the top distribution, 

the results for the second order scheme are presented as the middle distribution, and the 

results from the second order Gaussian quadrature point scheme are presented as the 

bottom distribution.  This was done for an easy side-by-side comparison, and all of the 

plots use the same color spectrum and legend values for each variable.  Figure 20, Figure 

21, and Figure 22 show the results for the unstructured grid, while Figure 23, Figure 24, 

and Figure 25 show the results for the structured grid. 
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Figure 20. Density Distrubtions at t = 35 for Unstructured Grid Simulations 

 
Figure 21. Pressure Distrubtions at t = 35 for Unstructured Grid Simulations 
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Figure 22. Velocity Magnitude Distrubtions at t = 35 for Unstructured Grid Simulations 

 
Figure 23.  Density Distrubtions at t = 35 for Structured Grid Simulations 
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Figure 24. Pressure Distrubtions at t = 35 for Structured Grid Simulations 

 

 

Figure 25. Velocity Magnitude Distrubtions at t = 35 for Structured Grid Simulations 
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The figures above indicate that second order schemes show less dissipation of the 

vortex when compared to the first order scheme.  While the second order scheme that 

used Gaussian quadrature does not show a significant increase in accuracy, it does match 

the existing second order scheme with a negligible difference.  This is true of both the 

Gaussian quadrature point schemes described in this paper as the structured mesh 

contained only quadrilateral faces while the unstructured mesh contained only triangular 

faces.  The Gaussian quadrature points were successful in generating second order 

accurate results when used with linear extrapolations.  Assuming that this would extend 

to third order accurate results obtained from quadratic extrapolations, these schemes are 

suitable for the WENO implementation. 

 

Conclusions 

 This paper details the groundwork completed for generating a functional WENO 

scheme that can use generalized meshes of 4 to 6 sided elements.  Implementations have 

been created for the stencil selections, linear polynomial reconstructions, quadratic 

polynomial reconstructions, and reconstructions using the linear weights.  These 

implementations are validated using unstructured tetrahedral meshes.  In addition, the 

linear weights splitting technique of [8] has been implemented and validated.  Structured 

hexahedral mesh are more difficult for polynomial reconstruction and, consequently, 

linear weights calculation.  This difficulty could be encountered because the structured 

mesh has little geometric variation when comparing neighboring cells' centroids.  It is 

possible that a rotation of the entire grid with respect to the coordinate system would 

alleviate some of the numerical issues encountered.  This rotation would eliminate values 
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of zero produced for the cell average local variables.  The WENO scheme is dependent 

on the geometry of the mesh for which it is being applied.  Test routines are in place to 

ensure proper stencil selection, linear polynomial formation, quadratic polynomial 

formation, and linear weight calculation.  These test routines should be run anytime that a 

new mesh is being used with the WENO scheme.  This will ensure that the mesh is 

suitable for numerical simulation.  
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CHAPTER 5 

FUTURE WORK 

Non-Linear Weight Implementation 

 The non-linear weights are currently producing large errors when used to modify 

the linear weights for extrapolations to the quadrature points.  This modification is 

extremely important to the WENO scheme because it provides more weight to the small 

stencils that exhibit smaller variations in the flow variable distributions.  This allows 

spurious oscillations to be avoided and provides stability to the scheme during the 

numerical flux calculations.  For the vortex convection case, the solution diverges when 

the unmodified linear weights are used in extrapolating the flow variables to the 

quadrature points for the flux calculation.  The non-linear weights provide the non-

oscillatory nature to the WENO scheme, which is the basis of the originally developed 

ENO schemes.  Before a full validation of the WENO scheme detailed in this paper can 

be obtained, the non-linear weights must be implemented in such a way that they 

correctly perform their function.  The current implementation agrees with the theoretical 

formulation as given by [6].  The derivatives of each linear polynomial as defined by 

equations (64)-(66) are calculated with negligible error when each small stencil's 

polynomial is applied to a linear analytical function.  These derivatives are used to 

calculate the smoothness indicators for each polynomial.  The smoothness indicators are 

used to calculate the non-linear weights.  While the derivatives have been validated for 
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linear functions, the overall non-linear weight modifications of the linear weights do not 

produce accurate extrapolations.  These non-linear weights must be made to work before 

the WENO scheme can be used to create accurate CFD simulations.  When it was 

discovered that the linear weights alone could not be used in the flux calculations without 

causing the solution to diverge, a different limiting function was used in place of the 

faulty non-linear weight implementation.  This limiting function did not allow any 

extrapolated flow variable value for a quadrature point to lie outside the minimum or 

maximum value of that flow variable’s cell average value for the reference cell and the 

first level neighbors of the reference cell.  If an extrapolation was found to lie outside of 

these bounds, the extrapolated value was set to either the minimum or the maximum of 

the range, depending on which bound the extrapolation had breached.  However, this 

limiting function proved unsuccessful in eliminating the divergence of the solution.  In 

summary, the non-linear weights are a crucial element to the WENO scheme and must be 

made to function correctly before the scheme can be used for the study of CFD problems. 

 

Ill-Conditioning of Linear Weights Problem 

 Problems are encountered when applying the linear weight calculation procedure 

to more geometrically complex meshes.  It is observed that as the condition number of 

the left hand side matrix from the least squares problem, equation (58), increases, the 

magnitude of the calculated values of linear weights also drastically climbs.  These linear 

weights then produced larger extrapolation errors when used to combine the linear 

polynomials.  Therefore, it is of interest to see the extreme maximum and minimum 

values produced by the linear weights calculation.  An examination of these linear weight 
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values and the corresponding error produced when they are used to obtain extrapolations 

has been performed for the two tetrahedral grids used in the extrapolation error analysis.  

The 114 cell grid can be seen in Figure 4while the larger grid that was also used in the 

vortex convection case can be seen in Figure 5.  For every reference cell there is a set of 

linear weights calculated for every quadrature point on that cell.  For both meshes 

examined, the maximum and minimum values of any linear weight were found to have 

come from the same set of linear weights. 

 For the 114 cell tetrahedral grid, the maximum value was seen to be 1876.0 while 

the minimum value was equal to -625.4.  These extreme values came from a set of linear 

weights calculated for the same reference cell and quadrature point.  The error seen in 

using these extreme values for extrapolations was then obtained by using this set of linear 

weights to combine the linear polynomials for analytical function extrapolations to that 

quadrature point.  The linear weights without the use of the splitting technique produced 

an average error of 7.20E-13 for the three analytical functions.  The linear weights used 

in conjunction with the splitting technique produced an average error of 8.47E-12. 

 The same procedures were then done for the larger tetrahedral mesh.  The 

maximum and minimum values for calculated linear weights are equal to 16252539.3 and 

-15965053.5, respectively.  Similar to the 114 cell grid, these extreme linear weight 

magnitudes were located within the same set of linear weights.  Using this set of linear 

weights, an average error value was found to be 6.42E-7.  When the splitting technique 

was introduced to the linear weights, the average extrapolation error was increased to 

8.01E-7. 



79 

 

 The extrapolations performed using the 114 cell grid’s extreme linear weight set 

only produced the maximum extrapolation error for the whole grid in one of the six 

extrapolations performed.  This was for the third analytical function as listed in Table 9 

with the use of the splitting technique.  Similarly, the extrapolations performed for the 

larger grid’s extreme linear weights showed only one out of six extrapolations that were 

the most erroneous in the grid.  However, this extrapolation was for the non-split linear 

weights when used to extrapolate the third analytical function.  It could be that, in this 

case, the round-off errors introduced by the additional operations associated with the 

splitting technique actually negated some of the extrapolation error from the linear 

polynomials.  The presence of such extreme values produced by the linear weights 

calculation is undesirable.  This is especially true in the case of the larger grid where the 

magnitudes are very large.  In order for WENO to be implemented accurately, this issue 

needs to be addressed.  The condition number of the left hand side matrix during the 

linear weight calculation for the 114 cell grid was calculated using Matlab to be 2.99E16.  

This large of a condition number indicates that the system is ill-conditioned.  Matlab was 

also used to compute the condition number of the corresponding matrix for the larger 

grid, and this was found to be 8.72E16.  This increase in condition number could be the 

reason for the large increase in the extreme linear weight magnitudes and associated error 

magnitudes for the larger grid when compared to the 114 cell grid.  Further study needs 

to be done on ways to generate a more stable system of equations when solving for the 

linear weights. 

 Each small stencil has 4 constants in each column of the LHS matrix.  Each of 

these constants corresponds to one small stencil cell.  In some cases, the linear 
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polynomial procedure produces very small values for one of the small stencil constants. 

 This means that the polynomial reconstruction is effectively limited to the information 

pulled from 3 cells instead of 4.  For a given quadrature point, this happens for 2 or more 

different small stencils, and the 3 cells that are being used for the effective reconstruction 

are the same cells.  These small stencils are not exactly the same stencil because the 

fourth ineffective members of these small stencils are different cells, making the selecting 

of these stencils valid.  However, the fourth member does not contribute, and the other 

small stencil constants are very close in value between the different small stencils.  This 

means two different small stencils are being produced that have very small differences in 

their calculated constants, and, therefore, very small differences in their reconstructed 

values.  This leads to two columns of the LHS matrix of the linear weights' least-squares 

problem being approximately equal in value.  This causes the condition number of this 

LHS matrix to increase, which has been shown to cause the calculated values of the linear 

weights to increase.  These larger magnitude linear weights have then been shown to 

cause an increase in error. 

 

Mapping Function 

 A mapped weighting technique has been reported in WENO schemes for the 

purpose of increasing accuracy.  The methodology presented in this section was 

developed by Henrick et al. [9].  The addition of this mapped weighting technique is 

referred to as WENOM by Nichols et al [3], where the M signifies the mapped weighting 

used in the WENO scheme.  The weighting function is defined by equation (84). 
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 (84) 

 

The non-linear weights used in the WENO reconstruction can now be replaced by the 

mapped weights, ωs
M

, which are expressed as equation (85). 

 (85) 

 

The mapped non-linear weights calculated by equation (85) are used in equation (78) for 

flow variable extrapolation to the quadrature points.  If the splitting technique of Shi et al. 

[8] is used, then 2 groupings of mapped non-linear weights are calculated using equation 

(86). 

 (86) 

 

The groupings of mapped non-linear weights are then used to calculate the final WENO 

extrapolations to the quadrature points with equations (80) and (82).  Introducing this 

mapped weighting function could prove to increase the accuracy of the current 

implementation. 

 

Extension to Grids With Cells of Any Shape 

 The WENO scheme described in this paper was implemented for use with 

generalized grids containing elements with a maximum of 6 faces.  This section will 

describe the considerations and changes that would have to be made to enable the scheme 

to utilize grids containing any three-dimensional element type.  

 The limitation of only 4 to 6 sided elements within the mesh directly limits the 

shapes of faces within the mesh to triangles or quadrilaterals.  Each of the two Gaussian 
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quadrature schemes implemented by the WENO scheme (details in Appendix A) are 

designed for one of these type faces.  Allowing for elements of any shape would 

necessitate the implementation of quadrature schemes that could be used for any cell-face 

shape that could be encountered in the grid.  The quadrature schemes are a key 

component to the WENO formulation as they are responsible not only for the 

approximation of the cell average values of the local variables, but also the numerical 

fluxes through each cell-face. 

 The big stencil selection was formulated based on a maximum of 6 first level 

neighbors for any given reference cell.  Given a reference cell with 9 or more first level 

neighbors, the big stencil selection could be completed by adding those cells: however, in 

the current implementation this is never encountered, and second level neighbors are 

always added.  Extending the WENO scheme to element shapes with more faces would 

involve changing the big stencil selection so that an excess of cells would not be added.  

The current scheme adds all of the first level neighbors, and then attempts to add 2 

second level neighbors for every first level neighbor.  If a cell contained 8 first level 

neighbors, 16 corresponding second level neighbors could be added, resulting in a big 

stencil population of 25 (including the reference cell).  The minimum big stencil 

population required for the quadratic polynomial reconstruction is 10, so unwarranted 

computational cost would be incurred by a big stencil population of 25 members.  For the 

case of 8 first level neighbors, only 1 second level neighbor is required to be added to the 

big stencil for full population.  Considering how the stencils are used for the flow 

variable extrapolation, it might prove best to add the second level neighbor that is in 

closest proximity to the reference cell with respect to their centroids.  Another point to 
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consider is that when performing the flow variable extrapolations it is desirable to pull 

information from all directions around the control volume.  With this in mind, it might 

prove best to determine which direction around the reference cell is least represented, in 

terms of big stencil population, and add second level neighbors from the 

underrepresented directions.  This could be a topic of future research and is outside of the 

scope of this paper. 

 The small stencil selection would have to be formulated to handle elements with 

more first level neighbors.  An element that has 7 first level neighbors would result in 35 

possible small stencil candidates from combinations of those neighbors.  Similarly, 8 first 

level neighbors would result in 56 possible small stencils.  The minimum number of 

small stencils needed is only 7 [6], and very large computational time, as well as 

additional memory allocation, would be required by such a large number of small 

stencils.  In the current implementation, there is already a limitation on the number of 

small stencils created using first level neighbor combinations for elements with 5 first 

level neighbors (10 possible combinations) or with 6 first level neighbors (20 possible 

combinations).  Similar limitations would have to be made that could apply to a cell with 

any larger number of first level neighbors.  For extension to an arbitrary cell shape, the 

changes made to the small stencil selection will be dependent on the changes made to the 

big stencil selection. Small stencil selection is restricted because every cell in the big 

stencil must be represented by at least one small stencil and every cell within a small 

stencil must share at least one face with another cell in that small stencil.  These 

requirements make the small stencil selection dependent on the level of neighbors to 

which the big stencil extends. 
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 The WENO scheme described in this paper has been developed for generalized 

grids containing element shapes of 4 to 6 sides.  While these restrictions do allow for a 

structured boundary layer mesh and an unstructured tetrahedral mesh in the flow domain, 

it is desirable to make this scheme applicable to any type of generalized grid.  In order to 

be applied to cells of an arbitrary shape, the foreseeable changes to the WENO scheme 

include the implementation of Gaussian quadrature schemes to handle an arbitrary face 

shape, and the big and small stencil selections. 
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GAUSSIAN QUADRATURE 
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 The use of Gaussian quadrature is needed in this WENO scheme for the 

calculation of the cell average local variables.  It is also used during the flux calculation 

in equation (3).  The WENO scheme detailed in this paper is developed for 3-dimensional 

generalized grids that are restricted by containing faces with 3 or 4 nodes.  With this 

restriction, all of the faces within the grid will either be a triangle or a quadrilateral.  This 

necessitates the use of two different Gaussian quadrature schemes: one for a triangular 

face and another for a quadrilateral face.  Both schemes that have been chosen are 4-point 

Gaussian quadrature schemes.  For a triangular face, the scheme used by Zhang et al. [6] 

is employed.  Given a triangular face with vertices of V1, V2, and V3, the coordinates of 

the 4 quadrature points, G1, G2, G3, and G4, can be calculated by equation (87). 

 

 

 

 

(87) 

 

where the weights for the quadrature point coordinate calculation are given by equation 

(88). 

3322111 VVVG  

3321122 VVVG  

3322113 VVVG  

3321124 VVVG  
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The weights used in this Gaussian quadrature point scheme [6] to perform the integral 

approximations are given by equation (89). 

 

 

(89) 

 

where the subscript indicates which of the 4 quadrature points the weights will be applied 

to when calculating an integral approximation or flux calculation. 

 The Gaussian quadrature scheme used for the quadrilateral faces comes from 

Fagan et al. [11].  For each quadrilateral face, the quadrature points are expressed in the 

terms of the natural coordinate system of that face.  The relation of the natural coordinate 

system to the global coordinate system is illustrated in Figure 26. 
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Figure 26.  Natural Coordinate System 

 As long as all of the 4 sides are straight, the quadrilateral can be distorted in the 

global Cartesian coordinate system but still remain a square, with sides parallel to the 

axes in reference to the natural coordinate [11].  An interpolation function between global 

and natural coordinate systems is given by equation (90). 

 (90) 

 

where V1, V2, V3, and V4 are the global coordinates of the vertices of the quadrilateral as 

seen in Figure 26.  Each shape function in equation (90) are written as equation (91). 

 

 

 

 

(91) 

 

 

Table 14 provides the locations of each quadrature point for any given quadrilateral face 

with respect to the natural coordinate system [11]. 
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Table 14. Quadrilateral Natural Coordinates of Quadrature Points 

Coordinates 
Weight 

ξ η 

  1/4 

  1/4 

  1/4 

  1/4 

 

The natural coordinates in Table 14 can be converted into global coordinates by use of 

the shape functions in equation (91) and the interpolation function in equation (90).  

Equation (92) provides the expressions in which the quadrature points’ coordinates are 

calculated as a function of the vertices coordinates, V1, V2, V3, and V4, of the quadrilateral 

face. 

 

 

 
 

(92) 

 

where the weights used in equation (92) are given by equation (93). 
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The weights used for the integral approximations according to this quadrature scheme are 

given in Table 14, where every quadrature point is weighted equally.  A n-point Gaussian 

quadrature scheme can be used to approximate an integral with equation (94) [13]. 

 (94) 

 

A function was created in agreement with equation (94) using both quadrature point 

schemes presented to approximate volume integrals.  This function was used to validate 

the schemes, and to ensure acceptable accuracy for the applications required by the 

WENO scheme.  The following tables present data obtained from this function over a 

cube.  Table 15 presents the values obtained for a unit cube with one vertex on the origin. 
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Table 15. Integral Approximation Tests for a Unit Cube 

Function Analytical Value Numerical Result Error 

 1.0 1.0000 0.0 

 0.5 0.5000 0.0 

 0.5 0.5000 0.0 

 0.5 0.50000 0.0 

 0.25 0.2500 0.0 

 0.25 0.2500 0.0 

 
0.25 0.2500 0.0 

 
0.3333 0.3333 0.0 

 
0.3333 0.3333 0.0 

 
0.3333 0.3333 0.0 

 
0.25 0.2500 0.0 

 
0.1667 0.1667 0.0 

 

It can be seen from Table 15 that the accuracy for this ideal case is exceptional.  The unit 

cube was then subjected to translations, rotations, and elongations of the sides in order to 

ensure the quadrature scheme’s accuracy.  Table 16 provides the results obtained from 

translating the unit cube away from the origin. 
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Table 16.  Integration Tests for Translated Unit Cube 

Function Analytical Value Numerical Result Error 

 1.0 0.999999999999998 1.9984E-15 

 9.5 9.49999999999999 1.0658E-14 

 3.5 3.50000000000000 0.0000E+00 

 15.5 15.5000000000000 0.0000E+00 

 33.25 33.2499999999999 9.9476E-14 

 147.25 147.250000000000 0.0000E+00 

 
54.25 54.2500000000000 0.0000E+00 

 
90.33333333 90.3333333333331 1.9895E-13 

 
12.33333333 12.3333333333333 0.0000E+00 

 
240.3333333 240.333333333333 0.0000E+00 

 
859.75 859.749999999998 2.0464E-12 

 
78093.16666667 78093.1666666665 1.0186E-10 

 

As seen in Table 16, the quadrature scheme is able to achieve acceptable accuracy.  The 

unit cube is tripled in size and translated with respect to the origin.  The results from 

integrating functions over this cell can be seen in Table 17. 
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Table 17.  Integration Tests for Translated and Elongated Unit Cube 

Function Analytical Value Numerical Result Error 

 27.0 27.0000 0.0 

 283.5 283.5000 0.0 

 121.5 121.5000 0.0 

 445.5 445.500 0.0 

 1275.75 1275.7500 0.0 

 4677.75 4677.7500 0.0 

 
2004.75 2004.7500 0.0 

 
2997.0 2997.0000 0.0 

 
567.0 567.0000 0.0 

 
7371.0 7371.0000 0.0 

 
31893.75 31893.7500 0.0 

 
3681814.5 3681814.5000 0.0 
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APPENDIX B 

LOCAL VARIABLE CALCULATION 
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 The cell averages of the local variables must be calculated for every cell in the big 

stencil for the calculations of the big stencil constants, as well as the small stencil 

constants.  The cell average values of the local variables for cell i were given by the triple 

integrals in equation (8).  The Gauss theorem can be written as equation (95)[14]. 

 
(95) 

 

where equation (95) is written for a volume, V, a closed surface, S, and the normal to the 

closed surface,    .  Using the Gauss theorem as expressed in equation (95), the triple 

integrals in equation (8) is converted to surface integrals seen in equation (96). 
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where nx, ny, and nz are the surface normals for the x, y, and z directions, respectively.  

The surface integrals in equation (96) can be written into one generic equation for any 

local variable.  This generic equation is written for each of the 3 directions in which the 

Gauss theorem can be applied and is seen in equation (97). 

 

 

 

(97) 

 

where p, q, and r are the exponents to the local variables, ξ, η, and ζ, respectively.  The 4-

point Gaussian quadrature schemes can be applied to equation (97) in order for those 

expressions to be evaluated.  After the application of the quadrature scheme of the form 

of equation (94), equation (97) takes the form of equation (98). 
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where faces equals the number of faces that make up cell i, index G represents the 

quadrature point number for face j and has coordinates (xG, yG, zG) which are used to 

evaluate the function, (ni)j is the i-th normal component to face j, and Aj is the area of face 

j.  A function has been created that can calculate equation (98) when given values for p, 

q, r, the reference cell (cell 0), and cell i.  This allows for the calculation of all big stencil 

cells’ cell average values, including the reference cell.  The values produced for            
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and     are theoretically zero, but, if there is some error in the calculation of the reference 

cell's centroid, (xo, yo, zo), then a non-zero value could be produced.  For tetrahedral 

elements, the HYB3D solver calculates the centroids exactly, but for elements of 

different shapes there could be some error in the centroid calculation.  For this reason, the 

terms of            and     have been left in the formulation.  The function that calculates 

these values is a key component to the WENO scheme, and validation was performed to 

ensure its accuracy.  The data structures previously existing from the HYB3D code 

included an array with the information indicating which cells were on either side of every 

face.  For the function calculating equation (98) it is necessary to know what faces make 

up a cell.  It would be very costly to search through each face in the HYB3D data 

structures to see if it makes up the cell.  For the purpose of efficiency, an array containing 

the faces that make up every cell was created.  This allows for much more rapid cycling 

through the faces. 
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